
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

DOCTOR OF SCIENCES

Constraint Enforcement on Decision Trees and its Application to Global Explainability

Nanfack, Geraldin

Award date:
2022

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 20. Apr. 2024

https://researchportal.unamur.be/en/studentTheses/8c0d57b4-0521-420b-85dd-fab90d8246a1

Constraint Enforcement on Decision Trees and

its Application to Global Explainability

Géraldin Nanfack

A thesis submitted in fulfilment of the requirements for the
degree of Doctor of Science in Computer Science

Composition of the Jury:

Prof. Wim Vanhoof, President, University of Namur, Belgium
Prof. Benoît Frénay, Supervisor, University of Namur, Belgium
Dr. Paul Temple, Co-supervisor, Université de Rennes, France

Prof. Michel Verleysen, Université catholique de Louvain, Belgium
Dr. Gilles Perrouin, Université de Namur, Belgium

Prof. Hendrik Blockeel, Katholieke Universiteit Leuven, Belgium

December 14, 2022

Contents

1 Introduction 5
1.1 Context, Scope and Motivation . 5
1.2 Research Problems . 6
1.3 Contributions . 7

2 Background 9
2.1 Supervised Machine Learning . 10
2.2 Decision Trees and Multi-Layer Perceptrons 11
2.3 Discrete Latent Variable Models and EM Algorithm 16
2.4 Constraints on Machine Learning Models 19
2.5 Brief Overview of Optimisation for Model Fitting 21

3 Constraint Enforcement on Decision Trees: a Survey 35
3.1 Motivation and Scope . 36
3.2 Source of Constraints . 40
3.3 Taxonomy of Constraints on Decision Trees 41
3.4 Taxonomy of Methods through the Lens of Optimisation 55
3.5 Discussion . 61
3.6 Conclusion . 69

4 Constraint Enforcement on Decision Trees Using Top-down
Greedy Methods: Case of Fairness Constraints 71
4.1 On the Need for Fair Learning Algorithms 72
4.2 Related Work on Fair Decision Tree Learners 76
4.3 Distance to Decision Boundary for Decision Trees 77
4.4 Boundary-based Fairness Constraints on Decision Trees 78
4.5 Experimental Results . 79
4.6 Conclusion . 84

i

CONTENTS

5 Constraint Enforcement on Decision Trees Using Linear Pro-
gramming 87
5.1 Description of the Problem, Motivation and Related Work 88
5.2 Our Tree Representation and First Formulation to Enforce Constraints

on Decision Trees . 93
5.3 Second Formulation to Handle Continuous Features 100
5.4 Formalising Domain Knowledge as Constraints 101
5.5 Use Cases with Constraint Enforcement on Decision Trees 105
5.6 Constraint-free Benchmarking . 112
5.7 On the Impact of Discretisation . 118
5.8 Computational Time . 119
5.9 Conclusion . 121

6 Constraint Enforcement for Global Explainability 123
6.1 Context, Motivation, Problem and Related Work 124
6.2 Co-learning Framework To Enforce the Explainability Constraints . . 126
6.3 Empirical Results and Discussion . 133
6.4 Conclusion and Future Work . 138

7 Discussion 141
7.1 On the Use of Constraint Enforcement for Global Explainability . . . 141
7.2 On the Imposition of Fairness Constraints On Top-down Greedy

Decision Trees . 142
7.3 On the Integration of Domain-knowledge Constraints in Optimal

Decision Tree Learners . 143

8 Conclusion and Future Works 145
8.1 Summary of our Contributions and Results 145
8.2 Short-term Future Work . 146
8.3 Long-term Future Work . 148

Bibliography 150

ii

CONTENTS

iii

Abstract

Machine learning is taking an increasing place in our society, even in high-stake and
highly regulated domains such as finance and health. In such domains, automatic
decisions produced by machine learning models may be expected to meet guidelines.
However, as a research field, machine learning has been much more focused on
pushing the boundary of performance of existing models, or on designing more
powerful models. As a result, less attention has been paid to either the enforcement
of guidelines or the incorporation of domain knowledge to prevent undesirable
behaviour.

This thesis first focuses on constraint enforcement on one of the simplest,
nonlinear and most popular classes of machine learning models which are decision
trees. The thesis also uses constraint enforcement to improve the explainability
by decision rules of differentiable black-box models. The thesis makes three
contributions to machine learning research.

First, the thesis thoroughly investigates and analyses techniques available
in the literature that tackle the imposition of constraints on decision trees. In
particular, the thesis proposes a taxonomy of constraints and another taxonomy of
approaches through the lens of optimisation tools. The taxonomy of constraints
defined structure-level constraints (e.g., size, depth), feature-level constraints
(e.g., monotonicity, fairness), instance-level constraints (e.g., robustness). The
taxonomy of methods includes top-down greedy, safe enumeration, LP/SAT/CP
and probabilistic (including Bayesian) approaches.

Second, still considering decision tree models, the thesis introduces two tech-
niques to enforce constraints on decision trees. The first technique leverages soft
constraint enforcement and introduces a method called BDT, which integrates
boundary-based fairness constraints to learn fairer decision trees. The second
technique called CPTree leverages hard constraint enforcement and introduces
a framework based on MIP/CP to learn decision trees under domain-knowledge
constraints.

1

CONTENTS

Third, considering differentiable black-box models such as multi-layer percep-
trons (MLPs) the thesis introduces a statistical framework where these models can
be implicitly and softly constrained to be easily explainable by decision rules.

2

Acknowledgement
“Failure is an incredible learning experience. It
teaches you humility. It teaches you to work
harder. It is the first step to understanding”.
Richard Feynman

*** The following text is intentionally written in French language. ***

En tant que chrétien catholique, mon ultime remerciement va à l’endroit de Dieu,
en qui sa Grâce, non pas la chance ni mes compétences, a amplement suffit pour
rencontrer des personnes merveilleuses qui m’ont aidé à accomplir ce travail. Merci
Seigneur!

Après avoir dit cela, je tiens à remercier les institutions qui m’ont permis
d’effectuer ce travail. Je remercie alors l’Université de Namur qui m’a accueillie
pendant ces quatre années. Je remercie également le FNRS et le projet EOS Ver-
iLearn qui, grâce au financement, m’ont permis de m’éloigner des besoins primaires
pour me consacrer sur ma thèse. Merci! Je remercie très subtilement, l’école
Polytechnique de Yaoundé où j’ai passé mes trois premières années universitaires
et l’École Nationale Supérieure d’Analyse des Systèmes de Rabat qui m’a permis
d’obtenir mon Master. Merci!

La toute première personne à qui j’exprime ma profonde gratitude est na-
turellement Benoît, mon promoteur. Merci Benoît de m’avoir sélectionné comme
doctorant pour ce projet de thèse. J’avais choisi de faire ma thèse avec toi pour te
ressembler dans ta rigueur scientifique, ta bravoure et la qualité impressionnante
de tes travaux. De façon absolue, je n’ai appris qu’une toute petite fraction de
compétences d’un chercheur scientifique. Mais de façon relative, par rapport à ce
que je disposais avant de commencer cette thèse, j’ai énormément appris grâce
au travail avec toi. J’ai connu pas mal d’échecs, entièrement propres à moi. Ma
passion pour la science est restée toujours inébranlable parce que malgré tout, le
magnifique humain a toujours lancé un appel pour me soutenir. Merci Benoît!

Je vais aussi remercier infiniment mon co-promoteur Paul. J’ai probablement
été très embarassant dans mon caractère, mon anglais, mes erreurs. Tu as toujours
su la formule adéquate pour me le faire remarquer. Ton sens critique et ta

3

CONTENTS

curiosité scientifique m’ont beaucoup aidé à m’améliorer, à travailler davantage.
Intrinsèquement régulièrement têtu, j’ai appris à être humble si bien que j’ai
quasiment toujours tendance à venir t’embêter pour demander conseils. Merci
Paul!

Je remercierai aussi mon jury de thèse. Merci d’abord aux membres de mon
comité d’accompagnement Michel et Gilles pour tout le feedback donné à mes
travaux! Merci ensuite au président du jury Wim et un grand merci à Hendrik
pour toutes ses questions et suggestions qui m’ont significativement aidé à être
précis et à identifier mes faiblesses.

Je remercierai brièvement tous mes collègues à l’UNamur. Je suis désolé de ne
pas tous vous citer. Je citerai ici mes collègues/collaborateurs du bureau avec qui
nous avons eu beaucoup d’échanges scientifiques. Adrien, Minh, Valentin, Becca,
Jérôme, Charline, Pierre, merci à vous! Merci aussi particulièrement aux amis du
mini-foot du mercredi, en particulier Pol, Loup et Mathieu!

Je remercierai énormément ma mère, elle qui me disait durant mon enfance
qu’observant mes résultats, je peux tout faire. Grâce à elle, j’ai connu la “niaque”,
qui m’aide durablement à vaincre tous mes obstacles. Merci Mater! Un grand
merci également est rendu à mon papa, qui, souvent contre son gré, a accepté mes
choix comme celui d’opter pour le génie informatique alors qu’il aurait surtout
voulu que son fils fasse le génie civil. Merci Pater! Merci à tous mes frères et soeurs
qui m’ont toujours soutenu. Merci Judicaëlle, Kévin, William, Juvenale, Aurel et
Brayan! J’ai une large famille... je ne saurai malheureusement pas tous vous citer.
Mais un clin d’oeil à Gauss, Ange, Idriss, Paterne et le Père Josué. Merci famille
et amis très particuliers!

Je remercierai enfin Danielle, ma fiancée. Depuis 2015, tu as toujours été à mes
côtés, m’a soutenu à distance quand j’étais en séjour au Maroc et durant les deux
premières années de ma thèse. Tu as fait beaucoup de compromis de ta vie pour
être avec moi. Malheureusement,je n’en ai pas fait beaucoup. Merci Princesse!

Sans tous vous nommer, tous mes amis, toutes mes amies, personnes rencontrées,
je n’aurai pas beaucoup d’occasions de vous le dire. Merci!

4

Chapter 1

Introduction

This thesis is entitled “Constraint Enforcement on Decision Trees and its Application
to Global Explainability”. It propses techniques to infuse domain knowledge into
specific supervised machine learning (ML) models. These techniques are mainly
approached from a constrained optimisation perspective. Therefore, the thesis
lies at the intersection between supervised machine learning and constrained
optimisation.

1.1 Context, Scope and Motivation

Almost everywhere where automatic decisions can be made, machine learning
is taking an increasing place in our society. Examples range from applications
in finance, human resource management (job hiring), health (computer-aided
diagnosis) to chemistry (computer-aided drug design) (Mehrabi et al., 2021; Ren
et al., 2022). This increasing place taken by machine learning stems from the ease
of data collection, which is partially caused by the growth of computer storage and
power, and also by the increasingly digital world. However, this place intersects
with several spheres of our society, which are highly regulated. Hence, automatic
decisions produced by machine learning models are expected to meet guidelines.
Otherwise, these models could violate laws by producing, for example, illegal
decisions.

As a research field, machine learning has been much more focused on pushing the
boundary of performance of existing models, or on designing more powerful models.
As a result, less attention has been paid to either the enforcement of guidelines or
the incorporation of domain knowledge to prevent undesirable behaviour. Moreover,

5

CHAPTER 1. INTRODUCTION

even when guidelines (usually in the form of prior knowledge) are incorporated
into models, these, instead, have been made to improve performance (e.g., in the
case the number of data instances is small) rather than to seek certain guarantees
on produced models.

As a concrete example, consider an artificial intelligence (AI) system in a bank,
which leverages an ML model whose task is to predict whether a customer should
be granted credit. This AI system and the predictive ML model, operating in an
ecosystem highly regulated by laws and domain-related best practices, are likely
to meet stringent requirements. For example, besides being accurate as much as
possible, it may be desirable that the ML model should not explicitly as well as
implicitly use some sensitive features such as gender to make predictions. Indeed,
removing the sensitive feature may not solve the issue because a sensitive feature
such as the race may be highly correlated with other features such as district or
quarter of residence. In addition, this ML model may also be required to give
reasons in human-understandable terms why it produced some predictions. The
model may also be required to not disclose the identity of customers so that the
bank can use this guarantee for marketing strategies.

In this thesis, constraints on the model will represent the above discussed
guidelines or requirements. As there are several constraints that can depend on the
type of models, and since there are plenty of models, this thesis is focused on two
supervised ML models: decision tree models because of their relative simplicity
and multi-layer perceptions because they are the basis of the preeminent sub-field
of ML, which is deep learning. However, some of the techniques presented can be
applied to other supervised models. Additionally, this thesis mainly focuses on
tabular data, though again, some of the techniques developed can be applied to
different data modalities. The overall goal is to learn models that could guarantee
a satisfaction of constraints.

1.2 Research Problems

In order to achieve the goal of this thesis that aims to develop techniques to
easily integrate constraints on decision trees and MLP models, we formulate three
research questions. The constraints considered are domain-knowledge constraints
(fairness constraints included) for decision trees and the explainability constraints
on the black-box MLPs. This thesis is therefore guided by the following research
questions.

1. RQ1: How does the literature tackle the problem of learning decision tree

6

CHAPTER 1. INTRODUCTION

models under constraints? More specifically, (RQ1.1) What are the con-
straints applied to decision trees? And (RQ1.2) what are the corresponding
methods to learn constrained decision trees? The goal of this research ques-
tion is to have a thorough analysis of related works. This analysis highlighted
several gaps in the literature, whose two of them are expressed in the next
research questions.

2. RQ2: How to learn decision trees under domain-knowledge constraints?
This research question will be viewed in the lens of constrained optimisation.

3. RQ3: How to leverage constraint enforcement to learn more easy-to-explain
(globally) black-box models such MLPs? According to the related work
studied thanks to RQ1, decision trees are well used to globally explain
“black-box” models. However, very little to no work examine how compatible
(or easy to explain by a decision tree) a black-box is. RQ3 aims to leverage
constraint enforcement to integrate this requirement for a black-box model.

1.3 Contributions

The previous research questions correspond to the contributions of this thesis.
These contributions are presented in details in the chapters.

In particular, first, Chapter 3 aims to answer RQ1 by studying and analysing
the related works with the emphasis on optimisation. Second, Chapter 4 proposes
a technique to impose fairness constraints on decision trees. Third, Chapter 5
introduces a flexible framework to learn decision trees under domain-knowledge
constraints. Both chapters 4 and 5 aim to answer RQ2. Four, Chapter 6 answers
the research question RQ3 by presenting a framework where differentiable black-
box models can be constrained to be more easily and globally explainable by
decision rules. The global discussion is presented in Chapter 7. Chapter 8 finally
presents the conclusion and future works.

The following works were produced during my own

1. Nanfack, Géraldin, Delchevalerie, Valentin, and Frénay, Benoît. “Boundary-
Based Fairness Constraints in Decision Trees and Random Forests”. In
Proc. of the 29th European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning. 2021. p. 375-380;

2. Nanfack, Géraldin, Temple, Paul, and Frénay, Benoît. “Global explanations
with decision rules: a co-learning approach”. In Proc. of the 37th Conference
on Uncertainty in Artificial Intelligence. PMLR, 2021. p. 589-599.;

7

CHAPTER 1. INTRODUCTION

3. Nanfack, Géraldin, Temple, Paul, and Frénay Benoît. “Constraint En-
forcement on Decision Trees: a Survey”. ACM Computing Surveys (CSUR).
2022;

4. Nanfack, Géraldin, Temple, Paul and Frénay, Benoît. “Learning Cus-
tomised Decision Trees under Domain-knowledge Constraints”. Under revi-
sion in the Pattern Recognition journal. 2022.

Apart from the above scientific productions, other works have been done
through collaborations with colleagues. These works are not closely related to my
thesis. They are listed bellow.

1. Bibal, Adrien, VU, Viet Minh, Nanfack, Géraldin, and Frénay, Benoît.
“Explaining t-SNE embeddings locally by adapting LIME”. In Proc. of the
28th European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning. 2020. p. 393-398.

2. Stassin, Sédrick, Nanfack, Géraldin, Englebert, Alexandre, Peiffer, Gilles,
Albert, Julien, Versbraegen, Nassim, Doh, Miriam, Riche, Nicolas, Frénay,
Benoît, De Vleeschouwer, Christophe. “An Experimental Investigation into
the Evaluation of Explainability Methods”. 2022. To be submitted to
PAKDD’23.

3. Blockeel, Hendrik, Devos, Laurens, Frénay, Benoît, Nanfack, Géraldin,
Nijssen, Siegfried. “Decision Tree: Past, Present and Future”. 2022. To be
submitted to the journal Frontiers in Artificial Intelligence.

8

Chapter 2

Background

Contents
2.1 Supervised Machine Learning 10

2.1.1 Model Fitting . 10
2.1.2 Model Evaluation . 11

2.2 Decision Trees and Multi-Layer Perceptrons 11
2.2.1 Decision Trees . 12
2.2.2 Multilayer Perceptrons 14

2.3 Discrete Latent Variable Models and EM Algorithm . 16
2.3.1 Gaussian Mixture Model 17
2.3.2 Model Fitting and the EM Algorithm 18

2.4 Constraints on Machine Learning Models 19
2.5 Brief Overview of Optimisation for Model Fitting . . . 21

2.5.1 Linear Optimisation . 21
2.5.2 Nonlinear Optimisation 29

This chapter introduces supervised machine learning with a mix of inspiration
from Shalev-Shwartz and Ben-David (2014) and Murphy (2012). The chapter
also presents the class of models that are used in this thesis and defines domain-
constraints that will be used.

9

CHAPTER 2. BACKGROUND

2.1 Supervised Machine Learning

In machine learning, we have two main quantities of interest. We consider a sample
of observations D and an (unknown) quantity θ∗ that represents a function of a
system that we want to learn. There exists two learning approaches depending
on how we see the learning problem: the frequentist and the Bayesian. While the
frequentist approach tends to focus more on the sampling properties (in terms of
p(D|θ) 1) of estimators of θ∗, the Bayesian approach focuses more on the posterior
distribution p(θ|D). In the following, we describe the frequentist approach of
supervised machine learning, in particular for classification tasks, which is the
most common setting. The description can be easily extended for regression tasks.

In supervised ML, given a classification task with a data sample D = {(xi, yi)}Ni=1,
where the inputs-output pairs (x, y) ∈ X × Y, the goal is to learn the mapping
f2: X −→ Y . Datapoints or instances xi are vectors of observations of M random
variables X1, X2, ..., Xm. They are usually assumed to be independently, indenti-
cally and distributed (i.i.d.) according to a probability distribution pdata over X
before being labelled by the function f , i.e., yi = f(xi).

In practice the true function f as well as the true data distribution pdata that
allowed to generate data are usually unknown. We typically assume a hypothesis
class H = {fθ,θ ∈ Θ}, powerful enough to hopefully contain f . The goal is to
learn an hypothesis fθ̂ that minimises the error:

L(pdata,f)(fθ̂) = Px∼pdata

[
fθ̂(x) ̸= f(x)

]
. (2.1)

L(pdata,f)(fθ̂) is called the generalisation error or the risk or the true error of
fθ̂.

2.1.1 Model Fitting

Again, despite being unknown, pdata appears on the right hand side of Eq.2.1. We
therefore eventually use the empirical distribution by relying on the (training)
sample D to learn the function fθ̂ through the empirical risk minimisation

θ̂ = argmin
θ

1

N

N∑
i=1

L (fθ(xi), yi) , (2.2)

1θ is an estimation of θ∗

2f here is similar to θ∗.

10

CHAPTER 2. BACKGROUND

where L : H×X ×Y −→ R+ (or simply Y ×Y −→ R+) is a loss function. Solving
the optimisation problem of Eq. 2.2 is called model fitting.

We will mainly use two classical losses in this thesis despite there are plenty
that exist.

1. The 0− 1 loss: it is expressed as follow

L0−1 (fθ(xi), yi)) =

{
1 if fθ(xi) ̸= yi,

0 Otherwise.

2. The negative log likelihood: when fθ can be viewed as a (conditional)
probability distribution over X × Y, e.g, simply p(y|x;θ), one classical loss
is the negative log of this probability. This can be expressed as

L (fθ(xi), yi) = − log p(yi|xi;θ).

Minimising Eq. 2.2 using this loss3 gives the maximum likelihood estimate
(MLE) θ̂MLE, which rewritten as

θ̂MLE = argmin
θ

−
N∑
i=1

log p(yi|xi;θ), (2.3)

2.1.2 Model Evaluation

After choosing the hypothesis space H and fitting the model with Eq. 2.2, one
must evaluate the ability of the model to generalise on unseen data. This is done
by estimating the true risk in Eq. 2.1 using additional set of examples, independent
from the training sample D, but assumed to be sampled according to pdata.

In several situations, we split the available examples in three sets: training,
validation and test sets. We use the first set to learn or to fit models. The second
set, which is the validation set is used for model selection. The last set, the test
set is used to estimate the true error of the model.

2.2 Decision Trees and Multi-Layer Perceptrons

There exist several hypothesis classes H. This section describes two particular
classes of supervised learning models.

3Note the absence of the term 1
N

, which has no effect on the optimisation problem.

11

CHAPTER 2. BACKGROUND

2.2.1 Decision Trees

A decision tree is a class of machine learning models primarily introduced in
the supervised setting, although they have also been extended to unsupervised
learning tasks such as clustering (Blockeel et al., 1998). The following describes
the classification trees, inspired from Murphy (2022, 2012). Regression trees are
easily extendable with this description.

A decision tree (e.g, see Fig. 2.1) can be described using the graph formalism
of Safavian and Landgrebe (1991). Using this formalism, a decision tree can be
viewed as a directed acyclic graph, with one node (called the root node) without
incoming edges, where (i) every node except the root node has one incoming edge
and (ii) there is a unique path from each node to the root node. Each node that
has at least two child nodes is called internal nodes and nodes that do not have
child nodes are called leaf nodes. A tree is said to be binary if each internal node
(the root included) has exactly two child nodes. Each edge on the tree is labelled by
a splitting rule (e.g., X1 ≤ α11) that has been produced by the learning algorithm.
A splitting rule can involve only one variable (as in Fig. 2.1): in this case, the
decision tree is said to be univariate. Finally, each leaf node is labelled by a class.
It is worth mentioning that a decision tree geometrically defines a partitioning
of the input space X into a set of disjoint regions Rk, k = 1..L, where L is the
number of leaf nodes.

The decision rule function i.e., the mapping from the input space to the output
space of the decision tree can be expressed as fθ(x) =

∑L
k=1wk1Rk

(x), where 1A
is the indicator function over the set A and wj is the label of the k-th leaf node or
the region Rk. If Rk is viewed as Rk = {α(1)

kd ≤ xd ≤ α
(2)
kd }

M
d=1, where α

(i)
kd ∈ R̄ are

the boundaries4 and θ = {(Rk, wk), k = 1..L}, the decision tree learning problem
can be framed as a minimisation problem of the following loss

L(θ) =
L∑

k=1

∑
xi∈Rk,i=1..N

L0−1(yi, wk). (2.4)

As all the Rk share some parameters depending on the tree structure and as
they are involved in θ, one can see that the loss in Eq.2.4 therefore depends on
the discrete tree structure. By analysing the search space of the partitioning class,
Das and Goodrich (1997) (resp. Hyafil and Rivest (1976)) show that finding the
optimal decision tree that minimises Eq. 2.4 (resp. the size of tree) is NP-complete.

4Note that the upper boundary α
(2)
kd can be +∞ and the lower boundary α

(1)
kd can be −∞,

whenever relevant.

12

CHAPTER 2. BACKGROUND

In practice, one of the well-known method to learn decision trees is a top-down
greedy procedure in which we recursively (or iteratively) grow the tree by adding
one node at a time. This is the approach used by the popular CART (Breiman
et al., 1984), C4.5 (Quinlan, 1993) and ID3 (Quinlan, 1986) algorithms.

Algorithm 2.1 Recursive procedure to learn a classification binary tree

Input: training set {xi, yi}Ni=1

Output: A decision tree fθ, with θ = {(Rk, wk), k = 1..L}
1: function FitTreeDepthS(node, D, depth)
2: // c(.) is an impurity function.
3: //DL(j, t) = {(xi, yi) ∈ D : xi,j ≤ t}
4: // DR(j, t) = {(xi, yi) ∈ D : xi,j > t}
5: (j∗, t∗j∗) = argminj=1..M, t∈Tj

|DL(j,t)|
|D| c

(
DL(j, t)

)
+ |DL(j,t)|

|D| c
(
DR(j, t)

)
6: if Not stoppingCriteria

(
j∗, t∗,DR(j∗, t∗),DR(j∗, t∗)

)
then

7: return node
8: else
9: node.left = FitTreeDepthS

(
node,DL(j∗, t∗), depth + 1

)
10: node.right = FitTreeDepthS

(
node,DR(j∗, t∗), depth + 1

)
11: node.split = {Xj∗ ≤ t∗}
12: return node
13: end if
14: end function

The Algorithm 2.1 shows a template of top-down greedy learning algorithms
of a decision tree. The core idea is to locally (inside internal node) optimise the
selection of the best feature index j∗ and the best threshold split t∗j∗ that minimises
a surrogate loss of the misclassification error, i.e.,

min
j=1..M, t∈Tj

|DL(j, t)|
|D|

c
(
DL(j, t)

)
+

|DR(j, t)|
|D|

c
(
DR(j, t)

)
, (2.5)

where DL(j, t) (resp. DR(j, t)) is the subset of instances from the parent node that
satisfies the condition Xj ≤ t (resp. Xj > t), Tj is the set of possible threshold
split of the j-th feature and c(.) is an impurity function. The Gini index and the
Shannon entropy are well-known examples.

Let π̂c = 1
|D|

∑
xi∈D 1{y=c}(yi), where C is the number of classes, then the Gini

index is defined as

G(π̂) =

C∑
c=1

π̂c(1− π̂c) (2.6)

13

CHAPTER 2. BACKGROUND

Figure 2.1: A classification tree.

and the Shannon entropy is defined as

H(π̂) = −
C∑
c=1

π̂c log π̂c. (2.7)

It is important to note that Algorithm 2.1 heuristically optimises the mis-
classification loss in Equation 2.4 through subsequent minimisation of impurity
functions computed locally on each internal node. As analysed by Dietterich (2000)
through the analogy of boosting, under reasonable assumptions, it has been shown
that greedy approaches can provide a certain level of accuracy over training data
under sufficient number of leaves. However, they cannot provide a “certificate”
of optimality for a given number of leaves or depth. From the rest of the thesis,
to be coherent with the literature, any method that provably learn an optimal
decision tree under misclassification loss over training data will be called optimal
tree learner.

2.2.2 Multilayer Perceptrons

Also called deep feedforward networks or feedforward neural networks, Multilayer
perceptrons (MLPs) represent the cornerstone of deep learning.

Let x ∈ Rm denotes an input, m being the number of features. A one-hidden-
layer MLP with d1 hidden units and d2 outputs is described with the following
equations

h(1) = Φ1

(
W (1) Tx+ b(1)

)
(2.8)

14

CHAPTER 2. BACKGROUND

o = Φ2

(
W (2) Th(1) + b(2)

)
, (2.9)

where h(1) is the first hidden representation of the input x, W (1) ∈ Rm×d1 (resp.
W (2) ∈ Rd1×d2) is the weight of the first hidden layer (resp. of the output layer),
b(1) ∈ Rd1 (resp. b(2) ∈ Rd2) is the bias of the first hidden layer (resp. output layer),
Φ1 and Φ2 are the activation functions of the corresponding layers. Therefore, if
one wants to use a one-hidden-layer MLP for the classification task, the function
can be written as

fθ(x) = softmax(o) (2.10)

= softmax
(
Φ2

(
W (2) Th(1) + b(2)

))
(2.11)

= softmax
(
Φ2

(
W (2) TΦ1

(
W (1) Tx+ b(1)

)
+ b(2)

))
(2.12)

where softmax(z)j =
exp zj∑
j′ exp zj′

and here, Φ2 can be the identity function.

In contrast to directly operating with input features as with shallow models
such as decision trees, MLPs rather allow to learn more hidden and abstract-level
representations h of the inputs. Another interesting propriety (though sometimes
useless in practice) is their universal approximation capability for a one-hidden-layer
with enough units (Hornik, 1991). Figure 2.2 shows a one-hidden-layer MLP.

A one-hidden-layer MLP in Eq. 2.10 can be rewritten in the form

fθ(x) = f
(2)
θ2

(
f
(1)
θ1

(x)
)
, (2.13)

where f
(2)
θ2

(z) = softmax
(
Φ2

(
W (2) Tz + b(2)

))
, f

(1)
θ1

(x) = Φ1

(
W (1) Tx+ b(1)

)
,

θ = {θ1,θ2}, θ1 = {W (1), b(1)} and θ2 = {W (2), b(2)}.
It is therefore possible to stack several hidden layers with a L-hidden-layer

MLP through
fθ(x) = f

(L+1)
θL+1

(
...f

(2)
θ2

(
f
(1)
θ1

(x)
))

, (2.14)

Given the above MLP model, the classical way to fit this model is by considering
the softmax as a categorical distribution and then optimise the negative log
likelihood loss

L(θ) = −
N∑
i=1

log p(yi|xi;θ) = −
N∑
i=1

C∑
c=1

1{y=c}(yi) log fθ(xi)c. (2.15)

15

CHAPTER 2. BACKGROUND

Figure 2.2: Multilayer Perceptron with one hidden layer, 4 input features and 3 outputs.
Input features x are represented at the bottom of the architecture. The first hidden
representations h1 are at the middle. The outputs o are represented at the top.

The rightmost term in Eq. 2.15 is called the cross-entropy loss. Since all
elements in θ have continuous values, minimising L(θ) is typically done with a
one-order non-linear optimisation i.e., gradient-based optimisation through an
iterative process

θt+1 = θt + ηtdt (2.16)

where dt = −∇θL(θt) is the descent direction and ηt is the step size or the learning
rate at the iteration t. In practice, the gradient is computed using a chain rule
over the reverse-order differentiation. This algorithm is known as backpropagation.
Additionally, it is usually common when doing updating in Eq. 2.16 to only
consider a mini-batch B of training inputs xi. This optimisation technique is
called stochastic gradient descent (SGD). Finally, the stopping criteria of this
optimisation process is the necessary condition of optimality in one-order non-linear
optimisation, i.e., ∇θL(θt) = 0.

2.3 Discrete Latent Variable Models and EM Algorithm

This section describes (in part based on Murphy (2012)) in the context of (un)
supervised 5 learning a popular type of model classes that we will use in Chapter 6.

5In the Chapter 1, we said that we focus on supervised learning. Discrete latent variable
can be used in both supervised and unsupervised learning. For the simplicity of presentation,
we describe them here in the context of unsupervised learning. However, we will use them in

16

CHAPTER 2. BACKGROUND

Figure 2.3: A latent variable model represented as a directed graphical model inspired
from Murphy (2012). White nodes represent unobserved random variables whereas grey
nodes represent observed random variables. Arrows represent the data generative process.

This type of model is the discrete latent variable model. A latent variable term here
means that the model assumes that there are some hidden or unknown variables
z that for example allow to generate observed variables x. Figure 2.3 shows a
graphical representation of this type of models. Note that the θx and θz are
represented in the figure as random variables. However, in the following, they will
be seen as real-valued parameters (point estimates instead of distributions).

We zoom in a particular class of model called (finite) Gaussian mixture models
(GMM), where z follows a categorical distribution and p(x|z = k,θ) is a Gaussian
(normal) distribution.

2.3.1 Gaussian Mixture Model

Let’s suppose that we have N observations xi that we want to infer some K
abstract or hidden categories (handled through the latent variable z) over these
observations. The GMM can be described with the equation

p(xi|θ) =
K∑
k=1

p(zi = k|θ)p(xi|zi = k|θ) =
K∑
k=1

πkN (xi|µk,Σk), (2.17)

where N (x|µk,Σk) = 1
(2π)m/2|Σ|1/2 exp−

1
2(x − µk)

TΣ−1
k (x − µk) is the Gaus-

sian probability distribution function (Gaussian PDF) with mean µk and the
covariance matrix Σk, πk(k = 1..K) are the mixing components of the mixture,
θ = {πk, µk,Σk; k = 1..K}.

Chapter 6 for supervised learning.

17

CHAPTER 2. BACKGROUND

2.3.2 Model Fitting and the EM Algorithm

The log likelihood of the GMM is given by

L(θ) =
∑
i

log

[∑
zi

p(xi, zi|θ).

]
(2.18)

Optimising directly Eq. 2.18 in its current form is difficult because of the
presence of zi that are unobserved. A first approach is to use gradient descent
by taking into consideration that zi should follow a categorical distribution i.e.,∑

k πk = 1 and Σk should be a symmetric positive definite matrix.
A much simpler alternative is to use the expectation maximisation (EM)

algorithm. If we assume a distribution qi(zi) over the hidden variable zi, then

L(θ) =
∑

i log
[∑

zi
q(zi)p(xi, zi|θ)/q(zi)

]
(2.19)

≥
∑

i

∑
zi
q(zi) log

[
p(xi,zi|θ)

q(zi)

]
6 (2.20)

:= Q(θ, q), (2.21)

where Q(θ, q) is called the evidence lower bound of the log likelihood. It can
be rewritten as

Q(θ, q) =
∑
i

Eqi [log p(xi, zi|θ)] +H(qi), (2.22)

where H(qi) is the Shannon entropy of the distribution qi(zi). Therefore, one
should choose the distribution q that gives the tightest lower bound. Furthermore,
one can show that the i-th term of this lower bound is

Q(θ, qi) = −DKL(qi (zi)||p(zi|xi,θ)) + log p(xi|θ) (2.23)

If we consider θ to be known (let call it θt), since log p(xi|θ) is independent of qi,
maximising Q(θ, qi) is equivalent to minimising DKL(qi

(
zi)||p(zi|xi,θ

t)
)

according
to Eq. 2.23. This is also equivalent to set qti(zi) = p(zi|xi,θ

t). This step is called
the expectation step (E step).

When integrating qti(zi) into Eq. 2.22, this equation becomes

Q(θ, qt) =
∑
i

Eqti
[log p(xi, zi|θ)] +H(qti). (2.24)

6Using the Jensen’s inequality on the log function, which is concave.

18

CHAPTER 2. BACKGROUND

From that, since H(qti) is independent of θ, θt+1 can be chosen to maximise Q(θ, qt)
through

θt+1 = argmax
θ

Q(θ, qt) = argmax
θ

∑
i

Eqti
[log p(xi, zi|θ)] := argmax

θ
Q(θ,θt).

(2.25)
This is called the maximisation step (M step).

To sum up and make it simpler, in order to maximise the log likelihood in
Eq. 2.18, the EM algorithm rather maximise the evidence lower bound in Eq. 2.21
by alternating the following two steps:

1. The E step: get the posterior distribution over the latent variables zi by
estimating

rik := qi(zi = k) = p(zi = k|xi,θ
t) (2.26)

=
πt
kp(xi|zi = k,θt)∑

k′ π
t
k′p(xi|zi = k′,θt)

(2.27)

=
πt
kN (xi|µt

k,Σ
t
k)∑

k′ π
t
k′N (xi|µt

k′ ,Σ
t
k′)

(2.28)

rik values are called responsibilities. It is the responsibility that the k-th
category of the random variable z takes to generate xi.

2. The M step: compute the parameters θ by maximising Q(θ,θt). One can
show that for the GMM, there is a closed-form solution given by

πk =
1

N

∑
i

rik, (2.29)

µk =

∑
i rikxi∑
i rik

, (2.30)

and Σk =
1∑
i rik

∑
i

(xi − µk)(xi − µk)
T . (2.31)

Of course, the step 0 is to initialise θ before iterating.

2.4 Constraints on Machine Learning Models

For now, we have mostly defined some machine models and the optimisation tool to
fit these models. However, in several cases, the problem i.e., defining a model class

19

CHAPTER 2. BACKGROUND

and fit the model that minimises the expected loss may be ill-posed or ill-defined.
Indeed, the model class may be too powerful such that when fitted, it fails to
generalise on unseen data. More generally, simply minimising the empirical error
may lead to undesirable models such overfitted models or models that fail to meet
certain requirements such as prior knowledge, robustness, etc.. This means that
the model class and the objective function (e.g., empirical risk) are not enough:
we need constraints.

Before talking about constraints in a technical way, let us define the term
constraint by drawing inspiration from the constraint programming community.

A constraint is any relationship between variables of interest that restrains
the values that can be taken by the corresponding variables simultaneously. More
precisely, if we consider vk(k = 1..K) variables that can be from any domain
(Boolean, integer, real, etc.), then a constraint is a relationship Ri(v1, ..., vk) that
restraints the values taken by variables v1, ..., vK . Roughly speaking, a quantity
of our interest can be random variables, model parameters θ, learning algorithm
AD(θ), probability distributions, etc.

In our case, we are interested on constraints that involve the model parameters
θ. It is also seen as a prior knowledge, which specifies a certain belief about the
parameters θ before the data has been collected. The classical source of this prior
knowledge is the analyst (e.g., machine learning practitioner). But in our case, for
reasons that will be described in the next chapter, we will use prior knowledge
that comes from a domain-expert. For short, we will call this prior knowledge,
domain-knowledge constraints. In this thesis, we will mainly focus on rich prior
knowledge that have clear semantic meaning. For example, on decision trees, one
may set a preference over order of selected features on decision trees to mimic the
behaviour of a medical doctor for a given classification task (see Chapter 5). We
will also often include the fairness constraint (see definitions in Sections 3.3.2.5
and 4.1.2) when talking about domain-knowledge constraints for the simple reason
that it can be expressed as inequalities g(θ) ≤ 0, where g is a function that aims
to measure the (un)fairness. However, in the literature, there is no clear consensus
on how to characterise fairness in the classical supervised ML setup, partially
described in Section 2.1.

20

CHAPTER 2. BACKGROUND

2.5 Brief Overview of Optimisation for Model Fitting

This sections presents an brief overview for optimisation techniques 7 that are
usually used in machine learning to fit models. The description here is inspired
from the books of Bertsimas and Tsitsiklis (1997), Luenberger et al. (1984) and
Boyd et al. (2004). To stay coherent with the mathematical optimisation field, we
will consider variables x (and sometimes y). However, in machine learning, they
correspond to model parameters θ that we seek to optimise.

A mathematical optimisation problem can be defined as

min
x

f0(x) (2.32)

subject to (s.t.) fi(x) ≤ 0 and
x ∈ S,

where x is the optimisation variable of the problem, S (e.g., Rn) is the domain
of variables, f0 : S −→ R is the objective function and the function fi : S −→ R,
i = 1..m, are (inequality) constraint functions 8. If all functions fi, i = 0..m, are
linear, then the problem in Eq. 2.32 is called a linear optimisation problem or
simply a linear programming (LP) problem. Otherwise, the problem is said to be
a nonlinear optimisation problem.

The following sections briefly give an overview some methods that deal with
linear and nonlinear programming problems and that we will use in this thesis.

2.5.1 Linear Optimisation

There are several instances of linear optimisation problems. We describe here
the classical linear programming problem on continuous domains and the (linear)
mixed integer programming (MIP) problem.

2.5.1.1 Linear Optimisation on Continuous Domains

The classical linear optimisation problem on continuous domains can be represented
in the standard matrix form

min
x

cTx (2.33)

s.t. Ax = b and

7for single objective functions
8Equality constraints can be also transformed into inequality constraint functions.

21

CHAPTER 2. BACKGROUND

x ≥ 0,

where A ∈ Rm×n is the matrix of constraints, b ∈ Rm×1 is the right-hand side
vector, c ∈ Rn×1 is the vector coefficients of the objective function and x ∈ Rn×1

is the vector of decision variables we seek to optimise.
Note that here, the constraints are in the equality form. Inequality constraints

can be transformed into this form using slack (additional) variables.

Basic Feasible Solution and Fundamental Theorem of LP. Let us consider
the system of equations

Ax = b, (2.34)

where x ∈ Rn, b ∈ Rm and A is a m × n matrix. Supposing that from the n
columns of A, we can select a set of m linearly independent columns. For example,
we suppose that the rank of A is m and we select the first m columns, resulting in
a submatrix B. This matrix B is nonsingular. As a result, we can obtain

BxB = b or xB = B−1b. (2.35)

for the m-vector xB whose components are associated with the columns of subma-
trix B. By setting x = (xB,0), we set the first m components of x as the values
of xB using the same indexes of xB and we set 0 for the other components. This
leads to the following definition.

Definition 2.5.1. (From Luenberger et al. (1984)) Given the set of m simultaneous
linear equations in n unknowns (from Eq. 2.34), let B be any nonsingular m×m
submatrix made up of columns of A. Then, if all n − m components of x not
associated with columns of B are set equal to zero, the solution to the resulting set
of equations is said to be a basic solution to Eq. 2.34) with respect to basis B. The
components of x associated with the columns of B denoted by the subvector xB

according to the same column index order in B are called basic variables.

In general, Eq. 2.33 may have no basic solutions but we will avoid edge cases
by making elementary assumptions regarding the matrix A. We will therefore
assume that n > m, and the rows of A are linearly independent, that is the m× n
matrix A is full rank, with rank m.

Theorem 2.5.1. (Fundamental Theorem of LP) Given a linear program in standard
form (from Eq. 2.33) where A is an m× n matrix of rank m,

• if there exists a feasible solution, there exits a basic feasible solution;

22

CHAPTER 2. BACKGROUND

• if there exits an optimal feasible solution, there exits an optimal basic feasible
solution.

The proof of this theorem can be found in Luenberger et al. (1984). The
theorem says that it is necessary to only consider basic feasible solutions when
seeking an optimal solution to a linear program. Naively speaking, one can iterate
over the finite number of

(
n
m

)
cases of basic feasible solutions (corresponding to

the number of ways of selecting m of n columns). Of course, before trying to
enumerate, one needs to check whether or not a feasible solution exists. The
Farkas’s Lemma (see in Luenberger et al. (1984)) provides conditions for that.

The Simplex Method. In contrast to enumerate all feasible basic solutions, a
much simpler alternative is the well-known simplex method. It is a very old method
(developped in 1940’s) and has been a method of choice for several applications.
However, since the past decade, advanced methods (e.g., interior point methods
that we will not cover here) have challenged the simplex method.

Let us reconsider the problem in Eq. 2.33 as

min
x

z =cTx (2.36)

s.t. Ax = b and
x ≥ 0.

Previously, by the fundamental theorem of LP, we said that the optimal feasible
solution is an optimal basic feasible solution. This means that we can consider
only basic feasible solutions. Let x be a basic feasible solution, i.e., x = (xB,xN),
where xB is the vector of basic variables and xN is the vector of nonbasic variables
(each value in xN is currently zero). Then, the objective function can be written as

z = cTBxB + cTNxN ,

where cB (resp. cN) are the coefficients for the basic (resp. nonbasic) variables in
the objective function. Similarly, we can write the constraints as

BxB +NxN = b, or xB = B−1b−B−1NxN (2.37)

Substituting the second formula of Eq. 2.37 in the formula for z gives

z = cTBB
−1b+ (cTN − cTBB

−1N)xN ,

23

CHAPTER 2. BACKGROUND

and by defining y = (cTBB
−1)T = B−TcB, then z can now be rewritten as

z = yTb+ (cN − yTN)xN .

This last formula is computationally efficient and the vector y is called the vector
of simplex multipliers. The current values of basic variables and the objective are
obtained by setting xN = 0 and they are given by9

xB = b̂ = B−1b and ẑ = cTBB
−1b.

Reduced Cost. Now let ĉj be an entry in the vector ĉN := (cTN − cTBB
−1N)

corresponding to xj . The coefficient ĉj is called the reduced cost of xj . Then, we
have

z = ẑ + ĉN
TxN .

From the equation, if the nonbasic variable xj is assigned some nonzero value ϵ,
then the objective function will change by ĉjϵ.

Optimality Test. To test the optimality, one needs to analyse what would
happen to the objective function if each of the nonbasic variables were increased
from zero. There are three cases

ĉj > 0, then the objective function will increase;
ĉj = 0, then the objective function will not change;
ĉj < 0, then the objective function will decrease.

Iteration. one can see that if x̂j < 0 for some j, then, the objective function can
be improved by increasing the value of xj . In this case, the current basic solution
is not optimal. Once a variable xt has been selected to enter in the basis, one must
determine which variable will leave the basis. It can be shown that this variable
can be increased as long as all the remaining basic variables, indexed by i, remain
nonnegative, i.e., this variable reaches the value

x̂t = min
1≤i≤m

{
b̂i
âi,t

: âi,t > 0

}
9The hat in b means that a fixed iteration.

24

CHAPTER 2. BACKGROUND

Symplex Algorithm. Now, we present the simplex algorithm in the following
steps.

1. The optimality test: compute the vector yT = cTBB
−1 and the coefficients

ĉN = cN − yTN . If ĉN ≥ 0, then the current basic is optimal. Otherwise,
select a variable xt that satisfies ĉj < 0 as the entering variable (one heuristic
is to chose the one with the smallest coefficient).

2. The pivot: compute Â = B−1At, the constraint coefficients corresponding
to the entering variable. Find the index s that satisfies

b̂s
âs,t

= min
1≤i≤m

{
b̂i
âi,t

: âi,t > 0

}
.

This ratio determines the leaving variable and the element called the “pivot
entry” âs,t.

3. The update: the basis matrix B and the vector of basic variables xB. Loop
again if necessary.

The previous steps describe how to run the simplex algorithm in the matrix
form (with matrix inversion). In practice, there are tricks to avoid matrix inversion.
There are also edge cases (unboundness, degenerate solutions, etc.) that we avoid
discussing here. These edge cases are drawn when a step cannot be performed.
In efficient implementations, the simplex method requires O(m2) memory and
O(m× n) operations.

