
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE PROFESSIONAL FOCUS IN SOFTWARE
ENGINEERING

Towards cognitive biases aware tools for improved code review

a user-centered approach

JETZEN, Tobias

Award date:
2022

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 24. Apr. 2024

https://researchportal.unamur.be/en/studentTheses/baab7a29-478c-4ed1-9c02-11ca9bdd4e8f

Université de Namur
Faculté d’informatique

Année académique 2021–2022

Towards cognitive biases aware tools for

improved code review : a user-centered

approach

Jetzen Tobias

Mâıtre de stage : VANDEROSE Benôıt

Promoteur : (Signature pour approbation du dépôt - REE art. 40)

VANDEROSE Benôıt

Co-promoteur : MATTON Nicolas

Mémoire présenté en vue de l’obtention du grade de
Master en Sciences Informatiques.

Abstract

Cognitive biases appear during code review. They significantly impact the
creation of feedback and how the feedback is interpreted by the author. These
biases can lead to illogical reasoning and decision making. However, code
reviews rely heavily on accurate and objective code evaluation. This article
explores harmful cases due to cognitive bias during code review, as well as
potential solutions to avoid such cases or mitigate their effects. Therefore, we
developed several prototypes covering confirmation bias and decision fatigue.
They were developed by conducting usability tests and validated with a user
experience questionnaire accompanied by participants’ feedback about the
developed techniques. It was shown that some techniques are well accepted
to be used by reviewers and help preventing behavior that is detrimental to
code review. This work provides a solid first approach to treat cognitive bias
in code review.

Keywords. Cognitive bias, Tool-assisted code review, User centered design

Résumé

Pendant les code reviews se produisent les biais cognitifs. Ils impactent
significativement la création du feedback et l’interprétation de celui-ci par
l’auteur. Ces biais peuvent provoquer un raisonnement et une prise de
décision illogique. Cependant, les code reviews reposent fortement sur une
évaluation objective et précise du code. Cet article parcourt des situations
nuisibles aux code reviews provoquées par les biais cognitifs. Ainsi, il cherche
à explorer des solutions potentielles pour éviter ce genre de situations ou
d’atténuer leur impact. Pour cette raison, nous avons développé plusieurs
prototypes en visant le biais de confirmation et la fatigue de décision. Ils
ont été développés en faisant des tests d’utilisabilité et validés avec un test
d’expérience utilisateur accompagné par le feedback des participants. Notre
étude montre que lors des code reviews, certaines techniques sont appréciées
par les utilisateurs et aident à empêcher un comportement nuisible. Ce travail
décrit une première démarche vers le traitement des biais cognitifs pendant
les code reviews.

1

Contents

1 Introduction 7

2 State of the art 9
2.1 Cognitive bias in psychology 9
2.2 Cognitive biases in software engineering 11
2.3 Software inspection and code reviews 14

2.3.1 Software inspection process 14
2.3.2 Modern code review 15

2.4 Cognitive biases, their triggers and effects 16
2.4.1 Overconfidence bias . 17
2.4.2 Confirmation bias . 17
2.4.3 Decision fatigue . 19

2.5 Constructive feedback . 20

3 Design 22
3.1 Impact on code review . 23

3.1.1 Confirmation bias . 23
3.1.2 Decision fatigue . 25

3.2 Mitigating the impact on code review 28
3.2.1 Scheduled reviews . 28
3.2.2 Warning when the needed time is exceeded 29
3.2.3 Find an expert for unfamiliar topics 29
3.2.4 The author guides the reviewer 30
3.2.5 Help make a complete comment 31
3.2.6 Advice to make constructive feedback 32
3.2.7 Asking others for feedback about the review 33
3.2.8 Encourage brainstorming and complete feedback 33

3.3 Methodology . 34

2

3.3.1 User-centered design process 34
3.3.2 Prototyping . 35
3.3.3 Usability test . 35
3.3.4 UEQ . 36
3.3.5 Development process 36

4 Prototyping 39
4.1 Base prototype . 41
4.2 Usability test . 43

4.2.1 Plan . 43
4.2.2 First iteration . 46
4.2.3 Second iteration . 50

4.3 User experience questionnaire 55
4.3.1 Plan . 55
4.3.2 Results . 57

4.4 Discussion . 63
4.4.1 Confirmation bias . 63
4.4.2 Decision fatigue . 64

5 Conclusion 66

3

List of Figures

2.1 Software inspection process as defined by Fagan. 14
2.2 Modern code review process. 16
2.3 Relationship between triggers, cognitive biases and their effects 16

3.1 Phases of the user centered process. 34
3.2 Design and prototyping of the techniques. 37

4.1 Gerrit quick review line to make a comment. 41
4.2 Base prototype without techniques. 42
4.3 Advice as popup to help provide constructive feedback. 46
4.4 A form to help to structure comments. 47
4.5 Guide with comments to help reviewers understand the changes. 49
4.6 Techniques to help to provide constructive feedback. 51
4.7 Techniques to make complete comments. 52
4.8 Improvements of a guide. 53
4.9 Combined techniques. 54
4.10 UEQ benchmark for advice with example. 59
4.11 UEQ benchmark for quick search with expert feedback. 61
4.12 UEQ benchmark for a guide. 63

4

List of Tables

2.1 Categorization of biases. 13

3.1 Summary of described cases with the associated solution. . . . 38

4.1 Summary of first iteration. 50
4.2 Summary of second iteration. 56
4.3 Mean and variance for the technique advice with example. . . 59
4.4 Mean and variance for the technique quick search with expert

feedback. 61
4.5 Mean and variance for the technique guide. 63

5

Acknowledgments

I wish to thank several people who helped me make this research possible.

I am particularly grateful to my supervisor Benôıt Vanderose, professor at
the University of Namur, who advised me during the whole project. Thanks
to his experience in the field of research, he was of great assistance and
reassurance for me.

I would also like to thank my co-supervisor Mr. Nicolas Matton for pro-
viding me with this interesting project as well as giving me advice about how
to proceed with scientific research.

Also, I would like to thank Mrs. Fanny Boraita Amador for supporting
me during the internship.

Finally I would also like to thank my colleagues from the faculty of com-
puter science of the University of Namur, for making the tests and the devel-
opment possible. Maxime André, Quang Trung Chu, Tom Wautelet, Abiola
Paterne Chokki, Jérôme Fink, Nicolas Riquet, Thibaut Septon and Xavier
Devroey.

6

Chapter 1

Introduction

This work is about the relationship between two quite different domains. On
one hand it treats cognitive biases which are investigated in psychology. On
the other hand it treats code reviews which are applied in software engineer-
ing. Software engineering activities do not only consist in applying technical
knowledge. These activities are heavily influenced by cognitive and social
aspects which are often neglected. In this research we focus on the trigger
and the impact of cognitive biases during code review. The first goal is to
find cases in which cognitive biases appear. The second goal is to design
solutions to either avoid the bias or to mitigate its effects.

There exist many different kinds of cognitive biases. They can be classified
by using a taxonomy. For this work we focus on the triggers of confirmation
bias and on the effects of decision fatigue. Both cognitive biases appear
during code review. But each one of them is tackled differently. The objective
of this thesis is the creation of a concrete solution that can be tested with
reviewers to see whether the solution is accepted or not by the users. Here,
tests focus on the user experience in terms of the visual layout.

As described before, in a first phase we explore potentially harmful sit-
uations due to cognitive biases and design theoretical solutions to prevent
or mitigate the bias. In a second phase we aim to improve the designed
solutions by conducting usability tests with students. These tests serve as
feedback to gather the requirements of the users for an acceptable solution.
To achieve this, we iterate multiple times over the prototypes. During this
process we develop a prototype that the users can actually work with so that
feedback is based on a realistic context. In this second phase we also conduct
an evaluation of the prototype’s final result by testing the user experience

7

with a questionnaire (UEQ). This questionnaire provides quantitative data
which is used to support the verbal feedback from the tests.

We start the testing with a base prototype. While iterating over the
prototypes, we introduce new techniques as we interpret the participants’
feedback as well as their behavior. Techniques that do not yield expected
behavior are removed or improved. After development, the final result is
evaluated on the basis of the feedback and the questionnaire. Here we mostly
take into account qualitative data, the feedback, in order to make conclusions
about the user experience. A rather small sample size is used, nonetheless we
use that data to confirm the user’s tendencies. Those tendencies are taken
from the means of their answers and a benchmark of the user experience test.

With the prototypes as final result and an evaluation of their usability,
we propose a first piece of work on solving problematic relationships between
cognitive bias and code review.

8

Chapter 2

State of the art

This chapter is designed as a necessary introduction to help the reader un-
derstand the topics that are going to be developed in the next chapter. Basic
concepts of cognitive biases as well as how code reviews are conducted are
explained, so that the reader can better comprehend the more complex con-
cepts approached in the next chapter Design; including how different aspects
of cognitive biases influence code reviews and what techniques can be applied
to mitigate their effects. Here we first go over the basic knowledge required
to understand what cognitive biases are. Then we explore where cognitive
biases appear in software engineering. Outside the context of software en-
gineering we explore how the cognitive biases get triggered and what effects
they have. And to prepare a technique that is discussed later, we will see
what constructive feedback is.

2.1 Cognitive bias in psychology

Cognitive biases and fallacies “In psychology cognitive biases are cases
in which human cognition produces reliable representations, that are system-
atically distorted compared to objective reality”. In order to judge situations
in a fast and accurate way, human processing applies different types of bi-
ases. Multiple reasons can trigger the occurrence of cognitive biases [14].
Cognitive biases are not to be mistaken for logical fallacies even though they
appear similar. Biases are patterns of thinking that affect how we interpret
new information and processes. They are applied systematically and influ-
ence our behavior, opinions and the decisions we make. On the other hand

9

logical fallacies occur during arguments. They are arguments that are based
on invalid conclusions. Contrary to cognitive bias, we sometimes apply them
on purpose or by accident.

Heuristics When time and resources for processing are limited, the brain
uses shortcuts or rules of thumb to solve a problem or judge a situation. How-
ever, the so-called heuristics are prone to break in some cases [14]. “People
rely on a limited number of heuristic principles, which reduce the complex
task of assessing probabilities and predicting values to simpler judgmental
operations” [31]. According to a study by Arkes, “The extra effort required to
use a strategy is a cost that often outweighs the potential benefit of enhanced
accuracy” [1].

A concrete example of using heuristics is the judgment about others,
depending on their position in the social hierarchy. People with a higher
position tend to apply stereotypical views on others more often, than those
who occupy a more precarious position. The latter group of people has to
invest more time and energy in social judgment [14].

Artifacts In other cases the mind uses artifacts in order to solve tasks
that the mind was not designed for, such as tasks involving probabilities or
abstract rules of logic. Firstly, the human brain is better at making predic-
tions with information presented in frequencies, than when it has to compute
probabilities. This behavior is due to the frequencies being observable in na-
ture, for example the number of times an event has occurred in a given time
period. Probabilities, on the other hand, are a more abstract concept. There-
fore, using frequencies allows the brain to better estimate the likelihood of
events. Secondly, when a problem’s content is of abstract or logic nature,
then humans solve it by applying problem-solving mechanisms developed for
recurring problems. This means that humans are not particularly good at
solving such problems, rather they kind of cheat their way to the answer
through an approach that is adapted to a specific set of problems [14].

Error management Further, according to Haselton et al. (2015), unlike
optimal mechanisms which do not make any errors, cognitive mechanisms can
produce false positives and false negatives. For example, taking an action
that would have been better not to take; or failing to take an action that
would have been better to take. The cost of making a certain decision error

10

is not always the same. So, depending on the inconvenience an erroneous
decision brings, a greater error can be avoided. For example, when “fleeing
from an area that contains no predator results in a small inconvenience cost,
but it is much less costly than the failure to flee from a predator that really is
close by”. The error management theory shows that “a bias towards making
the less costly error will evolve. This is because it is better to make more
errors overall as long as they are relatively cheap” [14].

Thinking, fast and slow In section 2.4 we will discuss antecedents for
certain cognitive biases. However, it is quite challenging to identify their
causes. The causes are based on heuristics. These principles, as defined
earlier by Tversky and Kahneman (1974), can be analyzed further [31]. So,
Kahneman also started differentiating the way of thinking into either fast or
slow. Respectively, the difference between the two is that conscious, effortful
and more rational thoughts (called system two thinking) are less prone to
cognitive bias than unconscious, effortless, intuitive thoughts (called system
one thinking). However, as explained before, cognitive biases can be triggered
by other factors than “fast thinking” [16].

Debiasing Next to the knowledge about cognitive biases in general, how
they are triggered and what effects they have, we can find approaches in the
literature, that aim to eliminate certain biases. This is called debiasing. It
is shown that neither applying more effort, nor being more experienced in
a field helps mitigate cognitive biases. On the other hand, being trained
on how cognitive biases function and applying specific techniques can make
a substantial difference. This has been proven not only for experts in the
field but also to have effects on the judgment by non-experts. Also, Fischoff
demonstrates that aids like training are most efficiently developed when the
process of the aimed cognitive bias is well understood [12].

