
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE PROFESSIONAL FOCUS IN DATA SCIENCE

Automated and Disciplined ConvNet Architecture Exploration

Gratia, Antoine

Award date:
2021

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 19. Apr. 2024

https://researchportal.unamur.be/en/studentTheses/3621410f-08b4-41c1-9d21-b132cef9c055

Automated and Disciplined ConvNet

Architecture Exploration

Antoine GRATIA

RUE GRANDGAGNAGE, 21 l B-5000 NAMUR(BELGIUM)

Université de Namur
Faculté d’informatique

Année académique 2020–2021

Automated and Disciplined ConvNet

Architecture Exploration

Antoine GRATIA

Mâıtre de stage : Mathieu ACHER

Promoteur : (Signature pour approbation du dépôt - REE art. 40)

Gilles PERROUIN

Co-promoteur : Paul TEMPLE, Benoit FRENAY

Mémoire présenté en vue de l’obtention du grade de
Master en Sciences Informatiques.

Acknowledgments

I would like to thank all the people who contributed to the success of my intern-
ship and who helped me to write this master thesis. I would like to express my
gratitude to them. I would like to thank the team for their good humour despite
the sanitary conditions which are not optimal. I also thank you for your advice
and your remarks concerning my work.

First of all, I would like to express my deepest gratitude to my internship supervisor
Prof. Mathieu Acher for taking time to have meetings every day with sometimes
some technical difficulties. I thank you for helping me, guiding me through this
internship.

I would also like to pay my special regards to my master’s thesis supervisor Dr.
Gilles Perrouin for his patience, his availability and above all his judicious advice,
which contributed to my reflection.

I wish to show my deep gratitude to Dr. Paul Temple and Prof. Benôıt Frénay.
First of all, Paul, thank you for giving me the meetings, time and answering my
questions about what a PhD is and how it works, as well as your experience.
Next, Benoit, thank you for your availability and your tips and for answering my
questions regarding Machine Learning. They have been of great support in the
development of this master thesis.

I would like to thank Irisa/Inria Rennes, France, for welcoming me (virtually) for
this internship. In particular, many thanks to the DiverSE team in which I was a
part during these few months.

i

Abstract

Convolutional neural networks (CNNs) are widely used for diverse tasks, such as
image recognition and analysis. Recently, research aimed at finding CNN archi-
tectures that can be used in various contexts/applications and provide the latest
performance has yielded fruitful results, resulting in numerous recommendation
models tailored for more or less specific purposes. Finding the right CNN is a
challenging issue: there are many possible architectures, hyperparameters, and
frameworks that can be considered. From a software engineering perspective, hav-
ing such diversity can be difficult to deal with when trying to maintain a system
or trying to reason effectively (for example, consider choosing the best solution for
deployment on a system with high potential impact on daily life). In this master
thesis, we investigate how variability can be expressed to derive different CNN
variants. We develop a generator on top of Keras for deriving variants of LeNet,
ResNet, and DenseNet architectures. Our results show that we can reach accurate
results on MNIST and CIFAR-10. The next step of our work is to improve the
generator for other architectures (e.g. Xception, SqueezeNet,...) and find optimal
ways to explore the configuration space.

ii

Contents

Acknowledgments i

Abstract ii

1 Introduction . 1
2 Background . 2

2.1 Software Product Lines . 2
2.1.1 Feature Models . 2

2.2 Deep Learning . 3
2.3 Convolutional Neural Network 3

2.3.1 Architectures . 4
2.3.1.1 LeNet . 4
2.3.1.2 Residual Network 5
2.3.1.3 DenseNet 5

3 Context . 7
3.1 Automated Search for Configurations of Deep Neural Net-

work Architectures . 7
3.2 Auto-Keras: An Efficient Neural Architecture Search System 9
3.3 Challenge . 10

4 Questions & Experimental Protocol 11
4.1 Research Questions . 11
4.2 Experimental Protocol . 12

4.2.1 Strategy . 12
4.2.2 Empirical Workflow 12

5 Variation Points . 13
5.1 Layers . 13

5.1.1 Convolution . 13
5.1.2 Subsampling . 14
5.1.3 Pooling . 14

5.1.3.1 Average Pooling 14
5.1.3.2 Max-Pooling 14

iii

5.1.3.3 Examples 14
5.1.4 Global Pooling . 14
5.1.5 Fully Connected 15
5.1.6 Flatten . 16
5.1.7 Dropout . 16
5.1.8 Batch Normalisation 16

