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Abstract

More and more often ML models are criticised for their lack of interpretability.
One must be able to understand the decision process of the model that led to
the refusal of its mortgage, the diagnosis of a disease, or any legal advice.
The ability to provide an explanation for a prediction is crucial and has been
on the spotlight for a moment now.
Link prediction is an interesting task among the knowledge graph realm due
to its various applications, e.g. user recommendation, fact checking, etc.
As far as we know, the methods providing the best results for link prediction
are based on embeddings, and therefore are not intrinsically comprehensible
by a human.
This work proposes a post-hoc interpretability procedure based on rule min-
ing that retrieves some insights about the models’ motivations for the pro-
vided predictions.

Keywords: knowledge graph embeddings, link prediction, explicability, rule
mining.
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1 Introduction

Today we can find almost every desired piece of knowledge on the internet. A
quick search allows us to keep being informed on the world news, let us re-
member that the film where Tom Hanks played a man who has to survive on
an island is called “Cast away”, let us know that the capital of Ecuador is Quito,
and many more other things.

The massive growth of information reachable by everyone on the web has pro-
moted some initiatives to gather knowledge in a structured way. How would
we be able to collect, store, enrich and exploit such amount of information?

Knowledge bases (KB) and knowledge graphs (KG) are an answer to that ques-
tion. They allow the storage of statements of the form p(s, o) such as
capital(Belgium,Brussels) where the predicate p can be seen as a directed la-
belled edge from the subject s to the object o.
The use of KGs is very valuable, both for academic and industrial domains
through their diverse applications: recommendation systems, facts checking,
question-answering, etc.

Even if huge efforts are made for collecting the most complete KGs, it is in-
evitable that some relations or some entities are missing. This ascertainment
leads to an important and active task related to KGs, which consists of bring-
ing out a missing relation between two entities based on the actual knowledge:
link prediction. A plethora of methods have been developed to achieve this
task, and the approaches based on embeddings appear to provide the best re-
sults for now.

The major downside of embedding-based methods is their inability to provide
a satisfiable explanation of the decision process that leads to one or another
link prediction. This opaqueness prevents specialists from corroborating the
decision process of the model, or a researcher from debugging its model while
working on it.

In this work, we propose a framework to explain embedding-based models for
link prediction. This work also provides and compares explanations based on
the locality, either in the vicinity of a statement or in the whole KG.
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The rest of this master thesis is structured as follows. In section 2, we introduce
an overview of knowledge graphs, logical rules and explanations in ML. Sec-
tion 3 briefly describes the most popular link prediction techniques developed
until this day. Section 4 presents the core of this master thesis and explains the
algorithms used to train the surrogate model. Section 5 discusses the experi-
mental metrics and datasets as well as the results of these experiments. Finally,
section 6 concludes this master thesis and provides some perspectives.
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2 Preliminaries

In this section, we describe knowledge graph, their applications and associ-
ated tasks. Then we define interpretability and discuss a few methods gener-
ally used to explain a model. Finally we describe Horn rules, which are the
goal explanations of our framework.

2.1 Knowledge base & knowledge graph

A Knowledge Base (KB) is a collection of structured information in the form of
assertions. A Knowledge Graph (KG) is a collection of structured information
using a graph formalism, particularly apt for binary facts.

These knowledge graphs are used in various domains, either academic or in-
dustrial with application such as recommendation systems, fraud detection,
proof checker, question answering, etc.

A KG can be seen as a collection of facts (also called triples or statements)
(s, p, o), also noted p(s, o), respectively composed by a subject (or head), a
predicate (or relation) and an object (or tail).

Figure 1 is an illustration of a simple KG. This example is composed of two
relations (“marriedTo” and “hasChild”) and three entities (“Elvis”, “Priscilla”
and “Lisa”).

Figure 1: A simple Knowledge Graph. (Source: [1])

Even if KG can be constructed manually, they are generally built using auto-
matic and semi-automatic information extraction methods.

3



Many current KGs (YAGO, DBpedia, Freebase, WikiData, etc.) adopt the Open
World Assumption (OWA), meaning that missing links cannot be used as false
statements. This is in opposition with the Closed World Assumption (CWA), for
which all missing relation have to be considered as false.
In the middle of these two assumptions, the Partial Closed World Assumption
(PCWA) mainly treats the knowledge graph like OWA but allows certain parts
of the graph to be treated as CWA. This is also known as Local Closed-World
Assumption (LCWA).

Indeed it is easy to see why storing all false relations is nearly impossible in
practice, the relation ”marriedTo” alone will create a colossal amount of links
between entities since that number will increase quickly with the number of
person-type entities.

