
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE PROFESSIONAL FOCUS IN SOFTWARE
ENGINEERING

Linda in the fog

BÉVER, Maxime

Award date:
2022

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 06. May. 2024

https://researchportal.unamur.be/en/studentTheses/5b0c1b15-c3a1-4f86-87da-f73e3747c2be

University of Namur
Faculty of Computer Science

Academic year 2021–2022

Linda in the fog

Maxime Béver

Supervisor : Antonio Brogi, Stefano Forti

Promoter : (Signature for approval of the deposit - EAR art. 40)
Jean-Marie Jacquet

Thesis presented in partial fulfilment of the requirements for the degree of
Master in Computer Science

Acknowledgment

I would like to thank Antonio Brogi who invited me to come and write this thesis at the University
of Pisa. He was also very present during meetings in the search for a subject, first of all, and
then in the elaboration of this master thesis.

I would also like to thank Stefano Forti for his help and advice in writing the thesis.

I also wish to thank Lucas Embrechts in particular for his proofreading of the document and
his comments.

Finally, I thank my promoter Jean-marie jacquet for his comments during the progress of the
work and for his proofreading of the document.

3

Abstract

The amount of data sent to data centers is constantly increasing. Additionally, the number
of ‘Internet of Things’ sensors generating data is also increasing. To manage this data, the fog
computing paradigm has been invented. The aim of fog computing is to create a new layer of data
management before sending it to the cloud. Furthermore, and in addition to avoiding sending
too much data to the cloud, the fog layer will decrease the response time of requests that could
already be implemented within this new layer. For these requests to be efficient, the coordination
of the message is particularly important. Accordingly, a coordination language could be the
solution. In this work, the different criteria for implementing a coordination language in fog
computing are explained. These criteria concern security, scalability, performance, management
of low-resource devices, data placement policy and data persistency. A proof-of-concept of these
criteria is presented, and its development is explained. To prove the effectiveness of this proof-of-
concept, performance tests were performed, and different use cases applying the implementation
in various contexts are presented.

Keywords : fog computing, coordination language, edge computing, Linda, Rust

Résumé

La quantité de données envoyées aux datacenters est en constante augmentation. En outre, le
nombre de capteurs de l’"Internet of Things" générant des données augmente également. Pour
gérer ces données, le paradigme de fog computing a été inventé. L’objectif du fog computing
est de créer une nouvelle couche de gestion des données avant de les envoyer dans le cloud. En
outre, en plus d’éviter d’envoyer trop de données vers le cloud, la couche du fog computing dimin-
uera le temps de réponse des requêtes qui pourraient déjà être implémentées dans cette nouvelle
couche. Pour que ces requêtes soient efficaces, la coordination des messages est particulièrement
importante. En conséquence, un langage de coordination pourrait être la solution. Dans ce tra-
vail, les différents critères d’implémentation d’un langage de coordination dans le fog computing
sont expliqués. Ces critères concernent la sécurité, l’évolutivité, les performances, la gestion des
dispositifs ayant peu de ressources de calculs, la politique de placement des données et la per-
sistance des données. Une preuve de concept de ces critères est présentée, et son développement
est expliqué. Pour prouver l’efficacité de cette preuve de concept, des tests de performance ont
été effectués, et différents cas d’utilisation dans divers contextes sont présentés.

Mots-clés : fog computing, langage de coordination, edge computing, Linda, Rust

5

Contents

1 Introduction 1

1.1 Context . 1

1.2 Objective of the thesis . 1

1.3 Outline of the thesis . 2

2 State of the art 3

2.1 Introduction . 3

2.2 Linda coordination language . 3

2.2.1 Generative communication . 3

2.2.2 Linda . 4

2.2.3 Coordination language . 5

2.3 Fog computing continuum . 7

2.3.1 Fog computing paradigm . 8

2.3.2 Edge computing paradigm . 12

2.3.3 Future challenges of fog computing . 12

2.4 Coordination in the fog . 15

2.5 Concluding remarks . 16

3 Coordination language in the fog 17

3.1 Introduction . 17

3.2 Criteria for a tuple space implementation in the fog continuum 17

i

3.2.1 Usable on resource constrained devices . 17

3.2.2 Scalability to Large Infrastructure . 18

3.2.3 Data securities properties . 18

3.2.4 Time performance . 18

3.2.5 Data persistency . 19

3.2.6 Data placement policies . 19

3.3 Existing implementations . 19

3.3.1 pSpace . 19

3.3.2 Rustupolis . 23

3.4 Concluding remarks . 26

4 Implementation 27

4.1 Introduction . 27

4.2 Rust . 27

4.2.1 Advantages of Rust . 28

4.2.2 Explanation of the key mechanisms of Rust 28

4.2.3 Rust in the IoT devices . 32

4.3 Code of Rustupolis in details . 32

4.3.1 Tuple . 33

4.3.2 Tuple space - Store . 34

4.3.3 Match - Space . 34

4.3.4 Rustupolis in the fog computing . 35

4.4 Implementation of the server part of the library 35

4.4.1 Make the tuples servers available on the network and adding protocols . . 35

4.4.2 System of access right . 38

4.4.3 Encryption of communication . 41

4.5 Implementation of an interpreter for a language client 43

ii

4.5.1 LiF language . 43

4.5.2 Grammar of the language . 47

4.5.3 Syntax of the language . 48

4.5.4 Implementation of the language . 50

4.5.5 Implementation of the client part of the library 54

4.6 Performance test . 54

4.6.1 Performance on the Raspberry Pi . 54

4.6.2 Performance on Android . 55

4.6.3 Performance in time . 58

4.7 Concluding remarks . 58

5 Applications 61

5.1 Android Use case . 61

5.2 Traffic lights use case . 64

6 Conclusions 69

6.1 Summary of contributions . 69

6.2 Assessment of contributions . 70

6.3 Future work . 70

7 Appendices 79

7.1 Installation of the server and interpreter . 79

7.2 Grammar of LiF . 79

7.2.1 Parser Rules . 79

7.2.2 Lexer Rules . 81

iii

Chapter 1

Introduction

1.1 Context

Nowadays, an enormous amount of data is generated by Internet of Things (IoT) sensors and
sent to the cloud. This extensive data generation, along with the ever-growing cloud computing,
runs the risk to saturate the clouds with data. In addition to overloading the clouds, this also
creates a huge amount of bandwidth transmissions. To avoid this situation, the fog computing
paradigm was born. The aim of fog computing is to add a layer between the sensors and the data
center. This layer is often geographically closer to the sensors and therefore avoids exorbitant
bandwidth usage.

In the fog computing paradigm, numerous devices and/or sensors with limited resources
produce the data. This data is then sent to the new layer which will initially process the data
before sending it to the cloud. Therefore, communication between these different devices is
extremely important.

It is in this context that coordination languages can help fog computing manage the data
being sent into the fog as well as the error cases where a device is no longer available.

1.2 Objective of the thesis

The objective of this thesis is to identify the features that should be provided by a
coordination language targeting fog computing scenarios and to design, implement,
and assess a proof-of-concept (PoC) of such a language.

To that end, a secondary objective of this thesis is to define criteria for each feature for im-
plementing a coordination language in the fog continuum. Once these criteria are defined, an
implementation is developed that meets these criteria to create an effortless way to use a coor-
dination language in the fog. The performance of the PoC is assessed, and different applications
are written to illustrate where it can be used.

1

The criteria defined must allow the implementation to meet the various criteria that an
application using fog computing should have. Therefore, the aim is twofold: to create an im-
plementation that would retain (i) the advantages of fog computing and (ii) the advantages of
coordination languages. Naturally, however, by mixing these two paradigms, their respective dis-
advantages are also mixed, and thus, the implementation will also take these into consideration.

1.3 Outline of the thesis

Before looking at the criteria for the implementation, it was first necessary to determine why
using a coordination language in the cloud was a promising idea. To do this, a thorough review
of the literature concerning coordination languages was needed, in turn allowing us to determine
the main advantages of implementing a coordination language in fog computing. The next step
was to find the criteria for an ideal implementation in the fog continuum. For this purpose,
it was necessary to read the literature on fog computing to learn how exactly it works. Once
the criteria were established, an analysis of existing coordination language implementations was
conducted to determine the shortcomings of each. This also allowed us to determine if any of these
coordination languages were extensible by following the criteria. Thereafter, the development of
the implementation could begin. Once this was completed, performance tests were written, and
various applications designed for the implementation were developed.

The content of this thesis is organised as follows.

Chapter 2 describes the state of the art. It includes an introduction to coordination languages
as well as an explanation of what fog computing and edge computing are. Finally, the state
of the art and a review of different implementations of coordination languages tailored to
fog computing are provided.

Chapter 3 explains the different criteria necessary for implementing a coordination language in
fog computing. Two different implementations of a coordination language in fog computing,
JSpace and Rustupolis, are also described.

Chapter 4 describes the implementation and how it was developed. First, the Rust program-
ming language used to create the Proof-of-Concept (PoC) is explained. Then, the main
concepts of the language are explained and the code of the Rustupolis library is analysed.
This library is extended to create the PoC. Lastly, the implementation of the different
criteria are explained.

Chapter 5 describes two applications created from the PoC. The first describes an application
whereby the tuple space server will be installed on different devices such as a phone or
Raspberry Pi. The second application will present a use case where traffic lights are
connected and managed from different tuple spaces.

Chapter 6 describes the conclusion of the work and proposes reflexions for potential future
work. This chapter also presents an assessment of the contributions of the work presented
herein.

2

Chapter 2

State of the art

2.1 Introduction

To begin this document, the state of the art concerning the different topics of the problem is pre-
sented. It starts with a presentation of the literature on coordination languages. First, generative
communication is presented and thereafter one of the first coordination languages named Linda
is examined. As Linda has laid the foundations for several coordination languages, an analysis of
it is particularly relevant and interesting. The last part of the section on coordination languages
focuses on the languages born after Linda and explains their differences. Secondly, the state of
the art of the fog continuum is discussed. This part starts by introducing fog computing, then
presents edge computing, and thereafter explores the differences between these two paradigms.
Finally, the existing coordination languages for fog computing are reviewed, highlighting both
their advantages and disadvantages.

2.2 Linda coordination language

2.2.1 Generative communication

Before discussing the Linda programming language, the generative communication paradigm
must be introduced. Generally, the communication between two clients is done by the message
passing paradigm. This allows the transfer of messages directly between the two clients. This
paradigm is mainly used for a concurrent language program whereby multiple processes are
multiplexed on one machine, not distributed over many. Accordingly, processes need not execute
in wholly disjoint address spaces, and they may use shared variables or a generalisation of
conventional parameter passing such as the monitor call to communicate [1]. The paradigm
is represented in the following Figure 2.1. Client A sends a message or request to client B who
receives the message and processes it. Client B then sends a response back to client A and so
forth.

3

Figure 2.1: Message passing paradigm.

In distributed languages, the concurrent processes execute on separate machines and always
in disjoint address spaces. They may therefore communicate with each other only by sending
and receiving messages that are carried between address spaces by a runtime communication
system [1]. It is in this context that generative communication emerged and became the basis of
the distributed programming language called Linda.

2.2.2 Linda

Linda is a distributed coordination language that has been developed originally for the SBN
network computer [2]. Linda stood out from other distributed languages because the language
was fully distributed in space and time.

Another quality of the language is that it is more expressive than other languages, while
at the same time being simpler [1]. Linda allows the communication of tuples through a tuple
space. The tuples are the equivalent of the messages or the process that a client wants to send
to another client in the message passing paradigm. The tuples are ordered lists of typed data.
For example, the tuple ("foo", 562, 45.4) contains three fields. The tuple space, also known as
‘blackboard‘, is the environment which manages the tuples. The tuple space can be seen as a
collection of tuples. This communication model allows persistent broadcast communication and
is persistent because the tuple sent by client A does not depend on the client B. The tuple model
contrasts a normal communication channel whereby client A sends a message to a client B and if
client B is not available, client A’s message will be lost. In Linda, however, the tuples are sent to
the tuple space and stored within it. That also means that the tuple sent by client A is accessible
to all clients that have access to the tuple space. Thus, this type of communication is called
broadcast. According to [1], the tuple communication model is said to be generative because,
until it is explicitly withdrawn, the tuple generated by client A has an independent existence in
the tuple space.

To realise the different operations on the tuple space, Linda has three primitives. Thanks to
this small number of primitives, Linda offers an abstraction for accessing shared memory and a
simple communication interface. To retrieve a tuple in the tuple space, Linda uses the principle
of pattern matching.

• out(t) adds an occurrence of the tuple t to the tuple space.

• read(p) reads the pattern p and searches if there is a tuple that matches the pattern in the

4

tuple space. If there is no corresponding tuple, the operation stays blocked until a tuple
matching the pattern is added to the space. If the pattern matches, the tuple is sent back
without removing it from the tuple space.

• in(p) the operation is the same as read but removes one occurrence of the tuple matching
the pattern.

Linda also has another operation called eval that is used to spawn a process. This operation,
though included in the original Linda model, tends to be excluded from most other imple-
mentations in favour of more traditional process creation mechanisms, which is usually largely
influenced by the host implementation language [3].

Figure 2.2: Example of communication with Linda

Figure 2.2 illustrates an example of communication between three clients. In point 1, client
A adds a tuple to the tuple space. This tuple is added to the tuple space in point 2. Client B in
point 3 tries to read a tuple with the pattern of a tuple starting by "foo". The _ value functions
as a wild card, matching against any given value in the corresponding field of a tuple. The tuple
space finds a tuple matching this pattern and sends a copy of the tuple back to point 4. In point
5, client C asks to take out a tuple matching the pattern. The corresponding tuple is given back
to client C and is removed from the tuple space in point 6.

This means that Linda’s communication model permits:

• time uncoupling : a tuples’ lifetime is independent of the producer process’s lifetime,

• destination uncoupling : the creator of a tuple is not required to know the future use or the
destination of that tuple [4],

• space uncoupling : communicating objects need to know a single interface, i.e. the op-
erations over the tuple space [4]. This approach is also known as flow-of-objects and is
in opposition to the method invocation, which requires many interfaces for the operations
supplied by remote objects.

2.2.3 Coordination language

To create the best implementation of a tuple-based platform in fog/edge computing, the ex-
isting coordination language implementations have been studied. The following list contains
implementations of existing coordination languages:

5

• JavaSpaces [5]: JavaSpaces is one of the first developed implementations of tuple spaces.
A tuple is an instance of a Java class, and its fields are the public properties of the class.
This means that tuples are restricted to contain only objects and not primitive values [6].
However, the repository is now archived.

• GigaSpace [7]: GigaSpace is a commercial implementation of tuple spaces. It is an extension
of JavaSpaces. User applications should interact with the server to create and use their own
tuple space [6]. The primary areas where GigaSpace is applied are those concerned with
big data analytics. However, Gigaspace does not have a public repository for its project.

• Tupleware [3]: Tupleware is specifically designed for array-based applications. The array
is decomposed into several parts, and each of the parts can be processed in parallel. It
is aimed at developing a scalable distributed tuple space with good performances on a
computing cluster [3]. It also aims to provide simple programming facilities to deal with
both distributed and centralised tuple spaces. [6] The project repository is written in Java
and has not been updated for 12 years.

• MozartSpaces [8]: MozartSpaces is a Java implementation of the space-based approach.
MozartSpaces uses the XVSM language. MozartSpaces also provides transactional support
and a role-based access control model.

• TuCSoN [9]: TuCSoN is a coordination model adopting Linda as its core but extends
Linda in several ways, for instance by adopting nested tuples (expressed as first-order logic
terms), adding primitives, and replacing tuple spaces with tuple centers programmable in
the ReSpecT language.

• pSpace [10]: pSpace is a project between the Technical University of Denmark and the
University of Camerino. The goal of the project is to develop a support for program-
ming distributed applications with tuple spaces. The project is implemented in different
languages like Java, C#, Go, JavaScript, and Swift.

• TuSOW [11]: As discussed in the state-of-the-art section 2.4, the project is built in the
fog and has deficiencies concerning security. Another point of concern is that the current
implementation of the project is written in Kotlin and in Java.

• LighTS [12]: LighTS provides a flexible framework that makes it easy to extend the tuple
space in many ways, including changing the back-end implementation and redefining the
matching semantics.

• Klaim / X-klaim [13] [4]: Kernel Language for Agents Interaction and Mobility is an exten-
sion of Linda. The aim of Klaim is focussed on process mobility, meaning that processes, as
any data, can be moved from one locality to another [6]. The processes can be executed in
any localities. The implementation of Klaim is called Klava and is written in Java. Klaim
supports multiple tuple spaces and operates with explicit localities where processes and
tuples are allocated. Thanks to this system of localities, a system of access controls exists
in Klaim.

• Rustupolis [14]: As its name suggests, Rustupolis is an implementation of Linda written in
the language Rust. It implements the primitives of Linda and the pattern matching that
Linda uses. The implementation manages concurrent access to tuples and is multithreaded.

6

2.3 Fog computing continuum

The Internet of things (IoT) concept was created in 1999 and was originally intended for factories
and production lines [15]. The concept was then exported to other areas such as transport, health,
and housing. Accordingly, being able to automate systems through sensors that measure data
saves time and often money, as the tasks are no longer managed by humans [16].

According to Cisco’s annual Internet report for the period 2018-2023 [17], the number of
machine-to-machine (M2M) connections from IoT devices is expected to increase by 19% an-
nually, resulting in 14.7 billion connections by the year 2023. This means that the number of
IoT devices and applications is going to become more immense compared to today, consequently
generating a problematic amount of data sent to the cloud. In fact, in the current situation, a
large proportion of generated data is sent to the cloud, resulting in a high latency. This slowness
makes it impossible to design applications that require fast response times.

Researchers have developed new paradigms to avoid sending this data to the cloud and to
process it closer to the source. These paradigms extend the cloud and enable IoT applications to
be deployed in the proximity of sensors, adding new benefits like fast response times and better
security and privacy [18]. The two paradigms are fog computing and edge computing. In the
rest of this chapter, each paradigm, and the difference between them is explained.

Figure 2.3: Schematic diagram of fog computing [19]

Figure 2.3 shows the different layers that can be found in the fog computing continuum.
The first layer (EDGE) holds all IOT sensors and devices that produce data. The second layer

7

(FOG) consists of the fog nodes that serve as an intermediate layer between the cloud and the
edge devices layer. The third layer (CLOUD) represents the cloud and the various data centers
in which the data is stored.

