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Abstract 
The adoption of government-issued health technology services is a timely topic because of 

the pandemic we face. Analyzing the decision-making of individuals in the context of 

technologies is of scientific interest because biases can be identified and interpreted. This 

research analyzes how the privacy paradox is at play in the context of government-issued health 

technology services. Quantitative research was conducted on Belgian citizens who own a 

smartphone to analyze the privacy paradox in the context of CovidsafeBE and Coronalert. The 

results of this research were used to analyze the different hypotheses formulated in our 

conceptual model. The findings are that the privacy paradox cannot fully be considered for 

Coronalert, but that some aspects of the paradox influence the adoption of CovidsafeBE. 
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Chapter 1: Introduction 

1 Context 
The twenty-first century has seen an impressive growth in the use of technologies. One of 

these technologies is social media, which is used by more than half of the world’s population 

(Kemp, 2020). Technologies such as social media have allowed companies to apply data-centric 

product strategies (Saura et al., 2021). This strategy is possible because users generate a lot of 

data. Two ways are identifiable; users integrate personal data such as date of birth or home 

address; and users generate data with their activity on technologies such as social media. These 

types of data are part of “big data”, i.e., large volume of data (Saura et al., 2021). It is composed 

of structured, semi-structured and/or unstructured types of data and the data generated by users 

is part of the unstructured data (Ghani et al., 2019). 

 

Big data can be considered as a tool to keep track of the behavior of individuals to gain 

profit, or as S. Zuboff would say: “big data is above all the foundational component in a deeply 

intentional and highly consequential new logic of accumulation that I call surveillance 

capitalism” (Zuboff, 2015, p. 75). Surveillance capitalism occurs when data collected about 

users is used by companies for economic purposes, with little regard for the privacy of users 

(Saura et al., 2021). The main economic goal is targeted advertising, which is made possible by 

predicting users' behavior through the data collected about them.    

 

User generated data worries users, because of what can be done with this data (Saura et al., 

2021). The different risks linked with the use of data are: (1) data breaches, occurring when 

data is stolen from individuals or organizations; (2) the use of non-consented data, happening 

happens when organizations use users’ data without them knowing; (3) the misuse of data by 

firms, happening when companies utilize users’ data for non-initial purposes; and (4) the misuse 

of data by authorities, taking place when authorities use data to control or influence their 

citizens (She et al., 2020; Saura et al., 2020; Aridor et al., 2020; Curran & Smart, 2021; 

Meridith,2018). 

 

 A survey conducted by Deloitte shows that 58% of respondents want to reduce the amount 

of personal data available online but do not know how to do so (Data Privacy Awareness, 2020). 

This indicates that users have little trust in online platforms. This is confirmed by the winter 
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Eurobarometer of 2020 - 2021, 54% of respondents in the European Union do not trust the 

Internet and 68% of them do not trust social networks (Standard Eurobarometer, 2020, 

p.28,29). Similarly, many citizens are concerned about the misuse of their personal data. 41% 

of European citizens do not want to share their personal data with private companies. 

Additionally, 30% of the citizens are worried about advertisers, businesses, and foreign 

governments accessing their personal data (FRA, 2020). However, 75% of Europeans use the 

Internet daily or almost daily and 52% use social networks daily or almost daily (Standard 

Eurobarometer, 2020, p.130,132). Furthermore, more than half of the world’s population uses 

social media as of July 2020. Only central Asia, South Africa, Central Africa, East Africa, and 

West Africa are below the bar of 50% of their population using social media (Kemp, 2020). 

The four most used social media applications are Facebook, YouTube, WhatsApp and 

Facebook messenger (Kemp, 2020). Yet Facebook, which owns WhatsApp and Messenger; and 

Google, which owns YouTube, are companies known to collect massive amounts of personal 

data on their users (Stucke, 2018).  This points to a certain privacy paradox because even if 

users do not trust the Internet and social networks, it is evident they still use them. The privacy 

paradox is a phenomenon that describes the inconsistency between a user’s attitude and their 

actual behavior. In other words, they will not protect their personal information online even 

though they are concerned about their privacy (Barth et de Jong, 2017).  

 

Nonetheless, there are also positive aspects to data collection. It is beneficial in various fields 

such as healthcare or the public sector (Ghani et al., 2019). Healthcare is improved as big data 

is used to emit more accurate disease diagnostics or provide more personalized medicine; the 

public sector also benefits as needs are more easily identified and met, and new products and 

services can easily be issued through data analysis (Manyika et al., 2011). The spur in 

technology of the twenty-first century has enabled the public sector to implement e-

government, which allows government services to modernize using available technologies. The 

interaction of e-government is done in different ways: from government to citizens, from 

government to employees, from government to business, from government to other 

governments and from citizens to governments. The rate of interaction between the different 

parties is increased, the information between them is also more transparent, and operating costs 

decrease (Het Begrip E-Government, 2021). Examples of applications of e-government in 

Belgium are eHealth, Coronalert, and Myminfin. The first is a website that citizens can access 

to view their medical records and health insurance (EHealth, n.d.); the second is an application 
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created for contact tracing in the context of the Covid-19 pandemic (Coronalert, n.d.); and the 

third is a website that citizens can use to view their tax calculations, real estate cadastral income 

or rental agreements, requesting an installment plan, or to pay off debts (MyMinfin, n.d.). 

 

During the Covid-19 pandemic, several social distancing measures were installed worldwide to 

slow the spread of the disease. This virus emerged in late 2019 and in extreme cases can cause 

respiratory failure or septic shock among other things (WHO, 2020). Available technologies 

were very helpful during the Covid-19 pandemic, especially when social barriers had to be 

respected. Telecommuting was made possible so that people would not have to travel to their 

workplace, and families and friends were able to stay connected through various platforms such 

as social media. As a result, the use of social media increased during the pandemic (Drouin et 

al., 2020). In addition, governments around the world launched apps to raise awareness or to 

try to slow the spread of the pandemic (Utz et al., 2021). One example is contact tracing apps 

that alert people if they have been in contact with someone who has tested positive for Covid-

19 (Fahey & Hino, 2020). 

 

The contact tracing application raised many concerns among citizens about data privacy. They 

feared that the government could have direct access to their location, and some were worried 

that the government would use this information against them if they were not respecting social 

distancing (Rowe, 2020). A sort of privacy paradox can be identified in this case because 

citizens must make a decision between prioritizing data privacy or working together to fight the 

pandemic and thus give up some data privacy (Utz et al., 2021).  

2 Research motivation 
It is relevant to analyze the importance of users' data privacy in the current context. Indeed, 

even if they value their privacy, they are not able to protect it properly because of the way 

technology companies have designed their revenue stream to provide different services to users. 

These companies use the decision-making biases of individuals against them (Waldman, 2020). 

For example, they often make sure that users do not have all the information they need to make 

a rational decision, such as the monetary value of their private information (Wagner et al., 

2021).  
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Some services that also collect data but are in the user's interest should bypass this data-driven 

strategy that is applied by profit-driven companies. This should be the case, for example, for 

government-delivered technology services (Fox, 2020). 

 

Analyzing what influences users to not take rational decisions regarding government-

issued health technology services is the motivation for this research. The importance lies in 

the context of the pandemic where health care is central, and the adoption of services could 

help citizens receive better care and the medical profession work more efficiently by focusing 

on patient treatment. 

 

In doing so, we aspire to identify the different biases of the privacy paradox at play in 

the adoption of health technology services issued by the government to avoid possible 

misunderstandings. There are several possible reasons why this could happen, such as not 

having enough transparency regarding the use of data across the service’s different platforms 

or not trusting the government. It is in the interest of the users that their decision to adopt the 

app is justified, but also in the interest of the government to incorporate what is important to 

the user so services can work at their full potential.  

3 Academic motivation 
The decision making of individuals has been studied for a long time. It analyzes how a person 

comes to a decision especially when that decision is not rational, that is to say, not only 

considering advantages and disadvantages (Simon, 1955). Several factors bias the decision such 

as loss aversion of a person or the influence of short-term benefits (Kahneman & Tversky, 1979; 

Laibson, 1997). The analysis of this phenomenon and its relationship with new forms of 

technology has been widely studied in recent years. More specifically, the privacy paradox, that 

occurs when users are inconsistent between their intended attitude and their behavior (Barth et 

de Jong, 2017). 

 

Research into how users make decisions has already been conducted, but there is still much 

to discover as the technology grows exponentially. Now that governments are using it to 

communicate with their citizens, it is crucial to analyze how they can be influenced and why. 

One of the most important sectors, healthcare, has also chosen to take the path of phone apps 

to facilitate communication between medical stakeholders. The privacy paradox in the context 
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of government-provided health technologies has already been analyzed and the findings were 

that several elements influenced the acceptance and continued use of these technologies (Fox, 

2020). However, it would be interesting if the same theories that are at play in the privacy 

paradox regarding social media are also applied in the case of health technology services. 

 

The research conducted in this thesis is to analyze how users of government-provided health 

technologies are influenced by the biases identified in the case of social media use. The intent 

is to provide a better understanding of the choices a user makes regarding health technology 

services and whether those choices are influenced in the same way as social media services. 

The following question will therefore be analyzed during this thesis.  

 

How do the different theories that define the privacy paradox apply to the adoption of 
health technology services issued by the government? 

 

The research will be applied to the case study of two applications that were launched by the 

Belgian government during the Covid-19 pandemic, namely Coronalert and CovidsafeBE. The 

former is a contact tracing app, and the latter is an app that allows the user to have their Covid 

certificate (which can be obtained by being vaccinated, having recovered from Covid-19 or 

having a negative test for Covid-19) on their phone (Coronalert, n.d.; CovidSafeBE, n.d.). 

Analysis of how the privacy paradox applies to the adoption of these services will provide 

interesting new information because they are very recent, dating to 2020 and 2021, respectively. 

Moreover, analysis in light of a pandemic may provide a new way of looking at the privacy 

paradox in this context.   

4 Approach 
The purpose of this research is to analyze how the privacy paradox applies to the adoption 

of health technology services. The thesis is divided into two parts.  

 

The first part is theoretical and consists of 3 chapters. The first chapter describes the use of 

data to be able to understand users’ privacy concerns. Following this, the privacy paradox is 

introduced with the different theoretical concepts related to it. The last chapter is focused on 

the definition of the research problem and the creation of the conceptual model.  
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The second part of this thesis is an empirical study and consists in three chapters. The first 

chapter focuses on the introduction of the case studies and the methodology that is used to test 

the conceptual model. After that, the reliability and validity of the different constructs are tested 

before analyzing the results of the tests on the different hypotheses. Finally, the last part 

proposes a conclusion of this work and managerial recommendations based on the results of 

the analysis. 
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Chapter 2: Literature review 

1 Online data 
This first chapter aims to present the data environment that consumers are confronted with, 

what is done with their data and what are the risks related to each step of the data processing. 

It will provide a better understanding of where users' privacy concerns lie and why they exist.   

1.1 Data collection 

1.1.1 Definition 

Data is collected by five main sources, (1) computer-mediated economic transactions; (2) 

data from sensors that can be found on objects, bodies, and places; (3) data from corporate and 

government databases; (4) data from private and public surveillance cameras; and (5) data that 

is collected on individuals and that is considered as “small” (Zuboff, 2015). 

The “small” data is the data that is “left” by users online, which is also called user-generated 

data. It represents all the data users willingly and knowingly give such as birthdate, email, 

photos or likes, but it also contains data that users are not aware of such as the number of devices 

connected to their IP address or their type of personality (Saura et al., 2021). This data is 

collected by data-driven companies which allows them to predict the users’ behavior and 

optimize the personalization of the service and/or product. In this way, the targeting of 

advertisement can be more precise.   

1.1.2 Risks, data breaches 

One of the risks that comes along with any type of data collection are data breaches. A data 

breach is “an occasion when private information can be seen by people who should not be able 

to see it” (« DATA BREACH | meaning in the Cambridge English dictionary », n. d.). This 

means that if a data breach occurs there is a lack of privacy, and this may lead to drastic 

consequences such as a stolen identity (She et al.,2020). Data breaches happen daily, in 2019 

there were 25 247 data breaches reported in the Netherlands alone, in Belgium this number was 

912 (Johnson J., 2021). The risk of data breaches increases when data driven companies such 

as Facebook or Google sell the collected data to third-party firms (Lulandala, 2020).  

According to Verizon (2020), the two sectors identified as having the most data breaches are 

the healthcare sector with 512 data breaches, or 12,96% of the total amount of data breaches in 

2020, and the financial sector with 448 breaches, or 11,34% of the total amount. Furthermore, 
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according to previous research, the number of breaches has increased in the healthcare sector 

from 2010 to 2019, particularly due to hacking (Seh et al., 2020). This result is not surprising 

because these two sectors have the most sensitive information, healthcare displays the most 

personal information about individuals and financial information can lead to theft. Thus, the 

data monetization would be much higher in the healthcare sector or the financial sector due to 

the sensitivity of the data. For instance, the 2019 report of IBM security showed that every 

record that is breached costs $429 in 2019 in the healthcare sector and $210 in the financial 

sector, while the average cost per record across all industries was $150 in that year (Cost of a 

Data Breach Report, 2019). 

Data breaches can occur in several ways. In the healthcare and financial sector, the main 

origins of the 512 and 448 data breaches are respectively: hacking, 145 and 193; malware, 33 

and 32; social, 105 and 90; misuse, 73 and 35; error, 181 and 127; physical, 29 and (Verizon, 

2020). Hacking is the action of using stolen login information, abusing weaknesses and 

attacking using backdoors and command & control functions; malware is the action of 

intentionally damaging or endangering a computer or stealing access to it; social actions refer, 

for example, to phishing, where someone is tricked into giving out information by mail or on 

the Internet so that the perpetrator can do things such as steal money from a bank account 

(« PHISHING| Meaning in the Cambridge English Dictionary, » n.d.); misuse is the action of 

using data in the wrong way; error action is, for example, the delivery of information to the 

wrong person; and physical action is a person stealing data in the form of paper or software 

(Verizon, 2020). The use of backdoors for hacking is the exploitation of vulnerabilities in 

computer systems in order to gain access to them without the need for the identification methods 

that are present in that system (« Backdoor definition », 2021).    

The consequences of data breaches take many forms. For the user, there are privacy and 

security issues. For example, if enough information about the user is available, their identity 

can be stolen, and they can be robbed of their money. For businesses, this can lead to costs as 

mentioned above and a loss of trust from their customers (She et al.,2020). Previous research 

explains that data breaches have a negative impact on trust, one of the reasons being that users 

were reluctant to use Facebook ads shortly after a data breach was made public (Lulandala, 

2020). Other assumptions that were made in this research were: “perceived data breach has a 

negative impact on ad acceptance, data breach has positive impact on privacy concerns, data 

breach has a positive impact on emotional violation, data breach has a positive impact on ad 

avoidance, and data breach has a negative impact on ad engagement.” (Lulandala E., 2020, 
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p.59). Although these assumptions have not been confirmed by extensive research, they have 

been more or less confirmed by other sources such as the Penomen Institute, whose survey 

found that 65% of respondents had lost trust in the organization where a data breach had 

occurred (The Impact of Data Breaches on Reputation and Share Value, 2017) and by statistics 

from a survey conducted in the UK that showed that 45.4% of the 1269 respondents changed 

their willingness to share personal data online when they became victims of a data breach, 

21.4% experienced no change (Johnson, 2021).  

1.2 Data extraction 

1.2.1 Definition 

Data extraction can happen in two manners, with the user’s consent (for example, the info 

users give to Facebook, such as a birthday date or a current address) or without the user’s 

consent (for example, the info of the user’s friends) (Zuboff, 2015). In the second case, the user 

may not even know that the company can have access to a certain type of information such as 

hobbies, personal appearance, or even daily whereabouts. To be able to collect this unconsented 

data a lot of data collecting companies apply a strategy of “Incursion into legally and socially 

undefended territory until resistance is encountered” (Zuboff, 2015, p.79), so companies have 

access to certain types of information without users being aware of it and by the time they do, 

a lot of non-consensual data has already been collected.  

Users’ consent can be obtained by data-driven companies by offering a service, with the 

information exchanged by consumers being considered as payment for the services offered by 

the company (Wagner et al., 2021). 

1.2.2 Risk, negative perception of ‘trade’ 

Above all, consumers need to be aware that the services they use online are not free and that 

they pay with their data. A 2020 study by Deloitte shows that 60% of consumers use WhatsApp, 

but only 40% of consumers who own a phone say their phone number is on the net (Lee & 

Calugar-Pop, 2020). This shows that a majority of consumers do not understand the extent to 

which their data is collected. Once consumers are aware of the trade they are effectuating with 

online services, consumers might be preoccupied by the perception they have about this trade. 

According to prior research, the exchange that occurs between consumers and providers can, in 

some cases, leave consumers feeling that they are “losing” the exchange if their information is 

overvalued relative to the service they receive in return (Wagner et al., 2021). Their study 
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confirmed five of their hypotheses concerning distributive equity i.e. (1) “The higher users’ 

perceived net values, the higher distributive equity perceptions of free data-driven service 

providers.”, this means that users weigh the amount of their form of payment (personal 

information) against what they get in return for the service; (2) “The higher the perceived net 

value of free data-driven service providers, the lower distributive equity perceptions”, this 

means that if the provider's net value (benefits) is perceived to be too high from the users' point 

of view, they will consider that the exchange is not fair; (3) “The relationship between 

provider’s value of personal information and distributive equity is moderated by information 

sensitivity”, this means that users who consider their information sensitive will be more 

susceptible to the monetization of this data, which will influence their perception of fairness; 

(4) “The higher users rate free data-driven service provider’s distributive equity, the higher is 

their satisfaction with the provider”, this means that a user is more likely to be satisfied if the 

service is perceived as a fair exchange between data and service use; and (5) “The higher users 

are satisfied with free data-driven providers, the higher is their continuance intention”, which 

means that satisfaction influences the intention of use of the user (Wagner et al., 2021, p.3 & 

4). Their study was conducted on 200 Facebook users, arbitrarily they were shown a Facebook 

income from their personal data of 38 cents or 98 euros per year, after that a series of questions 

were asked. Thus, this study has shown that users are influenced by the monetization of personal 

data by providers. If this monetization is too high, the user will have a less fair perception of 

the personal information he/she gives compared to what he/she gains from using the service. In 

addition, the sensitivity of the information also influences users' perception of the fairness of 

the exchange. This sensitivity changes from one user to another, typically a person who has 

information that conforms to the norm will be less protective than someone that does not, e.g., 

an overweight person will be less willing to share information about their weight (Wagner et 

al., 2018). The importance of the valuation of personal data has become important because it is 

a form of payment that is often used in the technological industry, some users have become 

aware of this and require a fair remuneration in the form of monetization or services (Wagner 

et al., 2018). 

1.2.3 Non consented data 

Another risk that is possible when the extraction of data occurs is that unconsented data is 

taken from users. As the most used method to collect data is “Incursion into legally and socially 

undefended territory until resistance is encountered” (Zuboff, 2015, p.79) users are not always 

aware of what is collected about them. For example, Google employees admitted that location-
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based privacy settings were potentially misleading and ambiguous during a consumer 

protection trial in Arizona (Center, 2020). The lawsuit was filed because Google collected and 

stored location data on mobile devices of users who had disabled location tracking, a violation 

of Arizona's consumer fraud act.  

The types of non-consensual data that are collected are varied, for example: devices that are 

connected and nearby, which can be collected via WIFI access or location; health information 

through online health services or media applications; photos, which can be collected through 

users' social networks; and household income through content consumed online or items 

purchased (Saura et al., 2021). 

1.3 Data analysis 

1.3.1 Definition 

To carry out data analysis, economy of scale is applied by companies such as GAFA 

(Google, Apple, Facebook and Amazon) so that the cost for analyzing is close to zero even 

though millions of virtual servers are required to increase the computing capabilities (Zuboff, 

2015). In addition to the material, it is also necessary for data scientists to “conduct predictive 

analysis, reality mining, patterns-of-life analysis, and so on” (Zuboff, 2015, p.80). The different 

techniques related to social media big data analysis are (1) natural language processing, which 

analyses the human language used by users; (2) sentiment analysis, which involves identifying 

the sentiment of a specific text so that the analysis indicates whether the underlying sentiment 

is positive, negative or neutral; (3) Social Network Analysis (SNA), which analyses the 

different connections that exist between different users; and (4) news analysis, which is used to 

analyze the different news stories online (Ghani et al., 2019). These different techniques can 

also be used in areas other than social media, for example SNA is often used in the medical 

sector (Ghani et al., 2019). 

1.3.2 Risks 

1.3.2.1 Misuse of analysis by firms 

One phenomenon that has demonstrated how data can be misused by businesses is the case 

of fintech applications in Kenya. Fintech is a technology that allows people to lend a small 

amount of money with a high interest rate (Kiruga, 2020). In order to use fintech applications, 

users must agree to terms and conditions that include sharing phone contacts, location, 

Facebook friends, etc., where the applications then use this information to publicly shame users 
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who do not pay back their debts. Shaming is done by sending messages to family, friends and 

colleagues informing them of the user's debt situation (Roussi, 2020). To address the practice 

of some fintech applications, the Kenyan parliament is in the process of issuing a new law so 

that the interest rate can only be changed with the approval of the central bank (Kiruga, 2020). 

 

To protect users’ personal information authorities introduced the General Data Protection 

Regulation (GDPR), however, previous research studying the effects of this legislation 

concluded that they were not all beneficial (Aridor et al., 2020). In their research they found 

that the persistence to track customers via cookies increased post-GDPR. To explain this they 

analyzed a hypothesis, “privacy means substitution hypothesis” (Aridor et al., 2020, p.20), 

which means that users who were already privacy protection driven were now able to apply the 

opt-out of data collection GDPR provides. This implies that there is near to no data collected 

about the user. On the other hand, the previous cookie-blocking aids in the browser aren’t used 

anymore. This tool created new cookies/ identifiers every time the customer went on the 

specific website, causing an interference the behavior predicting algorithms because two or 

more profiles were in fact the same person. But now, with the new regulation, there is no data 

stored about this particular customer, allowing the algorithm to be more accurate with behavior 

prediction because it considers one profile for each visitor. There are several economic 

consequences with this hypothesis. Firstly, the people who were already concerned about their 

privacy and now use the opt-out option must analyze the profit they have between pre- and 

post-GDPR.  Secondly, the users who do not use the opt-out and thus do not protect their privacy 

as well as the previously mentioned customers may be disadvantaged by the introduction of 

GDPR. This is due to the more precise behavior predictions, as previously mentioned. 

Ultimately, this would mean that advertisements would be more adapted to each visitor that is 

willing to share their data, increasing the price of placing an advertisement. To support this 

hypothesis, the paper provides evidence about the number of cookies that are used to track one 

user. In the post-GDPR situation this number decreased significantly, which is in line with the 

number of cookies that were created with browser-based privacy tools. The research does not 

identify a proven effect on users who are not using the opt-out options. It could be beneficial if 

companies use the data to adapt advertisements and services to their needs. This could lead to 

pricing users differently according to their online behavior. Nevertheless, privacy-concerned 

users have a positive outcome of the GDPR because their digital footprints are erased and, in 

this way, they have more online privacy (Aridor et al., 2020). Thus, this analyzed online 
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behavior is used by companies to differentiate the product they offer according to specific user 

profiles and this identification could be even more precise due to the GDPR. 

1.3.2.2 Misuse of analysis by authorities 

An example that can be considered as data misuse by authorities is the social credit system 

used in China. This system allows “points” to be awarded to citizens, the higher the number of 

points, the better it is for the citizen. The system is used to allocate a loan, rent an apartment, 

etc. However, there is no clear indication on how the points are awarded, as the standards are 

defined by business and private interest, but in general, if a citizen commits a crime or does not 

follow the standards, their points decrease (Curran & Smart, 2021). However, it seems that if a 

person buys a video game or if his friends' activities are perceived as bad, this also negatively 

influences the score of this person (Walraven, 2018; Curran & Smart, 2021). Thus, an individual 

with a low social credit score will have difficulties to raise it because the system is not 

transparent. Nonetheless, the system does reduce, or even remove, crime, as it lowers the score 

drastically. But this system has no place for outcasts, because if a person is not part of the 

system, he or she cannot do anything. Moreover, people with a low score will have more 

difficulties to access certain types of resources or social legitimacy, while people with high 

scores will find it easier to continue to prosper in society. Thus, this system widens the gap 

between the rich and the poor. Furthermore, this score could influence dating and marriages if 

it is made available to the public. In addition, this system disadvantages minorities such as 

LGBTQ people or people who are critical of the government because of the entrenched 

traditional values (Curran & Smart, 2021).  

 

Another example is the use of data analysis to better target citizens in the case of elections. 

One instance where this has occurred was the Cambridge Analytica scandal, uncovered in 2018. 

The firm was working in the field of political consulting and was able to collect data through a 

personality test application created by a researcher conducting a study for academic purposes 

(Meridith, 2018). This data was obtained through the app which collected data on the 

respondent as well as all their Facebook friends, who had not given their consent. Through this 

technique, data from more than 87 million Facebook profiles were collected. Cambridge 

Analytica had been accused of influencing the 2016 US presidential elections, using the data 

collected they identified undecided people and targeted them with specific advertisements for 

Ted Cruz’s campaign and later for Donald Trump’s (Meridith, 2018). Facebook was fined 

because they were accused of not protecting their users’ data sufficiently (Wong, 2019) and 
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Cambridge Analytica went bankrupt in May of 2018 (Staff, 2018). The situation raised 

awareness about data privacy and some users even wanted to delete Facebook (Chen, 2018). In 

the end, the Cambridge Analytica scandal was reported as one of the largest data breaches of a 

technology company (Cadwalladr et al., 2018). 

1.4 Solutions to strengthen privacy 
In order to strengthen online privacy, users must first be aware of the dangers of using online 

services. Individuals must therefore understand that these services are not free and that they pay 

with their data (Wagner et al., 2021). Governments could play a role in educating their citizens 

so that they can protect their own online privacy (Walraven, 2018). Once users are aware of the 

exchange they are engaging in, there are several steps they can take to enhance their privacy 

(Walraven, 2018). For example, the user can take advantage of the regulations stemming from 

the GDPR, which was introduced in 2018 to protect data subjects, by managing the various 

cookies on websites and ensuring that the non-essential ones are rejected. Another possibility 

is to use other search engines that collect less data than Google, such as Ecosia or stratpage.com. 

In addition, users should use complicated and long passwords to avoid being hacked. This list 

of steps is not exhaustive. 

 

However, the GDPR, had some unintended consequences regarding competitiveness in some 

sectors. In the web technology provider sector, there has been an increase in market 

concentration which has mainly benefited Facebook and Google, this increase was due to 

websites deciding to work with larger providers because they trusted them more to deliver a 

better-quality product and to better implement GDPR (Johnson et al., 2020). Another sector 

that has been negatively impacted is the ad tech sector, for several reasons; (1) Google benefits 

from its notoriety in user consent; (2) Google benefits from its internal “free data flow” policy 

which gives it an advantage over its competitors as it has a wide range of services to offer ; (3) 

Google benefits from the human and financial resources it has to comply with the GDPR, which 

is not the case for smaller companies; and (4) Google has been able to take advantage of the 

“one-stop shop” which gives it the possibility to deal with complaints with a single Data 

Protection Officer, DPO, in its main establishment in Europe which is located in Ireland, which 

is known to apply the GDPR more flexibly than some DPOs in other countries (Gerandin et al. 

, 2020). Furthermore, the benefits the GDPR brought to data subjects are questionable (Aridor 

et al., 2020), (c.f. 1.4.2.1). The three papers therefore propose to adapt the GDPR to take into 

account the competitiveness of the different markets and to further protect users.   
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The Commission Nationale de l'Informatique et des Libertés, CNIL, which regulates and 

monitors compliance with the various data protection laws in France (CNIL |, n.d.), has 

introduced a new regulation that goes beyond the GDPR. The new regulation had to be adapted 

by the end of March 2021 and ensures that rejecting cookies is as easy as accepting them on 

websites (Reisacher, 2021). As a result of this regulation, some websites offered users two 

options: accept cookies and continue browsing as normal or reject cookies but pay to browse 

the site. Thus, the solution to avoid advertising cookies is to pay. This solution is considered 

legal by the CNIL as long as the amount of money requested is fair (Reisacher, 2021).  

 

Furthermore, several projects have been launched to enable more privacy in the future. For 

example, DECODE, a project funded by the European Commission, aims to find a way to give 

back control of personal data to those who own it in the first place (What Is DECODE, 2017). 

