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ABSTRACT
Purpose Drug development in chronic obstructive pulmo-
nary disease (COPD) has been characterised by unacceptably
high failure rates. In addition to the poor sensitivity in forced
expiratory volume in one second (FEV1), numerous causes
are known to contribute to this phenomenon, which can be
clustered into drug-, disease- and design-related factors.
Here we present a model-based approach to describe dis-
ease progression, treatment response and dropout in clinical
trials with COPD patients.
Methods Data from six phase II trials lasting up to
6 months were used. Disease progression (trough FEV1
measurements) was modelled by a time–varying function,
whilst the treatment effect was described by an indirect
response model. A time-to-event model was used for
dropout
Results All relevant parameters were characterised with accept-
able precision. Two parameters were necessary to model the
dropout patterns, which was found to be partly linked to the
treatment failure. Disease severity at baseline, previous use of
corticosteroids, gender and height were significant covariates on

disease baseline whereas disease severity and reversibility to
salbutamol/salmeterol were significant covariates on Emax for
salmeterol active arm.
Conclusion Incorporation of the various interacting factors into a
single model will offer the basis for patient enrichment and
improved dose rationale in COPD.

KEY WORDS chronic obstructive pulmonary disease . disease
modelling . disease progression . dropout . KPDmodel

ABBREVIATIONS
BMI Body mass index
COPD Chronic obstructive pulmonary disease
CTS Clinical trial simulations
EDK50 Apparent potency parameter corresponding to the

exposure associated with half of the maximum effect
Emax Maximum effect
FEV1 Forced expiratory volume in one second
FOCEI First order conditional estimation method with

interaction
GOLD Global Initiative for Chronic Obstructive Lung

Disease
Int_Dis The disease status at baseline, i.e., at the start of the

clinical trial
Kin Zero-order process parameterised as a synthesis

rate constant
Kout First-order elimination constant
KPD Kinetic-pharmacodynamic
MOFV Minimum value of objective function
PICS Previous use of corticosteroids
PsN Perl-speaks-NONMEM
Slope_Dis Parameter describing the daily decline of FEV1 due

to disease progression
VPC Visual predictive check
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INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is a chronic
respiratory disorder that progresses slowly and is characterised
by an obstructive ventilatory pattern, which is rarely revers-
ible, very often related to tobacco smoking and which can lead
to chronic respiratory failure (1). COPD is a major public
health problem. Indeed, it is the fourth leading cause of
morbidity and mortality in industrialised countries and is
projected to rank fifth in 2020 in burden of disease caused
worldwide by the World Health Organization (2,3). Even
though exacerbations have been recognised as an important
trait of the disease and is increasingly included in the evalua-
tion of drug effects, forced expiratory volume in one second
(FEV1) remains the most frequently used endpoint in clinical
trials in COPD, with change from baseline (ΔFEV1) corrected
for placebo being the primary measure of efficacy. In fact,
FEV1 is currently considered to be one of the best predictors
of patient survival and as such has been used as a prognostic
marker for outcome (4). Consequently, regulatory authorities
still recommend the use of measures of airflow obstruction
improvement for registration trials of new bronchodilators.

From a therapeutic perspective, maintenance treatments
are based on the use of bronchodilators which rapidly im-
prove lung function. However, high failure rate is observed
during the development of treatments for COPD. Numerous
factors are known to contribute to this phenomenon, which
can be clustered into drug-, disease- and design-related fac-
tors. Of particular relevance are the sensitivity of spirometric
measures to patient demographic characteristics and the
disease-related inclusion criteria such as gender, previous use
of inhaled corticosteroids and disease severity at baseline. Yet,
the majority of trials are usually conducted according to a
fixed protocol, copied from one study to the next. Among the
reasons for this conservatism are the high costs of these trials,
which limit the willingness to experiment with designs, and
concerns about potential failure because of deviations from
traditional study designs. Another important point supporting
current practice is the statistical evaluation of efficacy (i.e.,
contrast between active agent and placebo) by changes from
baseline at a single time point.