5.2 Hyperparameters . 17
5.2.1 Padding . 17
5.2.2 Stride . 17
5.2.3 Activation Function 18

5.2.3.1 ReLu . 18
5.2.3.2 SeLu . 19
5.2.3.3 Softmax 20
5.2.3.4 TanH . 21

5.2.4 Loss Function . 22
5.2.4.1 Categorical Cross-Entropy 22

5.2.5 Optimization Function 22
5.2.5.1 Learning Rate 22
5.2.5.2 Adam . 23

5.3 Summary . 23
6 Variability Models . 24

6.1 Feature Models . 24
6.1.1 Architecture . 24

6.1.1.1 Description 24
6.1.2 Hyperparameters 25

6.1.2.1 Description 25
6.1.3 Problem . 27

6.2 State Machines . 28
6.2.1 LeNet State Machines 28
6.2.2 ResNet State Machines 29
6.2.3 DenseNet State Machines 31

6.3 RQ1: Modelling Variability 33
7 Generators . 34

7.1 LeNet Generator . 34
7.2 ResNet Generator . 35
7.3 DenseNet Generator . 36
7.4 RQ2: Engineeing a Generator 37

8 Results . 38
8.1 Experimental Settings . 38

8.1.1 Generator Workflow 38

iv

8.1.2 Datasets . 39
8.1.3 Training . 39
8.1.4 Hardware . 39

8.2 Constraints Results . 40
8.3 RQ3: Performance of Generated Architectures Compared to

the State of the Art . 41
9 Conclusion and Future work . 47

9.1 Conclusion . 47
9.2 Future Work . 47
List of Figures . 50

Bibliography 51

v

Automated and Disciplined ConvNet Architecture Exploration

1 Introduction

Today, advances in hardware and algorithms have enabled the development of
extremely complex but that are extremely efficient regarding the performance (ac-
curacy) and that are also precise in object recognizing of deep learning techniques.
This allows for a widespread usage of these techniques in numerous fields: medical
imaging, recognition of entities in images, natural language processing, etc. A very
common application of Deep Learning (DL) is the support of automated classifica-
tion tasks. There is no single algorithm (realized via a DL architecture) that copes
optimally with all possible tasks and contexts, in other terms “one size fits all” does
not apply to Machine Learning (ML). Consequently, many algorithms and archi-
tectures were subsequently proposed in the scientific literature. A model of deep
neural networks with multiple layers has been proposed [7]. This master thesis
offers to explore the variability of several popular state-of-art convolutional neural
network architectures, also called ConvNets: LeNet, ResNet, DenseNet. We do it
in a disciplined way, by having a common workflow to desing increasingly complex
and knowledgeable (via constraint) generators able to generate cross-architecture
variants. In short, this master thesis makes the following contributions:

• The modelling of the variability via state machine for the part of the CNNs
architecture;

• The modelling of the variability via a feature model for the hyperparameters
part of CNNs architecture;

• The construction of a cross-architecture generator.

In Section 2, we introduce the background concepts on Convolutional Neural Net-
work and the software variability. In Section 3 we discuss the context, motivation
and overview of the state of the art of this work. Section 4 formulate the different
research questions and the experimental protocol. In Section 5, we present varia-
tion points in CNN architectures. Then, in Section 6 we model CNN variants with
feature models and state machines. Section 7 present three architecture generators
that exploit our models. In Section 8, we present our results and in Section 9 we
conclude.

1

2. BACKGROUND

2 Background

This section introduces variability and deep learning concepts, core to this master
thesis.

2.1 Software Product Lines

Software Product Lines (abbreviated SPLs) are “a set of software-intensive systems
that share a common, managed set of features satisfying the specific needs of a
particular market segment or mission and that are developed from a common set of
core assets in a prescribed way” [4]. Central to the design of SPLs is commonality &
variability analysis, i.e. the design of elements that are shared by all the members
of a SPL (commonalities) and those that are specific to one or several members of
the SPL (variation points). commonality and variability analysis therefore enable
to specify all member in a SPL. This is specification is often provided in the form
of a variability model (example in Section 2.1.1 Figure 1).

2.1.1 Feature Models

Feature model [24] is currently the most popular model for expressing variability.
It is a specific type of variability model whose focus is on expressing variability
through variation points. The feature model provides information about how vari-
ation points are related and what choices can be made in order to derive a given
member of the SPL or variant.

Figure 1: A feature model representing a configurable e-shop system

Figure 1 shows that for an e-shop we necessarily need a catalog, a payment method
and security. But research is optional. For the payment we can choose bank
transfer or credit card or both. For security we can choose either High or Standard.
We also have a constraint on the credit card, which implies a High security.

2

Automated and Disciplined ConvNet Architecture Exploration

2.2 Deep Learning

Deep Learning can be viewed as a subset of Machine Learning studying computer
algorithms that learns based on data samples (or examples) [29]. Deep Learning
uses a neural network architecture (Figure 2), the term “Deep” refers to the number
of layers of neurons in the network. Indeed, a traditional neural network generally
contains two or three layers unlike deep learning nets that can contain hundreds.
Deep learning additionally requires several thousands of inputs (or data samples)
to be accurate.

Figure 2: Deep Learning Neural Network

In this work, we focus on Convolutional Neural Networks (CNNs) (see next sec-
tion). Other architectures exist like Recurrent Neural Networks (RNNs), AutoEn-
corder (AE), ... [1]

2.3 Convolutional Neural Network

Convolutional neural networks (CNNs, or ConvNet for short) is a class of deep
neural networks, most commonly applied to images processing. The name “con-
volutional neural network” comes from the mathematical operation called convo-
lution that they use. Figure 3 show an example of a CNN architecture but there
exists several architectures because the sequence/number of layers, etc. is config-
urable. This master thesis attempts to model ConvNets architectures as variants
of a SPL. In the following, we present the main state-of-art ConvNet architectures.

Figure 3: Example of CNN architecture

3

2. BACKGROUND

2.3.1 Architectures

2.3.1.1 LeNet

LeNet-51 is a kind of CNN architecture made with seven layers. The composition
layer consists of 2 convolutional layers (i.e. it is a operation apply on the input
data more information Section 5.1.1), 2 subsampling layers (i.e. it is a way to
reduce the quality of the input more information in Section 5.1.2) and 3 fully
connected layers (i.e. they are used to make the classification more information in
Section 5.1.5). The number present in the name of the architecture corresponds to
the number of layers. For example, LeNet-5: that means this 5-layer architecture.
Note that a convolution layer plus a subsampling layer is counted as a single layer.
So we have 2 convolution layers and 2 subsampling layers which are equal to 2
plus the 3 fully connected layers, we thus get 5 layers.

Figure 4: LeNet-5 architecture

Figure 4 shows a description of the LeNet-5 architecture, as illustrated in the
original paper [22].

1LeNet is a set of architecture and LeNet-5 is an architecture among the existing one

4

Automated and Disciplined ConvNet Architecture Exploration

2.3.1.2 Residual Network

Residual Network (ResNet) [9] is a kind of network that introduces the residual
connection. A residual connection (also known as skip connection) is an additional
connection added between the different layers of a neural network which allows one
or more layers of processing to be avoided.

Figure 5: Residual block

In Figure 5, f (x) a function applied on input x (it can be a convolution, a matrix
multiplication or a batch normalisation) and “x” (identity) allows the gradient to
pass directly. By stacking these layers, the gradient could theoretically “jump”
over all the intermediate layers and reach the bottom without being modified.

2.3.1.3 DenseNet

For many intensive prediction problems, low-level information is shared between
input and output, so it is hoped that this information will be passed directly
through the network. Another way to achieve skip connections is to concatenate
previous feature maps. The most famous deep learning architecture is DenseNet
[11]. Figure 6 shows an example of feature reusability by concatenating with 5
Convolutional layers.