The project was based on data commons, which is a data set that would be of public property; 

decentralized servers, so that the data cannot be easily hacked or manipulated; and blockchain 

with attribute-based cryptography techniques, so that intermediaries are no longer needed 

(Walraven, 2018). Blockchain is a system that allows a record of every purchase and sale of a 

cryptocurrency (such as Bitcoin) in the form of blocks, with each occurrence representing one 

block (“BLOCKCHAIN| Meaning in the Cambridge English Dictionary,” n.d.). Cryptography 

is the practice of encrypting information using certain codes (“CRYPTOGRAPHY| Meaning in 

the Cambridge English Dictionary,” n.d.). The data available in the datasets would be 

voluntarily given by the users. Different pilots were put into place in Amsterdam and Barcelona, 

they offered alternative forms of online social networking and privacy-friendly services. The 

project that ran from 2017 to 2019 allowed them to develop a list of recommendations and 

advice on three levels, namely city, national and European so that the project could be applied 

on a larger scale (Bass & Old, 2020). Another interesting project is the Indienet created by Aral 

Balkan and Laura Kalbag (Fish, 2018), which was a private initiative, they wanted to create a 

web that was not influenced by surveillance capitalism. Surveillance capitalism was defined by 

Zuboff S as “a new form of information capitalism that aims to predict and modify human 

behavior as a means to produce revenue and market control” (Zuboff, 2015, p.75). Here again 

the project is based on decentralized networks, and the social networks would become a public 

service (Walraven, 2018).  
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2 Theoretical concepts 
The previous section, online data, provided an understanding of why and how data is used. 

It also explained the risks that are associated with the collection, extraction, and analysis of 

data. This next section will explore the privacy paradox that occurs when users engage with 

online services in exchange for their data.  

2.1 Definitions 
The privacy paradox (cf 1.1) observed in the behavior of users has been the subject of several 

studies. According to Berth et de Jong the decision making of the users can be divided into two 

categories: “risk-benefit calculation” and “prevalent benefits and little to no risk assessment”, 

these categories are also divided in sub-categories (2017, p. 1040). Table 1 provides an 

overview of the different theories related to the different categories and subcategories 

established by Berth et de Jong (2017, p. 1041, 1042). Each category and subcategory will be 

explained based on a selected theory and the following sub section will contain a recent article 

that applies the theory to the user context of data-driven businesses.   

2.2 Privacy concerns: theoretical foundations  

The role of rationality, Rational choice theory of human behavior  

Previous research tends to rely on rational choice behavior (Wagner et al., 2021), where there 

is an exchange of data and services online. Users should want the exchange to be positive for 

them, in other words, that the benefit from the service they receive is sufficient relative to the 

risk they take in giving out personal information. However, theories of behavioral economics 

(cf. table 1) show that users' decisions are not always rational and are biased by several factors. 

(Immediate) role of gratification, Hyperbolic discounting theory 

Previous essays have confirmed that hyperbolic discounting theory is one of the biases 

associated with risk-benefit calculations and is applicable in the context of user privacy 

(Waldman, 2020).  Users will be more likely to disregard their online privacy in order to access 

online services, such as contact with online friends and the convenience of easy access to online 

searches, than to protect their data, even if they are aware of the risks involved. Thus, the 

immediate benefits are more important to users than the risk of losing their privacy in the long 

run, so users share their information now. 
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Main category Sub-cluster  Theory Explanation 
Risk-benefit 
calculation 

   This category of the decision-making process reflects the comparison of 
perceived benefits and risks when a consumer uses an application or website.  

 Guided by rationality 
 

 Rational choice theory 
of human behavior 
(Simon, 1955) 

When a decision is guided by rationality, the user will weigh the benefits against 
the risks and make a decision that will be most beneficial to themselves. Thus, 
the utility will be evaluated by taking into account the risk that the individual is 
about to take.   

 Biased risk assessment 
within the risk-benefit 
calculation 

  The calculation of risks and benefits can be confounded by a variety of factors, 
prompting users to base their decision on, for example, experience or trust in the 
ethics of companies using data. 

  (Immediate) 
gratifications 
 

Hyperbolic 
discounting theory 
(Laibson, 1997) 

Hyperbolic discounting theory states that individuals will perceive positive 
short-term effects as more valuable than positive long-term effects, even if the 
long-term effect is more beneficial than the short-term one. There is thus an 
inconsistency in the choices that are made when time is considered because the 
individual in the future will regret what he did in the past if the benefit would 
have been greater. 

  Under-
/overestimation of 
risks and benefits 
 

Theory of under 
insurance 
(Kunreuther, 1984) 
 

According to the theory of underinsurance, which was defined by analyzing 
individuals' decisions to insure themselves if they live in disaster-prone areas, 
several aspects influence individuals when estimating risks and/or benefits. 
Individuals may make an incorrect judgment about a situation if they are 
influenced by experience, if they consider what their friends are doing, if they 
lack knowledge about how to protect themselves, if they do not understand the 
likelihood of an event occurring, or if they want to avoid admitting the risk 
situation because they do not want to live in fear. 

  Heuristics Cognitive heuristics 
(Tversky et 
Kahneman, 1975) 
 

Cognitive heuristics are mental shortcuts that allow individuals to make 
decisions more quickly. Tversky and Kahneman describe three of them, 
“representativeness” which helps one make a decision by comparing the event or 
object that an individual is to evaluate to what he/she already knows, 
“availability” which helps one make a decision based on examples that come 
easily to mind about the subject of the decision, and “adjustment and anchoring” 
which allows one to make a decision based on a certain initial idea and adjust 
from there. However, all three of these heuristics can be biased, for example, 
when the individual is influenced by stereotypes, when examples that come to 
mind are considered more important than information that does not come 
directly to mind, or when the initial anchor is the wrong value. 
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Table 1: Theories of decision making

 
 
 

 Difference btw 
the judgements of 
risks and benefits 
 

Prospect theory 
(Kahneman & 
Tversky, 1979) 
 

According to Kahnemand and Tversky's prospect theory, decisions are made in 
two phases: editing first, and then evaluating. During the editing phase, people 
set a benchmark to determine what will be considered losses (below the line) and 
gains (above the line). During the evaluating phase, people will value the utility 
of the outcomes of the decisions they have to make based on the baseline 
established in the previous phase. The theory also states that an individual will 
react more harshly if it’s a risk than if it’s a gain. Thus, the way the decision is 
presented will influence the decision an individual makes.  

  Habit 
 

Theory of ritualized 
media use (Rubin, 
1984)  

This theory, based on a study of television viewing, states that media has become 
part of everyday life. Different motivations of users to watch television were 
analyzed and all correlated with habit but viewing for information.  

Little to no 
risk 
assessment 

   In some cases, individuals do not possess or perceive knowledge of the risks 
associated with a decision. In this case, the individual will make the decision 
with little or no consideration of the risks and will base decisions only on the 
perceived benefits. 

 Value of desired goal 
outweighs risk 
assessment 

 Conformity and peer 
group pressure 
(Crutchfield, 1955) 

Peer group pressure ensures that the individual allows himself to be influenced 
by the actions of those within the group in order to feel part of the group. 

 Privacy valuation 
failed 
 

 Public value theory 
(Meynhardt, 2009) 

Public value theory shows that the individual is central and analyses the impact 
of individuals' subjective evaluations and perceptions on social relations. In this 
way, an organization can contribute to the well-being of a society. Thus, this 
theory can help in understanding the evolution of societal obligations and the 
making of values in societies that want to coordinate, legitimize, and give 
meaning to themselves.  

 Knowledge deficiency 
due to incomplete 
information  
 

 Theory of incomplete 
information 
(Harsanyi, 1967) 

The theory of incomplete information shows that an individual is not always 
aware of the values and rules of another or is unaware of some important 
features of the environment in which he finds himself. 
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Under-/ overestimation of risks and benefits, Theory of under insurance  

Users often misjudge the benefits and risks, i.e., they do not apply privacy safeguards for 

low probability but high impact risks, such as the one described in 1.5, § 1. This could be due 

to users not fully understanding how their data is collected and/ or not informing themselves by 

not reading the terms and conditions when using a service from a data-driven company (Lee & 

Calugar-Pop, 2020). Alongside this, the effect of experience is observable as previous research 

has shown that willingness to share information changes when a data breach has occurred 

(Johnson, 2021). This shows that the underinsurance theory is effective in the case of user data 

protection, lack of knowledge and reluctance to inquire will have a negative impact on a user's 

data privacy. A change will be observable when the damage has already been done, as was the 

case in Kunreuther's research when individuals took out insurance after two years of flood 

damage (1984). 

Difference between the judgements of risks and benefits, Prospect theory  

Regarding the privacy concern when a user is confronted with data collection, prospect 

theory has been proven to be accurate in previous research (Liao et al., 2020). The willingness 

to share data in order to receive non-monetary services in exchange will vary depending on the 

reference point, when it is high users are more lax in privacy; loss aversion; and risk parameter 

of the users. For example, users with a higher reference point, a high level of loss aversion and 

a low level of risk parameter will be more willing to participate in data collection. Because of 

the high reference point, users will not easily feel the loss of privacy, so the cost of participation 

will decrease, but because their loss aversion is also high, they will be sensitive to the loss of 

potential services if they do not participate. In contrast, users with a higher reference point, low 

loss aversion, and a large risk parameter will be less likely to trade their data for services. This 

is because they perceive the decrease in privacy due to the higher benchmark as less important 

than the gain in privacy if they do not participate. 

The role of Habits, Theory of ritualized media use 

According to the European barometer, 75% of respondents use internet daily and 52% use 

social media daily (Standard Eurobarometer, 2020, p.130-133). These percentages indicate that 

the use of the services offered by data-driven companies have often turned into a habit. The 

definition of a habit is “something that you do often and regularly, sometimes without knowing 

that you are doing it” (“HABIT| Meaning in the Cambridge English Dictionary,” n.d.).  
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The impact of Heuristics, Cognitive heuristics 

Previous research has shown that heuristics have an influence on how users protect their 

personal information online and this helps to explain the privacy paradox (users that give more 

information than they say they would). A recent paper studied several privacy heuristics and 

identified 12 of them, this list is not exhaustive (Sundar et al., 2020). (1) Authority refers to the 

influence of the name, brand, or organization of the website a user visits; (2) bandwagon is the 

influence of other users of the site/application who have already shared personal information; 

(3) reciprocity represents the influence of another person who has already shared personal 

information with the user; (4) sense-of-community denotes the influence of the community in 

relation to sharing data within the community; (5) community-building represents the influence 

of the desire to build a community by sharing information; (6) self-presentation signifies the 

influence of the user's desire to represent themselves by sharing information; (7) control means 

the influence of the control 'offered' by a site over users' private information; (8) instant 

gratification represents the influence of the speed with which a service is offered when a user 

shares information; (9) transparency is the influence of the transparency that a website gives to 

its users; (10) machine represents the influence of the thought that machines protect personal 

information; (11) publicness represents the influence of the public treatment of information; 

and (12) mobility represents the influence of the users' belief that mobile devices do not process 

information securely. The hypotheses made in the research, “stronger belief in authority, 

bandwagon, reciprocity, sense-of-community, community- building, presentation, control, 

instant gratification, transparency, and machine heuristics will be associated with greater 

disclosure intentions in scenarios featuring cues related to those heuristics.” and “Stronger 

belief in the (g) publicness and (h) mobility heuristics will be associated with negative 

disclosure intentions in scenarios featuring cues related to those heuristics.” (Sundar et al., 

2020, p.3, 4) were confirmed. Thus, mental short cuts that are used to make decisions influence 

the decision-making in the context of online privacy protection.  

Value of desired goal outweighs risk assessment,	Conformity and peer group pressure 

Previous research has shown that users are influenced by the members of a group they want 

to be part of (Sundar et al., 2020). For the privacy protection aspect, this translates into a greater 

willingness of users to share information in order to be part of a group. Users will therefore be 

more likely to only consider the benefits of sharing data to access online platforms. 
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Privacy valuation failed, Public value theory  

Data privacy needs to be valued if it is to be seen as a public value, this has not always been 

the case, but people are now increasingly aware of it. A 2020 survey by KPMG shows that 87% 

of the 1,000 respondents consider data privacy to be a human right and that users want 

organizations to commit to better protection, management, and ethical use of personal data. 

(The New Imperative for Corporate Data Responsibility, 2020).  

Knowledge deficiency due to incomplete information, Theory of incomplete information 

Users do not have full information about the dangers of privacy disclosure, this was shown 

in previous research (Lulandala, 2020). For example, companies may choose to hide the 

security breaches it has experienced so that they can maintain the trust users have in them. In 

this way, the user does not have complete information to make the right decision (Lulandala, 

2020). This shows that incomplete information has an impact on the choice of a user. 

3 Conceptual model 
In the previous section, different theories on decision making were explained and shown in 

existing research to be applicable to the topic of privacy. They were mainly analyzed in the 

context of private data companies that offer services such as social media or online shopping. 

However, with the emergence of technology over the years, governments are also using IT to 

provide certain services. Examples of government applications and websites in Belgium include 

the eHealth (EHealth, n.d.) website which allows an individual to access their medical records 

online; the Coronalert (Coronalert, n.d.) application which tracks the spread of the coronavirus; 

and Myminfin (MyMinfin, n.d.) which allows an individual to have an overview of their house, 

property and information on payments and reimbursements and which helps them to fill in their 

tax return. The different theories identified above are interesting when applied to government 

applications or websites. The cognitive heuristic of authority that influences users through a 

name, brand, or organization (Sundar et al., 2020) comes into play in this case, as these 

platforms are issued by the government. In this way, we can analyze the privacy paradox in a 

different manner.  

 

The analysis of healthcare-related websites or applications is also an interesting perspective 

to take because, as we saw earlier (c.f. 1.3.2), this information is considered sensitive, and users 

are therefore more likely to protect it. In addition, the health theme is very topical due to the 

global pandemic we are facing. 



 

 

22 

 

Previous research has already analyzed the privacy paradox of government-provided 

healthcare technologies by testing different hypotheses such as “Perceived benefits will 

positively influence acceptance of electronic health record systems”, “health information 

privacy concerns will negatively influence acceptance of electronic health record systems”, 

“Perceived benefits will positively influence intention to adopt mobile-health technologies” 

and “health information privacy concerns will negatively influence to adopt m-health 

technologies” (Fox, 2020, p. 1017). The different biases that were significantly influencing the 

acceptance or continuance of use of the different governmental IT health services were “lack of 

privacy knowledge; underestimation of privacy risks; belief negative outcomes are unlikely; 

overestimating benefits; belief benefits are guaranteed; excessive data request; awareness of 

privacy risks; privacy breach; realization of benefits; and sustained relevance of benefits” (Fox, 

2020, p. 1025). However, this study has some limitations, including the fact that it does not 

analyze the actual adoption and use of the different services as well as the fact that it analyzes 

two different countries (Ireland and the United States) with different electronic health record 

systems. Therefore, the following question is interesting to analyze:  

 

How do the different theories that explain the privacy paradox apply to the 

actual adoption of health technology services issued by the government? 
 

We chose to analyze the risk-benefit calculation that a user makes when using a new website 

or downloading a new government-issued application because health data is sensitive, and users 

are more likely to already know the risks associated to the sharing of their data. Several theories 

were chosen for this analysis: rational choice theory of human behavior, cognitive heuristics, 

theory of under insurance, hyperbolic discounting theory, and theory of ritualized media use. 

The prospect theory will not be applied in this research because of its complexity. The different 

hypotheses that are analyzed in this study are explained in the following section.  

3.1 Hypotheses 
The various hypotheses that have already been proven in the context of data privacy (c.f. 

2.2) will now be placed in the context of data privacy in a healthcare government environment. 

To this extent, each theory will be used to make hypotheses in the case of downloading or using 

a government application or website.  
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3.1.1 Rational choice theory of human behavior 

As explained earlier, users must make a decision whether to download and use an online 

service or not (Berth and de Jong, 2017). Regarding the research question mentioned in the 

previous section, users have to decide on the adoption of government health technology 

services. The decision that users make is based, like any decision that must be made, on 

weighing up the risks and benefits (Simon, 1955). Previous research has confirmed the impact 

of perceived benefits on acceptance of electronic health record system (Sundar et al., 2020). In 

addition, the benefits identified will encourage someone to take the plunge (Simon, 1995), in 

our case the plunge is the adoption of governmental health technology services. Therefore, a 

pertinent hypothesis is the following.  

H1: Perceived benefits will positively influence the adoption of governmental health 

technology services. 

Furthermore, the various risks identified regarding data privacy will lead an individual to 

avoid options that carry many risks (Simon, 1995). The effect of privacy concerns on the 

acceptance of electronic health record systems has already been demonstrated (Fox., 2020), but 

as explained earlier the actual adoption needs to be analyzed. Therefore, the following 

hypothesis is made.  

H2: Perceived risks regarding data privacy will negatively influence the adoption of 

governmental health technology services. 

3.1.2 Theory of under insurance 

This theory can be used to understand why individuals don’t take actions to protect 

themselves regarding eventual risks. Two of the reasons being not having enough knowledge 

about the risks and not having experienced the possible risks (Kunreuther, 1984).  

Knowledge 

Not having enough knowledge about how data is collected and how it is used makes users 

less aware of the risks and therefore they do not apply privacy-protective behavior (Lee & 

Calugar-Pop, 2020). It would be logical that the reverse is true, i.e. the more knowledge a user 

has about data processing, the more protective that person will be of their personal data. 

Furthermore, if users do not have sufficient knowledge about the use of online data, they will 

be more likely to consider only the perceived benefits (Lee & Calugar-Pop, 2020). To consider 

these interpretations to our case is interesting, so we consider the following hypotheses.  
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H3a: Knowledge about data treatment has a positive influence on the perceived risks of 

using government health technology services. 

H4a: Knowledge about data treatment has a negative influence on the perceived benefits of 

using government health technology services. 

Experience 

Studies have shown that users who have experienced a data breach have more privacy 

concerns (Lulandala, 2020). They are also likely to engage in data protection behavior (Johnson, 

2021). Therefore, they are more likely to concentrate on the possible risks than the benefits of 

using the different platforms (Berth and de Jong, 2017). Analyzing this phenomenon in the case 

of government-delivered health technology services is relevant, as it will allow us to see 

whether data breaches in different platforms influence healthcare platforms.  

H3b Data breach experience has a positive influence on the perceived risks of using 

government health technology services. 

H4b Data breach experience has a negative influence on the perceived benefits of using 

government health technology services. 

3.1.3 Cognitive heuristics 

Testing all twelve heuristics identified in the research of Sundar et al. (2020) will not be 

possible since there are four other theories to test, so there must be a selection based on the 

assumption of what will be observable in the context we chose. The heuristics that are not used 

are reciprocity, sense of community, community-building and self-presentation because they 

cannot be adequately analyzed as other users are unable to check whether an individual is 

sharing personal information as data on government platforms is not made public; instant 

gratification will not be analyzed as a heuristic because hyperbolic discounting theory is more 

appropriate to do so; machine, mobility and publicness are not used because the focus of this 

thesis lies elsewhere. The different heuristics that are used to analyze the adoption of 

governmental issued platforms for healthcare are authority; bandwagon; control; and 

transparency. 

Trust 

The influence of government authority is supposed to inspire confidence in users as 

platforms are issued to make their lives easier, to help them get the right information and, in 

some cases, protect them. For example, the eHealth platform in Belgium was designed to 

provide electronic data and services to and from health stakeholders, while protecting the data 
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privacy of the patient and the caregiver so that medical confidentiality is respected 

(MHealthBELGIUM, n.d.). Therefore, the authority heuristic that inspires trust should 

strengthen perceived benefits and weaken the perceived risks of using government health 

technology services. However, the Winter Eurobarometer shows that in Belgium, 59% of 

respondents tend not to trust the government (Standard Eurobarometer, 2020). Thus, if the 

majority of citizens do not trust the government in Belgium, it is interesting to analyze the 

influence of the lack of trust in the issuing authority of the application or website. We will call 

this variable trust because it reflects the trust citizens have in their government. The hypotheses 

will be the following: 

H3c The lack of trust in the government positively influences the perceived risks of using 

government health technology services. 

H4c The lack of trust in the government negatively influences the perceived benefits of using 

government health technology services. 

Bandwagon 

The bandwagon heuristic shows the influence that other people can have on a person's 

decision (Sundar et al., 2020). Previous research has shown that the bandwagon effect 

encourages users to use Facebook and therefore to ignore the risks associated with using these 

services (Fu et al., 2012). This effect that has been established in the case of social media is 

interesting to test in our case. It is therefore relevant to consider the following hypotheses.  

H1a The negative influence of perceived risks is weaker on the adoption of governmental 

health technology services when users are influenced by other active users. 

Control 

Users can be influenced by the degree of control they have over their data to download or 

use a certain application or website, the more control they have, the safer they feel to share their 

private information (Sunder et al., 2020). To analyze whether this is also valid for our case, the 

following hypothesis is made.  

H1b The negative influence of perceived risks is weaker on the adoption of governmental 

health technology services when users are in control over the data they share. 

Transparency 

The various government platforms such as eHealth or Myminfin contain a lot of information 

about the cookies they use on their website and the data they collect and why (EHealth, n.d.; 

MyMinfin, n.d.). This suggests that transparency is present on these sites. The effect of 

transparency on willingness to share data has been confirmed in previous research, users feel 
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safer to share their information if the privacy policy is transparent (Sundar et al., 2020), however 

this research did not consider the intentions of a specific organization such as a government. It 

is therefore interesting to see whether users' perceptions of the risks of adopting government 

health technologies will be influenced by the transparency of a governmental issued platform. 

Therefore, the following hypothesis is pertinent.   

H1c The negative influence of perceived risks is weaker on the adoption of governmental 

health technology services when the government’s privacy policy is more transparent. 

3.1.4 Theory of ritualized media use 

The theory of ritualized media use explains that there are several habit-related reasons why 

a user uses media. This habit may influence users to lower their guard regarding data privacy 

in order to continue to use the media. (Stockdale & Coyne, 2020).  

Habit 

As shown earlier, the use of the internet and social media has become a habit. The influence 

of this habit can make sure that the perceived benefits become more important than the 

perceived risks in case of social media use, so the user will not engage in privacy protecting 

behavior (Debatin et al., 2009). For this research, it is therefore interesting to analyze how the 

use of the internet and apps as a habit can affect the perceived risks and benefits of the adoption 

of governmental health technology services. In this way, we can see whether the user's 

perceived benefits and risks is changed as a result of this habit. The hypotheses to be tested are 

the following.  

H5e The perception of applications as a habit negatively influences the perceived risks of 

using government health technology services. 

H6e The perception of applications as a habit positively influences the perceived benefits of 

using government health technology services. 

3.1.5 Hyperbolic discounting theory 

This theory allows us to analyze how immediate gratifications influence a user's choice 

regarding the downloading or using of governmental issued platforms. So, the understanding 

of the use and the perception of the immediate benefits of this same application will influence 

a user.  

Immediate benefits 

The link between perceived benefits and immediate gratification in the case of social media 

has already been demonstrated: users tend to “give up” their privacy if they have easy access to 
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online services, which also reflects less consideration of possible risks (Waldman, 2020). It is 

then interesting to see if this applies to the adoption of government-issued platforms, as some 

platforms do not have immediate benefits. For example, the Covid-19 tracking application only 

has long-term results in terms of the spread of the virus (Rowe, 2020), but the eHealth platform 

provides immediate access to medical records (MHealthBELGIUM, n.d.).  Thus, the following 

hypotheses are relevant for analysis.  

H5d Immediate benefits negatively influence the perceived risks of using government health 

technology services. 

H6d Immediate benefits positively influence the perceived benefits of using government 

health technology services. 

3.2 Conceptual framework 
As a result of the hypotheses made in the previous section, the conceptual model that will be 

discussed in this paper is presented in Figure 1. This model will be tested by conducting a study 

that will be introduced in the next chapter of this thesis.   

 

 

  

Figure 1: Conceptual model 
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Chapter 3: Research Design  
In the previous chapter, the conceptual model with the different assumptions that derived 

from it was presented. In this chapter this conceptual model will be tested by applying it to two 

cases studies. The case studies are the adoption of the Covid-19 tracing application and the 

Covid-19 certificate application. 

1 Case study 
In order to apply the conceptual model, we first need to understand the two applications 

mentioned above, why they were created, how they work and what concerns users may have 

about them. To begin with we present the tracking application that was introduced in several 

countries to monitor the spread of the pandemic and explain why some citizens were not very 

receptive to this new application. Then we will present the new application that was introduced 

in Belgium, among others, to identify whether a person has a Covid-19 certificate. In addition, 

we will draw up a comparison table between the two applications to analyze the differences and 

similarities.  

1.1 Covid-19 applications  
Since the outbreak of SARS-CoV-2, which is a disease causing “severe acute respiratory 

syndromes” in late 2019, several technology services have been launched, among others, to 

raise awareness of this highly contagious disease and track its spread (Utz et al., 2021, p.1). 

These technologies have often taken the form of apps and have been launched by private and 

public initiatives (Utz et al., 2021). 

1.1.1 Covid-19 tracing application  

Intended use 

In the opinion paper by R.A.Fahey and A. Hino published in 2020, authors explain the two 

different ways in which nations have applied the tracing application for Covid-19. There is the 

“data-first” view, where data is central and the more data that is assembled the better. The 

second is the “privacy-first”, which ensures that when data is collected it remains anonymous 

and cannot be associated with any individual. Both approaches start in the same way, i.e. if a 

person tests positive and this is reported on the application, the people who have been in contact 

with that person will be alerted. However, the data-driven approach allows the authorities to 

know the identity of the people who have been in contact with someone who was tested positive 
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and to contact them. Whereas the privacy-based approach simply sends a notification to the 

phone of these people. The data-driven approach also allows authorities to identify clusters, 

which is not the case with the privacy-based approach. The data-driven approach has been used 

in, among others, South Korea, Singapore, the UK, France, Taiwan, China, Iran and Qatar. The 

privacy approach has been adopted, among other, in Germany, Italy, Japan and many US states. 

Apple and Google have created a framework for privacy-based approaches with a decentralized 

technology that have been adopted in several countries because they are technologically 

advanced, avoid problems such as excessive battery consumption and are trusted by a large 

number of citizens (Fahey & Hino). The decentralized technology allows to protect personal 

data, if the data is centralized it allows for data analysis (Meyer, 2021).  

 

In Belgium, they adopted a privacy-first approach by using a decentralized privacy-

preserving proximity tracing, DP-3T, structure. For the “Coronalert” application, the federal 

authority authorized Sciensano to create a database V that monitors the application's operations. 

Database I and II, which are also monitored by Sciensano, and which exist for treatments and 

scientific research in the health field, are separated from V so that no identification is possible. 

The application generates secret keys stored on users' phones that generate ephemeral 

identifiers that are renewed every 10 to 20 minutes. The technique used to renew the identifiers 

every 10 to 20 minutes is the same as for Bluetooth, no location information is used to identify 

potential contamination. The data that is exchanged between the different users is the ephemeral 

IDs of the users, the ephemeral IDs of the other people who make contact, the date, the duration 

of the contact and the signal strength, and this data is saved for 14 days.  The application is 

compatible with other EU Member States, countries that are part of the European Economic 

Area or countries considered to have a sufficiently high data protection policy, as set out in the 

GDPR, that use a DP-3T infrastructure on their applications (Accord de Coopération Entre 

l’État Fédéral, La Communauté Fla- Mande, La Région Wallonne, La Commu- Nauté 

Germanophone et La Commission Communautaire Commune, 2020). When a person tests 

positive for Covid-19, they or a healthcare provider stores an encrypted identifier of their phone 

in the test server (Coronalert, n.d.). The application then checks to see if the test results are 

available on the test server, and if so, sends a notification with the result to the user. If the result 

is positive, the user can decide to download the secret codes that generated the previously 

distributed ephemeral identifiers to the main server, where database V is located. This download 

must be authorized by the test server by sending an authorization code to the main server in 



 

 

30 

order to avoid any manipulation error that could be made by a user. The data that is sent to the 

main server cannot be linked to a specific user. Once the secret keys are downloaded, they are 

deleted from the user's phone. If they are not downloaded on the main server, they remain on 

the user's phone for 14 days (Accord de Coopération Entre l’État Fédéral, La Communauté Fla- 

Mande, La Région Wallonne, La Communauté Germanophone et La Commission 

Communautaire Commune, 2020).  