2.3.1 Fog computing paradigm

According to [20], the definition of fog computing is: "Fog computing is a geographically dis-
tributed computing architecture with a resource pool consisting of one or more ubiquitously con-
nected heterogeneous devices (including edge devices) at the edge of the network and is not exclu-
sively seamlessly backed by cloud services, to collaboratively provide elastic computation, storage,
and communication (and many other new services and tasks) in isolated environments to a large
scale of clients in proximity"

The main goal of the fog computing paradigms are to bring the computational resources
(i.e., storage, networking, and processing) closer to the edge of the network. Consequently, this
reduces the reliance on cloud-based environments while simultaneously decreasing latency and
network congestion [18]. Furthermore, it enforces privacy by processing the data "near" the user.

The nodes in the fog computing layer are servers that use their resources to make a first
treatment of the generated data. The process that needs a large amount of computing power
is left to the cloud. Actually, the fog node provides limited computing resources as opposed to
the cloud where resources are unlimited. The fact that the data is first processed in the fog also
means that raw data is not sent to the cloud. This can therefore also protect the privacy of users.
For example, a common feature of applications using the cloud is to upload photos or videos to
the cloud. One could imagine a fog node that would first process this content by optimising the
resolution for example [21].

Thus, the use of fog nodes allows us to overcome limitations of the cloud paradigm [18]:

• Latency constraints: The proximity of the fog node to the IoT device allows for very
low latency. This is particularly important in the development of real time applications,
whereby real-time decision-making is not possible when analytics are performed on a distant
cloud. [22]

• Network bandwidth constraints: Nowadays, the increasing quantity of data generated at
the edge layer creates a bottleneck in the speed of data transport. For example, a Boeing
787 generates about five Gigabytes of data every second [23], but the bandwidth between
the plane and the satellite or base station on the ground is not large enough for data
transmission [21]. The first process that the fog node performs on the data avoids sending
raw data to the cloud. This reduces the amount of data sent to the cloud and means that
most of the data produced will never be transmitted to the cloud. However, a balance must
be found between the amount of data sent to the cloud and the data deleted by the first
processing performed by the nodes.

• Resource constraint devices: As the fog nodes are closer to the device, the node can perform
computational tasks that were processed by the edge device. The goal of this is to reduce
energy consumption and life-cycle costs by discharging some computation parts of the
application from such restricted devices to nearby fog nodes [22].

• Increased availability : The fog nodes do not need connectivity to the cloud to process the

8

data. Consequently, the application is less dependent on the cloud and more available as
it can be replaced more easily than the cloud. This means that an application using fog
computing nodes must be able to continue working when a node is no longer available in
the network. This also depends on how the node network handles the persistence of data
and services.

• Better security and privacy.: In the fog computing paradigm, the fog node can process the
personal data of the users and avoids sending this data to the cloud. The data are treated
locally, and no data is stored on a remote cloud.

• Energy consumption of the data center : The energy consumption of data centers is con-
stantly increasing due to the number of applications using the cloud. One way to reduce
this consumption is to perform trivial tasks on edge nodes without significant energy im-
plications. [22]

• Collaboration between edge: In the current cloud paradigm, the stakeholders that send their
data to the cloud rarely share it with each other due to privacy concerns and the difficulty
of transporting data from one cloud to another. As these are often distant, the cost of
data transport is too high. Thus, the collaboration between stakeholders is blocked. The
node in fog computing acts as a small data center which can be part of the concept of
collaborative edge. The concept is therefore to connect the edge of different geographically
‘close‘ stakeholders with the aim of sharing data. One of the promising future applications
is connected to the health sectors, whereby the edge of a hospital can share data with
doctors, pharmacies, or even insurance companies [21].

One of the most popular examples of fog computing is the traffic light system in a city
which require synchronisation with low latency to avoid traffic congestion [18]. To illustrate this
example, Figure 2.4 explains the infrastructure.

The device layer is the layer where the sensors are. These sensors generate data about the
numbers of cars that are waiting at the red light, the number of cars that cross the intersection,
the number of pedestrians that are waiting to cross the road, etc. All the data are sent to fog
layer 1, which processes the data and sends it to fog layer 2. Additionally, fog layer 1 has the
task of managing the lights of the intersection.

Fog layer 2 receives the data from various fog layer 1s. The task of fog layer 2 is to make
another filtering process on the data before sending it to fog layer 3. Additionally, fog layer 2
has the task of coordinating the different intersections of the districts.

Fog layer 3 manages all the districts of the city, receives the data of all the fog layer 2s of
the city, and then processes this data before sending it to the cloud. This example uses three
different layers of computing in the aim of reducing the latency.

In [24], the authors develop a PoC of a network of wearable cognitive assistants and, proved
that the response time when using their application with cloudlet was superior to when using the
cloud. In [25], researchers built a platform to run a face recognition application and, by moving
computation from cloud to the edge, the response time was reduced from 900 to 169 ms.

Another popular example of fog computing applications is the case of smart home systems.
In a smart home, various sensors monitor every aspect of the home, for example the room
temperature, home security, shutters, and other objects that are connected to the network. In

9

this scenario, a server (or fog node) is managing all the sensors. Thus, one way of building the
server is to use EgdeOS [26] which is an operating system specialised for the IOT. The EdgeOS
allows for the easy management of sensors in the home and the data can be processed locally.

10

Figure 2.4: Example of the fog computing

11

2.3.2 Edge computing paradigm

Like fog computing, edge computing aims to bring computing resources closer to the edge of the
network [18]. The main difference between the two paradigms is that the edge computing moves
some computational resources to the resource constraint devices located at the logical extremes
of a network [18]. The difference with the fog computing paradigm is the location in which the
data is processed [18]. In the edge computing paradigm, the ‘things‘ are not only data consumers,
but also function as data producers [21]. The other difference between the two paradigms is the
available computing power, which is less in edge computing as compared to fog computing. The
edge computing paradigm will therefore be preferred for first elementary processing.

The smartphone of a user could become a device that serves the role of a server for an IoT
device (Figure 2.5). Some part of an IoT application is deployed directly on the device on the
edge of the network. Nodes are not just mobile phones. They can also be desktops, laptops,
tablets, or any other device capable of processing data. Resultant, edge computing provides the
opportunity to reduce latency and bandwidth waste even more than fog computing.

Figure 2.5: Example of edge computing [27]

An example of edge computing in practice is presented in article [18]. The authors present a
solution whereby a person is wearing an ECG sensor. The sensor is connected to the smartphone
of the person via Bluetooth. The sensor sends data to the smartphone which, after conducting
initial processing, sends the filtered data to the cloud. The interesting point of this example is
that the smartphone can react in real time if it detects that an unexpected event occurs. In this
case, the smartphone could send a notification to the emergency services.

2.3.3 Future challenges of fog computing

2.3.3.1 Resource Management

Nodes, whether in fog computing or edge computing, are resource-constrained devices. This
means that to make the paradigms effective, new resource management methods need to be
implemented. With new techniques to optimise the use of resources, this will also lead to im-
proved data privacy and better performance. To achieve this task, a way of estimating the
resources needed to perform a particular task is important to provide the best optimisation of
the computing resource. Conversely, the resources already available in the network of nodes is
also something that needs to be computed. This can be represented by the hardware capabilities
of each node. The mechanism of estimation of the resource available must be automatic and can
not be managed manually [22].

Another goal of the management of resources is the allocation of processes to the nodes. To

12

make the allocation of processes in the different edge devices, previous data is used. In fact, the
computational resource of the device at the edge of the network and the resources needed by an
application are the two most principal factors needed to optimise the allocation. This part of the
allocation of processes must also deal with the reallocation of a process if a node is not available
or if the nodes fail to do the task. The main aim of resource management is to optimise the
allocation of resources [18]. This optimisation also depends on the metrics that the application
wants to optimise. These metrics could be the latency, the bandwidth, the energy, or the cost
[21].

Another way to compute a huge task that requires an abundance of computing resources is
to partition the task between different nodes. In [28], the authors use edge computing to create
their aggregate process. The principal goal of the aggregate process is to divide the computation
part across different devices at the edge. However, the main challenge is to synchronise the
devices. The authors explain how to create a network of different devices, with the concept of
one leader node which sends instructions to its neighbouring node. The neighbour then has the
objective to broadcast that instruction to its next neighbour and so on.

One of the most important points in the allocation of tasks in a node is to not overload nodes
with computationally intensive workloads. The partitioning of a task can be achieved across
geographical space or through time. For instance, to avoid the overloading of the nodes, the
tasks can be scheduled according to the peak usage times of the nodes [22].

As seen before, the fog and edge computing paradigms inherit the problems of the cloud.
However, there are also problems linked to the IoT devices themselves. One of the main problems
is the incredibly vast number of existing protocols and technologies that exist. Though, the IoT
field is increasing its efforts to converge on a common framework. Among the most widely used
communication protocols is Message Queue Telemetry Transport (MQTT) [29], a lightweight
messaging protocol based on the publish/subscribe paradigm [30].

2.3.3.2 Security and privacy

As mentioned before, fog computing provides many advantages when creating a powerful network.
To benefit from these advantages, the security and privacy of the users must be guaranteed. In
fact, the fog computing paradigms are often used to complete a cloud computing application.
Thus, the security problems of the cloud are included within these paradigms. The other problem
of the fog computing paradigms is that security breaches of IoT devices and less powerful servers
are also present. The challenge of the fog computing paradigms is thus to deal with these security
problems, which can be divided into distinct categories: confidentiality, integrity, and availability
(a.k.a. CIA) [31].

The first point is confidentiality. Confidentiality means that the user knows who has access
to their data and only authorised people have access to it. The best way to ensure that data are
safe is to process the data of users locally and avoid sending it to the cloud. If the data must
be processed elsewhere, a fog computing application can implement an authentication system
coupled with a system of access rights. The complication of the authentication system is that the
nodes can join or leave the network without restriction. This also means that the authentication
must be speedy to avoid wasting as little time as possible. The additional layer that fog and edge
computing add brings a new layer of hardware onto the network. However, with the addition of
new hardware comes novel risks to data confidentiality. Users should ask themselves the question:

13

Can the organisations that own these devices as well as those that will employ these devices be
trusted? Another way to ensure the confidentiality of data is to use the nodes layer to remove
personal information from the data of the user.

The second point is integrity. Integrity of the data means that the system must ensure that
the data are not modified or deteriorated when travelling on the network. To avoid integrity
problems, the application must use a secured network or process to ensure that the data are not
corrupted in transit.

The third point is availability. This point ensures that the nodes where the data are stored
or processed are available when needed. In fog computing and edge computing, the developers
have no ways to control the nodes as they do in the cloud paradigm. A system to ensure the
persistency of data must be developed.

2.3.3.3 Programmability

One of the advantages of the cloud paradigm is that it is a homogeneous platform and developers
only need to develop their application in one programming language. In the case of fog and edge
computing, the nodes are heterogeneous platforms and by consequence, the runtime of nodes
differs from each other. The developer will face these problems when developing an application
in the edge [21].

Another problem in the development of applications in fog computing is the naming of the
nodes. In fact, the traditional mechanism of the domain name system (DNS) is not flexible to
serve the dynamic edge network. Most of the nodes in edge computing could be highly mobile
and resource constrained. Thus, the naming scheme for edge computing needs to consider the
mobility of IoT devices, highly dynamic networks, privacy, and security protection [21].

The number of different IoT devices that can send data to a node is also problematic given
that each device uses its own format for data. For example, some sensors just return one type
of data, while others return data in JSON, XML, etc. Another important aspect regarding the
transfer of data is to decide in which level of abstraction the data is filtered. If too much raw
data is filtered out, some applications or services could not work as intended. Thus, the challenge
for the fog and edge paradigms is to find a good balance when abstracting the data.

When implementing an application in fog computing, other criteria must be considered. The
first criterion is the management of the differentiation of the service; a critical service must be
treated with priority as compared to less critical service. The second criterion is the mechanism
to manage the addition or removal of nodes within the network; the developers must manage
how to easily add, remove, or replace a node. The third criterion is to manage how the crash
of a node is coped with by the system; the user must be alerted if a device or a node does not
work or does not respond. However, the system can manage the third criterion with a series of
diagnostic and failure detections. The entire system cannot cease to function if only one node
has a problem. The developer can also implement a data placement policy system. The user
must choose where their data is stored, and which third party application has access to it.

14

2.4 Coordination in the fog

There are a multitude of advantages to applying a coordination language like Linda in fog or
edge computing. The first advantage is to provide a heterogeneous layer with simple operations.
Internet of Things devices can send their data to different tuple spaces. To put data in a tuple
space, the device simply has to send an out request with the data wrapped in a tuple. To get
access to that data, a client must use the in or the read operation. The language is therefore
simple to understand and easy to access.

Clients do not need to know the data structure before performing an operation in the tuple
space. They should just perform an in or read operation on the tuple space with the wildcard
symbol (_). The wildcard symbol tells the pattern matching that any value can be found at
that point in the tuple. The client will then receive a tuple which contains the data previously
entered by a device in the tuple space.

Another advantage to using a coordination language in fog or edge computing is the persistent
broadcast. The time, destination, and space uncoupling allows a device to be disconnected from
the network and to reconnect to it. It also offers a robustness against connectivity issues and
faulty devices. The tuple system allows requests to be coordinated in a very dynamic network.
In this section, two pieces of work combining the fog continuum and the Linda coordination
language are presented.

In their article "TuSoW: Tuple Spaces for Edge Computing" [11], the authors present a
model called TuSoW (Tuple space over the web) to bring tuple-based coordination to the edge
and to support interaction among heterogeneous devices without requiring the mediation of the
cloud [11]. As seen before, the heterogeneity of the device in the edge is a problem for fog and
edge computing. In the cloud computing paradigm, this heterogeneity is hidden by the Cloud
Application Programming Interface (API). To bring this homogeneity to fog or edge computing,
the Linda coordination language is used. The language is used to manage the interactions among
devices and services in the edge. The other aim of the author’s project was to allow developers
to free themselves from the complexities inherent in low-level networks and focus on how the
many participants in a distributed application should interact.

A TuSoW system is composed of several services and clients. Each service wraps a number
of named tuple spaces, which are modelled as collection resources. Each service is named with a
uniform resource identifier (URI) including the protocol of the service, the name of the service,
and the name of the tuple space. The clients are the entities who need the tuple space. Clients
may communicate with services and interact through tuple spaces. To communicate with the
tuple space, the client has a set of remote API geared toward different settings, including Hy-
pertext Transfer Protocol (HTTP), WebSockets, gRPC Remote Procedure Calls (gRPC), and
Message Queue Telemetry Transport (MQTT) [11].

To be considered as a system that can be used in the fog or edge, Tusow still needs to be
extended. More specifically, Tusow has no authentication system, no access control system, and
no system of data persistency.

In [30], the authors implement a system with the Linda coordination language for fog comput-
ing. They present their architecture for the prototype of a fog computing “content island”. This
prototype interconnects groups of IoT devices to interchange data, processing among themselves

15

and with other content islands. To exchange information between entities, their architecture
uses the publish/subscribe paradigm, allowing for the easy use of the communication protocols
MQTT [29], a lightweight messaging protocol based on the same paradigm. The authors consider
that a MQTT message can represent a tuple, and they implement Linda’s primitives accordingly.
The authors then compare their solution on different installations and get satisfactory perfor-
mance results. However, a drawback of the article is that the authors do not mention and discuss
communication security or data access control systems.

2.5 Concluding remarks

This chapter first explained what coordination languages are. These come from the generative
communication paradigm. The Linda language is one of the best-known coordination languages
and has had many extensions. The advantages of Linda such as time, space, and destination
uncoupling have been presented. In the rest of this thesis, these advantages will be used in fog
computing.

The differences between fog and edge computing has been explained, with the main difference
being the location of the device performing the processing. Thereafter, various future challenges
of fog computing were explained. In the rest of this thesis, these challenges will be highlighted
in an attempt to solve them with coordination languages.

16

Chapter 3

Coordination language in the fog

3.1 Introduction

This chapter contains the bulk of the work. Here, the different tasks are explained. Then,
the different criteria needed to have a coordination language implementation in fog computing
are explained. Next, details are provided on the analysis of implementations called pSpace and
Rustupolis. The choice of library used to extend these implementations to this work is then
explained, and a justification is provided as to the reason why the Rust programming language
was used. The characteristics and strengths of Rust are explained. Thereafter, a description of
the implementation of the tuple server is given. The criteria and the ways to apply them within
the implementation are detailed. The next part focuses on the second implementation, which
is a language to communicate with this tuple server. For this language, a Rust interpreter has
been developed. Finally, the unimplemented criteria are discussed and ideas are given for their
implementation.

3.2 Criteria for a tuple space implementation in the fog con-
tinuum

Once the advantages of the tuple-based coordination language have been proved, the aim is to
define how to implement that language in fog and edge computing. Actually, an implementa-
tion of a coordination language already exists, but we must define whether they fit within the
constraints of fog and edge computing. In this section, six criteria are explained to write an
implementation that works in fog and edge computing.

3.2.1 Usable on resource constrained devices

Compared to the cloud infrastructure, the nodes in a fog computing application are often less-
powerful devices such as a laptop or Raspberry Pi. The implementation must therefore be
computationally ‘lightweight’. The definition of lightweight means that the system should use
as little ram memory and processor time as possible. To make a lightweight implementation,

17

the choice of programming language is consequently very crucial. The language needs to al-
low building lightweight software and must therefore allow for the optimisation of the resource
allocation.

3.2.2 Scalability to Large Infrastructure

The implementation should allow the construction of a scalable system. In fog computing,
new devices can be added at any time, whether it’s to write or to get access to data. The
implementation should allow these two steps to be done with simplicity. That also means that
the implementations must be capable of managing multiple communication protocols.

The number of clients that make a request to a tuple space is something that the implementa-
tion must handle. A mechanism of concurrent management must be implemented. The requests
of the different clients that try to access a tuple space must be stored in a queue and processed
sequentially.

3.2.3 Data securities properties

The implementation must allow the construction of a system that gives access rights to tuples
and ensures their confidentiality. A system composed of fog and edge devices must satisfy the
three characteristics of the CIA model (confidentiality, integrity, and availability). In a dynamic
IoT network where devices can join or leave the network without any restrictions, a connectivity
optimisation mechanism must be implemented. This mechanism must ensure that security is
maintained by authenticating a fog or edge node. However, it is difficult to find a mechanism
that combines security and performance on resource constrained devices. If the security level
is too high and requires strong encryption of the data, the devices may be slowed down or
even bottlenecked. On the other hand, a lower security level allows for better performance but
also exposes the tuples space to security breaches. Therefore, the right balance must be found
between security and performance. This authentication added to the mechanism of access right
must manage the confidentiality of the users’ personal data.

