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Tilting Together: An
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Dari Trendafilov 1*†, Gerd Schmitz 2†, Tong-Hun Hwang 2, Alfred O. Effenberg 2 and

Daniel Polani 3

1 Institute of Pervasive Computing, Johannes Kepler University, Linz, Austria, 2Department of Humanities, Institute of Sports

Science, Leibniz University Hannover, Hanover, Germany, 3 Adaptive Systems, University of Hertfordshire, Hatfield,
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Every joint collaborative physical activity performed by a group of people, e.g., carrying a

table, typically leads to the emergence of spatiotemporal coordination of individual motor

behavior. Such interpersonal coordination can arise solely based on the observation

of the partners’ and/or the object’s movements, without the presence of verbal

communication. In this paper, we investigate how the social coupling between two

individuals in a collaborative task translates into measured objective and subjective

performance indicators recorded in two different studies. We analyse the trends in the

dyadic interrelationship based on the information-theoretic measure of transfer entropy

and identify emerging leader-follower roles. In our experimental paradigm, the actions of

the pair of subjects are continuously and seamlessly fused, resulting in a joint control of

an object simulated on a tablet computer. Subjects need to synchronize their movements

with a 90◦ phase difference in order to keep the object (a ball) rotating precisely on

a predefined circular or elliptic trajectory on a tablet device. Results demonstrate how

the identification of causal dependencies in this social interaction task could reveal

specific trends in human behavior and provide insights into the emergence of social

sensorimotor contingencies.

Keywords: sensorimotor contingencies, interpersonal coordination, collaborative interaction, transfer entropy,

information theory, causality, social interaction

1. INTRODUCTION

In everyday joint physical activities humans often coordinate their motor behavior. Such
interpersonal coordination emerges when two people dance, row a canoe, or carry an object
together. In some cases, coordination of this kind could be controlled through a direct physical
contact (e.g., dance), and in other cases it could be mediated by a rigid object (e.g., a table), or
it can also be distantly coordinated without any physical contact. In such various types of social
interaction, visual contact has different levels of importance, as humans typically coordinate their
movements by detecting visual movement information (Schmidt et al., 1990), and this could lead
to coordination even when it is not necessary for completing the task (Schmidt and O’Brien,
1997; Richardson et al., 2005). From a dynamical systems perspective, such visually mediated
interpersonal coordination can be understood as a self-organized entrainment process of biological
rhythms (Newtson et al., 1987; Schmidt et al., 1990).
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Interpersonal coordination can be influenced by different
modes of non-verbal communication (e.g., mimicry, gestures,
and facial expressions) as a basis of social interaction (Vicaria
and Dickens, 2016). Such non-verbal expressions could
induce spatiotemporal coordination and could facilitate social
entrainment between two or more individuals (Phillips-Silver
and Keller, 2012). Non-verbal means of communication are
generally faster than verbal in sharing action plans and strategies,
when instant reaction is required in a joint task (Knoblich and
Jordan, 2003). Non-verbal communication modes, supporting
emergent coordination, stretch across a broad spectrum
of perceptual modalities, like visual, kinesthetic, tactile, or
auditory (Marsh et al., 2009). Dancers coordinate non-verbally
during performance relying on visual as well as auditory cues
(Waterhouse et al., 2014). Demos et al. (2012) reasoned that
the spontaneous coordination would result from emergent
perceptuo-motor couplings in the brain (Kelso, 1995). Keller
suggested that online perceptual information might enhance the
anticipation of one’s own action, as well as the co-performer’s
action, in terms of developing common predictive internal
models (Keller and Appel, 2010; Keller, 2012).

One limitation of interpersonal coordination research stems
from the fact that studies (e.g., Schmidt and Turvey, 1994)
usually require individuals to focus their visual attention directly
toward the movements of their co-actor. The current study
tested the coupling strength and the stability of interpersonal
coordination in a task that required visual control of a ball on
a tablet screen. The movement of the ball resulted from the
joint action of both persons. Neither the effect from the own
action nor the partner’s action could be perceived in isolation.
When agents engage in social interaction, a rich spectrum of
possibilities arises: under some conditions, they act together
as one single entity, in other conditions they may act as
independent individuals. There is an interplay between intrinsic,
cognitively driven coordination and coordination driven by the
environment. The intrinsic coordination between the actions of
interacting agents is a candidate for a measure of individuality
or autonomy with respect to other agents (Bertschinger et al.,
2008). In a cooperative task, when two agents use independent
controllers under information processing constraints, they arrive
at intrinsic coordination in order to overcome limitations of their
environment (Harder et al., 2010).