Concerns about the application 

The tracing application that was introduced by several authorities around the world to help 

track the spread of the pandemic was not easily accepted by all citizens. According to previous 

research, a kind of privacy paradox has accompanied the application (Rowe, 2020; Utz et al., 

2021), this paradox occurred with data privacy “versus” health and freedom. One should be 

compromised in favor of the other, but for the application to work properly, three conditions 

are identified in existing literature (Rowe, 2020). The first condition is the accuracy of the 

information about whether a person has the disease or not, but this information cannot be 100% 

accurate as the tests are not totally reliable. The second condition is that people who cross other 

people must all have their smartphones with them, which is not always possible, for example 

at the workplace people often forget their phones in their bags or on their desks. The third 

condition is that a high percentage of smartphone users must have downloaded the 

application, which is not always the case as downloading is not mandatory. The same concern 

was expressed in another paper: although the app helps stop the spread of coronavirus and 

provides a lot of valuable data to authorities and health researchers, it would not work if too 

few people download it (Fey and Hino, 2020). In this paper, it was argued that even in countries 

where downloading the app is mandatory, some people do not use the app or their smartphones 

as they should in order to avoid being “tracked”. Furthermore, the authors announce that such 

a large amount of sensitive data has never been required by the authorities in the past. Therefore, 

some citizens are suspicious and make assumptions, for example, citizens in Minneapolis who 

participated in the Black Life Matters protests thought the police would use the contact tracing 

set up for Covid-19, but this was never the intention. This was a misinterpretation of what a 

safety commissioner said (Mullin, 2020). Other research has also shown that privacy concerns 

can be a barrier to downloading the app for some citizens (Utz et al., 2021). In addition, other 

research has shown that a high level of concern about Covid-19 actually decreases willingness 

to download the tracing app (Chan et Sabiq, 2021).  
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1.1.2 Covid-19 certificate - application 

In Europe, the Member States have agreed to introduce a “European digital COVID 

certificate” (EU Digital COVID Certificate, n.d.), which is available since the first of July 2021, 

the main reason being to enable the restoration of free movement in the European union, 

Iceland, Liechtenstein, and Norway. A citizen can obtain this certificate in three different ways: 

by being fully vaccinated, by having a negative PCR test, or by proving that he or she has 

recovered from a previous infection with Covid-19. The different authorities in the Member 

States are responsible for issuing the certificate to citizens, for example via online platforms, 

testing centers or health authorities. The certificate will take the form of a QR code with a 

numeric signature, which will prevent forgery. The digital signature will be specific to the 

issuing organization, such as health authorities or hospitals, and the personal data will be 

secured in a database in each country. The personal data contained in a certificate is date the 

certificate was issued, name, birthdate, information about one or more of the three different 

ways to obtain a certificate, and a unique identifier. The QR code will be available on phone 

and/or paper. There will be no central European database, to verify the certificates the European 

commission developed a gateway, which will not let the personal data through only the validity 

of the certificate will be verified by checking the authority that made the certificate and signed 

it. Thus, each country will have its own database and the personal data will not be shared from 

one country to another (EU Digital COVID Certificate, n.d.).  

 

In Belgium, the authorities have decided to make the certificate available in three different 

ways: through an application, called CovidSafeBE; through the government's existing online 

sites, eHealth and the site depending on where you live; and through post by calling the helpdesk 

specific to certification issuing (Wil Je Reizen Binnen de EU?, n.d.). The CovidSafeBE app is 

separate from Coronalert to continue to guarantee private identity on the latter (Wil Je Reizen 

Binnen de EU?, n.d.). The application was created to facilitate the lives of citizens, so all they 

need is their smartphone and it does not collect data unless the user allows it, the data collected 

is anonymous and allows to improve the performance of the application and make error reports 

(CovidSafeBE, n.d.). To use the application, the user must connect it with his identification to 

the Ehealth platform to transfer the necessary data. As a Flemish organization manages the 

database of vaccines in Belgium, Vaccinet, the application was created by Digitaal Vlaanderen, 

which is the agency responsible for the digitalization of public authorities in Flanders. The 

database used for the tests is called sciensano (Scharff, 2021).  
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Tracing app  
(Coronalert, n.d.) 

Certification application  
(Privacy statement Sciensano, 2021) (Privacy disclaimer Vaccinet +, 2020) (CovidSafeBE, n.d.) 

  Test certificate Recovery certificate Vaccination certification 

Date of application launch 30 September 2020 16 June 2021 

How data is collected 

Contact tracing is collected via a 
“Decentralized Privacy-Preserving 
Proximity Tracing” (DP-3T), the 
results of the tests from the Sciensano 
database 

From database Sciensano From database Sciensano From database Vaccinet 

Data on app 

Secret keys, own ephemeral IDs, 
ephemeral IDs of others who come in 
contact, date, duration of contact and 
signal strength 

Identity (Id number, 
first- and last name, 
birthdate, and principal 
residence) 
Data about the test (type, 
name, and fabricant) 
Covid-19 variant 
Result of the test 
Place and time of test 

Identity (Id number, first- and 
last name, birthdate, principal 
residence) 
Covid-19 variant person had 
Place and date of first positive 
test 

Identity (Id number, first- and last name, birthdate, principal 
residence) 
Vaccine data (brand, lot number, Vaccine ID) 
Place and time on vaccine 

Creator Sciensano Digitaal Vlaanderen 

Transfer of data 

From the test server to the application 
From one user to another (IDs) 
From a user to the main server (secret 
keys) 

The user can show the QR code of the application to third parties, by doing so the identity and content data of the certificates 
will be given. 
Data about the use of the application and the device can be shared with the device provider. This data does not contain 
information about the certificate. This data sharing is in accordance with the privacy policy of 
https://firebase.google.com/support/privacy. 

Duration of data 
conservation 

All the data on the application is 
automatically erased after 14 days. 
If the secret keys are sent to the main 
server in case of a positive test, the 
keys are immediately deleted from 
the application. 
Test results are kept for 60 days after 
registration. 

The certificates on Sciensano will be kept as long as they are 
valid so that the citizen can access them. The ID number and 
metadata will be kept for 10 years in a log database. 
The data will be available on the application until the 
certificate is no longer valid or if the user deletes the 
application from his phone. 

Certificates will be conserved as long as they are valid so that 
the citizen can have access to them. On vaccinet the data will be 
preserved till the death of the citizen.  
The data will be available on the application until the certificate 
is no longer valid or if the user deletes the application from his 
phone. 

Table 2: Coronalert and CovidsafeBE comparison 
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2 Methodology 
To test the conceptual framework, a questionnaire was developed based on the case studies 

presented in the previous section. To analyze the questionnaire, the obtained data is divided 

into two databases, this way there is a distinct analysis for the two applications: Coronalert and 

CovidsafeBE. This section presents the questionnaire that was used, and the measurement 

scales chosen. Next, there will be an explanation of how we collected the data and who our 

respondents were. 

2.1 Questionnaire  
The approach we chose was a quantitative one, with 160 people responding to our 

questionnaire. The questionnaire is available in Appendix A.  

To start the questionnaire, the respondent had to choose a language, French, Dutch, or 

English. These three languages were chosen because French and Dutch are two national 

languages of Belgium. German was left out because the author is not fluent in this language. 

Next, the respondent was introduced to the subject and purpose of the questionnaire. After that 

there were two filter questions. Firstly, whether the respondent lives in Belgium and secondly, 

whether he or she owns a smartphone. The filter questions were asked so that only people with 

access to Coronalert and CovidsafeBE were considered. If respondents did not answer 

positively to both filter questions, they were directed to the end of the questionnaire. Following 

this, they were asked questions on several themes. That is, trust of the government, data 

treatment, data theft, downloading of applications in general and how they use these 

applications. Then, the Coronalert application was presented. If the respondent had never heard 

of it, he was redirected to the next part of the questionnaire. If he answered in the affirmative, 

he was firstly presented with a hypothetical scenario in which he had to choose between 

downloading Coronalert and stopping the pandemic within a given time frame or not doing so 

and not stopping it. Secondly, questions were asked about the control of data on the application, 

the transparency regarding data treatment of the application, the perceived risks, and benefits 

and finally the adoption of the application. After that, the CovidsafeBE application was 

presented. For this application, the respondent was also asked if he/she knew it or not, otherwise 

he/she was redirected to the last part of the questionnaire. The other questions for CovidsafeBE 

followed the same structure as the Coronalert part. Finally, sociodemographic questions were 

asked. 
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2.2 Data collection 
To collect the data, the questionnaire was posted on Facebook and LinkedIn. The social 

media platforms make it easy to share the questionnaire. Data collection began on July 19 and 

ended on July 22. The survey was conducted using Sphinx, with 160 people completing the 

survey and 135 people remaining after the filter questions. 

2.3 Measurement scales 
To measure the different hypotheses that were established in the previous chapter, several 

measurement scales were used. Multiple items were used to minimize measurement error and 

increase the accuracy of the evaluation. The scales and their sources are listed in Appendix B. 

The majority of the scales follow a 7-point Likert scale. 

2.3.1 Dependent variables 

The conceptual model has several dependent variables. The adoption of the different 
applications is measured using the two-item scale of Gao et al (2011), adapted from Davis 

(1989). The items were originally used to measure the adoption of mobile services but for this 

study they were adapted to the adoption of each of the two applications. Perceived benefits 
were measured separately for the Coronalert application and the CovidsafeBE application as 

they have different benefits. The structure of the measure is based on that of Forsythe et al 

(2006) who assessed the benefits of online shopping. For this study, the benefits were tailored 

to each application and 4 items were used for each application. The perceived risks were 

separated into privacy and performance risks for each application. They were based on the 

scales used by Featherman and Pavlou (2003) who analyzed the risks associated with the use 

of online services. For this study, the privacy and performance risks were adapted to the 

applications with 3 and 5 items respectively.   

2.3.2 Independent variables 

There are several different independent variables that influence the dependent variables. The 

distinction is interesting because it differently influences adoption, perceived risks, and 

perceived benefits (Fox, 2020). The measurement of perceived risks and benefits, which are 

also independent variables concerning the adoption of applications, has been explained above. 

Knowledge was measured by a 6-item scale of Çoklar and Odabasi (2009). The items initially 

measured knowledge about technological operations and concepts, for the purposes of this 

study they were adapted to knowledge about data treatment.  Experience was measured using 
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a yes, no, don’t know possibility regarding data theft. Trust was measured using the four-item 

scale of Kastanakis et Balabanis (2012). Immediate benefits were measured using Hardisty et 

al's (2011) choice-based binary comparisons. Initially, the items were used to measure discount 

rates and analyze the difference in choice with losses and gains. For our study, we chose to 

analyze the loss of data by downloading the application. As the benefits of each application are 

different, the immediate benefits were measured separately. For each application people “paid” 

by downloading the application to stop the pandemic or to travel freely again over seven 

different time periods.  Habit was measured with the twelve-item scale of Rebar et al. (2018).  

2.3.3 Moderators 

A moderator is a variable that affects the relationship between two others, so that the effect 

of the independent variable on the dependent variable changes according to the value or level 

of the moderator (Zidda, 2020). The relation between perceived risks and the application 

adoption should be influenced by moderators following hypothesis H1a, H1b and H1c (c.f. 

3.1.3). Bandwagon was measured using a three-item scale by Kastanakis et Balabanis (2012). 

Initially, it measured the consumption of luxury goods, for the purposes of this study it was 

adapted to app adoption. Transparency was measured using Al-Jabri and Roztocki's (2015) 7-

item scale. The measurement scale was initially used to measure the transparency of enterprise 

resource planning systems, for the purpose of this study it was adapted to the use of Coronalert 

and CovidsafeBE in terms of transparency. In this context, only five of the seven items were 

kept. Control was measured using a three-item scale by Chang et al. (2015) adapted from Xu 

et al. (2011). Initially it measured control over private information on online banking services, 

for the purpose of this study it was adapted to the control over private information on the 

Coronalert application and the CovidsafeBE application.  

2.4 Pre-test  
A pre-test was conducted before launching the questionnaire. This was to see if the 

questionnaire was useable. 5 people were chosen to test the questionnaire. Each person gave 

feedback on the formulation and the understandability of the questions. This taught us that some 

sentences were not clear and had to be adapted, furthermore spelling mistakes were identified 

and corrected. This step also allowed us to identify the average time to fill in the questionnaire, 

which was 12 minutes.  
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2.5 Presentation of the sample 
Our sample consists of 135 people who live in Belgium and own a smartphone. We first note 

that 7 respondents have never heard of Coronalert and 13 have never heard of CovidsafeBE. 

The questionnaire was designed in such a way that these respondents were not asked about the 

application they were not familiar with. For this reason, it is interesting to examine the 

sociodemographics of respondents who are aware of Coronalert and those who are aware of 

CovidsafeBE separately. Thus, the original database of 135 individuals was used to create two 

new ones. One with 128 respondents, to analyze the adoption, perceived benefits, and risks of 

Coronalert and the other with 122 respondents, to analyze the adoption, perceived benefits, and 

risks of CovidsafeBE. It is therefore possible that a respondent from the original database could 

be found in both new databases. 

 

Four socio-demographic questions are asked in the questionnaire: gender, age, education, 

and occupation, this allows us to describe the sample of our questionnaire. Gender is assessed 

by asking the person to choose between “male”, “female” or “other”. Age is assessed by asking 

the respondent to classify him/herself in one of the 9 age categories. Education level is obtained 

by asking to choose between 7 options. Finally, occupation is established by asking participants 

to choose between 10 options, including the "other" option that they must specify. 

Table 3 presents the socio-demographic characteristics of our respondents from both 

databases. We note that the majority of our respondents are female, close to 62% for both 

applications.  The two most represented age categories in our sample are between 19 and 24 

years old and between 51 and 60 years old. To find the average age of the respondents, a new 

variable was created with a minimum of 15.5 and a maximum of 80 years old. The calculated 

average is 36 years old for Coronalert and 37 years old for CovidsafeBE. All respondents have 

completed at least upper secondary school and are generally highly educated as the majority 

have a bachelor’s degree. The majority of respondents are students, which explains the 

overrepresentation of the age category and education level. The second most represented 

occupation are employees. 
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  Coronalert CovidsafeBE 
Variable  Freq  % Cum. % Freq % Cum. % 
Coronalert 

awareness 

Aware 128 100.00% - 118   96.72%   96.72% 

Not aware - - - 4     3.28% 100.00% 

CovidsafeBE 

awareness 

Aware 118   92.19%   92.19% 122 100.00% - 

Not aware 10     7.81% 100.00% - - - 

Gender Female   79   61.72%   62.22% 75   61.48%   61.48% 

 Male   49   38.28% 100.00% 47   38.52% 100.00% 

Age 13 – 18 years     2     1.56%     1.56% 1     0.82%     0.82% 

 19 – 24 years   57   44.53%   46.09% 50   40.98%   41.80% 

 25 – 30 years   16 12.50%   58.59% 16   13.11%   54.92% 

 31 – 40 years     4     3.13%   61.72% 5     4.09%   59.01% 

 41 – 50 years     8     6.25%   67.97% 8     6.56%   65.57% 

 51 – 60 years  27   21.09%   89.06% 28   22.95%   88.52% 

 61 – 70 years 12     9.38%   98.44% 12     9.84%   98.36% 
 71 years or more 2     1.56% 100.00% 2     1.64% 100.00% 

Education Higher secondary 22   17.19%   17.19% 22   18.03%   18.03% 

Bachelor 41   32.03%   49.22% 39   31.97%   50.00% 

Master 64   50.00%   99.22% 60   49.18%   99.18% 

PhD 1     0.78% 100.00% 1     0.82% 100.00% 

Occupation Student 52   40.63%   40.63% 45   36.89%   36.89% 

Employee 27   21.09%   61.72% 28   22.9%   59.84% 

Retired 9     7.03%   68.75% 9     7.38%   67.21% 

Civil servant 17   13.28%   82.03% 17   13.9%   81.15% 

Long-term illness 1     0.78%   82.81% 1     0.82%   81.97% 

Self-employed 9     7.03%   89.84% 9     7.38%   89.34% 

Manager 4     3.13%   92.97% 4     3.27%   92.62% 

Currently unemployed 4     3.13%   96.10% 4     3.27%   95.90% 

Disability 3     2.34%   98.44% 3     2.46%   98.36% 

Liberal profession  2     1.56% 100.00% 2     1.64% 100.00% 
Table 3: Descriptive variables 
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Chapter 4: Results 
In this chapter, we will analyze the different variables of our model. First, we will test the 

reliability of the chosen scales. Then, we will perform analysis of variance and correlation tests 

on our variables. Next, the correlations will be analyzed, and a multicollinearity test will be 

performed to ensure that our variables do not have collinearity. Finally, we will analyze the 

explanatory and moderating variables defined in our conceptual framework (c.f. 3.2) to 

determine the influence of these variables on the different dependent variables. This chapter 

will be divided into two parts, Coronalert and CovidsafeBE.  

3 Coronalert 
As a reminder, the database used for Coronalert consists of 128 respondents. 

3.1 Measuring the validity and reliability of scales 
It is important to measure the validity and the reliability of the scales to ensure that our scales 

(c.f. 2.3) represent the expected dimensions. The different items that describe a construct must 

be tested to ensure that the construct is presented correctly, so that the different items converge 

to the same response intensity. In addition, the constructs must be internally consistent (Zidda, 

2020). 

In order to test the validity, i.e. to verify the theoretical dimensionality of the measurement 

scales, an exploratory factor analysis (EFA) is performed. Two steps must be undertaken 

(Zidda, 2020): 

- The factor pattern table should be analyzed so that items have a correlation greater 

than 0.5 to be a relevant descriptor of the factor. This means that items with a value of 

less than 0.5 should be eliminated. 

- The final communality estimates, which represent the percentage of the variance of 

the factor by the item, should have a value higher than 0.5. Anything less than this 

should be deleted and the EFA analysis should start over. 

To measure the reliability, Cronbach's alpha is used, which gives a result between 0 and 1. 

The higher the value of α, the more correlated the items are and therefore the internal 

consistency is good. For α to be deemed valid, it must be equal to or greater than 0.70. If 

Cronbach's alpha is between .80 and .90, it is considered ideal (Stephanie, n.d.).  

The steps described were applied and are available in the Appendix D. The table 4 below 

shows the result of the items that should be kept. Once the scales are considered reliable and 
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valid, the measures used are computed based on the averages which are described in the next 

section. 
Variable Items Number 

of items 
Cronbach’s 

Alpha 
Trust 1. I trust my government. 

2. The Belgian government makes truthful claims. 
3. The Belgian government is honest. 

4. I do not believe what the Belgian government tells me. 

3 0.935850 

Knowledge 1. I can explain how data treatment on applications operate. 

2. I can use data treatment in different ways. 

3. I can define data treatment used on applications. 

4. I can do basic things regarding data treatment. 

5. I can explain general concepts related to data treatment. 

6. I can use data treatment effectively. 

6 0.961248 

Bandwagon 1. How likely is it that you would download applications used by most people?  

2. How likely is it that you would download applications that everyone would approve of? 

3. How likely is it that you would download applications recognized by many people? 

3 0.901338 

Habit 1. I do frequently.  

2. I do automatically.  

3. I do without having to consciously remember. 
4. That makes me feel weird if I do not do it. 

5. I do without thinking. 

6. That would require effort not to do it. 

7. That belongs to my (daily, weekly, monthly) routine. 

8. I start doing before I realize I’m doing it.  

9. I would find hard not to do.  

10. I have no need to think about doing. 

11. that’s typically ‘me’.  

12. I have been doing for a long time. 

8 0.938326 

Control 1. I believe I have control over who can get access to my personal information collected by 

Coronalert 

2. I think I have control over what personal information is released by the Coronalert application 
3. I believe I have control over how personal information is used by the Coronalert application 

3 0.937951 

Transparency 1. The Coronalert application allows me to track my activities  

2. Coronalert provides information on the rules and regulations of the application 

3. Coronalert provides information about the decisions and actions of the application 

4. Coronalert disseminates information on the performance of the application 

5. Overall, Coronalert is a transparent application regarding data treatment and performance 

2 0.849692 

Perceived 

benefits 

1. I will be informed if I have been in contact with a person who has tested positive for Covid-19 

2. I will help to track the spread of the Covid-19 virus 

3. On the long term I will help to stop the spread of the Covid-19 virus 

4. Always be notified in case of possible infection 

4 0.858257 

Perceived 

risks 

1. What are the chances that using the Coronalert application will cause you to lose control over 

privacy of your location?  

2. My downloading and using of the Coronalert application would lead to a loss of privacy for me 

because my personal information would be used without my knowledge  

3. Internet hackers (criminals) might steal my private information if I used the Coronalert 
application   

3 0.834305 

Adoption 1. Assuming I have access to the Coronalert application, I intend to download it.  

2. Given that I have access to the Coronalert application, I predict that I would download it.  
2 0.987243 

Table 4: Coronalert EFA analysis 
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3.2 Differences between the means 
Variable Average Std dev Minimum Maximum 
Experience 0.2188 0.4150 0 1 

Trust 3.6017 1.3115 1 7 

Habit 2.9981 1.3912 1 7 

Bandwagon 2.4922 1.1075 1 7 

Knowledge 4.0313 1.5778 1 7 

Respondents who would never download Coronalert 0.1484 0.3569 0 1 

Respondents who would download Coronalert if the benefits were noticeable in one month or less 0.0703 0.2567 0 1 

Respondents who would download Coronalert even if benefits are on the long term 0.7813 0.4150 0 1 

Control regarding personal data on Coronalert 4.6328 1.3727 1 7 

Transparency regarding data treatment on Coronalert 3.5430 1.0519 1 7 

Perceived risks regarding data privacy on Coronalert 3.3906 1.2466 1 7 

Perceived benefits of Coronalert 3.0664 1.1749 1 7 

Adoption of the Coronalert application 3.8359 1.9981 1 7 

Table 5: Coronalert means comparison 

Firstly, it is interesting to analyze table 5. As a reminder, the scales calculated were with a 

7-point differential semantic scale, ranging from 1 “Strongly Agree” to 7 “Strongly Disagree” 

or ranging from 1 “Highly probable” to 7 “Highly improbable”. The means that are colored in 

green present the variables that were created (trust, habit, bandwagon, knowledge, control, 

transparency, perceived risks, perceived benefits, and adoption) with the average of the items 

in each dimension. The majority of the variables are below four (neutral), indicating that the 

majority of respondents agree with what was presented to them. However, the majority is also 

very close to four, indicating that respondents are often neutral in their responses. They 

generally trust the government, they recognize that using apps is a habit, they are influenceable 

when it comes to what the majority uses or downloads as applications, they feel that the 

Coronalert app is transparent in terms of data treatment, and they agree with the benefits the 

app provides. They also more or less agree with the perceived risks the app represent regarding 

data privacy, however this score is very close to neutral. They tend not to believe that the app 

provides control over personal data, as the score is close to five (rather disagree). The 

knowledge that respondents have about data processing is considered neutral as the average is 

very close to four (neutral). Furthermore, the score for the adoption of Coronalert is also very 

close to neutral. In addition, the standard deviations are low, showing that the values do not 

deviate much from the mean. 

 

Furthermore, the variables colored in orange are independent variables that were not 

calculated using a 7-point Likert scale. The experience was calculated such that any respondent 
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who has had an experience with data theft and is aware of it has a value of one and anyone who 

has not had an experience or is not aware of it has a value of zero. As can be seen, the majority 

of respondents have not had experience with data theft. The immediate benefits were adapted 

to a categorical variable and then transformed into three dichotomous variables so that the mean 

and standard deviation could be analyzed. If the respondent does not want to download the app, 

they are placed in category 1, if the respondent agrees to download the app if the benefits are 

noticeable in one month or less, they are placed in category 2, and if the respondent agrees to 

download the app even if the benefits are only noticeable in the long term (more than one 

month), they are placed in category 3. We find that the majority of respondents are in category 

3. 

 

Secondly, we performed analyses of variance (ANOVA) for categorical sociodemographic 

variables and correlation tests for numerical sociodemographic variables. These tests can be 

found in the Appendix E. Each sociodemographic variable was analyzed with each dependent 

variable, i.e., adoption, perceived benefits, and perceived risks. We find that being female, or 

male, does not have a significant impact on any of the dependent variables. Education and 

occupation also have no significant impact on the dependent variables. Age, on the other hand, 

has a significant impact on the perceived benefits but not on the other two. The correlation 

between perceived benefits and age is 0.18004, meaning that if the age increases, the coefficient 

of perceived benefits also increase, which means that the perceived benefits decrease if age 

increases. To test among which age categories the means are significantly different an ANOVA 

test is performed using the original variable that measures age, which is a categorical variable 

with 8 different categories (0= 13-18 years old, 1= 19-24 years old, 2= 25-30 years old, 3= 31-

40 years old, 4= 41-50 years old, 5= 51-60 years old, 6=61-70 years old, 7= 71+). The details 

of these results are available in appendix E.3 under perceived benefits. There is a significant 

difference between the means of age categories 6 and 1 and age categories of 6 and 2. The 

means of the perceived benefits differ of 1.2171 and 1.4844 respectively.  

3.3 Correlation test and multicollinearity test 
First, a correlation analysis is performed to analyze the relationship between the different 

variables and to see if there is collinearity between the different explanatory variables. The 

correlation matrix is presented in the Appendix F. For a correlation to be considered significant, 

its p-value must be less than 0.05. The correlation coefficient (r) has a value between -1 and +1. 

The closer it is to zero, the weaker the association between the variables. If r is negative, it 
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means that the relationship between the variables is negative, if it is positive, it is the opposite. 

Furthermore, r is considered high when it is greater than 0.50, medium when it is between 0.30 

and 0.50 and low when it is less than 0.30 (Leard statistics, 2020). By analyzing the correlation 

matrix, perceived risks and trust are negatively correlated (-0.37). Knowledge is also negatively 

correlated with perceived risks (-0.20), however, the correlation is weak. Next to that, perceived 

risks are negatively correlated with adoption (-0.48). In addition, trust is positively correlated 

with perceived benefits (0.40). Moreover, perceived benefits are positively correlated with 

adoption (0.29). Finally, none of the explanatory variables were highly correlated with each 

other.  

Secondly, a multicollinearity test was performed (SAS Institute Inc., n.d.), the analysis is in 

the Appendix G. The conditions to be met are the tolerance values must be greater than 0.1 and 

the difference of the coefficients of the eigenvalue column and the condition index column 

cannot differ much (Schreiber-Gregory & Jackson, 2017). No multicollinearity was identified, 

which allows us to move on to the next step, hypothesis analysis. 

3.4 Hypotheses results 
To be able to test the hypotheses that were established in chapter two (c.f. 3.1) three main 

models are used to perform multiple linear regressions. The first one analyses the explanatory 

variables, perceived benefits, and perceived risks (X), on the dependent variable, app adoption 

(Y). To do this, a top-down approach is applied, starting with a full model that analyzes all 

variables and then eliminating all non-significant variables, the coefficients and R-squared are 

then compared to analyze the evolution. Each variable is also tested independently on the 

dependent variable. Each regression has two control variables: age and gender, to estimate the 

causal effect of X on Y, however these variables will not be interpreted so that the focus remains 

on the variables of interest (Hünermund & Louw, 2020). The details of the regressions are 

available in Appendix H and the summary of the regressions are available in table 6, 7, and 8. 

To test the categorical variable immediate benefits, ANOVA tests have been performed, 

details are available in Appendix E.1. 

To analyze hypotheses H1a, H1b and H1c Hayes’ process macro was used. This technique 

was designed by Andrew F. Hayes to easily effectuate moderation and mediation analyses 

(Hayes, 2017). The results are available in Appendix I.   
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H1 and H2 
Variables Full model; R2Aj= 0.2434 Reg with only perceived 

benefits; R2Aj= 0.0623 
Reg with only perceived 
risks; R2Aj= 0.2158 

 Parameter 
estimate  

Standardized 
estimate 

Parameter 
estimate  

Standardized 
estimate 

Parameter 
estimate  

Standardized 
estimate 

Intercept 5.54122  2.36377  6.62025  

p <.0001 p <.0001 p <.0001 

Perceived 
benefits 

0.32287 0.18985 0.49665 0.29203 
 

p = 0.0205 p =0.0011 

Perceived 
risks 

-0.71217 -0.44431 
 

-0.78109 -0.48731 

p <.0001 p <.0001 

Age -0.00695 -0.06113 -0.00256 -0.02252 0.00901 -0.03289 

p = 0.4393 p = 0.7970 p = 0.6789 

Gender -0.04606 -0.01125 0.06827 0.01667 0.32297 -0.00009332 

p = 0.8850 p = 0.8470 p = 0.9991 
Table 6: Coronalert regression H1 and H2 

Analyzing the multiple linear regression of hypotheses one and two, we find that the 

coefficient of perceived benefits has a positive sign and is significant (at the 5% level), meaning 

that if perceived benefits increase by one unit, Coronalert adoption increases by 0.32287. The 

value of perceived risks is also significant, but the sign of the coefficient is negative, meaning 

that if perceived risks increase by one unit, Coronalert adoption decreases by 0.44431. Looking 

at the other two models that represent the model with one independent variable at a time, the 

coefficients for perceived benefits and perceived risks increase slightly but the change is very 

small.  Looking at the R-squared of the model with perceived risks, the variation in Coronalert 

adoption is explained at 21.58% while the model with only perceived benefits explains only 

6.23% of this variation. Thus, the independent variable that has the greatest impact on adoption 

is perceived risk, which can also be seen by the coefficient in the full model. Risk and perceived 

benefit explain 24.34% of the variation in Coronalert adoption. 