Figure 6: Example of DenseNet

5

2. BACKGROUND

This architecture makes extensive use of function concatenation to ensure the
maximum information flow between the various layers in the network. This is
achieved by directly connecting all layers to each other through series, as opposed
to ResNets. In fact, we want to connect the characteristic channel dimensions.
This will result in

• A large number of functional channels on the last layer of the network;

• A more compact model;

• extreme feature reusability.

6

Automated and Disciplined ConvNet Architecture Exploration

3 Context

This section presents two articles that are directly related to and inspired our
work. They were the focus of two reading group lectures in the Diverse team.

3.1 Automated Search for Configurations of Deep Neural
Network Architectures

Ghamizi et al. designed a tool to configure and specialise DNNs [7]. For this,
they create a variability model that captures all the variation points of DNN
models. They represent the whole variability of DNNs with a Feature Model
(FM) focuses on the architecture. They eliminated all the optimizations from
the training process, such as increased data, decreased learning rate of modern
regularization technology, and improved stochastic gradient descent methods to
perform experiments within a reasonable time. This means that the model can be
improved and have a larger space of possibilities but its risk of being more complex
to find efficient architectures.
They address the following research questions :

• Can we develop a variability model that represents all possible DNN archi-
tectures?

• Can we effectively search the configuration space and identify well-performing
DNN architectures?

• Does the technique find DNN architectures that outperform the state of the
art?

They use PLEDGE [10], that is a tool which samples very dissimilar configura-
tions from a feature model using an evolutionary algorithm. Since the feature
model represents architectural choices, automatically sampled configurations are
architectural variants. They create two manually configured architecture LeNet5
and SqueezeNet. They chose those architectures because of their popularity in the
past twenty years. They compare LeNet5 generated by the tool with the version
they have manually built by comparing the average accuracy over multiple runs.

They experiment their tool but they impose 2 constraints to reduce the training
time. They do not optimise the training (e.g. optimisers, batch size, loss function).
They use 2 datasets MNIST and CIFAR10. They also use two metrics (namely
accuracy and efficiency). Efficiency represent a trade off between correctness of
predictions and computation resources.

7

3. CONTEXT

For the result of the paper, they test their FM, by comparing the LeNet5 architec-
ture of their model with the one implemented directly in Tensorflow/Keras (with
the same parameters). Results show that their FM can represent the space of
DNN architectures and can successfully automate the generation of their variants.
As they search the configuration space, they found that

• architectures have a real impact on accuracy;

• architectures with high accuracy are not necessarily the ones with the largest
size;

• framework has the ability to form and specialize architectures for a particular
domain.

They seek for architectures that outperform the state-of-the-art. They generate
architectures three times under different constraints The first sample is architec-
tures obtained by applying the general setup which thus cannot be substantially
larger than LeNet5. The second one, LeNet5 architectures with different parame-
terisations (S2) the third one, enforce smaller architectures (S3) testing on MNIST
& CIFAR-10 They conclude that their approach indeed manages to outperform
an established architecture that was designed manually and that effective archi-
tectures are not necessarily the largest.

The contribution of the paper is :

• demonstrated how to model architectures with a FM;

• application of variability management techniques;

• studying most popular DNN architectures;

• the hierarchical structure of FMs also allows the addition of new dimensions
of variability. While the current FM focuses on the inner constituents of
DNN architectures;

• creating fully automated process that searches and deploys DNN architec-
tures.

This paper inspired the work reported in this dissertation. They use feature models
to model variability but we think that the feature model is not enough to model
the variability, as we will demonstrate hereafter. Their study is limited to the
architecture itself. We incorporate knowledge during hyperparameter exploration
in our work.

8

Automated and Disciplined ConvNet Architecture Exploration

3.2 Auto-Keras: An Efficient Neural Architecture Search
System

Auto-Keras [15] stands for AutoML (automated Machine Learning) and Keras
which is Deep learning library. The purpose of AutoML is to enable people with
limited machine learning background knowledge to use machine learning models
easily.
They proposed a new network architecture search (NAS) method, which can select
the best architecture for a specific task. They graphically represent the collection
of possible architectures. The node represents the architecture, and the edge rep-
resents the morph (transformation) of the architecture. They use Bayesian Opti-
mization to find the best architecture by navigating the graph.
They propose a kernel function to compare different networks, higher is the result
of the function, higher is the difference between two architectures. The process is
composed of 3 steps that can be repeated :

• Update : train a Gaussian Process (GP) on the previous tested architecture
and their accuracy to estimate the accuracy of the connex networks.

• Generate : predict the best morph to apply and generate the new architec-
ture.

• Observe : test the new architecture

The research questions on the paper are :

• How effective is the search algorithm with limited running time?

• How much efficiency is gained from bayesian optimization and network mor-
phism?

• Does the proposed kernel function correctly measure the similarity among
neural networks in terms of their actual performance?

The contributions of the paper are :

• To propose an algorithm for efficient neural architecture search based on
network morphism guided by Bayesian optimization;

• Conduct intensive experiments on benchmark datasets to demonstrate the
superior performance of the proposed method over the baseline methods;

• Develop an open-source system, namely Auto-Keras, which is one of the most
widely used AutoML systems.

9

3. CONTEXT

The paper has a new approach with the network morphism. Then they create a
graph based on a architecture manualy-built and they apply their gaussian search.
But there are some limitations:

• the morphism operations (edge of the graph) are limited;

• the architecture is manualy build so if the base is not performing well, the
morphism operation will not improve it radically.

As for Gamhizi et al., the exploration space is (deliberately) limited. However
the optimisation strategy developed in this paper is complementary to ours (we
restrict our work to exploration) and technically compatible since we are also using
the keras framework.

3.3 Challenge

Machine learning frameworks have made the application of advanced Deep Learn-
ing architectures relatively easy (generally few lines of python code). However,
only experts can explore the neural nets search space wisely, without exploring
invalid combination of parameters, or combinations of layers that do not compile.
Our goal is to extend the exploration space to multiple architectural styles (as
opposed to previous works) while limiting the chances to derive invalid/useless
architectures through the addition of knowledge during generation. We detail in
the following sections how we reached that goal by developing variability-aware
and model-based architecture exploration generators.

10

Automated and Disciplined ConvNet Architecture Exploration

4 Questions & Experimental Protocol

This section discusses the research questions and the strategy used.