Interpersonal synergies are higher-order control systems
formed by coupling movement of two (or more) actors. Many
different approaches have been utilized for the characterization
of social couplings, such as autocorrelation, cross-correlation
(Box and Jenkins, 1970), transfer entropy (Barnett et al., 2009),
Granger causality (Granger, 1969), and their potential has been
demonstrated in many applications (e.g., Valdes-Sosa et al., 2005;
Arnold et al., 2007; Ryali et al., 2011). Interactive alignment
was used to investigate interpersonal synergies in conversational
dialog (Fusaroli et al., 2014; Fusaroli and Tylén, 2015). A key
challenge is to design a suitable procedure that allows synchrony
and turn-taking to spontaneously take place. Traditional
interactive paradigms mainly consist of non-contingent social
stimuli that do not allow true social interaction (Redcay et al.,
2010). However, apparent interpersonal coordination could be

merely incidental rather than reflecting true coordination—
people may appear to coordinate their movements because
they simultaneously execute similar motor programs, mediated
by shared motor representations (Garrod and Pickering, 2004,
2009; Sebanz et al., 2006). In this study we addressed that
by designing a performance oriented closed-loop interaction
paradigm, which requires tightly-coupled motor coordination. A
study, based on the perceptual crossing paradigm, investigates
the direction of influence using discretized turn-taking events
(Kojima et al., 2017).

Dynamical processes modeling the stable modes of intentional
inter-limb coordination within (Haken et al., 1985) and between
(Schmidt et al., 1998) individuals, can be represented by
coupled oscillators. One of the main principled treatments
of mutual synchronization in a network of oscillators was
proposed by Kuramoto (1984) and is related to work of Bottani
(1996), Pikovsky et al. (2001), Strogatz (2003), and Winfree
(1967, 1980). Kuramoto (1984) developed a tractable mean-
field model of coupled biological oscillators (Winfree, 1967),
such as groups of chorusing crickets (Walker, 1969), flashing
fireflies (Buck, 1988), or cardiac pacemaker cells (Peskin, 1975),
which exhibits a spontaneous transition from incoherence to
collective synchronization as the coupling strength is increased
past a certain threshold. However, the original model relates to
sinusoidal all-to-all couplings, which are not typical for biological
systems. Strogatz (2003) introduced a not pure sinusoidal
generalization, which also enables the addition of noise by a
flux term. In the case of identical oscillators, perfect synchrony
extends to time-delayed interactions, and when the oscillators
are completely disorganized, different synchronized states can
coexist with a stable incoherent state (Adlakha et al., 2012).
Hanson’s model of firefly entrainment, captured by an extension
of the Haken-Kelso-Bunz equation (Kelso et al., 1990), specifies
the eigenfrequency difference or frequency detuning between two
rhythmic units. It reveals that human interpersonal rhythmic
coordination is subject to the same dynamical laws as seen
elsewhere in nature. Entrainment of unpredictable and chaotic
systems was studied more recently by Dotov and Froese (2018).

New approaches from social neuroscience use imaging
techniques, such as FMRI, fNIRS, and M/EEG, to study brain
mechanisms in social interactions. One promising approach is
hyperscanning, in which the brain dynamics of multiple subjects
are studied simultaneously (Czeszumski et al., 2020). With
EEG-hyperscanning, Sänger et al. (2012) found increased phase
locking and phase coherence connection strengths in phases
characterized by high demands on (musical) action coordination.
Furthermore, oscillatory couplings between musicians’ brains
enabled the inference of leader-follower roles (Sänger et al.,
2013). Similar observations were made by Dumas et al. (2010)
in an imitation task, i.e., neuronal synchronization becomes
asymmetric when one person is a leader and the other imitator.
Konvalinka et al. (2014) demonstrated that multivariate decoding
of inter-brain activity in an interactive task can identify the
spontaneous emergence of leader-follower relationships within
a dyad. Stephens and Galloway (2017) applied a quantitative
information-theoretic approach for modeling the information
exchange in healthcare teams in interactive navigation by
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transforming EEG-data into a stream of Shannon-entropy units
characterizing team members’ relationships.

Studies focusing on hyperscanning analysis of information
flows between human brains require estimating the causal links
between brains. Such causal links are established typically using
Granger Causality or its frequency domain equivalent Partial
Directed Coherence (PDC) (e.g., Astolfi et al., 2011, 2012).
Previous results reveal stronger causal links during increased
cooperative behavior and altruistic behaviors in decision-making
tasks (Fallani et al., 2010; Ciaramidaro et al., 2018). Schippers
et al. (2010) studied causal links in gesture communication using
fMRI and Pan et al. (2017) using fNIRS between brains of
cooperating lovers. Yun et al. (2012) investigated a paradigm
for identifying the behavioral and the neural correlates of
implicit cooperative social interaction. Leong et al. (2017)
demonstrated that adults and infants show significant mutual
neural coupling during social interactions. Liu et al. (2016)
proposed a novel method for studying social cognition in the
cooperative and obstructive game of Jenga. Naeem et al. (2012)
explored mutual information on EEG data in social interaction
tasks. Lobier et al. (2013) found that Phase Transfer Entropy
detects the strength and direction of connectivity in the presence
of noise characteristic for EEG data. The growing variety of
hyperscanning analysis techniques suggest their exploratory
nature and often the advantages and disadvantages of a specific
method are not obvious. A key open research question relates
to the neural substrates enabling the information flow between
brains. In this respect it is crucial to emphasize the difference
between information flow and synchronized neural activity
between brains due to identical sensory input.

Despite such significant insights into the neuronal
mechanisms of social interactions and social roles, Liu et al.
(2018) pointed out that their behavioral correlates are still
largely unclear and further research is needed to decompose
the complicated mental constituent into basic psychological
processes. The reciprocal influence in social interactions
represents a major challenge with regard to the design of
experiments. This is a starting point for the present study,
which introduces a behavioral approach to quantify and
investigate reciprocal influences and social roles. In a two-person
cooperative tapping behavioral study using transfer entropy
Takamizawa and Kawasaki (2019) identified leader/follower
relationships which were consistent with subjective experiences.

