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Description of weak measurements and weak values in the phase
space representation of quantum mechanics

Bryan Renard
Résumé

Les mesures faibles estiment la valeur d’un opérateur sur un système quantique tout en min-
imisant la perturbation de l’état, au contraire d’une mesure forte. Les observations tirées des
mesures faibles avec post-sélection dépendent de nombres complexes appelés valeurs faibles.
Lorsque très grandes ou complexes, elles sont appelées valeurs faibles anormales et indiquent
un comportement quantique. Afin d’avoir plus d’intuition sur leur sens physique, nous les
décrivons dans l’espace de phase quantique défini en utilisant la distribution de Wigner et la
transformée de Weyl. Nous illustrons le formalisme par une mesure faible de deux oscillateurs
harmoniques couplés. La valeur faible est interprétée comme la moyenne par rapport à un
terme d’interférence entre la pré-sélection et la post-sélection. Le cas particulier de l’opérateur
impulsion est étudié et une interprétation est proposée, par des notions de la littérature. En-
suite, nous transposons le modèle de mesure de von Neumann dans l’espace de phase pour
des mesures fortes et faibles post-sélectionnées. En utilisant le noyau de Stratonovich-Weyl,
nous généralisons par la suite le formalisme de l’espace de phase à des espaces de configuration
courbes, utiles pour décrire des espaces contraints. Les résultats précédents sont étendus à
cette situation.

MOTS-CLÉS - Mesure faible - Valeur faible - Espace de phase quantique - Distribution de
Wigner - Espace courbe - Mesure de von Neumann

Abstract

Weak measurements estimate an operator’s value of a quantum system while minimising the
perturbation of the state, contrary to the usual strong measurement. The observations from
weak measurements with post-selection depend on complex numbers called weak values. When
very large or complex, they are called anomalous weak values and indicate a quantum be-
haviour. To get more intuition about their physical meaning, we describe them in the quantum
phase space defined with the Wigner distribution and the Weyl transform. We illustrate the
formalism by a weak measurement of two coupled harmonic oscillators. The weak value is
interpreted as the average value over an interference between pre-selection and post-selection.
The particular case of the momentum operator is studied and an interpretation is proposed,
using notions from the literature. Then, we transpose the von Neumann model of measurement
in phase space for strong and weak post-selected measurements. Using the Stratonovich-Weyl
kernel, we then generalise the phase space formalism to curved configuration spaces, useful to
describe constrained spaces. The previous results are extended to this situation.

KEYWORDS - Weak Measurement - Weak Value - Quantum Phase space - Wigner distri-
bution - Curved space - von Neumann Measurement
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I would like to make a confession which may seem immoral: I do
not believe absolutely in Hilbert space any more.

— John von Neumann
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1
1 Introduction and Problem Statement

Quantum physics. These two words are quite recent in the scientific language, and are able to
either scare or fascinate any person hearing these words. As Richard Feynman said so rightly,
"I think I can safely say that nobody really understands quantum mechanics". Indeed, the
quantum behaviour of light and matter at the particle scale is so far away from our classical
intuition that it brings to us many destabilising concepts or the so-called quantum paradoxes.

One of these concepts is the incompatibility. In quantum physics, measuring two non-
commuting observables on the system gives different results depending which one is measured
before the other. A common example is the measurement of the position x and momentum
p of a particle. Another one is the contextuality [1] of quantum mechanics, meaning that a
property of a particle is not intrinsic of the particle but depends of the act of measurement itself.

These problems can be resolved or studied using weak measurements [2, 3, 4, 5]. The idea
of a weak measurement is to measure a property of a system with a very weak efficiency. This
seems useless, since very little information is extracted from such a measurement. However, by
performing a post-selection, i.e. by strongly measuring another property of the system, a con-
ditional measurement is made. This gives additional information from the weak measurement.

Weak measurements depend on weak values [2, 3, 4, 5]. When measuring a given operator,
the associated weak value can exceed the range of the eigenvalues of the operator. This allows
for an amplification effect, experimentally useful to develop ultra-sensitive experiments [6, 7] or
to detect minute phenomena [8]. Moreover, the weak value can be complex, a useful property
to perform quantum tomography easily [9]. Non-commuting observables can also be measured,
for example in the determination of trajectories in a two-slit interferometer [10]. Lastly, weak
measurements are used to study quantum paradoxes [11, 12] and the foundations of quantum
physics [13].

However, weak measurements originate from quantum effects and the physical interpretation
of the experiments and the weak values is tricky. In a projective measurement, the eigenval-
ues of the operator are obtained. But in a weak post-selected measurement, it is a quantity
related to the weak value. It can be very large and it is complex, so the question whether the
weak value gives meaningful information about the property itself is open. Furthermore, the
paradoxes involving weak measurements also evidence the problem of the interpretation of the
weak values (for example in the Cheshire cat paradox [11] or the three-box paradox [12]).

A possible way to understand weak measurements is to bring their description closer to the
classical intuition. Physical situations in classical physics are often described in phase space
[14]. Each degree of freedom of the system gives an axis of the space, and one point of the
phase space corresponds to one particular state of the system. The most common phase space
is (x, p), to describe for example the trajectory of the pendulum. It is also often used in chaos
theory, since it allows to observe the evolution of a system as a trajectory in phase space [15].

There exists a phase space description of quantum physics, using the notions of Wigner
distribution and Weyl transform [16, 17, 18]. It is constructed by analogy with concepts of
statistical physics [19]. For a quantum state |ψ〉, it gives a complete description of the (x, p)
distribution instead of ψ(x) and ψ(p) separately. The Wigner function is a quasi-probability
distribution, meaning that it can take negative values [16, 17]. The origin of the negativity is

Bryan Renard - Master’s thesis University of Namur



2 WEAK MEASUREMENTS 2

purely quantum since a negative point in phase space doesn’t make sense in classical physics [20].

The objective is to better understand the process of weak measurement and the concept
of weak values, by describing them in phase space. This might help to understand how the
quantum system evolves in the process of measurement. The concept of phase space is also
generalised to describe weak values and weak measurement in other phase spaces than (x, p),
and this is more specifically applied to a curved space.

More precisely, the weak value is first described in the phase space (x, p), as a function of the
pre-selection and the post-selection. This result is then extended to describe the weak value in a
generalised phase space and in a curved space. In particular, the weak value of the momentum
post-selected on the position is studied. We show that the real part of this weak value is linked
to the notion of probability current and the imaginary part to the osmotic velocity [21, 22].

The von Neumann model of measurement is the framework in which the weak measurement
is usually presented. It gives a continuous description of the measurement process. We describe
this process in phase space, to have the possibility to know the phase space representation of the
states at each step of the measurement. It is done for strong and weak measurements, as well
as post-selected weak measurements. The results are then generalised to curved configuration
spaces, to describe a measurement in constrained spaces. This can be useful in describing the
phase space of a rotation problem or in curved space-time.

The thesis is organised as follows. The two main concepts of the work are first introduced,
in Section 2 for weak measurements and Section 3 for the phase space formalism. In Section
4, the Wigner distribution is generalised and constructed on curved space. Section 5 is then
devoted to the study of weak measurements and weak values in phase space.

2 Weak Measurements

2.1 Projective measurement

The notion of measurement in quantum physics is very different from its classical counterpart.
Indeed, since the birth of quantum physics, it is known that a measurement of any physical
property on a quantum system instantly modifies (projects) the system state. This was observed
experimentally and the scientists carved this property as a postulate of quantum mechanics.

Definition 2.1: Quantum Postulate [23]

Consider a quantum system S, initially in the state |s〉, and a physical quantity A to
measure on the system. This quantity is described by a Hermitian operator (observable)
Â, with (non-degenerate) eigenvalues ai and eigenvectors |ai〉 for i = 1, ..., n.

The measurement of Â gives one of the eigenvalues ai with probability Pi = | 〈s|ai〉 |2.

The measurement instantly projects the system state on the eigenvector |ai〉.

In that scenario, the initial state is completely modified and the measurement is complete,
meaning that no additional information about the initial state can be obtained. The measure-

Bryan Renard - Master’s thesis University of Namur



2 WEAK MEASUREMENTS 3

ment has indeed destroyed it.

This understanding of a quantum measurement can be generalised to a quantum state that
is initially mixed and not pure, using the reduced density matrix ρ̂. The eigenvalue ai is then
obtained with probability Pi = Tr

(
Π̂iρ̂
)

with Π̂i = |ai〉 〈ai| the projection operator on the
corresponding eigenvector. The system state after the measurement is

ρ̂proj =
Π̂iρ̂Π̂i

Tr
(

Π̂iρ̂
) . (2.1)

It is the initial state, projected onto the eigenvector and normalised with respect to the
probability. This process can be generalised for any possible measurement described by positive-
operator valued measures (POVM) [24]. A POVM is usually incomplete, meaning that the
resulting state might still depend on the initial state. An example is a weak measurement.

2.2 Motivation of weak measurements

A measurement in the usual quantum theory is a discontinuous process, the projection being in-
stantaneous. In classical physics, it is rare to have truly discontinuous phenomena, if described
as such, it usually means that an underlying continuous description exists. For example, switch-
ing on and off a generator might be considered as instantaneous in the time scale chosen. The
charge and electric field in a pn junction are also not as discontinuous as described in textbooks.

The same reasoning might putatively be applied to the projection occurring in a quantum
measurement. We could ask if the discontinuity comes from the use of a measurement device
treated classically. The measurement apparatus is not taken into account in the usual descrip-
tion, but it would make sense to add it in the formalism with a given interaction with the
system. Moreover, it is also assumed that the measurement is made with maximum accuracy.

A better description of the measurement process comes from the von Neumann model [4, 5].
This scheme takes into account the measurement device and its coupling with the initial state.
It depends on the way the meter and the system interact and the strength of their interaction.
The time during which the two parts evolve together is also taken into account. This quantum
treatment gives an entanglement between the two subsystems but a projection is still necessary,
in the end, to select one of the possibilities of the superposition.

Any usual projective measurement can be described in this scheme. Moreover, a more inter-
esting behaviour appears when considering a weak coupling between the system and the meter.
In this case, the information extracted from the system is small but its state is only slightly
perturbed instead of the projection onto the corresponding eigenvector. This is the basis of
a weak measurement [2, 3, 4, 5]. Performing it in a clever way, with pre- and post-selection,
allows to gather meaningful information about the system while keeping it largely undisturbed
(before post-selection). The advantage of a slight perturbation of the state is that it leads to
the possibility to measure non-commuting observables (usually not possible in a strong mea-
surement). This property is for example used to determine the average trajectories of photons
in a two-slit interferometer [10].

Bryan Renard - Master’s thesis University of Namur



2 WEAK MEASUREMENTS 4

More precisely, a post-selected weak measurement of an operator Â depends on a weak
value [2, 3, 4, 5]. As we shall see, this quantity can exceed the range of the eigenvalues of the
operator or be complex; it is then called an anomalous weak value. The amplification effect,
appearing for large weak values, is used in experiments to detect minute phenomena such as the
spin Hall effect [8] or to design very sensitive experiments [6, 7]. Complex weak values allow to
perform quantum tomography of states [9]. Paradoxical behaviours can also be studied (three-
box paradox [12], Cheshire cat paradox [11], pigeonhole paradox [25]). Weak measurements
provide insight into the foundations of quantum physics. Anomalous weak values manifest for
example the contextuality of quantum mechanics [13].

2.3 von Neumann model of measurement

The von Neumann model inserts the influence of the measurement apparatus in the quantum
formalism [4, 5]. Consider the system S and the meterM. The objective is to entangle the two
in order to correlate the measure of the operator Â on the system and the readout performed
on the meter. We assume that the system and the meter interact from t = 0 to t = T .

Proposition 2.1: von Neumann measurement [3, 4, 5]

Consider the initial system state |ψi〉 and the initial meter state |φ〉. The interaction
couples the system operator Â with the momentum meter operator p̂ through

Ĥint = g(t)Â⊗ p̂,

with a coupling g(t) depending on time and equal to zero out of the range [0, T ]. The
total coupling strength is γ =

´ T
0
g(t)dt and |ψi〉 =

∑
i αi |ai〉 so that the final joint state

is
|Ψ〉 =

ˆ
dx |x〉

∑
i

αiφ(x− γai) |ai〉

Proof. The total Hamiltonian describing the evolution of the state and the meter is

Ĥ = ĤS + ĤM + Ĥint (2.2)

The Hamiltonians ĤS and ĤM give the free evolution of the system and the meter, respec-
tively. After the weak measurement, the readout of the meter is done. The free evolution of the
system is therefore not important, as long as the property Â of the system doesn’t change with
time. The Hamiltonian ĤS is consequently neglected. The evolution of the meter is also not
taken into account. It could be considered through time-dependant operators in the Heisenberg
representation but in the limit of a short interaction time, it is negligible [4, 5].

The evolution of the system is therefore directed by the unitary operator

Û = e−
i
~
´ T
0 Ĥdt = e−

i
~
´ T
0 Ĥint(t)dt = e−

i
~
´ T
0 g(t)dtÂ⊗p̂ = e−

i
~γÂ⊗p̂. (2.3)

The joint state |Ψ〉 after the interaction of the system |ψi〉 and the meter |φ〉 is

|Ψ〉 = Û (|ψi〉 ⊗ |φ〉) . (2.4)

Bryan Renard - Master’s thesis University of Namur



2 WEAK MEASUREMENTS 5

The eigenvectors |ai〉 of the operator Â form a basis of the system state. The initial state
|ψi〉 is written in this basis,

|ψi〉 =
∑
i

αi |ai〉 . (2.5)

Therefore, the joint state after the application of the evolution operator is

|Ψ〉 = e−
i
~γÂ⊗p̂

(∑
i

αi |ai〉

)
⊗ |φ〉 =

∑
i

αie
− i

~γaip̂ |ai〉 ⊗ |φ〉 . (2.6)

In the x basis of the meter, we get a shift of the pointer state,

|Ψ〉 =

ˆ
dx |x〉 〈x|Ψ〉 =

ˆ
dx |x〉

∑
i

αie
− i

~γaip̂φ(x) |ai〉 =

ˆ
dx |x〉

∑
i

αiφ(x− γai) |ai〉 (2.7)

by the definition of the translation operator.

This theorem shows that the joint state after the interaction is in a quantum superposition.
Thus the meter and system are entangled. Coupling the meter and the system yields a shift in
the x coordinate of the meter state, directly proportional to the eigenvalues of Â.

Consider that the meter φ(x) is initially in the ground state of a harmonic oscillator,

φ(x) =
1

4
√
π
√
σ
e−

x2

2σ2 , (2.8)

It is the square root of a Gaussian distribution centered in x = 0 and of deviation 1
2
σ. If γ

is large with respect to the deviation, as illustrated in Figure 1(a), the Gaussian distributions
do not overlap. This figure shows the distribution of probability of the meter measurement, de-
pending on the position x. The experimenter can clearly identify each one of the distributions.
Since the link between the Gaussian distributions and the eigenvalues is clear, the experi-
menter can know the eigenvalue obtained. The system state is projected on the corresponding
eigenvector, it is a strong measurement. However, if γ is small, there is overlap between the
distributions, as illustrated in Figure 1(b). The distribution of probability is shown with the
red line. The experimenter cannot identify the different Gaussians. The system state is not
projected on a single eigenvector but on a mixture of the eigenvectors corresponding to the pos-
sible eigenvalues. We have what is called a weak measurement (without post-selection). Note
that in practice, a weak measurement is such that the Gaussians of Figure 1(b) are completely
merged and only the average value can be obtained. The representation corresponds to an
intermediate measurement but is useful to show the idea.

If the coupling strength goes to zero, then the meter is nearly unmodified and the system
is also barely disturbed. But as the coupling grows, the perturbation grows as well. A good
condition to decide that a measurement is strong is, for a Gaussian distribution,

|γ|∆a� σ2, (2.9)

with ∆a the minimal distance between the eigenvalues of Â [4].

Bryan Renard - Master’s thesis University of Namur
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Figure 1: Overlap of Gaussian distributions. (a) In the strong measurement case. (b) In the
weak measurement case. The red line is the sum of the individual Gaussians.

2.3.1 Example: Stern-Gerlach Experiment

The Stern-Gerlach experiment is an experiment used to measure the spin. A particle is sent
through a magnet creating a magnetic field B oriented in the z direction. The interaction
Hamiltonian is [26]

Ĥint = −µ∂Bz

∂z
σ̂z ⊗ ẑ. (2.10)

with µ the magnetic moment. The system is the spin, the meter is the profile of the beam and
the observable is Â = σ̂z. For a sufficiently strongly varying magnetic field, the two eigenvalues
of the spin operator (±1) are clearly separated and two beams are detected on the screen.

2.3.2 Example: Coupled Harmonic Oscillators

Another example is a bi-dimensional harmonic oscillator. Contrary to the previous example,
the two Hilbert spaces (system and meter) are continuous. The corresponding Hamiltonian is

Ĥ =
p̂2
x + p̂2

y

2m
+

1

2
mω2

0(x̂2 + Cŷ2). (2.11)

The two oscillators are decoupled. A magnetic field is applied to couple them through the
orbital momentum operator L̂z. The Hamiltonian becomes

Ĥ =
p̂2
x + p̂2

y

2m
+

1

2
mω2

0(x̂2 + Cŷ2)− aB(t)L̂z. (2.12)

The additional term is the Hamiltonian of interaction. The operator is L̂z = p̂y⊗ x̂− ŷ⊗ p̂x,
so the interaction Hamiltonian is

Ĥint = −aB(t)L̂z = −aB(t)(p̂y ⊗ x̂− ŷ ⊗ p̂x) = aB(t)ŷ ⊗ p̂x − aB(t)p̂y ⊗ x̂. (2.13)

The total coupling strength is γ =
´ T

0
aB(t)dt. For a constant magnetic field during a finite

time T , the coupling strength is γ = aB T . We consider that the oscillator in the x direction is
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2 WEAK MEASUREMENTS 7

the meter and the oscillator in the y direction is the system to probe. The coupling is slightly
different than the one used in Proposition 2.1 because the observable x̂ is also coupled with
the system. This part of the coupling will give a shift of the px coordinate of the meter. This
example will be used throughout the thesis to illustrate the concepts.

2.4 Weak post-selected measurement and weak value

Performing a weak measurement doesn’t allow to extract much interesting information except
the average value. However, there is a way to extract much more from a weak measurement, by
performing a post-selection on the system after the weak interaction with the meter [2, 3, 4, 5].
This post-selection consists of making a final projective measurement of another operator and
consider only one of the results. The others are discarded. The different steps of the mea-
surement are summarized on Figure 2. The pre-selection is the choice of the initial state of
the system, as is often done experimentally. The interaction, assumed to be weak, evolves the
states according to the Hamiltonian. The post-selection is then performed. The correlated
readout of the meter is done in parallel to measure the result of the experiment.

Pre-selection

Interaction

Post-selection

Readout

System

Meter

Figure 2: Steps of a weak measurement with pre- and post-selection.

The observations in a post-selected weak experiment depend on the weak value.

Definition 2.2: Weak Value [3, 4, 5]

Let |ψi〉 and |ψf〉 be the pre- and post-selected states of the weak measurement, respec-
tively. The system’s observable to measure is Â. The weak value is defined as

Aw =
〈ψf | Â |ψi〉
〈ψf |ψi〉

.

It is a complex number. The meter in a post-selected weak measurement is shifted by a
quantity determined from this value, according to the von Neumann model.

Proposition 2.2: Weak post-selected von Neumann measurement [3, 4, 5]

Consider the initial system state |ψi〉 and the initial meter state |φ〉. The post-selected
system state is |ψf〉. The interaction couples the system operator Â with the momentum
meter operator p̂ through

Ĥint = g(t)Â⊗ p̂,

with a coupling g(t) depending on time and equal to zero out of the range [0, T ]. The
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total weak coupling strength is γ =
´ T

0
g(t)dt. The final post-selected joint state is

|Ψj〉 = |ψf〉 〈ψf |Ψ〉 = |ψf〉 〈ψf |ψi〉 eγ Im(Aw)p̂

ˆ
dx |x〉φ(x− γ Re(Aw)).

Proof. The beginning of the proof is similar to Proposition 2.1. The post-selected joint state is

|Ψj〉 = |ψf〉 〈ψf |Ψ〉 = |ψf〉 〈ψf | e−
i
~γÂ⊗p̂ (|ψi〉 ⊗ |φ〉) . (2.14)

The coupling strength is small so the evolution operator is approximated to the first order,

e−
i
~γÂ⊗p̂ ≈ 1− i

~
γÂ⊗ p̂, (2.15)

so that

〈ψf |
(

1− i

~
γÂ⊗ p̂

)
|ψi〉 = 〈ψf |ψi〉 −

i

~
γ 〈ψf | Â |ψi〉 p̂ = 〈ψf |ψi〉

(
1− i

~
γAwp̂

)
. (2.16)

The weak value appears. By applying again the first-order approximation of the exponential
in reverse, we get

|Ψj〉 ≈ |ψf〉 〈ψf |ψi〉
(

1− i

~
γAwp̂

)
|φ〉 ≈ |ψf〉 〈ψf |ψi〉 e−

i
~γAw p̂ |φ〉 (2.17)

= |ψf〉 〈ψf |ψi〉 e−
i
~γAw p̂

ˆ
dx |x〉φ(x) (2.18)

= |ψf〉 〈ψf |ψi〉 e
1
~γ Im(Aw)p̂

ˆ
dx |x〉φ(x− γ Re(Aw)). (2.19)

This means that applying the post-selection after the weak measurement shifts the x coor-
dinate of the apparatus function in proportion to the real part of the weak value. A shift in the
momentum p of the meter is also produced, depending on the real and imaginary parts, as is
shown later in Proposition 2.3. For some applications, a weak measurement is used because an
amplification effect can appear. Indeed, choosing Re(Aw) large allows to get a greater shift of
the meter. To achieve this, the pre- and post-selections are typically chosen nearly orthogonal.
Indeed, the denominator of the weak value becomes very small in that case. This creates the
amplification effect, allowing to see a shift of the meter much larger than the range of eigen-
values of the operator Â. Some tiny effects, usually too small to be detected, can therefore be
detected using weak measurements [6, 7, 8].