In other therapeutic areas in which similar concerns exist
regarding the impact of confounding design factors, costs and
time course of the response, the use of modelling and simula-
tion has been advocated. In fact, the implementation of clin-
ical trial simulations (CTS) allows evaluation of a single factor
at a time. In addition, it provides the opportunity to investi-
gate factors that have not been implemented yet and can
therefore not be included in a meta-analysis. CTS enable
statistical inferences from models and as such contrasts with
the long-established calculations of statistical power, which are
often based only on a point estimate of the variability of the
clinical end point.

Here we show how amodel-based approach can be used to
discriminate drug effects from disease- and design-related
factors on the overall treatment response. The aim of this
investigation was therefore (1) to develop and validate a
model for trough FEV1 including disease progression and
dropout; and (2) to quantify the impact of relevant demo-
graphic and disease-related factors on treatment response.
Our analysis is based on a kinetic-pharmacodynamic (KPD)
model which was previously developed to overcome some of
the limitations associated with lack of pharmacokinetic data.
(5,6) This is a common problem during the development of
inhaled compounds, for which plasma pharmacokinetics is not
available and/or doses do not relate directly to treatment
response. This concept has been successfully applied to model
the effects of a novel long-acting bronchodilator in COPD in a
recently published study (7).

Given the typical duration of efficacy trials in COPD,
disease progression and dropout models were included to
ensure unbiased estimation of treatment response. Dropout
is considered to be informative (also called non random) when
it is driven by the unobserved clinical response and non-
informative otherwise (also called random and completely
random dropout). In contrast to non-informative dropout that
can be just described or predicted independently to the clinical
response of interest, informative dropout must be jointly
modelled with the response data in order to warrant reliable
parameter estimates. Further characterisation of the patterns
of dropout is therefore essential for models aimed at the
prediction and simulation of response across a wide time span.
Joint analysis of disease progression, treatment response and
dropout is very often the most objective and reliable way to
assess dropout patterns and account for its effects on param-
eter estimation. Joint models have been developed to describe
the time course of biomarkers in long term diseases associated
with relatively high dropout rates such as Parkinson’s disease
(7,8), depression (9) and chronic viral infections (10). To date,
joint modelling concepts have not been applied to FEV1

response in COPD.

METHODS

Patients

The clinical data used for the analysis were extracted from
Top Institute Pharma data repository. The data were
anonymised and randomly combined prior to use. It consisted
in a pool from 6 Phase II multicenter studies, containing
placebo (n=2273) and active treatment (salmeterol) (n=270).
All patients had a diagnosis of moderate to severe COPD as
defined by the Global initiative for Chronic Obstructive Lung
Disease (GOLD) guidelines (11). Moderate COPD implies
that post-bronchodilator FEV1 values at the start of the study
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(T0) are between 50 and 79% of the predicted FEV1 for a
subject with normal lung function, whereas for severe COPD
post-bronchodilator FEV1 values range between 30 and 50%
of the predicted FEV1. Very severe patients (post-bronchodi-
lator FEV1 at T0<30%) were excluded from the trials.
Spyrometry (trough FEV1) was performed after administra-
tion of bronchodilators at intervals ranging between two and a
maximum of four weeks by trained clinical staff. The study
drugs were inhaled salmeterol (50 μg) or matched placebo
administered as a twice daily regimen. Patients were not
allowed to take another bronchodilator during the course of
treatment, other than rescue medication (e.g., in case of exac-
erbations). Table I summarises patient demographics and
disease related factors at the start of the trials, including study
duration and number of patients enrolled. The protocols were
approved by the local institutional review boards, and all
patients agreed to sign an informed consent form. We have
used data from patients enrolled into three of the six studies
for model building purposes and included those in the re-
maining studies during the model validation procedures. The
final model parameter estimates refer therefore to the total
pool of patients in all six studies.

