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Probing the primordial Universe by detecting high-frequency gravitational
waves with resonant electromagnetic cavities

by Nicolas Herman

Abstract: The first detection of gravitational waves in 2015 by LIGO/VIRGO [Abbott
et al., 2016] with interferometers is one of the most wonderful scientific achievements
in this century, leading to a brand new astronomy era. The frequency content of such
waves is at the order of the hertz, but there are several interests in much higher fre-
quencies, above megahertz. Interferometers can not detect such high frequency con-
tent. In this thesis we are going to study high-frequency gravitational wave possible
detection using electromagnetic fields, through the inverse Gertsenshtein effect. Our
detector is a patented [Füzfa, 2018] cylindrical electromagnetic cavity immersed in an
intense external magnetic field. We study how we could detect two high-frequency
sources that are witnesses of the early Universe, which are primordial black holes and
stochastic gravitational wave background. We will study analytically and numerically
the possible detection of these signals, showing how we can get information about
those primordial Universe objects.

Sonder l’Univers primordial en détectant des ondes gravitationnelles
haute-fréquence grâce à des cavités electromagnétiques résonantes

par Nicolas Herman

Résumé : La première détection des ondes gravitationnelles en 2015 [Abbott et al.,
2016] par des interféromètres est un des plus formidables exploits scientifiques de
ce siècle, qui a mené à l’élaboration d’une nouvelle astronomie. La fréquence de ces
ondes est de l’ordre du hertz, mais il existe un intérêt à détecter des ondes de fré-
quences bien plus grandes, au-delà du mégahertz. Les interféromètres ne sont pas
capables détecter d’aussi hautes fréquences. Dans cette thèse, nous allons étudier la
détection d’ondes gravitationnelles haute-fréquence en utilisant des champs électro-
magnétiques, via l’effet Gertsenshtein inverse. Notre détecteur est une cavité électro-
magnétique cylindrique brevetée [Füzfa, 2018] plongée dans un intense champ ma-
gnétique externe. Nous étudions ici la détection de deux sources haute-fréquence qui
sont des témoins du début de l’Univers, que sont les trous noirs primordiaux et le
fond diffus d’ondes gravitationnelles. Nous allons étudier analytiquement et numéri-
quement la détection de ces signaux, en montrant comment nous pouvons obtenir des
informations sur ces objets de l’Univers primordial.
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Introduction

The Universe fascinates people and civilizations around the world for centuries. Hu-

manity always searches to understand where we are, what is around us and what hap-

pens beyond the limits of our planet Earth. The scientists developed many ways to

observe the celestial sphere, or to observe space from space itself. But on September

14th 2015, another type of astronomy was born. A new type of wave was detected,

a gravitational wave. This was made by the LIGO/Virgo collaboration [Abbott et al.,

2016] thanks to ground based interferometers. This first detection was groundbreaking

in physics. Gravitational waves are a perturbation of the spacetime itself that propa-

gates through the Universe. Their existence was already predicted by Albert Einstein

when he elaborate the general relativity [Einstein, 1916b, Einstein, 1918], the physics

geometrization theory. Detecting those gravitational waves was a successful test of the

general relativity, but also a technical and technological breakthrough. The effect of

gravitational waves on test masses will modify the local distance separation between

them, and will also modify the optical path of light, but the amplitude of such waves

on Earth is extremely faint. The first detection [Abbott et al., 2016] of gravitational

waves detected a strain amplitude of 10−21 along several kilometers. This is equiva-

lent to measure a displacement of 10−18 m, the size of a fraction of an atom nucleus.

The first signal detected was the merging of intermediate mass black holes, so this

new gravitational wave astronomy can probe objects that does not emit electromag-

netic waves, like black holes, turning gravitational wave detectors as a perfect add-on

to classical telescopes to understand the Universe phenomena.

Among the pending questions about the Universe, the one questioning its origin and its

beginning is not fully answered. Many aspects of these early stages of the Universe de-

mand further understanding about their mechanisms, that happened quickly compared

1



2 INTRODUCTION

to the Universe time scale and involved energy scales unreachable today, and could im-

prove the way to access to the grand unification theory of the fundamental interactions.

The oldest image of the early Universe is the cosmological microwave background,

the first electromagnetic wave emission after the photon decoupling, where the light

can finally propagate through the Universe, that became transparent. This event is

considered to have occurred about 400 000 years after the beginning of the Universe,

so we miss information about those years before photon decoupling. This is where the

gravitational waves could be useful. Their propagation is by the way very different

than the electromagnetic ones. They exist before photon decoupling, since they can

exist as soon as the gravity began to exist. The first gravitational wave emission could

be done seconds after the Big Bang [Aggarwal et al., 2021], in a so-called stochastic

gravitational wave background, that could contain many information about this early

moments of our Universe. In this epoch hard to probe, some compact objects, called

primordial black holes could have been formed. Those are tiny black holes formed in

this young Universe, but with a different scenario compared to the stellar and super-

massive black holes we know. Primordial black holes are what we call a dark matter

candidate [Carr et al., 2016], an object that could explain the matter in the Universe

that we can not see. In the history of the Universe, primordial black hole binaries could

happen and merge like their big brothers detected by LIGO/VIRGO. This merger pro-

duces gravitational waves and we can detect them to get information about these early

Universe witnesses.

Gravitational waves are in this case a messenger from the early Universe. But these

gravitational wave sources emit at quite high frequencies, too high for interferometers.

Several techniques are studied to detect those high-frequency gravitational waves. In

this thesis, we are going to consider the resonant electromagnetic detection through the

so-called Gertsenshtein effect, studied first by Gertsenshtein [Gertsenshtein, 1960] in

the 1960s. This effect was studied by several scientists, mostly soviet, until 1980 [Boc-

caletti et al., 1970, Braginskii and Menskii, 1971, Braginskii et al., 1973, Grishchuk

and Sazhin, 1975, Grishchuk, 1977]. After that, most of the scientists working on

gravitational waves put their effort in interferometry techniques, with the success we

know four decades after. After the first gravitational wave detection, the electromag-

netic detection of gravitational waves came back to the spotlight, in order to detect

high-frequency gravitational waves and maybe unveil some secrets about the early

Universe.
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This thesis aims at studying resonant electromagnetic detection inside cylindrical cav-

ities immersed in a strong external magnetic field. After that, we apply our results

to the expected detection of high-frequency gravitational wave sources, that contain

information about the early Universe.

Chapter 1 consider gravitational waves, by constructing their general theory, before

their propagation and generation, in order to focus a bit more on the high-frequency

window. There we study different sources, focusing on primordial black hole merger

and stochastic gravitational wave background. We end this chapter by questioning the

choice of the frame we use to model the detection.

Chapter 2 focus on the link between gravitational waves and electromagnetism. Firstly

we construct the Einstein-Maxwell system, which illustrates the minimal coupling

between gravitation and electromagnetism in the framework of the general relativity.

Secondly, we will consider the direct and inverse Gertsenshtein effect, that can be

used for electromagnetic production/detection of gravitational waves. The end of this

chapter is a review of the research on the gravitational wave detection with the inverse

Gertsenshtein effect.

Chapter 3 will show how we use cylindrical cavities in an external strong magnetic

field to detect gravitational waves. After describing the detector, we used some an-

alytical developments to compute the cavity response: the electromagnetic power in

the cavity induced by the passing of gravitational waves. To compute that, one must

solve wave equations by using spectral methods. We finish this chapter by comput-

ing the source term of our wave equations that contains information about the passing

gravitational wave.

The final chapter will be dedicated to the numerical simulations of incoming signals

detection. We will explain how we build the code to perform that, in order to study

how we could detect primordial black hole merger and stochastic gravitational wave

background. We end this chapter by the expected sensitivity of our detectors.

Finally, we will draw our conclusions and put some perspectives for further research.
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Contributions

The thesis leads to the elaboration of two articles.

The first is "Detecting planetary-mass primordial black holes with resonant electro-

magnetic gravitational-wave detectors", written by Nicolas Herman, André Fűzfa,

Léonard Lehoucq, and Sébastien Clesse, published in July 2021 in Physical Review

D, volume 104, 023524, referenced as [Herman et al., 2021]

The second is "Electromagnetic Antennas for the Resonant Detection of the Stochastic

Gravitational Wave Background" available on arXiv:2203.15668, written by Nicolas

Herman, Léonard Lehoucq and André Fűzfa, and submitted to Physical Review D,

referenced as [Herman et al., 2022].

In this thesis, the first personal contribution is the review on inverse Gertsenshtein

effect detection. No review on this specific topic were made before. This is the section

2.3 of this manuscript. The next contribution is Chapter 3 that described our detector

proposal and the analytical development around this. The practical approximation

of the source term in the proper detector frame is an innovative contribution. The

last contribution is the numerical results presented in Chapter 4 and in the two papers

mentioned above. These results pave the way to experimental development of resonant

electromagnetic detectors for gravitational waves, a brand new research topic.

The codes used to obtain the numerical results are available on a GitHub repository

http://github.com/nherman95/simHFGW_res_cav/
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Chapter 1

High-Frequency
Gravitational Waves

This chapter is a subjective introduction to high-frequency gravitational waves. We

first introduce how the gravitational waves are described in the framework of the

general relativity theory. Then, we will show which frequency range is covered by

the gravitational waves propagating through the Universe, with insisting on the high-

frequency window. After that, we will develop some different astrophysical sources

that can emit gravitational waves at such high frequencies. These waves are especially

interesting here because they could be detected by electromagnetic resonant detectors

that we will describe in the next chapter.

1.1 Gravitational waves

Albert Einstein [Einstein, 1916b, Einstein, 1918] predicted the gravitational waves in

his general relativity theory. These particular waves are ripples of the spacetime itself,

and propagate in the entire Universe at the speed of light. To model those waves, we

need to apply perturbation theory to general relativity, to obtain the gravitational wave

equation. Considering the propagation in vacuum, we can show that gravitational

wave polarization exists. The generation of such gravitational waves occurs quite often

in the Universe, through many astrophysical mechanisms and at different frequencies.

9



10 CHAPTER 1. HIGH-FREQUENCY GRAVITATIONAL WAVES

1.1.1 General relativity in a nutshell

The general relativity theory can be seen as a geometrization of classical physics

and particularly gravitation. From a mathematical point of view, the classical field

theory becomes a covariant classical field theory. First imagined by Einstein [Ein-

stein, 1915, Einstein, 1916a], this theory contains some important hypotheses. The

first hypothesis is the same as in special relativity, the case where no gravitation is

present, it is that the speed of light is constant in vacuum. It is set by convention to

c = 299792458 m/s. If we add the fact that we want to add a fourth coordinate to

describe our spacetime, this leads to the use of pseudo-Euclidean geometry, a four-

dimensional space where the norm of vector fields can be either positive, negative

or null. Such a space is made to get any causal events trapped in the so-called light

cone. In this case, the geometry of spacetime is still flat, but adding gravitation in-

duces curvature, and the use of differential geometry concepts. In this manuscript we

use the Einstein summation convention where repeated upper and lower indices are

summed over. We use also Greek alphabet indices for values going from 0 to 3 and

Latin alphabet indices for values going from 1 to 3.

In the theory of general relativity, we can describe spacetime as a differential man-

ifold. This manifold is a four-dimensional Lorentzian manifold M, associated with

a metric tensor gµν . This symmetric tensor solely describes gravitation. The mani-

fold possesses also a connection, generalization of the derivative for curved spaces,

compatible with the metric. We assume that our spacetime is torsion-free, so the con-

nection is unique, the so-called Levi-Civita connection

g
λκ

Γ
λ

νµ =
1
2
(
∂µ gνκ +∂ν gµκ −∂κ gµν

)
. (1.1.1)

In this manifold, we can also consider its curvature. This is done by the Riemann

tensor Rκ

λ µν
, defined as

Rκ

λ µν
= ∂µ Γ

κ

λν
−∂ν Γ

κ

λ µ
+Γ

η

λν
Γ

κ
ηµ −Γ

η

λ µ
Γ

κ
ην . (1.1.2)

We can also define two other curvature-related quantities, contractions of the Riemann

tensor. Those are the Ricci tensor Rµν = Rλ

µλν
and the Ricci scalar R = Rµ

µ . These

are crucial for the mathematical formulation of general relativity, and can be seen as a

classical field theory and its master equation can be derived by applying a variational
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principle to the so-called Einstein-Hilbert action [Misner et al., 1973, Hobson et al.,

2006]

SE−H =
c4

16πG

∫
M

R
√
−gd4x, (1.1.3)

where G is Newton’s constant and g the determinant of the metric. The variation of

this action with respect of a variation of the metric leads to the Einstein equation in

vacuum

Gµν = 0, (1.1.4)

where Gµν = Rµν − 1
2 Rgµν is the Einstein tensor, symmetric by construction. If we

take the trace of the equation (1.1.4), we find G = R = 0. That implies that in this case

Gµν = Rµν . Equation (1.1.4) has several solutions, that we call vacuum solutions,

that are empty Universes. If we want to take into account the content of matter in the

Universe, denoted by the Lagrangian density Lmat . We thus have to take into account

the total action Stot defined by

Stot = SE−H +Smat (1.1.5)

where Smat =
∫

M Lmat
√
−gd4x, is the action of the matter content. The variational

principle on this action leads to the famous Einstein equation,

Gµν =
8πG
c4 Tµν , (1.1.6)

where Tµν is the energy-momentum tensor, defined by

Tµν =− 2√
−g

(
∂ (Lmat

√
−g)

∂gµν

)
. (1.1.7)

It contains the energy and momentum of the matter. Einstein equation (1.1.6) is a

second order partial differential equation and relates the curvature of the spacetime

and the mass, or more generally the energy. The divergence of the Einstein tensor is

∇µ Gµν = 0 where ∇µ is the covariant derivative, generalization of the derivative in

curved space. This null-divergence is due to Bianchi’s identities, that are geometric

properties of the Riemann tensor. The right-hand side of equation (1.1.6) is consistent

with this null-divergence property because the relation ∇µ T µν = 0 is a consequence

of the Noether’s theorem and denotes the conservation of energy and momentum in

the Universe. The solution of the Einstein equation (1.1.6) is a metric tensor, often



12 CHAPTER 1. HIGH-FREQUENCY GRAVITATIONAL WAVES

presented as a line element, sort of infinitesimal distance described by

ds2 = gµν dxµ dxν . (1.1.8)

General relativity gives a geometrical form to gravitation, and also a covariant way to

express it. The fact that this equation is tensorial, implies that this equation keeps the

same form when changing the coordinates. The Einstein equation (1.1.6) shows how

spacetime is curved depending on its energy content. But we still have no information

about the particle dynamics in the spacetime. This is described by the geodesic equa-

tion, that we can also obtain using a variational principle. By supposing a curve with

parametric equations xµ(λ ) where λ is the parameter of the curve and minimizing the

length of the curve
∫ λ f

λ0

ds
dλ

dλ with respect to xµ , we obtain

d2xµ

dλ 2 +Γ
µ

νρ

dxν

dλ

dxρ

dλ
= 0. (1.1.9)

These curves, called geodesics are the generalization of straight lines in a curved

spacetime. For massive particles, the λ parameter is given by dλ 2 = c2dτ2 = −ds2

and xµ(τ) represent their trajectory if no external forces are present. The parameter τ

describing the curve is known as the proper time. This is the time of any clock carried

by the test particle. To denote the trajectory of light or of non-massive particles in the

spacetime, the geodesics have zero-length, that is why we call them null-geodesics.

After these few comments and definitions about general relativity, we will show how

gravitational waves can exist and propagate in the Universe using this theory.

1.1.2 Linear regime of the General relativity

In general relativity, the solution of the Einstein equation is a metric tensor. In the

case of special relativity, the vacuum solution far from any gravitational field, is a flat

spacetime denoted by the Minkowski metric (ηµν = diag(−1,1,1,1) in orthonormal

coordinates). The gravitational wave theory begins with nearly flat solutions. By

considering a perturbed flat metric as solution of the Einstein equation, the metric

becomes

gµν = ηµν + h̄µν , (1.1.10)
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where h̄µν � 1. In this section, we focus on the leading terms of the different quan-

tities, generally at first order. That is why we call this method the linearization of

the Einstein equation. For more information about this theory, see e.g. [Maggiore,

2007, Hobson et al., 2006, Gourgoulhon, 2013]. The first part of the Einstein equation

that we want to compute is the Einstein tensor. At first order we find

Gµν =
1
2

(
η

λκ
(
∂λ ∂µ h̄νκ +∂λ ∂ν h̄µκ −∂λ ∂κ h̄µν

)
−∂µ ∂ν h̄

)
−1

2
η

αβ

(
η

λκ
∂κ ∂β h̄αλ −∂α ∂β h̄

)
ηµν .

(1.1.11)

We can write this Einstein tensor more compactly by considering the trace-reversed

perturbation hµν = h̄µν − 1
2 h̄ηµν , which leads to

Gµν =
1
2

(
−�hµν +∂µVν +∂νVµ −η

αβ
∂αVβ ηµν

)
(1.1.12)

where Vα = ∂κ

(
ηλκ hαλ

)
. After getting this more compact tensor, where we can al-

ready see the wave operator on Minkowski background � = ηµν ∂ν ∂µ , we can show

that this tensor has a gauge invariance. Equation (1.1.12) remains the same with an

infinitesimal change of coordinate yµ = xµ +ξ µ , where ξ µ � 1. We can show that in

this case the trace-reversed perturbation is modified as

h′
αβ

= hαβ −∂β ξα −∂α ξβ +ηαβ ∂µ ξ
µ . (1.1.13)

and the Vα field as

V ′α =Vα −�ξα . (1.1.14)

By computing the consequences of the infinitesimal change of frame, we can choose

the gauge Vα = 0 without loss of generality. This choice is called the Lorenz gauge

and can be expressed in terms of perturbation as

∂
µ hµα = 0. (1.1.15)

Gathering this Lorenz gauge (1.1.15) with equations (1.1.6) and (1.1.12), the lin-
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earized Einstein equation can be written in a very simple way,

�hµν =−16πG
c4 Tµν , (1.1.16)

which is a wave equation for the trace-reversed perturbation hµν . The solution of

equation (1.1.16) is what we call gravitational waves, and these waves are sourced by

the energy momentum tensor. In vacuum, this equation reduces to �hµν = 0, which

means that these waves can freely propagate through the Universe at the speed of light.

Let us now study this case.

1.1.3 Gravitation waves polarization

To detect gravitational waves, we have to study how they behave when they propagate,

and also how they interact with test masses. Let us get back to the gravitational wave

equation in vacuum

�hµν = 0. (1.1.17)

We can see in this situation that the Lorenz gauge condition (1.1.15) does not fix the

gauge completely. If we take back the equation (1.1.14), any infinitesimal change of

coordinates where �ξα = 0 will preserve the Lorenz gauge condition (1.1.15). In

order to cancel this gauge freedom, we can fix a change of coordinates ξα where

α = 0, . . . ,3 and �ξα = 0, to impose four conditions on the hµν tensor. The first

one is to fix ξ0 to get the hµν traceless. This condition is very useful because we get

hµν = h̄µν . The three other ξi are set to make the three spatial-time components van-

ish h0i = 0. This condition associated to the Lorenz gauge (1.1.15) leads to ∂ 0h00 = 0,

meaning that h00 must be constant in time. This metric component is related to the

Newtonian gravitational potential. Since this component only models the metric per-

turbation, evolving with time, we can without loss of information set h00 = 0. This

is consistent with the Newtonian physics intuition since we are studying here prop-

agation in vacuum, far from any massive body, so the classical Newtonian potential

is null. To sum up these gauge fixing conditions, we can show that our perturbation

tensor in this new gauge satisfies

h0µ = 0, hµ

µ = 0, ∂
jhi j = 0, (1.1.18)
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where µ = 0, . . . ,3 and i, j = 1, . . . ,3. This gauge reduces the number of degrees of

freedom for our hµν tensor to only two. This gauge is called the traceless-transverse

(TT) gauge.

Now the gauge is totally fixed, the two degrees of freedom left are the polarization

modes for the gravitational waves. To describe how we can model this polarization,

we can assume for simplicity that our gravitational waves are plane waves along the

z-axis hµν = Aµν eikα xα

, where xα = (ct,x,y,z) and kα =
(
−ω

c ,0,0,k
)
. Since the grav-

itational wave is moving at the speed of light, we have the dispersion relation in vac-

uum ω2

c2 = k2. Considering the Lorenz gauge with the plane wave approximation, we

can show that the only non-vanishing components of our gravitational wave tensor are

h11 =−h22 = h+ = A+ei(kz−ωt), and

h12 = h21 = h× = A×ei(kz−ωt).
(1.1.19)

These are our two degrees of freedom, the plus (+) polarization and the cross (×)

polarization. To understand the name of these modes, we have to describe the ef-

fect that each polarization has on test masses. To do so, we have to compute the

geodesic deviation, difference between two nearby geodesics. This equation can be

found in [Maggiore, 2007] written as

D2

Dτ2 σ
α = Rα

γκβ
σ

β dxγ

dτ

dxκ

dτ
. (1.1.20)

Here D
Dτ

denotes the directional covariant derivative along the tangent vector of the

geodesics and σα is the deviation vector, denoting the oriented distance between

two nearby geodesics. Considering our TT gauge metric perturbation, the equation

(1.1.20) becomes (1)

d2

dt2 σ
1 =

1
2

d2h+
dt2 σ

1 +
1
2

d2h×
dt2 σ

2

d2

dt2 σ
2 =

1
2

d2h×
dt2 σ

1− 1
2

d2h+
dt2 σ

2.

(1.1.21)

We can now consider very small deviations around a fixed deviation, σ1 = x0 + δx

and σ2 = y0 +δy, to see how tests masses will behave with each polarization. When

(1). We have that Ri0 j0 =− 1
2c2 ḧi j
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Figure 1.1 – The plus polarized GW action on a ring of test masses (source : [Hobson
et al., 2006])

we put h× = 0, equation (1.1.21) where we keep only dominant terms becomes

d2

dt2 δx =−1
2

A+ x0 ω
2 cos(ωt) ,

d2

dt2 δy =
1
2

A+ y0 ω
2 cos(ωt) ,

and the solution is

δx =
1
2

A+ x0 cos(ωt) ,

δy =−1
2

A+ y0 cos(ωt) .

If we consider a ring of test masses, this ring will move in a + shape (figure 1.1), this is

why the polarization is called plus. The same analysis can be carried on with h+ = 0

and the solution is

δx =
1
2

A× y0 cos(ωt) ,

δy =
1
2

A× x0 cos(ωt) .

If we consider a ring of test masses, the ring will move by forming a cross (figure 1.2),

this is why we call it cross polarization.

Please note here that we consider linearly polarized gravitational waves. Here the

polarization state does not evolve with time. As for electromagnetic waves, one can

consider circular polarization for gravitational waves, where the polarization state is

a combination of the two polarization states that evolves with time. Circular gravita-

tional wave polarization is for instance considered in [Kahniashvili et al., 2021].
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Figure 1.2 – The cross polarized GW action on a ring of test masses (source : [Hobson
et al., 2006])

1.2 The High-frequency window

Now we have described the gravitational waves general characteristics, we are going

to talk about the different frequencies of gravitational waves we can get from astro-

physical sources. After describing how gravitational waves are generated, we focus

on high frequency sources, conveniently detected by electromagnetic fields.

1.2.1 Generation of gravitational waves

The first part of this chapter focused on describing the modeling of gravitational

waves, their existence and propagation. This section talk about how to get gravita-

tional waveforms from analytical computations. Getting accurate gravitational wave-

forms is an entire research field by itself (see e.g. [Blanchet, 2014]). Here is a synthe-

sis for a broader physics audience.

As seen in the wave equation (1.1.16), gravitational wave are directly sourced by the

energy-momentum tensor. This is a classical wave equation problem and, assuming a

totally flat background, the solution outside a gravitational wave source can be found

using retarded time functions and more accurately Green function formalism [Mag-

giore, 2007], which is

hµν (t,~r) =
4G
c4

∫
d~r′

|~r−~r′|
Tµν

(
tret ,~r′

)
(1.2.1)

where tret = t− |~r−~r
′|

c .