However, the probability of observing a result is approximately

P = | 〈ψf |ψi〉 |2. (2.20)

For an amplification experiment, with nearly orthogonal initial and final states, it is a very
small number. In order to determine the weak value in an experiment, it is therefore necessary
to have enough data to observe the Gaussian distribution φ(x− γ Re(Aw)), so the experiment
needs to be reproduced identically a large number of times. The distribution is then averaged
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Weak measurement with post-selection

Figure 3: Shift of the Gaussian distribution for a post-selected weak measurement (coupling
strength γw) (red). It is compared to a strong measurement (coupling strength γs � γw) (blue).

to obtain the weak value. A representation is given in Figure 3. Compared to the range of
eigenvalues, the shift in a weak measurement can be much greater. However, the height of the
Gaussian is very small and to detect it, the experiment is repeated numerous times.

As said before, for a complex weak value, a shift appears in both the x and p coordinates.
To prove this, the following lemma is useful.

Lemma 2.1: Average value of the meter [3, 27]

Let |ψi〉 and |ψf〉 be the pre- and post-selected states of the weak measurement, respec-
tively. The initial meter state is |φ〉. The interaction couples the system operator Â with
the momentum meter operator p̂ through

Ĥint = g(t)Â⊗ p̂,

with a coupling g(t) depending on time and equal to zero out of the range [0, T ]. The
total weak coupling strength is γ =

´ T
0
g(t)dt. The post-selected joint state is

|Ψj〉 = |ψf〉 〈ψf | e−
i
~γÂ⊗p̂ (|ψi〉 ⊗ |φ〉) .

For any observable M̂ on the meter space, the average value in the post-selected state is

〈Ψj| 1̂s ⊗ M̂ |Ψj〉
〈Ψj|Ψj〉

= 〈φ| M̂ |φ〉+
i

~
γ Re(Aw) 〈φ| [p̂, M̂ ] |φ〉+

1

~
γ Im(Aw) 〈φ| {p̂, M̂} |φ〉

− 2

~
γ Im(Aw) 〈φ| M̂ |φ〉 〈φ| p̂ |φ〉 .

Proof. The objective is to evaluate the normalised average value 〈Ψj |1̂s⊗M̂ |Ψj〉〈Ψj |Ψj〉 of any operator
M̂ acting on the meter Hilbert space. From the proof of Proposition 2.2, the post-selected joint
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state |Ψj〉, for a weak coupling strength γ, is approximately equal to

|Ψj〉 = |ψf〉 〈ψf |ψi〉
(

1− i

~
γAwp̂

)
|φ〉 . (2.21)

Therefore, the denominator to the first order in γ is

〈Ψj|Ψj〉 = 〈ψf |ψf〉 | 〈ψf |ψi〉 |2 〈φ|
(

1 +
i

~
γAwp̂

)(
1− i

~
γAwp̂

)
|φ〉 (2.22)

= 〈ψf |ψf〉 | 〈ψf |ψi〉 |2
(
〈φ|φ〉 − i

~
γAw 〈φ| p̂ |φ〉+

i

~
γAw 〈φ| p̂ |φ〉

)
, (2.23)

and the numerator is

〈Ψj| 1̂s ⊗ M̂ |Ψj〉 = 〈ψf |ψf〉 | 〈ψf |ψi〉 |2 〈φ|
(

1 +
i

~
γAwp̂

)
M̂

(
1− i

~
γAwp̂

)
|φ〉 (2.24)

= 〈ψf |ψf〉 | 〈ψf |ψi〉 |2
(
〈φ| M̂ |φ〉 − i

~
γAw 〈φ| M̂p̂ |φ〉+

i

~
γAw 〈φ| p̂M̂ |φ〉

)
,

(2.25)

so that
〈Ψj| 1̂s ⊗ M̂ |Ψj〉
〈Ψj|Ψj〉

=
〈φ| M̂ |φ〉 − i

~γAw 〈φ| M̂p̂ |φ〉+ i
~γAw 〈φ| p̂M̂ |φ〉

〈φ|φ〉 − i
~γAw 〈φ| p̂ |φ〉+ i

~γAw 〈φ| p̂ |φ〉
. (2.26)

We assume that the initial meter state is normalised, 〈φ|φ〉 = 1. The approximation 1
1−x ≈

1 + x is used to obtain

〈Ψj| 1̂s ⊗ M̂ |Ψj〉
〈Ψj|Ψj〉

= 〈φ| M̂ |φ〉 − i

~
γAw 〈φ| M̂p̂ |φ〉+

i

~
γAw 〈φ| p̂M̂ |φ〉

+
i

~
γ(Aw − Aw) 〈φ| M̂ |φ〉 〈φ| p̂ |φ〉 . (2.27)

The weak value is decomposed as Aw = a+ ib to get

〈Ψj| 1̂s ⊗ M̂ |Ψj〉
〈Ψj|Ψj〉

= 〈φ| M̂ |φ〉+ i

~
γa 〈φ| [p̂, M̂ ] |φ〉+ 1

~
γb 〈φ| {p̂, M̂} |φ〉− 2

~
γb 〈φ| M̂ |φ〉 〈φ| p̂ |φ〉 .

(2.28)
Using the definition of the commutator and the anti-commutator gives the result.

The lemma points out that the average value of the meter observable M̂ (such as x̂ or
p̂) after interaction and post-selection is the initial average value shifted by a quantity pro-
portional to both the real and imaginary part of the weak value and to the commutator and
anti-commutator of M̂ with p̂. More particularly, the shift for M̂ = x̂ and M̂ = p̂ is studied.

Proposition 2.3: Shifts for a complex weak value [3, 27]

Let |ψi〉 and |ψf〉 be the pre- and post-selected states of the weak measurement, respec-
tively. The initial meter state is |φ〉. The interaction couples the system operator Â with
the momentum meter operator p̂ through

Ĥint = g(t)Â⊗ p̂,
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with a coupling g(t) depending on time and equal to zero out of the range [0, T ]. The
total weak coupling strength is γ =

´ T
0
g(t)dt. The post-selected joint state is

|Ψj〉 = |ψf〉 〈ψf | e−
i
~γÂ⊗p̂ (|ψi〉 ⊗ |φ〉) .

The average value of the meter observable x̂ is

〈Ψj| 1̂s ⊗ x̂ |Ψj〉
〈Ψj|Ψj〉

= 〈φ| x̂ |φ〉+ γ Re(Aw) +
m

~
γ Im(Aw)

dVarφ(x̂)

dt

and the shift for the meter observable p̂ is

〈Ψj| 1̂s ⊗ p̂ |Ψj〉
〈Ψj|Ψj〉

= 〈φ| p̂ |φ〉+
2

~
γ Im(Aw)Varφ(p̂).

Proof. First, the shift in p̂ is obtained by using Lemma 2.1 directly, writing Aw = a+ ib,

〈Ψj| 1̂s ⊗ p̂ |Ψj〉
〈Ψj|Ψj〉

= 〈φ| p̂ |φ〉+
2

~
γb 〈φ| p̂2 |φ〉 − 2

~
γb (〈φ| p̂ |φ〉)2 = 〈φ| p̂ |φ〉+

2

~
γbVarφ(p̂) (2.29)

The shift in x̂ is obtained in the same way, using the Lemma 2.1. The commutator [p̂, x̂] =
−i~ appears in the formula, as well as the anti-commutator {p̂, x̂}. The average value of p̂ is
also present. To obtain a shift depending only on x̂, these two quantities need to be calculated.
This is done using the Heisenberg equation of motion to get

dx̂

dt
=

p̂

m
,

dx̂2

dt
=
p̂x̂+ x̂p̂

m
, (2.30)

so the average value of the position operator is

〈Ψj| 1̂s ⊗ x̂ |Ψj〉
〈Ψj|Ψj〉

= 〈φ| x̂ |φ〉+
i

~
γa 〈φ| [p̂, x̂] |φ〉+

1

~
γb (〈φ| {p̂, x̂} |φ〉 − 2 〈φ| x̂ |φ〉 〈φ| p̂ |φ〉) (2.31)

= 〈φ| x̂ |φ〉+ γa+
1

~
γb

(
m
d 〈φ| x̂2 |φ〉

dt
− 2m 〈φ| x̂ |φ〉 d 〈φ| x̂ |φ〉

dt

)
(2.32)

= 〈φ| x̂ |φ〉+ γa+
m

~
γb
dVarφ(x̂)

dt
. (2.33)

The shift in the position of the meter is proportional to both the real and the imaginary
parts of the weak value. Moreover, it also depends on the variance of the initial distribution in
x̂. The shift in the momentum of the meter is proportional to the imaginary part of the weak
value as well as to the variance of the distribution of p̂.

2.4.1 Conclusion - Importance of weak measurements

Weak measurements have four important advantages:

1. They produce an amplification of the shift of the meter compared to a strong measure-
ment. This allows the detection of very tiny effects, such as the spin Hall effect of light
[8] (see example below).
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2. They keep the original system state mostly unperturbed. This allows to measure incom-
patible observables, or physical properties impossible to measure with a strong measure-
ment, such as the trajectories of photons in a two-slit interferometer [10] (see example
below).

3. They allow to probe paradoxical effects such as the three-box paradox [12] or the Cheshire
cat paradox [11]. This gives insights into the foundations of quantum physics.

4. They are complex, and both the real and imaginary parts can be measured. This allows to
perform direct tomography of quantum states [9] and determining their real and imaginary
parts effectively by measuring an adequate weak value.

2.4.2 Example: Stern-Gerlach Experiment

The Stern-Gerlach experiment is the original example of weak measurement proposed by
Aharonov in [26]. The experiment is the same as in Section 2.3.1, with a weak magnetic
field and additional pre-selection and post-selection. The beam is prepared with its spin ori-
ented |↑ξ〉 in the direction ξ at an angle α with respect to the x axis (pre-selection). The weak
measurement is performed in the z direction by a first magnet and a second one does a strong
measurement of the spin in the x direction, σ̂x. Only the eigenvalue +1 is kept (post-selection).
The experiment is represented in Figure 4. The weak value is

σzw =
〈↑x| σ̂z |↑ξ〉
〈↑x|↑ξ〉

= tan
α

2
. (2.34)

The coupling is made with the ẑ operator of the beam, so a shift of pz is observed after the
post-selection,

δpz = µ
∂Bz

∂z
tan

α

2
. (2.35)

This translates by a shift of the z coordinate after the free evolution up to the screen.

Figure 4: Experimental device for a post-selected weak measurement of the spin along the z
direction. [26]

2.4.3 Example: Weakly Coupled Harmonic Oscillators

Consider the previous example of Section 2.3.2. The interaction Hamiltonian is

Ĥint = aBŷ ⊗ p̂x − aBp̂y ⊗ x̂. (2.36)
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To the first order in γ = aB T , the two coupling terms are applied successively and no
superposition of the two couplings is taken into account. The first term of the coupling gives
the weak value of the operator y and the second term gives the weak value of the operator py,

yw =
〈ψf | ŷ |ψi〉
〈ψf |ψi〉

, pyw =
〈ψf | p̂y |ψi〉
〈ψf |ψi〉

. (2.37)

Consider the initial meter state φ as the ground state of the harmonic oscillator in the x
direction and its Fourier transform (see Appendix B),

φ(x) =
1

4
√
π
√
σm

e
− x2

2σ2m , φ(px) =

√
σm√
~ 4
√
π
e−

p2xσ
2
m

2~2 . (2.38)

with σ2
m = ~

mω0
. It is the square root of a Gaussian distribution of deviation ~

2σm
. From

Proposition 2.3, a shift is present in both meter distributions, depending on the two weak
values. To the first order, the shift corresponding to the two couplings is the sum of the two
individual shifts. Therefore, the shift of the x distribution considering the two weak values is

φ

(
x− γ Re(yw)− m

4~
γ Im(yw)

dσ2
m

dt
+

1

2~
γ Im(pyw)σ2

m

)
, (2.39)

and for the p distribution,

φ

(
px −

1

2~
γ Im(yw)

~2

σ2
m

+ γ Re(pyw) +
m

2~
γ Im(pyw)

d

dt

~2

σ2
m

)
. (2.40)

The parameter σm is constant, so the two derivatives are equal to zero. To calculate the
weak values, assume that the pre-selected state is the ground state ψ0 of the harmonic oscillator
in the y direction,

ψi(y) = ψ0(y) =
1

4
√
π
√
σs
e
− y2

2σ2s . (2.41)

with σ2
s = ~

Cmω0
The post-selected state is taken as a superposition of the ground state and the

first excited state of the harmonic oscillator,

ψf (y) = αψ0(y) + (1− α)ψ1(y), (2.42)

depending on a parameter α ∈ R (Figure 5). It is not normalised, but the normalisation factor
cancel in the weak value so it is not taken into account. The first excited state ψ1(y) is

ψ1(y) =
1
4
√
π

√
2

σs

y

σs
e
− y2

2σ2s . (2.43)

Both states are normalised, 〈ψ0|ψ0〉 = 〈ψ1|ψ1〉 = 1 and they are orthogonal to each other,
〈ψ1|ψ0〉 = 0. The parameter α controls the orthogonality between the pre-selection and the
post-selection,

〈ψf |ψi〉 = (α 〈ψ0|+ (1− α) 〈ψ1|) |ψ0〉 = α. (2.44)

The weak values yw and pyw are calculated in Appendix C and are equal to

yw =
(1− α)σs

α
√

2
, pyw =

i(1− α)~
α
√

2σs
. (2.45)
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The weak value yw is real while pyw is purely imaginary. Assuming that σs and σm are
constant in time, the shift of the meter is

φ

(
x− γ (1− α)σs

α
√

2
+ γ

(1− α)

2α
√

2σs
σ2
m

)
(2.46)

and represented in Figure 6. For α close to 1, the distribution is slightly shifted. However, for
α close to 0, the distribution is largely shifted. Indeed, a small α gives pre- and post-selected
states more orthogonal to each other, leading to the amplification effect of weak values. The
p coordinate of the meter (equation 2.40) depends on the imaginary part of yw and the real
part of pyw. They are zero, so the distribution is not shifted. Note that the experimenter can
isolate one part of the total shift or the other by selecting the parameters σm and σs. Indeed,
if σs � σm, the first shift is predominant and if σs � σm, then the second shift is measured.
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Figure 5: Representation of the final state ψf (non normalised) as a function of the parameter
α. The parameter varies the proximity to the ground state ψ0 or the first excited state ψ1.
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Figure 6: Shift of the meter state for a weak post-selected measurement. Each color is associated
to a different parameter α, controlling the orthogonality between the pre- and the post-selection.

2.5 Applications

Weak measurements, more than a theoretical phenomenon, have been observed experimentally.
Even if their interpretation is still subject to caution, their existence and usefulness is unde-
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niable. Experimenters are now able to use them at their advantage, and the two following
examples illustrate the experimental use of weak measurements.

2.5.1 Spin Hall effect of light

The spin Hall effect of light arises when a beam passes through an interface, typically air-
glass for example. The initial beam, assumed to be linearly polarised, is split into two slightly
displaced beams. They are respectively left- and right-circularly polarised. The phenomenon
originates from the spin-orbit interaction and is illustrated in Figure 7a. The shift is only of a
fraction of the wavelength. For a He-Ne laser beam, for example, the shift can be of the order
of 10 nm. Experimentally, such a small shift is very complex to detect.

Weak measurements, by their amplification properties, allow to put into evidence the shift
[8]. Indeed, the spin Hall effect amounts to a weak measurement of the spin component along
the z direction, σ̂z. The evolution is given by e−iδσ̂z k̂y , with k̂y the transverse momentum and
δ the shift of the beams from the spin Hall effect of light.

The meter is the transverse mode and the system is the polarisation of the light beam. The
simplified experimental setup is shown in Figure 7b, with polarisers performing the pre- and
post-selections. The pre-selection is the horizontal polarisation state |H〉, and the post-selection
is a nearly vertical state |V ±∆〉, with ∆ the angular distance to the exact vertical state and
the perpendicularity of the pre- and post-selection. Expressed in the terms of the basis states
|+〉 = |H〉+i|V 〉√

2
and |−〉 = |H〉−i|V 〉√

2
of σ̂z, it is

|ψi〉 = |H〉 =
1√
2

(|+〉+ |−〉), (2.47)

|ψf〉 = |V ±∆〉 = −ie∓i∆ |+〉+ ie±i∆ |−〉 , (2.48)

They are nearly orthogonal, to have a great amplification effect. Indeed, the weak value is

(σz)w =
〈ψf | σ̂z |ψi〉
〈ψf |ψi〉

= −e
∓i∆ + e±i∆

e±i∆ − e∓i∆
= ±i cot ∆. (2.49)

For ∆ close to zero, the weak value is big. The shift in the meter is given by δ(σz)w
so measuring this shift, big enough to be detected because of the weak value amplification,
allows to recover the strength δ of the coupling. The shift coming from the spin Hall effect of
light is therefore measured. This experiment increases the effect by an order of 104 [8]. The
experimental results are quite close to the theoretical expectations.

2.5.2 Trajectories in a two-slit interferometer

The two-slit interferometer is a well-known experiment evidencing the wave propagation of light
as well as its particle behaviour. The principle of the experiment is simple. A beam is sent
through a plate with two parallel slits. The light goes through and an interference pattern is
observed on a screen behind the slits. The interference shows that the light propagates like
a wave. However, the experiment can be made photon by photon, detected individually on
the screen, evidencing the particle aspect of light. The experiment therefore shows the wave-
particle duality of light. Moreover, if one put a sensor at the slit exits, then the interference
pattern disappears. Indeed, the measurement projects the state of the photon.
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(a) Spin Hall effect at an air-glass interface.
The initial beam is splitted into two slightly
shifted ones with orthogonal polarisation. [8]

Polarizers

Detector

(b) Experimental setup to highlight the spin Hall ef-
fect of light [2]. Polarisers perform the pre- and post-
selections, and the effect takes place in the prism. [2]

Figure 7: Quantum spin Hall effect of light

However, weak measurements only slightly disturb the initial state, so they could be used
to determine the average trajectory of a photon from the slits to the screen [10]. The system is
the transverse mode of the beam and the meter is the polarisation. In this way, the weak value
of the transverse momentum k̂x is measured at a given distance from the slits. The average
trajectory is then extrapolated, according to the weak value, up to a slightly further distance
from the slits where the measurement is performed again. By this process, the average trajec-
tories of the photons can be obtained.

The Hamiltonian of interaction is Ĥint = γk̂xŜ with Ŝ = ~
2
(|H〉 〈H| − |V 〉 〈V |) = ~

2
σ̂z acting

on the polarisation. The shift will appear on the phase of the state. The initial system state
is the wavefunction itself, |ψi〉 = |ψpath〉, and the post-selection is performed on |ψf〉 = |xf〉, a
given position in the experiment. The phase is shifted by an amount proportional to (kx)w and
this can be measured to reconstruct the trajectories.

The result of the experiment is given in Figure 8. The computed average trajectories are
shown. The interference pattern is clearly visible at the end, and it seems that the upper
(bottom) part of the photons on the screen only comes from the upper (bottom) slit. This is
interesting because the trajectories observed correspond to those expected from the de Broglie-
Bohm interpretation of quantum physics. This interpretation gives back a localised position to
any quantum particle but the movement of the particle is dictated by a pilot wave. This is a
non-local deterministic (but statistical) theory, still subject to a lot of debate.

Figure 8: Two-slit interferometer and the trajectories measured using weak measurements. [28]
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3 Phase Space Formalism

3.1 Motivation

The Heisenberg and Schrodinger formulations of quantum mechanics are very efficient and are
widely used since the beginning of quantum physics to describe the mathematics surrounding
the theory. However, physically understanding the meaning of the different objects of the the-
ory is complex. Indeed, the theory describes wavefunctions defined in a Hilbert space, on which
act Hermitian operators [23]. These notions are far away from our classical R3 world.

One of the main problems comes from the uncertainty principle for x and p,

∆x∆p ∼ ~. (3.1)

This relation states that no one can know with infinite precision the two variables simulta-
neously [23]. This translates in the mathematical formalism, where for a given state |ψ〉, the
x representation ψ(x) or the p representation ψ(p) can be known, but never both simultaneously.

On another side, classical mechanics is generally described in phase space.

Definition 3.1: Phase space [15]

Consider a physical system presenting n degrees of freedom. The associated phase space
is a space of dimension n, where each degree of freedom is represented as an axis. Every
possible state of the system is a point in the phase space.

For example, chaotic systems, planetary orbits or oscillators are usually represented and
studied using phase spaces [15]. Indeed, these examples often only have the position and mo-
mentum as degrees of freedom, giving the phase space (x, p).

Quantum mechanics exposes many puzzling behaviours, and is complex to understand.
Therefore, having a quantum phase space description would get us closer to the common clas-
sical sense. This can bring new insights in the theory. To this aim, physicists developed such
a quantum phase space using quasi-probability distributions [29].

The idea lying behind their definition comes from statistical physics and the notion of
ensemble averages [19]. A statistical ensemble is defined by a probability density, Pcl(x, p),
acting on the phase space of the system. It is normalised,

˜
Pcl(x, p) = 1, and always positive.

