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HyDRa: A Framework for Modeling, Manipulating
and Evolving Hybrid Polystores
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Abstract—Data-intensive system evolution is a complex and
error-prone process, as most evolution scenarios impact several
interdependent artefacts such as the application code, the data
structures or data instances. This process is becoming even
more challenging with the emergence of heterogeneous database
architectures, commonly called hybrid polystores, that rely on
a combination of several, possibly overlapping relational and
NoSQL databases. This paper presents HyDRa, a framework
aiming to facilitate the evolution of polystores thanks to auto-
matically generated data access APIs. For a given polystore, a
conceptual API can be derived from the conceptual schema of
the polystore and its correspondences with the physical schemas
of the underlying databases. Applications built on top of the
generated API are then protected from future schema and data
reconfiguration changes applied to the polystore. Furthermore,
HyDRa automatically enforces cross-database data integrity con-
straints and does not require developers to master multiple data
models and query languages. This paper presents HyDRa and
demonstrates its main features based on open-source datasets
and realistic use cases.

I. INTRODUCTION

Nowadays, data intensive systems may rely on more than
one databases [1], and those databases are not necessarily
of the same data model. A recent study [2] reported on the
increasing use of heterogeneous database systems, commonly
called hybrid polystores. Holubova et al [3] explored the
challenges that the developers of such systems often face,
which include data modeling, data querying and evolution.
The HyDRa framework, presented in this paper and depicted
in Fig. 1, was developed to address those three challenges.

First, data modeling in a polystore context may prove
complex, due to the combination of relational and NoSQL
data models. Relational database design is a well-known and
defined process, supported by standard methods. In contrast,
NoSQL databases, such as key-value stores, graph databases,
document databases and column stores all have their own
specific data representation patterns, often based on database
vendors guidelines or best practices. Physical database design
can greatly vary depending on query purposes, performance re-
quirements or technology-specific constraints. Several specific
[4] or unifying abstraction [5] design methods and languages
exist for NoSQL data modeling, but none of them integrate
relational and NoSQL design while allowing developers to
specify fine-grained physical data structures.

Second, querying polystores require developers to be famil-
iar with the query language of each database technology used

Fig. 1. HyDRa framework

in the polystore. Transversal queries may even involve more
than one databases, thus necessitating to write application glue
code for data reconciliation. We argue that querying data at
the conceptual level gives developers the advantage of being
independent from the actual polystore data configuration, and
it eliminates the need for writing cross-database queries. Ob-
ject relational mappers (ORM) or their equivalent for NoSQL
technologies exist [6], but (1) very few of them cover multiple
data models, and (2) none of them supports the automatic
generation of conceptual data manipulation libraries.

Finally, evolving data-intensive systems relying on a single
database is already a difficult task, as several software artefacts
(schemas, data and programs) have to be evolved and kept
consistent with each other. We argue that this co-evolution
process is even more challenging in the context of hybrid
polystores, due to the multiplicity of data models and the
presence of possibly overlapping and interdependent data
across multiple databases.

As a contribution to address those three challenges, we
present HyDRa (Hybrid Data Representation and Access),
depicted in Fig. 1, an integrated framework for conceptual
modeling, manipulation and evolution of hybrid polystores.
HyDRa’s modeling language [7] enables the design of rela-
tional and NoSQL databases, by allowing developers to keep
full control on physical data representations. HyDRa supports
the automatic generation of conceptual data access APIs that
(1) facilitate the manipulation of heterogenous databases and
(2) reduce the impact of polystore reconfigurations on client
applications.



II. HYDRA

This section details the main features of HyDRa, including
its modeling language and its support to conceptual API
generation and schema evolution.

A. Modeling Language

HyDRa provides a textual modeling language, detailed in
[8], to specify (1) the conceptual schema of the polystore,
expressed in the Entity-Relationship model; (2) the physical
schemas of each of its databases (NoSQL or relational),
specifying data structures and their fields; and (3) a set of
mapping rules to express possibly complex correspondences
between the conceptual elements and the physical databases.

For physical schemas, HyDRa currently supports the rela-
tional model and the four most popular NoSQL data models,
i.e., document, key-value, graph and column-based representa-
tions. Mapping rules enable possibly complex design choices,
such as data structure split, data instance partitioning, data
heterogeneity and data duplication.