2.5.1.2 Linear Mixed Integer Optimisation

In the previous section we presented a well-known technique to solve a linear
programming problem in continuous domains. When at least one variable is in
discrete domains (e.g., N, or {0, 1}), the problem becomes much more difficult and
the simplex method itself cannot solve the problem. Indeed, it becomes NP-hard.
This section gives a brief overview on how to solve mixed integer programming
(MIP) problems. We will model two MIP problems in Chapter 5 to learn decision
trees.

A general MIP problem can be formalised as

min
x,y

cTx+ dTy (2.38)

s.t. Ax+By = b,

25

CHAPTER 2. BACKGROUND

y ≥ 0 and

x ∈ Nn×1,

where A,B are constant matrices and c,d, b are constant vectors.
If there are no continuous variables y, then the problem is an integer linear

programming problem (ILP). If there are no integer variables x, then the problem
is the classical linear programming problem in continuous domains tackled in
Section 2.5.1.1. Finally, if values of the integer vector x are restricted to be 0 or 1,
without the vector y, the problem is said to be a binary (integer) programming
problem. As it can be seen, MIP problems provide a great flexibility in terms of
modelling choices. But the price for efficient optimisation can be expensive.

There are three main categories of algorithms that are used to solve MIP
problems.

1. Exact algorithms: they are guaranteed to find optimal solutions but may
take an exponential number of iterations. They include cutting plane, branch
and bound (sometimes along with cutting plane) and dynamic programming.

2. Approximation algorithms: they provide an approximate solution in polyno-
mial time, with a bound on the degree of suboptimality.

3. Heuristic algorithms: they provide a suboptimal solution without any guar-
antee of the quality of the feasible solution.

In the following, we describe in a high level, the branch and bound technique,
which is very used in practice. It leverages a “divide and conquer” strategy to
explore feasible integer solutions. The core idea is to exploit the relaxation of the
problem (defined bellow) and instead of exploring the entire feasible set, it uses
bounds on the optimal cost to avoid exploring certain parts of the feasible region.

MIP Relaxation. As in common in mathematical problems, it is convenient to
reduce a problem into a classical problem, for which we know efficient algorithms
to solve. A relaxation problem of Eq. 2.38 is the classical linear programming
problem without the integer constraints, that is

min
x,y

cTx+ dTy (2.39)

s.t. Ax+By = b and
y,x ≥ 0.

26

CHAPTER 2. BACKGROUND

INFEASIBLE

Figure 2.4: Illustration of the branch and bound method. Circles correspond to individual
subproblems. Rounded rectangles show results provided by the optimal solution of the
corresponding relaxation of the subproblem. This figure is inspired from the Figure 11.2
of Bertsimas and Tsitsiklis (1997).

One can see that solving this relaxation will always provide feasible solution for
y but not always feasible solution for x because of the absence of integer constraints.
For this reason, we will only consider from now the integer programming problem
bellow

min
x

cTx (2.40)

s.t. Ax = b and

x ∈ Nn×1.

The branch and bound method abstracts the problem of Eq. 2.38 into the
following form

min
x

cTx (2.41)

s.t. x ∈ F,

where F is the feasible set of integer solutions. Then, the method partitions the set
F into k feasible sets Fi, i = 1..k that correspond to k different subproblems, i.e.,

min
x

cTx (2.42)

s.t. x ∈ Fi, i = 1..k.

The goal is to separately solve each of these subproblems and chose the best one.
Each subproblem can be solved by recursively partitioning into subproblems, that

27

CHAPTER 2. BACKGROUND

is where the term “branch” comes from. Therefore, all the subproblems can be
materialised with a tree as shown in Figure 2.4.

The method assumes that there is an efficient algorithm to compute a lower
bound b(Fi) for the optimal solution value 10 of the corresponding subproblem, i.e.,

b(Fi) ≤ min
x∈Fi

cTx.

While the optimal value of the subproblem may be difficult to obtain, a lower
bound is much easier. A popular method to get such lower bound is to use the
optimal value of the linear programming relaxation, through e.g., the simplex
algorithm!

Technically, we keep an active upper bound on the optimal value of the
initial problem (non relaxed). When iterating to Fi, if the lower bound of the
corresponding problem satisfies b(Fi) ≥ U , then this subproblem can be pruned
since its optimal value will be larger than the best feasible solution encountered so
far. The following steps summarise the algorithm:

1. select an active subproblem Fi;

2. if the subproblem Fi is infeasible, then, delete it; otherwise compute b(Fi);

3. if b(Fi) ≥ U , then delete the subproblem;

4. if b(Fi) < U , either obtain an optimal solution of the problem or break the
corresponding problem into further subproblems, which are added to the list
of active problems.

Figure 2.4 shows a sketch of the algorithm. First, the initial problem is solved by
relaxation with a solution x0 = (1.5, 2.5), a lower bound b(F) = −3.5; the upper
bound is U = ∞. Then, the problem is divided into two subproblems F1 and F2.
The problem F1 is infeasible, so we can delete it. Similarly as F , F2 is divided into
two subproblems F3 and F4. The problem F4 is an integer feasible solution with
x4 = (1, 2), b(F4) = −3. Therefore, U can be set to −3. Since the lower bound
of F3 is b(F3) ≥ U , then F3 can be deleted. As a result, x4 = (1, 2) is the integer
optimal solution.

There are several degrees of freedom in the previous algorithm. Examples of
these degrees of freedom include the ways of choosing active problems, the way of
obtaining lower bounds, the ways of breaking a problem into subproblems. That is
why competitive MIP solvers are commercial solvers (e.g., Gurobi (Optimization,

10for the objective function

28

CHAPTER 2. BACKGROUND

2021), Cplex (Cplex, 2009)) designed and maintained by several teams of researchers.
However, a strong modelling (choice of variables, constraints, etc.) of a MIP
problem has a great impact on the performance. A strong modelling usually
requires experience, ingenuity, and art as stated by Bertsimas and Tsitsiklis (1997).

2.5.2 Nonlinear Optimisation

The previous section described classical techniques used to solve linear programming
problems. This section describes popular techniques used to solve nonlinear
constrained optimisation problems. We focus on convex problems on continuous
domains for two reasons. First, mixed integer nonlinear problems are not used
in this thesis. Second, the theory of convex problems is strong enough such that
is even used for non convex problems. Before diving into the techniques, we first
define the convexity of sets and functions. After, we provide some well-known
techniques used to solve unconstrained problems and finally we describe techniques
for constrained ones.

2.5.2.1 Convexity of Sets and Functions

Convexity of Sets. A set C ⊆ Rn is convex if every line between two points in
C lies in C, i.e.,

∀x,y ∈ C, ∀θ ∈ [0, 1], then θx+ (1− θ)y ∈ C.

Well-known examples of convex sets are the empty set ∅, lines, line segments,
euclidean balls, polyhedrons, etc.

Convexity of Functions. To define convexity of functions, one may distinguish
between zero-order, first-order and second-order definitions. The order here comes
from the regularity class in the theory of functional spaces.

For the zero-order condition, a function f : Rn −→ R is convex if domf is a
convex set and

∀x,y ∈ domf, ∀θ ∈ [0, 1], then we have f (θx+ (1− θ)y) ≤ θf(x)+(1−θ)f(y).
(2.43)

Geometrically, this inequality means that the line segment between (x, f(x)) and
(y, f(y)) lies above the graph of f . The function f is concave when −f is convex.

For the first-order condition, when the function f is differentiable, i.e., its
gradient ∇f exists on each point of its open domain domf then f is convex if

29

CHAPTER 2. BACKGROUND

domf is a convex and

∀x,y ∈ domf, we have f(x) +∇f(x)(y − x) ≤ f(y). (2.44)

This equation has two meanings. First, it means that the affine (or first-order)
Taylor approximation f(x) + ∇f(x)(y − x) of the function near x is a global
underestimator of the function. Second, if the first-order Taylor approximation of
a function is a global underestimator of the function, then the function is convex.

For the second-order definition, when its Hessian or second derivative ∇2f
exists at each point in domf , which is open, then f is convex if and only if domf
is convex and its Hessian is positive semidefinite, i.e.,

∀x ∈ domf, we have ∇2f(x) ⪰ 0, i.e., ,∀y ∈ domf,yT∇2f(x)y ≤ 0.

2.5.2.2 Unconstrained Convex Optimisation

Let us consider the following optimisation problem

min f0(x) (2.45)
s.t. fi(x) ≤ 0, i = 1..m and

gi(x) = 0, i = 1..p,

where f0 : Rn −→ R is the objective function, fi : Rn −→ R, i = 1..m are
the inequality constraint functions and gi : Rn −→ R, i = 1..p are the equality
constraint functions. Note that here we distinguish between inequality and equality
constraints.

If all functions fi, i = 0..m and gi, i = 1..p are convex in their domains, then the
optimisation problem of Eq. 2.45 is said to be a constrained convex optimisation
problem. In this section we zoom on the unconstrained one which is simply

min
x

f(x). (2.46)

Necessary and Sufficient Optimality Condition. When the function f is
differentiable and convex, it can be shown that a point x∗ is optimal if and only if

∇f(x∗) = 0. (2.47)

Not only is this point a local optimal, i.e., ∃ϵ > 0,∀x ∈ B(x∗, ϵ) 11, f(x∗) ≤ f(x),
but this point is also a global optimal, i.e., ∀x ∈ domf, f(x∗) ≤ f(x).

11An Euclidean ball of centre x∗ and of radius ϵ

30

CHAPTER 2. BACKGROUND

Descent Methods. When it is not possible to analytically solve the Eq. 2.47,
one of the most popular approaches to reach to the above necessary and sufficient
condition are descent methods. Descent methods are iterative algorithms where
the goal is to obtain a sequence of points x(k), k = 1...K, with

x(k+1) = x(k) + t(k)∆x(k),

where t(k) > 0 (except when x(k) is optimal) is the step size or the learning rate
and ∆x(k) is a descent direction.

A descent direction means that the inequality f(x(k+1)) < f(x(k)) holds. It
can be shown using Eq. 2.44 that when f is convex, this condition reduces to

∇f(x(k))T∆x(k) < 0.

When the f is not differentiable, there exist zero-order methods that may assume
its continuity, but we do not cover them here.

First-order Methods: Gradient Descent. As its name indicates, the gradient
descent method considers the descent direction as ∆x(k) = −∇f(x(k)). This
direction is known as the steepest descent. There exist several ways to find the
learning rate or the step size.

• The constant learning rate uses a constant value t(k) = t at each step. There
are theoretical guarantees of convergence for t(k) < 2/L, where L is the
Lipschitz constant of the gradient of f .

• The adaptive learning rate uses a learning rate that varies at each iteration.
One way to choose this learning rate is to use the line search, which solves
another optimisation problem: t(k) = argmint>0 f

(
x(k) − t∇f(x(k))

)
.

Gradient methods can be very slow to converge, especially in flat regions. There
are advanced methods that use momentum, which is a way to exploit, in the
current step k, not only the current gradient ∇f(x(k)), but also the previous one
∇f(x(k−1)).

Second-order Methods: (Quasi) Newton. Newton methods use the direction
∆x(k) = −

(
∇2f(x(k))

)−1∇f(x(k)), which can be shown to be also a valid descent
direction when f is convex. Similarly as in first-order methods, the learning rate
can be a small positive constant or an adaptive one, e.g., found using linear search.
In practice, even though Newton methods require very few steps to converge, they

31

CHAPTER 2. BACKGROUND

are rarely used in practice because they require matrix inversion. Quasi Newton
methods such as the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method are
more popular because they bypass the need for matrix inversion by approximating
the Hessian matrix ∇2f(x(k)).

Stochastic Gradient Descent. Stochastic gradient descent (SGD) is one of
the most popular methods used in machine learning. As its name indicates, it is
the gradient descent in stochastic optimisation. In stochastic optimisation, the
function to minimise can be written as an average f(x) = Eq(z) [f(x, z)]. At each
iteration k, we assume that we can sample z(k) ∼ q and the updating rule is

x(k+1) = x(k) − t(k)∇f(x(k), z(k)). (2.48)

With finite sum problems, i.e., for the type of functions f(x) = 1
N

∑N
i=1 f(x, zi),

there are several variants. The first ones depend on the way of computing the gra-
dient. We can use all the finite points zi to compute the gradient, i.e., ∇f(x(k)) =
1
N

∑N
i=1∇f(x(k), zi): this corresponds to the full batch SGD. We can also use a

minibatch, to compute the gradient ∇f(x(k)) ≈ 1
#B(k)

∑
i∈B(k) ∇f(x(k), zi), with

B(k) a collection of zi points at the step k.
Although the gradients computed using the minibatch are unbiased estimations,

their variance do not always vanish. There is an intensive research area consisting
in reducing this variance. We will mention only the most used one, which is the
“adaptive moment estimation” (ADAM) method (Kingma and Ba, 2015). The
ADAM method combines the momentum approach and the preconditioned SGD
approach, which adds a preconditioned matrix similar to the inverse of Hessian to
reduce the variance of gradients.

2.5.2.3 Constrained Convex Optimisation

Let us reconsider the constrained optimisation problem

min f0(x) (2.49)
s.t. fi(x) ≤ 0, i = 1..m and

gi(x) = 0, i = 1..p.

The classical way to integrate the constraint in the objective function is to use
the Lagrangian function L : Rn × Rm × Rp −→ R associated with the problem of

32

CHAPTER 2. BACKGROUND

Eq. 2.49 defined as

L(x,λ,ν) = f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

νihi(x), (2.50)

where λ and ν are the Lagrange multipliers for the inequality and equality con-
straints, respectively.

Optimality and K.K.T. Conditions. One can show that the optimisation
problem defined by Eq. 2.49 is equivalent to

min
x

max
λ≥0,ν

L(x,λ,ν) = min
x

max
λ≥0,ν

f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

νihi(x). (2.51)

This form is called the primal form. Using this primal version of the problem, the
Karush-Kuhn-Tucker (KKT) conditions provide optimality conditions that are
necessary and sufficient for convex problems. These conditions must be satisfied
by the optimal solution (x∗,λ∗,ν∗). They are listed bellow.

1. Stationary condition: the optimal x∗ is a stationary point. This means that

∇f0(x) +

m∑
i=1

λi∇fi(x) +

p∑
i=1

νi∇hi(x) = 0. (2.52)

2. Feasibility conditions: the optimal x∗ satisfies the constraints, i.e.,

fi(x
∗) ≤ 0, i = 1..m and gi(x

∗) = 0, i = 1..p. (2.53)

3. Dual feasibility conditions: the dual values or Lagrange multipliers λ∗ for
inequality constraints are positive, that is

λ∗ ≥ 0. (2.54)

4. The complementary slackness conditions: either the inequality constraint
function or the corresponding Lagrange multiplier is zero, that is

λ∗
i fi(x

∗) = 0, i = 1..m.

There are cases where we can manually solve constrained optimisation problems
using these conditions, e.g., constrained quadratic optimisation. However, it is
unlikely to get a closed form solution using these four K.K.T. conditions.

One way to circumvent the closed form solution is to use the projected gradient
descent. We will use it in Section 6.2.2 on Eq. 6.11 and we briefly describe it in
the following.

33

CHAPTER 2. BACKGROUND

Projected Gradient Descent. One of the problems with the classical descent
direction when we have constraints is the fact that there is no guarantee that
when iterating we stay in the feasible region. Indeed, from a current feasible (not
optimal) x(k) solution, just applying the descent direction to go to x(k+1) does
not guarantee that this solution is still feasible. The projected gradient descent
rectifies the gradient descent direction such that the new solution continues to be
a feasible solution.

It abstracts the problem of Eq. 2.49 into

min
x

f0(x) s.t. x ∈ C, (2.55)

where C is the feasible set 12. Supposing that at step k, we have a feasible solution
x(k), after applying any gradient-based update, e.g., the classical gradient method
y(k+1) = x(k) − t(k)∇f(x(k)), then the projected gradient descent comes to the
stage by solving the constrained quadratic optimisation problem

x(k+1) = argmin
x

||x− y(k+1)||2 s.t. x ∈ C. (2.56)

In most cases, with this constrained quadratic optimisation problem, we can
easily get the closed form update x(k+1) for x(k) using the four K.K.T. conditions.

In summary for this section on optimisation for model fitting, we describe well-
known techniques to solve constrained optimisation problems. We focus on single
objective functions for both linear and nonlinear programming. In Chapter 5,
we will use linear programming to introduce a new formalism to enforce domain-
knowledge constraint on decision trees. Finally, in Chapter 6, we leverage nonlinear
optimisation to integrate implicitly the explainability constraint for decision rule
explanations in differentiable black-box models.

12{x ∈ domf
⋂(⋂m

i=1 domfi
)⋂ (⋂p

i=1 domhi

)
; fi(x) ≤ 0, i = 1..m, hi(x) = 0, i = 1..p.}

34

Chapter 3

Constraint Enforcement on
Decision Trees: a Survey

This chapter study how the literature on decision trees handles constraint enforce-
ment. We first begin by clarifying the scope and the motivation in Section 3.1.
Second, Section 3.2 describes constraint acquisition or elicitation. Third Section 3.3
presents our taxonomy of constraints applied to decision trees. Finally, Section 3.4
our taxonomy of methods before macroscopically discussing all the methods in
Section 3.5.

Contents
3.1 Motivation and Scope . 36

3.1.1 Interpretable Model: Decision Tree 36
3.1.2 Black-box Models . 37
3.1.3 On the Importance of Constraint Enforcement on Deci-

sion Trees . 37
3.2 Source of Constraints . 40
3.3 Taxonomy of Constraints on Decision Trees 41

3.3.1 Structure-level Constraints 41
3.3.2 Attribute-level Constraints 47
3.3.3 Instance-level Constraints 53
3.3.4 Summary over the Taxonomy 55

3.4 Taxonomy of Methods through the Lens of Optimisation 55
3.4.1 Top-down Greedy Approaches 58
3.4.2 Safe Enumeration Approaches 58
3.4.3 Linear, SAT and Constraint Programming Approaches . 59

35

CHAPTER 3. CONSTRAINT ENFORCEMENT ON DECISION TREES: A SURVEY

3.4.4 Probabilistic Approach 59
3.4.5 Summary About Categorisation of Approaches 60

3.5 Discussion . 61
3.5.1 On the Weaknesses of Standard Top-down Induction

Algorithms to Constrain Decision Trees 61
3.5.2 On the Optimality of the Learned Decision Trees under

Constraints . 62
3.5.3 On the Complexity of SAT/CP/MIP Formulations of

the Optimal Decision Trees 64
3.5.4 On the Interpretability, Trustworthiness and Robustness

of Decision Trees . 65
3.5.5 On the Usefulness of Constraint Enforcement for Ap-

proximating Black-box Machine Learning Algorithms . 66
3.5.6 Future Prospects . 67

3.6 Conclusion . 69

This chapter is largely based on our published paper in the journal ACM
Computing Survey, entitled “Constraint Enforcement on Decision Trees: a Survey”
(Nanfack et al., 2022a).

3.1 Motivation and Scope

Let us reconsider the example in Section 1.1 where in a bank, we want an ML model
whose task is to predict whether a customer should be granted credit. Similarly as
a bank advisor who relies on features such as age, marital status, gender, income,
loan history, etc., the ML model will be trained on data with these features. To
choose suitable ML model classes, one should take into account one important
prescription. Indeed, in such (finance) domain, customers may have the right to
know, in human-understandable terms, why the model has reached to the decision
to deny or grant credit. Therefore, we consider two classical possibilities: either
we use interpretable ML models or black-box models with explainability tools.

3.1.1 Interpretable Model: Decision Tree

Decision trees are one of the most well-known, non-linear and simplest machine
learning algorithms. Their representability and their ability to produce rules with
relevant attributes make them the most commonly used technique when seeking
interpretable machine learning models (Freitas, 2014). Additionally, they have

36

CHAPTER 3. CONSTRAINT ENFORCEMENT ON DECISION TREES: A SURVEY

the particularity of being ML models that are visually easy to understand (see
Figure 3.1). Therefore, they are primarily suited for sensitive domains like medical
diagnosis, finance where decisions need to be explainable.

3.1.2 Black-box Models

Being much more complex, black-box models (such as random forests and MLPs)
offer the advantage of being very accurate in a wide variety of cases. However, as
they are not inherently interpretable, for the example mentioned above, they should
be accompanied with some explainability mechanisms. One of such mechanism is
called post-hoc explainability, where for example, the black-box model can be
approximated either locally (in a region of the input space) or globally (on all the
input space) by an interpretable model such as a decision tree. This interpretable
(also called surrogate or proxy) model will be used to explain predictions of the
black-box model.

Let us just zoom from now on the decision tree models in both cases (case where
they are the chosen model or the case where they are use as surrogate model of the
complex one). Apart from the consideration on interpretability in our example on
credit prediction, there are several other requirements or constraints that decision
trees may be expected to meet. These will be detailed in the following section.

3.1.3 On the Importance of Constraint Enforcement on Decision
Trees

3.1.3.1 Constraints to Improve Interpretability

When presenting decision trees and their interpretability, we omit to say that not
all decision trees are interpretable. Indeed, learned decision trees can be large
(having a high number of nodes) and deep (having a high depth), resulting in the
loss of their interpretability. This is confirmed by the study of Piltaver et al. (2016),
which reveals that the size of the tree, the depth and the number of leaf nodes
directly impact the comprehensibility of decision trees. Thus, a desired goal would
be to generate small and less deep trees (to be comprehensible) while providing a
good level of accuracy. In this sense, the work of Bessiere et al. (2009) showed that
this can can be done in some cases as they constraining the size of the decision
tree can significantly improve the accuracy of traditional algorithms while halving
the size of the tree.

37

CHAPTER 3. CONSTRAINT ENFORCEMENT ON DECISION TREES: A SURVEY

Figure 3.1: Example of a decision tree trained on the German credit dataset. Here, split
rules are visible inside (root) internal nodes. This figure is taken from Nanfack et al.
(2022a)

3.1.3.2 Constraints for Ethical Safeguards

In fact, when applied on our example on credit approval, an ML model may be
required to ensure fair and equitable decisions (for instance, between men and
women), as well as the protection of sensitive data information (called privacy).
From the ethical point of view, a failure to provide this guarantee may violate
the regulation in domain of finance. Figure 3.1 shows an example of decision tree
learned from the well-known German credit dataset (Dua and Graff, 2017). While
sometimes it may make unfair predictions between women and men to grant a
credit (due to the selected feature sex highlighted in the figure), such a decision tree
could be learned and used in practice if a constraint on fairness is not enforced. As
ML models must meet ethical requirements like fairness or even privacy and, most
importantly, one should also be able to assess that the models actually meet these
requirements, if decision trees are learned with fairness and privacy constraints,
they will more likely be accepted in a critical domain such as justice where the
satisfaction of constraints may be more important than providing a good level
of accuracy (Dziugaite et al., 2020; Ribeiro et al., 2016; Barredo Arrieta et al.,
2020). Several works (Kamiran et al., 2010; Aghaei et al., 2019; Liu et al., 2009)
attempted to impose fairness and privacy constraints on decision trees.

38

CHAPTER 3. CONSTRAINT ENFORCEMENT ON DECISION TREES: A SURVEY

3.1.3.3 Constraints for Domain-related and Real-world Goals

In the field of health or banking, decision trees are widely used since people need
to understand how the algorithm has reached its decisions. In the medical domain,
the domain expert (i.e., the doctor) validates a particular machine learning model
by comparing it with his knowledge about the domain. Here (where the model
is a decision tree), the doctor examines the sequence of decision rules to evaluate
the comprehensibility of the decision tree. However, learned decision trees do
not necessarily make sense from a medical or clinical point of view, because the
algorithms only consider information that can be extracted from a medical dataset
(López-Vallverdú et al., 2007). Indeed, in this setting, minimising expected loss is
only one among others (Cotter et al., 2019). Another goal could be the fact that
the learned tree should be closed as much as possible domain-related best practices.
Hence, if the rules of learned trees do not match the needs of experts and their
knowledge, the entire tree may be rejected. On the other hand, if decision trees
are learned by considering additional domain knowledge in the form of constraints,
the resulting tree could be more trustworthy and reliable. For example, works like
the one of López-Vallverdú et al. (2007, 2012) enforce constraints on decision trees
by adding priority of relevance on attributes to make trees more comprehensible
and trustworthy for users and domain experts.

3.1.3.4 Constraints on Proxy or Surrogate Models

As we mention at the beginning of Section 3.1, decision trees can also be used to
approximate black-box models (e.g., neural networks) such that predictions can be
explained. This type of models are called proxy or surrogate models (Guidotti et al.,
2018), and the process of approximating is often referred as knowledge distillation.
Without any constraints such as those related to the complexity, surrogate decision
trees may fail at providing clear and understandable explanations of the target
black-box model. Indeed, the structure of decision trees (described in Section 3.3)
might be too simple to approximate with enough fidelity 1 black-box models that
are more complex (such as neural networks) or might be too complex, resulting
in trees that have lost their interpretability. Even worse, if the black-box model
embeds guarantees such as fairness, the learned tree may have little chances to
meet these constraints without any constraint enforcement. For example, a fair
neural network could be approximated by an unfair decision tree simply because
the approximation algorithm did not incorporate the non-discrimination or fairness
constraints. More dangerous, the other way around can be also be an issue: a fair

1agreement between outputs Y given inputs X

39

CHAPTER 3. CONSTRAINT ENFORCEMENT ON DECISION TREES: A SURVEY

Figure 3.2: Sources of constraints. Figure taken from Nanfack et al. (2021a). Three
different sources are shown: algorithms can discover and learn constraints from a given
dataset; humans can define user constraints to the learning algorithm specific to their
needs, for instance, to control the complexity of a tree; humans can also give constraints
based on their knowledge regarding a dataset within a particular domain.

decision tree approximating an unfair neural network. This research direction is
attracting a lot of interest these recent years and is being popularised under the
term fairwashing (Aïvodji et al., 2019).

At this state of the chapter, several reasons motivate the enforcement of
constraints on decision trees. In the rest of this chapter, we review the literature on
this topic. It is important to note that Safavian and Landgrebe (1991); Buhrman
and De Wolf (2002); Lomax and Vadera (2013); Barros et al. (2012) review different
decision tree learning algorithms. However, they lack special attention to techniques
used to learn trees under constraints, which is precisely the focus of this work.
Hence, it is not the scope of the rest of this chapter to present all existing tree
learning methods but to review how the literature integrates constraints in the
learning process to get more trustworthy decision trees.

3.2 Source of Constraints

In the previous section, we talked about the importance of enforcing constraints
on decision trees. Before diving into the main review part, we begin in this section
by providing an overview on some of the origins of these constraints.

Fig. 3.2 shows three major sources of constraints. First, constraints can be
derived from another machine learning algorithm (e.g., rule learning algorithm)
that we call hereafter constraint mining algorithm. Second, constraints may also
come from users, for example they may want to limit the size of the tree. The term

40

CHAPTER 3. CONSTRAINT ENFORCEMENT ON DECISION TREES: A SURVEY

user constraint usually indicates in the literature that constraints do not require
relevant domain expertise for the learning task (Garofalakis et al., 2003, 2000;
Fromont et al., 2007). Note that machine learning practitioners may considered as
users here. Third, and most importantly, constraints can be provided by domain
experts with domain knowledge (also known as background knowledge (Núñez,
1991; López-Vallverdú et al., 2012)) who can define the constraints related to the
domain with respect to the given dataset.

In a recent work, von Rueden et al. (2021) focus on the prior knowledge (both
user and domain-knowledge constraints) and proposes another hierarchical source
for this category. These sources are: scientific and world knowledge (similar to our
user-defined constraints), and expert knowledge (similar to our domain-knowledge
constraints).

Note that the different sources of constraints described above are not specific
to decision trees. In the following section, we describe constraints that are treated
in the literature of decision trees and introduce our taxonomy of these constraints.

3.3 Taxonomy of Constraints on Decision Trees

This section presents our taxonomy of constraints inspired by Nijssen and Fromont
(2010) and Struyf and Džeroski (2007) who define respectively constraints on
the structure of the tree and who define instance-level constraints (especially for
clustering).

In our taxonomy, we distinguish three types of constraints (see Fig. 3.3):
structure-level constraints, attribute-level (or feature-level) constraints, and instance-
level constraints. With this taxonomy, structure-level constraints may be set by
any user to control the complexity of the decision tree. Besides, attribute-level and
instance-level constraints are more susceptible to be defined by a domain expert or
by a constraint mining algorithm. In the following, we present the different types
of constraints and several works that have studied them in the literature.

3.3.1 Structure-level Constraints

This section gives an overview on methods that enforce structure-level constraints
(a complete description of these methods can be found in our work (Nanfack et al.,
2022a)). From Figure 3.4, these constraints are defined on the size of the tree, the
depth, the number of leaf nodes.

41

CHAPTER 3. CONSTRAINT ENFORCEMENT ON DECISION TREES: A SURVEY

Figure 3.3: Taxonomy of constraints. Figure taken from Nanfack et al. (2022a). The
dashed arrows indicate optional constraints, while solid line arrows indicate mandatory
concepts. For example, a learning algorithm may integrate attribute-level constraints to
learn a decision tree.

Figure 3.4: Structure-level constraints in decision trees. This figure is taken from Nanfack
et al. (2022a). Structure-level constraints are refined into three sub-categories of constraints
that have an impact of the structure of trees. The left and right horizontal arrows mean
that the constraints have a mutual impact. For example, constraining the size of the tree
limits its depth and reciprocally.

3.3.1.1 Size of the Tree

The size of a decision tree is the number of nodes of the tree and is related to
the readability of the entire tree (Piltaver et al., 2016). We classify works that
study this constraint in three types of methods, namely top-down greedy, safe
enumeration and linear (and constraint) programming methods.

Top-down greedy methods, as a reminder of Section 2.2.1 aim to optimise a
(local) heuristic. Quinlan and Rivest (1989) were one of the first works which

42

CHAPTER 3. CONSTRAINT ENFORCEMENT ON DECISION TREES: A SURVEY

integrates the size constraint in the form of prior distribution. Drawing inspiration
from the minimum description length principle, this prior distribution allows them
to introduce a new loss which is optimised in a greedy top-down fashion. Latter,
Garofalakis et al. (2000) introduce another algorithm that also integrates the size
constraint via an estimation of a lower bound of the inaccuracy when deciding to
split on a node using a top-down fashion. In the case of decision trees as proxy
models, several works have also proposed to enforce the size constraint in order
to ensure that decision rules explanations are not complex to grasp. Craven and
Shavlik (1995) (TREPAN) and Yang et al. (2018) (GIRP) enforce this constraint
using a post-pruning after learning proxy decision trees in a top-down greedy
fashion. The loss to prune theses trees is composed of two terms: the first term is
the average information gain and the second one is a penalising term on the size
of the tree.

Safe enumeration methods allow to enumerate all (or a subset of) possible
trees by identifying possible splitting rules with a specific attention to complexity.
The size constraint permits to restrict the feasible set of potential solutions. In
this direction, Bennett and Blue (1996) propose an algorithm, called global tree
optimisation, which uses multivariate splits and models decision tree encoding
as disjunctive inequalities with a fixed structure. The main notable works are
those of Garofalakis et al. (2003) and Fromont et al. (2007) (latter extended by
Nijssen and Fromont (2007)). These works leverage branch-and-bound algorithm
coupled with dynamic programming to enumerate possible trees that satisfy the
size constraint. While the former uses an enumerate-and-prune strategy whose goal
is to prune an accurate and large tree such that it will satisfy the size constraint,
the later uses the analogy of itemset mining with two methods: CLUS, which is
a greedy method and CLUS-EX based on an exhaustive search that enumerates
possibilities expecting constraints are restrictive enough to limit the search space.
Latter, Nijssen and Fromont (2010) introduce a more general framework called
DL8 which also uses the itemset mining approach to learn decision trees for various
types of structure-level constraints (size of the tree, number of leaf nodes, etc.).
Also based on dynamic programming, this extended version of DL8 needs enough
memory to encapsulate all the lattices of variables.

Instead of safely or exhaustively enumerating trees that satisfy the size con-
straint, other methods prefer to use a global and principled view by formalising
in terms of variables and constraints both the tree encoding and the objective
function. This formalism allows (whenever applicable) to use a constraint pro-
gramming (CP), integer linear programming (ILP) or satisfiability (SAT) solver
to optimise the problem. Two notable works are those of Bessiere et al. (2009)
and Narodytska et al. (2018). The first one proposes a method to find decision

43

CHAPTER 3. CONSTRAINT ENFORCEMENT ON DECISION TREES: A SURVEY

trees with minimum size using CP and ILP. Translating the problem using linear
constraints and integer variables makes it possible to use ILP to explore richer
and smaller trees. However, computational time remains high. To speed up the
search, the second work (Narodytska et al., 2018) introduced another SAT-based
encoding for optimal decision trees based on tree size. The heart of this method is
to consider a perfect (error-free) binary classification where the selected features
on nodes and the valid tree topology are modelled with SAT formulae.

As a brief summary about the size constraint on decision trees, the majority
of works enforce this constraint to better control the complexity of decision trees,
making them more easily understandable and readable. The problem of learning
decision trees under this constraint has been vastly explored through heuristics,
enumeration and constraint programming approaches. The last two methods
generally assume trees to be binary, even for non-binary categorical variables. This
assumption allows to simplify the problem. However, top-down greedy approaches
do not need this assumption.

3.3.1.2 Depth of the Tree

The depth constraint is important to control overfitting but also the comprehensi-
bility of decision trees.

Top-down greedy methods can easily enforce the depth constraint using the
stopping criteria in a depth-first building way. This can also be seen as a sort of
pre-pruning strategy. Examples of works that use this approach include studies of
Zilke et al. (2016) and Sato and Tsukimoto (2001) on proxy decision trees.

Enumeration-based methods have also been proposed to learn optimal trees
(misclassification error being the objective function). For example, the T2 (Auer
et al., 1995) and T3 (Tjortjis and Keane, 2002) algorithms respectively find optimal
trees with a maximum depth to 2 and 3 using a careful exhaustive search based
on agnostic learning. Authors of T2 are one of the rare authors who proposed
a constraint-based tree learning algorithm, and theoretically analyse the time
complexity of the learning algorithm. T3C (Tzirakis and Tjortjis, 2017) is an
improved version of T3, which changes the way T3 splits continuous attributes
to four decision rules. In order to enforce the depth constraint in DL8 (presented
in Section 3.3.1.1), Aglin et al. (2020) introduce DL8.5. This algorithm uses a
branch-and-bound search with caching in order to safely enumerate trees under
the depth constraint. Thanks to caching, DL8.5 is much faster than DL8.

Several works handle the depth constraint using Linear, SAT, CP approaches.
Examples of mixed integer programming (MIP) include OCT (Bertsimas and Dunn,

44

CHAPTER 3. CONSTRAINT ENFORCEMENT ON DECISION TREES: A SURVEY

2017) (which considers univariate and multivariate splits) and BinOCT (Verwer
and Zhang, 2019) (which uses a heuristic to decrease the number splits). An
example of a CP approach is the work of Verhaeghe et al. (2019), which uses the
analogy of itemset mining of DL8 (Nijssen and Fromont, 2007). Examples of SAT
approaches include the works of Narodytska et al. (2018), Avellaneda (2020) and
Hu et al. (2020).

In conclusion, methods that aim to learn decision trees under depth constraints
are generally based on enumerations, linear programming, and constraint program-
ming. Their principal goal is to accelerate computations required to reach the most
accurate and depth-constrained decision trees. Because these methods control the
depth of the tree, they usually learn decision trees with depth at most 2, 3 or
4. However, for interpretability there is an undesirable risk of over-simplicity of
decision rules as discussed in Section 3.5.

3.3.1.3 Number of Leaf Nodes

The number of leaf nodes is a major factor in the summary of the decision rules,
in particular when trying to understand how the model predicts a particular class
(Piltaver et al., 2016). In the case of binary trees, the number of leaf nodes L is
linked to the size of the tree |V | by the formula |V | = 2L − 1. In other general
cases, there is no such explicit formula. However, the leaves and nodes do not
relate to the same aspects in terms of the explainability of decision trees. The
size of the tree is related to the readability of the tree while the leaves along with
decision paths is essential for the comprehensibility of the predictions of a given
class. Very few studies have focused their interest on constraining the number of
leaves (due to the classical preference for binary trees).

By drawing inspiration from Angelino et al. (2018) (optimal rule lists), the
work of Hu et al. (2019) is only one of the rare safe enumeration approaches
that explicitly constrain the number of leaves on decision trees. The framework
called optimal sparse decision trees (OSDT) (latter extended to a generalised
version, GODST) uses a branch-and-bound search, in the frame of structured risk
minimisation (objective function with a regularisation term over the number of
leaves). OSDT and GOSDT can learn very sparse decision trees that are likely to
generalise well.

As linear and constraint programming formulations are used to learn decision
trees under size and depth constraints, they can also be adapted for a constraint
over the number of leaves. Examples of such adaptations are OCT (Bertsimas and
Dunn, 2017) and the work of Menickelly et al. (2016).

45

CHAPTER 3. CONSTRAINT ENFORCEMENT ON DECISION TREES: A SURVEY

In a probabilistic view of decision trees, the explicit modelling of the leaves
is usually unavoidable. That is why almost all the proposed (Bayesian included)
probabilistic methods allow to constraint via a prior distribution, the number of
leaves. One of the first work in this direction is the one of Chipman et al. (1998).
They present a Bayesian approach to learn decision trees. Their main contribution
is to propose a prior over the structure of the tree (taking into account the number
of leaves) and a stochastic search of the posterior to explore the search space and
therefore find some acceptable trees. The search consists in building a Markov
Chain of trees by the Metropolis-Hasting algorithm considering the transitions:
grow (i.e., split a terminal node), prune (i.e., choose a parent of terminal node and
prune it), change (i.e., change the splitting rule of an internal node), and swap
(i.e., swap splitting rules of parent-child pair), all randomly. Extensions of this
work of Chipman et al. (1998) have been proposed latter. Examples are those of i)
Angelopoulos and Cussens (2005b), which exploits stochastic logic programming
(SLP) to integrate informative priors that try to penalise unlikely transitions, ii)
Angelopoulos and Cussens (2005a), which improves the convergence and predictive
accuracy, and iii) Nijssen (2008), which adapts the DL8 algorithm (Nijssen and
Fromont, 2007) in a Bayesian setting. Note that in all these Bayesian formulations,
a single tree can be removed through the MAP.

As a summary for the number of leaves, the majority of works on the constraint
over the number of leaves are Bayesian methods. They integrate this constraint
via a prior distribution.

3.3.1.4 Summary and Discussion about Structure-level Constraints

To sum up, we presented works that learn decision trees under the number of leaves
or the depth or the tree size constraint. The motivation varies greatly between
these works. Indeed the motivation can be to search for more interpretable trees,
more or less complex, or more accurate or even to speed up the learning. Also,
these structural characteristics (size, number of leaves, depth) of the tree are linked
to each other, because setting one value constrains the others. However, they have
very different semantic meaning with respect to the comprehensibility of decision
tree according to the study of Piltaver et al. (2016).

It is also worth noting that they are other constraints like the tree balance
constraint (also depending on the branching factor of the tree), which is under-
studied in the literature, despite its impact on the comprehensibility of decision
trees. Also, the majority of the works on structure-level constraints assume that
decision trees are binary to better handle the number of leaf nodes and the sizes.
This assumption is severely lacking in flexibility. In some cases, for the sake of

46

CHAPTER 3. CONSTRAINT ENFORCEMENT ON DECISION TREES: A SURVEY

Figure 3.5: Attribute-level (or feature-level) constraints in decision trees. The top-down
arrow shows the different sub-categories of constraints of attribute-level constraints. Figure
taken from Nanfack et al. (2021a).

interpretability, it would be useful to have nodes with more than two child nodes.
For example, if a categorical variable like the number of doors of a car has 3 values
(namely 2, 4 and 6); it may be important, for comprehensibility purpose, not to
transform this variable into 2 binary variables so that the knowledge “number of
doors” appears only once in a branch of the tree. Additionally, another generally
common assumption is that trees with small depth and small trees (small size)
enhance the interpretability and the comprehensibility. This question requires
further study because, actually, in certain domains such as health care, a decision
tree with a maximum depth of two like in papers of Tjortjis and Keane (2002)
and Bertsimas and Dunn (2017) could not be comprehensible by experts (Freitas,
2014; López-Vallverdú et al., 2007). Indeed, rules may be over-simplistic to fit
domain-expert requirements.

3.3.2 Attribute-level Constraints

Attribute-level constraints are defined as a relationship over the features of the
dataset and decision rules of the tree. These constraints are more likely to come
from an expert or a constraint mining algorithm. Most of the works on attribute-
level constraints study monotonicity, attribute costs, hierarchy constraints including
interactions between multiple features, privacy, and fairness (see Fig. 3.5).

3.3.2.1 Monotonicity Constraints

Monotonicity constraints are related to attributes that evolve in the same direction
as the output variable. More formally, it is defined by Pei et al. (2016) as follows:
given a set of attributes A = {X1, ...,XM}, one of its subset B = {Xk, ...,Xl}
with 1 ≤ k ≤ l ≤ m, the decision rule TX of a tree T is monotonically consistent
in terms of B ⊆ A, for a set U of examples drawn from the dataset D if

∀xi,xj ∈ U ,xi ⪯B xj =⇒ TX(xi) ≤ TX(xj)

47

CHAPTER 3. CONSTRAINT ENFORCEMENT ON DECISION TREES: A SURVEY

where ⪯B defines a partial relation order on the instances regarding the subset of
attributes B.

For instance, let’s suppose a dataset for a loan credit classification problem
where the decision is whether to grant credit or not. One would like the decision
rules of the learned tree to be monotonically consistent in terms of the income on
the entire dataset (in this context: U is the entire dataset, A is the set of attributes
of the dataset and B is the singleton of the income attribute).

Classification with monotonicity constraints is an important and well-studied
problem since monotonicity improves the comprehensibility of classifiers and there-
fore increases the trustworthiness of machine learning models in some applications
(Freitas, 2014).

Studies have been done to enforce monotonicity constraints on decision trees.
Potharst and Feelders (2002) have proposed a survey about decision tree methods
and this type of constraint. The majority of works that enforce the monotonicity
constraint on decision trees usually employ top-down greedy algorithms. They
mainly take two directions: introduction of monotonicity-aware impurity function
as the local heuristic and post pruning.

Examples of works that introduce a monotonicity-aware impurity function
include the work of Ben-David (1995), which proposes the total ambiguity score,
which has two components: the first component is a non-monotonicity score based
on a matrix representing a non-monotonicity constraint over branches of the trees
and the second component is the ID3 score based on information theory. Other
examples of this score-based constraint enforcement are those of Marsala and
Petturiti (2015) which propose three measures using the notion of dominance rough
set to integrate monotonicity constraints. An additional example is the one of Hu
et al. (2012), which develops the rank entropy, which is still based on dominance
rough sets but performs better than the rank mutual information.

For post-pruning methods, Feelders and Pardoel (2003) develop several fixing
methods that aim to make monotone sub-trees using overfitted trees. Similar
work is done in Cardoso and Sousa (2010), where a relabelling technique (class
assignment step) enforces the monotonicity of the tree after a tree has been learned
from a greedy algorithm such as C4.5. In the same logic, Kamp et al. (2009)
propose to relabel non-monotone leaf nodes, then prune the learned tree using
properties of isotonic functions, so that the final tree will satisfy monotonicity
constraints.

48

CHAPTER 3. CONSTRAINT ENFORCEMENT ON DECISION TREES: A SURVEY

3.3.2.2 Feature or Attribute Costs

Another constraint that is related to the general topic of cost-sensitive decision
trees, is the feature or attribute costs. One motivation to enforce this constraint, in
particular in the medical domain, is the fact that in this domain, medical doctors
usually provide appropriate diagnostic by taking into account economic constraints
(e.g., preference over certain medical tests). The aim of cost-sensitive decision trees
(Lomax and Vadera, 2013) is to learn decision trees with a good trade-off between
the misclassification error/cost and the sum of the cost of attributes that can be
expressed as constraints. The survey of Lomax and Vadera (2013) categorises
different methods into greedy and non-greedy. Greedy methods can use the cost
during the tree learning by modifying heuristics (Tan, 1993; Pazzani et al., 1994;
Norton, 1989; Núñez, 1991; Ling et al., 2004; Davis et al., 2006; Freitas et al., 2007;
Li et al., 2015; Wang et al., 2018) or by post-pruning (Pazzani et al., 1994; Ferri
et al., 2002), which necessitate relabelling techniques. Non-greedy methods are
usually based on genetic algorithms (Turney, 1995; Omielan and Vadera, 2012;
Krętowski and Grześ, 2006), wrapper methods (Estruch et al., 2002) and stochastic
search methods (Esmeir and Markovitch, 2004, 2006).

Enforcing cost constraints on decision trees makes them more natural and
reliable for practical applications (Qiu et al., 2017), such as loan credits in finance
or medical diagnoses in the health domain.

3.3.2.3 Hierarchy and Feature Interaction

The concept of hierarchy defines any type of ordering between variables selected
on a decision tree. It is also mentioned in Fromont et al. (2007) as syntactic
constraints and in Nijssen and Fromont (2007) as path constraints. Hence, in some
cases, it may simply be expressed as an attribute that must be selected before
another one over a branch or even over the entire decision tree. Some domain
knowledge can refer to such kind of preferences where some attributes should be
tested before others hence affecting the hierarchy to be learned. For instance, in
the medical domain, doctors might want to perform temperature checks or blood
checks before going after more advanced tests. As a result, it makes the decision
tree more reliable and more comprehensible for domain experts.