Since most of the methods for link prediction need some false facts to discrim-
inate between true and false statements, techniques were developed to infer
such negative facts from the true facts known by the KG. This is called Nega-
tive Sampling. The idea is always the same: creating a fact not present in the
KG, by fuzzing the head, the relation or the tail of any fact present in the KG.
The process chooses randomly which entity will fill the false fact. This ran-
domness is controlled differently by each method. The survey [2] splits the
negative sampling methods in three categories: static distribution-based, dy-
namic distribution-based and custom cluster-based.

2.2 Knowledge graph completion

Even with great effort, KGs will suffer from incompleteness, inconsistencies or
incorrectness. This is even harder to avoid as a KG grows in size.

As a way to mitigate these defects, the task of providing missing relations in
the KG, and confirming the rightfulness of relations is of prime importance.
KG completion may come in different flavours:

• entity prediction, when an element s or o is missing: (?, p, o) or (s, p, ?)

• relation prediction, when p is missing: (s, ?, o)

• triplet classification, when an algorithm recognises whether a given triple
(s, p, o) is correct or not.
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The example KG in figure 2 is incomplete. If there is enough data showing that
a married couple often has the same children, it is possible that these missing
links will be fixed by a KGC task i.e. (“Barack” hasChild “Sasha”) and (“Barack”
hasChild “Malia”).

Figure 2: A simple but incomplete KG. (Source: [1])

2.3 Interpretability & explicability

There is no formal definition of interpretability but the concept is defined in
[3] as follows: “Interpretability is the degree to which a human can understand
the cause of a decision.”

There is no absolute threshold value from which a model is interpretable, but
the easier it is for a human to understand the decision made by a model, the
more this model is interpretable.
In other words, the interpretability of a model can be seen as the degree to
which this model can be understood by a human without any help. It is of-
ten said that an interpretable model provides its own explanation. It is also
referred to as intrinsic interpretability.

If a model is not understandable out of the blue but some insights can be gath-
ered through tools and techniques, it is said to be explicable. The explicability
can then be seen as the degree to which explanation can be provided for a
model’s prediction. This is also referred to as post-hoc interpretability.

In the following, we detail some of the existing techniques [4] allowing that
kind of post-hoc interpretability.
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Partial Dependence Plots (PDP) shows the importance a few features have
on the predicted target value of the model. The idea is just to print out the re-
lation on a graph between the observed feature and the predicted target value.
An example of this plot can be seen in the figure 3a.

Accumulated Local Effects plot (ALE) is the next step in that direction, and
achieves the same goal: describing how a feature affects the target value. The
ALE plot is better than the PDP because it is informative even if the features
are correlated, which can lead to inconsistency between predictions and real
values in PDP. Here’s an example of ALE plot at figure 3b.

Global Surrogate consists of training a new, interpretable model to approx-
imate the predictions of the black-box model and uses the interpretable pre-
dictions to make assertions about the black-box model. The goal of a surro-
gate model is to have achieve high fidelity while being understandable by a
human. The fidelity is the accuracy of the surrogate model when the ground
truth is given by the black-box model.

Local Surrogate operates under the same principle than the global surro-
gate model, but here the idea is to train the interpretable model around a sin-
gle prediction of the black-box model. LIME (Local Surrogate Model-agnostic
Explanations)[5] proposes an implementation for these local surrogate mod-
els, and outputs a linear model. By restricting the locality around one instance,
LIME pledges to achieve local fidelity. While it is nearly impossible for an ex-
planation to be faithful of the whole model, LIME focuses on being faithful on
the vicinity of a considered instance.

Scoped Rules (Anchors) also have the core intent of providing explanations
only in the vicinity of a specific instance. Instead of producing a linear model,
the output of this method is a single rule composed by a conjunction of IF-
THEN propositions using the features’ values for comparison or threshold.
This rule is associated with metrics like precision and coverage. This method
uses reinforcement learning to explore and evaluate rules around the target
instance. The authors [5, 6] provide a visualisation (figure 4) of how differently
the two methods (LIME and anchors) conduct around a target instance when
trying to extract results.
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(a)

(b)

Figure 3: (a) PDP showing the influence of temperature, humidity and wind
speed on the predicted number of rented bikes. (b) ALE plot showing the same
graphs, but the impact of correlated features are reduced, making it more
trustworthy. (Source: [4])
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Figure 4: Toy visualisation of the action of anchor and LIME on a binary clas-
sifier [6]

Shapley Values comes from cooperative game theory. It considers every fea-
ture as a “player”, the target value as the “payout” and has the objective of cor-
rectly distributing the payout among the player relative to their responsibility
in that payout. The result is the importance of each feature for a prediction.