Table I illustrates the variety of physical structures that can
be chosen to implement conceptual constructs. All physical
structures can be expressed in HyDRa, via a combination of
mapping rules. The databases depicted in Physical Schemas
column may be either of relational or NoSQL types.

Row CS (1) represents the design construct of entity split
in multiple databases; an entity type can be entirely stored
in a single database (a), or its attributes may be split among
two databases (b). Entity data duplication is also possible, by
declaring the same attribute in more than one database.

Row CS (2) shows foreign keys, cross-database foreign
keys or embedding structures design choices. A one-to-many
relationship type can be stored in a single database (a and
d), or in different databases (b and c). In a single database,
one can use an inner database foreign key reference (a), or an
embedded structure (d). Physical schemas (b and c) implement
cross-database references, which can be hybrid when the
databases are of different types. In (b), a mono-valued foreign
key is established between E1 and E2, i.e., the value in E1.e2
references a particular E2.id. In (c), a multi-valued foreign
key is established, in the opposite direction, i.e., each value in
E2.E1 list references a particular E1.id.

Row CS (3) shows how a many-to-many relationship type
(with attributes) can be physically represented in one (a), two
(b) or three databases (c). A physical join structure R stores
the relationship type attributes and references particular E1
and E2 instances (two foreign keys within R).

B. Conceptual API Generation

Using the HyDRa polystore model as input, HyDRa also
supports conceptual API code generation. It provides devel-
opers with a ready-to-use library, allowing polystore data
manipulation operations on the conceptual level. HyDRa au-
tomatically generates an API including entity objects, access
classes and access methods. Using the API to manipulate
polystore data enforces the data heterogeneity, duplication and
overlapping constraints declared in the mapping rules.

TABLE I
CONCEPTUAL CONSTRUCTION AND PHYSICAL CORRESPONDENCES

CS# Conceptual Schema Physical Schema

(1)
(a)

(b)

(2)

(a)

(b)

(c)

(d)

(3)

(a)

(b)

(c)



Table II shows the generated conceptual methods of the
described conceptual schemas (1), (2) and (3) of Table I.
CS (1). CRUD operations are generated for each declared
conceptual entity types and relationship types. Selection meth-
ods may use a custom Condition object, serving as selection
condition, that can include a list of and or or conditions(e.g.,
E1.a1 = x and E1.a2 <> y). Those conditions specify a
value and an operator on any declared conceptual attributes of
the concerned entity types. One can also select objects with
a specific method taking an attribute value as argument for
filtered selection. Methods for inserting, deleting and updating
E1 instances are also provided. A condition can be used to
determine the E1 instances to delete/update.
CS (2). The generated API also offers a way to navigate
the data by relationship type. Indeed, selection methods can
retrieve the list of E1 instances related to a given E2 instance
through R. The reverse access is also possible i.e. reading the
E2 instance(s) associated with a given E1. The return type
(list or single instance) directly depends on the role cardinality,
i.e., [1-1] or [0-N]. In addition, more general methods are
offered to select E1 (or E2) instances implied in R, according
to given Conditions objects on E1 and E2. The selection
of R instances (i.e., couples of < E1, E2 > associated via
R) is allowed using Conditions objects as well. The insertion
method of E1 is also impacted by the presence of R. Since
E1 has a [1-1] mandatory role to E2, inserting a new E1
instance requires to provide, as argument, an existing E2
instance linked to the new E1 through R.
CS (3). Selection methods similar to CS (2) are generated in
the case of a many-to-many relationship type with attributes.
The major difference is the possibility to specify a condition
on R attributes when reading data. The second difference
is the possibility to insert and delete R instances. Inserting
a new R instance consists in connecting two existing E1
and E2 instances via R. Deleting a R instance consists in
disconnecting those instances, without deleting them.

The API generation algorithm reads the HyDRa polystore
schema and more specifically the mapping rules in order
to correctly implement the previously described conceptual
methods of the API. The generated code executes native
queries to access the different databases involved, joins the
results and constructs conceptual object based on raw data.