The implementation must be able to manage the movement of data but also to restrict it so
that data is, for example, only available in the tuple server and not in the cloud. Personal data
is considered protected if the user has the power to decide where data should be processed. As
a rule, if the data is processed locally, then the chances of intercepting the data by a malicious
attacker are close to zero. This mechanism concerns integrity. However, if data is to be
transported over networks from one server to another, then a network security mechanism must
be put in place to prevent the data from being corrupted. This corruption can be due to a
poor-quality network, but also to an attacker who would like to modify it. The third point,
availability of the data, will be developed further in the data persistency part.

3.2.4 Time performance

The performance time includes the latency between the sensor and the tuple server. Fog com-
puting aims to support the IoT through very low latency, very fast data processing, and highly
efficient resource utilisation. The implementation must take this into account, even though the
performance time depends on the geographical position between the server and the client. It
is also the performance in terms of time taken when a device is disconnected and needs to be

18

reconnected. However, operating the network edge requires discovery mechanisms to find nodes
and add them to the network. The performance in terms of time also includes the time needed
to perform pattern matching to recover the tuple.

3.2.5 Data persistency

The implementation must offer availability and persistence of data. In a network where nodes
are less powerful devices and the risk of device crashes is higher, ways to keep the user’s data
available must be put in place. This criterion includes the possibility to manage the disconnection
of the server containing the tuples. The implementation might support replication of tuple spaces
among several machines.

3.2.6 Data placement policies

The implementation must allow specifying and enforcement policies on where tuples can or
cannot be stored. The implementation might, for example, have a system to avoid data being
stored out of a domain’s name or across of a number of selected devices. The owner of the data
should be able to decide where the data is stored, and which third party software has access to
it.

3.3 Existing implementations

From the list of implementations see section 2.2.3, two languages were selected for analysis
according to the above-mentioned criteria. These two language implementations were selected
according to the date of the last updates to the repository, the availability of the code and
documentation, as well as the ease of use of the code. Accordingly, the goal here is to find an
implementation that could be extended to meet the above-mentioned criteria.

3.3.1 pSpace

As already presented in the section on the state of the art 2.1, pSpace is a project between several
universities. It aims to provide a simple, yet powerful support for distributed programming [10].

3.3.1.1 pSpace primitive

pSpaces [10] use primitives inspired by the Linda language.

• put(T) adds an occurrence of the tuple t to the tuple space.

• get(T) takes the tuple t from the tuple space. If the tuple is not present, the execution is
stopped until the right tuple is added to the tuple space.

• getp(T) is the non-blocking version of the get primitive. If the tuple is non-present, the
primitives send a null object.

• getAll(T) retrieves all tuples matching a template and removes them from the space.

19

• query(T) checks if the tuple t is in the tuple space. If the tuple is not present, the execution
is stopped until the right tuple is added to the tuple space.

• queryp(T) is the non-blocking version of the query primitive. If the tuple is not present,
the primitives send a null object.

• queryAll(T) retrieves all tuples matching a template.

3.3.1.2 pSpace types of tuples

When creating a space, pSpace offers the possibility to choose how the tuple space will manage
the behaviour of retrieving a tuple for a query. Here is the list of the several types of tuples:

• SequentialSpace returns the oldest tuple that matches with the template.

• QueueSpace returns the oldest tuple in the space if the oldest tuple matches with the
template, otherwise it returns null.

• StackSpace returns the newest tuple in the space if the newest tuple matches with the
template, otherwise it returns null.

• PileSpace returns the newest tuple that matches with the template.

• RandomSpace randomly returns a tuple that matches with the template.

Taking into account the aforementioned criteria and to determine if pSpace is usable in fog
computing, the analysis was based on the Java version of pSpace called jSpace.

3.3.1.3 jSpace’s usability on resource constrained devices

pSpace, and its Java implementation, called jSpace create Transmission Control Protocol (TCP)
or User Datagram Protocol (UDP) servers. Java’s implementation uses Java 1.8 and Maven to
manage the dependencies. The Java version of the project is therefore more interesting for devices
that contain the JVM of the language and may be limited for devices with limited resources.

3.3.1.4 Scalability in jSpace

To add a client that wants to write or to read in a tuple space, it is surprisingly easy. The client
just needs to have the URI address of the server and then they could create a connection to it.
Once the client is connected, they can call the primitives on the selected tuple space. In this
part, security is not mentioned, however, this point will be discussed in later sections.

1 RemoteSpace chat = new RemoteSpace("tcp://chathost:31415/room1?keep")
2 chat.put("Alice","Hi!")

Another point of the scalability of an application is the ease at which a node can be added
that will hold one or multiple tuple spaces. It is also remarkably easy to create this node with
jSpace. The first step is to create a repository on the device, then the tuple spaces must be
created in this repository. Thereafter, to make the tuples available on the network, a gate must

20

be added to the repository. When the gate is created, multiple protocols can be chosen and the
desired address and port must also be indicated.

1 SpaceRepository chatRepository = new SpaceRepository();
2 chatRepository.Add("room1",New SequentialSpace());
3 chatRepository.Add("room2",New SequentialSpace());
4 chatRepository.addGate("tcp://localhost:31415/?keep");

The main point to improve the scalability of jSpace is the number of protocols implemented.
Indeed, now only the TCP and UDP protocols are implemented. Therefore, one way of improving
jSpace would be to add new protocols such as Bluetooth or TLS.

3.3.1.5 Security in jSpace

As mentioned previously, the security criteria could be divided in three points: confidentiality,
integrity, and availability. For each point, what exists in jSpace will be discussed.

• Confidentiality : In the current implementation of jSpace, no system of authentication or
rights access is implemented in the code of the master branch of the project’s reposi-
tory. However, in the documentation, the authors explain a system of permission where
a client could be permitted or rejected to use specific primitives on specific tuples. This
system started to be developed but was never deployed on the main branch of the project’s
repository. To maintain the confidentiality of the data, the best way with the current
implementation is to use the multiple tuple space and the system of gates. Indeed, it is
relatively easy to create a gate which only has access to a certain tuple space in the same
repository. The Figure 3.1 explains the idea in more detail.

• Integrity : At the moment, there is no way to secure communication in jSpace. To ensure
data integrity, more secure protocols should be implemented in jSpace.

• Availability : The current implementation of jSpace does not implement any mechanism to
keep the system available.

A certain number of improvements can be added to the jSpace implementation to improve
the security of the data in the tuple space. The first thing to add is a system of access rights
to the tuple. The basic system described by the authors could be implemented or another more
complex system cloud also be designed. To support this system of permission or rights access,
a system of tokens could additionally be implemented. The other security problematic is the
persistency of the data, but this subject will later be discussed in a dedicated point. To keep the
integrity of the data, the use of the TLS protocol could be implemented.

21

Figure 3.1: The system of gates

3.3.1.6 Performance in jSpace

As seen before, performance relies on two important points: the performance time between the
sensors and the tuples, and the performance time to retrieve a tuple in the space. Regarding the
first point, jSpace implements the TCP and UDP protocols to transport the data between the
various parts of the application. According to the needs of an application, these two protocols
must be sufficiently efficient. The distance between the sensors and the tuple server plays a
significant role in measuring this performance.

The second point concerns how the implementation manages pattern matching. Below is the
code to add a tuple in a tuple space and to retrieve it after.

1 Tuple tupleA = new Tuple("milk", 1); //Create a new object tuple
2 space.put(tuple) //Add the tuple in a space
3

4 Object[] tuple = fridge.queryp(new ActualField("milk"), new FormalField(
↪→ Integer.class)); //Retrieve the tuple that has "milk" as first terme

5

6 if (tuple != null) {
7 int numberOfBottles = (int)tuple[1];
8 }

To find the right tuple, the process that is going to check the template is relatively simple.

22

Depending on the type of space, the process loops on every tuple in the space until it finds a
tuple that corresponds to the template. If the type of space is a sequentialSpace, the process
starts at the head of the list of tuples in the space. If the process is a PileSpace, the process
starts at the end of the list.

To improve the first point of performance in a fog computing application, more protocols can
be added. To improve the process of pattern matching that will be slow if there is a large number
of tuples in the space, a new type of space could be added. This new type of space could have,
for example, a process to sort the tuples when they are added to the space. This could allow
speedier matching with the template.

3.3.1.7 Data persistency in jSpace

There is no mechanism of data persistency implemented in jSpace. If the device that contains
the tuple space server is disconnected, the data are lost.

The aim for those criteria will be to add a mechanism to avoid any loss of data. A mechanism
of replication of the tuple in different devices could be the solution to mitigate this problem.

3.3.1.8 Data placement policies in jSpace

As seen in the security point, the data can be stored in different tuples and access to these tuples
can be managed by gates. Currently, these policies can only be managed on a specific device and
not, for example, on several devices in a same domain.

One way to improve the data placement policies is to make it possible to write rules for
multiple devices in a same domain. The system of data placement policies must also be more
explicit.

3.3.1.9 Summary of the extensions to be added to jSpace

The extensions are classified by importance:

1. Adding a system of access rights to the tuples.

2. Adding a mechanism of data persistency.

3. Adding a mechanism of data placement policies.

4. Improving the matching mechanism with a more efficient one.

5. Adding additional protocols like TLS and/or Bluetooth.

3.3.2 Rustupolis

To validate the first requirement that the implementation work for low-powered devices, tuple-
based implementations written in Rust have become a solution. In fact, the Rust programming
language allows writing optimised programs for embedded systems. This comes from its memory

23

management system which must be managed by the developer and, unlike languages like Java,
is not managed by a garbage collector. On the crates.io website, which contains all the libraries
written in Rust, there are two libraries with the ‘tuple-space’ tag.

The first library called ‘rs-object-space’ [32] has not been updated for four years. When
evaluating the examples given within the implementation, the build was not successful and
deprecated function error messages appeared.

The second library called ‘Rustupolis’ [33] has not been updated for two years, but the tests
written in the implementation succeeded. The build of the implementation examples was also
successful. For the moment, the Rustupolis library offers three functions:

• Local tuple space for storing tuples and retrieving them via pattern matching.

• Local tuple space with multithreaded and concurrent access.

• Interactive command line interface for creating tuple spaces and pushing or pulling tuples.

One of the objectives of the current project was to have a distributed platform on the network.
This has not been developed but the project offers a good basis for the management of primitives
and tuples spaces. Below is the list of primitives offered by Rustupolis:

• out (t) adds an occurrence of the tuple t to the tuple space.

• rd(t) checks if the tuple t is in the tuple space.

• in (t) takes the tuple t from the tuple space.

3.3.2.1 Rustupolis’ usability on resource constrained devices

One of the important points of the library is that it is written in Rust. Rust is a programming
language that seems to be one of the best solutions to write programs for the IoT [34]. Rust
ensures compile time memory safety and offers a rich standard library with functional elements.
Memory safety and high performance are one of the main reasons why Rust applies semantics at
compile time. Rust is a full memory safe language, even across threads. Rust also prevents access
to unallocated, uninitialised, freed memory along with pointer addresses beyond data boundaries
[34]. Rust is open-source and hosted on GitHub.

3.3.2.2 Scalability in Rustupolis

The current version of Rustupolis only works locally and is not available on a network. This
scalability feature is therefore not present in the library.

For Rustupolis to be considered as scalable, the tuple spaces should be available on the
network so that clients can easily connect to it. These clients should have the possibility to
connect with different communication protocols such as TCP, UDP, and/or Bluetooth. Moreover,
installing a tuple space and connecting it to other tuple spaces on the network should be easy.
One other element that could be implemented to extend Rustupolis is the addition of a way to
manage concurrent requests of a tuple from multiple clients.

24

3.3.2.3 Security in Rustupolis

Since Rustupolis works only locally, no security mechanisms have been put in place in the current
implementation.

To make Rustupolis safe on the network, a security system still needs to be developed. An
authentication system must be set up to be able to manage the permission of the different tuple
spaces through an access control system. This access control system must also be developed.
These two additions will facilitate gains in confidentiality and integrity. As mentioned before,
the addition of different secure communication protocols is also a way to gain integrity. The
problem with security is the persistency and the availability of the data, but this subject will be
discussed later in a dedicated point.

3.3.2.4 Performance in Rustupolis

The performance is divided in two points. The first is the time performance between the sensor
and the server containing the tuple space. As Rustupolis only works locally, this point cannot
be considered. The other point of the performance requirement is the time to retrieve a tuple
when matching with a template. The matching system compares the value of the tuples one by
one. This one could be improved because in the of case of an abundance data in a tuple space,
it could take a long time.

1 pub fn matches(&self, other: &E) -> bool {
2 match (self, other) {
3 (&E::I(ref a), &E::I(ref b)) => a == b,
4 (&E::D(ref a), &E::D(ref b)) => a.to_bits() == b.to_bits(),
5 (&E::S(ref a), &E::S(ref b)) => a == b,
6 (&E::T(ref a), &E::T(ref b)) => a.matches(b),
7 (&E::Any, &E::Any) => false,
8 (&E::Any, &E::None) => false,
9 (&E::Any, _) => true,

10 (&E::None, _) => false,
11 (_, &E::Any) => true,
12 _ => false,
13 }
14 }

The performance between the sensors and the tuple servers must be considered when different
communication protocols are developed. The mechanism of matching could be improved to
increase the performance of matching. However, this point is less important than the previous
ones.

3.3.2.5 Data persistency in Rustupolis

There is no mechanism of data persistency implemented in Rustupolis. If the device that contains
the tuple space server is disconnected, the data are lost.

The aim for those criteria will be to add a mechanism to avoid any loss of data. A mechanism
of replication of the tuple in across different devices could be the solution to mitigate to this

25

problem.

3.3.2.6 Data policy placement in Rustupolis

There is no way to write rules of data placement in Rustupolis. Since Rustupolis works locally,
it seems logical. Currently, the data could only be stored locally.

A mechanism that allows controlling where and in which tuples the data are stored must be
developed. To obtain this mechanism, a system of rules could be set up and the storage of these
rules could be done in a tuple space.

3.3.2.7 Summary of the extensions to add to Rustupolis

The extensions are classified by importance:

1. Making the tuple servers available on the network and add different communication proto-
cols.

2. Adding a system of access rights to the tuples and a system of authentication.

3. Adding a mechanism of data persistency.

4. Adding a mechanism of data placement policies.

3.4 Concluding remarks

In this chapter, the different criteria for creating a coordination language implementation in
fog computing have been presented. These criteria consider all the challenges of fog computing
such as security, scalability, resource constrained devices, etc., and express how these challenges
should be handled by the coordination language. After defining these criteria, two existing
languages were analysed. It has been determined that Rustupolis is an extensible base. Indeed,
the Rustupolis library provides the basic primitives of Linda, but does not work in networks
and has no security mechanism. In this chapter it was also proven that Rustupolis is a better
extensible base than pSpace. The fact that the library is written in Rust was a determining
factor in the choice of Rustupolis. In addition, the Rustupolis code is well-organised and easily
understandable. In the next chapter, the different extensions to Rustupolis are explained.

26

Chapter 4

Implementation

4.1 Introduction

In this chapter, the strengths of the Rust programming language and the key mechanisms that
made the choice of this language decisive are discussed. Next, the existing Rustupolis code is
analysed by dividing the code according to the key concepts of the library. In the following
sections, the different additions made to Rustupolis to meet the fog computing criteria are
detailed. These additions thus make it possible to build a PoC which meets the criteria previously
defined. After this stage, it is possible to create a tuple space server and to store data within
it. To send or retrieve data to and from this server, a "client" section has been developed.
Next, a section explains how an interpreter written in Rust for the language is built which allows
communication with a tuple server. In this same section, the development of the client section
of the Rust library is also explained. There are two possible ways to access a tuple server, either
via the Rust library or an interpreter for a language. These forms of accessibility are explained
in the rest of the chapter.

4.2 Rust

Rust is a system programming language developed by the Mozilla Foundation. Rust is open
source and hosted on GitHub. [35] The traditional system programming language like C or C++
leave the security of memory management to the developer. However, according to Microsoft,
70% of software vulnerabilities are due to memory safety issues. [36] [37]

Hence, there was a need for a low-level language to create software that was robust against
memory errors. This is the reason behind the development of Rust and why it offers developers
an insurance for memory management. In other languages such as Java, a garbage collector
takes care of memory management. However, Rust is a systems programming language, where
minimising the consumption of resources such as CPU time and memory usage is one of the main
concerns. Therefore, giving up this control is not an option. In Rust, the developer still needs
to manage the memory, but must respect a number of principles to avoid memory errors. It is
at compile time that Rust checks that the principles set up by the language to avoid memory

27

errors are verified. These principles will be detailed further later in this chapter. Rust also
offers high performance when processing substantial amounts of data, support for concurrent
programming, and an efficient compiler. For all these reasons, Firefox, Dropbox, Cloudflare use
Rust in production.

The popularity of Rust has steadily increased in recent years. The Linux kernel developers
came up with the idea of adding new functionality written in Rust to the current kernel written in
C [38]. Microsoft and Google are also planning to use Rust for Windows and Android respectively
[39] [40]. However, it is not only large corporations that are being won over by Rust. According
to the StakeOverflow 2021 survey of 80,000 developers, Rust is the most loved language. This is
the 6th year in a row that Rust has been the top language in this category [41].

4.2.1 Advantages of Rust

• High performance and memory security : Rust offers mechanisms to manage the memory
while keeping a high level of performance. These mechanisms are explained in the next
section.

• Support for concurrent programming : Rust handles concurrency, and the compiler prevents
the developer from writing code where two threads are trying to access a resource at the
same time. Rust then offers the possibility to manage a lock that will be taken and released
by a thread on a resource.

• The package manager : Rust’s package manager called Cargo allows simple management
of a project’s dependencies. It also allows managing these dependencies on crates.io [42].
Crates.io is the site where one can find all the libraries written in Rust. Cargo natively
builds and tests Rust applications for multiple platforms. Strict dependency versioning and
document generation show that Cargo is also powerful enough for cross-platform oriented
applications [34].

• The community : There are several official and unofficial sites to get help, and Rust has a
moderator system and a code of conduct to keep the community healthy.

• Backward compatibility and stability assured : Rust promises to be backwards compatible
with older versions. A tool called crater [43] has also been developed to assess whether the
libraries available on crates.io are still functional with other versions of Rust.

4.2.2 Explanation of the key mechanisms of Rust

4.2.2.1 Ownership

According to [44], possession in Rust can be defined in three rules.

• Each value in Rust has a variable that is called its owner.

• There can only be one owner at a time.

• When the owner goes out of scope, the value is dropped.