We can also take back this expression to the TT gauge, by using the TT projector

Λ kl
i j , often called Lambda tensor that makes any hkl tensor transverse and traceless
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with the relation hT T
i j = Λ kl

i j hkl
(2). If hkl satisfies the Lorenz gauge, the gravitational

wave equation (1.1.16) in vaccum can be written as �hT T
i j = 0. This projector can be

expressed as in [Maggiore, 2007]

Λ
kl

i j = δ
k

i δ
l

j −
1
2

δi jδ
kl−n jnl

δ
k

i −nink
δ

l
j +

1
2

nknl
δi j +

1
2

nin jδ
kl +

1
2

nin jnknl

(1.2.2)

where δi j is the Kronecker symbol and ni is the constant wave direction of propagation,

parallel to the wavevector. Using this projector on equation (1.2.1), we obtain

hT T
i j (t,~r) =

4G
c4 Λ

kl
i j

∫
d~r′

|~r−~r′|
Tkl
(
tret ,~r′

)
. (1.2.3)

The four time-related components of Tµ0 can be eliminated since we can re-express

these components in function of Tkl using the four conservation laws of the energy-

momentum tensor ∂µ T µν = 0. As it can be made for electromagnetic wave generation,

if the source can be considered as stationary, we can decompose equation (1.2.3) in a

multipolar expression

hT T
i j (t,~r) =

4G
rc4 Λi jkl

[
Skl +

1
c

nmṠklm +
1

2c2 nmnpS̈klmp + . . .

]
ret

, (1.2.4)

where [·]ret denotes that the quantities are taken at t = tret . ni denotes the unit vector

in the~r direction and the multipolar moments are the ones of the energy-momentum

tensor and can be defined as

Si j(t) =
∫

d~r T i j(t,~r), (1.2.5)

Si jk(t) =
∫

d~r xkT i j(t,~r), (1.2.6)

Si jkl(t) =
∫

d~r xk xlT i j(t,~r). (1.2.7)

This multipolar expansion is very powerful but the physical interpretation of these

multipole moments is not very straightforward. Fortunately we can express Si j in

term of the mass quadrupole Mi j defined by

Mi j =
1
c2

∫
d~r xi x jT 00(t,~r). (1.2.8)

(2). We can show that this projector makes any (0,2) tensor transverse and traceless
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The temporal derivative of Mi j is given by

Ṁi j =
1
c

∫
d~r xi x j

∂ctT 00(t,~r). (1.2.9)

The energy-momentum tensor conservation implies that ∂ctT 00 =−∂kT 0k, so by inte-

grating by parts we have

Ṁi j =
1
c

∫
d~r
(

xi
∂kx j T 0k(t,~r)+ x j

∂kxi T 0k(t,~r)
)
=

1
c

∫
d~r
(

xi T 0 j(t,~r)+ x j T 0i(t,~r)
)

(1.2.10)

where we use the fact that ∂kxi = δ i
k. Performing another time derivative on the equa-

tion above and using the fact that ∂ctT 0i =−∂kT ki we obtain

M̈i j =
∫

d~r
(
T i j(t,~r)+T ji(t,~r)

)
= 2Si j (1.2.11)

where we use the symmetry of the energy momentum tensor. Thus, we can rewrite the

leading term of equation (1.2.4) as

hT T
i j (t,~r) =

2G
rc4 Λi jkl M̈kl(tret). (1.2.12)

This equation is known as the quadrupole formula [Hobson et al., 2006, Maggiore,

2007, Gourgoulhon, 2013]. This formula shows that for a massive system (i.e. when

T00 dominates, see equation (1.2.8) ), it is the mass quadrupole variation that leads to

the generation of gravitational waves. If we consider a direction of propagation along

the Z-axis of our massive system ni = δi3, we can express easily the two polarization

states of the gravitational wave sourced by the mass quadrupole,

h+ =
G

rc4 (M̈11− M̈22), (1.2.13)

h× =
2G
rc4 M̈12. (1.2.14)

A common example of mass quadrupole variation is binary systems. In a more general

way, one can observe gravitational waves coming from an arbitrary direction given by

ni = (sinθ sinφ ,sinθ cosφ ,cosθ), where θ is the angle between~n and the Z-axis, and

φ is the angle between the orthogonal projection of~n on the X-Y plane and the Y-axis

(see figure 1.3). For instance, applying this formula to the inspiral phase of a compact

binary system with circular orbit [Maggiore, 2007], we find that we can express the
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mass quadrupole as Mi j = µxix j where µ = m1m2
m1+m2

is the reduced mass, and m1,2 are

the mass of the two compact bodies of the binary system. In a fixed circular orbit, we

can assume that the motion is in the X-Y plane so the orbit is given by

x(t) = Rcos(ωst +
π

2
) (1.2.15)

y(t) = Rsin(ωst +
π

2
) (1.2.16)

z(t) = 0, (1.2.17)

where ωs is the angular velocity and the choice of the phase π

2 is useful for the origin

of t. We can show that

M̈11 = −M̈22 = 2µR2
ω

2
s cos(2ωst) , (1.2.18)

M̈12 = 2µR2
ω

2
s sin(2ωst) . (1.2.19)

Thus, the gravitational waveform is

h+(t) =
4Gµω2

s R2

c4r

(
1+ cos2 θ

2

)
cos [2ωstret +2φ ] , (1.2.20)

h×(t) =
4Gµω2

s R2

c4r
cosθ sin [2ωstret +2φ ] (1.2.21)

where we find the angles θ and φ coming through vector ni. We can see that the

frequency of the produced gravitation wave is ωgw = 2ωs and we can then express the

angular velocity ωs thanks to the third Kepler law ω2
s = G(m1+m2)

R3 . We can thus rewrite

the equations above as

h+(t) =
4
r

(
GMc

c2

)5/3(
ωGW

2c

)2/3
(

1+ cos2 θ

2

)
cos [ωgwtret +2φ ] , (1.2.22)

h×(t) =
4
r

(
GMc

c2

)5/3(
ωGW

2c

)2/3
cosθ sin [ωgwtret +2φ ] , (1.2.23)

where Mc =
(m1m2)

3/5

(m1+m2)
1/5 is the chirp mass, useful quantity to study binary systems. Until

now we assumed that the orbit is fixed. But when such a system produces gravitational

waves, the energy of the system decreases, the distance between the compact object

also decreases and the frequency evolves with time. By equating the emitted power

of gravitational waves and the variation of the orbital energy with time, one can find
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in [Maggiore, 2007] that

ω̇gw =
12
5

21/3
(

GMc

c3

)5/3

ω
11/3
gw . (1.2.24)

Maggiore proposes to rewrite equations (1.2.22) and (1.2.23) by using the function

φ(t) =
∫ t

t0
dt ′ωgw(t ′), (1.2.25)

whre t0 is the initial time. The final waveform for a compact binary system with a

circular orbit is

h+(t) =
1
r

(
GMc

c2

)5/4( 5
cτ

)1/4(1+ cos2 θ

2

)
cos [φ(τ)] , (1.2.26)

h×(t) =
1
r

(
GMc

c2

)5/4( 5
cτ

)1/4

cosθ sin [φ(τ)] , (1.2.27)

where we can compute that

φ(τ) =−2
(

5GMc

c3

)−5/8

τ
5/8 +φ0, (1.2.28)

with φ0 an integration constant and τ = tcoal− t = tcoalret − tret . The quantities tcoal

and tcoalret are the time of the coalescence, the fusion between the two compact objects,

respectively in the observer’s time and retarded time. A schematic representation of

this waveform is given in figure 1.4

If we want to look at the frequency content of these waves, we can perform the tem-

poral Fourier transform of the waveform, h+(t) = A(tret)cos(φ(tret)) and we get

h̃+(ω) =
ei ωr

c

2

∫
A(tret)

(
eiφ(tret )+ e−iφ(tret )

)
eiωtret dtret . (1.2.29)

Maggiore computed this integral using the stationary phase method, considering the

limit of the integrand above when tret goes to infinity. Thus the term in eiφ(tret ) is

always oscillating fast and becomes negligible in the integral and we have a fixed

phase point at t∗ when φ̇(t∗) = ω . Considering that A(tret) = A(t∗) and expanding the
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Figure 1.3 – Representation of the direction of the gravitational wave propagation ~n
along an arbitrary direction and the reference frame in Cartesian coordinates (x,y,z),
the vectors ~u and ~v are the transverse directions of the wave (source : [Maggiore,
2007]).

Figure 1.4 – Schematic curve of the waveform from the inspiral phase of compact
binary systems (source : [Maggiore, 2007]).
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terms in a Taylor series around t∗ to the second order, we find that

h̃+(ω) =
eiψ+(ω)

2
A(t∗)

√
2π

φ̈(t∗)
(1.2.30)

where ψ+(ω) is a linear function of ω . By replacing the functions A and φ by their

expressions we find that

h̃+(ω) =Ceiψ+(ω) c
r

(
GMc

c3

)5/6(
ω

2π

)−7/6
(

1+ cos2 θ

2

)
. (1.2.31)

where C = π−2/3
√

5
24 is a constant. In the same way we obtain the expression for the

× polarization

h̃×(ω) =Ceiψ×(ω) c
r

(
GMc

c3

)5/6(
ω

2π

)−7/6
cosθ (1.2.32)

where ψ× is a linear function of ω . The equations (1.2.31) and (1.2.32) above provide

us a first waveform to roughly understand the properties of the generated waves, but

we made also a huge hypothesis: we must have a flat background, so it will be useful

only in non-relativistic case.

We need something that takes into account the relativistic effects, on a possible non-

flat background, we therefore use post-Newtonian approximations. To understand

how these methods works we need to define another field [Maggiore, 2007, Blanchet,

1987, Blanchet and Damour, 1989, Blanchet, 2014]

h
µν = (−g)1/2 gµν −η

µν , (1.2.33)

slightly different from the definition of the metric perturbation (1.1.10). Here we do

not assume any order of the perturbation to truncate the expression of the metric. With

the quantity defined in equation (1.2.33), we consider the non-perturbative component

of the metric in a exact way. However, if we restrict ourselves to the first order of the

metric perturbation, one can easily show that hµν = −hµν . The difference between

the two quantities will show up when we will consider the Einstein Equation for hµν .

If we impose the de Donder gauge ∂µh
µν = 0, we obtain the so-called relaxed Einstein
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equation [Blanchet, 2014]

�hµν =
16πG

c4 t
µν . (1.2.34)

This equation seems very similar to the gravitational wave equation described earlier

(1.1.16), but the right hand side of the equation is quite different, its expression is

t
µν = (−g)(T µν + tµν)+∂α ∂β χ

µναβ , (1.2.35)

where we identify the energy-momentum tensor contribution, and two others. The

first is the Landau-Lifshitz pseudo-tensor (3) tµν , which can be expressed by

(−g)tµν =
c4

16πG

[
gλα gβρ

∂βh
µλ

∂ρh
να +

1
2

gλα gµν
∂ρh

λβ
∂βh

ρα

−gαβ

(
gλ µ

∂ρh
νβ +gλν

∂ρh
µβ

)
∂λh

ρα

+
1
8
(2gµλ gνα −gµν gλα)(2gβρ gστ −gρσ gβτ)∂λh

βτ
∂αh

ρσ

]
,

(1.2.36)

and the second new contribution is the χµναβ tensor defined by

χ
µναβ =

c4

16πG

(
h

µα
h

νβ −h
αβ

h
µν

)
. (1.2.37)

With these expressions we can notice that in the relaxed Einstein equation (1.2.34),

the quantity hµν is sourced by the energy-momentum tensor, but also from non-linear

functions of the metric and hµν itself. These kind of equations are the very basis

of the so-called post-Newtonian expansion, developed in the 1990s by Blanchet and

Damour [Blanchet, 1987, Blanchet and Damour, 1989, Blanchet, 2014]. Their way

to solve (1.2.34) is to consider the non-flat metric outside of the source as a series

expansion of the Newton’s constant G. If we restrict ourselves to the first order we

have

h
µν = Gh

µν

(1)+O(G2) . (1.2.38)

In this case, in vacuum, the relaxed Einstein equation becomes

�hµν

(1) = 0, (1.2.39)

(3). tµν is a pseudo-tensor because the laws of conservation of this tensor is made with partial derivatives
instead of covariant ones.



1.2. THE HIGH-FREQUENCY WINDOW 25

where we have the gauge condition ∂νh
µν

(1) = 0. Blanchet and Damour found a com-

plete analytical solution for this problem [Blanchet, 2014]. They consider after a series

expansion of hµν in terms of G powers,

h
µν =

+∞

∑
n=1

Gn
h

µν

(n) , (1.2.40)

where each h
µν

(n) has the dimension of G−n. The wave equations for the first terms of

the expansion become

�hµν

(2) = Nµν
(
h(1),h(1)

)
, (1.2.41)

�hµν

(3) = Mµν
(
h(1),h(1),h(1)

)
+Nµν

(
h(1),h(2)

)
+Nµν

(
h(2),h(1)

)
, (1.2.42)

�hµν

(4) = Lµν
(
h(1),h(1),h(1),h(1)

)
+Mµν

(
h(1),h(1),h(2)

)
+Mµν

(
h(1),h(2),h(1)

)
+Mµν

(
h(2),h(1),h(1)

)
+Nµν

(
h(2),h(2)

)
+Nµν

(
h(1),h(3)

)
+Nµν

(
h(3),h(1)

)
, (1.2.43)

...

where the functions Lµν , Mµν and Nµν can be computed straightforwardly [Blanchet,

2014] by expanding the relaxed Einstein equation (1.2.34). We can thus conclude that

at every order the wave equation and the gauge condition are

�hµν

(n) = Λ
µν

(n)

(
h(1),h(2), . . . ,h(n−1)

)
, (1.2.44)

∂µh
αµ

(n) = 0 . (1.2.45)

That means that every order n is sourced by the (n−1) previous orders, denoted by the

functions Λ(n). The main result of Blanchet and Damour is that all the wave equations

can be solved by getting, as all linear differential equations, their homogeneous and

non-homogeneous part such as

h
µν

(n) = uµν

(n)+ vµν

(n) , (1.2.46)

where uµν

(n) in a particular solution part and vµν

(n) a homogeneous one to preserve the

de Donder gauge condition (1.2.45). They provide analytical solutions [Blanchet,

2014] to these equations and applied to the inspiral phase of binary compact objects
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with all the terms until G4. It helps to provide tools to implement physical and accu-

rate waveforms for gravitational wave research, when the size of the source is big-

ger than the considered Schwarzschild radius and for sufficiently small velocities.

This is why we need numerical relativity techniques near the merger for compact

binaries. Their work was implemented in the LIGO software packages, the LAL-

suite software [LIGO Scientific Collaboration, 2018]. For instance, the functions

SimInspiralChooseWaveformTD and SimInspiralChooseWaveformFD

generates post-newtonian waveforms coming from binary inspiralling phase respec-

tively in the time domain and the frequency domain, which will be useful to model

detection processes. More details about the waveform generation implementation can

be found in [Buonanno et al., 2009].

1.2.2 Current situation on gravitational wave detection

After the first detection of gravitational waves by the LIGO and Virgo Scientific Col-

laboration [Abbott et al., 2016], research interest on gravitational wave physics in-

creased a lot over the last years. The two main topics about gravitational wave research

is improving detection techniques and sources modeling. About detection techniques,

scientists mostly focus on interferometry techniques (ground-based or space-based),

the only way to detect them currently. Their principle relies on the local modifica-

tion of the optical path when the gravitational wave passes. The first detection of

gravitational waves on September 14th 2015 using ground-based interferometers re-

sults from the merging of two black holes, one of 36 M�, and the second one 29

M�[Abbott et al., 2016]. The signal lasted 0.2 second and its frequency range was be-

tween 35 and 150 Hz. 90 [LIGO Scientific Collaboration, 2022] events were detected

since this first detection, all were compact binaries signals. At this range of frequency,

we can also detect merging pulsars. The scientific gravitational wave community also

plans to build a space-based detector, LISA [Amaro-Seoane et al., 2012], it will look

at frequencies around the mHz band, to detect massive binaries or some extreme mass

ratio binary inspirals. Please note that the building of next generation ground-based

interferometers is already planned, with the Einstein Telescope project [ET steering

committee, 2020].

The second detection process in progress is pulsar timing array. This method consists

of using emission of millisecond pulsars as interferometers. The passing of a grav-

itational wave will slightly modify the pulse time of arrivals and could be detected
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by radio telescopes. As mentioned in [Maiorano et al., 2021], the frequency range

at which pulsar timing array is sensitive depends on the duration of the observation

run and the periodicity of those runs. Currently, observations campaign is thirteen

year long, and performed once a week. This leads to a sensitivity in the nHz to mHz

frequency range, useful to detect the most massive compact objects in the Universe,

millions of solar masses bodies. This technique could potentially detect a stochastic

gravitational wave background at very-low frequency, carrying information about the

early universe with a significant contribution of supermassive compact objects. The

International Pulsar Timing Array (IPTA) consortium is currently observing gravita-

tional waves at nanohertz frequencies. They published two data releases [Verbiest

et al., 2016, Antoniadis et al., 2022] for analysis and as mentioned this year in [Anto-

niadis et al., 2022], even they can not claim the presence of a stochastic background,

they provide several hints to keep digging in this way.

All this information can be summarized in Fig.1.5. This figure was provided by a

web tool called GW Plotter [Moore et al., 2015], that can reproduce some expected

gravitational wave content of astronomical sources and compare them with sensitivity

curves. From what was explained above and the figure, we must notice that there is

few interest of the scientific community on gravitational waves at high frequencies

(above kHz).



28 CHAPTER 1. HIGH-FREQUENCY GRAVITATIONAL WAVES

Figure 1.5 – Representation of Gravitational Waves sources with their estimated pa-
rameters and sensitivity curves of several detectors. Note that there is not much inter-
est on what happen above the kHz, illustrating the interest of most of the gravitational
wave research community. Figure generated by the online tool GW Plotter [Moore
et al., 2015]
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This is why the Ultra-High-Frequency Gravitational Wave (UHF-GW) [UHF-GW

community, 2022] initiative was created in 2019. This group gathers tens of peo-

ple working on source modeling, detector proposals and experimental feasibility of

high-frequency gravitational wave detection. One of the main challenges in this field

is that interferometry techniques are not suited for this frequency range. As mentioned

in the review of the UHF-GW initiative [Aggarwal et al., 2021], despite several pro-

posals aiming at extending the sensitivity of interferometers to high-frequency (up to

100 MHz), the quantum shot noise will be extremely challenging to overcome, un-

til making any detection impossible above 1 GHz. The other reason that UHF-GW

has few interest from the scientific community is that we do not know for now any

astrophysical object that can emit gravitational wave at a significant amplitude. On

one hand it is a pity because we are not sure if there are gravitational waves at these

frequencies but on the other hand if we are able to detect gravitational waves at such

high frequencies, this potential detection will reinforce the need of a novel physics

to model these objects, or maybe verify some models about cosmology or the early

Universe physics. Let us now discuss in a synthetic way the hypothetical sources for

high-frequency detection.

1.2.3 Sources of high-frequency gravitational waves

In the review [Aggarwal et al., 2021], two main categories of high frequency gravita-

tional wave sources are considered. This section will present possible sources, insist-

ing on how characterize them.

The first main category of sources are coherent sources coming from the late Universe.

They consist mainly of binary systems made of neutron stars, sub-solar primordial

black holes or other exotic compact objects such as gravitino stars, Q-balls, boson

stars, gravastars or oscillons. Another possible source is the emission of gravitational

waves from clouds of axions created by the superradiance (4) of black holes [Brito

et al., 2015]. To characterize these kinds of sources, since the frequency content of

the gravitational wave coming from inspiral binaries is evolving with time, we use a

stationary phase approximation, in order to get the analytical Fourier transform of our

(4). These are amplified electromagnetic emission of black holes due to the dissipation of a non-spherical
bosonic cloud near the horizon.



30 CHAPTER 1. HIGH-FREQUENCY GRAVITATIONAL WAVES

signal h̃(ω). We can thus define the characteristic strain, adimensional quantity, as

hc,coh =
ω

π
h̃(ω). (1.2.47)

This quantity is helpful to compare stochastic and coherent sources, but also to com-

pare to sensitivity curves such as Fig.1.5.

Among these coherent sources of the late Universe, we will mostly focus on one spe-

cific source, light primordial black hole mergers, which are a candidate to explain at

least a part of the dark matter. Detecting black holes that weigh less than the Sun is

interesting because it will point automatically to a primordial origin since there exists

no possible late Universe scenario of sub-solar black hole formation. Even if these

primordial black hole mergers are considered here as late universe sources, the for-

mation of such individual black holes happened obviously in the early stages of the

Universe.

As mentioned above in this chapter, the frequency of the gravitational waveform

evolves with time, because of the energy loss of the compact binary system due to

emission of gravitational waves. This effect was highlighted by the first discovery

of a binary pulsar by Hulse and Taylor [Hulse and Taylor, 1975, Taylor and Weis-

berg, 1982]. The energy loss will get the two bodies closer to each other, until the

binary system reaches the innermost stable circular orbit (ISCO), before entering in

coalescence. The related gravitational wave frequency at ISCO for a binary system of

masses m1 et m2 is given by

fISCO =
4400Hz

(m1 +m2)/M�
. (1.2.48)

This frequency is the limit where we can use post-newtonian methods to get accurate

waveforms for compact binary mergers. For instance, a frequency of 220 MHz thus

corresponds to a primordial black hole merger of two 10−5M� bodies, the same order

than the mass of the lenses at the origin of the microlensing events reported in [Niikura

et al., 2019]. Nevertheless, for being an interesting gravitational wave signal, one

needs to investigate if the merging rate of such black holes can lead to at least O(1)

mergers per year within our detector range. In order to analyze this merging rate,

we consider two primordial black holes merging scenarios; the first one is a simple
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binary system and the second one is merging of primordial black holes in a cluster

of them. This question was investigated in [Herman et al., 2021] where the following

results were brought mostly by Sébastien Clesse. For more details about the formation

and merging rates, one can read [Aggarwal et al., 2021, Herman et al., 2021]. Those

results are in line with recently published papers [Domcke et al., 2022, Franciolini

et al., 2022].

If primordial black holes are spatially randomly distributed at formation, it happens

that two form so close to each other that their gravitational attraction overpasses the

effect of the Hubble-Lemaître expansion at some point before the photon decoupling

epoch. In such a case, they directly form a binary whose orbital parameters and life-

time do not only depend on the two black hole masses but also on the mass and dis-

tance of the nearest primordial black holes. Eventually, it takes of the order of the

age of the Universe for the primordial black hole binary to merge. If one considers the

merging rates of equal-mass binaries that produce the largest strain signal, the merging

rates with respect to the mass can be approximated by

Rprim(mPBH) ≈ 3.1×106

Gpc3yr
f̃ 2
PBH

(
mPBH

M�

)−0.86

. (1.2.49)

where we define an effective parameter

f̃PBH(mPBH)≡ fPBH f (mPBH) f 1/2
sup (1.2.50)

where f (m) is the today density distribution of PBHs normalized to one (
∫

f (m)d lnm=

1) and fPBH is the integrated DM fraction made of PBHs, and includes a rate sup-

pression factor fsup to take into account the possible rate suppression due to binary

disruption by early-forming clusters.

In turn, one can determine the radius of the sphere in which one expects one event per

year,

Dprim
1 =

(
4π

3
Rprim

)−1/3

≈ 4.2Mpc× f̃−2/3
PBH

(
mPBH

M�

)0.29

. (1.2.51)

For simplicity we neglected the effects of redshift that are anyway insignificant for

most of the considered cases.
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The second binary formation channel is through dynamical capture in dense primor-

dial black hole halos. Like any other dark matter candidate, primordial black holes

are expected to form halos during the cosmic history, and their clustering properties

determine the overall merging rate. We can obtain the merging rate approximation for

equal-mass binaries,

Rclus(mPBH) = 1.2×103 f̃ 2
PBH , (1.2.52)

and the corresponding source distance Dcapt
1 ,

Dclus
1 ≈ 58Mpc× f̃−2/3

PBH . (1.2.53)

These equations will show us how a detector must be sensitive to primordial black hole

mergers in order to be matched with microlensing observations about the primordial

black hole abundance.

The other type of sources considered in the review [Aggarwal et al., 2021] are stochas-

tic sources. As the Cosmological Microwave Background (CMB), the gravitational

waves produced at the early stages of the Universe could constitute a stochastic grav-

itational wave background, produced by cosmological sources at cosmological dis-

tances. The most interesting in probing such a signal is that unlike the CMB, the

stochastic gravitational wave backgrounds can give information before the photon de-

coupling epoch, and can "go back in time" up to the grand unification scale, involving

physics at very high energy levels that we never met before. The review [Aggar-

wal et al., 2021] indicates that the existence of a stochastic background in the high-

frequency window is well-motivated. The causality put limits on the wavelength of

the possible gravitational wave emission. The wavelength must be smaller than the

length of the cosmological horizon at the time of production, and GHz frequencies

is related to the horizon of high energy physics theory, such the Grand Unification

Theory (GUT) scale. Detecting a stochastic gravitational wave background would be

a tremendous breaktrough to the understanding of the early Universe physics.