Table III summarizes the implementation of the conceptual
selection methods of Table II, according to the physical
representations of Table I. The first row describes the imple-
mentation of methods getE1List(...), with E1 any declared
conceptual entity type. When E1 instances are stored in a
single database, a single native query is executed and returns
a list of E1 instances. If a selection condition is specified, the
returned instances must respect it. In the case E1 instances
are stored in several databases, a native query per database
is executed. Finally, a procedural full outer join between the
query results is necessary to reconciliate the distributed data.

The second and third row describe the implementation of
methods getRList(...) in the case of CS (2) and CS (3), re-
spectively. If a single database is used to store R, a single inner

TABLE II
CONCEPTUAL CONSTRUCTION AND GENERATED API FUNCTIONS

CS# Generated Conceptual Methods Description

(1) getE1List(Condition<E1> cond)
getE1ListById(Object idvalue)
getE1ListByA1(Object a1value)
getE1ListByA2(Object a2value)

Read, from every database
mapped to E1, a list of E1
instances, according to the given
selection condition or attribute
value.

insertE1(E1 newObject)
deleteE1(E1 toDelete)
deleteE1(Condition<E1> cond)
updateE1(E1 updatedE)
updateE1(Condition<E1> cond,

Set<E1> set)

Insert, delete or update E1 in-
stances in mapped databases. A
deletion/update condition can be
mentioned. For update methods,
a Set clause can be used to
specify which attributes and val-
ues should be updated.

(2)
getE1ListInR(E2 rE2)
getE2InR(E1 rE1)

Read the E2 instance (resp. the
list of E1) associated with a
given instance of E1 (resp. E2)
through R. The return type (list
or single instance) depends on
the role cardinality.

getE1ListInR(Condition<E1> c1,
Condition<E2> c2)

getE2ListInR(Condition<E1> c1,
Condition<E2> c2)

Read the list of E1/E2 in-
stances implied in R, according
to particular selection conditions
(that can be combined) on E1
and E2.

getRList(Condition<E1> c1,
Condition<E2> c2)

Return a list of R instances (i.e.,
list of <E1, E2>, such E1 is
associated with E2 through R)
according to particular selection
conditions on E1 and E2.

insertE1(E1 e1, E2 e2)

Insert an E1 instance and con-
nect it to an existing E2 in-
stance. This link is mandatory
due to the [1-1] role cardinality
of R.

(3)
getE1ListInR(Condition<E1> c1,

Condition<E2> c2,
Condition<R> cR)

getE2ListInR(Condition<E1> c1,
Condition<E2> c2,
Condition<R> cR)

Read the list of E1/E2 in-
stances implied in R, according
to particular selection conditions
on E1, E2 and R (condition on
R is allowed due to the existence
of attributes).

getE1ListInR(E2 rE2)
getE2ListInR(E1 rE1)

Read the list of E1 (resp.
E2) instances associated with a
given instance of E2 (resp. E1)
through R.

getRList(Condition<R> cR,
Condition<E1> c1,
Condition<E2> c2)

Returns a list of R, according
to particular selection conditions
on E1, E2 and R.

insertR(Object rAttr,
E1 e1Instance,
E2 e2Instance)

deleteR(R r)

Associate (insert) and dissociate
(delete) existing E1 and E2 in-
stances through R.

join query is executed. This is only possible if the database has
a query language supporting the join operator, e.g., SQL. If the
R relationship type is distributed across multiple databases, the
join operation is performed procedurally. The implementation
of methods getE1ListInR(...) and getE2ListInR(...) are
not described in the table, but they follow the same logic.

C. HyDRa and Evolution

Evolving data intensive systems is a complex and error
prone task, since it often requires to co-evolve multiple
artefacts, including data structures, data instances, queries
and application code, to keep the system consistent. HyDRa,
by generating conceptual data manipulation APIs, aims to
facilitate this co-evolution problem, as illustrated in Fig. 2. The



TABLE III
PHYSICAL SCHEMAS AND THEIR IMPLEMENTATION OF GET METHODS

CS# PS# Description Implementation

1 (a) Generate a single database query to get E1 data.