2.2 Cognitive biases in software engineering

This section contains findings from existing literature about cognitive and
social elements interfering with software engineering. We first explain the
importance of the, sometimes neglected, cognitive aspects in software en-
gineering. This gives a brief understanding about the vast space of possi-
ble impacts on software development activities. Next we see what role a

11

reviewer’s personality plays in software engineering and how the kinds of
cognitive biases can be classified.

Social aspects In the study “Measuring cognitive activity in software en-
gineering”, Robillard et al. (1998) want to understand the processes behind
software development by observing professionals during their activity. The
goal is to derive good practices from an empirical analysis of their subjects.
For this purpose analysis strategies derived from cognitive science are adapted
to the context of software engineering. In general, software development pro-
cesses are measured in terms of code properties or the time spent for a certain
activity. However, cognitive aspects are not much investigated, even though
software development processes are rich in information about cognitive ac-
tivity [24]. Software development is sometimes done individually, sometimes
in a team. As for peer reviews, the activity relies on the author and at least
one reviewer, but it sometimes it relies on multiple reviewers. Such activi-
ties require a lot of interaction between multiple participants, which in turn
require strategies to ensure an efficient and unbiased procedure. Empirical
studies like in Robillard et al. demonstrate a clear interest in the analy-
sis of cognitive and social aspects during the different software development
activities.

Reviewer’s personality In the study (Barroso et al., 2017) a personal-
ity’s influence on tasks in software engineering is investigated. The reason
is that especially during team oriented tasks, personality shapes the group
and makes for a huge difference when talking about how efficiently a soft-
ware product is produced. Thus the quality of the product depends on the
interaction between members of the team combined with their professional
capabilities. To understand these factors, relationships between the partici-
pant’s personality and their professional activity can be evaluated [2]. These
factors are tied closely to the human’s cognitive activity, which in turn in-
fluences interpretation and how a developer reacts to feedback for example.
Therefore, cognitive aspects play an important role when observing software
development processes. The fact that the cognitive field of code reviews is
currently less investigated, offers an opportunity to gather more knowledge
on how to improve this crucial part of software development; especially in
regards to cognitive issues.

12

A taxonomy of cognitive biases Even though cognitive research is some-
times not taken into account in information technology, some research in-
vestigates the topic. Different types of cognitive biases are analyzed. So,
Fleischmann et al. went to create a taxonomy about cognitive biases in soft-
ware engineering. Fleischmann et al. conducted the study on what research
already exists about cognitive biases in information systems (IS). Results
are that some biases appear more often than others in research. Based on
the findings he/she could analyze the different categories of biases that ex-
ist. Those categories allow to classify biases focused on pattern recognition,
memory, decision-making, stability, social aspects and interest. The most in-
vestigated cognitive biases are framing and anchoring bias [13]. The defined
categories according Fleischman et al. (2014) are summarized in Table 2.1;
n indicating the number of investigations of biases of a certain category in
research.

Category Biases
Perception biases
(n=40)

framing, negativity bias, halo effect, ...

Pattern recognition bi-
ases
(n=11)

confirmation bias, availability bias, reasoning by
analogy, ...

Memory biases
(n=1)

reference point dependency

Decision biases
(n=24)

irrational escalation, cognitive dissonance, input
bias, ...

Action-oriented biases
(n=9)

overconfidence bias, optimism bias

Stability biases
(n=24)

anchoring, sunk cost bias, loss aversion, ...

Social biases
(n=9)

herding, stereotype, value bias, ...

Interest biases
(n=2)

after-purchase rationalization, self-justification

Table 2.1: Categorization of biases.

13

2.3 Software inspection and code reviews

In this section we explain with what process we are working. Cognitive
bias can happen anywhere. In this work however we will focus on modern
code review. First we explain how companies used to search for defects by
applying the software inspection process. Then we address the more modern
and also less formal way of analyzing code today. This section also serves as
introduction to inform the reader about terms including code review, author,
reviewer and feedback.

2.3.1 Software inspection process

Figure 2.1: Software inspection process as defined by Fagan.

The management of every process requires planning, measurement and
control. So does the process of software development. In order to improve
software quality and increase the productivity of developers, IBM created the
software inspection process, which got later refined by Fagan in 1974. This is
a process which allows the developers to follow a clear structure and achieve
a higher defect detection efficiency [10]. So, thanks to a completely defined
approach, that gets applied routinely, errors in the result can be prevented.
This is achieved with several phases that the review process goes through.
First, we go through three stages, from planning and individual preparation
of the documents to collective examination searching for defects. Then we
have the last two stages, which are applying the changes and having a follow-
up to verify that the recommendations were implemented correctly. However,
even though the benefits are remarkable, the whole process is very intensive
in its application. Every step is formally defined, takes a lot of time to walk
through and requires multiple people to inspect a huge piece of software if
not the complete project.

14

2.3.2 Modern code review

The disadvantages of formal software inspection shall be resolved with mod-
ern code review. Such reviews are more light-weight; they avoid using strict
protocols, meetings, guidelines or using checklists like in the formal software
inspection process. Modern code review got introduced by Google. The main
goal was however, not to detect defects more easily, but rather to make it
easier to understand new code, by checking its readability. Like this, others
can comprehend the author’s intentions and follow this thought-process. It is
important to make sure to respect the company’s norms such as formatting
and the technologies that are used. Code reviews also serve as gatekeepers
to prevent developers from committing arbitrary code without verification.
This aspect improves security [25].

During a modern code review, often a single reviewer is sufficient. This
is possible, as in comparison to the software inspection process, an infor-
mal code review is done more often and therefore applied on much smaller
changes. This way, less time is needed to go over a change and defects can
be detected earlier. Nevertheless, multiple reviewers can be taken into code
review.

Today, modern code review can generally be summarized with the follow-
ing steps:

Creation First the author creates, modifies or removes documents.

Review request After modification, the author inspects the changes he/she
made and as soon as he/she is ready, notifies the reviewer about them.
This happens either manually, per mail for example, or by being as-
sisted by tools like GitHub, Gerrit or Microsoft TFS.

Reviewer inspection Then the reviewer analyses the changes, mostly us-
ing tools to see the difference between current and previous versions.
While doing this, the reviewer makes comments to the individual changes
if necessary. As soon as the reviewer is done, he/she notifies the author
about the feedback.

Rework The author then either applies the suggestions from feedback or
comments back by engaging in a discussion about the comment with
the reviewer.

15

Approval When all comments have been addressed by the author, he/she
awaits approval from the reviewer in order to finally commit.

Figure 2.2: Modern code review process.

2.4 Cognitive biases, their triggers and ef-

fects

In the following paragraphs we describe some cognitive biases happening
in software engineering. In the chapter Design we do not investigate all of
them, but it is important to know which kind of cognitive biases exist and
which ones are most present in software engineering and identified in current
literature. Therefore, we focus on certain biases that allow us to get familiar
with the different aspects impacted by cognitive biases. Afterwards, we focus
on a smaller selection in order to provide solutions that deal with specifically
chosen aspects.

Figure 2.3: Relationship between triggers, cognitive biases and their effects

16

When we get to know a cognitive bias, we are interested in the triggers
initiating it and what impact the bias has on the investigated activity. In
this work a trigger is considered a specific condition in the environment,
that can be of social, educational, financial, or psychological nature. Such
elements can create an environment for certain cognitive biases to happen.
One cognitive bias can potentially be triggered by multiple elements, not only
one. When such a cognitive bias is triggered, it affects the person’s activity.
In our case, code reviews can be impacted severely by cognitive biases. One
cognitive bias in turn can produce multiple effects during the different code
review activities.

2.4.1 Overconfidence bias

As stated by Panko et al. (2014) [21] humans have in general a tendency to be
over confident about tasks such as driving a car, business activities or fighting.
This phenomenon, labeled as overconfidence bias, relates to how we assess the
accuracy of our stored knowledge and perceptual models. It was hypothesized
and thereafter proven, that overconfidence can lead to a significant reduction
of error rates by getting feedback to one’s behavior. Moores et al. (2009)
explain this with an increase in self-efficacy when accomplishing a task and
being rewarded through a feedback-loop. The feedback affects the future
behavior. People have a tendency to seek confirmation rather than non-
confirmation evidence for their actions. So, they overly positive self-evaluate.
With greater self-efficacy people set higher goals for themselves, which in
turn allows them to better cope with obstacles and thus deliver a greater
performance [20]. However, other studies suggest that a too high estimation
of self-efficacy is tied to bad performance. A too high estimation of self-
efficacy creates a lack of motivation with decreased effort. Therefore, self-
efficacy produces positive effects, as long as its estimation does not exceed
the actual performance level of the person in question. In the latter case,
performance actually decreases [32].

2.4.2 Confirmation bias

One of the most researched cognitive biases in psychology is the confirmation
bias. Currently there exists a lot of knowledge about confirmation bias in psy-
chology, however there is not much concerning software engineering. When
talking about confirmation bias, one refers to the collection, interpretation,

17

analysis and research for information in a way that confirms one’s prior be-
liefs instead of searching for information disproving them. In practice, once
the mind adopts an opinion, it does everything to support it, no matter how
many counter-arguments to that very opinion can be found. All other factors
are simply neglected in order to keep the point of view. Such behavior leads
to wrong decisions that defy the sense of logical reasoning [15]. The impact
of confirmation bias is severe, as stated in multiple studies. For example,
confirmation bias leads to fixation on a certain tool, even when there are
other tools suggested through evidence as being better supported [23]. In
other cases software professionals show a biased behavior when searching for
information in documents. Confirmation bias makes people only search as far
as to confirm their hypotheses. Further research is neglected, which in turn
creates incomplete knowledge about the element in question and misleading
results [8]. This however, is a crucial factor during code review, which will
be discussed later. According to McHugh et al. (2003) [9], confirmation
bias is present during individual work, but it also concerns group work. As
group work constitutes an important element of code reviews, it is necessary
to investigate implications of confirmation bias during code review. As men-
tioned before, cognitive aspects play a significant role in software engineering
activities. Through these means, cognitive biases are part of code reviews.

A well known example is the positive test bias happening among test
developers. Based on confirmation bias, this behavior leads to tests that
only confirm the code, instead of disproving it [30]. Tests are more effective
with data, which is designed to disconfirm the hypothesis [19]. In general,
and not only during tests, one’s goal should be to fail the code in order to
reduce defect density [5].

The factors triggering confirmation bias in software engineering tasks are
already under investigation, because not only technical factors can be taken
into account when analyzing those activities. Calikli et al. (2010) [6] searched
for issues due to the company culture, education and professional experience.
For this, multiple groups were constituted and compared by applying tests,
such as the rule discovery task, developed by Wason et al. (1960) [34]. The
findings are that neither education nor professional experience are factors
that significantly contribute to confirmation bias. On the other hand, the
subjects from a professional background, used to a tighter schedule, were
more prone to confirmation bias than students. Students do not have the
same perception of pressure for releases because they are not confronted with
such a context yet. A similar discovery was made about the influence of time

18

pressure on developers. However, in this empirical study no significant impact
could be measured for time pressure as factor; nonetheless confirmation bias
is strongly present in software engineering in general [26]. Even when no
significant results were found for a specific factor, studies suggest a deeper
investigation about confirmation bias in software engineering.

2.4.3 Decision fatigue

During a day thousands of decisions are made. This requires a significant
amount of internal resources to process information constantly and make a
decision. Similar to muscle depletion due to repeated use and loss of en-
ergy, the repeated act of making decisions results in the depletion of internal
resources, which is called ego depletion by Baumeister (1998) [3]. Ego de-
pletion in itself is rather a higher construct which can manifest as decision
fatigue, with the consequences of attentional deficit and impulsive decisions.
Another effect appearing with decision fatigue is postponing a decision with
the intention to look at it later [7]. Also, people subjected to decision fatigue
tend to have an impaired ability in making trade-offs; they prefer acting in a
passive role and make irrational judgments. Unfortunately such changes in
behavior are hard to recognize [22].

Stewart et al. (2012) conducted a study on how decision fatigue impacts
the acceptance rate of manuscripts submitted to the Annals of Neurology
journal. Those manuscripts are peer-reviewed when submitted and as a result
accepted or rejected. With this study the effect of decision fatigue should be
demonstrated. Having assigned more review tasks was supposed to provoke
decision fatigue. It was demonstrated that the more reviews an editor got
assigned, the more submissions he/she refused. Even though the difference
with those getting assigned less reviews is small, the study still shows a
significantly more severe evaluation by the editor. Also, the review process
consists of multiple checkpoints that a review has to pass. This makes sure
that even with a potentially biased editor, a submission is evaluated in a fair
manner [29]. Therefore, using multiple instances to review a document seems
to be suggested to fight the effects of decision fatigue. This is a hypothesis
that can be used for code reviews too, as code reviews use the same principles.

