
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

Architectural Bad Smells for Self-Adaptive Systems

Santos, Edilton Lima dos; Schobbens, Pierre-Yves; Machado, Ivan; Perrouin, Gilles

Published in:
Proceedings of the 17th International Working Conference on Variability Modelling of Software-Intensive
Systems, VaMoS 2023, Odense, Denmark, January 25-27, 2023

DOI:
10.1145/3571788.3571802

Publication date:
2023

Document Version
Peer reviewed version

Link to publication
Citation for pulished version (HARVARD):
Santos, ELD, Schobbens, P-Y, Machado, I & Perrouin, G 2023, Architectural Bad Smells for Self-Adaptive
Systems: Go Runtime! in MB Cohen, T Thüm & J Mauro (eds), Proceedings of the 17th International Working
Conference on Variability Modelling of Software-Intensive Systems, VaMoS 2023, Odense, Denmark, January
25-27, 2023: 17th International Working Conference on Variability Modelling of Software-Intensive Systems.
ACM International Conference Proceeding Series, ACM Press, pp. 85-87.
https://doi.org/10.1145/3571788.3571802

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 28. Apr. 2024

https://doi.org/10.1145/3571788.3571802
https://researchportal.unamur.be/en/publications/f61a207f-435e-4f2f-b907-95d804ed5537
https://doi.org/10.1145/3571788.3571802

Architectural Bad Smells for Self-Adaptive Systems: Go Runtime!
Edilton Lima dos Santos
edilton.limados@unamur.be

PReCISE, NaDI,
Faculty of Computer Science, University of Namur

Namur, Belgium

Pierre-Yves Schobbens
pierre-yves.schobbens@unamur.be

PReCISE, NaDI,
Faculty of Computer Science, University of Namur

Namur, Belgium

Ivan Machado
ivan.machado@ufba.br
Institute of Computing,

Federal University of Bahia
Salvador, Brazil

Gilles Perrouin
gilles.perrouin@unamur.be

PReCISE, NaDI,
Faculty of Computer Science, University of Namur

Namur, Belgium

ABSTRACT
Self-adaptive systems (SAS) change their behavior and structure at
runtime depending on environmental changes or user requests. For
this purpose, the SASs combine architectural fragments or solutions
in their adaptation process. However, this process may negatively
impact the system’s architectural qualities, exhibiting architectural
bad smells (ABS). Current studies perform ABS detection for SAS at
design time, ignoring their intrinsic runtime variability. We demon-
strate that this ignorance leads to inaccurate smell detections and
possibly wrong maintenance decisions. We delineate the challenges
runtime variability raise on ABS detection and argue that we should
analyze SAS architectures at runtime.

CCS CONCEPTS
• Software and its engineering → Software product lines;
• Computer systems organization → Self-organizing auto-
nomic computing.

KEYWORDS
Self-adaptive Systems, Software architecture, Architectural Smells,
Architectural Quality, Runtime Validation.

ACM Reference Format:
Edilton Lima dos Santos, Pierre-Yves Schobbens, Ivan Machado, and Gilles
Perrouin. 2023. Architectural Bad Smells for Self-Adaptive Systems: Go Run-
time!. In 17th International Working Conference on Variability Modelling of
Software-Intensive Systems (VaMoS 2023), January 25–27, 2023, Odense, Den-
mark. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3571788.
3571802

1 INTRODUCTION
Architectural Bad Smells (ABS) are architectural decisions that
negatively impact internal software quality. The presence of ABS

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
VaMoS 2023, January 25–27, 2023, Odense, Denmark
© 2023 Association for Computing Machinery.
ACM ISBN 979-8-4007-0001-9/23/01. . . $15.00
https://doi.org/10.1145/3571788.3571802

might imply reduced system testability, maintainability, extensibil-
ity, and reusability [3, 9, 12, 13, 16]. There are many ABS reported
in the literature [4, 9–13, 17, 18, 21]. In this paper, we focus on
structural smells and exclude their impact on the system’s behavior.
Examples include theCyclic Dependency (CD) [1] andHub-Like
dependency (HL) [1, 18]. The former occurs when two or more
components depend on each other directly or indirectly. The latter
arises when a component has (outgoing and ingoing) dependencies
with many other abstractions (e.g., other components) [6].