H4 and 6 
Variables Full model; R2Aj= 

0.1643 
Reg with 
Experience 

Reg with only 
Trust; R2Aj= 0.1791 

Reg with only 
Knowledge 

Reg with only Habit 

 Param 
estimate  

Std estimate Param 
estimate  

Std 
estimate 

Param 
estimate  

Std 
estimate 

Param 
estimate 

Std 
estimate 

Param 
estimate 

Std 
estimate 

Intercept 1.12316  

Model not 

significant, p = 

0.1484 

1.28063  

Model not 

significant, p = 

0.1150 

Model not 

significant, p = 

0.1435 

p = 0.0061 p = 0.0004 

Experience 0.01472 0.00520 
 

p = 0.9504 

Trust 0.35902 0.40078 0.36398 0.40631 

p <.0001 p <.0001 

Knowledge 0.02682 0.03602 
 

p = 0.6778 

Habit 0.06372 0.07545 
 

p = 0.4487 

Age 0.00955 0.14298 0.01277 0.19115 

p = 0.1505 p = 0.0191 

Gender 0.20529 0.00068381 0.01820 0.00756 
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p = 0.9936 p = 0.9264 
Table 7: Coronalert regression H4 and H6 

The model used to analyze part of hypotheses four and six has only one independent variable 

that is significant (at the 5% level). The trust that people have in their government positively 

influences perceived benefits, i.e. if trust increases by one, perceived benefits will increase by 

0.40078. Looking at the model without the insignificant variables, thus keeping only trust and 

the control variables, we can see that the R-squared increases from 16.43% to 17.91%, meaning 

that the variation in perceived benefits is explained at 17.91% in the second case. The other 

regressions where non-significant variables are tested are not significant and therefore cannot 

be interpreted. 

In order to test if immediate benefits have an impact on the perceived benefits an ANOVA 

test was run, the details can be seen in Appendix E.1. Immediate benefits is a categorical 

variable where 1= Never download the app, 2= Download when benefits are available in 1 

month or less, 3= Download when benefits are available on the long term. There is a significant 

difference between the means of categories 2 and 3 and categories of 1 and 3. The means of the 

perceived benefits differ of 1.1094 and 1.0334 respectively. Which means that respondents of 

categories one and two perceive less benefits than respondents of category three.  

H3 and 5 
Variables Full model; R2Aj= 

0.1277 
Reg with 
Experience 

Reg with only Trust; 
R2Aj= 0.1338 

Reg with only 
Knowledge 

Reg with only Habit 

 Param 
estimate  

Std 
estimate 

Param 
estimate  

Std 
estimate 

Param 
estimate  

Std 
estimate 

Param 
estimate 

Std 
estimate 

Param 
estimate 

Std 
estimate 

Intercept 5.31120  

Model not 

significant, p = 

0.3059 

5.03609  

Model not 

significant, p = 

0.0899 

Model not 

significant, p = 

0.3862 

p <.0001 p <.0001 

Experience -0.04134 -0.01376 
 

p = 0.8720 

Trust -0.33208 -0.34938 -0.34909 -0.36728 

p <.0001 p <.0001 

Knowledge -0.09857 -0.12476 
 

p = 0.1605 

Habit -0.01910 -0.02132 
 

p = 0.8339 

Age -0.00764 -0.10783 -0.00992 -0.13994 

p = 0.2876 p = 0.0930 

Gender 0.02687 0.01052 -0.04541 -0.01778 

p = 0.9041 p = 0.8325 
Table 8: Coronalert regression H3 and H5 

To analyze hypotheses three and five a multiple linear regression was run. The results are 

summarized in the table 8 above. Again, only one independent variable can be considered 

significant (at the 5% level). The sign of this variable is negative, meaning that if trust increases 

by one unit, the perceived risks will diminish by 0.34938. When this variable is analyzed 



 

 

45 

without the other non-significant ones and with the control variables, the coefficient increases 

a bit. The R-squared also increases and this model explains 13.38% of the variation in perceived 

risks. The other regressions where non-significant variables are tested are not significant and 

therefore cannot be interpreted. 

Immediate benefits were tested using an ANOVA test, the details of which are presented in 

the Appendix E.1. There is a significant difference between the means of categories three and 

one. The means of perceived risks differ by 1.2340. This means that respondents who download 

the app if the benefits are available on the long term perceive less risk on average than those 

who never download it. 

H1a, H1b and H1c 

The moderation analysis effectuated on the relation between perceived risks and adoption 

did not indicate that transparency, control, or bandwagon had to be considered as moderators 

as is shown in Appendix I.  Because of this result, regressions were run to see if the three 

variables could be considered as independent variables regarding adoption. This is the case for 

transparency and control. For the regression with transparency as X and adoption as Y, the R-

squared is of 0.0924, which means that 9.24% of the variation in adoption can be explained by 

the transparency on the app. Furthermore, if transparency increases by one unit, the adoption 

increases by 0.65204. For the regression with control as X and adoption as Y, the R-squared is 

of 0.2008, which means that 20.08% of the variation in adoption can be explained by the control 

user has over the personal data on the app. Furthermore, if control increases by one unit, the 

adoption increases by 0.11685. 

4 CovidsafeBE 
As a reminder, the database used for CovidsafeBE consists of 122 respondents. 

4.1 Measuring the validity and reliability of scales 
To measure the validity and reliability of the scales, the same stepwise design as for the 

Coronalert application was applied (c.f. 1.1). 

The steps described were applied and are available in the Appendix K. The table 9 below 

shows the result of the items that should be kept. Once the scales are considered reliable and 

valid, the measures used are computed based on the averages which will be described in the 

next section. 
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Variable Items Number 
of items 

Cronbach’s 
Alpha 

Trust 1. I trust my government. 

2. The Belgian government makes truthful claims. 

3. The Belgian government is honest. 

4. I do not believe what the Belgian government tells me. 

3 0.936379 

Knowledge 1. I can explain how data treatment on applications operate. 

2. I can use data treatment in different ways. 

3. I can define data treatment used on applications. 

4. I can do basic things regarding data treatment. 
5. I can explain general concepts related to data treatment. 

6. I can use data treatment effectively. 

6 0.961373 

Bandwagon 1. How likely is it that you would download applications used by most people?  

2. How likely is it that you would download applications that everyone would approve of? 

3. How likely is it that you would download applications recognized by many people? 

3 0.906374 

Habit 1. I do frequently.  

2. I do automatically.  

3. I do without having to consciously remember. 

4. That makes me feel weird if I do not do it. 

5. I do without thinking. 

6. That would require effort not to do it. 

7. That belongs to my (daily, weekly, monthly) routine. 

8. I start doing before I realize I’m doing it.  

9. I would find hard not to do.  
10. I have no need to think about doing. 

11. that’s typically ‘me’.  

12. I have been doing for a long time. 

8 0.934800 

Control 1. I believe I have control over who can get access to my personal information collected by 

CovidsafeBE 

2. I think I have control over what personal information is released by the CovidsafeBE 

application 

3. I believe I have control over how personal information is used by the CovidsafeBE application 

3 0.949304 

Transparency 1. The CovidsafeBE application allows me to track my activities  

2. CovidsafeBE provides information on the rules and regulations of the application 

3. CovidsafeBE provides information about the decisions and actions of the application 

4. CovidsafeBE disseminates information on the performance of the application 

5. Overall, CovidsafeBE is a transparent application regarding data treatment and performance 

3 0.886508 

Perceived 
benefits 

1. I have my certificate available on my phone 
2. I can use the application to travel easily 

3. I will always have my certificate at hand 

4. I don't have to worry about forgetting my certificate in case I need it 

4 0.874246 

Perceived 

risks 

1. What are the chances that using the CovidsafeBE application will cause you to lose control 

over privacy of your medical records?  

2. My downloading and using of the CovidsafeBE application would lead to a loss of privacy for 

me because my personal information would be used without my knowledge  

3. Internet hackers (criminals) might steal my private information if I used the CovidsafeBE 

application   

3 0.875512 

Adoption 1. Assuming I have access to the CovidsafeBE application, I intend to download it.  

2. Given that I have access to the CovidsafeBE application, I predict that I would download it.  
2 0.975857 

Table 9: CovidsafeBE EFA analysis 

4.2 Differences between the means 
Variable Average Std dev Minimum Maximum 
Experience 0.2131 0.4112 0 1 

Trust 3.5547 1.2667 1 7 

Habit 3.0277 1.3860 1 7 

Bandwagon 2.5301 1.1263 1 7 
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Knowledge 3.9973 1.5856 1 7 

Respondents who would never download CovidsafeBE 0.0902 0.2876 0 1 

Respondents who would download CovidsafeBE if the benefits were noticeable in one 

month or less 

0.0574 0.2335 0 1 

Respondents who would download CovidsafeBE even if benefits are on the long term 0.8525 0.3561 0 1 

Control regarding personal data on Coronalert 4.3361 1.3205 1 7 

Transparency regarding data treatment on CovidsafeBE 3.6940 1.0406 1 7 

Perceived risks regarding data privacy on CovidsafeBE 3.7678 1.3222 1 7 

Perceived benefits of CovidsafeBE 2.2111 1.2535 1 7 

Adoption of CovidsafeBE 2.3648 1.6615 1 7 

Table 10: CovidsafeBE means comparison 

Following the same structure as the interpretation of the Coronalert application, we firstly 

analyze table 10. As a reminder, the scales calculated were with a 7-point differential semantic 

scale, ranging from 1 “Strongly Agree” to 7 “Strongly Disagree” or ranging from 1 “Highly 

probable” to 7 “Highly improbable”. The means that are colored in green present the variables 

that were created (trust, habit, bandwagon, knowledge, control, transparency, perceived risks, 

perceived benefits, and adoption) with the average of the items in each dimension. The majority 

of the variables are below four (neutral), indicating that the majority of respondents agree with 

what was presented to them. However, the majority is also very close to four, indicating that 

respondents are often neutral in their responses. They generally trust the government, they 

recognize that using apps is a habit, they are influenceable when it comes to what the majority 

uses or downloads as applications, they feel that the CovidsafeBE app is transparent in terms 

of data treatment, and they agree with the benefits the app provides. The score of the perceived 

risks is close to four which means that the majority have no opinion on the risks regarding data 

privacy. They tend not to believe that the app provides control over personal data, but this score 

is very close to four (neutral). The knowledge that respondents have about data processing is 

considered neutral as the average is very close to four (neutral). Finally, the score for the 

adoption of CovidsafeBE is rather high, close to two which means that they intend to download 

the app. In addition, the standard deviations are low, showing that the values do not deviate 

much from the mean. 

Furthermore, the variables colored in orange are independent variables that were not 

calculated using a 7-point Likert scale. As shown, the majority of respondents have not had 

experience with data theft. Additionally, most of the respondents agree to download the app 

even if the benefits are only noticeable in the long term. 

 

Secondly, we performed analyses of variances (ANOVA) for categorical sociodemographic 

variables and correlation tests for numerical sociodemographic variables. These tests can be 
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found in the Appendix L. Each sociodemographic variable was analyzed with each dependent 

variable, i.e., adoption, perceived benefits, and perceived risks. We find that being female, or 

male, has no significant impact on the dependent variables. Age does not have a significant 

impact on adoption and perceived risks. Education has no significant impact on perceived 

benefits and perceived risks. Occupation had no impact on adoption and perceived risks.  

Age has a significant impact on perceived benefits. The correlation between the two 

variables is 0.25146, meaning that as age increases, perceived benefits also increase. To test 

between which age categories the means are significantly different an ANOVA test is 

performed using the original variable that measures age, which is a categorical variable with 8 

different categories (0= 13-18 years old, 1= 19-24 years old, 2= 25-30 years old, 3= 31-40 years 

old, 4= 41-50 years old, 5= 51-60 years old, 6=61-70 years old, 7= 71+). The details of these 

results are available in Appendix L.3 under the variation perceived benefits, there is a 

significant difference between the means of age categories 7 and 2 of 2.9844, between 7 and 5 

of 3.2500, between 7 and 1 of 3.4350, and between 7 and 3 of 3.5250.  

The ANOVA test between education (0= Higher secondary, 1= Bachelor, 2=Master, 3=PhD) 

and adoption is significant (see Appendix L.4). To analyze the differences between the different 

categories, a Tukey posthoc test is performed. The differences between category three and one, 

three and two, and three and zero are significant. The differences in means are 4.2179, 4.8583, 

and 4.9773, respectively. This means that, respondents who do not have a PhD have a higher 

intention to adopt CovidsafeBE than those who have one. The rather big difference in means is 

understandable because among the respondents, only one person has a PhD, and that person 

does not intend to download or use CovidsafeBE. 

Occupation (0=Student, 1= Employee,2 =Retired ,3=Civil servant, 4= Long-term illness, 5= 

Self-employed, 6= Manager, 7= Currently unemployed, 8= Disability, 9= Liberal profession) 

has a significant impact on perceived benefits as can be seen in Appendix L.5. Tukey’s posthoc 

test revealed that there were several groups that had significantly different means. The 

difference between current unemployed and students is 2.0167, between current unemployed 

and employees is 2.1071, between current unemployed and government employees is 2.1471, 

between retired respondents and students is 1.5722, between retired respondents and employees 

is 1.6627, and between retired respondents and government employees is 1.7026. Other 

differences between groups are not significant. 
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4.3 Correlation test and multicollinearity test 
To analyze the correlation matrix the same conditions as what was used with Coronalert (c.f. 

1.3) are applied here. The correlation matrix is available in Appendix M. We note that perceived 

risks and trust are negatively correlated (-0.45). Knowledge is also negatively correlated with 

perceived risks (-0.23) however, the correlation is weak. Next to that, perceived risks are 

negatively correlated with adoption (-0.32). In addition, trust and habit are weakly positively 

correlated with perceived benefits (0.24 and 0.30 respectively). Moreover, perceived benefits 

are highly positively correlated with adoption (0.71). Finally, none of the explanatory variables 

were highly correlated with each other.  

Secondly, a multicollinearity test was performed (SAS Institute Inc., n.d.), the analysis is 

available in Appendix N. The conditions to be met are the tolerance values must be greater than 

0.1 and the difference of the coefficients of the eigenvalue column and the condition index 

column cannot differ much (Schreiber-Gregory & Jackson, 2017). No multicollinearity was 

identified, which allows us to move on to the next step, hypothesis analysis. 

4.4 Hypotheses results 
To be able to test the hypotheses that were established in chapter two (c.f. 3.1) the same 

structure was applied as for Coronalert. The details of the different regressions are available in 

Appendix O. and the summary of the regressions are available in table 11, table 12, and table 

13. 

To test the categorical variable immediate benefits, ANOVA tests have been performed, the 

details are available in Appendix L.1. 

To analyze hypotheses H1a, H1b and H1c Hayes’ process macro was used. This technique 

was designed by Andrew F. Hayes to easily effectuate moderation and mediation analyses 

(Hayes, 2017). The results are available in Appendix P.   

H1 and H2 
Variables Full model; R2Aj= 0.5219 Reg with only perceived 

benefits; R2Aj= 0.4895 
Reg with only perceived 
risks; R2Aj= 0.0953 

 Parameter 
estimate  

Standardized 
estimate 

Parameter 
estimate  

Standardized 
estimate 

Parameter 
estimate  

Standardized 
estimate 

Intercept 1.46569  0.36473  3.34867  

p = 0.0025 p = 0.2409 p <0.0001 

Perceived 
benefits 

0.90272 0.68107 0.94618 0.71386 
 

p < 0.0001 <0.0001 

Perceived 
risks 

-0.24476 -0.19478 
 

-0.38391 -0.30551 

p = 0.0033 p = 0.0007 

Age -0.00427 -0.04520 -0.00156 -0.01655 0.00965 0.10223 

p = 0. 4927 p = 0.8058 p = 0.2487 
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Gender -0.02416 -0.00711 -0.05454 -0.01604 0.16433 0.04833 

p = 0. 9107 p = 0.8063 p = 0.5781 
Table 11: CovidsafeBE regression H1 and H2 

Analyzing the multiple linear regression of hypotheses one and two, we find that the 

coefficient of perceived benefits has a positive sign and is significant (at the 5% level), meaning 

that if perceived benefits increase by one unit, CovidsafeBE adoption increases by 0.68107. 

The value of perceived risks is also significant, but the sign of the coefficient is negative, 

meaning that if perceived risks increase by one unit, CovidsafeBE adoption decreases by 

0.19478. Looking at the other two models that represent the model with one independent 

variable at a time, the coefficients for perceived benefits and perceived risks increase but the 

change is small.  Looking at the R-squared of the model with perceived risks, the variation in 

CovidsafeBE adoption is explained at 9.53% while the model with only perceived benefits 

explains 48.95% of this variation. Thus, the independent variable that has the greatest impact 

on adoption is perceived benefits, which can also be seen by the coefficient in the full model. 

Risk and perceived benefit explain 52.19% of the variation in Coronalert adoption. 

H4 and 6 
Variables Full model; R2Aj= 

0.1162 
Reg with only 
Experience; R2Aj= 
0.0464 

Reg with only 
Trust; R2Aj= 0.0982 

Reg with only 
Knowledge; R2Aj= 
0.0561 

Reg with only 
Habit; R2Aj= 0.0808 

 Param 
estimate  

Std estimate Param 
estimate  

Std 
estimate 

Param 
estimate  

Std 
estimate 

Param 
estimate 

Std 
estimate 

Param 
estimate 

Std 
estimate 

Intercept 0.3471  1.4650  0.6812  1.1821  1.1591  

p = 0.4395 p < 0.0001 p = 0.0925 p = 0.0014 p = 0.0003 

Experience -0.1500 -0.0492 -0.0974 -0.0319 
 

  

p = 0.5779 p = 0.7220 

Trust 0.2265 0.2289 

 

0.2278 0.2302   

p = 0.0114 p = 0.0097 

Knowledge 0.0450 0.0569 
  

0.0855 0.1081  

p = 0.5362 p = 0.2475 

Habit 0.1992 0.2202 
  

 0.2104 0.2326 

p = 0.0441 p = 0.0350 

Age 0.0071 0.1003 0.0174 0.2439 0.0176 0.2475 0.0163 0.2291 0.0076 0.1071 

p = 0.3533 p = 0.0073 p = 0.0050 p = 0.0121 p = 0.3290 

Gender 0.0654 0.0255 0.1888 0.0736 0.0972 0.0379 0.1241 0.0484 0.2104 0.0820 

p = 0.7775 p = 0.4109 p = 0.6664 p = 0.5985 p = 0.3496 
Table 12: CovidsafeBE regression H4 and H6 

The model used to analyze part of hypotheses four and six has two independent variable that 

are significant (at the 5% level). The trust that people have in their government positively 

influences perceived benefits, i.e., if trust increases by one, perceived benefits will increase by 

0.40078. The habit of using phone applications also has a positive influence on perceived 

benefits, if habit increases by one unit, perceived benefits increase by 0.2202.  Looking at the 
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regressions of each independent variable separately, they all have a significative impact on 

perceived benefits. The coefficients do not increase a lot when comparing to the full model. 

The R-squared of each regression with one independent variable is smaller than the full model. 

Which means that experience, trust, knowledge, and habit explain by 11,62% the variation of 

the perceived benefits.  

The categorical variable of immediate benefits was tested using an ANOVA test, the details 

of which are presented in Appendix L.1. There is a significant difference between the means of 

categories 1 and 2 and categories of 1 and 3. The means of the perceived benefits differ by 

1.7143 and 1.9832, respectively. This means that respondents who would never download 

CovidSafeBE, regardless of when the benefits are available, perceive less benefits than those 

who download the app if the benefits are available on the short or long term.   

H3 and 5 
Variables Full model; R2Aj= 

0.2425 
Reg with only 
Experience; R2Aj= 
0.0508 

Reg with only 
Trust; R2Aj= 0.2261 

Reg with only 
Knowledge; R2Aj= 
0.0603 

Reg with only Habit 

 Param 
estimate  

Std 
estimate 

Param 
estimate  

Std 
estimate 

Param 
estimate  

Std 
estimate 

Param 
estimate 

Std 
estimate 

Param 
estimate 

Std 
estimate 

Intercept 6.1452  4.4611  5.8393  4.8034  

Model not 

significant, p = 

0.2174 

p < 0.0001 <.0001 p < 0.0001 p < 0.0001 

Experience -0.3813 -0.1186 -0.6352 -0.1976 
 

 

p = 0.1489 p = 0.0289 

Trust -0.43896 -0.4205 

 

-0.4842 -0.4639  

p < 0.0001 p < 0.0001 

Knowledge -0.1234 -0.1480 
  

-0.1915 -0.2297 

p = 0.0842 p = 0.0148 

Habit 0.0276 0.0289 
  

 

p = 0.7732 

Age -0.0146 -0.1941 -0.0157 -0.2090 -0.0142 -0.1894 -0.0113 -0.1503 

p = 0.0538 p = 0.0208 p = 0.0197 p = 0.0963 

Gender 0.3581 0.1324 0.0490 0.0181 0.2974 0.1099 0.2485 0.0918 

p = 0.1149 p = 0.8392 p = 0.1785 p = 0.3172 
Table 13: CovidsafeBE regression H3 and H5 

To analyze hypotheses three and five, a multiple linear regression was run. The results are 

summarized in the table 13 above. Only one independent variable can be considered significant 

(at the 5% level). The sign of this variable is negative, meaning that if trust increases by one 

unit, the perceived risks will decrease by 0.4205. When this variable is analyzed without the 

other non-significant variables and with the control variables, the coefficient increases slightly. 

However, the R-squared does not increase, the full model has a higher R-squared. This means 

that experience, trust, knowledge, and habit explain 24.25% of the variation of perceived risks. 

The regressions that consider experience and knowledge separately are significant and each 

independent variable has an impact on perceived risks. If the experience of data breaches 
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increases by one unit, the perceived risks decrease 0.1976 and if knowledge increases by one 

unit, the perceived risks decrease by 0.2297. However, the R-squared of 0.0508 and 0.0603 

respectively are smaller than the one of the full model. The regression that considers habit is 

not significant and therefore cannot be interpreted.  

Immediate benefits were tested using an ANOVA test, the details of which are presented in 

the Appendix L.1. There is a significant difference between the means of categories three and 

one. The means of perceived risks differ by 1.5983. This means that respondents who download 

the app if the benefits are available on the long term perceive less risk on average. 

H1a, H1b and H1c 

The moderation analysis effectuated on the relation between perceived risks and adoption 

did not indicate that transparency, control, or bandwagon had to be considered. The details of 

this analysis are available in Appendix P. Because of this result, regressions were run to see if 

the three variables could be considered as independent variables regarding adoption. This is the 

case for bandwagon and control. For the regression with bandwagon as X and adoption as Y, 

the R-squared is of 0.0657, which means that 6.57% of the variation in adoption can be 

explained by the bandwagon effect. Furthermore, if bandwagon increases by one unit, the 

adoption increases by 0.41605. For the regression with control as X and adoption as Y, the R-

squared is of 0.0507, which means that 5.07% of the variation in adoption can be explained by 

the control user has over the personal data on the app. Furthermore, if control increases by one 

unit, the adoption increases by 0.0164. 
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Chapter 5: Discussion 

The average adoption of Coronalert is very close to neutral, meaning that respondents do not 

really have an opinion on whether they should download the app or not. The reason behind 

those figures could be that the app is already outdated: it was launched in September 2020 and 

the questionnaire only in July 2021. By July, the pandemic was already slowing down, and 

“normal” life was starting to feel easier to reach. This could be why the adoption is fairly 

neutral. The average adoption of CovidsafeBE ranges from “agree” to “somewhat agree”, 

meaning that, in general, respondents were ready to adopt the app. The app was launched at the 

end of June 2021, which means it is a very current topic. More and more people are getting 

vaccinated in Belgium. In addition, since the certificate is required to travel and July and August 

are the two vacation months in Belgium, people want to download the app so they can travel 

easily.  

 

Furthermore, the average perceived benefits of Coronalert are close to the trend of 

agreement, meaning that respondents more or less agree that downloading the Coronalert app 

will allow them to be notified if they have been in contact with someone who tested positive 

for Covid-19. Perceived risks, on the other hand, are again very close to neutral. This means 

that respondents do not really know if their personal data is safe on the Coronalert app or not. 

For CovidsafeBE, the average of perceived benefits indicates that respondents agree with the 

benefits it gives, in other words respondents agree that downloading the app will make their 

travel easier. On the other hand, the perceived risks are very close to neutral, meaning that 

respondents are not sure whether their data is safe on the app or not. 

 

The multiple regressions and ANOVA tests performed showed the influence of the different 

independent variables on the dependent variables. For Coronalert, hypotheses 1, 2, 3c, 4c, and 

6d were validated. These hypotheses, respectively, state that the perceived benefits have a 

positive influence on Coronalert adoption, the perceived risks have a negative influence on 

Coronalert adoption, the trust in government and immediate benefits have a negative influence 

on perceived risk, and the trust in government and immediate benefits have a positive influence 

on perceived benefits. For CovidsafeBE, hypotheses 1, 2, 3c, 4c, and 6e were validated. These 

hypotheses respectively state that perceived benefits have a positive influence on CovidsafeBE 

adoption, that perceived risks have a negative influence on CovidsafeBE adoption, that trust in 

government has a negative influence on perceived risk, and that trust in government and habit 
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of using apps have a positive influence on perceived benefits. In both cases the hypotheses 3a, 

3b, 4a, 4b, 5e, and 5d were rejected. They stipulate, respectively, that knowledge about data 

treatment and data breach experience positively influences the perceived risks of the app, that 

knowledge about data treatment and data breach experience negatively influences perceived 

benefits, and that perception of technology as a habit and immediate benefits negatively 

influences the perceived risks.  

 

The adoption of Coronalert is mostly influenced by the perceived risks related to data 

privacy on the application. The data collected on the app is highly sensitive and such a large 

amount of it has never been requested by the government before (Fey and Hino, 2020). 

Therefore, it makes sense that people are more influenced by the possible risks regarding the 

use of the application. Furthermore, for the app to be effective in slowing the spread of 

coronavirus, several conditions must be met: enough people must download and use it, users 

must always have their phones with them, and the Covid-19 test results must be highly accurate 

(Rowe, 2020).  

 

Then, the adoption of CovidsafeBE is mostly impacted by the perceived benefits of using 

the app: having a Covid-19 certificate on hand at all times. Data privacy risks also impact 

adoption, but this impact is less considerable, which may be explained by the fact that the 

certificate is available through two other channels, one of which is the ability to go to eHealth 

and print the certificate (CovidSafeBE, n.d.). This way, the data needed to create the certificate 

is not just created for the application. 

 

Trust in government has the greatest impact on perceived benefits and risks for both apps. 

This means that if respondents trust the government, their perceived benefits of using the app 

increase. The impact on perceived risks is negative because if the trust increases, the perceived 

risks decrease. Therefore, the hypotheses are confirmed and the government, i.e., the issuing 

authority of the app, influences the perceived benefits and risks of the users. A similar effect is 

observed in apps issued by other brands or organizations (Sundar et al., 2020). 

 

Past experiences with data theft did not have a significant result in the multiple regressions 

run on the perceived benefits and perceived risks of the two applications. This could be because 

the type of data theft was not specified in the questionnaire, and therefore if the data theft did 
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not occur on a government website or app, it may be less likely to influence the user to apply a 

more privacy protective behavior upon government-issued platforms. Previous research has 

often compared the data breach experience and the effect of behavior change within the 

organization where the breach occurred (Lulandala, 2020).  In addition, studies have shown that 

45% of the users who experienced a data breach did not change their online behavior or have 

an opinion on whether they changed their behavior or not (Johnson, 2021). This could explain 

why there is no significant impact on the perceived benefits and perceived risks.  

 

The perception of applications as a habit has no influence on the perceived benefits and 

risks of Coronalert. The reason behind this result could be explained by the fact that Coronalert 

was not widely downloaded in Belgium. Thus, respondents did not consider this application as 

a habit (Lefevre, 2021).  Therefore, it has no impact on perceived benefits or risks. By looking 

at CovidsafeBE, there is a significant impact of the perception of applications as a habit on the 

perceived benefits of the application. The application is made to ease the lives of the users by 

offering the possibility to always have a Covid-19 certificate with them, no printing needed 

(CovidSafeBE, n.d.). In this case, technology replaces printing, so it makes sense that it would 

have an impact on perceived benefits. However, perceived risks are not affected by the fact that 

apps become a habit, so we cannot conclude that users are less or more concerned about privacy 

risks in this case. This could be explained by the fact that the habit of using apps in general was 

analyzed instead of the habit of using government apps. However, this analysis would have 

been difficult because there are not many government applications that were used as often as 

Facebook for example. (MYBELGIUM, n.d.; Lulandala, 2020).  

 

Knowledge does not have a significant impact on the perceived benefits and perceived risks 

of either application. An explanation for this is that respondents are on average close to neutral 

in terms of their knowledge of data processing. If they are mostly neutral, no effect can be 

measured on the perceived risks and perceived benefits. Removing the neutral option could 

have resulted in more extreme options, tending more toward agreeing or disagreeing (Nowlis 

et al., 2002). 

 

The effect of immediate benefits on perceived benefits was tested using ANOVA. 