The average value of a property Acl(x, p) is computed as

〈A〉 =

¨
Acl(x, p)Pcl(x, p)dxdp. (3.2)

The property is evaluated at every point of the phase space, depending on the probability
that the system is in the given (x, p) state, to get the average value. We want a similar
construction to hold in quantum physics. This means that we have to define some "probability
distribution" Pquant(x, p) such that, for an observable Â on the system,

〈A〉 =

¨
Aquant(x, p)Pquant(x, p)dxdp. (3.3)
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The factor Aquant(x, p) needs to be carefully defined and the distribution as well. The prob-
ability distribution describes the system in the phase space.

A great advantage is that it is much easier to compare classical and quantum physics, as
well as the transition between the two regimes. However, the quantum behaviour comes out at
some point and some properties of the probability distributions have to be relaxed. The passage
from quantum observables to classical functions is also not straightforward and different ways
of making it exist, giving different yet perfectly valid phase space descriptions of the system.
In this work, we will more particularly focus on the most common, the Wigner distribution.

3.2 Wigner distribution and Weyl transform

The Wigner distribution, for a given state ρ̂, represents the state in the phase space (x, p).

Definition 3.2: Wigner distribution [16, 17, 18, 19]

For a quantum state ρ̂, the Wigner distribution is

W (x, p) =
1

h

ˆ
e−

i
~py
〈
x+

y

2

∣∣∣ ρ̂ ∣∣∣x− y

2

〉
dy.

For a pure state, the density operator is ρ̂ = |ψ〉 〈ψ| so the Wigner function becomes

W (x, p) =
1

h

ˆ
e−

i
~pyψ

(
x+

y

2

)
ψ∗
(
x− y

2

)
dy. (3.4)

On the contrary, a mixed state is written as

ρ̂ =
∑
j

Pj |ψj〉 〈ψj| , (3.5)

with Pj being the probability linked to the pure state |ψj〉. By linearity, the Wigner function is

W (x, p) =
∑
j

PjWj(x, p), (3.6)

and is therefore the weighted sum of the Wigner distribution of each of the states |ψj〉 composing
the mixed state. An equivalent writing of the distribution depending on the p basis exist,

W (x, p) =
1

h

ˆ
e
i
~xu
〈
p+

u

2

∣∣∣ ρ̂ ∣∣∣p− u

2

〉
du. (3.7)

It can also be noted that the wavefunction is found back from the Wigner distribution by

ψ(x) =
1

ψ∗(0)

ˆ
W
(x

2
, p
)
e
i
~pxdp. (3.8)

where the prefactor 1
ψ∗(0)

is determined by the normalisation condition.

We have a description of a quantum state in phase space. To get a complete phase space
description of quantum physics, we also need to define the equivalent of an operator in phase
space. This is done using the Weyl transform.
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Definition 3.3: Weyl Transform [16, 18, 19]

For any operator Â acting on the Hilbert space, the phase space equivalent Ã(x, p) is the
Weyl transform of Â,

Ã(x, p) =

ˆ
e−

i
~py
〈
x+

y

2

∣∣∣ Â ∣∣∣x− y

2

〉
dy.

The Wigner function can be rewritten using the Weyl transform. Indeed, it is proportional
to the Weyl transform of the density operator ρ̂,

W (x, p) =
ρ̃

h
. (3.9)

For any operator Â, the average value can be calculated as in statistical physics, with the
Wigner distribution W (x, p) acting like a probability distribution and Ã(x, p) as the represen-
tation of the operator Â in phase space. To show this, the following lemma is necessary.

Lemma 3.1: Trace property of the Weyl transform [16, 17, 18]

For any operators Â and B̂, the following relation holds:

Tr
(
ÂB̂
)

=
1

h

¨
Ã(x, p)B̃(x, p)dxdp.

Proof. It is straightforward to show it using the definition of the Weyl transform. The relation
1
h

´
eipy/~dp = δ(y) is used to go from the first to the second line 1.

1

h

¨
Ã(x, p)B̃(x, p)dxdp =

1

h

˘
e−

i
~pye−

i
~py
′
〈
x+

y

2

∣∣∣ Â ∣∣∣x− y

2

〉〈
x+

y′

2

∣∣∣∣ B̂ ∣∣∣∣x− y′

2

〉
dxdpdydy′

(3.10)

=

˚
δ(y + y′)

〈
x+

y

2

∣∣∣ Â ∣∣∣x− y

2

〉〈
x+

y′

2

∣∣∣∣ B̂ ∣∣∣∣x− y′

2

〉
dxdydy′ (3.11)

=

¨ 〈
x+

y

2

∣∣∣ Â ∣∣∣x− y

2

〉〈
x− y

2

∣∣∣ B̂ ∣∣∣x+
y

2

〉
dxdy (3.12)

=

¨
〈u+ y| Â |u〉 〈u| B̂ |u+ y〉 dudy u = x− y

2
(3.13)

=

¨
〈v| Â |u〉 〈u| B̂ |v〉 dudv v = u+ y (3.14)

=

ˆ
〈v| ÂB̂ |v〉 dv = Tr

(
ÂB̂
)
. (3.15)

This lemma is used to compute the average value of any operator Â, from its Weyl transform
Ã(x, p) in phase space.

1It will be used in multiple proofs of the thesis
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Proposition 3.1: Average value [16, 17, 18]

For any operator Â, the average value of Â in phase space is

〈A〉 =

¨
W (x, p)Ã(x, p)dxdp.

Proof. From Lemma 3.1 and the writing of the Wigner distribution of the Weyl transform of ρ̂
(Equation (3.9)), we find

¨
W (x, p)Ã(x, p)dxdp =

¨
ρ̃

h
Ã(x, p)dxdp = Tr

(
ρ̂Â
)

= 〈A〉 . (3.16)

As will be detailed later, the Wigner distribution is not the only distribution able to describe
the quantum state in phase space. However, it has interesting properties that distinguish it
from the other distributions and make it the most studied one in literature. More precisely, it
always gives the correct marginals over x and p and it is real. The other distributions do not
necessarily have these properties.

Proposition 3.2: Properties of the Wigner distribution [16, 17, 18]

The Wigner distribution

1. gives the correct marginal distributions of x and p,
ˆ
W (x, p)dp = 〈x| ρ̂ |x〉 = |ψ(x)|2,

ˆ
W (x, p)dx = 〈p| ρ̂ |p〉 = |ψ(p)|2;

2. is normalised, ¨
W (x, p)dxdp = 1;

3. is real;

4. can take negative values.

The Wigner distribution is therefore a quasi-probability, differing from a classical prob-
ability because of the negative values that it can take.

The proof is given in Appendix D. Each point is proven using the definition of the Wigner
distribution.

An important feature of the Wigner distribution is its translation property. The displace-
ment of the quantum state ψ(x) to ψ(x − b) changes W (x, p) to W (x − b, p) in phase space,
and equivalently for the momentum coordinate.

Lastly, an equivalent of the Schrödinger equation is defined. It gives the time evolution of
the Wigner distribution in phase space.
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Proposition 3.3: Time evolution in phase space [16, 17, 19, 30]

The evolution of the Wigner distribution in phase space is given by the differential equa-
tion

∂W

∂t
= − p

m

∂W (x, p)

∂x
+
∞∑
s=0

(−~2)s
1

(2s+ 1)!

(
1

2

)2s
∂2s+1U(x)

∂x2s+1

(
∂

∂p

)2s+1

W (x, p),

for a potential U(x) acting on the system.

This equation describes how the Wigner distribution evolves in time in the phase space.
This is a quite complex differential equation, it is therefore often more practical to study the
evolution using the Schrödinger equation and then compute the Wigner distribution of the
resulting state.

3.2.1 Example: Harmonic Oscillator

Consider a harmonic oscillator. The ground state and the first excited states are

ψ0(x) =
1

4
√
π
√
σ
e−

x2

2σ2 , ψ1(x) =
1
4
√
π

√
2

σ

x

σ
e−

x2

2σ2 , (3.17)

with σ = ~
mω

. The Wigner distribution of the ground state is, using the Appendix A,

W0(x, p) =
1

h

ˆ
e−

i
~py
〈
x+

y

2

∣∣∣ψ0

〉〈
ψ0

∣∣∣x− y

2

〉
dy (3.18)

=
1

h

ˆ
e−

i
~py

1
4
√
π
√
σ
e−

(x+ y2 )2

2σ2
1

4
√
π
√
σ
e−

(x− y2 )2

2σ2 dy (3.19)

=
1

hσ
√
π

ˆ
e−

i
~pye−

x2+
y2

4
σ2 dy =

1

hσ
√
π
e−

x2

σ2

ˆ
e−

i
~pye−

y2

4σ2 dy (3.20)

=
1

hσ
√
π
e−

x2

σ2 2σ
√
πe−

p24σ2

4~2 =
2

h
e−

x2

σ2 e−
p2σ2

~2 . (3.21)

The Wigner distribution of the first excited state can be calculated in the same way and is

W1(x, p) =
2

h

(
−1 + 2

σ2p2

~2
+ 2

x2

σ2

)
e−

x2

σ2 e−
p2σ2

~2 . (3.22)

The two distributions are represented in the upper part of Figure 9. The ground state of the
harmonic oscillator, on the left, is of minimal uncertainty. It is therefore the "most classical"
state we can have, called a coherent state. The first excited state, on the right, is not a coherent
state. There is clearly some quantum behaviour visible from the negative part.

The two lower figures are pure and mixed states constructed from two displaced ground
states of the harmonic oscillator. For the mixed state Wmixed(x, p), the Wigner distribution of
the two shifted ground states of the harmonic oscillator are summed,

Wmixed(x, p) =
1

2
(W0(x− a, p) +W0(x+ a, p)) , (3.23)

with a the shift considered. The resulting state is mixed. Indeed, it is the Wigner distribution
of the sum of two density operators, resulting in a mixed state in most cases. The two parts
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Figure 9: Representation of Wigner functions. On the up left is the Wigner function of the
ground state of the harmonic oscillator. On the up right is the Wigner function of the first
excited state of the harmonic oscillator. On the bottom left is the Wigner function of a mixed
state (a classical statistical distribution of the two states) and the one from a pure state is given
on the bottom right. The pure state corresponds to the superposition of the two parts of the
mixed state.

visible correspond to two coherent states, constructed from a shift of the initial ground state.
They are both of minimal uncertainty. They evolve during time by describing an ellipse in
phase space. This corresponds to the movement of a classical harmonic oscillator with the
minimal quantum uncertainty.

In the pure case Wpure(x, p), the two shifted wavefunctions ψ0(x − a) and ψ0(x + a) are
added, normalised and the associated Wigner function is shown,

Wpure(x, p) = W 1
N

(ψ0(x−a)+ψ0(x+a))(x, p). (3.24)

The total wavefunction is pure. The resulting Wigner distribution is very different from the
mixed one and exhibits non-classical behaviour, it is not a coherent state. It is clearly visible
in the middle of the distribution, resulting from the coupling between the two states. The
Wigner distribution takes negative values and this feature is essential in describing quantum
superposition [20]. Indeed, in a classical situation, the probability distribution is always posi-
tive, like for the mixed state. However, this example shows that the Wigner distribution is a
quasi-probability and the negative values come from the quantum behaviour.

3.3 Other phase space distributions

In the previous sections, were introduced the Wigner distribution and the Weyl transform.
Other definitions of the phase space distribution and the operator correspondence exist. This
non-uniqueness is closely related to what is called the ordering problem [17, 18, 19, 30]. This
problem appears when considering the way to link classical functions to quantum observables
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(or quantum observables to classical functions).

For example, the quantum observable x̂ is simply given by x in phase space. It is the same
for p̂, that is given by p. For any observable Â(x̂, p̂) linear in x̂ and p̂, the corresponding classical
function is directly A(x, p) by "removing the hat". However, for more complex situations, the
ordering problem appears. If we have Â(x̂, p̂) = x̂p̂, the instinctive mapping is A(x, p) = xp
(standard ordering) [17, 18]. However, we can write

Â(x̂, p̂) = x̂p̂ = p̂x̂− [p̂, x̂] = p̂x̂+ i~. (3.25)

By replacing the operators by phase space variables, we get A(x, p) = px+ i~ (anti-standard
ordering). A third way to write it is

Â(x̂, p̂) =
1

2
(x̂p̂+ p̂x̂) +

1

2
i~, (3.26)

that gives a third different mapping to phase space, A(x, p) = xp+ 1
2
i~. It is called symmetric

ordering. We see that the mappings are different, because the operators do not commute
(unlike their classical equivalents in classical physics). This is called the ordering problem. The
ordering chosen is important to determine the phase space distribution used. To understand
this, we evaluate the Weyl transform of the operator Â = x̂p̂ [17]. Using that p̂ =

´
p′ |p′〉 〈p′|

and 〈x|p〉 = 1√
h
e
i
~xp, we get

Ã(x, p) =

ˆ
e−

i
~py
〈
x+

y

2

∣∣∣ x̂p̂ ∣∣∣x− y

2

〉
dy (3.27)

=

ˆ
e−

i
~py
(
x+

y

2

)〈
x+

y

2

∣∣∣ p̂ ∣∣∣x− y

2

〉
dy (3.28)

=

¨
e−

i
~py
(
x+

y

2

)
p′
〈
x+

y

2

∣∣∣p′〉〈p′∣∣∣x− y

2

〉
dydp′ (3.29)

=
1

h

¨
e−

i
~py
(
x+

y

2

)
p′e

i
~ (x+ y

2
)p′e−

i
~ (x− y

2
)p′dydp′ (3.30)

=
1

h

¨
p′e−

i
~ (p−p′)y

(
x+

y

2

)
dydp′ (3.31)

=
x

h

¨
p′e−

i
~ (p−p′)ydydp′ +

1

2h

¨
yp′e−

i
~ (p−p′)ydydp′ (3.32)

= x

ˆ
p′δ(p− p′)dp′ + i

4π

¨
p′
∂

∂p

(
e−

i
~ (p−p′)y

)
dydp′ (3.33)

= xp+
i

4π

∂

∂p

¨
p′e−

i
~ (p−p′)ydydp′ = xp+

i~
2

∂

∂p

ˆ
p′δ(p− p′)dp′ (3.34)

= xp+
i~
2

∂p

∂p
= xp+

i~
2
. (3.35)

We obtain a correspondence with the symmetric ordering. The Weyl transform, and con-
sequently the Wigner distribution, correspond to this ordering. More formally, let’s take an
arbitrary classical function A(x, p) [19]. Its Fourier transform α(σ, τ) on phase space is

A(x, p) =

¨
α(σ, τ)e

i
~ (σx+τp)dσdτ. (3.36)

We want to find its operator equivalent. We can choose

Â(x̂, p̂) =

¨
α(σ, τ)e

i
~ (σx̂+τ p̂)dσdτ. (3.37)
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This choice leads to the Wigner distribution. The Proposition 3.1 for e
i
~ (σx̂+τ p̂) is rewritten

in the following way, replacing the Wigner distribution by an unknown distribution P (x, p),

Tr
(
ρ̂e

i
~ (σx̂+τ p̂)

)
=

¨
P (x, p)e

i
~ (σx+τp)dxdp. (3.38)

The evaluation of the average value of the exponential operator is important to know the
average value of the operator Â. Moreover, this operator defines displacement operators from
which are constructed coherent states by translations in phase space. We will show that the
expression works only if P (x, p) = W (x, p). The exponential of commutators is evaluated using
the BCH (Baker-Campbell-Hausdorff) formula,

e
i
~ (σx̂+τ p̂) = e

i
~σx̂e

i
~ τ p̂e

i
2~στ . (3.39)

Therefore, spotting the translation operator e
i
~ τ p̂ |ξ〉 = |ξ − τ〉, we get

Tr
(
ρ̂e

i
~ (σx̂+τ p̂)

)
= e

i
2~στ Tr

(
ρ̂e

i
~σx̂e

i
~ τ p̂
)

= e
i
2~στ

ˆ
〈ξ| ρ̂e

i
~σx̂e

i
~ τ p̂ |ξ〉 dξ (3.40)

= e
i
2~στ

ˆ
〈ξ| ρ̂e

i
~σ(ξ−τ) |ξ − τ〉 dξ = e−

i
2~στ

ˆ
e
i
~σξ 〈ξ| ρ̂ |ξ − τ〉 dξ (3.41)

=

ˆ
e
i
~σx
〈
x+

τ

2

∣∣∣ ρ̂ ∣∣∣x− τ

2

〉
dx x = ξ − τ

2
(3.42)

=

¨
e
i
~σxδ(y − τ)

〈
x+

y

2

∣∣∣ ρ̂ ∣∣∣x− y

2

〉
dxdy (3.43)

=
1

h

˚
e
i
~p(τ−y)e

i
~σx
〈
x+

y

2

∣∣∣ ρ̂ ∣∣∣x− y

2

〉
dxdpdy (3.44)

=

¨
W (x, p)e

i
~ (σx+τp)dxdp, (3.45)

by setting

W (x, p) =
1

h

ˆ
e−

i
~py
〈
x+

y

2

∣∣∣ ρ̂ ∣∣∣x− y

2

〉
dy (3.46)

as the Wigner function. So if we identify the operator e
i
~ (σx̂+τ p̂) to the classical function

e
i
~ (σx+τp), the Wigner distribution has to be used to compute the expectation value of any

observable. For different identifications of the exponential, we obtain other distributions with
different properties (Table 1). A more general result gives the distribution depending on a
function f(σ, τ) [30],

Tr
(
ρ̂e

i
~ (σx̂+τ p̂)f(σ, τ)

)
=

¨
P f (x, p)e

i
~ (σx+τp)dxdp, (3.47)

with
P f (x, p) =

1

h2

˚ 〈
x′ +

τ

2

∣∣∣ ρ̂ ∣∣∣x′ − τ

2

〉
f(σ, τ)e

i
~σ(x′−x)e−

i
~ τpdσdτdx′. (3.48)

If we choose f(σ, τ) = 1, we get back the Wigner distribution. Other choices lead to
other distributions, summarised in Table 1. Each one is specific in the properties it exhibits
(Table 2). For example, the standard-ordered and the anti-standard (Kirkwood) distributions
are not real, contrary to the Wigner distribution. The Husimi distribution is always real
and positive, an advantage compared to the Wigner distribution, but doesn’t give the proper
marginal distributions.
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Distribution functions Rules of association f

Wigner Weyl (eiξq+iηp ↔ eiξq̂+iηp̂) 1
standard-ordered standard (eiξq+iηp ↔ eiξq̂eiηp̂) e−i~ξη/2

antistandard-ordered (Kirkwood) antistandard (eiξq+iηp ↔ eiηp̂eiξq̂) ei~ξη/2

normal-ordered (Glauber-Sudarshan) normal e
~ξ2
4mω

+ ~mωη2
4

antinormal-ordered antinormal e−
~ξ2
4mω
− ~mωη2

4

generalised antinormal-ordered (Husimi) generalised antinormal e−
~ξ2
4mκ
− ~mκη2

4

Table 1: Quasi-probability distributions, rules of association and f functions. [30]

Distribution function Properties
Bilinear Real Nonnegative Marginal Complete,

distributions Orthonormal
Wigner yes yes no yes yes

standard-ordered yes no no yes yes
antistandard-ordered yes no no yes yes

normal-ordered yes yes no no no
antinormal-ordered yes yes yes no no

Husimi yes yes yes no no

Table 2: Properties of the different quasi-probability distributions. [30]

3.4 Cross-Wigner distribution

The Weyl transform of an operator of the form ρ̂ψ,φ = |ψ〉 〈φ| is called the cross-Wigner distri-
bution between the two pure states. It is useful when describing interferences between the states.

Definition 3.4: Cross-Wigner Distribution [31, 32]

For two pure states |ψ〉 and |φ〉, the cross-Wigner distribution is

Wψ,φ(x, p) =
1

h

ˆ
e−

i
~pyψ

(
x+

y

2

)
φ∗
(
x− y

2

)
dy.

The cross-Wigner distribution appears when computing the Wigner distribution of the sum
of two wavefunctions ψ and φ. Starting from now, we will specify by a subscript the wavefunc-
tion to which the Wigner function is linked.

Proposition 3.4: Wigner distribution of a sum of pure states [31, 32]

The Wigner distribution of 1√
N

(|ψ〉+ |φ〉) is

Wψ+φ(x, p) =
1

N
Wψ(x, p) +

1

N
Wφ(x, p) +

2

N
Re(Wψ,φ(x, p)).

with N = 2 + 〈ψ|φ〉+ 〈φ|ψ〉 a normalisation factor.
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Proof.

