
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

A Comparison of an Adaptive Self-Guarded Honeypot with Conventional Honeypots

Touch, Sereysethy; Colin, Jean-Noël

Published in:
Applied Sciences

DOI:
10.3390/app12105224

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link to publication
Citation for pulished version (HARVARD):
Touch, S & Colin, J-N 2022, 'A Comparison of an Adaptive Self-Guarded Honeypot with Conventional
Honeypots', Applied Sciences, vol. 12, no. 10, 5224. https://doi.org/10.3390/app12105224

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 24. Apr. 2024

https://doi.org/10.3390/app12105224
https://researchportal.unamur.be/en/publications/6fc0b6c6-2ab5-458f-9845-402d2f9b5b7b
https://doi.org/10.3390/app12105224

����������
�������

Citation: Touch, S.; Colin, J.-N.

A Comparison of an Adaptive

Self-Guarded Honeypot with

Conventional Honeypots. Appl. Sci.

2022, 12, 5224. https://doi.org/

10.3390/app12105224

Academic Editors: Thi-Thu-Huong

Le and Howon Kim

Received: 18 April 2022

Accepted: 19 May 2022

Published: 21 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A Comparison of an Adaptive Self-Guarded Honeypot with
Conventional Honeypots

Sereysethy Touch * and Jean-Noël Colin

NaDI Research Institute, University of Namur, 5000 Namur, Belgium; jean-noel.colin@unamur.be
* Correspondence: sereysethy.touch@unamur.be

Abstract: To proactively defend computer systems against cyber-attacks, a honeypot system—
purposely designed to be prone to attacks—is commonly used to detect attacks, discover new
vulnerabilities, exploits or malware before they actually do real damage to real systems. Its usefulness
lies in being able to operate without being identified as a trap by adversaries; otherwise, its values
are significantly reduced. A honeypot is commonly classified by the degree of interactions that they
provide to the attacker: low, medium and high-interaction honeypots. However, these systems have
some shortcomings of their own. First, the low and medium-interaction honeypots can be easily
detected due to their limited and simulated functions of a system. Second, the usage of real systems
in high-interaction honeypots has a high risk of security being compromised due to its unlimited
functions. To address these problems, we developed Asgard an adaptive self-guarded honeypot,
which leverages reinforcement learning to learn and record attacker’s tools and behaviour while
protecting itself from being deeply compromised. In this paper, we compare Asgard and its variant
Midgard with two conventional SSH honeypots: Cowrie and a real Linux system. The goal of the
paper is (1) to demonstrate the effectiveness of the adaptive honeypot that can learn to compromise
between collecting attack data and keeping the honeypot safe, and (2) the benefit of coupling of the
environment state and the action in reinforcement learning to define the reward function to effectively
learn its objectives. The experimental results show that Asgard could collect higher-quality attacker
data compared to Cowrie while evading the detection and could also protect the system for as long
as it can through blocking or substituting the malicious programs and some other commands, which
is the major problem of the high-interaction honeypot.

Keywords: adaptive honeypot; self-guarded honeypot; reinforcement learning; Q-learning; conven-
tional honeypot

1. Introduction

Cyber-attacks are probably one of the most important security threats that we are
facing today. According to the Global Threat Intelligence Report 2021 [1], the attacks on
finance, manufacturing and healthcare have increased significantly and they accounted
for 62% in 2020 of the global attacks. There is a constant change in how an attack evolves
in which we see new malware and trojans with new functions that try to exploit new and
existing vulnerabilities, coin miners that exhaust the computing power and ransomware
that target the bank sectors, among others. Understanding how those malware and trojans
behave or finding the newly exploited vulnerabilities in a computer system or a loophole in
the network is important, as they allow us to create a new signature for intrusion detection
systems to detect them or fix these vulnerabilities.

To uncover these, a honeypot [2] is a decoy system that security researchers and pro-
fessionals deploy on the network for the purpose of luring the attackers into attacking
it to protect the real system and to collect intelligence data. However, these purposes
can be achieved only if it can operate without being identified as a trap by adversaries;
otherwise, its values are significantly reduced or completely diminished. Honeypots can

Appl. Sci. 2022, 12, 5224. https://doi.org/10.3390/app12105224 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12105224
https://doi.org/10.3390/app12105224
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-4754-7671
https://doi.org/10.3390/app12105224
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12105224?type=check_update&version=2

Appl. Sci. 2022, 12, 5224 2 of 23

be classified by their degree of interaction that they provide to the attackers: low, medium
and high-interaction honeypots [3–5].

Low-interaction honeypots (LiHP) simulate a limited function of a service or appli-
cation just to receive the connection and provide very limited responses. On the other
hand, medium-interaction honeypots (MiHP) are like LiHP, but they offer more functions
to engage with attackers in a more convincing way. These low and medium-interaction
honeypots are renowned for their simple implementation, easy deployment and main-
tenance and have a very low security risk because of their simulation nature. However,
their downside is that they can be easily fingerprinted by attackers as a consequence of
their limited and simulated functions. Contrarily to the LiHP and MiHP, high-interaction
honeypots (HiHP) provide virtually unlimited functions by utilising a real operating system
or a real application, which can capture higher-quality intelligence because the attacker
can have access to all the functions of a real system. Despite these advantages, this type of
honeypot is known to be difficult to deploy and maintain, and, most importantly, it carries
a higher risk of the security being compromised.

To address the aforementioned shortcomings, we developed Asgard (The system
was originally named Asguard, we changed it to Asgard to match the name of another
system, Midgard, which we also developed) (Ref. [6]), which falls into a new class of
honeypot called adaptive honeypots. These systems use machine learning techniques such
as reinforcement learning (RL) [7] to learn through interaction to achieve their objective.
RL is about an agent that learns to decide by taking action in its own environment, which
is represented by its state. At each interaction, the agent receives a numerical value known
as a reward from the environment that allows it to evaluate its own action. The objective of
the agent is to find a strategy that can maximise its long-term accumulated rewards.

Asgard is an RL agent that uses actions such as allow, block and substitute to interact
with its environment, which is represented by the Linux commands from attackers, to
collect the attack data. However, instead of allowing the attackers to fully exploit the system
after it is compromised, Asgard is built to block or substitute the execution of programs
deemed malicious to limit the degree of being compromised. Asgard is designed to learn
to balance between two objectives: (1) collect the attacker’s tools and (2) protect itself from
being deeply compromised.

In this paper, we compare Asgard and its variant Midgard [6] with two conventional
SSH [8] honeypots: Cowrie [9] and a real Linux system. Midgard shares the same objectives
as Asgard’s; their difference lies in the way their reward functions are defined, which
are used to train the RL agent during the learning process: Asgard uses the environment
state, which is the Linux command and the action taken by the agent to define its reward
function, while Midgard only uses the environment state in its reward function. Cowrie [9]
is a MiHP that can emulate the SSH and Telnet protocols, and it is widely used to emulate
Linux servers and IoT devices [10–12] to capture the attack on those systems. It allows
attackers to log in and execute some Linux commands through a fake shell.

The goal of the paper is (1) to demonstrate the effectiveness of Asgard, which can
collect the attacker’s tools while evading detection, and keep the system safe for as long as
it can through blocking or substituting the execution of malicious programs, and (2) the
benefit of using the environment state and the action in RL to define the reward function
to allow the agent to effectively learn its objectives. Our contributions in this manuscript
are threefold:

• We describe the adaptive self-guarded honeypot Asgard that uses the environment
state and action to define its reward function in the reinforcement learning problem
that allows it to achieve its defined objectives.

• We describe its design and its implementation using a proxy-based architecture, which
allows Asgard to use a real system as a honeypot.

• We compare the performance of Asgard from a real deployment with Midgard and
two other conventional honeypots: Cowrie and a real Linux system.

Appl. Sci. 2022, 12, 5224 3 of 23

The rest of the paper is organised as follows: background information and related
work are presented in Sections 2 and 3, respectively. Section 4 describes the honeypot
systems used in our experiments, and their design and implementation are described
in Section 5. Section 6 presents the experimental results and lessons learned. Finally, a
conclusion and future works are provided in Section 7.

2. Background

This section introduces the reinforcement learning approach, its formulation and
learning methods. We also describe how an agent learns to trade off between exploration
and exploitation. Q-learning is also presented; it is the algorithm that is used by our
systems. We also present how the attack data from a honeypot can be used to build a state
machine to derive the attacker’s behaviour.