Code review is essentially a task of deciding whether a change is accepted
or not. Therefore it is crucial to avoid biased decisions. Knowing when this
effect appears helps avoid it and so provide better results in code reviews.
As mentioned before, decision fatigue appears when internal resources are

19

depleted. The experience of decision fatigue depends on the time of day as
shown by Sievertsen et al. (2016) during a study [28]. As the day progresses,
moral decisions become harder for people active in healthcare and judgment.
Specific reasons are sleep-deprivation, happening for example to nurses asked
to work for long hours, more than they are capable of. This thus provokes
illogical decisions due to fatigue. But also being tired after lunch can be a
reason triggering such phenomena [22].

2.5 Constructive feedback

Concerning influencing people, feedback is one of the most important inter-
personal skills that you can develop, because it is an integral part of commu-
nication. But making constructive feedback is not as obvious. In this section
we discuss what makes for a great feedback and what does not.

Why giving feedback? Giving feedback is the opportunity to provide the
recipient with information about behavior and performance. First, in order
to maintain a positive attitude towards themselves and their work. Second
to encourage the recipients to move towards agreed goals [4].

When to give feedback? It is recommended to let the recipient know
as soon as possible, what about the work is good and what needs to be
changed. Otherwise, when waiting too long, you run the risk of confronting
the recipient with too much negativity at once. On top of that, when too
much time has passed, the consequence can be that it is already too late to
apply the feedback. Also, a factor to consider is if the recipient is ready to
receive feedback or not. Does he/she have the time right now and can he/she
handle it. The same way, the feedback creator must ask himself/herself if
he/she is capable of making constructive feedback [4].

Constructive vs non-constructive feedback On the one hand, con-
structive feedback is characterized by either positive expressions, reinforcing
good performance or negative expressions, improving poor performance.

On the other hand, problems can arise with non-constructive feedback.
Such feedback lacks positive expressions and goes without any recognition or
affirmation. Negative feedback can become destructive criticism [4].

20

In order to provide constructive feedback, the following recommendations
help according to Waggoner Denton (2018) [33] and Bee et al. (1998) [4].

• The person giving feedback should identify a specific problem.

• The identified problem should be accompanied by an explanation re-
garding why it is a problem.

• A concrete solution to solve the problem should be provided. This can
be done with examples. They make for an easier comprehension.

• It should be specific, clearly expressing the objective.

• The identified problem should be achievable by yourself, the reviewer.

• The feedback should be expressed in a positive way. For example, say
“Provide more details please” instead of criticizing by saying “There
are too few details”.

• The feedback should be accompanied by the expected experience when
achieving the objectives agreed upon. Such an image of what you will
hear and see when achieving the objectives motivates people to actually
achieve the objectives. Sportspeople, for example, imagine what it
would be like to win.

• Getting the feedback sooner than later is beneficial to the author. Get-
ting it sooner, allows for smaller corrections and thus results in less
negative input at once.

• Feedback that helped the reviewer in a similar position can be trans-
mitted the same way to the person whose artifact is being reviewed.
It is recommended to think about how you got impacted by an earlier
feedback, and then react with the gained knowledge in the position as
a reviewer.

• It is important to also recognize when a job is well done to ignite a
sense of achievement, which in turn unlocks the potential for growth
and development.

21

Chapter 3

Design

In the first part of this work, we discussed the existing knowledge concerning
cognitive bias in software engineering and modern code-reviews as well as
how certain cognitive biases happen and what effects they have in general.
This knowledge serves as a basis to start investigating both topics further;
there will be a specific focus on what the effects on code review are. The
contribution of this research lies in the development of solutions used to
avoid cognitive biases or to circumvent their effects. The effects on code
review need to be described and understood in detail. This is necessary to
find techniques that deal with the cause beneath the bias or its impact.

One needs to differentiate between mitigating a cognitive bias by circum-
venting the trigger and mitigating the effects that a bias provokes. Both
ways of handling are useful. However, one can be more appropriate than the
other depending on the context where the bias takes place.

In the first section the triggers and effects of biases are adapted to code
review activities. Potential cases where cognitive biases occur are described
in detail. This concerns cases that decrease the quality of code reviews.
In the third section we describe potential solutions for confirmation bias
and decision fatigue; there are solutions that are supposed to improve the
code review process and increase the result’s quality. In the last section
the methodology is described. This includes how the addresses cognitive
biases were selected, as well as how the impact they have on code review
was defined. Also, the way of searching for solutions is described. Part of
the methodology is validation of the techniques with users, which is based
on a user-centered approach. After that, we explain why prototypes serve
perfectly as a solution to validate their design.

22

3.1 Impact on code review

Problems In the previous chapter State of the art, we already discussed the
triggers initiating certain biases and the effects they create. The description
of the biases was done from a purely psychological perspective. Now, we
approach an explanation with a focus on the code review side of those biases.
The goal is to find out how cognitive biases affect code review. However, there
is not much literature available about this particular relationship. Therefore
the objective is to fill that research gap by providing potential cases in which
effects of cognitive bias can be found. First such cases are developed, based
on the functioning of biases as found in literature. These cases are adapted
to scenarios arising during modern code review. Then, solutions are designed
with prototypes, which subsequently are tested with users to verify whether
the users consider the solutions as an improvement for code review or not.

In this first section we look at the triggers and effects of confirmation
bias and decision fatigue. Here we choose cases where a trigger is the most
intuitive to create scenarios. This means that one can develop scenarios easily
when using these triggers. Some triggers are hard to understand and difficult
to reproduce with a scenario. Therefore we limit ourselves to a subset of all
available triggers. This is also due to the limited time available for this work.
One could have dug even further into the science of triggers and effects of
biases; nonetheless, those that are explored here are a solid base that can
be extended with future research. The same approach was applied to the
research of cognitive bias effects.

3.1.1 Confirmation bias

Like in the literature about decision fatigue, psychology investigated confir-
mation bias a lot, providing a solid basis to research its relations to software
engineering, especially to modern code review. Here too, many triggers as
well as effects can be discovered. Yet we will focus only on some of them.

Triggers Factors initiating confirmation bias during code review.

• The author receives non-constructive feedback, hurting his/her self-
esteem.

• Time-pressure on the reviewer under certain circumstances.

23

Effects The impact visible after the mentioned factors have triggered con-
firmation bias during code review.

• The author refuses recommendations from the feedback in order to
protect his/her self-esteem.

• The reviewer tries to validate the existing code instead of analyzing it
objectively.

Now we describe in detail what consequences some cases provoke and how
they are in relation with factors that can trigger it during some activities.

Refusing the code review feedback

Sometimes we tend to hold on to already existing beliefs, in order to protect
our self-esteem. Changing our beliefs sometimes means changing our values,
which is not as easy as keeping them. This can hurt our self-esteem because
it suggests that we might lack intelligence for example. As a result we often
look for information that confirms our beliefs instead of rejecting them [17].

Following this mechanism in code reviews the same can happen. When
the author develops code, he/she puts much effort and time into it. This
work makes him/her a confident believer of the correctness of his/her code.
However, when working on complex tasks such as developing software, mis-
takes happen even to the most experienced developers. Fortunately code
reviews allow us to view results from a different perspective than the author.
Thus, errors and misconceptions can be detected by reviewers.

When the reviewer detects such mistakes, he/she comments about it by
asking the author to justify a decision or to adapt according to the reviewer’s
suggestion. Feedback like this can be interpreted negatively by the author.
It is possible that he/she takes the advice like criticism, instead of using it’s
constructive value. Further effects are a hurt self-esteem, because the author
might think he/she is perceived as lacking intelligence for the task he/she
worked on. As a result, the author of the code will search for counter-
arguments to defend the solution he/she built. Even though the suggestions
given by the reviewer are valid, in order to protect his/her self-esteem, the
author does not accept applying changes to the current code.

The assumption made here is that the way a reviewer builds the feedback
has an influence on the author’s perception and therefore his/her acceptance
of the feedback.

24

The reviewer tries to confirm the code

When writing tests for software, the goal should always be to fail the code.
However, software developers and testers are more likely to create positive
tests rather than negative ones due to the phenomenon called confirmation
bias [5]. Similarly, when a reviewer gets to see code changes, he/she is already
exposed to code in front of him/her, influencing his/her perception during
review. This could lead to searching for arguments that confirm the way
the author programmed. Such behavior is even more likely to appear under
time-pressure. As described for decision fatigue, the same trigger applies for
confirmation bias [26].

For example, at the end of a day of work or shortly before a release date,
a higher pressure on developers and reviewers arises. A tendency to merely
confirm code would replace an objective analysis of the code.

The hypothesis states that under time-pressure a reviewer develops the
tendency to search for fast review approval, instead of searching for correct
implementation.

3.1.2 Decision fatigue

Many triggers that can initiate decision fatigue were found in psychology
literature. So, in some cases inexperience can trigger this bias. In others,
the cause can be the time of day during which the person is dependent on
cognitive capability and yet experiences a loss in decision accuracy. Those
causes reflected on code review can provoke multiple side effects.

Triggers Factors initiating decision fatigue during code review.

• Inexperience in the field of the currently investigated code.

• Doing code reviews at times of day known for decreased internal re-
sources.

• Doing code reviews while being in a state of less energy.

• Getting assigned a too important number of code reviews.

• Spending too much time on details to achieve perfection.

25

Effects The visible impact after the mentioned factors have triggered de-
cision fatigue during code review.

• Skipping code changes of the review because of specific properties (too
small, too big or too complicated).

• Missing motivation to do code reviews and postponing them for later.

• Making impulsive comments instead of constructive suggestions for the
author.

Now we describe in detail what consequences some cases provoke. As
there are many possible relationships between the causes and their effects,
we are not going to explain all of them.

Skipping code changes of the review For this case the hypothesis states
that the reviewer is subjected to decision fatigue because he/she might do
reviews at a certain time of day. Some times are less recommended for do-
ing tasks requiring high attention and thus requiring much of the internal
resources [28]. Such times are generally when the person is in a state of fa-
tigue; often provoked by previous activities, such as having eaten just before
or having completed an intensive task accompanied with making many deci-
sions. Studies were made on how repeated decision making impacts the state
of people [3]. These studies reveal that a person might become overwhelmed
and mentally exhausted from making too many decisions. In the case of code
reviews, a developer too has to make many decisions during a day when it
comes to making software and analyzing code. Most of the work a developer
does, is reading and analyzing code he/she does not know.

Now, if a reviewer is subjected to decision fatigue for the reasons explained
above, he/she might handle a review differently than if he/she was in a non-
impacted, clear state of mind. The hypothesis made here is that a reviewer
then has the tendency to skip reviewing changes with specific characteristics,
such as very small changes, significantly big changes, changes of a less known
topic or changes that are complicated to understand. However, if the reviewer
skips certain parts of the code, he/she unavoidably misses information. And
we are referring here to missed information that is crucial to understand the
whole of the code and to comprehend the though-process of the author of
the code.

26

Understanding the code is key to making constructive comments for the
author. Thus, based on this hypothesis, a review under the impact of deci-
sion fatigue might provoke misleading results in the feedback for the author,
simply because not all elements are taken into account during the code re-
view.

Postponing code reviews

As said before, code review is an energy intensive task. The reviewer needs
motivation to tackle new code or potentially new topics. Humans have a
tendency to do tasks where they are rewarded early. So, specifically small
tasks correspond to this desire. This behavior is called hyperbolic discounting
[18]. However, in code review it can happen that a reviewer gets assigned
a great amount of reviews to do. The sheer number of reviews in front of
him/her, can discourage the person from even starting. This behavior can
be observed when the person is subjected to decision fatigue. It leads people
to postpone tasks for later which is also called procrastinating.

In this case, the reason that decision fatigue gets triggered, might be tied
to certain conditions of the company. For instance, just before the release of
a big project, many review requests can pop up and overwhelm the assigned
reviewer. Another case occurs at the end of the a working day. It can for
example happen when a developer decides to do all the reviews at once at
a certain time of the day or even of the week. He/She risks accumulating a
great number of reviews waiting for him/her to be completed. It is similar
to the previously described effect. The time of day has a great influence on
the results of the work.

So the hypothesis arises that postponing code reviews is the effect hap-
pening when decision fatigue is triggered due to circumstances that are un-
favorable for starting tasks intensive in cognitive resource.

Impulsive comments

Impulsive comments from the reviewer can be due to decision fatigue, not
allowing the reviewer to evaluate the code objectively. As a result, comments
are expressed in a familiar way. Such comments can be destructive even
though feedback should always be constructive for the author. This behavior
might be initiated when doing code review at certain times of the day, like
close to the end of a day of work or when being tired just after lunch.

27

3.2 Mitigating the impact on code review

Solutions As explained in the first chapter, cognitive biases are surrounded
by their triggers and effects. In this section, we are interested in how we can
treat the problem of biases during code review. Now it is important to
understand that a solution can either deal with the trigger initiating the
bias or it can try to mitigate the provoked effects. Both ways of solving the
problems can be useful. But depending on the problem one might correspond
to a better way of doing so than the other one.