Wψ+φ(x, p) =
1

Nh

ˆ
e−

i
~py
〈
x+

y

2

∣∣∣ (|ψ〉+ |φ〉)(〈ψ|+ 〈φ|)
∣∣∣x− y

2

〉
dy (3.49)

=
1

Nh

ˆ
e−

i
~py
(
ψ
(
x+

y

2

)
+ φ

(
x+

y

2

))(
ψ∗
(
x− y

2

)
+ φ∗

(
x− y

2

))
dy (3.50)

=
1

Nh

ˆ
e−

i
~py
(
ψ
(
x+

y

2

)
+ φ

(
x+

y

2

))(
ψ∗
(
x− y

2

)
+ φ∗

(
x− y

2

))
dy (3.51)

=
1

N
Wψ(x, p) +

1

N
Wφ(x, p) +

1

Nh

ˆ
e−

i
~pyψ

(
x+

y

2

)
φ∗
(
x− y

2

)
dy

+
1

Nh

ˆ
e−

i
~pyφ

(
x+

y

2

)
ψ∗
(
x− y

2

)
dy (3.52)

=
1

N
Wψ(x, p) +

1

N
Wφ(x, p) +

1

Nh

ˆ
e−

i
~pyψ

(
x+

y

2

)
φ∗
(
x− y

2

)
dy

+
1

Nh

ˆ
e
i
~pyφ

(
x− y

2

)
ψ∗
(
x+

y

2

)
dy (y → −y) (3.53)

=
1

N
Wψ(x, p) +

1

N
Wφ(x, p) +

1

Nh

ˆ
e−

i
~pyψ

(
x+

y

2

)
φ∗
(
x− y

2

)
dy

+
1

Nh

(ˆ
e−

i
~pyψ

(
x+

y

2

)
φ∗
(
x− y

2

)
dy

)∗
(3.54)

=
1

N
Wψ(x, p) +

1

N
Wφ(x, p) +

2

N
Re(Wψ,φ(x, p)). (3.55)

The cross-Wigner distribution encodes an interference between the two states. In the ex-
ample of Figure 9 on the bottom left, the interference pattern appearing in the center is due
to the cross-Wigner distribution between the two Gaussian states. If ψ = φ, we get back the
usual Wigner function. The cross-Wigner distribution is however not normalised over the whole
phase space.

Proposition 3.5: Norm of the cross-Wigner distribution [31, 32]

The norm of the cross-Wigner distribution is the scalar product between the two states,
¨

Wψ,φ(x, p)dpdx = 〈φ|ψ〉 .

Proof.
¨

Wψ,φ(x, p)dpdx =
1

h

˚
e−

i
~pyψ

(
x+

y

2

)
φ∗
(
x− y

2

)
dydpdx (3.56)

=

¨
δ(y)ψ

(
x+

y

2

)
φ∗
(
x− y

2

)
dydx (3.57)

=

ˆ
ψ(x)φ∗(x)dx = 〈φ|ψ〉 . (3.58)
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If |ψ〉 = |φ〉, the norm equals to one as wanted for the Wigner function. Another interesting
property is that the cross-Wigner distribution corresponds to the Weyl transform of the operator
ρ̂ψ,φ = |ψ〉 〈φ|,

ρ̃ψ,φ(x, p) =

ˆ
e−

i
~py
〈
x+

y

2

∣∣∣ψ〉〈φ∣∣∣x− y

2

〉
dy =

ˆ
e−

i
~pyψ

(
x+

y

2

)
φ∗
(
x− y

2

)
dy = hWψ,φ(x, p).

(3.59)
Contrary to the Wigner distribution, the cross-Wigner distribution is not real, it can take

complex values. It is interesting to note that the cross-Wigner distribution is also used in the
classical theory of signal processing, as it is the Fourier transform of the ambiguity function.

3.4.1 Example: Harmonic Oscillator

Consider the ground state of the harmonic oscillator, ψ0(x). In the example of Section 3.2.1,
the Wigner distribution of the sum of two shifted wavefunctions, ψ0(x − a) and ψ0(x + a),
is evaluated. The representation of this state exhibits non-classical behaviour. This comes
from the cross-Wigner distribution of the two states, following Proposition 3.4. To show it, we
calculate the cross-Wigner distribution,

Wψ0(x−a),ψ0(x+a)(x, p) =
1

h

ˆ
e−

i
~pyψ0

(
x− a+

y

2

)
ψ0

(
x+ a− y

2

)
dy (3.60)

=
1

hσ
√
π

ˆ
e−

i
~pye−

(x−a+ y2 )2

2σ2 e−
(x+a− y2 )2

2σ2 dy (3.61)

=
2

hσ
√
π
e−

i
~2pa

ˆ
e−

i
~2py′e−

(x+y′)2

2σ2 e−
(x−y′)2

2σ2 dy′ (3.62)

=
2

hσ
√
π
e−

i
~2pae−

x2

σ2

ˆ
e−

i
~2py′e−

y′2

σ2 dy′ (3.63)

=
2

hσ
√
π
e−

i
~2pae−

x2

σ2 σ
√
πe−

p2σ2

~2 (3.64)

=
2

h
e−

i
~2pae−

x2

σ2 e−
p2σ2

~2 . (3.65)

The real part of the distribution is

Re
(
Wψ0(x−a),ψ0(x+a)(x, p)

)
=

2

h
cos

(
2pa

~

)
e−

x2

σ2 e−
p2σ2

~2 . (3.66)

It is represented in Figure 10. It is clear that it is exactly the middle of Figure 9, so the
cross-Wigner distribution is the origin of the interference visible in Figure 9.

4 Wigner Distribution on Curved Space

4.1 Motivation

Until now, the phase space introduced was the (x, p) space, for example in the situation of
a 1D harmonic oscillator (Section 3.2.1). The quasi-probability distribution can easily be
extended to Rn × Rn for a motion in an n-dimensional continuous space, with coordinates
(x1, x2, ..., xn, p1, p2, ..., pn). However, other scenarios might include different kinds of phase
spaces. For example, the phase space description of the spin cannot be defined using the
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Figure 10: Cross-Wigner distribution of two shifted ground states of the harmonic oscillator.

Wigner distribution, in the way they were defined at least. Moreover, the spin degree of free-
dom is a discrete system and the phase space description can thus be discrete as well2, in
opposition to the continuous variables considered until now [33, 34, 35].

A generalisation of the notion of phase space is therefore needed and is defined using the
concept of Lie groups [36, 37, 38]. In the context of this master’s thesis, we will apply this
generalisation process to curved configuration spaces [39]. Indeed, such spaces can appear when
considering, for example, constrained experiments. An example is the motion of a particle on
the surface of a sphere. It could describe the rotation or vibration of a molecule [40], or be
useful in the framework of transformation optics.

4.2 Lie algebra and Lie groups

The generalised phase space is constructed using Lie algebras and Lie groups.

Definition 4.1: Lie algebra [36, 37, 38]

A Lie algebra g is a finite-dimensional vector space on a fielda K defined with a Lie
bracket [., .] : g× g→ g such that ∀x, y, z ∈ g,∀a, b ∈ K,

1. The Lie bracket is bilinear,

[ax+ by, z] = a[x, z] + b[y, z] [z, ax+ by] = a[z, x] + b[z, y].

2. The Lie bracket is skew symmetric,

[x, y] = −[y, x].

3. The Lie bracket respects the Jacobi identity,

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

afor example, C or R.

2It is not studied here because of a lack of time but the concepts presented can be applied to that case.
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The skew symmetry implies that [x, x] = 0,∀x ∈ g. If for two elements x and y of g, [x, y] =
0, then the two elements are said to commute. An interesting example is the Heisenberg-Weyl
algebra used in quantum physics [36, 37, 38]. It is a Lie algebra generated by the commutator
of x̂ and p̂ as the Lie bracket, together with the identity,

[ix̂,−ip̂] = i~Î , [ix̂, i~Î] = 0, [−ip̂, i~Î] = 0. (4.1)

This Lie algebra is noted h. Any element of the algebra is given as a combination of these
three elements,

g = ia~Î + ip0x̂− ix0p̂ ∈ g. (4.2)

The concept of Lie algebra is closely related to Lie groups.

Definition 4.2: Lie group [36, 37, 38]

A Lie group G is a smooth manifold such that

1. G, equipped with a multiplication operation •, is a group (the multiplication is
associative, has an identity and an inverse element).

2. The product operation • : G × G → G and the map sending an element to its
inverse Inv : G→ G are smooth.

Any Lie group is associated to a Lie algebra. For a Lie algebra g, the associated matrix Lie
group G is given by the exponential map exp : g → G. This map is defined for any element
g ∈ g and for any t ∈ R as exp(tg).

The example of the Heisenberg-Weyl algebra h therefore translates to the Heisenberg-Weyl
group H, through the exponential map [36, 37, 38]. For any g ∈ h, an element of the group is
given by

eg = eiaÎ+ip0x̂/~−ix0p̂/~ = eiaei(p0x̂−x0p̂)/~ = eiaD̂(x0, p0), (4.3)

with D̂(x0, p0) the displacement operator. This operator is generally used in quantum physics
to apply a translation to a given state. Applied on the ground state of the harmonic oscillator,
it gives a coherent state. Any element of the Heisenberg-Weyl group is therefore described by
the three parameters a, x0 and p0 and thus H ≈ R × R2. The exponential eia encodes the
information about the non-commutativity (BCH formula). We can see that the exponential of
equation (3.38) reappears, motivating the interest to study it.

For position-momentum states, the Hilbert space is the set of square-integrable3 functions
L2. The set of displacement operators is an irreducible representation4 of the Heisenberg-Weyl
group [36, 37, 38] because the only subspaces invariant under the application of the displacement
operators are {0} and L2. Moreover, from the Stone-von Neumann theorem, it is the unique
irreducible representation of H up to an unitary transformation [36, 37, 38].

4.3 Generalisation of quasi-probability distributions

The phase space is generalised for any Lie group G. This gives a mathematical and abstract
phase space, that reduces to (x, p) in some cases.

3A function f(x) is square integrable if
´
|f(x)|2dx converges.
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Definition 4.3: Generalised phase space [41]

For a Lie group G of finite dimension and an isotropy subgroup K of G, the generalised
phase space X is the quotienta group X = G/K (= {gK : g ∈ G}).

aThe quotient group is the equivalence class of all the elements of G equal up to the action of K.

Consider an irreducible representation4 T of G. For any g ∈ G and for a given reference
state |ψ0〉, it acts as

|ψg〉 = T (g) |ψ0〉 . (4.4)

The resulting state |ψg〉 is interpreted as a coherent state. The isotropy subgroup K is the
set of all the elements k in G that leave any state |ψ0〉 unchanged up to a phase factor,

T (k) |ψ0〉 = eiφ(k) |ψ0〉 . (4.5)

The subgroup K therefore consists of all the global phase transformations. This is why
G/K is used as the phase space, omitting the information about the global phase. From the
definition of a quotient space, for any element Ω ∈ X we have g = Ωk with k ∈ K. Therefore,

T (g) |ψ0〉 = T (Ω)T (k) |ψ0〉 = eiφ(k)T (Ω) |ψ0〉 = eiφ(k) |ψΩ〉 . (4.6)

The coherent state is uniquely defined with Ω, and two different elements of G with the
same Ω will give the same coherent state, up to a global phase.

To illustrate these concepts, let’s get back to the Heisenberg-Weyl group H. For any ele-
ment of the group, described by the three parameters a, x0, p0, the irreducible representation is
the displacement operator eiaD̂(x0, p0). The isotropy subgroup is the multiplication by a phase
factor, so it is all the elements in the group such that x0 = 0 and p0 = 0. These elements only
apply a global phase, given by a. Therefore, the coherent states are described by Ω = (x0, p0)
on the phase space H/R = (R× R2)/R = R2. The definition of the generalised phase space is
therefore consistent with the usual phase space.

On this generalised phase space, a generalised Wigner distribution as well as a generalised
Weyl transform can be defined, through the concept of Stratonovich-Weyl image.

Definition 4.4: Generalised phase space transform [41]

Let X be the phase space, Â an operator and dµ the invariant integration measure on
X. The phase space description of the operator is the Stratonovich-Weyl image F (s)

A of
Â. For any Ω ∈ X, five conditions are fulfilled:

1. Linearity: The map from Â to F (s)
A is linear.

2. Reality:
F

(s)
A (Ω) =

(
F

(s)

A†
(Ω)
)∗
.

3. Normalisation:
Tr
(
Â
)

=

ˆ
X

F
(s)
A (Ω)dµ(Ω).

4A representation is irreducible if the only subspaces invariant under the application of T are {0} and G.
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4. Traciality:

Tr
(
ÂB̂
)

=

ˆ
X

F
(s)
A (Ω)F

(−s)
B (Ω)dµ(Ω).

5. Covariance: For any g ∈ G,

F
(s)
g·A(Ω) = F

(s)
A (g−1Ω), g · A = T (g)ÂT−1(g).

The reality condition means that if Â is Hermitian (Â = Â†), the distribution is real. The
traciality condition ensures the statistical interpretation, so that the average value of Â can be
calculated with an equivalent of the ensemble average on phase space, by taking B̂ = ρ̂. Lastly,
the covariance expresses that the phase space must get the symmetry of the initial quantum
system. For example, if Â = |ψ0〉 〈ψ0|, then g ·A = T (g) |ψ0〉 〈ψ0|T−1(g) = |ψg〉 〈ψg|. The phase
space description must therefore be the same as before, with an additional "translation" from
|ψ0〉 to |ψg〉.

A way to express the phase space transform is using the generalised Weyl rule, with the
Stratonovich-Weyl kernel.

Definition 4.5: Generalised Weyl rule [41]

For any Ω ∈ X and any operator Â, the generalised Weyl rule gives a generalised phase
space Weyl transform F

(s)
A by

F
(s)
A (Ω) = Tr

(
Â∆̂(s)(Ω)

)
,

with ∆̂(s)(Ω) an operator called the Stratonovich-Weyl kernel.

The image is effectively linear, the first condition is therefore fulfilled by construction. The
other conditions are translating to conditions on the kernel. The Weyl rule can be inverted, to
find the operator Â from F

(s)
A .

Proposition 4.1: Inverse of the generalised Weyl rule [41]

For any Stratonovich-Weyl image F (s)
A on the phase space X, the operator Â is obtained

using the inverse of the Weyl rule,

Â =

ˆ
X

F
(s)
A (Ω)∆̂(−s)(Ω)dµ(Ω).

Proof. Consider an arbitrary operator Â. From the traciality rule and Definition 4.5, we have

Tr
(
ÂB̂
)

=

ˆ
X

F
(s)
A (Ω)F

(−s)
B (Ω)dµ(Ω) (4.7)

=

ˆ
X

F
(s)
A (Ω) Tr

(
B̂∆̂(−s)(Ω)

)
dµ(Ω) (4.8)

= Tr

{[ˆ
X

F
(s)
A (Ω)∆̂(−s)(Ω)dµ(Ω)

]
B̂

}
. (4.9)
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Since B̂ is arbitrary,

Â =

ˆ
X

F
(s)
A (Ω)∆̂(−s)(Ω)dµ(Ω). (4.10)

The conditions 2-5 from Definition 4.4 define conditions on the Stratonovich-Weyl kernel.

Proposition 4.2: Conditions on the Stratonovich-Weyl kernel [41]

To describe a phase space representation in phase space through the Weyl rule, the
Stratonovich-Weyl kernel ∆̂(s) has to respect the following conditions, for any Ω ∈ X (in
relation to the corresponding conditions of Definition 4.4),

2. Hermiticity:
∆̂(s)(Ω) = (∆̂(s)(Ω))†.

3. Normalisation: ˆ
X

∆̂(s)(Ω)dµ(Ω) = 1̂.

4. Traciality:

∆̂(s)(Ω) =

ˆ
X

∆̂(s′)(Ω′) Tr
(

∆̂(s)(Ω)∆̂(−s′)(Ω′)
)
dµ(Ω′).

5. Covariance: For any g ∈ G,

∆̂(s)(gΩ) = T (g)∆̂(s)(Ω)T (g)−1.

The proof is given in Appendix E. The choice of the kernel, through the s index, decides
the choice of the distribution [41]. For s = −1, we can get the normal-ordered distribution. If
s = 1, it is the anti-normal ordered distribution that is obtained. Lastly, the case s = 0 can
give the Wigner distribution.

4.3.1 Example: Wigner distribution in 1D

As explained, the phase space is X = R2 and the irreducible representation is the set of
displacement operators D̂(x0, p0). The objective is to define the kernels in this space [39]. We
choose a starting point of the phase space, (x0, p0) = (0, 0). From there, the kernels are defined
by the application of the irreducible representation,

∆̂(x0, p0) = D̂(x0, p0)∆̂(0, 0)D̂†(x0, p0). (4.11)

The initial value of the kernel, ∆̂(0, 0), is still unknown. This is a choice and different
possibilities exist while respecting the previous conditions. To find the Wigner distribution
back, we choose

∆̂(0, 0) =
1

h

¨
D̂(x′, p′)dx′dp′ =

ˆ (
1

h

ˆ
D̂(x′, p′)dp′

)
dx′ =

ˆ ∣∣∣∣x′2
〉〈
−x

′

2

∣∣∣∣ dx′, (4.12)

using the relation
1

h

ˆ
D̂(x′, p′)dp′ =

∣∣∣∣x′2
〉〈
−x

′

2

∣∣∣∣ . (4.13)
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Injecting this in equation (4.11), we get

∆̂(x0, p0) =

ˆ
e
i
~ (p0x̂−x0p̂)

∣∣∣∣x′2
〉〈
−x

′

2

∣∣∣∣ e− i
~ (p0x̂−x0p̂)dx′ (4.14)

=

ˆ
e−

i
2~p0x0e

i
~p0x̂e−

i
~x0p̂

∣∣∣∣x′2
〉〈
−x

′

2

∣∣∣∣ e− i
~p0x̂e

i
~x0p̂e−

i
2~p0x0dx′ (4.15)

=

ˆ
e−

i
~p0x0e

i
~p0x0e

i
~p0

x′
2

∣∣∣∣x0 +
x′

2

〉〈
x0 −

x′

2

∣∣∣∣ e i~p0 x′2 dx′ (4.16)

=

ˆ
e
i
~p0x

′
∣∣∣∣x0 +

x′

2

〉〈
x0 −

x′

2

∣∣∣∣ dx′, (4.17)

With this kernel, the Weyl transform Ã of the operator Â is obtained back,

Ã(x0, p0) = Tr
(
Â∆̂(x0, p0)

)
=

ˆ
e
i
~p0x

′
〈
x0 −

x′

2

∣∣∣∣ Â ∣∣∣∣x0 +
x′

2

〉
dx′ =

ˆ
e−

i
~p0y

〈
x0 +

y

2

∣∣∣ Â ∣∣∣x0 −
y

2

〉
dy.

(4.18)
For Â = ρ̂

h
, we get the Wigner distribution back. It respects all the required properties of

the Definition 4.4.

4.4 Curved space

In some situations, a curved configuration space is considered [39]. The Wigner distribution
must be defined on this space. For example, a particle might be constrained on a sphere or a
hyperbolic plane. It can be useful in the determination of the motion of a rigid body describing
quantumly the orientation of a molecule [40]. It could also be used in transformation optics, to
study the trajectory of light in metamaterials.

Proposition 4.3: Phase space formalism in curved space [39]

Consider a Riemannian manifold of dimension n. Any vector is x = (x1, x2, ..., xn) ∈ Rn.
The metric tensor is gij(x) and the metric determinant is g(x) = det gij(x). We assume
that the coordinates xi, i = 1, ..., n are not bounded. The Weyl transform of the operator
Â on curved space is

Ãg =

ˆ
4

√
g
(
x+

y

2

)
g
(
x− y

2

)
e−

i
~piy

i
〈
x+

y

2

∣∣∣ Â ∣∣∣x− y

2

〉
dy

and the Wigner function is

W g(x, p) =
1

hn

ˆ
4

√
g
(
x+

y

2

)
g
(
x− y

2

)
e−

i
~piy

i
〈
x+

y

2

∣∣∣ ρ̂ ∣∣∣x− y

2

〉
dy.