2.1. Reinforcement Learning

Reinforcement learning is a field of machine learning, but unlike the supervised and
unsupervised learning techniques, it involves an agent that learns to make decisions by
interacting with its own environment through the trial-and-error paradigm [7]. To allow
the agent to learn, the environment needs to return a value, known as a reward, to the agent
after it takes action. Based on this reward, the agent needs to find a strategy to maximise
its accumulative rewards in the long term. The reward definition should represent the
objective that we want the agent to learn. For example, if we want to teach the agent to
learn how to park a car, the agent will be rewarded positively when it correctly parks
the car, but it will be rewarded negatively when it fails. This learning process has been
successfully used in various applications, such as the AlphaGo Zero system that beat a
human in the game of Go after learning without human knowledge, just by playing against
itself [13].

2.1.1. Markov Decision Processes

The RL problem is modelled by Markov Decision Processes (MDP), as shown in
Figure 1. At a time t, facing the environment, which is represented by a state St, the agent
selects and executes an action At. In return, it receives a reward Rt+1 ∈ R that allows it to
evaluate its decision making. Subsequently, the agent now receives a new state St+1, and
again, selects a new action At+1, then receives a new reward Rt+2, and continues, again
and again, improving its behaviour [7]. The Markov property assumes that the next action
only depends on the current state but not any other previous state.

Agent

Environment

A
t

action

S
t

state

R
t+1

reward

Figure 1. Reinforcement Problem–Interaction between agent and its environment.

Formally, an MDP is a tuple < S, A, P, R > where

• S is a (finite) set of states s ∈ S, which represents the environment,
• A is a (finite) set of actions a ∈ A that the agent can perform,
• Pa

ss′ is the probability of reaching state s′ from state s after taking action a

Pa
ss′ = P(St+1 = s′|St = s, At = a) (1)

• Ra
s is a reward function that the agent receives when it is in state s and is taking an

action a.

Appl. Sci. 2022, 12, 5224 4 of 23

Given this MDP, through the interactions between the agent and the environment,
it produces a sequence of interactions called a trajectory which consists of a sequence of
states, actions and rewards: S0, A0, R1, S1, A1, R2, S3, . . . [7]. The goal of the agent is to find
a policy π to maximise its total reward, called a return G. Each received reward is not
equally valued because the agent can value the immediate reward more compared to the
delayed rewards that the agent receives far in the future. Thus, the return G is the total
discounted rewards from time-step t, which is defined as

Gt = Rt+1 + γRt+2 + =
∞

∑
k=0

γkRt+k+1 (2)

where γ ∈ [0, 1] is a discount factor.
The experiences can be derived from episodic tasks or continuous tasks. An episodic

task has a start state and a terminating state, while a continuous one has no terminating
state [7]. The agent uses these experiences to evaluate and improve its current policy.

In most of the problems of reinforcement learning, an agent learns to estimate the state-
value v(s) or a state-action value q(s, a), also known as the q-value. These values provide an
insight into the future rewards that the agent can receive. These rewards depend on how
the agent decides to choose an action in a given state. The value of state and state-action
following a policy π are denoted, respectively, as vπ(s) and qπ(s, a). The policy that allows
the agent to maximise their state value is called an optimal policy, denoted as π∗ [7].

We differentiate two groups of learning methods: model-based and model-free methods.
The model-based method requires the model of the environment to be completely defined
and available to search for an optimal policy, whereas the model-free method relies only on
the experiences through interacting with its environment and collecting rewards to find the
optimal policy. Among these algorithms, we also distinguish two types of learning policy:
on-policy and off-policy. The former describes the group of algorithms that use their current
learned policy to improve its own policy; whereas the latter exploits a different policy to
improve its current policy [7].

2.1.2. Exploration and Exploitation Trade-Off

The early stage of the learning process of the agent is very important; its success relies
heavily on acting randomly by trying some actions, also known as exploration and trying
the best-learned actions so far, also known as exploitation to get more rewards. As a result,
the agent has to balance between exploration and exploitation [7] because if the agent keeps
exploring forever or always chooses the known best action, it will probably never find an
optimal policy. One of the random policies that is widely used is ε-greedy, in which we
initially choose a very small probability epsilon that the agent randomly selects an action,
while the agent acts greedily by selecting the best action based on its current learned policy
for the probability of 1− ε. During the learning process, the value of ε has to be gradually
decayed such that the agent increasingly favours its learned policy by choosing the best
action and eventually converges to the optimal policy.

2.1.3. Q-Learning

Q-learning is the learning algorithm that is used to estimate the q-value of the state-
action pair to allow the agent to be given a state to decide on action. This algorithm was
theorised by Watkins et al. [14]; it is an off-policy model-free algorithm that is based on a
temporal difference (TD) [7]. The TD method updates the estimates of value functions as
soon as there is new information available using an error signal called a TD error found
between different time steps. In fact, Q-learning is a TD(0) because its update is made after
one time step. The update of the q-value in a state s while taking an action a, observing a
reward r and reaching a state s′ by acting greedily onward is given as follows

q(s, a) = q(s, a) + α

[
r + γ max

a′
q(s′, a′)− q(s, a)

]
(3)

Appl. Sci. 2022, 12, 5224 5 of 23

where α ∈ [0, 1] is the learning rate, and γ ∈ [0, 1] is the discount factor. Watkins et al. [14]
have proved that if the agent keeps visiting all state-actions indefinitely, it will converge to
an optimal policy. To help the agent make a trade-off between exploration and exploitation
of its actions, we use an ε-greedy policy (cf. Section 2.1.2). Algorithm 1 gives a pseudo code
of the Q-Learning.

Algorithm 1: Q-learning algorithm [7,14]

Initialise q(s, a) for all states s and actions a;
foreach episode do

Initialise state s;
repeat

Choose a from s using ε-greedy policy derived from q;
Take action a, observe r, s′;
q(s, a) = q(s, a) + α[r + γ maxa′ q(s′, a′)− q(s, a)];
Replace s with s′;

until s is terminal;

2.2. Attacker’S Behaviour

Ramsbrock et al. examined attack data from a Linux honeypot and built a state
machine from the collected Linux commands to profile the attacker’s behaviour [15]. To
construct the state machine, they defined seven states as follows:

• CheckSW—‘Check software configuration’: this describes commands that the at-
tacker uses to gather more information about the system’s software and its users.
The commands in this state are w, id, whoami, last, ps, cat /etc/*, history, cat
.bash_history, php -v.

• Install—‘Install a program’: this describes the software installed or the process of in-
stalling a new software by an attacker. For example, an attacker can unarchive a down-
loaded file, followed by other filesystem related commands, such as copying, moving
and deleting files. These commands can be tar, unzip, mv, rm, cp, chmod, mkdir.

• Download—‘Download a file’: this describes the commands used to download a
remote file. These commands can be wget, ftp, curl, lwp-download.

• Run—‘Run a rogue program’: this describes when the attacker runs a program that
was downloaded. These kinds of commands can be detected when the attacker
precedes ‘./’ in front of the program name.

• Password—‘Change the account password’: this describes when the attacker wants to
change the password of an account.

• CheckHW—‘Check the hardware configuration’: this describes commands that enable
an attacker to gather more information about the system’s hardware.

• ChangeConf—‘Change the system configuration’: this describes the operation of at-
tackers that alters the system state by changing the environment variable, terminating
running programs, modifying files, etc. The commands included in this state are
export, PATH=, kill, nano, pico, vi, vim, sshd, useradd, userdel.

Rambsbrock et al. also suggested the state no-op, which corresponds to the commands
that have no effects on the system, and they are cd, ls, bash, exit, logout, cat. The rest of
the other commands are classified as unmatched, due to a typographical error.

3. Related Work

The history of honeypot usage can be traced back to the 1990s, where Cheswick
described a story about a cracker known as Berferd that attacked his Internet gateway from
a stolen account [16]. Cheswick had an idea of adding some fake services to a computer
that had no production purpose rather just to confuse and jail his uninvited guest. Later, it
was only in 2001 that L. Spitzner [2] properly defined ’a honeypot is a security resource
whose value lies in being probed, attacked, or compromised’. Besides the classification

Appl. Sci. 2022, 12, 5224 6 of 23

of honeypots by their level of interactivity as described in the Introduction (cf. Section 1),
honeypots can also be classified by their purpose, their design or their distribution.

Cowrie [9] is an open-source project that is maintained by Michel Oosterhof, its code
is based on the system called Kippo [17], and they both are written in Python. Cowrie
can simulate SSH and Telnet servers and can be configured to simulate different versions
of Linux distributions. Cowrie accepts an authentication mechanism via a password file,
in which we can define a password for a username or a wildcard for any passwords
and/or usernames. One of the remarkable features of Cowrie is that it offers an almost
indistinguishable interactive bash shell from the real Linux bash shell that allows the
attacker to execute some Linux commands. Once authenticated, the attacker can explore
the Linux file system by listing its directory, viewing files, and performing other file system-
related commands, such as cp, mv, rm, and if they want to change the password of the
compromised account, they can run the command passwd interactively. Furthermore,
the attacker can also view the hardware configuration by running the command uname,
check its uptime, examine its network configuration via ifconfig, see how many other
users are currently online, read all the running processes and download files from the
Internet by using the commands wget or curl. However, Cowrie can be easily detected,
Surnin et al. [18] showed in their detection models, despite invalid commands input,
Cowrie always returns zero as an exit status. Vettel et al. [19] also demonstrated that it
can be fingerprinted at the transport layer, while Morishita et al. used a signature-based
detection to identify Cowrie [20].