2. MEASURES OF CAUSAL RELATIONSHIP

Various measures of causal relationship exist, the main groups
being model-based [e.g., Granger causality (Granger, 1969)
or dynamic causal modeling (Friston et al., 2003)] or non-
parametric methods [e.g., transfer entropy (Schreiber, 2000)
or directed information (Massey, 1990)]. Granger causality is
particularly useful when the interaction between the agents can
be approximated well linearly and data has relatively low levels of
noise (Nalatore et al., 2007).

Shannon mutual information, in conjunction with signal
independent component analysis provides new aspects of

brain-to-brain coupling in dyadic social interactions (Naeem
et al., 2012), and reveals how the dynamic interaction unfold,
determined by its specific properties. In the context of
information theory, the key measure of information of a
random variable is its Shannon entropy (Shannon, 1948). The
entropy quantifies the reduction of uncertainty obtained when
one actually measures the value of the variable. Therefore,
if prediction enhancement can be associated to uncertainty
reduction, it is expected that a causality measure would be
naturally expressible in terms of information-theoretic concepts.
Attempts to obtain model-free measures of the relationship
between two random variables based on mutual information
(MI) do not rely on any specific model of the data. However,
MI says little about causal relationships, because of its lack of
directional and dynamical information. Since MI is symmetric
under the exchange of signals, it cannot distinguish driver
and response systems, and furthermore, standard MI only
captures the amount of information shared by two signals. In
contrast, a causal dependence is related to the information being
exchanged, rather than shared. The principle of maximum causal
entropy provides causal analysis of the behavior of interacting
systems, reflecting the causal dependencies between the processes
(Ziebart, 2013; Ziebart et al., 2013). Building upon Massey’s
directed information (Massey, 1990) it extends random field
models to settings with feedback, by providing a framework for
estimating an unknown process based on its interactions with a
known process.

Another information-theoretic framework, called transfer
entropy, was proposed by Schreiber (2000) as a rigorous
derivation of a Wiener causal measure. Assuming that two time
series of interest X = xt and Y = yt can be approximated by
Markov processes, transfer entropy computes the deviation from
the following generalized Markov condition

p(yt+1|y
n
t , x

m
t ) = p(yt+1|y

n
t ), (1)

where xmt = (xt , ..., xt−m+1), y
n
t = (yt , ..., yt−n+1), and m

and n are the orders (memory) of the Markov processes
X and Y , respectively. Using the expected Kullback-Leibler
divergence between the two probability distributions at each side
of Equation 1, defines transfer entropy from X to Y as

TE(X → Y) =
∑

yt+1 ,y
n
t ,x

m
t

p(yt+1, y
n
t , x

m
t ) log

p(yt+1|y
n
t , x

m
t )

p(yt+1|y
n
t )

. (2)

Transfer entropy naturally incorporates directional and
dynamical information, because it is inherently asymmetric and
based on transition probabilities. Earlier efforts to understand
causal relationships mostly relied on model-based approaches,
such as Granger causality or dynamic causal modeling. In
contrast, transfer entropy (TE) does not require a model
of the interaction and is inherently non-linear. Thus, the
sensitivity of transfer entropy to all order correlations becomes
an advantage for exploratory analyses over Granger causality
or other model-based approaches. This is particularly relevant
when the detection of unknown non-linear interactions is
required. Transfer entropy has seen a dramatic surge of interest
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in neuroscience recently, where it is used to estimate the
information transfer between two tightly coupled processes. It
requires the observation of multiple realizations of the processes,
in order to estimate the associated probability density functions,
provided stationarity assumptions. In this study, we investigated
the applicability of TE as a measure characterizing causal
dependence based on behavioral data in a simple collaborative
motor task and demonstrated the relation of TE to standard
performance metrics.

3. THE STUDY

The current study builds on the tetherball paradigm introduced
in Hwang et al. (2018), and is implemented on a tablet computer
(see Figure 1). With rhythmic finger movements, a pair of
participants had to tilt the tablet in order to rotate a ball
along a predefined circular target trajectory (experiment A).
One measure of joint task performance in this scenario is the
average target tracking precision, i.e., the spatial error between
the ball and the target trajectory. Since Hwang et al. (2018)
reported for the circular task that the error reaches a plateau
after a few trials, we applied an alternative task in experiment
B, where the participants had to track a rotating ellipse instead.
In each condition, we evaluated the tracking accuracy as
a measure of task performance as well as the information
flow (i.e., transfer entropy) as a measure of mutual influence
between the two participants based on their actions. Participants
were also asked to report on their subjective experience of
interpersonal coordination. Our aim was to gain an initial insight
into the utility of information-theoretic functionals, such as
transfer entropy and its variants, for the characterization of
social couplings based on behavioral data. We investigated the
following research questions:

• (RQ1) What is the relation between measured interpersonal
coordination and achieved task performance?

• (RQ2) Is there a correlation between objective and subjective
measures of interpersonal coordination?

• (RQ3) Can transfer entropy provide insights into specific
behavioral patterns and identify distinct roles within a dyad?