Proof. The manifold is parameterised by the coordinates xi and the associated operators are
x̂i so that

x̂i |x〉 = xi |x〉 . (4.19)
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The associated conjugate momentum operators are p̂i. They are continuous because the
coordinates xi are not bounded. To satisfy the usual commutation relations, the momentum is

p̂i = −i~
(
∂

∂xi
+

1

2
Γjji(x)

)
, (4.20)

with Γjji(x) the Christoffel symbols5 at x. To define the Wigner function on the curved space,
we apply the procedure using the Stratonovich-Weyl kernels (Definition 4.5). Let’s start with
the definition of the identity operator. For a curved space, it is given by [42]

1̂ =

ˆ √
g(x) |x〉 〈x| dx =

ˆ
|p〉 〈p| dp. (4.21)

The scalar product 〈x|p〉 can be shown to be [39]

〈x|p〉 =
e
i
~pix

i

hn/2 4
√
g(x)

. (4.22)

The action of the translation operators, in x and p, is

e−
i
~x
ip̂i |x′〉 =

ˆ
e−

i
~x
ipi |p〉 〈p|x′〉 dp =

1

hn/2 4
√
g(x′)

ˆ
e−

i
~pi(x

i+x′i) |p〉 dp (4.23)

=
4
√
g(x+ x′)
4
√
g(x′)

ˆ
〈p|x+ x′〉 |p〉 dp =

4
√
g(x+ x′)
4
√
g(x′)

|x+ x′〉 , (4.24)

e
i
~pix̂

i |p′〉 =

ˆ
e
i
~pix

i
√
g(x) |x〉 〈x|p′〉 dx =

ˆ
4
√
g(x)

hn/2
e
i
~ (pi+p

′
i)x

i |x〉 dx (4.25)

=

ˆ √
g(x) 〈x|p+ p′〉 |x〉 dx = |p+ p′〉 . (4.26)

The translation operator acts in the same way as usual for the momentum but is modified
for the position. Indeed, the translation acts as if it also translates the metric determinant.
This is consistent because for calculations, what matters is the metric at the given point, so
operating a translation must also translate the current metric. The metric g will now be used
as an exponent to denote the operators in this metric. In the same way as in the example of
section 4.3.1, the displacement operator is

D̂g(x, p) = e
i
~ (pix̂

i−xip̂i), (4.27)

that gives the undisplaced kernel

∆̂(0, 0) =
1

hn

¨
D̂g(x′, p′)dx′dp′ =

ˆ
4

√
g

(
−x

′

2

)
g

(
x′

2

) ∣∣∣∣x′2
〉〈
−x

′

2

∣∣∣∣ dx′, (4.28)

5The Christoffel symbols are defined by Γkij = 1
2g
kl
(
∂gjl
∂xi + ∂gil

∂xj − ∂gij
∂xl

)
.
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and the displaced kernel,

∆̂(x, p) =

ˆ
4

√
g

(
−x

′

2

)
g

(
x′

2

)
e
i
~ (pix̂

i−xip̂i)
∣∣∣∣x′2
〉〈
−x

′

2

∣∣∣∣ e− i
~ (pix̂

i−xip̂i)dx′ (4.29)

=

ˆ
4

√
g

(
−x

′

2

)
g

(
x′

2

)
e−

i
~pix

i

e
i
~pix̂

i

e−
i
~x
ip̂i

∣∣∣∣x′2
〉〈
−x

′

2

∣∣∣∣ e− i
~pix̂

i

e
i
~x
ip̂idx′ (4.30)

=

ˆ
4

√
g

(
x− x′

2

)
g

(
x+

x′

2

)
e−

i
~pix

i

e
i
~pix

i

e
i
2~pix

′i
∣∣∣∣x+

x′

2

〉〈
x− x′

2

∣∣∣∣ e i
2~pix

′i
dx′ (4.31)

=

ˆ
4

√
g

(
x− x′

2

)
g

(
x+

x′

2

)
e
i
~pix

′i
∣∣∣∣x+

x′

2

〉〈
x− x′

2

∣∣∣∣ dx′ (4.32)

=

ˆ
4

√
g

(
x− x′

2

)
g

(
x+

x′

2

)
e
i
~pix

′i
∣∣∣∣x+

x′

2

〉〈
x− x′

2

∣∣∣∣ dx′. (4.33)

The Weyl transform Ãg of the operator Â is therefore

Ãg = Tr
(
Â∆̂(x, p)

)
(4.34)

=

ˆ
4

√
g

(
x− x′

2

)
g

(
x+

x′

2

)
e
i
~pix

′i
〈
x− x′

2

∣∣∣∣ Â ∣∣∣∣x+
x′

2

〉
dx′ (4.35)

=

ˆ
4

√
g
(
x+

y

2

)
g
(
x− y

2

)
e−

i
~piy

i
〈
x+

y

2

∣∣∣ Â ∣∣∣x− y

2

〉
dy, (4.36)

and the Wigner function in curved space is

W g(x, p) =
1

hn

ˆ
4

√
g
(
x+

y

2

)
g
(
x− y

2

)
e−

i
~piy

i
〈
x+

y

2

∣∣∣ ρ̂ ∣∣∣x− y

2

〉
dy. (4.37)

Compared to a flat configuration space, the Wigner distribution and the Weyl transform
are modified by adding a factor dependant of the curvature of the space. It is possible to show
that the Wigner distribution is however unchanged in the p representation,

W g(x, p) =
1

hn

ˆ
e
i
~uix

i
〈
p+

u

2

∣∣∣ ρ̂ ∣∣∣p− u

2

〉
du. (4.38)

The distribution still verifies the required properties of the Wigner quasi-probability distri-
bution, ˆ

W g(x, p)dp =
√
g(x) 〈x| ρ̂ |x〉 , (4.39)

ˆ
W g(x, p)dx = 〈p| ρ̂ |p〉 , (4.40)

¨
W g(x, p)dxdp =

ˆ
〈p| ρ̂ |p〉 dp = 1, (4.41)

except for the x distribution, weighted by the amount
√
g(x). The product formula

Tr
(
ÂB̂
)

=
1

hn

¨
Ãg(x, p)B̃g(x, p)dxdp (4.42)
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still holds, so the expectation values can be evaluated in the exact same way as before,

〈A〉 = Tr
(
ρ̂Â
)

=

¨
Ãg(x, p)W g(x, p)dxdp. (4.43)

The Weyl transform of the operator ρ̂ψφ = |ψ〉 〈φ| gives the cross-Wigner distribution gen-
eralised to a curved space,

W g
ψ,φ(x, p) =

1

hn

ˆ
4

√
g
(
x+

y

2

)
g
(
x− y

2

)
e−

i
~piy

i

ψ
(
x+

y

2

)
φ∗
(
x− y

2

)
dy. (4.44)

Again, a factor depending on the curvature is present in the definition.

4.4.1 Example: Motion on a 2D curved space

Consider a particle moving on a 2D surface inside a 3D Euclidian space. The objective is to
find the metric determinant to use in the Wigner distribution [39]. The z coordinate is assumed
to be given by a function of x and y,

z = f(x, y), (4.45)

so the configuration space is curved by this function. The infinitesimal dz is

dz = fxdx+ fydy, (4.46)

where fx = ∂f
∂x

and fy = ∂f
∂y
. This element squared is

dz2 = f 2
xdx

2 + f 2
ydy

2 + 2fxfydxdy. (4.47)

Therefore, an infinitesimal length element ds2 is

ds2 = dx2 + dy2 + dz2 = dx2 + dy2 + f 2
xdx

2 + f 2
ydy

2 + 2fxfydxdy (4.48)
=
(
1 + f 2

x

)
dx2 +

(
1 + f 2

y

)
dy2 + 2fxfydxdy = gijdx

idxj. (4.49)

Identifying the elements of the metric gives

gxx(x, y) = 1 + f 2
x , (4.50)

gyy(x, y) = 1 + f 2
y , (4.51)

gxy(x, y) = gyx(x, y) = fxfy. (4.52)

The metric determinant is then

g(x, y) = det gij(x, y) =
(
1 + f 2

x

) (
1 + f 2

y

)
− (fxfy)

2 = 1 + f 2
x + f 2

y . (4.53)

By Proposition 4.3, the Wigner function is

W (x, y, px, py) =
1

h2

¨
4

√
(1 + f 2

x(x+, y+) + f 2
y (x+, y+))(1 + f 2

x(x−, y−) + f 2
y (x−, y−))

e−
i
~ (pxx′+pyy′) 〈x+, y+| ρ̂ |x−, y−〉 dx′dy′ (4.54)

where x± = x± x′

2
and y± = y ± y′

2
.
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This can be more specifically applied for a paraboloid curvature. It is defined as

f(x, y) =
(x
a

)2

±
(y
b

)2

(4.55)

where the + denotes an elliptic paraboloid and the − is for a hyperbolic paraboloid. In both
cases, the metric determinant is

g(x, y) = 1 +
4x2

a4
+

4y2

b4
. (4.56)

Therefore, the Wigner distribution in this curved phase space is

W (x, y, px, py) =
1

h2

¨
4

√(
1 +

4x2
+

a4
+

4y2
+

b4

)(
1 +

4x2
−

a4
+

4y2
−

b4

)
e−

i
~ (pxx′+pyy′) 〈x+, y+| ρ̂ |x−, y−〉 dx′dy′. (4.57)

4.4.2 Example: Sphere

Consider a particle moving on a sphere of radius R. The metric determinant has to be found.
It is done in a different way than the previous example, by looking at the kinetic energy part
of a Hamiltonian defined on the sphere [39]. The motion is described by the polar angles θ and
ϕ and the Hamiltonian is

H =
1

2MR2

(
p2
θ +

p2
ϕ

sin2 θ

)
= gij(θ, ϕ)

pipj
2M

. (4.58)

By identification, we get

gθθ(θ, ϕ) =
1

R2
, gϕϕ(θ, ϕ) =

1

R2 sin2 θ
, gθϕ(θ, ϕ) = gϕθ(θ, ϕ) = 0. (4.59)

The metric is diagonal, so gij(θ, ϕ) = (gij(θ, ϕ))−1. The metric determinant is therefore

g(θ, ϕ) = det gij(θ, ϕ) = det
(
gij(θ, ϕ)

)−1
= R4 sin2 θ. (4.60)

The considered configuration space is compact, meaning that the momentum distribution
is discrete. The phase space is thus (θ, ϕ,mθ,mϕ) where mθ,mϕ ∈ Z. The development leading
to the Wigner distribution can be remade for a compact configuration space [39]. The Wigner
distribution for a particle on a sphere is

W (θ, ϕ,mθ,mϕ) =
1

2π2

ˆ π/2

−π/2

ˆ π

−π
R2
√

sin θ+ sin θ−e
2imθθ

′
eimϕϕ

′ 〈θ−, ϕ−| ρ̂ |θ+, ϕ+〉 dϕ′dθ′,

(4.61)
with θ± =

(
θ ± θ′

2

)
mod π and ϕ± =

(
ϕ± ϕ′

2

)
mod 2π.

5 Weak Measurements in Phase Space

5.1 Motivation

Weak measurements, as explained in Section 2, are particularly useful in some experiments.
However, their meaning is still subject to a lot of debate. The seminal paper of Aharonov
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and his colleagues introducing weak values is entitled "How the result of a measurement of a
component of the spin of a spin-1/2 particle can turn out to be 100" [26]. This provocative
title highlights the conceptual difficulty: should the weak value of the spin of the particle be
interpreted as related to the authentic spin, or is it just the manifestation of an interference
effect that doesn’t give concrete information about the spin? Interpreting the measured weak
value, exceeding the range of eigenvalues and that might even be complex, is a difficult task.

It is therefore important to link weak values and weak measurements to other concepts, to
get a different point of view on their meaning. A geometrical description of weak values of
projectors has been developed in [43] and extended to general observables of N -level quantum
systems in [44]. Another geometric tool used is the Hopf fibration, for 4-level systems [45].

Besides the usual way to mathematically formulate quantum physics, we have seen that a
phase space description exists. This formulation allows us to get an understanding of states
closer to the classical intuition. Applying the phase space description of states to describe weak
values and the process of weak measurement therefore makes sense to get a different light on
these concepts.

Moreover, the use of the phase space description is also motivated by common features of
weak values and phase space distributions. Indeed, quasi-probability distributions are used
to describe the phase space and it turns out that weak values of projectors might as well be
understood as quasi-probabilities.

Proposition 5.1: Weak value of projectors [46]

Consider an operator Â =
∑

j ajΠ̂j =
∑

j aj |aj〉 〈aj| of the system, with pre-selection
|ψi〉 and post-selection |ψf〉. Then, the set of weak values of projectors,{

Πjw =
〈ψf | Π̂j |ψi〉
〈ψf |ψi〉

}
j

,

form a quasi-probability distribution.

Proof. The weak value of the operator Â is

Aw =
〈ψf | Â |ψi〉
〈ψf |ψi〉

=
〈ψf |

∑
j ajΠ̂j |ψi〉
〈ψf |ψi〉

=
∑
j

aj
〈ψf | Π̂j |ψi〉
〈ψf |ψi〉

=
∑
j

ajΠjw. (5.1)

The quantities Πjw are understood as a pseudo probability since performing the average
weighted with Πjw gives the weak value. It respects the second Kolmogorov axiom of probabil-
ities, ∑

j

Πjw =
∑
j

〈ψf | Π̂j |ψi〉
〈ψf |ψi〉

=
〈ψf |

∑
j Π̂j |ψi〉

〈ψf |ψi〉
=
〈ψf | 1̂ |ψi〉
〈ψf |ψi〉

= 1. (5.2)

However, it may be complex or negative so the first Kolmogorov axiom is not verified and
it is a quasi-probability.
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Some links between weak values and the phase space formalism already exist in the literature
and a non-exhaustive state of the art is first presented. Some of these results are then extended
and generalised. The von Neumann procedure and weak measurements are also reproduced in
phase space.

5.2 State of the art

In this section, the literature review about the description of weak values in phase space using
the Wigner formalism is presented. However, there is no description of a weak measurement in
phase space and we will study it in the following sections.

5.2.1 Weak value and the cross-Wigner distribution

In phase space, any weak value can be directly related to an average over the cross-Wigner
distribution Wψi,ψf (Definition 3.4).

Proposition 5.2: Weak value in phase space [31, 32]

Consider the pre-selected state |ψi〉, the post-selected state |ψf〉 and the operator Â.
Then, the description of the corresponding weak value in phase space is

Aw =

˜
Wψi,ψf (x, p)Ã(x, p)dxdp˜

Wψi,ψf (x, p)dxdp
.

Proof. The weak value is

Aw =
〈ψf | Â |ψi〉
〈ψf |ψi〉

. (5.3)

From Proposition 3.5, the denominator is

〈ψf |ψi〉 =

¨
Wψi,ψf (x, p)dxdp. (5.4)

The numerator is evaluated using the trace property (Lemma 3.1),

〈ψf | Â |ψi〉 = Tr
(
ρ̂ψi,ψf Â

)
=

1

h

¨
Ã(x, p)ρ̃ψi,ψf (x, p)dxdp =

¨
Ã(x, p)Wψi,ψf (x, p)dxdp.

(5.5)
Consequently, the weak value is expressed in terms of the cross-Wigner distribution,

Aw =

˜
Wψi,ψf (x, p)Ã(x, p)dxdp˜

Wψi,ψf (x, p)dxdp
. (5.6)

From Proposition 3.4, the cross-Wigner distribution is interpreted as an interference oc-
curring between the two states |ψi〉 and |ψf〉. Therefore, the operator Â is averaged over the
cross-Wigner distribution coming from the interference and this makes the weak value appear.
One possible physical interpretation, in a time-symmetric formulation of the measurement pro-
cess, is that the wave ψi propagates forward in time and the wave ψf , from the post-selection,
propagates backward in time. They then interfere to give the weak value.
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5.2.2 Example: Weakly Coupled Harmonic Oscillators

Consider the example of Section 2.4.3. The two weak values, yw and pyw, can also be calculated
in the Wigner formalism, using Proposition 5.2. The Weyl transforms of ŷ and p̂y are simply
ỹ = y and p̃y = py. The weak values are therefore given by

yw =

˜
yWψi,ψf (y, py)dydpy˜
Wψs,ψf (y, py)dydpy

, pyw =

˜
pyWψi,ψf (y, py)dydpy˜
Wψs,ψf (y, py)dydpy

. (5.7)

First, we need the cross-Wigner distribution between the pre- and post-selected states,

Wψi,ψf (y, py) =
1

h

ˆ
e−

i
~pyy

′
ψi

(
y +

y′

2

)
ψf

(
y − y′

2

)
dy′ (5.8)

=
α

h

ˆ
e−

i
~pyy

′
ψ0

(
y +

y′

2

)
ψ0

(
y − y′

2

)
dy′ (5.9)

+
1− α
h

ˆ
e−

i
~pyy

′
ψ0

(
y +

y′

2

)
ψ1

(
y − y′

2

)
dy′, (5.10)

where ψi, ψf , ψ0, ψ1 and α are defined in the example of Section 2.4.3. The state ψf is not
normalised, so the cross-Wigner distribution is not normalised either. However, the normali-
sation is an unimportant factor since it is cancelling in the ratio of the definition of the weak
values. The first integral is the Wigner distribution of the ground state and is calculated in
equation (3.21). The second integral is proportional to the cross-Wigner distribution between
the ground state and the first excited state, Wψ0,ψ1(y, py). It is equal to

Wψ0,ψ1(y, py) =
1

h

ˆ
e−

i
~pyy

′
ψ0

(
y +

y′

2

)
ψ1

(
y − y′

2

)
dy′ (5.11)

=

√
2

h
√
πσ2

s

ˆ
e−

i
~pyy

′
e
−

(
y+

y′
2

)2

2σ2s

(
y − y′

2

)
e
−

(
y− y

′
2

)2

2σ2s dy′ (5.12)

=

√
2

h
√
πσ2

s

ˆ (
y − y′

2

)
e−

i
~pyy

′
e
−

(
y2+

y′2
4

)
σ2s dy′ (5.13)

=

√
2

h
√
πσ2

s

e
− y

2

σ2s

[
y

ˆ
e−

i
~pyy

′
e
− y′2

4σ2s dy′ − 1

2

ˆ
y′e−

i
~pyy

′
e
− y′2

4σ2s dy′
]

(5.14)

=

√
2

h
√
πσ2

s

e
− y

2

σ2s

[
2σsy
√
πe−

p2yσ
2
s

~2 − 1

2

−ipy4σ3
s

~
√
πe−

p2yσ
2
s

~2

]
(5.15)

=
2
√

2

hσs

(
y +

ipyσ
2
s

~

)
e
− y

2

σ2s e−
p2yσ

2
s

~2 . (5.16)

Therefore, the cross-Wigner distribution of the pre- and post-selection, up to a normalisation
factor, is

Wψi,ψf (y, py) =
2α

h
e
− y

2

σ2s e−
p2yσ

2
s

~2 + (1− α)
2
√

2

hσs

[
y +

ipyσ
2
s

~

]
e
− y

2

σ2s e−
p2yσ

2
s

~2 (5.17)

=

[
2α

h
+ (1− α)

2
√

2

hσs

(
y +

ipyσ
2
s

~

)]
e
− y

2

σ2s e−
p2yσ

2
s

~2 . (5.18)

With the knowledge of the cross-Wigner distribution between the pre- and post-selected
states, we can now evaluate the numerator and denominator of the weak values of position
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and momentum. The denominator of the two weak values is the integral over y and py of the
cross-Wigner distribution,¨

Wψi,ψf (y, py)dydpy =
2α

h

¨
e
− y

2

σ2s e−
p2yσ

2
s

~2 dydpy (5.19)

+ (1− α)
2
√

2

hσs

¨
ye
− y

2

σ2s e−
p2yσ

2
s

~2 dydpy (5.20)

+ (1− α)

√
2iσs
π~2

¨
pye
− y

2

σ2s e−
p2yσ

2
s

~2 dydpy. (5.21)

The second line is zero because of the odd argument with respect to y. The third line is
zero too for the same argument over py. Therefore,¨

Wψi,ψf (y, py)dydpy =
2α

h

¨
e
− y

2

σ2s e−
p2yσ

2
s

~2 dydpy =
2α

h
σs
√
π

ˆ
e−

p2yσ
2
s

~2 dpy (5.22)

=
2α

h
σs
√
π
~
σs

√
π = α. (5.23)

The numerator of the weak value yw is¨
yWψi,ψf (y, py)dydpy =

2α

h

¨
ye
− y

2

σ2s e−
p2yσ

2
s

~2 dydpy (5.24)

+ (1− α)
2
√

2

hσs

¨
y2e
− y

2

σ2s e−
p2yσ

2
s

~2 dydpy (5.25)

+ (1− α)

√
2iσs
π~2

¨
ypye

− y
2

σ2s e−
p2yσ

2
s

~2 dydpy. (5.26)

The integral of the first line has an odd argument, so it is zero. It is the same for the integral
of the third line. Therefore, we have¨

yWψi,ψf (y, py)dydpy = (1− α)
2
√

2

hσs

¨
y2e
− y

2

σ2s e−
p2yσ

2
s

~2 dydpy = (1− α)
2
√

2

hσs

√
π
~
σs

ˆ
y2e
− y

2

σ2s dy

(5.27)

= (1− α)
2
√

2

hσs

√
π
~
σs
σ3
s

√
π

2
= (1− α)

σs√
2
. (5.28)

The numerator of the weak value pyw is¨
pyWψi,ψf (y, py)dydpy =

2α

h

¨
pye
− y

2

σ2s e−
p2yσ

2
s

~2 dydpy (5.29)

+ (1− α)
2
√

2

hσs

¨
pyye

− y
2

σ2s e−
p2yσ

2
s

~2 dydpy (5.30)

+ (1− α)

√
2iσs
π~2

¨
p2
ye
− y

2

σ2s e−
p2yσ

2
s

~2 dydpy. (5.31)

The integral of the first line has an odd argument, so it is zero. The two integrals of the
second line also have odd arguments. Therefore, we have¨

pyWψi,ψf (y, py)dydpy = (1− α)

√
2iσs
π~2

¨
p2
ye
− y

2

σ2s e−
p2yσ

2
s

~2 dydpy = (1− α)

√
2iσ2

s√
π~2

ˆ
p2
ye
−
p2yσ

2
s

~2 dpy

(5.32)

= (1− α)

√
2iσ2

s√
π~2

~3

σ3
s

√
π

2
= (1− α)

i~√
2σs

. (5.33)
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The different parts can be put together to find the two weak values,

yw =
(1− α)σs

α
√

2
, pyw =

i(1− α)~
α
√

2σs
(5.34)

The objective was to illustrate that the cross-Wigner distribution can be used to calculate
weak values. In the case of the bi-dimensional harmonic oscillator, the weak values obtained
are the same as those demonstrated previously in equation (2.45).

5.2.3 The momentum weak value

The weak value of the momentum operator p̂, with post-selection on the state |x〉, can be di-
rectly related to the Wigner distribution (instead of the cross-Wigner distribution).

Proposition 5.3: Real part of the weak value of momentum [47]

Consider the pre-selected state |ψ〉 and the post-selected state |x〉. The real part of the
weak value of the operator p̂ is described in phase space as

Re
〈x| p̂ |ψ〉
〈x|ψ〉

=

´
pWψ(x, p)dp´
Wψ(x, p)dp

.