In this section several cases are described with a proposed solution. A
case is characterized by the following elements. A case starts with a trigger
that initiates a certain cognitive bias as explored in the State of the art
chapter. This bias provokes potentially multiple effects on the activities of
code review. For such cases, we provide a solution; a technique to solve the
case’s problem.

Now we discover several proposed solutions for decision fatigue and confir-
mation bias. A summary of the described cases with the associated solution
is in Table 3.1.

3.2.1 Scheduled reviews

As described in the sections before, it happens that a reviewer gets assigned
a great amount of reviews. If the reviewer perceives that the number of tasks
waiting for him/her is too high, he/she can loose motivation to actually start
working on them. This phenomenon is called decision fatigue. That cognitive
bias being triggered, the reviewer has a tendency to postpone tackling his/her
list of assigned reviews.

In order to prevent the trigger so that the cognitive bias does not even
happen, the amount of reviews per day should be decreased or at least a
maximum of reviews per day should not be exceeded. When a manager or
author is about to assign a developer to a review, he/she can not know how
overworked the developer in question is. For this information to be available
an intermediate step is recommended, showing the scheduled reviews of the
developer. An option is to provide an intermediate such as a calendar com-
bined with the possibility for the developer to indicate a maximum amount
of reviews per day. This way the developer makes sure that he/she will not
be assigned too much work unknowingly by the manager or author, leading
to less or no decision fatigue as long as the limits are respected.

28

This step however comes with possible limitations too. The reviewer has
to know himself/herself very well, in order to indicate a relevant maximum
number. Also, not every company has so many reviewers, to choose another
one in the case of overwork.

3.2.2 Warning when the needed time is exceeded

Like in the previous case, it happens that a reviewer gets to deal with too
many review tasks. Decision fatigue leads the reviewer to skip analyzing
seemingly complicated or big changes because such reviews require a sig-
nificant mental investment. In the state of mental resource depletion, also
called ego-depletion [3], the quality of reviews declines. But reviews are in
fact a tool used to ensure qualitative code changes. Therefore it is not rec-
ommended to work on decision intensive tasks when being in such a state.

In order to prevent triggering this bias in the first place, one must pay
attention to the current work efficiency of an employee. Judging oneself is
difficult, when even detecting such phenomena from the outside is not an easy
task. But the employee can be reminded at certain times that he/she might
not be efficient enough at the moment. The solution is to measure the time
a developer requires for undertaking a review. Learning the usual duration
needed, helps get an idea of when a reviewer takes too much time and thus
might be in a state of decision fatigue. Once the usually required time is
significantly exceeded, the reviewer is warned. He/She can then decide how
he/she reacts to the warning by either taking a break or halting the review
altogether.

This solution comes with the side effect of potentially postponing reviews.
As explained in the previous solution, this is considered as an effect due to
decision fatigue. However, a combination of both solutions brings an optimal
way of handling the trigger.

3.2.3 Find an expert for unfamiliar topics

Every developer knows some fields better than other fields. A developer,
who is comfortable with every topic is rare or does not even exist. A limiting
factor is therefore the experience a developer can use to make a qualitative
code review. For example, knowing edge cases of specific domains requires
experience to analyze code changes with a trained eye. Not having this
experience forces the reviewer to either not verify code changes in a precise

29

way, or to gain the experience on the spot by searching and learning about
the topic. The latter however leads to a greater investment than usual, which
in turn provokes decision fatigue and skipping code changes that the reviewer
is not familiar with.

It is therefore recommended to assign a developer who is in fact familiar
with the topic of the code in question. The goal is to find an expert or at
least the most fitting developer to do the code review. This way additional
research by the developer is unnecessary and thus eliminates decision fatigue.
The solution is to present the developers available for review with a list of
familiar topics next to them. This allows the author or manager who chooses
the reviewer to find the best fitting one.

One limitation is to always find an expert, similar to the first solution
to decision fatigue, because not every company has that many developers
specialized in a certain field. Also, a reviewer gains experience when he/she
is not familiar with a certain topic and has to do research. This knowledge
is lost when choosing someone else, who is familiar with the topic. However,
a crucial stage like code review is used to ensure quality and not especially
to provide developers with additional experience.

3.2.4 The author guides the reviewer

Multiple factors can trigger decision fatigue. In this case we take into account
the time of day at which code reviews are done. This factor occurs in many
varieties such as doing code review in the morning as a first task, after lunch
or just before the end of the working day as the last task. Depending on
the context and the amount of work that has been put in, the state of the
developer is different. For example just before the end of the work day,
most employees have used up much of their internal resources. This, as
described before, leads to decision fatigue and thus potentially skipping big
or complex code changes. No matter what triggers decision fatigue, the
impact is the same. Knowing that most of a developer’s work is reading
and understanding code, we search for a solution that supports the reviewer
when he/she experiences decision fatigue. Here, the author could help out by
providing an explanation about the code change. With such help the reviewer
does not have to identify the reason for the change before actually evaluating
it. The idea is to provide an interface where the author can add a description
about specific parts in the code change, but only to the main changes so that
the reviewer understands them. The goal is not to provide a description to

30

every changed line of code, but rather to the more complicated parts. The
way the author provides a description resembles the way a reviewer writes
feedback. The reviewer then can choose a guided review to see annotations
above some code changes. By going from one explanation to the next, the
author guides the reviewer through the main parts so that he/she gets an
idea of how the code was designed. After following the guide, the reviewer
can start giving feedback to the individual code changes.

This solution is a significant additional step for the author between writ-
ing the code and committing it. Writing explanations seems very useful to
the reviewer, but requires the author to make an additional investment.

3.2.5 Help make a complete comment

Not only can a developer be inexperienced in a certain field, but he/she can
also be inexperienced in code review altogether. A student who has recently
graduated or a developer who has never done code review can be unfamiliar
with the concepts or simply miss the practice of the theoretical concepts.
Again, inexperience forces a developer to do research about the task he/she
wants to accomplish. This requires additional investment, leading to decision
fatigue. The effect that is observed here, is a decline of the quality of com-
ments. In the state of decision fatigue comments become illogical, without
proper justification. Comments are made impulsively without questioning
much their relevance.

In order to prevent such effects, the reviewer can be guided when making
a comment. For developers who are inexperienced in code review, a form
provides sufficient guidance, allowing the developer to answer questions like,
“What have you identified?”, “Why is this a problem” and “Provide multiple
alternative solutions to the problem!”. This way the important aspects of
a comment are answered, however, if a reviewer is left alone, with a single
field to make a comment, the provided comment might miss information
necessary for the author to understand the issue and implement the correction
adequately.

On the other hand, most reviewers are not new to the task of reviewing.
They are used to their way of commenting. Such a form guided review is
only useful to novices. Alternatively, such advice can also be taught through
training courses.

31

3.2.6 Advice to make constructive feedback

The result of code review is the feedback that the author receives. Such
feedback is crucial to become aware of issues one was unable to see. As a
developer one spends much time solving one and the same problem. This
allows errors to slip in because our view can be distorted from constant
input of the same idea. Therefore techniques such as code review exist,
to allow discovering the code from a different perspective. As much as a
different perspective can make issues visible, it can also resemble questioning
the author’s way of thought, his/her decisions and even his/her skills. A
developer’s self-esteem is tied to the perception of his/her capabilities and
relevancy of his/her decisions, how the author is perceived by himself/herself
as well as how he/she is perceived by others. As the author develops code,
he/she is accompanied by confidence about the code’s validity.

However, when feedback criticizes the author’s decision, his/her self-
esteem can be undermined, which in turn leads to a bad perception of the
feedback. Discussing about mistakes made in the code should be done in
an objective manner. Having hurt the author’s self-esteem hinders such a
discussion. It occurs that the feedback is not accepted, that provided sug-
gestions are refused. On the contrary, in such a situation the author might
be prone to confirmation bias, searching for arguments to refuse feedback
comments and searching for arguments proving the validity of the existing
code. This problem shows the importance of developing a good feedback,
providing grounds for an objective discussion between author and reviewer.
Creating good feedback is not a innocuous task. It requires paying attention
to details, detecting relevant issues and formulating comments in a construc-
tive way, which has to be accompanied by an objective code analysis. It is
expected that authors are less prone to confirmation bias when given con-
structive feedback.

A concrete solution can be provided by instructing the reviewer on how
to write constructive feedback. Every time the reviewer is about to create a
comment a reminder of best practices goes a long way. The challenge is to
incite the reviewer many times to pay attention to the advice. Learning how
to provide constructive comments is a skill that takes time, but it is worth
it because it will yield great results in the long term.

32

3.2.7 Asking others for feedback about the review

In the previous case we discussed how to circumvent confirmation bias due
to non-constructive feedback. A first solution is providing the reviewer with
advice to create constructive feedback. Sometimes we miss a point of view,
which leads to illogical reasoning and incomplete feedback. In order to pre-
vent the cognitive bias from happening in the first place, it is recommended
to question the discovered issues. This can be done by discussing the points
of view with other developers. They can evaluate the feedback of the reviewer
from an objective stand point. This procedure resembles a smaller review of
the review itself. This way the feedback must first pass a checkpoint before
getting to the author.

However, also this solution comes with a drawback. Adding a verification
step slows down the review process and requires additional work force.

3.2.8 Encourage brainstorming and complete feedback

In software engineering tasks become intensive quite fast. Especially when
nearing a deadline, time becomes scarce and developers tend to reason less
accurately. Then the reviewer will be prone to confirmation bias. Instead of
analyzing the code objectively, time-pressure pushes him/her to accept code
as proposed by the author. He/She solely confirms the code changes, whereas
he/she should evaluate them objectively. This provokes feedback that is less
thought trough. A great problem with non-constructive feedback is the lack
of alternatives that help the author understand how to solve the discovered
issue. It is favorable for the author when the reviewer provides not only one
alternative, but multiple ones.

So, the goal is to encourage the reviewer to brainstorm on how to solve the
problem. Similar to the previously described form that guides the reviewer,
now we offer multiple fields destined to contain different alternative solutions
described by the reviewer. On the one hand, a placeholder for alternatives
reminds the reviewer to think about providing alternative solutions, on the
other hand he/she is incited to give more than one alternative. This way it
can be made sure that the reviewer responds at least to this aspect of con-
structive feedback. As a reminder, many more aspects have to be respected
as described in the State of the art chapter.

To go further, review tools could provide a more detailed form, destined to
guide the reviewer especially in cases where time-pressure or decision fatigue

33

occurs. Having a form at hand helps the reviewer not to fail to respond to
important aspects of feedback.

3.3 Methodology

Now that the problems have been identified and that the first solutions are
described, implementation of the latter shall prove their usability. In the
following chapter we are going to test some of the solutions. The chosen
methodology for the development of the solutions and testing, is the user
centered design process. But first we are going to focus on what that process
looks like. Then we are going to explain why prototyping is the way to
present solutions to the future user and in the next chapter we are going to
disclose the results of the testing as well as the evolution of the techniques.

3.3.1 User-centered design process

The user centered design process guides development with an iterative ap-
proach. That means requirements for the user are analyzed, a solution is
designed, presented and finally corrected according to the needs of the user.
It involves the users throughout the design process. The goal is to under-
stand the user’s tasks and how to solve his/her problems. Following this
process we go through five phases:

Figure 3.1: Phases of the user centered process.

34

1. Specifying the context. Define the user’s profile, who is going to use
the product and under what conditions that will be.

2. Specifying the user’s requirements. What are his/her goals and how
he/she is trying to achieve them.

3. Creating the solution. In this case solutions will be presented as pro-
totypes, so that the user can express his/her opinion about it.

4. Evaluating the solution. Testing the product shows if the prototype is
working. In this case we will conduct usability tests with the users.

5. Accept the solution. If the evaluation yields satisfying results, the
solution can be accepted. Otherwise the design process restarts with
specifying the context.

3.3.2 Prototyping

Objective is to test the designed solutions with the user. therefore we need
a way to show the user a concrete, usable medium. The chosen medium
for the prototypes is a simple HTML document. The reason is clear; be-
cause the solutions are destined to be implemented in already existing tools,
such as Gerrit. Gerrit is a tool to facilitate the code review process along
with GitHub. Gerrit is already developed as a web application. This makes
the choice of HTML as technology relevant. Nonetheless there exist tools
that generate dynamic prototypes, and that could have been considered too.
However based on HTML, the generation of prototypes is independent of
mentioned tools. Additionally, HTML provides a great flexibility in terms of
design using CSS.

3.3.3 Usability test

In the last phase of the user centered design process, the solution needs to be
tested with the users. Here we use an implementation of the user centered
design process, called Usability testing. Usually, multiple participants are
asked to complete a task while observers watch, listen and take notes about
the user’s behavior as well as about what the user says about the prototype
during navigation. Such tests help identify problems, identify if the user is
satisfied with the solution and how long it takes him/her to complete a task.

35

https://www.gerritcodereview.com/

This is useful as finding problems early reduces complications compared to
discovering them only later. With an iterative approach the path of the
solution can be corrected step by step, instead of having to invest into large
adaptations afterwards like with a Waterfall approach.

