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Spectral identification of networks with
generalized diffusive coupling

M. Gulina ∗ A. Mauroy ∗

∗ Department of Mathematics and Namur Institute for Complex
Systems (naXys), University of Namur, 5000 - Belgium

Abstract: Spectral network identification aims at inferring the eigenvalues of the Laplacian
matrix of a network from measurement data. This allows to capture global information on the
network structure from local measurements at a few number of nodes. In this paper, we consider
the spectral network identification problem in the generalized setting of a vector-valued diffusive
coupling. The feasibility of this problem is investigated and theoretical results on the properties
of the associated generalized eigenvalue problem are obtained. Finally, we propose a numerical
method to solve the generalized network identification problem, which relies on dynamic mode
decomposition and leverages the above theoretical results.

Keywords: network identification, diffusive coupling, spectral graph theory.

1. INTRODUCTION

In some situations, only local measurements of a few
nodes of a network are available, while the whole network
topology is unknown. Since the network structure affects
the dynamics of coupled units attached to the nodes, it is
possible to infer some information on the global structure
of the network from these local measurements. In partic-
ular, this can be done in the context of spectral network
identification introduced in Mauroy and Hendrickx (2017).
In this setting, the eigenvalues of the Jacobian matrix
characterizing the linearized dynamics are computed from
local measurement through the so-called DMD algorithm
(see Schmid (2010); H. Tu et al. (2014)) and are shown to
be related to the eigenvalues of the Laplacian matrix of the
network. Thanks to spectral graph theory, the obtained
Laplacian spectrum can in turn be used to infer global
structural properties of the network such as the minimum,
mean and maximum node degrees (see e.g. Fiedler (1973)).
However, the results of Mauroy and Hendrickx (2017) are
valid only for units interacting through a scalar diffusive
coupling. This restrictive condition is not satisfied in many
cases, such as reaction-diffusion networks.

This paper aims to extend the applicability of the spectral
network identification framework to the setting of vector-
valued diffusive coupling between interacting units. In
this context, the feasibility problem appears to be more
involved than in the scalar-valued coupling case and theo-
retical results related to a generalized eigenvalue problem
are provided. Furthermore, a method for spectral network
identification is developed in this generalized case.

The rest of the paper is organized as follow. In Section 2,
the spectral network identification problem is introduced
in the generalized setting of vector-valued diffusive cou-
pling. The feasibility of this problem is investigated in
Section 3 and a numerical method is proposed in Section
⋆ This work is supported by the Namur Institute For Complex
Systems (naXys) at University of Namur.

4, based on theoretical results related to a generalized
eigenvalue problem. The method is illustrated with several
examples in Section 5. Finally, concluding remarks and
perspectives are discussed in Section 6.

2. SPECTRAL NETWORK IDENTIFICATION

We consider a nonlinear dynamical system over a network
of n nodes. The unit attached to node k is described by m
states whose evolution is governed by the diffusely coupled
nonlinear dynamics

ẋk = F (xk) +G(xk)uk ∈ Rm

uk =

n∑
j=1

Wkj(yk − yj) ∈ Rr

yk = H(xk), ∈ Rr

(1)

with the (continuously differentiable) functions F : Rm →
Rm, G : Rm → Rm×r and H : Rm → Rr. We assume
that the dynamics is so that the units asymptotically
reach a synchronized state x1 = · · · = xn = x∗, i.e.,
limt→∞ xk(t) = x∗. Note that the coupling coefficients
Wkj are the entries of the adjacency matrix W ∈ Rn×n

of the network. Moreover, the Laplacian matrix is given
by L = D −W , where D = diag(d1, . . . , dn) is the degree
matrix with di =

∑n
k=1 Wik. For the sake of brevity, we

will also denote In = {1, . . . , n} for all n ∈ N0.