4.1 Research Questions

Our purpose is to find a way to explore the architecture space to a large extent
to find the best way to solve a specific task. For this we rely on a variability
model, the model captures all the variation points and validity constraints of the
CNN model. As usually performed in a configurable system, the configuration
selected from the variability model is linked to specific implementations (libraries
like Tensorflow and Keras in our example) to derive deployable CNNs. We focus
on the CNN architecture and hyperparameters, while ignoring the training process
(training rate, cost function, gradient descent method, etc.) and data set prepa-
ration (such as data expansion). In view of this, our research questions are:

RQ1: How can we model the variability in a neural network ?
We started to model variability via feature models. And as sub-question: will
feature models be sufficient to model the variability? If not, is there another way
to model them? And we asked ourselves the question of what is the best language
to build this generator? Beyond the programming language, we thought rather of
a language which would be able to structure the architecture.

RQ2: How can we engineer a generator of CNN architectures?
We aim to build a generator capable of configuring CNN architectures. We also
thought about a method to use to allow improving the generator and compare the
architecture generated to study them and retain various improvements.

RQ3: How does generated architecture variants compare to the state
of the art?
We aim to evaluate our generated architectures and to be able to compare them
to the state of the art. We asked ourselves the question: is accuracy alone a
representative measure of the performance? Is accuracy the only one that we can
take into account? What is the performance of the generated architectures without
specialization (i.e. mixed architectures)? And additionally we wonder: are these
generated architectures able to outperform baseline architectures?

11

4. QUESTIONS & EXPERIMENTAL PROTOCOL

4.2 Experimental Protocol

4.2.1 Strategy

The main strategy was to begin with a simple generator and let it explore the
space as much as possible, then improve the generator incrementally and correct
its errors by adding some constraints (i.e. domain knowledge extracted and re-
trieved through experiments). This strategy aims at increasing chances of creating
functional neural architectures while keeping as much as possible the potential to
explore the configuration space. Iterations are based on the workflow which is
described in the next section. At each iteration we fix various errors like python
errors. And if the generated architecture is able to run then we look at the pre-
cision, the training time of the architectures and if there is overfitting. If an
architecture has a lower accuracy than random. We build it to then correct it and
retain a new rule / constraint in order to improve the generator. Our generators
therefore increasingly explore the architecture space in a disciplined manner.

4.2.2 Empirical Workflow

Figure 7 shows our empirical strategy to improve the generator. First of all, regard-
ing DSL and variability models, we wondered if our DSL was expressive enough,
in particular to integrate new architectures without modifying the language. For
the addition of an architecture, we looked at the research papers [22, 9, 11] as well
as their implementations. We observed and analysed the various points that went
wrong for the expressiveness of DSL. So after extracting the missing expressive-
ness points we could add them and start over (RQ1). Secondly, we use our DSL
to obtain results, then we observe these results and analyze them. From these an-
alyzes, we can extract improvements / knowledge that can be integrated into the
generator. Further improvements can be added in an iterative manner following
the same process (RQ2).

Figure 7: Empirical workflow

12

Automated and Disciplined ConvNet Architecture Exploration

5 Variation Points

This section presents the retained variation points to describe ConvNets’ architec-
tural variability.

5.1 Layers

A layer in the deep learning model is the structure or network topology in the model
architecture. It obtains information from the previous layer and then passes the
information to the next layer. Deep learning has several famous layers which we
will explain in the following section.

5.1.1 Convolution

Convolution is a mathematical operation that uses a kernel (also called filter or
matrix). A kernel is a small matrix of weights. This kernel “slides” over the data,
performing an elementwise multiplication with the part of the input it is currently
over, and then summing up the results into a single output pixel.

Figure 8: Visualisation of a convolution

In Figure 8, the input is the 5x5 matrix, the kernel is a 3x3 dark blue matrix at
the top left corner and the result of the convolution is the grey-single element in
front of the matrix. The kernel repeats this process for every location it slides
over, converting a matrix of features into another matrix of features. The output
features are essentially the weighted sums (with the weights being the values of
the kernel itself) of the input features located roughly in the same location of the
output pixel on the input layer.

13

5. VARIATION POINTS

5.1.2 Subsampling

Subsampling is a technique that has been designed to reduce the quality (i.e. the
size) of the image by skipping some of the value or by combining several values
into one (average, weighted average, mean, etc.). Thus, subsampling reduces the
number of feature maps as we move through the network.

5.1.3 Pooling

Pooling is a sample-based discretization process. The objective is to down-sample
an input representation (image, hidden layer output matrix, etc.), by reducing its
dimensionality and making assumptions about the characteristics contained in the
grouped sub-regions.

5.1.3.1 Average Pooling

This operation computes the average of values inside a window which slides over
the input (see Figure 9).

5.1.3.2 Max-Pooling

This operation computes the maximum of values inside a window which slides over
the input (see Figure 9).

5.1.3.3 Examples

Figure 9: Max and Average Pooling

5.1.4 Global Pooling

The global pooling works like the pooling but instead of calculating the max or
the average on a window, it calculates on the image in a global way.

14

Automated and Disciplined ConvNet Architecture Exploration

Figure 10: Example of global max pooling

5.1.5 Fully Connected

Stricto sensu, a fully connected layer is not a layer but rather a way to connect two
layers. Precisely, all neurons of the first layer are all connected (hence its name) to
the neurons of the second layer. This layer is used in convolutional neural network
for the classification part.

15

5. VARIATION POINTS

5.1.6 Flatten

A flatten layer allows to convert matrix of size N×M to vector of size 1×(N×M).
(See Figure 11)

Figure 11: Example of Flatten on matrix 3× 3

5.1.7 Dropout

The term “dropout” refers to dropping out units (hidden and visible) in a neural
network. Dropout introduces the probability (i.e. a rate between 0 and 1) at which
outputs of the layer are dropped out (i.e. deactivate), or inversely, the probability
at which outputs of the layer are retained (e.g. a rate of 0.5 deactivates 50% of the
neurons of the layer). Dropout is a way to prevent neural networks from overfitting
[27].

5.1.8 Batch Normalisation

Batch normalisation is proposed as a technique that helps to coordinate multiple
layers of updates in the model [14].