4. MATERIALS AND METHODS

4.1. Participants
We collected data from 76 participants (provided in the
Supplementary Material) and reanalyzed data of the 72
participants from the study of Hwang et al. (2018). In total, the
data from 46 females and 102 males were analyzed (mean age:
25.7 years, SD: 4.6 years). All participants reported to healthy,
and none of them had overt psychic or cognitive impairments.
They were tested for normal eyesight with the Landolt rings chart
(Jochen Meyer-Hilberg) and for normal hearing abilities with
the HTTS audio test (SAX GmbH). All participants gave their
written informed consent to the study. The study protocol and all
documents had been independently reviewed and pre-approved
by the Ethics Committee of the Leibniz University Hannover.

FIGURE 1 | Experimental apparatus. Two participants moved a virtual ball on

a circular or elliptic target line. A universal joint underneath the tablet limited

the motion space to motions around the longitudinal and the transversal axes.

Each participant controlled one tablet axis with upward and downward

movements of his index finger tip. Therefore, the task required the coordination

of the individual actions.

4.2. Experimental Apparatus
The participants sat in front of the experimental apparatus, which
is shown in Figure 1. With their dominant hand, they grabbed
an adjustable handle and inserted the tip of their index finger
into a lever, which was attached to a tablet (iPad Air, Apple
Inc.). A universal joint underneath the tablet allowed to move the
tablet around its transversal and longitudinal axes as indicated
by the dashed lines in Figure 1. Rotations along the vertical
axis were not possible. With upward and downward movements
of the index finger, each participant controlled one dimension;
i.e., participant A on seat A controlled the transversal axis and
participant B on seat B controlled the longitudinal axis. The
screen (1,024 * 768 pixel, 60 Hz) displayed a target line and a
virtual ball. The target line had a width of 0.29 cm and had either
the shape of a circle (diameter: 8.95 cm, experiment A) or the
shape of an ellipse (axes length: 10.94 and 8.47 cm, experiment
B). The ellipse rotated with 2.5 revolutions per minute. The ball
is illustrated as gray dot in Figure 1. It had a diameter of 0.58
cm and was connected by an invisible elastic spring to an anchor
at the center of the screen. The spring force was just strong
enough to pull the ball to the anchor, when the tablet was in a
horizontal position.

4.3. Paradigm
By tilting the tablet, the participants could move the ball
around the central anchor. The instruction was to move the ball
clockwise and as accurately as possible on the target line. This
was only possible if both players contributed to the task and
tilted the tablet around both axes in a certain pattern and with
a certain amplitude of frequency. Since both players sat in an
angle of 90◦ to each other, optimal performance was achieved by
synchronizing finger movements with a 90◦ phase-difference [see
Video 1 in the Supplementary Material of the earlier publication
(Hwang et al., 2018)].

Two participants of the same gender performed as dyad.
Twenty-eight female and 22 male dyads performed the task with
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a circle as target line (experiment A) and 24 dyads performed
the task with an ellipse as target line (experiment B). Data
from 36 dyads from experiment A had been published before
in Hwang et al. (2018). These authors focused on a different
topic compared to the present study by investigating the impact
of different types of auditory feedback on joint performance
in the tablet task. Thereto, they compared the performance
between four groups, which played under different perceptual
conditions. One group received purely visual information and
three groups visual plus auditory information. The auditory
information either provided knowledge of performance by
transforming the angular velocity measured by the tablet’s
gyroscopes into sound (broom sweeping sound) or knowledge
of results by transforming the two-dimensional ball position on
the screen sound (synthesized violin, details of the parameter-
sound-transformation are described in Hwang et al., 2018). Yet
unpublished data from further 14 dyads with a different tilt
sound (synthesized violin) but similar performance compared
to the participants from Hwang et al. (2018) were also included
in the analyses. We believe that reanalyzing these data sets is
reasonable considering the different study goals and types of
analyses: Whereas Hwang et al. (2018) focused on comparisons
between groups, the present study focused on the intra-dyadic
coupling between two players and leader-follower relationships.
An influence of sound condition on leader-follower-relationships
was not expected, because both players of one dyad had the
same perceptual condition. Thus, we combined the data of all
groups for the analyses of the present study. Nevertheless, we
analyzed whether sound condition influences social coupling by
comparing the transfer entropy measures between groups. The
participants from experiment B were not provided with artificial
auditory information. This paradigm was specifically designed to
investigate leader-follower relationships, for which we explored
transfer entropy as an objective measure of causal dependence.
This could serve as an initial step toward the characterization of
more general social sensorimotor contingencies.

4.4. Procedure
The participants familiarized with the experimental apparatus in
a 2-min practice phase. During that, each participant controlled
his own ball and tried to track a target zone (diameter 0.58
cm), which moved randomly along the longitudinal axis for
participant A and along the transversal axis for participant B.
The main task was divided up into 1-min trials. Because the
task was attentionally demanding, a 2-min break was introduced
after every five trials. During that break, the participants were
allowed to talk with each other, but instructed not to talk about
the experiment. The participants from experiment A performed
fifteen trials. In experiment B, the participants performed thirty
trials. In the latter group, the participants exchanged their seats
after every five trials; i.e., each participant performed fifteen trials
in seat A and fifteen trials in seat B. This procedure was chosen,
because the 90◦ angles of the seating positions and the resulting
90◦ phase-difference of the player’s actions might influence the
leader-follower relationship: The ball first passes player A, then
player B; therefore, player A might take the leadership role more
likely as player B. By exchanging seating positions, we could

analyze leader follower relationships independently from this
effect. To assess subjective experiences, the participants were
interviewed at the end of the experiment using standardized
questions. In an open question, the participants were asked to
describe who they felt was leading the interaction, if any at all.
Furthermore, participants had to rate on a 7-point Likert scale
howmuch they felt they helped their partner (Q1) and howmuch
they felt their partners helped them (Q2).