28

The third rule explains a simple principle that can be found in other programming languages,
which is that a variable is no longer available outside the scope in which it was initialised. This
simple example below explains the principle:

1 { // hello is not valid here, it’s not yet
↪→ declared

2 let hello = "hello"; // hello is valid from this declaration
3

4 // usage of the variable hello
5 } // the scope is over, and hello is no longer

↪→ valid

The first and second rules explain that a value can only be linked to exactly one value at a
time. The following examples show how this translates into Rust code:

1 let number = 1;
2 let second_number = number;

In this example, the value 1 is assigned to the number variable. In the second line, the
second_number variable to the variable number is initialised. As per the second rule, the two
variables cannot point to the same value. However, this will work in Rust, as it is a copy of the
value of number that will become the value of the variable second_number. Rust was able to
make a copy of the number value because integers are simple values with a known, fixed size,
and are pushed onto the stack. At the end of this example, we will have two variables with a
value of 1. In the next example, the value does not have a fixed size, so its behaviour will be
different:

1 let string = String::from("hello");
2 let second_string = string;
3

4 println!("{},␣world!", string);

In this third example, a string object "Hello" is assigned the variable string. On the second
line, the variable second_string is initialised with the first variable. The code then tries to print
on the "string" variable. This will not work, and the compiler will display an error. In fact, in
the case of an object like a string whose size is not fixed, Rust does not perform a copy pass as
in the earlier example. Since a variable can only have one owner, the solution for Rust here is to
pass the ownership of the string object from the string variable to the second_string variable.
The passage of ownership is called ‘moves‘. A variable moves when passed as a parameter to
a function. The first variable will then no longer have a value, which will generate an error at
print time. If the two variables point to the same value, when the scope ends and the memory
of the variables is freed, the same memory will be freed twice. Freeing memory twice can lead to
memory corruption, which can potentially lead to security vulnerabilities [44]. To have the same
string in two variables, the solution is to explicitly clone the first variable into the second.

4.2.2.2 Mutable reference

In Rust, variables are immutable by default. However, if a value must be modified, and it must
remain in the same variable, the keyword mut must be added to the initialisation of the variable.
This keyword will then allow a mutable reference to the variable, and thus to avoid a change of

29

ownership. Indeed, when a call to a function occurs, all the values passed in the parameter must
not necessarily have their ownership passed to the function. If the program requires these values
later, the ownership does not have to be passed. The passing by reference solves this problem.
If a variable is not marked as mutable, its reference will be immutable. The following example
details this:

1 fn main() {
2 let mut string = String::from("hello");
3 let second_string = String::from(",␣world");
4

5 change(&mut string, &second_string);
6

7 println!("Variable␣1␣:␣{}",&string); //"Variable 1 : hello, world
↪→ " is printed

8 println!("Variable␣2␣:␣{}",&second_string); //"Variable 2 : , world" is
↪→ printed

9 }
10

11 fn change(string1: &mut String, string2: &String) {
12 string1.push_str(string2);
13 }

In the above example, two variables are created. The first one is mutable and the second one
by default is not. These two variables are passed by reference to the function which concatenates
the second one into the first. The first variable will therefore be modified while the second will
not. This is the reason the first variable must have the keyword mut.

However, the risk with a mutable reference is that it can create a memory error called "data
race". This error occurs when the following three behaviours occur [44]:

• Two or more pointers access the same data at the same time.

• At least one of the pointers is used to write to the data.

• No mechanism is used to synchronise data access.

To avoid this error, Rust has put conditions on the use of the keyword "mut". The first is that
you can have only one mutable reference to a particular piece of data at a time. Moreover, you
may not have mutable reference when you have an immutable reference to the same value [44].
The process that uses an immutable reference does not expect the value to change. However,
multiple immutable references are allowed because with an immutable reference, the value will
not change.

4.2.2.3 Lifetime

When developers use a reference, they borrow ownership of the variable and thus grant temporary
access to a data structure. Lifetimes are used to determine how long the reference of a variable
will be used. The compiler uses these references to detect memory errors. The objective of
lifetimes is to avoid dangling references. Dangling references are those that point to a value that

30

has been dropped and is therefore no longer valid. The following example shows how the borrow
checker in the compiler checks the lifetime of references.

1 {
2 let first_variable; // -------------+-- ’a
3 { // |
4 let second_variable = 5; // -+-- ’b |
5 first_variable = &second_variable; // | |
6 } // -+ |
7 println!("r:␣{}", first_variable); // |
8 } // -------------+

In this example, the variable first_variable is initialised and the lifetime ’a is linked to it.
Then, another scope opens and a second_variable is initialised in it. The lifetime ’b is linked to
the reference of this variable. The compiler then checks that the reference assigned to first_string
has a lifetime long enough to last at least as long as that of the first_string. The lifetimes of ’a and
’b are compared and since the lifetime of ’b is smaller than that of ’a, an error indicating that the
second_variable does not live long enough’ occurs. Lifetimes work differently for functions. In
most cases, the compiler itself will determine which lifetime is bound to which reference. However,
if the function returns a reference and has multiple parameters referenced in its signature, the
developer will have to specify the lifetime themselves. This below example, from [44], shows this
case and how to define the lifetime:

1 fn main() {
2 let first_string = "abc";
3 let second_string = "xyz";
4

5 let result = longest(first_string, second_string);
6 println!("The␣longest␣string␣is␣{}", result);
7 }
8

9 fn longest<’a>(first_string: &’a str, second_string: &’a str) -> &’a str
↪→ {

10 if first_string.len() > second_string.len() {
11 first_string
12 } else {
13 second_string
14 }
15 }

In the following example, the "longest" function receives two references to strings as param-
eters. It will then return the reference of the string that is the longest. However, it cannot
determine which strings received as parameters will be returned. The lifetime of the reference
returned is therefore unknown. The compiler needs this lifetime to know when the reference will
be dropped after the function call. The developer must therefore determine this themselves by
adding a lifetime to each reference. These lifetimes are represented by "’a" and they can have
any name.

31

4.2.2.4 Option type

First, the type of variables in Rust are static, meaning that the type of variable can never change.
Rust does not have a Null type, but, as in Haskell, it has an optional type that the developer
must manage. This avoids Null pointer exception errors. Rust also offers the possibility, as in
Haskell, to do pattern matching on enumerations. The Option type, being an enumeration of the
None type and the Some(T) type, allows for easy management of the optionals. The following
example shows this solution:

1 fn manage_optional(string: Option<String>) {
2 match string {
3 Some(string) => println!("{}", string),
4 None => println!("No␣string"),
5 }
6 }

4.2.3 Rust in the IoT devices

In this section, the advantages of Rust for developing programs for IoT devices will be discussed.
Of course, the above-mentioned advantages also play a key role in the use of Rust for IoT. Indeed,
the performance gain coupled with the security offered even across threads when using memory
is an especially important advantage of Rust. As the main idea behind using Rust is to program
a safe, low-level task with the use of high-level programming concepts, designs with embedded
hardware are a typical application for this purpose [34].

One advantage that Rust has over higher-level languages is that it is directly compiled into
machine language. An opposing example is Python, which is compiled in C before being compiled
in machine language. Rust therefore has a compilation speed equivalent to that of the C language.
This makes it possible to reduce the complexity in time and space of compiled programs, which
is not negligible for the IoT sector.

Rust has a foreign function interface. With that interface, Rust can make use of services
written in other programming languages. This interface can only work because of another feature
of Rust, which is the "unsafe" keyword. This allows memory protection rules to be avoided. It
can be used when the application takes control of Rust’s security mechanisms. Rust has many
libraries for mobile devices. For example, one library allows Rust to send messages to the
Objective-C runtime, which is the basis of Apple’s operating system [45].

4.3 Code of Rustupolis in details

The following section presents how the Rustupolis library works and what its unique features
are. The section is divided into four parts covering the important concepts of the library. Thus,
the library makes it possible to create tuple spaces and to use Linda’s primitives to interact with
them. The library offers methods for creating a tuple space and for managing tuples.

32

4.3.1 Tuple

The first concept to present for the library is that of tuples. A tuple is represented as an object
containing a list of values. These values are represented by the enumeration E which allows for
the management of the different types of data which can be present in a tuple. This enumeration
is presented below:

1 pub enum E {
2 /// Integer data type.
3 /// Implemented as 32-bit integer (i32).
4 I(i32),
5 /// Floating point data type.
6 /// Implemented as double precision (f64).
7 D(f64),
8 /// String data type.
9 /// Implemented as String.

10 S(String),
11 /// Tuple data type.
12 // Implemented as vector of tuple types (Vec<E>).
13 T(Tuple),
14 /// Any data type.
15 /// In context of this tuple, Any stands for the wild card that is used

↪→ for pattern matching when querying the tuple space for certain tuples,
↪→ and marks the beginning of a matching range when searching for
↪→ matching tuples.

16 Any,
17 /// None data type. In context of this tuple, None represents "no match"

↪→ when searching, and marks the end of a matching range when searching
↪→ for matching tuples.

18 None,
19 }

A tuple can contain any of the above values. This means that a tuple can contain a type T,
which itself contains a tuple and therefore allows for the nesting of tuples. An important method
of the library is implemented on this type. Accordingly, the library allows for the comparison of
type E’s according to their type E. In particular, this method is used at the time of the pattern
matching and has already been presented; see section 3.3.2.4. This method is called on a type
E represented by the first parameter self and will be compared to the second parameter also of
type E. The function has a boolean return type depending on whether the types are similar or
not.

Different methods are also implemented to create tuples and to access the values within
them. The matching method presented here allows for the comparison of two tuples and uses
the method previously presented to compare the values present within these tuples. As shown
in the example below, Rust offers methods to elegantly achieve this matching:

1 pub fn matches(&self, other: &Tuple) -> bool {
2 (self.is_empty() == other.is_empty())
3 && self
4 .0

33

5 .iter()
6 .zip(other.0.iter())
7 .all(|(ref x, ref y): (&E, &E)| x.matches(y))
8 }

4.3.2 Tuple space - Store

The object called SimpleStore in Rustupolis is what contains the tuples and allows operations
to be conducted on them. The operations are the primitives of Linda. They are represented in a
feature called Store. The traits in Rust are the equivalent of the interfaces in Java. They define
the signature of different functions to allow several structures to implement them. The Store
feature makes it possible to implement a different tuple space than the one implemented by the
library. The trait is defined as follows:

1 pub trait Store {
2 /// Read a matching tuple and remove it atomically.
3 fn inp(&mut self, tup: &Tuple) -> Result<Option<Tuple>>;
4 /// Read a matching tuple.
5 fn rdp(&mut self, tup: &Tuple) -> Result<Option<Tuple>>;
6 /// Write a tuple.
7 fn out(&mut self, tup: Tuple) -> Result<()>;
8 }

Here we find the different primitives of Linda and the signature of the different methods. As
mentioned earlier, a tuple space in this library is a SimpleStore object. This object contains
a list of tuples and implements the methods of the Store trait. The distinctive feature is that
the list of tuples is of type BTreeSet. The BTreeSet type is an ordered set based on a BTree.
A B-tree is a self-balancing tree data structure that maintains sorted data and allows searches,
sequential access, insertions, and deletions in logarithmic time [46]. The BTree allows a node to
have more than two children, which allows for a continually balanced tree.

4.3.3 Match - Space

The concepts of Match and Space allow management of the Future type of pattern matching.
This allows for the management of requests in an asynchronous way. This works thanks to the
Match enumeration, whose definition is as follows:

1 pub enum Match {
2 Done(Result<Option<Tuple>, Error>),
3 Pending(Receiver<Tuple>),
4 }

This enumeration is used in the methods of the Space object. A Space object contains
a SimpleStore which is a tuple space. The purpose of the Space object is to use redefining
primitives to perform operations on the SimpleStore. The purpose of the redefinition is that the
various methods must return a Match type and thus implement the Future type.

34

4.3.4 Rustupolis in the fog computing

In the implementation developed in this thesis, Rustupolis will be used for its primitives and
its management of tuple space. The network part, the access rights system to the tuple space
and the encryption of requests between servers are added to the Rustupolis library. The list of
elements to be added to Rustupolis so that the library can be functional in fog computing is
detailed in the section 3.3.2.7.

4.4 Implementation of the server part of the library

In this section, the implementation of the part to create a tuple space server on a device is ex-
plained. The way to develop the access control system and the data encryption is also explained.
The GitHub repository link for this part of the project is as follows: https://github.com/
Maxbever/LIF_Server

4.4.1 Make the tuples servers available on the network and adding
protocols

The main problem of the Rustupolis library is that the tuple spaces are only locally available.
The first step to make this project in fog computing is to have the possibility to manipulate the
tuple through the network. To achieve this, communication protocols must be added. A client
will then be able to connect to a remote tuple space using a specific IP address and port. For this
first implementation, the TCP and UDP protocols are implemented. An object server abstracts
the details of each protocol, allowing protocols to be easily added to the project. To implement
these means of communication, choices have been made in the implementation. These choices
and the functioning of this part are presented in the rest of this section.

The first implementation is the concept of a repository. This concept is inspired by the one
seen previously in pSpace, with some notable differences. A repository will contain a list of tuple
spaces and a reference to a tuple space in the list, which will contain the permissions and access
rights of the users. This particular tuple space is detailed in the section 4.4.2 on implementing
the access control system.

Before going into more detail on the implementation, the ways to use this tuple server will be
discussed. The code below presents the main method which allows a TCP and UDP server on
the desired IP address and port to be launched. The different servers are executed on threads:

1 fn main() {
2 let ip_address = String::from("127.0.0.1");
3 let port_tcp = String::from("9000");
4 let port_udp = String::from("9001");
5

6 let repository = Repository::new();
7

8 let server_tcp = Server::new(server::Protocol::TCP, &ip_address, &
↪→ port_tcp, &repository);

9 let server_udp = Server::new(server::Protocol::UDP, &ip_address, &
↪→ port_udp, &repository);

35

https://github.com/Maxbever/LIF_Server
https://github.com/Maxbever/LIF_Server

10

11 let server_list = vec![server_tcp, server_udp];
12

13 crossbeam::scope(|scope| {
14 for server in server_list {
15 scope.spawn(move |_| match server.start_server() {
16 Ok(_) => {
17 println!("{}", "OK␣")
18 }
19 Err(error) => {
20 println!("{}", error)
21 }
22 });
23 }
24 })
25 .unwrap();
26 }

In line 6, a new repository is created. In the case of the above code, the repository that
contains the tuple spaces is shared between the two TCP and UDP servers. It is also possible
to create a different repository for each server, and it is easy to create a new server with a
new protocol that would also have access to this repository. Lines 13 to 25 are used to start
the servers on different threads. The communication with the server is achieved using different
commands. To connect to a server, the client can either use the interpreter with the various
syntax commands, see section 4.5.3, or use the client part of the library which allows the same
commands in Rust.

4.4.1.1 Management of concurrency

Now that the operations of the server are defined, a way to oversee concurrency can be defined.
As mentioned before, Rust prevents the concurrent modification of a resource by a thread. This
is of course rightly so, since trying to access the same memory at the same time would create an
error. Concurrency must therefore be managed on a tuple space and the tuple space list. Indeed,
a server can either modify or read tuples in a tuple space or create or delete the tuple space list
at a higher level. To deal with this kind of situation, Rust provides different ways to manage a
lock on a resource to ensure that two threads do not access it at the same time. As mentioned
above, a different mechanism has been used to oversee the two concurrency cases.

The first mechanism used is the encapsulation of a tuple space in a Mutex object, which
itself is encapsulated in an Arc object. The Atomically Reference Counted (Arc) object is a
thread-safe reference counting pointer. The type Arc<T> provides shared ownership of a value
of type T, allocated in the heap. Invoking clone on Arc produces a new Arc instance, which
points to the same allocation on the heap as the source Arc, while simultaneously increasing a
reference count. When the last Arc pointer to a given allocation is destroyed, the value stored
in that allocation (often referred to as “inner value”) is also dropped [47]. The Arc object thus
makes it possible to ensure the sharing of a resource between different threads and ensures that
the resource will not be dropped during execution. However, as seen before, Rust prevents the
modification of a resource shared between several threads. Thus, the Mutex object has been
used.

36

The mutex object is a mutual exclusion primitive useful for protecting shared data. The mutex
will block threads waiting for the lock to become available. Each mutex has a type parameter
which represents the data that it is protecting. The data can only be accessed through the guards
returned from the method lock, guaranteeing that the data is only ever accessed when the mutex
is locked [48]. The combination of a Mutex object in an Arc object therefore ensures that a
resource always exists between threads but also that two threads do not access the resource at
the same time. This allows total security in terms of memory management. This combination is
used to store the tuple space list in a repository.

In reality, it is not a list of tuple space that is stored, but a list of Arc encapsulating a Mutex
which itself encapsulates a tuple space. This combination is ideal as it allows different requests
to be managed on the same tuple space thanks to the lock. When an operation such as a read or
write takes place on a tuple space, the thread takes the lock. It then performs the operation on
the tuple space and releases the lock. However, this system is not optimised to solve the second
concurrency problem. This problem occurs when two threads want to modify or read the entire
tuple space list. Since both threads can modify the tuple space list at the same time by adding
or deleting, a lock must also be set on this list. If the Mutex object is chosen to perform this
operation, it means that if two threads simply want to read a tuple in different tuple spaces, the
first one will take the lock and the second one will be blocked even though it does not want to
access the same tuple space. The solution to this problem was to use the Rwlock object instead
of the Mutex object.

The RwLock object provides a lock system, but allows, at the time of taking the lock, an
indication of whether a read or write operation is going to be done on the data. The object then
optimises the access to the data to block the threads only in case of writing. This solution is
ideal for the tuple space list. Indeed, the tuple space list will be blocked only when a tuple space
is added or removed from it. This is not an operation that will often happen in a normal use
case of the project. When a tuple is added to a tuple space, the thread will read the tuple space
list. Consequently, the lock will only be taken on a tuple space and not on the whole tuple space
list. The following Figure 4.1 better expresses the difference between the Mutex object and the
RwLock object.

37

Figure 4.1: Comparison between Mutex and RwLock [49].

The concurrency will be managed in our server by these different mechanisms. To summarise,
the structure of the Repository object is shown below:

1 pub struct Repository {
2 tuple_spaces: Arc<RwLock<HashMap<String, Arc<Mutex<Space<SimpleStore

↪→ >>>>>>,
3 permission_tuple_space: Arc<Mutex<Space<SimpleStore>>>,
4 }

4.4.2 System of access right

The first step to find the ideal system of access control for fog computing is to define the require-
ment of the system in the fog paradigm. According to [50], [51], below are the requirements for
a fog computing access control system:

• The access control system must take into consideration that IoT devices have limited
resources. The usage of a process that is too powerful can lead to a computational overhead.

• The system must have the capacity to create, delete, and revoke policy.

• The access control system must have the possibility to revoke attributes for a determined
user. The user who has an attribute revoked does not have access to the data.

38

• The time to decide if a user can access the data must be low. One of the advantages of fog
computing is the low latency. This should not be spoiled by the access control system.