16

Automated and Disciplined ConvNet Architecture Exploration

5.2 Hyperparameters

Hyperparameters are parameters that need to be fixed at some point as they
may influence model performances. Their value can be influenced by the datasets
characteristics that are used (separated classes, number of instances, number of
classes, data distributions, etc.) the task-at-hand and probably other factors.
Hereafter we explain hyperparameters that are of interest for the remaining of this
work.

5.2.1 Padding

Padding allows the use of additional “fake” pixels (usually 0, hence the term “zero
padding” is often used) to fill the edges. In this way, the kernel can allow the
original edge pixels to be located at its centre while sliding, and at the same time
extend to pseudo-pixels outside the edges, thereby generating an output of the
same size as the input.

5.2.2 Stride

Stride is used to downsample an image or any other block processing of images (or
matrices), the idea is to avoid overlapping of the kernel to force it to ”slide”. The
concept of the stride is to skip some of the slide locations of the kernel. Figure
12 shows an example of how stride works. We have the convolution kernel (3x3
matrix) which slides on the input (5x5 matrix). Figure 12b shows this sliding step
after Figure 12a. We notice that we have shifted by 1 pixels to the right: it means
that we have a stride with a value of 1.

(a) convolution at time 0 (b) convolution at time 1

Figure 12: Stride example

17

5. VARIATION POINTS

5.2.3 Activation Function

The activation function is a mathematical function applied to a signal at the output
of a neuron.

5.2.3.1 ReLu

The Rectified Linear Unit activation function or ReLu for short is a piecewise
linear function that will output the input directly if it is positive, otherwise, it will
output zero.

f(x) =

{
0, for x < 0

x, for x ≥ 0

Figure 13: Activation function ReLU

18

Automated and Disciplined ConvNet Architecture Exploration

5.2.3.2 SeLu

Scaled Exponential Linear Unit [19], or SeLu for short, is similar to ReLu but the
main change is that it performs self-normalization. There are two reasons why you
should use SELUs instead of ReLUs:

• Similar to ReLUs, SELUs enable deep neural networks since there is no
problem with vanishing gradients.

• SELUs and its internal normalization is faster than other activation func-
tions, even if they are combined with external normalisation (like Batch
Normalisation).

f(a, x) = λ

{
a(ex − 1), for x < 0

x, for x ≥ 0

Figure 14: Activation function SeLu

19

5. VARIATION POINTS

5.2.3.3 Softmax

Softmax is a mathematical function that converts a vector of numbers into a
vector of probabilities, where the probabilities of each value are proportional to the
relative scale of each value in the vector. The softmax function σ : RK → [0, 1]K

is defined by the formula:

σ(~a)i =
eai∑
k e

ak
, for i = 1, ..., K and ~a = (a1, ..., ak) ∈ RK

Figure 15: Activation function Softmax

20

Automated and Disciplined ConvNet Architecture Exploration

5.2.3.4 TanH

The hyperbolic tangent, or TanH is very similar to the sigmoid[16] activation
function and even has the same S-shape. The function takes any real value as
input and outputs values in the range -1 to 1.

f(x) =
(ex − e−x)

(ex + e−x)
, for x ∈ R

Figure 16: Activation function TanH

21

5. VARIATION POINTS

5.2.4 Loss Function

The loss function (or objective function) is associated with the final layer to cal-
culate the classification error.

5.2.4.1 Categorical Cross-Entropy

Categorical cross-entropy, also called softmax loss, is a softmax activation function
(see before) and follow by a cross entropy loss. This loss function is used for multi-
class classification.

CE(y, y′) = −
∑
i

yi log(y′i)

with y expected value and y′ predicted value. Thus y′i is the predicted value (y′)
for the class i
There exist others loss function like Binary cross-entropy which is the same as
categorical cross-entropy but for binary classification, Mean Square Error (MSE)
... The most commonly used can be found on the Keras webpage dedicated to loss
functions2

5.2.5 Optimization Function

The optimization function (also known as optimizer) is an algorithm used to min-
imize the loss function. There are a lot of optimizers [26] like stochastic gradient
descent (SGD), Adamax but in this work, we focus on Adam.

5.2.5.1 Learning Rate

The learning rate controls how fast the model adapts to the problem. Given a
smaller change in the weight of each update, a smaller learning rate requires more
training time, while a larger learning rate leads to rapid changes and requires less
training time.

Too large learning rate will cause the model to converge to sub-optimal solutions
too quickly, while too small learning rate will cause the process to get stuck.

2https://keras.io/api/losses/

22

https://keras.io/api/losses/

Automated and Disciplined ConvNet Architecture Exploration

5.2.5.2 Adam

Adaptive Moment Estimation (adam) [18] is a method to calculate the adaptive
learning rate(η) for each parameter. In addition to storing the exponential decay
average of the past squared gradient vt like Adadelta [32] and RMSprop, Adam also
retains the exponential decay average of past gradients mt, similar to momentum
[25]:

mt = β1mt−1 + (1− β1)gt
vt = β2vv−1 + (1− β2)g2t

β1 and β2 are fixed parameters, mt and vt are respectively estimations of the first
moment (the mean) and the second moment (the uncentered variance) of the gra-
dients respectively, hence the name of the method. As mt and vt are initialized
as vectors of 0’s, the authors of Adam observe that they are biased towards zero,
especially during the initial time steps, and especially when the decay rates are
small (i.e. β1 and β2 are close to 1).

They counteract these biases by computing bias-corrected first and second mo-
ment estimates:

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

then, they m̂t and v̂t use these to update the parameter:

θt+1 = θt −
η√
v̂t + ε

m̂t

The authors of Adam propose default values of 0.9 for β1, 0.999 for β2, and 10−8

for ε. They show empirically that Adam works well in practice and compares
favorably to other adaptive learning-method algorithms.

5.3 Summary

The Sections 5.1 and 5.2 presented two categories of variation points: layers (e.g.
convolution layer, pooling layer, ...) and hyperparameters (e.g. padding, stride,
activation function, ...) which will be used for the models of variability. The next
section details more of the variability models.

23

6. VARIABILITY MODELS

6 Variability Models

This section details the models used for modelling the variability, the problems
encountered and provides an answer to our first research question.