Modelling and Covariate Analysis

Nonlinear mixed effects modelling was performed using
NONMEM v7.1.2 (double precision, Icon Development
Solutions, Ellicott City, MD, USA) and Perl-speaks-
NONMEM (PsN)-toolkit, (12) a programming library
containing a collection of computer intensive statistical
methods for non-linear mixed effects modelling, Xpose
4.0 (13) and R (14). First order conditional estimation
method with interaction (FOCEI) was first used to model
disease progression and drug effects. Subsequently, drop-
out patterns were analysed using the Laplace estimation
method, which is deemed to be more appropriate to
jointly model continuous and categorical data in
NONMEM. The models for disease progression, drug
effects and dropout were developed simultaneously. For
the sake of completeness, the disease and drug effect
parameter estimates obtained with and without dropout
were compared to assess the influence of informative
dropout.

Base Model

Disease and Drug Effects Model. The process describing FEV1

changes over time was modelled using an indirect response
model, as described by the following differential equation

dFEV 1

dt
¼ Kin−Kout � FEV 1 ð1Þ

where the change in the observed FEV1 over time (dFEV1/
dt) is controlled by a zero-order process parameterised as a
synthesis rate constant (Kin) and first order elimination pro-
cess (Kout). The disease status at baseline was considered to be
described by the ratio between Kin and Kout. The disease
progression was modelled as a linear decline in the baseline
status as follows:

Dis ¼ Int Dis−Slope Dis � Time ð2Þ

with

Dis ¼ Κin
Kout

ð3Þ

where Dis is the disease status, Int_Dis is the disease status
at the start of the clinical trial, and Slope_Dis is the daily
decline of Dis due to disease progression.

The effect of bronchodilators was modelled using a non-
linear Emax function, in which the maximum effect is pro-
portional to an apparent potency parameter (EDK50). Four
different models were tested with drug effects incorporated
either additively or multiplicatively on Kin or on Kout. Ex-
amples are provided below for incorporation on Kin:

Kin ¼ TVKin þ A� Emax
EDK 50 þ A

� �
ð4Þ

Kin ¼ TVKin � 1þ A� Emax
EDK 50 þ A

� �
ð5Þ

where TVKin is the typical value of Kin in the absence of
drug effects, EDK50 is the drug exposure associated with half
of the maximum effect, Emax is the maximum drug effect,
and A is the drug exposure marker. Different parameterisations
were tested for characterisation of the exposure markers
including:

Table I COPD Patient Demographics and Study Characteristics

Median [range]

Number of patients (studies 1–6) 2543

Reversibility (mL) 56

Age (years) 65 [40–90]

Sex (% of females) 30

Height (cm) 170 [135–203]

Patients with severe COPD (%) 67

Patients with reversible COPD (%) 26

Patients with a previous use of inhaled
corticosteroids (PICS) (%)

40

Smoking status (% of smokers) 42

Dropout (% of dropout) 13

Study duration (weeks) 167

Disease progression, drug response and dropout in COPD 619



a. d(A)/dt=−KDE×A and A0=Dose
b. A=Dose
c. A=D×KDE with d(D)/dt=−KDE×D and D0=Dose

where A is the amount (a), the dose (b), or the input rate (c)
of drug into the effect compartment, D is the dose at time 0
KDE is the first order elimination rate constant for the bron-
chodilator and A0/D0 are the initial values for A/D.

Given that all the patients belonging to the active
arms of the different trials were taking the same dose of
bronchodilators, a prior function ($PRIOR) was used in
NONMEM to stabilise the estimation of correlated pa-
rameters (i.e., Emax and EDK50). In addition, the ratio
between Emax and EDK50 was first estimated and
EDK50 was computed subsequently. Prior information
on the exposure response relationship was derived from
a model using data from a previously published study
(15). Emax and EDK50 distributions were directly taken
from the NONMEM output file of the previous model.
The parameter estimates for Emax and EDK50 were
0.78 and 4 μg, respectively. The values used as priors
on interindividual variability (OMEGA) were 0.24 and
0.14 with a covariance term of 0.1. The NONMEM
variance/covariance matrix was used to weight the prior
information. The degrees of freedom for the OMEGAs
were based on the number of patients included in the
historical study and set to 24.