Wagener et al. [21] was the first to introduce the adaptive honeypot that used rein-
forcement learning [7] to dynamically change its behaviour to engage with the attackers.
They developed a honeypot called Heliza [22], which is a modified and vulnerable Linux
server that can intercept system calls to control the execution of Linux commands. After
the attacker broke into the system through the SSH service, they could request to execute
a command, Heliza could decide whether the command should be to execute or blocked
by returning a message of ‘command not found’; it could also choose to substitute it by
returning a predetermined result. Another action is insult, it is used to learn the identity of
the intruder. To drive this decision-making process, Heliza used a reinforcement learning
algorithm called SARSA, a model-free and on-policy method [7] similar to Q-learning, to
find its strategy to achieve its objective. Heliza can be set to fulfil one of these two objectives:
(1) to collect the attacker’s tools, or (2) to waste the attacker’s time. Each objective has its
own reward function in which only the environment state, which is the Linux, commands
was used. The authors showed that to achieve the first objective, the command wget, sudo
and the newly downloaded programs should be allowed. For the second objective, the
commands wget and tar should be substituted with an error message, and the command
sudo should be blocked.

Inspired by Heliza, Pauna et al. developed RASSH [23] and QRASSH [24], but they
replaced the Linux system with Kippo [17] and later with Cowrie [9], its successor. In addition
to the four actions of Heliza, a new action, delay, was added to slow down command executions.
To make decisions on commands, RASSH also used the same SARSA algorithm [7], while
QRASSH used a Deep Q-Networks (DQN) [25], a variation of Q-learning by applying a
deep-learning approach. RASSH, however, could only achieve the objective of collecting the
attacker’s tools by using the same reward function as Heliza’s. For QRASSH, it had two
different reward functions, namely, simple and complex. However, only the simple reward
could be learned while the complex one required more time to train.

More recently, Dowling et al. used the same algorithm, SARSA, as Heliza and RASSH
to build their honeypot system based on Cowrie to deal with automated malware. Its
objective is to hide its identity from automated malware to increase the command tran-
sitions. In their system, they only used a three-action set: allow, block and substitute, and
simplified its reward function by rewarding the agent for any command executions [26].
The authors showed that their system could collect four times more command transitions
than a high-interaction honeypot.

Appl. Sci. 2022, 12, 5224 7 of 23

Although these adaptive systems paved the way for the development of smart honeypots,
they also suffer the same problems mentioned in the introduction. The system, like Heliza,
can be considered a HiHP because it also uses the real Linux system as a honeypot as a result,
it has a high risk of security. On the other hand, the systems that rely on Cowrie, which is just
an emulator of a Linux server, can be easily detected [18–20] as previously described.

4. Description of Honeypot Systems

In this section, we will describe the honeypot systems that are used in our study to
compare their performances: our adaptive self-guarded honeypots, namely Asgard and its
variant Midgard [6]. These systems pose as a vulnerable Linux system that attackers can
easily compromise to gain remote access to through the SSH protocol.

4.1. Definitions

For a simple and concise description in the next sections and throughout the rest of
this paper, we will define the following terms.

• An episode is defined as an SSH connection that starts from the moment that the
attacker connects to the honeypot until the moment that they disconnect from it. An
attack or an attack episode refers to an episode that the attacker uses either (1) to execute
commands or (2) to perform TCP/IP port forwarding. As we only focus on the former
attack, as such, an episode or an episode of attack only refers to the attack of the command
executions unless it is explicitly stated otherwise. It is also possible that we use the
terms episode and connection interchangeably to avoid repeating the same words.

• An attack sequence refers to the sequence of commands that an attacker can request to
execute during an attack. Different attacks can share the same attack sequence. An
attack sequence is said to be unique if it belongs to a single attack, but if an attack
sequence is shared by multiple attacks, for example, two attacks, we will refer to it as
an attack sequence shared by 2 attacks. So on and so forth.

4.2. Asgard: Adaptive Self-Guarded Honeypot

Asgard is our adaptive honeypot system that we developed in [6], which distinguishes
itself from the other adaptive honeypots because rather than allowing the attackers to
freely attack and compromise the system, it learns to limit the risk of being compromised
by blocking or substituting the execution of programs deemed malicious. The system
is disguised as a vulnerable and fully functional Linux system for this reason, it is also
considered as a high-interaction honeypot. The vulnerable aspect of this system is to allow
easy remote access through the SSH protocol by using a brute force or a dictionary attack.
After they gain access to the system, they could open an interactive shell session or simply
request to execute Linux commands, such as in any normal Linux system. Whenever an
attacker enters a command, the system intercepts and analyses it, and decides to either
allow, block or substitute the execution of that command. To learn to decide on the action,
Asgard is an RL agent that observes its environment state, which consists of the entered
command only, and learns to take actions.

4.2.1. Environment

The state of the environment is defined as the attacker’s command input. In a typical
attack, attackers will input a sequence of these commands, and each command can be
mapped to one of the following sets of commands:

• L: a set of basic shell commands and some other installed programs during the initial
system setup, L = {cd, pwd, echo, cp, rm, . . .},

• D: a set of download commands that can be used to download files or programs from
external servers: D = {wget, curl, . . .},

• C: a set of custom commands that are not originally available in the system and have
to be downloaded from external servers, all commands of this type will be mapped to
an element custom, hence C = {custom},

Appl. Sci. 2022, 12, 5224 8 of 23

• U: a set of other inputs that cannot be mapped to any other above set; they can be an
empty string, ENTER keystroke, . . . , hence U = {unknown}.
The final state of the environment is

S = L ∪ D ∪ C ∪U (4)

4.2.2. Actions

Asgard can take three actions: (1) allow is to execute the command, (2) block is to deny
its execution and (3) substitute is to fake its execution. The reason is that block can make the
attacker change their attack behaviour or have recourse to different commands when they
are not available on the system, which will result in more command transitions. Another
reason is that block can protect the honeypot from being compromised by preventing
the execution of malicious commands. Substitute can also increase command transitions
facing new or unknown programs. However, the action insult from Heliza [22] is not
included because insulting an intruder seems like an obvious way to reveal its own identity.
Furthermore, delay from RASSH [23] is not included either, since delaying the execution of
a simple or known command can be used to fingerprint the system.

4.2.3. Reward Function

Asgard is designed to achieve two objectives: (1) to capture attacker’s tools via download
commands, and (2) to limit the risk of being compromised by preventing the execution of
custom commands because the attackers generally resort to their downloaded custom tools
to further compromise the honeypot and use it for their advantage. These objectives are
rather opposing to the way a honeypot is normally intended. The reason is that we believe
that once the honeypot is fully compromised and participates actively in the attack, its value
is no longer significant. Asgard differentiates itself from the existing honeypots [22,23,26]
because its reward function depends on (1) the environment state and (2) the action, while
other systems only use the environment state in their reward functions. Asgard’s reward
given at a time-step t is defined as the piecewise function below:

ra(st, at) =

1 if st ∈ D and at ∈ {allow}
−1 if st ∈ C and at ∈ {allow}
0 otherwise

(5)

The first objective can be achieved by rewarding the agent when it allows the attackers
to download their programs. That is, when an attacker transitions to a download command
D, and the action taken is allow, the agent is rewarded with 1. For the second objective,
however, the agent gets punished instead when it chooses to allow the execution of the
malicious programs. Consequently, when the attacker transitions to a custom command C
and the agent selects allow as the action, it receives −1.

4.3. Midgard: A Variant of Asgard

We developed a variant of Asgard to test a different reward function and thus orient
the agent toward a different behaviour. Midgard, whose objectives are the same as Asgard’s,
but the main difference is that its reward function only depends on the environment state [6];
as such, its reward function is defined as follows:

rm(st, at) =

1 if st ∈ D
−1 if st ∈ C
0 otherwise

(6)

When the attacker transitions to a download command D, the agent is rewarded with
1 regardless of any actions taken by the agent, and when the attacker transitions to a custom
command C, it is given −1 for any actions.

Appl. Sci. 2022, 12, 5224 9 of 23

5. Design and Implementation

In this section, we discuss the design and implementation of our honeypot, based on a
proxy-based architecture that addresses the shortcomings of MiHP and the HiHP.