4.5. Dependent Measures
The tablet recorded the path of the ball (from the visual
display) and the angular velocity (from the built-in gyroscope
sensor) at the sampling rate of 60 Hz. We measured task-
related performance based on the absolute error between the
target trajectory and the actual ball trajectory. Furthermore, we
computed the transfer entropy between the two players’ actions
per trial, using the Kraskov-Stogbauer-Grassberger transfer
entropy estimator (Kraskov et al., 2004) from the JIDT toolkit
(Lizier, 2014), based on the raw tablet gyroscope time series for
the transversal and longitudinal axes, which correspond to the
finger movements of players A and B, respectively. We computed
the transfer entropy and themean levels of the absolute error over
each 1-min trial while discarding the initial 8.3 s (500 samples at
60 Hz) in every trial for initialization reasons.

4.6. Data Reduction
In order to relate the user ratings of perceived collaboration
to the objective levels of transfer entropy we had to perform
specific conversion on the subjective data. We transcribed
the informal verbal answers from both players with discrete
numerical representations {1, 0,−1}, meaning, respectively {I was
leader, there was no leader at all, partner was leader}. Using this
numerical representation, we subtracted the values in order to
compute the difference in the opinions and took the sign of the
result. Furthermore, for the closed questions, we calculated the
difference between the ratings of the partners and took the sign
of the result.

5. RESULTS

In order to validate the transfer entropy measure for this
particular data set, we performed surrogate data testing with
1,000 random pairings for each TE value in each trial. The
results of the surrogate data testing are shown in Figure 2. Using
Wilcoxon tests on the surrogate data, we compared the outcome
of each trial against the constant 0.05, which corresponds to the
conventional significance level. The TE values were significant in
all trials of experiment A (Figure 2A) (at least p <0.05) and in
most trials of experiment B (Figure 2B, p >0.05 in trials 1, 4, 6,
and 28, at least p <0.05 in all other trials; results were Bonferroni-
Holm-corrected). Transfer entropy estimates typically stabilized
at 1,000 samples, with some variability across trials and subjects.
However, such trends depend on sampling rates and on the
performance of subjects. For our analysis, we computed TE on
a trial base, i.e., ca. 3,000 data points.
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FIGURE 2 | Box and whisker plots illustrating the probability that the transfer entropy measures are random. Data of experiment A (circular target) are shown in (A),

data of experiment B in (B). (A) Circular. (B) Elliptical.

FIGURE 3 | Mean total transfer entropy levels (TE(A → B)+ TE(B → A)) per trial averaged over all 50 pairs in Experiment A, revealing the learning effect and the

statistical significant differences of the transfer entropy means between trials one to five in blue and the trials in red (in separate subplots). The differences were not

significant for the rest of the trials. (A) Trial 1 vs. rest. (B) Trial 2 vs. rest. (C) Trial 3 vs. rest. (D) Trial 4 vs. rest. (E) Trial 5 vs. rest.

FIGURE 4 | Mean total transfer entropy levels (TE(A → B)+ TE(B → A)) per

trial averaged over all 24 pairs in Experiment B, revealing the learning effect.

5.1. Learning Effect
The trend in mean total transfer entropy levels averaged
over all pairs, reveals a pronounced learning effect during

both experiments (see Figures 3, 4). Accordingly, trials were
significantly different (experiment A: F(14, 630) = 38.81, p <

0.001; Experiment B: F(29, 667) = 5, 09, p < 0.001). With
the circular target, the trend is more consistent and with lower
variance than with the elliptic target, presumably due to repeated
seat exchanges in the latter. Figure 3 reveals the statistical
significant differences of transfer entropy means between trials
one to five in blue and the trials in red in Experiment A,
computed with Tukey-Kramer (HSD) multiple comparison test.
The differences were not significant for the rest of the trials. These
figures suggest that Experiment A and Experiment B, although
slightly different by design, are TE-invariant and reach plateau at
∼0.25 bits.

Neither in Experiment A nor in Experiment B, seat position
had a significant effect on the size of transfer entropy. Within
experiment A, there was a significant difference between groups
with different auditory conditions [F(4, 45) = 2.85, p = 0.035]:
On average, transfer-entropy was higher for the participants that
heard a broom sweeping sound (0.24, SD: 0.07 bits) compared to
participants that heard a synthesized violin sound of the tablet tilt
velocity (0.16, SD: 0.05 bits, p = 0.024).
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5.2. Social Roles and TE Relevance
In order to get further insight into the interpersonal dynamics
of the emerging social interaction, we computed the differences
in transfer entropy (TE(A → B) − TE(B → A) and TE(B →

A)−TE(A → B)) between both players for each 1 min trial while
taking into consideration the actual seating. The distribution of
results on a trial level for all pairs from Experiment A suggests
potential leader-follower roles for particular pairs despite the
high variability (e.g., pairs 3, 4, 6, 9, 15, 16, 23, 24, 26, 27,
38, 40, 49) (see Figure 5). Predominantly positive values reflect
consistently higher information transfer from player A to player
B and vice versa, negative levels—from player B to player A,
which provides a base for making specific inferences about
leader-follower relationships spontaneously emerging during the
non-verbal social interaction.