In this work we will be creating a local surrogate model, considering the em-
bedding based model for link prediction as our black-box model and creating
contexts of different size to see the impact on the fidelity of the model and the
quality of the explanation.
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Figure 5: Shapley value for day 285 in the bike rental dataset. The prediction
of rented bike this day is 2108 less than the average, and is strongly affected by
the humidity and the weather. (Source: [4])

2.4 Horn rules

While it is interesting to see the importance of each features for a prediction as
an explanation for this prediction, it is often better to have a human readable
explanation for it. In this path, the anchor method is very interesting because
even someone who has received no particular training could understand the
meaning of the explanation.

(Horn) rules meet this requirement. They are formed with a conjunction of
relations and end with an implication. Also, their use are suitable for KGs be-
cause a link between two edge can be considered as a binary value, which can
be grouped with logical AND. And the presence of a link is understandable
without training, so it can be used as explanation.

Atoms

An atom is a triple in which the subject and the object can be variables. A dif-
ferent terminology is used depending on the number of variables used in the

9



atom. If both the subject and object are variables, the atom is unbounded e.g.
capital(x, y). If one of them is a constant, the atom is bounded e.g. capital(x,Brussels).
If there is no variable in the atom, it is grounded. A grounded atom is another
name for a fact e.g. capital(Belgium,Brussels).

Horn rules

A Horn rule is an implication that can be written like this: B =⇒ H where
B is called the body, which is a conjunction of atoms, and where H is the
head atom. The following rule can be used as an example: marriedTo(x, y) ∧
hasChild(x, z) =⇒ hasChild(y, z).
A Horn rule is called safe if the variables in the head atoms do appear in the
body. The rule married(x, y) ∧ livesIn(x, z) =⇒ livesIn(y, z) is safe because
the two variables of the head (y and z) do appear in the body. married(x, y) ∧
livesIn(x, z) =⇒ livesIn(u, z) is not safe because one of the variables of the
head (u) does not appear in the body.
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3 State of the art: Link prediction

The goal of the link prediction task is to infer missing relationships between
entities, which can be formulated as predicting the head or the tail of a state-
ment given the other entity and the relation.

In the early days of link prediction, the way to go was to learn inference rules
from a sequence of triples [7].
However, this method does not scale well since the number of unique se-
quences of triples increases with the number of relations and the large sizes
of current KGs prevent the use of these methods.

More recently, another family of approaches allows a better generalisation by
operating on embedding representations [8]. During training, models learn a
scoring function that optimises the score of a target entity for a given triple.
In the evaluation, a statement with a missing entity is mapped into the latent
space and the model outputs a prediction vector for the missing entity.

A taxonomy of the state-of-the art method can be seen in figure 6.
The Wang et al. survey[9] provides a comprehensive and exhaustive list of the
KGE models for link prediction.

Figure 6: Link predictor taxonomy
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3.1 Embedding methods

The embedding models use latent features to predict facts in KGs. The idea
is to represent entities via embeddings, and predicates as relations between
those embeddings.
Embedding-based methods transform a KG into a low-dimensional vector space
while preserving its underlying semantics.
The models provide a score function f(s, p, o)which for a given triple< s, p, o >
reflects the model’s confidence in the truthfulness of the triple. The scoring
function and the embeddings are designed so that true triples get a higher
score than false triples. Based on this, potential candidates for a given query
< s, p, ? > can be ranked.

RESCAL[10] is a factorisation-based bilinear model. It represents entities
as vectors ai ∈ Rn, relations as matrices Rk ∈ Rn∗n and has a score function
f(s, p, o) = aTs Rpao.

DisMult[11] has the same working principle as RESCAL but uses a diagonal
matrix for its relations Rk. This decreases the number of parameters in the
model.

Complex[12] is using a complex diagonal matrix for its relations Rk. The
score of p(s, o) is given by the real part of aTs Rpao. It allows a better handling of
asymmetric relations.

ANALOGY[13] uses structural composition of a known KG to induce, by anal-
ogy, missing links in another, unknown KG. This method optimises the latent
representations with respect to the analogical properties of the embedded en-
tities and relations.

LowFER[14] proposes a factorised bilinear pooling model, commonly used
in multi-modal learning, for better fusion of entities and relations, leading to
an efficient and constraint-free model.

TuckER[15] is a linear model based on the Tucker decomposition1 of the bi-
nary tensor representation of knowledge graph triples.

1The Tucker decomposition[16] splits a tensor into a set of matrices and a small core tensor.
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HolE[17] (Holographic Embeddings) represents entities as vectors ai ∈ Rn ,
relations as vectors rk ∈ Rn and has a score function f(s, p, o) = rTp (as ∗ ao),
where ∗ refers to the circular correlation between as and ao.

SME[18] (Semantic Matching Energy function) uses a neural network to de-
termine the embeddings. The training process captures the implicit structure
of the knowledge graph.
Another particularity of this model is that the relations are modelled like the
entities. Therefore entities may be used as predicates, as in natural language.