The majority of works that tackle this constraint usually use top-down greedy
algorithms. Three main directions exist: either modifying the impurity function
to embed the hierarchy, either modifying the list (e.g., by weighting) potential
features for the split or use a sparsity constraint for multivariate decision trees.
In the direction of modifying the impurity function, Núñez (1991) was one of

49

CHAPTER 3. CONSTRAINT ENFORCEMENT ON DECISION TREES: A SURVEY

the first works in this direction (because the issue was presented just a few years
after ID3 and CART were introduced to the community). The purpose is to
make decision trees more compliant with background knowledge using ISA (Is A)
relationships. ISA relationships represent a hierarchy relationship between two
attributes: one that belongs to the concept of the other (for example, an amphibian
is a vertebrate). Núñez (1991) introduces a cost-sensitive measure that incorporates
ISA relationships between variables to make the tree more comprehensible from a
user perspective. Another example of works, but more applied, using this direction,
is the work of Kruegel and Toth (2003), which proposes a modified version of
entropy that is designed to be aligned with preexisting rules in the context of
intrusion detection in computer networks.

In the direction of modifying or adjusting the potential list of features that will
be considered for splits, examples of works include López-Vallverdú et al. (2007);
Torres et al. (2011); López-Vallverdú et al. (2007), where priorities and relevance
of features are formalised using healthcare criteria (in the medical domain).

Finally, Norouzi et al. (2015) and Madzarov et al. (2009) are works that enforce
a sparsity constraint in multivariate decision trees.

3.3.2.4 Privacy Constraints

Privacy constraints guarantee that the learning algorithm may not access, discover,
or use sensitive information to learn or predict (Vaghashia and Ganatra, 2015).
Hence, it is related to both computer security and machine learning.

Before the emergence of differential privacy, various algorithms have been
proposed in the literature to deal with privacy constraints in machine learning. Ex-
amples of works (using a top-down greedy approach), from the security perspective,
are described bellow.

Du and Zhan (2002) propose a method to compute an impurity measure from
two vertical/horizontal partitions of datasets using an untrusted third party. In
the logic of horizontal partitioning data with privacy constraints, Gangrade and
Patel (2012) propose a secure protocol with another untrusted third-party to learn
decision trees on horizontal partitions of the dataset. In the setting of federated
learning, Li et al. (2020a) propose a framework to learn decision trees and gradient
boosting trees using hashing. Interestingly, they prove that their framework
satisfies the privacy model. Friedman et al. (2006) propose the integration of the
k-anonymisation (Sweeney, 2002) (a process to obtain an anonymous dataset while
maintaining the usefulness of the data) method into the learning process of the
decision tree. Teng and Du (2007) come with a hybrid approach that uses both

50

CHAPTER 3. CONSTRAINT ENFORCEMENT ON DECISION TREES: A SURVEY

k-anonymisation and secure multiple channels. Alternatively, Zaman et al. (2016)
propose a method that generalises values of sensitive attributes to anonymise the
dataset.

In the direction of adapting the local heuristic, Vaidya et al. (2008) and Gan-
grade and Patel (2009) present a modified version of ID3 and C4.5 respectively with
a secure channel to exchange sensitive features. After proposing a new perturbation
method of the training data, Liu et al. (2009) present a modified version of C4.5
based on a new estimation of information gain with noisy perturbed data. As
this version of C4.5 results in loss of performance, Li et al. (2020b) introduce two
algorithms based on differential privacy to guarantee privacy on decision trees and
gradient boosting trees, which alleviate the performance degradation.

Other works like Matwin et al. (2005) prefer early stopping and pruning methods
to check the satisfiability of privacy constraints during the tree learning process.

As a brief summary, learning decision trees under privacy constraints becomes
an issue as soon as preserving both the privacy and the comprehensibility of the
tree is needed. Aside from secure multi-channel and anonymisation methods, works
in the sense of applying perturbations with random noise, and most importantly
differential privacy (Friedman and Schuster, 2010), seem increasingly promising.
The reason is that these directions propose a rigorous mathematical way to tackle
privacy constraints without focusing on security aspects.

3.3.2.5 Fairness Constraint

Another constraint that can be considered as an attribute-level constraint is the
fairness constraint because it is related to one or several sensitive attribute or
features. There are several fairness notions and definitions in the literature. The
growing literature regarding fairness in machine learning is converging towards
two types of fairness definitions: group and individual fairness (Chouldechova
and Roth, 2020; Zhang et al., 2016). Group fairness aims the machine learning
model to treat (or predict) similarly members from different groups (according to
a sensitive feature such as sex or gender). Individual fairness pays more attention
to a similar treatment for two similar individuals from different groups. While
not very studied, this type of fairness is somewhat also related to instance-level
constraints (see Section 3.3.3).

To be more concrete, in binary classification, let us consider a decision tree T
whose task is to decide to grant a credit or not, given customer data (which contains
a binary-valued sensitive feature Z, e.g., sex). Through the view of conditional
independence, we provide three most popular group fairness definitions according

51

CHAPTER 3. CONSTRAINT ENFORCEMENT ON DECISION TREES: A SURVEY

to Zhang and Long (2021); Zafar et al. (2017); Chouldechova and Roth (2020).
The first and most studied fairness notion is the demographic (statistical)

parity and T satisfies the demographic parity or does not suffer from disparate
impact if the granting credit event (T = 1) does not depend on the sensitive
feature, i.e., p(T = 1|Z = 1) = p(T = 1|Z = 0). The second one is the disparate
mistreatment, which says that the misclassification event should be independent
of the sensitive feature. In other words, misclassification levels (assessed in terms
of overall accuracy, false positive rate, etc.) should be the same between sensitive
groups, i.e., for example p(T ̸= Y |Z = 1) = p(T ≠ Y |Z = 0) (in the case of overall
accuracy, where Y is the true target). Introduced by Hardt et al. (2016), the
last well-known group fairness notion is the equalised odds, which says that the
granting credit event should be independent of the sensitive feature Z given Y ,
i.e., p(T = 1|Z = 1, Y) = p(T = 1|Z = 0, Y).

Several works have been proposed to deal with unfairness in machine learning,
mostly on differentiable models. On non-differentiable models such as decision
trees, one of the first work is the one of Kamiran et al. (2010), who propose two
methods to learn fair decision trees. The first one uses a modified version of
information gain that incorporates the influence of a split on the discrimination.
The second one is a relabelling technique that minimises the discrimination of a
learned decision tree using the empirical joint distribution between the sensitive
attribute and the class attribute on all the leaf nodes. Recently, in the same
approach of top-down greedy methods, Raff et al. (2018) adapted the learning
algorithm of a C4.5 decision tree to comply with fairness constraints by introducing
two measures of fairness in the case of either categorical sensitive features or
continuous ones and a new fair heuristic gain measure. Aghaei et al. (2019) also
proposed a more general framework that encapsulates the learning problem of
optimal fair decision trees through MIP. Their formulation deals with classification
and regression problems and integrates the fairness constraint as a regularisation
term of the misclassification error or mean absolute error. However, this optimal
formulation needs hours to provide good results, unlike the heuristic-based method
of Raff et al. (2018).

3.3.2.6 Summary about Attribute-level Constraints

In summary, we have sub-categorised attribute-level constraints that are the most
studied in literature into monotonicity constraints, cost of attributes, hierarchies,
privacy constraints or fairness constraints. Monotonicity constraints and to some
extent attribute costs and hierarchies constraints may be useful to learn trees that
can be more comprehensible and trustworthy for the domain expert (You et al.,

52

CHAPTER 3. CONSTRAINT ENFORCEMENT ON DECISION TREES: A SURVEY

Figure 3.6: Instance-level constraints in decision trees. Figure taken from Nanfack et al.
(2022a).

2017). The majority of works that deals with these constraints adapt traditional
heuristics measures that incorporate constraints (Hu et al., 2010, 2012; Marsala
and Petturiti, 2015; Pei et al., 2016). Other prefer using a post-pruning method.

The privacy constraints, which aim at preventing attacks (e.g., to discover
sensitive information) over instances, are generally considered through the lens
of computer security. Thus, works in this field can be seen in the pure security
formulations with secure channels, perturbations, anonymisation (Fletcher and
Islam, 2019). However, recently, differential privacy is emerging thanks to clear
mathematical formulations whose purpose is to guarantee that computations are
(slightly) invariant to (noisy) perturbations over data (Friedman and Schuster,
2010). The main difficulty here is to guarantee the balance between accuracy,
privacy requirements, and interpretability of the decision tree. For example, finding
an optimal depth while satisfying the differential privacy constraint is still an open
issue (Fletcher and Islam, 2019).

Finally, fairness constraints that act as non-discrimination constraints are widely
understudied for decision trees, while being of particular interest in differentiable
machine learning models. In fact, very few works exist (Kamiran et al., 2010;
Raff et al., 2018) even though diverse mechanisms in machine learning have
been proposed (Zafar et al., 2017). This is partly because standard decision tree
algorithms do not optimise directly a global objective and thus it is quite difficult
to apply these methods to learn discrimination-aware decision trees. That is why
learning fairer decision trees could be easily handled with constraint programming
methods that optimise explicitly a global objective function, as proposed in Aghaei
et al. (2019).

3.3.3 Instance-level Constraints

Instance-level constraints (see Fig. 3.6) are constraints defined through a relation-
ship between decision trees and two or more data instances. For example one can

53

CHAPTER 3. CONSTRAINT ENFORCEMENT ON DECISION TREES: A SURVEY

specify that certain examples may never be misclassified. Another example of
such constraints is related to clustering and thus clustering trees: instance-level
constraints, such as must link or cannot link (Wagstaff et al., 2001a), specify that
some examples must belong to the same class or must belong to different classes.
These constraints may be useful in when training data is of limited size (number
of instances), and therefore can improve the performance of decision trees. This
type of constraint is not also widely enforced in the literature of decision trees. In
the following, we briefly describe works that try to enforce constraints of this type
on decision tree.

The first constraints that are popular in clustering are must-link and cannot-link
constraints. Since decision trees are mainly used for classification and regression,
these constraints are not widely studied in the decision tree literature. Struyf and
Džeroski (2007) propose an algorithm called ClusILC, which learns clustering trees
by integrating domain knowledge in terms of instance-level constraints (must-link
or cannot-link). These constraints are treated as soft constraints since some of
them can be violated. They are integrated via an augmented term (which is the
percentage of violated constraints) on a global heuristic that is the average variance
instances over leaf nodes normalised by the total variance.

Instance-level constraints can also be specified over measures (for example
information gain) directly linked to certain instances. This is the case for Sethi
and Sarvarayudu (1982), who propose an algorithm that learns top-down induction
trees for classification by using the average information gain on the tree, given a
constraint over the probability of error. This probability of error integrates a belief
over the number of instances that may be misclassified.

The last instance-level constraint, which is very popular in machine learning,
is the adversarial robustness constraint. Although adversarial examples applied on
decision trees are very understudied in the literature, decision trees have shown
to be naturally sensitive to adversarial examples (Cheng et al., 2019; Kantchelian
et al., 2016; Papernot et al., 2016; Chen et al., 2019). To overcome this problem,
Chen et al. (2019) proposes a robust version of information gain that can serve
to improve the robustness of decision trees learned in a greedy top-down fashion.
Calzavara et al. (2020) rather optimise an evasion-aware loss function as the
heuristic and Calzavara et al. (2019) show how to extend adversarial training for
decision trees and gradient boosting trees.

54

CHAPTER 3. CONSTRAINT ENFORCEMENT ON DECISION TREES: A SURVEY

3.3.4 Summary over the Taxonomy

We have described a taxonomy of constraints (tree structure, attribute, and instance
levels) that are important when one may learn decision trees that comply with
certain constraints. These levels seem orthogonal at first, but they are they are not
because a constraint on a measure (for instance information gain must be less than
a threshold) can be seen as a mixture of attribute, instance-level or structure-level
constraints. As another example, imposing that the number of instances inside
a leaf node is more than a fixed number (which is a very useful constraint to
reduce overfitting) can be seen as instance-level and structure-level constraint.
So rather than being orthogonal disjoint types of constraints, this taxonomy is
flexible, since a particular level of constraints can potentially impact other levels
of constraints. Hence, more constraints can be formulated as a mixture of different
levels of constraints.

3.4 Taxonomy of Methods through the Lens of Optimi-
sation

This section describes our categorisation of approaches that learn constrained deci-
sion trees. Our categorisation is partially based on the optimisation tool employed
to learn decision trees under constraints. In this categorisation, we distinguish four
approaches: top-down greedy, safe enumeration, linear and constraint program-
ming, and probabilistic (sometimes referred here as discriminative and Bayseian)
approaches. Table 3.1 provides an overview of these approaches for the different
types of constraints.

55

CHAPTER 3. CONSTRAINT ENFORCEMENT ON DECISION TREES: A SURVEY

Table 3.1: Overview of the approaches for the different types of constraints. The table can
be read horizontally to look for works using a particular optimisation method or vertically
to look for works that enforce a specific type of constraints.The cells of the table indicate
works given the type of constraints in the header and the optimisation method in the
table row. This table is taken from Nanfack et al. (2022a).

Structure-level Attribute-level Instance-
level

Greedy
top-down Quinlan and Rivest

(1989); Craven and
Shavlik (1995); Boz
(2002); Garofalakis
et al. (2000); Zilke
et al. (2016); Wu
et al. (2016); Yang
et al. (2018)

Norton (1989); Núñez (1991);
Tan (1993); Pazzani et al.
(1994); Ben-David (1995);
Potharst and Feelders (2002);
Ferri et al. (2002); Daniëls
and Velikova (2003); Kruegel
and Toth (2003); Feelders
and Pardoel (2003); Ling
et al. (2004); Davis et al.
(2006); Freitas et al. (2007);
López-Vallverdú et al. (2007);
Kamp et al. (2009); Cardoso
and Sousa (2010); Iqbal
et al. (2012); López-Vallverdú
et al. (2012); Li et al. (2015);
Wang et al. (2018); Gangrade
and Patel (2012); Vaidya
et al. (2008); Gangrade and
Patel (2009); Matwin et al.
(2005); Friedman et al. (2006);
Sweeney (2002); Teng and Du
(2007); Zaman et al. (2016);
Liu et al. (2009); Li et al.
(2020b,a); Nanfack et al.
(2021a)

Sethi and
Sarvarayudu
(1982); Gehrke
et al. (1999);
Struyf and
Džeroski
(2007);
Kamiran
et al. (2010);
Raff et al.
(2018); Chen
et al. (2019);
Calzavara et al.
(2020, 2019)

56

CHAPTER 3. CONSTRAINT ENFORCEMENT ON DECISION TREES: A SURVEY

Structure-level Attribute-level Instance-
level

Safe enu-
meration
methods

Bennett and Blue (1996);
Tjortjis and Keane (2002);
Garofalakis et al. (2003);
Struyf and Džeroski (2006);
Fromont et al. (2007); Ko-
cev et al. (2007); Auer et al.
(1995); Tzirakis and Tjortjis
(2017); Lin et al. (2020); Hu
et al. (2019)

Turney (1995); Estruch
et al. (2002); Esmeir and
Markovitch (2004, 2006);
Madzarov et al. (2009);
Omielan and Vadera
(2012); Krętowski and
Grześ (2006)

Gehrke et al.
(1999); Nijssen
and Fromont
(2010, 2007)

Linear,
SAT and
constraint
program-
ming

Heidenberger (1996);
Bessiere et al. (2009);
Verwer and Zhang (2017);
Bertsimas and Dunn (2017);
Menickelly et al. (2016);
Narodytska et al. (2018);
Firat et al. (2020); Verwer
and Zhang (2019); Aghaei
et al. (2019); Verhaeghe
et al. (2019); Aghaei et al.
(2021); Avellaneda (2020);
Hu et al. (2020)

Bennett and Mangasar-
ian (1992); Aghaei et al.
(2019)

Bertsimas and
Dunn (2017);
Verhaeghe
et al. (2019)

Probabilistic
learning Buntine (1992); Chipman

et al. (1998); Denison et al.
(1998); Angelopoulos and
Cussens (2005a,b); Wu et al.
(2007); Schetinin et al.
(2007); Nijssen (2008); Nuti
et al. (2019)

Angelopoulos and
Cussens (2005b,a)

Chipman et al.
(1998); Denison
et al. (1998);
Buntine (1992);
Angelopoulos
and Cussens
(2005b,a); Nuti
et al. (2019)

Table 3.1: Overview of the approaches for the different types of constraints.

57

CHAPTER 3. CONSTRAINT ENFORCEMENT ON DECISION TREES: A SURVEY

3.4.1 Top-down Greedy Approaches

Methods that learn decision trees in a top-down manner consist in choosing, at
each node the test that optimises a specific heuristic (generally a local heuristic,
which depends on a subset of data and a subset of attributes).

The majority of constraints talked in previous sections can be incorporated
into a heuristic to build trees greedily. They make sure to push local decisions
towards a trade-off between satisfying the stated constraints and the expected
accuracy of the tree. If top-down greedy approaches have the advantage of being
fast to compute, they have the big disadvantage of providing usually sub-optimal
decision trees, which may be harmful when constraints need to be impose. Since
they do not optimise directly a global objective, they are not naturally suited for
global constraints (for example, the size of the tree or monotonicity constraints
for monotone datasets). This is why post-strategies such as pruning methods are
often applied to make sure that the global constraints are satisfied even when these
constraints can be integrated into the heuristic (Garofalakis et al., 2003; Kamiran
et al., 2010; Choi et al., 2016). For structure-level constraints, few works handle
structure-level constraints with top-down greedy approaches, as they are naturally
designed to learn the most accurate trees even if the resulting trees can be large.
Works that leverage a top-down approach are generally an extension of pruning
methods (e.g., Quinlan and Rivest (1989); Craven and Shavlik (1995); Boz (2002);
Garofalakis et al. (2000); Zilke et al. (2016); Wu et al. (2016)). They try first
to guarantee a level of accuracy by learning possible large trees and, second, to
enforce structure-level constraints using a (post) pruning strategy. This explains
why they can be seen as pruning methods.

To enforce attribute-level constraints, top-down greedy algorithms are very
popular for two reasons. First, the main algorithm is generic enough to be
easily customisable. Second, in real-world applications, domain experts provide
domain knowledge than can be transposed to attribute-level constraints. Then,
practitioners can easily develop models that comply with domain knowledge.

3.4.2 Safe Enumeration Approaches

Apart from greedy algorithms, diverse works try to enumerate the possibilities of
choosing splits through careful directives with respect to the constraints, while
simultaneously proposing mechanisms to break the complexity (e.g., dynamic
programming or branch and bound). Beyond the brute force method, methods
exist to choose the best split criterion randomly according to a minimum/maximum
number of possibilities. Even though these methods have the advantage of leaving

58

CHAPTER 3. CONSTRAINT ENFORCEMENT ON DECISION TREES: A SURVEY

the greedy direction, a major drawback is the difficulty of easily incorporate
constraints. Also, a thorough and technical study must be done to break the
complexity of the proposed learning algorithm. Works tailored in this approach
include Bennett and Blue (1996); Tjortjis and Keane (2002); Garofalakis et al.
(2003); Fromont et al. (2007); Kocev et al. (2007); Auer et al. (1995); Tzirakis and
Tjortjis (2017), Turney (1995); Estruch et al. (2002); Esmeir and Markovitch (2004,
2006); Madzarov et al. (2009); Omielan and Vadera (2012); Krętowski and Grześ
(2006) and Gehrke et al. (1999). Works using this approach (Fromont et al., 2007;
Nijssen and Fromont, 2007) can sometimes guarantee the optimality of decision
trees with restrictive assumptions on the search space (for instance the binarity of
the tree, the number of constraints, the size of the dataset).

3.4.3 Linear, SAT and Constraint Programming Approaches

The discrete nature of the search space and the logical constraints that can be
imposed on the decision trees are highly related to constraint satisfaction problem
(CSP) or linear programming problems or SAT as well. In contrast to top-down
greedy and safe enumeration methods, these approaches formalise the problems in
clear mathematical form (e.g., linear programming, SAT, MaxSAT or CP) so that
it can be optimised by an appropriate solver.

At first glance, this approach would provide optimal guarantees. In fact,
formulating the tree learning problem in terms of global optimisation makes it
possible to focus more on the modelling than on the algorithm. This is very suitable
for providing mathematical guarantees such as fairness (Aghaei et al., 2019). Also,
it allows an easy way to integrate constraints as regularisation terms, even for
structure-level constraints (Bertsimas and Dunn, 2017). However, optimality is
not usually reached due to the large computational time required. Therefore, most
works require acceptable initial solutions to speed up the optimisation. Furthermore,
the majority of CP, ILP and MIP problems are NP-complete, even with restrictive
assumptions. Thus, the scalability of the problem and the sub-optimal solutions a
given time limit remain problematic. Related works include Heidenberger (1996);
Bessiere et al. (2009); Verwer and Zhang (2017); Bertsimas and Dunn (2017);
Menickelly et al. (2016); Narodytska et al. (2018); Firat et al. (2020); Verwer and
Zhang (2019); Aghaei et al. (2019) and Bennett and Blue (1996).

3.4.4 Probabilistic Approach

Bayesian methods give a probabilistic formulation of the problem. They are efficient
to integrate several constraints with priors. Few works on this approach exist

59

CHAPTER 3. CONSTRAINT ENFORCEMENT ON DECISION TREES: A SURVEY

because the choice of the prior and computing the posterior are still open problems.
Works that propose priors and approximations of the posterior include Chipman
et al. (1998); Denison et al. (1998); Buntine (1992); Schetinin et al. (2007); Nijssen
(2008); Nuti et al. (2019). The Bayesian formulation has the advantage to integrate
constraints with a clear and rigorous mathematical way through priors.

Having the idea that a decision tree can be framed into a probabilistic formula-
tion, works have tried to transform the non-parametric problem into a parametric
one, and the combinatorial space into a real space approximation, to learn trees
with standard gradient descent optimisation. However, currently, works that suc-
ceed with this approach only learn multivariate decision tree under structure-level
constraints (e.g, Norouzi et al. (2015)).

3.4.5 Summary About Categorisation of Approaches

To summarise, we have identified several optimisation methods which we cate-
gorised in top-down greedy induction, safe enumeration approaches, mixed integer
programming, probabilitic approaches (see Table 3.1 for a global summary). Due
to their low computational cost, historical developments in early methods such
as CART and C4.5 and their ease of implementation and modification, greedy
top-down methods are the most studied. The underlying top-down induction
algorithm remains similar in structure and is easy to understand, yet it may
provide sub-optimal solutions due to its greedy nature. On the other hand, safe
enumeration methods are computationally costly but are likely to produce more
accurate decision trees. However, finding a solution with safe enumeration may be
difficult because different constraints have to be simultaneously satisfied, making
the search more complex. Bayesian approaches are challenging because priors
must be carefully designed to soundly enforce constraints. They are also rather
expensive due to the use of sampling strategies. Finally, CP/SAT/MIP models offer
an alternative to mathematically specify constraints. If decision trees are part of a
bigger problem of a decision system that need to impose some constraints, these
additional constraints only need to be formulated in the SAT/CP/MIP modelling
framework in order to learn trees that comply with those constraints by design.
However, these CP/SAT/MIP methods are expensive to use and often require to
be initialised with satisfactory solutions.

In summary, this survey shows that there is no one-size-fits-all solution to the
problem of learning decision trees with user and domain knowledge constraints.
Depending on the characteristics of the dataset itself, the type and number of
constraints, the acceptable discrepancy in accuracy and the available computational
time, one method will be preferred to the others. The high computational cost of

60

CHAPTER 3. CONSTRAINT ENFORCEMENT ON DECISION TREES: A SURVEY

non-greedy methods explains their infrequent use (until recently).
Table 3.1 confirms that top-down greedy algorithms have been largely studied.

Many works have proposed to improve them, which is natural since they were
prominent in both the literature and practical applications and they were easier to
modify and to implement than their computational costly competitors. This has
to be put in perspective of recent works that are focusing on linear and constraint
programming approaches thanks to efficient implementation supported by faster
computations. This trend is likely to only increase in the future, leading to new
developments.

3.5 Discussion

This survey reviewed how constraints can be defined and applied to decision
trees, to make them safer, more accurate, more understandable, more robust, or
more trustworthy. This section provides a discussion. Specifically, we express the
difficulty of traditional algorithms to enforce constraints on decision trees. The
optimality and interpretability of learned decision trees under constraints are also
discussed. Finally, we mention what could be future research directions in this field.
Note that this section has a marginal modification from the discussion provided in
Nanfack et al. (2022a).

3.5.1 On the Weaknesses of Standard Top-down Induction Algo-
rithms to Constrain Decision Trees

First of all, it is important to note that pruning techniques may fail to learn
more interpretable decision trees, even though they can reduce the complexity of
the tree. Indeed, pruning methods do not discover richer trees than traditional
top-down greedy algorithms. In other words, pruned greedy top-down trees may
sometimes appear as unnatural and it is possible to find smaller and better (in
terms of accuracy and interpretability) trees, even manually (Piltaver et al., 2016).
Secondly, according to what has been shown in Section 3.3, with traditional
algorithms, there is a need to adapt each constraint to a new specific heuristic: for
example, ranked version of information gain (Hu et al., 2010, 2012) for monotonicity
constraint, information gain sensitivity for fairness (Kamiran et al., 2010) and
so on. This is relatively inefficient when many constraints or properties must be
guaranteed. Indeed, the problem becomes much more complex and local heuristics
are susceptible to stuck in local solutions. There, further studies are required to
propose flexible impurity measures that can integrate constraints more easily.

61

CHAPTER 3. CONSTRAINT ENFORCEMENT ON DECISION TREES: A SURVEY

Table 3.2: A benchmark for depth-constrained decision tree learners. Maximum depth is
set to 3. Train and test columns indicate respectively the mean of training and testing
accuracy over 5 independent runs whereas ctime columns refer to the computational time
(in seconds). CART and BinOCT are run with continuous features while others require
binarisation of continuous features. Table taken from Nanfack et al. (2022a)

Top-down greedy MIP SAT CP Safe enumeration
CART BinOCT OST MaxSAT_DT Verhaeghe et al. (2019) DL8.5 OSDT

Breiman et al. (1984) Verwer and Zhang (2019) Aghaei et al. (2021) Hu et al. (2020) Aglin et al. (2020) Hu et al. (2019)
Dataset train test ctime train test ctime train test ctime train test ctime train test ctime train test ctime train test ctime

Balance S. 70.51 66.24 0.0 74.36 68.79 600.0 – – – – – – – – – 75.00 69.94 0.0 – – –
Banknote A. 94.38 93.82 0.0 97.47 96.15 600.0 93.25 93.08 36.0 93.37 92.54 18.0 93.37 92.54 0.0 93.37 92.54 0.0 93.37 92.59 14.0
Biodeg 83.92 78.03 0.0 82.76 79.85 600.0 79.58 76.04 604.0 82.02 79.17 599.0 83.54 80.08 2.0 83.54 80.08 1.0 82.23 80.53 128.0
Car 80.61 80.40 0.0 80.94 79.21 600.0 – – – – – – – – – 81.57 79.82 0.0 – – –
Credit A. 87.28 84.89 0.0 88.63 85.24 600.0 86.71 85.67 602.0 89.20 85.49 598.0 89.61 86.10 1.0 89.57 85.74 0.0 86.71 85.37 0.0
Hepatitis 91.48 83.76 0.0 92.59 80.51 600.0 82.54 82.69 521.0 91.03 81.54 599.0 91.55 82.05 1.0 91.38 81.54 0.0 79.31 79.49 0.0
Ionosphere 93.03 88.89 0.0 93.00 87.95 600.0 87.55 83.24 602.0 91.56 86.82 598.0 93.16 89.32 6.0 93.08 88.64 2.0 82.66 77.73 29.0
Iris 97.22 95.61 0.0 92.86 88.95 110.0 – – – – – – – – – 98.22 93.68 1.0 – – –
Mammo. M. 84.87 83.23 0.0 85.34 83.85 600.0 84.45 83.65 602.0 85.31 83.65 599.0 85.31 83.56 1.0 85.27 83.46 0.0 84.21 82.79 9.0
Monk1 78.18 81.14 0.0 90.22 86.33 524.0 90.41 85.07 186.0 90.46 85.32 5.0 90.46 85.18 0.0 90.46 85.18 0.0 90.46 85.18 128.0
Monk2 66.12 63.50 0.0 68.04 59.34 600.0 65.78 65.56 601.0 68.27 59.34 600.0 68.62 57.75 0.0 68.40 58.67 0.0 65.78 65.56 0.0
Monk3 98.85 99.12 0.0 98.89 98.99 83.0 98.23 97.60 27.0 98.89 98.99 1.0 98.89 98.99 0.0 98.89 98.99 0.0 97.16 96.12 0.0
Pima I. D. 79.21 72.69 0.0 80.45 73.44 600.0 77.03 74.13 601.0 78.06 71.56 599.0 78.33 70.52 0.0 78.33 70.52 0.0 76.70 74.58 128.0
Post O. P. 76.24 71.21 0.0 81.54 72.73 600.0 – – – – – – – – – 84.92 66.36 0.0 – – –
Seismic 93.52 93.14 0.0 93.73 93.16 600.0 93.41 93.45 604.0 93.47 93.22 600.0 93.47 93.28 0.0 93.47 93.19 0.0 93.42 93.44 0.0
Spambase 89.04 87.63 0.0 85.54 85.09 601.0 83.76 83.67 607.0 83.77 83.30 600.0 84.22 83.75 0.0 84.22 83.76 0.0 84.22 83.84 128.0
Spect H. 81.33 75.46 0.0 82.10 77.91 600.0 81.67 75.62 29.0 82.20 75.52 255.0 82.20 79.10 0.0 82.20 79.10 0.0 80.80 77.01 128.0
Thoracy S. 87.25 83.24 0.0 87.61 82.20 600.0 85.23 84.75 601.0 87.90 81.86 599.0 88.12 81.86 1.0 88.01 80.85 0.0 85.23 84.75 0.0
Tic T. T. 75.91 72.92 0.0 77.19 71.67 600.0 75.49 73.06 602.0 76.99 73.92 599.0 78.80 73.17 1.0 78.50 73.33 0.0 77.52 74.17 128.0
Wine 99.33 93.09 0.0 99.85 91.56 381.0 – – – – – – – – – 97.89 92.44 0.0 – – –

3.5.2 On the Optimality of the Learned Decision Trees under
Constraints

Before discussing optimality of existing techniques, it may also be relevant to
look back at their history. Regarding the techniques proposed by the literature
and by looking at Table 3.1, we can note that the earliest methods (Quinlan and
Rivest, 1989; Núñez, 1991; Garofalakis et al., 2000; Potharst and Feelders, 2002)
with constraint enforcement are top-down. A reason could be the fact that this
period was extremely dominated by the heuristic search for combinatorial problems.
Bayesian (Chipman et al., 1998; Denison et al., 1998; Buntine, 1992) and MIP
methods (Heidenberger, 1996) also appeared early. Due to their computational
cost, these methods have been less used than greedy methods. However, nowadays,
the computing capabilities of machines and the efficiency of solvers have highly
increased and methods that were deemed as inefficient because of their computation
cost are now re-emerging. This is the case for MIP and Bayesian methods. By
nature, greedy algorithms can rarely lead to optimal decision trees given a particular
set of constraints. If correctly modelled, MIP/CP/SAT approaches produce optimal
decision trees given enough time. However, from what have been seen for current
methods, there is still room for improvement in the modelling, since the majority
of current CP/SAT methods require binary features and are limited to binary
classification whereas current MIP methods (such as Verwer and Zhang (2019);
Bertsimas and Dunn (2017)) make use of starting solutions to speed up the search.

62

CHAPTER 3. CONSTRAINT ENFORCEMENT ON DECISION TREES: A SURVEY

Table 3.3: A benchmark for depth-constrained decision tree learners. Maximum depth is
set to 4. Train and test columns indicate respectively the mean of training and testing
accuracy over 5 independent runs whereas ctime columns refer to the computational time
(in seconds). CART and BinOCT are run with continuous features while others require
binarisation of continuous features. Table taken from Nanfack et al. (2022a)

Top-down greedy MIP SAT CP Safe enumeration
CART BinOCT OST MaxSAT_DT Verhaeghe et al. (2019) DL8.5 OSDT

(Breiman et al., 1984) (Verwer and Zhang, 2019) (Aghaei et al., 2021) (Hu et al., 2020) (Aglin et al., 2020) (Hu et al., 2019)
Dataset train test ctime train test ctime train test ctime train test ctime train test ctime train test ctime train test ctime

Balance S. 72.86 67.07 0.0 77.39 70.83 600.0 – – – – – – – – – 79.06 72.49 0.0 – – –
Banknote A. 97.24 95.92 0.0 97.71 96.73 600.0 93.37 93.29 603.0 94.81 94.40 599.0 94.83 94.52 1.0 94.83 94.58 0.0 93.99 93.24 10.0
Biodeg 87.16 78.07 0.0 82.17 78.33 601.0 81.07 77.08 608.0 84.02 79.17 598.0 87.03 80.45 171.0 86.78 80.38 26.0 82.28 78.79 10.0
Car 81.23 80.38 0.0 83.02 82.18 600.0 – – – – – – – – – 84.55 82.82 0.0 – – –
Credit A. 90.14 85.03 0.0 89.12 84.88 600.0 87.58 85.67 604.0 89.98 85.00 598.0 91.86 85.12 42.0 91.74 85.25 6.0 89.86 85.73 10.0
Hepatitis 94.54 84.33 0.0 96.90 79.49 600.0 82.54 85.26 601.0 95.86 78.97 598.0 97.76 78.46 4.0 97.76 78.46 1.0 79.31 79.49 0.0
Ionosphere 95.31 88.89 0.0 94.75 89.32 600.0 89.45 85.23 604.0 92.24 85.91 597.0 97.26 84.32 549.0 97.26 84.32 44.0 82.66 77.73 3.0
Iris 99.01 95.61 0.0 100.00 94.74 9.0 – – – – – – – – – 98.39 93.68 0.0 – – –
Mammo. M. 85.41 82.80 0.0 85.98 82.60 600.0 84.53 83.65 603.0 85.88 82.98 598.0 86.43 82.60 2.0 86.40 82.60 0.0 84.50 82.60 10.0
Monk1 84.01 83.29 0.0 100.00 100.00 62.0 100.00 100.00 169.0 100.00 100.00 0.0 100.00 100.00 0.0 100.00 100.00 0.0 100.00 100.00 0.0
Monk2 68.59 64.97 0.0 71.51 57.35 600.0 65.78 65.56 602.0 69.69 61.72 599.0 72.71 57.75 1.0 72.58 58.15 0.0 65.78 65.56 0.0
Monk3 98.85 99.12 0.0 98.89 98.99 600.0 98.37 98.02 64.0 98.94 98.56 488.0 98.94 98.56 1.0 98.94 98.56 0.0 97.16 96.12 0.0
Pima I. D. 81.48 71.47 0.0 79.97 71.77 600.0 76.87 74.09 603.0 78.92 71.46 599.0 81.11 69.27 5.0 80.97 70.52 1.0 76.70 74.58 10.0
Post O. P. 79.32 70.20 0.0 85.23 64.55 600.0 – – – – – – – – – 91.69 65.45 0.0 – – –
Seismic 93.95 92.71 0.0 93.78 93.25 600.0 93.41 93.46 608.0 93.55 93.07 599.0 93.57 93.13 2.0 93.57 93.06 0.0 93.42 93.44 0.0
Spambase 91.16 89.75 0.0 81.50 81.48 603.0 84.58 83.91 613.0 84.28 83.20 599.0 85.50 84.40 2.0 85.50 84.40 0.0 81.83 81.22 10.0
Spect H. 83.78 77.11 0.0 85.70 79.40 600.0 81.12 76.49 195.0 86.20 77.01 599.0 86.90 77.01 3.0 86.90 77.01 0.0 84.20 76.72 10.0
Thoracy S. 88.45 82.86 0.0 88.69 80.68 600.0 85.23 84.75 602.0 89.15 81.02 598.0 90.28 80.68 8.0 90.17 80.17 1.0 85.23 84.75 0.0
Tic T. T. 83.70 82.31 0.0 82.28 79.00 600.0 80.22 76.98 604.0 81.50 76.75 598.0 87.05 80.83 7.0 86.69 81.25 1.0 81.62 78.17 10.0
Wine 100.00 92.10 0.0 100.00 88.89 178.0 – – – – – – – – – 100.00 89.33 0.0 – – –

Added with the scalability problem, these issues remain current limitations of
MIP/CP/SAT approaches.

Table 3.2 and 3.3 show a benchmark of extensive experiments that we performed
on current state-of-sthe-art depth-constrained2 decision tree methods. We reported
training, testing (75-25 train-test split percentage) and computational time over
five independent runs (with 10 minutes as time limit for each run to prevent
unlimited computations, in accordance with Verwer and Zhang (2019)). Cells
of the table marked with ’−−’ correspond to methods that do not work with
multi-class classification. Methods are evaluated on well-known datasets (listed
on the first column of the tables) from the UCI (Dua and Graff, 2017) repository.
Except CART and BinOCT (which are used with continuous features), all these
methods have the strong requirement to work only with binary features, thus
continuous features have to be discretised3 (Verhaeghe et al., 2019; Hu et al., 2020).
It can be seen that the old top-down greedy CART method is still competitive in
terms of predictive accuracy over MIP/SAT/CP and safe enumeration methods.
However, regarding the training performance, it usually fails to provide optimal or
near-to-optimal solutions, unlike MIP/SAT/CP and safe enumeration methods. It
is also surprising that the performance improvement of MIP/SAT/CP and safe
enumeration methods do not necessarily lead to good generalisation yet having a
depth constraint, which is supposed to reduce the generalisation gap. This suggest

2Without a constraint on the min/max number of instances on leaves
3We used the KBinsDiscretizer from the Scikit-learn library, with 3 Bins.

63

CHAPTER 3. CONSTRAINT ENFORCEMENT ON DECISION TREES: A SURVEY

Table 3.4: Methods, their number of variables and their number of constraints. N is the
number of instances of the dataset, M is the number of features, Tall is the total number of
splits and Tmax is the number of maximum split per feature in Verwer and Zhang (2019).
S is the number of nodes or the size of the tree, K is its depth, L is its number of leaves
and C is the number of classes. Only the work in the last row tries to incorporate a novel
constraints while the rest of works aim to make accelerate the learning.

Methods Number of variables/literals Number of constraints/clauses

Bessiere et al. (2009) O
(
S ×M

)
O
(
M × S2 ×N2 + S ×M2 +M × S3

)
Narodytska et al. (2018) O

(
S2 +M × S

)
O
(
M × S2 +M ×N × S

)
Avellaneda (2020) O

(
2K(M +N + C)

)
O
(
2K(M2 +N ×M + C

)
Bertsimas and Dunn (2017) O

(
2K(M +N + C)

)
O
(
2K(C +N ×K +M)

)
Verwer and Zhang (2019) O

(
2K(M + C + log(Tmax)

)
O
(
N + 2K(M × Tall + C)

)
Aghaei et al. (2021) O

(
2K(N +M)

)
O
(
2K(N +M)

)
Aghaei et al. (2019) O

(
L(M × S +N)

)
O
(
L(L×N +M × S)

)

that more inductive biases should be proposed on these methods in order to further
reduce this generalisation gap.

Regarding the computational time, it appears from the table that MIP and
MaxSAT require more time to find (optimal) solutions (or at least to prove
optimality) compared to CP, safe enumeration and greedy methods such as CART.
Indeed, CART uses a heuristic and its implementation in Scikit-learn is highly
optimised with system calls using the C language. Regarding safe enumeration
methods, they use highly optimised C libraries too. Therefore, it remains unclear
whether this improvement of computational time comes from this use of C libraries
or from a reduction of theoretical complexity. Therefore, we highlight that future
work should be done in order to fairly analyse computational time in the lens of
theoretical complexity evaluation, which is currently lacking in some extent.

3.5.3 On the Complexity of SAT/CP/MIP Formulations of the
Optimal Decision Trees

Although being theoretically hard (NP-hard), the optimal decision tree problem
under structure-level constraints is attracting researchers. Indeed, several works
have been proposed as explained in Section 3.3.1 and work well in practice with a
limited budget of computational time (usually minutes or hours).

Table 3.4 compares several of these methods in terms of their number of
variables/literals and number of constraints/clauses (that we have counted if
they were not mentioned in the paper). The number of variables and number of
constraints serve as a heuristic to assess which method is more attractive in terms

64

CHAPTER 3. CONSTRAINT ENFORCEMENT ON DECISION TREES: A SURVEY

of practical computational time and therefore time and space complexity. Among
others, the formulation of Aghaei et al. (2019) on the last row of the table is the
only method, among SAT/CP/MIP formulations, whose goal is not to speed up
computational time, but rather to leverage global optimisation to enforce fairness
constraints. All other methods usually aim to speed up optimisation when learning
optimal decision trees under structure-level constraints. The first three works are
SAT-based methods. From the first row to the third, the number of literals or
constraints is enhanced in order to improve computational time. This can also be
noted for other methods. For example, the BinOCT formulation of Verwer and
Zhang (2017) is an improved MIP version of the OCT formulation (Bertsimas and
Dunn, 2017) where the number of variables does not depend on the dataset size N .

As mentioned above, the number of variables and constraints are used here
as simple heuristics to characterise the difficulty and scalability of a particular
method. Therefore, future studies should be done in order to access whether this
reduction in the number of variables and constraints of these methods leads to an
improved computational complexity. This issue is also an open problem for safe
enumeration methods. Among these methods only Auer et al. (1995) accompanied
their T2 algorithm with a polynomial time complexity for the class of decision
tree of depth at most 2. Hence, in the future, newly proposed methods should
also discuss their computational complexity rather than just comparing number of
variables/constraints or reporting only the empirical computational time.

3.5.4 On the Interpretability, Trustworthiness and Robustness of
Decision Trees

According to what has been related previously in the literature (e.g, Verwer
and Zhang (2017); Bertsimas and Dunn (2017) in Section 3.3.1), the question of
interpretability is generally related to the complexity of the decision tree. Thus,
when authors talk about forcing trees to be more interpretable and easier to
understand, they commonly think about reducing complexity, i.e., structure-level
constraints (Verwer and Zhang, 2017; Bertsimas and Dunn, 2017; Verwer and
Zhang, 2019). However, decision trees that are learned with a maximal depth of
two can be too simple in certain contexts, such as in the medical domain. That is
to say, domain experts or users will not trust the learned tree since its decision rule
is too simple (Freitas, 2014). Therefore, this conducts to a loss of interpretability
because the domain expert will consider “an incompleteness criterion of models”
(Guidotti et al., 2018). Thus, similarly to the fact that increasing the size, depth
and number of leaf nodes of decision trees may lead to a loss of interpretability,
decision trees with a very small size and depth, even accurate, are likely to not be

65

CHAPTER 3. CONSTRAINT ENFORCEMENT ON DECISION TREES: A SURVEY

accepted because of their “over-simplistic explanations” (Freitas, 2014).
Hence, trustworthy decision trees with domain knowledge constraints and

user-defined constraints are needed to increase the level of interpretability of the
decision tree. Despite the work of Núñez (1991); López-Vallverdú et al. (2007,
2012) to learn more comprehensible and trustworthy decision trees, this direction
is not yet sufficiently studied in the literature. In fact, further away than domain
knowledge constraints, trustworthy decision trees also include decision trees with
ethical guarantees like the fairness constraint. More work needs to be done on that
topic. Furthermore, beyond complexity, there is a large gap in the general direction
of the possibility to impose multiple constraints, although Aghaei et al. (2019)
recently showed how to learn (optimal) decision tree under fairness constraints.

Robustness is another particular issue in machine learning and thus in decision
trees. Recent challenges in machine learning have shown a stream of interest in
making machine learning classifiers robust to adversarial examples. Although this
is very frequent in deep learning, it has also been shown that those adversarial
examples can be transferred to any classifier and thus to a decision tree (Papernot
et al., 2016). Furthermore, because adversarial examples can be generated via con-
straints (Kantchelian et al., 2016; Biggio and Roli, 2018), improving the robustness
of classifiers can also be done via constraint enforcement (Bastani et al., 2016).
And yet, there are only very few works (Chen et al., 2019), on constraining the
decision tree to be more robust to particular attacks of adversarial examples.

3.5.5 On the Usefulness of Constraint Enforcement for Approxi-
mating Black-box Machine Learning Algorithms

Several works presented in Section 3.3.1.1 get benefit from constraint enforcement
to approximate and explain a black-box machine learning algorithm. In fact,
explaining black-box machine learning is (obviously) necessary from an ethical
perspective and for preventing a “black-box society” (Pasquale, 2015; Guidotti
et al., 2018) guided by sense(less) decisions of algorithms. On the other hand, it
would be useless to learn a decision tree that is difficult to understand if its purpose
is to explain a black-box model. Works like Craven and Shavlik (1995); Boz (2002);
Zilke et al. (2016); Yang et al. (2018) have been proposed to explain black-box
models. They can guarantee clear explanations by constraining the tree to be
small and less deep. Of course, constraining the size of trees can affect the level of
comprehensibility of the decision tree for experts helping them to understand how
the initial model works. However, restraining too much the size of the trees may
have consequences on their prediction performances thus being so different from

66

CHAPTER 3. CONSTRAINT ENFORCEMENT ON DECISION TREES: A SURVEY

the initial model that they would become useless. It is, therefore, necessary to
find a good balance between the tasks of providing clear explanations and getting
closer to the initial model. In this direction, there is still a significant gap in the
literature to provide theoretical guarantees on the fidelity of the interpretation of
the model explanations.

3.5.6 Future Prospects

In addition to previously mentioned gaps and research directions that need to
be explored, this section presents other relevant future directions where research
should be conducted.