Dropout model. Dropout was modelled using a time-to-event
model (10,16,17). The probability of a having a dropout at
any given time was predicted by describing the hazard (h(t))
associated with the dropout (i.e., event). Different hazard
models were tested including constant, exponential and
Weibull models, as previously described in (16,17).

As time passes the cumulative hazard predicts the risk of
having the event over the interval 0-t. The risk (cumulative
hazard) was obtained by integrating hazard with respect to
time:

Cumulative hazard ¼
Z t

0
h tð Þ ð6Þ

On the other hand, the probability of remaining in the trial
(i.e., of not dropping out) was predicted by a survivor function
from the cumulative hazard.

Survivor tð Þ ¼ P T > tð Þ ¼ exp −
Z t

0
h tð Þ

� �
ð7Þ

The probability of dropping out at any given time was
predicted by the probability density function (pdf(t)). The pdf

was calculated from the survivor function and from the hazard
at the specific time as follows:

pdf tð Þ ¼ Survivor tð Þ � h tð Þ ð8Þ

The probability of dropping out within an interval was
modelled by taking the difference between the survivor at
the first time after dropout and the survivor at last observed
time before dropout.

Dropout patterns were characterised using likelihood ratio
tests by including additional parameters on the initial hazard
term. For example when a constant hazard model was tested,
the following equation was used:

h tð Þ ¼ β0 � eβ1�FEV 1þβ2�IPRED ð9Þ

where IPRED represents the individual predicted FEV1 at
time (t), FEV1 is the observed measure at available sampling
times, the coefficient β0 and the exponents β1 and β2 describe
missingness completely at random, at random and non- ran-
dom, respectively.

Inter-Individual and Unexplained Variability Model. Exponential
models were used for inter-individual variability (IIV) on
model parameters. The value of a parameter in the ith indi-
vidual (Pij) was a function of the typical value of the parameter
(TVP) and of the individual deviation initially represented by
ηi, which describes the inter-patient variability term for the ith

patient. The ηs in the population were assumed to be normal-
ly distributed random variables with zero mean and a vari-
ance that is estimated as part of the model:

Pij ¼ TVP� exp ηið Þ ð10Þ

The covariance between different parameters was
also assessed using additional random effects terms using
the OMEGA BLOCK() option in NONMEM. η terms
were only maintained in the model when they improved
the fitting as assessed by comparing the NONMEM
objective function values with and without the inclusion
of the random effects. A difference of at least 3.84
points was necessary to keep the random effects term
in the model.

Additive, proportional and mixed error models were tested
for the residual error as shown in Eqs. 11–13:

Y ¼ IPREDþ εadd ð11Þ
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Y ¼ IPRED� 1þ εprop
� � ð12Þ

Y ¼ IPRED� 1þ εprop
� �þ εadd ð13Þ

where Y and IPRED represent the observed and individual
predicted FEV1 values, respectively. εadd and εprop are the
additive and the proportional error terms on FEV1 values,
respectively. Epsilon was supposed to be normally distributed,
zero-mean random variables with variance (σ2) terms that are
estimated as part of the population model-fitting process.

Model Selection. Structural model selection was based on 1)
the change in the minimum objective function value (MOFV),
with a decrease of at least 3.84 points being required for
additional parameter inclusion, 2) the plausibility and the
precision of parameter estimates and 3) the qualitative evalu-
ation of goodness-of-fit plots. The precision of parameter
estimates, expressed as standard error of estimates, was gen-
erated by the covariance option in NONMEM. Goodness-of-
fit plots comprised predicted and individually predicted versus
observed data, conditional weighted residuals (18) (CWRES)
versus time after dose, as well as the normalised prediction
distribution errors (NPDE) (19). The precision of parameter
estimates, expressed as standard error of estimates, was gen-
erated by the covariance option in NONMEM.