(b)

- Generate a db query to get l1, the list of E1 stored in DB1.
- Generate a db query to get l2, the list of E1 stored in DB2.
- Perform a procedural full outer join between the two lists

based on the id matching (l1 ∪ l2).

2

(a) Generate a single db inner join query based on the foreign key
value (iff DB1 permits it, e.g., SQL. Otherwise, see 2(b))

(b)

- Generate a db query to get l1, the list of E1 stored in DB1.
- Generate a db query to get l2, the list of E2 stored in DB2.
- Perform a procedural inner join between the two lists based

on the foreign key value (l1 ∩ l2).

(c)

- Generate a db query to get l1, the list of E1 stored in DB1.
- Generate a db query to get l2, the list of E2 stored in DB2.
- Perform a procedural inner join between the two lists based

on the multi-valued foreign key value.
(d) Generate a single db query to get the list of nested E1 (DB1

permits nested structures, e.g., MongoDB)

3
(a) Generate a double inner join query based on the two foreign

key values (iff DB1 permits it, e.g., SQL. Otherwise, see 3(c)).

(b)

- Generate a single db inner join query between R and E2
(iff DB2 permits it, e.g., SQL. Otherwise, see 3(c)).

- Generate a db query to get the list of E1 stored in DB1.
- Perform a procedural inner join between both results.

(c)

- Generate a db query to get l1, the list of E1 stored in DB1.
- Generate a db query to get l2, the list of E2 stored in DB3.
- Generate a db query to get l3, the list of R stored in DB2.
- Perform a procedural double inner join between l1, l2 and l3

based on the two foreign key values.

upper left of the figure depicts a first version v1 of a polystore
system, manipulating Product, Order and Customer entities.
For readability reasons, relationship types and attributes have
been omitted. The mapping rules are represented with arrows,
linking the conceptual elements to their physical databases.
Customer instances are stored in a relational MySQL database,
Orders are stored in MongoDB database and Product data
is stored in both databases. This v1 version of the polystore
schema was given as input to the HyDRa API generator. Based
on the generated API, developers developed application code
accessing the polystore databases declared in v1.

Let us now assume that evolving requirements require
the polystore to evolve from version v1 to v2. Customer is
migrated to the MongoDB database and Order is duplicated in
a newly deployed key-value Redis database. Without HyDRa,
application programs would use database native queries to
access the polystore data. Those programs would need to be
manually rewritten to (1) change the queries manipulating
Customer from MySQL to MongoDB, (2) add Redis queries
for Order data, (3) add glue code to handle the duplication of
Order data in multiple databases. On top of that, the developers
would need to know, or to learn, the Redis query language.

In contrast, by using the HyDRa API conceptual methods
to access the polystore in version v1, the developers only
need to adapt the HyDRa polystore model, regenerate the
API, and recompile their application programs. The latter
remain unchanged and can immediately manipulate the v2 data
structures of the target polystore.

pList = productService.getProductListByCategory(«Beers»);

Customer customer = customerService.getCustomerById(idcust);

Order newOrder = new Order(orderId, LocalDate.now(), price);

orderService.insertOrder(newOrder, customer, pList);

Fig. 2. HyDRa API in evolution context

III. IMPLEMENTATION AND PRELIMINARY EVALUATION

HyDRa is implemented as an Eclipse plugin, publicly
available on GitHub [7]. The plugin includes a textual editor
for polystore schemas, and a conceptual Java API generator.
The modeling language grammar was specified with Xtext
1. The editor provides auto completion, syntax checking and
highlighting. It currently supports the design of relational,
document, graph, column and key-value databases.

The user can create a polystore schema file to specify the
conceptual and physical schemas as well as mapping rules to
possibly pre-existing databases. This file can then be given as
input of the API generator, that then produces a set of ready-
to-use Java classes with their configuration files. The API
generator uses the Acceleo technology 2. The generated API
currently supports selection and insertions operations on rela-
tional databases (MySQL and MariaDB), document databases
(MongoDB) and key-value databases (Redis). Database ac-
cess is possible either through native access libraries or via
Apache Spark 3 implementations. Spark provides easy-to-use
processing facilities for distributed data, with promising levels
of scalability.