Maggiore [Maggiore, 2007] described first the stochastic gravitational wave back-

ground as isotropic, Gaussian and stationary, and its frequency dependence is con-

tained in a one-sided power spectral density. The Gaussian characteristic means that a

correlation of N measurements can be reduced to sum and products of two measure-

ments correlation. It is related to the central limit theorem. The stationary property
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means that a correlation between two measurements can depend only on time dif-

ferences and not absolute values. In Fourier space that means that the correlation in

Fourier space 〈h̃(ω)h̃∗(ω ′)〉must be proportional to the Dirac delta δ (ω−ω ′). Math-

ematically, this could be summarized as

〈h̃A(ω,ϒ)h̃∗A′(ω
′,ϒ′)〉 = 1

2
δ

2(ϒ,ϒ′)δAA′δ (ω−ω
′)Sh(ω). (1.2.54)

where A and A′ are the considered polarization states, and ϒ and ϒ′ are the solid angles

determining the detection direction.

The function Sh(ω) is the one-sided power spectral density that contains the frequency

distribution of the signal. The term one-sided is because we only consider positive ω

values. The left-hand side of this equation can be seen as a power spectral density

when the signal has the same polarization A, the same wavenumber content ω and

observed on the same solid angle ϒ. With these assumption we obtain

|h̃+(ω)|2=
Sh
(

ω

2π

)
2

. (1.2.55)

Due to the Wiener-Khintchine theorem [Wiener, 1930, Khintchine, 1934], this power

spectral density is equivalent to the Fourier transform of the autocorrelation function

of the signal, which can be used to correlate data coming from several detections.

In the review [Aggarwal et al., 2021], a variety of possible sources of stochastic back-

ground are considered, which mostly arises from hypothetical physics of the early

universe : (pre)heating, oscillons, cosmic strings, inflation, to name but a few. Most

of these hypothetical sources can be characterized by two parameters. The first one is

the energy density per logarithmic frequency sampling, constant in some models and

defined by

ΩGW =
1

ρc,0

∂ρGW

∂ ln ω

2π

, (1.2.56)

where ρGW is the energy density of gravitational waves and ρc,0 =
3H2

0
8πG is the critical

energy density of today where H0 is the Hubble parameter of today. The second

property that we could focus on is that most of the potential sources have a cut-off

frequency in the MHz-GHz band. This is due to the waves trapped in the horizon at

the epoch of the end of the inflation in the early Universe [Maggiore, 2018]. This cut-
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off could also be related to the GUT scale as mentioned above. The equation (1.2.54)

can be rewritten to consider the new quantity ΩGW which leads to

〈h̃A(ω,ϒ)h̃∗A′(ω
′,ϒ′)〉 =

3H2
0

8π2 ΩGW(ω)
(

ω

2π

)−3
δ

2(ϒ,ϒ′)δAA′δ (ω−ω
′). (1.2.57)

We can thus rewrite the parameter ΩGW as

ΩGW =
1

3H2
0

ω
2h2

c,sto(ω) , (1.2.58)

where hc,sto is the characteristic strain (still dimensionless) defined by

hc,sto =

√
ω

2π
Sh(ω). (1.2.59)

This characteristic strain for stochastic sources will be very useful to compare with co-

herent sources or sensitivity curves of detector. The characteristic strain is commonly

used in the gravitational wave detection community.

In this section we studied two potential sources of high-frequency gravitational waves,

primordial black hole merger and stochastic gravitational wave background. The lat-

ter can come from many different phenomena, and one of them is the stochastic back-

ground coming from primordial black holes (see e.g. [Franciolini et al., 2022]). In

this manuscript, we do not focus on one specific model of stochastic background. We

study in Chapter 4 a toy model for the stochastic background, to show that our detector

proposal described in Chapter 3 can handle stochastic sources.

1.3 The choice of the frame

In the previous sections, we found a coordinate frame where the gravitational wave

has no gauge freedom, the transverse-traceless gauge. In this frame, the gravitational

wave has only two degrees of freedom, denoting the polarization of the wave. This

frame is by the way very convenient for describing the gravitational wave, compute

generation processes, etc. One purpose of this thesis is to model the detection of grav-

itational waves. The physical quantities of the detection process (position of the de-
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tector, direction and evolution of the fields,...) are easily described in the frame of the

detector itself, the proper detector frame, and we must choose one frame to describe

everything. In this section we describe what are the characteristics of the transverse-

traceless frame and the proper detector frame, and what is the most convenient frame

to model the whole detection process.

Mathematically, one of the most interesting feature in general relativity is its covari-

ance. That means that the tensorial laws are independent of any choice of frame.

Among those different frames, the local inertial frame is to be pointed out. This frame

is the one where test masses are free falling at a point of the spacetime P, so the

space time becomes flat and the laws of physics become the ones of special relativity.

It means that all the Christoffel symbols Γ
µ

νρ vanish (5) and the geodesic equation

(1.1.9) at the point P becomes
d2xµ

dτ2

∣∣∣∣
P
= 0.

It means that in this frame, at one point in space at a specific moment, the test masses

move freely. We can consider a region of space around the vicinity of the spacetime

point P and keep the coordinates we constructed for the local inertial frame. These

coordinates are called Riemann coordinates. The problem is that we have to repeat

the construction of the coordinates if we consider an observer’s trajectory, and as

mentioned by Rakhmanov in [Rakhmanov, 2014], "there is no obvious way to relate

the coordinates constructed on two different reference points". This is why we need

coordinates where the test masses can move freely along a reference worldline and

not a single reference point anymore. This is what we call Fermi-normal coordinates

[Misner et al., 1973]. Those are built by a gyroscope moving along an observer’s

trajectory, the spin vector of the gyroscope sµ will behave as

dsµ

dτ
+Γ

µ

νρ sµ dxρ

dτ
= 0. (1.3.1)

The 4-spin vector in the rest frame can be expressed as sµ = (0,~s). This equation

(1.3.1) can be seen as a generalization of the angular momentum conservation in a

curved spacetime ∇U s = 0, where U is the 4-speed of the observer. The beginning of

the construction of this frame is the same as for the Riemann coordinates, we build a

local inertial frame at the point P, but with three gyroscopes to mark the spatial axes.

(5). Please note that only the Christoffel symbols Γ
µ

νρ vanish, but their derivative do not. The Ricci
scalar R does not vanish either, so the spacetime is not necessarily flat.
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This frame is moved along the chosen geodesic, the gyroscopes defining the directions

of spatial axes. Along this chosen geodesic, we have consequently that dsµ

dτ
= 0. In

order to satisfy equation (1.3.1), the Christoffel symbols vanish not only at P, but all

along the geodesic. That’s what we call it a freely falling frame, used for instance to

model drag-free satellites or space-based detectors.

Now let us introduce the frame used in gravitational wave theory. We already know the

TT frame, the frame where we model the gravitational wave in the traceless-transverse

gauge. In this set of coordinates, the gravitational wave is described by its two polar-

ization modes, h+ and h× directly, and the equations (1.1.18) are satisfied. Let us show

how this set of coordinates behaves physically. We take again the geodesic equation

for a test mass initially at rest. Taking equation (1.1.9) for τ = 0, we find

d2xi

dτ2

∣∣∣∣
τ=0

=−

[
Γ

i
00

(
dx0

dτ

)2
]

τ=0

. (1.3.2)

Taking back the definition of Christoffel symbols (1.1.1) with the gauge equations

(1.1.18), we find that all coefficients Γi
00 vanishes, meaning that the acceleration is

null for a mass initially at rest (constant xi), which implies that the mass will stay at

rest at any time in this set of coordinates. The position of the test mass will remain the

same when the gravitational wave passes. This conclusion seems paradoxical because

we know from the geodesic deviation equation (1.1.20) that the gravitational wave

will modify the distance between test masses. In order to get the positions of the test

masses constant, the TT coordinates will stretch themselves when the gravitational

wave passes. It can be seen as we measure distance in the TT gauge with a stretchable

ruler in order to preserve the position of the masses. This result illustrates clearly

that the physical observations are not related to the coordinates in general relativity.

To model the physical effect on test masses, one must rely on the proper distance

between them, the geodesic deviation.

The TT frame is not very suitable for earth-based detectors, due to the stretching of

coordinate when a wave passes. In this thesis, we are going to study a detection pro-

cess that uses a constant magnetic field. In the TT frame, the magnetic field will no

longer be constant. This is not convenient for the computations because the deriva-

tives of the field will no longer be zero, so our equations will be harder to handle. To

model gravitational wave detection, we have to consider the proper detector frame,
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first modeled by Manasse and Misner [Manasse and Misner, 1963], explained by Mis-

ner, Thorne and Wheeler in the famously known textbook Gravitation [Misner et al.,

1973] and further developed by Ni and Zimmerman [Ni and Zimmermann, 1978] to

cover all the aspects that implies an inertial observer in general relativity. The main

advantage of such a frame is that we work in the frame of the laboratory, where coor-

dinates are measured by rigid rulers. The easiest laboratory modeling we can get is a

drag-free satellite. In this case, if we restrict our domain to a small region of space,

the metric will remain flat at first order in the Fermi-normal coordinate we introduced

earlier. It makes sense because we constructed the Fermi coordinates in a way that

the Christoffel symbols vanish. The non-flat metric will appear when we push our

analysis to second order, it has the form (see [Manasse and Misner, 1963] for details)

ds2 =−c2dt
(
1+R0i0 jxix j)−2cdtdxi

(
2
3

R0 jikx jxk
)
+dxidx j

(
δi j−

1
3

Rik jlxkxl
)
,

(1.3.3)

where the Riemann tensor is evaluated at the point P, where we construct our coordi-

nates. We can show that the components of the Riemann tensor restricted to the first

order of the metric perturbation are invariant with respect to the frame [Maggiore,

2007], so we can compute the expression using the Riemann tensor in the TT frame.

If we want to consider a detector on Earth, our frame is not in free fall anymore and

other effects that appear at the Earth surface will influence the metric expression, that

is found by Ni and Zimmerman [Ni and Zimmermann, 1978],

ds2 =− c2dt
(

1+
2
c3~a ·~x+

1
c4 (~a ·~x)

2− 1
c2

(
~Ω×~x

)2
+R0i0 jxix j

)
+2cdtdxi

(
1
c

εi jkΩ
jxk− 2

3
R0 jikx jxk

)
+dxidx j

(
δi j−

1
3

Rik jlxkxl
)
,

(1.3.4)

where ~a = −~g is the classical local gravitational acceleration and Ωi is the angular

velocity of the laboratory with respect to local gyroscopes. The term in (~a ·~x) is due

to the inertial acceleration, and the one in (~a ·~x)2 is the gravitational redshift. The time

dilation due to the angular velocity is denoted by the term in
(
~Ω×~x

)2
. Finally, the

term 1
c εi jkΩ jxk is known as the Einstein-Sagnac effect, and is related to the impossi-

bility to synchronize clocks in a closed accelerated path.

This metric (1.3.4) describe fully the spacetime when a gravitational wave passes in

the Fermi-normal coordinates. However, as detailed in [Maggiore, 2007], the effects
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of the gravity acceleration ~g are compensated by the suspension mechanism of the

detector, and other effects coming from the Earth detector location can be considered

as quasi-static with respect to the detection process, because the process time scales

are far shorter than the Earth rotation and those effects become negligible. It means

that using the metric described in (1.3.3) is a neat and accurate approximation, at least

when the wavelength of the gravitational wave considered is small compared to the

size of the detector. This is because equation (1.3.3) is a series expansion limited

to the second order of coordinates, and if we consider sinusoidal gravitational wavse

of wavelength λ , this expansion will be in powers of
(

xi

λ

)
, so we may need more

orders in the Taylor expansion in coordinates. This was made by Fortini and Gualdini

in [Fortini and Gualdi, 1982] for general gravitational fields and specifically made for

any gravitational weak field by Marzlin in [Marzlin, 1994]. For an inertial observer,

the metric in Fermi-normal coordinates is given by

g00 = −1−2
∞

∑
n=0

n+3
(n+3)!

∂ n

∂xm1 . . .∂xmn
R0k0l xkxlxm1 . . .xmn , (1.3.5)

g0 j = −2
∞

∑
n=0

n+2
(n+3)!

∂ n

∂xm1 . . .∂xmn
R0k jl xkxlxm1 . . .xmn , (1.3.6)

gi j = δi j−2
∞

∑
n=0

n+1
(n+3)!

∂ n

∂xm1 . . .∂xmn
Rik jl xkxlxm1 . . .xmn . (1.3.7)

These series expansions show how we can express the metric and moreover the metric

perturbation for any weak gravitational field. In further computation in this manuscript,

we will consider an incoming gravitational plane wave, and its propagation is along

the Z-axis in the detector frame. Rakhmanov [Rakhmanov, 2014] showed simplified

expression of the metric perturbation in the Fermi-normal Cartesian coordinates, for

a gravitational wave propagating along the Z-axis, in the negative direction, the hµν

components are

h11 = P+, (1.3.8)

h22 = −P+, (1.3.9)

h12 = P×, (1.3.10)

h13 = −1
z
(xP++ yP×) , (1.3.11)

h23 = −1
z
(xP×− yP+) , (1.3.12)
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h33 =
1
z2

([
x2− y2]P++2xyP×

)
, (1.3.13)

h01 = −1
z
(xQ++ yQ×) , (1.3.14)

h02 = −1
z
(xQ×− yQ+) , (1.3.15)

h03 =
1
z2

([
x2− y2]Q++2xyQ×

)
, (1.3.16)

h00 = 2h03−h33, (1.3.17)

where

P+,×(z, t) =
∞

∑
n=2

n−1
(n+1)!

zn dnhTT+,×(t)
dtn , (1.3.18)

Q+,×(z, t) =
∞

∑
n=2

n
(n+1)!

zn dnhTT+,×(t)
dtn . (1.3.19)

The equations above will be convenient for the analytical treatment of the detection in

the manuscript in chapter 3. We can now fully express the gravitational wave tensor

hµν in the detector frame with the Fermi-normal coordinates, and it depends only on

the gravitational wave in the TT gauge and the coordinates. From this we can note that

solving the wave equation (1.1.16) in another frame than the TT frame is equivalent to

propagating the gauge-related and physics-related degrees-of-freedom. Analytically,

Rakhmanov [Rakhmanov, 2014] showed that there is no divergence for the metric

tensor perturbation at z = 0 since it has a finite limit.

In this chapter we have introduced all the concepts involving the modeling and the

detection of gravitational waves, insisting on the high frequency sources. Now, before

entering in a theoretical conception of an electromagnetic detector, we must take a

look at how electromagnetism interacts with gravitation and gravitational waves. This

will be done in the next chapter.





Chapter 2

Electromagnetism and
Gravitational Waves

In this chapter, we first introduce how gravitation and electromagnetism interact through

the Einstein-Maxwell system. Then we focus on electromagnetic interactions of grav-

itational waves, by describing the Gertsenshtein effects. The closing of this chapter

is a review on research using the inverse Gertsenshtein effect as a gravitational wave

detection.

2.1 The Einstein-Maxwell system

The name of Einstein-Maxwell system comes from two important physicists that, in

their way, improved theoretical physics a lot. The first one is James Clerk Maxwell,

who contributed to the foundation of classical electrodynamics and the second one is

Albert Einstein, founder of general relativity theory. The system that combines their

names also combines their fields. The Einstein-Maxwell system shows how we can

do electrodynamics in curved spacetime, in the framework of general relativity. On

the other hand, the stress-energy tensor used to denote the matter/energy content in

the spacetime is also sourced by the electromagnetic energy.

41
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In this section, we are going to add electrodynamics in our theory of gravitation, and

see what is the coupling between these two fundamental interactions. Here we con-

sider the minimal coupling between them.

To do so, let us recall the Einstein-Hilbert action SE−H from equation (1.1.3), the

action of general relativity where we add an electromagnetic action SEM defined by

SEM =−
∫

M

(
1

4cµ0
gµρ gνσ Fρσ Fµν +

1
c2 gµν Aµ jν

)√
−gd4x (2.1.1)

where µ0 is the vacuum magnetic permeability. This action has two different con-

tributions. The first one is the term of the electromagnetic fields, contained in the

antisymmetric Faraday tensor Fµν , and the second one is the term of the electromag-

netic sources, where Aµ is the 4-potential and contains the electromagnetic potentials

and jµ is the 4-current that contains the charge density and current densities. Similarly

to the construction of the Einstein equation (1.1.6), we are going to consider a total ac-

tion Stot = SE−H +SEM and the variation of this action with respect to the metric leads

obviously to the Einstein equation (1.1.6), but with the electromagnetic stress-energy

tensor T (EM)
µν that can be expressed as

T (EM)
µν =

1
µ0

(
Fµρ F ρ

ν − 1
4

gµν Fρσ Fρσ

)
. (2.1.2)

This tensor put into equation (1.1.6) describes how the electromagnetic energy curves

spacetime. The metric describing an electromagnetic spacetime must satisfy the Ein-

stein equation (1.1.6) sourced by the stress-energy tensor (2.1.2). Please note that in

this case the trace of the stress-energy tensor (2.1.2) is null (1), so, the Einstein equation

can be rewritten as

Rµν =
8πG
c4 T (EM)

µν . (2.1.3)

This is for instance the case of the charged black-hole metrics of Reissner-Nordström

[Reissner, 1916, Weyl, 1917, Nordström, 1918] and Kerr-Newmann [Kerr, 1963, New-

man et al., 1965, Newman and Janis, 1965]. Please note that the trace of the stress-

energy tensor (2.1.2) is null. You can relate this physically as a consequence of the

fact that the photon is massless.

(1). This is called a null-fluid solution
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Now we have shown how electromagnetism interacts with gravitation, let us see how

gravitation and a curved spacetime has an influence on electromagnetic fields. For

that purpose, we have to remind how the electromagnetic fields are related to the

electromagnetic 4-potential. The relation is, for any metric

Fµν = ∇µ Aν −∇ν Aµ = ∂µ Aν −∂ν Aµ , (2.1.4)

where the latter is obtained due to the symmetry of the Christoffel symbols. This

construction has automatically one property that leads to the first group of Maxwell

equations, which are

∂κ Fµν +∂µ Fνκ +∂ν Fκµ = 0. (2.1.5)

The second group of Maxwell equations is found by considering the action variation

of Stot with respect to the 4-potential Aµ , which leads to

∇µ Fµν =−µ0 jν . (2.1.6)

These Maxwell equations contains the four common Maxwell equations of classical

electrodynamics in vacuum [Jackson, 1998]. If as in [Hobson et al., 2006] we take

these equations in Minkowski spacetime, with Cartesian coordinates, we have that

Aµ = (cφ ,~A), where φ is the scalar electric potential and ~A the vector potential. The

4-current is jµ = (cρ,~j) where ρ is the charge density and ~j the current density. With

these assumptions, the Faraday tensor becomes

Fµν =


0 Ex/c Ey/c Ez/c

−Ex/c 0 −Bz By

−Ey/c Bz 0 −Bx

−Ez/c −By Bx 0

 (2.1.7)

and we can rewrite the first group of Maxwell equations (2.1.5) as

~∇ ·~B = 0, (2.1.8)

~∇×~E = −∂~B
∂ t

, (2.1.9)
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and the second group (2.1.6) as

~∇ ·~E =
ρ

ε0
, (2.1.10)

~∇×~B = µ0~j+µ0ε0
∂~E
∂ t

. (2.1.11)

We thus have shown how we can generalize the master equations of classical elec-

trodynamics in the frame of general relativity. If we combine the two groups (2.1.5)

and (2.1.6), we can obtain the curved spacetime version of the electromagnetic wave

equation for the electromagnetic fields [Tsagas, 2005], which is

gαβ
∇α ∇β Fµν +R

µναβ
Fαβ +Rα

µ Fνα +Rα
ν Fαµ = ∇µ jν −∇ν jµ , (2.1.12)

with the Riemann tensor R
µναβ

and Ricci tensor Rα
ν previously defined. This equa-

tion shows that the generation and the propagation of the electromagnetic fields are

influenced by the geometry of the spacetime. This is the key idea of the Gertsenshtein

effects. This coupling will allow us to consider generation and detection of gravita-

tional waves using electromagnetic fields.

To finish this section about the Einstein-Maxwell system, let us recall the equations

that we construct here above,

Rµν =
8πG
c4 T (EM)

µν ,

T (EM)
µν =

1
µ0

(
Fµρ F ρ

ν − 1
4

gµν Fρσ Fρσ

)
,

∇σ Fµν +∇ν Fσ µ +∇µ Fνσ = 0,

∇µ Fµν =−µ0 jν .

(2.1.3)

(2.1.2)

(2.1.5)

(2.1.6)

This system, applied with gravitational wave theory, will ease the introduction and the

understanding of a key concept in this manuscript, the Gertsenshtein effects. Please

note that the Maxwell equations in curved spacetime (2.1.5) and (2.1.6) can be verified

experimentally since the light is deflected by curved spacetime. By the way the fact

that electromagnetic energy couples minimally the gravitation in equations (2.1.3) and

(2.1.2) is not yet verified by specific tests [Füzfa, 2016].
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2.2 Gertsenshtein effects

The Gertsenshtein effect is a theoretical mechanism introduced in 1962 by Mikhail

Evgeny Gertsenshtein which he called the wave resonance mechanism [Gertsenshtein,

1960]. The effect can be described as follows. The passing of an electromagnetic wave

in a strong constant magnetic field region will produce a gravitational wave, with the

same frequency than its progenitor. Let us now describe this effect using the Einstein-

Maxwell system.

As described by Gertsenshtein, we have two different fields in the mechanism, a strong

constant magnetic field F(c)
i j and a passing electromagnetic wave F(w)

µν . If we consider

a Faraday tensor made of these two fields, Fµν = F(c)
µν +F(w)

µν , the stress-energy tensor

computed from equation (2.1.2) will have the form

T (EM)
µν = T (c)

µν +T (w)
µν +T (g)

µν (2.2.1)

because equation (2.1.2) is quadratic with respect of the Faraday tensor. The term

T (c)
µν only contains terms in

(
F(c)

)2
, the T (w)

µν term only contains terms in
(

F(w)
)2

,

and T (g)
µν will only contains mixed terms in

(
F(c)F(w)

)
. This will lead to take into

account three different metric perturbations, each one sourced by one of the stress-

energy tensor contribution. The metric has the form

gµν = ηµν + cµν +wµν +hµν , (2.2.2)

where cµν is sourced by T (c)
µν and is a pure static perturbation. This electromagnetic

gravitational static field generation was studied by André Füzfa for current loops and

solenoids [Füzfa, 2016]. The second perturbation wµν is sourced by T (w)
µν which is a

varying term but the frequency content would be the double frequency of F(w)
µν . Its

amplitude could be faint and negligible compared to the next term, hµν , sourced by

T (g)
µν and is the Gertsenshtein effect. Its frequency content will be the same as F(w)

µν and

its amplitude should be much greater than wµν , since hµν is sourced by a combination

of static-varying fields. The wµν term is sourced by a pure varying term and the

static field is much more intense. The Gertsenshtein effect is thus coming from the

mixed terms in the expression of the stress-energy tensor. Here is how Gertsenshtein

imagined generating gravitational waves using electromagnetic fields, which is a very
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faint process, due to the extreme weakness of gravitational coupling. Indeed, the

produced metric perturbation is given by

hµν (t,~r) =
4G
c4

∫
d~r′

|~r−~r′|
T (g)

µν

(
tret ,~r′

)
. (2.2.3)

Dimensional analysis indicates that the metric perturbation produced through the Gert-

senshtein mechanism have an amplitude of order

hµν ∼
4GB0E0L2

c5µ0
, (2.2.4)

where L is the size of the region in which the magnetic field and the electromagnetic

wave interact, and where B0 and E0 are respectively the amplitudes of the static mag-

netic and varying electric fields respectively. To illustrate the fact that the coupling

is tiny, in order to generate a strain of the order of the first detection of gravitational

waves [Abbott et al., 2016], h≈ 10−21 with B0 ≈ 10 T and E0 ≈ 1MV/m, one needs

an interacting region of L ≈ 106 km. The direct Gertsenshtein effect can be used to

build electromagnetic gravitational wave generators, but its realization constitutes an

extreme experimental challenge, and even if one can generate them, their detection is

for now uncertain. Nevertheless, generating gravitational waves with electromagnetic

fields could be a direct test for the minimal coupling between gravitation and electro-

magnetism, in the weak field regime. This is what we call the direct Gertsenshtein

effect, because in his paper of 1960 [Gertsenshtein, 1960], Gertsenshtein said that the

inverse process is "hardly of interest" and indeed, we could possibly detect gravita-

tional waves because their passing in a strong magnetic field region will induce a faint

electromagnetic field.