• The access control system depends largely on the requirements of the application. An
application in the health care sector must have a better secured access system than any
other application. However, a more secured system is often less efficient.

To reach the perfect system that responds to the requirements, several types of access control
systems have been analysed:

• Attribute based access control (ABAC): This model is based on the attribute. An attribute
is a feature that is given to a user, a resource, or the environment depending on its needs
and its role in the application. The policies are defined by the owner of the data. The
users are assigned to some attributes. The user can access data only when their attributes
satisfy the specified access policy.

• Discretionary access control model (DAC): This model is based on the identity of the user
who request access. An authorised entity can thus grant the permission for the user. The
entity that owns the data can set the access permissions based on users’ identities in some
group. A DAC model is more flexible and less secure, and therefore it is generally used in
environments that emphasise convenience and does not need a high level of security, such
as the UNIX operating system.

• Role-based access control model (RBAC): This model is based on the role. The different
permissions like write, read, create, and update are bound to a role and not to a user.
When they are created, every user receives a role. When the user requests to use some
data, their role is compared to the policy rules. Depending on their role, the access is
permitted or rejected. This type of access control is very scalable. Indeed, if you add a
rule to a role, all the users who already assigned the role also, by definition, are assigned
the new rule. The drawback of this system is that if you want to add a special permission
to a specific person, a new role must be created. This can become difficult to manage if
there are many permissions possible.

• Rule-based access control model (RBAC): This model allows the association of a list of
rules in the data. When a user tries to access to some data, the system checks if they
respect all the rules.

• Mandatory access control model (MAC): Mandatory access control is a method of limiting
access to resources based on the sensitivity of the information that the resource contains.
It is also based on the authorisation of the user to access information with that level of
sensitivity. You define the sensitivity of the resource by means of a security label. The
security label is composed of a security level and zero or more security categories. The
security category defines the category or group to which the information belongs (such as
Project A or Project B). Users can only access the information in a resource to which their
security labels are entitled [52].

To choose the best access control system for the implementation, the type of application that
is going to use the software needs to be defined. As mentioned earlier, the level of security needs
to be determined to choose the best solution. An application that is going to work in the health

39

care sector or in the self-driving cars sector needs to have a more secure access control system
than other applications in different sectors. In the case of this work, the goal is to find the most
optimised solution that has a reliable level of security without compromising performance.

According to the authors of [50], [51], the best type of access control for fog computing
is the ABAC model. Indeed, this model highly scalable because an attribute simply needs to
be assigned to a user and thereafter the user has complete access to data with that attribute.
Different permissions would then be assigned to an attribute, and the user with that attribute
could then have the necessary permissions.

To add this access control system to the implementation, certain choices were made. Firstly,
as no authentication system has been developed in the project, the client must send the attributes
to the server itself. This can be achieved by means of the various commands in the above section
4.5.3. The permissions linked to an attribute are stored in a dedicated tuple space which is
present in the repository tuple space list. To maximise performance, as the permissions check is
done for each operation on a tuple space, an Arc object having the pointer to the tuple space
containing the permissions is retained in the Repository object see section 4.4.1.1. This avoids
having to browse the list of tuple spaces when permissions need to be checked. Permissions are
stored in a tuple in the following format:

1 ({tuple_space_name}, {action}, ({attribute}, {attribute}, ...))

The first parameter of this permission type is the name of the tuple space. Next, the action
that is affected by this permission is found. The actions can be the out, in, read, and/or delete
operations. The last argument is the list of attributes that allow the permission. The format of
this tuple has an exception; the tuple that allows the creation of a new tuple space on a server
and therefore has no name:

1 (create , ({attribute}, {attribute}, ...))

To check that a user has permission to perform an operation, simply call the read primitive
with the tuple name and the requested operation. The primitive should return the tuple with
the list of attributes, allowing the operation on the tuple space as the third element. This list is
then compared with the list the user entered when using the attach command. If an attribute
is present in both lists, the user is allowed to perform the operation and the operation continues
to run. If there is no match, the operation stops, and the user receives an error message telling
them that they do not have permission. The permission rules are created with the creation of
the tuple. The client who creates the tuple space can then choose whether the same attributes
are assigned for each operation, or whether they choose different attributes.

When the repository is created, the very first tuple space created is the one containing the
permissions. By default, the tuple space creation rule and the out, in, read rules on the permission
tuple space are set with the administrator attribute. The only permission that does not exist is
the delete operation to prevent the permission space tuple from being deleted. This allows an
administrator or any user with the necessary attributes to perform operations on the permissions
in the tuple space just like they would in any other tuple space in the repository.

40

Figure 4.2: Man-in-the-middle attack schematic diagram [54].

4.4.3 Encryption of communication

Now that the access control is secured by means of an attribute, the messages must be protected
against attackers trying to retrieve it by sniffing the network. In fact, the transmitted data must
be secured against man-in-the-middle attacks. This attack is a cyberattack where the attacker
secretly relays and possibly alters the communications between two parties who believe that they
are directly communicating with each other, as the attacker has inserted themselves between the
two parties [53]. The scheme of this attack is explained in the Figure 4.2.

To prevent an attacker from reading the transmitted data, one solution is to encrypt it. An
encryption method has therefore been defined to achieve this. As our solution is to operate in
fog computing, the criteria defined above for our solution should also be applied for the choice of
the encryption method. The following criteria must be considered when choosing an encryption
technique:

• The encryption solution must work on resource-limited devices and avoid using all the
resources of the device.

• Encryption and decryption should be performed in a short time.

• The solution must nevertheless be secure and provide a high enough level of encryption.

First, it was necessary to define whether a symmetric or asymmetric encryption method would
be used.

• symmetric encryption: Symmetric encryption is also called secret key encryption, and it

41

uses just one key, called a shared secret, for both encrypting and decrypting. This is
a simple, easy-to-use method of encryption, but there is one drawback: the key must be
shared between the sender and the recipient of the data, so a secure method of key exchange
must be devised. Otherwise, if a third party intercepts the key during the exchange, an
unauthorised person can easily decrypt the data [55].

• asymmetric encryption: To address the problem of key exchange, another type of encryp-
tion was developed. Asymmetric encryption is also called public key encryption, but it in
fact, it relies on a key pair. Two mathematically related keys, one called the public key and
the other called the private key, are generated to be used together. The private key is never
shared; it is kept secret and is used only by its owner. The public key is made available to
anyone who wants it. Due to the time and amount of computer processing power required,
it is considered “mathematically unfeasible” for anyone to be able to use the public key to
re-create the private key. Consequently, this form of encryption is considered extremely
secure [55].

The encryption system chosen is a symmetrical encryption system. This is because it offers
better performance in terms of encryption/decryption time and resource time. Asymmetric
encryption would take longer to connect and require more performance, which would not meet
our criteria, see section 3.2. However, the transmission of the encryption key as well as the
access control must be conducted by a third-party system. This solution is not more optimal
in terms of security and distribution, given the passage through this third party. Nevertheless,
it is the solution that appeared to be the most relevant for the encryption of requests. Indeed,
asymmetric key solutions are difficult to implement in the fog.

The symmetric encryption method used is the Advanced Encryption Standard Galois/Counter
Mode (AES GCM) method. The architecture of the AES GCM encryption algorithm is explained
in the Figure 4.3. AES GCM is known for a design-based principle which has substitution and
permutations and is said to be fast in both software and hardware [56]. It has a fixed block
size of 128 bits and a key size of 128, 192 or 256 bits. In the case of our PoC, a 128-bit key
is used. AES considers each block as a 16-byte (4-byte x 4-byte = 128 bits) grid arranged in a
column major order. Advanced Encryption Standard Galois/Counter Mode will be performing
many rounds of transformation to convert the plaintext to cipher [56]. The number of encryption
rounds depends on the number of bits in the chosen key.

• 10 cycles of repetition for 128-bit key.

• 12 cycles of repetition for 192-bit key.

• 14 cycles of repetition for 256-bit key.

Each round contains four steps which are described below:

• SubBytes: In this permutation step, each byte is substituted by another byte. It is per-
formed using a lookup table also called the S-box. This substitution is done in such a way
that a byte is never substituted by itself and is also not substituted by another byte which
is a compliment of the current byte. The result of this step is a 16-byte (4 x 4) matrix as
mentioned before [57].

42

• ShiftRows: Each row is shifted a particular number of times.

– The first row is not shifted.

– The second row is shifted once to the left.

– The third row is shifted twice to the left.

– The fourth row is shifted thrice to the left.

• MixColumns: This step is a matrix multiplication. Each column is multiplied with a
specific matrix and thus the position of each byte in the column is changed as a result.
This step is skipped in the last round [57].

• AddRoundKey : Now the resulting output of the previous step is submitted to an XOR
operation with the corresponding round key. Here, the 16 bytes are not considered as a
grid but simply as 128 bits of data [57].

The encrypted text decryption stage performs these steps in opposite using the supplied key
to recover the plain text.

For the PoC, the encryption was performed in Rust using the RustCrypto [58] library. This
library was audited by an external company called NCC Group, which did not find any security
flaws.

4.5 Implementation of an interpreter for a language client

In this section, the creation of a language using the commands presented in the server is detailed
in the section 4.5.3. The language called LiF (Linda In the Fog) has been implemented through
an interpreter written in Rust. In addition to using the server commands, the languages allow
certain operations on tuples and some basic calculations. The choices of language construction
and interpreter implementation will be presented in the next chapter. A use case of the language
and the server is also presented in the last section of this chapter. Before going into the details
of the implementation, an example of what is done with the language is presented. The GitHub
repository link for this part of the project is as follows: https://github.com/Maxbever/LIF_
Interpreter

4.5.1 LiF language

To present the language, an example code showing the different functionalities of the language is
presented below. The following code connects to two servers, retrieves and processes data from
the first one before sending the processed data back to the second server.

1 var server_udp_name = "UDP_server"
2 var admin_attribute = "admin"
3 var tuple_space_name = "data"
4 var tuple_space_name_mean = "tuple_space_mean"
5 var attribute = "attribute"
6 var key = "secret_encrypt_key"
7

8 connect server_tcp_name tcp:127.0.0.1:9000 "secret_encrypt_key"

43

https://github.com/Maxbever/LIF_Interpreter
https://github.com/Maxbever/LIF_Interpreter

Figure 4.3: Architecture of AES Algorithm [56]

44

9 connect server_udp_name udp:127.0.0.1:9001 key
10

11 create admin_attribute server_tcp_name:tuple_space_name attribute
12 create admin_attribute server_udp_name:tuple_space_name_mean attribute
13

14 attach server_tcp_name:tuple_space_name attribute {
15 out ("temp", 21),("temp", 23),("temp", 29),("temp", 25),("temp", 20)
16

17 var data = in ("temp", _),("temp", _), ("temp", _), ("temp", _), ("temp"
↪→ , _)

18 var sum = 0
19

20 for iterator = 0 to (data.len()) {
21 var tuple = data.get(iterator)
22 var sum = sum + tuple.get(1)
23 }
24

25 var mean = sum / data.len()
26 var test = mean
27 }
28

29 attach server_udp_name:tuple_space_name_mean attribute {
30 out (mean)
31 }

The first seven lines of code define the variables that will be used in the rest of the code.
Lines 8 and 9 connect to a TCP and UDP server, respectively. A name must be associated
with each server. The name of the server is used in different operations. The server’s name
is used for the create and delete operations. This determines on which server the tuple space
should be added or deleted. The key used to encrypt the data to the server is also passed as a
parameter to this operation. An example of tuple space creation is shown in lines 11 and 12. In
these two creation examples, only one attribute is indicated, meaning that this attribute will be
used to carry out the various access permissions on the tuple spaces. If the client had entered
four attributes, these would have been respectively linked to the permissions: read, in, out, and
delete. In lines 14 and 28, the attach command indicates on which tuple space of which server
the following operations must be executed. The scope of the attach operation makes it easy to
see on which tuple space the next operations are taking place. In addition to this, the client
must also indicate the attributes it has. The client can therefore specify between one and four
attributes. The operations from lines 16 to 26 will therefore take place on the server and the
tuple space defined on line 14, whereas the operation on line 30 takes place on the server and
the tuple space defined on line 28.

On line 16, the out operation writes to the tuple space. The out operation can take one or
more tuples separated by a comma. In this example, the data is fake and added manually, but
one could imagine that a sensor has added these different data to the tuple space.

On line 18, the in operation allows getting the tuples that correspond to the pattern list
passed as arguments. The operation can have one or more patterns as arguments. These will
be managed by the server sequentially, and a list of tuples respectively corresponding to each

45

pattern will be returned to the server. This list will be a tuple which contains each response
tuple. The read operation, which is not present in this example, can also be used to indicate a
list of patterns and receives a list of tuples in response. However, as it does not remove tuples
from the tuple space, this must be considered when writing patterns. Indeed, in this example, if
the in operation is replaced by a read operation, the "data" variable would receive:

1 (("temp", 21),("temp", 21),("temp", 21),("temp", 21),("temp", 21))

The rest of the program uses a series of operations available on tuples and number data.
Indeed, the language does not allow operations on strings. A for loop allows browsing the list
of tuples received in response. To use this for loop, a range must be defined. It is each number
of this range which will be passed to the iterator, and which will allow recovering the value of a
tuple. To retrieve the value of a tuple, the get(number) function takes a number as an argument
which indexes it to a value of the tuple. The operation then returns the value corresponding to
the index. For the loop to stop at the last element of a tuple, the size of the tuple must be known.
For this, the len() function has been implemented and returns the size of the tuple. Addition,
subtraction, multiplication, and division operations are available for any numerical value.

Instead of the for loop, a while loop is also available in the language. The while loop allows
for incrementally steps to be performed and, as seen in the following example, for the retrieval
of data until an empty tuple is received. The empty tuple is represented as follows: (). The
following code performs the same operation as lines 23 to 29 in the above example code.

1 var data = in ("temp", _)
2 var sum = 0
3

4 while (data != ()){
5 var data = data.get(1)
6 var sum = sum + data
7 var data = in ("temp", _)
8 }

The while loop offers many possibilities for additional loops and operations. The while loop
works with a boolean operation, meaning that different symbols for doing operations need to be
added to the interpreter’s grammar. These different symbols are:

• ==: allows testing the equality between two values.

• !=: allows testing the difference between two values.

• <=: allows testing whether value A is smaller than value B.

• >=: allows testing whether value A is greater than value B.

• ||: allows testing whether either of the two operations are true.

• &&: allows testing whether both operations are true.

To continue with the explanation of the example code, the code allows the sum of the numbers
in the second place of each tuple to be returned by the server. This sum is then divided by the

46

number of tuples received to obtain the average of the numbers received. Finally, this average is
sent to another tuple space in another server.

The language offers the possibility to easily connect to a server and then to a tuple space
with different security attributes. Operations can be performed on this tuple space but the data
in it can also be processed by the language. The language also offers the possibility to connect
several servers and thus to move data from one server to another. In the following sections, the
grammar of the language and its implementation are presented.

4.5.2 Grammar of the language

First, before detailing the grammar and implementation, the meaning of an interpreter will be
defined. To understand what an interpreter is, one must first understand what a programming
language is. A programming language L includes:

1. a pair of sets (PL, DL), where PL represents the set of all programs written in L and DL

the set of all objects that a PL program can manipulate

2. a function

[[.]]L : PL → (DL → DL).

which represents the semantics of the language [59].

In other words, a programming language L allows writing programs P such that these programs
receive objects D from the language L and manipulates them into other objects D. Now that a
programming language is formally defined, an interpreter can be defined. To make a programming
language useful, one must at least be able to write an interpreter for the language. The interpreter
is a program which is either written in another programming language or, in some cases, the
same language. Formally, the notion of an interpreter is defined as follows:

Let L = (PL, DL) and M = (PM , DM) be two programming languages. In assuming that L
allows coupling and that (PM ∪DM) ⊆ DL.

• We call a partial function interpreting M by L i : DL → DL such that

∀P ∈ PM : ∀t ∈ DM : [[P]]M t = i(P, t).

• We call an interpreter of M by L a program int ∈ PL such that [[int]]L is a interpretation
function of M by L [59].

In the above definition, M represents the language interpreted, while L represents the language
in which the interpreter is written. In our case, the interpreted language is LiF and the interpreter

47

language is Rust. Now that the formal definition of an interpreter is defined, the grammar of
the programming language must be defined.

To create a programming language, the developer must create a lexer and a parser. The
definition of these concepts will first be explained before discussing the grammar of the language.

When code from the created language is submitted to an interpreter, the interpreter will first
use a lexer to recognise the various symbols or tokens in the code. A token can be a sign or a
list of signs. Once the entire code has been passed through the lexing function, the code is now
a list of tokens in the eyes of the interpreter. This list of tokens will be passed to the parser
which will oversee finding the lists of tokens that correspond to a certain expression defined by
the programmer. In the following example in Figure 4.4, the parser recognises the expression
sum which is itself an expr expression.

Figure 4.4: Process of parsing and lexing[60].

In the context of the implementation of this interpreter, the antlr [61] parser generator was
used. Antlr facilitates, from a grammar, the generation of the parser and lexer of a language.
The grammar given to Antlr to generate this language can be found in the appendices of this
work see appendix 7.2. With this grammar, we obtain a parser that contains the syntax tree of
the code entered by the interpreter is obtained.

The syntax tree of our language will therefore contain a series of instructions. The developer
will have to implement the behaviour of each of these instructions. For the interpreter, the syntax
tree of an assignation followed by a connect instruction looks like Figure 4.5.

Figure 4.5: Parse tree.

4.5.3 Syntax of the language

The interpreter offers the possibility to use different commands to connect to a server and manage
space tuples. Below is a list of the different possible commands:

48

1 create {creation_attribute} {tuple_space_name} {permission_attribute} {
↪→ encryption_key}

2 create {creation_attribute} {tuple_space_name} {read_permission_attribute} {
↪→ in_permission_attribute} {out_permission_attribute} {
↪→ delete_permission_attribute} {encryption_key}

3 delete {delete_permission_attribute} {tuple_space_name}
4 attach {tuple_space_name} {permission_attribute}*
5 out {tuple}
6 out {tuple}(,{tuple})*
7 read {tuple}
8 read {tuple} (,{tuple})*
9 in {tuple}

10 in {tuple} (,{tuple})*

The create command allows for the addition of a new tuple space to the server repository
where the client has connected. This command requires the creation of an attribute, which is
the permission to create a tuple space. Next, a name must be given for the newly created tuple
space. After choosing a name, the client has two choices. In the first choice, the client indicates
only one attribute which will then be the same for the different actions on the tuple space. These
actions are as follows:

• read: Reads tuples in the tuple space.

• in: Removes tuples from the tuple space.