In order to compensate for the alternating seating
arrangements in experiment B, we split the results into
two subsets per pair (shown in blue and cyan in Figure 6),
corresponding to the consistent seating of both players during
the experiment. Blue color denotes trials in which player A sat in
seat A and cyan in which player A sat in seat B. The figure reveals
how repetitive seat exchanges affect the coordination trends. For
example, for pair 9, the results show that player A transfers more
entropy than player B regardless of the seat, reflected by positive
and negative transfer entropy differences in the two different
seating arrangements, which suggests consistent roles for this
pair throughout the experiment. Similar trends are visible also
for pairs 8, 10, 18, and 24, suggesting that their social roles were
not affected by the particular seating. Identifying such coherent
patterns of social behavior was one of the main goals of this study
and in the next paragraph we demonstrate how these objective
measures correspond to the subjective levels of interpersonal
coordination measured by user experience questionnaires.

The participants rated both the support for (Q1) and from
their partners (Q2) as high [Experiment A: medians = 6,
interquartile ranges (IQRs) = 1; experiment B: medians = 5, IQR
= 1 (Q1) and 2 (Q2)]. Furthermore, 18 percent (Experiment
A) and 19 percent (Experiment B) of the participants answered
that they were the leader, while 9 percent (Experiment A) and
17 percent (Experiment B) saw their partner as leader. Neither
in Experiment A nor in Experiment B did these variables differ
significantly between both players. There was no significant
correlation between the open ended questions and Q1 or Q2
in either of the experiments. However, we found a significant
correlation (Rho = 0.42, p <0.00002, 95% CI [0.24, 0.57]) between
Q1 and Q2 in Experiment A. Since in both studies subjective user
experience was collected via questionnaires only at the end of the
experiment, we were not able to correlate the user ratings with
transfer entropy levels on a trial base. Instead, we took the last
third of the trials for each pair and considered the reduced subsets
representative for the subjective ratings provided at the end. This
assumption essentially takes into account both the learning and
the memory effect. Furthermore, since the main goal of this study
was to identify specific leader-follower relationships based on the
direction of influence between the two players and not on the
exact values, which are only important for providing the order
of magnitude, we took the sign functions of both the transfer

entropy differences and the user ratings differences. Following
this approach, we computed the Pearson correlation between the
transfer entropy differences of the last third of the trials and the
user experience differences using their sign functions and found a
significant correlation (Rho = 0.34, p <0.02, 95% CI [0.07, 0.57])
for the open ended question in experiment A (see Figure 7A).
Furthermore, we found a significant correlation (Rho = −0.44,
p <0.04, 95% CI [−0.7, −0.04]) for Q2 in experiment B (see
Figure 7B). The negative correlation resonates well with the
content of Q2, as Q1 and Q2 have opposite meanings in inferring
a potential leadership. Here, we assume that stronger sense of
leadership is associated with higher ratings of one own’s influence
(or help) and lower ratings of the other’s influence (or help).

5.3. Leader-Follower vs. Performance
Trends
To analyze the relationship between achieved task performance
and objective as well as subjective measures of coordination,
we first performed Bayesian linear regression analyses. Values
deviating more than two standard deviations from the group
mean were excluded from the analyses. As task performance is
represented by the mean error, it was chosen as criterion variable.
Predictors were TE(A → B), TE(B → A) and the subjective
data from the questionnaires. In experiment A, the Bayes factor
(BF10 = 20.50, percentage error < 0.001) was largest for a
model including TE(A → B) as predictor [R2 = 0.20, F(1, 45) =
11.20, p = 0.002]; i.e., the data were 20.5 times more likely under
thismodel than under the null model. In experiment B, the largest
Bays factor was achieved for a model with the predictors TE(A →

B) and the coded answer from participant A to the open question
[BF10 = 3.83, percentage error < 0.01;R2 = 3.83, F(2, 21) =

4.99, p = 0.017]. Figure 8 shows alternative models sorted by
their Bayes factor. The analyses of both experiments suggest that
among the tested variables measures from participant A are the
most important predictors for the joint performance—despite the
seat exchange in experiment B.