3.3.4 UEQ

For the final step of this research, we want to analyze whether the new tech-
niques serve as an improvement, do not change anything or even have a
negative impact. Previously we explained usability testing to develop solu-
tions that correspond to the user’s needs and respond to their requirements
for specific tasks. Now we use user experience testing (UEQ) to verify the
solution’s relevancy, especially in terms of the user interface. Testing like
this allows making data-backed decisions on what feature enables an opti-
mized experience. UEQ testing can also be used to understand the user’s
experience, their pain points and satisfaction with the features.

3.3.5 Development process

In Figure 3.2 we get an overview of the applied development process. What
starts with the identification of triggers and effects for cognitive biases during
code review, continues with the design of theoretical solutions to the prob-
lems. These solutions require testing to improve according to the needs of
the future users. Once the development is finished, the resulting tool must
be verified in terms of design. This last step uses a different group than the
one used for design. In the last step the collected feedback is evaluated in
order to make conclusions about the developed prototypes.

36

Figure 3.2: Design and prototyping of the techniques.

37

Problem Solution
The reviewer is over-solicited, which
triggers decision fatigue.

Scheduled reviews. Prevent the bias by
limiting the amount of reviews with a
maximum number and a calendar to
schedule.

The reviewer is over-solicited, which
triggers decision fatigue.

Observe needed time. Prevent the
bias by reminding the reviewer to halt
when too much time is needed for re-
view.

Missing experience about a specific
topic in the code triggers decision fa-
tigue.

Find an expert. Prevent the bias by
assigning the best fitting reviewer ac-
cording his experience in the topic.

When decision fatigue is triggered
from working at a bad time of day,
the reviewer is prone to skipping big
or complicated changes.

Guide with comments. Mitigate
the impact by guiding the reviewer
through the files with comments made
by the author.

Being inexperienced in making code
reviews leads the reviewer to impul-
sive/illogical comments due decision
fatigue.

Help commenting. Mitigate the im-
pact by providing a form with key
words to help the reviewer to include
all essential elements.

Feedback of bad quality makes the au-
thor defend his/her self-esteem due to
confirmation bias, thus refusing sug-
gestions and searching for arguments
to leave the code unchanged.

Constructive feedback. Prevent the
bias by providing the reviewer with
advice about how to make construc-
tive feedback.

Feedback of review. Prevent the
bias by suggesting to the reviewer to
ask another developer for feedback
about his/her review.

Under time-pressure reviewers are
prone to decision fatigue and make in-
complete comments.

Encourage brainstorming. Mitigate
the impact by providing a form with
empty solution fields to encourage the
reviewer to think about multiple solu-
tions.

Table 3.1: Summary of described cases with the associated solution.

38

Chapter 4

Prototyping

In the first chapter, State of the art, we explore the theoretical space of cog-
nitive biases, their triggers and effects. This knowledge leads to the selection
of certain possible cases applicable in code review, that are discussed in the
third chapter, Design, with the goal to design potential solutions in order to
circumvent the triggers or mitigate the effects. In this chapter we select some
of the discussed solutions with the goal to test those techniques with partic-
ipants, in order to explore their efficiency and whether they actually work.
The techniques that are tested here, are developed as HTML prototype and
then tested; first doing two iterations of usability testing, and second apply-
ing the user experience questionnaire. While evaluating the prototypes with
a usability test, we use two groups of participants serving a different purpose.
We employ a total of eight participants. This is supposed to help us find on
average more than 80% of the problems during an evaluation according to
Faulkner (2003) [11]. The first group is active during the development of
the prototypes. A first version is presented to them in order to execute a
requested task and give feedback. After the first iteration, according to the
notes and feedback from the participants, modifications are made to better
respond to the user’s needs as well as to make the solution more efficient.
We proceed the same way with a second iteration. The second group is ac-
tive during the last phase, which is destined to evaluate the usefulness of
the solutions. The purpose of a second group is to avoid misleading success
due to biased feedback from the first group, as the participants help develop
the tools. The second group is not part of the usability test. With the
second group we use a User Experience Questionnaire as described in the
Methodology section.

39

As a reminder, we describe the three selected cases.

Case 1 In the first case we focus on the trigger of confirmation bias. Confir-
mation bias can be triggered when a person feels the need to protect her/his
self esteem. This happens during code review as well. A non-constructive
feedback can lead the author to ignore suggestions on reception of the feed-
back. Further, he/she tries to defend his/her code with arguments that are
potentially illogical, even if the proposed comments from the reviewer are
relevant.

The goal is to avoid the cognitive bias to be triggered in the first place.
The solution is to develop a technique to advise the reviewer during review
in order to produce constructive feedback.

Case 2 In this case we do not look at the triggers; instead we focus on the
effects of the cognitive bias. For several reasons decision fatigue might appear
during code review, leading to incomplete comments and to situations where
the reviewer takes a passive role.

The goal is to mitigate the effects of decision fatigue. The solution is
to develop a technique to help the reviewer make a complete comment even
though he/she is in a state of mental fatigue. This could be achieved by
providing form fields that the reviewer only has to fill out, making sure that
the comment does not miss any important information.

Case 3 In this case we also focus on the effect of decision fatigue. One of
them is the temptation of skipping code changes that appear big or compli-
cated. This in turn leads to misunderstanding and decreased quality of the
code review.

The goal is to prevent the reviewer from skipping important changes and
thus help understanding why specific changes were made. The solution is
to develop a technique that guides the reviewer with comments through the
most important changes before starting the actual review. This way the
reviewer gets informed about the reason for modifications, skipping is pre-
vented and understanding the code requires less analysis from the reviewer.

40

4.1 Base prototype

Developing a technique requires time and goes through multiple steps until
a presentable prototype is available. To begin, brainstorming over elements
for a potential technique is done. The ideas are inspired by the solutions
discussed in the previous chapter (summary in Table3.1). Later the ideas
that we came up with and we find useful, get mixed together and adapted.
This process already involves creating sketches of the final solution. At this
stage, a first prototype can be developed by using HTML to see what the
solution would look like if really implemented. However, these prototypes do
not reflect a fully working tool by any means. But this is not the goal of such
a prototype. Here, solely the idea of the solution is represented so that the
user can imagine how the technique would function during code reviews.

Figure 4.1: Gerrit quick review line to make a comment.

The prototypes are based on the web tool Gerrit which can be seen in
Figure 4.1. First we create a base prototype without applying techniques, as
seen in Figure 4.2.

In the following paragraphs three techniques are described how they func-
tion. For each case one technique is developed respectively. Technique 1 for
case 1, technique 2 for case 2 and technique 3 for case 3. In the First iteration
Section 4.2.2, describing the feedback and changes, we also show what the
prototypes look like.

Technique 1 – Advice The goal being to help the reviewer create con-
structive feedback, the first technique is based on advice displayed in the
form of a list. This list can be opened by clicking the button I need advice.

41

Figure 4.2: Base prototype without techniques.

Following this action, a popup shows a list containing the advice. The advice
originates from literature investigating how to achieve constructive feedback
[4, 33].

Technique 2 – Form Because under decision fatigue reviewers tend to
make incomplete comments, the idea of a pre-structured form seems an ap-
propriate choice. This way, the reviewer does not have to think about how
to structure the comment. It should include the identification of a problem,
a justification regarding why the discovery is considered a problem and also
a suggestion to solve it. Here, three empty fields are available in order to
incite the reviewer to brainstorm not only one, but multiple suggestions.

Technique 3 – Guide In order to avoid the user skipping changes or
even entire files from being reviewed, a guide is offered just before starting
the review. This guide consists of a certain amount of comments written
by the author. These comments concern only the bigger and complicated
changes. They contain an explanation of why a certain change was made.
When launching the guide, the reviewer’s attention is immediately drawn to
the first comment, as decided by the author. The concerned piece of code is
surrounded by a red border so that the reviewer focuses his/her attention on
it. When the reviewer decides that he/she understands the change, he/she
clicks on the button Next to go to the next comment. Once having been
through every step, the reviewer starts the actual review. Now the reviewer
has a better understanding of the code and the thought-process of the author

42

when he/she modified the files.

4.2 Usability test

4.2.1 Plan

Before doing the actual usability test, a plan needs to be set up. It describes
what is tested and how as well as what metrics are used and how many par-
ticipants are required to gain representative results. Let us not forget that
scenarios must be described in order to define user goals and the context
where the tools are tested. So, the plan for a usability test is composed of
the following elements. While doing multiple iterations, some of the plan’s el-
ements are adapted according to the results, such as the definition of sessions
and the scenarios.

Scope This usability test covers the testing of multiple techniques used to
address two cognitive biases during code review; confirmation bias and
decision fatigue. The test is done by using a prototype of tools applying
the designed techniques. The test analyses the navigation through the
prototype, usage of the tools and reaction to the tools by the partici-
pants who act as authors or as reviewers depending on the technique.

Purpose We use questions and goals to describe what is supposed to be
observed while the participant uses the prototypes. T1, T2 and T3
representing respectively technique 1 with advice to avoid confirma-
tion bias, technique 2 with a more detailed comment form to mitigate
decision fatigue and technique 3 with a change guide for the reviewer
to mitigate decision fatigue.

T1 When is the advice button used; before or after writing the com-
ment?

T1 What advice is applied after reading it?

T1 Is the advice understood correctly?

T2 What fields are filled out?

T2 Does the comment include all important aspects; problem identi-
fication, justification, solutions?

T2 How many solutions are provided?

43

T2 Do empty fields encourage providing a richer answer?

T3 How are changes investigated first; with or without the guide?

T3 Does the reviewer skip steps of the guide?

T3 How comfortably does the reviewer navigate through the files after
using the guide?

Schedule and location All sessions are held online. In the first iteration
three participants are observed while using the prototypes. The same
participants are used for the second iteration. The sessions take place
during the day, reflecting partly conditions of a working day.

Sessions A whole session takes one hour and 15 minutes. Before starting
the test, the participant is briefed for 15 minutes. Because only few
sessions are done, and each one is isolated from the others, there is
enough time to evaluate and reset the sessions in between.

Equipment The participant gets access to the digital prototype over the
internet. The prototype is shared by using a messaging service. The
participant executes the prototype on his/her local machine, using a
single monitor, a keyboard and a mouse to navigate the application.
The prototype is executed in a web browser capable of interpreting
JavaScript. During the test the participant is not recorded but his/her
screen is shared so that notes about his/her behavior can be taken.

Participants For the usability tests that are executed here, we employed 3
participants in two iterations. All the participants are students at the
University of Namur being in second year of the masters program of
computer science. These students are not necessarily professionally ex-
perienced in code reviews. Nevertheless, they are knowledgeable about
the theoretical concepts about code reviews and most of them have at
least participated in a code review as an author.

Scenarios Even though evaluating multiple scenarios per case is recom-
mended, due to limited time we focus on only one scenario per tech-
nique; Technique 1, 2 and 3 respectively as explained previously for the
element Purpose.

S1 The code reviewer gives non-constructive feedback. The author
receives the feedback and thinks that the comments do not fit.

44

He/She gets mad at the reviewer and does not accept the sug-
gestions, not even the remarks. The author even starts defending
his/her code that he/she worked on for so long. The author ex-
periences confirmation bias, because he/she wants to protect his
self esteem. This is due to non-constructive feedback.

S2 The code reviewer is exhausted, because of the mentally intensive
work that was done previously. Now he/she feels overwhelmed by
the huge number of reviews waiting for him/her. This leads to
making incomplete, illogical comments. The code reviewer expe-
riences decision fatigue, because he/she decided to do the reviews
only at the end of the day.

S3 The code reviewer, inexperienced or working in a mentally ex-
hausted state, starts skipping especially complicated or big code
changes. This leads him/her to not understand what the code is
about, thus making illogical comments and skipping the overall
comment altogether. He/She experiences decision fatigue, due to
inexperience or doing code reviews at the wrong time.

Metrics Before starting the test, questions about the participant’s back-
ground are asked to verify the profile. Knowing the participant’s pre-
vious experience is crucial to understand his/her behavior.

• Have you worked with code review tools such as GitHub before?

• During code review, what position are you experienced with; au-
thor and reviewer?

After doing the test, before closing the session, the participant is asked
to give personal feedback about the tools that were tested. This feed-
back is used to understand the user’s needs and provide a corresponding
solution.

• How useful is the tested technique in order to mitigate explained
effects or avoid their triggers?

• What modifications do you recommend to achieve the successful
bias prevention?

45

4.2.2 First iteration

The first iteration starts with the creation of the base prototypes. After an-
alyzing the user’s needs, a first prototype for each technique is created. Now
it gets tested and we take notes of the feedback from the test participants.
The results of the tests are summarized in Table 4.1.

(a) Button to open the advice popup.

(b) Advice shown in a popup frame.

Figure 4.3: Advice as popup to help provide constructive feedback.