Proof. The Wigner distribution of the pre-selected state is

Wψ(x, p) =
1

h

ˆ
e−

i
~py
〈
x+

y

2

∣∣∣ψ〉〈ψ∣∣∣x− y

2

〉
dy. (5.35)

For a given x, the partial average of p in the initial system state isˆ
pWψ(x, p)dp =

1

h

¨
pe−

i
~py
〈
x+

y

2

∣∣∣ψ〉〈ψ∣∣∣x− y

2

〉
dydp (5.36)

=
1

h

¨
i~
∂

∂y
e−

i
~py
〈
x+

y

2

∣∣∣ψ〉〈ψ∣∣∣x− y

2

〉
dydp (5.37)

=

[
i~
h

ˆ
e−

i
~py
〈
x+

y

2

∣∣∣ψ〉〈ψ∣∣∣x− y

2

〉
dp

]y=∞

y=−∞
(5.38)

− i~
h

¨
e−

i
~py

∂

∂y

(〈
x+

y

2

∣∣∣ψ〉〈ψ∣∣∣x− y

2

〉)
dydp (5.39)

where an integration by parts is done. In the first term, the wavefunction is evaluated at the
infinity. However, a wavefunction is finite and must vanish at the infinity, so this first term is
equal to zero. The second double integral is evaluated by distributing the derivative and by
noticing that the integral over p is proportional to δ(y),
ˆ
pWψ(x, p)dp =

ˆ
(−i~)

[
∂

∂y

(〈
x+

y

2

∣∣∣ψ〉)〈ψ∣∣∣x− y

2

〉
+
〈
x+

y

2

∣∣∣ψ〉 ∂

∂y

(〈
ψ
∣∣∣x− y

2

〉)]
δ(y)dy.

(5.40)
Observe that

∂

∂y

(〈
x+

y

2

∣∣∣ψ〉) =
1

2

∂

∂x

(〈
x+

y

2

∣∣∣ψ〉) , (5.41)

∂

∂y

(〈
ψ
∣∣∣x− y

2

〉)
=
−1

2

∂

∂x

(〈
ψ
∣∣∣x− y

2

〉)
, (5.42)
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so the partial average becomes
ˆ
pWψ(x, p)dp =

ˆ
−i~

2

[
∂

∂x

(〈
x+

y

2

∣∣∣ψ〉)〈ψ∣∣∣x− y

2

〉
−
〈
x+

y

2

∣∣∣ψ〉 ∂

∂x

(〈
ψ
∣∣∣x− y

2

〉)]
δ(y)dy

(5.43)

=
−i~

2

∂

∂x
(〈x|ψ〉) 〈ψ|x〉 − −i~

2
〈x|ψ〉 ∂

∂x
(〈ψ|x〉) (5.44)

=
−i~

2

∂

∂x
(〈x|ψ〉) 〈ψ|x〉+

(
−i~

2

∂

∂x
(〈x|ψ〉) 〈ψ|x〉

)
(5.45)

= Re

[
−i~ ∂

∂x
(〈x|ψ〉) 〈ψ|x〉

]
= Re [〈x| p̂ |ψ〉 〈ψ|x〉] . (5.46)

This relation is related to the Terletsky-Margenau-Hill quasi-probability distribution6. Not-
ing that ˆ

Wψ(x, p)dp = 〈x|ψ〉 〈ψ|x〉 , (5.47)

the real part of the weak value of p̂ is

Re
〈x| p̂ |ψ〉
〈x|ψ〉

=

´
pWψ(x, p)dp´
Wψ(x, p)dp

. (5.48)

This proposition describes the real part of the weak value of the operator p̂, for the pre-
selected state |ψ〉 and post-selected state 〈x|, using the Wigner distribution of the initial state.
As was explained in Section 2.5.2, this weak value is used to determine the average trajectories
of the photons in the two-slit interferometer.

5.3 Generalised weak value

Until now, the main results were coming from the literature (with a personal contribution in the
different examples and illustrations). Starting from here and until the end of the thesis, only
original results are presented. The Proposition 5.2 defines a relation between the cross-Wigner
distribution and the weak value of the operator Â. In subsection 4.3, the notion of phase space
quasi-probability distribution has been generalised to the Stratonovich-Weyl image F (s)

A (Defi-
nition 4.4). Using this, we extend the Proposition 5.2 to express weak values in the generalised
phase space.

Proposition 5.4: Weak value in generalised phase space

Consider the pre-selected state |ψi〉, the post-selected state |ψf〉 and the operator Â.
Then, the description of the corresponding weak value in the generalised phase space X
is

Aw =

´
X
F

(s)
ρψi,ψf

(Ω)F
(−s)
A (Ω)dµ(Ω)´

X
F

(s)
ρψi,ψf

(Ω)dµ(Ω)
.

The exponent s decides the distribution considered, as explained in Section 4.3.

6Pp,x|ψ = Re 〈x|p〉 〈p|ψ〉 〈ψ|x〉. It is the real part of the Kirkwood quasi-probability distribution (Table 1).
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Proof. Two important conditions on the Stratonovich-Weyl image are, for any two operators Â
and B̂ (Definition 4.4),

Tr
(
B̂
)

=

ˆ
X

F
(s)
B (Ω)dµ(Ω), Tr

(
ÂB̂
)

=

ˆ
X

F
(s)
B (Ω)F

(−s)
A (Ω)dµ(Ω). (5.49)

These two equations are applied using B̂ = ρ̂ψi,ψf = |ψi〉 〈ψf |,

Tr
(
ρ̂ψi,ψf

)
= 〈ψf |ψi〉 =

ˆ
X

F (s)
ρψi,ψf

(Ω)dµ(Ω) (5.50)

Tr
(
Âρ̂ψi,ψf

)
= 〈ψf | Â |ψi〉 =

ˆ
X

F (s)
ρψi,ψf

(Ω)F
(−s)
A (Ω)dµ(Ω). (5.51)

Therefore, the weak value is

Aw =

´
X
F

(s)
ρψi,ψf

(Ω)F
(−s)
A (Ω)dµ(Ω)´

X
F

(s)
ρψi,ψf

(Ω)dµ(Ω)
. (5.52)

This proposition describes the weak value in the generalised phase space X. For s = 0 in
the phase space R2, the Stratonovich-Weyl image reduce to the Weyl transform and dµ = dxdp,
giving the Proposition 5.2 back.

5.4 Curved space

The curved phase space situation is a particular case of the generalised phase space. The weak
value can therefore be easily defined on the curved space.

Proposition 5.5: Weak value in curved configuration space

Consider the pre-selected state |ψi〉, the post-selected state |ψf〉 and the operator Â.
Then, the description of the corresponding weak value in curved space is

Aw =

˜
W g
ψi,ψf

(x, p)Ãg(x, p)dxdp˜
W g
ψi,ψf

(x, p)dxdp
.

Proof. Consider the trace formula (4.42) in curved space. For B̂ = ρ̂ψi,ψf , we have

Tr
(
Âρ̂ψi,ψf

)
= 〈ψf | Â |ψi〉 =

¨
W g
ψi,ψf

(x, p)Ãg(x, p)dxdp. (5.53)

The denominator of the weak value can also be obtained,

Tr
(
ρ̂ψi,ψf

)
= 〈ψi|ψf〉 =

¨
W g
ψi,ψf

(x, p)dxdp. (5.54)

Therefore, the weak value in curved space is

Aw =

˜
W g
ψi,ψf

(x, p)Ãg(x, p)dxdp˜
W g
ψi,ψf

(x, p)dxdp
. (5.55)

This can be useful to describe a weak value in a constrained configuration space.
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5.5 The momentum weak value

In Proposition 5.3, the real part of the weak value of the momentum operator p̂ post-selected
on the position |x〉 is described in phase space using the Wigner distribution of the pre-selected
state. The imaginary part can also be obtained, so that the complete weak value is described
in phase space.

Proposition 5.6: Weak value of momentum

Consider the pre-selected state |ψ〉 and the post-selected state |x〉. The weak value of
the operator p̂ is described in phase space as

〈x| p̂ |ψ〉
〈x|ψ〉

=

´
pWψ(x, p)dp´
Wψ(x, p)dp

− i~
2

∂
∂x

´
Wψ(x, p)dp´
Wψ(x, p)dp

.

Proof. The real part of the weak value is already obtained in Proposition 5.3. The imaginary
part is deduced from the following integral,

ˆ
−~

2

∂

∂x
Wψ(x, p)dp =

1

h

¨
−~
2

∂

∂x

(〈
x+

y

2

∣∣∣ψ〉〈ψ∣∣∣x− y

2

〉)
e−

i
~pydydp (5.56)

=

ˆ
−~
2

[
∂

∂x

(〈
x+

y

2

∣∣∣ψ〉)〈ψ∣∣∣x− y

2

〉
+
〈
x+

y

2

∣∣∣ψ〉 ∂

∂x

(〈
ψ
∣∣∣x− y

2

〉)]
δ(y)dy

(5.57)

= −~
2

∂

∂x
(〈x|ψ〉) 〈ψ|x〉 − ~

2
〈x|ψ〉 ∂

∂x
(〈ψ|x〉) (5.58)

= −i~
2i

∂

∂x
(〈x|ψ〉) 〈ψ|x〉 − i~

2i
〈x|ψ〉 ∂

∂x
(〈ψ|x〉) (5.59)

= Im

[
−i~ ∂

∂x
(〈x|ψ〉) 〈ψ|x〉

]
= Im [〈x| p̂ |ψ〉 〈ψ|x〉] . (5.60)

Noting that ˆ
Wψ(x, p)dp = 〈x|ψ〉 〈ψ|x〉 , (5.61)

the weak value is

〈x| p̂ |ψ〉
〈x|ψ〉

=

´
pWψ(x, p)dp´
Wψ(x, p)dp

+ i

´
−~

2
∂
∂x
Wψ(x, p)dp´

Wψ(x, p)dp
=

´
pWψ(x, p)dp´
Wψ(x, p)dp

− i~
2

∂
∂x

´
Wψ(x, p)dp´
Wψ(x, p)dp

.

(5.62)

The real part of the weak value is, for a given x, the average of the momentum operator in
the pre-selected state. The integral of the numerator, from equation 5.44, is

ˆ
pWψ(x, p)dp =

i~
2

(
ψ(x)

∂

∂x
ψ(x)− ψ(x)

∂

∂x
ψ(x)

)
= m~J, (5.63)

with ~J the probability current density [21, 22]. It is a quantum mechanical quantity. It respects
a continuity equation of the probability density,

~∇ · ~J = − ∂

∂t
|ψ(x)|2. (5.64)
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The imaginary part is the derivative of the probability distribution in x. From the time
evolution of the Wigner distribution, equation (3.3), for a free particle, the derivative of the
Wigner distribution over x is related to the time derivative of the distribution. Moreover,

∂
∂x

´
Wψ(x, p)dp´
Wψ(x, p)dp

=
∂
∂x

(|ψ(x)|2)

|ψ(x)|2
, (5.65)

and this corresponds to a quantity called the osmotic velocity. This concept appears in the
stochastic interpretation of quantum mechanics [21] and is also linked to the de Broglie-Bohm
interpretation [22].

In Section 2.5.2, the determination of the average trajectories of photons in a two-slit in-
terferometer is presented. The weak value considered in the experiment is the transverse mo-
mentum pre-selected on the wavefunction and post-selected on the position. It is exactly the
weak value computed here, described in phase space. This experiment shows trajectories that
are compatible with the de Broglie-Bohm theory.

5.6 von Neumann model of measurement in phase space

5.6.1 Motivation

The von Neumann scheme allows to define weak measurements by taking into account the
measuring device in the description. Describing the process in phase space is really interesting
because it provides a phase space representation of the meter and the system states, at each
step. It helps to understand how the Wigner distribution evolves and how the two parts interact
with each other. Describing the process in phase space also allows to check that the shift of the
meter state while performing the measurement are also present in the phase space description.

The von Neumann process is first reproduced for a general measurement without post-
selection. It is then developed for a weak coupling, with the additional post-selection. It is
shown that the shift is effectively proportional to the weak value, as expected.

5.6.2 von Neumann measurement

The usual von Neumann measurement (Proposition 2.1) is described in phase space. It is first
realised for a measurement without post-selection. In the following proposition, the operator
Â has a discrete spectrum but the phase space is still continuous. For example, the energy op-
erator has a discrete spectrum in the harmonic oscillator but it is still defined in a continuous
phase space.

Proposition 5.7: von Neumann measurement

Consider the joint phase space (xs, ps, xm, pm). The initial system distribution is
Wψi(xs, ps) and the initial meter distribution is Wφ(xm, pm). The interaction couples
the system operator Â (of eigenvalues aj and eigenvectors |aj〉) with the momentum
meter operator p̂m through

Ĥint = g(t)Â⊗ p̂m,
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with a coupling g(t) depending on time and equal to zero out of the range [0, T ]. The
total coupling strength is γ =

´ T
0
g(t)dt. The final joint distribution is

WΨ(xs, ps, xm, pm) =
∑
jk

αjαke
− i

~pm(aj−ak)Waj ,ak(xs, ps)Wφ

(
xm −

γ

2
(aj + ak), pm

)
.

The information available to the experimenter is the reduced state of the meter,
¨

WΨ(xs, ps, xm, pm)dxsdps =
∑
j

|αj|2Wφ (xm − γaj, pm) .

Proof. The initial joint distribution is a separable state described by the product of the Wigner
distribution of the meter and the system initial states,

W (xs, ps, xm, pm) = Wψi(xs, ps)Wφ(xm, pm) (5.66)

=
1

h2

ˆ
e−

i
~psys

〈
xs +

ys
2

∣∣∣ψi〉〈ψi∣∣∣xs − ys
2

〉
dysˆ

e−
i
~pmym

〈
xm +

ym
2

∣∣∣φ〉〈φ∣∣∣xm − ym
2

〉
dym (5.67)

=
1

h2

¨
e−

i
~ (psys+pmym)

〈
xs +

ys
2
, xm +

ym
2

∣∣∣ψi, φ〉〈
ψi, φ

∣∣∣xs − ys
2
, xm −

ym
2

〉
dysdym. (5.68)

The interaction operates through the evolution operator,

Û = e−
i
~γÂ⊗p̂m , (5.69)

with the same hypothesis on the Hamiltonian as in Proposition 2.1. After the interaction, the
Wigner distribution WΨ(xs, ps, xm, pm) is

WΨ(xs, ps, xm, pm) =
1

h2

¨
e−

i
~ (psys+pmym)

〈
xs +

ys
2
, xm +

ym
2

∣∣∣ e− i
~γÂ⊗p̂m

∣∣∣ ψi, φ〉〈
ψi, φ

∣∣∣ e i~γÂ⊗p̂m ∣∣∣xs − ys
2
, xm −

ym
2

〉
dysdym. (5.70)

Consider the decomposition of the initial system state in the basis of the operator Â,

|ψi〉 =
∑
j

αj |aj〉 . (5.71)

The Wigner distribution becomes

WΨ(xs, ps, xm, pm) =
1

h2

¨ ∑
jk

αjαke
− i

~ (psys+pmym)
〈
xs +

ys
2
, xm +

ym
2

∣∣∣ e− i
~γÂ⊗p̂m

∣∣∣ aj, φ〉〈
ak, φ

∣∣∣ e i~γÂ⊗p̂m ∣∣∣xs − ys
2
, xm −

ym
2

〉
dysdym (5.72)

=
1

h2

¨ ∑
jk

αjαke
− i

~ (psys+pmym)
〈
xs +

ys
2
, xm +

ym
2

∣∣∣ e− i
~γaj p̂m

∣∣∣ aj, φ〉〈
ak, φ

∣∣∣ e i~γakp̂m ∣∣∣xs − ys
2
, xm −

ym
2

〉
dysdym (5.73)
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=
1

h2

∑
jk

αjαk

ˆ
e−

i
~psys

〈
xs +

ys
2

∣∣∣aj〉〈ak∣∣∣xs − ys
2

〉
dys

ˆ
e−

i
~pmym

〈
xm +

ym
2

∣∣∣ e− i
~γaj p̂m

∣∣∣ φ〉〈 φ∣∣∣ e i~γakp̂m ∣∣∣xm − ym
2

〉
dym

(5.74)

=
1

h2

∑
jk

αjαk

ˆ
e−

i
~psys

〈
xs +

ys
2

∣∣∣aj〉〈ak∣∣∣xs − ys
2

〉
dys

ˆ
e−

i
~pmym

〈
xm +

ym
2
− γaj

∣∣∣φ〉〈φ∣∣∣xm − ym
2
− γak

〉
dym. (5.75)

The first integral corresponds to a cross-Wigner distribution between the two eigenvectors
aj and ak of Â,

1

h

ˆ
e−

i
~psys

〈
xs +

ys
2

∣∣∣aj〉〈ak∣∣∣xs − ys
2

〉
dys = Waj ,ak(xs, ps). (5.76)

The second integral is a shifted Wigner distribution of the meter. Indeed, by the change of
variables x′m = xm − γ

2
(aj + ak) and y′m = ym − γ(aj − ak), we haveˆ

e−
i
~pmym

〈
xm +

ym
2
− γaj

∣∣∣φ〉〈φ∣∣∣xm − ym
2
− γak

〉
dym (5.77)

=

ˆ
e−

i
~γpm(aj−ak)e−

i
~pmy

′
m

〈
x′m +

γ

2
(aj + ak) +

y′m
2

+
γ

2
(aj − ak)− γaj

∣∣∣∣φ〉〈
φ

∣∣∣∣x′m +
γ

2
(aj + ak)−

y′m
2
− γ

2
(aj − ak)− γak

〉
dy′m (5.78)

= e−
i
~pm(aj−ak)

ˆ
e−

i
~pmy

′
m

〈
x′m +

y′m
2

∣∣∣∣φ〉〈φ∣∣∣∣x′m − y′m
2

〉
dy′m (5.79)

= e−
i
~pm(aj−ak)hWφ

(
xm −

γ

2
(aj + ak), pm

)
. (5.80)

The Wigner distribution of the joint state is therefore

WΨ(xs, ps, xm, pm) =
∑
jk

αjαke
− i

~pm(aj−ak)Waj ,ak(xs, ps)Wφ

(
xm −

γ

2
(aj + ak), pm

)
. (5.81)

The experimenter observes only the meter and the system part is traced out. This is done,
in phase space, by integrating the coordinates of the system xs and ps,¨
WΨ(xs, ps, xm, pm)dxsdps =

¨ ∑
jk

αjαke
− i

~pm(aj−ak)Waj ,ak(xs, ps)Wφ

(
xm −

γ

2
(aj + ak), pm

)
dxsdps

(5.82)

=
∑
jk

αjαke
− i

~pm(aj−ak)Wφ

(
xm −

γ

2
(aj + ak), pm

)¨
Waj ,ak(xs, ps)dxsdps

(5.83)

=
∑
jk

αjαke
− i

~pm(aj−ak)Wφ

(
xm −

γ

2
(aj + ak), pm

)
〈aj|ak〉 (5.84)

=
∑
j

|αj|2Wφ (xm − γaj, pm) . (5.85)
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The joint Wigner distribution describes the entanglement between the system and the meter,
depending on the eigenvalues of the operator Â and the decomposition of |ψi〉. From the point
of view of the experimenter, the resulting Wigner distribution of the meter describes a mixture
of shifted meter distributions, proportional to each of the eigenvalues of the operator Â.

5.6.3 Example: Coupled Harmonic Oscillators

Consider the situation of the coupled harmonic oscillators, 2.3.2. Taking the ground state of
the oscillator in the x direction as the meter initial state φ, the Wigner distribution of the
meter is the equation (3.21). The representation of the meter distribution after the measure-
ment (Proposition 5.7) is shown in Figure 11. If the interaction is strong, the shifted Wigner
distributions are separated and the system is projected on an eigenvector, when performing
the measurement of the meter (figure 11a). For a weak interaction, the distributions are not
separated and the system is not projected on an eigenvector of the operator Â (figure 11b).
The experimenter observe a merging of the Gaussian distributions linked to each eigenvalue.

(a) Wigner distribution of the meter for a strong
von Neumann measurement.

(b) Wigner distribution of the meter for a weak
von Neumann measurement.

Figure 11: Meter distribution after a von Neumann non post-selected measurement.

5.6.4 Weak post-selected measurement

The von Neumann model can also be studied in phase space to describe a weak measurement
with post-selection, in parallel to Proposition 2.2. For a weak interaction, this gives a shift of
the meter Wigner distribution proportional to the weak value.