This is what we call the inverse Gertsenshtein effect. Physically, it can be described as

follows. A gravitational wave fundamentally constitutes a local distortion of volume.

If we put a magnetic field on the way of this spacetime distortion, the passing grav-

itational wave will modify the electromagnetic flux by affecting the volume, giving

rise to an induced electromagnetic field from Faraday’s law. This induced EM field is

the signature of the passing of a gravitational wave, as it inherits frequency from its

gravitational progenitor. Just as the direct effect, the inverse Gertsenshtein effect can

be described through the Einstein-Maxwell system.
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To do so, we are going to consider a spacetime metric with a Minkowski background

and an incoming gravitational wave gµν = ηµν +hµν . Just as for the direct effect, the

electromagnetic field has two contributions. The first one is a strong static magnetic

field F(0)
i j , that represents our field at the zeroth order of perturbation, and the electro-

magnetic wave induced by the inverse Gertsenshtein effect F(1)
µν is a field at the first

order of perturbation. With these assumptions, our Faraday tensor has the form

Fµν = F(0)
µν +F(1)

µν . (2.2.5)

Assuming that the gravitational wave is in the TT gauge (1.1.18), we can linearize

the electromagnetic wave equation in curved spacetime, by neglecting all terms of

order greater than one. This result was obtained by Grishchuk [Grishchuk and Sazhin,

1975, Grishchuk, 1977] and the wave equation is

gαβ
∇α ∇β F(1)

µν = hακ
∇
(η)
α ∇

(η)
κ F(0)

µν −∂ρ

(
∂µ hαν −∂ν hαµ

)
F(0)ρα

−
(

∂
γ hαβ +∂

α hβγ −∂
β hγα

)
(

ηαµ ∇
(η)
γ F(0)

νβ
−ηαν ∇

(η)
γ F(0)

µβ

)
= Sµν ,

(2.2.6)

where ∇(η) denotes the covariant derivative in the Minkowski metric (2). In this equa-

tion above, we do not consider yet that the external magnetic field is constant. In this

case, all the terms involving ∇(η)F vanishes, and equation (2.2.6) simplifies to

gαβ
∇α ∇β F(1)

µν =−∂α

(
∂µ h

βν
−∂ν h

β µ

)
F(0)αβ · (2.2.7)

In both equations (2.2.6) and (2.2.7), the wave equation operator is applied to the

induced electromagnetic field, and the source is involving the incoming gravitational

wave, and the external magnetic field. Mathematically, one can retrieve the wave

equation sourced by an effective 4-current density, if we assume an effective 4-current

defined by

jeffµ =
1
µ0

∂α hβ µ Fαβ (0). (2.2.8)

Then the source of the wave equation (2.2.7) can be rewritten as the curl of the 4-

(2). This is equivalent to simple derivative in Cartesian coordinates but not necessarily in other coordi-
nates.
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current density, such as

gαβ
∇α ∇β F(1)

µν = µ0

(
∂ν jeffµ −∂µ jeffν

)
. (2.2.9)

With an equation of the form of (2.2.9), we can consider for further treatment the

classical inhomogeneous electromagnetic wave equations in vacuum which are

1
c2

∂ 2~E
∂ t2 −~∆~E = −

(
1
ε0
~∇ρ +µ0

∂~j
∂ t

)
, (2.2.10)

1
c2

∂ 2~B
∂ t2 −~∆~B = µ0~∇×~j . (2.2.11)

where~∆ is the vectorial Laplacian.

To use the equations above, we only need to switch the effective current density jeffµ

into an effective charge density ρeff and effective current density ~jeff. This decompo-

sition will be very convenient to apply some classical electrodynamics methods when

we will study the detection.

Anyway, the simplicity of such equations are partially due to the fact of assuming our

gravitational wave in the TT gauge. By the way, we introduced in the previous chapter

the proper detector frame in which any earthbound detection must be modeled. In this

frame, astrophysical gravitational waves no longer holds the TT gauge equation, and

we need to take back all our computations, but there is a more elegant and direct way

to retrieve directly the effective 4-current density used in equation (2.2.9). This was

shown by Berlin et al. [Berlin et al., 2022], considering the electromagnetic action and

linearizing it directly in terms of

SEM =
∫

M

1
4µ0

gµρ gνσ Fρσ Fµν

√
−gd4x

=
∫

M

(
1

4µ0
η

µρ
η

νσ Fρσ Fµν +η
µν Aµ jeffν

)
d4x+O(h2)

(2.2.12)

with

jeffµ =
1
µ0

∂α

(
hβ µ Fαβ +hαβ Fβ µ +

h
2

F α
µ

)
. (2.2.13)

This new effective 4-current density is very useful, because it generalizes the one we

found earlier in equation (2.2.8) but with no assumptions about the gauge used to
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model the metric perturbations. We can just put the effective 4-current obtained in

equation (2.2.13), into equation (2.2.9), and we can solve the electromagnetic field

induced by the inverse Gertsenshtein effect.

We now have all the theoretical background to study the detection of high-frequency

gravitational waves by resonant electromagnetic cavities, using the inverse Gertsen-

shtein effect. Before that, we are going to perform a small review of inverse Gertsen-

shtein effect gravitational wave detection in order to compare our detector proposal

with other works.

2.3 Review on HFGW EM detection proposals

In this section, we are going to review the resonant electromagnetic detectors using

inverse Gertsenshtein effect. The first part contains results right after the original

Gertsenshtein paper. The second one contains some promising detector proposals

recently published.

2.3.1 The first paper of Gertsenshtein and immediate further re-
search

After the discovery of the wave resonance mechanism by Gertsenshtein [Gertsen-

shtein, 1960] in the early 1960s, the first period where inverse Gertsenshtein research

was active is the next decade. In parallel of Gertsenshtein paper, Lupanov [Lupanov,

1967] proposed to use a capacitor with an external electric field to detect gravitational

waves. The next step, inspired by the two Soviet physicists mentioned above, a team

of Bologna in Italy [Boccaletti et al., 1970] provided analytical developments about

the direct and the inverse Gertsenshtein effect. They used general relativity and scat-

tering theory to give robust mathematical formulations of the mechanisms. They even

proposed at the end of the paper a first experimental setup for a gravitational Hertz ex-

periment, i.e. generating and detecting gravitational waves in the same process. After

that, some progress was made by Soviet physicists of the Moskow State University, the

first paper [Braginskii and Menskii, 1971] mentioned the way to detect gravitational

waves in a resonator with a packet of electromagnetic waves, the next one [Braginskii

et al., 1973] proposed to use a waveguide to detect gravitational wave in a strong ex-

ternal magnetic field, and analyze it with the projection of the wave equation on the
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proper modes of the waveguide. The two final ones were made by Leonid Grishchuk

that introduced the damping of the oscillation due to the cavity walls [Grishchuk and

Sazhin, 1975] and in 1977 the case where the external field could oscillate [Grishchuk,

1977], and proposed another gravitational Hertz experiment with a coaxial cylindrical

section. The end of the 1970s was quite prolific, with the work of Pegoraro, Radi-

cati and Picasso [Pegoraro et al., 1978b, Pegoraro et al., 1978a] where they insisted

on the fact that resonant electromagnetic detectors can be tunable to match the fre-

quency they wanted to detect. The use of oscillating fields, generation and detection

of gravitational waves were also mentioned in this paper. Their detector response

is proportional to the strain amplitude and they mentioned the difficulty in terms of

noises to detect tiny fluctuating values in a strong external field. At the same time,

Caves [Caves, 1979] imagined to use the cavity walls in a strong external magnetic

field to detect the gravitational waves. Indeed, the passing of a gravitational wave will

interacts with the walls and will allow transitions from excited modes and nearly unex-

cited modes. Then, de Logi and Michelson [De Logi and Mickelson, 1977] provided

a quantum explanation of the inverse Gertsenshtein effect. As explained by Cruise

later in [Cruise, 2012], "An incoming graviton interacts with the virtual photon of the

static magnetic field and a real photon is generated by the conversion process." The

work of de Logi and Michelson provides some cross sections of potential conversions.

They were inspired by the work [Boccaletti et al., 1968]. The next decades have been

less active because of the development of interferometry techniques to detect gravita-

tional waves. The regain on interest in high frequency gravitational waves detection

will rise the interest in the inverse Gertsenshtein effect. During these decades, we

can nonetheless describe in few words the work of [Macedo and Nelson, 1983] where

they studied how a gravitational wave behaves in a magnetized plasma. They finally

said that the study of such a situation will be very interesting for gravitational wave

detection. In the 1990s two papers got our attention, the first one is [Gerlach, 1992],

that studied the induced birefringence in the interior of a cavity, how the information

of the gravitational wave changes through the passing in a cavity. The second one

is [Minakov et al., 1992], that prospected the use of the ionosphere and its electric

field as a resonator. In 2003, a collaboration between the CERN and Genova Uni-

versity [Ballantini et al., 2003] led to the design of two coupled spherical microwave

cavities to detect gravitational waves, where the detection process is inherited from

[Caves, 1979]. We finish this section with the work of Adrian Cruise, that described

the rotation of the polarization plane of an electromagnetic wave due to the passing
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gravitational waves [Cruise, 1983], and this work was continued in [Cruise, 2000]

with more experimental prospects for detection. The aim is to measure this polariza-

tion change with a quantum formalism from de Logi [De Logi and Mickelson, 1977].

Since this is a quantum work, they automatically have a generated power quadratic

with the strain amplitude, because there is no possibilty to detect the energy variation

at first order by detecting photons. Finally, preliminary work about the development of

a gravitational Hertz experiment in 2015 using electromagnetic fields was published

by Kolosnitsyn and Rudenko [Kolosnitsyn and Rudenko, 2015].

Please note that there exists also the Li effect, described in [Li et al., 2003, Li et al.,

2008], where the effect is claimed to be amplified by adding a Gaussian beam photon

flux detection. This technique will induce a first order perturbative photon flux, but

the noise sensitivity could be unchanged because of the noise and measuring small

fluctuations in a dense, oscillating medium. The Li-Baker detector [Baker et al., 2008]

and possible applications of high-frequency gravitational waves [Baker, 2005] were

analyzed and strongly criticized by the US national security [JASON Program office -

The MITRE Corporation, 2008].

2.3.2 Interests in the Inverse Gertsenshtein effect after LIGO de-
tection

After the LIGO first gravitational wave detection [Abbott et al., 2016], the interest

in different detection techniques, especially at high frequencies, has been renewed.

Thus, several detector proposals came into the spotlight in the few last years. The

first was [Ejlli et al., 2019], based on the classical graviton-photon mixing formalism

by Damian Ejlli [Ejlli and Thandlam, 2019], inspired by the work on axion-photon

mixing (3) [Raffelt and Stodolsky, 1988]. The aim is to use some resonant cavities

used for axion detection in the frame of gravitational wave detection. The work is

well-documented, provides a generated energy quadratic with the strain amplitude

and gets a strain sensitivity around 10−25 at very high frequencies (1015Hz). Further

computations were made in [Ejlli, 2020].

(3). [Raffelt and Stodolsky, 1988] is an article centered on axion-photon mixing, but gives the first
prospects for graviton-photon mixing.
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The second detector proposal is a response from the Li effect concerns about the ad-

vantage of bringing a Gaussian beam. It was answered in [Zheng et al., 2018], where

instead of this beam they imagined an oscillating external field to get a first order gen-

erated electromagnetic energy, by using the inverse Gertsenshtein effect. Further work

[Zheng and Wei, 2022] gives prospects about the potential noise sources.

More recently, the paper [Berlin et al., 2022] brings another point of view on the

inverse Gertsenshtein effect modeling. The authors formalize the modeling of the de-

tection in the proper detector frame. Most of the proposals before were modeled in

the TT frame. They get a second order generated electromagnetic energy because

they discard quantities that vanish in a simple time average. They modeled the de-

tection in TM/TE cavities and shows the directional sensitivity for several modes in

the case of monochromatic gravitational wave detection. This directional sensitivity is

accurate since they take into account all the terms present in the Taylor series of equa-

tions (1.3.5) to (1.3.7). The recent preprint [Schmieden and Schott, 2022] proposes

to use the Compact Muon Solenoid (CMS) experiment magnet system to improve the

sensitivity of this cavity proposal. In the same way, the proposal [Domcke and Garcia-

Cely, 2021] provides also a way to detect high-frequency gravitational waves using

low-mass haloscopes. They propose to use a torroidal cavity used for axion detection,

and they compute the magnetic flux since this haloscope searches for an anomalous

magnetic flux. They provide good sensitivity curve since they have already the ones

for the axion detector. They also considered only monochromatic plane wave to model

their detection.

At the same time, André Fűzfa patented [Füzfa, 2018] some devices and methods

either to generate or detect gravitational waves using the Gertsenshtein effects. This

is one of the patented design that we are going to model and study in the following of

this manuscript. The patented idea we use is measuring the root-mean-square induced

electromagnetic power in an electromagnetic cavity, where an external magnetic field

boosts specific cavity modes. At the end of this manuscript, we will compare our

detector proposal with the ones mentioned above.
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All these detector proposals, including ours, were mentioned in a variety of papers in

the last two years either to motivate or prospecting the detection of potential sources.

Among these you can see in [Pujolas et al., 2021, Franciolini et al., 2022] prospects

for probing primordial blank hole binaries and [Ringwald et al., 2021, Ringwald and

Tamarit, 2022] for the search of the stochastic gravitational wave background. In

[Ringwald and Tamarit, 2022], the authors provide prospects for its further experi-

mental detection, with a detector using the Li effect.

Now we have all in our hands to begin the modeling of the detector and develop

analytically our detector proposal.





Chapter 3

Detector proposal and analysis

In this chapter, we are going to study the case of two resonant electromagnetic de-

tectors, suited for high frequency gravitational waves. We first describe the geometry

of these detectors, and then perform electromagnetic modes analysis to compute an

electromagnetic response that one could measure.

3.1 Modeling the detector

The detector proposal that we make in this manuscript is the use of resonant elec-

tromagnetic cavities, immersed in a strong external magnetic field, to detect high-

frequency gravitational waves. The use of such a device was mentioned first by Gr-

ishchuk [Grishchuk, 1977], and imagined in few other works [Caves, 1979, Berlin

et al., 2022], but the detectors we are going to study here were patented by André

Füzfa in 2018 [Füzfa, 2018].

The detectors are constituted by either a waveguide or a cavity in vacuum immersed

into a transverse static magnetic field that will boost the output signal through a reso-

nance mechanism on specific radiation modes that are excited by the passing gravita-

tional waves.

55
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Let us now present our proposed experimental set-ups (figure 3.1). One can either

consider the resonance of the induced electromagnetic waves inside a cylindrical cav-

ity of radius R (TM resonator) or inside a waveguide made of two (or more) concentric

open cylinders with inner radius R1 and outer radius R2 (TEM resonator). The cavi-

ties symmetry axis is the Z-axis. We denote by L the length of the resonators and by
~B(0)
ext = B0~ex the external magnetic field, assumed to be of constant magnitude along

the X-axis for simplicity. Please note that any electromagnetic induced field inside

an ideal resonator must verify the boundary conditions along any perfect conducting

surfaces which are
~E(1)
‖ = ~B(1)

⊥ =~0. (3.1.1)

Now that we have defined our detectors, we can express the induced field by the

inverse Gertsenshtein effect, using equation (2.2.9). To simplify this equation, one can

deduce that our zeroth order Faraday tensor has for only non-vanishing component in

Cartesian coordinates (ct,x,y,z) in the proper detector frame,

F(0)
yz =−F(0)

zy =−B0. (3.1.2)

Figure 3.1 – Schematic representation of the experimental designs: a cylindrical TM
cavity (left) and TEM waveguide (right), both immersed in an external static and trans-
verse magnetic field.
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This equation will considerably reduce the number of terms involved in the computa-

tion of jeffµ . In the following, we are going to consider a total 4-current density that

has four different contibutions

jµ

tot = jµ

eff+ jµ

loss = jµ

1 + jµ

2 + jµ

3 + jµ

loss (3.1.3)

where

jµ

1 =
1
µ0

Fαβ

(0) ∂α h µ

β
, (3.1.4)

jµ

2 =
1
µ0

F µ

(0)β ∂α hαβ , (3.1.5)

jµ

3 =
1

2µ0
Fµα

(0) ∂α h, (3.1.6)

jµ

loss = σF0µ

(1) . (3.1.7)

The three first terms are the three contributions of the effective 4-current described

in equation (2.2.13). Please note that if the incoming gravitational wave is traceless

(h = 0) and satisfies the Lorenz gauge condition (∂α hαβ = 0), the terms jµ

2 ans jµ

3

vanishes. The term jµ

loss denotes the ohmic losses at the cavities walls. To ease the

analysis of the electromagnetic response in the detectors, we set ( jµ

tot) = (cρtot,~jtot)

and we recover the classical inhomogeneous electromagnetic wave equations in vac-

uum (2.2.10) and (2.2.11)

1
c2

∂ 2 ~E(1)

∂ t2 −~∆ ~E(1) = −

(
1
ε0
~∇ρ

tot+µ0
∂ ~jtot

∂ t

)
, (3.1.8)

1
c2

∂ 2 ~B(1)

∂ t2 −~∆ ~B(1) = µ0~∇× ~jtot . (3.1.9)

The equations above allow us to compute some measurable quantities that could be

used for possible detection of high frequency gravitational waves. The presence of

the ohmic losses by the induced electric fields ~jloss = σ
~E(1) in the 4-current effective

density will slightly modify the form of the above equations. Using the Maxwell

equation (2.1.9) we obtain
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1
c2

∂ 2 ~E(1)

∂ t2 +σ µ0
∂

~E(1)

∂ t
−~∆ ~E(1) = −

(
1
ε0
~∇ρ

eff+µ0
∂
~jeff

∂ t

)
, (3.1.10)

1
c2

∂ 2 ~B(1)

∂ t2 +σ µ0
∂
~B(1)

∂ t
−~∆ ~B(1) = µ0~∇× ~jeff . (3.1.11)

Please remind here that the equations above are considered in vacuum. The propaga-

tion in a specific material must be discussed with the relative electric permittivity and

magnetic permeability.

3.2 Computing the cavity response

In the previous section, we showed that the induced electromagnetic field due to the

passing of a gravitational wave is the solution of equations (3.1.10) and (3.1.11). If we

solve this in any point of our spacetime, we get the electromagnetic field in any point

in the detector and at any moment. However, solving it is quite challenging. Since we

use perturbative methods, maybe there is a simple solution at leading order that can

be found. Moreover, despite the fact that getting the full electromagnetic field could

be useful, computing physical quantities that can be detected must be the main goal of

our study.

The first physical quantity than we consider is the electromagnetic energy stored inside

the cavity in vacuum, defined by

E =
1
2

∫
V

(
ε0‖~E‖2+

1
µ0
‖~B‖2

)
dV, (3.2.1)

where ‖·‖ denotes the Euclidean norm. Before the passing of the incoming gravita-

tional wave, the electromagnetic energy is

E0 =
1

2µ0

∫
V
‖ ~B(0)‖2dV, (3.2.2)

and when the induced electromagnetic fields appear through the inverse Gertsenshtein

effect when a gravitational wave passes, the electromagnetic energy restricted to the
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first order of perturbation is

E (t)' 1
2µ0

∫
V

(
‖ ~B(0)‖2+2 ~B(0) · ~B(1)

)
dV, (3.2.3)

where · denotes the scalar product. From equations (3.2.2) and (3.2.3), we can express

the energy variation at time t by

∆E (t) = E (t)−E0 =
1
µ0

∫
V

~B(0) · ~B(1)dV. (3.2.4)

If we made the hypothesis that the external constant magnetic field is aligned with the

X-axis, ~B(0) = B0~ex, the energy variation equation (3.2.4) becomes

∆E (t) =
B0

µ0

∫
V

B(1)
x dV. (3.2.5)

Thus, we only need to solve the x-component of the induced magnetic field to compute

the energy variation at first order. Instead of this quantity, we can simply express the

induced electromagnetic power in the cavity, as in axion electromagnetic detection

[Asztalos et al., 2010]. The induced power in the cavity is given by

P(t) =
dE

dt
=

d (E0 +∆E )

dt
=

d∆E

dt
=

B0

µ0

∫
V

dB(1)
x

dt
dV. (3.2.6)

Equation (3.2.6) provides an interesting physical quantity that could be detectable with

electromagnetic techniques. This quantity is also a first order computation so it would

be the leading order of the induced electromagnetic power.

Equation (3.2.6) above is very interesting as it provides the time evolution of the in-

duced power, but another point of interest is how the induced power evolves with the

frequency. It is done through the use of the temporal Fourier transform, that we can

apply to any time-dependent function f (t), and obtain the temporal Fourier transform

f̃ (ω) =
∫

∞

−∞

f (t)e−iωtdt, (3.2.7)

that depends on ω = 2πν where ν is the frequency. An important property of the

Fourier transform is that it transform temporal derivatives into algebraic products,

iω f̃ (ω) =
∫

∞

−∞

[
d f
dt

(t)
]

e−iωtdt, (3.2.8)
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We can thus obtain the frequency-dependent induced power, the temporal Fourier

transform of P(t),

P̃(ω) =
iB0ω

µ0

∫
V

B̃(1)
x dV, (3.2.9)

where B̃(1)
x is the temporal Fourier transform of B(1)

x . Now that we have the observ-

able that we want to focus on, the response of our detector, we need to solve the

x-component of our induced magnetic field B(1)
x . We could numerically solve equa-

tion (3.1.9) with proper boundary conditions that respects the constraints put by the

cavities (3.1.1), but since equation (3.2.6) contains a volume integral, some spatially

oscillating quantities will vanish in this integral, and could generate numerical errors

and the computation time could be quite long to obtain accurate solutions. We suggest

to solve the equations in a more clever way, by using the cylindrical harmonics in our

cavities.

3.3 Cylindrical harmonics decomposition

Since we need to solve our wave equation (3.1.11) in cylindrical cavities, we will de-

compose our field in cylindrical harmonics. Mathematically, these are the eigenfunc-

tions of the vectorial Laplacian operator~∆ that satisfy our boundary conditions (3.1.1),

and their eigenvalues are the resonance frequencies of our cavities. These harmonics

are often denoted by "quantum" numbers, that are separation constants arising from

solving the Helmholtz equation by variable separation.

In the case of our detector, let us use the cylindrical coordinates (r,θ ,z). The eigen-

functions of the Laplacian operator that satisfy our boundary conditions (3.1.1) are

ψ
r
kmn = Cr

kmn ·
Rkm(r)

mr
·

{
cos

sin

}
(mθ) ·

{
cos

sin

}(
2πnz

L

)
(3.3.1)

ψ
θ
kmn = Cθ

kmn ·
dRkm(r)

dr
·

{
−sin

cos

}
(mθ) ·

{
cos

sin

}(
2πnz

L

)
(3.3.2)

ψ
z
kmn = Cz

kmn ·Rkm(r) ·

{
cos

sin

}
(mθ) ·

{
sin

cos

}(
2πnz

L

)
, (3.3.3)

where k,m,n are integers that appear when using the variable separation method.

These are "quantum" numbers to differentiate each harmonic. Cr,θ ,z
kmn are normalization
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constants and L is the length of the cavity defined earlier. The two lines containing

functions in brackets describe the choice of mathematically possible orthogonal eigen-

function of the Laplacian operator. The discussion about the cavity modes is made in

Appendix C. For the hollow cylinder, the TM cavity, the radial functions Rkm(r) are

Rkm = Jm(αkr), (3.3.4)

where Jm is the Bessel function of first kind and the constants αk are solutions of

Jm(αkR) = 0 ∀k ∈ Z, (3.3.5)

so αk is kth root of the Bessel function Jm.