Technique 1 – Advice The first tested technique is the advice available in
form of a popup, as displayed in Figure 4.3b. In the case where participants
notice the advice button and actually use it, most of them read the advice and
try to apply it while writing the comment afterwards. Some participants are

46

convinced that they know the basic rules for constructive feedback already
and do not need to be helped out. Using a button to open the popup requires
an intermediate step. This leads some participants to not even open the
advice.

The participants expressed feedback asking “to make the advice more ac-
cessible, instead of having to press a button first”. Also, seeing all the advice
at once seems overwhelming, which hints to improve the technique by show-
ing advice depending on the context. For example, making advice appear
for positive commenting only when detecting that the entered comment is
formulated negatively. Participants liked the short formulation of the advice.
The advice is colored alternating, gray and white. However, participants did
not understand the coloring even though the color is only meant to help
distinguish one piece of advice from another.

For the next iteration, first the number of steps to see the advice is re-
duced. Second, the background color for the advice is replaced with a single
color, green. Because the first three pieces of advice explain the structure of
the comment and reviewers use this advice as a checklist, a new technique
is added. This technique only shows an example of a constructive comment
following the advice as explained previously. The changes and the new tech-
nique with feedback and observations can be seen in the second iteration
Section 4.2.3.

Figure 4.4: A form to help to structure comments.

Technique 2 – Form The second tested technique is a form made of
multiple empty fields helping to structure the comment, as seen in Figure
4.4. A field asking to identify the problem, a field asking to justify the
said problem and three fields asking for the description of a solution. All
the participants filled out the fields, except for the solutions; mostly only
one solution was given. This showed that reviewers are ready to follow a

47

structure to create a complete comment, which was voiced to be “especially
useful for beginners who do not have much code review experience”.

However, some participants made clear that “too many empty fields can
make the reviewer feel overwhelmed, because it looks like now more effort
than before has to be put into the comment”. Also, when brainstorming on
multiple solutions to solve the found problem, one participant felt like he/she
is “doing the author’s work”. Some misleading opinions came up too, such
as the missing possibility of selecting multiple lines for comment. In the used
prototype this functionality is not available, because it is not in the focus
of the test. It is supposed that such a functionality does already exist like
in tools such as Github and Gerrit. Here, the focus is put on the comment
functionality combined with its psychological aspects.

In order to handle the reviewer’s feeling of being overwhelmed, some asked
for techniques that auto-complete forms. They also asked for techniques that
make the reviewer avoid unnecessary steps, such as opening a new tab for
search or clicking a button to open a window to see specific information. To
respond to these requests, a search tool is added in the next iteration. It
allows reviewers to use a search bar integrated in the comment tool, in order
to quickly find a solution or a code snipped from Google, Stack Overflow
and other sites. Yet another suggestion was to facilitate the process of ask-
ing colleagues for help when the reviewer is unsure about his/her comment
concerning a specific topic. Therefore the possibility to ask an expert in the
field before saving the comment is added.

Technique 3 – Guide The third tested technique is the guide set up by
the author. When the reviewer lands on the overview page for a change-
set, the prototype shows under the changed file a link named Launch guided
review to start the guide, as seen in Figure 4.5a. The reviewer voluntarily
either opens a file directly to comment or launches the guide. This feature is
used optionally. Once the guide is launched, the reviewer is presented a view
focusing on a specific part of the code. The focused part was selected by the
author when he/she created the guide. The reviewer sees a red border around
the piece of code that the author wants to emphasize. To help the reviewer
understand the piece of code in question, the author has put a comment to
it, which is visible when hovering the mouse pointer over the code. When the
reviewer feels he/she understand the the changed code and how the author
thought, then he/she uses the Next button to show the following code change.

48

(a) Button to launch the guide.

(b) Focus around code snipped with comment.

Figure 4.5: Guide with comments to help reviewers understand the changes.

This procedure is repeated for all the comments that the author put into the
guide. The goal is not to explain every piece of changed code, but rather
to give the reviewer a brief idea of the whole submitted change-set, to save
time analyzing the code. All the participants intentionally clicked on the
guide. While using the guide, the reviewers read every step carefully without
skipping one of them. Some participants also read code outside the focused
area, which is not intended by the feature.

One participant expressed a concern about “being potentially biased from
the comments in the guide”. According to this, the reviewer could be led to
accept code without objectively analyzing the code. Another concern was the
signification of the Next button. Some participants could not anticipate what
consequence clicking on that button has. Also, some misleading feedback
appeared. Due to the goal of not biasing the participants opinion, some
information about the psychological aspects were not explained, leading to
misunderstand the use case of the tested technique. For example, some
participants were unable to discern specification comments from comments
explaining the reason for modification.

For the next iteration the launch button is enlarged and displayed in a
more inciting way. The same way, the Next button is put in another location,
making its use more intuitive.

49

Technique What works What does not work
Advice

– Most users apply the ad-
vice after reading it.

– The short formulated ad-
vice is appreciated.

– The popup button is not
always noticed.

– Not everybody wants to be
advised.

– Background color confuses
participants.

Form
– All fields get filled out.
– The form provides a coher-
ent structure.

– Only one solution is given.
– Some feel overwhelmed.

Guide
– Everyone uses the guide.
– No code change is skipped.

– The guide could bias the
reviewer’s comment.

– The Next button is not in-
tuitive.

Table 4.1: Summary of first iteration.

4.2.3 Second iteration

In the first iteration we collected feedback from the base prototype. This
allows us now to improve the prototype according to the observed behavior
and the suggestions made by the participants. Some techniques get im-
proved, others get extended. Also, two new techniques are added whereas
one technique is removed. The results of the test are summarized in Table
4.2.

Technique 1 – Advice In the current iteration the advice popup was
transformed into a drop-down list that is immediately visible when the com-
ment tool is opened, as seen in Figure 4.6a. This way the reviewer does
not need to go through extra steps, only to see the advice. To distinguish
the advice from the actual input field, its background color is green and not
alternating gray like before. Now, every participant notices the advice and
reads it, compared to previously where not all reviewers opened the popup.

50

(a) Advice displayed as drop-down.

(b) Example displayed as drop-down.

Figure 4.6: Techniques to help to provide constructive feedback.

Most of the participants use the advice like a checklist, verifying one piece of
advice after another, looking if they implemented it correctly. An impact on
the overall comment that is given at the end of the review can be observed
too. It seems like the reviewers apply the advice even outside the comment
tool. Due to the usage of the advice as a checklist, one participant recom-
mended “displaying the advice as a real checklist, so that each piece of advice
can be checked one by one”. The green background however does not show
positive effects. One participant perceives the advice “as a checklist that is
already completed”. “Another, more neutral color would fit better”. Also,
though most elements can be used like in a checklist, some of them can not,
because they are intended to incite the reviewer to analyze the code from
another perspective.

51

Technique 2 – Example In the previous iteration a new technique emerged
from the advice technique (T1), displayed in Figure 4.6b. Here the technique
using an example shows participants are eager to use it. They follow exactly
the structure presented in the example. Some type the keywords into the
input field; others only type the response without typing the keywords be-
fore. The feedback confirms appreciation, stating “this technique is clear,
easily applied and saves time to think about the comment structure”. Par-
ticipants reveal multiple times the advantage of such a structure, because
like this “comments could be automatically organized more easily and foster
following a clear convention”. The only observed down-side of this technique
is the necessity to manually type the keywords of the comment structure;
problem, justification and solution. This issue is solved by adding a button
that automatically types the structure into the comment field.

(a) Search field to quickly add code snippets and solutions.

(b) Optional selection of an expert to review comment.

Figure 4.7: Techniques to make complete comments.

Technique 3 – Quick search As requested in the first iteration, tasks
should take less effort, thus less intermediary clicks. The form that was used
before is now replaced with a tool for a quick search, as seen in Figure 4.7a.

52

It was used in quite different ways. One participant fills out the comment
field first, followed by using the quick search in order to find a code snipped
that visualizes the comment given before. Another participant first searches
a solution by using the quick search and only then writes the actual comment.
The comment however, only refers to the selected solution from the search
without giving further explanation. All participants say that “the technique
is interesting to use”.

Technique 4 – Expert feedback Like for the previous technique another
help was requested. Providing expert feedback is a technique that is already
advised in the Design chapter. It allows countering the effects of decision fa-
tigue when the reviewer is prone to take a passive role. However, as observed
during the tests, most participants do not use the expert feature because
they either feel like they are experienced enough or because they do not
want to needlessly annoy a colleague by asking for feedback. The prototype
is displayed in Figure 4.7b

(a) New design of button to launch guide.

(b) New location of Next button.

Figure 4.8: Improvements of a guide.

Technique 5 – Guide In this iteration the launch button for the guide is
bigger and thus better visible, as seen in Figure 4.8a. The reviewers notice

53

the offered guide right away and instantly use it. Also, the button used to
get to the next step is placed in a more understandable location, right next
to the comment, as in Figure 4.8b. Users do not ask anymore what the
Next button is for. One participant explains that he/she “feels obligated
to give a comment after following the guide, because using the Next button
makes him/her believe he/she confirmed having seen the author’s comment
and therefore he/she feels like he/she cannot abstain from reviewing the
concerned piece of code, like if he/she missed it by accident”. All participants
complain about not being able to give comments while using the guide. This
however is a feature that would not support the intended effect. Being able
to comment simultaneously hinders the reviewer from following the guide to
understand the code as a whole and not only partially.

(a) Combination of advice and example.

(b) Combination of quick search and expert feedback.

Figure 4.9: Combined techniques.

Combining techniques One suggestion that was made multiple times, is
the potential of combining some techniques. First, the advice (T1) can be

54

combined with the example (T2), displayed in Figure 4.9a. This constitutes
a single technique aiming for the same goal; creating constructive feedback.
Second, combining the quick search feature for solutions (T3) with the ex-
pert feedback (T4) feature aims the same way at mitigating the effects of
decision fatigue, displayed in Figure 4.9b. For the following step (UEQ) the
combination of these techniques is applied and tested.

4.3 User experience questionnaire

4.3.1 Plan

For the final test of the techniques, five participants of a similar profile to the
first test group were chosen. But compared to the first group most of them
have already done code reviews in the position as an author or as a reviewer.
Additionally all participants have a scientific background and are familiar
with scientific research. This experience makes for adequate participants to
evaluate the usability of the tested techniques.

A test session proceeds with every participant as follows. First questions
about the participant’s experience are asked. Depending on the knowledge
we explain and demonstrate to him/her what code reviews are and how tools
can be used to assist the code review process. Next, one technique at a
time is explained and tested. The explanation however takes place without
mentioning the investigated aspects concerning cognitive biases. This is nec-
essary to not bias the participant’s opinion. With this test the goal is only
to gain feedback about the user interface and the usability; not about the
psychological aspects.

The participant is briefed about his/her task, beginning with the position
he/she occupies; for each technique the user plays the role of a reviewer. The
task consists in using the code review tool in order to review the changes as
shown in the prototype. While doing so, we can guide the participant, but
only in the case where he/she does not know how to proceed. After com-
pleting the task, the participant is asked to fill out the questionnaire (UEQ
[27]) based on the previous technique. This questionnaire is not specifically
adapted to the tested tools, nor to the underlying investigated topic, cog-
nitive biases. The measured scales are pre-defined for each user experience
questionnaire and represent the 26 underlying items that participants evalu-
ate:

55

Technique What works What does not work
Advice

– The advice is noticed and
read immediately.

– The advice impacts the
overall comment.

– Green color signifies al-
ready complete.

– Participants mistake incit-
ing items for to-do items.

Example
– All participants use the
technique.

– Saves time to think about
structure.

– Comment analysis could
be automated.

– Participants type the key-
words manually.

Quick
search

– All participants use the
technique.

– Some only use the quick
search, without making a
comment.

Expert
feedback

– Most participants do not
use the technique.

– Most users are concerned
about annoying colleagues.

Guide
– Launch button is noticed
faster.

– Understanding the Next
button is intuitive.

– The Next button acts as
obligation to comment.

– Unable to make comments
inside guide.

Table 4.2: Summary of second iteration.

• Attractiveness: Overall impression of the product. Do users like or
dislike the product?

56

• Perspicuity: Is it easy to get familiar with the product? Is it easy to
learn how to use the product?

• Efficiency: Can users solve their tasks without unnecessary effort?

• Dependability: Does the user feel in control of the interaction?

• Stimulation: Is it exciting and motivating to use the product?

• Novelty: Is the product innovative and creative? Does the product
catch the interest of users?

Additionally we ask every participant after the questionnaire for a per-
sonal feedback about the tested technique. “Do you think the technique
improves the code review process?”. “What can be improved in your opinion
about the presented tools?”. The discussion about the techniques is done af-
ter responding to the questionnaire to not bias the participant before giving
feedback and catch his/her immediate impression towards the technique.