Proposition 5.8: Weak post-selected von Neumann measurement

Consider the joint phase space (xs, ps, xm, pm). The initial system distribution is
Wψi(xs, ps) and the initial meter distribution is Wφ(xm, pm). The post-selected system
distribution is Wψf (xs, ps). The interaction couples the system operator Â with the mo-
mentum meter operator p̂m through

Ĥint = g(t)Â⊗ p̂m,

with a coupling g(t) depending on time and equal to zero out of the range [0, T ]. The
total weak coupling strength is γ =

´ T
0
g(t)dt and the weak value Aw is assumed to be

real. The final (non normalised) post-selected joint distribution associated to the state
|Ψj〉 (equation 2.14) is, to the first order in γ,

WΨj(xs, ps, xm, pm) = | 〈ψf |ψs〉 |2Wψf (xs, ps)Wφ(xm − γAw, pm).
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Proof. The initial joint distribution and the evolution operator are the same as for a strong
coupling. The interaction corresponds to the application of the evolution operator and the
post-selection is realised using the projection operator Π̂f = |ψf〉 〈ψf | ⊗ 1̂m. The projection
is not unitary, so the resulting Wigner distribution is not normalised. The final joint Wigner
distribution is obtained in the same way than the equation (5.70),

WΨj(xs, ps, xm, pm) =
1

h2

¨
e−

i
~ (psys+pmym)

〈
xs +

ys
2
, xm +

ym
2

∣∣∣ Π̂fe
− i

~γÂ⊗p̂m
∣∣∣ ψi, φ〉〈

ψi, φ
∣∣∣ e i~γÂ⊗p̂mΠ̂†f

∣∣∣xs − ys
2
, xm −

ym
2

〉
dysdym (5.86)

=
1

h2

¨
e−

i
~ (psys+pmym)

〈
xs +

ys
2

∣∣∣ψf〉〈ψf , xm +
ym
2

∣∣∣ e− i
~γÂ⊗p̂m

∣∣∣ ψi, φ〉〈
ψi, φ

∣∣∣ e i~γÂ⊗p̂m ∣∣∣ψf , xm − ym
2

〉〈
ψf

∣∣∣xs − ys
2

〉
dysdym. (5.87)

The bracket term 〈ψf | e−
i
~γÂ⊗p̂ |ψi〉, in the system space, is

〈ψf | e−
i
~γÂ⊗p̂m |ψi〉 = Tr

(
|ψi〉 〈ψf | e−

i
~γÂ⊗p̂m

)
=

¨
Wψi,ψf (x

′
s, p
′
s)

˜
e−

i
~γÂ⊗p̂mdx′sdp

′
s. (5.88)

The Weyl transform of the exponential evolution operator must be evaluated. For a weak
interaction, γ is small. Therefore, the exponential can be approximated to the first order as

e−
i
~γÂ⊗p̂m ≈ 1− i

~
γÂ⊗ p̂m, (5.89)

so that

˜
e−

i
~γÂ⊗p̂m ≈

ˆ
e−

i
~p
′
sys
〈
x′s +

ys
2

∣∣∣ (1− i

~
γÂ⊗ p̂m

) ∣∣∣x′s − ys
2

〉
dys (5.90)

= 1− i

~
γ

ˆ
e−

i
~p
′
sys
〈
x′s +

ys
2

∣∣∣ Â ∣∣∣x′s − ys
2

〉
dys p̂m = 1− i

~
γÃp̂m. (5.91)

This gives for the bracket term, applying the approximation of the exponential in reverse,

〈ψf | e−
i
~γÂ⊗p̂m |ψi〉 =

¨
Wψi,ψf (x

′
s, p
′
s)dx

′
sdp
′
s −

i

~
γ

¨
Wψi,ψf (x

′
s, p
′
s)Ãdx

′
sdp
′
s p̂m (5.92)

=

¨
Wψi,ψf (x

′
s, p
′
s)dx

′
sdp
′
s

(
1− i

~
γAwp̂m

)
= 〈ψf |ψi〉 e−

i
~γAw p̂m , (5.93)

by setting

Aw =

˜
Wψs,ψf (xs, ps)Ã(xs, ps)dxsdps˜

Wψs,ψf (xs, ps)dxsdps
(5.94)

as the weak value. For simplicity, it is assumed to be real in the remaining of the calculations.
The complex case is dealt with later. The other bracket term in equation (5.87) can be treated
in the same way to obtain

〈ψi| e
i
~γÂ⊗p̂m |ψf〉 = 〈ψi|ψf〉 e

i
~γAw p̂m . (5.95)
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Finally, the joint Wigner distribution after post-selection becomes

WΨj(xs, ps, xm, pm) =
1

h2

¨
e−

i
~ (psys+pmym)

〈
xs +

ys
2

∣∣∣ψf〉 〈ψf |ψi〉〈xm +
ym
2

∣∣∣ e− i
~γAw p̂m

∣∣∣ φ〉〈
φ
∣∣∣ e i~γAw p̂m ∣∣∣xm − ym

2

〉
〈ψi|ψf〉

〈
ψf

∣∣∣xs − ys
2

〉
dysdym (5.96)

=
1

h2

¨
e−

i
~ (psys+pmym)

〈
xs +

ys
2

∣∣∣ψf〉 〈ψf |ψi〉〈xm +
ym
2
− γAw

∣∣∣φ〉〈
φ
∣∣∣xm − ym

2
− γAw

〉
〈ψi|ψf〉

〈
ψf

∣∣∣xs − ys
2

〉
dysdym (5.97)

=
1

h2
| 〈ψf |ψi〉 |2

ˆ
e−

i
~psys

〈
xs +

ys
2

∣∣∣ψf〉〈ψf ∣∣∣xs − ys
2

〉
dysˆ

e−
i
~pmym

〈
xm +

ym
2
− γAw

∣∣∣φ〉〈φ∣∣∣xm − ym
2
− γAw

〉
dym (5.98)

= | 〈ψf |ψi〉 |2Wψf (xs, ps)Wφ(xm − γAw, pm). (5.99)

The shift of the Wigner distribution of the meter state is coherent with the shift obtained
in the usual von Neumann scheme (Proposition 2.2). The system is also rightfully in the post-
selected state. Moreover, it can be readily seen that the amplitude of the (not normalised)
Wigner distribution is given by | 〈ψf |ψi〉 |2. When a weak value is chosen to have an ampli-
fication effect, the pre- and post-selection are taken nearly orthogonal. The scalar product is
therefore close to zero, so the amplitude of the Wigner distribution will be small in that case.

In this case, contrary to Proposition 5.7, there is no need to perform a partial trace. Indeed,
the information accessible to the experimenter is directly readable in the result. This comes
from the post-selection, that has disentangled the system and the meter and no superposition
is present anymore. The state is therefore directly separable.

To find the shift in the xm and pm coordinates for a complex weak value, the Lemma 2.1 is
shown to hold in the phase space.

Lemma 5.1: Average value of the meter

Let Wψi(xs, ps) and Wψf (xs, ps) be the pre- and post-selected distributions of the weak
measurement, respectively. The initial meter distribution isWφ(xm, pm). The interaction
couples the system operator Â with the momentum meter operator p̂m through

Ĥint = g(t)Â⊗ p̂m,

with a coupling g(t) depending on time and equal to zero out of the range [0, T ]. The
total weak coupling strength is γ =

´ T
0
g(t)dt. The post-selected joint state is |Ψj〉 with

Wigner distribution WΨj(xs, ps, xm, pm). For any observable M̂ on the meter space, the
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average value in the post-selected joint state is

〈Ψj| 1̂s ⊗ M̂ |Ψj〉
〈Ψj|Ψj〉

=

˜
WΨj(xs, ps, xm, pm)M̃(xm, pm)dxmdpm˜

WΨj(xs, ps, xm, pm)dxmdpm

= 〈φ| M̂ |φ〉+
i

~
γ Re(Aw) 〈φ| [p̂m, M̂ ] |φ〉+

1

~
γ Im(Aw) 〈φ| {p̂m, M̂} |φ〉

− 2

~
γ Im(Aw) 〈φ| M̂ |φ〉 〈φ| p̂m |φ〉 .

Proof. Since we work with the operator p̂, it is more convenient to write the Wigner distribution
in the p basis instead of the x one. The total joint state, up to the first order, is calculated in
the same way than to obtain (5.96). By approximating the exponential, we find

WΨj(xs, ps, xm, pm) =
1

h2

¨
e
i
~ (xsus+xmum)

〈
ps +

us
2

∣∣∣ψf〉 〈ψf |ψi〉〈pm +
us
2

∣∣∣ (1− i

~
γAwp̂m

) ∣∣∣ φ〉〈
φ
∣∣∣ (1 +

i

~
γAwp̂m

) ∣∣∣pm − us
2

〉
〈ψi|ψf〉

〈
ψf

∣∣∣ps − us
2

〉
dusdum

(5.100)

=
1

h
Wψf (xs, ps)| 〈ψf |ψi〉 |2

ˆ
e
i
~xmum

〈
pm +

us
2

∣∣∣ (1− i

~
γAwp̂m

) ∣∣∣ φ〉〈
φ
∣∣∣ (1 +

i

~
γAwp̂m

) ∣∣∣pm − us
2

〉
dum (5.101)

=
1

h
Wψf (xs, ps)| 〈ψf |ψi〉 |2[ˆ
e
i
~xmum

〈
pm +

us
2

∣∣∣φ〉〈φ∣∣∣pm − us
2

〉
dum (5.102)

− i

~
γAw

ˆ
eixmum/~

〈
pm +

us
2

∣∣∣ p̂m ∣∣∣ φ〉〈φ∣∣∣pm − us
2

〉
dum (5.103)

+
i

~
γAw

ˆ
e
i
~xmum

〈
pm +

us
2

∣∣∣φ〉〈 φ∣∣∣ p̂m ∣∣∣pm − us
2

〉
dum

]
. (5.104)

The two parentheses have been distributed and the term proportional to γ2 is neglected.
The first integral (5.102) is the Wigner distribution of the initial meter state, Wφ(xm, pm). We
want to evaluate the normalised average value of the operator M̂ in the final state, with respect
to the meter coordinates. By the properties of the Wigner distribution (Proposition 3.1),

〈Ψj| 1̂s ⊗ M̂ |Ψj〉
〈Ψj|Ψj〉

=

˜
WΨj(xs, ps, xm, pm)M̃(xm, pm)dxmdpm˜

WΨj(xs, ps, xm, pm)dxmdpm
. (5.105)

The denominator is first calculated. The double integration acts on each of the three
integrals, (5.102),(5.103),(5.104). The first term (5.102), integrated, is proportional to

¨
Wφ(xm, pm)dxmdpm = 〈φ|φ〉 = 1. (5.106)
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The application of the double integrals on the second term (5.103) is proportional to

1

h

(
−i
~
γAw

)˚
e
i
~xmum

〈
pm +

us
2

∣∣∣ p̂m ∣∣∣ φ〉〈φ∣∣∣pm − us
2

〉
dumdxmdpm (5.107)

=
1

h

(
−i
~
γAw

)˚
e
i
~xmum

(
pm +

um
2

)〈
pm +

us
2

∣∣∣φ〉〈φ∣∣∣pm − us
2

〉
dumdxmdpm (5.108)

=

(
−i
~
γAw

)¨
δ(um)

(
pm +

um
2

)〈
pm +

us
2

∣∣∣φ〉〈φ∣∣∣pm − us
2

〉
dumdpm (5.109)

=

(
−i
~
γAw

) ˆ
pm 〈pm|φ〉 〈φ|pm〉 dpm =

(
−i
~
γAw

) ˆ
〈φ|pm〉 pm 〈pm|φ〉 dpm =

(
−i
~
γAw

)
〈φ| p̂m |φ〉 .

(5.110)

A similar development can be made for the third part, (5.104). Finally, the denominator of
equation (5.105) is

¨
Wα(xs, ps, xm, pm)dxmdpm = Wψf (xs, ps)| 〈ψf |ψi〉 |2

(
〈φ|φ〉 − i

~
γAw 〈φ| p̂m |φ〉+

i

~
γAw 〈φ| p̂m |φ〉

)
.

(5.111)
The numerator of equation (5.105) is now studied. We first need the Weyl transform of the

operator M̂ (in the p basis),

M̃(xm, pm) =

ˆ
e
i
~xmvm

〈
pm +

vm
2

∣∣∣ M̂ ∣∣∣pm − vm
2

〉
dvm. (5.112)

Again, three different parts of the numerator are present because of the three integrals
(5.102),(5.103),(5.104) in the definition of the Wigner distribution Wα(xs, ps, xm, pm). The first
one (5.102), averaged on the operator M̂ , is proportional to

¨
Wφ(xm, pm)M̃(xm, pm)dxmdpm = Tr

(
ρ̂φM̂

)
= 〈φ| M̂ |φ〉 (5.113)

by the properties of the Wigner distribution. It is the average value of the operator M̂ , in the
initial meter state. The second term (5.103), once averaged, is proportional to(

− i
~
Aw

)
1

h

˘
e
i
~xm(um+vm)

〈
pm +

us
2

∣∣∣ p̂m ∣∣∣ φ〉〈φ∣∣∣pm − us
2

〉
〈
pm +

vm
2

∣∣∣ M̂ ∣∣∣pm − vm
2

〉
dumdvmdxmdpm (5.114)

=

(
− i
~
Aw

)˚
δ(um + vm)

(
pm +

um
2

)〈
pm +

us
2

∣∣∣φ〉〈φ∣∣∣pm − us
2

〉
〈
pm +

vm
2

∣∣∣ M̂ ∣∣∣pm − vm
2

〉
dumdvmdpm (5.115)

=

(
− i
~
Aw

)¨ (
pm +

um
2

)〈
pm +

us
2

∣∣∣φ〉〈φ∣∣∣pm − us
2

〉
〈
pm −

us
2

∣∣∣ M̂ ∣∣∣pm +
us
2

〉
dumdpm (5.116)

=

(
− i
~
Aw

)¨
p 〈p|φ〉 〈φ|w〉 〈w| M̂ |p〉 dpdw w = pm −

um
2
, p = pm +

um
2

(5.117)

=

(
− i
~
Aw

) ˆ
〈φ| M̂ |p〉 p 〈p|φ〉 dp =

(
− i
~
Aw

)
〈φ| M̂p̂m |φ〉 . (5.118)
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A similar development can be made for the third part, equation (5.104). The numerator of
equation (5.105) is therefore
¨

WΨj(xs, ps, xm, pm)M̃(xm, pm)dxmdpm = Wψf (xs, ps)| 〈ψf |ψi〉 |2(
〈φ| M̂ |φ〉 − i

~
γAw 〈φ| M̂p̂m |φ〉+

i

~
γAw 〈φ| p̂mM̂ |φ〉

)
.

(5.119)

Putting the two results in equation (5.105) gives the average value of the operator M̂ ,
˜
WΨj(xs, ps, xm, pm)M̃(xm, pm)dxmdpm˜

WΨj(xs, ps, xm, pm)dxmdpm
=
〈φ| M̂ |φ〉 − i

~γAw 〈φ| M̂p̂m |φ〉+ i
~γAw 〈φ| p̂mM̂ |φ〉

〈φ|φ〉 − i
~γAw 〈φ| p̂m |φ〉+ i

~γAw 〈φ| p̂m |φ〉
.

(5.120)
This is the same result as in the proof of Proposition 2.1, in equation (2.26). The remaining

of the calculations are identical, to find the final result.

The lemma just proven gives the same results as Lemma 2.1. Therefore, it can be applied
to get the shift in xm and pm, as has been done in Proposition 2.3. The shift of the Wigner
distribution after a weak post-selected measurement can finally be obtained, for a complex
weak value.

Proposition 5.9: Meter shift for a complex weak value

Let Wψi(xs, ps) and Wψf (xs, ps) be the pre- and post-selected distributions, respectively.
The initial meter distribution isWφ(xm, pm). The interaction couples the system operator
Â with the momentum meter operator p̂m through

Ĥint = g(t)Â⊗ p̂m,

with a coupling g(t) depending on time and equal to zero out of the range [0, T ]. The
total weak coupling strength is γ =

´ T
0
g(t)dt. Then, the post-selected joint Wigner

distribution is

WΨj(xs, px, xm, pm) = | 〈ψf |ψi〉 |2Wψf (xs, ps)

Wφ

(
xm − γ ReAw −

m

~
γ ImAw

dVari(xm)

dt
,

pm −
2

~
γ ImAw Vari(pm)

)
.

Proof. This is an application of Lemma 5.1 for M̂ = x̂m and M̂ = p̂m and the translation
property of the Wigner distribution.

5.6.5 Example: Weakly Coupled Harmonic Oscillators

Consider the coupled harmonic oscillators of Section 2.3.2. The Proposition 5.9 gives the shift
of the Wigner distribution of the meter. The weak values are already known from equation
(5.34). The Wigner distribution of the meter is also known, equation (3.21). It is represented
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in Figure 12, for different values of the orthogonality parameter α. The variance σm is assumed
to be constant so the Wigner distribution is

Wφ

(
x− γ (1− α)σs

α
√

2
+

2

~
γ

(1− α)~
α
√

2σs
σm, px

)
. (5.121)

Only the x coordinate is shifted by the measurement, so the p distribution is left unchanged.
In Figure 12, four different values of α are taken and the Wigner distribution of the meter
is shown for each case (a shift in the p distribution is artificially added for clarity of the
representation). The amplitude parameter is taken into account, to show the low measurement
probability for increasing amplification. The higher distribution, on the left, corresponds to α
close to one. The shift of the distribution is therefore small but the amplitude is high. The last
distribution, very small on the right, is obtained with α close to zero. The shift of the meter
distribution is more important but the amplitude is low.

Figure 12: Shift of the meter Wigner distribution for different values of the orthogonality
parameter α. Around x = 9 is the smaller value of α, hence showing a large amplification but
a small height.

5.7 von Neumann measurement in curved configuration space

The complete von Neumann section can be generalised to a curved space. Indeed, the Wigner
distribution and Weyl transforms are modified by a factor depending on the metric determinant
(Proposition 4.3). By paying attention to the application of the displacement operator (that
also displaces the metric determinant, equation (4.24)), the von Neumann process is generalised.

This development is interesting because, in the usual von Neumann process, a curvature of
the space cannot be easily considered. However, in the phase space formalism, it is much more
straightforward. This allows us to consider a measurement involving curved meter and/or sys-
tem spaces. The curvature might be intrinsic, like the curvature of space-time, or it may come
from constraints applied on a system. Some examples are the motion of a particle constrained
on a sphere, or an optic measurement involving metamaterials.
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The meter and the system are defined on independent Hilbert spaces. The phase spaces
are therefore also different, and we assume that the degrees of freedom of the two spaces are
completely independent. Therefore, the curvature is considered as decoupled between the two
spaces. The metric determinant of the system space is gs(xs, ps) and the metric determinant
of the meter space is gm(xm, pm). It makes sense to consider a curvature of the meter space
because the system and meter are often two properties of a same particle, with a common
global curvature.

First, the von Neumann measurement for a measurement without post-selection is repro-
duced in curved phase space.

Proposition 5.10: von Neumann measurement in curved space

Consider the curved joint phase space (xs, ps, xm, pm). The initial system distribution is
W gs
ψi

(xs, ps) and the initial meter distribution is W gm
φ (xm, pm). The interaction couples

the system operator Â (of eigenvalues aj and eigenvectors |aj〉) with the momentum meter
operator p̂m through

Ĥint = g(t)Â⊗ p̂m,

with a coupling g(t) depending on time and equal to zero out of the range [0, T ]. The
total coupling strength is γ =

´ T
0
g(t)dt. The final joint distribution is

W gsgm
Ψ (xs, ps, xm, pm) =

∑
jk

αjαke
− i

~pm(aj−ak)W gs
aj ,ak

(xs, ps)W
gm
φ

(
xm −

γ

2
(aj + ak), pm

)
.

The information available to the experimenter is the reduced state of the meter,
¨

W gsgm
Ψ (xs, ps, xm, pm)dxsdps =

∑
j

|αj|2W gm
φ (xm − γaj, pm) .

Proof. The proof is very similar to the proof of Proposition 5.7, with the metric determinant
rightfully positioned. The initial joint distribution is

W gsgm(xs, ps, xm, pm) = W gs
ψi

(xs, ps)W
gm
φ (xm, pm) (5.122)

=
1

h2

ˆ
4

√
gs

(
xs +

ys
2

)
gs

(
xs −

ys
2

)
e−

i
~psys

〈
xs +

ys
2

∣∣∣ψi〉〈ψi∣∣∣xs − ys
2

〉
dys

ˆ
4

√
gm

(
xm +

ym
2

)
gm

(
xm −

ym
2

)
e−

i
~pmym

〈
xm +

ym
2

∣∣∣φ〉〈φ∣∣∣xm − ym
2

〉
dym

(5.123)

=
1

h2

¨
e−i(psys+pmym)/~ 4

√
gs

(
xs +

ys
2

)
gs

(
xs −

ys
2

)
4

√
gm

(
xm +

ym
2

)
gm

(
xm −

ym
2

)〈
xs +

ys
2
, xm +

ym
2

∣∣∣ψi, φ〉〈
ψi, φ

∣∣∣xs − ys
2
, xm −

ym
2

〉
dysdym. (5.124)

Up to the equation (5.74), the development of the proof is the same. Therefore, the Wigner
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distribution after the interaction is

W gsgm
Ψ (xs, ps, xm, pm) =

1

h2

∑
jk

αjαk

ˆ
e−

i
~psys 4

√
gs

(
xs +

ys
2

)
gs

(
xs −

ys
2

)〈
xs +

ys
2

∣∣∣aj〉〈ak∣∣∣xs − ys
2

〉
dys

ˆ
e−

i
~pmym 4

√
gm

(
xm +

ym
2

)
gm

(
xm −

ym
2

)
〈
xm +

ym
2

∣∣∣ e− i
~γaj p̂m |φ〉 〈φ| e

i
~γakp̂m

∣∣∣xm − ym
2

〉
dym. (5.125)

The translation operator is then applied. From the equation (4.24), the metric determinant
of the meter should also be shifted. Therefore, the resulting state is

W gsgm
Ψ (xs, ps, xm, pm) =

1

h2

∑
jk

αjαk

ˆ
e−

i
~psys 4

√
gs

(
xs +

ys
2

)
gs

(
xs −

ys
2

)〈
xs +

ys
2

∣∣∣aj〉〈ak∣∣∣xs − ys
2

〉
dys

ˆ
e−

i
~pmym 4

√
gm

(
xm +

ym
2
− γaj

)
gm

(
xm −

ym
2
− γak

)
〈
xm +

ym
2
− γaj

∣∣∣φ〉〈φ∣∣∣xm − ym
2
− γak

〉
dym. (5.126)

The development can then be pursued with no further difference except the metric factor,
so that the joint Wigner distribution is

W gsgm
Ψ (xs, ps, xm, pm) =

∑
jk

αjαke
− i

~pm(aj−ak)W gs
aj ,ak

(xs, ps)W
gm
φ

(
xm −

γ

2
(aj + ak), pm

)
,

(5.127)
and the experimenter observes the partial traced distribution

¨
W gsgm

Ψ (xs, ps, xm, pm)dxsdps =
∑
j

|αj|2W gm
φ (xm − γaj, pm) . (5.128)

The Wigner distributions, compared to a flat space, are different but the shift of the meter
state is identical in curved space and in flat space.

5.7.1 Weak post-selected measurement

The same generalisation can be made for a weak post-selected von Neumann measurement in
curved space.