Spectral identification allows to infer global information
on the network structure from local measurements. It aims
at estimating the spectrum σ(L) of the Laplacian matrix
L from state measurements at a small number p ≪ n
of nodes. More precisely, states measurements are used
to compute the spectrum of the underlying Koopman
operator through the DMD algorithm (see Schmid (2010);
H. Tu et al. (2014)). Since the equilibrium x∗ is a stable
equilibrium, the Koopman spectrum is directly related to
the spectrum σ(J) of the Jacobian matrix of the vector
field (at the equilibrium)

J = In ⊗A− L⊗BCT (2)



where In is the identity matrix of order n, A = ∂F/∂x(x∗),
B = G(x∗) and C = ∇H(x∗). The spectral identification
problem therefore boils down to estimating the Laplacian
spectrum σ(L) from the spectrum σ(J) of the Jacobian
matrix.

In Mauroy and Hendrickx (2017), the authors investigated
the relationship between the spectrum of the Jacobian
matrix J and the spectrum of the Laplacian matrix L.
It was shown that

(A− λBCT )w = µw (3)

where λ ∈ σ(L) denotes an eigenvalue of L and µ ∈ σ(J)
is an eigenvalue of J . In the specific case r = 1, they also
proved that the relationship between the two spectra is
one-to-one, so that one can retrieve the spectrum of L from
the spectrum of J . However the case r = 1 implies that
the input and output signals uk and yk in (1) are scalar-
valued, a condition that is not satisfied in many cases (see
e.g. reaction-diffusion networks). The main contribution
of this paper is to provide a generalized framework for
spectral identification, which is valid for the case r > 1.

3. PROBLEM FEASIBILITY

In the following result, we show that the spectral identifi-
cation problem is feasible under a mild assumption based
on spectral moments. In particular, we define the k-th
spectral moment of L by

Mk(L) =
1

n

n∑
i=1

λk
i =

1

n
tr
(
Lk
)

(4)

where tr(L) denotes the trace of L.

Proposition 1. If Mk

(
BCT

)
̸= 0 for all k ∈ In, then the

spectral identification problem is feasible, that is,

σ(J1) = σ(J2) ⇐⇒ σ(L1) = σ(L2)

with J1 = In⊗A−L1⊗BCT and J2 = In⊗A−L2⊗BCT .

Proof. Following similar lines as in Mauroy and Hen-
drickx (2017), we have, for k ∈ {1, . . . , n}

Mk(J) =
1

mn
tr
[(
In ⊗A− L⊗BCT

)k]
=

1

mn

k∑
j=0

(
k
j

)
tr
[
(−L)

j ⊗Ak−j
(
BCT

)j]
= (−1)kMk

(
BCT

)
Mk(L)

+
1

m

k−1∑
j=0

(
k
j

)
(−1)j tr

[
Ak−j

(
BCT

)j]Mj(L)

with

(
k
j

)
=

k!

j!(k − j)!
.

This linear system of equations is associated with lower-
triangular matrix that is invertible if its diagonal entries
are all non zero, i.e. (−1)kMk

(
BCT

)
̸= 0 for all k ∈

{1, . . . , n}. In this case, the relationship between the first n
spectral moments Mk(L) and the first n spectral moments
Mk(J) is one-to-one. Since σ(L) is uniquely determined
by the n first spectral moments Mk(L), it follows that
σ(J1) = σ(J2) ⇒ σ(L1) = σ(L2). The other implication
directly follows from (3). ■
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Fig. 1. Relationship between exact and identified eigenval-
ues.

If the assumptions of the above result are satisfied, the
spectral moments Mk(L) can be obtained by solving the
linear system of equations:

Mk(L) =
(−1)k

Mk(BCT )

Mk(J) +

1

m

k−1∑
j=0

(
k
j

)
(−1)j+1 Mj(L) tr

(
Ak−j(BCT )j

) . (5)

However, computing the n eigenvalues of L from the first n
spectral moments might lead to significant numerical error
and should be avoided. In the next section, we propose
an alternative method based on the properties of the
characteristic polynomial

χ(λ, µ) =
∣∣A− λBCT − µIm

∣∣
associated with the generalized eigenvalue problem (3).