Covariate Model

A stepwise inclusion/exclusion approach was used to investi-
gate the relationship between different structural model pa-
rameters and demographic factors. To explain inter-patient
variability on disease and on drug-related parameters, and to
reduce the unexplained residual variability, relationships were
investigated for age, sex, height, BMI, weight, severity, revers-
ibility, previous use of inhaled corticosteroids (PICS). Individ-
ual empirical Bayes estimates of parameters were generated
and their correlation with each covariate being evaluated
separately during the exploratory steps of the covariate anal-
ysis. The log-likelihood ratio is assumed to be χ2-distributed. A
difference in objective function value of 3.84 is considered to
be significant at p<0.05 with one degree of freedom (differ-
ence of one parameter between the two nested models). Con-
tinuous variables (age, weight, height) were centred to their
median values and tested on the parameters using a power
model (see Eq. 14). Categorical variables were entered in the
model in a multiplicative manner (see Eq. 15). This is exem-
plified below for height and gender:

Int Dis ¼ TVInt Dis � HT
�
HTmed

� �θcov ð14Þ

Int Dis ¼ TVInt Dis � θcov in case of males½ � ð15Þ

where Int_Dis is the disease baseline status (i.e., baseline
FEV1 at t=0 expressed in L), TVInt_Dis is the typical value
for disease baseline intercept (in case of continuous covariate,
TVInt will be the disease baseline status for a patient with
median covariate (here height) value and for categorical co-
variates, it will be the value for the reference category (here
females)), ΘCOV is the relative change in baseline intercept
due to covariate effect. HT is the patient body height and
HTmed is the median body height in the dataset.

A backward deletion process was used to complete the
covariate model building. Only covariates which upon dele-
tion caused an increase in MOFV>11 points (χ2 p-value≤
0.001) were retained in the final model.

Final Model Evaluation

An initial assessment of the predictive performance of the
model was carried out by using the parameter estimates from
the model building studies 1–3 (n=1154 patients) to describe
the trough FEV1 response profile in the remaining studies 4–6
(n=1389 patients). Bootstrapping and simulations were used
to internally validate the final model. 100 bootstraps were
generated using PsN and confidence intervals were obtained
for all model parameters. NPDE-related diagnostic plots (19)
and mirror plots were then generated to assess overall model
performance.

Finally, visual predictive checks (VPC) were performed
taking dropout into account. Observed and simulated FEV1

values vs. time were presented in conjunction with Kaplan
Meier plots to assess the suitability of the dropout model.

RESULTS

Disease progression (trough FEV1 measurements) was
modelled by a time–varying function. The treatment effect
was described by an indirect response model using an Emax
model in a multiplicative manner on Kin. In addition, a time-
to-event model with constant hazard was used for dropout. A
schematic representation of the structural model for disease
progression and drug effects is shown in Fig. 1. The following
disease progression and drug-related parameters were esti-
mated: disease baseline intercept (Int_Dis), disease baseline
slope (Slope_Dis), zero order input rate constant for the bio-
logical response (Kin), first order elimination rate constant
(KDE), maximum drug effect (Emax) and the ratio between
the apparent potency (EDK50) and Emax. Two parameters
(β0 and β2) were necessary to model the dropout patterns. A
constant hazard (β0) of 0.06 was estimated, which was

Disease progression, drug response and dropout in COPD 621



increased in case of treatment failure (i.e., lower FEV1 values).
The inclusion of β2 in the model led to a decrease of 15 points
in the MOFV as compared to the model only including β0.
The best fit was obtained with interindividual variability in-
cluded on the disease slope, the disease baseline intercept,
Emax, KDE, EDK50 and Kin. All covariance terms turned
to be lower than 0.1 and their removal did not appear to
decrease model performance or goodness of fit. Random
effects were not imputed on dropout parameters. Residual
errors were best described by an additive model. The param-
eter estimates for the base model are summarised in Table II.