3.5.6.1 Tree Balance Constraint, Interpretability of Decision Trees

Regarding structure-level constraints, several open issues are identified. The first
issue is related to the capability to impose the balance constraint on the structure
of the decision tree. The second one targets the trade-off between the small size,
the depth or the number of leaf nodes in the tree and the question of the degree of
interpretability of the decision tree. In fact, forcing the smallness/sparsity of a tree
can improve its interpretability, but when it becomes too small, even remaining
very accurate, its interpretability can decrease, since learned rules may become
unreliable w.r.t. the domain expertise. Third, it is important to look for flexible
optimal decision tree formulations with fewer restrictions (categorical variables
as well as real variables, binary as well as non-binary trees, classification as well
as regression trees) and that require less computation time. Therefore, a good
modelling for decision trees should be much more flexible in terms of binarity, type
of variables, tasks, depth, size, number of leaf nodes in order to be closer to the
specifications of the user and the domain experts.

3.5.6.2 Experimental Settings

Regarding attribute-level and instance-level constraints, experimental evaluations
are relatively limited because there is not enough datasets that provide domain
knowledge as constraints, except for attribute costs (mentioned in Section 3.3.2.2).
Hence, more datasets should be proposed to benchmark algorithms.

67

CHAPTER 3. CONSTRAINT ENFORCEMENT ON DECISION TREES: A SURVEY

3.5.6.3 Flexible Impurity Measures

In real-world applications, top-down greedy algorithms are frequently used but we
have previously mentioned the limitations of such approaches (see Section 3.4.1).
In fact, the well-known impurity measures that are based on entropy and the
Gini index do not easily integrate constraints. Even if pruning methods attempt
to make the learned tree satistying the constraints, the final tree may seriously
lose its performance. Therefore, more flexible heuristics that make it easier to
incorporate constraints should be proposed. Furthermore, the theoretical limits of
newly introduced measures should be studied.

3.5.6.4 Domain Knowledge Constraints (feature and instance-level) for
Constraint Programming and Bayesian Formulations

Table 3.1 shows that few works have used probabilistic formulations to enforce
attribute and instance-level constraints, which is still an open issue. Yet, Bayesian
formulations have the advantage of learning decision trees with a global objective
or, in certain cases, a global heuristic. This would allow to soundly express global
constraints such as instance-level constraints. In Bayesian methods, one can
enforce constraints in a clear mathematical way through priors. In this direction,
Angelopoulos and Cussens (2005a) use informative priors to allow “box” constraints
(which can be seen as rules constraints in attribute-level). Their formulation
performs well on a Bayesian predictive model with an ensemble of trees, not
for a single tree. However, Nijssen (2008) makes it possible to learn a single
accurate tree with his Bayesian formulation, but without investigating how to
integrate informative priors. Further studies should be done in order to allow
informative priors with domain knowledge constraints, such as rules in the Bayesian
formulations, in order to learn a single accurate and trustworthy decision tree.

Beyond Bayesian formulations, linear and constraint programming formulations
are also used to learn decision trees with a global objective. Thus, this approach is
well suited to integrate attribute and instance-level constraints at a global level
(for instance attribute costs, hierarchy, fairness). Such constraints are not trivial
to implement with e.g., greedy methods (Struyf and Džeroski, 2006). However, the
majority of the proposed formulations have focused their attention on enforcing
structure-level constraints, such as imposing the tree to be small or shallow. Thus,
more efforts should be done to propose flexible linear programming approaches,
which can integrate various types of constraints, including hierarchy and rule
constraints that are important for the trustworthiness of decision trees for critical
domains.

68

CHAPTER 3. CONSTRAINT ENFORCEMENT ON DECISION TREES: A SURVEY

3.5.6.5 Constraints for Proxy Models

In the motivational part of the survey (Section 3.1), we emphasised the importance
and necessity to impose constraints on decision trees used as a proxy for black-box
models. As a reminder, a proxy (or surrogate) decision tree that approximates and
explains a black-box model can be too small and not being able to approximate
the black-box model; or it can be so deep that it is not able to provide human-
understandable explanations. According to the literature that has been examined
throughout this chapter, it is clear that it is still an open issue for future research
because the learned trees might be unreliable and untrustworthy. Future works
on decision trees as proxy models should get benefit from constraint enforcement
on decision trees in general, to ensure that the approximating tree of a black-box
model meets the same guarantees as the approximated model. Moreover, further
studies should also study whether constraints satisfied by the black-box model
such as fairness constraints can be transferred to proxy decision trees.

3.6 Conclusion

This chapter reviewed current and past literature on works that learn constrained
decision trees. We begin by clarifying the importance of constraint enforcement
on decision trees, for instance to meet a specified level of interpretability or
trustworthiness. We also present a taxonomy which comprises structure-level
constraints, attribute-level constraints and instance-level constraints. Our findings
reveal that a large part of methods which enforce structure-level constraints (i.e.,
through the number of leaf nodes, depth and size) aim to improve the accuracy
and interpretability of decision trees. The two other levels of constraints usually
aim to guarantee that decision trees comply with the requirements of a particular
domain, often provided by domain experts. For example, it may be necessary to
enforce monotonicity for the predictions with respect to some attributes. This
makes decision trees more reliable and predictions appear as more realistic and
similar to those that would be made by humans in the same context.

Historically, top-down greedy algorithms such as CART and C4.5 have been
prominent in early developments for decision tree induction. They are therefore
widely used to learn decision trees under constraints. Top-down greedy induction
approaches reported in this work enforce constraints by applying pruning methods
or with specifically modified heuristics. Despite being the most popular approach,
top-down greedy induction methods usually produce sub-optimal solutions for
the training performance, which is not the case of other approaches that we have

69

CHAPTER 3. CONSTRAINT ENFORCEMENT ON DECISION TREES: A SURVEY

identified. Linear programming, constraint programming and Bayesian formu-
lations provide optimal solutions when they are given enough time to explore
solutions but they are more computationally demanding. With recent improve-
ments in implementations and computational power, these methods are gaining
interest. Despite being able to reach top training performance, by experimentally
benchmarking depth-constrained state-of-the-art tree learners, we showed that this
training performance is not usually translated to predictive performance.

We suggest that further research should be intensified in the following areas.
First, providing humanly understandable explanations of black-box machine learn-
ing models should be performed with theoretical guarantees (regarding both the
predictions and the constraints already satisfied in the black-box model). Second,
theoretical and technical limitations of works that learn structure-level constrained
and optimal decision trees should be studied. Third, research is also needed to
study possible compatibility between different types of constraints. Lastly, our
study encourages the scientific community to propose more datasets with domain
knowledge in order to systematically validate methods without the need of experts.

70

Chapter 4

Constraint Enforcement on
Decision Trees Using Top-down
Greedy Methods: Case of Fairness
Constraints

This chapter presents a boundary-based method to learn decision trees under the
fairness constraints. The chapter is based on our publication entitled “Boundary-
Based Fairness Constraints in Decision Trees and Random Forests” (Nanfack
et al., 2021a). Here, we will mainly focus on decision trees, though in the paper we
also showed results on tree-based ensemble methods such as random forests.

Contents
4.1 On the Need for Fair Learning Algorithms 72

4.1.1 On the Source of Unfairness in Machine Learning Models 72
4.1.2 Fairness Notions in Machine Learning 74
4.1.3 Brief State of the Art on Mitigating Unfairness in Ma-

chine Learning . 75
4.2 Related Work on Fair Decision Tree Learners 76
4.3 Distance to Decision Boundary for Decision Trees . . 77
4.4 Boundary-based Fairness Constraints on Decision Trees 78
4.5 Experimental Results . 79

4.5.1 Experimental Setup . 79
4.5.2 Metrics . 81

71

CHAPTER 4. CONSTRAINT ENFORCEMENT ON DECISION TREES USING TOP-DOWN
GREEDY METHODS: CASE OF FAIRNESS CONSTRAINTS

4.5.3 Methods and Hyperparameters 82
4.5.4 Results and Discussion 82

4.6 Conclusion . 84

4.1 On the Need for Fair Learning Algorithms

In the introductory chapter 1 of this thesis, we highlighted the fact that ma-
chine learning is increasingly applied in various domains that include sensible
and high-stake domains such as finance, criminal justice, human resource manage-
ment (job hiring) and health. However, when applied on these sensitive domains
where observations (data sample) are humans, there is a risk that algorithmic
decisions provided by machine learning models violate laws regarding human rights.
Indeed, these algorithmic decisions may disproportionally benefit to a certain
group of individuals, making the decisions discriminatory and therefore violate
anti-discrimination laws. An example of such laws is the US “80 percent rule”
(disparate impact, see Section 4.1.2) law advocated by the Equal Employment
Opportunity Commission (EEOC), which requires that the acceptance rate for any
race, sex, or ethnic group should be at least 80% of the one for the group with the
highest rate (Feldman et al., 2015; Pessach and Shmueli, 2022). Hence, violations
of such kind of non-discrimination laws by machine learning models make their
decisions discriminatory, unfair and illegal. If nothing is done to overcome the risk
of unfair decisions, this concern may seriously hinder the deployment of machine
learning models in various sensitive applications.

4.1.1 On the Source of Unfairness in Machine Learning Models

To overcome the possible risk of unfair decisions by models, it is important to state
the origin of potentially unfair models. As any learned model comes from a learning
algorithm, which takes as input data and since this learning algorithm is designed by
a machine learning practitioner, most sources of potential learned unfair decisions
can be divided into three categories: unfairness from data, unfairness from the
learning algorithm and unfairness from user interactions. These unfairness sources
can be analysed with the lens of statistical bias. A thorough discussion of different
sources can be found in Pessach and Shmueli (2022). In the following, we briefly
summarise these three important sources.

72

CHAPTER 4. CONSTRAINT ENFORCEMENT ON DECISION TREES USING TOP-DOWN
GREEDY METHODS: CASE OF FAIRNESS CONSTRAINTS

4.1.1.1 Unfairness from Data

The most common (data-related) causes that lead to unfair machine learning
models are the representational and sampling (selection) biases.

The representation bias arises from how we sample from a population during the
data collection process (Suresh and Guttag, 2019; Pessach and Shmueli, 2022). This
is the case where samples lack diversity of the population. For example, well-known
datasets such as ImageNet (Russakovsky et al., 2015) lack a geographical diversity
and exhibits a bias towards Western cultures (Pessach and Shmueli, 2022).

Also related to the representation bias, the sampling (selection) bias arises due
to non-random sampling of the population. Technically, it introduces a bias in
p(X), where X is a sample. One example provided by Zadrozny (2004) is the case
where the probability of selecting one example depends on some features xj , but is
independent of the label random variable y given x. Hence, the selection is not
only completely at random, i.e., the selection is biased 1 and also p(s|x, y) = p(s|x),
where s is the binary random variable controlling the selection of examples. A
concrete example is provided by Suresh and Guttag (2019) where the target
population for a disease may be all adults. However, we may only have medical
records for the sample of people who were considered serious enough such that
they had to go to the hospital and perform further tests. As a result, a model
trained on this sample will not reflect the trend of the target population.

One can argue that discriminative classifiers (which do not make any assumption
regarding p(X) or the data generating process) do not suffer from the sampling
selection bias. However, in practice, classifiers do suffer, especially when estimating
their parameters (e.g., optimising the splitting rules for nodes in decision tree
learners) and most importantly when evaluating their performance.

All these sources of unfairness may result in unfair and biased models. Although
being sometimes subject to debate, the term “data biases” usually, refers to all
processes that introduced a bias before “the data to the learning algorithm” step.

4.1.1.2 Unfairness from the Learning Algorithm

Machine learning models and their predictions are also the outcome of a learning
algorithm. Therefore, even when there are no sampling or representation bias, the
learning algorithm may produce models whose predictions favour certain groups of

1The unbiased selection is defined for the case where the selection s is independent of the
example x and independent of the label y according to Zadrozny (2004).

73

CHAPTER 4. CONSTRAINT ENFORCEMENT ON DECISION TREES USING TOP-DOWN
GREEDY METHODS: CASE OF FAIRNESS CONSTRAINTS

individuals. Although, there is refrain 2 that the unfairness and bias of models are
purely because of data-related biases, as stated by Suresh and Guttag (2019), data
should not only be blamed. Indeed, when fitting models through optimisation in
learning algorithms, we often lack a mechanism of control over produced models.
This is because, the optimisation problem may be ill-defined (e.g., having multiple
solutions, not playing its intended role) or may simply produce local optimal
solutions, etc. There is therefore little to no guarantee that the learning algorithm
may not produce a model whose decisions favour certain groups of the population.

4.1.1.3 Unfairness from the User Interaction

The same previously reasons invoked (for the unfairness from the learning algo-
rithm) apply to the unfairness from the user interaction (here a machine learning
practitioner). Indeed, a model is also the result of a machine learning practitioner,
who makes choices regarding the model (hypothesis) class, the objective function,
the hyper-parameters tuning, etc. Even with the absence of data-related biases,
these choices are susceptible to introduce certain biases, and therefore may lead to
models whose predictions favour particular groups of individuals.

In summary, one can see that of unfairness in machine learning can come from
each component included in a classical machine learning “pipeline”. Although
appearing somewhat intuitive, the (un)fairness notion in machine learning still
need to be technically defined.

4.1.2 Fairness Notions in Machine Learning

Combatting fairness has an intensive history in philosophy and psychology (Pessach
and Shmueli, 2022). Roughly speaking, fairness is the “absence of any prejudice or
favouritism towards an individual or a group based on their intrinsic or acquired
traits in the context of decision-making” (Saxena et al., 2019; Pessach and Shmueli,
2022). There is a recent entire research line whose purpose is to define how to
define and technically measure fairness in the context of machine learning. As
stated in Chapter 3 of this thesis (see Section 3.3.2.5), this research has brought to
light two principal types of unfairness: individual unfairness and group unfairness
(Chouldechova and Roth, 2020; Zhang et al., 2016). As also stated in Section 3.3.2.5,
group fairness aims to make machine learning models treat (or predict) similarly
members from different groups (according to a sensitive feature such as sex or
gender). While not very studied, individual fairness pays more attention to a

2https://twitter.com/ylecun/status/1274782757907030016?s=20

74

CHAPTER 4. CONSTRAINT ENFORCEMENT ON DECISION TREES USING TOP-DOWN
GREEDY METHODS: CASE OF FAIRNESS CONSTRAINTS

similar treatment for two similar individuals from different groups.
As explained in Section 3.3.2.5, there are several statistical measures that were

introduced particularly for group fairness. The most common studied are the
demography (or statistical parity) and the disparate mistreatment (w.r.t. overall
misclassification, true positive rate or equal opportunity, false negative rates). The
extension for the equal opportunity is the equalised odds introduced by Hardt
et al. (2016). Readers are referred to Section 3.3.2.5 for their technical definition.

4.1.3 Brief State of the Art on Mitigating Unfairness in Machine
Learning

Several techniques have been proposed to mitigate unfairness of machine learning
models. The categorisation usually employed in this literature use the terms:
pre-processing, in-processing and post-processing.

Pre-processing techniques aim to transform the original training data D into
T (D) such that when learning a model on this new training data, the learned model
will not produce unfair predictions. For example, in Calmon et al. (2017), such
a transformation is a probability distribution obtained through an optimisation
process whose goal is to limit the dependence between the transformed outcome
variable and the protected or sensitive feature.

Post-processing techniques aim to debias a learned model by usually considering
it agnostically i.e., without assuming a model class. An example of such post-
processing is the multiaccuracy boost introduced by Kim et al. (2019), where the
goal is to audit the output model and thanks to sequential updates of the model,
the accuracy of the classifier over protected groups is improved, thus improving
fairness w.r.t. disparate mistreatment.

In-processing techniques are very popular since they target the learning algo-
rithm. The goal is to change the objective function, for example, by reweighting
training instances (Chai and Wang, 2022; Lahoti et al., 2020) or by incorporating
fairness constraints (Zafar et al., 2017, 2019; Donini et al., 2018). For example,
the work of Zafar et al. (2017) on logistic regression and support vector machines
(SVMs) tries to mitigate the unfairness through constraint enforcement. This work,
which will be extended for decision trees in this chapter integrates the fairness
constraint thanks to the following optimisation problem

min
θ

L(θ) s.t. either
∣∣∣Cov

(
z, dθ(x)

)∣∣∣ ≤ γ (4.1)

75

CHAPTER 4. CONSTRAINT ENFORCEMENT ON DECISION TREES USING TOP-DOWN
GREEDY METHODS: CASE OF FAIRNESS CONSTRAINTS

or
∣∣∣Cov

(
z,min

(
0, y dθ(x)

))∣∣∣ ≤ γ,

where z is the sensitive (or protected feature such as sex, gender, race, etc.), θ
is the model parameters, L(θ) is the loss function (cross-entropy for the logistic
regression and penalised hinge loss for SVMs), y is the class variable (having
values in {−1, 1}, but easily extensible for multi-class classification), γ is the
level of (proxy) unfairness, dθ(x) is the signed distance 3 of the instance x to
the decision boundary of the classifier. The first Cov term aims to (but not
necessarily) push the independence between dθ(.) and z while the second one aims
to push (still not necessarily) the independence of this sensitive feature z to the
degree of misclassification min(0, ydθ(.)). These terms are “proxy” measure to
smoothly capture the unfairness. Note that the term “either” in the equation
means that the unfairness measures are usually considered independently because
of the impossibility theorem, which states that no more than one unfairness metric
can hold at the same time for a well calibrated classifier (Kleinberg et al., 2016;
Saravanakumar, 2020).

4.2 Related Work on Fair Decision Tree Learners

Although intensively well studied for several differentiable models such as neural
networks and logistic regression, there are not a lot of works that try to learn fairer
non-differentiable models such as decision trees and ensemble of them. The few
works that exist will be summarised in the following.

One of the first work on decision trees is the one of Calders et al. (2009). They
propose data pre-processing by relabelling and reweighting instances so as to reduce
bias in data. However, as pre-processing (i) cannot eliminate discrimination that
may come from the learning algorithm, and (ii) may miss complex correlations with
other features, the same authors later propose the first discrimination-aware tree
learning algorithm (Kamiran et al., 2010). They introduce a post pruning method
consisting in leaf relabelling and the information gain sensitivity, which measures
the level of discrimination induced by a split. Similarly, Raff et al. (2018) and
Zhang and Ntoutsi (2019) develop a fair version of the impurity score. However,
none of them are flexible, in the sense that they do not present a framework
able, at the same time, to handle (i) different types of unfairness, (ii) multiclass
classification and (iii) multiple sensitive features. Another notable work is the
one of Aghaei et al. (2019) which proposes a mixed integer programming (MIP)

3The signed distance is positive if the instance is well classified and negative otherwise.

76

CHAPTER 4. CONSTRAINT ENFORCEMENT ON DECISION TREES USING TOP-DOWN
GREEDY METHODS: CASE OF FAIRNESS CONSTRAINTS

formulation to learn optimal fair decision trees. Nonetheless, MIP problems are
computationally expensive.

Among the (i), (ii), (iii) mentioned desiderata, one of the methods that fulfills
them is the proposal of Zafar et al. (2019) through Eq. 4.1. However, there are
two challenges to adapt it for decision trees: (1) unlike logistic regression or SVMs
which have, w.r.t. model parameters θ, an explicit formula for distance to the
decision boundary (θ

Tx
||θ|| for linear SVMs and logistic regression), decision trees do

not have such kind of formula, (2) optimisation of model parameters of standard
decision tree learners such as CART cannot be framed as a differentiable and global
optimisation such as in Eq. 4.1. The rest of this chapter copes with these challenges
and allows to learn decision trees under boundary-based fairness constraints.

4.3 Distance to Decision Boundary for Decision Trees

In order to adapt the proposal of Zafar et al. (2019), one must first be able to
compute the distance to decision boundary of instances given a decision tree.

By geometrically analysing a decision tree, it can be decomposed into L
geometrical regions Rk over the input space. As stated in Section 2.2.1, each
region Rk can be defined as Rk = {α(1)

kd ≤ xd ≤ α
(2)
kd }

M
d=1, where α

(i)
kd ∈ R̄ are the

boundaries4. As each region Rk has a single predicted label, the decision boundary
is therefore the union of all Rk1 ∩Rk2 with class(k1)̸= class(k2), where class(k) is
the predicted class of the region indexed by k. Therefore the unsigned distance to
decision boundary of an instance x to a decision tree is

|dθ(x)| = min
k|x̸∈Rk,class(k)̸=ŷ

||x− ProjRk
(x)||2, (4.2)

where ŷ is the predicted class of x by a given tree, ProjRk
(x) is the projection of

x onto the region Rk.
We can rewrite the distance to the region Rk as

||x− ProjRk
(x)||22 =min

y
||x− y||22 s.t. y ∈ Rk (4.3)

= min
yd,d=1..M

M∑
d=1

(xd − yd)
2 s.t. α

(1)
kd ≤ yd ≤ α

(2)
kd , d = 1..M.

(4.4)

4Note that the upper boundary α
(2)
kd can be +∞ and the lower boundary α

(1)
kd can be −∞,

whenever relevant.

77

CHAPTER 4. CONSTRAINT ENFORCEMENT ON DECISION TREES USING TOP-DOWN
GREEDY METHODS: CASE OF FAIRNESS CONSTRAINTS

We can see from Eq. 4.4 an optimisation problem with a separable objective
function and separable constraints. Therefore, it is possible to decompose the
problem in M independent optimisation problems

min
yd

(xd − yd)
2 s.t. α

(1)
kd ≤ yd ≤ α

(2)
kd ,

which have the solutions yd =

{
0 if α(1)

kd ≤ xd ≤ α
(2)
kd ,

α
(1)
kd otherwise.

One can see that, it is possible therefore to compute a projection onto a region
(defined by each leaf) by traversing the tree along the corresponding decision path
and set yd = α

(1)
kd only if the instance x does not satisfy the splitting rule. The

same analogy has been used by Alvarez et al. (2007) to estimate distance-based
probability estimates for decision trees.

4.4 Boundary-based Fairness Constraints on Decision
Trees

From now, given a decision tree, we know how to estimate the distance to the
decision boundary of instances. It is therefore possible to compute the unfairness
proxy measures of Eq. 4.1. Unlike the global optimisation of Eq. 4.1, we propose
to learn decision trees with a top-down greedy approach using the following
boundary-based fairness-aware heuristic for the disparate impact (DI) unfairness

HDI(j, t) =
#DL(j, t)

#D
c
(
DL(j, t)

)
+

#DR(j, t)

#D
c
(
DR(j, t)

)
+ λ

∣∣∣Corr
(
z, dθ(.)

)∣∣∣
(4.5)

where (see Section 2.2.1), DL(j, t) (resp. DR(j, t)) is the subset of instances from
the parent node that satisfy the condition Xj ≤ t (resp. Xj > t), c(.) is an impurity
function, λ is a hyper-parameter that permits the control over the unfairness, and
θ represent all decomposed regions Rk of the currently possible tree (considering
the possible update with the feature j and threshold t at the current node). The
corresponding version for the boundary-based unfairness-aware heuristic for the
disparate mistreatment (w.r.t. overall misclassification) is

HDM (j, t) =
|DL(j, t)|

|D|
c
(
DL(j, t)

)
(4.6)

+
|DR(j, t)|

|D|
c
(
DR(j, t)

)
+ λ

∣∣∣Corr
(
z,min

(
0, y dθ(.)

))∣∣∣. (4.7)

78

CHAPTER 4. CONSTRAINT ENFORCEMENT ON DECISION TREES USING TOP-DOWN
GREEDY METHODS: CASE OF FAIRNESS CONSTRAINTS

Instead of learning using a depth-first-builder strategy as in Algorithm 2.1, we
learn our trees using a breadth-first-builder strategy in order to have a better greedy
estimate of θ, which is used to compute either HDI or HDM . Algorithm 4.1 is a
high-level algorithm, which describes steps to learn decision under the boundary-
based fairness constraints. From now, we will call our trees, boundary-based
fairness trees (BDTs).

Regarding the optimisation done in Algorithm 2.1, i.e., finding the feature j
and threshold tj that minimises locally (at each internal node) either the loss on
Eq. 4.5 or on Eq. 4.6, Line 8 of this algorithm shows that we need to simulate the
tree before computing the distance of instances to decision boundary dθ(.). While
simulating the tree for this couple (j, tj) is a constant operation, computing the
distance to decision boundary takes (in the worst case) O(L×M) operations per
instance, i.e., O(L×M ×N) in total, where N is the number of instances, M is
the number of features and L is the maximum number of leaves. As a result, the
implemented in Python of Algorithm 2.1 is very slow for datasets where either M
or N is very high. To speed up the implementation, we implemented this algorithm
using Cython.

4.5 Experimental Results

This section presents and discusses the results obtained for decision trees under
boundary-based fairness constraints. Before presenting these results in Section 4.5.4,
Section 4.5.1 presents the experimental setup, Section 4.5.2 presents the metrics
used to evaluate learned models and Section 4.5.3 presents the baseline methods.

4.5.1 Experimental Setup

This section describes the datasets, metrics used to obtain the results.

4.5.1.1 Datasets

We use a synthetic dataset and two popular real-world datasets to compare the
fair learning algorithms in the context of classification.

The first dataset is an artificial dataset for binary classification that we called
synthetic. It is built similarly to what is proposed in Zafar et al. (2019), i.e., by
drawing 3,000 instances from two different 2-d multivariate normal distributions,
and a binary feature z correlated to the class label using a Bernouilli distribution.

79

CHAPTER 4. CONSTRAINT ENFORCEMENT ON DECISION TREES USING TOP-DOWN
GREEDY METHODS: CASE OF FAIRNESS CONSTRAINTS

Algorithm 4.1 Iterative procedure to learn a classification tree under boundary-
based fairness constraint
Input: training set {xi, yi}Ni=1, maximum number of leaves L
Output: A decision tree fθ, with θ = {(Rk, wk), k = 1..L}
1: Initialise an empty tree structure Ts

2: Create a root_node root
3: Create a list of splittable nodes ListNodes
4: Add root_node in ListNodes and in Ts

5: while Not StoppingCriteria do
6: for node in ListNodes do
7: for (j, tj) in (List_features, List_threshold) do
8: Simulate the adding of node with the split Xj ≤ t on the tree TS

9: Compute
∣∣∣Corr

(
z, dθ(x)

)∣∣∣ given the simulated tree
10: Evaluate HDI(j, t) or HDM (j, t)
11: end for
12: Keep the best (j∗, t∗)) w.rt. HDI or HDM for node
13: end for
14: Get the best node∗ w.r.t. HDI or HDM over ListNodes
15: Create left_node and right_node for node∗

16: Remove node∗ from ListNodes
17: Add left_node and right_node in Ts

18: end while

80

CHAPTER 4. CONSTRAINT ENFORCEMENT ON DECISION TREES USING TOP-DOWN
GREEDY METHODS: CASE OF FAIRNESS CONSTRAINTS

The second dataset is the well-known German Credit dataset (Du and Zhan,
2002) and the goal is to predict whether a customer should be granted credit. This
dataset is very used because it is well-known that younger applicants of credit are
disadvantaged due to several reasons that include the lack of historic credit results
(Kallus and Zhou, 2018; Yang et al., 2020).

The last dataset used is the COMPAS (we will sometimes refer it as Compas)
dataset (Angwin et al., 2016). COMPAS was historically a proprietary model
that was used by the United State criminal justice to score criminal defendants
for the risk of recidivism (Yang et al., 2020) and several studies have shown that
COMPAS was racially biased against African American defendants (Yang et al.,
2020; Kallus and Zhou, 2018; Jeff et al., 2016). For this dataset, similarly as Yang
et al. (2020), we consider the binary classification task of predicting whether a
defendant profiled by COMPAS is at high risk.

Table 4.1 summarises the three datasets mentioned above, along with the
associated size, dimension, sensitive feature and classification task.

Name N M Sensitive feature Task

Synthetic 3,000 3 z = 0 / z = 1 y = −1 / y = 1
German Credit 1,000 20 Age ≥ 25 Good / Bad Credit

COMPAS 6, 172 10 African American or not High or Not high risk

Table 4.1: Details of the datasets used for our experiments.

4.5.2 Metrics

We evaluate the performance of decision trees w.r.t. accuracy (percentage of
well-classified instances) and unfairness measures. Depending on the constraint,
the two unfairness measures that are popular are the disparate impact (DI) and
disparate mistreatment (DM) (w.r.t. overall misclassification). W assess these
measures through differences as following. If Ŷ is the predictor, Z is the sensitive
feature, Y is the true label, then DI =

∣∣∣p(Ŷ = 1|Z = 0
)
− p

(
Ŷ = 1|Z = 1

)∣∣∣
and DM =

∣∣∣p(Ŷ ̸= Y |Z = 0
)
− p

(
Ŷ ̸= Y |Z = 1

)∣∣∣. They quantify the degree of
dependence between the sensible feature and predictions of the models. These
unfairness measures are estimated using training/testing sets.

81

CHAPTER 4. CONSTRAINT ENFORCEMENT ON DECISION TREES USING TOP-DOWN
GREEDY METHODS: CASE OF FAIRNESS CONSTRAINTS

4.5.3 Methods and Hyperparameters

Our boundary-based unfairness trees (BDTs) are compared with two baselines. The
basic method (without fairness constraint) is CART. It is the equivalent of setting
the hyper-parameter λ = 0 on our method. The second baseline is the recent
method called FAHT (Zhang and Ntoutsi, 2019). We have chosen this baseline as it
is the only one we found with an open-source implementation, which allows for reuse.
We re-implemented FAHT in Python because the original implementation is in Java
and it is only for the disparate impact unfairness. However, thanks to its simplicity,
FAHT only changes the heuristic (to be maximised) called fair information gain

(FIG) using the formula FIG =

{
InfoGain if unfairnessGain = 0,

InfoGain × unfairnessGain otherwise.
CART and FAHT only have one hyperparameter, the maximum number of

leaves. BDTs also have λ as hyperparameters. Selecting best hyper-parameters
that balance well two (or more) measures is not a straightforward task. To be fair
with all methods, we use the technique of Conti et al. (2009), which consists in
choosing hyperparameters

β = argmin
β

max{AccuracyRank(β),ConstraintRank(β)}. (4.8)

This strategy only aims to guarantee that there is no better other hyperparam-
eter on the two measures on the validation sets. We also set possible values of
hyperparameters using GridSearch.

We use the 80 − 20% split for training and testing sets and we computed
performances on 10 independent runs.

4.5.4 Results and Discussion

This section tries to answer two major questions. (Q1) How do BFTs perform w.r.t.
CART and FAHT on disparate impact, accuracy and disparate mistreatment?
(Q2) Is there exist any (experimental) trade-off between unfairness and accuracy,
and how easy is to find this trade-off?

Regarding Q1, Table 4.2 and Table 4.3 reports accuracy and unfairness evalua-
tions. From Table 4.2, it appears that on the Synthetic and the German credit
datasets, BDTs are very similar to CART w.r.t. disparate impact. This means
that the strategy in Eq. 4.8 has chosen an hyperparameter (we will also argue
why later) that has favoured the accuracy over the unfairness. However, on the
Compas dataset, interestingly, DBTs have a lower unfairness than CART while

82

CHAPTER 4. CONSTRAINT ENFORCEMENT ON DECISION TREES USING TOP-DOWN
GREEDY METHODS: CASE OF FAIRNESS CONSTRAINTS

Datasets Methods DI_train DI_test acc_train acc_test

Synthetic
BDT 44.596 (1.423) 40.019 (3.781) 89.509 (0.523) 87.407 (1.173)
FAHT 0.996 (0.556) 1.951 (1.208) 61.657 (0.783) 60.889 (2.852)
CART 40.62 (2.576) 42.84 (5.179) 88.042 (0.833) 87.5 (1.061)

German credit
BDT 7.672 (1.801) 11.401 (4.937) 80.403 (0.487) 70.611 (2.395)
FAHT 0.0 (0.0) 0.0 (0.0) 70.472 (0.548) 68.111 (2.191)
CART 7.044 (6.194) 5.669 (5.221) 74.528 (1.015) 70.611 (3.48)

Compas
BDT 1.29 (1.138) 2.207 (0.937) 82.135 (0.271) 81.808 (0.847)
FAHT 0.167 (0.073) 0.358 (0.259) 81.525 (0.285) 81.889 (0.873)
CART 7.119 (2.132) 6.561 (2.169) 83.521 (0.179) 82.852 (0.813)

Table 4.2: Accuracy and disparate impact evaluation (mean and standard deviation in
%). DI_train and DI_test refers respectively to the disparate impact on training and
testing sets whereas acc_train and acc_test refer respectively to the training and testing
accuracy.

Datasets Methods DM_train DM_test acc_train acc_test

Synthetic
BDT 1.959 (0.842) 2.317 (1.516) 88.546 (0.411) 86.667 (1.217)
FAHT 36.906 (0.93) 38.117 (2.667) 55.68 (0.574) 55.34 (1.27)
CART 2.691 (1.033) 2.747 (1.783) 88.042 (0.833) 87.5 (1.061)

German credit
BDT 7.362 (2.495) 8.516 (7.252) 80.325 (1.036) 73.05 (1.606)
FAHT 15.392 (1.67) 13.135 (6.691) 70.25 (1.012) 69.0 (4.05)
CART 7.871 (3.718) 12.309 (8.16) 74.528 (1.015) 70.611 (3.48)

Compas
BDT 1.959 (0.842) 2.317 (1.516) 88.546 (0.411) 86.667 (1.217)
FAHT 16.46 (0.43) 17.358 (1.728) 81.489 (0.173) 81.368 (0.691)
CART 2.691 (1.033) 2.747 (1.783) 88.042 (0.833) 87.5 (1.061)

Table 4.3: Accuracy and disparate mistreatment evaluation (mean and standard deviation
in %). DM_train and DM_test refer respectively to the disparate mistreatment on
training and testing sets whereas acc_train and acc_test refer respectively to the training
and testing accuracy.

having the same level of accuracy as CART. In all cases, compared to BDT, FAHT
is very effective in decreasing the disparate impact but also can seriously harm
accuracy in case of severe bias like for the Synthetic dataset and to some extent
the Compas dataset.

Still regarding Q1, Table 4.3, for the three datasets, BDT (slightly) reduces the
unfairness w.r.t. disparate mistreatment while keeping the same level of accuracy
than CART. On all the three datasets, Table 4.3 shows that FAHT does not
work well with the disparate mistreatment. We found that this is partially due
to the fact that disparate mistreatment is difficult to enforce on the top nodes of

83

CHAPTER 4. CONSTRAINT ENFORCEMENT ON DECISION TREES USING TOP-DOWN
GREEDY METHODS: CASE OF FAIRNESS CONSTRAINTS

tree, therefore, there are usually no split rules that improve the gain. Indeed, an
overfitted tree has zero disparate mistreatment on the training set.

Regarding Q2, Figure 4.1 and Figure 4.2 show the sensitivity of accuracy and
unfairness w.r.t. the hyperparamter λ whose intended goal is to balance the two
objectives. From Figure 4.1 i.e., in the case of disparate impact, it appears that
λ plays entirely its role since when increasing λ, the unfairness usually decreases
on all the three datasets. This explains why for Q1 and on Table 4.2, we said
that the disparate impact was somehow important because the hyperparameter
selection favoured accuracy. Therefore, in practical situation, λ can be therefore
leveraged to balance the two objectives in the case of disparate impact unfairness.

For disparate mistreatment, still regarding Q2, Figure 4.2 shows that disparate
mistreatment usually decreases w.r.t. λ only for Synthetic and Compas datasets,
especially in the interval [0, 1]. For German credit the curve is very sensitive w.r.t.
λ without a clear trend in [0, 1]. Indeed, this may be explained by the size of the
dataset, which is smallest (see Table 4.1) and the empirical correlation is not a
strong estimation for the true correlation.

Only partially related to Q2, from Figure 4.1 and Figure 4.2, it appears that
the accuracy does not always monotonically decreases when λ increases. This
means that sometimes the accuracy is not in conflict with fairness. This has
also been theoretically investigated by Wick et al. (2019), who precisely make
some reasonable assumptions under which fairness and accuracy are not in tension.
Furthermore, in practice, similar behaviours have been observed for complex models
such as neural networks (Delobelle et al., 2021).

4.6 Conclusion

This chapter focuses on a boundary-based fairness constraint on top-down greedy
decision tree learners. The description presented here was based on the published
paper entitled “Boundary-Based Fairness Constraints in Decision Trees and Random
Forests” (Nanfack et al., 2021a). The main idea was the adaption of the work of
Zafar et al. (2019), which only targeted differentiable models that have explicit
expression of the distance to the decision boundary. Through a geometrical view
of decision trees that are unfortunately not differentiable, we made it possible to
learn decision trees under boundary-based fairness constraints. The results show
that the hyperparameter λ can usually (especially for disparate impact unfairness)
be leveraged to balance accuracy and fairness measures. We also compare with
a recently published state-of-the-art and fair decision tree learner (FAHT) and
found that our method has the advantage of being more flexible by working better

84

CHAPTER 4. CONSTRAINT ENFORCEMENT ON DECISION TREES USING TOP-DOWN
GREEDY METHODS: CASE OF FAIRNESS CONSTRAINTS

(a) Synthetic. (b) German credit.

(c) Compas.

Figure 4.1: Sensitivity of disparate impact and accuracy w.r.t. the hyperparamter λ.
The blue (resp. red) curve shows average of testing disparate impact unfairness (resp.
accuracy) over 10 independent runs in function of the hyperparamter λ on the x−axis.
The maximum number of leaves has been set to 7.

for both fairness measures. However, FAHT remains a very effective method to
drastically reduce the disparate impact unfairness. Although the description and
the experiments provided in this chapter focus on decision trees, the extension on
random-forests is straightforward. In any case, the approach has two limitations
that can be improved. First, since we are optimising a local heuristic which
has a global hyperparameter, this hyperparameter is susceptible to not always
play its intended role. A solution for this limitation may be to adapt locally the
hyperparameter (e.g., using the number of instances involved at each splitting
node). Second, unlike standard heuristics that are valid impurity functions, which
have guarantees under reasonable assumptions (e.g., weak learnabiltiy i.e., the
split rule performs better than random guess)(Kearns and Mansour, 1999), our
approach lacks a theoretical guarantee w.r.t. accuracy and unfairness. Future
studies should therefore be done to provide this guarantee.

85

CHAPTER 4. CONSTRAINT ENFORCEMENT ON DECISION TREES USING TOP-DOWN
GREEDY METHODS: CASE OF FAIRNESS CONSTRAINTS

(a) Synthetic. (b) German credit.

(c) Compas.

Figure 4.2: Sensitivity of disparate mistreatment and accuracy w.r.t. the hyperparameter
λ. The blue (resp. red) curve shows average of testing disparate mistreatment unfairness
(resp. accuracy) over 10 independent runs in function of the hyperparameter λ on the
x−axis. The maximum number of leaves has been set to 7.

86

Chapter 5

Constraint Enforcement on
Decision Trees Using Linear
Programming

This chapter presents a framework to learn decision trees under a broad class of
domain-knowledge constraints that also include the fairness constraints. A part of
this chapter is dedicated to formalising constraints before being able to enforce
them on our decision trees. The chapter is largely based on the paper entitled
“Learning Customised Decision Trees for Domain-knowledge Constraints”
(Nanfack et al., 2022b), which is currently under revision in the Pattern
Recognition journal. In this chapter, unless otherwise stated, all figures and tables
are from Nanfack et al. (2022b).

Contents
5.1 Description of the Problem, Motivation and Related

Work . 88
5.1.1 Motivation and Problem 88
5.1.2 Overview on Closely Related Work 90

5.2 Our Tree Representation and First Formulation to
Enforce Constraints on Decision Trees 93

5.2.1 Tree Representation . 94
5.2.2 Encoding Global Objective Functions 97

5.3 Second Formulation to Handle Continuous Features . 100
5.4 Formalising Domain Knowledge as Constraints 101

5.4.1 Ordering of Features . 101

87

CHAPTER 5. CONSTRAINT ENFORCEMENT ON DECISION TREES USING LINEAR
PROGRAMMING

5.4.2 Test Costs on Features 102
5.4.3 Expected Cost for Classification 102
5.4.4 Number of Instances on Leaf Nodes 102
5.4.5 Instances that Must Be in the Same Leaf 103
5.4.6 Presence or Exclusion of a Feature Over the Tree or Over

a Branch . 103
5.4.7 Fairness through Demographic Parity and Minimum Ac-

curacy for a Group . 104
5.5 Use Cases with Constraint Enforcement on Decision

Trees . 105
5.5.1 Ordering Constraint Applied to the Prediction of Breast

Cancer Survival . 105
5.5.2 Must-be-selected Constraint Applied to Diabetes Prediction106
5.5.3 Exclusion Constraint Applied to Prediction of Post-

operative Action . 107
5.5.4 Minimum Accuracy on an Underrepresented Group and

Test Cost Constraints Applied to Heart Disease Prediction109
5.5.5 Fairness constraint Applied to Recidivism Prediction . . 112

5.6 Constraint-free Benchmarking 112
5.6.1 Experimental Setting . 112
5.6.2 How do CPTrees Perform Comparatively to BinOCT,

OSDT and DL8.5? . 115
5.7 On the Impact of Discretisation 118
5.8 Computational Time . 119
5.9 Conclusion . 121

5.1 Description of the Problem, Motivation and Related
Work

This section begins by motivating the work done in this chapter and by presenting
the problem tackled in Section 5.1.1 before describing the most related techniques
in Section 5.1.2.

5.1.1 Motivation and Problem

In several critical domains, machine learning models such as decision trees do not
only need to provide the best performance, but they may also be expected to

88

CHAPTER 5. CONSTRAINT ENFORCEMENT ON DECISION TREES USING LINEAR
PROGRAMMING

meet ethical (e.g., fairness studied in Chapter 4) and domain-specific requirements
(Floridi, 2019). For example, to predict heart disease, similarly to a medical
doctor, learned decision trees should take into consideration domain constraints
like economical criteria when selecting features. Indeed, when medical doctors
receive patients who suffers from a disease, they do not immediately ask patients to
perform a very costly test such as the scanner test. Instead, they ask patients simple
questions and ask them to perform simple tests to discriminate the simple cases.
Only if they are not able to provide a diagnosis after this step, they recommend
expensive tests (Núñez, 1991). As highlighted by Kononenko et al. (1997), if
decision trees fail to embed such domain knowledge, medical doctors may not
understand the logic of the models and thus are not likely to trust them (Kononenko
et al., 1997; López-Vallverdú et al., 2007). On the other hand, the learned trees are
also expected to provide new insights that medical doctors have not seen before in
an explicit form (Kononenko et al., 1997).

To learn more trustworthy models, constraint enforcement represents a theo-
retically supported framework to customise the shape of hypothesis set of models
under a wide range of settings. However, designing learning algorithms may be
complex, even for decision trees, when ethical and domain constraints must be met.
As discussed in Chapter 3 (Section 3.4), recently, several decision tree methods
(we will zoom on these works in Section 5.1.2)(Verwer and Zhang, 2019; Bertsimas
and Dunn, 2017; Narodytska et al., 2018; Aghaei et al., 2019) have proposed to
formalise the optimal decision tree problem as a mixed integer programming (MIP),
a satisfiability (SAT) or a dynamic programming problem whose solutions often
lead to small and accurate trees. A strong emphasis has been put on the speed of
optimisation, neglecting the possibility to easily model prior and domain knowledge.
Hence, these current methods are little to no applicable in settings where prior
knowledge needs to be formalised, enforced in order to learn more comprehensible
and trustworthy trees. Yet, in domains as critical as medicine and justice, the
satisfaction of domain-knowledge constraints may be as important as providing
a good level of accuracy (Dziugaite et al., 2020; Ribeiro et al., 2016; Barredo
Arrieta et al., 2020; Kononenko et al., 1997). This suggests that a broader family
of constraints should be considered when modelling the decision tree learning
problem.

In this chapter, we therefore model the optimal decision tree problem so as to
easily formalise constraints while allowing to explicitly control their complexity
through both the number of leaf nodes and the maximum depth. We present a
tree representation, based on constrained matrices, that leads to two generic linear
formulations of the optimal decision tree problem. The first formulation targets
binary features while the second one copes with continuous features without the

89

CHAPTER 5. CONSTRAINT ENFORCEMENT ON DECISION TREES USING LINEAR
PROGRAMMING

need for discretisation. Moreover, in contrast to recent depth-centric models, our
tree representation is a branch-like model. We show its flexibility to straightfor-
wardly formalise and enforce a broad class of constraints that include but are not
limited to ordering on features, exclusion of features over branches, feature costs
and fairness.

5.1.2 Overview on Closely Related Work

Building upon standard top-down induction trees such as CART (Breiman et al.,
1984) and C4.5 (Quinlan, 1993), many works have attempted to enforce constraints
on decision trees by learning in a greedy top-down fashion. One classical approach
is to learn a possibly unconstrained decision tree and then prune it such that it
satisfies the constraint. However, as discussed in Section 3.5.1, (post) pruning
methods usually fail to discover richer trees since the top nodes of pruned trees do
not usually change. Additionally, these trees may sometimes appear unnatural and
it is possible to find better trees even manually (Piltaver et al., 2016). Readers
are referred to Secition 3.4.1 for a more in-depth analysis over the ability of the
general top-down greedy approach to enforce constraints on decision trees.

Instead of using the greedy approach, several works have proposed to learn
optimal solutions under tree-structure constraints by for example enumerating
possible solutions via dynamic programming. The following paragraphs analyse
these works.