4. SOLVING THE SPECTRAL NETWORK
IDENTIFICATION PROBLEM

The relationship between the Laplacian spectrum σ(L)
and the spectrum of the Jacobian matrix σ(J) can be
described as follows. According to (3), any Laplacian
eigenvalue λi, i ∈ In, is in fact associated to m eigenvalues



of the Jacobian matrix J , which we denote by µij , j ∈ Im.
In the context of the network identification problem, for
each µij ∈ σ(J) (estimated from data), one has to solve
the generalized eigenvalue problem

(A− µijIm)w = λBCTw (6)

obtained by reorganizing (3). The solution can be com-
puted by using the generalized Schur decomposition of A
and BCT (also called the QZ-algorithm, see Golub and
Van Loan (1996)). However, there are m solutions λijk,
k ∈ Im for each value µij , where m ≤ min(r,m) is the
rank of BCT , one of which is λi. It follows that the set of
computed eigenvalues Λ = {λijk | i ∈ In, j ∈ Im, k ∈ Im}
is typically larger than σ(L), i.e. σ(L) ⊊ Λ, whenever
m > 1 (see Figure 1). The spectral identification problem
therefore aims at identifying the Laplacian eigenvalues
from those in Λ. Without loss of generality, we will denote
these eigenvalues by λij1 = λi for all i ∈ In and j ∈ Im.

One can also note that, for m = 1, the solution of (6)
is unique so that σ(L) = Λ. This particular situation is
similar to the one in Mauroy and Hendrickx (2017), where
r = 1 implies m = 1.

4.1 Properties of the generalized eigenvalue problem

One can see that the exact computed eigenvalues λij1 =
λi, with j ∈ Im, are repeated with multiplicity m. This
property can be exploited unless spurious eigenvalues λijk,
with k ̸= 1, are also repeated. In the worst case, the
set of computed Laplacian eigenvalues may consist of m
clusters of n eigenvalues with multiplicity m, which we call
indistinguishable clusters.

We will study the property of repeated eigenvalues by
deriving two results on the characteristic polynomial
χ(λ, µ) =

∣∣A− λBCT − µIm
∣∣. Note that it can be rewrit-

ten as

χ(λ, µ) =

m∑
p=1

αpλ
p −

m∑
q=0

βqµ
q +

m̃∑
s=1

m−s∑
t=1

γstλ
sµt, (7)

with m̃ = min(m,m− 1).

Lemma 2. If tr
(
BCT

)
̸= 0, then χ(λ, µ) admits at least

one term of the form λµm−1.

Proof. The characteristic polynomial χ(λ, µ) is given by

χ(λ, µ) =
∣∣A− λBCT − µIm

∣∣
=
∑

π∈Pm

ε(π)

m∏
i=1

[
aiπ(i) − λ(BCT )iπ(i) − µδiπ(i)

]
,

(8)

where Pm is the set of permutations of m elements and
ε(π) is the signature of the permutation π.

Since δiπ(i) = 0 for all i ̸= π(i), terms of the form λsµt,
with s + t ≤ m, are obtained only with permutations π
that admit at least t fixed points. Furthermore, the only
permutation in Pm that has m − 1 fixed points is the
identity, which is associated with the term

m∏
i=1

[
aii − λ(BCT )ii − µδii

]
,

in (8). By distributing, we can identify the terms in λµm−1,
which add up and yield

(−1)m tr
(
BCT

)
λµm−1. (9)

This term is nonzero by assumption. ■

Lemma 3. Assume that m = m and that ∃i ∈ In such
that, ∀j1 ̸= j2 ∈ Im :

• µij1 ̸= µij2 are nonzero,
• {λij1k} = {λij2k} (i.e. indistinguishable clusters).

Then the characteristic polynomial χ(λ, µ) does not admit
cross terms of the form µsλt with s > 0 and t > 0.

Proof. For fixed i ∈ In and j ∈ Im, we have that
χ(λi, µij) = 0 by definition of λi and µij . It follows from
(7) that

m∑
p=1

αpλ
p
i +

m̃∑
s=1

m−s∑
t=1

γstλ
s
iµ

t
ij =

m∑
q=0

βqµ
q
ij .