During covariate model building, disease severity at base-
line, previous use of inhaled corticosteroids, gender and height

were retained as significant covariates on Int_Dis whereas
reversibility to salbutamol/salmeterol and disease severity at
baseline were significant covariates on Emax for the active
arm (salmeterol). All covariates were included in the final
model in a as shown in Eqs. 14 and 15. A summary of the
final parameter estimates including the aforementioned co-
variates is provided in Table II. All model parameters were
well estimated, as shown by the relative low standard error of
estimates (<50%) and by shrinkage levels <30% for all ran-
dom effects parameter values. Basic goodness-of-fit plots also
showed good model predictive performance (see Fig. 2).

Validation of the final model by external validation proce-
dures and bootstrapping yielded good predictive

Fig. 1 Schematic representation of
the structural model.
Bronchodilatory effect on FEV1 is
described by an Emax function using
a KPD model as input for drug
exposure. The overall response to
treatment accounts for the course
of disease, i.e., the natural decrease
in FEV1 over time, which has been
parameterised in terms of an
indirect response model. See text
for further explanation of the
parameters.

Table II Overview of Base and Final Model Parameter Estimates

Parameter Base model [RSE]a Final model [Bootstrap 90% CI]

ΘTVEmax 0.34 [0.04;11.5] 0.36 [0.05;0.81]

ΘEDK50/Emax
b (μg) 10.33 [0.64;20.02] 8.66 [5.19;11.39]

ΘKDE (hr
−1) 54.46 [1.64;1806] 52.46 [12.18;65.14]

ΘInt_Dis (disease intercept) (L) 0.9 [0.3;2.99] 1.16 [1.06;1.19]

Θ Slope_Dis (disease slope) (L/day) −0.82 [−1.93;-0.02] −0.596 [−0.214;]

ΘKin (L/day) 0.04 [0.001;1.32] 0.0004 [0.0001;0.0032]

Θseverity on Emax – 0.94 [0.08;0.99]

Θreversibility on Emax – 1.05 [1.02;1.52]

Θseverity on Int_Dis – 0.62 [0.22;0.84]

Θsex on Int_Dis – 0.82 [0.13;0.97]

ΘPICS on Int_Dis – 0.92 [0.77;0.94]

Θheight on Int_Dis – 1.90 [1.48;2.52]

Initial hazard term (β0) 0.006 [0.0001;0.33] 0.006 [0.000;0.041]

Proportional hazard term for informative dropout (β2) −0.843 [−0.11;−1.57] −0.880 [−0.19;−0.92]

IIVEDK50 (CV%) 8 [0.01;15.9] –

IIVEmax (CV%) 76 [0;153] 70 [32;108]

IIVInt_Dis (CV%) 35 [0;81] 25 [12;63]

IIVSlope_Dis (CV%) 16 [0;33] –

IIVKin (CV%) 10 [3;19.7] 8 [11;28]

σ (L) 0.36 [0.021;0.39] 0.13 [0.08;0.24]

a RSE relative standard errors; values computed from standard error of estimates generated by covariance step in NONMEM
b EDK50 estimates were based on a parameterisation relative to Emax
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performance. All observed parameter values obtained by
bootstrapping were found to be within the 90%-confidence
interval (n=100 bootstraps). In addition, as shown by the
visual predictive check in Fig. 3, most of the observed data
in the validation subset of data were distributed within the 5th
and 95th percentiles of the prediction intervals. For the sake of
clarity, similar predictive performance is observed when the
response profiles were split by severity status (severity status
being the covariate with the highest effect size) and by dose
group. The overlap between predicted and original distribu-
tions shows that the model accurately captures drug, disease
and dropout effects (Fig. 4).

One of the interesting findings from our analysis is that the
change in FEV1 values over time was found to be dependent

on the baseline characteristics. For instance, as shown in
Fig. 5, patients with a more severe disease status and
unfavourable covariate characteristics at baseline will have a
slower evolution over time and will be less sensitive to drug
effects (see Fig. 5(a) and (b)). The correlation between change
in FEV1 values over time and baseline characteristics is con-
sistent with indirect drug effects, as described by increasing
zero-order processes. This is particularly relevant for
salmeterol, given that baseline severity status shows a higher
effect on the disease slope than the active treatment itself when
salmeterol is administered at 50 μg doses according to a twice
daily-dosing regimen. On the other hand, higher sensitivity to
the drug effects was more pronounced in patients who show
reversibility to salbutamol/salmeterol at baseline.