NTN[19] (Neural Tensor Networks) represents entities as an average of their
constituting word vectors. This allows entities sharing words to be spotted
as similar. This model is improved by an initialisation of these word vectors
learned from large text corpora.

ConvKB[20] employs a convolutional neural network. ConvKB can capture
global relationships and transitional characteristics between entities and rela-
tions in knowledge bases. In ConvKB, each triple is represented as a 3-column
matrix where each column vector represents a triple element. This 3-column
matrix is then fed to a convolution layer where multiple filters are operated
on the matrix to generate different feature maps. These feature maps are then
concatenated into a single feature vector representing the input triple. The
feature vector is multiplied with a weight vector via a dot product to return a
score. This score is then used to predict whether the triple is valid or not.

HypeER[21] proposes a hypernetwork2 architecture that generates simpli-
fied relation-specific convolutional filters that improve performances greatly;
and can be framed as tensor factorisation and thus set within a well estab-
lished family of factorisation models for link prediction.

CoKE[22] (Contextualised Knowledge graph Embedding) innovates by tak-
ing into account contextual information on the entity and relation embed-
dings. “Unlike previous methods that assign a single static representation to
each entity/relation learned from the whole KG, CoKE models that representa-
tion as a function of each individual graph context, i.e. an edge or a path.”[22]

2Approach of using one network (the hypernetwork), to generate the weights for another
network.
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KG-BERT[23] (Knowledge Graph Bidirectional Encoder Representations from
Transformer) uses pre-trained language models for knowledge graph comple-
tion and it treats triples in knowledge graphs as textual sequences.

R-GCNs[24] (Relational Graph Convolutional Networks) are a demonstra-
tion of the usage of the GCN for the link prediction and triple-classification
tasks. It allows to deal with the highly multi-relational data characteristic of
realistic knowledge bases. It also assert that other bilinear models are to be
improved with the help of an encoder model to accumulate evidence over
multiple inference steps in the relational graph.

Translational methods use translation-based model, which represents en-
tities as vectors ai ∈ Rn , relations as vectors rk ∈ Rn. TransE[25] has a score
function f(s, p, o) = ‖as + rp − ao‖22. This method can only handle 1-to-1 pred-
icates. TransR[26] and TransH[27] allow to handle 1-to-N, N-to-1 and N-to-N
predicates with an increase of the number of parameters as a trade-off.

TorusE[28] was developed to tackle the regularisation issue that appears on
TransE. TransE forces entity embeddings to be on a sphere in the embedding
vector space while TorusE allows the usage of a Lie group3.

3.2 Symbolic methods

This family of methods uses two techniques to provide link prediction: either
via mining Horn rules; or via the exploitation of the path leading from an entity
to another. These kind of prediction are considered intrinsically explainable
because what lead to the prediction is understandable by a human.
” Rules are useful in a wide range of applications: knowledge reasoning and
expansion [12, 46], knowledge base construction [9], question answering [14],
knowledge cleaning [19, 44], knowledge base maintenance [48], Markov logic
learning [27], etc ” (from [29])

AMIE [30] is a rule mining framework that can find rules on millions of facts
in a few minutes without the need for parameter tuning or expert input. It is
explicitly tailored to support the OWA scenario since it has a method to simu-
late negative examples without making a closed world assumption.

3A Lie group is a topological space that has the following properties: it is a group and a
differentiable manifold
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RuDiK[31] is a mining framework that has the ability to discover positive
and negative rules. A negative rule could be: if a is Belgian, he does not have a
president. This is really helpful to spot the errors in an existing KG.

OP[29] (Ontological Pathfinding) is a mining framework that has a unique
partitioning system for the KG that divides the mining task into small and in-
dependent sub-tasks, allowing it to run the same algorithm in parallel.

QuickFoil[32] is a method that succeed the scaling of Inductive Logic Pro-
gramming with a new scoring function and pruning strategy.

PRA[33] (Path Ranking Algorithm) finds paths that often connect entities
that are instances of the edge type being predicted. PRA then uses those path
types as features in a logistic regression model to infer missing edges in the
graph.

Meta-Path[34] exploits the semantic richness of the current knowledge graphs
to create path structure between certain types of entities.

3.3 Hybrid

Symbolic reasoning is accurate and interpretable, but it suffers from scale is-
sues.

Embedding-based reasoning is more scalable and efficient as the reasoning
is conducted via computation between embeddings, but the sparse entities
leads to poor representations because it relies heavily on data richness. The
second downfall of embedding-based methods is their lack of interpretability.
The Hybrid-based reasoning tends to complement each other’s difficulties with
their advantages.

IterE[35] learns both rules and embeddings. Rules are learned from embed-
dings with proper pruning strategy, and embeddings are learned from existing
and new triples. The new ones being inferred by rules.