In the case of the coaxial TEM waveguide the radial functions are

Rkm = AkJm(αkr)+Ym(αkr), (3.3.6)

where the constants αk and AK are the solutions of

AkJm(αkR1)+Ym(αkR1) = 0 ∀k ∈ Z, (3.3.7)

AkJm(αkR2)+Ym(αkR2) = 0 ∀k ∈ Z. (3.3.8)

The cylindrical harmonics are a powerful tool for wave equation solving. Indeed,

these functions satisfy the Helmholtz equation,

~∆~ψkmn =−Ω
2
kmn~ψkmn, (3.3.9)

where

Ω
2
kmn = α

2
k +

4π2n2

L2 (3.3.10)

are the squared-norm of the resonant modes wavevectors.
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Since these functions ~ψkmn form an orthonormal basis, we can expand our induced

field ~B(1) and the source term of equation (3.1.11) as

B(1)r,θ ,z(t,~r) = ∑
k,m,n

b̂r,θ ,z
kmn (t)ψ

r,θ ,z
kmn (~r), (3.3.11)

µ0

(
~∇× ~jeff

)r,θ ,z
(t,~r) = ∑

k,m,n
ŝr,θ ,z

kmn (t)ψ
r,θ ,z
kmn (~r), (3.3.12)

where the upper indices r,θ ,z denotes the components of the fields in the cylindri-

cal coordinates. With these expansions above, using Helmholtz equation (3.3.9) into

equation (3.1.11), we obtain

∑
k,m,n

1
c2

d2b̂r,θ ,z
kmn

dt2 ψ
r,θ ,z
kmn + ∑

k,m,n
σ µ0

db̂r,θ ,z
kmn
dt

ψ
r,θ ,z
kmn + ∑

k,m,n
Ω

2
kmnb̂r,θ ,z

kmn ψ
r,θ ,z
kmn = ∑

k,m,n
ŝr,θ ,z

kmn (t)ψ
r,θ ,z
kmn .

(3.3.13)

We consider as [Grishchuk, 1977] that the dissipation in the cavity has an effective

conductivity for each mode σ = cΩkmnε0
Q , where Q is the cavity quality factor. With

this assumption, by gathering the sums, we obtain for each term (k,m,n)

1
c2

d2b̂r,θ ,z
kmn

dt2 +
Ωkmn

cQ
db̂r,θ ,z

kmn
dt

+Ω
2
kmnb̂r,θ ,z

kmn = ŝr,θ ,z
kmn (3.3.14)

which is a forced and damped harmonic oscillator equation for each coefficient b̂r,θ ,z
kmn .

The forcing term is ŝr,θ ,z
kmn and can be computed by projecting the original source term

of equation (3.1.11) on the eigenfunctions of the Laplacian ~ψkmn,

ŝr,θ ,z
kmn (t) =

∫
V

µ0

(
~∇× ~jeff(t,~r)

)r,θ ,z
ψ

r,θ ,z
kmn (~r)dV, (3.3.15)

where we use the scalar product of two functions f and g,

( f ,g) =
∫

V
f (~r)g∗(~r)dV, (3.3.16)

to make the orthogonal projection. That means that if we want to solve equation (3.1.11),

we need to solve (3.3.14) sourced by equation (3.3.15). We thus retrieve the induced

field by equation (3.3.11). The equation (3.3.14) can also be put in the temporal
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Fourier domain, and becomes a pure algebraic equation,

− ω2

c2 b̃r,θ ,z
kmn +

iωΩkmn

cQ
b̃r,θ ,z

kmn +Ω
2
kmnb̃r,θ ,z

kmn = s̃r,θ ,z
kmn (3.3.17)

where b̃r,θ ,z
kmn is the temporal Fourier transform of b̂r,θ ,z

kmn , and

s̃r,θ ,z
kmn (ω) =

∫
V

µ0

(
~∇× ~J eff(ω,~r)

)r,θ ,z
ψ

r,θ ,z
kmn (~r)dV, (3.3.18)

where ~J eff(ω,~r) is the temporal Fourier transform of ~jeff(t,~r). This can be made

because the temporal and the spatial variables in our effective current density are in-

dependent.

The same analytic treatment can be made to solve equation (3.1.10). Nevertheless,

we found out a measurable quantity that we defined in equation (3.2.6), which only

includes the induced magnetic field ~B(1). This is why we focused on equation (3.1.11).

Let us take back the response of our detector equation (3.2.6), which contains the

x-component of ~B(1), because our external constant magnetic field is along the X-

axis. Thus, since our eigenfunctions ψ
r,θ ,z
kmn are defined in cylindrical coordinates of

the proper detector frame, we can decompose the x-component of ~B(1) as

B(1)
x = B(1)

r cosθ −B(1)
θ

sinθ (3.3.19)

in order to rewrite equation (3.2.6) as

P(t) =
B0

µ0

∫
V

dB(1)
r

dt
cosθ −

dB(1)
φ

dt
sinθ

dV, (3.3.20)

and with the decomposition (3.3.11) we obtain

P(t) =
B0

µ0
∑

k,m,n

∫ R,R2

0,R1

∫ 2π

0

∫ L
2

− L
2

(
db̂r

kmn
dt

ψ
r
kmn cosθ −

db̂φ

kmn
dt

ψ
θ
kmn sinθ

)
r dr dθdz

(3.3.21)

where the limits on the integral over r depend on the considered cavity. If we take back

the expressions of the eigenfunctions (3.3.1) and (3.3.2), only the eigenfuctions inde-

pendent of z do not vanish in the integral above. If we look at the θ dependence, only
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ψr
kmn ∝ cosθ and ψθ

kmn ∝ sinθ lead to non-vanishing volume integral. In other words,

only the (k,1,0) modes do not vanish in the volume integral in equation (3.3.21),

leading to

P(t) =
πB0

µ0
∑
k

(
db̂r

k10
dt

Ir
k +

db̂θ
k10

dt
Iθ
k

)
, (3.3.22)

where we can define the quantities

Ir
k =

∫ R,R2

0,R1

Rk1(r)dr, (3.3.23)

Iθ
k =

∫ R,R2

0,R1

dRk1(r)
dr

r dr. (3.3.24)

We can easily compute from Bessel functions properties that Ir
k = −Iθ

k
def
= Ik, we can

thus rewrite equation (3.3.22) as

P(t) =
πB0

µ0
∑
k

Ik

(
db̂r

k10
dt
−

db̂θ
k10

dt

)
. (3.3.25)

We consider (
~∇× ~jeff

)r
=

(
~∇× ~jeff

)x
cosθ +

(
~∇× ~jeff

)y
sinθ , (3.3.26)(

~∇× ~jeff
)θ

= −
(
~∇× ~jeff

)x
sinθ +

(
~∇× ~jeff

)y
cosθ , (3.3.27)

and the fact that only the (k,1,0) modes where eigenfunctions ψr
kmn ∝ cosθ and

ψθ
kmn ∝ sinθ do not vanish in the volume integral of equation (3.3.15). We also

assume a plane wave approximation along the Z-axis, so our source term
(
~∇× ~jeff

)
depends spatially only on z. We can rewrite the source term of our harmonic oscillator

equation defined by (3.3.15), with all the hypotheses described above,

ŝr,θ
k10(t) = πIr,θ

k

∫ L
2

− L
2

µ0

(
~∇× ~jeff(t,z)

)x
dz, (3.3.28)

or in the frequency domain

s̃k10(ω) = πIr,θ
k

∫ L
2

− L
2

µ0

(
~∇× ~J eff(ω,z)

)x
dz, (3.3.29)
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which are a very convenient way to compute them. Here again Ir
k =−Iθ

k
def
= Ik implies

that ŝr
k10(t) = −ŝθ

k10(t)
def
= ŝk10(t), so the solution of equation (3.3.14) for the (k,1,0)

mode will be b̂r
k10(t) = −b̂θ

k10(t)
def
= b̂k10(t). Equation (3.3.25) can be rewritten in a

simpler way

P(t) =
2πB0

µ0
∑
k

Ik
db̂k10

dt
(t). (3.3.30)

Equation (3.3.30) can be transferred to the temporal Fourier domain in order to get the

induced power depending on the frequency using equation (3.2.8),

P̃(ω) =
2iπωB0

µ0
∑
k

Ikb̃k10(ω). (3.3.31)

We can now quite easily compute the induced electromagnetic power in our detec-

tors evolving with time or frequency thanks to equations (3.3.30) and (3.3.31). Now

we need to investigate the source term of our oscillator equations given by equa-

tions (3.3.28) and (3.3.29), that we can also simplify in

ŝk10(t) = πIk

∫ L
2

− L
2

µ0

(
~∇× ~jeff(t,z)

)x
dz, (3.3.32)

or in the frequency domain

s̃k10(ω) = πIk

∫ L
2

− L
2

µ0

(
~∇× ~J eff(ω,z)

)x
dz, (3.3.33)

3.4 The source term

In equations (3.3.32) and (3.3.33), because our external magnetic field is along the X-

axis, we only need to get the x-component of the curl of the effective current density

in order to obtain the source terms of our harmonic oscillator, useful to obtain the

induced electromagnetic power in the cavity. In Cartesian coordinates, we have that

µ0

(
~∇× ~jeff

)x
= µ0

(
∂y jz

eff−∂z jy
eff
)
. (3.4.1)

In this section, we are going to investigate mathematically what is the form of equa-

tion (3.4.1), first in the TT gauge, to first analyze the case where the equations are



66 CHAPTER 3. DETECTOR PROPOSAL AND ANALYSIS

simplified in order to consider a more realistic case, where the detection process is

described in the proper detector frame. In both cases, we are going to consider that

the direction of propagation of our incoming gravitational wave is the symmetry axis

of our cavities, the Z-axis.

3.4.1 TT frame

We first consider a detection of gravitational waves in the TT frame even though it is

not realistic. Indeed, modeling a constant external magnetic field in the TT frame is

not very feasible because we saw in the first chapter that the TT coordinates stretch

themselves when a gravitational wave passes. Such a constant magnetic field in that

frame will oscillate in the laboratory frame and vice-versa. However, it is useful to

first consider this TT frame to get used to the equations with simpler expressions

before analyzing the proper detector frame. For a gravitational wave in the TT frame,

propagating along the Z-axis, the perturbation tensor hµν satisfies conditions (1.1.18),

and has the form

hµν =


0 0 0 0

0 h+(z, t) h×(z, t) 0

0 h×(z, t) −h+(z, t) 0

0 0 0 0

 . (3.4.2)

With this kind of metric perturbation, the terms ~j2 and ~j3 defined by equations (3.1.5)

and (3.1.6) vanish due respectively to the Lorenz gauge condition ∂µ hµν = 0 and the

traceless perturbation h = 0. The effective current in this case is

~jeff = ~j1 =
B0

µ0


−∂zh×
∂zh+

0

 , (3.4.3)

where we used equation (3.1.4) to compute the components. We can see that the

effective current has a very simple expression. Putting this effective current in equa-

tion (3.4.1), we obtain a source term that is

µ0

(
~∇× ~jeff

)x
=−B0

∂ 2h+
∂ z2 (3.4.4)

which is again a very simple term for analysis. We can see that the response of our cav-

ity will contain only information of the + polarization since we boost the x-component



3.4. THE SOURCE TERM 67

of the induced field, boosting the y-component gives us information about the× polar-

ization. The source term of our magnetic field wave equation only spatially depends

on the z-coordinate. We can use the equation (3.3.32) to get the source term of the

harmonic oscillator equation (3.3.14), which leads to

ŝk10(t) =−πB0Ik

∫ L
2

− L
2

∂ 2h+
∂ z2 (z, t)dz. (3.4.5)

If we assume that the gravitational wave is a plane wave propagating in the negative z-

direction, h+(z, t) = h+(t + z
c ) and make the variable change t ′ = t + z

c for the integral

we obtain

ŝk10(t) =−
πB0Ik

c

∫ t+ L
2c

t− L
2c

∂ 2h+
∂ t ′2

(t ′)dt ′

=−πB0Ik

c

(
∂h+
∂ t

(t +
L
2c

)− ∂h+
∂ t

(t− L
2c

)

)
.

(3.4.6)

Here is how we can compute our forcing term of the harmonic oscillator equation.

We can also easily compute the Fourier transform of this expression. If we recall

equation (3.2.8) and

e−iωt0 f̃ (ω) =
∫

∞

−∞

f (t− t0)e−iωtdt, (3.4.7)

we have that∫
∞

−∞

(
∂h+
∂ t

(t +
L
2c

)− ∂h+
∂ t

(t− L
2c

)

)
e−iωtdt = iω h̃+(ω)

(
e−iω L

2c − eiω L
2c

)
=−2ω h̃+(ω)sin

(
ωL
2c

)
.

(3.4.8)

We thus obtain straightforwardly the temporal Fourier transform of our source term

s̃k10(ω) =
2πωB0Ik

c
h̃+(ω)sin

(
ωL
2c

)
. (3.4.9)

We have now everything to solve the harmonic oscillator equation to get the induced

power in our cavity, computed in the TT gauge. We perform the same computations

in the proper detector frame in the following, that will lead to far more complicated

expressions, but the next section will show how to cope with that.
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3.4.2 The proper detector frame

In this frame, we saw earlier that the incoming gravitational wave hµν(~r, t) is given by

equations (1.3.8) to (1.3.17). We also know that the Lorenz gauge condition does not

hold and the effective current for our magnetic field wave equation is

~jeff = ~j1 +~j2 +~j3 (3.4.10)

where

~j1 =
B0

µ0


−∂zP×− P×

z

∂zP++ P+
z

yP+−xP×
z2 + y∂zP+−x∂zP×

z

 , (3.4.11)

~j2 =
B0

µ0


0

2(x2−y2)P++4xyP×
z3 − (x2−y2)(∂zP+−∂ct Q+)+2xy(∂zP×−∂ct Q×)

z2

− yP+−xP×
z2 − x(∂zP×−∂ct Q×)−y(∂zP+−∂ct Q+)

z

 ,(3.4.12)

~j3 =
B0

2µ0


0

∂zh

−∂yh

 with h =
2
(
x2− y2

)
(P+−Q+)+4xy(P×−Q×)

z2 . (3.4.13)

You can see obviously that this effective current is much more complicated than the

previous one for the TT gauge (3.4.3), and this current density depends on all the

spatial coordinates so it is impossible to use equation (3.3.32) to easily compute the

source terms of our harmonic oscillator equations. In order to solve it analytically, we

find a practical approximation of the source term that depends only on z and t. The

intuition behind this idea, besides equation (3.3.32), is that even if the TT gauge is no

longer valid in this case, one can consider the incoming gravitational wave as a plane

wave so our source term does not depend on the transverse coordinates (x,y) because

the size of the detector is small with respect to the wavefront. Let us now truncate

the functions P+,× and Q+,× to the first term of the sums defined in equations (1.3.18)

and (1.3.19), which leads to

P+,×(z, t) ≈ z2

6
1
c2

d2h+,×
dt2 , (3.4.14)

Q+,×(z, t) ≈ z2

3
1
c2

d2h+,×
dt2 . (3.4.15)
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Using these approximations, we obtain for the following source term for our wave

equation

µ0

(
~∇×~j1

)x
= −B0

1
c2

d2h+
dt2 , (3.4.16)

µ0

(
~∇×~j2

)x
=

B0

6
1
c2

d2h+
dt2 −

B0z
3

1
c3

d3h+
dt3 , (3.4.17)

µ0

(
~∇×~j3

)x
= −B0

3
1
c2

d2h+
dt2 . (3.4.18)

If we neglect the term in 1
c3 we find out that

µ0

(
~∇× ~jeff

)x
=−7B0

6
1
c2

d2h+
dt2 =

7
6

µ0

(
~∇×~j1

)x
. (3.4.19)

That means that we can approximate the source term by using the definition of ~j1,

µ0

(
~∇× ~jeff

)x
≈ 7

6
µ0

(
~∇×~j1

)x
=−7B0

6

(
∂ 2P+
∂ z2 +

2
z

∂P+
∂ z

)
. (3.4.20)

The approximation (3.4.20) can be validated computationally if we implement the sum

involved in P+,× and Q+,× in symbolic math software. We check the accuracy of this

approximation in figure 3.2. On the top, the blue curve represents the L2-norm of the

source term for a slice at several values of z (in meters), integrated over a unit disk for

the x and y coordinates. The orange curve is the same computation for the approxi-

mation equation (3.4.20). The bottom panel is the source term in the detector frame

divided by the source term in the TT gauge to validate equation (3.4.20). The signal

considered here is the Newtonian GW inspiral phase of primordial black hole mergers

(10−5M�), given by equations (1.2.22) and (1.2.23). The number of terms considered

in Eqs. (1.3.18,1.3.19) are n = 10. Please note that we have to use geometric units in

order to avoid numerical errors. The quantities here are transformed in SI units at the

end of the simulation. We can see that the approximation becomes less accurate with

growing z-coordinate, but keeps the amplitude and frequency of the source terms for

cavities that are in order of meters. Otherwise we would consider points far from the

reference curve used for the Fermi-Normal coordinates and we need to investigate a

better approximation. We use in the following approximation (3.4.20) as our source

term in the proper detector frame.
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Since the approximation (3.4.20) is valid, we can use the equation (3.3.32) to get the

source terms of our harmonic oscillator equations,

ŝk10(t) =−
7πB0Ik

6

∫ L
2

− L
2

(
∂ 2P+
∂ z2 +

2
z

∂P+
∂ z

)
dz,

=−7πB0Ik

6

∫ L
2

− L
2

+∞

∑
n=2

zn−2

(n−2) ! cn
∂ nh+
∂ tn dz,

(3.4.21)

where we used the definition of P+ in equation (1.3.18) to get the second line.
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Figure 3.2 – Validation of the approximation Eq. (3.4.20).
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If we switch the integral and the series (1) we obtain

ŝk10(t) =−
7πB0Ik

6

+∞

∑
n=2

1
(n−1) ! cn

[(
L
2

)n−1

−
(
−L

2

)n−1
]

∂ nh+
∂ tn , (3.4.22)

we can easily compute its temporal Fourier transform to obtain

s̃k10(ω) =−7πB0Ik

6

+∞

∑
n=2

1
(n−1) !

[(
L
2

)n−1

−
(
−L

2

)n−1
](

iω
c

)n

h̃+. (3.4.23)

We consider these small algebraic manipulations and sum indices modifications,

−
+∞

∑
n=2

1
(n−1) !

[(
L
2

)n−1

−
(
−L

2

)n−1
](

iω
c

)n

=−
+∞

∑
m=1

1
(2m−1) !

2
(

L
2

)2m−1( iω
c

)2m

= 2
ω

c

+∞

∑
m=1

(−1)m−1

(2m−1) !

(
Lω

2c

)2m−1

= 2
ω

c

+∞

∑
p=0

(−1)p

(2p+1) !

(
Lω

2c

)2p+1

.

(3.4.24)

The first line above is valid because only the even n terms of the sum do not vanish.

We can thus obtain as source term

s̃k10(ω) =
7πB0Ikω h̃+

3c

+∞

∑
p=0

(−1)p

(2p+1) !

(
Lω

2c

)2p+1

, (3.4.25)

where we identify in the sum the Taylor development of a sine function, so we can

write

s̃k10(ω) =
7πB0Ikω h̃+

3c
sin
(

ωL
2c

)
. (3.4.26)

It means that in the frequency domain, the source terms of our harmonic oscillator

equations that contribute to the first order induced electromagnetic power are the same

in the TT frame and in the proper detector frame, besides a 7
6 factor. It will consider-

ably ease the analysis of the detection process of astrophysical gravitational waves.

(1). We can do this if the series converges uniformly, which is the case for values in the assosciated
convergence radii because P+ is computed with Taylor series and the functions are C∞.





Chapter 4

Numerical Simulations and
results

In this chapter, we are going to show numerical simulations from the analytical results

we presented in the previous chapter. First, few comments will be given about the

implementation of the methods that we summarize in the Appendices A and B. We

will then apply those to the primordial black holes merger detection. After that, we

will adapt our results to stochastic gravitational background detection in order to study

a toy model of this phenomenon. Finally, we will consider the detection sensitivity and

compare our work with the literature to conclude this chapter.

4.1 Building a code

To illustrate the analytical computations presented in the previous chapter and apply

them to some gravitational wave detections, we build a Python code. We first imple-

ment a method to compute the cavity modes, and then, create some functions to model

the detection process in the time domain and the frequency domain. We implement

also a method to compute our estimation of the RMS induced electromagnetic power

generated by a signal. The computations of the cavity modes are explained in Ap-

pendix C. The use of adimensional quantities is required in our code in order to avoid

numerical errors. Now let us describe our codes.

73
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4.1.1 Time domain simulation

To perform the simulation in the time domain, we start with a plus polarized grav-

itational wave signal h+(t), discretized in a set of n discrete points (ti,hi)
n
i=1 where

each time point ti is equally spaced by δ t. The inverse of this spacing is the sampling

frequency, important in signal analysis. The first step is to compute the source term of

the harmonic oscillator equations denoted by

ŝk10(t) =−
7πB0Ik

6c

(
∂h+
∂ t

(t +
L
2c

)− ∂h+
∂ t

(t− L
2c

)

)
, (4.1.1)

explained in Appendix B. Since this equation needs the use of shifted time quantities,

we use cubic spline interpolation to compute the derivative of h+ at the shifted times.

After that the computation of ŝk10 is straightforward.

The next step is computing the solutions of the harmonic oscillator equations given by

b̂k10(t) = e−
αkc
2Q t (Ak10 cos(ϖkt)+Bk10 sin(ϖkt))+

1
2π

∫
∞

−∞

c2s̃k10(ω)

α2
k c2 + iωαkc

Q −ω2
eiωtdω

(4.1.2)

computed in Appendix B. To use this equation, we obtain s̃k10 by using the Fast Fourier

Transform (FFT) algorithm on ŝk10. Then, we implement the rest of the solution com-

putation in a subroutine coded in Fortran 90, to increase the performance of the code.

This subroutine compute the integral in the particular solution of our harmonic oscil-

lator, then compute the integration constants to get the homogeneous solution. Since

we can have a wide range of frequencies in our final solution, we allow to adjust the

sampling frequency of our output signal in order to avoid the aliasing due to Shan-

non theorem. Once these steps performed, we get the derivatives of solutions b̂k10 by

applying a second order central finite difference method, with forward and backward

schemes on the interval’s edges. This method allow us to compute the induced elec-

tromagnetic power in our cavity by equation (3.3.30). With this signal P(t) sampled

in a set of ñ points (ti,Pi)
ñ
i=1, we can get an estimation of the RMS induced power by

computing

P2
RMS =

1
ñ

ñ

∑
i=1

P2
i . (4.1.3)



4.1. BUILDING A CODE 75

4.1.2 Frequency Domain Simulation

To perform the simulation in the frequency domain, we have a signal of plus-polarized

gravitational wave h̃(ω) discretized in a set of n points (ωi, h̃i)
n
i=1, each point ωi is

separated by a distance 2πδν where δν is the frequency interval. These computations

are easier than in the time domain, because the differential equations become algebraic

equations. The source term s̃k10 is computed straightforwardly by equation (3.4.26).

Then we can compute the solution of our harmonic equations with

b̃k10(ω) =
Ak10 + iBk10

−αkc
2Q + i(ω−ϖk)

+
c2s̃k10(ω)

c2α2
k +

iωαkc
Q −ω2

(4.1.4)

as obtained in Appendix B. As for the solution in the time domain, we have to take

into account of the aliasing phenomenon for further analysis. The sampling frequency

of the signal is given by ωn
2π

. In the case where the maximal frequency of our signal

is lower than our cavity resonance frequencies, we extend the number of frequency

points to ñ to get the end of our frequency interval ωñ
2π

greater than the last resonance

frequency. The space between two frequency points remains the same. Once the

s̃k10 computation achieved, we can compute the electromagnetic induced power with

equation (3.3.31), in a set of ñ points (ti, P̃i)
ñ
i=1. We can also get an estimation of the

RMS induced power with

P2
RMS =

1
ñ

ñ

∑
i=1

P̃2
i . (4.1.5)

The above estimation is theoretically the same as equation (4.1.3) for ñ goes to infinity

because the Fourier transform is unitary for the L 2 functional norm.

4.1.3 Computing RMS power

In order to compute the RMS induced power estimation obtained in Appendix B,

P2
RMS '

∫
∞

0
|PRIR(ω)|2|h̃+(ω)|2dω, (4.1.6)

we need to compute the RMS impulse response given by

PRIR(ω) =
7
√

2c
3µ0

π
2B2

0ω
2
∣∣∣∣sin

(
ωL
2c

)∣∣∣∣∑
k

(Ik)
2√(

α2
k c2−ω2

)2
+
(

αkωc
2Q

)2
· (4.1.7)
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Figure 4.1 – The RMS impulse response for the TM cavity and the TEM waveguide.