6.1 Feature Models

6.1.1 Architecture

6.1.1.1 Description

Figure 17 is based on the study of the ResNet [9], LeNet5 [22] and Densenet [11] ar-
chitectures as presented in Section 2.3.1. Initially, the neural network architecture
is divided into 3 parts. Those parts are called Input, HiddenLayer and Output.
Based on the 3 architectures we have identified five “categories” of hidden layer,
each having a specific role: the Classification part, which use the characteristics
extracted from the previous part to help the output to classifies the image, has
one concrete variation point called Dense. Then the “FeatureExtraction” extracts
the main characteristics of the input that will be used by the Classification part.
This variation point is decomposed into three new variation points: Batch normal-
isation, Convolution and Pooling. We also have a dropout variation point. The
Flatten and GlobalPooling are used to link the FeatureExtraction and Classifica-
tion parts of the network.

Figure 17: CNNs Feature Model

24

Automated and Disciplined ConvNet Architecture Exploration

6.1.2 Hyperparameters

6.1.2.1 Description

Figure 18 is also based on the study of ResNet and LeNet5 architectures as well
as the documentation of Keras [17] / TensorFlow [28].
For the Input, it has been noticed that its main point of variation is the size of
the input image.
For the Output, it has two points of variability: The number of neurons depends
on the number of desired classes (for example: if we classify images of cats and
dogs there will therefore be 2 two neurons).
TThe activation funciton depends on the kind of task to realize i.e. if we have a
binary classification it is necessary to use a logistic function (Sigmoid for example)
but if we have a multi-class classification, it is advised to use a function like softmax
(normalized exponential function) for example.
For Convolution, it is made up of five variability points:
The Kernel corresponds to the size of the filter. It is always a square matrix with
a minimum size of one element (1x1). The Padding can take as value: same,
valid, or an integer. The Stride takes as value an integer. The Number of filters
corresponds to the number of feature maps and it is an integer value. The possible
value for activation function are describe in Section 5.2.3
For pooling, it has three points of variability: Kernel, Padding and Strides (same
value as Convolution).
For the dense part, it has two points of variability: The number of neurons takes
an integer value The possible value for activation function are describe in Section
5.2.3
Dropout has the dropout rate parameter which takes value between 0 and 1.
Batch normalisation has the epsilon parameter which takes float value close to 0
like 10−3, 10−5,...

25

6. VARIABILITY MODELS

Figure 18: Feature Model of Hyper-parameters

26

Automated and Disciplined ConvNet Architecture Exploration

6.1.3 Problem

Figure 17 gathers all the different variation points/layers/functionalities that we
observed in the analysis of ResNet, LeNet5, and Densenet architectures. However,
trying to generate an architecture out of this representation can create a model
which would start with an Output or HiddenLayer directly instead of an Input
which is not desirable.

Figure 19 shows an example of an architecture valid for the feature model but
invalid from an implementation perspective: it will return an error if we try to
build it. Indeed, we can notice three sequencing problems: the position of the
output which should be at the end of the architecture, the first Dense which
should be after the flatten (i.e. green bullet) and Pooling + Convolution which
should be rearranged in Convolution + Pooling and be placed before the flatten.

Output

Convolution
+

Pool-
ing

Dense

F

Pooling
+

Con-
volu-
tion

Dense

Figure 19: Example of an architect validated by the feature model

Another representation is therefore necessary to take into account the possible
sequences of these variation points(see Section 6.2).

27

6. VARIABILITY MODELS

6.2 State Machines

Feature models are not expressive enough to model ConvNets, in particular due
to the sequencing of these variation points. We therefore looked for a new way to
model such sequences. State machines naturally integrates a notion of time and
sequencing (e.g., [8]). We therefore extend our formalism in order to generate valid
ConvNets variants.

6.2.1 LeNet State Machines

First we built a state machine based on the LeNet architecture (see Figure 20).

Figure 20: LeNet State Machine

The architecture LeNet is constructed as follows: it begins with the single entry
point is the input layer followed by an alternation between convolution and pooling,
continues with flatten and ends with a succession of dense. This state machine
allows us to find the state of the art (LeNet5) and also to vary the architecture,
that is to say we can build without pooling with only convolution, flatten and
dense layers. We will cover different experiments based on this state machine in
Section 7.1.

28

Automated and Disciplined ConvNet Architecture Exploration

6.2.2 ResNet State Machines

The previous version of the state machine was limited to model LeNet-like archi-
tecture. However, other base architectures exist. It lead us to evolve this state
machine to be able to model a more diverse set of architectures, and we decided
to add the ResNet architecture. So we modified the LeNet based state machine to
have a new ResNet based state machine.

Figure 21: ResNet State Machine

We can notice the addition of two new blocks: identity block and convolution
block. The identity block allows to keep the size of the image and to propagate it
and with regard to the convolution block it allows to reduce the size of the image.

29

6. VARIABILITY MODELS

(a) Identity block (b) Convolution block

Figure 22: Resnet block

This state machine allows us to build architecture based on ResNet. It is also
capable of finding the state of the art such as ResNet18 or ResNet34, while adding
variability, in particular in the arrangement of the layers. We can also notice that
we can find the previous state machine and therefore allow building a LeNet type
architecture. See Section 7.2 for details.

30

Automated and Disciplined ConvNet Architecture Exploration

6.2.3 DenseNet State Machines

Our motivation for this state machine was the same as the previous. We wanted
to improve the state machine with a new architecture and we decided to add the
DenseNet architecture.

Figure 23: DenseNet Generator State Machine

We can notice the addition of a new block: DenseNet block. This block is made
up of 2 blocks: Densenet convolution block and transition block. Densenet convo-
lution block allows adding channels / filters without reducing the size of the image
and then we have a transition block, it allows to reduce the number of channels as
well as the size of the input.

31

6. VARIABILITY MODELS

(a) Transition block (b) Dense convolution block

Figure 24: DenseNet block

We also changed the end of the architecture to allow global pooling. So the archi-
tecture can end with either a global pooling layer followed by a Dense layer or a
flatten layer followed by a succession of Dense layers.