Proposition 5.11: Weak von Neumann measurement in curved space

Consider the curved joint phase space (xs, ps, xm, pm). The initial system distribution is
W gs
ψi

(xs, ps) and the initial meter distribution is W gm
φ (xm, pm). The post-selected system

distribution is W gs
ψf

(xs, ps). The interaction couples the system operator Â with the
momentum meter operator p̂m through

Ĥint = g(t)Â⊗ p̂m,
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with a coupling g(t) depending on time and equal to zero out of the range [0, T ]. The
total weak coupling strength is γ =

´ T
0
g(t)dt and the weak value Aw is assumed to be

real. The final post-selected joint distribution is

W gsgm
Ψj

(xs, ps, xm, pm) = | 〈ψf |ψs〉 |2W gs
ψf

(xs, ps)W
gm
φ (xm − γAw, pm).

The proof is very similar to the proof of Proposition 5.8, and is given in Appendix F. For
a weak measurement, the shift in curved space is the same as in flat space. As in Proposition
5.8, it is not necessary to perform a partial trace because the post-selection destroyed the su-
perposition.

The lemma 5.1 is also generalised to describe the average value of an observable of the
meter, after weak measurement and post-selection, in curved space.

Lemma 5.2: Average value of the meter in curved space

Let W gs
ψi

(xs, ps) and W gs
ψf

(xs, ps) be the pre- and post-selected distributions of the weak
measurement, respectively. The initial meter distribution is W gm

φ (xm, pm). The interac-
tion couples the system operator Â with the momentum meter operator p̂m through

Ĥint = g(t)Â⊗ p̂m,

with a coupling g(t) depending on time and equal to zero out of the range [0, T ]. The
total weak coupling strength is γ =

´ T
0
g(t)dt. The post-selected joint state is |Ψj〉 with

Wigner distributionW gsgm
Ψj

(xs, ps, xm, pm). For any observable M̂ on the meter space, the
average value in the post-selected joint state is

〈Ψj| M̂ |Ψj〉
〈Ψj|Ψj〉

=

˜
W gsgm

Ψj
(xs, ps, xm, pm)M̃ gm(xm, pm)dxmdpm˜
W gsgm

Ψj
(xs, ps, xm, pm)dxmdpm

= 〈φ| M̂ |φ〉+
i

~
γ Re(Aw) 〈φ| [p̂m, M̂ ] |φ〉+

1

~
γ Im(Aw) 〈φ| {p̂m, M̂} |φ〉

− 2

~
γ Im(Aw) 〈φ| M̂ |φ〉 〈φ| p̂m |φ〉 .

Proof. The proof is identical to the proof of Lemma 5.1. Indeed, the development is realised in
the p basis of the Weyl transform and the Wigner distribution and the equation (4.38) shows
that the Wigner distribution is unchanged in the p distribution.

For a complex weak value, applying the lemma gives the shift of the Wigner distribution in
curved phase space.

Proposition 5.12: Meter shift for a complex weak value on curved space

Let W gs
ψi

(xs, ps) and W gs
ψf

(xs, ps) be the pre- and post-selected distributions, respectively.
The initial meter distribution is W gm

φ (xm, pm). The interaction couples the system oper-
ator Â with the momentum meter operator p̂m through

Ĥint = g(t)Â⊗ p̂m,
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with a coupling g(t) depending on time and equal to zero out of the range [0, T ]. The
total weak coupling strength is γ =

´ T
0
g(t)dt. Then, the post-selected joint Wigner

distribution is

W gsgm
α (xs, px, xm, pm) = | 〈ψf |ψi〉 |2W gs

ψf
(xs, ps)

W gm
φ

(
xm − γ ReAw −

m

~
γ ImAw

dVari(xm)

dt
,

pm −
2

~
γ ImAw Vari(pm)

)

Proof. This is a direct application of Proposition 2.3 and the translation property of the Wigner
distribution.

6 Conclusion and Outlooks

The physical interpretation of weak measurements and weak values is a complex task. That
motivates the search for alternative ways to describe weak values and weak measurements, in
a manner that is easier to understand physically. Since weak measurements are also involved
in the description of many quantum paradoxes [11, 12, 25], such a task is also important to
understand the meaning of these paradoxes.

An interesting tool to use in this context is the quantum phase space [16, 17, 18, 19, 30].
The classical physical reasoning takes place in phase space, so a description of the quantum
theory in phase space is important to bring more insights into its meaning. This is why the
Wigner distribution was introduced, by reasoning in terms of statistical physics at first [19].
This gives a representation of a state (in an abstract Hilbert space) into the phase space (x, p).

The concept of weak value has therefore been studied in phase space. It has been shown in
the literature that it is obtained from the cross-Wigner distribution between the pre-selection
and post-selection, interpreted as an interference occurring between the two states [31, 32]. The
weak value is the average of the cross-Wigner distribution. This was extended to generalised
phase spaces and to curved configuration spaces. The weak value can therefore be described in
any phase space as an interference between the pre-selection and the post-selection represented
in the given phase space.

Another interesting result is the determination, in phase space, of the weak value of the
momentum, post-selected on the position. Its real part is proportional to the probability cur-
rent while its imaginary part is linked to the osmotic velocity. These concepts are widely used
in the stochastic interpretation of quantum mechanics [21], as well as in the de Broglie-Bohm
theory [22]. Therefore, this gives a clear meaning to the weak value in the framework of these
two interpretations. Moreover, this specific weak value appears in one of the most important
weak experiment, the two-slit interferometer [10]. The average trajectories of the photons are
obtained from this weak value, and the results also support the de Broglie-Bohm interpretation
of quantum physics.
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The von Neumann model is a description of quantum measurements taking into account
the system and the measuring device, with a given coupling strength between the two [3, 4, 5].
This model allows to define weak as well as strong measurements and post-selected ones. The
process, in all cases, has been reproduced in phase space. This makes a shift of the Wigner
distribution appear, in the x and p coordinates, depending on the eigenvalues of the operator
if the measurement is not post-selected, depending on the weak value if it is. The Wigner
distribution can therefore be described, for the meter and for the system, at each step of the
measurement. The experimenter, in a weak post-selected measurement, will observe the weak
value.

The description of the von Neumann model in phase space has then been generalised to
describe the process of measurement in curved configuration spaces. Interestingly, the weak
value is the same in a flat or a curved space, so the shift is identical. Only the shape of the
Wigner function itself is modified by the curvature. This can be used, for example, for a weak
measurement of a particle constrained on the surface of a sphere. In practice, this could be
useful to study rotating or vibrating molecules [40], or in transformation optics where the light
propagates in a metamaterial as it would in a curved space.

Most of these concepts and results have been illustrated on the example of a bi-dimensional
harmonic oscillator, coupled through a magnetic field. This example has the advantage to be
easy to treat and to give intuitive representations of the concepts in phase space. Moreover, the
ground state of the oscillator is a coherent state, interpreted as a state close to a classical one.
This is useful to understand the generalised phase space from the point of view of generalised
coherent states.

For a future work, the Wigner distribution should be evolved directly in phase space, through
the time evolution equation of the Wigner distribution. It is here described before and after
the measurement, however a description of the distribution during the measurement would be
very interesting. However, the post-selection step is a part that should be difficult to treat in
phase space.

Another outlook is to use the formalism of generalised phase space presented in this thesis
to describe discrete systems, such as the spin. The phase space can then be discrete and the
Wigner distribution is described differently [33, 34, 35]. This is important because many weak
measurements involve the spin or the polarisation of a particle. Furthermore, the phase space
of a given system is not uniquely defined. In this thesis, we used only the phase space con-
structed from the Wigner distribution but other phase space distributions on (x, p) exist and
could provide insight into weak measurements.

Lastly, the weak value of the momentum post-selected on the position is hugely interesting.
From its interpretation with concepts of the statistical and Bohmian interpretations of quantum
physics, the study of this weak value can provide insights in the foundations of the quantum
theory. Evidencing the links between weak measurements and the de Broglie-Bohm theory, in
phase space, can be interesting to better understand these two concepts together.
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7 Appendices

Appendix A: Integral calculation

A particular integral I appears in multiple places of the thesis. In general, its form is

I =

ˆ
e−

i
~pxe−

x2

a2 dx. (7.1)

It can be evaluated by noting that

x2

a2
+
ipx

~
=
x2

a2
+
ipx

~
− p2a2

4~2
+
p2a2

4~2
=

(
x

a
+
ipa

2~

)2

+
p2a2

4~2
, (7.2)

so the integral becomes

I = e−
p2a2

4~2

ˆ
e−(xa+ ipa

2~ )
2

dx (7.3)

= e−
p2a2

4~2

ˆ
e−y

2

a dy y =
x

a
+
ipa

2~
(7.4)

= e−
p2a2

4~2 a

ˆ
e−y

2

dy. (7.5)

The remaining integral is called the Gauss integral,
ˆ
e−y

2

dy =
√
π. (7.6)

Finally, we get
I = a

√
πe−

p2a2

4~2 . (7.7)
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Appendix B: Fourier tranforms of the harmonic oscillator

The Fourier transform ψ0(p) of the ground state of the harmonic oscillator ψ0(x) is

ψ0(p) =
1√
h

ˆ
e−

i
~pxxψ0(x)dx (7.8)

=
1√
h

ˆ
e−

i
~pxx

1
4
√
π
√
σ
e−

x2

2σ2 dx (7.9)

=
1√

h 4
√
π
√
σ

ˆ
e−

i
~pxxe−

x2

2σ2 dx. (7.10)

This integral is solved in Appendix A. Therefore, the distribution is

ψ0(p) =
1√

h 4
√
π
√
σ

√
2σ
√
πe−

p2x2σ
2

4~2 =

√
2πσ√
h 4
√
π
e−

p2xσ
2

2~2 . (7.11)

The Fourier transform ψ1(p) of the ground state of the harmonic oscillator ψ1(x) is

ψ1(p) =
1√
h

ˆ
e−

i
~pxψ1(x)dx (7.12)

=
1√
h 4
√
π

√
2

σ

1

σ

ˆ
xe−

i
~pxe−

x2

2σ2 dx (7.13)

=
1√

h 4
√
πσs

√
2

σ

ˆ
xe
−
(

x√
2σ

+ ipσ√
2~

)2

dxe−
p2σ2

2~2 (7.14)

=
1√

h 4
√
πσ

√
2

σ
e−

p2σ2

2~2
√

2σ

ˆ (√
2σx′ − ipσ2

~

)
e−x

′2
dx′ (7.15)

=
2√

hσ 4
√
π
e−

p2σ2

2~2

(√
2σ

ˆ
x′e−x

′2
dx′ − ipσ2

~

ˆ
e−x

′2
dx′
)

(7.16)

= −2ipσ2 4
√
π√

2π~σ~
e−

p2σ2

2~2 . (7.17)
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Appendix C: Calculation of the weak values (2.45) of the coupled har-
monic oscillators

The numerator of the weak value yw is

〈ψf | ŷ |ψi〉 =

ˆ
y 〈ψf |y〉 〈y|ψi〉 dy (7.18)

= α

ˆ
y 〈ψ0|y〉 〈y|ψ0〉 dy + (1− α)

ˆ
y 〈ψ1|y〉 〈y|ψ0〉 dy (7.19)

=
α√
πσs

ˆ
ye
− y

2

σ2s dy +
(1− α)

√
2√

πσ2
s

ˆ
y2e
− y

2

σ2s dy (7.20)

=
(1− α)

√
2√

πσ2
s

σ3
s

ˆ
y′2e−y

′2
dy′ y′ =

y

σs
. (7.21)

where the integral of the first term is equal to zero because the argument is odd. The remaining
integral is ˆ

y′2e−y
′2
dy′ =

√
π

2
. (7.22)

The numerator of the weak value becomes

〈ψf | ŷ |ψi〉 = (1− α)
σs√

2
, (7.23)

with the denominator 〈ψf |ψi〉 = α, so the weak value is

yw =
(1− α)σs

α
√

2
. (7.24)

The numerator of the weak value pyw is

〈ψf | p̂y |ψi〉 =

ˆ
py 〈ψf |py〉 〈py|ψi〉 dpy (7.25)

= α

ˆ
py 〈ψ0|py〉 〈py|ψ0〉 dpy + (1− α)

ˆ
py 〈ψ1|py〉 〈py|ψ0〉 dpy (7.26)

=
ασs
~
√
π

ˆ
pye
−
p2yσ

2
s

~2 dp+
(1− α)i2σ2

s√
2π~2

ˆ
p2
ye
−
p2yσ

2
s

~2 dpy (7.27)

=
(1− α)i2σ2

s√
2π~2

~3
√
π

2σ3
s

=
i(1− α)~√

2σs
, (7.28)

so the weak value is
pyw =

i(1− α)~
α
√

2σs
. (7.29)
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Appendix D: Proof of Proposition 3.2

1. The distribution is recovered by integration. The first marginal is realised using the
Wigner distribution in the x basis, and the second is done in the p basis. This gives

ˆ
W (x, p)dp =

1

h

¨
e−

i
~py
〈
x+

y

2

∣∣∣ ρ̂ ∣∣∣x− y

2

〉
dydp (7.30)

=

ˆ
δ(y)

〈
x+

y

2

∣∣∣ ρ̂ ∣∣∣x− y

2

〉
dy = 〈x| ρ̂ |x〉 . (7.31)

ˆ
W (x, p)dx =

1

h

¨
e
i
~xu
〈
p+

u

2

∣∣∣ ρ̂ ∣∣∣p− u

2

〉
dudx (7.32)

=

ˆ
δ(u)

〈
p+

u

2

∣∣∣ ρ̂ ∣∣∣p− u

2

〉
du = 〈p| ρ̂ |p〉 . (7.33)

2. The Weyl transform of the identity operator is 1̃ = 1. Using this and Lemma 3.1, we
have ¨

W (x, p)dxdp =

¨
W (x, p)1̃dxdp = Tr

(
ρ̂1̂
)

= Tr(ρ̂) = 1. (7.34)

3. To show that the distribution is real, the complex conjugate of the distribution is shown
to be equal to the distribution itself,

W ∗(x, p) =
1

h

ˆ
e
i
~py
〈
x− y

2

∣∣∣ ρ̂ ∣∣∣x+
y

2

〉
dy y = −y′ (7.35)

=
1

h

ˆ
e−

i
~py
′
〈
x+

y′

2

∣∣∣∣ ρ̂ ∣∣∣∣x− y′

2

〉
dy′ = W (x, p). (7.36)

4. To show that the Wigner distribution is not always positive, a counterexample is shown.
Let’s consider two density operators ρ̂1 = |ψ1〉 〈ψ1| and ρ̂2 = |ψ2〉 〈ψ2|. We have

Tr(ρ̂1ρ̂2) =

ˆ
〈u|ψ1〉 〈ψ1|ψ2〉 〈ψ2|u〉 du = 〈ψ1|ψ2〉 〈ψ2|ψ1〉 = | 〈ψ1|ψ2〉 |2. (7.37)

Using Lemma 3.1, we also have

Tr(ρ̂1ρ̂2) =
1

h

¨
ρ̃1(x, p)ρ̃2(x, p)dxdp = h

¨
W1(x, p)W2(x, p)dxdp. (7.38)

If we assume that the two states are orthogonal, we obtain
¨

W1(x, p)W2(x, p)dxdp = | 〈ψ1|ψ2〉 |2 = 0. (7.39)

The two functions cannot be zero on the whole space so at least one of them must take
negative values in some regions of the phase space.
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Appendix E: Proof of Proposition 4.2

2. For any Ω ∈ X and any operator Â,

F
(s)
A (Ω) =

(
F

(s)

A†
(Ω)
)∗

(7.40)

⇔ Tr
(
Â∆̂(s)(Ω)

)
= Tr

(
Â†∆̂(s)(Ω)

)∗
(7.41)

⇔ Tr
(
Â∆̂(s)(Ω)

)
= Tr

(
(∆̂(s)(Ω))†Â

)
(7.42)

⇔ Tr
(
Â∆̂(s)(Ω)

)
= Tr

(
Â(∆̂(s)(Ω))†

)
. (7.43)

It is valid for any Â, so
∆̂(s)(Ω) = (∆̂(s)(Ω))†. (7.44)

3. For any operator Â,

Tr
(
Â
)

= Tr
(
Â1̂
)

=

ˆ
X

F
(s)
A (Ω)dµ(Ω) =

ˆ
X

Tr
(
Â∆̂(s)(Ω)

)
dµ(Ω) = Tr

(
Â

ˆ
X

∆̂(s)(Ω)dµ(Ω)

)
.

(7.45)
It is valid for any Â, so ˆ

X

∆̂(s)(Ω)dµ(Ω) = 1̂.

4. For any operator Â and any Ω ∈ X, using the Proposition 4.1 and the Definition 4.5,

F
(s)
A (Ω) = Tr

(
Â∆̂(s)(Ω)

)
=

ˆ
X

F s′

A (Ω′) Tr
(

∆̂(s)(Ω)∆̂(−s′)(Ω′)
)
dµ(Ω′) (7.46)

=

ˆ
X

Tr
(
Â∆̂s′(Ω′)

)
Tr
(

∆̂(s)(Ω)∆̂(−s′)(Ω′)
)
dµ(Ω′) (7.47)

= Tr

(
Â

ˆ
X

∆̂s′(Ω′) Tr
(

∆̂(s)(Ω)∆̂(−s′)(Ω′)
)
dµ(Ω′)

)
. (7.48)

It is valid for any Â, so

∆̂(s)(Ω) =

ˆ
X

∆̂s′(Ω′) Tr
(

∆̂(s)(Ω)∆̂(−s′)(Ω′)
)
dµ(Ω′). (7.49)

The factor Tr
(

∆̂(s)(Ω)∆̂(−s′)(Ω′)
)
acts like a delta function on X.

5. For any operator Â and any Ω ∈ X,

F
(s)
g·A(Ω) = F

(s)
A (g−1Ω) (7.50)

⇔ Tr
(
T (g)ÂT−1(g)∆̂(s)(Ω)

)
= Tr

(
Â∆̂(s)(g−1Ω)

)
(7.51)

⇔ Tr
(
ÂT−1(g)∆̂(s)(Ω)T (g)

)
= Tr

(
Â∆̂(s)(g−1Ω)

)
. (7.52)

It is valid for any Â, so

∆̂(s)(g−1Ω) = T−1(g)∆̂(s)(Ω)T (g). (7.53)
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Appendix F: Proof of Proposition 5.11

The proof is very similar to the proof of Proposition 5.8. The joint Wigner distribution, after
interaction and post-selection, is

W gsgm
Ψj

(xs, ps, xm, pm) =
1

h2

¨
e−

i
~ (psys+pmym) 4

√
gs

(
xs +

ys
2

)
gs

(
xs −

ys
2

)
4

√
gm

(
xm +

ym
2

)
gm

(
xm −

ym
2

)〈
xs +

ys
2

∣∣∣ψf〉〈ψf ∣∣∣xs − ys
2

〉
〈
ψf , xm +

ym
2

∣∣∣ e− i
~γÂ⊗p̂m

∣∣∣ ψi, φ〉〈 ψi, φ∣∣∣ e i~γÂ⊗p̂m ∣∣∣ψf , xm − ym
2

〉
dysdym.

(7.54)

The bracket term can be evaluated in the same way as in flat space, to get

〈ψf | e−
i
~γÂ⊗p̂ |ψi〉 = 〈ψf |ψi〉 e−

i
~γAw p̂m , (7.55)

by setting

Aw =

˜
W gs
ψi,ψf

(xs, ps)Ã
gs(xs, ps)dxsdps˜

W gs
ψi,ψf

(xs, ps)dxsdps
(7.56)

as the weak value. For simplicity, the weak value is assumed to be real. Finally, the joint
Wigner distribution in curved space after post-selection becomes

W gsgm
Ψj

(xs, ps, xm, pm) =
1

h2

¨
e−

i
~ (psys+pmym) 4

√
gs

(
xs +

ys
2

)
gs

(
xs −

ys
2

)〈
xs +

ys
2

∣∣∣ψf〉
4

√
gm

(
xm +

ym
2

)
gm

(
xm −

ym
2

)
〈ψf |ψi〉

〈
xm +

ym
2

∣∣∣ e− i
~γAw p̂m

∣∣∣ φ〉〈
φ
∣∣∣ e i~γAw p̂m ∣∣∣xm − ym

2

〉
〈ψi|ψf〉

〈
ψf

∣∣∣xs − ys
2

〉
dysdym (7.57)

=
1

h2

¨
e−

i
~ (psys+pmym) 4

√
gs

(
xs +

ys
2

)
gs

(
xs −

ys
2

)〈
xs +

ys
2

∣∣∣ψf〉
4

√
gm

(
xm +

ym
2
− γAw

)
gm

(
xm −

ym
2
− γAw

)
〈ψf |ψi〉 〈ψi|ψf〉〈

xm +
ym
2
− γAw

∣∣∣φ〉〈φ∣∣∣xm − ym
2
− γAw

〉〈
ψf

∣∣∣xs − ys
2

〉
dysdym

(7.58)

=
1

h2
| 〈ψf |ψi〉 |2

ˆ
e−

i
~psys 4

√
gs

(
xs +

ys
2

)
gs

(
xs −

ys
2

)
〈
xs +

ys
2

∣∣∣ψf〉〈ψf ∣∣∣xs − ys
2

〉
dysˆ

e−
i
~pmym 4

√
gm

(
xm +

ym
2
− γAw

)
gm

(
xm −

ym
2
− γAw

)
〈
xm +

ym
2
− γAw

∣∣∣φ〉〈φ∣∣∣xm − ym
2
− γAw

〉
dym (7.59)

= | 〈ψf |ψi〉 |2W gs
ψf

(xs, ps)W
gm
φ (xm − γAw, pm). (7.60)
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