Differences in means that are significant between different categories should be interpreted in 

terms of the actual time it takes for the app to present benefits to the user.  In the case of 



 

 

56 

Coronalert, the app was presented as a way to stop the spread of Covid-19, but because the app 

was not mandatory, few people downloaded it and only 2.7% of Covid-19 positive tests are 

reported on the app (Lefevre, 2021). This means that the conditions of enough people 

downloading the app, the need for users to have their phones with them at all times, and high 

accuracy regarding who tests positive and who does not (Rowe, 2020) are not met. Therefore, 

the benefits of downloading Coronalert are not available in the short term. Thus, the difference 

in means of perceived benefits for respondents who are sensitive to the immediacy of the 

benefits and respondents who would download the app even if the benefits are only available 

in the long term is significant. Those in the former category have a more neutral view of 

perceived benefits so the formulation of the hypothesis “immediate benefits positively influence 

the perceived benefits of using Coronalert” cannot be confirmed, however, since there are no 

immediate benefits, the hypothesis is possible if it is differently formulated: “Not having 

immediate benefits negatively influences the perceived benefits of using Coronalert”. In the 

case of CovidsafeBE the immediate benefits are noticeable because the app allows a user to 

permanently have their certificate at hand once they obtained it by being fully vaccinated, 

having a negative covid-19 test or having a proof that they recovered from Covid-19 

(CovidSafeBE, n.d.). Therefore, the difference in means of perceived benefits between people 

who are sensitive to the immediacy of the benefits and respondents who would never download 

the app is significant. However, the difference between the former category and respondents 

who would download the app even if the benefits are only available in the long term is not 

significant, therefore the hypothesis cannot be confirmed. The reason for this could be that the 

question was not clearly enough formulated and that respondents did not understand the 

hypothetical situation presented to them, which was that people would travel freely in X days/ 

weeks/ months after downloading the application. Another possible explanation is that the 

difference between people who would ‘always’ download the application and people who 

would only download it if the benefits were available on the short term is not significant because 

the sample is not representative enough, only 7 people belong to the former category and 104 

in the latter.  

 

Regarding the influence of immediate benefits on perceived risks there is no significant 

difference in the categories of interest. The reason why the hypothesis “immediate benefits 

negatively influence the perceived risks of using government health technology services” 

cannot be confirmed could be because the perceived risks that were evaluated in the 
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questionnaire were only related to data privacy. Furthermore, as was explained earlier, the 

immediacy of the benefits of Coronalert is not very clear at this point.  

 

The moderation analysis conducted by using Hayes macro did not identify one of the three 

moderators as significant for the Coronalert or the CovidsafeBE application. However, when 

a regression is run, control and transparency are significant for Coronalert adoption and control 

and bandwagon for CovidsafeBE adoption. The reason why bandwagon was not considered as 

a moderator could be because the applications do not show who downloaded the app as is the 

case for social media platforms (Fu et al., 2012).  The reason why control and transparency are 

not considered as moderators could be because the respondents are not enough aware or do not 

possess enough knowledge to accord importance to transparency or control (Lee & Calugar-

Pop, 2020).  

 

The different hypotheses that were validated for Coronalert are not enough to define if the 

privacy paradox is applied to this particular health technology service. The different theories 

that were tested are not conclusive, thus there is no clear sign that users do not apply a privacy 

protective behavior even if they intend to do so.  

 

The hypotheses that were validated in the case of CovidsafeBE could imply that the privacy 

paradox is present, however, since the application was only launched at the end of June 2021 

and the research was conducted a few weeks later it could be possible that only early adopters 

and innovators downloaded adopted the application (Meade & Rabelo, 2004). Between the 16th 

of June and the 2nd of August 11 million certificates were issued in Belgium and half of them 

were obtained by citizens through the application (Belga, 2021). Therefore, it could be that part 

of the early majority still had to adopt the application after the 22nd of July, the date the 

questionnaire ended.  
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Chapter 6: Conclusions 
The purpose of our research was to analyze how the privacy paradox applied to the adoption 

of health technology services.  

 

In order to be able to complete this thesis, a literature search was conducted where users' 

privacy concerns, the privacy paradox, and the different theories surrounding it were discussed. 

Then, the conceptual model was created with the corresponding hypotheses. To verify this 

conceptual model, the case studies of Coronalert and CovidsafeBE were applied to a 

questionnaire that was distributed on social media. The results of this questionnaire were used 

to test the different hypotheses. A summary of these results will be discussed below, after that 

some managerial and theoretical implications will be issued.  

 

First, we weren’t able to analyze the adoption of Coronalert because the average of the 

respondents did not know if they would adopt it or not. Therefore, it was difficult to analyze 

whether the privacy paradox applied to this application. However, we were able to identify a 

significant impact of perceived risks and perceived benefits on the adoption of the app. We also 

concluded that trust in government had an impact on both perceived risks and perceived 

benefits, indicating that this heuristic would influence respondents' decision making. In 

addition, immediate benefits could also influence decision making as they have a significant 

outcome. Respondents who would download the app even if the benefits were available in the 

long term perceived more benefits than those who would only download it if the benefits were 

available in the short term or those who would never download it. Furthermore, respondents 

who download the app even if the benefits are available in the long run perceived less risks than 

those who would never download the app. This indicates that people who focus on the potential 

benefits may be making a biased decision. By analyzing the regression of perceived risks and 

benefits on app adoption, we can see that respondents consider risks to be more important than 

benefits. Therefore, it appears that citizens tried to make a rational decision by weighing the 

benefits and risks of the app, but because the app did not meet the requirements to work, the 

expected benefits of slowing the pandemic are not available. requirements were: enough people 

have to download the app; users should always have their phones with them; high required 

accuracy for who tests positive and who does not (Rowe, 2020). This may help explain why the 

app was not adopted. It appears that respondents do not want to risk their location information 
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for a benefit that does not exist. Even though the government assures that no personal 

information is kept (Coronalert, n.d.). 

 

Secondly, we found that CovidsafeBE was more likely to help answer our research question, 

which is how the privacy paradox applies to the adoption of health technology services. Because 

the average adoption in our research shows that the application is adopted, furthermore a recent 

article showed that between June 16th and August 2nd, 11 million certificates were issued in 

Belgium and half of them were obtained by citizens through the application (Belga, 2021) 

which supports our deduction. The average in perceived benefits of the application is also more 

or less high, meaning that respondents consider the app as a tool for easy travel. Furthermore, 

the habit of using applications influences the perceived benefits, indicating that habit increases 

the perceived benefits and thus may cause the user to overweigh benefits when evaluating the 

benefits and risks to make a decision. Additionally, again, trust influenced perceived benefits 

and risks, which indicates that this heuristic influences the decision-making process of the 

respondents. In summary, at least two variables were found to influence users' decision making, 

indicating that users are partially influenced by the privacy paradox. Even more so when 

considering that the application is not the only way to obtain a Covid-19 certificate, it is also 

available through eHealth and by calling a helpdesk to obtain the certificate by mail 

(CovidSafeBE, n.d.) as the risks of sharing data through an app could be avoided by using the 

other two channels. 

1 Managerial implications 
This section will indicate the managerial implications to elaborate on the conclusion written 

in the previous section. We analyzed the privacy paradox in the context of health technology 

services. The results of the study have the potential of helping the government for adoption of 

different platforms related to health services.  

 

First, since trust impacts the perceived benefits and risks of both apps, it is important for the 

government to place a lot of emphasis on the trust of its citizens in order to increase the adoption 

of the apps it issues. With respect to the Coronalert app launched to slow the spread of the 

Covid-19 virus, the government has not done enough work on citizen trust. Trust in the 

government could be increased by more explanation or by making a campaign to explain how 

the data works and that under no circumstances would they have access to personal data. 
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Therefore, by increasing communication, trust could increase and, as a result, the perceived 

benefits and perceived risks would also decrease. 

 

Second, by looking at the point of view of the users. They weigh benefits and risks to make 

decisions however they do not possess all the information to make their decision. In the case of 

Coronalert they do not consider the benefits because there are none, however if more people 

downloaded and used the application it could work. Therefore, it is important that they inform 

themselves to increase their knowledge of the possible benefits.  

2 Theoretical implications 
This section will indicate the theoretical implications of our research based on the different 

results. These implications may be of interest to researchers, as the relationships highlighted 

can lead to further research directions. 

 

The privacy paradox, which states that even if users don't trust social networks and the 

internet, they still use them, is applied to health technology services. We observed that people 

agree to use the CovidsafeBE application even though other channels than an application are 

available. Furthermore, even though respondents try to make a rational decision by considering 

risks and benefits, the benefits have a very high impact on the adoption of CovidsafeBE. These 

benefits are influenced by trust in the government and the habit of using applications. Therefore, 

the privacy paradox analyzed in this sector should be further analyzed in all fields of e-

government.    

 

From another perspective, this research was applied to two very specific case studies. Indeed, 

Coronalert and CovidsafeBE are two applications issued by the Belgian government in the 

context of the Covid-19 pandemic that started in 2020 and is still ongoing at the time of writing 

this research paper. Therefore, the analysis of the different variables that influenced the 

adoption of these applications can be used in future research to understand what influences 

users in times of crisis. In addition, this thesis can also be used by researchers studying the 

impact of the pandemic on technology adoption in general, as it provides the perspective of the 

apps issued by the Belgian government. 
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3 Limitations and suggestions for further research 
This section will highlight the limitations of this research and offer some suggestions for 

future research. 

 

The first limitation of this research is the choice of variables and questions used in our 

questionnaire. In addition, the average time respondents took to complete the questionnaire was 

12 minutes, which is too long. We decided not to take into account all the theories identified to 

analyze the privacy paradox, the prospect theory was not used, and some theories were not fully 

analyzed such as cognitive heuristics, only 4 of the twelve heuristics identified by Sundar et al. 

(2020) were used; and underinsurance theory, past experiences and knowledge were analyzed 

but we did not estimate how users intended to protect their personal data (Kunreuther, 1984). 

Furthermore, the past experiences of data theft that were considered were in general and not 

analyzed specifically for applications issued by the government. However, in Belgium not a lot 

of applications of the government are integrated, thus analyzing this is more difficult. 

Furthermore, we only analyzed perceived privacy risks because we wanted to focus on privacy 

concerns. Moreover, some questions could have been asked differently. For example, some 

respondents had difficulty understanding the question about immediate benefits. Particularly, 

for Coronalert, some respondents did not believe in the hypothetical situation “the pandemic 

would slow down in X days/weeks/months if the app is downloaded”, and therefore did not 

consider the hypothetical situation.  

 

The second limitation is the size of our sample. Indeed, our total sample is composed of 135 

people, 128 were considered for Coronalert and 122 for CovidsafeBE. It would have been better 

to obtain more observations to increase the representativeness of our sample. In addition, we 

analyzed how the privacy paradox applied to the adoption of health technology services for 

apps that were launched only in Belgium. Furthermore, we analyzed an app that was not 

adopted by Belgian citizens. Nevertheless, it was interesting to analyze how and why this app 

was not adopted. 

 

The third limitation is that the chosen case studies are very new and not fully integrated by 

the citizens at the time of the questionnaire. Though this research allowed for a view on recent 

applications that were issued in the context of a crisis such as a pandemic. A generalization of 

the analysis of the case studies on all health technology services is not possible.  
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Finally, propositions for further research are to repeat a survey with a larger sample and to 

include all the identified theories of the privacy paradox into the research model such as the 

prospect theory and a more thorough application of the under-insurance theory. In addition, 

other platforms should be considered to analyze how the privacy paradox applies to the adoption 

of health technology services such as e-health. More so, e-government-issued platforms from 

other countries should also be considered, this would allow to analyze the impact of different 

political climates and mentalities. These proposals would allow for a more in-depth analysis of 

whether and how the privacy paradox influences users' decisions regarding government-issued 

applications and websites. 
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Appendix  A: Questionnaire 
Presentation 
Hello, my name is Soazic Delefortrie and I am Master's student in management engineering 

at the University of Namur. As part of my thesis, I am conducting a study on the adoption of 

applications launched by the government during the Covid-19 pandemic. It would be helpful 

and appreciated if you could answer the following questions. It will take approximately 12 

minutes. 

Your answers will remain anonymous and will only be used for the purposes of my thesis. 

Thank you in advance for your time and participation. 

 

Filter questions 
1) As the survey targets applications launched in Belgium, only people who live in Belgium 

are invited to respond. 

�I live in Belgium 

�I do not live in Belgium -> end of questionnaire 

  

2) As the survey targets applications launched in Belgium, only people who live in Belgium 

and who own a smartphone are invited to respond. 

�I have a smartphone 

�I don't have a smartphone -> end of questionnaire 

 

General behavior 
In order to understand your behavior in relation to the following themes, please answer the 

next questions. 

3) Thinking about the Belgian government, how do you position yourself in relation to the 

following questions? 
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4) When thinking about data processing, how do you position yourself in relation to the 

following questions?  

 

 
 

5) Have you ever experienced data theft?  

�Yes 

�No 

� I don't know 

 

6) When thinking about downloading new applications, answer the questions below. 

 
 

7) Using the applications on my phone is something... 
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Coronalert 
The Coronalert app was launched around September 2020 and was introduced by the 

government to slow down the spread of Covid-19. The app sends a notification to the user when 

that person has been in contact with another who has tested positive for Covid-19. 

 

8) Since this study analyses the adoption of applications launched by the government during 

the Covid-19 pandemic, it is important to know if you have heard of these applications. 

� I have already heard of Coronalert  

� I have never heard of Coronalert 

 

9) What if we could stop the spread of the pandemic by sharing some data? Choose between 

sharing the data by downloading the Coronalert application and stopping the pandemic in ... 

time or not downloading the Coronalert application and not stopping the pandemic in ... time.  
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10) Thinking about the Coronalert application, how do you position yourself in relation to 

the following questions?  

 

 
 

11) Thinking about the Coronalert application, how do you position yourself in relation to 

the following questions?  

 
 

12) Thinking about the Coronalert application, how do you position yourself in relation to 

the following questions?  

 

 
 

13) Thinking about the Coronalert application, how do you position yourself in relation to 

the following questions?  
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14) Thinking about the Coronalert application, how do you position yourself in relation to 

the following questions?  

 

 
 

CovidsafeBE 
The CovidsafeBE application was launched in mid-June and was introduced by the 

government to carry a Covid certificate with you at all times. A Covid certificate can be 

obtained by being vaccinated, having a negative PCR test or having proof of recovery from 

Covid-19. The purpose of the certificate is to allow free travel in Europe again. 

 

15) Since this study analyses the adoption of applications launched by the government during 

the Covid-19 pandemic, it is important to know if you have heard of these applications. 

� I have already heard of CovidsafeBE  

� I have never heard of CovidsafeBE 

 

16) What if people could travel freely again by downloading CovidsafeBE? Choose between 

sharing data by downloading the CovidsafeBE app and travelling freely in ... time or not 

downloading the CovidsafeBE app and not travelling freely ... time. 
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17) Thinking about the CovidsfeBE application, how do you relate to the following 

questions? 

 
 

18) Thinking about the CovidsfeBE application, how do you relate to the following question 

 
19) Thinking about the CovidsfeBE application, how do you relate to the following 

questions? 

 
20) Thinking about the CovidsfeBE application, how do you relate to the following 

questions? 
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22) Thinking about the CovidsfeBE application, how do you relate to the following 

questions? 

 

 
 

Respondent information 
 

23) What age category do you fall into? 

� 12 years or less       

� 13 - 18 years  

� 19 - 24 years 

� 25 - 30 years 

� 31 - 40 years 

� 41- 50 years 

� 51 - 60 years 

� 61 - 70 years 

� 71 years or older 

 

24) What is your gender? 

� Female  

� Male  

� Other 

 



 

 

8 

25) What is your highest level of education? 

� Elementary School  

� Lower secondary  

� Higher secondary  

� Bachelor's degree  

� Master's degree  

� PhD 

� Other 

 

26) What is your occupation? 

� Student 

� Civil servant 

� Retired 

� Self-employed  

� Currently unemployed  

� Manager 

� Labourer 

� Liberal profession  

� Employee 

� Other 

 

Thank you for your participation in this survey! 

 

Appendix  B: Measurement scales 
 

See table on next page.
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  Items Scale Source 

Adoption Original Intention to use 
1. Assuming I have access to the system, I intend to download it. 
2. Given that I have access to the system, I predict that I would download it.  

7-point Likert, strongly 
disagree/ agree 

(Gao et al., 2011) 

Adaptation 1. Assuming I have access to the Coronalert/ CovidsafeBE application, I intend to download it.  
2. Given that I have access to the Coronalert/ CovidsafeBE application, I predict that I would download it.  

7-point Likert, strongly 
disagree/ agree 

 

Perceived risks Original Privacy risk  
1. What are the chances that using an XXX will cause you to lose control over privacy of your payment 
information?  
2. My signing up for and using an XXX would lead to a loss of privacy for me because my personal 
information would be used without my knowledge.  
3. Internet hackers (criminals) might take control of my checking account if I used XXX.  

7-point Likert, improbable/ 
probable, strongly disagree/ 
agree 

(Featherman & 
Pavlou, 2003) 
 

Adaptation Privacy risk  
1. What are the chances that using the Coronalert/CovidsafeBE application will cause you to lose control 
over privacy of your location/medical records?  
2. My downloading and using of the Coronalert/CovidsafeBE application would lead to a loss of privacy 
for me because my personal information would be used without my knowledge  
3. Internet hackers (criminals) might steal my private information if I used the Coronalert/CovidsafeBE 
application   

7-point Likert, highly 
improbable/ probable 

 

Perceived benefits Original Shopping Convenience  
1. Can shop in privacy of home 
2. I don’t have to leave home 
3. Can shop whenever I want 
4.Can save the effort of visiting stores  
Ease/Comfort of Shopping 
1. Don’t have to wait to be served  
2. No hassles 
3. Not embarrassed if you don’t buy  
4. No busy signal  

7-point Likert, strongly 
disagree/ agree 
 

(Forsythe et al., 
2006) 
 

Adaptation Coronalert 
1. I will be informed if I have been in contact with a person who has tested positive for Covid-19 
2. I will help to track the spread of the Covid-19 virus 
3. On the long term I will help to stop the spread of the Covid-19 virus 
4. Always be notified in case of possible infection 
Covidsafe 
1. I have my certificate available on my phone 

7-point Likert, strongly 
disagree/ agree 
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2. I can use the application to travel easily 
3. I will always have my certificate at hand 
4. I don't have to worry about forgetting my certificate in case I need it 

Bandwagon Original 1. How likely is it that you would purchase/use products worn by most people?  
2. How likely is it that you would purchase/use popular products that everyone would approve of?  
3. How likely is it that you would purchase/use products recognized by many people?  

7-point Likert, very likely/ 
unlikely 

(Kastanakis et 
Balabanis, 2012) 

Adaptation 1. How likely is it that you would download applications used by most people?  
2. How likely is it that you would download applications that everyone would approve of? 
3. How likely is it that you would download applications recognized by many people?  

7-point Likert, very likely/ 
unlikely 

 

Control Original Perceived Control  
1. I believe I have control over who can get access to my personal information collected by this online 
banking service. 
2. I think I have control over what personal information is released by this online banking service.  
3. I believe I have control over how personal information is used by this online banking service.  

7-point Likert, strongly 
disagree/ agree 

(Chang et al., 
2015) 
 

Adaptation Perceived Control  
1. I believe I have control over who can get access to my personal information collected by Coronalert/ 
CovidsafeBE 
2. I think I have control over what personal information is released by the Coronalert/ CovidsafeBE 
application 
3. I believe I have control over how personal information is used by the Coronalert/ CovidsafeBE 
application 

7-point Likert, strongly 
disagree/ agree 

 

Transparency Original Perceived information transparency (PIT)  
1. The ERP allows me to track my activities  
2. The ERP provides information on the organization rules and regulations  
3. The ERP provides information about the organization decisions and actions  
4. The ERP promotes monitoring of the organization financial expenditures  
5. The ERP disseminates information on the organization performance  
6. The ERP promotes openness of the organization processes, like hiring & promotion  
7. Overall, the ERP system has enhanced transparency in my organization 

7-point Likert, strongly 
disagree/ agree 

(Al-Jabri & 
Roztocki, 2015) 
 

Adaptation Perceived information transparency  
1. The Coronalert/ CovidsafeBE application allows me to track my activities  
2. Coronalert/ CovidsafeBE provides information on the rules and regulations of the application 
3. Coronalert/ CovidsafeBE provides information about the decisions and actions of the application 
4. Coronalert/ CovidsafeBE disseminates information on the performance of the application 
5. Overall, Coronalert/ CovidsafeBE is a transparent application regarding data treatment and performance  

7-point Likert, strongly 
disagree/ agree 

 

Knowledge Original Factor 1. Technology Operations and concepts 
1. I can explain how technological devices operate. 
2. I can use technological devices in different ways. 

7-point Likert, strongly 
disagree/ agree 

(Çoklar & 
Odabasi, 2009) 
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3. I can define the technological devices found in our facility. 
4. I can do basic things regarding computer technologies. 
5. I can explain general concepts related to computer technology. 
6. I can use technological devices effectively.  

Adaptation Data treatment and concepts 
1. I can explain how data treatment on applications operate. 
2. I can use data treatment in different ways. 
3. I can define data treatment used on applications. 
4. I can do basic things regarding data treatment. 
5. I can explain general concepts related to data treatment. 
6. I can use data treatment effectively.  

7-point Likert, strongly 
disagree/ agree 

 

Trust Original 1. I trust __________. 
2. __________ makes truthful claims. 
3. __________ is honest. 
4. I do not believe what __________ tells me.  

5- or 7-point Likert, strongly 
disagree/ agree 

(Newell & 
Goldsmith, 2001) 
 

Adaptation 1. I trust my government. 
2. The Belgian government makes truthful claims. 
3. The Belgian government is honest. 
4. I do not believe what the Belgian government tells me.  

7-point Likert, strongly 
disagree/ agree 

 

Immediate benefits Original Titration, environmental loss 
What if the improved air quality were to start one year from now? 
1. - Receive $20 immediately  - permanently improved air quality starting one year from now 
2. - Receive $50 immediately  - permanently improved air quality starting one year from now 
3. - Receive $130 immediately  - permanently improved air quality starting one year from now 
4. - Receive $325 immediately  - permanently improved air quality starting one year from now 
5. - Receive $800 immediately  - permanently improved air quality starting one year from now 
6. - Receive $2100 immediately  - permanently improved air quality starting one year from now 
7. - Receive $5200 immediately  - permanently improved air quality starting one year from now 

Choose between 2 options (Hardisty et al., 
2011) 
 

Adaptation Coronalert:  
1. Stopping the pandemic in two years and download Coronalert or not download Coronalert 
2. Stopping the pandemic in one year and download Coronalert or not download Coronalert 
3. Stopping the pandemic in six months and download Coronalert or not download Coronalert 
4. Stopping the pandemic in three months and download Coronalert or not download Coronalert 
5. Stopping the pandemic in one month and download Coronalert or not download Coronalert 
6. Stopping the pandemic in one week and download Coronalert or not download Coronalert 
7. Stopping the pandemic in one day and download Coronalert or not download Coronalert 
CovidsafeBE: 
1. Travelling freely in six months and download CovidsafeBE or not download CovidsafeBE 

Choose between 2 options  
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2. Travelling freely in three months and download CovidsafeBE or not download CovidsafeBE 
3. Travelling freely in one month and download CovidsafeBE or not download CovidsafeBE 
4. Travelling freely in two weeks and download CovidsafeBE or not download CovidsafeBE 
5. Travelling freely in one week and download CovidsafeBE or not download CovidsafeBE 
6. Travelling freely in one day and download CovidsafeBE or not download CovidsafeBE 
7. Travel freely immediately and download CovidsafeBE or not download CovidsafeBE 

Habit Original [Behavior X] is something… ->  
1. I do frequently. 
2. I do automatically. 
3. I do without having to consciously remember. 
4. That makes me feel weird if I do not do it. 
5. I do without thinking. 
6. That would require effort not to do it. 
7. That belongs to my (daily, weekly, monthly) routine. 
8. I start doing before I realize I’m doing it. 
9. I would find hard not to do  
10. I have no need to think about doing. 
11. that’s typically ‘me’. 
12. I have been doing for a long time. 

5 or 7-point Likert, strongly 
disagree/ agree 

(Rebar et al., 
2018) 
 

Adaptation Using applications is something… -> 
1. I do frequently.  
2. I do automatically.  
3. I do without having to consciously remember. 
4. That makes me feel weird if I do not do it. 
5. I do without thinking. 
6. That would require effort not to do it. 
7. That belongs to my (daily, weekly, monthly) routine. 
8. I start doing before I realize I’m doing it.  
9. I would find hard not to do.  
10. I have no need to think about doing. 
11. that’s typically ‘me’.  
12. I have been doing for a long time. 

7-point Likert, strongly 
disagree/ agree 
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Appendix  C: Coronalert, Descriptive statistics 
Variable Label N Average Std dev Minimum Maximum 
Z2 Gender 128 0.6171875 0.4879831 0 1.0000000 
Age How old are you? (from 15.5 to 80 year's old) 128 36.3046875 17.5852518 15.5000000 80.0000000 
Z5 Student 128 0.4062500 0.4930621 0 1.0000000 
Z6 Employee 128 0.2109375 0.4095772 0 1.0000000 
Z7 Retired 128 0.0703125 0.2566776 0 1.0000000 
Z8 Civil servent 128 0.1328125 0.3407055 0 1.0000000 
Z9 Long-term illness 128 0.0078125 0.0883883 0 1.0000000 
Z10 Self-employed 128 0.0703125 0.2566776 0 1.0000000 
Z11 Manager 128 0.0312500 0.1746763 0 1.0000000 
Z12 Currently unemployed 128 0.0312500 0.1746763 0 1.0000000 
Z13 Disability 128 0.0234375 0.1518829 0 1.0000000 
Z14 Liberal proffesion 128 0.0156250 0.1245069 0 1.0000000 
Z15 Higher secondary 128 0.1718750 0.3787542 0 1.0000000 
Z16 Bachelor 128 0.3203125 0.4684300 0 1.0000000 
Z17 Master 128 0.5000000 0.5019646 0 1.0000000 
Z18 PhD 128 0.0078125 0.0883883 0 1.0000000 
CO Coronalert 128 1.0000000 0 1.0000000 1.0000000 

Appendix  D: Coronalert, Measurement scale analysis 

Appendix D.1: Trust construct 
4 items 

EFA: 
Factor pattern 
 Factor1 
TR2 TR_true_statement 0.91725 
TR3 TR_honest 0.89596 
TR1 TR_trust 0.88601 
TR4i TR_disbelief 0.70131 
Final Communality Estimates: Total = 2.920948   
TR1 TR2 TR3 TR4i 
0.78501688 0.84134244 0.80274729 0.49184158 

EFA without TR4i: 
Factor pattern 
 Factor1 
TR2 TR_true_statement 0.91879 
TR3 TR_honest 0.89625 
TR1 TR_trust 0.87685 
Final Communality Estimates: Total = 2.416288  
TR1 TR2 TR3 
0.76886393 0.84416774 0.80325668 

Cronbach’s Alpha: 
Cronbach Coefficient Alpha 
Variables Alpha 
Raw 0.935704 
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Standerdized 0.935850 

Appendix D.2: Knowledge construct 
6 items 

EFA: 
Factor pattern 
 Factor1 
KN2 KN_use 0.91909 
KN6 KN_ease_use 0.91830 
KN5 KN_concepts 0.90144 
KN3 KN_define 0.89592 
KN1 KN_explain 0.89419 
KN4 KN_basic 0.85953 
Final Communality Estimates: Total = 4.841638 
KN1 KN2 KN3 KN4 KN5 KN6 
0.79957720 0.84472497 0.80267498 0.73879171 0.81259780 0.84327152 

Cronbach’s Alpha: 
Cronbach Coefficient Alpha 
Variables Alpha 
Raw 0.961050 
Standerdized 0.961248 

Appendix D.3: Bandwagon construct 
3 items 

EFA: 
Factor pattern 
 Factor1 
BW3 BW_recognised 0.87316 
BW2 BW_approved 0.84988 
BW1 BW_used 0.82073 
Final Communality Estimates: Total = 2.158307 
BW1 BW2 BW3 
0.67360186 0.72230259 0.76240216 

 

Cronbach’s Alpha: 
Cronbach Coefficient Alpha 
Variables Alpha 
Raw 0.900851 
Standerdized 0.901338 

 

Appendix D.4: Habit construct 
12 items 

EFA:  
Factor pattern 
 Factor1 
HB5 HB_thinking 0.86642 
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HB10 HB_no_thinking 0.83746 
HB2 HB_automatic 0.81702 
HB3 HB_remember 0.81118 
HB8 HB_realize 0.81108 
HB9 HB_hard 0.77401 
HB7 HB_routine 0.77397 
HB12 HB_long_time 0.74196 
HB1 HB_often 0.72616 
HB6 HB_effort 0.72359 
HB4 HB_sensation 0.64738 
HB11 HB_typically_me 0.59187 
Final Communality Estimates: Total = 7.004349 
HB1 HB2 HB3 HB4 HB6 HB5 HB7 HB8 HB9 HB10 HB11 HB12 
0.5273
0413 