Figure 4.1 shows the RMS impulse response for the TM cavity and the one for the

TEM waveguide. We chose for parameters an outer radius that is 5m for both, the

external magnetic field is 5T and for the TEM waveguide, the inner radius is 10cm.

The detectors are 1-meter long and the quality factor is assumed to be 105. Those

parameters are realistic with the current technology on resonant cavities and intense

magnetic field production [Posen et al., 2022].

We can see in (4.1.7) that the response is proportional to ω3 before the resonance

frequency because ωL
2c � 1 so sin

(
ωL
2c

)
≈ ωL

2c . Then, we have the resonance frequency

peaks. The first is the 010 mode, and then we have computed the four following k10

modes. The peaks amplitude is lower when k increases. After this resonant peaks

zone, we have a constant amplitude response with some big drops due the roots of the

sin
(

ωL
2c

)
term. Please note that the TEM waveguide curve is slightly below the TM

cavity one, this because of the difference of volume due to the inner cylinder.
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To compute the estimation of the RMS induced power, we use the expression of PRIR

and perform the integral in equation (4.1.6) using Romberg method [Romberg, 1955].

For this kind of detectors of 5m outer radius, we can see that the difference between

the TM cavity and the TEM waveguide is not significant. For such a configuration, we

are not systematically analyzing both detectors in the following.

Now we have explained the transition of analytical result to the building of a numerical

code. We use it in two applications. The first is primordial black hole merger detection

and the second one is stochastic gravitational wave background detection.

4.2 Primordial black hole merger detection

The first astrophysical application to simulate the detection of primordial black hole

merger. We study first the case of the merger of two black holes of 10−5 solar masses

(M�). This value is chosen because it is in the range of the expected masses for

light primordial black hole detection using microlensing techniques [Niikura et al.,

2019, Mróz et al., 2017]. Then, we study how our detector reacts with other masses

merger signals, in order to set detection limits on the fraction of dark matter we could

detect with our methods.

4.2.1 Case of two 10−5M� merging black holes

In this section we are going to simulate the detection of two merging 10−5M� non-

spinning binary black holes, by the devices we presented in this manuscript. We

compute the electromagnetic induced power in the cavity using the codes we presented

above. But we have to generate the incoming gravitational wave signal.

We use the function SimInspiralChooseTDWaveform, coming from the LAL-

suite library [LIGO Scientific Collaboration, 2018], to get our time-dependent signal

h+(t). The function generate in our case a 4th post-Newtonian order gravitational

waveform of two 10−5M� non-spinning merging binary black holes. The signal be-

gins at a frequency fISCO
25 to end at fISCO. The panel a) of Figure 4.2 shows the signal

in function of time and the panel b) its Fourier transform through FFT algorithm for

further analysis.
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Figure 4.2 – On panel a), the gravitational waveform generated by
SimInspiralChooseTDWaveform for two 10−5M� non-spinning merging bi-
nary black holes. On panel b) we have its Fourier transform obtained by the FFT algo-
rithm. On the panel d), the one generated by SimInspiralChooseFDWaveform
for the same parameters, On panel c) we have its inverse Fourier transform obtained
by the FFT algorithm.
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On the other hand, we can also obtain the frequency-dependent signal h̃+(ω) by using

the LALsuite function SimInspiralChooseFDWaveform, which compute the

same signal as above but in the frequency domain. We show on the panel c) of Fig-

ure 4.2 the inverse Fourier transform using FFT and on panel d) the squared module

of the frequency-dependent signal |h̃+(ω)|2. We can obviously see if we compare this

panel d) with the panel b) of Figure 4.2 that the time-dependent signal computed in the

frequency domain with the FFT algorithm presents numerical artifact, the plateau at

low frequencies that could provide inaccurate results if we use this numerical Fourier

transform. On the other hand we can see that the recombination of the time-dependent

with the frequency-dependent one is corrupted by numerical errors. We can thus see

the utility to consider time and frequency simulations to provide complementary re-

sults, which could be used by wavelets methods for time-frequency analysis

We can present now the results of this detection in the two detectors we modeled. We

choose 1-meter long cavities with an outer radius of 5m. The external field is 5T and

the inner radius for the TEM waveguide is 10cm. The quality factor Q is assumed to

be 105. We can see in Figure 4.3 the induced electromagnetic power in the cavities.

The results computed in both domains were made with their related method. We can

see in the time-domain plots that the amplitude of the induced power is increasing

with time and at some point gets a massive boost. This is when the first resonance

frequency is triggered. We can see also that the shape of the induced power is similar

to the incoming signal, with a big increase in amplitude near the merger. The RMS

estimated values are respectively of order 10−10W for the time domain code and of

order 10−11W for the frequency domain code. The frequency domain one must be

more accurate because we have the frequency content of an infinite duration signal,

which is obviously not the case with the time domain simulation. We can also compute

the RMS induced power estimation (4.1.6) where we use equation (1.2.31) to compute

h+(ω). We obtain RMS induced power estimation of order 10−11W . This is consistent

with the above estimations.

We will compare the two codes one step further with Figure 4.4. On panel a), we plot

the time-dependent signal for the induced power coming from the time-domain code

in blue. The green curve is the one obtained by the inverse FTT of the frequency-

dependent induced power obtained by the frequency-domain code. The increase of

amplitude near the merger is still there but the fifty first microseconds of the signal has



80 CHAPTER 4. NUMERICAL SIMULATIONS AND RESULTS

0 1 2 3 4 5 6
Time(s) ×10 5

4

2

0

2

4

In
du

ce
d 

EM
 P

ow
er

 (W
)

×10 9a)

resonance triggered

104 105 106 107 108 109

Frequency (Hz)
10 42

10 38

10 34

10 30

10 26

10 22

10 18

 |
(

)|2 (W
2 )

b)
TEM Cavity

0 1 2 3 4 5 6
Time(s) ×10 5

4

2

0

2

4

In
du

ce
d 

EM
 P

ow
er

 (W
)

×10 9c)

resonance triggered

104 105 106 107 108 109

Frequency (Hz)
10 42

10 38

10 34

10 30

10 26

10 22

10 18

 |
(

)|2 (W
2 )

d)
TM Cavity

Figure 4.3 – Simulation of the cavity response to the gravitational wave signal of two
10−5M� non-spinning merging binary black holes. On panel a) we consider the TEM
cavity with the time domain code, on panel b) the TEM cavity with the frequency
domain code. On panel c) we consider the TM cavity with the time domain code, on
panel d) the TM cavity with the frequency domain code.



4.2. PRIMORDIAL BLACK HOLE MERGER DETECTION 81

an amplitude way too high, at least one order of magnitude. This is due to small phase

shift when computing the induced electromagnetic power in the frequency domain.

The recombination of the Fourier modes fail to decrease as much as expected the

amplitude of the signal to match the amplitude of the time-domain signal. On panel b),

we can find the squared-module of the frequency-dependent induced power in green

and in blue we have the FFT of the time-dependent induced power. We can see that

the peaks of the resonance frequencies are also present but their maxima are lower.

The main feature that we can notice is that at low frequency the FFT remains constant

in the time domain and in the frequency code it decreases monotonically. This leads

to some numerical errors when we compute quantities with the time domain code.
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Figure 4.4 – Comparison of the two codes for the simulation of the cavity response
to the signal of two 10−5M� non-spinning merging binary black holes using the TM
cavity

The principal limitation of the time-domain simulation is when the incoming signal

has a frequency content higher than the resonance frequency band (a case like figure

4.6 below). Since the FFT of such a signal contains a plateau where it should be

decreasing, which is a numerical artifact. The computation of the solution (4.1.2)

with a numerical Fourier transform will overestimate the solution. The frequency

simulation has also some limitations, since it is difficult to access to the duration of

the signal, and since the resonant peaks are quite narrow, we need to have a good

frequency resolution near the peaks to get accurate results, and the recombination of
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Fourier modes into a time-dependent signal is very sensitive to the small phase shifts

that can occur in the algorithm. These numerical problem could be solved by the use

of windowing functions, but we prefer use the domain-related code to analyze the

results in one specific domain.

Now that we studied this first case deeply, we are going to study how we could possibly

detect heavier or lighter primordial black holes.

4.2.2 Response in function of PBH mass

To study how the response in our cavity behaves in function of the primordial black

hole mass, we consider the merger of binary black holes of two other masses. The

first one is the merger of two 10−3M� primordial black holes and the second one is

the merger of two 10−7M� primordial black holes. We can see the results in Fig-

ures 4.5 and 4.6. These simulations have the same detector parameters as the previous

case except the binary merger masses. For the 10−3M� merger case (Figure 4.5),

the frequency content of the signal is below the resonance frequencies. We see here

that the electromagnetic wave produced by the inverse Gertsenshtein effect has the

same frequency as the incoming gravitational wave. Let us recall the solution of the

harmonic for the spectral coefficients of the induced magnetic field, in the frequency

domain, equation (4.1.4),

b̃k10(ω) = b̃h(ω)+ b̃p(ω)

=
Ak10 + iBk10

−αkc
2Q + i(ω−ϖk)

+
c2s̃k10(ω)

c2α2
k +

iωαkc
Q −ω2

(4.1.4)

If ω � αk and ωL
2c � 1, we wave that s̃k10 ∝ ω2h̃+(ω) by equation (3.4.26) and the

particular solution b̃p(ω) has a behavior proportional to ω2h̃+(ω), and thanks to equa-

tion (3.3.31), the induced electromagnetic power is proportional to ω3h̃+(ω). Because

of equation (1.2.31) we have h̃+(ω) ∝ ω
− 7

6 , so the variation of the induced power in

the cavity is proportional to ω
11
6 . We can see that the resonance frequencies are still

triggered due to the homogeneous solution b̃h(ω). But we can see that the ampli-

tude in the time or the frequency domain is far below the previous case. If we look

at the RMS induced power, we obtain a value around 10−14W for the time domain

code, 10−17W for the frequency one, and 10−15W for the integral estimation (4.1.6).
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Figure 4.5 – Simulation of the cavity response to the gravitational wave signal of
two 10−3M� non-spinning merging binary black holes. On panel a) we consider the
TM cavity with the time domain code, on panel b) the TM cavity with the frequency
domain code.

The time domain tends to overestimate the RMS power and we will study deeper this

further in this manuscript. On the other hand, if we assume that our analytical esti-

mation (4.1.6) is quite correct because it does not rely on numerical results, we can

say that the frequency domain code tends to underestimate the RMS power for such a

high mass.

The case of the 10−7M� merger can be discussed when looking at Figure 4.6. On

panel a), we can see the time-dependent induced power has a different shape than

in the case of the other masses. This is because the homogeneous solution is dom-

inant. The homogeneous solution is actually overestimated because of the shape of

the Fourier transform obtained by the FFT algorithm (recall the plateau of Figure 4.2).

This feature will increase the particular solution at such low frequencies and will boost

the values of the integration constants of the homogeneous solution b̃h(ω). These nu-

merical issues lead to inaccurate results for the behavior of the detector in the time do-

main when the frequency content is higher than the resonance frequency. In this case,

computing in frequency domain is closer to physical reality . The resonance frequen-

cies are excited due to the homogeneous solution but here the peaks are present with

a bad frequency resolution, because our sampling is linear and in our figures the scale
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Figure 4.6 – Simulation of the cavity response to the gravitational wave signal of
two 10−7M� non-spinning merging binary black holes. On panel a) we consider the
TM cavity with the time domain code, on panel b) the TM cavity with the frequency
domain code.

is logarithmic, so, we do not have enough points near the peaks when they are located

at low frequencies. For the particular solution, we can easily find that if the frequency

goes to infinity, we find that the induced power is proportional to h̃+(ω)sin
(

ωL
2c

)
. We

can see the sine dependence because the particular solution is oscillating. The ampli-

tude of these oscillations decrease because of h̃+(ω) ∝ ω
− 7

6 . In terms of the RMS

values of the induced power, the time domain code gives us a value around 10−12W ,

the frequency domain code gives us 10−14W , and the RMS estimation integral gives

us a value around 10−15W .

We will discuss the accuracy of all the methods by looking at the mass dependence of

the RMS induced power, by studying the Figure 4.7. To plot this figure, we simulate

the detection of the merger of binary primordial black holes of 50 different masses

ranging from 10−3M� to 10−8M�. For each mass, we simulate the detection of 50

different signals by their starting frequency chosen linearly between fISCO
30 to fISCO

10 . We

simulate this kind of detection process for the 5-meter TM cavity, the same detector

that we consider above in this manuscript. The blue curve corresponds to the median

of the RMS induced power obtained for each mass with the time domain code, the red

curve is the same for the frequency domain code, and the green curve is the median of
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the RMS induced power estimation integral. First, We can say about this figure is that

the estimation of the RMS induced power is greater by using the time-domain code.

For the lowest masses, we even reach a plateau for the RMS power. This phenomenon

is due to a numerical artifact (plateau) coming from the FFT algorithm. This is why

all the left part of the blue curve in Figure 4.7 is overestimated, the homogeneous

solution of equation (4.1.2) is higher due to the FFT. For the highest masses, the time

domain code is slightly higher than the two other codes. This is probably due to

rounding errors and phase shifts in the addition of the homogeneous and particular

solution. For the highest masses, the frequency domain code provide higher values

than expected by analytical estimates. This could be because at such high frequencies,

sin
(

ωL
2c

)
oscillates very quickly and we cannot get an accurate RMS estimation. Let

us now focus on the asymptotic behavior for the green curve, the RMS estimation

integral. Recalling equations (4.1.7)

PRIR(ω) =
7
√

2c
3µ0

π
2B2

0ω
2
∣∣∣∣sin

(
ωL
2c

)∣∣∣∣∑
k

(Ik)
2√(

α2
k c2−ω2

)2
+
(

αkωc
2Q

)2
· (4.1.7)

and (1.2.31),

h̃+(ω) =Ceiψ+(ω) c
r

(
GMc

c3

)5/6(
ω

2π

)−7/6
(

1+ cos2 θ

2

)
, (1.2.31)

and the frequency dependence analysis we made, we can say that the behavior of the

detector for mergers that have a frequency content below the resonance frequencies is

proportional to ω
11
6 . Since the frequency is related to the inverse of the mass, we can

conclude that the behavior for masses greater than 10−4M� is proportional to M−
11
6

(figure 4.7). In the same way, we can conclude that the behavior for masses lower

than 10−6M� is proportional to ω
− 7

6 so the power is proportional to M
7
6 . We can also

check this in Figure 4.7.

We end this mass-dependence analysis of the induced power in the cavity by perform-

ing the same RMS power estimation (4.1.6) as the green curve in Figure 4.7 but for

several outer radii of cavity. We can see the results in Figure 4.8, where we can see

that for each radius, there is a resonant zone that is moved due to the displacement of

the resonance frequencies that depends on the outer radius as we can see in Figure C.2
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Figure 4.7 – Computation of the RMS induced power with respect of the mass of the
merging black holes for the TM cavity.
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Figure 4.8 – Computation of the RMS induced power depending on the mass of the
merging black holes and the outer radius for the TM cavity.

in Appendix C. We have to insist on the fact that choosing the parameters wisely for

the cavity will allow optimizing the detection in the frequency window that we want,

and in the case of primordial black hole detection, the mass of the primordial black

holes we want to detect. Another feature that we can infer from this figure is that the

response of the detector increases if the radius increases, even if the frequency is not

in the resonant zone. This is because the induced power in our detectors is given by a

volume integral (1). So if the radius of the cavity increases, the volume increases and

the induced power increases. To conclude these results about primordial black hole

merger detection, we show how we can set experimental limits on the PBH abundance

in the dark matter and the Universe.

(1). In other words, we could possibly detect estimations of the variation of the energy stored in the cavity.
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4.2.3 Detection limit on PBH abundance

As a final step, we combine the information we have on primordial black holes merg-

ing rates and the induced power as a function of the mass we found. The Figure 4.7

represents the induced power in the cavity for mergers at a fixed distance of 1 Gpc.

This combination will forecast limits on the primordial black hole abundance for a

fixed detector sensitivity of 10−14W (2). The duration of the signals are less than a

second and we consider a survey of one year. To compute these expected limits, we

calculated values the maximal radius where we can find at least an event a year for the

two binary formation channels for primordial black holes, isolated binaries or bina-

ries in clusters. Given that the gravitational strain amplitude is inversely proportional

to the distance of the source, the induced power released in the detector is also in-

versely proportional to the distance. So for an electromagnetic power sensitivity Pdet,

we have already (figure 4.7) computed the induced power in our detector depend-

ing on the primordial black hole mass and at a distance of 1 Gpc, what we call now

PRMS(mPBH ,1Gpc). We could detect at least one event a year if

PRMS(mPBH ,D
prim,clus
1 )

Pdet
≥ 1 (4.2.1)

where Dprim,clus
1 is the maximal radius where we can find at least one event a year

given by equations (1.2.51) and (1.2.53). Since these quantities Dprim,clus
1 depend on

the fraction of dark matter made of primordial black holes f̃PBH , we can express the

limit on this parameter to get at least an event a year. For the isolated binaries we have

f̃PBH .

(
4.2×10−3 Pdet

PRMS(mPBH ,1Gpc)

(
mPBH

M�

)0.29
) 3

2

(4.2.2)

and for the binaries in cluster we have

f̃PBH .

(
58×10−3 Pdet

PRMS(mPBH ,1Gpc)

) 3
2
. (4.2.3)

Our final results are displayed in Fig. 4.9 that represents the expected limits on the

effective parameter f̃PBH corresponding to the dark matter density fraction in primor-

(2). This is a semi-educated guess, we think that it is achievable with current technology since for axion
detection it is possible to go below this threshold (10−22W in [Asztalos et al., 2010]).
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dial black holes at a given mass and per logarithmic mass interval in both formation

models. These limits are computed for the proposed experimental designs described

earlier, assuming a power sensitivity of 10−14W for signals shorter than a second,

achievable with current technology. The orange curve shows the possible abundance

of planetary-mass PBHs inferred from recent microlensing observations towards the

galactic bulge [Niikura et al., 2019]. These limits could be as low as f̃PBH . 10−8 for

primordial binaries, and f̃PBH . 10−4 for tidal capture in clusters. The range (between

10−6 and 10−4 M� ) where the resonance plays a role is clearly visible and this boosts

the limits by about four orders of magnitude. This could therefore set unprecedent and

independent limits on the abundance of planetary-mass primordial black holes.

Now in this manuscript we look at an another application of resonant cavities gravita-

tion wave detection, the detection of the stochastic gravitational wave background.
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Figure 4.9 – Expected limits on the effective parameter f̃PBH for an event a year de-
tection
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4.3 Stochastic Gravitational wave background

The second application we simulate is the stochastic gravitational wave background

detection. This source, as its name indicates, is a stochastic source. It is not a tran-

sient one like the primordial black hole merger we studied above. This feature leads

us to slightly adapt the way we study the detection process, using a toy model for

the stochastic gravitational wave background and see how we can detect its cut-off

frequency or its frequency dependence.

4.3.1 From transient to stochastic signals

In the code we previously built, we took a time-dependent or frequency-dependent

signal, unlike a stochastic one. We show how to deal with it. We saw in the first chapter

how we can model the stochastic gravitational wave background. If we correlate the

plus polarization of the gravitational wave, looking at the same solid angle and the

same frequency we have equation (1.2.55)

|h̃+(ω)|2=
Sh
(

ω

2π

)
2

, (4.3.1)

where Sh(ω) is a one-sided power spectral density. That means that we have an in-

formation about the frequency dependent signal. The Wiener-Khintchine theorem

[Wiener, 1930, Khintchine, 1934] says that the module squared |h̃+(ω)|2 is the Fourier

transform of the autocorrelation function of h+(t) that we denote γ(h+(t)) and can be

defined as

γ(h+(t)) = lim
T→∞

1
2T

∫ T

−T
h∗+(τ)h+(τ + t)dτ. (4.3.2)

This is the convolution between a signal and his time-shifted version. The Wiener-

Khintchine theorem can be written as γ̃ = |h̃+(ω)|2. In stochastic process analysis,

this function is used to detect when shifted signals are the same, so having its Fourier

transform is extremely useful for the study of the stochastic gravitational wave back-

ground. In the case of our code, we can for instance use our frequency code with a

purely real frequency dependent signal

h̃+(ω) =

√
Sh
(

ω

2π

)
2

, (4.3.3)
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as the source for our frequency domain code. We can thus compute P̃(ω) where we

can infer the power spectral density of the induced power, which is |P̃(ω)|2. Since

only the modulus squared quantities are relevant for such an analysis, the simplifi-

cation (4.3.3) is valid because it does not affect the modulus of the induced power.

The only thing we do is a phase shift in the complex plane to make h̃+(ω) real. To

determine the one-sided spectral density Sh(ν), where ν = ω

2π
, we can recall equa-

tions (1.2.58) and (1.2.59) to get

Sh(ν) =
3H2

0
4π2 ΩGW(ν)ν−3sigm(−ν +νcut). (4.3.4)

where sigm(ν) = 1
1+e−ζ ν

is the sigmoid function, where we choose the scale parameter

ζ = 20
νcut

to have the sharpness of decrease in logarithmic scale whatever the cut-off

frequency νcut is.

With equation (4.3.4), we can model our stochastic background by two parameters,

the first is the energy density per logarithmic frequency sampling ΩGW(ν), and the

second is the cut-off frequency νcut, where the stochastic background vanishes above

this threshold. Please note that our two-parameters model (4.3.4) consider a correla-

tion at any solid angle, this model should be multiplied by a cross-section related to

the detection direction, that we can assume of unit order and neglect at this stage of

analysis.

4.3.2 Study of a toy model for SGWB

Since we can model our stochastic background with only two parameters, we are go-

ing to make a simple toy model to study a stochastic background detection process.

We assume that ΩGW = 10−10. The constancy and the value of this parameter is co-

herent with the tables given in [Aggarwal et al., 2021] with the model of stochastic

gravitational wave background in [Maggiore, 2018] for the single-field slow-roll in-

flation. From [Aggarwal et al., 2021] we get also the value for the cut-off frequency,

100MHz. Here we consider a cut-off with a sigmoid function so the stochastic back-

ground vanishes exponentially as mentioned in the inflation stochastic background

models in [Maggiore, 2018]. You can see an example of the toy model in the Fig-

ure 4.10.
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Figure 4.10 – The characteristic strain for our stochastic GW background toy model.

The plot of the power spectral density of the induced power in the cavity through

the detection of this toy model can be found for three different cut-off frequencies

νcut (10 MHz, 100 MHz and 1GHz) in Fig. 4.11. The simulation was made with our

frequency domain code for the TEM cavity, for 5m outer radius and 1m-long cavity,

the inner radius is 10cm and the external field is 5T. We can see that for our cavity

the resonance frequencies before the cut-off will have much higher density than the

other ones. Indeed, for νcut = 10 MHz, all the resonant peaks have low density, for

νcut = 100 MHz, only the three first resonant peaks have high density and for the latter

νcut = 1 GHz, all the resonant peaks have a high density. This means that the auto-

correlation of several signals coming from the stochastic background will be higher at

the first resonance frequency and if we detect a significant drop between two resonance

frequencies, the cut-off frequency must be somewhere in between.

We want to insist on the fact that it is possible to tune the detectors parameters to

get the resonance frequencies we want, for optimal detection. This is also shown in

Fig. 4.12. Here we simulate the RMS induced power for several outer radius between

1m and 10m. We also considered other distribution for ΩGW , as one can see through

the green and blue points. There is a gap in the values around 1.5m. This gap is where

the fundamental (k = 0) resonance frequency goes below the stochastic background

cut-off frequency and the response is several orders of magnitude higher. We can
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Figure 4.11 – The power spectral density of the induced EM Power expected with our
stochastic GW background toy model, for three different cut-off frequencies.
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radius of the detector for our stochastic GW background toy model.
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see that the cavities resonance frequencies are close to the cut-off frequency νcut =

100 MHZ when the radius is 1.5m in Figure C.2 in Appendix C. If one can combine

detectors of different radii, we can also spot more precisely the cut-off frequency and

also check whether or not ΩGW is constant with frequency as could be supposed for

instance in [Maggiore, 2018]. The value of the slope after the gap, could not be

straightforwardly computed as the radius of the cavity appears on many quantities in

the response computation. This slope is around 2 for constant ΩGW , meaning that

the main contribution of the increasing induced power with the radius comes from

the increase of the detection volume, which is proportional to the square of the radius

for a cylinder. Another assumption for ΩGW will lead to another slope in this model,

since the frequency content in the integral (4.1.6) will be different. For instance, for

the ΩGW varying linearly with the frequency, the slope will be around 1.5.