For k ∈ Im, λijk are the roots of

χ(λ, µij) =

m∑
p=1

αpλ
p +

m̃∑
s=1

m−s∑
t=1

γstλ
sµt

ij −
m∑
q=0

βqµ
q
ij

=

m∑
p=1

αp (λ
p − λp

i ) +

m̃∑
s=1

m−s∑
t=1

γstµ
t
ij (λ

s − λs
i ) . (10)

Since m = m, we have m̃ = min(m,m − 1) = m − 1 and
(10) can be rewritten as

χ(λ, µij) = αm (λm − λm
i )+

m−1∑
p=1

[
αp +

(
m−p∑
t=1

γptµ
t
ij

)
(λp − λp

i )

]
, (11)

which is a polynomial in λ that we denote by χ̃ij(λ).
Furthermore, the assumption {λij1k} = {λij2k} for all
j1 ̸= j2 ∈ Im implies that the m polynomials χ̃ij(λ) (i.e.
for all j ∈ Im) share the same roots so that they are equal
up to a multiplicative constant. Since they have the same
coefficient αm, they are equal and the values

∑m−p
t=1 γptµ

t
ij

in (11) do not depend on j, that is,
∑m−p

t=1 γptµ
t
ij = ξpi.

Therefore, for each p ∈ Im−1, the coefficients γpt are
solutions ofµi1 µ2

i1 · · · µm−p
i1

...
...

...
µim µ2

im · · · µm−p
im


 γp1

...
γp,m−p

 =

ξpi
...
ξpi

 .

The matrix in the left-hand side is a Vandermonde matrix
which is full rank since µij are distinct and nonzero. It
follows that the only solution is ξpi = 0 and γpt = 0, and
therefore χ(λ, µ) does not admit cross terms. ■

The above result shows that, if the characteristic polyno-
mials admit cross terms, then the computed eigenvalues
will not consist in indistinguishable clusters of repeated
eigenvalues. Conversely, if the polynomial does not admit

cross terms, (10) writes χ(λ, µij) =
∑m

p=1 αp (λ
p − λp

i ) for
all i ∈ In and j ∈ Im. It is clear that the polynomial does
not depend on j, so that its roots {λijk} do not depend
on j either. In this case, computed eigenvalues consist of
indistinguishable clusters of repeated eigenvalues.



4.2 Spectral network identification method

Our proposed method for spectral network identification
is based on (i) the DMD algorithm (see Section 5 below)
to estimate the eigenvalues of the Jacobian matrix and (ii)
the results of Section 4.1 to infer the Laplacian eigenvalues.
It is summarized in Algorithm 1. In particular, the method
relies on the fact that each Laplacian eigenvalue λi is
obtained m times in the computed set Λ (one related to
each value µij). Therefore, one can identify the Laplacian
spectrum σ(L) as the set of values in Λ that are repeated
with multiplicity m. Note that, due to numerical error in
the estimation of the values µij , some tolerance ε > 0
should be considered to decide whether an eigenvalue is
repeated or not, i.e. λ is repeated if |λ − λ̃| < ε for

some λ̃ ∈ Λ. Moreover, one has to ensure that spurious
eigenvalues are not also repeated. This is verified in most
cases under the necessary condition tr

(
BCT

)
̸= 0. Indeed,

this condition implies that the characteristic polynomial
admits cross terms (Lemma 2) and thus that the situation
of m indistinguishable clusters of repeated eigenvalues is
ruled out (Lemma 3), provided that m = m and the
eigenvalues of J are distinct and nonzero.

Algorithm 1 Spectral network identification

Inputs: Dynamics (A,B,C), state measurements
(snapshot data), and tolerance ε > 0.
Output: Spectrum of the Laplacian matrix σ(L).

Eigenvalue estimation:
1: Estimate the eigenvalues µ ∈ σ(J) from state mea-

surements using the DMD algorithm.

Computing:
2: for each µ ∈ σ(J) do
3: Solve (6) using the QZ-algorithm and store the

solutions in Λ.
4: end for

Filtering:
5: Count the multiplicity of each value in Λ with the

tolerance ε, without pruning the values already con-
sidered for the multiplicity of other values.