UniKER[36] combines KGE and logical rules for better KG inference in an
iterative manner. The authors argue that it is an error to make only a one-
time injection of logic rules to KG embeddings because it fails to capture the
mutual interaction between KGE and logical rules. They also state that, for
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scaling purposes, the other methods use sampling strategies that select only a
portion of the rules, which causes loss of information. UniKER pledge to solve
these problems.

SLRE[37] (Soft Logical Regularity) allows the use of soft rules in common
effort with embeddings for the link-prediction task. Unlike a hard rule (e.g.
the capital of a country is inside the country), a soft rule may be broken oc-
casionally (e.g. the nationality of a person is often the country where he/she
was born) This method proposes a highly scalable and effective method for
preserving soft logical regularities by imposing soft rule constraints on the re-
lation latent representations.

E2E[38] (End-to-End differentiable proving) replaces symbolic unification
with a differentiable computation on vector representations of symbols us-
ing a radial basis function kernel, thereby combining symbolic reasoning with
learning sub-symbolic vector representations.

16



4 Algorithms

The main objective is to train a surrogate model that mimics the predictions
made by an embedding-based model, considered here as a black-box. Our
strategy is to train a linear regression model with rules as features. So we need
to extract rules from a KG, and this KG needs to reflect, in some way, the black-
box model. The idea is to create contexts labelled by the black-box model, so
the truth nature of every facts in the context comes from black-box prediction.
Then we merge this labelled context with the KG used to train the black-box
model. So our rule miner (AMIE[30]) is influenced by the black-box model and
has enough data to work on.

The training of our surrogate model is based on a context, which is local or
global and provide different insights. The local contexts (algorithm 1) can
be viewed as the neighbourhood of a triple and are created around one fact
by taking the other existing triples that only differ by their subject or object.
The global contexts (algorithm 2) gather every triples having their predicate
in common.

Both local and global contexts need to be given some counter-examples. Those
negative facts are found with Bernoulli negative sampling [27].

Algorithm 1 Local contexts generator

1: procedure LOCALCONTEXTS(Ktest)
2: for each p(s, o) ∈ Ktest do
3: C+ = {p(s, o)} ∪ {p(s′, o) ∈ Ktest, s

′ 6= s} ∪ {p(s, o′) ∈ Ktest, o
′ 6= o}

4: C− is populated with Bernoulli negative sampling of C+

5: C = C+ ∪ C−

6: yield C

Algorithm 2 Global contexts generator

1: procedure GLOBALCONTEXTS(Ktest)
2: for each p ∈ RELATIONS(Ktest) do . RELATIONS(KG) returns the set of

predicates of a KG
3: C+ = {p(s, o) ∈ Ktest}
4: C− is populated with Bernoulli negative sampling of C+

5: C = C+ ∪ C−

6: yield C
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Algorithm 3 shows how we train the surrogate model with the following vari-
ables. The flowchart describing that algorithm can be found in appendix A.

• A link predictor f̂ : Rk → R, our experiments focus on the TransE model,
but any link predictor can be used.

• A KGKtrain = K+
train ∪K−train. Ktrain is the training dataset of the black-box

model. K+ is a set of true facts,K− is a set of false facts.

• A context C that can be local or global.

• A rule minerR, our experiments used AMIE but another symbolic method
providing rules could have been used.

The first step of our training (lines 2 to 5) is to use the black-box model to la-
bel each and every triples of a given context. All the following steps will now
consider those label as the truth, since it is given by the model we are trying to
approximate.

Then (line 6) we mine the KG, with a filter on the produced rules: the predi-
cate of the context have to appear in the head of the rule. This restriction is
a parameter of our rule miner (AMIE) and its purposes are to improve perfor-
mance and to mine pertinent rules in regard to the context. The KG used for
the rule mining step is the union of the black-box’s training’s dataset and the
context that is labelled by this black-box. Every rules mined here has a confi-
dence score associated with.

At that point (lines 7 to 10), we want to create a matrix with the mined rules as
features, the facts as instances and the labels as targets. To fill the rules weight
for every fact, we check if the rule correctly predict a statement and provide the
confidence as weight. If the rule is used in the prediction of another statement,
the score is the opposite of the confidence. If the rule has no relation with the
statement, a weight of zero is given.
GivenA, the considered fact; i the index of the considered rule; xA[i] the weight
of that rule in the prediction for that fact; and R the mined rules.

xA[i] =


conf(Ri) Ri ∧ (Clabel ∪ Ktrain) |= A

−conf(Ri) Ri ∧ (Clabel ∪ Ktrain) |= A′ with A 6= A′

0 otherwise

(1)
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And finally (line 11) we train a surrogate model (linear regression) from this
matrix and the weights of the rules impacting the decision will be used as ex-
planation.

We have implemented the contexts generators and the training process in
python with the help of the library “torchKGE”4. An implementation of our
algorithms is publicly available on the INRIA gitlab5.