0.6675
2735 

0.6580
1292 

0.4190
9693 

0.52358
577 

0.7506
8163 

0.5990
3699 

0.6578
5844 

0.5990
9634 

0.7013
3201 

0.3503
1292 

0.5505
0343 

EFA without HB4 and HB11: 
Factor pattern 
 Factor1 
HB5 HB_thinking 0.87483 
HB2 HB_automatic 0.84115 
HB10 HB_no_thinking 0.83161 
HB3 HB_remember 0.81885 
HB8 HB_realize 0.79345 
HB7 HB_routine 0.78528 
HB1 HB_often 0.75756 
HB12 HB_long_time 0.75737 
HB9 HB_hard 0.74654 
HB6 HB_effort 0.68546 
Final Communality Estimates: Total = 6.255833 
HB1 HB2 HB3 HB5 HB6 HB7 HB8 HB9 HB10 HB12 
0.573890
60 

0.707527
36 

0.670517
23 

0.765319
65 

0.469851
87 

0.616664
68 

0.629568
80 

0.557319
27 

0.691568
42 

0.573604
74 

EFA without HB6: 
Factor pattern 
 Factor1 
HB5 HB_thinking 0.86125 
HB2 HB_automatic 0.85706 
HB10 HB_no_thinking 0.82641 
HB3 HB_remember 0.81740 
HB7 HB_routine 0.80523 
HB1 HB_often 0.78258 
HB12 HB_long_time 0.77879 
HB8 HB_realize 0.77455 
HB9 HB_hard 0.70487 
Final Communality Estimates: Total = 5.791477 
HB1 HB2 HB3 HB5 HB7 HB8 HB9 HB10 HB12 
0.6124243
9 

0.7345525
3 

0.6681366
1 

0.741747
15 

0.6484030
9 

0.5999202
3 

0.4968347
4 

0.6829485
4 

0.6065100
9 

EFA without HB9: 
Factor pattern 
 Factor1 
HB2 HB_automatic 0.87037 
HB5 HB_thinking 0.84931 
HB3 HB_remember 0.81983 
HB7 HB_routine 0.81936 
HB1 HB_often 0.80506 
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HB10 
HB_no_thinkin
g 0.80217 

HB12 HB_long_time 0.78717 
HB8 HB_realize 0.74810 
Final Communality Estimates: Total = 5.293222 
HB1 HB2 HB3 HB5 HB7 HB8 HB10 HB12 
0.6481231
0 0.75754550 

0.6721149
7 

0.7213271
6 

0.6713448
3 

0.5596549
1 

0.6434738
8 

0.6196373
4 

Cronbach’s Alpha: 
Cronbach Coefficient Alpha 
Variables Alpha 
Raw 0.935807 
Standerdized 0.938326 

Appendix D.5: Control construct 
EFA: 

Factor pattern 
 Factor1 
CO_C3 Co_C_used 0.91519 
CO_C2 Co_C_released 0.89881 
CO_C1 Co_C_persons 0.88603 
Final Communality Estimates: Total = 2.430482 
CO_C1 CO_C2 CO_C3 
0.78505634 0.80785706 0.83756820 

Cronbach’s Alpha: 
Cronbach Coefficient Alpha 
Variables Alpha 
Raw 0.937650 
Standerdized 0.937951 

 

Appendix D.6: Transparency construct 
EFA: 

Factor pattern 
 Factor1 
CO_TRP3 Co_TRP_decisions 0.85546 
CO_TRP2 Co_TRP_info_rules 0.80474 
CO_TRP4 Co_TRP_performance 0.71142 
CO_TRP1 Co_TRP_activities 0.63009 
CO_TRP5 Co_TRP_globally 0.62195 
Final Communality Estimates: Total = 2.669388 
CO_TRP1 CO_TRP2 CO_TRP3 CO_TRP4 CO_TRP5 
0.39701967 0.64760430 0.73181433 0.50612438 0.38682517 

 

EFA without CO_TRP1 and CO_TRP5: 
Factor pattern 
 Factor1 
CO_TRP3 Co_TRP_decisions 0.85407 
CO_TRP2 Co_TRP_info_rules 0.78417 
CO_TRP4 Co_TRP_performance 0.66556 
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Final Communality Estimates: Total = 1.787319 
CO_TRP2 CO_TRP3 CO_TRP4 
0.61491679 0.72943553 0.44296686 

 
EFA without CO_TRP4: 
 
Factor pattern 
 Factor1 
CO_TRP3 Co_TRP_decisions 0.80134 
CO_TRP2 Co_TRP_info_rules 0.80134 
Final Communality Estimates: Total = 1.284290 
CO_TRP2 CO_TRP3 
0.64214482 0.64214482 

Cronbach’s Alpha: 
Cronbach Coefficient Alpha 
Variables Alpha 
Raw 0.846225 
Standerdized 0.849692 

Appendix D.7: Perceived benefits construct 
EFA: 

Factor pattern 
 Factor1 
CO_PB2 Co_PB_spread 0.80920 
CO_PB1 Co_PB_contact 0.76434 
CO_PB4 Co_PB_notified 0.74545 
CO_PB3 Co_PB_long_term 0.73316 
Final Communality Estimates: Total = 2.332239 
CO_PB1 CO_PB2 CO_PB3 CO_PB4 
0.58421046 0.65480639 0.53752144 0.55570071 

Cronbach’s Alpha: 
Cronbach Coefficient Alpha 
Variables Alpha 
Raw 0.855350 
Standerdized 0.858257 

 

Appendix D.8: Perceived risks construct 
EFA: 

Factor pattern 
 Factor1 
CO_PR2 Co_PR_loss 0.83016 
CO_PR3 Co_PR_steal 0.73348 
CO_PR1 Co_PR_control 0.73217 
Final Communality Estimates: Total = 1.763233 
CO_PR1 CO_PR2 CO_PR3 
0.53607558 0.68916266 0.53799448 

Cronbach’s Alpha : 
Cronbach Coefficient Alpha 
Variables Alpha 
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Raw 0.834687 
Standerdized 0.834305 

 

Appendix D.9: Adoption construct 
EFA : 

Factor pattern 
 Factor1 
CO_AD1 Co_AD_intend 0.98109 
CO_AD2 Co_AD_predict 0.98109 
Final Communality Estimates: Total = 1.925056 
CO_AD1 CO_AD2 
0.96252814 0.96252814 

Cronbach’s Alpha : 
Cronbach Coefficient Alpha 
Variables Alpha 
Raw 0.987243 
Standerdized 0.987243 

 

Appendix  E: Coronalert Analysis of variance 

Appendix E.1: Immediate benefits   

Perceived benefits 

Anova 

Source DF Sum of squares Medium square F value Pr > F 
Model 2 24.5147720 12.2573860 10.16 <.0001 
Error 125 150.7957749 1.2063662   
Level of 
CO_IB N 

CO_PB 
Average Std dev 

1 19 3.86842105 1.33948690 
2 9 3.94444444 1.27951271 
3 100 2.83500000 1.03182931 

Tukey  

Alpha 0.05 
Degree of freedom de 
l'Error 125 
Error quadratique 
Average 1.206366 
Critical value of 
studentized range 3.35446 
Significant comparisons at the 0.05 level indicated by ***. 
CO_IB Comparison Difference/between/average Simultaneous 95% - Confidence interval  
2-1 0.0760 -0.9782 1.1302  
2-3 1.1094 0.2028 2.0161 *** 
1-3 1.0334 0.3814 1.6854 *** 
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Perceived risks 

Anova 

Source DF Sum of squares Medium square F value Pr > F 
Model 2 26.0848384 13.0424192 9.52 0.0001 
Error 125 171.2728005 1.3701824   
Corrected total 127 197.3576389    
Level of 
CO_IB N 

CO_PB 
Average Std dev 

1 19 2.38596491 1.04387193 
2 9 2.96296296 1.04674687 
3 100 3.62000000 1.20140210 

 

Tukey 

Alpha 0.05 
Degree of freedom de 
l'Error 125 
Error quadratique 
Average 1.370182 
Critical value of 
studentized range 3.35446 
Significant comparisons at the 0.05 level indicated by ***. 
CO_IB Comparison Difference/between/average Simultaneous 95% - Confidence interval  
3-2 0.6570 -0.3092 1.6233  
3-1 1.2340 0.5392 1.9289 *** 
2-1 0.5770 -0.5465 1.7005  

 

Appendix E.2: Gender 

Adoption  

Anova 

Source DF Sum of squares Medium square F value Pr > F 
Model 1 0.8137937 0.8137937 0.20 0.6534 
Error 126 506.2408938 4.0177849   
Corrected total 127 507.0546875    

Perceived benefits 

Anova 

Source DF Sum of squares Medium square F value Pr > F 
Model 1 1.1919406 1.1919406 0.86 0.3548 
Error 126 174.1186063 1.3818937   
Corrected total 127 175.3105469    

Perceived risks 

Anova 

Source DF Sum of squares Medium square F value Pr > F 
Model 1 1.4082718 1.4082718 0.91 0.3431 



 

 

20 

Error 126 195.9493671 1.5551537   
Corrected total 127 197.3576389    

Appendix E.3: Age 

Adoption  

Pearson correlation 
Pearson correlation coefficients, N = 128 
Prob > |r| under H0: Rho=0 
 Age CO_AD 
Age 
How old are you? (from 15.5 to 80 year's old) 1.00000 

0.03057 
0.7320 

CO_AD 
Adoption of the Coronalert application 

0.03057 
1.00000 0.7320 

Perceived benefits 

Pearson correlation 
Pearson correlation coefficients, N = 128 
Prob > |r| under H0: Rho=0 
 Age CO_PB 
Age 
How old are you? (from 15.5 to 80 year's old) 1.00000 

0.18004 
0.0420 

CO_PB 
Perceived benefits of Coronalert 

0.18004 
1.00000 0.0420 

ANOVA test 

Source DF Sum of squares Medium square F value Pr > F 
Model 7 23.4516516 3.3502359 2.65 0.0140 
Error 120 151.8588953 1.2654908   
Corrected total 127 175.3105469    
Level of 
CO_IB N 

CO_PB 
Average Std dev 

0 2 4.50000000 0.70710678 
1 57 2.90789474 1.07698278 
2 16 2.64062500 1.18662248 
3 4 3.62500000 1.01036297 
4 8 3.09375000 0.39949745 
5 27 2.97222222 1.09705316 
6 12 4.12500000 1.61491627 
7 2 3.25000000 1.06066017 

 

Alpha 0.05 
Degree of freedom de 
l'Error 120 
Error quadratique 
Average 1.265491 
Critical value of 
studentized range 4.36297 
Significant comparisons at the 0.05 level indicated by ***. 
CO_IB Comparison Difference/between/average Simultaneous 95% - Confidence interval  
0 - 6 0.3750 -2.2757 3.0257  
0 - 3 0.8750 -2.1306 3.8806  
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0 - 7 1.2500 -2.2205 4.7205  
0 - 4 1.4063 -1.3374 4.1499  
0 - 5 1.5278 -1.0155 4.0711  
0 - 1 1.5921 -0.9046 4.0888  
0 - 2 1.8594 -0.7435 4.4623  
6 - 3 0.5000 -1.5037 2.5037  
6 - 7 0.8750 -1.7757 3.5257  
6 - 4 1.0313 -0.5528 2.6153  
6 - 5 1.1528 -0.0513 2.3569  
6 - 1 1.2171 0.1148 2.3194 *** 
6 - 2 1.4844 0.1590 2.8097 *** 
3 - 7 0.3750 -2.6306 3.3806  
3 - 4 0.5313 -1.5940 2.6565  
3 - 5 0.6528 -1.2066 2.5121  
3 - 1 0.7171 -1.0780 2.5122  
3 - 2 0.9844 -0.9557 2.9245  
7 - 4 0.1563 -2.5874 2.8999  
7 - 5 0.2778 -2.2655 2.8211  
7 - 1 0.3421 -2.1546 2.8388  
7 - 2 0.6094 -1.9935 3.2123  
4 - 5 0.1215 -1.2755 1.5186  
4 - 1 0.1859 -1.1244 1.4962  
4 - 2 0.4531 -1.0497 1.9559  
5 - 1 0.0643 -0.7465 0.8751  
5 - 2 0.3316 -0.7633 1.4265  
1 - 2 0.2673 -0.7146 1.2492  

Perceived risks 

Pearson correlation 
Pearson correlation coefficients, N = 128 
Prob > |r| under H0: Rho=0 
 Age CO_PR 
Age 
How old are you? (from 15.5 to 80 year's old) 1.00000 

-0.13023 
0.1429 

CO_PR 
Perceived risks of Coronalert 

-0.13023 
1.00000 0.1429 

Appendix E.4: Education 

Adoption  

Anova 

Source DF Sum of squares Medium square F value Pr > F 
Model 3 12.7651573 4.2550524 1.07 0.3655 
Error 124 494.2895302 3.9862059   
Corrected total 127 507.0546875    

Perceived benefits 

Anova 

Source DF Sum of squares Medium square F value Pr > F 
Model 3 7.0305701 2.3435234 1.73 0.1649 
Error 124 168.2799768 1.3570966   
Corrected total 127 175.3105469    
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Perceived risks 

Anova 

Source DF Sum of squares Medium square F value Pr > F 
Model 3 9.3446854 3.1148951 2.05 0.1097 
Error 124 188.0129535 1.5162335   
Corrected total 127 197.3576389    

 

Appendix E.5: Occupation 

Adoption  

Anova 

Source DF Sum of squares Medium square F value Pr > F 
Model 9 19.5044424 2.1671603 0.52 0.8543 
Error 118 487.5502451 4.1317817   
Corrected total 127 507.0546875    

Perceived benefits 

Anova 

Source DF Sum of squares Medium square F value Pr > F 
Model 9 16.1070029 1.7896670 1.33 0.2305 
Error 118 159.2035440 1.3491826   
Corrected total 127 175.3105469    

Perceived risks 

Anova 

Source DF Sum of squares Medium square F value Pr > F 
Model 9 10.4449804 1.1605534 0.73 0.6782 
Error 118 186.9126585 1.5840056   
Corrected total 127 197.3576389    

 

Appendix  F: Coronalert, Descriptive statistics and 

correlation 
Variable Label Average Std dev Minimum Maximum 
Exp Experience 0.2187500 0.4150230 0 1 
CO_TR Trust 3.6015625 1.3115401 1 7 
CO_HB Habit 2.9980469 1.3912324 1 7 
CO_BW Bandwagon 2.4921875 1.1074905 1 7 
CO_KN Knowledge 4.0312500 1.5777807 1 7 
IB_Cat1 Respondents who would never download Coronalert 0.1484375 0.3569301 0 1 
IB_Cat2 Respondents who would download Coronalert if the benefits were 

noticeable in one month or less 
0.0703125 0.2566776 0 1 



 

 

23 

IB_Cat3 Respondents who would download Coronalert even if benefits are on 
the long term 

0.7812500 0.4150230 0 1 

CO_C Control over Coronalert 4.6328125 1.3726741 1 7 
CO_TRP Transparency regarding Coronalert 3.5429688 1.0518588 1 7 
CO_PR Perceived risks regarding data privacy on Coronalert 3.3906250 1.2465942 1 7 
CO_PB Perceived benefits of Coronalert 3.0664063 1.1749034 1 7 
CO_AD Adoption of the Coronalert application 3.8359375 1.9981383 1 7 
Age How old are you? (from 15.5 to 80 year's old) 36.3046875 17.5852518 15.5 80 
Z2 Gender 0.6171875 0.4879831 0 1 
Z5 Student 0.4062500 0.4930621 0 1 
Z6 Employee 0.2109375 0.4095772 0 1 
Z7 Retired 0.0703125 0.2566776 0 1 
Z8 Civil servent 0.1328125 0.3407055 0 1 
Z9 Long-term illness 0.0078125 0.0883883 0 1 
Z10 Self-employed 0.0703125 0.2566776 0 1 
Z11 Manager 0.0312500 0.1746763 0 1 
Z12 Currently unemployed 0.0312500 0.1746763 0 1 
Z14 Liberal proffesion 0.0156250 0.1245069 0 1 
Z15 Higher secondary 0.1718750 0.3787542 0 1 
Z16 Bachelor 0.3203125 0.4684300 0 1 
Z17 Master 0.5000000 0.5019646 0 1 
Z18 PhD 0.0078125 0.0883883 0 1 

 

Appendix  G: Coronalert, Multicollinearity test 
Adoption: Variance Inflation Factor and Tolerance 

Parameter estimates 
Variable Label D

F 
Paramete
r estimate 

Standard 
error 

t 
value 

Pr > |t
| 

Toleran
ce   

Varianc
e 
inflation 

Pearson correlation coefficients, N = 128  
Prob > |r| under H0: Rho=0 
 Exp CO_TR CO_HB CO_KN CO_PR CO_PB CO_AD Age Z2 
Exp 
Experience 1.00000 

0.14692 -0.16120 0.02756 -0.05485 0.03860 0.03887 -0.09983 -0.04981 
0.0979 0.0691 0.7575 0.5386 0.6653 0.6631 0.2622 0.5766 

CO_TR 
Trust 

0.14692 
1.00000 

-0.01625 0.16144 -0.36639 0.40225 0.47713 -0.02792 0.16990 
0.0979 0.8555 0.0687 <.0001 <.0001 <.0001 0.7544 0.0552 

CO_HB 
Habit 

-0.16120 -0.01625 
1.00000 

0.15039 -0.09282 0.15393 0.18701 0.56239 0.00034 
0.0691 0.8555 0.0902 0.2974 0.0828 0.0345 <.0001 0.9970 

CO_KN 
Knowledge 

0.02756 0.16144 0.15039 
1.00000 

-0.20086 0.13745 0.19083 0.17527 0.26452 
0.7575 0.0687 0.0902 0.0230 0.1218 0.0309 0.0478 0.0026 

CO_PR 
Perceived risks regarding data privacy on Coronalert 

-0.05485 -0.36639 -0.09282 -0.20086 
1.00000 

-0.25082 -0.48301 -0.13023 -0.08447 
0.5386 <.0001 0.2974 0.0230 0.0043 <.0001 0.1429 0.3431 

CO_PB 
Perceived benefits of Coronalert 

0.03860 0.40225 0.15393 0.13745 -0.25082 
1.00000 

0.28935 0.18004 0.08246 
0.6653 <.0001 0.0828 0.1218 0.0043 0.0009 0.0420 0.3548 

CO_AD 
Adoption of the Coronalert application 

0.03887 0.47713 0.18701 0.19083 -0.48301 0.28935 
1.00000 

0.03057 0.04006 
0.6631 <.0001 0.0345 0.0309 <.0001 0.0009 0.7320 0.6534 

Age 
How old are you? (from 15.5 to 80 year's old) 

-0.09983 -0.02792 0.56239 0.17527 -0.13023 0.18004 0.03057 
1.00000 

0.03067 
0.2622 0.7544 <.0001 0.0478 0.1429 0.0420 0.7320 0.7311 

Z2 
Gender 

-0.04981 0.16990 0.00034 0.26452 -0.08447 0.08246 0.04006 0.03067 
1.00000 0.5766 0.0552 0.9970 0.0026 0.3431 0.3548 0.6534 0.7311 
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Intercep
t 

Intercept 1 5.54122 0.77612 7.14 <.0001 . 0 

CO_PR Perceived risks regarding data privacy on 
Coronalert 

1 -0.71217 0.12859 -5.54 <.0001 0.92569 1.08028 

CO_PB Perceived benefits of Coronalert 1 0.32287 0.13749 2.35 0.0205 0.91157 1.09701 
Age How old are you? (From 15.5 to 80 year's old) 1 -0.00695 0.00895 -0.78 0.4393 0.95976 1.04193 
Z2 Gender 1 -0.04606 0.31784 -0.14 0.8850 0.98875 1.01137 

 
Collinearity diagnostic 
  Proportion of variation 
Number Eigenvalue Condition index Intercept CO_PR CO_PB Age Z2 
1 4.32485 1.00000 0.00202 0.00511 0.00558 0.00837 0.01460 
2 0.33749 3.57978 0.00275 0.02073 0.00769 0.03610 0.92282 
3 0.18228 4.87099 0.00499 0.30934 0.03924 0.39767 0.00003474 
4 0.12670 5.84239 0.00198 0.05038 0.55939 0.45259 0.02184 
5 0.02867 12.28112 0.98826 0.61444 0.38809 0.10527 0.04071 

 

Perceived benefits: Variance Inflation Factor and Tolerance 
Variable Label DF Parameter estimate Standard error t value Pr > |t| Tolerance   Variance inflation 

Intercept Intercept 1 1.12316 0.40241 2.79 0.0061 . 0 
CO_TR Trust 1 0.35902 0.07527 4.77 <.0001 0.93217 1.07277 
CO_HB Habit 1 0.06372 0.08384 0.76 0.4487 0.66764 1.49781 
CO_KN Knowledge 1 0.02682 0.06440 0.42 0.6778 0.87983 1.13658 
Exp Experience 1 0.01472 0.23623 0.06 0.9504 0.94501 1.05819 
Age How old are you? (from 15.5 to 80 year's old) 1 0.00955 0.00660 1.45 0.1505 0.67392 1.48385 
Z2 Gender 1 0.00165 0.20529 0.01 0.9936 0.90515 1.10479 

 
Collinearity diagnostic 
  Proportion of variation 
Number Eigenvalue Condition index Intercept CO_TR CO_HB CO_KN Exp Age Z2 
1 5.47595 1.00000 0.00177 0.00326 0.00340 0.00353 0.00663 0.00367 0.00817 
2 0.78549 2.64034 0.00012442 0.00001283 0.00433 0.00050526 0.86944 0.00343 0.00866 
3 0.35265 3.94053 0.00123 0.00009796 0.04436 0.00011080 0.00002657 0.04543 0.71975 
4 0.16364 5.78481 0.02218 0.24985 0.08183 0.06141 0.11048 0.17315 0.23282 
5 0.10077 7.37153 0.00235 0.28883 0.03249 0.79604 0.00053069 0.00017531 0.02774 
6 0.07874 8.33917 0.00004048 0.02542 0.76599 0.00406 0.00977 0.74963 0.00283 
7 0.04275 11.31728 0.97230 0.43253 0.06759 0.13435 0.00312 0.02451 0.00002541 

 

Perceived risks: Variance Inflation Factor and Tolerance 
Variable Label DF Parameter estimate Standard error t value Pr > |t| Tolerance   Variance inflation 

Intercept Intercept 1 5.31120 0.43620 12.18 <.0001 . 0 
CO_TR Trust 1 -0.33208 0.08159 -4.07 <.0001 0.93217 1.07277 
CO_HB Habit 1 -0.01910 0.09088 -0.21 0.8339 0.66764 1.49781 
CO_KN Knowledge 1 -0.09857 0.06981 -1.41 0.1605 0.87983 1.13658 
Exp Experience 1 -0.04134 0.25607 -0.16 0.8720 0.94501 1.05819 
Age How old are you? (from 15.5 to 80 year's old) 1 -0.00764 0.00716 -1.07 0.2876 0.67392 1.48385 
Z2 Gender 1 0.02687 0.22253 0.12 0.9041 0.90515 1.10479 

 
Collinearity diagnostic 
  Proportion of variation 
Number Eigenvalue Condition index Intercept CO_TR CO_HB CO_KN Exp Age Z2 
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1 5.47595 1.00000 0.00177 0.00326 0.00340 0.00353 0.00663 0.00367 0.00817 
2 0.78549 2.64034 0.00012442 0.00001283 0.00433 0.00050526 0.86944 0.00343 0.00866 
3 0.35265 3.94053 0.00123 0.00009796 0.04436 0.00011080 0.00002657 0.04543 0.71975 
4 0.16364 5.78481 0.02218 0.24985 0.08183 0.06141 0.11048 0.17315 0.23282 
5 0.10077 7.37153 0.00235 0.28883 0.03249 0.79604 0.00053069 0.00017531 0.02774 
6 0.07874 8.33917 0.00004048 0.02542 0.76599 0.00406 0.00977 0.74963 0.00283 
7 0.04275 11.31728 0.97230 0.43253 0.06759 0.13435 0.00312 0.02451 0.00002541 

 

Appendix  H: Coronalert, regressions 

Appendix H.1: Model 1 

Model 1: DV= Adoption, IV= Perceived benefits, IV= perceived risks, CV= Age and gender 
Variance analysis 

Source DF 
Sum of 
squares 

Medium 
square F value Pr > F 

Model 4 135.49560 33.87390 11.21 <.0001 
Error 123 371.55909 3.02081   
Corrected 
total 127 507.05469    
Root MSE 1.73805 R-square 0.2672 
Dependent 
mean 3.83594 

R-square 
adj. 0.2434 

Coeff Var 45.30956   
Estimated parameters 

Variable Label DF 
Parameter 
estimate 

Standar
d error 

t 
value Pr > |t| 

Standardize
d estimate 

Intercept Intercept 1 5.54122 0.77612 7.14 <.0001 0 
CO_PR Perceived risks regarding data 

privacy on Coronalert 
1 -0.71217 0.12859 -5.54 <.0001 -0.44431 

CO_PB Perceived benefits of 
Coronalert 

1 0.32287 0.13749 2.35 0.0205 0.18985 

Age How old are you? (from 15.5 
to 80 year's old) 

1 -0.00695 0.00895 -0.78 0.4393 -0.06113 

Z2 Gender 1 -0.04606 0.31784 -0.14 0.8850 -0.01125 
 

Individual regressions 

Perceived benefits -> Adoption 
Variance analysis 

Source DF 
Sum of 
squares 

Medium 
square F value Pr > F 

Model 3 42.83569 14.27856 3.81 0.0118 
Error 124 464.21899 3.74370   
Corrected 
total 127 507.05469    
Root MSE 1.93486 R-square 0.0845 
Dependent 
mean 3.83594 

R-square 
adj. 0.0623 

Coeff Var 50.44047   
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Estimated parameters 

Variable Label DF 
Parameter 
estimate 

Standar
d error 

t 
value Pr > |t| 

Standardize
d estimate 

Intercept Intercept 1 2.36377 0.58190 4.06 <.0001 0 

CO_PB 
Perceived benefits of 
Coronalert 1 0.49665 0.14902 3.33 0.0011 0.29203 

Age 
How old are you? (from 15.5 
to 80 year's old) 1 -0.00256 0.00993 -0.26 0.7970 -0.02252 

Z2 Gender 1 0.06827 0.35309 0.19 0.8470 0.01667 
 

Perceived risks -> Adoption  
Variance analysis 

Source DF 
Sum of 
squares 

Medium 
square F value Pr > F 

Model 3 118.83674 39.61225 12.65 <.0001 
Error 124 388.21795 3.13079 

  

Corrected 
total 

127 507.05469 
   

Root MSE 1.76940 R-square 0.2344 
Dependent 
mean 

3.83594 R-square 
adj. 

0.2158 

Coeff Var 46.12702 
  

Estimated parameters 

Variable Label DF 
Parameter 
estimate 

Standar
d error 

t 
value Pr > |t| 

Standardize
d estimate 

Intercept Intercept 1 6.62025 0.63678 10.40 <.0001 0 
CO_PR Perceived risks regarding data 

privacy on Coronalert 
1 -0.78109 0.12745 -6.13 <.0001 -0.48731 

Age How old are you? (from 15.5 
to 80 year's old) 

1 -0.00374 0.00901 -0.41 0.6789 -0.03289 

Z2 Gender 1 -0.00038213 0.32297 -0.00 0.9991 -0.00009332 

Appendix H.2: Model 2 

Model 2: DV= Perceived benefits, IV= Experience, Trust, Knowledge, Habit, CV= Age and 

gender 
Variance analysis 

Source DF 
Sum of 
squares 

Medium 
square F value Pr > F 

Model 6 35.72426 5.95404 5.16 <.0001 
Error 121 139.58628 1.15361   
Corrected 
total 127 175.31055    
Root MSE 1.07406 R-square 0.2038 
Dependent 
mean 

3.06641 R-square 
adj. 

0.1643 

Coeff Var 35.02668 
  

Estimated parameters 

Variable Label DF 
Parameter 
estimate 

Standar
d error 

t 
value Pr > |t| 

Standardize
d estimate 
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Intercept Intercept 1 1.12316 0.40241 2.79 0.0061 0 
Exp Experience 1 0.01472 0.23623 0.06 0.9504 0.00520 
CO_TR Trust 1 0.35902 0.07527 4.77 <.0001 0.40078 
CO_KN Knowledge 1 0.02682 0.06440 0.42 0.6778 0.03602 
CO_HB Habit 1 0.06372 0.08384 0.76 0.4487 0.07545 
Age How old are you? (from 15.5 

to 80 year's old) 
1 0.00955 0.00660 1.45 0.1505 0.14298 

Z2 Gender 1 0.00165 0.20529 0.01 0.9936 0.00068381 
 

Individual regressions 

Experience -> Perceived benefits 
Variance analysis 

Source DF 
Sum of 
squares 

Medium 
square F value Pr > F 

Model 3 7.36375 2.45458 1.81 0.1484 
Error 124 167.94680 1.35441   
Corrected 
total 127 175.31055    