4.3.2 Results

The data collected with the questionnaires and the feedback from the par-
ticipants are now used to determine whether or not the techniques fulfill the
general user’s expectations concerning user experience. Such expectations
are generally formed by products that the users frequently use. In the first
testing phase we analyzed the expectations of the users with usability testing.
Now, we verify if the expectations are the same for the second group and if
the expectations are fulfilled. First we summarize the personal feedback and
the behavior we observed while participants used the techniques. Then we
look at the questionnaire answers to determine if the tools enhance the user
experience. The answers of the user experience questionnaires should align
with the described feedback and represent a global opinion of all participants
and the future users. In order to evaluate the questionnaires we used the UEQ
Data Analysis Tool available on the website of the very questionnaire. This
tool provides a brief quantitative analysis of the responses. The responses are
on a scale from 1 to 7. For the analysis they get converted to scale from -3
(most negative) to +3 (most positive). According to this scale we calculate
the mean and variance for each item and each scale. Here, the previously
mentioned six scales are used to describe the user’s experience. We focus on

57

the benchmark results which classify the technique into five categories, one
per scale. A scale can be evaluated as excellent, good, above average, below
average or bad. However, we have to keep in mind that only a small sample
of participants was used. This means that quantitative analysis might show
less accurate results. Nevertheless, a quantitative analysis reveals at least
tendencies of the user’s experience. We focus on a qualitative analysis of
user feedback and behavior in order to determine usability and what aspects
to improve.

Advice with example With the combination of the two techniques, ad-
vice (T1) and example (T2), a new button is added to allow preparing the
comment structure faster. This button copies the key phrases “Identified
problem”, “Why is it a problem” and “Suggestions” into the comment field.
However, this button is not noticed and it is therefore not used by any of the
participants. Most participants type the structure into the form manually
like the participants from the first group in iteration 2. Others do not type
the key words at all and only provide the response to the keywords. What
can be noticed, is that even when the button is not used, the proposed struc-
ture is well respected by all the participants. Coming to the advice which is
located beneath the example, only some of the participants read it; however
only briefly. Only one participant reads it with the goal to apply the advice
one by one to the comment.

While designing the techniques with the first group of participants, users
showed willingness to be guided. An example is when users use the structure
offered as an example to guide the construction of their comments. This
expectation aligns with the feedback of the second group which expresses
usefulness of a pre-defined comment structure, “because this makes for an
easier analysis afterwards”. Additionally, feedback expresses the advantage
of structure to automate tasks, as well as standardizing the comment form.
This way, the author knows what to expect when receiving the feedback;
“leading to a less personal, more constructive discussion”. Another expec-
tation of the first group was to facilitate and speed up tasks. By providing
an example, this expectation is met. The reviewer does not need to rethink
the comment structure anymore. However, for some participants the user
interface appeared confusing; especially the coloring was criticized, because
“a white background color does not draw the user’s attention to the ad-
vice”. Also, the proposed structure is criticized due to “focusing mainly on

58

negative aspects, although the advice recommends including positive aspects
too”. Following the feedback, we analyze the questionnaires, looking at the
means and variances as well as at the benchmark comparison.

Figure 4.10: UEQ benchmark for advice with example.

The benchmark displayed in Figure 4.10 shows that the users perceive the
techniques (T1 and T2) as understandable and easy to learn. However this
aspect is to be considered with caution, because the answers reveal a high
variance throughout the items of this scale. This indicates that some items
of the scale perspicuity might be misinterpreted. To improve the quality of
the results, data of more participants is required. For the scale stimulation,
how exciting and motivating the technique is, we see that users perceive
the technique as bad. Similarly, the combination of the techniques is not
seen as innovative or creative but rather as conventional and usual. This
last scale must however be used with caution, because similar to the scale
perspicuity, the high variance between measured items indicates a potential
misunderstanding. The results are displayed in Table 4.3.

Scale Mean Variance
Attractiveness 0.933 0.55
Perspicuity 1.300 2.67
Efficiency 1.000 0.53

Dependability 0.900 0.64
Stimulation 0.450 0.54
Novelty -0.550 1.08

Table 4.3: Mean and variance for the technique advice with example.

59

Quick search with expert feedback For this test the Quick search (T3)
and Expert feedback (T4) techniques were not modified, but only combined
as requested by participants. This advice turns out not to enhance the in-
terest in using the expert feedback feature. Most users immediately focus on
the search field for a quick solution. However, compared to the first group
from the usability tests, the second group does not enter a search query into
the input field. Instead all participants, except one, open a new tab to manu-
ally search for a solution on mentioned sites like Stack Overflow and Google,
only to copy and paste the link into the search field. The goal is to use the
search field to quickly find a link or code snipped without leaving the code
review tool. After intercepting by explaining the technique in more detail, all
participants understand the feature and use it adequately. Contrary to the
search field, the expert feedback is not used by any participant, even though
some users of the first group used it.

Because acceleration of tasks is an expectation that users expressed quite
often a quick search for solutions was added. Also the expert feedback is
supposed to facilitate asking colleagues or experts to confirm in case of doubt.
With a sped up process in mind we designed techniques that users understand
quickly. Using elements such as buttons and text-fields in the right place is
necessary to offer intuitive solutions. In the case of the search field (T3), at
first users missed the point of the technique. Some participants suggested
replacing the keyword Add with Search so that the emphasis is on the help
to search and on not the obligation to add a link. As soon as the participants
understand the use of the search field, the technique is well appreciated as
“it simplifies commenting and saves time”. This feedback aligns with the
expectations of the first test group. Nonetheless, users are concerned about
copyrights when using code snippets from an online source. Another concern
is about the potentially low quality of code snippets proposed by the search.
So, participants show a significant interest in a tool that facilitates the review
process, but that does not make the result suffer in quality. Concerning the
expert feedback (T4) some users state that they either do not feel the need
to use the feature because they feel experienced enough, or because they do
not want to annoy colleagues unnecessarily. The former could be due to over
confidence, a cognitive bias which is not investigated further in this work.
Overall the latter feature is not appreciated.

The benchmark displayed in Figure 4.11 shows that the users perceive
the techniques as interesting, even exciting and motivating to use and to get
familiar with. The same is observable for the tool’s efficiency, which means

60

Figure 4.11: UEQ benchmark for quick search with expert feedback.

that users can apply the technique without a particular effort. This is in fact
the goal of the technique, and we can see that the result is good. Further-
more, novelty being a less common characteristic to achieve, as noticeable in
the benchmark, the technique still turns out to be perceived as innovative in
the field of code reviews. Items of the scale dependability seem to be misin-
terpreted when referring to the variance of the responses, which leads to use
these values only with caution. Overall the results are significantly positive
in terms of user experience, which corresponds to the feedback. However,
the responses are more targeted towards the quick search (T3) and less to
the expert feedback (T4). The results are displayed in Table 4.4.

Scale Mean Variance
Attractiveness 1.400 0.19
Perspicuity 1.450 0.51
Efficiency 1.450 0.33

Dependability 1.200 1.42
Stimulation 1.200 0.29
Novelty 1.000 0.78

Table 4.4: Mean and variance for the technique quick search with expert
feedback.

Guide After the second usability test iteration we optimized the guide by
displaying the red border around the change only when the corresponding
step is in focus. Before, the red border was shown constantly which could
have mislead the user’s focus. At the beginning the reviewer is shown a
list of changed files and a button to start a guided review. All participants

61

use this very button, explaining “that every proposed supporting tool is
appreciated, as long as it is not overwhelming”. Once the guide started, most
participants immediately hover the mouse pointer over the focused area which
makes the author’s comment visible. One participant did not understand
intuitively how to proceed. This could be due to a problem, causing the
mouse pointer not to trigger the visibility of the author’s comment. After
getting explanations, the participant understands how to use the tool. All
users carefully read the author’s comment and know intuitively what the Next
button is for. They use it until they arrive at the actual review interface,
where the reviewer’s comments fall out shorter, less detailed than compared
to the previous techniques (T1 and T2, T3 and T4).

During the usability test users expressed the need for tools that guide
the reviewer, as explained for the techniques advice (T1) and example (T3).
Guidance supports the reviewer so that he/she is not overwhelmed by the
quantity of changes to review. A tool that helps understand the code changes
quickly is a requirement that was often expressed too. Coming to the feed-
back, all users say “the technique makes for easier understanding and pushes
the reviewer to make useful comments, because now he/she goes through the
most important aspects of the code in a concentrated way”. Also, using the
guide is seen as “logical, because this way the reviewer can follow the author’s
logic from file to file, which was not possible before where the review is done
without respect to the relationship between the files”. One criticism states
“that the reviewer’s opinion is influenced when he/she reads the author’s
comment”. Another criticized limitation comes from the creation of a kind
of a story for the guide; “this means that one review can only be about one
specific topic or story”. “Therefore, commits can not be made arbitrarily;
commits must concern only one topic at time”. This requires the reviewer
to pay attention to what changes to include in the commit, whereas before a
commit simply included all changes. Overall the feature is appreciated, but
when using this technique, one must evaluate whether the improved review
quality compensates the additional invested time and effort.

The benchmark displayed in Figure 4.12 shows that the users perceive
the technique as very attractive and interesting to use. This is confirmed
with the a clear indication of finding the tool stimulating and innovative.
In terms of efficiency, it is evaluated positively as well and users mostly feel
that the tool fulfills expectations by being supportive. Regarding perspicuity
it is difficult to say whether participants find it easy or not to comprehend
the technique and learn it, because a slightly high variance of responses is

62

Figure 4.12: UEQ benchmark for a guide.

observable between the measured items; meaning that participants might
have misinterpreted the items in this context. The results are displayed in
Table 4.5.

Scale Mean Variance
Attractiveness 1.667 0.15
Perspicuity 1.700 0.83
Efficiency 1.350 0.71

Dependability 1.150 0.43
Stimulation 1.400 0.21
Novelty 1.250 0.63

Table 4.5: Mean and variance for the technique guide.

4.4 Discussion

In this last section we discuss the results previously observed about the tech-
niques. We take a step back and look at the results from the perspective
of the initial research question. The question is how to prevent or mitigate
cognitive biases during code review. For each of the tested techniques we
first interpret feedback and behavior. Then we conclude how a technique
responds to the research question and what limitations we come to face.

4.4.1 Confirmation bias

Refusing feedback The hypothesis is, that during code review non-constructive
feedback provokes confirmation bias from the author. Therefore a second

63

hypothesis arises, stating that providing constructive feedback to the author
prevents confirmation bias from happening through comments. Results from
user experience tests show that reviewers are keen to be guided by applying
a pre-defined structure (T2) for the comment. Results also show that most
reviewers are not motivated to take written advice into account (T1). Over-
all advice and examples are used in a quick manner, without spending more
than a few seconds to integrate them in the comments.

Concerning the technique example (T2) reviewers are ready to integrate
it into the code review process. Also, most users agree on confirming the pos-
itive effects of this technique. Thus, based on feedback and the investigated
knowledge about triggers of confirmation bias from the literature, appears to
be helpful in prevent confirmation bias during code review.

With this research we do not test quantitatively to what extent the tech-
nique prevents confirmation bias. Nevertheless we developed a first prototype
of a solution and tested the user experience. In order to analyze how effec-
tive the technique is, further investigation will be necessary using a greater
sample size for the tests to get representative quantitative results.

4.4.2 Decision fatigue

Incomplete comments The hypothesis is that during code review deci-
sion fatigue leads to incomplete comments from the reviewer, due to fatigue
or taking a passive role. Multiple hypotheses arise from here. First, a search
tool (T3) to quickly find solutions from the internet helps reviewers while
making comments, hence supporting completeness of feedback. Second, a
tool to request feedback from an expert (T4) for one’s comment helps re-
viewers when taking a passive role.

Results from user experience tests show that a search tool incites review-
ers to add a code snippet to the comment. The dynamic interface is well
appreciated and used by all participants, but only after the users understand
exactly the use case of the technique. Thus, based on feedback and the in-
vestigated knowledge about the effects of decision fatigue from the literature,
this technique appears to have significant potential to mitigate the impact of
decision fatigue during code review.

Results from user experience tests show that requesting an expert for
feedback is perceived as annoying for colleagues. None of the reviewers use
this technique to reassure themselves about their comments. Others ignore
this technique because they are confident enough about their comments.

64

Thus, based on feedback and the investigated knowledge about effects of
decision fatigue from the literature, we can say that this technique in its state
of a prototype can not be used to mitigate the effects of decision fatigue. It
can potentially be improved in terms of design to incite reviewers to use it.

The design and layout of elements play a big role, which might explain the
failure of the techniques advice (T1) and expert feedback (T4). The user’s
understanding and willingness to use a technique is strongly dependent on
the design of the user interface. Therefore, if a technique might not seem
useful at first, another design could reveal opposing results.

Skipping code changes The hypothesis is that during code review deci-
sion fatigue leads to skipping review of particularly short, big or complicated
changes. This gives way to the hypothesis that a guide (T5), helping the
reviewer to go through important changes one by one, prevents the reviewer
from skipping them. Results from user experience tests show that reviewers
always choose to use the guide instead of investigating the changes individ-
ually. While using the guide the users follow through until the end without
skipping the presentation of a code change.