• out: Adds tuples to the tuple space.

• delete: Deletes a tuple space.

In the second choice, the client decides to associate a different attribute for each action. This
can be useful in case where they want to give access to only one of the actions on the tuple space.

The delete command is used to delete a space tuple. The delete attribute of the tuple space
must be specified with the command.

The attach command allows the client to define which tuple space, in the repository the client
is connected to, the commands out, read, and in should be executed in. The command also takes
a list of attributes depending on what the client can provide as a parameter.

The commands out, in, and read are used to perform operations on the tuple defined within
the attach command. The commands can take one or more tuples as parameters. The command
adds the tuple list to the tuple space. The in and read commands return a list of tuples corre-
sponding to the matching pattern of each tuple in the list passed as parameter. The wildcard
is represented by the _. However, these commands, which correspond to Linda’s primitives, do
not respect the blocking aspect of Linda.

In addition to these operations, the interpreter offers the possibility to perform loops. The
syntax of the latter is as follows:

1 for {variable_iterator} = {starting_number} to ({max_number}) {

49

2 {body_of_the_loop}
3 }
4

5 while ({boolean_condition}){
6 {body_of_the_loop}
7 }

The language also offers the possibility to instantiate variables and to perform arithmetic
operations such as addition, subtraction, multiplication and division.

1 var {variable_name} = {variable_name or value}
2 var {variable_name} = {variable_name or value} + {variable_name or value

↪→ }
3 var {variable_name} = {variable_name or value} - {variable_name or value

↪→ }
4 var {variable_name} = {variable_name or value} * {variable_name or value

↪→ }
5 var {variable_name} = {variable_name or value} / {variable_name or value

↪→ }

To manage tuples, two operations are available. The len() operation allows receiving the
maximum number of elements present in a tuple. This allows you to loop through the different
elements. The get (index) operation is used to retrieve the value found in the index passed in
the parameter.

1 {tuple}.len()
2 {tuple}.get({index})

The details of the implementation’s different instructions are explained in the next section.

4.5.4 Implementation of the language

To understand how the different instructions were implemented, one must first understand what
the code generated by Antlr offers. Antlr provides an interface which, for each node of the syntax
tree, offers a method. This method receives, as a parameter, a context object which contains the
instruction. To express this, the enter_connect() method is defined below:

1 fn enter_connect(&mut self, _ctx: &ConnectContext<’_>) {
2 if let Some(server_name) = _ctx.server_name() {
3 if let Some(protocol) = _ctx.protocol() {
4 if let Some(ip_address) = _ctx.ip_address() {
5 if let Some(port) = _ctx.port() {
6 let server_name = self.validate_server_name(server_name)

↪→ ;
7 let server = Server::new(
8 ip_address.get_text(), port.get_text(),
9 protocol.get_text(),server_name.clone(),

10);
11 self.server_list.insert(server_name, server);

50

12 }
13 }
14 }
15 }
16 }

In this method, the reference of a ConnectContext object is collected as a parameter. Due
to this context, the different parts of the instruction can be retrieved. This is the purpose of
the code on lines 2 to 5 which ensures that there is no None type in the different parts of the
instruction. Once these parts are retrieved, the connect method behaviour can be implemented.
A server with the retrieved data is then launched.

The operation of the clients that will connect to the tuple space server is slightly unconven-
tional. In fact, to avoid having to reconnect for each instruction, a client is launched on a thread.
For each instruction connected to a server, a new thread with a new client will be started. There-
fore, we set up a way to communicate with the different clients the requests that were parsed.
Indeed, it is necessary to communicate to the thread containing the client the request which
must be sent to the server. For that, the mpsc::channel() method of Rust was used.

This method creates a new asynchronous channel, returning the sender or receiver halves.
All data sent to the sender will become available to the receiver in the same order as it was sent,
and no send method will block the calling thread [62].

When a thread with a client is created, two mpsc channels are created. The first channel
allows to send requests that the client sends to the tuple server. The second channel is used
to send the response from the tuple server to the main thread so that it can continue parsing.
In case of no response from the tuple server, a time-out system prevents the interpreter from
getting stuck. This thread and channel system is explained in the following sequence diagram in
Figures 4.6 and 4.7.

In Figure 4.6, the main thread detects that there is a connect expression by parsing the code.
This is then executed by creating the different channels as explained before. The main thread
receives at the end the sender of the request channel to make a request to the server and the
receiver of the response channel to wait for the response from the server. The client thread will
wait for a request to be sent in the request channel.

In Figure 4.7, the server parses a request for an out on the previously created server. It then
sends the request through the request channel transmitter. Thereafter, it starts waiting for a
response to its request to be sent in the response channel. The client thread listening to the
request channel has received the request for an out and so passes it on to the tuple server on the
network. The tuple server waits for the response from the server and then passes it on to the
response channel where it will be received by the main thread. The client thread then listens to
the request channel again.

The other point that the implementation must manage is the assignment of variables. Indeed,
variables must be stored throughout the syntax tree of the code. The creation of the listener
object, which implements the Antlr method and will use the syntax tree received by the parser a
symbol table, is created. The concept of a symbol table allows retaining all variables, constants,
and functions in an interpreter or compiler. Different information about the data held is also
associated with it, for example, for a variable, its value, or type can be held.

51

Figure 4.6: Connect instruction diagram

52

Figure 4.7: Out instruction diagram

In the case of this implementation, the symbol table is a hashmap containing a String which
will be the key and name of the variable as well as an object of the Value enumeration. This
enumeration will be discussed later. Using a hashmap as the symbol table ensures that each key
is unique and it is therefore impossible to have two variables with the same name.

The Value enumeration is used to hold the value of a variable according to its type. Below is
the definition of this enumeration:

1 enum Value {
2 String(String),
3 Number(f32),
4 Tuple(Vec<Value>),
5 Char(char),
6 ID(Box<Value>),
7 }

The different types of the created language are in this enumeration. A String type remains
the normal Rust String type. The Number type is a 64-bit float in Rust. The Tuple type will
contain a Vec which is a list type in Rust which itself contains a Value of this enumeration. The
Char type will contain a classic Rust Char type. Finally, the ID type will contain a Box to
another value. This type allows a variable to contain another variable which will itself have a
value.

53

4.5.5 Implementation of the client part of the library

In addition to the interpreter written in Rust, a section allowing to communicate with a tuple
space server is also available in the Rust library. This section allows the same operations as the
interpreter. However, by being directly integrated into the Rust language, it allows everything
that can actually be in Rust. When installing the tuple server, it is therefore possible to either
communicate with it via the Rust library, or to use the interpreter. In case the Rust compiler is
not available on the device, just installing the interpreter can be a solution. Moreover, the client
part of the library allows for having the tools to create a server as well as those to connect to
a server and get data in the same library. This makes it possible to be both a producer and a
consumer.

4.6 Performance test

The purpose of the performance tests is to determine whether the tuple space server is functional
on power-constrained devices. For this, the server will be deployed on two different devices: the
first is a Raspberry Pi and the second is an Android phone. To assess the performance of the
tuple space server, the CPU and Ram consumption were monitored during different operations
on the server. Here is the list of operations that were monitored:

• Creation of 100 tuple spaces on the server from the server.

• Creation of 100 tuple spaces on the server from a client.

• Out operation on 100 tuples on the server from a client.

• In operation on 100 tuples on the server from a client.

• Read operation on 100 tuples on the server from a client.

• Delete 100 tuple spaces on the server from a client.

The performance measured in the tests contains the performance of the Rustupolis library
combined with the various extensions added to it. There is thus the performance of the servers
which in the case of the test is a TCP server, the performance of the encryption system and the
performance of the access right system.

4.6.1 Performance on the Raspberry Pi

A Raspberry Pi is a credit card sized computer that can do things one could do with a regular
computer. However, due to its small size, its power is limited. As a result of its low power
consumption, a Raspberry Pi is often used to automate small tasks that do not require a lot of
computing power or to store small servers. The operating system (OS) installed on the Raspberry
Pi is Raspberry Pi OS Lite which does not contain a graphical interface and is therefore more
powerful. The model used in this performance test is the "Raspberry Pi 4 Model B". Its
specifications are as follows [63]:

• Processor : Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz

54

Type of test CPU load usage Memory consumption
Creation of 100 tuple space

from the server 2.973 for 10 seconds 1 mb

Creation of 100 tuple space
from the client 0.431 1 mb

Out of 100 tuples 0.097 1 mb
In of 100 tuples 0.112 7 mb

Read of 100 tuples 0.142 1 mb
Deletion of 100 tuples spaces 0.266 2 mb

Table 4.1: Results of the tests on Raspberry Pi

• Memory : 2GB LPDDR4-3200 SDRAM

• Wifi :2.4 GHz and 5.0 GHz IEEE 802.11ac wireless

The results of the tests of the different performance criteria are presented in the table 4.1.

The CPU consumption in the case of the Raspberry is expressed in CPU Load. This means
that if the CPU Load is 4, 100% of the processor cores were used. The number 4 comes from the
fact that the Raspberry Pi processor has 4 cores. The memory consumption has been calculated
based on the memory available during a certain task. This means that the memory available is
recorded before performing an operation and when the operation is performed. Then the two
numbers are subtracted to give the memory used during the operation. To obtain these different
data, the RPI-Monitor [64] package was used, which presents graphs of CPU and RAM usage.
Figures 4.8 and 4.9 show examples of the consumption graphs.

The data collected shows that the programme uses very little RAM. The CPU usage is also
very low except for the tuple space creation operation from the server itself. This operation could
therefore be optimised. Indeed, when it is performed at the client level, the CPU consumption
is lower. One hypothesis of this difference in CPU usage is that the TCP server queue allows for
better management of the tuple space addition requests.

4.6.2 Performance on Android

The tuple server was tested on a Samsung A52S 5G. The specifications of the phone are as follows
[65]:

• Processor: Qualcomm SM7325 Snapdragon 778G 5G (6 nm), Octa-core (4x2.4 GHz Kryo
670 & 4x1.9 GHz Kryo 670)

• Memory: 6 GB RAM

• Wifi : 802.11 a/b/g/n/ac/ax 2.4G+5GHz, HE80, SISO, 1024-QAM

To install the tuple server on the Android device, a Java application must be created. For
the Java application to use the Rust library, it must be compiled in C. This can be done with

55

Figure 4.8: CPU Load

Figure 4.9: Memory consumption

56

Type of test CPU usage Memory consumption
Creation of 100 tuple space

from the server
5-7 % When adding tuple space

for 1 seconds 142 mb

Creation of 100 tuple space
from the client 16 % On start 141 mb

Out of 100 tuples 5 % When adding tuple 141 mb

In of 100 tuples 6-7 % When adding and
removing tuple for 2 seconds 147 mb

Read of 100 tuples 6-7 % When adding and removing
tuple for 3 seconds 147 mb

Deletion of 100 tuples spaces 4-5 % When removing tuple for 1 seconds 141 mb

Table 4.2: Results of the tests on Android

Figure 4.10: Android profiler example

the JNI library that allows for the binding of Java calls within the Rust function compiled in C
[66].

On the Android platform, performance data was retrieved using the Android profiler tool
from Android studio. For each test, the peak power consumption was recorded and noted in the
above table. An example of the CPU consumption and RAM consumption is displayed in Figure
4.10 from Android Studio.

The analysis of the data collected on the Android, see table 4.2, application must consider
that the Rust library runs in a Java application. Therefore, the resources consumed by this Java
application are also considered in the monitoring of the application. The graphical interface, for
example, consumes part of the resources. By analysing the RAM consumption, this corresponds
to what the data recovered from the Raspberry Pi had shown. Indeed, very little RAM is used
by the Rust library. The RAM used here is used by the application. The processor consumption
is also higher than on the Raspberry Pi and this can also be explained by the fact that the Rust
library is wrapped in a Java application. Another cause of this CPU consumption is the use of
the JNI library which allows Rust functions to be called in Java. This adds an extra step and
therefore extra resource consumption.

57

Type of operation Execution time in ms
Connect 1.69ms
Attach 4.37ms
Create 3.27ms
Out 4.41ms
Read 7.18ms
In 6.84ms

Delete 4.65ms

Table 4.3: Results of the tests on Android

4.6.3 Performance in time

Another performance to be assessed in our PoC is the response time of a request. This assessment
considers the encryption of the request on the client side, the decryption of the request on the
server side, the execution of the request, the encryption of the response, the sending of the
response, and the decryption of the response. To assess this performance, each of the possible
operations is tested and the time of the request is monitored. The tuple space server is located
on a Raspberry Pi and the client on a computer. Both devices are on the same Wi-Fi network.
The timer starts as soon as the request has been sent and stops when the response has been
decrypted. Here is the list of operations where the time has been recorded:

• Connect operation to connect to the server.

• Attach operation to define the tuple space where the operations will take place.

• Create operation to create a new tuple space.

• Out operation to add a tuple to a tuple space.

• Read operation to read a tuple from a tuple space.

• In operation to remove a tuple from a tuple space.

• Delete operation to delete a tuple space.

The results of the performance tests, see table 4.3, show that it takes very little time for the
operations to finish. This also depends on the quality of the network, but in the case of a local
network this has little influence on the result. The fastest command is the command to connect
to the server. This makes sense, as this is not encrypted and is just a request to connect to
the server. The operations that take the longest time are the read and in operations, which is
logical since these operations use pattern matching that may explain why these operations take
the longest.

4.7 Concluding remarks

In this chapter, the ways to implement the Rust library to create a tuple space server and build
the interpreter and client part of the library have been explained. The choice of the Rust language

58

and the different advantages of it in the project have also been presented. The implementation
of the tuple server was directed by the previously defined criteria. The first four criteria have
been applied in this implementation. The criteria of data placement font and persistence have
not been developed. The interpreter and the client part of the library offer a workable solution
to communicate with a tuple server. As proven by performance tests, the solution consumes
few resources and is optimised. The next chapter of the work detail examples built with this
language and the tuple server.

59

60

Chapter 5

Applications

5.1 Android Use case

A use case must prove that the performances previously shown work well in real applications.
The developed application displays, on a map of computer science faculty of Namur, phones
according to their GPS position. In addition to the GPS position, a sensor on the phone is used
to retrieve the light exposure of the phone’s environment. This is expressed in lux. The lux
(lx) is the SI derived unit of illuminance, measuring luminous flux per unit area. It is equal to
one lumen per square metre. In photometry, this is used as a measure of the light intensity, as
perceived by the human eye, that hits or passes through a surface [67]. The light exposure from
each phone connected to our system will be displayed. The use case is explained in the Figure
5.1.

Figure 5.1: Use Case

To implement this system, two tuple space servers have been installed. The first server is
in the Android system and the second server is in the Raspberry Pi. [1] The first server in the

61

Android system retrieves data from the GPS and luminescence sensors. [2] The data is then sent
to a tuple space on the server installed on the phone. This allows the data to be stored and
is available when the client on the Raspberry needs it. [3] For each phone, the Raspberry Pi
contains a client part that is responsible for retrieving the data. This data follows the following
format:

(latitude, longitude, altitude, lux)

[4] The Raspberry Pi will then assign to this tuple an ID and store this data with its ID in a
general tuple space for all smartphones in the use case. The tuple format will be as follows:

(id, latitude, longitude, altitude, lux)

The tuple space server on the Raspberry Pi allows one to retrieve data from each phone and
put it into a single tuple space. In the case of this example, the aim is to display the data from
the different phones on a web interface. However, a website cannot connect to a TCP socket like
the server on the Raspberry Pi. [5] An intermediate step has been added to solve this problem.
It acts as a bridge between the TCP socket and a web socket and is used to send data to the
web interface. This step has also been coded in Rust and uses the client part of the library to
retrieve tuples from the server and send them to the web socket. To overcome this problem, the
web socket system could be added to the protocols used by the application. This would allow
calls to be made directly from the web. The HTTP protocol could also be a solution for making
calls from the web.

[6] Once the interface receives the data from the web socket, it must then be displayed (Figure
5.2). To do this, each phone appears as a circle of light on the map of the faculty according to
their GPS position. The size of the circle of light depends on the intensity of the light.

The update of the light intensity and the GPS position is done in real time. The reliability
of the phone’s GPS sensor when it is in the centre of the building and surrounded by walls
can be questioned. The reliability of the Wi-Fi network can also be a slowing factor. Finally,
the reliability of the phone’s light sensor can also be questioned. The light sensor detects the
ambient brightness of the phone, but this also depends on how the phone is positioned. In this
experiment, the phones were left on their backs, with the front camera and therefore the light
sensor pointed at the ceiling.

62

Figure 5.2: Illustration of the use case

To create the Android application, the same system used for the performance tests was
employed. First, the code in Rust which calls the library allowing for the creation of the tuple
space was compiled in C. Owing to the JNI library, the Java code of the mobile application can
call these Rust functions. However, the JNI library does not offer a way to manage the brightness
sensor directly from Rust. To compensate for this, the sensor data is retrieved from the Java
part of the application and sent to the tuple space in the Rust code. To retrieve data from each
phone, a new thread is created per mobile device. This allows requests to be sent independently
of the other devices and the response to them. It also allows managing the case when a device
does not respond and to avoid that the sending of requests to other devices is disturbed by this.
The following code is used to create the different threads. The client part of the library is used
to perform operations on the tuple spaces. The interpreter cannot be used here as it does not
allow the creation of threads.

1 let clients = vec![(1, "192.168.0.4", 9000)];
2

3 crossbeam::scope(|scope| {
4 scope.spawn(|_| {
5 server_launcher.launch_server();
6 });
7

8 for mobile in clients {
9 scope.spawn(move |_| {

10 let tuple_space_name = String::from("GPS_DATA");
11 let attribute = String::from("admin");
12 let mut client = Client::new();
13 let (id, ip_adr, port) = mobile;
14 client.connect(String::from(ip_adr), port.to_string(), String::

↪→ from("tcp"), &id.to_string(), key);
15 client.attach(&id.to_string(), vec![attribute.clone()], &

↪→ tuple_space_name);
16 /*Operation on the client*/
17 })

63

18 }
19 })

The first line of the code contains the client variable which will contain an array of tuples. Each
tuple represents the identifier, IP address and port of a tuple space server on a mobile phone.

On line 3, the crossbeam library is used to manage threads. This library allows access to
resources on the stack even in the scope of a new thread, which is not possible with basic Rust
threads.

Line 5 starts the tuple space server which will be on the Raspberry.

Lines 8 to 17 are used to create a thread for each mobile phone entered in the client variable.
The thread will then connect to the tuple server on the phone and retrieve the data from it.