Another interesting observation is the relation between the
transfer entropy differences and the normalized mean absolute
error, which is shown in Figure 9A for experiment A and
in Figure 9B for experiment B. In both studies, the point
densities have a characteristic bell-shaped form, reflecting that
low performance is associated with low levels of transfer entropy
differences. This suggests that in cases of (i) low TE(A → B)
and low TE(B → A) or (ii) quasi equal transfer entropies
(TE(A → B) − TE(B → A) ≈ 0), performance can be high
or low alike, however, for more significant and disparate levels of
transfer entropies performance is typically higher. This provides
an interesting insight into the social aspect of the experimental
paradigm, i.e., more pronounced behavioral roles of leader-
follower eventually lead to higher performance, although such
behavior is not necessary, as high performance could be achieved
even with less-structured or more-balanced behavior from both
partners. The results also suggest that the achieved performance
per level of coordination was higher for the circular than for the
elliptical target, revealed by lower absolute error yielded at similar
levels of interpersonal coordination. This confirms, as expected,
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FIGURE 5 | Distribution of transfer entropy differences (TE(A → B)− TE(B → A)) computed on each 1 min trial for all pairs in experiment A (circular target). Consistent

positive levels reveal higher information transfer from player A to player B and vice versa, negative levels—from player B to player A, which suggests specific social

dynamics (e.g., pairs 3, 4, 6, 9, 15, 16, 23, 24, 26, 27, 38, 40, 49). Data for pairs from 1 to 36 is from an earlier study (Hwang et al., 2018).

FIGURE 6 | Distribution of transfer entropy differences (TE(A → B)− TE(B → A) and TE(B → A)− TE(A → B)) on a trial level for all pairs in experiment B (elliptical

target). The results are split into two subsets per pair (blue/cyan), corresponding to consistent seating of players over different trials. Pairs 8, 9, 10, 18, and 24 exhibit

opposite trends in the two seating arrangements, suggesting that their social roles were not affected by the particular seating.

that the more difficult elliptic task requires higher degree of social
coordination between participants.

6. DISCUSSION

This study investigated the social dynamics of interpersonal
coordination in two proximal collaborative experiments. In the
tetherball paradigm, participant pairs were asked to tilt the
tablet together for the task. We compared the mean levels
of the error, transfer entropy and subjective ratings in our
analysis. We hypothesized that stable rhythmic patterns of
coordination would emerge in the course of interaction, which
would be measurable with information-theoretic functionals.
Our aim was to quantitatively identify and explain observed
trends in the social aspect of interpersonal interaction. To
test these predictions, we analyzed two types of studies,
which examined the movement patterns of pairs of individuals
performing a collaborative circular and elliptic motion jointly

through the coordination of their movements. In both studies,
the participants were only instructed to maximize their task
performance, without explicitly guiding them to focus on
their interpersonal entrainment and coordination. The topic
of coordination was raised only in the user experience
questionnaire, filled in after the experiment was completed.
This ensured that the social dynamics, observed during the
experiment, emerged spontaneously and not by instruction.
The results presented in Figures 8, 9, provide the answer to
RQ1, which is invariant for both studies. Correlations, provided
in Figure 7 reflect RQ2, although the significance is rather
sporadic and not across the board. Figures 5, 6 provide evidence
supporting a positive answer to RQ3 in respect to both studies.
The transfer entropy measure clearly emphasizes the learning
effect, although the trend is not continuously monotonic.
However, considering the fact that the relationship between task
performance and interpersonal coordination (as measured by
transfer entropy) is not monotonic, such a trend is plausible.
The results show that tightly coupled interaction leading to
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FIGURE 7 | Significant Pearson correlation between the sign functions of the transfer entropy difference and user experience difference for the open ended question

in experiment A (circular target, A) (Rho = 0.34, p <0.02) and for Q2 in experiment B (elliptical target, B) (Rho = −0.44, p <0.04). To avoid overlapping points and

improve visibility, the values (−1, 0, 1) of the sign functions are perturbed with white noise.

FIGURE 8 | Bayesian linear regression analyses with performance error as criterion variable and TE(A → B), TE(B → A) and subjective measures (open question, Q1

and Q2) from participants A and B as predictor variables. The Bayes factor BF10 describes how likely the data occur under a regression model with the highlighted

predictors of one row; the inclusion Bayes factor (BFinclusion) describes how likely the data occur under models that include the respective predictor. (A) Circular. (B)

Elliptical.

higher coordination levels improve task performance, however
it is not indispensable. Different, e.g., loosely coupled, social
behavior might achieve a good performance as well. The effect
of exchanging seats in the elliptic study introduced higher
variability in the transfer entropy measure, although the main
trends remained consistent.

In summary, the results of both experiments were consistent
regarding the validation of TE as objective measure for
interpersonal coordination in this task, as well as the significant
correlations between TE and joint task performance, and with
respect to the identification of leader-follower roles on a
descriptive level. Similarly to Takamizawa and Kawasaki (2019),
we hypothesized that TE from leader- to follower-like behavior
was large and vice versa, from follower to leader—small. When
the TE in both directions was on the same level—equally high

or equally low—we hypothesized that there was no pronounced
leader-follower relationship according to our measure. Different
were the correlations between subjective and objective measures.
Despite these differences, the results of both studies suggest that
TE might be a useful tool for studying factors for subjective
experiences in social interactions.