The literature on self-adaptive systems (SAS) encompasses ap-
proaches to support ABS identification at design time through
static analysis [18]. Such approaches enable the program source
code analysis statically without executing it. However, it does not
consider the system’s (re)configuration process at runtime [18] and
the variability space. In particular, we argue that we cannot infer
the whole variability space for two reasons. First, since most SAS
do not document configuration options, it is difficult to analyze
them automatically. Second, SAS are realizing open variability [23]
at runtime thanks to variability mechanisms such as polymorphism
and via the possibility to download new features on the fly (e.g., the
code for a plug-and-play sensor [20]). A particular characteristic
of a SAS is to reconfigure dynamically at runtime. A SAS might
change its behavior due to unexpected environmental changes,
reconfiguration plans, and goals [5]. The adaptations at runtime
may affect architectural qualities and properties, given that the
(re)configuration process may combine architectural fragments
or apply architectural abstractions at the wrong granularity level
through the newly loaded features [15].

Based on such observations and our experience [15], we have
devised the following seemingly controversial idea: achieving an
effective ABS identification in SAS will only be possible at runtime,
once variability is bound. Accordingly, we strongly encourage car-
rying out dynamic analysis in addition to/rather than solely relying
on static analysis. It contradicts the common practice of identify-
ing architectural smells only at design time. The following section
motivates why this current practice is doomed to fail.

2 CHALLENGES
We identified the following challenges that SAS raises for ABS
detection.

https://doi.org/10.1145/3571788.3571802
https://doi.org/10.1145/3571788.3571802
https://doi.org/10.1145/3571788.3571802

VaMoS 2023, January 25–27, 2023, Odense, Denmark Lima dos Santos, Edilton, et al.

Runtime variability’s impact on SAS architectures. Even if
not implemented as such (see below), one can see SAS re-configuration
as activating and deactivating features at runtime. Not taking this
aspect into account leads to inaccurate reports on the existence
and importance of ABS runtime. For instance, in a recent study,
we compared ABS detected at design time and runtime [7]. We ob-
served significant differences between smells’ occurrences at such
different binding times for the Adasim project [25]. In addition,
some smells appearing at runtime could not be found at design time
for the mRUBiS project [24].

Lack of variability documentation in SAS. Variability man-
agement is crucial for SAS [7], and this lead research community
on variability management to coin the concept of dynamic software
product lines [2] (DSPLs). DSPLs realize SAS by carefully model-
ing SAS adaptations using variability models and tracing variabil-
ity down to implementation artifacts, e.g., [20]. This would allow
the variability-aware analysis of SAS and possible extension of
variability-aware code smells [8, 22] to ABS. However, most SAS
are not implemented as DSPLs. For example, none of the Java-based
exemplars provided by the SEAMS community1 had any variability
documentation (feature model, feature annotations). Dos Santos et
al. introduced a manual process to identify source code features
based on information available in the system’s repository [15].
However, adding a mechanism in the systems’ source code for ABS
identification requires expertise and time because the mandatory
and variable features are not documented.

Capturing adaptations. For identifying ABS at runtime, it is
necessary to run the system and identify the exact moment each
adaptation starts and ends [19]. It is also necessary to capture
all features and dependencies loaded in the adaptation loop at
runtime. This task is challenging because it is necessary to iden-
tify the method responsible for executing the adaptation loop and
the invoked methods inside it. Algorithm 1 illustrates such a sce-
nario using a simplified MAPE-K loop [14] implementation. The
adaptationMechanism() method is responsible for executing the
system’s adaptation mechanism. It uses a loop to execute the adap-
tation process encompassing dataLoad(), dataAnalysis(), and
runAdaptationStep() methods. The first method reads the data
from the environment, e.g., sensor data, and sends them to the
dataAnalysis() method. The dataAnalysis() defines the fea-
tures we should activate to support the adaptation required at run-
time. Then, the runAdaptationStep() method performs the adap-
tation. We adopt a runtime monitoring approach to this challenge
by observing the evolution of methods and objects, progressively
identifying the code responsible for the adaptation, and tracing
methods entries and exits [15].

Handling polymorphism at runtime. Some SAS architec-
tures are implemented based on polymorphism through abstract
classes or interfaces. Polymorphism is a strategy to support vari-
ability at runtime [19]. Such a strategy could hide the absolute
number of features involved in CD and HL, particularly when the
analysis (of ABS) only considers the design time [7]. This is due
to the analysis taking only concrete classes into account. Figure
1 shows a simplified architecture model of a Traffic Routing sys-
tem. The model shows that the Vehicle class uses the Core and

1https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/

Figure 1: Traffic Routing system simplified architecture (sim-
plified).