Nijssen and Fromont (2007) present the DL8 algorithm using dynamic pro-
gramming. Later, it is transposed into a more general framework (Nijssen and
Fromont, 2010) which uses an item-set mining approach. They are able to learn
optimal decision trees for different types of constraints (e.g., size of the tree and
test costs). As stated by the authors, DL8 needs memory to encapsulate the huge
amount of item-sets. To address the limitations of DL8, Aglin et al. (2020) propose
DL8.5 that focuses on the task of minimising the misclassification error under
depth constraint. To enforce the depth constraint, the authors had to drastically
modify the DL8 algorithm. Authors highlight that “optimisation [of DL8] is hard
to combine with a constraint on the depth of a tree” (Aglin et al., 2020), to argue
why they had to completely change DL8. As a result, the size of the tree is left
aside and cannot be constrained, at the profit of accelerating learning through a
branch-and-bound search. Moreover, without requiring another drastic change,
DL8.5 cannot enforce constraints over test costs or the hierarchy of features which
are both tree-structure dependent constraints (Nijssen and Fromont, 2010).

Inspired by Angelino et al. (2018), Hu et al. (2019) proposed optimal sparse

90

CHAPTER 5. CONSTRAINT ENFORCEMENT ON DECISION TREES USING LINEAR
PROGRAMMING

Constraints/Setting BinOCT
Verhaeghe
et al. (2019) DL8.5 OSDT1

Number of leaves ✗ ✗ ✗ ✓
Depth ✓ ✓ ✓ ✓
Hierarchy/ordering ✓ ✓ ✗ ✓
Features/Misclassification
costs

✗ ✗ ✗ ✗

Minimum #instances in the
same leaf

✗ ✓ ✓ ✗

Instances belonging to the
same leaf

✓ ✓ ✗ ✗

Range of threshold splits cont.
features

✗ ✗ ✗ ✗

Multiclass setting ✓ ✗ ✓ ✗

Table 5.1: Comparison of state-of-the-art tree learning methods in terms of their ability
to enforce the constraints considered in this paper. ✓ (resp. ✗) indicates that the current
method allows (resp. does not allow) the integration of a specific constraint or is (resp. is
not) able to deal with the multiclass setting.

decision trees (OSDT) that also use branch-and-bound search, but are limited to
binary classification. Analytic bounds are used to prune the search space while
the number of leaves is constrained using a regularised loss function that balances
accuracy and the number of leaves. Because OSDT and its extended version
GOSDT (Lin et al., 2020) use a customised branch-and-bound search, similarly
to DL8.5, integrating tree-structure dependent constraints that are not directly
expressed in the objective function will need to completely accommodate the
learning algorithm. Nonetheless, our work shares similarities with OSDT since our
model also allows constraining directly the number of leaves.

Because of the improved computational speed of machines, several works
(Bertsimas and Dunn, 2017; Narodytska et al., 2018; Verwer and Zhang, 2019;
Aghaei et al., 2019; Avellaneda, 2020) propose to exploit MIP and SAT solvers
to learn optimal decision trees by constraining the depth. More specifically,
Narodytska et al. (2018) and Avellaneda (2020) use SAT solvers to learn the
smallest tree for perfect classification. We do not tackle the same problem in this
chapter. Bertsimas and Dunn (2017) present a MIP formulation of the optimal
decision tree problem for a given depth. Their model (called OCT) handles both
univariate and multivariate splits. As stated in Hu et al. (2019), OCT is not easily
reproducible and no public code is available (Hu et al., 2019).

1GOSDT (Lin et al., 2020), an improved version of OSDT, does multiclass but only through

91

CHAPTER 5. CONSTRAINT ENFORCEMENT ON DECISION TREES USING LINEAR
PROGRAMMING

A more recent MIP formulation (BinOCT) has been proposed by Verwer and
Zhang (2019) to be efficient in computations. To speed up optimisation, BinOCT
considers full and complete binary trees under depth constraints. This raises a
question about the optimality of their learned trees when the optimal solution is
not full and complete. In particular, in presence of domain constraints, BinOCT
will not find a solution if trees do not need to be full and complete. Moreover,
in order to accelerate optimisation, BinOCT does not keep track of misclassified
instances through decision variables, making it impractical to change objective
function in order to integrate instance-dependent constraints like misclassifition
costs. The work of Verhaeghe et al. (2019) uses constraint programming to learn
optimal decision trees, but only under depth constraint, and targets only binary
classification.

To date, previous models have focused on accelerating the learning of optimal
decision trees. Our work instead focuses on the enforcement of a broad class of
constraints for trustworthiness. As it is not the focus of previous works, they
do not natively offer mechanisms to do that. For example, they may allow to
set a depth constraint, but still, these trees may not meet domain-knowledge
constraints. Such decision trees may be rejected by domain experts (Freitas, 2014;
Barredo Arrieta et al., 2020). Table 5.1 shows a representative sample of types
of constraints that the above methods are (or are not) able to handle if domain
constraints need to be imposed. For example, BinOCT, DL8.5 and Verhaeghe
et al. (2019) are depth-centric models that are not directly formulated to find the
optimal decision tree for a fixed number of leaf nodes. Also, while BinOCT with
its discretisation heuristic can cope with continuous features, all other methods
require binary features. As a result, they (BinOCT included) cannot integrate the
constraint that threshold splits must belong to a given interval, which is useful
when seeking for relevant decision rules with respect to the domain expertise (Liu
et al., 2002; Verbakel et al., 2015; Shaharanee et al., 2011). Some of the above
methods could be modified at a significant cost to take into account some of the
considered constraints (or even other ones). However, as they are not designed
for that purpose, it is neither formally nor technically obvious how to do so (e.g.,
transition from DL8 to DL8.5). This motivates our work to make constraint
enforcement easier, thanks to a specifically designed tree representation.

The above analysis of the state of the art shows the need for a general framework
to: i) efficiently handle complexity control for generalisation of decision trees; ii)
and learn decision trees under domain constraints that are important for safety
and trustworthiness. The contributions of this chapter can be summed up as

one-vs-all.

92

CHAPTER 5. CONSTRAINT ENFORCEMENT ON DECISION TREES USING LINEAR
PROGRAMMING

follows: (1) we propose a tree representation based on constrained matrices that
leads to two new generic linear programming formulations of the optimal decision
tree problem allowing to easily integrate domain-knowledge constraints; (2) both
formulations give the possibility for users to easily control complexity through the
constraints on the number of leaf nodes and the maximum depth of the decision
tree; (3) we theoretically show that elements of these matrices give the ability to
easily formalise domain knowledge as constraints to improve trustworthiness.

The rest of the paper is organised as follows: Section 5.2 introduces our tree
representation and our first generic linear programming formulation for binary
features, Section 5.3 presents the second formulation, which handles continuous
features without discretisation; Section 5.4 formalises the expression of domain-
knowledge constraints; Section 5.5 shows use cases for real-word applications;
Section 5.6 benchmarks constraint-free performance of our models w.r.t. recent
models and discusses the results; Section 5.8 analyses computational time before
concluding.

5.2 Our Tree Representation and First Formulation to
Enforce Constraints on Decision Trees

This section presents our tree representation and the first formulation that
models the classification tree learning problem via binary variables and linear
constraints.

Let us consider a sample where all features have been transformed into binary
features (numeric features can discretised into categorical ones and, then, into
binary ones). A decision tree from this dataset is characterised by its number of leaf
nodes L, its maximum depth K and its size. In what follows, X ∈ {0, 1}N×M×V

denotes a sample (without labels), N is the number of instances, M is the number
of features of the dataset and V is the number of values which can be taken
by a feature. Here, it is assumed that data only have binary features, thus
V = 2. However, the following can be easily extended to V > 2 for V -array
trees. Y ∈ {0, 1}N×C is the matrix providing the labels of instances (into their
one-hot-encoding form) and C is the number of classes. Finally, [n] denotes the
set {0, 1, ..., n− 1}, for n ∈ N. Elements of matrices will be written without bold
(e.g., elements of X will be written Xijk or xijk, where i, j, k are indexes).

93

CHAPTER 5. CONSTRAINT ENFORCEMENT ON DECISION TREES USING LINEAR
PROGRAMMING

Figure 5.1: Tree encoding detailed for a branch. Left: an example of a decision tree on
which depth are depicted and the first branch of the tree is circled. Center: the corre-
sponding 4-dimensional matrix with pointers representing how to pass from a dimension
to an other (only the branch 0 is highlighted here). Right: the corresponding encoding
matrix θ representation.

5.2.1 Tree Representation

We need a convenient and efficient way to encode trees so as to easily formalise
domain constraints such as those related to path of decisions (e.g., ordering on tests
and test costs on branches). Rather than a tree representation that decomposes
a tree into a set of nodes, our decision trees are decomposed in terms of set of
branches. We propose to encode branches with the (multidimensional) matrix 2

θ ∈ {0, 1}L×K×M×V . To illustrate, θijlp = 1 if the p-th value of the l-th feature is
selected, at depth j of the i-th branch. Therefore, θi,∗ encodes the i-th branch of
the tree, θij,∗ encodes the selection of features and its values at depth j of branch
i, and θijl,∗ is the vector encoding whether the l-th feature has been selected3

at depth j of branch i. Figure 5.1 shows an example of a decision tree with its
encoding matrix.

From this description, θ can be represented as a 4-dimensional matrix. The
following constraints need to be added in order to encode the selection of features
over branches of trees.

• The same feature is chosen at the top of all branches:

∀i ∈ [L], a ∈ [L], l ∈ [M] :
∑
p∈[V]

θi,0,l,p =
∑
p∈[V]

θa,0,l,p. (5.1)

2For simplicity, instead of multidimensional matrices, we will use the term matrix.
3The l-th feature is selected if at least one its value is ̸= 0.

94

CHAPTER 5. CONSTRAINT ENFORCEMENT ON DECISION TREES USING LINEAR
PROGRAMMING

• No more than one feature must be chosen on a branch i, at depth j:

∀i ∈ [L], j ∈ [K] :
∑
l∈[M]

∑
p∈[V]

θijlp ≤ 1. (5.2)

• Each feature is chosen at most once on a branch:

∀i ∈ [L], l ∈ [M] :
∑
j∈[K]

∑
p∈[V]

θijlp ≤ 1. (5.3)

• For every branch, if a feature is chosen at depth j, on all previous depths
0, ..., j − 1, a feature must be selected:

∀i ∈ [L], j ∈ [K − 1] :
∑
l∈[M]

∑
p∈[V]

θijlp ≥
∑
l∈[M]

∑
p∈[V]

θi(j+1)lp. (5.4)

Figure 5.2: Relationship between branches (matrix α). Left: branches of the tree. Center:
relationship between the first branch (branch 0) and the other branches; the deepest
vector (with 3 bits horizontally aligned) defines the 3 possibilities of pair of branches given
a depth: (1) branches are equal up to that depth, (2) branches are siblings, (3) branches
are different with a variable or a value before the given depth. Right: the corresponding
matrix α which encodes the relationship between all the branches.

From what has been described, θ models a set of L branches with at most K
features selected per branch. However, for θ to represent a valid tree, relations
between branches need to be defined. In particular, two branches i and a are
siblings at depth j if all features and values that are selected on branch i and a until
depth j, are equal, but on depth j, chosen features remain the same between the
two branches and only their values differ (e.g., branch 1 and 2 at depth 0). Formally,
branch relations are encoded using the 3-dimensional matrix α ∈ {0, 1}L×K×L×3

and we define three types of relations: (i) αija,0 = 1 if all the features and their
values on branches i and a are equals up to and including depth j; (ii) αija,1 = 1 if
branches i and a are siblings at depth j; and (iii) αija,2 = 1 if it exists one feature

95

CHAPTER 5. CONSTRAINT ENFORCEMENT ON DECISION TREES USING LINEAR
PROGRAMMING

or one value of feature selected on depth j1 < j which differs from branches a
and i. For example, in Figure 5.2, at depth 1, branches 0 and 1 are siblings, so
α011,1 = 1; and at depth 1 branches 0 and 2 fall into the third case; so α012,2 = 1.

With the above definitions for the θ and α matrices, we can now express the
constraints that a valid tree representation should satisfy.

• All branches must be pairwise different, i.e., any couple of branches falls in
the third case at depth K − 1:

∀i ∈ [L], a ∈ [L] \ {i} : αi,K−1,a,0 = 0. (5.5)

• Every pair of branches matches only one of the previous cases:

∀i, a ∈ [L], j ∈ [K] :
∑

q∈{0,1,2}

αijaq = 1. (5.6)

• Every pair of branches in case (i) at depth j must have selected on depths
j1 ≤ j the same feature and have the same values of those features:

∀i, a ∈ [L], j ∈ [K], j1 ∈ [j + 1], p ∈ [V] : αija,0 = 1 =⇒ θij1lp = θaj1lp.
(5.7)

• On a branch, if no feature is chosen at a specific depth j, no other branch
can be in case (i) at depth j − 1:

∀i ∈ [L], a ∈ [L] \ {i}, j ∈ [K − 1] : αija,0 ≤
∑
l∈[M]

∑
p∈[V]

θi,j+1,lp. (5.8)

• Every pair of branches in case (iii), which are different on at least one depth
before j must have a depth where feature/value is different. This relationship
appears when earlier on depth j1 < j, the branches were siblings. Therefore,
the constraint can be simply written as:

∀i ∈ [L], j ∈ [K], j1 ∈ [j], a ∈ [L] \ {i} : αija,2 ≥ αij1a,1. (5.9)

• If a feature is selected on a depth of a branch, the branch must have at least
one sibling:

∀i ∈ [L], j ∈ [K] :
∑

a∈[L]\{i}

αija,1 ≥
∑
l∈[M]

∑
p∈[V]

θijlp. (5.10)

96

CHAPTER 5. CONSTRAINT ENFORCEMENT ON DECISION TREES USING LINEAR
PROGRAMMING

• Every pair of sibling branches must be equal (in terms of features and values)
up to depth j − 1:

∀i, a ∈ [L], j ∈ [K] \ {0}, j1 ∈ [j], p ∈ [V] : αija,1 = 1 ⇒ θij1lp = θaj1lp.
(5.11)

• Every pair of sibling branches on depth j must have the same feature chosen
on this depth:

∀i, a ∈ [L], j ∈ [K], l ∈ [M] : αija,1 = 1 ⇒
∑
p∈[V]

θijlp =
∑
p∈[V]

θajlp. (5.12)

• Values of features for each pair of sibling branches at depth j must be
different, if the feature is selected and equal to zero otherwise:

∀i, a ∈ [L], l ∈ [M], j ∈ [K], p1 ∈ [V] : αija,1 = 1 ⇒ θijlp1 + θajlp1 =
∑
p∈[V]

θijlp.

(5.13)

• If no feature is selected at depth j of the branch i, no branch can be a sibling
of another branch i:

∀i ∈ [L], a ∈ [L] \ {i}, l ∈ [M], j ∈ [K], p ∈ [V] : αija,1 ≤
∑

p∈[V],l∈[M]

θijlp.

(5.14)

Our tree representation is composed of matrices θ and α on which constraints
(5.1–5.14) are applied.

Matrices θ and α respectively have L×K×M and L2×K variables. The previous
constraints related to these matrices were derived from the formal definition of
decision trees decomposed in terms of branches.. In several cases, they are paired
to ensure the logical equivalence (=⇒ and ⇐= implications) of the definition (e.g.,
sibling branches from Eq. 5.10 to Eq. 5.14).

To learn trees, one needs to create an objective function where instance-
dependent variables need to be explicitly introduced, as shown hereafter.

5.2.2 Encoding Global Objective Functions

This section introduces variables and constraints in order to encode the global
objective function. Section 5.4 will show how constraints can be easily enforced
thanks to these developments.

97

CHAPTER 5. CONSTRAINT ENFORCEMENT ON DECISION TREES USING LINEAR
PROGRAMMING

Let ξ ∈ {0, 1}N×L denote the mapping between the set of examples of the
dataset and the set of leaves (e.g., ξei = 1 if example e belongs to the i-th
leaf/branch and 0 otherwise). Let ν ∈ {0, 1}L×C denote the mapping between
the set of branches and the set of classes (e.g., νic = 1 if c is the predicted class
of branch i and 0 otherwise). Finally, ϵ ∈ {0, 1}N defines the 0− 1 loss over the
example e. For recall, Y ∈ {0, 1}N×C represents labels of the dataset, as defined
in beginning of this section.
The following constraints describe how to encode global objective functions.

• Each example must belong to one leaf:

∀e ∈ [N] :
∑
i∈[L]

ξei = 1. (5.15)

• If an example belongs to a leaf node, all the features/values chosen on the
corresponding branch must be the same to this example:

∀e ∈ [N], i ∈ [L], j ∈ [K], l ∈ [M], p ∈ [V] :

θijlp = 1 ⇒ ξei ≤ 1− xelp + θijlp, (5.16a)
θijlp = 1 ⇒ ξei ≤ 1 + xelp − θijlp. (5.16b)

• Each branch of leaf node must predict exactly one class:

∀i ∈ [L] :
∑
c∈[C]

νic = 1. (5.17)

• The class of a leaf node (or branch) is the majority vote of examples belonging
to this branch:

∀i ∈ [L], c1, c2 ∈ [C] : νic1 = 1 ⇒
∑
e∈[N]

ξei ∗ yec1 ≥
∑
e∈[N]

ξei ∗ yec2 . (5.18)

• The error of the predicted class of an example is equal to one if the class of
its branch is different from the true class and equal to zero, otherwise:

∀e ∈ [N], c ∈ [C], i ∈ [L] :

ξei = 1 ⇒ ϵe ≥ −νic + yec, (5.19a)
ξei = 1 ⇒ ϵe ≤ 2− νic − yec. (5.19b)

98

CHAPTER 5. CONSTRAINT ENFORCEMENT ON DECISION TREES USING LINEAR
PROGRAMMING

Using the above results, the misclassification error of the tree is simply∑
e∈[N]

ϵe. (5.20)

This objective function can be used by solvers to search for an optimal tree.
The complexity C in terms of number of variables of the entire constraint

program of our formulation is O
(
L ×K(L +M) + N × L

)
. It can be reduced

to O
(
L(L +M + N)

)
for shallow (less deep) trees when prior values of L and

K are known. Indeed, since the tree encoding complexity (in terms of number
of variables) is O(L×K ×M + L2 ×K) and the objective function encoding is
O(N × L), then, the total complexity is

C = O(L×K ×M + L2 ×K +N × L) = O
(
L×K(L+M) +N × L

)
For shallow (less deep) trees, K is small, therefore less than a fixed maximum
value. So, C = O(L2 + L×M + L×N).

The time to find the optimal solution increases proportionally with the size of
the dataset and the number of leaves. Another important insight from the analysis
above is the fact that, in terms of number of variables, the complexity C highly
varies depending on which term is the biggest term between N and K(L+M).
In particular, N is not usually tunable (except with sub-sampling) whereas M
could be because of the binarisation step. Hence, in practical implementations
with binary features, M should be ideally negligible w.r.t. N (i.e., a o(N)), when
prior values of K and L are known.

Constraints 5.7, 5.11, 5.12, 5.13, 5.16a, 5.16b, 5.18, 5.19a and 5.19b are not
directly expressed in a linear form. They are presented in a form called indicator
constraints, but modern linear programming solvers generally prefer this form.
Nonetheless, they can be linearised using big-M constraints. For example, the
constraint 5.7 can be written as θijlp − θajlp ≤ M ∗ (1− αija,0), with M being a
big positive number so that when αija,0 = 1, the left part of the inequality must
be null.

It is worth mentioning that, in contrast to Bertsimas and Dunn (2017); Ver-
haeghe et al. (2019); Verwer and Zhang (2019), our first model does not rely on a
specific type of solver since we exploit only binary variables and linear constraints.
Therefore, it has the advantage to be implementable on CP solvers as well as
MIP and ILP solvers. Readers are encouraged to read a brief overview of MIP
techniques in Chapter 2, especially, in Section 2.5.1.2.

99

CHAPTER 5. CONSTRAINT ENFORCEMENT ON DECISION TREES USING LINEAR
PROGRAMMING

5.3 Second Formulation to Handle Continuous Features

Based on the previously introduced tree representation in Section 5.2, this section
presents our second formulation. It copes with continuous splits, which was not
possible with the first formulation by only bringing few modifications in the matrices
and their associated constraints. These modifications are explained hereafter.

To go from binary splits to numerical splits, based on the proposed tree
representation and the first formulation, we only need a semantic modification
related to θ and an introduction of learnable split thresholds. Now, θij,∗,0 encodes
the feature selected on branch i, at depth j while θijl,1 encodes the type of relation
(≤ or >) contained on branch i, depth j, for the l-th feature. More explicitly,
θijl,0 = 1 if the l-th feature is selected on branch i, at depth j and θijl,1 = 0 (resp.
θijl,1 = 1) if the l-th feature is selected and the type of relation is ≤ (resp. >).
Here again, note that θ ∈ {0, 1}L×K×M×V .

In order to make this formulation work with learnable numeric splits, we need
a matrix to encode learnable threshold split values. This matrix is ω. Therefore,
ωij encodes the threshold split value on branch i, at depth j. In order to bound
its range of value, ω ∈ [0, 1]L×K and numeric features have to be scaled using the
min-max scaler. Hence, it implies that X ∈ [0, 1]N×M .

Firstly, we show how to rewrite the expression of constraints in Section 5.2.1
in order to deal with learnable numeric splits. The constraints (5.1–5.4) that
are related to features over branches of the tree can be adapted by rewriting∑

p∈[V] θijlp as simply θijl,0. As the tree representation is preserved, the matrix α,
which encodes relationships between branches, keeps the same semantic. Except
the constraints (5.5–5.6) and (5.9) which do not change, the rest of constraints are
rewritten as follows.

• (5.7) ∀i, a ∈ [L], j ∈ [K], j1 ∈ [j + 1], l ∈ [M], p ∈ [V] :

αija,0 = 1 ⇒

{
θij1lp = θaj1lp

ωij1 = ωaj1

.

• (5.8) ∀i ∈ [L], a ∈ [L] \ {i}, j ∈ [K − 1], l ∈ [M] : αija,0 ≤
∑

l∈[M] θi,j+1,l,0.

• (5.10) ∀i ∈ [L], j ∈ [K], l ∈ [M] :
∑

a∈[L]\{i} αija,1 ≥
∑

l∈[M] θijl,0.

• (5.11) ∀i ∈ [L], j ∈ [K], l ∈ [M], p ∈ [V], a ∈ [L] \ {i}, j1 ∈ [j] :

αija,1 = 1 ⇒

{
θij1lp = θaj1lp

ωij1 = ωaj1

.

100

CHAPTER 5. CONSTRAINT ENFORCEMENT ON DECISION TREES USING LINEAR
PROGRAMMING

• (5.12) ∀i, a ∈ [L], j ∈ [K], l ∈ [M] : αija,1 = 1 ⇒ θijl,0 = θajl,0.

• (5.13) ∀i, a ∈ [L], j ∈ [K], l ∈ [M] : αija,1 = 1 ⇒

{
θijl,1 + θajl,1 = θijl,0

ωij = ωaj

.

Secondly, once a decision tree has been encoded through matrices α, θ and ω, we
need to encode objective functions in order to learn decision trees. This is done by
keeping all constraints in Section 5.2.2 unchanged except constraints 5.16a and
5.16b that are rewritten as

∀e ∈ [N], i ∈ [L], j ∈ [K], l ∈ [M] : αijl,0 = 1 ⇒

{
ξei ≤ 1 + ωij − xel(1− θijl,1)

ξei ≤ 2− ωij − δ + (xel − 1)θijl,1,

where δ ≈ 0 and is a positive number to ensure the strict inequality option “>” for
splits. The first constraint states that a data-instance cannot belong to the leaf
corresponding to branch i if its feature value xel is larger than the threshold ωij

at depth j. This corresponds to a “≤” inequality and is materialised by θijl,1 = 0;
the second constraint has the similar mining but with the “>” inequality.

5.4 Formalising Domain Knowledge as Constraints

With the tree representation and the first formulation presented in the previous
section, in the following, we show how domain knowledge can be straightforwardly
formalised as constraints and integrated in our models.

5.4.1 Ordering of Features

It often appears that domain experts have a prior belief of a specific ordering of
features. This prior may directly come from their background knowledge or hard
material constraints which favour asking patients to perform tests before others.
As an illustration, to predict liver diseases, doctors will ask patients their age
before performing a bilirubin test since the interpretation of this test depends on
the age of the patient (Hodgson et al., 2018). Therefore, a comprehensible decision
tree for domain expert should encode this prior knowledge. The constraint ”feature
Xl2 must not appear before Xl1” is expressed as

∀i ∈ [L], j ∈ [K] \ {0},
∑
j1∈[j]

∑
p∈[V]

θij1l2p ≤ 1−
∑
p∈[V]

θijl1p.

101

CHAPTER 5. CONSTRAINT ENFORCEMENT ON DECISION TREES USING LINEAR
PROGRAMMING

5.4.2 Test Costs on Features

Experts can also be constrained by economical considerations to ask patients to do
tests before taking decisions (Núñez, 1991). A good illustration of this importance
is the case of application of machine learning algorithms in domains with lack of
available material resources to perform medical tests. Hence, one can specify test
costs on features in order to limit the total economical cost to spend before reaching
a decision. With our framework, it is possible to learn trees with a maximum
classification cost τ on a cost-sensitive dataset. This constraint becomes

∀i ∈ [L] :
∑
j∈[K]

∑
l∈[M]

∑
p∈[V]

θijlp ∗ cost(l) ≤ τ.

where cost(l) denotes the test cost of feature Xl.

5.4.3 Expected Cost for Classification

As for the same reasons with test costs, certain applications may require to
constrain the expected classification cost. The weighted test cost of a branch i is
1
N

∑
e∈[N]

∑
l∈[M] ξei ∗ cost(l) ∗

(∑
p∈[V] θijlp). As this previous term is non-linear,

it is possible to linearise it with variables Nij representing the weighted test cost
of the branch i at depth j, with the constraints:

∀i ∈ [L], j ∈ [M], l ∈ [L],
∑
p∈[V]

θijlp = 1 ⇒ Nij = cost(l) ∗
∑
e∈[N]

ξei,

and ∀i ∈ [L], j ∈ [M],
∑

l∈[M]p∈[V]

θijlp = 0 ⇒ Nij = 0.

Therefore, the expected cost for classification is Ecost = 1
N

∑
i∈[L]

∑
j∈[K]Nij .

Imposing a maximum expected cost for a decision tree can be stated as∑
i∈[L]

∑
j∈[K]

Nij ≤ N ∗ τ.

5.4.4 Number of Instances on Leaf Nodes

To reduce the growth of a tree, one can also give the minimum number of instances
on leaf nodes. This can be easily done by adding

∀i ∈ [L],
∑
e∈[N]

ξei ≥ minNumberInstances.

102

CHAPTER 5. CONSTRAINT ENFORCEMENT ON DECISION TREES USING LINEAR
PROGRAMMING

5.4.5 Instances that Must Be in the Same Leaf

It often appears that datasets come with instance names and domain experts may
have background knowledge on specific instances. Similarly to clustering (Wagstaff
et al., 2001b), practitioners may want to impose that certain instances satisfy the
same decision rule, i.e., belong to the same leaf node. One can also specify that
two instances must be in the same leaf node with the proposed framework using
the constraint expressed as

∀i ∈ [L], ξe1,i = ξe2,i, if e1 and e2 has to be in the same leaf node.

5.4.6 Presence or Exclusion of a Feature Over the Tree or Over a
Branch

It often appears that in several situations (e.g., due to noisy data), the selected
features of a decision tree do not match the domain-related relevant features
(López-Vallverdú et al., 2012). In such situations, domain experts may not trust
the learned tree. Using our formulation, it is possible to impose the selection of a
feature Xl (without even knowing where it should be selected in the tree) thanks
to the constraint ∑

i∈[L]

∑
j∈[K]

∑
p∈[V]

θijlp ≥ 1.

Additionally, two or more features may be redundant in a decision rule, i.e.,
over a specific branch. For some specific reasons, they should not be selected
simultaneously in a branch (i.e., decision-wise) or in the whole tree (i.e., model-wise).
Domain experts can provide this knowledge which can be infused as constraints.
It can be guaranteed that two features Xl1 and Xl2 do not appear on the same
branch of a decision tree with

∀i ∈ [L],
∑
j∈[K]

∑
p∈[V]

θij,l1,p + θij,l2,p ≤ 1.

Xl1 and Xl2 will not appear simultaneously into the tree if∑
i∈[L]

∑
j∈[K]

∑
p∈[V]

Qij,l1,p +Qij,l2,p ≤ 3.

103

CHAPTER 5. CONSTRAINT ENFORCEMENT ON DECISION TREES USING LINEAR
PROGRAMMING

5.4.7 Fairness through Demographic Parity and Minimum Accu-
racy for a Group

5.4.7.1 Disparate Impact or Demographic Parity

In Chapter 4, we imposed fairness constraints through a top-down greedy method.
The formulations presented in this chapter also allow to formalise the fairness
constraint. As a reminder, demographic parity or disparate impact fairness aims
to ensure that the predictions of a classifier do not depend on a sensitive feature z
such as gender or race, i.e., p(ŷ = 1|xz) = p(ŷ = 1|xz̄) (Lohaus et al., 2020). In
practice, the demographic parity fairness is evaluated on a sample, through the
difference of demography parity (DDP) given by

DDP =
∣∣∣#{x ∈ D; ŷ = 1,xz = 1}

#{x ∈ D;xz = 1}
− #{x ∈ D; ŷ = 1,xz = 0}

#{x ∈ D;xz = 0}

∣∣∣.
Let Nz (resp. Nz̄) be the number of samples belonging to the first (second)

category of the binary sensitive feature, N+
z (resp. N+

z̄) be the number of positively
predicted samples belonging to the first (resp. second) category of the sensitive fea-
ture. Therefore, the DDP can be expressed as DDP =

∣∣N+
z /Nz−N+

z̄ /Nz̄|. Looking
back at our tree formulation, thanks to the partioning of the branch representation,
we can partition samples according to branches/leaves i ∈ [L], create variables N+

iz

(resp. N+
iz̄) for each branch and express the DDP as

∣∣Nz̄∗
∑

i∈[L] N
+
iz−Nz∗

∑
i∈[L] N

+
iz̄

Nz̄∗Nz
|.

Hence, using our tree formulation, a decision tree satisfies the τ -DDP if

−τ ∗Nz̄ ∗Nz ≤ Nz̄ ∗
∑
i∈[L]

N+
iz −Nz ∗

∑
i∈[L]

N+
iz̄ ≤ τ ∗Nz̄ ∗Nz,

where N+
iz and N+

iz̄ are variables defined thanks to the following constraints:

∀i ∈ [L], νi,1 = 0 ⇒

{
N+

iz̄ = 0

N+
iz = 0

, νi,1 = 1 ⇒

{
N+

iz̄ =
∑

e∈[N] ξei ∗ (1− xez)

N+
iz =

∑
e∈[N] ξei ∗ xez

.

5.4.7.2 Minimum Accuracy on an Underrepresented Group

In the same direction, if one would like to guarantee that a certain percentage τ
of instances from a targeted group G should not be misclassified, it can be easily
imposed using the following constraint:

∑
e∈G ϵe ≤ (1− τ) ∗ |G|.

More broadly, it is important to note that, by drawing inspiration from demo-
graphic parity measures and minimum accuracy, other constraints called in Cotter

104

CHAPTER 5. CONSTRAINT ENFORCEMENT ON DECISION TREES USING LINEAR
PROGRAMMING

et al. (2019) as rate constraints (evaluated using input/outputs of models) can be
formalised and expressed within the proposed formulation.

5.5 Use Cases with Constraint Enforcement on Decision
Trees

This section demonstrates empirically the capability of our model to enforce
various types of domain-knowledge constraints. We now refer to our decision trees
as CPTrees. Following the methodology in Yang et al. (2020) and Cotter et al.
(2019), we experimentally validate the ability of our framework to enforce a broad
class of domain-knowledge constraints on several real-world applications with prior
domain-knowledge that should be enforced. In the following, for each application,
we briefly discuss the results obtained with CPTree and constrained CPTree in
terms of trees and decision rules. In order to have a point of comparison, we
also include CART in our experiments, although any other method benchmarked
in Section 5.6 could be chosen. We report the accuracy in our experiments to
study whether constraint enforcement impacts it: ideally, constrained decision trees
should remain reliable and accurate. Finally, datasets are split using the 67− 33%
train-test percentage (except on COMPAS with the 40− 60%). We mostly use 6
as the (maximum) number of leaves in order to keep the interpretability of learned
trees and we also evaluate on single run to visualise trees.

5.5.1 Ordering Constraint Applied to the Prediction of Breast
Cancer Survival

The first application is related to the Haberman’s survival dataset (Dua and Graff,
2017), which contains features like age and positive_nodes (number of positive
axiliary nodes detected), etc. The goal is to predict whether a patient survives
after a surgery for breast cancer. In this domain, breast cancer is extremely violent
for younger patients because it can weaken the patient and make the surgery
dangerous. On the other hand, older patients usually have difficulties to recover
from surgeries (in general) since it puts the body under high stress. In between
these two categories, patients have more chances to survive a breast cancer surgery
(Tina Binesh and Sydney, 2018). Moreover, it is established that knowing the age,
the evolution of positive_nodes is piece-wise linear (Lohaus et al., 2020) and that
the feature age precedes the feature positive_nodes on a causal directed graph
(Li et al., 2016). Therefore, a medical valid decision tree should first select the
feature age before the feature positive_nodes. In other words, for this use case on

105

CHAPTER 5. CONSTRAINT ENFORCEMENT ON DECISION TREES USING LINEAR
PROGRAMMING

Haberman’s survival Diabetes

Train Test Train Test

CART 77.07 71.28 79.96 68.50
CPTree 80.97 68.31 81.90 68.89

C-CPTree 78.53 73.26 79.57 74.40

Table 5.2: Accuracy of CART, (unconstrained) CPTree and (constrained CPTree) C-
CPTree.

the prediction of survival after breast cancer, we impose the constraint that the
feature age should appear before the feature positive_nodes when these features
are selected on a branch.

Results Figure 5.3 shows learned trees (CART, unconstrained and constrained
CPTrees) from this dataset. From this figure, it can be observed that both CART
and the unconstrained CPTree violate the ordering constraint. Note that the
constrained CPTree does satisfy the constraint but also its new top feature is the
feature age, which appears to be, to some extents, more natural since it is likely
to be the first question a medical doctor would ask to a breast-cancer patient.
Additionally, Table 5.2 confirms that this prior knowledge is in phase with data
since predictive accuracy is slightly improved for the constrained CPTree.

5.5.2 Must-be-selected Constraint Applied to Diabetes Prediction

Here, we study the problem of predicting diabetes on patients of the dataset Pima
Indian diabetes (Dua and Graff, 2017). Patients of this dataset are women of
at least twenty one years old (Smith et al., 1988). The dataset contains socio-
demographic features such as age and clinical features such as body max index
(BMI) and pregnancy-related features. In this use case, we impose the constraint
that a feature related to the pregnancy (pregnancy) should be selected on the tree.
Indeed, women who have been pregnant may have developed gestational diabetes,
which may result in diabetes after giving birth (Read et al., 2021).

Results Figure 5.4 shows learned trees from this diabetes dataset. According to
the figure both CART and unconstrained CPTree select the same features but with
different decision rules. They also fail to select a feature related to pregnancy. With
these trees, it is difficult to quickly differentiate patients who are likely to have
developed a gestational diabetes. In contrast, when infusing the prior information

106

CHAPTER 5. CONSTRAINT ENFORCEMENT ON DECISION TREES USING LINEAR
PROGRAMMING

positive_node ≤ 4.5
samples = 205

value = [151, 54]
class = Survived

age_patient ≤ 77.5
samples = 153

value = [124, 29]
class = Survived

True

age_patient ≤ 42.5
samples = 52

value = [27, 25]
class = Survived

False

positive_node ≤ 0.5
samples = 151

value = [124, 27]
class = Survived

samples = 2
value = [0, 2]
class = Died

samples = 91
value = [79, 12]
class = Survived

age_patient ≤ 60.5
samples = 60

value = [45, 15]
class = Survived

samples = 49
value = [40, 9]

class = Survived

samples = 11
value = [5, 6]
class = Died

samples = 10
value = [8, 2]

class = Survived

year_of_operation ≤ 59.5
samples = 42

value = [19, 23]
class = Died

samples = 4
value = [0, 4]
class = Died

samples = 38
value = [19, 19]
class = Survived

(a) CART

positive_node<=20.00024
samples=205

value=[151, 54]
class=Survived

year_of_operation<=64.99996
samples=192

value=[145, 47]
class=Survived

True

age_patient<=59.00001
samples=13
value=[6, 7]
class=Died

False

positive_node<=10.94808
samples=137

value=[101, 36]
class=Survived

True

samples=55
value=[44, 11]
class=Survived

False

year_of_operation<=65.98897
samples=10
value=[3, 7]
class=Died

True

samples=3
value=[3, 0]

class=Survived

False

age_patient<=69.94716
samples=127

value=[99, 28]
class=Survived

True

samples=10
value=[2, 8]
class=Died

False

samples=8
value=[1, 7]
class=Died

True

samples=2
value=[2, 0]

class=Survived

False

samples=118
value=[96, 22]
class=Survived

True

samples=9
value=[3, 6]
class=Died

False

(b) Unconstrained CPTree

age_patient<=67.0
samples=205

value=[151, 54]
class=Survived

positive_node<=14.0
samples=184

value=[137, 47]
class=Survived

True

year_of_operation<=58.00011
samples=21

value=[14, 7]
class=Survived

False

year_of_operation<=63.0
samples=164

value=[128, 36]
class=Survived

True

year_of_operation<=66.0
samples=20

value=[9, 11]
class=Died

False

samples=3
value=[0, 3]
class=Died

True

samples=18
value=[14, 4]

class=Survived

False

positive_node<=10.0
samples=80

value=[64, 16]
class=Survived

True

samples=84
value=[64, 20]
class=Survived

False

samples=15
value=[5, 10]
class=Died

True

samples=5
value=[4, 1]

class=Survived

False

samples=74
value=[62, 12]
class=Survived

True

samples=6
value=[2, 4]
class=Died

False

(c) Constrained CPTree

Figure 5.3: Ordering constraints. Decision trees obtained on Haberman’s survival dataset
using (a) CART, (b) CPTree without constraints and (c) CPTree with the constraint:
“feature age_patient must appear before feature positive_nodes”.

of the selection of the pregnancy feature the constrained CPTree provides decision
rules where it may be possible to differentiate those patients. Furthermore, as
shown in Table 5.2, this prior knowledge does not harm predictive accuracy, but
helps to better generalise on unseen data.

5.5.3 Exclusion Constraint Applied to Prediction of Post-operative
Action

This application aims to predict whether a patient should stay in the same service,
go to an intensive care unit or go back home for recovery after a surgery. We use

107

CHAPTER 5. CONSTRAINT ENFORCEMENT ON DECISION TREES USING LINEAR
PROGRAMMING

Glucose ≤ 123.5
samples = 514

value = [335, 179]
class = No_Diabete

BMI ≤ 26.45
samples = 294

value = [250, 44]
class = No_Diabete

True

BMI ≤ 29.95
samples = 220

value = [85, 135]
class = Diabete

False

samples = 84
value = [84, 0]

class = No_Diabete

Age ≤ 28.5
samples = 210

value = [166, 44]
class = No_Diabete

samples = 121
value = [111, 10]

class = No_Diabete

Glucose ≤ 100.5
samples = 89

value = [55, 34]
class = No_Diabete

samples = 35
value = [30, 5]

class = No_Diabete

samples = 54
value = [25, 29]
class = Diabete

samples = 66
value = [44, 22]

class = No_Diabete

Glucose ≤ 157.5
samples = 154

value = [41, 113]
class = Diabete

samples = 93
value = [34, 59]
class = Diabete

samples = 61
value = [7, 54]

class = Diabete

(a) CART

Age<=35.1174
samples=514

value=[335, 179]
class=No_diabete

Glucose<=143.80146
samples=340

value=[253, 87]
class=No_diabete

True

Glucose<=107.8011
samples=174

value=[82, 92]
class=Diabete

False

Glucose<=124.6212
samples=286

value=[239, 47]
class=No_diabete

True

samples=54
value=[14, 40]
class=Diabete

False

samples=39
value=[31, 8]

class=No_diabete

True

BMI<=28.79999
samples=135

value=[51, 84]
class=Diabete

False

samples=233
value=[208, 25]

class=No_diabete

True

BMI<=34.50014
samples=53

value=[31, 22]
class=No_diabete

False

samples=41
value=[30, 11]

class=No_diabete

True

samples=94
value=[21, 73]
class=Diabete

False

samples=37
value=[27, 10]

class=No_diabete

True

samples=16
value=[4, 12]
class=Diabete

False

(b) Unconstrained CPTree

Pregnancies<=6.99992
samples=514

value=[335, 179]
class=No_diabete

Age<=59.94
samples=435

value=[300, 135]
class=No_diabete

True

Insulin<=109.15092
samples=79

value=[35, 44]
class=Diabete

False

BMI<=45.53272
samples=420

value=[288, 132]
class=No_diabete

True

samples=15
value=[12, 3]

class=No_diabete

False

Glucose<=139.80186
samples=56

value=[33, 23]
class=No_diabete

True

samples=23
value=[2, 21]
class=Diabete

False

Glucose<=157.00014
samples=404

value=[285, 119]
class=No_diabete

True

samples=16
value=[3, 13]
class=Diabete

False

samples=40
value=[29, 11]

class=No_diabete

True

samples=16
value=[4, 12]
class=Diabete

False

samples=349
value=[276, 73]

class=No_diabete

True

samples=55
value=[9, 46]
class=Diabete

False

(c) Constrained CPTree

Figure 5.4: Must-be-selected constraints. Decision trees obtained on Diabetes dataset
using (a) CART, (b) CPTree without constraints and (c) CPTree with the constraint:
“feature pregnancy must appear on the tree”.

Train Test

CART 83.33 53.33
CPTree 85.00 56.67

P-CART 80.00 63.63
C-CPTree 83.33 66.67

Table 5.3: Accuracy of CART, CPTree, P-CART (trained without the L-CORE feature)
and constrained CPTree (C-CPTree) on Post- operative data.

the Post-operative dataset (Dua and Graff, 2017). Here, from prior knowledge, in
average, the difference between the core temperature (L-CORE) and the surface
temperature (L-SURF) is generally constant. So it would be surprising and useless
to select these two (strongly correlated) features on the same branch.

Results Table 5.3 shows performance of CART, CPTree, P-CART (CART with
the feature L-CORE removed). It can be seen that adding this prior knowledge
does not impair predictive accuracy. It further improves generalisation. Moreover,
as shown in Figure 5.5, both CART and CPTree violate the constraint while with
P-CART and C-CPTree, it is satisfied by design.

108

CHAPTER 5. CONSTRAINT ENFORCEMENT ON DECISION TREES USING LINEAR
PROGRAMMING

L-BP_mid ≤ 0.5
samples = 60

value = [2, 44, 14]
class = go home

COMFORT ≤ 10.471
samples = 21

value = [1, 18, 2]
class = go home

True

L-SURF_low ≤ 0.5
samples = 39

value = [1, 26, 12]
class = go home

False

samples = 17
value = [0, 16, 1]
class = go home

BP-STBL_stable ≤ 0.5
samples = 4

value = [1, 2, 1]
class = go home

samples = 2
value = [0, 2, 0]
class = go home

samples = 2
value = [1, 0, 1]

class = Intensive care unit

L-CORE_low ≤ 0.5
samples = 29

value = [0, 21, 8]
class = go home

BP-STBL_stable ≤ 0.5
samples = 10

value = [1, 5, 4]
class = go home

samples = 25
value = [0, 20, 5]
class = go home

samples = 4
value = [0, 1, 3]

class = general hospital floor

samples = 6
value = [1, 1, 4]

class = general hospital floor

samples = 4
value = [0, 4, 0]
class = go home

(a) CART

L-BP_mid ≤ 0.5
samples = 60

value = [2, 44, 14]
class = go home

COMFORT ≤ 10.471
samples = 21

value = [1, 18, 2]
class = go home

True

L-SURF_low ≤ 0.5
samples = 39

value = [1, 26, 12]
class = go home

False

samples = 17
value = [0, 16, 1]
class = go home

BP-STBL_stable ≤ 0.5
samples = 4

value = [1, 2, 1]
class = go home

samples = 2
value = [0, 2, 0]
class = go home

samples = 2
value = [1, 0, 1]

class = Intensive care unit

L-SURF_mid ≤ 0.5
samples = 29

value = [0, 21, 8]
class = go home

BP-STBL_stable ≤ 0.5
samples = 10

value = [1, 5, 4]
class = go home

samples = 6
value = [0, 6, 0]
class = go home

samples = 23
value = [0, 15, 8]
class = go home

samples = 6
value = [1, 1, 4]

class = general hospital floor

samples = 4
value = [0, 4, 0]
class = go home

(b) CART on preprocessed data

CORE-STBL_stable<=1e-05
samples=60

value=[2, 44, 14]
class=go home

BP-STBL_stable<=1e-05
samples=5

value=[0, 3, 2]
class=go home

True

L-BP_mid<=0.999
samples=55

value=[2, 41, 12]
class=go home

False

samples=3
value=[0, 3, 0]
class=go home

True

samples=2
value=[0, 0, 2]

class=general hospital floor

False

samples=20
value=[1, 18, 1]
class=go home

True

L-SURF_mid<=0.999
samples=35

value=[1, 23, 11]
class=go home

False

BP-STBL_unstable<=0.999
samples=14

value=[1, 9, 4]
class=go home

True

L-CORE_low<=0.999
samples=21

value=[0, 14, 7]
class=go home

False

samples=9
value=[0, 8, 1]
class=go home

True

samples=5
value=[1, 1, 3]

class=general hospital floor

False

samples=18
value=[0, 14, 4]
class=go home

True

samples=3
value=[0, 0, 3]

class=general hospital floor

False

(c) Unconstrained CPTree

CORE-STBL_unstable<=1e-05
samples=60

value=[2, 44, 14]
class=go home

L-BP_low<=0.999
samples=56

value=[2, 42, 12]
class=go home

True

BP-STBL_stable<=0.999
samples=4

value=[0, 2, 2]
class=go home

False

L-BP_mid<=0.999
samples=54

value=[2, 40, 12]
class=go home

True

samples=2
value=[0, 2, 0]
class=go home

False

samples=2
value=[0, 2, 0]
class=go home

True

samples=2
value=[0, 0, 2]

class=general hospital floor

False

samples=18
value=[1, 16, 1]
class=go home

True

L-SURF_low<=0.999
samples=36

value=[1, 24, 11]
class=go home

False

samples=27
value=[0, 20, 7]
class=go home

True

BP-STBL_stable<=0.999
samples=9

value=[1, 4, 4]
class=go home

False

samples=5
value=[1, 0, 4]

class=general hospital floor

True

samples=4
value=[0, 4, 0]
class=go home

False

(d) Constrained CPTree (C-CPTree).