5.1. Proxy-Based Architecture

Asgard and Midgard were developed using a proxy architecture [6], as can be seen in
Figure 2. In this architecture, our honeypot system is the proxy system that poses as the
SSH server to the attacker and also the SSH client to the real OpenSSH server [27]. As such,
all the communication between the attacker and the real system can be captured, logged
and modified by the proxy system.

OpenSSH

Server

Proxy Docker

SSH

Server

SSH

Client

Attacker

Figure 2. The architecture of proxy-based honeypots.

Even though the usage of a proxy is not new, as it has been used to detect web attacks
or to defend web applications by using deceptive techniques [28–31], it has never been
used in the SSH protocol to intercept and control the communication. The proxy-based
architecture has several advantages: first, it allows a clear separation between our honeypot
and the target system that we want to use as a honeypot. Secondly, the use of the real
system behind the proxy allows us to avoid (1) its modification, which is necessary for
the HiHP, and (2) the usage of an emulator like in MiHP that provides limited functions.
Last but not least, using a container system such as Docker (https://www.docker.com/,
accessed on 15 April 2022) to run the SSH server can contain the risk of malicious attacks.

5.2. Interaction between the Attacker and the Honeypot

Figure 3 shows the UML sequence diagram that illustrates the interaction between the
attacker and Asgard as well as Midgard. The interaction starts when an attacker initiates a
secure connection to the SSH proxy. After a connection is established, the attacker can try to
log in by using a username and password. Once the authentication is successful, the attacker
can send commands to the proxy. The proxy will examine the request and use it to query
an action from the decision-making module, which implements the learning algorithm as
described in Algorithm 1. If the action is allow, then the command will be forwarded for
execution in the Linux container system. After the command is executed, its result is sent
back to the proxy, which returns it back to the attacker. Alternatively, if the action is block, the
proxy will return an error message ‘command not found’, and, finally, if the action is substitute,
the command will not be executed, but the proxy will fake its execution by returning an
empty message, which indicates that the command was successfully executed. After the
command is executed, the execution result is sent back to the proxy to process and filter out
some information before it is returned back to the attacker.

https://www.docker.com/

Appl. Sci. 2022, 12, 5224 10 of 23

Attacker SSH proxy Linux SSH Shell

Request SSH connection

Connection established

Request command execution

[action = allow]
Execute command

Return execution result

Parse commands

Process result

Filter result

Return command exec. result

[action = block]
Return error message

alt

User Authentication

Authentication succeeded

Decision Maker

Return action

Query action

Figure 3. UML sequence diagram of the interaction between the attacker and Asgard/Midgard.

5.3. Linux Command Parsing

As shown in the sequence diagram Figure 3, after the request of the command ex-
ecution, this command can be transmitted entirely to the target system and let the real
shell handle it. In a normal execution flow, the shell will break it down into tokens of
words and operators by obeying the quoting rules of the shell [32]. These tokens have to
be parsedto construct a complete abstract syntax tree (AST) [33] that allows the shell to
understand how to interpret them. The submitted command can be: a simple command
optionally followed by arguments, compound commands (if, for, . . .), a command with
a redirection, a piped command, etc. For example, if it is a built-in shell command (e.g.,
cd, break, exit, etc.), it will be executed by the shell itself, otherwise, a new process is
forked to execute an external command. If there is a redirection of the standard output
of a command, the shell has to create a pipe and link it to the redirected file accordingly.
For example, this command ls -lh $(which ls) was seen as a way to detect the Cowrie
system (as the command substitution was not implemented in the old version of Cowrie),
and its AST representation is shown in Figure 4. This AST is made up of a command node
as a root node, which consists of three child-nodes: a word node ls, a word node -lh
and a command substitution node. The child-node of the command substitution is also a
command node comprised of a word node which and a word node ls. Our objective is to
take action on each individual command that can be made up of the original command. As
a result, the parsing has to be carried out by the proxy system to produce an AST, and from
that, it derives a list of commands that can be analysed and decided one by one.

Appl. Sci. 2022, 12, 5224 11 of 23

CommandNode

WordNode WordNode CommandSubstitution

CommandNode

WordNode WordNode

ls -lh

which ls

Figure 4. An AST represents a command ‘ls -lh $(which ls)’ that consists of a command substi-
tution ‘$(which ls)’.

5.4. SSh Proxy

The SSH proxy module is developed by adding the proxy module and the decision-
making module to the standard Cowrie honeypot [9]. Actually, this proxy can be im-
plemented by any existing SSH library, such as Paramiko (https://www.paramiko.org/,
accessed on 15 April 2022) or libssh (https://www.libssh.org/, accessed on 15 April 2022),
but for convenience reasons, we used Cowrie as a base system as it already has a usable
authentication service for an SSH server and also implements some useful functions, such
as log and file downloads. The proxy module consists of an SSH server of Cowrie and
an SSH client that is based on the Python Twisted Conch (https://twistedmatrix.com/,
accessed on 15 April 2022) used by Cowrie. The decision-making module is implemented
in Python3.

5.5. Decision-Making Module

The decision-making module provides two functions: (1) to update the agent’s model
given an episode and (2) to query the action given the state of the environment. The update
function implements a slightly different version of Algorithm 2, as the model is updated
online and for a single episode rather than a list of episodes in a batch mode. The second
function is the action selection, which follows a ε-greedy policy (cf. Section 2.1.2) derived
from the current q-values, and its algorithm is as follows:

Algorithm 2: Action selection using the ε-greedy policy to balance between
exploration and exploitation

Input: q function, s an environment state representing the command, actions a list
of actions, ε;

r = random(0,1);
if r < ε then

action = random(actions);
return action;

else
action = argmaxaq(s, a);
return action;

5.6. Command Execution

To parse the shell command, we integrate bashlex [34], a Python library, which is a
Python port of the parser used internally by GNU bash. From the AST that represents
the input command string from the attacker, we produce a list of command objects that
describe the type of the command, the command name, its arguments, etc. After that, for

https://www.paramiko.org/
https://www.libssh.org/
https://twistedmatrix.com/

Appl. Sci. 2022, 12, 5224 12 of 23

each command in the command list we query the decision module about the action, which
can be allow, block or substitute, and then execute the command based on the returned action.
Algorithm 3 illustrates the process of executing a command.

Algorithm 3: Command execution

Input: a command string;
Output: result of the command execution;
ast = obtain from bashlex;
command_list = transform(ast);
foreach command in command_list do

action = decision_module(command);
result = execute_command(action, command);

6. Experimental Results

In this section, we will describe the performance of each system based on the attack
data obtained from their real deployment and what we learned from this experiment.

To evaluate the performance of each system, we use the following criteria:

• The quantity and the quality of the attack data received: the number of attack episodes,
the number of commands, which include the minimum, maximum and average
number of commands executed per episode, and the number of attack sequences;

• The number and type of collected files;
• The attacker’s behaviour;
• The q-values, which show how each adaptive honeypot learns its objectives.
• The number of incidents that each system was reported to participate in the attacks;
• The number of human attackers that each system lures into attacking it.

Before we present our experimental results, first, we will describe how the honeypot
systems were set up and deployed and also how some hyperparameters were chosen to
train both Asgard and Midgard systems for the experiment.

In addition to our honeypot systems Asgard and Midgard, we also set up a high-
interaction honeypot, which we named Aster, using a plain, standard Linux server behind
a proxy system similar to the Asgard’s and Midgard’s; however, in the Aster case, the proxy
system is only used to authenticate users and record all communications. Aster is also
vulnerable to the same brute force attack. We deployed each of these three systems, Asgard,
Midgard and Aster, using two separate Docker containers: one for the proxy system and
one for the OpenSSH server, on three different virtual machines running Linux Debian 10.
The OpenSSH server was built from the official Linux Debian 10 docker image. The fourth
platform, Cowrie, was also deployed as a Docker container on another virtual machine.
We modified its default configuration, such as hostname, OpenSSH version and kernel
information, to match that of the host system. To train Asgard and Midgard, these are the
values of the hyperparameters that were used: ε = 0.5 and its decay rate of 0.99984 for each
update of the model—which amounts to 10K updates—until it reaches the minimum value
of 0.1, α = 0.01 and γ = 0.99. The systems were deployed for around 100 days from early
11/2021 until early 03/2022 on the public university network. The systems were stopped
and restarted sporadically.

At the initial deployment, the systems were allowed to run at a maximum speed
allocated for the virtual machines, but after noticing that our honeypots were frequently
compromised and exploited to mine cryptocurrencies, we limited their CPU consumption
as well as the network bandwidth. In each attack episode, we recorded the information
related to the attack, such as network connection, session number, key exchange algorithms,
SSH client version, connection time, username, password, entered commands, TCP/IP Port
Forwarding requests [8] and payloads, connection duration and downloaded files. The
update of the agent’s model is conducted online; that is, its model is being updated and
queried at the same time. The update of the model happens after each episode. However, it

Appl. Sci. 2022, 12, 5224 13 of 23

is also possible that during the same episode, the model is updated multiple times because
in the same SSH connection, there can be multiple channels open to request the command
executions, which can also be considered as an episode.