To sum up the results presented above, resonant detectors allow to probe the cut-off

frequency of the yet hypothetical stochastic gravitational wave background and also

check the constancy of the gravitational wave density with frequency, two parame-

ters that are specific to some early Universe stochastic gravitational wave background

models.

4.4 Sensitivity curves and conclusion

As final step for this chapter, we present the sensitivity curves for the resonant elec-

tromagnetic detection, in Figure 4.13

The black dashed curve represents the strain we could possibly detect if we can de-

tect 10−14 W of RMS induced power, with respect to the frequency. (3) The detector

parameters are the same as the previous simulations, 5T external field, 5m radius and

1m-long cavity. This is the parameters we advice because the radius is suited to max-

imize the detection of 10−5M� primordial black hole binaries and also suited to spot

a stochastic background cut-off frequency around 100 MHz. This curve is derived

from the RMS impulse response given in equation (4.1.7). To obtain this information,

we have to use the first results in this chapter, the computation of the resonance fre-

quencies summarized in the Figure C.2 in Appendix C, and the computation of all the

cavity-related quantities (modes, volume integrals, resonance frequencies).

(3). This sensitivity is directly proportional to the detection threshold. Choosing another threshold will
only shift the black dashed curve on the y-axis.
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Figure 4.13 – Strain sensitivity of our cavity and possible sources. If the straight lines
are above the dotted one, that means that our detector is sensitive to these sources for
the frequencies considered.
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To go back to the dashed black curve, we can see that the sensitivity is the best at

the resonance frequencies highlighted by the yellow zone. At lower frequency, the

sensitivity will go as ν−3, and at higher frequency, the sensitivity will be bounded, but

will oscillate as sin
(

ωL
2c

)
. Please note that here we can speak about sensitivity curve

but in this manuscript we do not take account of the noise sources. One of the future

work for this research is to investigate the noise sources to obtain a signal-to-noise

ratio that we can put in the sensitivity curves, that will be more realistic.

The second curve, the red one, represents the characteristic strain for an inspiral binary

gravitational wave signal. This curve is consistent with several stochastic background

presented in [Aggarwal et al., 2021]. If we could detect 10−14W of RMS induced

power, we could detect a wide range of frequency for these sources, since the inspiral

source curve is above the dashed line in a wide frequency range. The best sensitivity

is still at the resonance frequencies.

The third and final curve, the blue one, is the characteristic strain for stochastic sources.

This curve is also consistent with [Aggarwal et al., 2021]. We could probably have a

good sensitivity around 100 MHz. We showed first how to adapt our code to consider

these stochastic sources.

In this chapter we simulated the detection of mergers of equal-mass primordial black

holes binaries. We first studied the merger of two 10−5 primordial black holes, be-

cause this is the most likely planetary-mass primordial hole regarding microlensing

observations. We showed how our codes in the time and the frequency domain works,

and how estimate the expected RMS induced power. We also used this first merger

signal to compare the codes. Then, we simulated the detection of heavier or lighter

black holes to see what can influence the response of our detector. We finally showed

how the induced power in the cavity varies with the mass of the black holes and the

radius in the cavity. We also put some experimental limits to the effective parameter

that represents the part of primordial black holes that explain the dark matter. We

showed that even for a quite small fraction of dark matter made of primordial black

holes (less than 1%), we could possibly detect at least one event a year. Then, we stud-

ied how we could detect stochastic gravitational wave background and characterize its

cut-off frequency and its energy density per logarithmic frequency sampling ΩGW. In

this purpose and also for primordial binaries, the use of several detectors of different

radii could be useful to have a better sensitivity on a wider range of frequency and to

understand deeper the frequency dependence of the wave generated by those sources.
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4.5 Our detector proposal in the literature

This detector proposal is one of the inverse Gertsenshtein electromagnetic devices pro-

posed for high-frequency gravitational wave detection. Our detector has the advantage

to provide a response at first order of gravitational perturbation, as the oscillating ex-

ternal field one proposed in [Zheng et al., 2018]. This feature is a great advantage

because we could get a much better strain sensitivity (many order of magnitude), if

we compare to the detectors on second order (e.g [Berlin et al., 2022]), the detector

proposed in [Ejlli et al., 2019] is a bit different since it aims to detect a frequency band

above THz.

Another feature of our detector proposal is that we simulate the detection of astro-

physical gravitational wave signals. In our review of the proposals, they provide hints

of detection but no detection simulation. Our analysis was also made in both tempo-

ral and frequency domain, to minimize numerical artifacts. Some other works do not

have this problem since they consider only monochromatic signals.

Our temporal approach provides accurate temporal response for incoming signals of

frequencies equal or lower to the resonant frequencies of our cavity. This approach is

commonly used in the literature. The frequency approach was not used in the different

papers we mentioned in section 2.3 of this manuscript. Frequency approach helped us

to analyze stochastic signals without generating a huge number of random incoming

signals. We conclude that the temporal approach is more sensitive to numerical arti-

facts. However, the accuracy of both approach is limited due to the fact that we work

on discretized signals in both domains. The last computations we made are estima-

tions of the RMS induced power in a cavity with a volume integral. This estimation is

first an analytical estimation computed then with the Romberg algorithm, a accurate

numerical computation of integrals. This estimation is less contaminated by numeri-

cal errors, but is still an estimation. However, the behavior outside the resonance zone

is close to what we expected analytically. Practically, trying to detect outside the res-

onance zone is inefficient, and the three approaches provide similar results inside the

resonance zone as we can see in figure 4.7.

One of the main feature of our work is that we want to measure the RMS induced

power in the cavity at first order. This is a macroscopic quantity over a volume, related

to the energy variation inside the cavity. Even if, as mentioned in [Berlin et al., 2022],
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this term vanishes if we take simple time average. The situation studied in our work

and in [Berlin et al., 2022] is quite similar, despite the fact that we consider a coax-

ial cavity. In the approach, we decided to consider directly the quantity we thought

interesting to study, the RMS induced power in the cavity. Quantity that vanish in

[Berlin et al., 2022] because it vanishes in a simple time average. In [Berlin et al.,

2022], they studied how the cavity modes are triggered to compute the energy stored

in the cavity, where they discard the first order contribution. Nevertheless, we think

that this quantity deserved to be considered to boost the sensitivity of electromagnetic

detection.

One of the limitations of our work is that we might develop more the proposal to

make a concrete experiment. We do not take into account the noise sources to get

sensitivity curves with the signal-to-noise ratio, and we do not consider clearly how

the induced power in the cavity will be detected. This is why we need collaboration

with experimental physicist to make a step forward. A starting point is the work

[Zheng and Wei, 2022] which gives the first prospects about the noise sources for

inverse Gertsenshtein detection with an external oscillating field.

The fact that we assume that the direction of propagation is aligned with the symmetry

axis of the cavity is also a limitation. The results of our paper [Herman et al., 2021]

was made in the TT frame, before considering the detector frame, and in [Berlin et al.,

2022] they provide directional sensitivity plots thanks to the modeling in the proper

detector frame. The question of the directional sensitivity is clearly an aim for further

research.

After discussing the accuracy of our results, and their limitations, we can notice that

our work triggered some interests in the scientific community, the first paper [Herman

et al., 2021] was cited by some papers of the primordial black hole research com-

munity [Bastero-Gil and Subías Díaz-Blanco, 2021, Pujolas et al., 2021, Carr et al.,

2021, Miller et al., 2022, Franciolini et al., 2022], the high-frequency gravitational

wave community [Goryachev et al., 2021, Tobar et al., 2022], the search for stochas-

tic background [Saito et al., 2021] and the other detector proposals [Berlin et al.,

2022, Domcke et al., 2022, Zheng and Wei, 2022]. The second paper [Herman et al.,

2022] is still in publication process. However, the preprint was already mentioned

in three different published papers [Ringwald and Tamarit, 2022, Franciolini et al.,

2022, Dasgupta et al., 2022].
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We want to end this chapter by saying that we think there are "good" ideas among

the different proposals about inverse Gertsenshtein effect detection, that combined to-

gether could lead to another breakthrough in gravitational wave astronomy, the elec-

tromagnetic detection of gravitational waves.





Conclusion and perspectives

In this manuscript, we study the resonant electromagnetic detection of high-frequency

gravitational waves, from a theoretical point of view. The search for high-frequency

gravitational waves can for instance get us information about the early stages of the

Universe, and this is what we focus on.

We first introduced the gravitational wave theory, with a short introduction about the

general relativity theory, and then considered a perturbative theory in it, that leads to

the gravitational wave equation. These are perturbations of spacetime itself that prop-

agates in the Universe. We saw what are the polarization of such waves in the vacuum,

before considering how they could be generated. After making an overview about the

current situation on gravitational wave detection, we presented some sources of high-

frequency gravitational waves. Those can not be detected by interferometers, so we

had to imagine another type of detection. Among these sources, there are two wit-

nesses of the early Universe that we focused on. The first are sub-solar mass primor-

dial black holes. Those tiny black holes formed in the beginning of the Universe are

what we call a dark matter candidate, meaning it can explain at least a part of the matter

we could not detect non-gravitationally in the Universe. The second one is the stochas-

tic gravitational wave background, which could be the first emission of gravitational

waves in the Universe, an analog to the cosmic microwave background with gravi-

tational waves. This background could contain information about the early Universe

physics, and describe events that happen before the photon decoupling epoch, when

the cosmic microwave background was emitted. These two high-frequency gravita-

tional wave sources are still hypothetical, so this is another motivation to try to detect

them. The possible detection of the stochastic gravitational wave background would

a revolutionary breakthrough in physics and a giant leap for the understanding of the
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beginning of the Universe. After all these considerations, we discussed the choice of

the frame for detection modeling.

Once this gravitational wave theory described, we had to focus on the link between

electromagnetism and gravitational waves. We first constructed the Einstein-Maxwell

system, covariant electromagnetism theory in the framework of general relativity.

Then we described the Gertsenshtein effects. The direct one is generation of gravi-

tational waves with electromagnetic fields, the inverse one is the generation of faint

electromagnetic waves due to the passing of a gravitational wave in a magnetic re-

gion. After describing their theories, we reviewed all the inverse Gertsenshtein effects

gravitational wave detector proposal since the formulation of the effect by Gertsen-

shtein [Gertsenshtein, 1960].

Then, we began to describe our results. First, we modeled two detectors that are

patented [Füzfa, 2018] cylindrical cavities, immersed in a strong external magnetic

field. We obtained the wave equations for the induced electromagnetic field produced

by the inverse Gertsenshtein effect. The following was some analytical work on com-

puting the cavity response, projecting our wave equation on the eigenfunctions of the

Laplacian operator, and computing the source term of our wave equations, which con-

tains the incoming gravitational wave. At the end, we got quite simple expressions to

compute the induced electromagnetic power in the cavity, at first order of perturbation.

We can compute that in time or frequency domains, and a practical approximation of

the root-mean-square induced power.

The final chapter used the analytical expressions mentioned above in numerical sim-

ulations about primordial black hole merger detection and the search for stochastic

gravitational wave background.. We showed what would be the response of our cav-

ity to primordial black holes where their masses match the microlensing observation

bounds [Niikura et al., 2019], and saw what happens with heavier or lighter black

holes, and if we tune the radius of the detector. We also dealed with poor approxima-

tions in several cases due to numerical artifacts. We ended up by putting experimental

limits on the fraction of dark matter explained by primordial black holes that we could

possibly detect. Our code was made for transient signals so, we had to adapt our

analysis to stochastic signals in the frequency domain. We considered a toy model

for the stochastic gravitational wave background that contains two parameters, the

gravitational wave energy density per logarithmic frequency sampling and the cut-off
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frequency, a toy model close to the ones presented in [Maggiore, 2018]. We showed

how to detect the cut-off frequency and get the distribution of the energy density by

tuning the radius of cavity. We ended this manuscript by talking about sensitivity

curves and placing our detector proposal in the literature.

There are several perspectives about this work. The first that comes in mind is to make

this research one step forward to experimental realization. In order to do this, we need

to collaborate with experimental physicists from gravitational waves detection, ax-

ion detection, electromagnetic cavities and intense magnetic fields communities. The

main goal is to make a sketch of a feasible table-top experiment, with taking into

account the noise sources, perform sensitivity curves as already made for interferom-

etry techniques. This experimental step is crucial to make the transition between the

theoretical level considered here and the experimental one.

Another immediate perspective of this work is to perform a cross-validation of the

analytical results with a naive approach. This approach is to compute the induced

magnetic field in our cavity by resolving the full wave equation numerically, for in-

stance with finite differences methods. This method allows us to implement the full

effective current density and check if our predictions for the induced electromagnetic

power in the cavity are correct. The challenging aspect of doing this is to avoid nu-

merical artifacts and control the numerical error. This kind of methods could also

open the door to perform second order energy corrections, and correlate them with

the work made in [Berlin et al., 2022] for monochromatic incoming signals. This

approach could make easier the study of directional sensitivities or computing other

quantities as detector response.

The study of generation of gravitational waves by these cavities could also be inter-

esting, by using the direct Gertsenshtein effect. The benefit of this work is twofold.

First, manipulating the direct effect could help us to better understand the Gertsen-

shtein effects. Second, it could help us to elaborate a gravitational Hertz experiment

[Kolosnitsyn and Rudenko, 2015], an experience of generation and detection of grav-

itational waves. This experiment would be groundbreaking in gravitational wave sci-

ence, meaning that we could manipulate those waves as the electromagnetic ones.

In our proposal, we chose a defined geometry for our detector. It could be interesting

to study other cavity geometries, like rectangular or toroidal ones. The latter came
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recently into the spotlight [Domcke et al., 2022]. It would be interesting to check if

the geometry has a big influence on the response of the detector. We already know that

the volume has an amplification role. It would be useful to check other parameters.

The final perspective that comes in mind is to model different sources suitable for

electromagnetic detection, and develop data analysis techniques to identify potential

detected signals, as already made for interferometers. We could also consider better

models for the stochastic gravitational wave background to be more realistic and find

key indicators to rule out some models with experimental observations.

I will end this manuscript by claiming that electromagnetic high-frequency gravita-

tional wave detection theory is still at the beginning, but seems to me very promising.

I strongly encourage experimental physicists to get into this part of gravitational wave

physics, that could lead to table-top-size experiments and could be very complemen-

tary to interferometers and pulsar timing arrays. This could be the way to better un-

derstand the early moments of our Universe, or make a step forward to the unification

of the fundamental interactions.
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Appendix A

The harmonic oscillator
equation

In this appendix, we will consider general resolution of an forced and damped har-

monic oscillator equation, in the time and the frequency domain, to clearly define our

way to solve equations (3.3.14) and (3.3.17).

d2x
dt2 +2γ

dx
dt

+Ω
2x = s(t) (A.0.1)

and his Fourier transform equation

−ω
2x̃+2iωγ x̃+Ω

2x̃ = s̃(ω). (A.0.2)

Such linear equations admit solutions of the type

x = xh + xp (A.0.3)

where xh is the homogeneous solution (where s(t) = s̃(ω) = 0) and xp the inhomo-

geneous one. The equation (A.0.1) provides us easily the homogeneous solution in

function of time

xh(t) = e−γt (Acos(ϖt)+Bsin(ϖt)) (A.0.4)

107



108 APPENDIX A. THE HARMONIC OSCILLATOR EQUATION

where ϖ =
√

Ω2− γ2 and the integration constants A and B are to be determined with

the initial conditions. On the other hand, the inhomegenous solution in the frequency

domain can be easily computed with the algebraic equation (A.0.2),

x̃p(ω) =
s̃(ω)

Ω2 +2iωγ−ω2 . (A.0.5)

We can thus obtain the solution of our harmonic oscillator equation in both domains

by applying the Fourier transform of the homogeneous solution xh(t) and the inverse

Fourier transform of x̃p. The solution in the time domain is

x(t) = e−γt (Acos(ϖt)+Bsin(ϖt))+
1

2π

∫
∞

−∞

s̃(ω)

Ω2 +2iωγ−ω2 eiωtdω (A.0.6)

and the solution in the frequency domain is

x̃(ω) =
A+ iB

−γ + i(ω−ϖ)
+

s̃(ω)

Ω2 +2iωγ−ω2 (A.0.7)

With these equations (A.0.6) and (A.0.7), we are able to solve our harmonic oscillator

equations, (3.3.14) and (3.3.17).



Appendix B

Synthesis: Compute the
response of our detector

This section will show you how to compute the induced electromagnetic power at

leading order, for the detection of a plus-polarized wave, h+(t) in the time domain or

h̃+(ω) in the frequency domain. Those responses are functions, and we will show here

how we can estimate the root-mean-square power of such induced power signals, re-

lated to the L 2 norm. Please note that we only consider the plus polarization because

there aren’t any cross polarized gravitational wave terms in the source terms (3.4.21),

because the cavity is aligned with the propagation direction of the gravitational wave.

B.1 Time domain

In the time domain, we can study the detection of time dependent signal, with their

plus polarization in the TT gauge, h+(t). We can compute the useful source term of

our harmonic oscillator equation with equation (3.4.6) multiplied by 7
6 due to equation

(3.4.20)

ŝk10(t) =−
7πB0Ik

6c

(
∂h+
∂ t

(t +
L
2c

)− ∂h+
∂ t

(t− L
2c

)

)
. (4.1.1)
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With that we can solve the equation (3.3.14) for the (k,1,0) modes, and can be written

as
1
c2

d2b̂k10

dt2 +
αk

cQ
db̂k10

dt
+α

2
k b̂k10 = ŝk10(t) (B.1.1)

with Ωk10 =αk due to equation (3.3.10), the αk coefficients are the resonant wavenum-

bers of the cavity. Please note that, by dimensional analysis, the coefficients b̂k10 are

in T (tesla) and ŝk10(t) in T
m2 . We can easily solve these harmonic oscillator equations

with equation (A.0.6) in the Appendix A, in order to obtain

b̂k10(t) = e−
αkc
2Q t (Ak10 cos(ϖkt)+Bk10 sin(ϖkt))+

1
2π

∫
∞

−∞

c2s̃k10(ω)

α2
k c2 + iωαkc

Q −ω2
eiωtdω

(4.1.2)

where s̃k10(ω) is the temporal Fourier transform of ŝk10(t) and ϖk = cαk

√
1− 1

2Q .

The constants Ak10 and Bk10 are determined with initial conditions b̂k10(t = 0) =
db̂k10

dt

∣∣∣
t=0

= 0, because there is no induced field before the passing of the gravitational

wave. With these solutions we can finally compute the first order induced electromag-

netic power, computed in the proper detector frame, with equation (3.3.30)

P(t) =
2πB0

µ0
∑
k

Ik
db̂k10

dt
(t). (3.3.30)

B.2 Frequency Domain

In the frequency domain, we can study the detection of frequency dependent signal,

with their plus polarization in the TT gauge, h̃+(ω). We can compute the useful source

term of our harmonic oscillator equation with equation (3.4.26)

s̃k10(ω) =
7πB0Ikω h̃+(ω)

3c
sin
(

ωL
2c

)
. (3.4.26)

With that we can solve the equation (3.3.17) for the (k,1,0) modes

− ω2

c2 b̃k10 +
iωαk

cQ
b̃k10 +α

2
k b̃k10 = s̃k10(ω) (B.2.1)

with Ωk10 =αk due to equation (3.3.10). We can easily solve these harmonic oscillator
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equations with equation (A.0.7) in the Appendix A, in order to obtain

b̃k10(ω) =
Ak10 + iBk10

−αkc
2Q + i(ω−ϖk)

+
c2s̃k10(ω)

c2α2
k +

iωαkc
Q −ω2

(4.1.4)

with ϖk = cαk

√
1− 1

2Q . The constants Ak10 and Bk10 are determined with initial con-

dition b̂k10(t = 0) = db̂k10
dt

∣∣∣
t=0

= 0. With these solutions we can finally compute the

first order induced electromagnetic power, computed in the proper detector frame,

with equation (3.3.31)

P̃(ω) =
2iπωB0

µ0
∑
k

Ikb̃k10(ω). (3.3.31)

B.3 RMS power calculation

In this section, we summarized how we can compute the induced electromagnetic field

at first order, in the proper detector frame, in a gravitational wave detection process.

This is the response we chose to compute for our detectors. This response can be

function of time of frequency, but the duration of the signal or its frequency content

could be quite different with respect of the incoming gravitational wave. This is why

we have to compute a quantity that can be useful to compare signals between each

other. For such oscillating field, we have to consider the root-mean-square average,

that can be defined as

P2
RMS = lim

T→∞

1
T

∫ T

0
(P(t))2 dt. (B.3.1)

This is a key quantity because it is related to the L 2 norm of the signal, which is

conserved through the Fourier transform since this last is unitary. Physically, as it can

be done for AC electric currents, the RMS power is related to the energy of the signal.

One quantity that we can compute using this definition of RMS power is the RMS

power impulse response. This the RMS power when the incoming signal is a sine

wave. If we consider h+(t) = sin(ωt), we have with equation ( 4.1.1) that

ŝk10(t) =
7πB0Ikω

3c
sin
(

ωL
2c

)
sin(ωt) . (B.3.2)
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This equation (B.3.2) is coherent with equation (3.4.26). With such a source term the

solution of equation is simpler,

b̂k10(t) =e−
αkc
2Q t (Ak10 cos(ϖkt)+Bk10 sin(ϖkt))

+
7πcB0Ikω

3
sin
(

ωL
2c

)
sin(ωt +φ)

α2
k c2 + iωαkc

Q −ω2
.

(B.3.3)

If we look at the behavior of this solution when t goes to infinity, one can discard the

homogeneous solution because of the decreasing exponential e−
αkc
2Q t . In this case, we

can compute the PRIR, the RMS impulse response electromagnetic power,

PRIR(ω) =
7
√

2c
3µ0

π
2B2

0ω
2
∣∣∣∣sin

(
ωL
2c

)∣∣∣∣∑
k

(Ik)
2√(

α2
k c2−ω2

)2
+
(

αkωc
2Q

)2
· (4.1.7)

This equation can be useful because if we neglect the contribution of the homogeneous

solution that vanish when t goes to infinity, equations (3.3.31) and (4.1.2) can show us

that

|P(ω)|2= 2|PRIR(ω)|2|h̃+(ω)|2, (B.3.4)

where we have here the GW power spectral density |h̃+(ω)|2. This expression will

help us to close this chapter by finding a practical estimation of RMS induced power

when we have a signal h̃+(ω). Let us first assume that P(t) is a periodic function,

one can expand it as a real-valued Fourier series, (1)

P(t) =
∞

∑
n=1

(
an cos

( 2π

U nt
)
+bn sin

( 2π

U nt
))

(B.3.5)

where U is the period. Putting the expression above in the definition (B.3.1) gives us

P2
RMS =

∞

∑
n=1

a2
n +b2

n

2
. (B.3.6)

By generalizing the equation above to any function with the Fourier transform and

using the approximation (B.3.4), we find our estimation of the RMS power which is

P2
RMS '

∫
∞

0
|PRIR(ω)|2|h̃+(ω)|2dω. (4.1.6)

(1). We can discard the constant term since P(t)|t=0= 0 by the initial conditions and since the quantity
vanishes on simple time average.
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Cavity modes computation

Before getting into the computation of the electromagnetic induced power in the cavity

in the time of the frequency domain, we must first compute the cavity mode-related

quantities that we need. These modes are related to the cylindrical harmonics defined

by equations (3.3.1) to (3.3.3),

ψ
r
kmn =Cr

kmn ·
Rkm(r)

mr
·

{
cos

sin

}
(mθ) ·

{
cos

sin

}(
2πnz

L

)
(3.3.1)

ψ
θ
kmn =Cθ

kmn ·
dRkm(r)

dr
·

{
−sin

cos

}
(mθ) ·

{
cos

sin

}(
2πnz

L

)
(3.3.2)

ψ
z
kmn =Cz

kmn ·Rkm(r) ·

{
cos

sin

}
(mθ) ·

{
sin

cos

}(
2πnz

L

)
. (3.3.3)

The modes for the cavities we considered are defined in [Jackson, 1998]. Here all the

electromagnetic field for the TM modes in a hollow cylindrical cavity can be computed

with only the longitudinal electric field Ez, defined by

Ez = φ(r,θ)cos
(

2πnz
L

)
(C.0.1)

where

φ(r,θ) = E0Jm

(amn

R
r
)

eimθ (C.0.2)
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is in complex notation. The other fields can be deduced with the following equations

~E⊥ = −2πn
Lυ2 sin

(
2πnz

L

)
~∇⊥φ (C.0.3)

~B⊥ =
iµ0ω

υ2 cos
(

2πnz
L

)
~ez×~∇⊥φ (C.0.4)

where υ2 = ω2−
( 2πn

L

)2
and⊥ denotes that the vector is considered only in the trans-

verse components. The expressions for the magnetic field are consistent with our

cylindrical harmonics (3.3.1) to (3.3.2). An analogous analytical treatment can be

made for TE modes [Jackson, 1998]. For the TEM cavity, the same treatment can be

made besides the boundary conditions for the inner conductor and the fact that there

is not any longitudinal field.