Figure 5.5: Exclusion constraints. Decision trees obtained on the Post-operative patient
dataset with (a) CART without constraints, (b) CPTree without constraints, (c) CART
with one of the two highly correlated features removed, (d) CPTree with the constraint: “L-
SURF (surface temperature) and L-CORE (internal temperature) are mutually exclusive
in a branch”.

5.5.4 Minimum Accuracy on an Underrepresented Group and
Test Cost Constraints Applied to Heart Disease Prediction

In this application, we use the heart disease dataset for heart disease prediction.
In this application, usually, men have higher risks to develop a heart disease
compared to women. Sick women represent therefore an underrepresented group in
this domain application and very often they present atypical symptoms compared
to men (Wenger et al., 1993). Since even medical doctors have to be cautious
(Okunrintemi et al., 2018) when examining women patients for this disease, it is
likely that a classifier will struggle to correctly classify these examples. In order to
enhance possible trust of learned decision trees, we therefore impose the constraint
that a high percentage (90%) of sick women should not be misclassified. We
additionally impose the constraint on test costs, which is present in the paper
Nanfack et al. (2022b).

109

CHAPTER 5. CONSTRAINT ENFORCEMENT ON DECISION TREES USING LINEAR
PROGRAMMING

Train Test Train Group Test Group
CART 82.32 77.78 68.75 55.56

CPTree 85.35 83.84 68.75 66.67
C-CPTree 81.82 79.80 93.75 88.89

Table 5.4: Accuracy of CART, CPTree and constrained CPTree (C-CPTree) on heart
disease. Group represents the group of sick women patients.

thal ≤ 4.5
samples = 198

value = [109, 89]
class = Not_sick

cp ≤ 3.5
samples = 111
value = [88, 23]
class = Not_sick

True

oldpeak ≤ 0.7
samples = 87

value = [21, 66]
class = Sick

False

samples = 75
value = [67, 8]

class = Not_sick

ca ≤ 0.5
samples = 36

value = [21, 15]
class = Not_sick

samples = 23
value = [18, 5]

class = Not_sick

samples = 13
value = [3, 10]
class = Sick

samples = 28
value = [15, 13]
class = Not_sick

cp ≤ 3.5
samples = 59
value = [6, 53]
class = Sick

samples = 15
value = [6, 9]
class = Sick

samples = 44
value = [0, 44]
class = Sick

(a) CART

cp<=3.00001
samples=198

value=[109, 89]
class=safe

thal<=5.0
samples=47

value=[38, 9]
class=safe

True

thal<=5.996
samples=97

value=[28, 69]
class=sick

False

samples=33
value=[30, 3]

class=safe

True

ca<=0.96474
samples=14
value=[8, 6]
class=safe

False

ca<=0.99699
samples=36

value=[21, 15]
class=safe

True

samples=61
value=[7, 54]

class=sick

False

samples=12
value=[8, 4]
class=safe

True

samples=2
value=[0, 2]
class=sick

False

samples=23
value=[18, 5]

class=safe

True

samples=13
value=[3, 10]

class=sick

False

(b) CPTree

ca<=3e-05
samples=198

value=[109, 89]
class=safe

trestbps<=117.89452
samples=113

value=[84, 29]
class=safe

True

cp<=3.997
samples=85

value=[25, 60]
class=sick

False

samples=20
value=[16, 4]

class=safe

True

cp<=3.997
samples=93

value=[68, 25]
class=safe

False

thal<=5.996
samples=32

value=[20, 12]
class=safe

True

samples=53
value=[5, 48]

class=sick

False

samples=57
value=[52, 5]

class=safe

True

samples=36
value=[16, 20]

class=sick

False

samples=22
value=[18, 4]

class=safe

True

samples=10
value=[2, 8]
class=sick

False

(c) Constrained CPTree

Figure 5.6: Minimum accuracy on a targeted group. Decision trees obtained on the heart
disease dataset with (a) CART without constraints and (b) CPTree without constraint
and (c) CPTree with the constraint : “90% of sick women should not be misclassified”.

Results Table 5.4 shows results obtained on CART, unconstrained CPTree and
the constrained CPTree. From this table, it can be observed that without the
constraint, both CART and CPTree correctly classify only 68.75% of sick women.
However, when imposing the constraint, the constrained CPTree does not only
increase this percentage on the training distribution (93.75%), but also on the
test distribution (88.89%). Nonetheless, in this case, the accuracy of constrained
CPTree is slightly below the one of the unconstrained one. Learned trees can also
be inspected in Figure 5.6.

Train Test Train DDP Test DDP

CART 83.60 83.76 8.09 7.49
CPTree 83.14 83.45 12.25 12.80

C-CPTree 81.64 82.18 1.68 1.37

Table 5.5: Accuracy and DDP of CART, CPTree, constrained CPTree (C-CPTree) on
Compas.

110

CHAPTER 5. CONSTRAINT ENFORCEMENT ON DECISION TREES USING LINEAR
PROGRAMMING

priors_count ≤ 8.5
samples = 2468

value = [1996, 472]
class = Not_high_risk

age ≤ 32.5
samples = 2194

value = [1873, 321]
class = Not_high_risk

True

age ≤ 40.5
samples = 274

value = [123, 151]
class = High_risk

False

priors_count ≤ 1.5
samples = 1226

value = [951, 275]
class = Not_high_risk

samples = 968
value = [922, 46]

class = Not_high_risk

length_of_stay ≤ 32.5
samples = 737

value = [631, 106]
class = Not_high_risk

samples = 489
value = [320, 169]

class = Not_high_risk

samples = 695
value = [613, 82]

class = Not_high_risk

samples = 42
value = [18, 24]

class = High_risk

samples = 189
value = [60, 129]
class = High_risk

samples = 85
value = [63, 22]

class = Not_high_risk

(a) CART

race<=1e-05
samples=2468

value=[1996, 472]
class=Not_high_risk

samples=1162
value=[1043, 119]

class=Not_high_risk

True

c_charge_degree_F<=1e-05
samples=1306

value=[953, 353]
class=Not_high_risk

False

samples=397
value=[324, 73]

class=Not_high_risk

True

two_year_recid<=1e-05
samples=909

value=[629, 280]
class=Not_high_risk

False

age<=23.0
samples=402

value=[339, 63]
class=Not_high_risk

True

priors_count<=8.99992
samples=507

value=[290, 217]
class=Not_high_risk

False

samples=50
value=[31, 19]

class=Not_high_risk

True

samples=352
value=[308, 44]

class=Not_high_risk

False

samples=374
value=[247, 127]

class=Not_high_risk

True

samples=133
value=[43, 90]

class=High_risk

False

(b) Unconstrained CPTree

age<=35.93568
samples=2468

value=[1996, 472]
class=Not_high_risk

age<=34.00032
samples=1556

value=[1161, 395]
class=Not_high_risk

True

samples=912
value=[835, 77]

class=Not_high_risk

False

age<=31.93568
samples=1493

value=[1102, 391]
class=Not_high_risk

True

samples=63
value=[59, 4]

class=Not_high_risk

False

samples=1272
value=[928, 344]

class=Not_high_risk

True

priors_count<=8.00014
samples=221

value=[174, 47]
class=Not_high_risk

False

samples=182
value=[164, 18]

class=Not_high_risk

True

samples=39
value=[10, 29]
class=High_risk

False

(c) Constrained CPTree

Figure 5.7: Fairness constraints. Decision trees obtained on COMPAS dataset using (a)
CART, (b) CPTree without constraints and (c) CPTree with the constraint: “the DDP is
less than 5%”.

111

CHAPTER 5. CONSTRAINT ENFORCEMENT ON DECISION TREES USING LINEAR
PROGRAMMING

5.5.5 Fairness constraint Applied to Recidivism Prediction

In this application, we use the ProPublicas COMPAS recidivism data. The task is
to predict a recidivism based on historical crime and demographic features. Studies
have reported that the system built around this dataset was racially biased against
African American defendants (Yang et al., 2020). Inspired by Cotter et al. (2019),
we impose the constraint that the DDP (with race as the protected feature) should
be less than 5%.

Results Table 5.5 shows results obtained on CART, unconstrained CPTree and
constrained CPTree. Trees can be visualised in Figure 5.7. From Table 5.5, it
appears on one hand that, both CART and unconstrained have approximately the
same predictive accuracy, but the unconstrained CPTree is less fair than CART
according to DDP. On the other hand, when enforcing the fairness constraint DDP
decreases by approximately at least 6% (down to ±1%), while keeping the same
level of accuracy of unconstrained trees.

In summary for these use-cases, this section showed that our framework allows
enforcing domain-knowledge constraints in diverse real-world applications. For
each application, our constrained CPTrees enforces constraints without loss in
accuracy performance with respect to the unconstrained ones and CART baselines.
In what follows, we show that if no constraints are enforced, CPTrees obtains
competitive results with respect to state-of-the-art tree learners. We aim to show
that domain experts can safely use our approach to obtain trees that (i) are reliable
and (ii) straightforwardly enforce constraints that the models need to comply with.

5.6 Constraint-free Benchmarking

This section benchmarks the proposed CPTrees with respect to state-of-the-
art decision tree learners in order to validate its relevance from an accuracy
perspective. Indeed, Section 5.5 has shown that CPTrees can enforce domain
knowledge constraints, but they must also provide competitive accuracy to be of
practical interest.

5.6.1 Experimental Setting

Most of the experiment settings that we use in this section have been set in accor-
dance with Verwer and Zhang (2019) and Bertsimas and Dunn (2017). Experiments
have been performed on 20 UCI datasets (Dua and Graff, 2017) (mostly taken

112

CHAPTER 5. CONSTRAINT ENFORCEMENT ON DECISION TREES USING LINEAR
PROGRAMMING

Dataset name N M Type of features C

Balance scale 625 4 categorical 3
Bankote authentication 1372 5 numeric 2
Car evaluation 1728 6 categorical 3
Credit approval 690 15 categorical, numeric 2
Hepatitis 155 19 categorical, numeric 2
Ionosphere 351 34 numeric 2
Iris 150 4 numeric 3
Mammographic masses 961 6 categorical, numeric 2
Monk1 432 6 categorical 2
Monk2 432 6 categorical 2
Monk3 432 6 categorical 2
Pima indian diabetes 768 10 numeric 2
QSAR biodegradation 1055 41 numeric 2
Post operative patient 90 8 categorical, numeric 3
Seismic-bumps 2584 19 numeric 2
Spambase 4601 57 numeric 2
Spect heart 267 22 categorical 2
Thoracy surgery 470 17 numeric 2
Tic tac toe 958 9 categorical 2
Wine 178 13 numeric 3

Table 5.6: Datasets. N , M , C denote respectively the number of instances, features and
classes.

from the list of datasets used by Verwer and Zhang (2019) plus additional ones as
seen in Table 5.6). Depending on datasets, the number of classes varies from 2 to
3 and the number of instances from 90 to 4601.

No code for preprocessing datasets was found on any of the following source
code repositories: BinOCT 4(Verwer and Zhang, 2019), Verhaeghe et al. (2019)5

, OSDT6 (Hu et al., 2019) and DL8.57 (Aglin et al., 2020). However, some
datasets that we have used, were found on the BinOCT repository4, were already
preprocessed. In order to extend preproprecessing for other datasets, we had
to preprocess ourselves the datasets, which may explain little differences with
published performances (e.g., slightly different accuracy) on few datasets. For
methods that require binary features (DL8.5, OSDT, Verhaeghe et al. (2019) and
our first model), datasets are preprocessed by transforming numeric features into

4https://github.com/SiccoVerwer/binoct
5https://bitbucket.org/helene_verhaeghe/classificationtree
6https://github.com/xiyanghu/OSDT
7https://github.com/aglingael/dl8.5

113

CHAPTER 5. CONSTRAINT ENFORCEMENT ON DECISION TREES USING LINEAR
PROGRAMMING

(3 bins using the quantile discretiser from Scikit-learn8) categorical ones and then
transforming all categorical features into binary features through one-hot-encoding.

Datasets have been divided in 3 sets: training (50%), validation (25%) and
testing (25%). BinOCT, DL8.5 and Verhaeghe et al. (2019) do not have any
additional hyperparameters nor number of leaves to tune. We ran these models
directly on training plus validation sets. Since BinOCT has an intrinsic heuristic
to binarise numeric features, we keep datasets with their numeric features for
experiments with BinOCT. This gives two versions of BinOCT (BinOCT1 for only
binary features and BinOCT2 with numeric features). Other methods only work
with binary features according to their released code. In the experiments, we also
include CART (Breiman et al., 1984) from Scikit-learn using the Shannon entropy
as heuristic.

OSDT and CPTree require cross-validation to select hyperparameters λ and
L, respectively. Therefore, λ has been selected after validation according to the
default range of values provided by Hu et al. (2019). The number of leaves L of
our model CPTrees has also been validated considering values from 3(K − 1) to
2K , where K is the maximum depth. Once tuning is done, we ran OSDT and our
model on training plus validation sets, according to the best λ and L, respectively.
Since our model is more general than Verwer and Zhang (2019), we made three
versions of CPTrees. CPTree and CPTree∗ are respectively the model for complete
tree structures (L = 2K as BinOCT) and the models for which the number of
leaves has been validated. Second, CPTree∗ is the third model related to the
second formulation (i.e., with numeric features) detailed in Section 5.3. CPTree
and CPTree# come from the first formulation (see Section 5.2).

To be fair, all models ran without a warm start such as CART. No additional
constraint has been added since the goal of this section is to assess the ability of
our method to produce decision trees that achieve similar accuracy than those
obtained by state-of-the-art methods described in Section 5.1.2.

Since our first formulation uses linear constraints and binary variables, it can
be implemented into CP or MIP solvers. We used the CP-SAT solver of the
Google OR-Tools library (Perron and Furnon, 2019), which is freely available in
Python. For our second formulation, we used the Gurobi (Optimization, 2021)
MIP solver. Regarding the optimisation of versions of CPTrees, there are several
ways to improve the computational time (described in Section 5.8), e.g., by tuning
technical parameters of solvers. We kept default ones and did not tune them to be
fair as much as possible w.r.t. other tree learners.

8We used KBinsDiscretizer from the preprocessing package.

114

CHAPTER 5. CONSTRAINT ENFORCEMENT ON DECISION TREES USING LINEAR
PROGRAMMING

(a) Maximum depth 2. (b) Maximum depth 3.

(c) Maximum depth 4.

Figure 5.8: Nemenyi statistical significance test. From left to right, algorithms are ranked
from best to worst. The bold horizontal line indicates no significant difference between
algorithms.

Based on the work of BinOCT (Verwer and Zhang, 2019), we set to 10 minutes
the time limit for each run of all the methods. Experiments have been conducted
on 5 independent runs by dataset, by depth (the maximal depth was set to 2, 3
and 4) also according to Verwer and Zhang (2019). We ran them sequentially (to
be fair with all methods) on a server with a Common KVM processor (2.294 GHz)
and 16 GB of RAM. Running completely all the evaluations took more than 2
weeks9 of extensive computations.

The code for CPTrees is available10 and learned trees can be inspected and
visualised as in Scikit-learn. All scripts that we used to benchmark all these recent
models are also available for future reproducibility.

5.6.2 How do CPTrees Perform Comparatively to BinOCT, OSDT
and DL8.5?

Our benchmarking procedure aims to evaluate the generalisation of optimal decision
tree models rather than how close they are to optimal solutions. Therefore,
Table 5.7a, 5.7b and 5.7c present the average test accuracy (on depth 2, 3 and
4, respectively) over 5 independent runs as detailed in Section 5.6.1. Similarly,

9The total number of runs is ≈ 20(datasets) × 3(depths) × 8(models) × 5(runs) = 2400.
10https://github.com/gerald4/CPTree

115

CHAPTER 5. CONSTRAINT ENFORCEMENT ON DECISION TREES USING LINEAR
PROGRAMMING

Dataset CART BinOCT1 BinOCT2 Verbakel et al. (2015) DL8.5 OSDT CPTree CPTree# CPTree∗

Balance 61.15 63.06 65.35 N/A 65.35 N/A 65.35 66.50 66.62
Bank. A. 86.30 88.28 91.31 89.21 88.28 87.07 88.28 87.46 90.38
Biodeg 75.53 75.98 77.05 76.52 75.99 76.67 75.76 76.67 69.32
Car 77.13 77.13 77.13 N/A 77.13 N/A 77.13 77.13 72.08
Credit A. 85.37 84.27 84.63 85.37 84.03 85.37 84.27 85.61 74.27
Hepatitis 78.97 83.59 83.08 83.08 83.08 80.51 84.10 86.67 82.05
Ionosphere 78.64 81.82 88.86 81.82 81.82 78.18 82.27 80.45 89.55
Iris 93.68 93.68 90.53 N/A 94.21 N/A 93.68 93.68 92.11
Mam. M. 82.12 82.40 83.85 82.40 82.40 82.21 82.40 82.60 82.12
Monk1 76.83 75.02 75.02 74.55 75.02 74.59 75.97 75.54 75.97
Monk2 65.56 64.30 64.30 60.65 64.58 65.88 65.56 65.56 65.56
Monk3 95.83 95.70 95.70 95.96 95.70 95.70 95.83 95.83 95.83
Pima 74.58 74.58 74.38 74.58 74.58 73.75 74.58 74.58 73.02
Post O. 73.64 73.64 73.64 N/A 70.91 N/A 65.45 66.36 67.27
Seismic 93.44 93.34 93.10 93.03 93.34 93.44 93.34 93.34 93.19
Spambase 77.98 77.65 85.14 77.65 77.65 77.98 77.65 77.98 T/O
Spect H. 76.42 77.51 77.51 71.12 77.50 77.51 76.42 76.42 76.42
Thoracy S. 83.22 83.73 82.37 83.90 83.90 83.90 83.90 83.56 83.05
Tic T. T. 68.92 67.50 67.50 67.33 67.50 68.58 67.50 68.00 68.67
Wine 88.89 91.56 93.33 N/A 91.55 N/A 91.56 89.78 92.00

(a) Average test accuracy with maximum depth 2 over 5 repetitions.
Dataset CART BinOCT1 BinOCT2 Verbakel et al. (2015) DL8.5 OSDT CPTree CPTree# CPTree∗
Balance 66.75 68.15 68.79 N/A 69.94 N/A 69.68 69.68 64.33
Bank. A. 86.30 92.54 96.15 94.46 92.54 92.30 92.59 90.50 92.13
Biodeg 76.67 78.41 78.33 82.58 80.08 80.53 79.09 80.30 66.67
Car 78.89 80.0 80.00 N/A 79.82 N/A 79.81 79.81 T/O
Credit 84.39 85.12 85.49 87.20 85.74 85.61 85.98 86.10 76.52
Hepatitis 79.49 81.03 80.51 82.05 81.54 80.51 81.03 81.03 82.56
Ionosphere 81.14 85.45 87.05 89.32 88.64 80.91 86.36 86.82 80.91
Iris 93.16 94.21 92.11 N/A 93.68 N/A 95.26 93.68 96.32
Mammo. 82.98 83.56 83.46 83.56 83.46 83.75 83.37 83.65 80.29
Monk1 80.43 86.27 86.27 86.70 86.27 85.16 85.18 80.86 82.45
Monk2 63.71 58.92 57.59 59.08 59.31 63.89 57.75 61.46 63.44
Monk3 98.42 99.14 99.14 99.28 96.36 98.58 98.99 98.99 97.41
Pima 73.96 72.71 73.65 70.52 70.52 73.75 70.62 73.02 71.48
Post O. 72.73 69.09 69.09 N/A 66.36 N/A 59.09 62.73 61.82
Seismic 93.44 93.28 93.13 93.28 93.19 93.44 93.22 93.19 93.34
Spambase 83.25 83.35 84.36 83.75 83.76 83.84 83.75 83.75 T/O
Spect H. 75.82 76.86 76.86 74.62 77.67 77.51 78.51 79.10 77.91
Thoracy S. 82.54 82.54 81.86 81.86 80.85 83.39 81.53 82.54 83.73
Tic T. T. 72.83 72.00 71.75 73.17 73.33 73.67 73.17 74.25 T/O
Wine 87.56 92.00 90.22 N/A 92.44 N/A 90.22 93.33 94.22

(b) Average test accuracy with maximum depth 3 over 5 repetitions.
Dataset CART BinOCT1 BinOCT2 Verbakel et al. (2015) DL8.5 OSDT CPTree CPTree# CPTree∗
Balance 65.48 72.61 71.08 N/A 72.49 N/A 72.61 71.46 61.31
Bank. 92.36 93.94 97.26 95.63 94.58 92.77 94.46 93.76 93.41
Biodeg 77.42 78.79 79.09 81.06 80.38 78.56 78.26 79.17 T/O
Car 79.44 82.59 83.29 N/A 82.82 N/A 82.18 82.36 T/O
Credit A. 85.85 85.49 84.63 84.76 85.25 85.61 84.76 85.73 T/O
Hepatitis 78.97 74.87 82.56 78.46 78.46 76.92 82.56 83.08 82.05
Ionosphere 87.27 85.45 88.18 84.32 84.32 86.36 86.59 85.91 89.77
Iris 93.16 93.68 95.26 N/A 93.68 N/A 95.26 94.21 95.79
Mammo. 82.79 83.17 82.31 82.60 82.60 83.46 81.92 84.13 83.17
Monk1 82.88 100.00 100.00 100.00 100.00 100.00 100.00 100.00 81.58
Monk2 65.03 60.35 59.11 60.59 60.13 64.02 56.82 62.78 63.25
Monk3 98.99 97.47 97.47 96.19 97.28 98.58 98.56 98.99 96.83
Pima 71.88 71.77 71.25 69.27 70.52 72.92 69.38 72.08 74.35
Post O. 65.45 60.91 60.91 N/A 65.45 N/A 56.36 63.64 60.91
Seismic 93.44 93.13 92.94 93.13 93.06 93.44 93.07 93.16 93.30
Spambase 83.79 83.28 83.37 84.40 84.40 81.06 83.54 83.72 T/O
Spect H. 77.31 75.86 75.56 74.37 76.73 77.51 74.93 77.91 75.75
Thoracy S. 81.86 83.22 82.20 80.68 80.17 84.24 81.02 81.86 84.18
Tic T. T. 81.75 78.42 78.92 80.83 81.25 77.92 80.33 77.08 T/O
Wine 92.00 92.89 89.33 N/A 89.33 N/A 88.44 92.89 92.89

(c) Average test accuracy with maximum depth 4 over 5 repetitions.

Table 5.7: Test accuracy for several maximum depths. N/A means that the method
cannot do multiclass classification. T/O means that no solution was found within the
time limit (600s).

116

CHAPTER 5. CONSTRAINT ENFORCEMENT ON DECISION TREES USING LINEAR
PROGRAMMING

Dataset CART BinOCT1 BinOCT2 Verbakel et al. (2015) DL8.5 OSDT CPTree CPTree# CPTree∗

Balance 65.64 69.87 69.10 N/A 69.10 N/A 69.10 68.72 68.68
Bank. 87.27 88.80 92.93 88.34 88.80 87.77 88.80 87.81 92.30
Biodeg 78.66 79.32 80.43 79.27 79.32 79.24 79.32 79.24 70.47
Car 77.99 77.99 77.99 N/A 77.99 N/A 77.99 77.99 71.40
Credit A. 86.95 87.28 87.53 86.71 87.28 86.71 87.28 87.03 75.01
Hepatitis 82.76 86.21 89.83 86.21 86.21 80.69 86.21 85.17 89.66
Ionosphere 80.99 86.01 91.94 86.01 86.01 83.88 86.01 85.32 90.42
Iris 95.18 95.54 92.86 N/A 95.54 N/A 95.54 95.18 93.93
Mammo. 83.18 84.08 84.66 84.08 84.08 83.47 84.08 83.89 84.12
Monk1 73.91 78.99 78.99 81.62 79.00 78.32 78.13 77.46 78.13
Monk2 65.78 65.88 65.88 76.80 65.88 65.05 65.78 65.78 65.78
Monk3 96.58 96.09 96.09 96.42 96.09 96.09 96.58 96.58 96.58
Pima 76.70 76.70 78.68 76.70 76.70 76.32 76.70 76.70 78.23
Post O. 72.62 75.38 75.38 N/A 80.00 N/A 75.38 73.85 75.38
Seismic 93.42 93.43 93.68 93.45 93.43 93.42 93.43 93.43 93.61
Spambase 78.67 78.99 85.43 78.99 78.99 78.67 78.99 78.67 T/O
Spect H. 80.00 79.35 79.35 85.12 79.35 79.35 80.00 80.00 80.00
Thoracy S. 86.08 86.48 86.82 86.48 86.48 85.85 86.48 86.14 86.42
Tic T. T. 70.75 71.23 71.23 71.23 71.23 70.81 71.23 71.17 69.67
Wine 93.08 93.83 97.29 N/A 93.83 N/A 93.83 93.53 96.99

(a) Average train accuracy with maximum depth 2 over 5 repetitions.
Dataset CART BinOCT1 BinOCT2 Verbakel et al. (2015) DL8.5 OSDT CPTree CPTree# CPTree∗

Balance 70.34 75.00 74.87 N/A 75.00 N/A 75.09 73.80 66.32
Bank. 87.27 93.37 97.26 92.61 93.37 93.00 93.37 92.23 93.22
Biodeg 79.87 82.23 83.34 83.06 83.54 82.23 83.16 82.78 68.27
Car 79.63 81.20 81.20 N/A 81.57 N/A 81.57 81.57 T/O
Credit A. 87.28 88.71 88.63 89.16 89.57 86.99 89.57 88.63 78.53
Hepatitis 87.07 91.03 93.28 91.55 91.38 81.38 91.55 88.10 90.86
Ionosphere 85.40 92.02 93.92 93.16 93.08 85.32 92.17 90.57 86.84
Iris 95.54 98.39 99.64 N/A 98.22 N/A 98.39 96.79 98.75
Mammo. 84.50 85.14 85.34 85.31 85.27 83.92 85.31 84.57 78.91
Monk1 77.84 90.71 90.71 91.86 90.72 90.55 90.46 85.28 83.65
Monk2 66.09 69.71 69.76 73.59 69.71 65.63 68.62 67.47 66.71
Monk3 98.41 98.15 98.15 98.22 98.15 97.82 98.89 98.89 98.07
Pima 76.77 77.78 80.69 78.33 78.33 76.32 78.33 77.74 78.78
Post O. 75.38 81.85 81.85 N/A 84.92 N/A 82.15 77.54 77.54
Seismic 93.42 93.47 93.80 93.47 93.47 93.42 93.47 93.47 93.53
Spambase 84.08 83.86 84.61 84.22 84.22 84.22 84.22 84.22 T/O
Spect H. 81.00 82.25 82.25 84.29 82.00 79.35 82.20 82.10 81.90
Thoracy S. 86.76 87.44 87.90 88.12 88.01 86.02 88.12 86.82 86.31
Tic T. T. 75.96 77.30 77.19 78.80 78.50 76.77 78.77 76.96 T/O
Wine 95.19 97.89 99.85 N/A 97.89 N/A 97.89 96.39 99.40

(b) Average train accuracy with maximum depth 3 over 5 repetitions.
Dataset CART BinOCT1 BinOCT2 Verbakel et al. (2015) DL8.5 OSDT CPTree CPTree# CPTree∗

Balance 72.01 78.21 77.95 N/A 79.06 N/A 78.93 76.79 61.75
Bank. 93.26 94.52 98.10 94.27 94.83 93.59 94.83 94.36 94.50
Biodeg 83.08 83.84 83.69 86.60 86.78 81.95 82.76 83.19 T/O
Car 80.19 83.63 83.53 N/A 84.55 N/A 83.89 83.80 T/O
Credit A. 89.98 89.61 89.08 91.41 91.74 88.02 90.67 89.53 T/O
Hepatitis 90.00 94.83 97.41 97.76 97.76 84.48 97.59 90.00 91.38
Ionosphere 90.11 94.52 95.59 97.26 97.26 89.05 95.59 92.02 91.33
Iris 97.50 98.39 100.00 N/A 98.39 N/A 98.39 97.68 97.68
Mammo. 85.14 85.92 86.11 86.43 86.40 84.21 86.21 85.24 81.94
Monk1 83.69 100.00 100.00 100.00 100.00 100.00 100.00 100.00 81.97
Monk2 68.53 73.93 73.83 77.78 74.51 69.40 72.22 70.13 66.89
Monk3 98.89 98.48 98.48 98.92 98.81 97.82 98.94 98.89 96.92
Pima 78.44 79.79 80.87 81.11 80.97 77.22 79.90 79.06 77.82
Post O. 77.85 86.46 86.77 N/A 91.69 N/A 90.46 79.08 78.77
Seismic 93.42 93.52 93.89 93.57 93.57 93.42 93.56 93.51 93.50
Spambase 84.60 84.84 84.01 85.50 85.50 81.88 84.57 84.52 T/O
Spect H. 82.90 85.95 85.95 88.54 86.95 79.35 86.90 84.60 82.25
Thoracy S. 88.01 88.81 88.86 90.28 90.17 85.51 89.77 88.12 86.08
Tic T. T. 83.62 83.82 83.87 87.05 86.69 81.78 84.43 80.84 T/O
Wine 98.80 99.10 100.00 N/A 100.00 N/A 100.00 97.44 98.80

(c) Average train accuracy with maximum depth 4 over 5 repetitions.

Table 5.8: Train accuracy obtained for several maximum depths. N/A means that the
method cannot do multiclass classification. T/O means that no solution was found within
the time limit (600s).

117

CHAPTER 5. CONSTRAINT ENFORCEMENT ON DECISION TREES USING LINEAR
PROGRAMMING

Table 5.8 shows the average training accuracy. Here, training accuracy of optimal
methods differ because, as a reminder, in accordance with Verwer and Zhang (2019),
all runs were done within the time limit of 10 minutes. Figure 5.8a, Figure 5.8b
and Figure 5.8c show results of the Nemenyi statistical significant test, which is a
non-parametric test that compares algorithms pairwise of their performance.

Figure 5.8 shows that none of the compared methods outperforms the others,
in terms of generalisation, according to the Nemenyi test. This is confirmed by
the analysis of Table 5.7, which shows predictive performance. In terms of test
accuracy, Table 5.7 shows that OSDT and CPTree# are usually close to each other,
which is not surprising since they both are branch-like models. In terms of train
accuracy, Table 5.8 shows that CPTrees are similar to state-of-the-art learners that
are designed to find optimal decision trees.

It is also worth noting that, CPTree∗ is the only model (with CART) in
Table 5.7 and Table 5.8, which does not involve heuristic discretisation of features.
It is usually slow to train, in particular for datasets with categorical features. This
is due to the existence of multiple choices of splits that gives the same semantic
explanation. However, for pure numeric features (e.g., Bank., Ionosphere, Iris,
Pima, etc.), it usually provides good results, making it especially suitable for
enforcing domain constraints in cases where datasets present numeric features.

Overall, CPTree, CPTree# and CPTree∗ generally have similar performances.
They perform sometimes better (or worse) than state-of-the-art methods, but
overall, there is no significant difference, according to the Nemenyi statistical tests.
However, the particularity of CPTrees is to be as flexible as possible to incorporate
a broad class of domain constraints as in Section 5.5.

5.7 On the Impact of Discretisation

This section analyses the impact of discretisation for optimal tree learners that
only work with binary features, namely the first version of CPTree, DL8.5 (Aglin
et al., 2020), BinOCT1 (Verwer and Zhang, 2019) and OSDT Hu et al. (2019).

On training data, the performance of tree learners such as BinOCT2 or CPTree∗

that work with continuous features is usually higher than the one of tree learners
that only work with discretised binary features. When this performance is lower
(e.g., Iris at depth 2 or credit approval at depth 3), either the considered method
(BinOCT2 or CPTree∗) has not reached the optimal tree (due to time limit) or the
intrinsic heuristic of BinOCT2 used to binarise features is suboptimal.

On testing data, the performance of tree learners that work with continuous

118

CHAPTER 5. CONSTRAINT ENFORCEMENT ON DECISION TREES USING LINEAR
PROGRAMMING

(a) Training.

(b) Testing.

Figure 5.9: Training (a) and testing (b) accuracy curve within 3 hours of optimisation at
the maximum depth of 3. This figure differs from the one in Nanfack et al. (2022b).

features is usually close to the one of tree learners that only work with binary
features. When the former performance is higher than the latter one (up to ≈ 8%
for wine at depth 2), it means that the discretisation is detrimental for performance.
When this performance is lower (e.g., ionosphere at depth 4), it means that this
discretisation has played a kind of simplicity bias. It is important to note that the
quantile discretiser we used is only a simple baseline. More advanced discretisers
(Frank and Witten, 1999; Geurts and Wehenkel, 2000) for decision trees might
be used with the aim to improve the predictive performance or the stability of
decision trees.

5.8 Computational Time

This section examines the computational time required for CPTree to find a good
decision tree that generalises well. This computational time is compared with the
BinOCT method. We ran additional experiments on three datasets with maximum
depths (K = 3, 4;L = 2 ∗ K) and a time limit of 3 hours to explore more the
feasible space. We implemented a callback to keep track of both the training and
testing accuracy during the optimisation of CPTree and BinOCT.

119

CHAPTER 5. CONSTRAINT ENFORCEMENT ON DECISION TREES USING LINEAR
PROGRAMMING

(a) Training.

(b) Testing.

Figure 5.10: Training (a) and testing (b) accuracy curve within 3 hours of optimisation at
the maximum depth of 4. This figure is a newly generated one and differs from the one in
Nanfack et al. (2022b).

Figure 5.9 shows results obtained along optimisation path for depth 3. More
specifically, Figure 5.9a shows that training accuracy saturates after a reasonable
amount of time. This confirms that we can avoid increasing the time limit. However,
from Figure 5.9b, the predictive accuracy monotonically increases and after a
certain amount of time, it begins to fluctuate and sometimes decreases (with a non
negligible drop for Ionosphere both CPTree and BinOCT). This supports the fact
that oversearching the optimal tree do not always lead to improved generalisation.

Figure 5.9 shows similar results obtained along optimisation path at depth
4. The above analysis still hold, i.e., after a reasonable time training accuracy
saturates while testing accuracy also saturates if not decreases. It is also important
to note that in its formulation with numerical features, optimisation of CPTree is
slower than BinOCT since the former has a wider search space than the latter.

In brief, our finding from this optimisation time/path analysis is that it is not
necessary to reach optimality with CPTree (as well as BinOCT) since this may
harm predictive performance without any strategies 11 to counter overfitting from
oversearching. This oversearching problem is a well-known issue for optimal search-

11e.g., inductive biases through constraints

120

CHAPTER 5. CONSTRAINT ENFORCEMENT ON DECISION TREES USING LINEAR
PROGRAMMING

ing methods (Quinlan and Cameron-Jones, 1995). It needs further investigation
especially on tree learners and we leave it for future work.

5.9 Conclusion

This chapter introduces a tree representation that leads to two new formulations to
enforce domain-knowledge constraints on decision trees. With these formulations,
we are able to enforce a broader family of constraints compared to recently proposed
methods. These constraints include, but are not limited to the number of leaf
nodes, the maximum depth, domain-knowledge constraints like the ordering of
features on a branch of the tree, costs on features and even regarding fairness.
These formulations provide a flexible framework in which several constraints both
regarding the complexity and domain-knowledge can be easily formulated seeking
to learn more interpretable and trustworthy trees. The learned CPTrees ensure
that the constraints are satisfied while keeping the same level of accuracy with
baselines. Future work includes more experiments to validate interpretability’s
improvement directly with users or domain experts.

121

CHAPTER 5. CONSTRAINT ENFORCEMENT ON DECISION TREES USING LINEAR
PROGRAMMING

122

Chapter 6

Constraint Enforcement for
Global Explainability

In the two previous chapters, we were interested in imposing constraints on
decision trees that are explainable by design. This chapter views explainability as
soft constraints, which may need to be imposed on models that are not
interpretable by design, i.e., black-box models. The chapter introduces a
statistical framework in which differentiable black-box models are constrained to
be easily explainable by decision trees. The chapter is largely based on the paper
entitled “Global Explanations with Decision Rules: a Co-learning
Framework” (Nanfack et al., 2021b), and unless otherwise stated, all figures and
tables come from that paper.

Contents
6.1 Context, Motivation, Problem and Related Work . . . 124

6.1.1 Context, Motivation and Problem 124
6.1.2 Closely Related Work 125
6.1.3 Post-hoc Explainability Methods 125
6.1.4 Regularising for Explainability 125

6.2 Co-learning Framework To Enforce the Explainability
Constraints . 126

6.2.1 STruGMA: Soft Truncated Gaussian Mixture Analysis
for Differentiable Modelling 127

6.2.2 Adapting EM for STruGMA 128
6.2.3 Co-learning STruGMA and Black-box Models for Rule

Explanations . 131

123

CHAPTER 6. CONSTRAINT ENFORCEMENT FOR GLOBAL EXPLAINABILITY

6.3 Empirical Results and Discussion 133
6.3.1 Experimental Settings 133
6.3.2 Effect of Co-learning on Model Inference 134
6.3.3 Impact on Fidelity and Accuracy 136
6.3.4 Evolution of the Distance between the Black-box Model

and STruGMA . 138
6.4 Conclusion and Future Work 138

6.1 Context, Motivation, Problem and Related Work

This section gives an overview of the problem tackled in this chapter and presents
the closely related work from the literature.

6.1.1 Context, Motivation and Problem

Black-box machine learning models can be extremely more accurate than inter-
pretable models. Therefore, in several situations, machine learning practitioners
may prefer using them. Yet, in critical applications, if models cannot be explained,
domain experts will be reluctant to use them. More recently, special emphasis
has been put on the need for machine learning models to provide explanations
for their predictions in human-understandable terms (Doshi-Velez and Kim, 2017;
Ribeiro et al., 2016), in addition to accurate predictions. This research area is
called eXplainable Artificial Intelligence (XAI). In XAI, on one hand, algorithms
have been proposed to improve the performance of interpretable decision lists
(Yang et al., 2017), sets (Mita et al., 2020) and trees (Verwer and Zhang, 2019).
This corresponds to the interpretability or explainability by design. On the other
hand, since in practice, more powerful models such as deep neural networks achieve
impressive performances for tabular (Klambauer et al., 2017), image (Chen et al.,
2020) and text data (Devlin et al., 2019), external tools have been proposed to
explain predictions of black-box models. This corresponds to posthoc explainability.

In posthoc explainability, two main families of explanations can be used: global
explanations which explain entirely a complex model on its whole input space; and
local explanations where an explanation is valid only in a specific region, which
includes a particular instance (Guidotti et al., 2018). This chapter focuses on global
explanations of black-box models using decision rules (if-then rules), which are the
most famous non-linear form of explanations (Lundberg et al., 2020). Existing
approaches for global explanations with decision rules (if-then rules) show some

124

CHAPTER 6. CONSTRAINT ENFORCEMENT FOR GLOBAL EXPLAINABILITY

issues. For instance, the theoretical formalisation of post-hoc methods (Craven
and Shavlik, 1995; Ribeiro et al., 2018; Pedreschi et al., 2019; Confalonieri et al.,
2020) is unclear (Craven and Shavlik, 1996; Wolf et al., 2019) as well as whether
their explanations reflect accurately the black-box model (Kim et al., 2018; Slack
et al., 2020). The following section provides more details on what have been done
to globally explain black-box models with decision rules.

6.1.2 Closely Related Work

To globally explain black-box models with rules, existing methods either are
post-hoc or use prior knowledge.

6.1.3 Post-hoc Explainability Methods

Post-hoc explainability methods that use decision rules as explanations are generally
called rule extraction methods. They consider a black-box model, and then learn
an interpretable set, list or tree of decision rules to match its predictions. An
early work is TREPAN (Craven and Shavlik, 1995), which approximates a neural
network with a decision tree by learning m-of-n rules chosen to maximise the
information gain ratio. There also exists a considerable literature of methods that
use genetic algorithms (Boz, 2002; Arbatli and Akin, 1997), sampling strategies
(Craven and Shavlik, 1994; Ribeiro et al., 2018) and convex predicates (Gopinath
et al., 2019). However, their main limitation is that they are not stable (Melis and
Jaakkola, 2018). In addition, there are no guarantees that explanations accurately
reflect the knowledge captured by the complex black-box model (Kim et al., 2018;
Slack et al., 2020).

6.1.4 Regularising for Explainability

Explaining black-box models with decision rules can also be done by regularising
the black-box models. Two notable works are Okajima and Sadamasa (2019) and
Wu et al. (2020). The former proposes to change the neural network architecture
such that it can predict a rule (from a predefined rule set) and then a label given a
particular instance. The latter leverages Wu et al. (2018) to enforce explainability
by decision trees in local regions known a priori. In addition to being a challenging
task (because of the discrete nature of rules), regularising for rule explanations
with predefined rule sets or local regions has a major prerequisite. These rule sets
or local regions are assumed to be known a priori. For explainability purposes,
this is impractical, since they should be derived from the black-box model.

125

CHAPTER 6. CONSTRAINT ENFORCEMENT FOR GLOBAL EXPLAINABILITY

Figure 6.1: Co-learning between the black-box model (left) and STruGMA (right) through
knowledge distillation and regularisation (dashed lines).

To address this problem, we propose a co-learning framework where hyper-
rectangle rules are embedded into the newly introduced soft-truncated Gaussian
mixture analysis (STruGMA). During co-learning (see Figure 6.1), STruGMA tries
to explain the black-box model by the use of knowledge distillation, while the
black-box model is learned with a regularisation with respect to STruGMA. This
framework shares similarities with mutual distillation and posterior regularisation
(Zhang et al., 2018; Hu et al., 2016).

6.2 Co-learning Framework To Enforce the Explainabil-
ity Constraints

To embed decision rules in a differentiable surrogate, Section 6.2.1 proposes the soft
truncated Gaussian mixture analysis (STruGMA), Section 6.2.2 proposes solutions
for challenges that arise when learning STruGMA and Section 6.2.3 presents our
co-learning strategy with the black box model.

126

CHAPTER 6. CONSTRAINT ENFORCEMENT FOR GLOBAL EXPLAINABILITY

6.2.1 STruGMA: Soft Truncated Gaussian Mixture Analysis for
Differentiable Modelling

Geometrically, a rule defines a hyper-rectangle convex region R(αk) = {α(1)
kd ≤

xd ≤ α
(2)
kd }

D
d=1, where α

(i)
kd ∈ R̄ are the boundaries1, D is the input space dimension

and k is the index of the hyper-rectangle rule.
Motivated by the approximation properties of Gaussian distributions (thanks

to the central limit theorem), we choose to map, as a surrogate, the k-th single
rule to the truncated normal distribution

p
(
x|z = k;µ,Σ,α(1),α(2)

)
=

N (x;µk,Σk)∫ α
(2)
k

α
(1)
k

N (t;µk,Σk)dt

1

{
α

(1)
k ≤ x ≤ α

(2)
k

}
(x),

(6.1)

where 1{.} is the indicator function and N (.;µk,Σk) is the probability density
function (pdf) of the multivariate normal (or Gaussian) distribution function with
mean µk and covariance matrix Σk. Optimising such a distribution is numerically
unstable because of the piece-wise discontinuity of the indicator function 1{.}.
However, the truncated normal distribution can be approximated by the soft
truncated normal distribution (Souris et al., 2018)

p
(
x|z = k;µk,Σk,α

(1),α(2)
)
≈ N (x;µk,Σk)∫ α

(2)
k

α
(1)
k

N (t;µk,Σk)dt

D∏
d=1

ση

(
xd − α

(1)
kd

)
(6.2)

(
1− ση

(
xd − α

(2)
kd

))
,

(6.3)

where ση(x) = 1/(1+exp(−ηx)) and η is a positive number. When η → +∞, ση(x)
tends towards 1{x ≥ 0}. In practice, η ≥ 20 is sufficient. Notice that this
distribution reduces to the normal case when α

(1)
kd → −∞ and α

(2)
kd → +∞.

Therefore, it can be interpreted as a normal distribution whose shape is constrained.
Although its support is theoretically R in the univariate case, the high-density
region is [α

(1)
kd , α

(2)
kd]. Figure 6.2 shows an example for R2 with η = 20.

Taking advantage of this distribution, we propose the (finite) soft truncated
Gaussian mixture (STruGM) model to embed a set of hyper-rectangle rules in

1Note that the upper boundary α
(2)
kd can be +∞ and the lower boundary α

(1)
kd can be −∞,

whenever relevant.