32

Automated and Disciplined ConvNet Architecture Exploration

Figure 25: End Architecture block

This state machine allows us to build architecture based on DenseNet. It is also
capable of finding the state of the art such as DenseNet121[11], while adding
variability, in particular in the arrangement of the layers. We can also notice
that we can find the previous state machine and therefore allow building a LeNet
type architecture. We can also build architectures that are not specific to LeNet,
ResNet and DenseNet but rather merge them to create new architectures. See
Section 7.3 for more details.

6.3 RQ1: Modelling Variability

We have modelled the variability of the architecture in two different ways: the first
is the feature model and as we have seen previously (Section 6), it is not sufficient
in particular due to the sequencing. The second is the state machine which allows
the sequencing of the different layers. Regarding the hyperparameters, a feature
model was expressive enough.
We looked for a way to structure the different layers as well as their hyperparame-
ters. We decided to integrate our modelling efforts in a Domain Specific Language
(DSL) [23]. A domain specific language is a (generally) high-level language cap-
turing the essence of a domain. For example, LATEX, the language we used to write
this master thesis, can be thought of DSL for typesetting (scientific) documents.
In our case the domain is the one of ConVNets architecture. Our DSL is expressed
in the Json format.

33

7. GENERATORS

7 Generators

This section reports on the design of the three generators we have built, answering
RQ3.

7.1 LeNet Generator

We start with random configurations drawn from the feature model. The generated
configurations are valid by definition (see Section 5.1 Feature Models). However
Python threw errors because of the value of parameters or the scheduling of lay-
ers. For instance, missing input/output or combination of parameters resulting in
negative image size (e.g. too large kernel size or stride values). So we notice that
the knowledge contained in the feature model are not enough and we had to add
some constraints. By including more and more constraints (that ML or domain
experts may know directly), performance of the generated models improved until
reaching state-of-the-art performances.
From this first attempt on the model generation, we have learnt that:

• Limited the size of the architecture;

• The order of the layers is important;

• The kernel, padding and strides trio is important to manage the reduction
of the image;

• The kernel must be superior or equal to strides;

• The units at the Dense level must be decreasing and smaller than the input.

As we manage to converge on the results of the state of the art, we have added a
new architecture to our generator. We will discuss it in the next section.

34

Automated and Disciplined ConvNet Architecture Exploration

7.2 ResNet Generator

We started by experimenting this generator with the ResNet state machine as
well as the constraints of the previous generator (LeNet). Overall the results were
close to those from the state-of-the-art. Nonetheless, some architectures did not
do better than random accuracy. The problem comes from the units in the dense
layers. In fact, the higher the input of dense layer (i.e. the feature extraction
output), the greater the reduction of the input should be. This reduction is done
via a certain percentage. For example a percentage of 80, that means that we keep
80% of the value of the input. After having solved the problem, the results of the
generator were around those of the state of the art.
And from these different experiments we were applying these various constraints:

• The bigger the input sent to the dense layer, the higher its reduction must
be;

• Padding was fixed because it is difficult to compute for the merge part (add).
When using residual connections, the two paths must have the same output
size. Kernel, stride and padding have to be configured. In addition, changing
the value of one of them impacts the others. That is why we have fixed the
value of padding.

But what about DenseNet? DenseNet is a ResNet to which we have pushed the
skip connection to its peak but with the current generator it is not possible to make
a network like DenseNet. The concept of DenseNet is to ensure the maximum flow
of information between the different layers of the network (as described in the
section 2.3.1.3). Figure 24b shows a skip connection (on the right) that ensures
the flow of information and the function that groups the two paths is Concatenate
contrary to ResNet which uses the function Add (Figure 22b). So we have to
improve the generator so that it can produce a network like DenseNet (see next
section).

35

7. GENERATORS

7.3 DenseNet Generator

This generator is slightly different from the two previous ones because it allows
building four types of architectures: LeNet, ResNet, DenseNet or mixed of three
and specified powers which are desired. We started by experimenting this gener-
ator with the DenseNet state machine as well as the constraints of the previous
generator (ResNet). We very quickly noticed that the number of the epochs was
not sufficient, in particular because the number of layers increased as well as the
amount of training parameters, the architectures did not have time to converge. So
we increased the maximum number of epoch to 50 with the possibility to perform
early stops (see Figure 26). The results obtained are rather heterogeneous, i.e.
we have as many good results capable of approaching the state of the art as bad
results but always better than the random. We also noticed cases of overfitting.

Figure 26: Box-plot for the number of epochs per architecture generated

Figure 26 shows the number of epochs required by type of architecture (the “ALL”
label represents the mixed architecture). We can notice that 5 epochs was clearly
not enough. We also notice that there can be outliers, they are architecture which
does not manage to converge or which lose the gradient.

36

Automated and Disciplined ConvNet Architecture Exploration

7.4 RQ2: Engineeing a Generator

We have improved our generator on the basis of different constraints such as the so-
called strong constraints. These constraints make it possible to reduce the search
space and therefore to avoid all these interpretation errors thrown by Python. For
example it is useless to explore part of the space in which the architecture begins
with the output or to reduce an image of size 1/1. We also have the so-called
soft constraints, they allow to specify the architecture in such a way as to avoid
the architecture which loses the growth or the one which does less well than the
random one. Such errors in the architecture definition which are not detected by
Python. As an example, we saw in Section 7.1 that may be the kernel must be
greater than or equal to the strides.

37

8. RESULTS

8 Results

This section exposes the experimental parameters, results with respect to the con-
straints and a response to RQ3.

8.1 Experimental Settings

8.1.1 Generator Workflow

Our generators are built according to the workflow presented in Figure 27.

Figure 27: Generator workflow

First, the architecture is generated via the generator and saved in our DSL. Figure
28 shows an example of a part of this DSL, we can see its structure. The name of
the layer is represented by the term “class” in the DSL and the hyperparameters
of the layer by the term “parameters”. We can therefore see that our generated
architecture is represented in our DSL in the form of a list of layers and their
respective hyperparameters. Then this DSL is used for creating a python file
that contains the Python code and calls to Keras or TF in order to run a CNN
model (with training, evaluation, etc.). After that the python file executed and it
generated:

• The log file for the error/result;

• An image that represents the trained model using the graph description
language (DOT) and save in png file;

• It updates a comma separated value (CSV) file for further analysis.