The seat exchange provided one important insight in this
study, namely the seat-invariance of social roles within certain
dyads, since regardless of the seat the flow of entropy kept the
direction from one player to the other (Figure 9). Furthermore,
the results of the Bayesian linear regression analyses (Figure 8),
which allow to compare the predictive value of TE(A → B)
and TE(B → A) on the joint task performance, indicate
that social roles also depend on the first seating arrangement
and preserve when the participants change their seats. This
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FIGURE 9 | Performance (normalized mean absolute error) vs. transfer entropy differences per trial for all pairs from experiment A (A, circular target) and from

experiment B (B, elliptical target). In both studies, the point densities have a characteristic bell shape, highlighting particular trade-offs.

suggests the potential of the applied measure to infer simple
social relationships based solely on behavioral data recorded
in a smooth rhythmic repetitive interaction. It is well-known
that information-theoretic functionals, such as transfer entropy,
require large amounts of data in order to provide reliable
estimates. Since trials were considerably short, the analysis seem
to have been enhanced by the simplicity of interaction.

On the other hand, the simplicity of the experimental
paradigm seems to have raised challenges in the subjective
evaluation, particularly when addressing the sense of
collaboration and interpersonal coordination. We used an
explicit open-ended question for establishing the potential
leadership within the pairs, as well as a few more subtle indirect
questions rated on a Likert scale. The subjective data did not
provide consistent trends, which suggests how difficult it was to
subjectively evaluate one’s own performance in the social aspect
of such collaborative interaction. Another issue complicating
the subjective data analysis was the fact that questions were
answered only once at the end of the experiment and therefore
the ratings did not usually apply for all trials (particularly not
for the earlier ones). That may have been one potential reason
for the participants’ confusion in the evaluation, as it was left up
to them to decide how to rate the whole experiment (including
earlier and later trials alike), providing the otherwise complicated
nature of this judgement. In order to make sense of the ratings,
we applied a simple (non-distorting) linear transformations on
the subjective data which kept the major trends, and correlated
the results to the corresponding major trends in the objective
measure of coordination (i.e., transfer entropy).

The results of this study suggest the potential of model-
free measures of information transfer, such as the transfer
entropy, for the analysis of the social aspects of highly interactive
collaborative studies, particularly involving simplistic rhythmic

controls. Other methods, such as lagged cross-correlation or
Granger causality (Granger, 1969), require stationarity and
normality assumptions or pre-defined models. Transfer entropy
has seen a dramatic surge of interest in neuroscience recently
(Wibral et al., 2014), where it is used to estimate the information
transfer between two tightly coupled processes. We extend its
field of application to less tightly coupled stochastic processes,
which form a closed loop with hundreds of milliseconds of lag
and involve the full human sensorimotor and decision making
hierarchy of control.

The task required the participants to anticipate the combined
effect of their joint actions. This might enhance participants’
understanding of their own and their partner’s actions as well as
joint actions, which positively affects interpersonal coordination.
In addition, previously published literature (Schmidt and
Richardson, 2008; Keller et al., 2014; Lang et al., 2016; Loehr
and Vesper, 2016) highlights the significance of rhythmical
movement components in interpersonal coordination.
Additionally, there is evidence that the rhythmic component
during interpersonal coordination reduces practice effort and
errors (Lang et al., 2016; Loehr and Vesper, 2016).

Overall, the results supported the hypothesis that this type of
collaborative interaction intrinsically motivates the emergence of
interpersonal rhythmic coordination, which could be objectively
characterized with information-theoretic tools. Our analysis
provides quantitative evidence for the emergence of leader-
follower relationships, guided by the general principle of
perceptual–motor coordination, and is an initial step toward
defining more general social sensorimotor contingencies. This
evidence was consistent across the experiments and was not
diminished by task difficulty levels or seating arrangements of
the participants. Similar leader-follower relationships have been
identified in other studies (Konvalinka et al., 2014; Takamizawa
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and Kawasaki, 2019) using different social interaction tasks
and/or different analytical methods. Takamizawa and Kawasaki
(2019) apply transfer entropy on behavioral data as well, however
their study is based on a discrete tapping task, while our
study explores a highly interactive continuous paradigm. Our
analysis suggests that although subjects tend to steadily improve
their coordination skills over time and produce tightly coupled
rhythmic control signals, they do not necessarily apply such
techniques in order to improve performance.

Finally, the current study has important implications
for future research on the social psychological aspects of
interpersonal coordination as it reveals the potential of
non-parametric information-theoretic methods for quantifying
behavioral trends in joint cognitive systems, which are typically
identified qualitatively by human observers. The tetherball
paradigm provided an easy to learn natural test environment
and a basis for examining the interpersonal processes involved
in mutual entrainment.

7. CONCLUSION

The characterization of causal dependence can be approached
with a variety of methods, and depending on the experimental
paradigm in some scenarios certain methods might be
more appropriate than others. In this study, we applied
the information-theoretic measure of transfer entropy for
quantifying the emergent social sensorimotor contingencies
in the scope of two studies. While the results look promising,
further work is required to explore the range of applicability
of this approach for measuring interpersonal coordination in a
variety of diverse tasks. Future studies need to address carefully
the subjective aspect in the design process. It might be interesting
to investigate paradigms in which task performance is inherently
correlated with interpersonal coordination. An important aspect
for future research is how motor learning and the emergence of
interpersonal coordination are related to each other and how
that can be expressed with objectives metrics. These aspects
are closely related to the perception of kinematics—human
control movements or reference object’s movements (e.g., a

table). Having an objective tool for inferring the level of causal
dependence from behavioral data could improve current studies
and could facilitate the identification of socializing sensorimotor
contingencies in future research.
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