127

CHAPTER 6. CONSTRAINT ENFORCEMENT FOR GLOBAL EXPLAINABILITY

Figure 6.2: A soft truncated Normal Distribution.

a differentiable model. In addition, by drawing inspiration from the mixture
discriminant analysis (MDA) (Hastie and Tibshirani, 1996), we propose the soft
truncated Gaussian mixture analysis (STruGMA), i.e., a probabilistic generative
classifier with class-conditional STruGM distributions. In STruGMA, each class
has its own STruGM. In other words, STruGMA is a classifier p(y|x;β) that
reduces, when conditioning on the class, to the class-specific STruGM p(x|y;β) =∑K

k=1 p(z = k|y;β)p(x|z = k, y;β), where K is the class-specific number of
components and β are the parameters of STruGMA.

6.2.2 Adapting EM for STruGMA

Three challenges arise when learning STruGMA. Firstly, unlike the Gaussian dis-
tribution, it has been shown (Cohen Jr, 1950) that neither µ,Σ nor α have a
closed-form solution for the maximum likelihood estimation (MLE) of a single
truncated normal distribution. Secondly, learning the parameters α(1) and α(2) of
STruGMA must satisfy the constraint α(1) < α(2). Thirdly, learning STruGMA
may result in many overlapping hyper-rectangle decision rules that are less in-
teresting and more complex for explainability purposes (Fürnkranz et al., 2012;
Lakkaraju et al., 2016).

STruGMA is a generative classifier with parameters β = {β(1), ...,β(c), ...,β(C)},
where C is the number of classes and β(c) = {π(c),µ(c),α(c)(1),α(c)(2),Σ(c)}.

128

CHAPTER 6. CONSTRAINT ENFORCEMENT FOR GLOBAL EXPLAINABILITY

α(c)(1) (resp. α(c)(2)) ∈ RKc×D is the lower (resp. upper) truncated point of the
k-th component of class c; similarly, µ(c) ∈ RKc×D and Σ(c) ∈ RKc×D×D. π(c)

are the mixing parameters and Kc is the number of components of class c. Here,
Σ

(c)
k is diagonal for the sake of factorisation of the denominator. It can be easily

extended by computing the multivariate Gaussian cumulative distribution function.
Given these parameters, the joint distribution of STruGMA is

p(x, y = c|β) = p(y = c)

Kc∑
k=1

p
(
z(c) = k|y = c;π

(c)
k

)
(6.4)

p
(
x|z(c) = k, y = c;µ

(c)
k ,Σ

(c)
k ,α

(c)(1)
k ,α

(c)(2)
k

)
(6.5)

= p(y = c)

Kc∑
k=1

π
(c)
k

N (x;µ
(c)
k ,Σ

(c)
k)∫ α

(c)(2)
k

α
(c)(1)
k

N (t;µ
(c)
k ,Σ

(c)
k)dt

(6.6)

D∏
d=1

ση

(
xd − α

(c)(1)
kd

)(
1− ση

(
xd − α

(c)(2)
kd

))
. (6.7)

From now, for simplicity, the class conditioning c is omitted for parameters.
One of the most popular method to learn finite mixture models is the expectation-
maximisation (EM) algorithm, described in Section 2.3.2. As it consists of a
mixture per class, STruGMA can be learned by adapting EM. With the parameters
β = {π,µ,Σ,α(1),α(2)}, EM maximises the expected log-likelihood Q(β,βt) by
alternating the following steps:

• E-step: computing class responsibilities

rnk = p
(
z = k|xn;β

t
)
=

πkp(xn|z = k;βt)∑
k1
πk1p(xn|z = k1;βt)

; (6.8)

• M-step: because of the lack of closed-form solution of parameters through
the MLE, the M-step performs a gradient descent on the negative expected
loglikelihood

βt+1 = βt + ϵt∇Q
(
β,βt

)
, (6.9)

where ϵt is the learning rate and

Q(β,βt) =
∑
n

∑
k

rnk log πk +
∑
n

∑
k

rik

[
logN (xn;µk,Σk)+

129

CHAPTER 6. CONSTRAINT ENFORCEMENT FOR GLOBAL EXPLAINABILITY

∑
d

log ση

(
xnd − α

(1)
kd

)
+ log

(
1− ση

(
xnd − α

(2)
kd

))]

−
∑
n

∑
k

rnk log

∫ α
(2)
k

α
(1)
k

N (x;µk,Σk)dx. (6.10)

Details about gradients ∇Q(β,βt) are given in the supplementary material of the
paper Nanfack et al. (2021b).

Directly optimising with gradient descent in the M-Step, as described, may
raise difficulties caused by the definition of the denominator of the soft truncated
normal distribution. Indeed, we need to impose α(2) > α(1) as a hard constraint.
To solve the problem, we leverage the projected gradient descent method (See
Section 2.5.2.3) on the constraint set S = {α2 > α1}. The projected gradient
solves the problem

αt+1 =Projα∈S(α
t + ϵt∇Q(α,αt)) (6.11)

=argminα||α− (αt + ϵt∇Q(α,αt))|| (6.12)

s.t. α(2) > α(1) (6.13)

and, using the K.K.T. conditions (provided in 2.5.2.3) on this constrained quadratic
optimisation problem, one obtains{

α
(1)
t+1 = α

(1)
t + ϵt∇Q(α(1),α

(1)
t)

α
(2)
t+1 = α

(2)
t + ϵt∇Q(α(2),α

(2)
t)

if αt+1 ∈ S and, otherwise,

α
(1)
t+1 =

1

2

(
α

(1)
t +α

(2)
t

+ ϵt

(
∇Q(α(1),α

(1)
t) +∇Q(α(2),α

(2)
t)

)
− ζ

)
α

(2)
t+1 =

1

2

(
α

(1)
t +α

(2)
t

+ ϵt

(
∇Q(α(1),α

(1)
t) +∇Q(α(2),α

(2)
t)

)
+ ζ

)
The margin ζ > 0 is a small number used to transform the strict inequality into
inequality constraint α(2) ≥ α(1) + ζ.

For complexity and explainability purposes, it is useful to have non-overlapping
hyper-rectangle rules. For two hyper-rectangle rules i and j, this is formalised as
(Xu et al., 2019)

130

CHAPTER 6. CONSTRAINT ENFORCEMENT FOR GLOBAL EXPLAINABILITY

max
d

(∣∣∣1
2

(
α
(1)
id + α

(2)
id

)
− 1

2

(
α
(1)
jd + α

(2)
jd

) ∣∣∣
− 1

2

(
α
(2)
id − α

(1)
id

)
− 1

2

(
α
(2)
jd − α

(1)
jd

))
≥ 0.

Enforcing this constraint is a difficult problem in the literature. We tackle it with a
simple, yet effective heuristic. Based on the form of the constraint (the maximum
is positive when only one of the values is positive), it consists in choosing a specific
dimension d and adapting either αi or αj along d to satisfy the constraint. The
corresponding choices are taken to maximise the expected log-likelihood. Details
are discussed in the supplementary material of the paper Nanfack et al. (2021b).

6.2.3 Co-learning STruGMA and Black-box Models for Rule Ex-
planations

This section proposes a co-learning framework where (i) hyper-rectangle rules of
STruGMA are learned to globally explain a black-box model and (ii) this black-box
is simultaneously constrained by STruGMA to be easier to explain.

6.2.3.1 Co-learning of the Black-box Model

Let us consider a probabilistic black-box model p(y|x; θ) that can be trained with
gradient descent. Our goal is to constrain it to follow hyper-rectangle rules of
STruGMA as much as possible. This is achieved by using the loss

λ× L(X,Y ,θ) + (1− λ)×DKL

(
p(Y|X;β)||p(Y|X;θ)

)
, (6.14)

where λ ∈ [0, 1] can be a hyper-parameter, L(X,Y ,θ) is a usual loss on training
data such as the cross-entropy, DKL is the Kullback–Leibler divergence between the
reference model p(Y|X;β) given by STruGMA and the black-box model p(Y|X;θ)
which is optimised. This divergence acts as a regularisation term that encourages
the black-box model to satisfy hyper-rectangle rules of STruGMA. It is a conditional
expectation and can be evaluated as

DKL

(
p(Y|X;β)||p(Y|X;θ)

)
= Ex∼p(x;β)[DKL(p(Y|x;β)||p(Y|x;θ))] (6.15)

≈ 1

Ns

Ns∑
i=1

C∑
c=1

p(y = c|x̂i;β) log
p(y = c|x̂i;β)

p(y = c|x̂i;θ)
,

(6.16)

131

CHAPTER 6. CONSTRAINT ENFORCEMENT FOR GLOBAL EXPLAINABILITY

where {x̂i}Ns
i=1 is a new sample obtained from STruGMA to compute a Monte-Carlo

estimate of the divergence term. Sampling from STruGMA has a complexity which
is linear with respect to the input space dimension D.

One issue regarding the performance of the learned black-box model, after
optimising Eq. 6.14, is its sensitivity with respect to the choice of λ. Indeed, it can
result in a (too) weakly or strongly constrained black-box model. This problem
is ubiquitous in multi-objective optimisation. To alleviate this sensible choice of
λ, we apply the multiple gradient descent algorithm (MGDA)(Sener and Koltun,
2018; Désidéri, 2009), which consists in finding, at each iteration, the λ∗ that gives
the direction of gradient that improves both terms of Eq. 6.14. This λ∗ is the one
that minimises ||λ∇θf(θ) + (1− λ)∇θg(β,θ)|| and is obtained using

λ∗ =

[
(∇θg(β,θ)−∇θf(θ))

⊤∇θg(β,θ)

∥∇θf(θ)−∇θg(β,θ)∥22

]
+, 1

T

, (6.17)

where f(θ) = L(X,Y ,θ), g(β,θ) = ˆDKL

(
p(Y|X;β)||p(Y|X;θ)

)
, and [·]+, 1

T
=

max(min(., 1), 0) is a clipping operation to [0, 1].

Algorithm 6.1 Co-learning of a black-box model with STruGMA

Input: training set {xi, yi}Ni=1, black-box model with parameters θ, number of
epochs Nepochs, number of gradient descent steps in the M-step NSTruGMA,
number of rules K per class, size of MC sample Ns

Output: trained black-box model and STruGMA
1: initialise STruGMA with GMMs per class
2: while not converged do
3: // update black-box model (regularised GD)
4: draw an MC sample {x̂i}Ns

i=1 from STruGMA
5: get λ∗ from Eq. 6.17 and train the black-box model with λ∗L(X,Y ,θ) +

(1− λ∗) ˆDKL(p(Y|X;β)||p(Y|X;θ)) for Nepochs epochs

6: // update STruGMA (knowledge distillation)
7: relabel training set with black-box model
8: E-step of STruGMA with Eq. 6.8 (responsabilities)
9: M-step of STruGMA with Eq. 6.9 (NSTruGMA iterations of gradient descent

+ gradient projection)
10: end while
11: return STruGMA and the black box

132

CHAPTER 6. CONSTRAINT ENFORCEMENT FOR GLOBAL EXPLAINABILITY

Table 6.1: Details of the datasets for the experiments.

Dataset Size Dimension

Wine 178 13
Pima Indian diabetes (Pima) 768 8

Ionosphere 351 34
Magic gamma (Gamma) 19020 11

Bank marketing (Marketing) 4119 20
German credit (Credit) 1000 20

Waveform 5000 40

6.2.3.2 Co-learning of STruGMA through Knowledge Distillation

As we want STruGMA to globally explain the black-box model with hyper-rectangle
decision rules, one approach is to use knowledge distillation. Training instances
X are relabelled with the outputs Yθ of the black-box model and STruGMA is
learned from this new dataset. As a result, STruGMA approximates the black-box
model on the whole input space. The resulting co-learning Algorithm 6.1 (see also
Figure 6.1) summarises how to learn both models. It has the key advantage to work
with any black-box model that is learned through gradient-based optimisation.

6.3 Empirical Results and Discussion

Experiments assess whether (i) after co-learning with STruGMA the black-box’s
decision boundary becomes easier to approximate by a rule learner with a limited
impact on its accuracy, (ii) decision rules explanations from distilled decision
trees after co-learning are more faithful than those without co-learning. In the
paper Nanfack et al. (2021b), we also performed a qualitative evaluation to verify
whether extracted rules comply with domain knowledge.

6.3.1 Experimental Settings

We validate our method 2 on a synthetic dataset and on seven commonly used
machine learning datasets from UCI (Dua and Graff, 2017) for which neural
networks usually outperform decision trees; see Table 6.1 for their details. We
chose deep neural networks with architectures inspired from the literature (Wu

2Available at https://github.com/gerald4/Co-learning_with_STruGMA.

133

https://github.com/gerald4/Co-learning_with_STruGMA

CHAPTER 6. CONSTRAINT ENFORCEMENT FOR GLOBAL EXPLAINABILITY

et al., 2020; Ribeiro et al., 2018; Pedapati et al., 2020), as they work well for tabular
data. Our dense hidden layers have ELUs as activation functions and the last
layer has the dimension of the number of classes. Details about these architectures
are left in the supplementary material. At each iteration of the co-learning, only
Nepochs = 1 epochs are spent for updating the MLP. Indeed, if the complexity of
the black-box model changes too rapidly, STruGMA will not be able to explain it
and the DKL term will not be able to play its role as a regulariser. The number
of iterations NSTruGMA = 100 for the M-step ensures that STruGMA is a good
approximation of the black-box model at each iteration. The size of the Monte
Carlo sample to approximate the divergence between the two models is set to
Ns = 10 × N . The margin ζ between α(1) and α(2) is set to a relatively small
value of 0.2. A Gaussian mixture model is used to initialise STruGMA, with
α

(1)
k = µk − 0.2σk and α

(2)
k = µk + 0.4σk for each component. The number of

components K is the same for each STruGM per class and is chosen in {2, 3, 4} to
avoid complex rule explanations. This hyper-parameter is chosen with a separate
validation set. Both STruGMA and the black-box model are learned using the
gradient-based optimiser Adam (Kingma and Ba, 2015) with 10−3 as learning rate.

We use the accuracy (percentage of correct predictions) to assess the quality
of predictions and the fidelity (percentage of predictions where a black-box and a
white-box model agree) to measure the mutual agreement.

It is possible to directly use hyper-rectangle rules of STruGMA as explanations
when the input space dimension D is relatively low. However, to get simple
rules with limited size, we resort to decision trees as rule learners to provide
global explanations. When co-learning is done, similarly as post-hoc methods,
a distilled decision tree is trained by mimicking predictions of the co-learned
black-box model. We explore two possibilities: either we use the predictions of
the co-learned black-box model with original features to train a distilled decision
tree (TreeCoExplainerBB) or we use the predictions of the co-learned black-box
model with hyper-rectangle splits transformed as binary features to train the
distilled decision tree (TreeCoExplainerHR). Both are compared with a baseline
(TreeExplainer) where the distilled decision tree is trained to mimic the black-box
model without co-learning. This baseline is representational of the global post-hoc
(through decision trees) explanation methods discussed in Section 6.1.3.

6.3.2 Effect of Co-learning on Model Inference

Figure 6.3 illustrates the effect of co-learning on a synthetic two-dimensional toy
example. Figure 6.3a shows a black-box model learned without any kind of co-

134

CHAPTER 6. CONSTRAINT ENFORCEMENT FOR GLOBAL EXPLAINABILITY

(a) Two-layer MLP without co-learning (b) TreeExplainer for the MLP in Fig. 6.3a

(c) Two-layer MLP co-learned with
STruGMA

(d) STruGMA co-learned with MLP of
Fig. 6.3c

(e) TreeCoExplainerHR with STruGMA
splits

Figure 6.3: Decision boundary of several models, (a-b) without and (c-e) with co-learning,
on a tw o-dimensional example. The black box model is easier to explain with rules after
co-learning (c) than in the standard case (a).

135

CHAPTER 6. CONSTRAINT ENFORCEMENT FOR GLOBAL EXPLAINABILITY

Table 6.2: Impact of co-learning on the test fidelity. Mean and standard deviation over
10 repetitions are reported. TreeExplainer is the distilled decision tree obtained with
the predictions of the black-box model without co-learning, whereas TreeCoExplainerHR
(resp. TreeCoExplainerBB) is our distilled decision tree of the co-learned black-box model
using the hyper-rectangle rules of STruGMA as binary features (resp. original features).

TreeEx- TreeCoEx- TreeCoEx-
Dataset plainer plainerHR plainerBB

Bank 95.97 (0.74) 96.18 (0.63) 96.49 (0.89)
Credit 77.3 (3.47) 81.25 (3.47) 81.5 (3.43)

Ionosphere 87.32 (3.25) 90.28 (3.42) 88.87 (5.69)
Gamma 93.31 (2.08) 93.15 (0.85) 95.6 (0.36)

Pima 88.44 (2.41) 88.9 (1.35) 92.01 (3.24)
Waveform 80.26 (1.53) 80.52 (1.87) 80.86 (1.28)

Wine 89.17 (4.62) 92.78 (4.93) 89.72 (2.64)

learning, returning a decision boundary which is somewhat complex for a simple
toy problem. A distilled decision tree is then learned in Figure 6.3b to explain
this black-box model. Although the region where x1 < −1 and x2 > 1.1 contains
training instances, the decision tree fails to explain it correctly. This problem is
avoided with the co-learning of the black-box model in Figure 6.3c and STruGMA
in Figure 6.3d. The corresponding distilled decision tree (our TreeCoExplainerHR)
in Figure 6.3e globally explains the co-learned black-box model. This toy example
illustrates how co-learning rectifies the decision boundary of a black-box model to
be compatible with rules. The co-learned black-box model is very likely to follow
rule explanations extracted by rule learners such as decision trees. Note that the
black-box model in Figure 6.3a may be more accurate than its co-learned version
in Figure 6.3c.

6.3.3 Impact on Fidelity and Accuracy

Table 6.2 shows the test fidelity of the baseline TreeExplainer and our methods
TreeCoExplainerHR and TreeCoExplainerBB. Tree depth has been cross-validated.
On all datasets, results show that co-learning improves fidelity between the black-
box model and distilled decision trees. This means that one can be more confident
in explanations based on decision trees after co-learning with STruGMA than
without co-learning.

136

CHAPTER 6. CONSTRAINT ENFORCEMENT FOR GLOBAL EXPLAINABILITY

Table 6.3: Predictive accuracy of co-learned black-box models (coBB) and black-box models
without co-learning (BB). Mean and standard deviation are shown over 10 repetitions.

Dataset coBB BB

Bank 90.68 (0.77) 90.99 (0.84)
Credit 75.65 (3.88) 74.75 (3.5)

Ionosphere 90.98 (3.88) 90.56 (3.45)
Gamma 80.57 (0.49) 82.79 (2.53)

Pima 73.12 (2.31) 75.39 (1.77)
Waveform 85.97 (0.87) 86.15 (0.7)

Wine 96.94 (2.43) 97.5 (2.05)

Table 6.4: Predictive accuracy of distilled trees. Mean and standard deviation over 10
repetitions are reported.

TreeEx- TreeCoEx- TreeCoEx-
Dataset plainer plainerHR plainerBB

Bank 91.29 (0.94) 90.42 (1.0) 90.81 (0.99)
Credit 69.15 (3.33) 71.5 (2.59) 71.55 (4.7)

Ionosphere 88.03 (3.89) 87.18 (4.01) 86.34 (3.45)
Gamma 80.79 (2.09) 77.04 (1.12) 79.16 (0.37)

Pima 72.4 (1.44) 71.24 (3.17) 71.88 (2.12)
Waveform 76.43 (1.9) 76.38 (1.83) 76.71 (1.58)

Wine 89.17 (3.33) 91.67 (4.54) 88.89 (3.93)

Table 6.3 shows the accuracy of the black-box model (BB) without co-learning
and the co-learned black-box model (coBB). It can be seen that the co-learning
usually negatively impacts the test accuracy of the black-box model (except on
Credit and Ionosphere). However, the difference is usually not important, as it is
usually around 2%. This difference is also perceived on the accuracy of distilled
decision trees in Table 6.4. Nonetheless, as it can be seen in Table 6.5, our co-
learned black-box models still usually perform better than an interpretable decision
tree.

Overall, in addition to providing faithful global explanations thanks to co-

137

CHAPTER 6. CONSTRAINT ENFORCEMENT FOR GLOBAL EXPLAINABILITY

Table 6.5: Predictive accuracy of co-learned black-box models (coBB) and decision trees
(DT). Mean and standard deviation over 10 repetitions are reported.

Dataset coBB DT

Bank 90.68 (0.77) 90.81 (0.96)
Credit 75.65 (3.88) 71.05 (3.3)

Ionosphere 90.98 (3.88) 90.28 (4.43)
Gamma 80.57 (0.49) 82.72 (0.43)

Pima 73.12 (2.31) 72.02 (2.59)
Waveform 85.97 (0.87) 75.24 (1.23)

Wine 96.94 (2.43) 87.78 (4.93)

learning with STruGMA, our coBB models remain competitive in terms of predictive
performance compared to decision trees.

6.3.4 Evolution of the Distance between the Black-box Model
and STruGMA

Figure 6.4 shows the evolution of the accuracy and fidelity over the first 50 co-
learning iterations for each dataset. Despite the iterative nature of the co-learning
that alternates between learning the black-box model and its STruGMA surrogate,
the fidelity of the two models increases throughout iterations. This means that the
main goal which is essentially to minimise the distance between the two models can
be achieved with co-learning. Moreover, in Figure 6.5, the losses decrease properly
and a local optimal can usually be reached after or even before 50 iterations of
co-learning.

6.4 Conclusion and Future Work

This paper chapter introduced a co-learning framework for global explanations of
black-box models with decision rules. In this statistical framework, a black-box
model is explained by co-learning a newly introduced soft truncated Gaussian
mixture analysis (STruGMA) that encapsulates hyper-rectangle decision rules.
Simultaneously, the black-box model is encouraged by a penalty term to satisfy
the hyper-rectangle rules of STruGMA. Results show that our framework improves
the fidelity of global explanations, while having a limited impact on the accuracy

138

CHAPTER 6. CONSTRAINT ENFORCEMENT FOR GLOBAL EXPLAINABILITY

(a) Wine (b) Credit

(c) Pima

Figure 6.4: Evolution of mean of accuracy and fidelity over five repetitions of the first 50
iterations of co-learning.

of the black-box model, which remains competitive. The framework also opens up
a wide range of perspectives since it can be used for any black-box model trainable
through gradient descent. Future works will consider other black-box models like
SVMs and other rule learners to provide global explanations. In addition, one
can directly inject strong priors on STruGMA to automatically get decision rules
explanations. Finally, it will be interesting to perform experiments with image
data to provide more faithful global explanations of deep CNNs in the light of
Zhang et al. (2019).

139

CHAPTER 6. CONSTRAINT ENFORCEMENT FOR GLOBAL EXPLAINABILITY

(a) Wine (b) Credit

(c) Pima

Figure 6.5: Evolution of the losses over the first 50 iterations of co-learning (one repeti-
tion/dataset). Cross_entropy is the cross-entropy of the co-learned black-box model
whereas add_KL is the divergence between the same model and STruGMA. Com-
bined_loss is the convex combination of cross_entropy loss and the add_KL loss whereas
neg_expected_log_LL is the negative expected log-likelihood of the STruGMA. Plots
(a–c) share the same legend.

140

Chapter 7

Discussion

This section discusses more deeply the findings of this thesis. We restate the known
results from the literature, the new results revealed by our techniques and finally
we discuss the limitations, which will serve us to provide future works in Section 8.

7.1 On the Use of Constraint Enforcement for Global
Explainability

Motivated by the need for reliable global explainability tools to explain black-
box models, we have introduced in Chapter 6, a co-learning framework where a
differentiable black-box is implicitely regularised by its decision rules explanations.

Known results. The majority of previous studies for global explainability
usually propose techniques to improve the faithfulness (e.g., fidelity) between
their explanations and the black-box model. Few studies use known decision rules
(provided by humans or inferred by rule models such as random forests) in order
to further improve the faithfulness of explanations and the black-box model.

Novelty. Our approach presented in Chapter 6 does not assume any pre-existing
rules to constrain the black-box model. This a first key improvement over state-of-
the-art techniques. Our approach also reveals that when constraining the black-box
model by its extracted rule explanations, the fidelity of the resulting explanations
is improved while the accuracy of the black-box model is marginally impacted.
Inspired by the multiple gradient descent algorithm (MGDA) (Sener and Koltun,
2018; Désidéri, 2009), our optimisation approach leads to a technique that does

141

CHAPTER 7. DISCUSSION

not assume any hyperparameter to control the degree of trade-off between the
fidelity of explanations and the performance of the black-box model. Therefore,
our technique has the interesting property of auto-discovering the trade-off.

Limitations. While offering improvements over state-of-the-art techniques, our
technique has several limitations. The first limitation comes from our assumed
choice of the type of black-box models that we assume to be differentiable. As a
result, our method is not currently applicable to non-differentiale black-box models
such as random forests. Another current limitation of our approach comes from
the surrogate model called STruGMA. Indeed, in its current form, STruGMA is
only suitable for tabular data. Therefore, in its current state, our approach will not
probably work well with images and text data where unstructured input features
lack a semantic meaning. Finally, our approach does not provide uncertainty of
explanations, which may be useful in certain situations where we want probability
estimates on how confident are explanation tools.

7.2 On the Imposition of Fairness Constraints On Top-
down Greedy Decision Trees

Decision trees are widely used. Due of their non-smoothness, several machine
learning techniques such as fairness-aware learning algorithms that assume differ-
entiability are inapplicable to them. In Chapter 4, we introduce a boundary-based
fairness decision tree learner to learn decision tree under the fairness constraint.

Known results. Several works have been proposed to impose fairness constraints
on differentiable models. A notable work that we adapted is the work of Zafar
et al. (2019), which can handle different fairness notions by measuring the degree
of independence using covariance, and can also handle non-binary sensitive groups.
Other works try to impose the fairness constraint on decision trees by designing
fairness-aware heuristics such as the fair information gain (FIG) of Zhang and
Ntoutsi (2019), which is effective in reducing the disparate impact or demographic
parity unfairness.

Novelty. Our approach leverages the work of Zafar et al. (2019) to make it
possible to learn decision trees under boundary-based fairness constraints. Thanks
to the geometrical view of decision trees, it bypasses the assumption over the
explicit expression of distance to decision boundary. Our new findings reveal that

142

CHAPTER 7. DISCUSSION

our method is more flexible by working better on different types of unfairness
notions. Unlike to work of Zhang and Ntoutsi (2019), our technique makes it
possible to play with an hyperparameter to achieve a trade-off between accuracy of
classification trees and their unfairness (especially the disparate impact unfairness).

Limitations. The technique we presented has some drawbacks. The first one is
a theoretically motivated limitation from the optimisation. Indeed, due to the use
of a greedy optimisation with constraints, apart from experimental results, it is
unknown whether our new penalised heuristic that we minimise is an upper bound
on the penalised misclassification loss. For traditional heuristics such as Index Gini,
these heuristics are upper bounds on misclassification loss and we have theoretical
guarantees that, given a sufficient number of leaf nodes, optimising a local heuristic
will eventually lead to a desired level of accuracy (Kearns and Mansour, 1999).
For our proposed heuristic as well as previously proposed ones, this is an open
problem. Another limitation of our approach directly comes from the limitation of
Zafar et al. (2019). It is linked to the proxy evaluation of independence through
Pearson correlation. However, correlation is not a measure of independence. Even
if it may allow to assess a level of dependence, it is not able to provide answer over
independence. Moreover, since we evaluate empirically the correlation, another
limitation is the fact that we require several training examples to have low-variance
estimate of the true correlation.

7.3 On the Integration of Domain-knowledge Constraints
in Optimal Decision Tree Learners

Unlike top-down greedy decision tree learners that optimise a local heuristic in
each internal node, optimal tree learners allow to learn decision trees using a
global objective expressed over all leaf nodes. In Chapter 5, we propose a tree
representation that leads to two generic formulations to learn optimal decision
trees under a broad class of domain-knowledge constraints.

Known results. Several depth-constrained and size-constrained optimal tree
learners have been recently proposed mostly to improve the computational time of
the global optimisation. They introduce several design and technical mechanisms
to reduce the optimisation time to find optimal decision trees. Examples are
BinOCT (Verwer and Zhang, 2019), which uses a heuristic to discretise features,
and DL8.5, which uses an item-set mining approach with branch-and-bound and

143

CHAPTER 7. DISCUSSION

caching.

Novelty. Instead of focusing on the computational time improvement, our frame-
work is designed to ease the enforcement of a broad class of domain-knowledge
constraints by also modeling the optimal decision tree learning problem with
great flexibility. We show several use cases where we are able to enforce domain-
knowledge constraints (fairness included) without (or with a very limited) loss
in performance. Another interesting property of our tree representation is its
ability to easily switch from binary and continuous split thresholds without drastic
changes on the formulation.

Limitations. Since the optimisation of objective functions for decision trees
is crucial, our natural first limitation comes from the optimisation tool. Indeed,
having a MIP formulation to learn decision trees, our approach does not scale with
large datasets and high number of features since the problem is NP-complete. In
constraint-free settings, our framework also inherits from the high risk of overfitting
caused by the oversearching of the optimal decision tree. This type of overfitting
is orthogonal to the classical one whose source is related to model complexity
(Quinlan and Cameron-Jones, 1995). Raised by Dietterich (1995) who claim
that “in machine learning, it is optimal to be sub-optimal”, this issue has been
theoretically investigated and discussed by Domingos (1999) and Jensen and Cohen
(2000) who provide evidence that greater simplicity (i.e., lower complexity) does
not necessarily lead to good generalisation. The learner or the learning algorithm
has also its importance on the generalisation. Although it has been studied by the
Quinlan (1986) in the context of rule list learning, the oversearching problem is
severely understudied for decision tree learners. This may explain the evidence
obtained in Chapter 3, which was the fact that top-down greedy methods are still
competitive compared to constraint-free optimal decision tree learners with respect
to predictive performance.

144

Chapter 8

Conclusion and Future Works

This chapter summarises the main contributions and results of the thesis guided by
the research questions defined in Chapter 1. It also suggests future works derived
from the limitations of our contributions highlighted in Chapter 7.

8.1 Summary of our Contributions and Results

This thesis focused on constraint enforcement on two specific machine learning
models.

First, we considered decision tree models and imposed domain-knowledge con-
straints (fairness included). We made a thorough investigation and analysis of
techniques available in the literature to answer the question how does the literature
tackle the imposition of constraints on decision trees. We propose a taxonomy
of constraints and another taxonomy of approaches through the lens of optimi-
sation tools employed by these methods to learn decision trees. The taxonomy
of constraints defined structure-level constraints (e.g., size, depth), feature-level
constraints (e.g., monotonicity, fairness, privacy), instance-level constraints (e.g.,
robustness). The taxonomy of methods include top-down greedy, safe enumeration,
LP/SAT/CP and probabilistic (including Bayesian) approaches. While the top-
down greedy approach has been heavily leveraged to learn constrained decision
trees, we found that the literature is scared on using global tree learners with
LP/SAT/CP despite they have they great advantage, when modelled, to easily
integrate constraints. We also observe several research directions that should
be done to answer open questions. Finally, we zoomed onto depth-constrained
decision tree learners and made experiments to benchmark their predictive perfor-

145

CHAPTER 8. CONCLUSION AND FUTURE WORKS

mance. Experiments show that top-down greedy methods such as CART are still
competitive with respect to recently proposed optimal decision tree learners w.r.t.
predictive performance.

Second, still considering decision tree models, we propose two techniques to
enforce constraints on decision trees. The first technique called BDT specifically
introduces a boundary-based fairness constraints to learn fairer decision trees. It
is a soft constraint enforcement and uses a top-down greedy approach to learn
decision trees. Results show that our approach is competitive with respect to a
state-of-the art method, while having the advantage of being much more flexible
(working better with two fairness notions). The second technique called CPTree
introduces a framework based on MIP/CP to learn decision trees under domain-
knowledge constraints. This one is a hard constraint enforcement and results show
that in constraint-free settings our framework learns CPTrees that are competitive
with respect to state-of-the-art trees and by theoretically formalising a broad class
of constraints, we show that our framework is flexible enough to easily integrate
domain-knowledge constraints. We also provide experimental evidence through
use cases that when enforcing constraints CPtrees remain competitive in terms of
predictive performance.

Third, considering differentiable black-box models such as MLPs, we introduced
a statistical framework where these models can be implicitly constrained to be
easily explainable by decision rules. This is a soft constraint enforcement and the
framework is fully differentiable. Compared to standard posthoc explainability
setting, we provide experimental evidence that our framework usually achieve
best results in terms of faithfulness (evaluated with fidelity) of explanations, while
having a limited impact on the constrained black-box model compared to the
unconstrained one.

8.2 Short-term Future Work

In the following, we provide short-term future works that should be done in order
to complete the work done in this thesis.

Library or Software to Ease Modern Decision Tree Fitting. Decision
trees and their ensemble models are widely used in real-world applications with
and without constraint enforcement. However, as shown in the Table 2 of our
survey (Nanfack et al., 2022a), their implementations are scattered into several
programming languages, several frameworks. We also built our own frameworks
from scratch with little to no matching with respect to previous ones. This is

146

CHAPTER 8. CONCLUSION AND FUTURE WORKS

because different frameworks (e.g., Scikit-learn (Buitinck et al., 2013), DL8.5 (Aglin
et al., 2020), etc.) use completely different and highly optimised C libraries to
speed up the optimisation. Having a unified and easily extendable framework will
not only benefit a lot to the research community but it will deeply increase the
applicability of tree models in several domains.

Constraint Inference. One major limitation of the real-world application of our
constrained CPTrees is that they rely on prior knowledge that should be in phase
with training data. Otherwise, constraints will likely impair performance of the
model. However, acquiring this domain knowledge is a tedious task. One extension
of our framework is to reformulate the framework such that we automatically infer
constraint from data. Even though it violates the Bayesian principle which says
that prior knowledge should not come from data, it has the potential to not relying
on domain experts to provide such knowledge but instead, it should, at least,
give propositions for validation by domain experts. Furthermore, for user-centric
applications, it is much more easier to grasp knowledge in terms of constraints.

Extension to Random Forests. Although, we principally focused on the
decision tree hypothesis class for techniques presented in Chapter 4 and Chapter 5
(namely BDT and CPTree), their extension to random forests models is not
difficult, especially for BDT. In the case of CPTree, one should pay attention to
the computational time and therefore, adapt the sub-sampling step for random
forests taking into account this computational time.

Accelerating Computations for End-user Interaction and Validation.
Implementation of the techniques presented in Chapter 4 and Chapter 5 (namely
BDT and CPTree) are far to be at their optimal computational time and complexity.
This computational issue may reduce their impact when practitioners may want
to use them in the scenario of interactive machine learning. Additionally, while
in Chapter 5, we mostly acquired prior knowledge from a medical expertise, in a
more general setting, it is suitable to directly involve the end-user expertise for
validation of learned trees. Here the advantage of using decision trees is that their
interpretability makes them suitable to easily formalise a sort of human-in-the-loop
prior (Lage et al., 2018) to model, e.g., label correction in an explainable way
(Esmeir and Markovitch, 2022).

Uncertainty of Explanations. The co-learning framework we proposed in
Chapter 6 is in the pure frequentist logic. It does not model uncertainty of

147

CHAPTER 8. CONCLUSION AND FUTURE WORKS

explanations, which is a key ingredient for trustworthy explanations. Further
studies should be done to enable uncertainty of explanations, through for example
the use of Bayesian rule learners.

Co-learning and Adapting STruGMA For Image data. In order to inte-
grate the explainability constraint in the through the co-learning framework, we
introduced STruGMA, which is a differentiable model that aim to encapsulate
decision rules. In Chapter 7, we highlighted, that in its current form, STruGMA
will probably not provide good results with image data. Future studies should be
done to “deepify” (make STruGMA compatible to deep neural network modules)
STruGMA such that it would be able to handle image data. For text data, a similar
co-learning called Unirex (Chan et al., 2022) (composed with a similar module
to STruGMA) has been recently released by the Meta (ex Facebook) company.
However, to our knowledge, this kind of framework does not exist for image data
yet.

8.3 Long-term Future Work

This sections presents long-term future works that should be done in order to
increase the impact of the contributions made in this thesis.

Theoretical Guarantees of Constraint Enforcement. In this thesis, readers
observed that most of our guarantees in terms of the predictive performance and
to some extent satisfaction of constraints were empirical. For some reasons that
include the number of features, the number of training examples, we may observe
different behaviours when enforcing constraints. Indeed, the classical machine
learning theory usually only provide guarantees over the learnability in constraint-
free settings (Ben-David, 1995). Due to nowadays wide applicability of machine
learning, there is a very recent interest Chamon and Ribeiro (2020); Chamon et al.
(2022) in trying to fill the gap by providing extensions of the learnability theory
under constraints that include fairness. However, there is no work for example
that studies this question for decision tree models.

Sensitive Analysis of Constraint Enforcement. Not only in this thesis, but
also in the machine learning community, it is usually common to enforce several
constraints in isolation i.e., one at a time. Examples include the works of Cotter
et al. (2019) and Yang et al. (2020) and ours. As shown by the impossibility

148

CHAPTER 8. CONCLUSION AND FUTURE WORKS

theorem for fairness in machine learning, there exists couples of constraints that are
pairwise incompatible. Worse, we hypothesise that when pairing constraints they
may be even harmful for the learning task. To what extents mixing different types
of constraints (e.g., fairness, explanaibility, complexity, privacy, etc.) may harm
the learning task? This is a wide open question and research needs to be done in
order to truly assess the sensibility and the importance of constraint enforcement.

Rethinking the Generalisation of Decision Trees. The classical theory of
generalisation of classical machine learning models is usually provided without
considering the optimisation tool used to fit models. However, one finding of
this thesis, revealed by benchmarking optimal tree learners and by visualising the
optimisation paths, was the high risk of overfitting from optimal tree learners.
As a result, the optimisation tool has a great importance on the generalisation
of machine learning models. For example, on deep neural networks models, it is
hypothesised and demonstrated empirically that stochastic gradient descent is an
implicit regulariser (Ali et al., 2020). We also hypothesise a similar statement
for top-down greedy methods such as CART. However, further studies should be
done to theoretically analyse the generalisation optimal tree learners and propose
mechanisms to counter the overfitting from oversearching through e.g., explicit
constraints.

On the Path to Explicit Explainability Constraint Terms. In machine
learning, the two most classical and principled ways to infuse prior knowledge in
models are to formalise either the prior distribution p(θ) or a constraint function
g(θ) over the model parameters θ. However, formalising this constraint function
or this prior distribution is far to be straightforward. That is why, constraints are
often enforced implicitly as in Chapter 6. For interpretable models such as decision
trees or linear models, the explainability constraints is often handled through the
complexity (e.g., number of leaves or sparsity of weights). For complex black-box
models such as random forests or neural networks, it is relatively unknown whether
such statement is valid. Moreover, the issue of how to formalise the learning
problem under an explicit constraint, e.g., “that the hypothesis is easily explainable
or interpretable” is still an open problem, although the work of Dziugaite et al.
(2020) has tried to provide ideas in this direction.