VehicleRouting interface to bind a specific routing (e.g., QRouting,
LearningRouting, and LinearRouting) mechanism at runtime for
each Vehicle instantiated. Also, the Vehicle class implements the
Agent interface used to connect the system core, and each agent
type is instantiated at runtime. The system core can use Vehicle-
Routing (e.g., LinearRouting) to manage vehicles with a specific
routing type at runtime. In this scenario, the cyclic dependency
between Vehicle and Core will happen only at runtime. Thus, the
static analysis does not identify that type of ABS at design time
because there is no direct relationship among all classes involved
in CD. Also, the same situation may happen with classes involved
in HL.

Algorithm 1 Interception loop design.

1: procedure adaptationMechanism
2: while !𝑖𝑠𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑 () do
3: dataLoad();
4: dataAnalysis();
5: runAdaptationStep();
6: end while
7: end procedure
8: procedure runAdaptationStep
9: featureIdentification();
10: bindingFeatures();
11: end procedure

3 CONCLUDING REMARKS
We made the case to switch from the classic design time and static
detection of architectural bad smells to a more dynamic, runtime
perspective when considering intrinsically variability-aware self-
adaptive systems. We have been involved in developing this uncom-
mon perspective, providing methods and tools to identify smells
at runtime and overcoming the previous challenges [15]. However,
analyzing (re)configurations of SAS in a product-based fashion is
controversial: How can we cover the most relevant adaptations
in an unknown variability space? What is the point of looking
for smells in ephemeral architectures? Would smell detection be a
driver for architecture-based adaptation?

We do not yet have answers to these questions, but we have a
framework to study them. As immediate future work, we would like
to characterize the impact of smells on qualities such as resiliency

https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/

Architectural Bad Smells for Self-Adaptive Systems: Go Runtime! VaMoS 2023, January 25–27, 2023, Odense, Denmark

and security. More finely characterizing this impact would help to
decide whether one should modify the system’s implementation
or its adaptation loop to avoid smelly configurations affecting the
system performance or security. In addition, wewould like to extend
our analysis to more smells and SAS.

ACKNOWLEDGMENTS
Edilton Lima dos Santos is funded by a CERUNA grant from the
University of Namur. Gilles Perrouin is an FNRS Research Associate.
This work was partly funded by the ERDF IDEES Co-innovation
project, and partly funded by the Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

REFERENCES
[1] Umberto Azadi, Francesca Arcelli Fontana, and Davide Taibi. 2019. Architectural

smells detected by tools: a catalogue proposal. In 2019 IEEE/ACM International
Conference on Technical Debt (TechDebt). IEEE, 88–97.

[2] Nelly Bencomo, Peter Sawyer, Gordon S Blair, and Paul Grace. 2008. Dynamically
Adaptive Systems are Product Lines too: Using Model-Driven Techniques to
Capture Dynamic Variability of Adaptive Systems.. In SPLC (2). 23–32.

[3] Hugo Sica de Andrade, Eduardo Almeida, and Ivica Crnkovic. 2014. Architectural
bad smells in software product lines: An exploratory study. In Proceedings of the
WICSA 2014 Companion Volume. 1–6.

[4] Jorge Andrés Díaz-Pace, Antonela Tommasel, and Daniela Godoy. 2018. Towards
anticipation of architectural smells using link prediction techniques. In 2018 IEEE
18th International Working Conference on Source Code Analysis and Manipulation
(SCAM). IEEE, 62–71.

[5] Edilton Lima dos Santos. 2021. STARS: Software Technology for Adaptable and
Reusable Systems. In Proceedings of the 25th International Systems and Software
Product Line Conference (SPLC). ACM.

[6] Edilton Lima dos Santos, Sophie Fortz, Gilles Perrouin, and Pierre-Yves Schobbens.
2021. A Vision to identify Architectural Smells in Self-Adaptive Systems using
Behavioral Maps. In 15th European Conference on Software Architecture (ECSA
2021). CEUR Workshop Proceedings, 1.

[7] Edilton Lima dos Santos, Pierre-Yves Schobbens, and Gilles Perrouin. 2022. Fea-
tured Scents: Towards Assessing Architectural Smells for Self-Adaptive Systems
at Runtime. In 19th International Conference on Software Architecture. IEEE, 71–74.