6.1. Collected Attack Data

Table 1 shows the general statistics of the attack data that our honeypots received.
Cowrie received the most attack episodes, while Aster received the least. Among those
attack episodes, for Asgard, Midgard and Aster, only around 8% are really used for com-
mand execution, while the proportion reaches almost 17% for Cowrie; the rest are TCP/IP
port forwarding requests. Even though Cowrie attracted the most attacks and also had the
highest total number of commands, by closely looking at the average number of commands
that each honeypot received per episode, Cowrie performed poorly, as it received only
5.51 commands on average compared to 18.48 commands for Aster, 9.68 for Asgard and 8.2
for Midgard. By examining the attack data, Cowrie received a large amount of the same
single command echo -e "\x6F\x6B", which accounted for almost 51% of the total of
attacks, which can explain its low average number of commands. These results confirm that
the usage of a real system still performs best in terms of the average number of commands
run per episode, although the adaptive honeypots were not far behind.

Table 1. Description of attack data.

Asgard Midgard Cowrie Aster

Number of Episodes 395,692 417,606 452,047 109,134

Number of Command
Execution Episodes 30,287 (7.65%) 29,668 (7.10%) 74,963 (16.58%) 8310 (7.61%)

Number of TCP/IP
Port Forwarding 365,405 (92.34%) 387,938 (92.89%) 377,084 (84.41%) 100,824 (92.38%)

Number of commands 293,847 243,711 413,180 152,633

Minimal number of
commands 1 1 1 1

Maximal number of
commands 289 52 56 79

Average number of
commands 9.70 8.21 5.51 18.36

Since most of the attacks were from automated programs and were very targeted, they
mostly shared the same attack sequence. Let us be reminded that an attack sequence refers
to a sequence of commands that are executed in an attack (cf. Section 4.1). For example,
the three attack episodes below were captured in our honeypot and targeted Hive OS
(https://hiveon.com/, accessed on 15 April 2022), which is software to manage a mining
farm. In attacks 1 and 2, the attackers first wanted to change the password of the user
managing this farm by using the command hive-passwd followed by the new password.
Next, they wanted to terminate any active user sessions by killing the processes Xorg and
x11vnc. These two attack sequences can be considered different or same. There are two
methods that we can take into account: first, if we consider the commands with their
arguments, then they are different, and, second, if we only consider the commands without
their arguments, then they are the same because the two sequences of commands are the
three commands sudo. However, attack 3 is different because of the command uname at
the end.

Attack 1
sudo hive-passwd specia4lbro123456; sudo pkill Xorg; sudo pkill x11vnc
Attack 2
sudo hive-passwd tsrouble123; sudo pkill Xorg; sudo pkill x11vnc

https://hiveon.com/

Appl. Sci. 2022, 12, 5224 14 of 23

Attack 3
sudo hive-passwd j65kj675; sudo pkill Xorg; sudo pkill x11vnc; uname -a

Hence, we decided to apply the second method to find all the sequences of commands
that were shared among the attack episodes, and we divided them into four groups of the
command sequence based on the number of times that they were shared, this can give a
good indication of the performance of each honeypot. According to Table 2, the number of
the attack sequences found in the attack data is relatively small compared to that of the
attack episodes: around 200 for Asgard and Midgard, 153 for Cowrie and 149 for Aster.
However, if we look at the number of the unique attack sequences, they clearly show that
the adaptive and the high-interaction honeypots outperformed the medium-interaction
honeypot Cowrie, and Aster received the greatest percentage of unique attack sequences.
Looking further at the attack sequences that were shared more than three times, Cowrie
had the highest percentage of the redundant commands.

With these results, we could show that our adaptive honeypot Asgard always performs
better than the medium-interaction honeypot but not better than the high-interaction honeypot.

Table 2. An attack sequence is the sequence of commands that were executed in an attack. It is unique
when it belongs to a single attack. If it is shared by two attacks, it is referred to as an attack sequence
shared by two attacks, etc.; this table shows the percentage and the actual number of attack sequences
that each system received.

Asgard Midgard Cowrie Aster

Unique attack
sequences 30.37% (65) 24.62% (49) 22.88% (35) 36.91% (55)

Attack
sequences
shared by 2
attacks

7.01% (15) 10.55% (21) 12.42% (19) 11.41% (17)

Attack
sequences
shared by 3
attacks

7.01% (15) 5.03% (10) 3.92% (6) 4.03% (6)

Attack
sequences
shared by more
than 3 attacks

55.61% (119) 59.80% (119) 60.78% (93) 47.65% (71)

Total of attack
sequences 100% (214) 100% (199) 100% (153) 100% (149)

6.2. Collected Files

After these systems were compromised, the attackers downloaded files or programs
from various sources so that they could use them to further exploit the system. The
downloaded file types are plain text, executable, shell script, Perl script, Python program,
HTML, archived (tar) and JSON. After removing plain text, HTML and JSON files, the last
row of Table 3 indicates the total number that each honeypot received, and they are not
substantially different. However, Aster seemed to collect the lowest amount of files, which
could be explained by the lowest number of connections it received (cf. Table 1).

To understand their content, we submitted the SHA-256 hashes of these files to www.
virustotal.com (accessed on 15 April 2022), which analyses and keeps records of files from
over 70 antivirus scanners to understand their contents. If virustotal.com has the record
of the hash of a submitted file, it will return its information, such as size, suggested threat,
reputation, first submission date, last submission date and labels from antivirus scanners. We
aggregated these results by using their common generic type, for example, malware, to
describe their specific types, such as trojan.linux/mirai or trojan.linux/xorddos.

www.virustotal.com
www.virustotal.com

Appl. Sci. 2022, 12, 5224 15 of 23

Table 3 shows the type breakdown of all the downloaded files across all systems, and
we found that the attackers generally infected the honeypots with malware, mostly of Mirai
variants. They also exploited the honeypots to mine cryptocurrencies by predominantly
using the XMRig (https://xmrig.com/, accessed on 15 April 2022), a cross-platform miner.
Apart from Aster, Asgard, Midgard and Cowrie were installed with botnets that could
communicate with their C&C servers using Internet Relay Chat (irc). The attackers also
used a speedtest program written in Python to gather the information on the network
connection on the three high-interactions, and they also used a hack tool that includes a
port scanner and some other tools.

Other attacks identified as shell downloaders are the attacks in which they execute
commands such as wget or curl to download files before executing them. The last groups
of attacks are shell scripts that generally run tests to look for some specific platforms and
download different versions of the same program for different platforms before execut-
ing them.

Table 3. Different types of files that were downloaded by each honeypot.

Asgard Midgard Cowrie Aster

Malware 19 23 26 15

Miner 5 5 3 3

IRC Botnet 4 4 3 0

Speed test 1 1 0 1

Log cleaner 1 0 0 0

Hack tools 1 1 0 1

Shell
downloader 11 13 16 8

Shellscript 3 5 4 3

Total 45 52 52 31

6.3. Attacker’S Behaviour

As explained in Section 2.2, Ramsbrock et al. built states that represent each command
to study the attacker’s behaviour [15]. As the attack landscapes have evolved since then,
we need to consider some new commands to take into account these changes. Below are
the states followed by the newly added commands:

• CheckSW: sshd -V , users, crontab, hostname, who, info, help, show, modelname.
Some are not the commands usually found on Linux and supposedly target a very
specific operating system, such as FortiOS (FortiOS is the operating system managing
the firewall FortiGate (https://docs.fortinet.com/, accessed on 15 April 2022). They
are not predominantly found in the attack data, but we decided to add them for
completeness.

• Install: dos2unix, apt, apt-get, yum, scp, rpm, touch, make. We included these com-
mands as the attackers also install some software using Linux package managers and
some other tools needed to install their programs.

• Download: no new commands added.
• Run: python3, nohup, nc, nice, disown. In addition to these commands, we also detect

the usage of sh to execute a shellscript and a command pipeline ’|base -s arg’ that
uses bash to execute a newly downloaded shellscript.

• Password: chpasswd, hive-passwd. The command hive-passwd is to change the user
in the HiveOS system.

• CheckHW: nvidia-smi, nvidia-info, amd-info, pci, free, lscpu, lspci, nproc,
nvidia-smi, ip, dmesg, dmidecode. Some are the commands that the attackers are

https://xmrig.com/
https://docs.fortinet.com/

Appl. Sci. 2022, 12, 5224 16 of 23

actively using to look for graphics processing units (GPU), such as Nvidia and AMD,
which are widely used to mine cryptocurrencies.