Averaging:
6: for each value of Λ with multiplicity m do
7: Define λi as the average of the m repeated eigen-

values and store λi in σ(L).
8: end for

4.3 Illustration with random networks

We consider a random network of n = 50 nodes with an ad-
jacency matrix W whose entries are uniformly distributed
in [0, 1]. The linearized dynamics is characterized by matri-
ces A and B with entries that are uniformly distributed in
[0, 20] (withm = 2) and by a matrix C = I2. The spectrum
of the Jacobian matrix is used as input for Algorithm
1 with ε = 10−4. In this case, spectral identification is
feasible since m = m = 2 and tr

(
BCT

)
̸= 0. Indeed,

we observe only one cluster of repeated eigenvalues, corre-
sponding to correct eigenvalues (Figure 2(a)). In contrast,
in the case where tr

(
BCT

)
= 0 (imposing B11 = 1 and

(a) Exact spectral identifica-

tion with tr
(
BCT

)
̸= 0.

(b) Indistinguishable clusters

with tr
(
BCT

)
= 0.

Fig. 2. Blue circles represent the exact Laplacian spectrum
σ(L), green stars represent the computed eigenvalues
Λ and red crosses represent the identified Laplacian
spectrum.

B22 = −1), we observe two (indistinguishable) clusters of
repeated eigenvalues (Figure 2(b)). Note that in the latter
case, one can still identify correct eigenvalues by exploiting
the fact that Laplacian eigenvalues are positive.

5. NUMERICAL EXPERIMENTS

In this section, our spectral network identification method
is illustrated with two examples.

5.1 Data and DMD algorithm

We consider Erdős-Rényi networks of size n, where each
entry of the adjacency matrix W has a probability of pedge
to be uniformly distributed in [0, 1] and 1− pedge to be 0.
Note that n and pedge are supposedly unknown.

We consider both linear and nonlinear dynamics:

(1) Linear dynamics
ẋk =

(
−1 −2

1 −1

)
xk +

(
1 0

0 2

)
uk

uk =

n∑
j=1

Wkj(yk − yj)

yk = xk.

(12)

(2) Nonlinear Brusselator dynamics (Prigogine (1980)){
ẋ1 = 1− (b+ 1)x1 + a x2

1 x2

ẋ2 = b x1 − a x2
1 x2,

(13)

where a, b ≥ 0 are parameters. We set a = 15 and
b = 9 so that the fixed point is x∗ = (1, b/a) =
(1, 0.6). The coupling is defined by B = diag(1, 4.5)
and C = I2.

We generate q trajectories X(j) (j = 1, . . . , q) from differ-
ent initial conditions whose components are uniformly dis-
tributed in an interval of length 10−4 and centered on the
associated component of x∗. We take K+1 snapshots data
on each trajectory with a sampling period ∆t, X(j)(k∆t)
(k = 0, . . . ,K). We consider the measurement function
f : Rmn → Rp which returns only the first state of the first
node. The DMD algorithm (see Schmid (2010); H. Tu et al.



Case n pedge q K ∆t c δ ε

L 10 0.65 10 25 0.4 2 5 0.05

NL 10 0.65 10 25 0.4 2 5 0.1

NL 100 0.3 10 50 0.4 2 5 1

Table 1. Parameters used for numerical exper-
iments in the linear (L) and nonlinear (NL)

cases.

(2014)) is used with the data measurements f(X(j)(k∆t))
and c − 1 delayed sequences f(X(j)((k + 1)∆t)), . . . ,
f(X(j)((k+ c− 1)∆t)) (see Mauroy and Hendrickx (2017)
for more details). The parameters used in each experiment
are summarized in Table 1.

5.2 Numerical results

In the linear case and with a small network (n = 10),
Algorithm 1 is efficient to recover all Laplacian eigenvalues
(Figure 3).

With nonlinear dynamics, the DMD algorithm is not
able to compute accurately all the eigenvalues of the
Jacobian matrix so that it becomes more difficult to
capture repeated values in Λ. Similarly, it is not possible
to capture all the eigenvalues of the Jacobian matrix in the
case of large networks. For these cases, our method must
be adapted.

In the case of small graphs, we adapt the filtering part
in Algorithm 1 as follows. Assuming that the different
(correct and spurious) clusters of computed eigenvalues in
Λ lie in separated regions of the complex plane, we can use
repeated eigenvalues identified by Algorithm 1 to define
a region of the complex plane where all eigenvalues—
even not repeated—supposedly belong to the Laplacian
spectrum. We will define this region as the convex hull of
the eigenvalues identified by Algorithm 1, and will select
all computed eigenvalues that lie inside this set with the
tolerance ε.