[8] Wolfram Fenske and Sandro Schulze. 2015. Code smells revisited: A variability
perspective. In Proceedings of the Ninth International Workshop on Variability
Modelling of Software-intensive Systems. 3–10.

[9] Francesca Arcelli Fontana, Paris Avgeriou, Ilaria Pigazzini, and Riccardo Roveda.
2019. A Study on Architectural Smells Prediction. In 2019 45th Euromicro Confer-
ence on Software Engineering and Advanced Applications (SEAA). IEEE, 333–337.

[10] Francesca Arcelli Fontana, Valentina Lenarduzzi, Riccardo Roveda, and Davide
Taibi. 2019. Are architectural smells independent from code smells? An empirical
study. Journal of Systems and Software 154 (2019), 139–156.

[11] Francesca Arcelli Fontana, Ilaria Pigazzini, Riccardo Roveda, and Marco Zanoni.
2016. Automatic detection of instability architectural smells. In IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE, 433–437.

[12] Joshua Garcia, Daniel Popescu, George Edwards, and Nenad Medvidovic. 2009.
Identifying architectural bad smells. In 13th European Conference on Software
Maintenance and Reengineering. IEEE, 255–258.

[13] Joshua Garcia, Daniel Popescu, George Edwards, and Nenad Medvidovic. 2009.
Toward a catalogue of architectural bad smells. In International conference on the
quality of software architectures. Springer, 146–162.

[14] IBM. 2006. An architectural blueprint for autonomic computing. IBM White
Paper 31 (2006), 1–6.

[15] Edilton Lima dos Santos, Sophie Fortz, Pierre-Yves Schobbens, and Gilles Perrouin.
2022. Behavioral Maps: Identifying Architectural Smells in Self-adaptive Systems
at Runtime. In European Conference on Software Architecture. Springer, 159–180.

[16] Isela Macia, Roberta Arcoverde, Elder Cirilo, Alessandro Garcia, and Arndt von
Staa. 2012. Supporting the identification of architecturally-relevant code anom-
alies. ICSM12 (2012), 662–665.

[17] Haris Mumtaz, Paramvir Singh, and Kelly Blincoe. 2020. A systematic mapping
study on architectural smells detection. Journal of Systems and Software (2020).

[18] Claudia Raibulet, Francesca Arcelli Fontana, and Simone Carettoni. 2020. A pre-
liminary analysis of self-adaptive systems according to different issues. Software
Quality Journal (2020), 1–31.

[19] Andres J Ramirez and Betty HC Cheng. 2010. Design patterns for developing
dynamically adaptive systems. In Proceedings of the 2010 ICSE Workshop on
Software Engineering for Adaptive and Self-Managing Systems. ACM, 49–58.

[20] Edilton Santos and Ivan Machado. 2018. Towards an Architecture Model for
Dynamic Software Product Lines Engineering. In IEEE International Conference
on Information Reuse and Integration (IRI). IEEE, 31–38.

[21] Marcel A Serikawa, André de S Landi, Bento R Siqueira, Renato S Costa, Fabi-
ano C Ferrari, Ricardo Menotti, and Valter V De Camargo. 2016. Towards the
characterization of monitor smells in adaptive systems. In X Brazilian Symposium
on Software Components, Architectures and Reuse (SBCARS). IEEE, 51–60.

[22] Iuri Santos Souza, Ivan Machado, Carolyn Seaman, Gecynalda Gomes, Christina
Chavez, Eduardo Santana de Almeida, and Paulo Masiero. 2019. Investigating
Variability-aware Smells in SPLs: An Exploratory Study. In Proceedings of the
XXXIII Brazilian Symposium on Software Engineering. 367–376.

[23] Jilles Van Gurp, Jan Bosch, and Mikael Svahnberg. 2001. On the notion of
variability in software product lines. In Proceedings Working IEEE/IFIP Conference
on Software Architecture. IEEE, 45–54.

[24] Thomas Vogel. 2018. mRUBiS: An exemplar for model-based architectural self-
healing and self-optimization. In Proceedings of the 13th International Conference
on Software Engineering for Adaptive and Self-Managing Systems. 101–107.

[25] Jochen Wuttke, Yuriy Brun, Alessandra Gorla, and Jonathan Ramaswamy. 2012.
Traffic routing for evaluating self-adaptation. In 2012 7th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems (SEAMS). IEEE,
27–32.

	Abstract
	1 Introduction
	2 Challenges
	3 Concluding Remarks
	Acknowledgments
	References