• ChangeConf: pkill, systemctl, killall, service, unset, set, usermod, halt,
shellinabox.

• no-op: dir, echo, grep, egrep, cut, awk, uniq, screen, clear, head, sed, wc, tr, which,
sleep.

Table 4 summarises the number of commands that correspond to each state for each
honeypot. The states ’no-op’ account for the largest commands shares, which can be almost
50% for Cowrie and Aster; for Asgard and Midgard, the ’no-op’ coverage are in line with
the percentage (34.08%) as reported by Rambsbrock et al. in his work. The other commands
are included in the states ’unmatched’, which, in addition, to the misspelled commands,
we also include newline, rarely used commands such as bioset and busybox and the
commands su or sudo alone without arguments, together they made up less than 0.1%.

Overall, Asgard and Midgard shared the same percentage of the command states,
while Cowrie and Aster also shared the same percentage of the command states. However,
the adaptive honeypots managed to execute the download commands the most, accounting
for around 10%, compared to only 3.49% for Cowrie and 0.97% for Aster.

Table 4. State machine coverage for each honeypot.

State Asgard Midgard Cowrie Aster

CheckHW 60,019 (20.43%) 46,305 (19.00%) 91,926 (22.25%) 37,273 (24.42)

Install 36,596 (12.45%) 35,792 (14.69%) 35,690 (8.64%) 12,154 (7.96%)

Download 26,310 (8.95%) 28,431 (11.67%) 14,406 (3.49%) 1481 (0.97%)

Run 20,123 (6.85%) 20,606 (8.46%) 12,079 (2.92%) 1851 (1.21%)

CheckSW 17,473 (5.95%) 11,870 (4.87%) 28,127 (6.81%) 13,939 (9.13%)

ChangeConf 16,876 (5.74%) 20,599 (8.45%) 15,091 (3.65%) 4151 (2.72%)

Password 9654 (3.29%) 7003 (2.87%) 16,851 (4.08%) 5886 (3.86%)

(unmatched) 143 (0.05%) 224 (0.09%) 43 (0.01%) 89 (0.06%)

(no-op) 106,653 (36.30%) 72,881 (29.90%) 198,967 (48.16%) 75,809 (49.67%)

Coverage 100% 100% 100% 100%

From the state definitions, we construct a state diagram that allows us to understand
how the attacker behaved once they had compromised the system. Each edge is labelled
with a transition probability from one state to another state. To calculate the transition
probability, we divided the total number of outgoing transitions from that state by the
number of outgoing transitions to other states. The thickness of the node is proportional to
the number of commands that fit in that state. To make the diagrams easy to understand,
not all transitions are shown; we only highlighted some important transitions to make the
attacker’s behaviour more apparent.

Figures 5–8 show the state diagrams of each honeypot system. Across all the systems,
the most likely route that the attackers took was first to check system hardware information,
followed by checking other system hardware information, before downloading some files
or checking the software information, installing the downloaded files and/or downloading
more files, before finally executing them. Most of the attacks were from automated scripts.

In 2007, Ramsbrock et al. found that the attackers started by looking for the software
configuration, changing the password and gathering hardware information, before down-
loading a program, installing it and running it [15]. Here, the trend seemed to change, the
attackers seemed to be looking for certain hardware suitable for mining cryptocurrency,
rather than for certain software or operating systems to infect them with malware. For
Cowrie, the attack episode usually ended right after checking hardware information; this
could also explain why the average number of commands was low (cf. Table 1).

Appl. Sci. 2022, 12, 5224 17 of 23

Start

Password

0.1584

Download

0.0727

CheckHW

0.7448

Install

0.3478

0.1842

CheckSW

0.1181

ChangeConf

0.1045

Run
0.2235

End0.0219

0.2789

0.7001

0.2104

0.2777

0.4947

0.0785

0.6042

0.0519

0.0360

0.2226

0.4674

0.2903

0.2325

0.1911

0.0332 0.0762

0.5504

0.1377

0.2096

0.2505

0.0666

0.0671

0.3921

Figure 5. State diagram of the attacker’s behaviour on Asgard.

Start

Password

0.1682

CheckHW

0.7229

Download

0.0698

0.1307

0.0515

ChangeConf0.8106

Install

0.3158

CheckSW

0.1287

0.1379

End

0.0330

0.1167

Run0.2679

0.5087

0.0513

0.0869

0.3068

0.0400

0.3560

0.2214

0.3712

0.0295

0.2579

0.3028

0.4215

0.1761

0.0260

0.0622

0.0326

0.1235

0.5796

0.2010

0.0490

0.2551

0.4218

0.0505

Figure 6. State diagram of the attacker’s behaviour on Midgard.

Start Password
0.1336

Download
0.0317

CheckHW

0.8034

0.0290

0.4625

ChangeConf0.5053

Install

0.5414

0.0291 CheckSW
0.0790

0.0562

End

0.0596

Run
0.2347

0.2748

0.3086

0.4109

0.0291

0.6418

0.3257
0.5884

0.3250

0.0769

0.0791

0.0375

0.0826
0.6280

0.1554

0.1298

0.2036

0.0349

0.4692

0.1576

Figure 7. State diagram of the attacker’s behaviour on Cowrie.

Start

Password
0.2425

Install

0.1625

CheckHW

0.5081

0.5081

Run

0.0591

0.4913

ChangeConf

0.4947

Download

0.0820
0.24800.0366

0.6321

0.0519

0.6262

CheckSW

0.0200

0.1012

End
0.1994

0.0007

0.0118

0.9276

0.0477

0.6505

0.3298

0.0395

0.1043

0.6764
0.1596

0.1160

0.1941

0.0275
0.6459

Figure 8. State diagram of the attacker’s behaviour on Aster.

Appl. Sci. 2022, 12, 5224 18 of 23

6.4. Q-Values

Tables 5 and 6 show the q-values of each command for Asgard and Midgard, respec-
tively. The q-value indicates the preference of the action that the agent chooses given the
command as an environment state. The selected action of each command is highlighted
in bold. For Asgard, the action allow is selected for the download command wget with a
q-value of 1.9696, which matches its first objective, while the selected action of the com-
mands of custom is either block or substitute with a q-value of 0.0086, which also corresponds
to the second objective of protecting the honeypot. These q-values nearly match the values
that were reported in the results obtained from the attack simulation [6]. For Midgard,
the q-value of the download command wget indicates that the action substitute should
be selected, which is counterproductive. For the custom command, the action is to allow,
which goes against the second objective of a self-guarded honeypot. These values enable us
to confirm that by using the environment state and the action to define the reward function,
the agent can successfully learn the intended objectives [6].

Table 5. q-Values of some commands of Asgard.

Command Allow Block Substitute

tar 0.3927 0.1102 0.0983

sudo 0.0578 0.0765 0.0554

chmod 0.7317 0.2349 0.2655

uname 0.1026 0.1716 0.0943

unknown 0.0447 0.0454 0.0452

custom −0.4058 0.0086 0.0086

ps 0.1645 0.0703 0.0214

wget 1.9696 0.4153 0.3959

bash 0.0134 0.0135 0.0135

sh 0.1635 0.2392 1.1545

Table 6. q-Values of some commands of Midgard.

Command Allow Block Substitute

tar −0.2586 −0.2589 −0.2613

sudo −0.1699 −0.1842 0.0957

chmod −0.4297 −0.4491 0.3255

uname 0.9130 0.1210 0.1461

unknown −0.1308 −0.0793 0.1480

custom −0.9715 −1.0743 −1.0671

ps 0.2964 0.0391 0.0535

wget 1.0265 1.3700 1.0476

bash 0.0447 0.0449 0.0445

sh 0.1075 0.1350 0.9158

6.5. Reported Incidents

During the course of the deployment of these honeypots, a number of incidents
were reported by the Belgian national Center for Cyber Security Belgium (CCB) that our
honeypots were involved in various attacks. Table 7 reports the number of incidents
originating from each system, and, obviously, Cowrie had no incident because it was just
an emulator. For the three other systems, they used real Linux systems; as expected, they

Appl. Sci. 2022, 12, 5224 19 of 23

could be used to attack other systems. Interestingly, Asgard received only one incident
thanks to the way the system was designed to prevent the execution of custom programs.
Once again, by blocking or substituting the custom programs, as shown by the q-values in
Table 5, Asgard can prevent the system from being completely compromised.

Table 7. Number of incidents that were reported by the Centre for Cyber Security, Belgium.

Asgard Midgard Cowrie Aster

Number of incidents 1 16 0 6

6.6. Human Attackers

As we mentioned earlier, most of the attacks are from automated scripts, and it is quite
rare to actually find real human attackers. Even so, our honeypots managed to attract some
of them.