Algorithm 3 Train a surrogate model

1: procedure TRAINING(f̂ ,Ktrain, C,R)
2: Clabel = ∅
3: for each p(s, o) ∈ C do
4: l← f(s, p, o)
5: Clabel = Clabel ∪ {(s, p, o, l)}
6: R = R(Ktrain ∪ Clabel) .Ktrain is labelled
7: create an empty matrix M with |R| columns and |Clabel| rows
8: for each (s, p, o, l) ∈ Clabel do
9: for each r ∈ R do

10: M c
r = weight of r for (s, p, o, l)

11: train model m with R as features, weighted by M and l as target.

4https://torchkge.readthedocs.io/en/latest/
5https://gitlab.inria.fr/glatour/geebis
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5 Experiments

5.1 Datasets

When it comes to processing knowledge graphs, multiple state-of-the-art datasets
can be used to be able to evaluate the performance of a knowledge base link
predictor. Those datasets are already split in training, validation and testing
set.

fb15k-237
Freebase is a project aiming to gather knowledge across the internet and store
it into a knowledge base (graph). This project lived between 2007 and 2015,
leaving the place for its successor, Wikidata.
The fb15k dataset was introduced in [25] as a subset of Freebase, with nearly
15k entities. This dataset was found to suffer from overfitting since a lot of test
triples could be obtained simply by inverting train triples. This was spotted
and fixed by [39], introducing the fb15k-237 dataset.

wn18rr
Wordnet[40] is a massive lexical database in English developed by linguists of
the university of Princeton.
wn18 is a subset of Wordnet, containing the 18 most represented relations.
In an effort to avoid inverse relations that would arm the results of any link
prediction process, wn18rr simply removed the redundant facts from wn18.

Dataset Predicates Entities Facts
Training Validation Testing

wn18rr 11 40 943 86 835 3 034 3 134
fb15k-237 237 15 541 272 115 17 535 20 466

Table 1: Experimental Datasets

5.2 Evaluation

It is important to understand the different metrics used to gain insights on the
model. For our experiments we decided to gather metrics for the link predic-
tion and triplet classification tasks. The two tasks have specific metrics associ-
ated with them, described below.
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It seemed important to distinguish the accuracy of the black-box model and
the accuracy of the surrogate model. For the replication of the predictions of
the black-box, we introduce the term fidelity. The fidelity is the accuracy of
the surrogate model with the ground truth being the predictions made by the
black-box model. The term “accuracy” here has to be understood in its broad
sense: every metric could be susceptible to have its equivalent fidelity metric
to see to which extend the surrogate can mimic the black-box on a specific
task.

The coverage is the ratio of facts for which an explanation is provided. It pro-
vides confidence in the explanation as a complement for the other metrics.
Indeed, even if a given metric is good, a poor coverage will indicate that the
prediction has not to be trusted blindly.

The link prediction task consist on finding the best answer to a bounded atom.
This task can be evaluated with the following metrics: Mean Reciprocal Rank
(MRR) and hit@k.

The rank of a prediction is calculated like this: for one unbounded atom, the
model provides multiple answers sorted from the most to the least probable,
the rank of the prediction is the position of the correct answer in this list. e.g.
with the unbounded atom capital(Belgium, x ), if the model answers are “Bern”,
“Brussels” and “Paris”, then this prediction has a rank of 2. The reciprocal
rank is the inverse of the rank, so if the rank is 2, the reciprocal rank is 1

2
= 0.5.

The mean reciprocal rank is the average of the reciprocal ranks.

The hit@k is the count of good predictions in the top k list of a model’s an-
swers, relative to the number of atoms that are seeking prediction.

Triplet classification is a simple classification task. Given triples, the model
labels them as correct or incorrect ones. The accuracy is the measure of the
correctness of the model. It is calculated as the ratio of the correct answers’
count by the number of answers given.

5.3 Results

Table 2 shows the overall metrics for our surrogate model approximating the
TransE model with the datasets wn18rr and fb15k-237. The accuracy of TransE
is pretty low, for any of the two datasets. These results can still be interesting
by drilling down to an accuracy by predicates metric. The overall fidelity is
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impressively high for the fb15k-237 dataset and quite mediocre for wn18rr.
The MRR is correct for wn18rr and worse for fb15k-237.

Dataset Fidelity Accuracy(black-box) MRR support

wn18rr 0.487 0.536 0.105 41
fb15k-237 0.941 0.506 0.079 8755

Table 2: Dataset comparison for TransE

The table 3 displays metrics about the predictions of our surrogate model em-
ulating TransE on the wn18rr dataset. The hypernym6 relation have better re-
sults for both the tasks of triplet classification and link prediction than the
other relation instance hypernym. The MMR score of the hypernym predic-
tion is the best we have, so we can assume that this model is particularly good
at finding the missing entity of an atom.