Fig. 2 Basic goodness-of-fit plots for the final model, including population and individual predicted vs. observed FEV1, conditional weighted residuals vs. time and
individual predicted FEV1.

Disease progression, drug response and dropout in COPD 623



DISCUSSION

We have shown the performance of a joint model for trough
FEV1 in a large COPD patient population, which takes into
account disease progression, drug effects and dropout. Despite
the wide variation in the individual time course profiles, our

approach resulted in a model with appropriate predictive
performance, as shown by the precision in parameter esti-
mates and the quality of goodness of fit for both treated and
untreated arms of the study population.

Albeit not explicitly mechanistic, this model is consistent
the known underlying processes associated with the patho-
physiology of COPD. In fact, a more descriptive
parameterisation of the underlying disease processes may
not be feasible with data from typical Phase II clinical trials.
Moreover, previous research has shown that no clear correla-
tion exists between biomarkers of the underlying inflammato-
ry condition and common spirometric measures, such as
trough FEV1 or serial FEV1, making it difficult to define a
fully mechanistic parameterisation for disease processes
(20,21). Treatment response on FEV1 was therefore best
described by an Emax model.

Parameterisation of the disease processes was based on the
assumption that spirometric measures result from a series of
putative turnover (i.e., synthesis and degradation) processes,
which can be modelled as a zero-order input rate and leading
to FEV1 increase and a first-order elimination rate leading to
FEV1 decrease. The synthesis-related processes include all the
factors that can enhance the respiratory capacity, such as the
ciliary function, the physiological beta-adrenergic tonus and
the drug-related effects (i.e., beta agonism and muscarinic

Fig. 3 Visual predictive check stratified by (a) treatment (left panel: placebo, right panel: 50 μg dose), (b) by previous use of inhaled corticosteroids [PISU] (left
panel: no, right panel: yes), (c) by reversibility to salbutamol/salmeterol [REV] (left panel: non-reversible, right panel: reversible), and (d) by severity status [SEV] (left
panel: non-severe, right panel severe). Grey dots: observed concentrations, black dotted lines: limits of the 95% prediction intervals for the observations, black
dotted lines: limits of the 95% prediction intervals for the simulations, black continuous line: median line for the observations, red continuous line: median line for the
simulations. See text for further details on the scenarios selected for the VPC.

Fig. 4 Kaplan Meier plots of observed (black) and simulated (grey) dropout
for a subset of the pooled studies used for the current analysis.
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antagonism) whereas the degradation-related processes com-
prise the secretory (mucus production) function of the epithe-
lial cells and inflammatory components which restrict airway
reversibility in COPD. This type of parameterisation has been
used to describe several physiological responses involving in-
flammatory conditions (22–24). As indicated previously, our
modelling approach incorporated disease progression, which
is expressed as a time-varying increase in the ratio between
degradation and synthesis of response. This model is therefore
consistent with the results of several previously reported trials
(26–30) showing that bronchodilators effects (including β2-
agonists, such as salmeterol and M2 antagonists, such as
tiotropium) in COPD are characterised by a rapid improve-
ment of the lung function followed by a long steady phase. In
addition, our analysis replicates the unexplained variability
observed in FEV1 in previously published models, which was
estimated to be approximately 0.1 L. The additive residual
variability in FEV1 was 0.13 L in our model.