The GitHub repository link for this android part of the project is as follows: https://
github.com/Maxbever/LIF_android

To create the application on the Raspberry Pi, it was much easier. Indeed, it was necessary
to first write the Rust code to retrieve the data from the IP address of the server on the Android
phones. Then, a new server tuple space that contains the retrieval with a different ID per phone
was created. To retrieve the tuples, the client part of the library was used. Here is the link of
the GitHub repository: https://github.com/Maxbever/LIF_raspberry

To realise the web interface, as presented previously, a link between the TCP socket and
a web socket was implemented in Rust. This interface just transmits messages from the TCP
server to the web socket and vice versa. The interface itself was developed in HTML, CSS, and
JavaScript for the logic and display of the data from the web socket. Here is the link of the
repository of the front-end and of the web socket : https://github.com/Maxbever/LIF_front

5.2 Traffic lights use case

This second use case is inspired by Figure 2.4 which provides a practical example of fog com-
puting. In the example, a first level of fog computing takes care of managing the different traffic
lights at a given intersection. The traffic lights can therefore be synchronised from the same
device. This device will also send data about the number of cars in the intersection to the sec-
ond level of fog computing. The second level of fog computing will receive the data from the
different intersections (i.e., the first fog computing layers) to anticipate the arrival of cars at
another intersection. This makes it possible to inform the first level of fog computing about the
number of cars arriving in each direction. The traffic light turns green according to the number
of cars arriving and prevents them from waiting at the traffic light, creating traffic jams. The
second layer of fog computing deals with different intersections in a city district. This makes it
possible to synchronise the different intersections efficiently, in turn avoiding having to manage
too many intersections and thus reducing the efficiency of this second fog layer. This layer also
sends information about the different junctions to a third fog computing layer. This third fog
computing layer is responsible for synchronising the different districts in the same city. It also
sends information for traffic statistics to the cloud.

64

https://github.com/Maxbever/LIF_android
https://github.com/Maxbever/LIF_android
https://github.com/Maxbever/LIF_raspberry
https://github.com/Maxbever/LIF_front

Figure 5.3: Traffic light example.

To create the test case, the different tuple servers will be launched on the same machine.
However, this would require too many devices to make a real use case. Thus, the first step is to
determine how the traffic lights will work and what data they will send back to the first level
of fog computing. A traffic light will contain a tuple space where it will store its state and its
identifier. The state of a traffic light can be green, orange, or red. When the light is green, the
device will count the number of cars crossing the intersection and passing under it. When the
light is red, on the other hand, the light will count the number of cars waiting to pass. Every
30 seconds, it will send the number of cars heading for the next intersection to the first layer of
fog computing, which will then send it to the second fog layer. When the traffic light is red, it
will send the data on the number of stopped cars to the first fog computing layer. Figure 5.3
explains this. Traffic light A counts the number of cars that are heading in the direction of the
arrow to the left of the traffic light. Traffic light C also counts the number of cars going towards
the arrow above, but it additionally counts the number of stationary cars.

The first level of fog computing will therefore receive two types of data from the traffic lights.

65

Either the number of cars waiting at the traffic lights or the number of cars that have crossed
the intersection. Depending on the number of cars waiting or the time since the first car was
waiting, the device decides to change the red traffic lights to green and the green traffic lights to
red. The change to orange is overseen by the traffic lights when they receive a request to change
to red. For this example, the number of cars waiting must be at least eight for the traffic lights to
change state. The number of minutes the first car must wait for the traffic light to change state is
three minutes. In the implementation, the number of cars passing in one direction will randomly
be chosen between five and fifteen cars. The same applies to the number of cars waiting at the
traffic light.

The second level of fog computing receives data from the first level on the number of cars
that have left an intersection and informs the other intersections of the number of cars that will
arrive. The first fog layer, which manages an intersection, will therefore also receive data from
the second level and will have to manage this data so that as few arriving cars are waiting at the
traffic lights as possible.

In the implementation of this example, the third level of fog computing is not implemented as
it is akin to the second level, but with an additional step. Three intersections are implemented
in the use case. This corresponds to simulating twelve traffic lights that will send data to three
tuple spaces in the first level of fog computing, which in turn will be coordinated by one tuple
space in the second level of fog computing. Below is the link of the GitHub repository of the
traffic light use case: https://github.com/Maxbever/LIF_traffic_light. The three different
traffic lights in this use case have been represented as follows 5.4.

The particularity of this use case is that each element of it is a producer and consumer of data.
Indeed, the traffic light will send data to the first fog layer and in parallel will wait for a response
from it. The principle is the same for the first fog computational layer which sends information
to the traffic lights and to the second fog computing layer while waiting for information from
them. This use case shows that from the PoC, it is easily possible to create servers that will
be producers and consumers. In the code of each of the elements of the use case, one thread
manages the production of data while another thread is dedicated to its consumption.

66

https://github.com/Maxbever/LIF_traffic_light

Figure 5.4: Traffic Light Use case.

This diagram shows what each layer handles. The second layer deals with the management
of cars moving from one intersection to another. In our use case, for example, the cars leaving
the first intersection at traffic light 4 will arrive at the third intersection at traffic light 9.

67

68

Chapter 6

Conclusions

6.1 Summary of contributions

The objective of this work was to find a solution for a coordination language to be efficiently
implemented in the fog computing paradigm. This implementation should address some problems
of fog computing. The first result of this work is the establishment of criteria for creating an
implementation of a coordination language in fog computing. These criteria allowed us to select
the way of designing the implementation.

Indeed, the first criterion and contribution concerns the importance of an implementation
running on devices with limited computing capacity. This had an impact on the choice of
programming language for the implementation, but also on the way the implementation was
developed. The Rust programming language was chosen for its ease of creating high-performance
applications, but also for avoiding memory errors. The former also had an impact on the choice
of how to manage data security; the data encryption system had to be secure yet but powerful
enough to work on low-powered devices. Performance tests also showed that the PoC worked
very well on devices with limited resources (see Figure 4.6).

Another advantage of Rust leads to the second criterion concerning scalability. Rust can be
compiled to a vast number of platforms, which facilitates scalability of the applications written
in the language. Another point which deals with the scalability criterion is the creation of
an interpreter which directly writes code allowing to access a tuple server. This interpreter
can therefore operate independently of the Rust compiler and thus offers other possibilities.
Furthermore, the interpreter can run on a device that does not have the Rust compiler installed.

The third criterion and the second contribution concern the security constraints that an
application in fog computing must respect. That has also been validated in the implementation
by means of two different mechanisms. The first mechanism is the installation of an access control
to the data through attributes that are used as permissions to access and perform actions on the
data. This system is distinct because permissions are stored as tuples in a dedicated tuple space.
This can be used in the future for the data persistence criterion. The second mechanism allows
the encryption of data and transmissions between a client and a server. This prevents someone

69

in the middle of the transmission from reading or modifying the data.

The fourth criterion concerns the performance of the implementation. This criterion is di-
vided into two parts: the first is performance at the level of the network and the second is the
performance at the level of the recovery of the tuples through pattern matching. Regarding the
first performance point, it is difficult to measure latency, as it depends strongly on the geographi-
cal distance between the devices. However, regarding the second performance point, performance
tests have shown that it takes very little time to decrypt a client’s request and to retrieve a tuple
from a tuple space (see section 4.6.3).

The last two criteria have not been implemented and will be discussed in the future work
part of this conclusion.

6.2 Assessment of contributions

The first point of the evaluation of this work is that two criteria were not developed due to a
lack of time. However, a solution for these criteria is presented in the next section. Regarding
the different criteria assessed, they correspond well to what an implementation of a coordination
language in fog computing should respect. Nevertheless, the criteria are quite difficult to imple-
ment and require a lot of development time. For this reason, some points of the proof-of-concept
could be improved.

First, security could be improved. Currently, the attribute giving access rights to the data
must be sent to the client through a third party. To solve this problem, a system allowing
the identification of a client and therefore the binding of attributes to it could be put in place.
However, this was rather complex, as clients are devices that can be disconnected and must be
able to connect automatically.

The other point of security improvement is that just like the data access attribute, the
encryption key of the data must also be sent by a third party. This could be solved by an
asymmetric encryption system, but at the current stage, it is complicated to implement this in
a fog computing context.

The criteria where the implementation has succeeded are scalability and running on devices
with less computing power. In fact, developing the PoC in Rust allowed us to obtain satisfactory
performance results in these criteria.

The PoC also showed that coordination languages and especially their persistent broadcast
can work very well in a fog computing context. Indeed, message coordination brings real added
value in managing the constraints inherent in a fog computing application.

6.3 Future work

The last two criteria have not been developed in the implementation. However, some suggestions
for additions are made.

The first missing criterion concerns a data persistence mechanism. This allows the definition
of a mechanism that is put in place when a fog node is no longer available on the network.

70

One envisaged solution is to set up a system for duplicating tuple spaces on another device.
The system would copy the entire tuple space of a device to another device, which would also
copy the tuple space containing the access rights and thus preserve them. However, the client
trying to connect to the unavailable server would have to be able to find the copy easily and
this would have to be done automatically. For this, a tuple space containing the list of devices
on the network and the list of their copies could be made available. This tuple space could be
placed in the cloud to ensure that it is always available. The client would only need to contact
this tuple space to make a request for a copy of the unavailable tuple space. To keep the data
constant, the master tuple would have to notify each of its copies whenever it is changed. When
the unavailable master tuple is put back on the network, it should start from the updated version
of its copies.

Another solution to improve data persistence is to save the data in the device where the server
is located. The data could be stored in files or in a database. When the device is unavailable,
it can be rebooted and the data stored in its memory can be recovered. However, this solution
depends on the ability of the devices containing the tuple server to handle file writing and reading
or to handle a database system.

The second missing criterion is that of a data placement policy mechanism. A user with data
in a tuple space should be able to choose in which devices their data is stored. This mechanism
can be implemented through the tuple space containing the different devices available on the
network. With the tuple space providing a map of the network, a user could indicate in which
device, and at which address, they would like their data to be stored. The user’s placement
choices concerning their data are stored in a tuple like access rights.

Once all these criteria are implemented, the implementation can be applied to different use
cases. As discovered earlier, many applications would benefit from fog computing which would
have its shortcomings improved by a coordination language.

71

72

Bibliography

[1] D. Gelernter, “Generative communication in linda,” ACM Trans. Program. Lang. Syst.,
vol. 7, no. 1, pp. 80–112, 1985, issn: 0164-0925. doi: 10 . 1145 / 2363 . 2433. [Online].
Available: https://doi.org/10.1145/2363.2433.

[2] D. Gelernter and A. J. Bernstein, “Distributed communication via global buffer,” in Pro-
ceedings of the First ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing, ser. PODC ’82, Ottawa, Canada: Association for Computing Machinery, 1982,
pp. 10–18, isbn: 0897910818. doi: 10.1145/800220.806676. [Online]. Available: https:
//doi.org/10.1145/800220.806676.

[3] A. K. Atkinson, “Tupleware: A distributed tuple space for the development and execu-
tion of array-based applications in a cluster computing environment,” Ph.D. dissertation,
University of Tasmania, 2010.

[4] L. Bettini, R. D. Nicola, and M. Loreti, “Implementing mobile and distributed applications
in x-klaim,” Scalable Comput. Pract. Exp., vol. 7, 2006.

[5] E. Freeman, S. Hupfer, and K. Arnold, JavaSpaces principles, patterns, and practice.
Addison-Wesley Professional, 1999.

[6] V. Buravlev, R. D. Nicola, and C. A. Mezzina, “Tuple spaces implementations and their
efficiency,” in International Conference on Coordination Languages and Models, Springer,
2016, pp. 51–66.

[7] In-Memory Digital Integration Hub (DIH) | GigaSpaces, [Online; accessed 13. May 2022],
Apr. 2022. [Online]. Available: https://www.gigaspaces.com.

[8] S. Craß, E. Kühn, and G. Salzer, “Algebraic foundation of a data model for an extensi-
ble space-based collaboration protocol,” in Proceedings of the 2009 International Database
Engineering Applications Symposium, ser. IDEAS ’09, Cetraro - Calabria, Italy: Associa-
tion for Computing Machinery, 2009, pp. 301–306, isbn: 9781605584027. doi: 10.1145/
1620432.1620466. [Online]. Available: https://doi.org/10.1145/1620432.1620466.

[9] A. Omicini and F. Zambonelli, “Coordination of mobile agents for information systems:
The TuCSoN model,” in 6th Convention of the Italian Association for Artificial Intelli-
gence (AI*IA’98), S. Badaloni and C. Minnaja, Eds., AI*IA’98 Workshop on Knowledge
Integration, Padova, Italy: Edizioni Progetto Padova, 1998, pp. 94–98.

[10] pSpaces, Programming-with-Spaces, [Online; accessed 13. May 2022], May 2022. [Online].
Available: https://github.com/pSpaces/Programming-with-Spaces.

[11] G. Ciatto, L. Rizzato, A. Omicini, and S. Mariani, “Tusow: Tuple spaces for edge comput-
ing,” in 2019 28th International Conference on Computer Communication and Networks
(ICCCN), 2019, pp. 1–6. doi: 10.1109/ICCCN.2019.8846916.

73

https://doi.org/10.1145/2363.2433
https://doi.org/10.1145/2363.2433
https://doi.org/10.1145/800220.806676
https://doi.org/10.1145/800220.806676
https://doi.org/10.1145/800220.806676
https://www.gigaspaces.com
https://doi.org/10.1145/1620432.1620466
https://doi.org/10.1145/1620432.1620466
https://doi.org/10.1145/1620432.1620466
https://github.com/pSpaces/Programming-with-Spaces
https://doi.org/10.1109/ICCCN.2019.8846916

[12] D. Balzarotti, P. Costa, and G. P. Picco, “The lights tuple space framework and its
customization for context-aware applications,” in International Journal on Web Intelli-
gence and Agent Systems (WIAS), 2007, pp. 215–231. [Online]. Available: https://www.
microsoft.com/en- us/research/publication/lights- tuple- space- framework-
customization-context-aware-applications/.

[13] L. Bettini, V. Bono, R. D. Nicola, et al., “The klaim project: Theory and practice,” in
International Workshop on Global Computing, Springer, 2003, pp. 88–150.

[14] Micutio, rustupolis, [Online; accessed 13. May 2022], May 2022. [Online]. Available: https:
//github.com/Micutio/rustupolis.

[15] K. Ashton et al., “That ‘internet of things’ thing,” RFID journal, vol. 22, no. 7, pp. 97–114,
2009.

[16] H. Sundmaeker, P. Guillemin, P. Friess, and S. Woelfflé, “Vision and challenges for realising
the internet of things,” Cluster of European research projects on the internet of things,
European Commision, vol. 3, no. 3, pp. 34–36, 2010.

[17] Cisco Annual Internet Report (2018–2023) White Paper, [Online; accessed 10. May 2022],
Jan. 2022. [Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/
executive-perspectives/annual-internet-report/white-paper-c11-741490.html.

[18] S. Dustdar, C. Avasalcai, and I. Murturi, “Invited paper: Edge and fog computing: Vi-
sion and research challenges,” in 2019 IEEE International Conference on Service-Oriented
System Engineering (SOSE), 2019, pp. 96–9609. doi: 10.1109/SOSE.2019.00023.

[19] Difference between edge computing and fog computing - geeksforgeeks, https : / / www .
geeksforgeeks.org/difference- between- edge- computing- and- fog- computing/,
(Accessed on 05/02/2022).

[20] S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform and applications,” in 2015
Third IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb), 2015,
pp. 73–78. doi: 10.1109/HotWeb.2015.22.

[21] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and challenges,”
IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646, 2016. doi: 10.1109/JIOT.
2016.2579198.

[22] B. Varghese, N. Wang, S. Barbhuiya, P. Kilpatrick, and D. Nikolopoulos, “Challenges and
opportunities in edge computing,” Nov. 2016. doi: 10.1109/SmartCloud.2016.18.

[23] Aerospace Manufacturing and Design, [Online; accessed 10. May 2022], May 2022. [Online].
Available: https://www.aerospacemanufacturinganddesign.com/article/millions-
of-data-points-flying-part2-121914.

[24] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan, “Towards wearable
cognitive assistance,” in Proceedings of the 12th Annual International Conference on Mobile
Systems, Applications, and Services, ser. MobiSys ’14, Bretton Woods, New Hampshire,
USA: Association for Computing Machinery, 2014, pp. 68–81, isbn: 9781450327930. doi:
10.1145/2594368.2594383. [Online]. Available: https://doi.org/10.1145/2594368.
2594383.

[25] S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform and applications,” in 2015
Third IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb), 2015,
pp. 73–78. doi: 10.1109/HotWeb.2015.22.

[26] Edgeos_ug.pdf, https://dl.ubnt.com/guides/edgemax/EdgeOS_UG.pdf, (Accessed on
05/10/2022).

74

https://www.microsoft.com/en-us/research/publication/lights-tuple-space-framework-customization-context-aware-applications/
https://www.microsoft.com/en-us/research/publication/lights-tuple-space-framework-customization-context-aware-applications/
https://www.microsoft.com/en-us/research/publication/lights-tuple-space-framework-customization-context-aware-applications/
https://github.com/Micutio/rustupolis
https://github.com/Micutio/rustupolis
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://doi.org/10.1109/SOSE.2019.00023
https://www.geeksforgeeks.org/difference-between-edge-computing-and-fog-computing/
https://www.geeksforgeeks.org/difference-between-edge-computing-and-fog-computing/
https://doi.org/10.1109/HotWeb.2015.22
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/SmartCloud.2016.18
https://www.aerospacemanufacturinganddesign.com/article/millions-of-data-points-flying-part2-121914
https://www.aerospacemanufacturinganddesign.com/article/millions-of-data-points-flying-part2-121914
https://doi.org/10.1145/2594368.2594383
https://doi.org/10.1145/2594368.2594383
https://doi.org/10.1145/2594368.2594383
https://doi.org/10.1109/HotWeb.2015.22
https://dl.ubnt.com/guides/edgemax/EdgeOS_UG.pdf

[27] M. Gusev and S. Dustdar, “Going back to the roots—the evolution of edge computing, an
iot perspective,” IEEE Internet Computing, vol. 22, no. 2, pp. 5–15, 2018. doi: 10.1109/
MIC.2018.022021657.

[28] R. Casadei, M. Viroli, G. Audrito, D. Pianini, and F. Damiani, “Engineering collective
intelligence at the edge with aggregate processes,” Engineering Applications of Artificial
Intelligence, vol. 97, p. 104 081, 2021, issn: 0952-1976. doi: https://doi.org/10.1016/
j.engappai.2020.104081. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0952197620303389.

[29] MQTT Version 5.0, [Online; accessed 7. May 2022], Oct. 2019. [Online]. Available: https:
//docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html.