Predicate Fidelity Accuracy (black-box) MRR support

hypernym 0.642 0.571 0.151 14
instance hypernym 0.478 0.608 0.047 23

Table 3: Metrics of the surrogate model mimicking TransE on wn18rr

Table 4 contains the same type of information than the previous table, for the
dataset fb15k-237. The fidelity is significantly higher than wn18rr, which indi-
cates that the classification task is easier for this dataset. The MRR in overall is
weaker except for the two last entries which have excellent score. The accuracy
of TransE is similar to what we have seen before.
Lets analyse the top rules impacting the ”film produced by” predicate predic-
tions.

• (a /film/film/produced by “Adam Sandler”)
=⇒ (a /film/film/produced by “Jack Giarraputo”)

• (“Rob Schneider” /film/actor/film./film/performance/film a)
=⇒ (a /film/film/produced by “Jack Giarraputo”)

Those rules tell us that the black-box model learnt that Jack Giarraputo always
works with the same people.

6A word is an hypernym of another (denoted hyponym) if the semantic field of the hy-
ponym is included in the hypernym. e.g. “cat”, “lynx”, “panther”, “lion” and “tiger” are all
hyponyms of “feline”, their hypernym; which is itself the hyponym of “animal”, its hypernym.
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Predicate Fidelity Accuracy MRR Support

/people/person/profession 0.975 0.510 0.002 787
/award nominee/award nomination 0.998 0.488 0.125 641
/film/film/genre 0.993 0.460 0.066 434
/people/person/nationality 0.942 0.531 0.001 297
/film/film/language 0.931 0.481 0.003 189
/people/lived in/location 0.994 0.53 1 183
/film/film/produced by 0.916 0.611 0.285 36

Table 4: Metrics of the surrogate model mimicking TransE on fb15k-237

Here is another rule, for the relation /people/lived in/location :
(a /has celebrity friend b)
∧ (b /film/actor/film./film/performance/film “The Soloist”)
=⇒ (a /people/lived in/location “Los Angeles”)

This rule basically tells that if a has a friend who preformed in the film “The
Soloist”, a lives in Los Angeles.

The fact that these rules are mined in a global context is surprising because
they look highly specific. Maybe there is a too significant amount of films pro-
duced by Jack Giarraputo or by the crew of “The Soloist” in the dataset. Or
maybe it is a TransE problem that our surrogate model brought to the surface,
and this problem would not have been noticed in any other way.
Indeed if the accuracy of the link predictor is low, but the fidelity is high, the
rules could be used to debug why the black-box model makes bad decisions.

Next we compare rules obtained from local and global contexts around the
predicate “/people/person/profession”. Table 5 shows the metrics of the local
context around the shown facts while the metrics about the global context for
this predicate can be found in table 4.
Here is one rule mined within the global context.

• (a /music/genre/artists “Maroon 5”)
∧ (a ¬ /music/instrument/instrumentalists b)
=⇒ (b /people/person/profession “Singer/Songwriter”)

Which can be understood like this: an artist being in the same musical genre
as Maroon 5, and who does not practice an instrument is a singer/songwriter.
It makes sense that an artist working in the music industry who does not play
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Context neighbour Fidelity Accuracy MRR Support

“James Taylor” profession “Actor” 1 0.550 0.017 158
“Keith David” profession “Actor” 1 0.518 0.015 158
“Matthew Weiner” profession “Actor” 0.993 0.462 0.016 158
“Robbie Robertson” profession “Actor” 0.987 0.525 0.009 158
“Marilyn Manson” profession “Actor” 0.987 0.512 0.01 158
“Alec Berg” profession “Actor” 0.981 0.462 0.01 158
“Mike Figgis” profession “Film director” 0.98 0.58 0.25 50
“Frank Capra” profession “Film director” 1 0.510 0.204 49

Table 5: Metrics of the surrogate model mimicking TransE on fb15k-237, lo-
cally around instances containing the predicate profession.

an instrument must be known for his/her voice or songwriting skill.

The following rules are mined within local context, respectively from (“James
Taylor” profession “Actor”), (“Keith David” profession “Actor”) and (“Mike Fig-
gis” profession “Film director“).

• (“John Cleese” /actor/performance/film a)
∧ (a /film/film/written by b)
=⇒ (b /people/person/profession “Actor”)

• (“Nicole Richie” /has celebrity friend b)
∧ (a /has celebrity friend b)
=⇒ (a /people/person/profession “Actor”)

• (a /director/film b)
∧ (b ¬ /film release region “Thuringia”7)
=⇒ (a /people/person/profession “Film director”)

Which can be understood by, respectively:

• if b writes a movie in which John Cleese plays, b is an actor,

• Nicole Richie friends’ friends are actors,

• if a directed a film that was not released in Thuringia, a is a film director.