HyDRa has been applied to several illustrative use cases
relying on the IMDB 4 and Unibench5 [9] datasets. Unibench
is a framework for testing multi-model DBMSs, i.e., single
database platform handling multi-model data. They generated
data simulating an e-commerce system in multiple data for-
mats. For example social network information was stored as
graphs, purchase history as documents and customer informa-
tion in relational tables.

The document, key-value and relational datasets of
Unibench have been successfully modeled and queried using
HyDRa framework. Some of its queries have been written
using the generated conceptual API. As an example, query
2, which states For a given product, find the persons who had
bought it, can be expressed using the HyDRa API, as shown
in Fig. 3.

We then simulated several polystore reconfigurations, by
migrating data and modifying data structures. After API regen-

1 https://www.eclipse.org/Xtext/ 2 https://www.eclipse.org/acceleo/
3 http:/ /spark.apache.org/ 4 https:/ /www.imdb.com/interfaces/
5 https://github.com/HY-UDBMS/UniBench



Fig. 3. HyDRa API code query example

eration, we observed that conceptual queries were still valid
and could be successfully executed on the target structures.
This demonstration is available in a short video6 and on
GitHub 7.

IV. RELATED WORK

Database design for NoSQL applications is not as mature
as relational database design. State-of-the art approaches are
mainly technology or data model specific [10]–[12]. Roy-
Hubara et al. [4] did a systematic literature review on NoSQL
database design. NoAM [5] proposes a uniform way to design
NoSQL databases by abstracting the common features of each
data model and by designing an aggregate identification step.
Herrero et al. [13] define a 3-step design method, with data
access performance as main objective. Conceptual design takes
evolution into account by means of flags on entities. Flags are
considered when deciding to map an entity to a NoSQL or a
relational database. TyphonML [14] also supports conceptual
modeling of hybrid polystores, but imposes implicit restric-
tions on the way conceptual entities, attributes and relation-
ships are physically translated in each different native backend.
Fernandez et al. [15] propose U-Schema, a unified language,
combining relational and NoSQL data models. Orion [16] is
a language for NoSQL schema evolutions, defined on top of
U-Schema. It allows one to generate scripts that modify the
unified schema and the underlying databases, but does not
provide support for generating or evolving data manipulation
programs. The major novelty of the HyDRa modeling lan-
guage relies on the use of fine-grained mapping rules, enabling
to model data overlapping across heterogeneous databases, and
to keep full control over the physical data structures.

Cleve et al. [17] propose to generate conceptual data access
APIs for systems relying on a single relational database.
Guidoni et al. [18] also allow the conceptual manipulation
of a relational database, using ontology-based data mappings.
Object Relational Mappers (ORM) and Object NoSQL Map-
pers (ONM) [6] also provide access to data using conceptual
APIs, but very few support multi-database technologies and
the class implementations have to be manually written.

The novel contribution of HyDRa in terms of conceptual
API generation is its ability to support multi-model data
access. The generated API is able to handle the variety of data
storages, even for querying the same entity type, by means of
several native queries and join-based data reconciliation. The
physical configuration of the polystore remains transparent

6 https://youtu.be/oTTFhHpt9IY 7 https://tinyurl.com/wxna468

for the developers, thanks to the high-level of abstraction of
conceptual API methods. This also facilitates schema evolution
by reducing manual co-evolution effort.

V. CONCLUSION AND FUTURE WORK

This paper presents HyDRa, an integrated conceptual frame-
work for hybrid polystore modeling, manipulation and evolu-
tion. HyDRa includes a modeling language able to conceptu-
ally design hybrid polystores while preserving the possibility
to design data at physical level to exploit the strengths of each
native data model. As far as data manipulation is concerned,
HyDRa follows a generative, conceptual approach that (1)
eliminates the need to master multiple query languages, (2)
ensures the data keep complying with cross-database integrity
constraints and (3) is resistant to database schemas changes.

As future work, we plan to provide better assistance to
polystore schema design. In particular, as NoSQL database
design is mainly query-centered, existing query logs could be
exploited to recommend adequate mapping rules to particular
database technologies. Regarding API generation, we intend
to support graph and wide column datastores, and to conduct
systematic performance evaluations of HyDRa.
Acknowledgements. This research is supported by the F.R.S.-FNRS
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