Note that if only real eigenvalues are identified, then the
convex hull is not defined. In this case, the approximation
of the Laplacian spectrum is given by all λ ∈ Λ such
that Re{λ} ∈ [0, ρ + ε] and Im{λ} ∈ [−ε, ε], where ρ is
the identified eigenvalue with the largest real part. We
use this adapted method to approximate the Laplacian
eigenvalues in the case of the Brusselator dynamics on the
same network as in the linear case (see Figure 4).

In the case of large networks, one can make the accept-
able approximation that the Laplacian eigenvalues are
uniformly distributed in a region of the complex plane.
Again, this region is defined as the convex hull of repeated
eigenvalues obtained with Algorithm 1. Then, the first two
spectral moment of L can be approximated using the area,
centroid and second moment of area of the convex hull
(see Mauroy and Hendrickx (2017) for more details). This
method is used for a large network (n = 100) with the
Brusselator dynamics (Figure 5) and the results are given
in Table 2. Note that λ2 and λn are taken as the minimal
and maximal real part of the convex hull, respectively.

(a) Estimated eigenvalues of
the Jacobian matrix.

(b) Computed Laplacian eigen-
values.

Fig. 3. The spectral network identification method recovers
the Laplacian eigenvalues in the case of a network of
n = 10 nodes, with the linear dynamics (12). Inset
in panel (b): close-up view on the exact Laplacian
eigenvalues.

(a) Estimated eigenvalues of
the Jacobian matrix.

(b) Computed Laplacian eigen-
values.

Fig. 4. The adapted spectral network identification method
is used in the case of a network of size n = 10 with
the Brusselator dynamics (13). The magenta line is
the convex hull. Inset in panel (b): close-up view on
the exact Laplacian eigenvalues.

(a) Estimated eigenvalues of
the Jacobian matrix.

(b) Computed Laplacian eigen-
values.

Fig. 5. The adapted spectral network identification method
is used in the case of a large network of size n = 100
with the Brusselator dynamic (13). The magenta line
is the convex hull. Inset in panel (b): close-up view on
the exact Laplacian eigenvalues.



n = 100 Estimated Exact

M1(L) 5.55 5.05

M2(L) 35.04 29.48

λ2 0.29 1.45

λn 8.75 9.85

Table 2. Spectral identification of a network
of size n = 100 with the Brusselator dynamic.

6. CONCLUSION

This paper considers the spectral network identification
framework introduced in Mauroy and Hendrickx (2017)
and extends its applicability to the case of vector-valued
input and output coupling signals. The feasibility problem
has been investigated, which turns out to be more involved
in this case. Moreover we have proposed a method for
solving the spectral identification problem, which is based
on the properties of a generalized eigenvalue problem.
This method has been illustrated with several numerical
experiments, which showed that all Laplacian eigenvalues
can be inferred in the case of linear dynamics and small
networks, or spectral moments and bounds on Laplacian
eigenvalues can be obtained otherwise.

This work leads to several research perspectives. First of
all, the proposed method is not robust to numerical errors
on the eigenvalues estimated by the DMD algorithm. We
have proposed a heuristic solution to this issue, which
could be improved. In this context, specific extensions of
the DMD algorithm could also be used (e.g., Brunton et al.
(2013), Williams et al. (2015), Hemati et al. (2017), Li
et al. (2017), Gulina and Mauroy (2021)). Moreover, the
results and methods developed in this work are based on
the assumption of a network of identical units. Further
research work could investigate the case of nonidentical
units. Finally, additional work could be needed to infer
relevant network properties from identified features of the
Laplacian spectrum. While the spectra of the adjacency
and modularity matrices of random graphs have been
studied in Nadakuditi and Newman (2013), the reverse
problem of estimating distributions of expected degree
from the identified Laplacian spectrum could be addressed.

ACKNOWLEDGEMENTS

The authors are grateful to Germain van Bever and Cédric
Simal for fruitful discussions.