We showed that only the (k,1,0) modes contributes to the induced power at first or-

der, so we will focus on those specific modes. You can find a representation of the

cylindrical harmonics ψr
k10 and ψθ

k10 in figure C.1.

We can now compute several quantities about the cavity modes. The first one are the

resonance wavevectors αk. For the TM resonator,a resonant frequency must satisfy

equation (3.3.5) with m = 1,

J1(αkR) = 0 ∀k ∈ N. (C.0.5)

The solution of such equation is αk =
a1k
R , where a1k is the kth zero of the bessel func-

tion of first kind J1. These zeros are easily available in the scipy library in Python

with the function jn_zeros. The TEM resonant frequencies are a bit more compli-

cated to compute, since they are solution of the system made of equations (3.3.7) and

(3.3.8) for m = 1,

Ak.J1(αkR1)+Y1(αkR1) = 0 ∀k ∈ N, (C.0.6)

Ak.J1(αkR2)+Y1(αkR2) = 0 ∀k ∈ N, (C.0.7)

which is actually a system with two variables, Ak and αk.

We can easily rewrite this system as

−Y1(αkR1)J1(αkR2)+Y1(αkR2)J1(αkR1) = 0 (C.0.8)
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−Y1(αkR1)

J1(αkR1)
= Ak. (C.0.9)

We can thus solve equation (C.0.8) using the Optimization and root finding routines

in scipy. After that, the computation of Ak is straightforward. We can thus represent

the resonant frequencies for both detectors. That is what we made in the Figure (C.2).

We represent the first five resonant frequencies of both cavities in function of the outer

radius of the cavity. The straight lines represent the frequencies for the TM resonator

and the dotted lines for the TEM resonator. The chosen inner radius for the TEM

waveguide is 10 cm. Please note that in order to obtain resonant frequencies in Hertz

we have to consider as resonant frequencies cαk
2π

which is consistent with the harmonic

oscillator equation (B.1.1). The first thing that you can see is that if the outer radius

k=0 k=1 k=2 k=3 k=4

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

Representation of r
k10

k=0 k=1 k=2 k=3 k=4

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

Representation of k10

Figure C.1 – Representation of the cylindrical harmonics for the k10 modes. Since
these modes are constant in the z coordinate, we only need a circular section to fully
describe it. For each mode, we normalize the maximal amplitude to 1 to improve the
visualization.
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is quite large, the difference between the two detectors is not very significant. For the

TEM waveguide, the resonant frequencies increase quickly if the outer radius is close

to the inner radius. The main thing that we can learn from this figure is that the choice

of the radius is very important and we have the possibility to tune this parameter to get

the resonance frequencies in the same window as the signal we want to detect. Prac-

tically, if we want to use these cavities as detectors, the induced power in the cavity

will be proportional to the volume of the detector, so it is not interesting to consider

the case where the outer radius is close to the inner one for the TEM waveguide. In

the practical case of the detection, we can consider that the resonant frequencies of

the two cavities will be very close. The TEM waveguide has the advantage to pro-

duce only transverse induced field, and theoretically, there also exists the possibility

to consider a detector made of concentric cylinder that could constitute a set of TEM

waveguides with different radii. The TM cavity since this is just one hollow cylinder

seems to be easier to elaborate, and these cavities are commonly used in experimental

physics, for instance the Axion Dark Matter Experiment [Asztalos et al., 2010]. An-

other possibility for both detectors is to combine several cavities of different radii to

get a resonant detection in a wide range of frequencies.

We can also compute the two other mode-related quantities that are the radial inte-

gral Ik and the normalization constants for the modes Cr,θ ,z
k10 . The latter can be easily

computed by considering ‖~Ψk10‖= 1 with equations (3.3.1) to (3.3.3), and we find

Cr
k10 =Cθ

k10 =Cz
k10 =

√
2

Lπα2
k R2J2

0 (αkR)
(C.0.10)

for the TM cavity and

Cr
k10 =Cθ

k10 =Cz
k10 =

√
2

Lπ (F (R2)−F (R1))
(C.0.11)
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Figure C.2 – The first five resonant frequencies in function of the outer radius for the
TM cavity (straight) and the TEM waveguide (dotted).
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for the TEM waveguide. This normalization contains the function

F (x) =
1
2

−(A2
k +1)1F2

(
1
2

;1,2;−α
2
k x2
)
−

2G3,0
2,4

(
− 1

2 ,
1
2

−1,0,0,− 1
2

∣∣∣∣∣ αkx, 1
2

)
√

π

−2AkJ0(αkx)Y0(αkx)−2AkJ1(αkx)Y1(αkx)

 ,
(C.0.12)

where pFq is the generalized hypergeometric function [NIST, 2011] and Gm,n
p,q is the

Meijer-G function [Meijer, 1936, NIST, 2011]. Those are special functions, and the

computation of F (x) was made by symbolic computation tools.[Wolfram, 2022] The

last quantity we have to compute is the Ik integral that is necessary to compute the

source term of the harmonic oscillator equation (B.1.1) and the induced electromag-

netic power in the cavity. For the TM resonator, we obtain

Ik =
1− J0(αkR)

αk
, (C.0.13)

and for the TEM waveguide we obtain

Ik =
Ak−AkJ0(αkR2)−Y0(αkR2)

αk
− Ak−AkJ0(αkR1)−Y0(αkR1)

αk
. (C.0.14)
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Herman, N., Lehoucq, L., and Fűzfa, A. (2022). Electromagnetic Antennas for

the Resonant Detection of the Stochastic Gravitational Wave Background. arXiv

preprint, arXiv:2203.15668. doi:10.48550/arxiv.2203.15668.

Hobson, M. P., Efstathiou, G. P., and Lasenby, A. N. (2006). General Relativity.

Cambridge University Press. doi:10.1017/CBO9780511790904.

Hulse, R. A. and Taylor, J. H. (1975). DISCOVERY OF A PULSAR IN A BINARY

SYSTEM. The Astrophysical Journal, 51:51–53. URL https://articles.

adsabs.harvard.edu/pdf/1975ApJ...195L..51H.

https://patentscope.wipo.int/search/fr/detail.jsf?docId=WO2019129745&tab=PCTDESCRIPTION
https://patentscope.wipo.int/search/fr/detail.jsf?docId=WO2019129745&tab=PCTDESCRIPTION
https://patentscope.wipo.int/search/fr/detail.jsf?docId=WO2019129746&_fid=WO2019129745
https://patentscope.wipo.int/search/fr/detail.jsf?docId=WO2019129746&_fid=WO2019129745
https://patentscope.wipo.int/search/fr/detail.jsf?docId=WO2019129746&_fid=WO2019129745
http://dx.doi.org/10.1103/PhysRevD.46.1239
http://jetp.ras.ru/cgi-bin/dn/e_014_01_0084.pdf
http://jetp.ras.ru/cgi-bin/dn/e_014_01_0084.pdf
http://arxiv.org/abs/2102.05859
http://dx.doi.org/10.1103/PHYSREVLETT.127.071102
http://luth.obspm.fr/~luthier/gourgoulhon/fr/master/relat.html
http://luth.obspm.fr/~luthier/gourgoulhon/fr/master/relat.html
http://dx.doi.org/10.1070/PU1977v020n04ABEH005327
http://adsabs.harvard.edu/abs/1975ZhETF..68.1569G
http://arxiv.org/abs/2012.12189
http://dx.doi.org/10.1103/PhysRevD.104.023524
http://arxiv.org/abs/2203.15668
http://dx.doi.org/10.48550/arxiv.2203.15668
http://dx.doi.org/10.1017/CBO9780511790904
https://articles.adsabs.harvard.edu/pdf/1975ApJ...195L..51H
https://articles.adsabs.harvard.edu/pdf/1975ApJ...195L..51H


124 BIBLIOGRAPHY

Jackson, J. (1998). Classical Electrodynamics. Wiley, 3rd edition.

JASON Program office - The MITRE Corporation (2008). High Frequency Grav-

itational Waves. Technical report, Defense Intelligence Agency. URL https:

//irp.fas.org/agency/dod/jason/gravwaves.pdf.

Kahniashvili, T., Brandenburg, A., Gogoberidze, G., et al. (2021). Circular polariza-

tion of gravitational waves from early-Universe helical turbulence. Physical Review

Research, 3(1):13193. doi:10.1103/PhysRevResearch.3.013193.

Kerr, R. P. (1963). Gravitational field of a spinning mass as an exam-

ple of algebraically special metrics. Physical Review Letters, 11(5):237–238.

doi:10.1103/PhysRevLett.11.237.

Khintchine, A. (1934). Korrelationstheorie der stationären stochastischen Prozesse.

Mathematische Annalen 1934 109:1, 109(1):604–615. doi:10.1007/BF01449156.

Kolosnitsyn, N. I. and Rudenko, V. N. (2015). Gravitational hertz experiment with

electromagnetic radiation in a strong magnetic field. Physica Scripta, 90(7):074059.

doi:10.1088/0031-8949/90/7/074059.

Li, F., Baker, R. M. L., Fang, Z., et al. (2008). Perturbative photon fluxes generated

by high-frequency gravitational waves and their physical effects. Eur. Phys. J. C,

56:407–423. doi:10.1140/epjc/s10052-008-0656-9.

Li, F. Y., Tang, M. X., and Shi, D. P. (2003). Electromagnetic response of a Gaus-

sian beam to high-frequency relic gravitational waves in quintessential inflationary

models. Physical Review D, 67(10):104008. doi:10.1103/PhysRevD.67.104008.

LIGO Scientific Collaboration (2018). LIGO Algorithm Library - LALSuite.

doi:10.7935/GT1W-FZ16.

LIGO Scientific Collaboration (2022). O3B CATALOG. accessed on 2022/12/16.

URL https://www.ligo.org/detections/O3bcatalog.php.

Lupanov, G. A. (1967). A CAPACITOR IN THE FIELD OF A GRAVITATIONAL

WAVE. J. Exptl. Theoret. Phys. (U.S.S.R.), 25(1):118–123. URL http://jetp.

ras.ru/cgi-bin/dn/e_025_01_0076.pdf.

Macedo, P. G. and Nelson, A. H. (1983). Propagation of gravitational

waves in a magnetized plasma. Physical Review D, 28(10):2382–2392.

doi:10.1103/PhysRevD.28.2382.

Maggiore, M. (2007). Gravitational Waves: Volume 1: Theory and Experiments.

Oxford University Press. doi:10.1093/acprof:oso/9780198570745.001.0001.

https://irp.fas.org/agency/dod/jason/gravwaves.pdf
https://irp.fas.org/agency/dod/jason/gravwaves.pdf
http://dx.doi.org/10.1103/PhysRevResearch.3.013193
http://dx.doi.org/10.1103/PhysRevLett.11.237
http://dx.doi.org/10.1007/BF01449156
http://dx.doi.org/10.1088/0031-8949/90/7/074059
http://dx.doi.org/10.1140/epjc/s10052-008-0656-9
http://dx.doi.org/10.1103/PhysRevD.67.104008
http://dx.doi.org/10.7935/GT1W-FZ16
https://www.ligo.org/detections/O3bcatalog.php
http://jetp.ras.ru/cgi-bin/dn/e_025_01_0076.pdf
http://jetp.ras.ru/cgi-bin/dn/e_025_01_0076.pdf
http://dx.doi.org/10.1103/PhysRevD.28.2382
http://dx.doi.org/10.1093/acprof:oso/9780198570745.001.0001


BIBLIOGRAPHY 125

Maggiore, M. (2018). Gravitational Waves: Volume 2: Astrophysics and Cosmology.

Oxford University Press. doi:10.1093/oso/9780198570899.001.0001.

Maiorano, M., De Paolis, F., and Nucita, A. A. (2021). Principles of

gravitational-wave detection with pulsar timing arrays. Symmetry, 13(12).

doi:10.3390/sym13122418.

Manasse, F. K. and Misner, C. W. (1963). Fermi normal coordinates and some basic

concepts in differential geometry. Journal of Mathematical Physics, 4(6):735–745.

doi:10.1063/1.1724316.

Marzlin, K. P. (1994). Fermi coordinates for weak gravitational fields. Physical

Review D, 50(2):888–891. doi:10.1103/PhysRevD.50.888.

Meijer, C. S. (1936). Über Whittakersche bzw. Besselsche Funktionen und deren

Produkte. Nieuw Arch. Wiskd., II. Ser., 18(4):10–39. URL https://zbmath.

org/pdf/0013.20801.pdf.

Miller, A. L., Aggarwal, N., Clesse, S., et al. (2022). Constraints

on planetary and asteroid-mass primordial black holes from continuous

gravitational-wave searches. Physical Review D, 105(6), arXiv:2110.06188.

doi:10.1103/PHYSREVD.105.062008.

Minakov, A. A., Nikolaenko, A. P., and Rabinovich, L. M. (1992).

Gravitational-to-electromagnetic wave conversion in electrostatic field of earth-

ionosphere resonator. Radiophysics and Quantum Electronics, 35(6-7):318–323.

doi:10.1007/BF01041780.

Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation. W. H. Freeman,

San Francisco.

Moore, C. J., Cole, R. H., and Berry, C. P. (2015). Gravitational-wave sensi-

tivity curves. Classical and Quantum Gravity, 32(1):015014, arXiv:1408.0740.

doi:10.1088/0264-9381/32/1/015014.

Mróz, P., Udalski, A., Skowron, J., et al. (2017). No large population

of unbound or wide-orbit Jupiter-mass planets. Nature, arXiv:1707.07634.

doi:10.1038/nature23276.

Newman, E. T., Couch, E., Chinnapared, K., et al. (1965). Metric of

a rotating, charged mass. Journal of Mathematical Physics, 6(6):918–919.

doi:10.1063/1.1704351.

http://dx.doi.org/10.1093/oso/9780198570899.001.0001
http://dx.doi.org/10.3390/sym13122418
http://dx.doi.org/10.1063/1.1724316
http://dx.doi.org/10.1103/PhysRevD.50.888
https://zbmath.org/pdf/0013.20801.pdf
https://zbmath.org/pdf/0013.20801.pdf
http://arxiv.org/abs/2110.06188
http://dx.doi.org/10.1103/PHYSREVD.105.062008
http://dx.doi.org/10.1007/BF01041780
http://arxiv.org/abs/1408.0740
http://dx.doi.org/10.1088/0264-9381/32/1/015014
http://arxiv.org/abs/1707.07634
http://dx.doi.org/10.1038/nature23276
http://dx.doi.org/10.1063/1.1704351


126 BIBLIOGRAPHY

Newman, E. T. and Janis, A. I. (1965). Note on the Kerr spinning-particle metric.

Journal of Mathematical Physics, 6(6):915–917. doi:10.1063/1.1704350.

Ni, W. T. and Zimmermann, M. (1978). Inertial and gravitational effects in the proper

reference frame of an accelerated, rotating observer. Physical Review D, 17(6):1473–

1476. doi:10.1103/PhysRevD.17.1473.

Niikura, H., Takada, M., Yokoyama, S., et al. (2019). Constraints on Earth-mass

primordial black holes from OGLE 5-year microlensing events. Physical Review D,

99(8):83503, arXiv:1901.07120. doi:10.1103/PhysRevD.99.083503.

NIST (2011). NIST Digital Library of Mathematical Functions. URL http://

dlmf.nist.gov/.

Nordström, G. (1918). On the Energy of the Gravitation field in Einstein’s The-

ory. Proc. K. Ned. Akad. Wet. B, 20:1238–1245. URL https://ui.adsabs.

harvard.edu/abs/1918KNAB...20.1238N/abstract.

Pegoraro, F., Picasso, E., and Radicati, L. A. (1978a). On the operation of a tunable

electromagnetic detector for gravitational waves. Journal of Physics A: Mathemati-

cal and General, 11(10):1949–1962. doi:10.1088/0305-4470/11/10/013.

Pegoraro, F., Radicati, L. A., Bernard, P., et al. (1978b). Electromagnetic detec-

tor for gravitational waves. Physics Letters A, 68(2):165–168. doi:10.1016/0375-

9601(78)90792-2.

Posen, S., Checchin, M., Melnychuk, O. S., et al. (2022). Measurement of high

quality factor superconducting cavities in tesla-scale magnetic fields for dark matter

searches. arXiv preprint, arXiv:2201.10733. doi:10.48550/arxiv.2201.10733.

Pujolas, O., Vaskonen, V., and Veermäe, H. (2021). Prospects for probing gravita-

tional waves from primordial black hole binaries. Physical Review D, 104(8):083521.

doi:10.1103/PhysRevD.104.083521.

Raffelt, G. and Stodolsky, L. (1988). Mixing of the photon with low-mass particles.

Physical Review D, 37(5):1237–1249. doi:10.1103/PhysRevD.37.1237.

Rakhmanov, M. (2014). Fermi-normal, optical, and wave-synchronous coordinates

for spacetime with a plane gravitational wave. Classical and Quantum Gravity,

31(8):085006. doi:10.1088/0264-9381/31/8/085006.

Reissner, H. (1916). Über die Eigengravitation des elektrischen Feldes

nach der Einsteinschen Theorie. Annalen der Physik, 355(9):106–120.

doi:10.1002/andp.19163550905.

http://dx.doi.org/10.1063/1.1704350
http://dx.doi.org/10.1103/PhysRevD.17.1473
http://arxiv.org/abs/1901.07120
http://dx.doi.org/10.1103/PhysRevD.99.083503
http://dlmf.nist.gov/
http://dlmf.nist.gov/
https://ui.adsabs.harvard.edu/abs/1918KNAB...20.1238N/abstract
https://ui.adsabs.harvard.edu/abs/1918KNAB...20.1238N/abstract
http://dx.doi.org/10.1088/0305-4470/11/10/013
http://dx.doi.org/10.1016/0375-9601(78)90792-2
http://dx.doi.org/10.1016/0375-9601(78)90792-2
http://arxiv.org/abs/2201.10733
http://dx.doi.org/10.48550/arxiv.2201.10733
http://dx.doi.org/10.1103/PhysRevD.104.083521
http://dx.doi.org/10.1103/PhysRevD.37.1237
http://dx.doi.org/10.1088/0264-9381/31/8/085006
http://dx.doi.org/10.1002/andp.19163550905


BIBLIOGRAPHY 127

Ringwald, A., Schütte-Engel, J., and Tamarit, C. (2021). Gravitational waves as a big

bang thermometer. Journal of Cosmology and Astroparticle Physics, 2021(03):054.

doi:10.1088/1475-7516/2021/03/054.

Ringwald, A. and Tamarit, C. (2022). Revealing the cosmic history with gravitational

waves. Physical Review D, 106(6):063027. doi:10.1103/PhysRevD.106.063027.

Romberg, W. (1955). Vereinfachte numerische integration. Norske Vid. Selsk. Forh.,

28:30–36.

Saito, K., Soda, J., and Yoshino, H. (2021). Universal stochastic gravitational waves

from photon spheres of black holes. Physical Review D, 104(6), arXiv:2106.05552.

doi:10.1103/PHYSREVD.104.063040.

Schmieden, K. and Schott, M. (2022). Searching for Gravitational Waves with

CMS. arXiv preprint, arXiv:2209.12024. URL http://arxiv.org/abs/

2209.12024.

Taylor, J. H. and Weisberg, J. M. (1982). A new test of general relativity - Gravi-

tational radiation and the binary pulsar PSR 1913+16. The Astrophysical Journal,

253:908. doi:10.1086/159690.

Tobar, M. E., Thomson, C. A., Campbell, W. M., et al. (2022). Comparing Instrument

Spectral Sensitivity of Dissimilar Electromagnetic Haloscopes to Axion Dark Matter

and High Frequency Gravitational Waves. Symmetry, 14(10), arXiv:2209.03004.

doi:10.3390/SYM14102165.

Tsagas, C. G. (2005). Electromagnetic fields in curved spacetimes. Classical

and Quantum Gravity, 22(2):393–407, arXiv:gr-qc/0407080. doi:10.1088/0264-

9381/22/2/011.

UHF-GW community (2022). Ultra-High-Frequency Gravitational Waves Ini-

tiative. accessed on 2022/12/16. URL https://www.ctc.cam.ac.uk/

activities/UHF-GW.php.

Verbiest, J. P., Lentati, L., Hobbs, G., et al. (2016). The international pulsar tim-

ing array: First data release. Monthly Notices of the Royal Astronomical Society,

458(2):1267–1288, arXiv:1602.03640. doi:10.1093/mnras/stw347.

Weyl, H. (1917). Zur Gravitationstheorie. Annalen der Physik, 359(18):117–145.

doi:10.1002/andp.19173591804.

Wiener, N. (1930). Generalized harmonic analysis.

https://doi.org/10.1007/BF02546511, 55(none):117–258. doi:10.1007/BF02546511.

http://dx.doi.org/10.1088/1475-7516/2021/03/054
http://dx.doi.org/10.1103/PhysRevD.106.063027
http://arxiv.org/abs/2106.05552
http://dx.doi.org/10.1103/PHYSREVD.104.063040
http://arxiv.org/abs/2209.12024
http://arxiv.org/abs/2209.12024
http://arxiv.org/abs/2209.12024
http://dx.doi.org/10.1086/159690
http://arxiv.org/abs/2209.03004
http://dx.doi.org/10.3390/SYM14102165
http://arxiv.org/abs/gr-qc/0407080
http://dx.doi.org/10.1088/0264-9381/22/2/011
http://dx.doi.org/10.1088/0264-9381/22/2/011
https://www.ctc.cam.ac.uk/activities/UHF-GW.php
https://www.ctc.cam.ac.uk/activities/UHF-GW.php
http://arxiv.org/abs/1602.03640
http://dx.doi.org/10.1093/mnras/stw347
http://dx.doi.org/10.1002/andp.19173591804
http://dx.doi.org/10.1007/BF02546511


128 BIBLIOGRAPHY

Wolfram (2022). Wolfram|Alpha: Computational Intelligence. accessed on

2022/12/16. URL https://www.wolframalpha.com/.

Zheng, H. and Wei, L. F. (2022). Experimental system to detect the electro-

magnetic response of high-frequency gravitational waves. Physical Review D,

106(10):104003. doi:10.1103/PHYSREVD.106.104003.

Zheng, H., Wei, L. F., Wen, H., et al. (2018). Electromagnetic response of

gravitational waves passing through an alternating magnetic field: A scheme to

probe high-frequency gravitational waves. Physical Review D, 98(6):064028.

doi:10.1103/PhysRevD.98.064028.

https://www.wolframalpha.com/
http://dx.doi.org/10.1103/PHYSREVD.106.104003
http://dx.doi.org/10.1103/PhysRevD.98.064028

	Introduction
	Contributions
	High-Frequency Gravitational Waves
	Gravitational waves
	General relativity in a nutshell
	Linear regime of the General relativity
	Gravitation waves polarization

	The High-frequency window
	Generation of gravitational waves
	Current situation on gravitational wave detection
	Sources of high-frequency gravitational waves

	The choice of the frame

	Electromagnetism and Gravitational Waves
	The Einstein-Maxwell system
	Gertsenshtein effects
	Review on HFGW EM detection proposals
	The first paper of Gertsenshtein and immediate further research
	Interests in the Inverse Gertsenshtein effect after LIGO detection


	Detector proposal and analysis
	Modeling the detector
	Computing the cavity response
	Cylindrical harmonics decomposition
	The source term
	TT frame
	The proper detector frame


	Numerical Simulations and results
	Building a code
	Time domain simulation
	Frequency Domain Simulation
	Computing RMS power

	Primordial black hole merger detection
	Case of two 10^-5 M_ merging black holes
	Response in function of PBH mass
	Detection limit on PBH abundance

	Stochastic Gravitational wave background
	From transient to stochastic signals
	Study of a toy model for SGWB

	Sensitivity curves and conclusion
	Our detector proposal in the literature

	Conclusion and perspectives
	Appendices
	The harmonic oscillator equation
	Synthesis: Compute the response of our detector 
	Time domain
	Frequency Domain
	RMS power calculation

	Cavity modes computation
	Bibliography