[30] P. Manzoni, E. Hernández-Orallo, C. T. Calafate, and J.-C. Cano, “A proposal for a
publish/subscribe, disruption tolerant content island for fog computing,” ser. SMARTOB-
JECTS ’17, Snowbird, Utah, USA: Association for Computing Machinery, 2017, pp. 47–
52, isbn: 9781450351416. doi: 10.1145/3127502.3127511. [Online]. Available: https:
//doi.org/10.1145/3127502.3127511.

[31] M. Farooq, M. Waseem, A. Khairi, and P. Mazhar, “A critical analysis on the security con-
cerns of internet of things (iot),” International Journal of Computer Applications, vol. 111,
pp. 1–6, Feb. 2015. doi: 10.5120/19547-1280.

[32] Rs-object-space, https://crates.io/crates/object-space, Accessed: 2022-03-28.

[33] Rustupolis, https://crates.io/crates/rustupolis, Accessed: 2022-03-28.

[34] T. Uzlu and E. Şaykol, “On utilizing rust programming language for internet of things,”
in 2017 9th International Conference on Computational Intelligence and Communication
Networks (CICN), 2017, pp. 93–96. doi: 10.1109/CICN.2017.8319363.

[35] rust-lang, rust, [Online; accessed 14. May 2022], May 2022. [Online]. Available: https:
//github.com/rust-lang/rust.

[36] A proactive approach to more secure code – Microsoft Security Response Center, [Online;
accessed 14. May 2022], May 2022. [Online]. Available: https://msrc-blog.microsoft.
com/2019/07/16/a-proactive-approach-to-more-secure-code.

[37] R. Jung, “Understanding and evolving the rust programming language,” 2020. doi: http:
//dx.doi.org/10.22028/D291-31946.

[38] Linus Torvalds weighs in on Rust language in the Linux kernel, [Online; accessed 14. May
2022], May 2022. [Online]. Available: https://arstechnica.com/gadgets/2021/03/
linus-torvalds-weighs-in-on-rust-language-in-the-linux-kernel.

[39] L. Tung, “Google backs effort to bring Rust to the Linux kernel,” ZDNet, Apr. 2021.
[Online]. Available: https://www.zdnet.com/article/google- backs- effort- to-
bring-rust-to-the-linux-kernel.

[40] ——, “Programming languages: Rust for Windows just got another update,” ZDNet, May
2021. [Online]. Available: https://www.zdnet.com/article/programming-languages-
rust-for-windows-just-got-another-update.

[41] Stack Overflow Developer Survey 2021, [Online; accessed 14. May 2022], May 2022. [Online].
Available: https://insights.stackoverflow.com/survey/2021.

[42] crates.io: Rust Package Registry, [Online; accessed 14. May 2022], May 2022. [Online].
Available: https://crates.io.

75

https://doi.org/10.1109/MIC.2018.022021657
https://doi.org/10.1109/MIC.2018.022021657
https://doi.org/https://doi.org/10.1016/j.engappai.2020.104081
https://doi.org/https://doi.org/10.1016/j.engappai.2020.104081
https://www.sciencedirect.com/science/article/pii/S0952197620303389
https://www.sciencedirect.com/science/article/pii/S0952197620303389
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://doi.org/10.1145/3127502.3127511
https://doi.org/10.1145/3127502.3127511
https://doi.org/10.1145/3127502.3127511
https://doi.org/10.5120/19547-1280
https://crates.io/crates/object-space
https://crates.io/crates/rustupolis
https://doi.org/10.1109/CICN.2017.8319363
https://github.com/rust-lang/rust
https://github.com/rust-lang/rust
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code
https://doi.org/http://dx.doi.org/10.22028/D291-31946
https://doi.org/http://dx.doi.org/10.22028/D291-31946
https://arstechnica.com/gadgets/2021/03/linus-torvalds-weighs-in-on-rust-language-in-the-linux-kernel
https://arstechnica.com/gadgets/2021/03/linus-torvalds-weighs-in-on-rust-language-in-the-linux-kernel
https://www.zdnet.com/article/google-backs-effort-to-bring-rust-to-the-linux-kernel
https://www.zdnet.com/article/google-backs-effort-to-bring-rust-to-the-linux-kernel
https://www.zdnet.com/article/programming-languages-rust-for-windows-just-got-another-update
https://www.zdnet.com/article/programming-languages-rust-for-windows-just-got-another-update
https://insights.stackoverflow.com/survey/2021
https://crates.io

[43] rust-lang, crater, [Online; accessed 17. May 2022], May 2022. [Online]. Available: https:
//github.com/rust-lang/crater.

[44] S. Klabnik and C. Nichols, The Rust Programming Language (Covers Rust 2018). No Starch
Press, 2019.

[45] About objective-c, https://developer.apple.com/library/archive/documentation/
Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html,
(Accessed on 08/14/2022).

[46] Contributors to Wikimedia projects, B-tree - Wikipedia, [Online; accessed 15. May 2022],
May 2022. [Online]. Available: https://en.wikipedia.org/w/index.php?title=B-
tree&oldid=1086163784.

[47] Arc in std::sync - Rust, [Online; accessed 15. May 2022], Apr. 2022. [Online]. Available:
https://doc.rust-lang.org/std/sync/struct.Arc.html.

[48] Mutex in std::sync - Rust, [Online; accessed 15. May 2022], Apr. 2022. [Online]. Available:
https://doc.rust-lang.org/std/sync/struct.Mutex.html#method.try_lock.

[49] L. Mara, “Understanding Rust Thread Safety,” Customer Engagement Blog, Jan. 2022.
[Online]. Available: https://onesignal.com/blog/thread-safety-rust.

[50] M. A. Aleisa, A. Abuhussein, and F. T. Sheldon, “Access control in fog computing: Chal-
lenges and research agenda,” IEEE Access, vol. 8, pp. 83 986–83 999, 2020.

[51] P. Zhang, J. K. Liu, F. R. Yu, M. Sookhak, M. H. Au, and X. Luo, “A survey on access
control in fog computing,” IEEE Communications Magazine, vol. 56, no. 2, pp. 144–149,
2018.

[52] IBM Docs, [Online; accessed 15. May 2022], Mar. 2021. [Online]. Available: https://www.
ibm.com/docs/en/zos/2.2.0?topic=environment-mandatory-access-control-mac.

[53] Man-in-the-middle attack - wikipedia, https://en.wikipedia.org/wiki/Man-in-the-
middle_attack, (Accessed on 06/25/2022).

[54] Mobile critters: Part 1. man in the middle attack. by kaymera - secure calls & encrypted
messages for you and your team, https://kaymera.com/how-does-the-man-in-the-
middle-attack-work/, (Accessed on 06/25/2022).

[55] L. Shinder and M. Cross, “Chapter 12 - understanding cybercrime prevention,” in Scene of
the Cybercrime (Second Edition), L. Shinder and M. Cross, Eds., Second Edition, Burling-
ton: Syngress, 2008, pp. 505–554, isbn: 978-1-59749-276-8. doi: https://doi.org/10.
1016/B978-1-59749-276-8.00012-1. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/B9781597492768000121.

[56] A. Vishwanath, R. Peruri, and J. (He, Security in fog computing through encryption.
DigitalCommons@ Kennesaw State University Kennesaw, Georgia, USA, 2016.

[57] Advanced encryption standard (aes) - geeksforgeeks, https://www.geeksforgeeks.org/
advanced-encryption-standard-aes/, (Accessed on 07/12/2022).

[58] Aeads/aes-gcm at master · rustcrypto/aeads, https://github.com/RustCrypto/AEADs/
tree/master/aes-gcm, (Accessed on 07/12/2022).

[59] W. Vanhoof, Calculabilité et complexité : Syllabus, [accessed 15. May 2022], Mar. 2019.

[60] A Guide To Parsing: Algorithms And Terminology, [Online; accessed 16. May 2022], Mar.
2022. [Online]. Available: https : / / tomassetti . me / guide - parsing - algorithms -
terminology.

76

https://github.com/rust-lang/crater
https://github.com/rust-lang/crater
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://en.wikipedia.org/w/index.php?title=B-tree&oldid=1086163784
https://en.wikipedia.org/w/index.php?title=B-tree&oldid=1086163784
https://doc.rust-lang.org/std/sync/struct.Arc.html
https://doc.rust-lang.org/std/sync/struct.Mutex.html#method.try_lock
https://onesignal.com/blog/thread-safety-rust
https://www.ibm.com/docs/en/zos/2.2.0?topic=environment-mandatory-access-control-mac
https://www.ibm.com/docs/en/zos/2.2.0?topic=environment-mandatory-access-control-mac
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://kaymera.com/how-does-the-man-in-the-middle-attack-work/
https://kaymera.com/how-does-the-man-in-the-middle-attack-work/
https://doi.org/https://doi.org/10.1016/B978-1-59749-276-8.00012-1
https://doi.org/https://doi.org/10.1016/B978-1-59749-276-8.00012-1
https://www.sciencedirect.com/science/article/pii/B9781597492768000121
https://www.sciencedirect.com/science/article/pii/B9781597492768000121
https://www.geeksforgeeks.org/advanced-encryption-standard-aes/
https://www.geeksforgeeks.org/advanced-encryption-standard-aes/
https://github.com/RustCrypto/AEADs/tree/master/aes-gcm
https://github.com/RustCrypto/AEADs/tree/master/aes-gcm
https://tomassetti.me/guide-parsing-algorithms-terminology
https://tomassetti.me/guide-parsing-algorithms-terminology

[61] About The ANTLR Parser Generator, [Online; accessed 16. May 2022], May 2022. [Online].
Available: https://www.antlr.org/about.html.

[62] channel in std::sync::mpsc - Rust, [Online; accessed 16. May 2022], Apr. 2022. [Online].
Available: https://doc.rust-lang.org/std/sync/mpsc/fn.channel.html.

[63] Raspberry pi 4 model b specifications – raspberry pi, https://www.raspberrypi.com/
products/raspberry-pi-4-model-b/specifications/, (Accessed on 08/14/2022).

[64] Xavierberger/rpi-monitor: Real time monitoring for embedded devices, https://github.
com/XavierBerger/RPi-Monitor, (Accessed on 08/14/2022).

[65] Samsung galaxy a52s specs - phonearena, https : / / www . phonearena . com / phones /
Samsung-Galaxy-A52s_id11801, (Accessed on 08/14/2022).

[66] Jni - crates.io: Rust package registry, https://crates.io/crates/jni, (Accessed on
06/22/2022).

[67] Lux - wikipedia, https://en.wikipedia.org/wiki/Lux, (Accessed on 06/22/2022).

77

https://www.antlr.org/about.html
https://doc.rust-lang.org/std/sync/mpsc/fn.channel.html
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
https://github.com/XavierBerger/RPi-Monitor
https://github.com/XavierBerger/RPi-Monitor
https://www.phonearena.com/phones/Samsung-Galaxy-A52s_id11801
https://www.phonearena.com/phones/Samsung-Galaxy-A52s_id11801
https://crates.io/crates/jni
https://en.wikipedia.org/wiki/Lux

78

Chapter 7

Appendices

7.1 Installation of the server and interpreter

To test the tuple server, you first need to :

• Clone the repository at : https://github.com/Maxbever/LIF_Server

• Install Rust following the instructions for your OS: https://www.rust-lang.org/tools/
install

• Run the command cargo run –example multiple_server

To test the client part of the library, you need to :

• Run the command cargo run –example client

To test the interpreter, the steps to follow are as follows:

• Download the interpreter from this link: https://github.com/Maxbever/LIF_Interpreter/
tree/master/interpreter

• Open a terminal and launch the interpreter with a .lif file as argument

7.2 Grammar of LiF

7.2.1 Parser Rules

79

https://github.com/Maxbever/LIF_Server
https://www.rust-lang.org/tools/install
https://www.rust-lang.org/tools/install
https://github.com/Maxbever/LIF_Interpreter/tree/master/interpreter
https://github.com/Maxbever/LIF_Interpreter/tree/master/interpreter

1 grammar lif;
2

3 import lifWords;
4

5 /*
6 * Parser Rules
7 */
8 root:instruction*;
9

10 instruction: connect
11 | create
12 | delete
13 | attach
14 | out
15 | for_instr
16 | assignation
17 | while_instr;
18

19 connect : CONNECT server_name protocol DOUBLEDOT ip_address DOUBLEDOT port
↪→ encryption_key;

20

21 create: CREATE attribut server_name DOUBLEDOT tuple_space_name (attribut)*;
22

23 delete: DELETE attribut server_name DOUBLEDOT tuple_space_name;
24

25 attach: ATTACH server_name DOUBLEDOT tuple_space_name (attribut)* LEFT_BRACE
↪→ (instruction)* RIGHT_BRACE;

26

27 out: OUT tuple(COMMA tuple)*;
28

29 for_instr : FOR ID EQUAL operation TO LPAR operation RPAR LEFT_BRACE
↪→ instruction+ RIGHT_BRACE;

30

31 while_instr: WHILE LPAR boolean_operation RPAR LEFT_BRACE instruction+
↪→ RIGHT_BRACE;

32

33 boolean_operation: basic_boolean_operation
34 | boolean_operation AND basic_boolean_operation
35 | boolean_operation OR basic_boolean_operation;
36

37 basic_boolean_operation: right_expr EQUAL EQUAL (right_expr ||
↪→ empty_tuple)

38 | right_expr RCHEVRON EQUAL right_expr
39 | right_expr LCHEVRON EQUAL right_expr
40 | right_expr EXCLAMATION EQUAL (right_expr ||

↪→ empty_tuple);
41

42 operation : get_function
43 | len_function

80

44 | right_expr
45 | operation PLUS operation
46 | operation MINUS operation
47 | operation KLEENE operation
48 | operation SLASH operation;
49

50 get_function: tuple DOT GET LPAR right_expr RPAR;
51

52 len_function: tuple DOT LEN LPAR RPAR;
53

54 right_expr : ID | NUMBER;
55

56 assignation : VAR ID EQUAL (init_var | read | in_instr | operation);
57

58 read: READ tuple(COMMA tuple)*;
59

60 in_instr: IN tuple(COMMA tuple)*;
61

62 attribut: STRING | ID ;
63

64 encryption_key: STRING | ID ;
65

66 tuple : LPAR (tuple_content (COMMA tuple_content)*) RPAR | ID;
67

68 tuple_content : init_var | WILDCARD ;
69

70 tuple_space_name: STRING | ID ;
71

72 server_name: STRING | ID ;
73

74 init_var: NUMBER
75 | STRING
76 | CHARACTER
77 | ID
78 | tuple;
79

80 protocol : UDP | TCP;
81

82 ip_address: NUMBER DOT NUMBER DOT NUMBER DOT NUMBER;
83

84 port: NUMBER;
85

86 empty_tuple : LPAR RPAR ;

7.2.2 Lexer Rules

1 lexer grammar lifWords;
2

81

3 /*
4 * Lexer Rules
5 */
6

7 // Words
8 CONNECT : ’connect’;
9 ATTACH : ’attach’;

10 CREATE : ’create’;
11 DELETE : ’delete’;
12 OUT : ’out’;
13 READ : ’read’;
14 IN : ’in’;
15 TCP : ’tcp’;
16 UDP : ’udp’;
17 VAR : ’var’;
18 GET : ’get’;
19 LEN : ’len’;
20 FOR : ’for’;
21 TO : ’to’;
22 WHILE : ’while’;
23 AND : ’and’;
24 OR : ’OR’;
25

26 // Char
27 LPAR: ’(’;
28 RPAR: ’)’;
29 COMMA: ’,’;
30 QUOTE:’\’’;
31 SLASH : ’/’;
32 BACKSLASH:’\\’;
33 LBRACKET:’[’;
34 RBRACKET:’]’;
35 DOT:’.’;
36 DOUBLEDOT : ’:’;
37 SEMICOLON : ’;’;
38 KLEENE : ’*’;
39 WILDCARD: ’_’;
40 EQUAL : ’=’;
41 PLUS: ’+’;
42 MINUS: ’-’;
43 RIGHT_BRACE : ’}’;
44 LEFT_BRACE : ’{’;
45 LCHEVRON : ’<’;
46 RCHEVRON : ’>’;
47 AMPERSAND : ’&’;
48 EXCLAMATION : ’!’;
49

50 ID: LETTER (LETTER | DIGIT | WILDCARD)* ;
51 fragment LETTER: ’A’..’Z’ | ’a’..’z’ ;

82

52 fragment DIGIT: ’0’..’9’ ;
53

54 //Types
55 NUMBER: (DIGIT)+;
56 STRING : DOUBLEQUOTE(LBRACKET|BACKSLASH|COMMA|NEWLINE|RBRACKET|ID)+

↪→ DOUBLEQUOTE;
57 CHARACTER : QUOTE (NUMBER|LETTER|DOUBLEDOT|DOT|SLASH|BACKSLASH|SEMICOLON)

↪→ QUOTE;
58

59 // Comments -> ignored
60

61 LINECOMMENT : (SLASH SLASH .*? (NEWLINE|EOF)) ->skip;
62 COMMENT: (SLASH KLEENE .*? KLEENE SLASH) -> skip;
63

64 // Whitespaces -> ignored
65

66 NEWLINE: ’\r’? ’\n’ -> skip ;
67 WS: [\t]+ -> skip ;

83

	Introduction
	Context
	Objective of the thesis
	Outline of the thesis

	State of the art
	Introduction
	Linda coordination language
	Generative communication
	Linda
	Coordination language

	Fog computing continuum
	Fog computing paradigm
	Edge computing paradigm
	Future challenges of fog computing

	Coordination in the fog
	Concluding remarks

	Coordination language in the fog
	Introduction
	Criteria for a tuple space implementation in the fog continuum
	Usable on resource constrained devices
	Scalability to Large Infrastructure
	Data securities properties
	Time performance
	Data persistency
	Data placement policies

	Existing implementations
	pSpace
	Rustupolis

	Concluding remarks

	Implementation
	Introduction
	Rust
	Advantages of Rust
	Explanation of the key mechanisms of Rust
	Rust in the IoT devices

	Code of Rustupolis in details
	Tuple
	Tuple space - Store
	Match - Space
	Rustupolis in the fog computing

	Implementation of the server part of the library
	Make the tuples servers available on the network and adding protocols
	System of access right
	Encryption of communication

	Implementation of an interpreter for a language client
	LiF language
	Grammar of the language
	Syntax of the language
	Implementation of the language
	Implementation of the client part of the library

	Performance test
	Performance on the Raspberry Pi
	Performance on Android
	Performance in time

	Concluding remarks

	Applications
	Android Use case
	Traffic lights use case

	Conclusions
	Summary of contributions
	Assessment of contributions
	Future work

	Appendices
	Installation of the server and interpreter
	Grammar of LiF
	Parser Rules
	Lexer Rules