REFERENCES

Brunton, S.L., Proctor, J.L., and Kutz, J.N. (2013). Com-
pressive sampling and dynamic mode decomposition.

Fiedler, M. (1973). Algebraic connectivity of graphs.
Czechoslovak Mathematical Journal, 23, 298–305.

Golub, G. and Van Loan, C. (1996). Matrix Computations
(3rd ed.). Johns Hopkins University Press.

Gulina, M. and Mauroy, A. (2021). Two methods to ap-
proximate the koopman operator with a reservoir com-
puter. Chaos: An Interdisciplinary Journal of Nonlinear
Science, 31(2), 023116–023116. doi:10.1063/5.0026380.
URL https://doi.org/10.1063/5.0026380.

H. Tu, J., W. Rowley, C., M. Luchtenburg, D., L. Brunton,
S., and Nathan Kutz, J. (2014). On dynamic mode
decomposition: Theory and applications. Journal of
Computational Dynamics, 1(2), 391–421. doi:10.3934/
jcd.2014.1.391. URL http://dx.doi.org/10.3934/
jcd.2014.1.391.

Hemati, M.S., Rowley, C.W., Deem, E.A., and Cattafesta,
L.N. (2017). De-biasing the dynamic mode de-
composition for applied koopman spectral analy-
sis of noisy datasets. Theoretical and Computa-
tional Fluid Dynamics, 31(4), 349–368. doi:10.1007/
s00162-017-0432-2. URL https://doi.org/10.1007/
s00162-017-0432-2.

Li, Q., Dietrich, F., Bollt, E.M., and Kevrekidis, I.G.
(2017). Extended dynamic mode decomposition with
dictionary learning: A data-driven adaptive spectral
decomposition of the Koopman operator. Chaos: An
Interdisciplinary Journal of Nonlinear Science, 27(10),
103111. doi:10.1063/1.4993854. URL https://doi.
org/10.1063/1.4993854.

Mauroy, A. and Hendrickx, J. (2017). Spectral identifi-
cation of networks using sparse measurements. SIAM
Journal on Applied Dynamical Systems, 16(1), 479–513.
doi:10.1137/16M105722X.

Nadakuditi, R.R. and Newman, M.E.J. (2013). Spec-
tra of random graphs with arbitrary expected degrees.
Phys. Rev. E, 87, 012803. doi:10.1103/PhysRevE.87.
012803. URL https://link.aps.org/doi/10.1103/
PhysRevE.87.012803.

Prigogine, I. (1980). From Being to Becoming: Time and
Complexity in the Physical Sciences. New York: W.H.
Freeman and Company.

Schmid, P.J. (2010). Dynamic mode decomposition of
numerical and experimental data. Journal of Fluid
Mechanics, 656, 5–28. doi:10.1017/S0022112010001217.

Williams, M.O., Kevrekidis, I.G., and Rowley, C.W.
(2015). A data–driven approximation of the Koopman
operator: Extending Dynamic Mode Decomposition.
Journal of Nonlinear Science, 25(6), 1307–1346. doi:
10.1007/s00332-015-9258-5. URL https://doi.org/
10.1007/s00332-015-9258-5.

https://doi.org/10.1063/5.0026380
http://dx.doi.org/10.3934/jcd.2014.1.391
http://dx.doi.org/10.3934/jcd.2014.1.391
https://doi.org/10.1007/s00162-017-0432-2
https://doi.org/10.1007/s00162-017-0432-2
https://doi.org/10.1063/1.4993854
https://doi.org/10.1063/1.4993854
https://link.aps.org/doi/10.1103/PhysRevE.87.012803
https://link.aps.org/doi/10.1103/PhysRevE.87.012803
https://doi.org/10.1007/s00332-015-9258-5
https://doi.org/10.1007/s00332-015-9258-5

	Introduction
	Spectral network identification
	Problem feasibility
	Solving the spectral network identification problem
	Properties of the generalized eigenvalue problem
	Spectral network identification method
	Illustration with random networks

	Numerical experiments
	Data and DMD algorithm
	Numerical results

	Conclusion
	Acknowledgements