Trust -> Perceived benefits 
Variance analysis 

Source DF 
Sum of 
squares 

Medium 
square F value Pr > F 

Model 3 34.79477 11.59826 10.24 <.0001 
Error 124 140.51578 1.13319   
Corrected 
total 127 175.31055    
Root MSE 1.06451 R-square 0.1985 
Dependent 
mean 3.06641 

R-square 
adj. 0.1791 

Coeff Var 34.71539 
  

Estimated parameters 

Variable Label DF 
Parameter 
estimate 

Standar
d error 

t 
value Pr > |t| 

Standardize
d estimate 

Intercept Intercept 1 1.28063 0.34911 3.67 0.0004 0 
CO_TR Trust 1 0.36398 0.07313 4.98 <.0001 0.40631 

Age 
How old are you? (from 15.5 
to 80 year's old) 1 0.01277 0.00538 2.38 0.0191 0.19115 

Z2 Gender 1 0.01820 0.19656 0.09 0.9264 0.00756 

Knowledge -> Perceived benefits 
Variance analysis 

Source DF 
Sum of 
squares 

Medium 
square F value Pr > F 

Model 3 8.15643 2.71881 2.02 0.1150 
Error 124 167.15412 1.34802   
Corrected 
total 127 175.31055    

Habit -> Perceived benefits 
Variance analysis 
Source DF F value Pr > F 
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Sum of 
squares 

Medium 
square 

Model 3 7.46852 2.48951 1.84 0.1435 
Error 124 167.84203 1.35356   
Corrected 
total 127 175.31055    

Appendix H.3: Model 3 

Model 3: DV= Perceived risks, IV= Experience, Trust, Knowledge, Habit, CV= Age and gender 
Variance analysis 

Source DF 
Sum of 
squares 

Medium 
square F value Pr > F 

Model 6 33.34483 5.55747 4.10 0.0009 
Error 121 164.01281 1.35548   
Corrected 
total 127 197.35764    
Root MSE 1.16425 R-square 0.1690 
Dependent 
mean 3.39063 

R-square 
adj. 0.1277 

Coeff Var 34.33732 
  

Estimated parameters 

Variable Label DF 
Parameter 
estimate 

Standar
d error 

t 
value Pr > |t| 

Standardize
d estimate 

Intercept Intercept 1 5.31120 0.43620 12.18 <.0001 0 
Exp Experience 1 -0.04134 0.25607 -0.16 0.8720 -0.01376 
CO_TR Trust 1 -0.33208 0.08159 -4.07 <.0001 -0.34938 
CO_KN Knowledge 1 -0.09857 0.06981 -1.41 0.1605 -0.12476 
CO_HB Habit 1 -0.01910 0.09088 -0.21 0.8339 -0.02132 

Age 
How old are you? (from 15.5 
to 80 year's old) 1 -0.00764 0.00716 -1.07 0.2876 -0.10783 

Z2 Gender 1 0.02687 0.22253 0.12 0.9041 0.01052 
 

Individual regressions 

Experience -> Perceived risks 
Variance analysis 

Source DF 
Sum of 
squares 

Medium 
square F value Pr > F 

Model 3 5.65140 1.88380 1.22 0.3059 
Error 124 191.70624 1.54602   
Corrected 
total 127 197.35764    

 

Trust -> Perceived risks 
Variance analysis 

Source DF 
Sum of 
squares 

Medium 
square F value Pr > F 

Model 3 30.45161 10.15054 7.54 0.0001 
Error 124 166.90602 1.34602   
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Corrected 
total 127 197.35764    
Root MSE 1.16018 R-square 0.1543 
Dependent 
mean 3.39063 

R-square 
adj. 0.1338 

Coeff Var 34.21727 
 

 
Estimated parameters 

Variable Label DF 
Parameter 
estimate 

Standar
d error 

t 
value Pr > |t| 

Standardize
d estimate 

Intercept Intercept 1 5.03609 0.38048 13.24 <.0001 0 
CO_TR Trust 1 -0.34909 0.07970 -4.38 <.0001 -0.36728 
Age How old are you? (from 15.5 

to 80 year's old) 
1 -0.00992 0.00586 -1.69 0.0930 -0.13994 

Z2 Gender 1 -0.04541 0.21422 -0.21 0.8325 -0.01778 

Knowledge -> Perceived risks 
Variance analysis 

Source DF 
Sum of 
squares 

Medium 
square F value Pr > F 

Model 3 10.03058 3.34353 2.21 0.0899 
Error 124 187.32706 1.51070   
Corrected 
total 127 197.35764    

Habit -> Perceived risks 
Variance analysis 

Source DF 
Sum of 
squares 

Medium 
square F value Pr > F 

Model 3 4.75324 1.58441 1.02 0.3862 
Error 124 192.60440 1.55326   
Corrected 
total 127 197.35764    

 

Appendix  I: Coronalert, Moderation analysis 

Appendix I.1: Transparency 
Model Summary 
R R-sq MSE F df1 df2 p 
0.5411 0.2927 2.8921 17.1083 3.0000 124.0000 0.0000 
Model 

 coeff se t p LLCI ULCI 
constant 4.2295 1.3156 3.2150 0.0017 1.6257 6.8334 
CO_PR -0.5952 0.3815 -1.5602 0.1213 -1.3503 0.1599 
CO_TRP 0.5513 0.3179 1.7345 0.0853 -0.0778 1.1805 
Int_1 -0.0279 0.0965 -0.2893 0.7728 -0.2190 0.1632 

Since there the moderator is not significant, it is interesting to analyze if transparency has a 

direct impact on the adoption of the app.  
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Variance analysis 

Source DF 
Sum of 
squares 

Medium 
square F value Pr > F 

Model 3 57.69849 19.23283 5.31 0.0018 
Error 124 449.35620 3.62384   
Corrected 
total 127 507.05469    
Root MSE 1.90364 R-square 0.1138 
Dependent 
mean 3.83594 

R-square 
adj. 0.0924 

Coeff Var 49.62643 
 

 
Estimated parameters 

Variable Label DF 
Parameter 
estimate 

Standar
d error 

t 
value Pr > |t| 

Standardize
d estimate 

Intercept Intercept 1 1.58759 0.67472 2.35 0.0202 0 
CO_TRP Transparency regarding 

Coronalert 
1 0.65204 0.16521 3.95 0.0001 0.34325 

Age How old are you? (from 15.5 
to 80 year's old) 

1 -0.00566 0.00988 -0.57 0.5678 -0.04980 

Z2 Gender 1 0.23270 0.34681 0.67 0.5035 0.05683 
 

Appendix I.2: Control 
Model Summary 
R R-sq MSE F df1 df2 p 
0.5429 0.2947 2.8839 17.2737 3.0000 124.0000 0.0000 
Model 

 coeff se t p LLCI ULCI 
constant 3.3708 1.6009 2.1056 0.0373 0.2022 6.5394 
CO_PR -0.4437 0.4118 -1.0775 0.2833 -1.2588 0.3714 
CO_C 0.4800 0.2927 1.6399 0.1036 -0.0993 1.0593 
Int_1 -0.0172 0.0843 -0.2035 0.8391 -0.1841 0.1498 

Since there the moderator is not significant, it is interesting to analyze if control has a direct 

impact on the adoption of the app.  
Variance analysis 

Source DF 
Sum of 
squares 

Medium 
square F value Pr > F 

Model 3 111.38596 37.12865 11.64 <.0001 
Error 124 395.66873 3.19088   
Corrected 
total 127 507.05469    
Root MSE 1.78630 R-square 0.2197 
Dependent 
mean 3.83594 

R-square 
adj. 0.2008 

Coeff Var 46.56756 
 

 
Estimated parameters 

Variable Label DF 
Parameter 
estimate 

Standar
d error 

t 
value Pr > |t| 

Standardize
d estimate 

Intercept Intercept 1 0.77862 0.63367 1.23 0.2215 0 
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CO_C Control over Coronalert 1 0.68648 0.11685 5.88 <.0001 0.47159 

Age 
How old are you? (from 15.5 
to 80 year's old) 1 -0.00328 0.00909 -0.36 0.7190 -0.02884 

Z2 Gender 1 -0.00654 0.32622 -0.02 0.9840 -0.00160 
 

Appendix I.3: Bandwagon 
Model Summary 
R R-sq MSE F df1 df2 p 
0.5161 0.2663 3.0000 15.0054 3.0000 124.0000 0.0000 
Model 

 coeff se t p LLCI ULCI 
constant 4.5692 1.0852 4.2106 0.0000 2.4214 6.7171 
CO_PR -0.4162 0.3008 -1.3833 0.1691 -1.0116 0.1793 
CO_BW 0.7417 0.3916 1.8943 0.0605 -0.0333 1.5168 
Int_1 -0.1394 0.1098 -1.2700 0.2065 -0.3567 0.0779 

Since there the moderator is not significant, it is interesting to analyze if bandwagon has a 

direct impact on the adoption of the app.  
Variance analysis 

Source DF 
Sum of 
squares 

Medium 
square F value Pr > F 

Model 3 18.07487 6.02496 1.53 0.2106 
Error 124 488.97982 3.94339   
Corrected 
total 127 507.05469    

 

 

Appendix  J: CovidsafeBE, Descriptive statistics 
Variable Label N Average Std dev Minimum Maximum 
Z2 Gender 122 0.6147541 0.4886602 0 1.0000000 
Age How old are you? (from 15.5 to 80 year's old) 122 37.4754098 17.6064475 15.5000000 80.0000000 
Z5 Student 122 0.3688525 0.4844835 0 1.0000000 
Z6 Employee 122 0.2295082 0.4222507 0 1.0000000 
Z7 Retired 122 0.0737705 0.2624750 0 1.0000000 
Z8 Civil servent 122 0.1393443 0.3477335 0 1.0000000 
Z9 Long-term illness 122 0.0081967 0.0905357 0 1.0000000 
Z10 Self-employed 122 0.0737705 0.2624750 0 1.0000000 
Z11 Manager 122 0.0327869 0.1788127 0 1.0000000 
Z12 Currently unemployed 122 0.0327869 0.1788127 0 1.0000000 
Z13 Disability 122 0.0245902 0.1555111 0 1.0000000 
Z14 Liberal proffesion 122 0.0163934 0.1275067 0 1.0000000 
Z15 Higher secondary 122 0.1803279 0.3860457 0 1.0000000 
Z16 Bachelor 122 0.3196721 0.4682726 0 1.0000000 
Z17 Master 122 0.4918033 0.5019944 0 1.0000000 
Z18 PhD 122 0.0081967 0.0905357 0 1.0000000 
BE CovidsafeBE 122 1.0000000 0 1.0000000 1.0000000 
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Appendix  K: CovidsafeBE, Measurement scale analysis 

Appendix K.1: Trust construct 
4 items 

EFA: 
Factor pattern 
 Factor1 
TR2 TR_true_statement 0.91480 
TR3 TR_honest 0.90766 
TR1 TR_trust 0.87755 
TR4i TR_disbelief 0.67178 
Final Communality Estimates: Total = 2.882078 
TR1 TR2 TR3 TR4i 
0.77008576 0.83685061 0.82385526 0.45128649 

EFA without TR4i: 
Factor pattern 
 Factor1 
TR2 TR_true_statement 0.91481 
TR3 TR_honest 0.90587 
TR1 TR_trust 0.87331 
Final Communality Estimates: Total = 2.420158 
TR1 TR2 TR3 
0.76267125 0.83688318 0.82060361 

 

Cronbach’s Alpha: 
Cronbach Coefficient Alpha 
Variables Alpha 
Raw 0.936349 
Standardized 0.936379 

 

Appendix K.2: Knowledge construct 
6 items 

EFA: 
Factor pattern 
 Factor1 
KN6 KN_ease_use 0.92907 
KN2 KN_use 0.91917 
KN5 KN_concepts 0.89551 
KN3 KN_define 0.89520 
KN1 KN_explain 0.89041 
KN4 KN_basic 0.86267 
Final Communality Estimates: Total = 4.848393 
KN1 KN2 KN3 KN4 KN5 KN6 
0.79282747 0.84486818 0.80138367 0.74420014 0.80194694 0.86316628 
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Cronbach’s Alpha: 
Cronbach Coefficient Alpha 
Variables Alpha 
Raw 0.961169 
Standardized 0.961373 

Bandwagon construct 
3 items 

EFA: 
Factor pattern 
 Factor1 
BW3 BW_recognised 0.87620 
BW2 BW_approved 0.85074 
BW1 BW_used 0.83679 
Final Communality Estimates: Total = 2.191711 
BW1 BW2 BW3 
0.70022145 0.72375957 0.76773039 

 

Cronbach’s Alpha: 
Cronbach Coefficient Alpha 
Variables Alpha 
Raw 0.905924 
Standardized 0.906374 

Appendix K.3: Habit construct 
12 items 

EFA:  
Factor pattern 
 Factor1 
HB5 HB_thinking 0.86128 
HB10 HB_no_thinking 0.81927 
HB2 HB_automatic 0.81387 
HB3 HB_remember 0.79530 
HB8 HB_realize 0.78856 
HB7 HB_routine 0.76867 
HB9 HB_hard 0.76733 
HB12 HB_long_time 0.74468 
HB1 HB_often 0.73361 
HB6 HB_effort 0.70184 
HB4 HB_sensation 0.61958 
HB11 HB_typically_me 0.58848 
Final Communality Estimates: Total = 6.824876 
HB1 HB2 HB3 HB4 HB6 HB5 HB7 HB8 HB9 HB10 HB11 HB12 
0.5381
7826 

0.66238
995 

0.6325
0673 

0.3838
8306 

0.4925
8230 

0.7418
0170 

0.5908
5148 

0.6218
3231 

0.5888
0137 

0.6712
0039 

0.3463
0482 

0.5545
4324 

EFA without HB4, HB6 and HB11: 
Factor pattern 
 Factor1 
HB5 HB_thinking 0.85489 
HB2 HB_automatic 0.85430 
HB10 HB_no_thinking 0.81044 
HB3 HB_remember 0.80526 
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HB7 HB_routine 0.79898 
HB1 HB_often 0.78667 
HB12 HB_long_time 0.77514 
HB8 HB_realize 0.76073 
HB9 HB_hard 0.68490 
Final Communality Estimates: Total = 5.671781 
HB1 HB2 HB3 HB5 HB7 HB8 HB9 HB10 HB12 
0.6188446
6 

0.7298365
7 

0.6484478
2 

0.7308375
4 

0.6383705
5 

0.5787057
9 

0.4690823
0 

0.6568091
1 

0.6008461
8 

EFA without HB9: 
Factor pattern 
 Factor1 
HB2 HB_automatic 0.86563 
HB5 HB_thinking 0.84454 
HB7 HB_routine 0.81209 
HB3 HB_remember 0.80894 
HB1 HB_often 0.80884 
HB10 HB_no_thinking 0.78533 
HB12 HB_long_time 0.78278 
HB8 HB_realize 0.73482 
Final Communality Estimates: Total = 5.200110 
HB1 HB2 HB3 HB5 HB7 HB8 HB10 HB12 
0.65422059 0.74931573 0.65437693 0.71325565 0.65949449 0.53996040 0.61674761 0.61273890 

 

Cronbach’s Alpha: 
Cronbach Coefficient Alpha 
Variables Alpha 
Raw 0.932271 
Standardized 0.934800 

Appendix K.4: Control construct 
EFA: 

Factor pattern 
 Factor1 
BE_C2 BE_C_released 0.93489 
BE_C1 BE_C_persons 0.91040 
BE_C3 BE_C_used 0.90697 
Final Communality Estimates: Total = 2.525444 
BE_C1 BE_C2 BE_C3 
0.82882468 0.87402788 0.82259173 

 

Cronbach’s Alpha: 
Cronbach Coefficient Alpha 
Variables Alpha 
Raw 0.949127 
Standardized 0.949304 

 

Appendix K.5: Transparency construct 
EFA: 
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Factor pattern 
 Factor1 
BE_TRP3 BE_TRP_decisions 0.87703 
BE_TRP2 BE_TRP_info_rules 0.83292 
BE_TRP4 BE_TRP_performance 0.81371 
BE_TRP5 BE_TRP_globally 0.63060 
BE_TRP1 BE_TRP_activities 0.48792 
Final Communality Estimates: Total = 2.760788 
BE_TRP1 BE_TRP2 BE_TRP3 BE_TRP4 BE_TRP5 
0.23806975 0.69376064 0.76917838 0.66211813 0.39766132 

EFA without BE_TRP1 and BE_TRP5: 
Factor pattern 
 Factor1 
BE_TRP3 BE_TRP_decisions 0.88975 
BE_TRP2 BE_TRP_info_rules 0.81473 
BE_TRP4 BE_TRP_performance 0.78991 
Final Communality Estimates: Total = 2.079411  
BE_TRP2 BE_TRP3 BE_TRP4 
0.66379033 0.79165594 0.62396439 

Cronbach’s Alpha: 
Cronbach Coefficient Alpha 
Variables Alpha 
Raw 0.886091 
Standardized 0.886508 

Appendix K.6: Perceived benefits construct 
EFA: 

Factor pattern 
 Factor1 
BE_PB_4 BE_PB_forget 0.79379 
BE_PB_2 BE_PB_travel 0.78717 
BE_PB_3 BE_PB_at_hand 0.77758 
BE_PB_1 BE_PB_certificate 0.76672 
Final Communality Estimates: Total = 2.442231 
BE_PB_1 BE_PB_2 BE_PB_3 BE_PB_4 
0.58786218 0.61963132 0.60463669 0.63010128 

Cronbach’s Alpha: 
Cronbach Coefficient Alpha 
Variables Alpha 
Raw 0.873378 
Standardized 0.874246 

Appendix K.7: Perceived risks construct 
EFA: 

Factor pattern 
 Factor1 
BE_PR2 BE_PR_loss 0.88208 
BE_PR1 BE_PR_control 0.84306 
BE_PR3 BE_PR_steal 0.73098 
Final Communality Estimates: Total = 2.023152 
BE_PR1 BE_PR2 BE_PR3 
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0.71075572 0.77806434 0.53433155 
Cronbach’s Alpha: 

Cronbach Coefficient Alpha 
Variables Alpha 
Raw 0.875584 
Standardized 0.875512 

Appendix K.8: Adoption construct 
EFA: 

Factor pattern 
 Factor1 
BE_AD2 BE_AD_predict 0.96457 
BE_AD1 BE_AD_intend 0.96457 
Final Communality Estimates: Total = 1.860781 
BE_AD1 BE_AD2 
0.93039053 0.93039053 

Cronbach’s Alpha: 
Cronbach Coefficient Alpha 
Variables Alpha 
Raw 0.975601 
Standardized 0.975857 

Appendix  L: CovidsafeBE, Analysis of variance 

Appendix L.1: Immediate benefits 
Perceived benefits 

ANOVA 

Source DF Sum of squares Medium square F value Pr > F 
Model 2 39.1659372 19.5829686 15.44 <.0001 
Error 119 150.9616243 1.2685851   
Corrected total 121 190.1275615    
Level of 
CO_IB N 

CO_PB 
Average Std dev 

1 11 4.00000000 1.36930639 
2 7 2.28571429 1.39514464 
3 104 2.01682692 1.08176884 

Tukey  

Alpha 0.05 
Degree of freedom de 
l'Error 119 
Error quadratique 
Average 1.268585 
Critical value of 
studentized range 3.35649 
Significant comparisons at the 0.05 level indicated by ***. 
BE_IB Comparison Difference/between/average Simultaneous 95% - Confidence interval  
1-2 1.7143 0.4218 3.0068 *** 
1-3 1.9832 1.1356 2.8307 *** 
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2-3 0.2689 -0.7749 1.3127  
 

Perceived risks 

Anova 

Source DF Sum of squares Medium square F value Pr > F 
Model 2 30.7582648 15.3791324 8.65 0.0003 
Error 119 211.6864073 1.7788774   
Corrected total 121 242.4446721    
Level of 
CO_IB N 

CO_PB 
Average Std dev 

1 11 2.57575758 1.49138943 
2 7 3.04761905 1.48359637 
3 104 3.94230769 1.22138647 

 

Tukey  

Alpha 0.05 
Degree of freedom de 
l'Error 119 
Error quadratique 
Average 1.778877 
Critical value of 
studentized range 3.35649 
Significant comparisons at the 0.05 level indicated by ***. 
BE_IB Comparison Difference/between/average Simultaneous 95% - Confidence interval  
3-2 1.0529 -0.1832 2.2889  
3-1 1.5983 0.5947 2.6020 *** 
2-1 0.5455 -0.9850 2.0760  

 

Appendix L.2: Gender  
Adoption  

Anova 

Source DF Sum of squares Medium square F value Pr > F 
Model 1 0.7462440 0.7462440 0.27 0.6052 
Error 120 333.2721986 2.7772683   
Corrected total 121 334.0184426    

 

Perceived benefits 

Anova 

Source DF Sum of squares Medium square F value Pr > F 
Model 1 1.5397955 1.5397955 0.98 0.3242 
Error 120 188.5877660 1.5715647   
Corrected total 121 190.1275615    

 

Perceived risks 
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Anova 

Source DF Sum of squares Medium square F value Pr > F 
Model 1 0.0439629 0.0439629 0.02 0.8830 
Error 120 242.4007092 2.0200059   
Corrected total 121 242.4446721    

 

Appendix L.3: Age  
Adoption  

Pearson correlation 
Pearson correlation coefficients, N = 128 
Prob > |r| under H0: Rho=0 
 Age CO_AD 
Age 
How old are you? (from 15.5 to 80 year's old) 1.00000 

0.16205 
0.0745 

BE_AD 
Adoption of the CovidsafeBE application 

0.16205 
1.00000 0.0745 

 

Perceived benefits 
Pearson correlation coefficients, N = 128 
Prob > |r| under H0: Rho=0 
 Age CO_AD 
Age 
How old are you? (from 15.5 to 80 year's old) 1.00000 

0.25146 
0.0052 

BE_AD 
Adoption of the CovidsafeBE application 

0.25146 
1.00000 0.0052 

 

Source DF Sum of squares Medium square F value Pr > F 
Model 7 31.8510511 4.5501502 3.28 0.0033 
Error 114 158.2765104 1.3883904   
Corrected total 121 190.1275615    
Level of 
CO_IB N 

CO_PB 
Average Std dev 

0 1 1.00000000 . 
1 50 1.94000000 1.07209503 
2 16 2.39062500 1.04868469 
3 5 1.85000000 1.51657509 
4 8 2.50000000 1.21007674 
5 28 2.12500000 1.33420111 
6 12 2.83333333 1.22164817 
7 2 5.37500000 1.23743687 

 

 

Alpha 0.05 
Degree of freedom de 
l'Error 114 
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Error quadratique 
Average 1.38839 
Critical value of 
studentized range 4.36705 
Significant comparisons at the 0.05 level indicated by ***. 
CO_IB Comparison Difference/between/average Simultaneous 95% - Confidence interval  
7 - 6 2.5417 -0.2373 5.3207  
7 - 4 2.8750 -0.0015 5.7515  
7 - 2 2.9844 0.2555 5.7133 *** 
7 - 5 3.2500 0.5869 5.9131 *** 
7 - 1 3.4350 0.8112 6.0588 *** 
7 - 3 3.5250 0.4808 6.5692 *** 
7 - 0 4.3750 -0.0813 8.8313  
6 - 4 0.3333 -1.3274 1.9941  
6 - 2 0.4427 -0.9468 1.8322  
6 - 5 0.7083 -0.5471 1.9638  
6 - 1 0.8933 -0.2763 2.0630  
6 - 3 0.9833 -0.9534 2.9201  
6 - 0 1.8333 -1.9538 5.6205  
4 - 2 0.1094 -1.4662 1.6849  
4 - 5 0.3750 -1.0837 1.8337  
4 - 1 0.5600 -0.8255 1.9455  
4 - 3 0.6500 -1.4243 2.7243  
4 - 0 1.5000 -2.3593 5.3593  
2 - 5 0.2656 -0.8747 1.4059  
2 - 1 0.4506 -0.5945 1.4957  
2 - 3 0.5406 -1.3236 2.4048  
2 - 0 1.3906 -2.3599 5.1412  
5 - 1 0.1850 -0.6738 1.0438  
5 - 3 0.2750 -1.4915 2.0415  
5 - 0 1.1250 -2.5780 4.8280  
1 - 3 0.0900 -1.6166 1.7966  
1 - 0 0.9400 -2.7348 4.6148  
3 - 0 0.8500 -3.1358 4.8358  

 
 

Perceived risks 
Pearson correlation coefficients, N = 128 
Prob > |r| under H0: Rho=0 
 Age CO_AD 
Age 
How old are you? (from 15.5 to 80 year's old) 1.00000 

-0.17466 
0.0543 

BE_AD 
Adoption of the CovidsafeBE application 

-0.17466 
1.00000 0.0543 

 

Appendix L.4: Education  
Adoption  

Anova 

Source DF Sum of squares Medium square F value Pr > F 
Model 3 33.8365370 11.2788457 4.43 0.0054 
Error 118 300.1819056 2.5439145   
Corrected total 121 334.0184426    
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Level of 
CO_IB N 

CO_PB 
Average Std dev 

0 22 2.02272727 1.05195139 
1 39 2.78205128 1.97948316 
2 60 2.14166667 1.47318307 
3 1 7.00000000 . 