149

Bibliography

Aghaei, S., Azizi, M. J., and Vayanos, P. (2019). Learning optimal and fair decision trees
for non-discriminative decision-making. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 1418–1426, Honolulu, Hawaii, USA. AAAI
Press. 38, 52, 53, 57, 59, 64, 65, 66, 76, 89, 91

Aghaei, S., Gómez, A., and Vayanos, P. (2021). Strong optimal classification trees. arXiv
preprint arXiv:2103.15965 . 57, 62, 63, 64

Aglin, G., Nijssen, S., and Schaus, P. (2020). Learning optimal decision trees using
caching branch-and-bound search. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, pages 3146–3153. AAAI Press. 44, 62, 63, 90, 113, 118, 147

Aïvodji, U., Arai, H., Fortineau, O., Gambs, S., Hara, S., and Tapp, A. (2019). Fairwashing:
the risk of rationalization. In International Conference on Machine Learning , pages
161–170. PMLR. 40

Ali, A., Dobriban, E., and Tibshirani, R. (2020). The implicit regularization of stochastic
gradient flow for least squares. In International conference on machine learning , pages
233–244. PMLR. 149

Alvarez, I., Bernard, S., and Deffuant, G. (2007). Keep the decision tree and estimate the
class probabilities using its decision boundary. In Proc. of IJCAI , pages 654–659. 78

Angelino, E., Larus-Stone, N., Alabi, D., Seltzer, M., and Rudin, C. (2018). Learning
certifiably optimal rule lists for categorical data. Journal of Machine Learning Research,
18(234), 1–78. 45, 90

Angelopoulos, N. and Cussens, J. (2005a). Exploiting informative priors for bayesian
classification and regression trees. In Proceedings of the 19th International Joint
Conference on Artificial Intelligence, IJCAI’05, pages 641–646, San Francisco, CA, USA.
Morgan Kaufmann Publishers Inc. 46, 57, 68

Angelopoulos, N. and Cussens, J. (2005b). Tempering for bayesian c&rt. In Proceedings
of the 22Nd International Conference on Machine Learning , ICML ’05, pages 17–24,
New York, NY, USA. ACM Press. 46, 57

150

BIBLIOGRAPHY

Angwin, J., Larson, J., Mattu, S., and Kirchner, L. (2016). Machine bias. In Ethics of
Data and Analytics, pages 254–264. Auerbach Publications. 81

Arbatli, A. D. and Akin, H. L. (1997). Rule extraction from trained neural networks
using genetic algorithms. Nonlinear Analysis: Theory, Methods & Applications, 30(3),
1639–1648. 125

Auer, P., Holte, R. C., and Maass, W. (1995). Theory and applications of agnostic
pac-learning with small decision trees. In Proceedings of the Twelfth International
Conference on International Conference on Machine Learning , ICML’95, pages 21–29,
San Francisco, CA, USA. Morgan Kaufmann Publishers Inc. 44, 57, 59, 65

Avellaneda, F. (2020). Efficient inference of optimal decision trees. In 34th AAAI
Conference on Artificial Intelligence. AAAI Press. 45, 57, 64, 91

Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado,
A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., and Herrera, F.
(2020). Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities
and challenges toward responsible ai. Information Fusion, 58, 82 – 115. 38, 89, 92

Barros, R. C., Basgalupp, M. P., de Carvalho, A. C. P. L. F., and Freitas, A. A. (2012).
A survey of evolutionary algorithms for decision-tree induction. IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(3), 291–312. 40

Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A. V., and Criminisi, A.
(2016). Measuring neural net robustness with constraints. In Proceedings of the 30th
International Conference on Neural Information Processing Systems, NIPS’16, pages
2621–2629, USA. Curran Associates Inc. 66

Ben-David, A. (1995). Monotonicity maintenance in information-theoretic machine learning
algorithms. Machine Learning , 19(1), 29–43. 48, 56, 148

Bennett, K. P. and Blue, J. A. (1996). Optimal decision trees. Technical report, R.P.I.
Math Report No. 214, Rensselaer Polytechnic Institute. 43, 57, 59

Bennett, K. P. and Mangasarian, O. L. (1992). Robust linear programming discrimination
of two linearly inseparable sets. Optimization methods and software, 1(1), 23–34. 57

Bertsimas, D. and Dunn, J. (2017). Optimal classification trees. Machine Learning ,
106(7), 1039–1082. 44, 45, 47, 57, 59, 62, 64, 65, 89, 91, 99, 112

Bertsimas, D. and Tsitsiklis, J. N. (1997). Introduction to linear optimization, volume 6.
Athena Scientific Belmont, MA. 21, 27, 29

Bessiere, C., Hebrard, E., and O’Sullivan, B. (2009). Minimising decision tree size as
combinatorial optimisation. In Proceedings of the 15th International Conference on
Principles and Practice of Constraint Programming , CP’09, pages 173–187, Berlin,
Heidelberg. Springer-Verlag. 37, 43, 57, 59, 64

151

BIBLIOGRAPHY

Biggio, B. and Roli, F. (2018). Wild patterns: Ten years after the rise of adversarial
machine learning. Pattern Recognition, 84, 317–331. 66

Blockeel, H., Raedt, L. D., and Ramon, J. (1998). Top-down induction of clustering trees.
In Proceedings of the Fifteenth International Conference on Machine Learning , ICML
’98, pages 55–63, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc. 12

Boyd, S., Boyd, S. P., and Vandenberghe, L. (2004). Convex optimization. Cambridge
university press. 21

Boz, O. (2002). Extracting decision trees from trained neural networks. In Proceedings of
the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining , KDD ’02, pages 456–461, New York, NY, USA. ACM Press. 56, 58, 66, 125

Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. (1984). Classification and
Regression Trees. Wadsworth and Brooks, Monterey, CA. 13, 62, 63, 90, 114

Buhrman, H. and De Wolf, R. (2002). Complexity measures and decision tree complexity:
a survey. Theoretical Computer Science, 288(1), 21–43. 40

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Niculae, V.,
Prettenhofer, P., Gramfort, A., Grobler, J., Layton, R., VanderPlas, J., Joly, A., Holt,
B., and Varoquaux, G. (2013). API design for machine learning software: experiences
from the scikit-learn project. In ECML PKDD Workshop: Languages for Data Mining
and Machine Learning , pages 108–122. 147

Buntine, W. (1992). Learning classification trees. Statistics and computing , 2(2), 63–73.
57, 60, 62

Calders, T., Kamiran, F., and Pechenizkiy, M. (2009). Building classifiers with indepen-
dency constraints. In Proc. of ICDM Workshop on Domain Driven Data Mining , pages
13–18. 76

Calmon, F. P., Wei, D., Vinzamuri, B., Ramamurthy, K. N., and Varshney, K. R. (2017).
Optimized pre-processing for discrimination prevention. In Proceedings of the 31st
International Conference on Neural Information Processing Systems, pages 3995–4004.
75

Calzavara, S., Lucchese, C., and Tolomei, G. (2019). Adversarial training of gradient-
boosted decision trees. In Proceedings of the 28th ACM International Conference on
Information and Knowledge Management , pages 2429–2432. 54, 56

Calzavara, S., Lucchese, C., Tolomei, G., Abebe, S. A., and Orlando, S. (2020). Treant:
training evasion-aware decision trees. Data Mining and Knowledge Discovery , 34(5),
1390–1420. 54, 56

152

BIBLIOGRAPHY

Cardoso, J. S. and Sousa, R. (2010). Classification models with global constraints for
ordinal data. In Proceedings of the 2010 Ninth International Conference on Machine
Learning and Applications, ICMLA ’10, pages 71–77, Washington, DC, USA. IEEE
Computer Society. 48, 56

Chai, J. and Wang, X. (2022). Fairness with adaptive weights. In International Conference
on Machine Learning , pages 2853–2866. PMLR. 75

Chamon, L. and Ribeiro, A. (2020). Probably approximately correct constrained learning.
Advances in Neural Information Processing Systems, 33, 16722–16735. 148

Chamon, L. F. O., Paternain, S., Calvo-Fullana, M., and Ribeiro, A. (2022). Constrained
learning with non-convex losses. IEEE Transactions on Information Theory , pages 1–1.
148

Chan, A., Sanjabi, M., Mathias, L., Tan, L., Nie, S., Peng, X., Ren, X., and Firooz, H.
(2022). Unirex: A unified learning framework for language model rationale extraction.
In International Conference on Machine Learning , pages 2867–2889. PMLR. 148

Chen, H., Zhang, H., Boning, D., and Hsieh, C.-J. (2019). Robust decision trees against
adversarial examples. In Proceedings of the 36th International Conference on Machine
Learning , Proceedings of Machine Learning Research, pages 1122–1131, Long Beach,
California, USA. PMLR. 54, 56, 66

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020). A simple framework for
contrastive learning of visual representations. arXiv preprint arXiv:2002.05709 . 124

Cheng, M., Le, T., Chen, P.-Y., Zhang, H., Yi, J., and Hsieh, C.-J. (2019). Query-
efficient hard-label black-box attack: An optimization-based approach. In International
Conference on Learning Representation (ICLR), New Orleans, LA, USA. 54

Chipman, H. A., George, E. I., and McCulloch, R. E. (1998). Bayesian cart model search.
J. Amer. Statist. Assoc., 93(443), 935–948. 46, 57, 60, 62

Choi, E., Bahadori, M. T., Kulas, J. A., Schuetz, A., Stewart, W. F., and Sun, J. (2016).
Retain: An interpretable predictive model for healthcare using reverse time attention
mechanism. In Proceedings of the 30th International Conference on Neural Information
Processing Systems, NIPS’16, pages 3512–3520, USA. Curran Associates Inc. 58

Chouldechova, A. and Roth, A. (2020). A snapshot of the frontiers of fairness in machine
learning. Communications of the ACM , 63(5), 82–89. 51, 52, 74

Cohen Jr, A. C. (1950). Estimating the mean and variance of normal populations from
singly truncated and doubly truncated samples. The Annals of Mathematical Statistics ,
pages 557–569. 128

153

BIBLIOGRAPHY

Confalonieri, R., Weyde, T., Besold, T. R., and del Prado Martín, F. M. (2020). Trepan
reloaded: A knowledge-driven approach to explaining artificial neural networks. In 24th
European Conference on Artificial Intelligence, volume 325 of Frontiers in Artificial
Intelligence and Applications, pages 2457–2464. IOS Press. 125

Conti, M., Di Pietro, R., Mancini, L. V., and Mei, A. (2009). (new) distributed data
source verification in wireless sensor networks. Inf. Fusion, 10(4), 342–353. 82

Cotter, A., Jiang, H., Gupta, M., Wang, S., Narayan, T., You, S., and Sridharan, K.
(2019). Optimization with non-differentiable constraints with applications to fairness,
recall, churn, and other goals. Journal of Machine Learning Research, 20(172), 1–59.
39, 104, 105, 112, 148

Cplex, I. I. (2009). V12. 1: User’s manual for cplex. International Business Machines
Corporation, 46(53), 157. 29

Craven, M. and Shavlik, J. W. (1994). Using sampling and queries to extract rules from
trained neural networks. In Proceedings of the Eleventh International Conference on
International Conference on Machine Learning , ICML’94, page 37–45, San Francisco,
CA, USA. Morgan Kaufmann Publishers Inc. 125

Craven, M. W. and Shavlik, J. W. (1995). Extracting tree-structured representations
of trained networks. In Proceedings of the 8th International Conference on Neural
Information Processing Systems, NIPS’95, pages 24–30, Cambridge, MA, USA. MIT
Press. 43, 56, 58, 66, 125

Craven, M. W. and Shavlik, J. W. (1996). Extracting Comprehensible Models from Trained
Neural Networks. Ph.D. thesis, The University of Wisconsin - Madison. AAI9700774.
125

Daniëls, H. and Velikova, M. (2003). Derivation of monotone decision models from non-
monotone data. Technical report, Tilburg University, Center for Economic Research.
56

Das, G. and Goodrich, M. T. (1997). On the complexity of optimization problems for
3-dimensional convex polyhedra and decision trees. Computational Geometry , 8(3),
123–137. 12

Davis, J. V., Ha, J., Rossbach, C. J., Ramadan, H. E., and Witchel, E. (2006). Cost-
sensitive decision tree learning for forensic classification. In Proceedings of the 17th
European Conference on Machine Learning , ECML’06, pages 622–629, Berlin, Heidel-
berg. Springer-Verlag. 49, 56

Delobelle, P., Temple, P., Perrouin, G., Frénay, B., Heymans, P., and Berendt, B. (2021).
Ethical adversaries: Towards mitigating unfairness with adversarial machine learning.
SIGKDD Explor. Newsl., 23(1), 32–41. 84

154

BIBLIOGRAPHY

Denison, D. G., Mallick, B. K., and Smith, A. F. (1998). A bayesian cart algorithm.
Biometrika, 85(2), 363–377. 57, 60, 62

Désidéri, J.-A. (2009). Multiple-Gradient Descent Algorithm (MGDA). Ph.D. thesis,
INRIA. 132, 141

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). Bert: Pre-training of
deep bidirectional transformers for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages
4171–4186. 124

Dietterich, T. (1995). Overfitting and undercomputing in machine learning. ACM
computing surveys (CSUR), 27(3), 326–327. 144

Dietterich, T. G. (2000). An experimental comparison of three methods for constructing
ensembles of decision trees: Bagging, boosting, and randomization. Machine learning ,
40(2), 139–157. 14

Domingos, P. (1999). The role of occam’s razor in knowledge discovery. Data mining and
knowledge discovery , 3(4), 409–425. 144

Donini, M., Oneto, L., Ben-David, S., Shawe-Taylor, J., and Pontil, M. (2018). Empirical
risk minimization under fairness constraints. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems, pages 2796–2806. 75

Doshi-Velez, F. and Kim, B. (2017). Towards a rigorous science of interpretable machine
learning. arXiv . 124

Du, W. and Zhan, Z. (2002). Building decision tree classifier on private data. In Proceedings
of the IEEE International Conference on Privacy, Security and Data Mining - Volume
14 , CRPIT ’14, pages 1–8, Darlinghurst, Australia, Australia. Australian Computer
Society, Inc. 50, 81

Dua, D. and Graff, C. (2017). UCI machine learning repository. 38, 63, 105, 106, 108,
112, 133

Dziugaite, G. K., Ben-David, S., and Roy, D. M. (2020). Enforcing interpretability and
its statistical impacts: Trade-offs between accuracy and interpretability. arXiv preprint
arXiv:2010.13764 , abs/2010.13764. 38, 89, 149

Esmeir, S. and Markovitch, S. (2004). Lookahead-based algorithms for anytime induction
of decision trees. In Proceedings of the Twenty-first International Conference on Machine
Learning , ICML ’04, pages 33–, New York, NY, USA. ACM Press. 49, 57, 59

Esmeir, S. and Markovitch, S. (2006). Any time induction of decision trees: An iterative
improvement approach. In Proceedings of the 21st National Conference on Artificial
Intelligence - Volume 1 , AAAI’06, pages 348–355, Boston, Massachusetts, USA. AAAI
Press. 49, 57, 59

155

BIBLIOGRAPHY

Esmeir, S. and Markovitch, S. (2022). Explainable and local correction of classification
models using decision trees. In Proceedings of the AAAI Conference on Artificial
Intelligence, AAAI’22. AAAI Press. 147

Estruch, V., Ferri, C., Hernández-Orallo, J., and Ramirez-Quintana, M. (2002). Re-
designing cost-sensitive decision tree learning. In Workshop de Mineria de Datos y
Aprendizaje, pages 33–42. 49, 57, 59

Feelders, A. and Pardoel, M. (2003). Pruning for monotone classification trees. In 5th
International Symposium on Intelligent Data Analysis, IDA ’03, pages 1–12, Berlin,
Heidelberg. Springer-Verlag. 48, 56

Feldman, M., Friedler, S. A., Moeller, J., Scheidegger, C., and Venkatasubramanian, S.
(2015). Certifying and removing disparate impact. In proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data mining , pages
259–268. 72

Ferri, C., Flach, P. A., and Hernández-Orallo, J. (2002). Learning decision trees using the
area under the roc curve. In Proceedings of the Nineteenth International Conference
on Machine Learning , ICML ’02, pages 139–146, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc. 49, 56

Firat, M., Crognier, G., Gabor, A., Hurkens, C., and Zhang, Y. (2020). Column generation
based heuristic for learning classification trees. Computers & Operations Research, 116.
57, 59

Fletcher, S. and Islam, M. Z. (2019). Decision tree classification with differential privacy:
A survey. ACM Comput. Surv., 52(4), 83:1–83:33. 53

Floridi, L. (2019). Establishing the rules for building trustworthy ai. Nature Machine
Intelligence, 1(6), 261–262. 89

Frank, E. and Witten, I. H. (1999). Making better use of global discretization. In 16th
International Conference on Machine Learning (ICML 99), pages 115–123. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA. 119

Freitas, A., Costa-Pereira, A., and Brazdil, P. (2007). Cost-sensitive decision trees
applied to medical data. In Proceedings of the 9th International Conference on Data
Warehousing and Knowledge Discovery , DaWaK’07, pages 303–312, Berlin, Heidelberg.
Springer-Verlag. 49, 56

Freitas, A. A. (2014). Comprehensible classification models: A position paper. SIGKDD
Explor. Newsl., 15(1), 1–10. 36, 47, 48, 65, 66, 92

Friedman, A. and Schuster, A. (2010). Data mining with differential privacy. In Proceedings
of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining , KDD ’10, pages 493–502, New York, NY, USA. ACM Press. 51, 53

156

BIBLIOGRAPHY

Friedman, A., Schuster, A., and Wolff, R. (2006). K-anonymous decision tree induction. In
Proceedings of the 10th European Conference on Principles and Practice of Knowledge
Discovery in Databases, ECMLPKDD’06, pages 151–162, Berlin, Heidelberg. Springer-
Verlag. 50, 56

Fromont, E., Blockeel, H., and Struyf, J. (2007). Integrating decision tree learning into
inductive databases. In Proceedings of the 5th International Conference on Knowledge
Discovery in Inductive Databases, KDID’06, pages 81–96, Berlin, Heidelberg. Springer-
Verlag. 41, 43, 49, 57, 59

Fürnkranz, J., Gamberger, D., and Lavrač, N. (2012). Foundations of rule learning .
Springer Science & Business Media. 128

Gangrade, A. and Patel, R. (2009). Building privacy-preserving c4. 5 decision tree classifier
on multi-parties. International Journal on Computer Science and Engineering , 1(3),
199–205. 51, 56

Gangrade, A. and Patel, R. (2012). Privacy preserving two-layer decision tree classifier for
multiparty databases. International Journal of Computer and Information Technology
(2277–0764), 1(1), 77–82. 50, 56

Garofalakis, M., Hyun, D., Rastogi, R., and Shim, K. (2000). Efficient algorithms for
constructing decision trees with constraints. In Proceedings of the Sixth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining , KDD ’00, pages
335–339, New York, NY, USA. ACM Press. 41, 43, 56, 58, 62

Garofalakis, M., Hyun, D., Rastogi, R., and Shim, K. (2003). Building decision trees with
constraints. Data Min. Knowl. Discov., 7(2), 187–214. 41, 43, 57, 58, 59

Gehrke, J., Ganti, V., Ramakrishnan, R., and Loh, W.-Y. (1999). Boa–optimistic decision
tree construction. SIGMOD Rec., 28(2), 169–180. 56, 57, 59

Geurts, P. and Wehenkel, L. (2000). Investigation and reduction of discretization variance
in decision tree induction. In European Conference on Machine Learning , pages 162–170.
Springer. 119

Gopinath, D., Converse, H., Pasareanu, C., and Taly, A. (2019). Property inference for
deep neural networks. In 2019 34th IEEE/ACul International Conference on Automated
Software Engineering (ASE). 125

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., and Pedreschi, D.
(2018). A survey of methods for explaining black box models. Comput. Surveys , 51(5),
93:1–93:42. 39, 65, 66, 124

Hardt, M., Price, E., and Srebro, N. (2016). Equality of opportunity in supervised learning.
Advances in neural information processing systems, 29. 52, 75

157

BIBLIOGRAPHY

Hastie, T. and Tibshirani, R. (1996). Discriminant analysis by gaussian mixtures. Journal
of the Royal Statistical Society: Series B (Methodological), 58(1), 155–176. 128

Heidenberger, K. (1996). Dynamic project selection and funding under risk: A decision
tree based milp approach. European Journal of Operational Research, 95(2), 284–298.
57, 59, 62

Hodgson, J. M., van Someren, V. H., Smith, C., and Goyale, A. (2018). Direct bilirubin
levels observed in prolonged neonatal jaundice: a retrospective cohort study. BMJ
paediatrics open, 2(1). 101

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural
networks, 4(2), 251–257. 15

Hu, H., Siala, M., Hébrard, E., and Huguet, M.-J. (2020). Learning optimal decision
trees with maxsat and its integration in adaboost. In IJCAI-PRICAI 2020, 29th
International Joint Conference on Artificial Intelligence and the 17th Pacific Rim
International Conference on Artificial Intelligence. 45, 57, 62, 63

Hu, Q., Che, X., Zhang, L., Zhang, D., Guo, M., and Yu, D. (2012). Rank entropy-based
decision trees for monotonic classification. IEEE Transactions on Knowledge and Data
Engineering , 24(11), 2052–2064. 48, 53, 61

Hu, Q. H., Guo, M. Z., Yu, D. R., and Liu, J. F. (2010). Information entropy for ordinal
classification. Science in China, Series F: Information Sciences, 53(6), 1188–1200. 53,
61

Hu, X., Rudin, C., and Seltzer, M. (2019). Optimal sparse decision trees. In Advances in
Neural Information Processing Systems 32 , pages 7265–7273. Curran Associates, Inc.
45, 57, 62, 63, 90, 91, 113, 114, 118

Hu, Z., Yang, Z., Salakhutdinov, R., and Xing, E. (2016). Deep neural networks with
massive learned knowledge. In Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing , pages 1670–1679. 126

Hyafil, L. and Rivest, R. L. (1976). Constructing optimal binary decision trees is np-
complete. Information processing letters, 5(1), 15–17. 12

Iqbal, M. R. A., Rahaman, M. S., and Nabil, S. I. (2012). Construction of decision trees
by using feature importance value for improved learning performance. In Proceedings
of the 19th International Conference on Neural Information Processing - Volume Part
II , ICONIP’12, pages 242–249, Berlin, Heidelberg. Springer-Verlag. 56

Jeff, L., Surya, M., Lauren, K., and Julia, A. (2016). How we analyzed the compas
recidivism algorithm. 81

Jensen, D. D. and Cohen, P. R. (2000). Multiple comparisons in induction algorithms.
Machine Learning , 38(3), 309–338. 144

158

BIBLIOGRAPHY

Kallus, N. and Zhou, A. (2018). Residual unfairness in fair machine learning from
prejudiced data. In International Conference on Machine Learning , pages 2439–2448.
PMLR. 81

Kamiran, F., Calders, T., and Pechenizkiy, M. (2010). Discrimination aware decision tree
learning. In Proceedings of the 2010 IEEE International Conference on Data Mining ,
ICDM ’10, pages 869–874, Washington, DC, USA. IEEE Computer Society. 38, 52, 53,
56, 58, 61, 76

Kamp, R., Feelders, A., and Barile, N. (2009). Isotonic classification trees. In Proceedings
of the 8th International Symposium on Intelligent Data Analysis: Advances in Intelligent
Data Analysis VIII , IDA ’09, pages 405–416, Berlin, Heidelberg. Springer-Verlag. 48,
56

Kantchelian, A., Tygar, J. D., and Joseph, A. D. (2016). Evasion and hardening of tree
ensemble classifiers. In Proceedings of the 33rd International Conference on International
Conference on Machine Learning - Volume 48 , ICML’16, pages 2387–2396, New York,
NY, USA. JMLR Press. 54, 66

Kearns, M. and Mansour, Y. (1999). On the boosting ability of top–down decision tree
learning algorithms. Journal of Computer and System Sciences, 58(1), 109–128. 85,
143

Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J., Viegas, F., et al. (2018).
Interpretability beyond feature attribution: Quantitative testing with concept activation
vectors (tcav). In International Conference on Machine Learning , pages 2668–2677.
125

Kim, M. P., Ghorbani, A., and Zou, J. (2019). Multiaccuracy: Black-box post-processing
for fairness in classification. In Proceedings of the 2019 AAAI/ACM Conference on AI,
Ethics, and Society , pages 247–254. 75

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In 3rd
International Conference on Learning Representations, San Diego, CA, USA. 32, 134

Klambauer, G., Unterthiner, T., Mayr, A., and Hochreiter, S. (2017). Self-normalizing neu-
ral networks. In Proceedings of the 31st International Conference on Neural Information
Processing Systems, page 972–981, Red Hook, NY, USA. 124

Kleinberg, J., Mullainathan, S., and Raghavan, M. (2016). Inherent trade-offs in the fair
determination of risk scores. arXiv preprint arXiv:1609.05807 . 76

Kocev, D., Struyf, J., and Džeroski, S. (2007). Beam search induction and similarity
constraints for predictive clustering trees. In Proceedings of the 5th International
Conference on Knowledge Discovery in Inductive Databases, KDID’06, pages 134–151,
Berlin, Heidelberg. Springer-Verlag. 57, 59

159

BIBLIOGRAPHY

Kononenko, I., Bratko, I., and Kukar, M. (1997). Application of machine learning to
medical diagnosis. Machine learning and data mining: Methods and applications, 389,
408. 89

Krętowski, M. and Grześ, M. (2006). Evolutionary induction of cost-sensitive decision
trees. In Proceedings of the 16th International Conference on Foundations of Intelligent
Systems, ISMIS’06, pages 121–126, Berlin, Heidelberg. Springer-Verlag. 49, 57, 59

Kruegel, C. and Toth, T. (2003). Using decision trees to improve signature-based intrusion
detection. In 6th International Symposium on Recent Advances in Intrusion Detection,
RAID ’03, pages 173–191, Berlin, Heidelberg. Springer-Verlag. 50, 56

Lage, I., Ross, A. S., Kim, B., Gershman, S. J., and Doshi-Velez, F. (2018). Human-in-
the-loop interpretability prior. In Proceedings of the 32nd International Conference
on Neural Information Processing Systems, Neurips’18, page 10180–10189. Curran
Associates Inc. 147

Lahoti, P., Beutel, A., Chen, J., Lee, K., Prost, F., Thain, N., Wang, X., and Chi, E. H.
(2020). Fairness without demographics through adversarially reweighted learning. In
Proceedings of the 34th International Conference on Neural Information Processing
Systems, pages 728–740. 75

Lakkaraju, H., Bach, S. H., and Leskovec, J. (2016). Interpretable decision sets: A joint
framework for description and prediction. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining , page 1675–1684,
New York, NY, USA. Association for Computing Machinery. 128

Li, Q., Wen, Z., and He, B. (2020a). Practical federated gradient boosting decision trees.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages
4642–4649. 50, 56

Li, Q., Wu, Z., Wen, Z., and He, B. (2020b). Privacy-preserving gradient boosting decision
trees. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pages 784–791. 51, 56

Li, R., Daniel, R., and Rachet, B. (2016). How much do tumor stage and treatment
explain socioeconomic inequalities in breast cancer survival? applying causal mediation
analysis to population-based data. European journal of epidemiology , 31(6), 603–611.
105

Li, X., Zhao, H., and Zhu, W. (2015). A cost sensitive decision tree algorithm with two
adaptive mechanisms. Knowledge-Based Systems, 88, 24–33. 49, 56

Lin, J., Zhong, C., Hu, D., Rudin, C., and Seltzer, M. (2020). Generalized and scalable
optimal sparse decision trees. In H. D. III and A. Singh, editors, Proceedings of the 37th
International Conference on Machine Learning , volume 119 of Proceedings of Machine
Learning Research, pages 6150–6160. PMLR. 57, 91

160

BIBLIOGRAPHY

Ling, C. X., Yang, Q., Wang, J., and Zhang, S. (2004). Decision trees with minimal
costs. In Proceedings of the Twenty-first International Conference on Machine Learning ,
ICML ’04, pages 69–77, New York, NY, USA. ACM Press. 49, 56

Liu, H., Hussain, F., Tan, C. L., and Dash, M. (2002). Discretization: An enabling
technique. Data mining and knowledge discovery , 6(4), 393–423. 92

Liu, L., Kantarcioglu, M., and Thuraisingham, B. (2009). Privacy preserving decision tree
mining from perturbed data. In 2009 42nd Hawaii International Conference on System
Sciences, pages 1–10, Big Island, HI, USA. IEEE. 38, 51, 56

Lohaus, M., Perrot, M., and Von Luxburg, U. (2020). Too relaxed to be fair. In 37th
International Conference on Machine Learning . 104, 105

Lomax, S. and Vadera, S. (2013). A survey of cost-sensitive decision tree induction
algorithms. Comput. Surveys, 45(2), 16:1–16:35. 40, 49

López-Vallverdú, J. A., RiañO, D., and Collado, A. (2007). Increasing acceptability of
decision trees with domain attributes partial orders. In Proceedings of the Twentieth
IEEE International Symposium on Computer-Based Medical Systems , CBMS ’07, pages
569–574, Washington, DC, USA. IEEE Computer Society. 39, 47, 50, 56, 66, 89

López-Vallverdú, J. A., RiañO, D., and Bohada, J. A. (2012). Improving medical decision
trees by combining relevant health-care criteria. Expert Syst. Appl., 39(14), 11782–11791.
39, 41, 56, 66, 103

Luenberger, D. G., Ye, Y., et al. (1984). Linear and nonlinear programming , volume 2.
Springer. 21, 22, 23

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R.,
Himmelfarb, J., Bansal, N., and Lee, S.-I. (2020). From local explanations to global
understanding with explainable ai for trees. Nature machine intelligence, 2(1), 56–67.
124

Madzarov, G., Gjorgjevikj, D., and Chorbev, I. (2009). A multi-class svm classifier
utilizing binary decision tree. Informatica, 33(2), 233–241. 50, 57, 59

Marsala, C. and Petturiti, D. (2015). Rank discrimination measures for enforcing mono-
tonicity in decision tree induction. Inf. Sci., 291(C), 143–171. 48, 53

Matwin, S., Felty, A., Hernádvölgyi, I., and Capretta, V. (2005). Privacy in data
mining using formal methods. In Proceedings of the 7th International Conference on
Typed Lambda Calculi and Applications, TLCA’05, pages 278–292, Berlin, Heidelberg.
Springer-Verlag. 51, 56

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., and Galstyan, A. (2021). A survey
on bias and fairness in machine learning. ACM Computing Surveys (CSUR), 54(6),
1–35. 5

161

BIBLIOGRAPHY

Melis, D. A. and Jaakkola, T. (2018). Towards robust interpretability with self-explaining
neural networks. In Advances in Neural Information Processing Systems, pages 7775–
7784. 125

Menickelly, M., Günlük, O., Kalagnanam, J., and Scheinberg, K. (2016). Optimal
generalized decision trees via integer programming. CoRR. 45, 57, 59

Mita, G., Papotti, P., Filippone, M., and Michiardi, P. (2020). LIBRE: Learning in-
terpretable boolean rule ensembles. In 23rd International Conference on Artificial
Intelligence and Statistics, 3-5 June 2020, Palermo, Sicily, Italy , Palermo, ITALY. 124

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. MIT Press. 9, 12,
16, 17

Murphy, K. P. (2022). Probabilistic machine learning: an introduction. MIT press. 12

Narodytska, N., Ignatiev, A., Pereira, F., and Marques-Silva, J. (2018). Learning optimal
decision trees with sat. In Proceedings of the 27th International Joint Conference on
Artificial Intelligence, IJCAI’18, pages 1362–1368. AAAI Press. 43, 44, 45, 57, 59, 64,
89, 91

Nijssen, S. (2008). Bayes optimal classification for decision trees. In Proceedings of the
25th International Conference on Machine Learning , ICML ’08, pages 696–703, New
York, NY, USA. ACM Press. 46, 57, 60, 68

Nijssen, S. and Fromont, E. (2007). Mining optimal decision trees from itemset lattices.
In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining , KDD ’07, pages 530–539, New York, NY, USA. ACM
Press. 43, 45, 46, 49, 57, 59, 90

Nijssen, S. and Fromont, E. (2010). Optimal constraint-based decision tree induction from
itemset lattices. Data Mining and Knowledge Discovery , 21(1), 9–51. 41, 43, 57, 90

Norouzi, M., Collins, M. D., Johnson, M., Fleet, D. J., and Kohli, P. (2015). Efficient
non-greedy optimization of decision trees. In Proceedings of the 28th International
Conference on Neural Information Processing Systems - Volume 1 , NIPS’15, pages
1729–1737, Cambridge, MA, USA. MIT Press. 50, 60

Norton, S. W. (1989). Generating better decision trees. In Proceedings of the 11th
International Joint Conference on Artificial Intelligence - Volume 1 , IJCAI’89, pages
800–805, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc. 49, 56

Núñez, M. (1991). The use of background knowledge in decision tree induction. Mach.
Learn., 6(3), 231–250. 41, 49, 50, 56, 62, 66, 89, 102

Nuti, G., Rugama, L. A. J., and Cross, A.-I. (2019). Efficient bayesian decision tree
algorithm. Corr . 57, 60

162

BIBLIOGRAPHY

Okajima, Y. and Sadamasa, K. (2019). Deep neural networks constrained by decision
rules. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 2496–2505. 125

Okunrintemi, V., Valero-Elizondo, J., Patrick, B., Salami, J., Tibuakuu, M., Ahmad, S.,
Ogunmoroti, O., Mahajan, S., Khan, S. U., Gulati, M., et al. (2018). Gender differences
in patient-reported outcomes among adults with atherosclerotic cardiovascular disease.
Journal of the American Heart Association, 7(24), e010498. 109

Omielan, A. and Vadera, S. (2012). Ecco: A new evolutionary classifier with cost
optimisation. In 7th IFIP TC 12 International Conference, IIP ’12, pages 97–105,
Berlin, Heidelberg. Springer-Verlag. 49, 57, 59

Optimization, G. (2021). Gurobi optimizer reference manual. http://www.gurobi.com.
28, 114

Papernot, N., McDaniel, P. D., and Goodfellow, I. J. (2016). Transferability in machine
learning: from phenomena to black-box attacks using adversarial samples. CoRR. 54,
66

Pasquale, F. (2015). The Black Box Society: The Secret Algorithms That Control Money
and Information. Harvard University Press, Cambridge, MA, USA. 66

Pazzani, M. J., Merz, C. J., Murphy, P. M., Ali, K. M., Hume, T., and Brunk, C.
(1994). Reducing misclassification costs. In Proceedings of the Eleventh International
Conference on International Conference on Machine Learning , ICML’94, pages 217–225,
San Francisco, CA, USA. Morgan Kaufmann Publishers Inc. 49, 56

Pedapati, T., Balakrishnan, A., Shanmugam, K., and Dhurandhar, A. (2020). Learning
global transparent models consistent with local contrastive explanations. In Advances
in Neural Information Processing Systems, pages 3592–3602. 134

Pedreschi, D., Giannotti, F., Guidotti, R., Monreale, A., Ruggieri, S., and Turini, F.
(2019). Meaningful explanations of black box ai decision systems. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33, pages 9780–9784. 125

Pei, S., Hu, Q., and Chen, C. (2016). Multivariate decision trees with monotonicity
constraints. Know.-Based Syst., 112(C), 14–25. 47, 53

Perron, L. and Furnon, V. (2019). Google: Or-tools. https://developers.google.com/
optimization/. 114

Pessach, D. and Shmueli, E. (2022). A review on fairness in machine learning. ACM
Computing Surveys (CSUR), 55(3), 1–44. 72, 73, 74

Piltaver, R., Luštrek, M., Gams, M., and Martinčić-Ipšić, S. (2016). What makes
classification trees comprehensible? Expert Syst. Appl., 62(C), 333–346. 37, 42, 45, 46,
61, 90

163

http://www.gurobi.com
https://developers.google.com/optimization/
https://developers.google.com/optimization/

BIBLIOGRAPHY

Potharst, R. and Feelders, A. J. (2002). Classification trees for problems with monotonicity
constraints. SIGKDD Explor. Newsl., 4(1), 1–10. 48, 56, 62

Qiu, C., Jiang, L., and Li, C. (2017). Randomly selected decision tree for test-cost sensitive
learning. Appl. Soft Comput., 53(C), 27–33. 49

Quinlan, J. and Cameron-Jones, R. (1995). Oversearching and layered search in empirical
learning. In 14th International Joint Conference on Artificial Intelligence 95 . 121, 144

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning , 1(1), 81–106. 13,
144

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning . Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA. 13, 90

Quinlan, J. R. and Rivest, R. L. (1989). Inferring decision trees using the minimum
description lenght principle. Information and computation, 80(3), 227–248. 42, 56, 58,
62

Raff, E., Sylvester, J., and Mills, S. (2018). Fair forests: Regularized tree induction to
minimize model bias. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics,
and Society , AIES ’18, pages 243–250, New York, NY, USA. ACM Press. 52, 53, 56, 76

Read, S. H., Rosella, L. C., Berger, H., Feig, D. S., Fleming, K., Kaul, P., Ray, J. G.,
Shah, B. R., and Lipscombe, L. L. (2021). Diabetes after pregnancy: a study protocol
for the derivation and validation of a risk prediction model for 5-year risk of diabetes
following pregnancy. Diagnostic and Prognostic Research, 5(1), 1–8. 106

Ren, F., Ding, X., Zheng, M., Korzinkin, M., Cai, X., Zhu, W., Mantsyzov, A., Aliper, A.,
Aladinskiy, V., Cao, Z., et al. (2022). Alphafold accelerates artificial intelligence powered
drug discovery: Efficient discovery of a novel cyclin-dependent kinase 20 (cdk20) small
molecule inhibitor. arXiv preprint arXiv:2201.09647 . 5

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). Model-agnostic interpretability of
machine learning. In ICML Workshop on Human Interpretability in Machine Learning ,
WHI ’16, Stockholm, Sweden. 38, 89, 124

Ribeiro, M. T., Singh, S., and Guestrin, C. (2018). Anchors: High-precision model-agnostic
explanations. In AAAI Conference on Artificial Intelligence. 125, 134

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,
A., Khosla, A., Bernstein, M., et al. (2015). Imagenet large scale visual recognition
challenge. International journal of computer vision, 115(3), 211–252. 73

Safavian, S. R. and Landgrebe, D. (1991). A survey of decision tree classifier methodology.
IEEE transactions on systems, man, and cybernetics, 21(3), 660–674. 12, 40

Saravanakumar, K. K. (2020). The impossibility theorem of machine fairness–a causal
perspective. arXiv preprint arXiv:2007.06024 . 76

164

BIBLIOGRAPHY

Sato, M. and Tsukimoto, H. (2001). Rule extraction from neural networks via decision
tree induction. In International Joint Conference on Neural Networks. Proceedings
(Cat. No.01CH37222), volume 3 of IJCNN’01 , pages 1870–1875. IEEE. 44

Saxena, N. A., Huang, K., DeFilippis, E., Radanovic, G., Parkes, D. C., and Liu, Y.
(2019). How do fairness definitions fare? examining public attitudes towards algorithmic
definitions of fairness. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics,
and Society , pages 99–106. 74

Schetinin, V., Fieldsend, J. E., Partridge, D., Coats, T. J., Krzanowski, W. J., Everson,
R. M., Bailey, T. C., and Hernandez, A. (2007). Confident interpretation of bayesian
decision tree ensembles for clinical applications. Trans. Info. Tech. Biomed., 11(3),
312–319. 57, 60

Sener, O. and Koltun, V. (2018). Multi-task learning as multi-objective optimization. In
Proceedings of the 32nd International Conference on Neural Information Processing
Systems, pages 525–536. 132, 141

Sethi, I. K. and Sarvarayudu, G. P. R. (1982). Hierarchical classifier design using mutual
information. IEEE Trans. Pattern Anal. Mach. Intell., 4(4), 441–445. 54, 56

Shaharanee, I. N. M., Hadzic, F., and Dillon, T. S. (2011). Interestingness measures
for association rules based on statistical validity. Knowledge-Based Systems, 24(3),
386–392. 92

Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding machine learning: From
theory to algorithms. Cambridge university press. 9

Slack, D., Hilgard, S., Jia, E., Singh, S., and Lakkaraju, H. (2020). Fooling lime and
shap: Adversarial attacks on post hoc explanation methods. In Proceedings of the
AAAI/ACM Conference on AI, Ethics, and Society , AIES ’20, page 180–186, New
York, NY, USA. 125

Smith, J. W., Everhart, J. E., Dickson, W., Knowler, W. C., and Johannes, R. S. (1988).
Using the adap learning algorithm to forecast the onset of diabetes mellitus. In annual
symposium on computer application in medical care. American Medical Informatics
Association. 106

Souris, A., Bhattacharya, A., and Pati, D. (2018). The soft multivariate truncated normal
distribution. arXiv preprint arXiv:1807.09155 . 127

Struyf, J. and Džeroski, S. (2006). Constraint based induction of multi-objective regression
trees. In Proceedings of the 4th International Conference on Knowledge Discovery in
Inductive Databases, KDID’05, pages 222–233, Berlin, Heidelberg. Springer-Verlag. 57,
68

165

BIBLIOGRAPHY

Struyf, J. and Džeroski, S. (2007). Clustering trees with instance level constraints. In
Proceedings of the 18th European Conference on Machine Learning , ECML ’07, pages
359–370, Berlin, Heidelberg. Springer-Verlag. 41, 54, 56

Suresh, H. and Guttag, J. V. (2019). A framework for understanding unintended conse-
quences of machine learning. arXiv preprint arXiv:1901.10002 , 2, 8. 73, 74

Sweeney, L. (2002). K-anonymity: A model for protecting privacy. Int. J. Uncertain.
Fuzziness Knowl.-Based Syst., 10(5), 557–570. 50, 56

Tan, M. (1993). Cost-sensitive learning of classification knowledge and its applications in
robotics. Mach. Learn., 13(1), 7–33. 49, 56

Teng, Z. and Du, W. (2007). A hybrid multi-group privacy-preserving approach for building
decision trees. In Proceedings of the 11th Pacific-Asia Conference on Advances in
Knowledge Discovery and Data Mining , PAKDD’07, pages 296–307, Berlin, Heidelberg.
Springer-Verlag. 50, 56

Nanfack, G., Delchevalerie, V., and Frénay, B. (2021a). Boundary-based fairness con-
straints in decision trees and random forests. In The 29th European Symposium on Ar-
tificial Neural Networks, Computational Intelligence and Machine Learning , ESANN’21.
40, 47, 56, 71, 84

Nanfack, G., Temple, P., and Frénay, B. (2021b). Global explanations with decision
rules: a co-learning approach. In The 37th Conference on Uncertainty in Artificial
Intelligence, UAI’21. 123, 130, 131, 133

Nanfack, G., Temple, P., and Frénay, B. (2022a). Constraint enforcement on decision
trees: a survey. ACM Computing Surveys (CSUR). 36, 38, 41, 42, 53, 56, 61, 62, 63,
146

Nanfack, G., Temple, P., and Frénay, B. (2022b). Learning customised decision trees
under domain-knowledge constraints. Under Review for Pattern Recognition. 87, 109,
119, 120

Tina Binesh, M. and Sydney, M. (2018). Toronto Notes for Medical Students: comprehen-
sive medical reference and review for MCCQE and USMLE II . Toronto Notes 2018,
Toronto, Ontario, Canada, 34th ed edition. 105

Tjortjis, C. and Keane, J. (2002). T3: A classification algorithm for data mining. In
Proceedings of the Third International Conference on Intelligent Data Engineering and
Automated Learning , IDEAL ’02, pages 50–55, Berlin, Heidelberg. Springer-Verlag. 44,
47, 57, 59

Torres, P., Riaño, D., and López-Vallverdú, J. A. (2011). Inducing decision trees from
medical decision processes. In Proceedings of the ECAI 2010 Conference on Knowledge
Representation for Health-care, KR4HC’10, pages 40–55, Berlin, Heidelberg. Springer-
Verlag. 50

166

BIBLIOGRAPHY

Turney, P. D. (1995). Cost-sensitive classification: Empirical evaluation of a hybrid genetic
decision tree induction algorithm. J. Artif. Int. Res., 2(1), 369–409. 49, 57, 59

Tzirakis, P. and Tjortjis, C. (2017). T3c: Improving a decision tree classification algorithm’s
interval splits on continuous attributes. Adv. Data Anal. Classif., 11(2), 353–370. 44,
57, 59

Vaghashia, H. and Ganatra, A. (2015). A survey: privacy preservation techniques in data
mining. International Journal of Computer Applications, 119(4), 20–26. 50

Vaidya, J., Clifton, C., Kantarcioglu, M., and Patterson, A. S. (2008). Privacy-preserving
decision trees over vertically partitioned data. ACM Trans. Knowl. Discov. Data, 2(3),
14:1–14:27. 51, 56

Verbakel, J. Y., Lemiengre, M. B., De Burghgraeve, T., De Sutter, A., Aertgeerts, B.,
Bullens, D. M., Shinkins, B., Van den Bruel, A., and Buntinx, F. (2015). Validating
a decision tree for serious infection: diagnostic accuracy in acutely ill children in
ambulatory care. BMJ open, 5(8). 92, 116, 117

Verhaeghe, H., Nijssen, S., Pesant, G., Quimper, C.-G., and Schaus, P. (2019). Learning
optimal decision trees using constraint programming. In The 25th International Con-
ference on Principles and Practice of Constraint Programming (CP’19). 45, 57, 62, 63,
91, 92, 99, 113, 114

Verwer, S. and Zhang, Y. (2017). Learning decision trees with flexible constraints and
objectives using integer optimization. In 14th International Conference on AI and
OR Techniques in Constraint Programming for Combinatorial Optimization Problems,
CPAIOR’17, pages 94–103, Cham. Springer-Verlag. 57, 59, 65

Verwer, S. and Zhang, Y. (2019). Learning optimal classification trees using a binary
linear program formulation. In 33rd AAAI Conference on Artificial Intelligence, AAAI
’19. AAAI Press. 45, 57, 59, 62, 63, 64, 65, 89, 91, 92, 99, 112, 113, 114, 115, 118, 124,
143

von Rueden, L., Mayer, S., Beckh, K., Georgiev, B., Giesselbach, S., Heese, R., Kirsch,
B., Walczak, M., Pfrommer, J., Pick, A., et al. (2021). Informed machine learning-a
taxonomy and survey of integrating prior knowledge into learning systems. IEEE
Transactions on Knowledge & Data Engineering , pages 1–1. 41

Wagstaff, K., Cardie, C., Rogers, S., and Schroedl, S. (2001a). Constrained k-means
clustering with background knowledge. In Proceedings of the Fifteenth International
Conference on Machine Learning , ICML’01, pages 577–584. Morgan Kaufmann. 54

Wagstaff, K., Cardie, C., Rogers, S., Schrödl, S., et al. (2001b). Constrained k-means
clustering with background knowledge. In 18th International Conference on Machine
Learning . 103

167

BIBLIOGRAPHY

Wang, N., Li, J., Liu, Y., Zhu, J., Su, J., and Peng, C. (2018). Accurate decision tree with
cost constraints. In First International Conference on Advanced Hybrid Information
Processing , ADHIP ’17, pages 154–165, Cham. Springer-Verlag. 49, 56

Wenger, N. K., Speroff, L., and Packard, B. (1993). Cardiovascular health and disease in
women. New England Journal of Medicine, 329(4), 247–256. 109

Wick, M., Panda, S., and Tristan, J.-B. (2019). Unlocking fairness: a trade-off revisited.
In Proceedings of the 33rd International Conference on Neural Information Processing
Systems, pages 8783–8792. 84

Wolf, L., Galanti, T., and Hazan, T. (2019). A formal approach to explainability. In
Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society , page
255–261, New York, NY, USA. Association for Computing Machinery. 125

Wu, C.-C., Chen, Y.-L., Liu, Y.-H., and Yang, X.-Y. (2016). Decision tree induction with
a constrained number of leaf nodes. Applied Intelligence, 45(3), 673–685. 56, 58

Wu, M., Hughes, M. C., Parbhoo, S., Zazzi, M., Roth, V., and Doshi-Velez, F. (2018).
Beyond sparsity: Tree regularization of deep models for interpretability. In AAAI
Conference on Artificial Intelligence. 125

Wu, M., Parbhoo, S., Hughes, M. C., Kindle, R., Celi, L. A., Zazzi, M., Roth, V., and
Doshi-Velez, F. (2020). Regional tree regularization for interpretability in deep neural
networks. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, pages
6413–6421. 125, 133

Wu, Y., Tjelmeland, H., and West, M. (2007). Bayesian cart: Prior specification and
posterior simulation. Journal of Computational and Graphical Statistics, 16(1), 44–66.
57

Xu, T., Chongxuan, L., Zhu, J., and Zhang, B. (2019). Multi-objects generation with
amortized structural regularization. In Advances in Neural Information Processing
Systems, pages 6619–6629. 130

Yang, C., Rangarajan, A., and Ranka, S. (2018). Global model interpretation via recursive
partitioning. In 2018 IEEE 20th International Conference on High Performance Com-
puting and Communications; IEEE 16th International Conference on Smart City; IEEE
4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS),
pages 1563–1570. IEEE. 43, 56, 66

Yang, H., Rudin, C., and Seltzer, M. (2017). Scalable bayesian rule lists. In Proceedings of
the 34th International Conference on Machine Learning - Volume 70 , page 3921–3930.
124

Yang, W., Lorch, L., Graule, M. A., Lakkaraju, H., and Doshi-Velez, F. (2020). Incorpo-
rating interpretable output constraints in bayesian neural networks. In Proceedings of
the 34th International Conference on Neural Information Processing Systems, pages
12721–12731. 81, 105, 112, 148

168

BIBLIOGRAPHY

You, S., Ding, D., Canini, K., Pfeifer, J., and Gupta, M. R. (2017). Deep lattice networks
and partial monotonic functions. In Proceedings of the 31st International Conference
on Neural Information Processing Systems, NIPS’17, pages 2985–2993, USA. Curran
Associates Inc. 52

Zadrozny, B. (2004). Learning and evaluating classifiers under sample selection bias. In
Proceedings of the twenty-first international conference on Machine learning , page 114.
73

Zafar, M. B., Valera, I., Rogriguez, M. G., and Gummadi, K. P. (2017). Fairness
Constraints: Mechanisms for Fair Classification. In Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics, volume 54, pages 962–970. PMLR.
52, 53, 75

Zafar, M. B., Valera, I., Gomez-Rodriguez, M., and Gummadi, K. P. (2019). Fairness
constraints: A flexible approach for fair classification. The Journal of Machine Learning
Research, 20(1), 2737–2778. 75, 77, 79, 84, 142, 143

Zaman, A. N. K., Obimbo, C., and Dara, R. A. (2016). A novel differential privacy approach
that enhances classification accuracy. In Proceedings of the Ninth International C*
Conference on Computer Science & Software Engineering , C3S2E ’16, pages 79–84,
New York, NY, USA. ACM. 51, 56

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. (2016). Understanding deep
learning requires rethinking generalization. arXiv preprint arXiv:1611.03530 . 51, 74

Zhang, Q., Yang, Y., Ma, H., and Wu, Y. N. (2019). Interpreting cnns via decision
trees. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6261–6270. 139

Zhang, W. and Ntoutsi, E. (2019). Faht: an adaptive fairness-aware decision tree classifier.
In Proceedings of the 28th International Joint Conference on Artificial Intelligence,
pages 1480–1486. 76, 82, 142, 143

Zhang, Y. and Long, Q. (2021). Assessing fairness in the presence of missing data.
Advances in neural information processing systems, 34, 16007–16019. 52

Zhang, Y., Xiang, T., Hospedales, T. M., and Lu, H. (2018). Deep mutual learning. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 4320–4328. 126

Zilke, J. R., Mencía, E. L., and Janssen, F. (2016). Deepred–rule extraction from deep
neural networks. In 19th International Conference on Discovery Science, DS ’16, pages
457–473, Cham. Springer-Verlag. 44, 56, 58, 66

169

BIBLIOGRAPHY

170