To spot them from the thousands of received connections, we analysed the logs and
used some information derived from the SSH libraries used by the SSH client software.
This could give a hint to what or who originated these attacks: a human attacker needs a
Terminal or Pseudo Terminal (PTY) to type and visualise their commands, while automated
programs do not. As a result, we chose some SSH client libraries that are usually used by
human adversaries, such as PuTTY and OpenSSH for the Windows and Linux operating
systems and combined them with some parameters of the terminal size, and together we
narrowed down a number of connections that were originated from human attackers. More
often, the same human attacker was seen connected multiple times to perform/resume
their attack or to check users or running processes on the system; thus, these connections
were only counted as from a single attacker.

Table 8 shows the number of human attackers on each system; once again, the adaptive
and the high-interaction honeypots got more visits from the human attackers than the
medium-interaction honeypot. By analysing those episodes, we found that most of the time,
they only ran a few commands to check the running processes with the command ’top’
and also check the online users with the command w. The other command that is often
used is uptime to check since when the system was running. We found one episode below
on Midgard in which the attacker tried to download and install the mining programs.

Table 8. Number of human attackers that were actually connected to the honeypots.

Asgard Midgard Cowrie Aster

Number of human attackers 10 14 1 10

Midgard
lscpu
curl -s -L https://raw.githubusercontent.com/C3Pool/xmrig_setup/master/
setup_c3pool_miner.sh | bash -s 4AbDso7DmSj\dots

The presence of human attackers also emphasises the benefit of using the real system
in the adaptive honeypots and in the high-interaction honeypot.

6.7. Example of Interaction between Asgard and a Human Attacker

The following attacks observed on Asgard demonstrated how it interacted with a
human adversary after Asgard was compromised by defending itself through blocking and
substituting some commands, which led to the attacker to finding another way to evade
the protection mechanism.

After finding that their miner software was installed by their automated program, it
was not running because apparently Asgard deliberately blocked its execution. As seen in
the first episode below, it shows the commands and the actions taken by Asgard. In the

Appl. Sci. 2022, 12, 5224 20 of 23

beginning, the attacker checked the system information, and the commands uname and
cat were allowed. Next, they tried python3, which Asgard decided to substitute. Seeing
no reply, they tried again, but this time with a typo python33 and it was allowed, but the
command did not exist. This time, they saw an error message, so they executed the correct
python3 only to learn that it was not available either. Then, the attacker proceeded to install
python3 and their intention was to get the host network information. One of the surprising
twists in this attack is the blocking of the command ls, which forced them to find another
way to list the content of the directory. During this time, they also checked the network
information, but ifconfig was substituted by our system, they downloaded a speedtest
program v.py from a malicious website nasapaul.com (accessed on 15 April 2022); due to
the command ls was still blocked, they resorted to using the python program to execute
ls in episode 2. In total, this attacker was connected 10 times before they could run their
mining program XMrig; because Asgard continued to block the execution of ./xmrig until
there was an error in the implementation, the attacker managed to execute that program.

Asgard: episode 1
uname -a -> allow
cat /etc/issue -> allow
python3 -> substitute
python33 -> allow, command not found
python3 -> allow, command not found
sudo apt-get install python3 -> block, command not found
apt-get install python3 -> allow
python3 -> allow
...
>>> import socket -> allow
>>> socket.getaddrinfo()
TypeError: getaddrinfo() missing 2 required positional arguments: ’host’
and ’port’,
...
ls -> block
ifconfig -> substitute
ll -> allow, command not found
clear -> allow
ifconfig -> substitute
curl nasapaul.com/v.py -> allow
ls -> block
ll -> allow, command not found
...

Asgard: episode 2
python3 -> allow
import os -> allow
os.system(’ls’) -> parsing error, send "\n"
Ctrl+C
ls -> block

6.8. Lessons Learned

After running these experiments and analysing the collected attack data, we identify
the following key takeaways:

• Although the high-interaction honeypot could potentially achieve the best result, it is
at the cost of a high risk of being completely compromised (cf. Section 6.5). A system
such as Asgard, however, did not allow the attacker to immediately compromise the
system because it tried to keep the system safe for as long as it can by blocking and
substituting malicious programs and some other commands that can lead to their
execution (cf. Section 6.4).

nasapaul.com

Appl. Sci. 2022, 12, 5224 21 of 23

• Another benefit of using the real system as a honeypot is that it can collect higher-
quality attack data than the medium-interaction honeypot Cowrie. Despite Cowrie’s
largest attack numbers received, they contained a lot of short and redundant sequences
of commands (cf. Section 6.2). More strong evidence that underscores the benefit of
using a real system is its ability to attract human attackers (cf. Section 6.6) far more
than the medium-interaction honeypot. This was also mentioned in Dowling’s work,
in which Cowrie did not get any human attackers [26].

• Even though Cowrie did not achieve a good result compared to the other systems, it
also showed how a medium-interaction honeypot can still play an important role in
capturing good attack data, as it was demonstrated by no substantial difference in the
number of files collected by all the systems (cf. Section 6.2).

• There is a continuous trend that the attackers use the compromised machines to mine
cryptocurrencies rather than infecting the system with malware, and the attacks are
predominantly from automated programs.

7. Conclusions and Future Works

In this paper, we presented our design and implementation of a self-guarded adaptive
honeypot for the SSH protocol and compared two variants of it with Cowrie, a widely used
medium-interaction honeypot and a high-interaction honeypot, Aster, that we also set up
for this comparative study.

The experimental results show that the adaptive self-guarded honeypot Asgard per-
forms best by leveraging Reinforcement Learning to learn to compromise between collecting
attack data and keeping the system safe. This shows that Asgard can be deployed with a
lesser risk of security than the high-interaction honeypot. Another benefit that is worth
repeating is the usage of the real system as a honeypot, thanks to the proxy-based architec-
ture and implementation. This can avoid the problem of the medium-interaction honeypot
being fingerprinted by the adversaries because of their limited and simulated functions.

The resulting q-values clearly show that the coupling of the environment state with the
action in the reward function helps Asgard effectively learn its two objectives, as opposed
to Midgard, which only uses the environment state to define its own reward function.

Nevertheless, there are still some limitations to our Asgard system:

• Its reward function encourages the agent to block or substitute the execution of
malicious programs; this can prevent us from observing more complex attacks that
could happen after the execution of these programs. The attacker can also use this
feature to fingerprint our system by executing a test program.

• The implementation of our proxy system is still limited, as during the attacks, we were
not able to deal with all of the command types, especially some complex commands
such as pipeline commands and compound commands.

• The experiments were conducted only one time, and on the same network; as a result,
we could not draw a definitive answer to all of our claims. It could have been tested
in more different locations.

• Adaptive honeypots can also be subject to being fingerprinted by the adversaries by
assuming all the honeypots are adaptive, in this case, they can launch ‘blind attacks’
by creating fake attacks to fingerprint these systems [35].

As for our future works, we intend to extend our adaptive self-guarded honeypot
to enrich its description of the environment state by including the commands and their
arguments, and also information about the honeypot system itself, such as CPU, memory
and network flow. Indices of compromise coming from external IDS could also be used
to create a richer state. As mentioned in the limitations, we see the potential by changing
the static reward function to a more dynamic reward function to allow the execution of
malicious programs for a certain degree of risk, which will bridge the gap between Aster
and Asgard, and this, in turn, could achieve a better result. Another direction that we want
to work on is to deploy several adaptive self-guarded honeypots in different locations and

Appl. Sci. 2022, 12, 5224 22 of 23

allow them to exchange and exploit their learned models. We believe that this will speed
up the learning process.

Author Contributions: Conceptualisation, S.T. and J.-N.C.; methodology, S.T.; software, S.T.; valida-
tion, S.T. and J.-N.C.; investigation, S.T.; data curation, S.T.; writing—original draft preparation, S.T.;
writing—review and editing, J.-N.C.; visualisation, S.T.; supervision, J.-N.C. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy concerns.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. NTT. 2021 Global Threat Intelligence Report. Technical Report 2021. Available online: https://services.global.ntt/en-us/

insights/2021-global-threat-intelligence-report (accessed on 15 April 2022).
2. Spitzner, L. Honeypots: Tracking Hackers; Addison-Wesley Professional: Boston, MA, USA: 2003; Volume 1.
3. Seifert, C.; Welch, I.; Komisarczuk, P. Taxonomy of Honeypots; Technical Report cs-tr-06/12; Victoria University of Wellington,

School of Mathematical and Computer Sciences : Wellington, New Zealand, 2006.
4. Ng, C.K.; Pan, L.; Xiang, Y. Honeypot Frameworks and Their Applications: A New Framework; Springer: Singapore, 2018.
5. Nawrocki, M.; Wählisch, M.; Schmidt, T.C.; Keil, C.; Schönfelder, J. A survey on honeypot software and data analysis. arXiv 2016,

arXiv:1608.06249
6. Touch, S.; Colin, J.N. Asguard: Adaptive Self-guarded Honeypot. In Proceedings of the 17th International Conference on Web

Information Systems and Technologies-Volume 1: DMMLACS, Online, 26–28 October 2021; SciTePress: Setúbal, Portugal, 2021;
pp. 565–574.

7. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An introduction; MIT Press: London, UK, 2018.
8. Ylonen, T.; Lonvick, C. The Secure Shell (SSH) Connection Protocol. RFC 4254, RFC Editor. 2006. Available online: http:

//www.rfc-editor.org/rfc/rfc4254.txt (accessed on 15 April 2022).
9. Oosterhof, M. Cowrie SSH/Telnet Honeypot. 2014. Available online: https://github.com/cowrie/cowrie (accessed on 15 April

2022).
10. Kyriakou, A.; Sklavos, N. Container-Based Honeypot Deployment for the Analysis of Malicious Activity. In Proceedings of

the Global Information Infrastructure and Networking Symposium (GIIS), Thessaloniki, Greece, 23–25 October 2018; pp. 1–4.
[CrossRef]

11. Vishwakarma, R.; Jain, A.K. A Honeypot with Machine Learning based Detection Framework for defending IoT based Botnet
DDoS Attacks. In Proceedings of the 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI),
Tirunelveli, India, 23–25 April 2019; pp. 1019–1024. [CrossRef]

12. Shrivastava, R.K.; Bashir, B.; Hota, C. Attack detection and forensics using honeypot in IoT environment. In Proceedings of the
International Conference on Distributed Computing and Internet Technology, Bhubaneswar, India, 10–13 January 2019; Springer:
Cham, Switzerland, 2019; pp. 402–409.

13. Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; et al.
Mastering the game of go without human knowledge. Nature 2017, 550, 354–359. [CrossRef] [PubMed]

14. Watkins, C.J.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]
15. Ramsbrock, D.; Berthier, R.; Cukier, M. Profiling attacker behavior following SSH compromises. In Proceedings of the 37th

Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’07), Edinburgh, UK, 25–27 June 2007;
pp. 119–124.

16. Cheswick, B. An Evening with Berferd in which a cracker is Lured, Endured, and Studied. In Proceedings of the USENIX Winter
1992 Conference Proceedings, San Francisco, CA, USA, 20–24 January 1992 ; pp. 20–24.

17. Upi Tamminen. Kippo—SSH Honeypot. 2014 . Available online: https://github.com/desaster/kippo (accessed on 15 April
2022).

18. Surnin, O.; Hussain, F.; Hussain, R.; Ostrovskaya, S.; Polovinkin, A.; Lee, J.; Fernando, X. Probabilistic Estimation of Honeypot
Detection in Internet of Things Environment. In Proceedings of the 2019 International Conference on Computing, Networking
and Communications (ICNC), Honolulu, HI, USA, 18–21 December 2019; pp. 191–196.

19. Vetterl, A.; Clayton, R. Bitter harvest: Systematically fingerprinting low-and medium-interaction honeypots at internet scale. In
Proceedings of the 12th USENIX Workshop on Offensive Technologies (WOOT 18), Baltimore, MA, USA, 13–14 August 2018.

https://services.global.ntt/en-us/insights/2021-global-threat-intelligence-report
https://services.global.ntt/en-us/insights/2021-global-threat-intelligence-report
http://www.rfc-editor.org/rfc/rfc4254.txt
http://www.rfc-editor.org/rfc/rfc4254.txt
https://github.com/cowrie/cowrie
http://doi.org/10.1109/GIIS.2018.8635778
http://dx.doi.org/10.1109/ICOEI.2019.8862720
http://dx.doi.org/10.1038/nature24270
http://www.ncbi.nlm.nih.gov/pubmed/29052630
http://dx.doi.org/10.1007/BF00992698
https://github.com/desaster/kippo

Appl. Sci. 2022, 12, 5224 23 of 23

20. Morishita, S.; Hoizumi, T.; Ueno, W.; Tanabe, R.; Gañán, C.; van Eeten, M.J.; Yoshioka, K.; Matsumoto, T. Detect Me If You. . . Oh
Wait. An Internet-Wide View of Self-Revealing Honeypots. In Proceedings of the 2019 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM), Washington, DC, USA, 8–12 April 2019; pp. 134–143.

21. Wagener, G.; State, R.; Engel, T.; Dulaunoy, A. Adaptive and self-configurable honeypots. In Proceedings of the 12th IFIP/IEEE
International Symposium on Integrated Network Management (IM 2011) and Workshops, Dublin, Ireland, 23–27 May 2011;
pp. 345–352.

22. Wagener, G.; Dulaunoy, A.; Engel, T. Heliza: Talking dirty to the attackers. J. Comput. Virol. 2011, 7, 221–232. [CrossRef]
23. Pauna, A.; Bica, I. RASSH-Reinforced adaptive SSH honeypot. In Proceedings of the 2014 10th International Conference on

Communications (COMM), Bucharest, Romania, 29–31 May 2014; pp. 1–6.
24. Pauna, A.; Iacob, A.C.; Bica, I. QRASSH—A self-adaptive SSH honeypot driven by Q-learning. In Proceedings of the International

Conference on Communications (COMM), Melmaruvathur, India, 3–5 April 2018; pp. 441–446.
25. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari with deep

reinforcement learning. arXiv 2013, arXiv:1312.5602
26. Dowling, S.; Schukat, M.; Barrett, E. Improving adaptive honeypot functionality with efficient reinforcement learning parameters

for automated malware. J. Cyber Secur. Technol. 2018, 2, 75–91. [CrossRef]
27. OpenBSD Project. OpenSSH. 2022. Available online: https://www.openssh.com/ (accessed on 15 April 2022).
28. Han, X.; Kheir, N.; Balzarotti, D. Evaluation of deception-based web attacks detection. In Proceedings of the 2017 Workshop on

Moving Target Defense, Dallas, TX, USA, 30 October 2017; pp. 65–73.
29. Ishikawa, T.; Sakurai, K. Parameter manipulation attack prevention and detection by using web application deception proxy. In

Proceedings of the 11th International Conference on Ubiquitous Information Management and Communication, Beppu, Japan,
5–7 January 2017; pp. 1–9.

30. Fraunholz, D.; Reti, D.; Duque Anton, S.; Schotten, H.D. Cloxy: A context-aware deception-as-a-service reverse proxy for web
services. In Proceedings of the 5th ACM Workshop on Moving Target Defense, Toronto, ON, Canada, 15 October 2018; pp. 40–47.

31. Papalitsas, J.; Rauti, S.; Tammi, J.; Leppänen, V. A honeypot proxy framework for deceiving attackers with fabricated content. In
Cyber Threat Intelligence; Springer: Berlin/Heidelberg, Germany, 2018; pp. 239–258.

32. Free Software Foundation. Bash Reference Manual. 2022. Available online: https://www.gnu.org/software/bash/manual/bash.
html (accessed on 15 April 2022).

33. Wikipedia. Abstract Syntax Tree. 2022. Available online: https://en.wikipedia.org/wiki/Abstract_syntax_tree (accessed on 15
April 2022).

34. Kamara, I. Bashlex—Python Parser for Bash. 2022. Available online: https://github.com/idank/bashlex (accessed on 15 April 2022).
35. Obaidat, M.; Brown, J.; Alnusair, A. Blind Attack Flaws in Adaptive Honeypot Strategies. In Proceedings of the 2021 IEEE World

AI IoT Congress (AIIoT), Seattle, WA, USA, 10–13 May 2021; pp. 0491–0496.

http://dx.doi.org/10.1007/s11416-010-0150-4
http://dx.doi.org/10.1080/23742917.2018.1495375
https://www.openssh.com/
https://www.gnu.org/software/bash/manual/bash.html
https://www.gnu.org/software/bash/manual/bash.html
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://github.com/idank/bashlex

	Introduction
	Background
	Reinforcement Learning
	Markov Decision Processes
	Exploration and Exploitation Trade-Off
	Q-Learning

	Attacker'S Behaviour

	Related Work
	Description of Honeypot Systems
	Definitions
	Asgard: Adaptive Self-Guarded Honeypot
	Environment
	Actions
	Reward Function

	Midgard: A Variant of Asgard

	Design and Implementation
	Proxy-Based Architecture
	Interaction between the Attacker and the Honeypot
	Linux Command Parsing
	SSh Proxy
	Decision-Making Module
	Command Execution

	Experimental Results
	Collected Attack Data
	Collected Files
	Attacker'S Behaviour
	Q-Values
	Reported Incidents
	Human Attackers
	Example of Interaction between Asgard and a Human Attacker
	Lessons Learned

	Conclusions and Future Works
	References