Feedback from participants confirms the appreciation of following a guide.
Hereby the technique shows that it effectively prevents decision fatigue from
making users skip code changes. Thus, based on the effects of decision fatigue
described in literature and the results of the prevention technique developed
here, we can say that this way certain effects of decision fatigue during code
review can be prevented.

This research focused on the user’s willingness to stay focused on review-
ing code changes by not skipping them. However, concerns were expressed
about the quality of comments after using the guide. Potentially the review is
biased by the comments that the reviewer reads from the guide. This factor
is however not investigated in this research, but could be in some future work
where the focus is on the quality of the feedback after using the techniques
we have described here.

65

Chapter 5

Conclusion

With this work we explored the relationship between cognitive bias and mod-
ern code reviews. The need to investigate this topic stems from the literature
which clearly shows the impact of cognitive aspects on software engineering
activities. Multiple studies investigated how social aspects and a developer’s
personality affect the software’s development process. This previous knowl-
edge gives us the opportunity to investigate this relationship more in detail.
Here the first goal was to discover in what cases cognitive biases appear
during code review and what impact they have. A second goal was to select
some of the previously described cases in order to develop a solution to either
prevent a cognitive bias or to mitigate its effects on code review.

The main objective was to create solutions with the end user’s require-
ments in mind. This could be achieved by iterating multiple times over the
solutions together with two groups of reviewers. A first group was used to
develop the solutions by conducting usability tests. And a second group was
needed to validate the final results without being biased in their opinion by
conducting user experience tests (UEQ). The proposed result of this work
are multiple prototypes which have been tested exhaustively. The tests were
focused on qualitative data. By using the reviewer’s feedback we were able
to adapt the solutions depending on the needs of the participants. While
testing the techniques, the limitation of working with prototypes sometimes
led to confusion and misleading feedback. Some participants expected the
prototype to work like a fully developed tool. Nevertheless, after reexplain-
ing the goal of the test with more details, most participants understood the
idea and the quality of the feedback improved.

Due to a limited number of participants and little time to test, we were ob-

66

ligated to use a rather small sample size to get quantitative data. Nonetheless
the quantitative results could be used to explain the participant’s tendencies
and so help discover pain points as well as satisfactory elements. Knowing
these tendencies was crucial to improve the prototypes during development.
Another limitation could become the ethical question about some of the tech-
niques, which on one hand support the reviewer but on the other hand take
cognitive information of the user into account. Such information is regarded
as personal and must be treated in way that takes ethical aspects into ac-
count.

Within this framework we designed potentially problematic cases due
to cognitive bias for confirmation bias and decision fatigue. The final re-
sult consists of one prototype concerning confirmation bias triggered by non-
constructive feedback, and of two prototypes concerning decision fatigue to
avoid skipping code changes and incomplete feedback during code review.
Different techniques were used in each prototype while some of the tech-
niques showed positive and others negative results. Regarding the successful
techniques, feedback clearly indicates acceptance of the techniques among
the reviewers as well as the quantitative data confirming this very feedback.

Even though some techniques show bad results, the potential must not
be underestimated, as oftentimes the quality of a technique depends on the
visual layout. Therefore, it seems to make sense that further research fo-
cuses on the investigation of techniques from a design point of view so as to
achieve better results. Some of the proposed solutions were prototyped only
partially or not at all. Therefore those solutions could be part of a future
research, including scheduled reviews to avoid decision fatigue or warning
the reviewer when he/she requires too much time for the review. Many sug-
gestion came from user feedback. Most participants suggested to automate
and make the review task as easy as possible. For example, offering predic-
tions for comments based on often used phrases. Another suggestion was to
provide feedback depending on the context. For example, mention to stay
objective only when the tool detects overly subjective formulations. Fur-
thermore, the research could be extended to other cognitive biases as well
as other triggers and effects of the currently investigated biases. Finally, the
developed prototypes could be transformed into fully working tools that can
be applied in real working environment.

67

Bibliography

[1] Hal R. Arkes. Costs and benefits of judgment errors: Implications for
debiasing. Psychological Bulletin, 110(3):486–498, 1991. Place: US Pub-
lisher: American Psychological Association.

[2] Anderson S. Barroso, Jamille S. Madureira, Michel S. Soares, and
Rogerio PC do Nascimento. Influence of human personality in soft-
ware engineering-a systematic literature review. In International Con-
ference on Enterprise Information Systems, volume 2, pages 53–62.
SCITEPRESS, 2017.

[3] Roy F. Baumeister, Ellen Bratslavsky, Mark Muraven, and Dianne M.
Tice. Ego depletion: Is the active self a limited resource? Journal of
Personality and Social Psychology, 74(5):1252–1265, 1998. Place: US
Publisher: American Psychological Association.

[4] Roland Bee and Frances Bee. Constructive Feedback. CIPD Publishing,
1998. Google-Books-ID: fFLX0vssr7kC.

[5] Gul Calikli and Ayse Bener. Empirical analyses of the factors affect-
ing confirmation bias and the effects of confirmation bias on software
developer/tester performance. In Proceedings of the 6th International
Conference on Predictive Models in Software Engineering, PROMISE
’10, pages 1–11, New York, NY, USA, September 2010. Association for
Computing Machinery.

[6] Gul Calikli, Ayse Bener, and Berna Arslan. An analysis of the effects of
company culture, education and experience on confirmation bias levels of
software developers and testers. In 2010 ACM/IEEE 32nd International
Conference on Software Engineering, volume 2, pages 187–190, May
2010. ISSN: 1558-1225.

68

[7] Shai Danziger, Jonathan Levav, and Liora Avnaim-Pesso. Extraneous
factors in judicial decisions. Proceedings of the National Academy of
Sciences, 108(17):6889–6892, April 2011. Publisher: Proceedings of the
National Academy of Sciences.

[8] Klaas Andries de Graaf, Peng Liang, Antony Tang, and Hans van Vliet.
The impact of prior knowledge on searching in software documentation.
In Proceedings of the 2014 ACM symposium on Document engineering,
DocEng ’14, pages 189–198, New York, NY, USA, September 2014. As-
sociation for Computing Machinery.

[9] Fadi P. Deek and James A. M. McHugh. Cognitive and Social Psy-
chology in Collaboration. In Fadi P. Deek and James A. M. McHugh,
editors, Computer-Supported Collaboration: With Applications to Soft-
ware Development, pages 7–26. Springer US, Boston, MA, 2003.

[10] Michael E. Fagan. Advances in software inspections. IEEE Transac-
tions on Software Engineering, SE-12(7):744–751, July 1986. Conference
Name: IEEE Transactions on Software Engineering.

[11] Laura Faulkner. Beyond the five-user assumption: Benefits of increased
sample sizes in usability testing. Behavior Research Methods, Instru-
ments, & Computers, 35(3):379–383, August 2003.

[12] Baruch Fischoff. Debiasing. Technical report, DECISION RESEARCH
EUGENE OR, 1981.

[13] Marvin Fleischmann, Miglena Amirpur, Alexander Benlian, and
Thomas Hess. COGNITIVE BIASES IN INFORMATION SYSTEMS
RESEARCH: A SCIENTOMETRIC ANALYSIS. Tel Aviv, page 23,
2014.

[14] Martie G. Haselton, Daniel Nettle, and Damian R. Murray. The
Evolution of Cognitive Bias. In The Handbook of Evolutionary Psychol-
ogy, pages 1–20. John Wiley & Sons, Ltd, 2015. Section: 41 eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119125563.evpsych241.

[15] Magne Jørgensen and Efi Papatheocharous. Believing is Seeing: Confir-
mation Bias Studies in Software Engineering. In 2015 41st Euromicro
Conference on Software Engineering and Advanced Applications, pages
92–95, August 2015. ISSN: 2376-9505.

69

[16] Daniel Kahneman. Thinking, fast and slow. Macmillan, 2011.

[17] Joshua Klayman. Varieties of Confirmation Bias. In Jerome Busemeyer,
Reid Hastie, and Douglas L. Medin, editors, Psychology of Learning and
Motivation, volume 32, pages 385–418. Academic Press, January 1995.

[18] David Laibson. Golden Eggs and Hyperbolic Discounting*. The Quar-
terly Journal of Economics, 112(2):443–478, May 1997.

[19] Laura Marie Leventhal, Barbee Eve Teasley, and Diane Schertler
Rohlman. Analyses of factors related to positive test bias in software
testing. International Journal of Human-Computer Studies, 41(5):717–
749, November 1994.

[20] Trevor T. Moores and Jerry Cha-Jan Chang. Self-efficacy, overconfi-
dence, and the negative effect on subsequent performance: A field study.
Information & Management, 46(2):69–76, March 2009.

[21] Raymond R. Panko. Are we overconfident in our understanding of over-
confidence? Software Engineering Methods in Spreadsheets, pages 48–55,
2014. Publisher: Citeseer.

[22] Grant A Pignatiello, Richard J Martin, and Ronald L Hickman. Decision
fatigue: A conceptual analysis. Journal of Health Psychology, 25(1):123–
135, January 2020. Publisher: SAGE Publications Ltd.

[23] Austen Rainer and Sarah Beecham. A follow-up empirical evaluation
of evidence based software engineering by undergraduate students. NA,
June 2008. Publisher: BCS Learning & Development.

[24] P.N. Robillard, P. d’Astous, F. Detienne, and W. Visser. Measuring
cognitive activities in software engineering. In Proceedings of the 20th
International Conference on Software Engineering, pages 292–300, April
1998. ISSN: 0270-5257.

[25] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and
Alberto Bacchelli. Modern code review: a case study at google. In Pro-
ceedings of the 40th International Conference on Software Engineering:
Software Engineering in Practice, ICSE-SEIP ’18, pages 181–190, New
York, NY, USA, May 2018. Association for Computing Machinery.

70

[26] Iflaah Salman, Burak Turhan, and Sira Vegas. A controlled experiment
on time pressure and confirmation bias in functional software testing.
Empirical Software Engineering, 24(4):1727–1761, August 2019.

[27] Dr Martin Schrepp. User experience questionnaire handbook - ueq-
online.org, December 2019. Publication Title: User Experience Ques-
tionnaire (UEQ).

[28] Hans Henrik Sievertsen, Francesca Gino, and Marco Piovesan. Cognitive
fatigue influences students’ performance on standardized tests. Proceed-
ings of the National Academy of Sciences, 113(10):2621–2624, March
2016. Publisher: Proceedings of the National Academy of Sciences.

[29] Adam F. Stewart, Donna M. Ferriero, S. Andrew Josephson,
Daniel H. Lowenstein, Robert O. Messing, Jorge R. Oksenberg,
S. Claiborne Johnston, and Stephen L. Hauser. Fighting deci-
sion fatigue. Annals of Neurology, 71(1):A5–A15, 2012. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/ana.23531.

[30] Barbee E. Teasley, Laura Marie Leventhal, Clifford R. Mynatt, and Di-
ane S. Rohlman. Why software testing is sometimes ineffective: Two
applied studies of positive test strategy. Journal of Applied Psychol-
ogy, 79(1):142–155, 1994. Place: US Publisher: American Psychological
Association.

[31] Amos Tversky and Daniel Kahneman. Judgment under Uncertainty:
Heuristics and Biases. Science, 185(4157):1124–1131, September 1974.
Publisher: American Association for the Advancement of Science.

[32] Jeffrey B. Vancouver. The Depth of History and Explanation as Ben-
efit and Bane for Psychological Control Theories. Journal of Applied
Psychology, 90(1):38–52, 2005. Place: US Publisher: American Psycho-
logical Association.

[33] Ashley Waggoner Denton. Improving the Quality of Constructive Peer
Feedback. College Teaching, 66(1):22–23, January 2018. Publisher:
Routledge eprint: https://doi.org/10.1080/87567555.2017.1349075.

[34] P. C. Wason. On the Failure to Eliminate Hypotheses in a Conceptual
Task. Quarterly Journal of Experimental Psychology, 12(3):129–140,
July 1960. Publisher: SAGE Publications.

71

	Introduction
	State of the art
	Cognitive bias in psychology
	Cognitive biases in software engineering
	Software inspection and code reviews
	Software inspection process
	Modern code review

	Cognitive biases, their triggers and effects
	Overconfidence bias
	Confirmation bias
	Decision fatigue

	Constructive feedback

	Design
	Impact on code review
	Confirmation bias
	Decision fatigue

	Mitigating the impact on code review
	Scheduled reviews
	Warning when the needed time is exceeded
	Find an expert for unfamiliar topics
	The author guides the reviewer
	Help make a complete comment
	Advice to make constructive feedback
	Asking others for feedback about the review
	Encourage brainstorming and complete feedback

	Methodology
	User-centered design process
	Prototyping
	Usability test
	UEQ
	Development process

	Prototyping
	Base prototype
	Usability test
	Plan
	First iteration
	Second iteration

	User experience questionnaire
	Plan
	Results

	Discussion
	Confirmation bias
	Decision fatigue

	Conclusion