7Thuringia is a state of Germany

24



Apart from the third rule, these are quite specific and linked to the local con-
text in which they are mined. For example it would be a wise guess to say that
not all of Nicole Richie’s friends are actors, but in the given context it seemed
like it was pertinent. The third one is an over-complication of ”if a directed a
film, a is a film director”, and since not many people direct films without being
film directors it is a pertinent rule, but not restricted to the local scope of the
context.

Some rules can be mirrors of each other and artificially bring erroneous met-
rics to show up. For instance the following rules were mined in the local con-
text of (“Keith David” profession “Actor”):

• (“Nicole Richie” /has celebrity friend b)
∧ (a /has celebrity friend b)
=⇒ (a /people/person/profession “Actor”)

• (“Nicole Richie” /has celebrity friend b)
∧ (b /has celebrity friend a)
=⇒ (a /people/person/profession “Actor”)

• (b /canoodled a)
∧ (b /romantic relationship “Nicole Richie”)
=⇒ (a /people/person/profession “Actor”)

• (b /canoodled a)
∧ (“Nicole Richie” /romantic relationship b)
=⇒ (a /people/person/profession “Actor”)

Here we have two mirror relations around the predicates has celebrity friend
and romantic relationship. Actually finding those rules help us understand
that there is redundancy in the data. The avoidance of the mining of those
kind of rules could be perspectives for future works.
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6 Conclusion

In this work we have presented the importance of the KG and their link pre-
diction tasks. After going through embedding-based models for link predic-
tion and realised the importance of providing an explanation we introduced
our framework as a proposition to palliate this problem. The framework al-
lows any embedding-based model to be approximated by a surrogate model
providing explanations. Those explanations are also influenced by the scope
in which they have been computed.

Several sources of improvements are available for future works. Two tasks have
been discussed in this master thesis and a third one could be the interesting.
After triplet classification and entity prediction, the task of relation prediction
has yet to be implemented.

The surrogate model is trained by a logistic regression, but any other model
able to use its weighted features as explanations could be used here. A com-
parison between various model could be interesting.

The context creation, especially for the local context, could be reviewed. Mul-
tiple algorithm for local context creation could be proposed and compared to
each other.
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A Surrogate’s training’s flowchart

Figure 7: Algorithm used to train proxy model
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B Rules mined in local context

For (“James Taylor” /people/person/profession “Actor”)

• (“John Cleese” /actor/performance/film a)
∧ (a /film/film/written by b)
=⇒ (b /people/person/profession “Actor”)

• (“Michael Palin” /nominated for a)
∧ (a /film/film/written by b)
=⇒ (b /people/person/profession “Actor”)

• (a /award nominee b)
∧ (“Monty Python and the Holy Grail” /film/film/written by b)
=⇒ (a /people/person/profession “Actor”)

For (“Keith David” /people/person/profession “Actor”)

• (“Nicole Richie” /has celebrity friend b)
∧ (a /has celebrity friend b)
=⇒ (a /people/person/profession “Actor”)

• (“Nicole Richie” /has celebrity friend b)
∧ (b /has celebrity friend a)
=⇒ (a /people/person/profession “Actor”)

• (b /canoodled a)
∧ (b /romantic relationship “Nicole Richie”)
=⇒ (a /people/person/profession “Actor”)

• (b /canoodled a)
∧ (“Nicole Richie” /romantic relationship b)
=⇒ (a /people/person/profession “Actor”)

• (b /has celebrity friend “Lindsay Lohan”)
∧ (a /has celebrity friend b)
=⇒ (a /people/person/profession “Actor”)

For (“Mike Figgis” /people/person/profession “film director”)

• (a /film/director/film b)
∧ (b /film/film/produced by “Danny DeVito”)
=⇒ (a /people/person/profession “film director”)
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• (b /award winner “Steven Soderbergh”)
∧ (a /film/director/film b)
=⇒ (a /people/person/profession “film director”)

• (a /film/director/film b)
∧ (b /film/film/cinematography “Steven Soderbergh”)
=⇒ (a /people/person/profession “film director”)

• (a /film/director/film b)
∧ (b neg /film release region “Thuringia”)
=⇒ (a /people/person/profession “film director”)

• (a /film/director/film b)
∧ (b /film/film/edited by “Steven Soderbergh”)
=⇒ (a /people/person/profession “film director”)

33


	Introduction
	Preliminaries
	Knowledge base & knowledge graph
	Knowledge graph completion
	Interpretability & explicability
	Horn rules

	State of the art: Link prediction
	Embedding methods
	Symbolic methods
	Hybrid

	Algorithms
	Experiments
	Datasets
	Evaluation
	Results

	Conclusion
	Surrogate's training's flowchart
	Rules mined in local context