The different covariates included in our final model were
measured or recorded at the start of the studies (disease
severity, gender, previous use of inhaled corticosteroids, body
height). Whilst their role in the long-term prognosis of COPD
has been previously demonstrated (31,32), this is the first time
that their influence on FEV1 is described in a quantitative
manner using a joint model, in which dropout and disease
progression are considered concurrently. In addition, our
choice of parameterisation has enabled the discrimination
between disease and drug-related changes in response. This
approach also shows how dropout affects drug-specific param-
eters. Indeed, when fitting the model to the data without
taking dropout into account, differences of 37 and 55% where
found in the obtained estimates of EDK50 and Emax,
respectively.

Today’s pursuit for disease-modifying drugs and
personalised therapies requires one to understand the deter-
minants of response and variability as the basis for subsequent
evaluation of candidate molecules and tailored dosing

regimens. Equally important is our understanding of the role
of such factors on trial design during the evaluation of safety
and efficacy (33). Unfortunately, for many clinical experts
modelling results do not provide immediate evidence of the
impact that such a parametric representation of disease pro-
gression can have on the development of novel anti-
inflammatory drugs for COPD. From a theoretical perspec-
tive, the availability of drug- and system-specific parameters
enables us to predict the outcome of novel interventions and
handle potential confounders of response as covariates. Fur-
thermore, our analysis clearly shows that despite the contro-
versy regarding the use of FEV1 as a marker of disease
progression (34), further insight into the underlying disease
processes can provide the basis for patient selection and en-
richment in clinical trials.

As previously stated, the primary purpose of this model will
be its use in clinical trial simulations. The added value of
scenario analysis and quantitative assessment of the impact
of enrichment procedures on treatment response in Phase IIa
and IIb trials will be the object of separate report in which a
series of trial designs and treatment options are scrutinised.
Yet, from a purely statistical perspective, two immediate les-
sons can be learnt from this analysis. First, the inclusion of a
dropout model has highlighted the implication of non-
random data missingness in longitudinal efficacy and safety
trials. Of particular interest is the underestimation of the
disease status (described by FEV1 values) and consequently
inaccurate estimation of the drug effects. Second, the potential
bias in effect size when comparing changes in FEV1 relative to
baseline (ΔFEV1) for different treatment arms (active arm vs.
placebo) based on traditional hypothesis testing (e.g., unpaired
ANOVA test). This approach can easily fail to identify drug
effects when confounding effects such as baseline characteris-
tics are not explicitly incorporated as covariates.

We need to acknowledge a few limitations in the analysis
described here. It must be noticed that parameter
identifiability issues arise when sampling intervals are wide

Fig. 5 Simulations (n=1000) of four scenarios based on the final model. In blue: median and 95% prediction intervals for the placebo and in black: median and
95% prediction intervals for the active arm. (a) left panel: non-reversible and severe patients, right panel: reversible and non-severe patients; (b) patients with
height >172 cm and previous use of inhaled corticosteroids, right panel: patients with height >172 cm and no previous use of inhaled corticosteroids. To ensure
appropriate comparisons between the groups, the remaining covariates were kept in a balanced manner in each group.
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and data on different treatment levels do not exist (i.e., only
one active dose level is usually evaluated in a clinical protocol).
This issue results in parameter uncertainty, as shown by the
wide confidence intervals obtained for most parameter esti-
mates. This limitation is unlikely to be overcome unless phase
II protocols are designed with the explicit objective of
characterising exposure-response relationships (33). In addi-
tion, estimation of drug-specific parameters such as Emax and
EC50 could not be obtained solely from the available clinical
data. The use of prior information was required under the
assumption of comparable, exchangeable experimental con-
ditions across studies. We also emphasise the role of exclusion
criteria on the identification of covariates and subsequent
estimation of covariate effect size. Prediction of treatment
effect in a real-life population requires one to account for
those patients who are normally excluded from clinical trial
protocols.

CONCLUSION

Using a joint model, we have shown that gender, height,
disease severity at baseline, previous use of corticosteroids
and dropout rates should be taken into consideration when
designing early trials. We anticipate its value in the design of
prospective trials for which currently used statistical ap-
proaches are inadequate or incomplete. Incorporation of the
various interacting factors into a single model will offer the
basis for patient enrichment and improved dose rationale in
COPD.
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