 

Tukey  

Alpha 0.05 
Degree of freedom de 
l'Error 118 
Error quadratique 
Average 2.543914 
Critical value of 
studentized range 3.68547 
Significant comparisons at the 0.05 level indicated by ***. 
Z3 Comparison Difference/between/average Simultaneous 95% - Confidence interval  
3 - 1 4.2179 0.0085 8.4274 *** 
3 - 2 4.8583 0.6673 9.0493 *** 
3 - 0 4.9773 0.7273 9.2272 *** 
1 - 2 0.6404 -0.2146 1.4953  
1 - 0 0.7593 -0.3490 1.8676  

 

Perceived benefits 

Anova 

Source DF Sum of squares Medium square F value Pr > F 
Model 3 9.8932739 3.2977580 2.16 0.0965 
Error 118 180.2342876 1.5274092   
Corrected total 121 190.1275615    

 

Perceived risks 

Anova 

Source DF Sum of squares Medium square F value Pr > F 
Model 3 13.0613073 4.3537691 2.59 0.0562 
Error 118 198.4696581 1.6819463   
Corrected total 121 211.5309654    

 

Appendix L.5: Occupation 
 Adoption  

Anova 

Source DF Sum of squares Medium square F value Pr > F 
Model 9 38.6924039 4.2991560 1.63 0.1150 
Error 112 295.3260387 2.6368396   
Corrected total 121 334.0184426    
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Perceived benefits 

Anova 

Source DF Sum of squares Medium square F value Pr > F 
Model 9 43.2527482 4.8058609 3.66 0.0005 
Error 112 146.8748133 1.3113823   
Corrected total 121 190.1275615    
Level of 
CO_IB N 

CO_PB 
Average Std dev 

0 45 1.98333333 1.10833618 
1 28 1.89285714 1.01477185 
2 9 3.55555556 1.63830027 
3 17 1.85294118 0.77590080 
4 1 1.00000000 . 
5 9 2.66666667 1.14564392 
6 4 2.50000000 1.41421356 
7 4 4.00000000 2.16024690 
8 3 3.16666667 1.28290036 
9 2 1.75000000 0.35355339 

 
Tukey  

Alpha 0.05 
Degree of freedom de 
l'Error 112 
Error quadratique 
Average 1.311382 
Critical value of 
studentized range 4.56569 
Significant comparisons at the 0.05 level indicated by ***. 
Z4 Comparison Difference/between/average Simultaneous 95% - Confidence interval  
7 - 2 0.4444 -1.7772 2.6661  
7 - 8 0.8333 -1.9903 3.6570  
7 - 5 1.3333 -0.8883 3.5550  
7 - 6 1.5000 -1.1142 4.1142  
7 - 0 2.0167 0.0877 3.9456 *** 
7 - 1 2.1071 0.1310 4.0833 *** 
7 - 3 2.1471 0.0925 4.2016 *** 
7 - 9 2.2500 -0.9517 5.4517  
7 - 4 3.0000 -1.1334 7.1334  
2 - 8 0.3889 -2.0758 2.8536  
2 - 5 0.8889 -0.8539 2.6317  
2 - 6 1.0556 -1.1661 3.2772  
2 - 0 1.5722 0.2222 2.9222 *** 
2 - 1 1.6627 0.2461 3.0793 *** 
2 - 3 1.7026 0.1786 3.2267 *** 
2 - 4 2.5556 -1.3415 6.4526  
8 - 5 0.5000 -1.9647 2.9647  
8 - 6 0.6667 -2.1570 3.4903  
8 - 0 1.1833 -1.0212 3.3878  
8 - 1 1.2738 -0.9721 3.5197  
8 - 3 1.3137 -1.0015 3.6289  
8 - 9 1.4167 -1.9583 4.7916  
8 - 4 2.1667 -2.1023 6.4357  
5 - 6 0.1667 -2.0550 2.3883  
5 - 0 0.6833 -0.6666 2.0333  
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5 - 1 0.7738 -0.6428 2.1904  
5 - 3 0.8137 -0.7103 2.3378  
5 - 9 0.9167 -1.9735 3.8068  
5 - 4 1.6667 -2.2304 5.5637  
6 - 0 0.5167 -1.4123 2.4456  
6 - 1 0.6071 -1.3690 2.5833  
6 - 3 0.6471 -1.4075 2.7016  
6 - 9 0.7500 -2.4517 3.9517  
6 - 4 1.5000 -2.6334 5.6334  
0 - 1 0.0905 -0.7994 0.9804  
0 - 3 0.1304 -0.9221 1.1829  
0 - 9 0.2333 -2.4383 2.9050  
0 - 4 0.9833 -2.7546 4.7212  
1 - 3 0.0399 -1.0968 1.1767  
1 - 9 0.1429 -2.5631 2.8488  
1 - 4 0.8929 -2.8696 4.6554  
3 - 9 0.1029 -2.6608 2.8667  
3 - 4 0.8529 -2.9513 4.6572  
9 - 4 0.7500 -3.7780 5.2780  

 

Perceived risks 

Anova 

Source DF Sum of squares Medium square F value Pr > F 
Model 9 28.0272001 3.1141333 1.63 0.1160 
Error 112 214.4174720 1.9144417   
Corrected total 121 242.4446721    

 

Appendix  M: CovidsafeBE, Descriptive statistics and 

correlation 
Variabl
e Label Average Std dev 

Minimu
m 

Maxim
um 

Exp Experience 0.2131148 0.4111968 0 1 
BE_TR Trust 3.5546448 1.2666599 1 7 
BE_HB Habit 3.0276639 1.3860387 1 7 
BE_BW Bandwagon 2.5300546 1.1263226 1 7 
BE_KN Knowledge 3.9972678 1.5856310 1 7 
IB_Cat1 Respondents who would never download 

CovidsafeBE 0.0901639 0.2875976 0 1 
IB_Cat2 Respondents who would download CovidsafeBE if the 

benefits were noticeable in one month or less 0.0573770 0.2335207 0 1 
IB_Cat3 Respondents who would download CovidsafeBE even 

if benefits are on the long term 0.8524590 0.3561068 0 1 
BE_C Control over CovidsafeBE 4.3360656 1.3205280 1 7 
BE_TR
P Transparancy over CovidsafeBE 3.6939891 1.0405817 1 7 

BE_PR 
Perceived risks regarding data privacy on 
CovidsafeBE 3.7677596 1.3221913 1 7 

BE_PB Perceived benefits of CovidsafeBE 2.2110656 1.2535159 1 7 
BE_AD Adoption of CovidsafeBE 2.3647541 1.6614701 1 7 
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Age How old are you? (from 15.5 to 80 year's old) 
37.475409
8 

17.606447
5 15.50 80 

Z2 Gender 0.6147541 0.4886602 0 1 
Z5 Student 0.3688525 0.4844835 0 1 
Z6 Employee 0.2295082 0.4222507 0 1 
Z7 Retired 0.0737705 0.2624750 0 1 
Z8 Civil servent 0.1393443 0.3477335 0 1 
Z9 Long-term illness 0.0081967 0.0905357 0 1 
Z10 Self-employed 0.0737705 0.2624750 0 1 
Z11 Manager 0.0327869 0.1788127 0 1 
Z12 Currently unemployed 0.0327869 0.1788127 0 1 
Z14 Liberal proffesion 0.0163934 0.1275067 0 1 
Z15 Higher secondary 0.1803279 0.3860457 0 1 
Z16 Bachelor 0.3196721 0.4682726 0 1 
Z17 Master 0.4918033 0.5019944 0 1 
Z18 PhD 0.0081967 0.0905357 0 1 

 

Appendix  N: CovidsafeBE, Multicollinearity test 
Adoption: Variance Inflation Factor and Tolerance 

Parameter estimates 
Variable Label DF Parameter 

estimate 
Standard 
error 

t 
value 

Pr > |t| Tolerance   Variance 
inflation 

Coefficients de corrélation de Pearson, N = 122 
Proba > |r| sous H0: Rho=0 
 Exp BE_TR BE_HB BE_KN BE_PR BE_PB BE_AD Age Z2 

Exp 
Experience 1.00000 

0.14142 
-
0.16269 0.02625 

-
0.17676 

-
0.06394 

-
0.09053 

-
0.10658 

-
0.08159 

0.1202 0.0734 0.7741 0.0515 0.4841 0.3214 0.2427 0.3717 

BE_TR 
Trust 

0.14142 
1.00000 

-
0.00077 0.20445 

-
0.44717 0.23840 0.31410 0.00784 0.16559 

0.1202 0.9933 0.0239 <.0001 0.0082 0.0004 0.9317 0.0683 

BE_HB 
Habit 

-
0.16269 

-
0.00077 

1.00000 
0.15970 

-
0.09060 0.29762 0.28246 0.60071 0.00824 

0.0734 0.9933 0.0789 0.3210 0.0009 0.0016 <.0001 0.9282 

BE_KN 
Knowledge 

0.02625 0.20445 0.15970 
1.00000 

-
0.23267 0.16263 0.09841 0.18201 0.26528 

0.7741 0.0239 0.0789 0.0099 0.0735 0.2808 0.0448 0.0031 
BE_PR 
Perceived risks 
regarding data privacy 
on CovidsafeBE 

-
0.17676 

-
0.44717 

-
0.09060 

-
0.23267 

1.00000 

-
0.20122 

-
0.32353 

-
0.18687 0.02240 

0.0515 <.0001 0.3210 0.0099 0.0263 0.0003 0.0393 0.8065 
BE_PB 
Perceived benefits of 
CovidsafeBE 

-
0.06394 0.23840 0.29762 0.16263 

-
0.20122 

1.00000 
0.70825 0.25146 0.08999 

0.4841 0.0082 0.0009 0.0735 0.0263 <.0001 0.0052 0.3242 
BE_AD 
Adoption of 
CovidsafeBE 

-
0.09053 0.31410 0.28246 0.09841 

-
0.32353 0.70825 

1.00000 
0.16205 0.04727 

0.3214 0.0004 0.0016 0.2808 0.0003 <.0001 0.0745 0.6052 
Age 
How old are you? (from 
15.5 to 80 year's old) 

-
0.10658 0.00784 0.60071 0.18201 

-
0.18687 0.25146 0.16205 

1.00000 
0.05652 

0.2427 0.9317 <.0001 0.0448 0.0393 0.0052 0.0745 0.5363 

Z2 
Gender 

-
0.08159 0.16559 0.00824 0.26528 0.02240 0.08999 0.04727 0.05652 

1.00000 0.3717 0.0683 0.9282 0.0031 0.8065 0.3242 0.6052 0.5363 
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Intercept Intercept 1 1.46569 0.47362 3.09 0.0025 . 0 
BE_PR Perceived risks regarding data privacy on 

CovidsafeBE 
1 -0.24476 0.08157 -3.00 0.0033 0.93760 1.06655 

BE_PB Perceived benefits of CovidsafeBE 1 0.90272 0.08755 10.31 <.0001 0.90552 1.10433 
Age How old are you? (from 15.5 to 80 year's old) 1 -0.00427 0.00620 -0.69 0.4927 0.91583 1.09191 
Z2 Gender 1 -0.02416 0.21496 -0.11 0.9107 0.98848 1.01166 

 
Collinearity diagnostic 
  Proportion of variation 
Number Eigenvalue Condition index Intercept BE_PR BE_PB Age Z2 
1 4.26529 1.00000 0.00253 0.00491 0.01003 0.00788 0.01527 
2 0.33046 3.59266 0.00285 0.00316 0.06042 0.03803 0.92490 
3 0.22127 4.39046 0.01302 0.20923 0.43899 0.01436 0.04043 
4 0.14887 5.35276 0.00089182 0.06172 0.36829 0.72396 0.00388 
5 0.03412 11.18145 0.98070 0.72098 0.12228 0.21578 0.01552 

 

Perceived benefits: Variance Inflation Factor and Tolerance 
Variable Label DF Parameter estimate Standard error t value Pr > |t| Tolerance   Variance inflation 

Intercept Intercept 1 0.34708 0.44742 0.78 0.4395 . 0 
BE_TR Trust 1 0.22650 0.08804 2.57 0.0114 0.92293 1.08351 
BE_HB Habit 1 0.19917 0.09787 2.04 0.0441 0.62366 1.60344 
BE_KN Knowledge 1 0.04501 0.07254 0.62 0.5362 0.86747 1.15278 
Exp Experience 1 -0.14998 0.26875 -0.56 0.5779 0.93980 1.06406 
Age How old are you? (from 15.5 to 80 year's old) 1 0.00714 0.00766 0.93 0.3533 0.63042 1.58624 
Z2 Gender 1 0.06539 0.23084 0.28 0.7775 0.90195 1.10871 

 
Collinearity diagnostic 

  Proportion of variation 
Number Eigenvalue Condition index Intercept BE_TR BE_HB BE_KN Exp Age Z2 
1 5.48474 1.00000 0.00180 0.00312 0.00311 0.00355 0.00635 0.00330 0.00814 
2 0.79717 2.62302 0.00008301 0.00001528 0.00333 0.00040323 0.85743 0.00261 0.01246 
3 0.34791 3.97051 0.00142 0.00000192 0.04288 0.00008509 0.00331 0.03753 0.73423 
4 0.15998 5.85516 0.02185 0.21804 0.09177 0.08899 0.11928 0.15223 0.22010 
5 0.09704 7.51815 0.00818 0.31732 0.00779 0.81443 0.00236 0.00046946 0.01842 
6 0.06960 8.87690 0.00123 0.01344 0.77397 5.425009E-8 0.00732 0.78980 0.00626 
7 0.04356 11.22150 0.96543 0.44806 0.07715 0.09255 0.00394 0.01405 0.00039824 

 

Perceived risks: Variance Inflation Factor and Tolerance 
Variable Label DF Parameter estimate Standard error t value Pr > |t| Tolerance   Variance inflation 

Intercept Intercept 1 6.14522 0.43691 14.07 <.0001 . 0 
BE_TR Trust 1 -0.43896 0.08597 -5.11 <.0001 0.92293 1.08351 
BE_HB Habit 1 0.02761 0.09557 0.29 0.7732 0.62366 1.60344 
BE_KN Knowledge 1 -0.12339 0.07084 -1.74 0.0842 0.86747 1.15278 
Exp Experience 1 -0.38133 0.26244 -1.45 0.1489 0.93980 1.06406 
Age How old are you? (from 15.5 to 80 year's old) 1 -0.01458 0.00748 -1.95 0.0538 0.63042 1.58624 
Z2 Gender 1 0.35811 0.22542 1.59 0.1149 0.90195 1.10871 

 
Collinearity diagnostic 

  Proportion of variation 
Number Eigenvalue Condition index Intercept BE_TR BE_HB BE_KN Exp Age Z2 
1 5.48474 1.00000 0.00180 0.00312 0.00311 0.00355 0.00635 0.00330 0.00814 
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2 0.79717 2.62302 0.00008301 0.00001528 0.00333 0.00040323 0.85743 0.00261 0.01246 
3 0.34791 3.97051 0.00142 0.00000192 0.04288 0.00008509 0.00331 0.03753 0.73423 
4 0.15998 5.85516 0.02185 0.21804 0.09177 0.08899 0.11928 0.15223 0.22010 
5 0.09704 7.51815 0.00818 0.31732 0.00779 0.81443 0.00236 0.00046946 0.01842 
6 0.06960 8.87690 0.00123 0.01344 0.77397 5.425009E-8 0.00732 0.78980 0.00626 
7 0.04356 11.22150 0.96543 0.44806 0.07715 0.09255 0.00394 0.01405 0.00039824 

 

Appendix  O: CovidsafeBE, Regressions  

Appendix O.1: Model 1 

DV= Adoption, IV= Perceived benefits, IV= perceived risks, CV= Age and gender 
Variance analysis 

Source DF 
Sum of 
squares 

Medium 
square F value Pr > F 

Model 4 179.60925 44.90231 34.02 <.0001 
Error 117 154.40920 1.31974   
Corrected 
total 121 334.01844    
Root MSE 1.14880 R-square 0.5377 
Dependent 
mean 2.36475 

R-square 
adj. 0.5219 

Coeff Var 48.58002   
Estimated parameters 

Variable Label DF 
Parameter 
estimate 

Standar
d error 

t 
value Pr > |t| 

Standardize
d estimate 

Intercept Intercept 1 1.46569 0.47362 3.09 0.0025 0 

BE_PB 
Perceived benefits of 
CovidsafeBE 1 0.90272 0.08755 10.31 <.0001 0.68107 

BE_PR 
Perceived risks regarding data 
privacy on CovidsafeBE 1 -0.24476 0.08157 -3.00 0.0033 -0.19478 

Age 
How old are you? (from 15.5 
to 80 year's old) 1 -0.00427 0.00620 -0.69 0.4927 -0.04520 

Z2 Gender 1 -0.02416 0.21496 -0.11 0.9107 -0.00711 
 

Individual regressions 

Perceived benefits -> Adoption 
Variance analysis 

Source DF 
Sum of 
squares 

Medium 
square F value Pr > F 

Model 3 167.72775 55.90925 39.67 <.0001 
Error 118 166.29070 1.40924   
Corrected 
total 121 334.01844    
Root MSE 1.18712 R-square 0.5022 
Dependent 
mean 2.36475 

R-square 
adj. 0.4895 

Coeff Var 50.20038   
Estimated parameters 
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Variable Label DF 
Parameter 
estimate 

Standar
d error 

t 
value Pr > |t| 

Standardize
d estimate 

Intercept Intercept 1 0.36473 0.30945 1.18 0.2409 0 

BE_PB 
Perceived benefits of 
CovidsafeBE 1 0.94618 0.08923 10.60 <.0001 0.71386 

Age 
How old are you? (from 15.5 
to 80 year's old) 1 -0.00156 0.00634 -0.25 0.8058 -0.01655 

Z2 Gender 1 -0.05454 0.22188 -0.25 0.8063 -0.01604 
 

Perceived risks -> Adoption  
Variance analysis 

Source DF 
Sum of 
squares 

Medium 
square F value Pr > F 

Model 3 39.31222 13.10407 5.25 0.0020 
Error 118 294.70622 2.49751   
Corrected 
total 121 334.01844    
Root MSE 1.58035 R-square 0.1177 
Dependent 
mean 2.36475 

R-square 
adj. 0.0953 

Coeff Var 66.82942   
Estimated parameters 

Variable Label DF 
Parameter 
estimate 

Standar
d error 

t 
value Pr > |t| 

Standardize
d estimate 

Intercept Intercept 1 3.34867 0.60115 5.57 <.0001 0 

BE_PR 
Perceived risks regarding data 
privacy on CovidsafeBE 1 -0.38391 0.11067 -3.47 0.0007 -0.30551 

Age 
How old are you? (from 15.5 
to 80 year's old) 1 0.00965 0.00832 1.16 0.2487 0.10223 

Z2 Gender 1 0.16433 0.29464 0.56 0.5781 0.04833 
 

Appendix O.2: Model 2 

DV= Perceived benefits, IV= Experience, Trust, Knowledge, Habit, CV= Age and gender 
Variance analysis 

Source DF 
Sum of 
squares 

Medium 
square F value Pr > F 

Model 6 30.42703 5.07117 3.65 0.0024 
Error 115 159.70054 1.38870   
Corrected 
total 121 190.12756    
Root MSE 1.17843 R-square 0.1600 
Dependent 
mean 2.21107 

R-square 
adj. 0.1162 

Coeff Var 53.29699 
  

Estimated parameters 

Variable Label DF 
Parameter 
estimate 

Standar
d error 

t 
value Pr > |t| 

Standardize
d estimate 

Intercept Intercept 1 0.34708 0.44742 0.78 0.4395 0 
Exp Experience 1 -0.14998 0.26875 -0.56 0.5779 -0.04920 
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BE_HB Habit 1 0.19917 0.09787 2.04 0.0441 0.22023 
BE_TR Trust 1 0.22650 0.08804 2.57 0.0114 0.22888 
BE_KN Knowledge 1 0.04501 0.07254 0.62 0.5362 0.05693 

Age 
How old are you? (from 15.5 
to 80 year's old) 1 0.00714 0.00766 0.93 0.3533 0.10032 

Z2 Gender 1 0.06539 0.23084 0.28 0.7775 0.02549 
 

Individual regressions 

Experience -> Perceived benefits 
Variance analysis 

Source DF 
Sum of 
squares 

Medium 
square F value Pr > F 

Model 3 13.30788 4.43596 2.96 0.0351 
Error 118 176.81968 1.49847   
Corrected 
total 121 190.12756    
Root MSE 1.22412 R-square 0.0700 
Dependent 
mean 2.21107 

R-square 
adj. 0.0464 

Coeff Var 55.36339 
  

Estimated parameters 

Variable Label DF 
Parameter 
estimate 

Standar
d error 

t 
value Pr > |t| 

Standardize
d estimate 

Intercept Intercept 1 1.46501 0.30525 4.80 <.0001 0 
Exp Experience 1 -0.09737 0.27298 -0.36 0.7220 -0.03194 

Age 
How old are you? (from 15.5 
to 80 year's old) 1 0.01736 0.00636 2.73 0.0073 0.24389 

Z2 Gender 1 0.18880 0.22876 0.83 0.4109 0.07360 
 

Trust -> Perceived benefits 
Variance analysis 

Source DF 
Sum of 
squares 

Medium 
square F value Pr > F 

Model 3 22.91473 7.63824 5.39 0.0016 
Error 118 167.21283 1.41706   
Corrected 
total 121 190.12756    
Root MSE 1.19040 R-square 0.1205 
Dependent 
mean 2.21107 

R-square 
adj. 0.0982 

Coeff Var 53.83840 
  

Estimated parameters 

Variable Label DF 
Parameter 
estimate 

Standar
d error 

t 
value Pr > |t| 

Standardize
d estimate 

Intercept Intercept 1 0.68120 0.40169 1.70 0.0925 0 
BE_TR Trust 1 0.22779 0.08663 2.63 0.0097 0.23018 

Age 
How old are you? (from 15.5 
to 80 year's old) 1 0.01762 0.00616 2.86 0.0050 0.24751 

Z2 Gender 1 0.09719 0.22491 0.43 0.6664 0.03789 
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Knowledge -> Perceived benefits 
Variance analysis 

Source DF 
Sum of 
squares 

Medium 
square F value Pr > F 

Model 3 15.12074 5.04025 3.40 0.0202 
Error 118 175.00682 1.48311   
Corrected 
total 121 190.12756    
Root MSE 1.21783 R-square 0.0795 
Dependent 
mean 2.21107 

R-square 
adj. 0.0561 

Coeff Var 55.07885 
  

Estimated parameters 

Variable Label DF 
Parameter 
estimate 

Standar
d error 

t 
value Pr > |t| 

Standardize
d estimate 

Intercept Intercept 1 1.18205 0.36021 3.28 0.0014 0 
BE_KN Knowledge 1 0.08546 0.07353 1.16 0.2475 0.10811 

Age 
How old are you? (from 15.5 
to 80 year's old) 1 0.01631 0.00640 2.55 0.0121 0.22905 

Z2 Gender 1 0.12407 0.23499 0.53 0.5985 0.04837 
 

Habit -> Perceived benefits 
Variance analysis 

Source DF 
Sum of 
squares 

Medium 
square F value Pr > F 

Model 3 19.68625 6.56208 4.54 0.0047 
Error 118 170.44132 1.44442   
Corrected 
total 121 190.12756    
Root MSE 1.20184 R-square 0.1035 
Dependent 
mean 2.21107 

R-square 
adj. 0.0808 

Coeff Var 54.35566 
  

Estimated parameters 

Variable Label DF 
Parameter 
estimate 

Standar
d error 

t 
value Pr > |t| 

Standardize
d estimate 

Intercept Intercept 1 1.15905 0.31269 3.71 0.0003 0 
BE_HB Habit 1 0.21038 0.09865 2.13 0.0350 0.23262 

Age 
How old are you? (from 15.5 
to 80 year's old) 1 0.00762 0.00778 0.98 0.3290 0.10708 

Z2 Gender 1 0.21041 0.22406 0.94 0.3496 0.08202 

Appendix O.3: Model 3 

DV= Perceived risks, IV= Experience, Trust, Knowledge, Habit, CV= Age and gender 
Variance analysis 

Source DF 
Sum of 
squares 

Medium 
square F value Pr > F 

Model 6 59.24117 9.87353 7.46 <.0001 
Error 115 152.28979 1.32426   
Corrected 
total 121 211.53097    
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Root MSE 1.15076 R-square 0.2801 
Dependent 
mean 3.76776 

R-square 
adj. 0.2425 

Coeff Var 30.54241 
  

Estimated parameters 

Variable Label DF 
Parameter 
estimate 

Standar
d error 

t 
value Pr > |t| 

Standardize
d estimate 

Intercept Intercept 1 6.14522 0.43691 14.07 <.0001 0 
Exp Experience 1 -0.38133 0.26244 -1.45 0.1489 -0.11859 
BE_HB Habit 1 0.02761 0.09557 0.29 0.7732 0.02894 
BE_TR Trust 1 -0.43896 0.08597 -5.11 <.0001 -0.42052 
BE_KN Knowledge 1 -0.12339 0.07084 -1.74 0.0842 -0.14797 

Age 
How old are you? (from 15.5 
to 80 year's old) 1 -0.01458 0.00748 -1.95 0.0538 -0.19414 

Z2 Gender 1 0.35811 0.22542 1.59 0.1149 0.13235 
 

Individual regressions 

Experience -> Perceived risks 
Variance analysis 

Source DF 
Sum of 
squares 

Medium 
square F value Pr > F 

Model 3 15.73174 5.24391 3.16 0.0273 
Error 118 195.79923 1.65932   
Corrected 
total 121 211.53097    
Root MSE 1.28814 R-square 0.0744 
Dependent 
mean 3.76776 

R-square 
adj. 0.0508 

Coeff Var 34.18860 
  

Estimated parameters 

Variable Label DF 
Parameter 
estimate 

Standar
d error 

t 
value Pr > |t| 

Standardize
d estimate 

Intercept Intercept 1 4.46107 0.32122 13.89 <.0001 0 
Exp Experience 1 -0.63523 0.28725 -2.21 0.0289 -0.19756 

Age 
How old are you? (from 15.5 
to 80 year's old) 1 -0.01569 0.00670 -2.34 0.0208 -0.20895 

Z2 Gender 1 0.04896 0.24073 0.20 0.8392 0.01810 

Trust -> Perceived risks 
Variance analysis 

Source DF 
Sum of 
squares 

Medium 
square F value Pr > F 

Model 3 51.88922 17.29641 12.78 <.0001 
Error 118 159.64175 1.35290   
Corrected 
total 121 211.53097    
Root MSE 1.16314 R-square 0.2453 
Dependent 
mean 3.76776 

R-square 
adj. 0.2261 

Coeff Var 30.87088 
  

Estimated parameters 
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Variable Label DF 
Parameter 
estimate 

Standar
d error 

t 
value Pr > |t| 

Standardize
d estimate 

Intercept Intercept 1 5.83932 0.39249 14.88 <.0001 0 
BE_TR Trust 1 -0.48423 0.08465 -5.72 <.0001 -0.46389 

Age 
How old are you? (from 15.5 
to 80 year's old) 1 -0.01423 0.00602 -2.37 0.0197 -0.18944 

Z2 Gender 1 0.29743 0.21976 1.35 0.1785 0.10992 

Knowledge -> Perceived risks 
Variance analysis 

Source DF 
Sum of 
squares 

Medium 
square F value Pr > F 

Model 3 17.67820 5.89273 3.59 0.0159 
Error 118 193.85277 1.64282   
Corrected 
total 121 211.53097    
Root MSE 1.28173 R-square 0.0836 
Dependent 
mean 3.76776 

R-square 
adj. 0.0603 

Coeff Var 34.01824 
  

Estimated parameters 

Variable Label DF 
Parameter 
estimate 

Standar
d error 

t 
value Pr > |t| 

Standardize
d estimate 

Intercept Intercept 1 4.80343 0.37911 12.67 <.0001 0 
BE_KN Knowledge 1 -0.19152 0.07739 -2.47 0.0148 -0.22968 

Age 
How old are you? (from 15.5 
to 80 year's old) 1 -0.01128 0.00673 -1.68 0.0963 -0.15025 

Z2 Gender 1 0.24845 0.24732 1.00 0.3172 0.09182 

Habit -> Perceived risks 
Variance analysis 

Source DF 
Sum of 
squares 

Medium 
square F value Pr > F 

Model 3 7.78488 2.59496 1.50 0.2174 
Error 118 203.74609 1.72666   
Corrected 
total 121 211.53097    

Appendix  P: CovidsafeBE, Moderation analysis 

Appendix P.1: Transparency 
Model Summary 
R R-sq MSE F df1 df2 p 
0.3454 0.1193 2.4930 5.3272 3.0000 118.0000 0.0018 
Model 

 coeff se t p LLCI ULCI 
constant 5.5508 1.2690 4.3743 0.0000 3.0379 8.0637 
BE_PR -0.8093 0.3213 -2.5183 0.0131 -1.4456 -0.1729 
BE_TRP -0.4207 0.3038 -1.3850 0.1687 -1.0222 0.1808 
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Int_1 0.1023 0.0773 1.3233 0.1883 -0.0508 0.2555 
Since there the moderator is not significant, it is interesting to analyze if transparency has a 

direct impact on the adoption of the app.  
Variance analysis 

Source DF 
Sum of 
squares 

Medium 
square F value Pr > F 

Model 3 9.82179 3.27393 1.19 0.3160 
Error 118 324.19665 2.74743   
Corrected 
total 121 334.01844    

Appendix P.2: Control 
Model Summary 
R R-sq MSE F df1 df2 p 
0.3682 0.1356 2.4469 6.1687 3.0000 118.0000 0.0006 
Model 

 coeff se t p LLCI ULCI 
constant 1.0447 1.5069 0.6933 0.4895 -1.9394 4.0288 
BE_PR 0.2820 0.3559 0.7924 0.4297 -0.4228 0.9867 
BE_C 0.5653 0.2770 2.0407 0.0435 0.0167 1.1138 
Int_1 -0.1437 0.0761 -1.8875 0.0616 -0.2944 0.0071 

 
Variance analysis 

Source DF 
Sum of 
squares 

Medium 
square F value Pr > F 

Model 3 24.78568 8.26189 3.15 0.0275 
Error 118 309.23276 2.62062   
Corrected 
total 121 334.01844    
Root MSE 1.61883 R-square 0.0742 
Dependent 
mean 2.36475 

R-square 
adj. 0.0507 

Coeff Var 68.45667 
  

Estimated parameters 

Variable Label DF 
Parameter 
estimate 

Standar
d error 

t 
value Pr > |t| 

Standardize
d estimate 

Intercept Intercept 1 0.73549 0.55777 1.32 0.1898 0 
BE_C Control over CovidsafeBE 1 0.28352 0.11648 2.43 0.0164 0.22534 

Age 
How old are you? (from 15.5 
to 80 year's old) 1 0.00900 0.00874 1.03 0.3051 0.09537 

Z2 Gender 1 0.10187 0.30187 0.34 0.7364 0.02996 
 

Appendix P.3: Bandwagon 
Model Summary 
R R-sq MSE F df1 df2 p 
0.4295 0.1845 2.3084 8.8990 3.0000 118.0000 0.0000 
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Model 

 coeff se t p LLCI ULCI 
constant 2.9860 1.0076 2.9634 0.0037 0.9906 4.9814 
BE_PR -0.4464 0.2592 -1.7225 0.0876 -0.9597 0.0668 
BE_BW 0.3370 0.3779 0.8918 0.3743 -0.4113 1.0853 
Int_1 0.0220 0.0991 0.2215 0.8251 -0.1744 0.2183 

Since there the moderator is not significant, it is interesting to analyze if bandwagon has a 

direct impact on the adoption of the app.  

 
Variance analysis 

Source DF 
Sum of 
squares 

Medium 
square F value Pr > F 

Model 3 29.68811 9.89604 3.84 0.0116 
Error 118 304.33033 2.57907   
Corrected 
total 121 334.01844    
Root MSE 1.60595 R-square 0.0889 
Dependent 
mean 2.36475 

R-square 
adj. 0.0657 

Coeff Var 67.91186 
  

Estimated parameters 

Variable Label DF 
Parameter 
estimate 

Standar
d error 

t 
value Pr > |t| 

Standardize
d estimate 

Intercept Intercept 1 1.12724 0.43549 2.59 0.0109 0 
BE_BW Bandwagon 1 0.41605 0.14782 2.81 0.0057 0.28205 

Age 
How old are you? (from 15.5 
to 80 year's old) 1 0.00227 0.00947 0.24 0.8107 0.02409 

Z2 Gender 1 0.16214 0.29946 0.54 0.5892 0.04769 
 

 