38

Automated and Disciplined ConvNet Architecture Exploration

Figure 28: Example of part of DSL

8.1.2 Datasets

For training, we used 2 datasets called MNIST and CIFAR10:

• MNIST was used as a sanity test (i.e. very brief run-through of the function-
ality of our generator to assure that it works roughly as expected), widely
studied and is now known to have characteristics (e.g., data distribution)
that are fairly easy to process. It has 10 classes with 60 000 images in the
training set and 10 000 in the test set;

• CIFAR10 was used for the other experiments. CIFAR10 is a much more
challenging dataset used in evaluation of state-of-art ML models. It has also
10 classes with 50 000 images in the train set and 10 000 in the test set.

8.1.3 Training

We did not explore variability during training and we decided to set the following
as constants in our experiments:

• We used Adam as an optimization function;

• We used categorical cross entropy as a loss function.

8.1.4 Hardware

We started our experiments on an inspiron 15 5000 laptop, i5-10210u 1.6Ghz
(4cores), 8GB ram, nvidia mx250. Nevertheless, the training time started to
increase (about 1 hour per training) in particular due to the complexity of ar-
chitectures (ResNet, DenseNet) and increase in the number of epochs. Therefore

39

8. RESULTS

we made a request in order to be able to use a more powerful machine and we were
able to have access to a remote machine in the Diverse team in Rennes: Intel (R)
Xeon (R) Gold 6238 CPU @ 2.10GHz (88 cores), 187Gb ram, NVIDIA Tesla T4.

8.2 Constraints Results

Table 1a presents the results obtained during the generation via the feature model
which we discussed in Section 7.1 and Table 1b presents the results obtained
during the generation with all the constraints seen in Section 7.1. We can see
improvements from an accuracy point of view, notably by avoiding python errors.
The training time is already more acceptable compared to the accuracy (e.g. 255
sec / 0.089 accuracy). We have improved the results of Table 1b by applying the
constraints presented in Sections 7.2 and 7.3 besides the following section details
the last results obtained with the DenseNet generator.

Training Time (s) Test Accuracy

88 0.0003
36 0.0
0 Error
0 Error
0 Error
0 Error

255 0.089
0 Error
0 Error
0 Error

(a) Results with the LeNet Generator with-
out constrains

Training Time (s) Test Accuracy

66 0.49
54 0.55
85 0.63
150 0.1
105 0.1
107 0.51
59 0.63
40 0.60
264 0.1
112 0.47

(b) Results with the LeNet Generator with
constrains

Table 1: comparative tables between two LeNet generator results

40

Automated and Disciplined ConvNet Architecture Exploration

8.3 RQ3: Performance of Generated Architectures Com-
pared to the State of the Art

Based on the DenseNet generator (see Section 6.3) we carried out an experiment
on a larger scale. We started with 200 generated architectures (50 instances per
type of architecture). Figure 29 shows the results obtained during this experiment.
Figure 29a which represents the accuracy and the training time of the generated
architectures (circle) compared to the state-of-the-art (others). The state of the
art consists of two LeNet5, Resnet18 and two DenseNet. Figure 29b represents
the difference between the accuracy during the training and that of the test. This
difference is labelled by groups of values of 0.05 (i.e. < 0.05, > 0.05, > 0.10, ... ,
> 0.35). This figure allows to visualise the overfitting of the various architectures.

(a) Training time and accuracy per type of
architecture

(b) Training time and accuracy per overfit-
ting label

Figure 29: Result from last experiment with Generator DenseNet

These figures show us that the current generator can build architecture capable of
competing the state of the art but it can also generate very bad architecture (10%
accuracy). In the following we will see the results in more detail. We will compare
the trends in terms of accuracy (Figure 30), training time (Figure 31) and number
of epochs (Figure 32) of these different types of architecture.

41

8. RESULTS

Figure 30 therefore shows us the accuracy of the test dataset. We can see that there
are outliers in particular the architectures which do not manage to converge. Yet,
we can notice that the trend between the different types of architectures remains
similar.

Figure 30: Accuracy on testset per type of architecture

Regarding Figure 31, this shows us the training time for the different types of
architecture and we can see that LENET architecture is the one that takes the
least time, because it is the least complex architecture among the four unlike
DENSENET architecture which must be the most complex since it tries to combine
the other three.

Figure 31: Training Time per type of architecture

42

Automated and Disciplined ConvNet Architecture Exploration

Figure 32 shows the number of epochs by type of architecture. These results
confirm the conclusions we drew from Section 7.3, the number of epochs we had
chosen previously (i.e. 5) was clearly not sufficient as shown in this figure. Most
architectures need at least 20 epochs to converge. Obviously, the architectures
which are difficult to converge stop before the fact that some architecture has few
epochs.

Figure 32: Epochs per type of architecture

To continue this analysis, we compute a confidence interval to see the performance
of the current generator. A confidence interval is a range of values that mea-
sure the degree of uncertainty or certainty in a sampling method. This interval
is bounded above and below the statistic’s mean, that likely would contain an
unknown population parameter. Confidence level refers to the percentage of prob-
ability, or certainty, that the confidence interval would contain the true population
parameter when we draw a random sample many times. We therefore computed
our confidence interval with a confidence level of 95%. We are therefore 95% cer-
tain that most of these samples represent the generator population.

43

8. RESULTS

The top graph in Figure 33 represents the confidence interval on the accuracy
of the test, this interval is bounded between 0.27-0.75. This means that we are
sure that 95% of the generated architecture will give an accuracy on the test set
included in this interval. The bottom graph represents the confidence interval on
the accuracy of the training and this interval is bounded between 0.27–1.

Figure 33: Confidence interval for the generator DenseNet

We also compute a confidence interval for the types of architecture (Figure 34) that
we defined (i.e. LENET (34a), ALL(34b), DENSENET(34c), RESNET (34d)).
We can notice that the confidence interval of LENET is closer to the mean than
the others. We therefore believe that the LENET generated architectures are
more stable than the others. Concerning the confidence intervals for ALL and
DENSENET, we notice that the values are much more scattered, probably due to
their complexity. Some architectures simply fail to converge (see Figure 30).

44

Automated and Disciplined ConvNet Architecture Exploration

(a) Confidence interval for the generated ar-
chitecture type LENET

(b) Confidence interval for the generated ar-
chitecture type ALL

(c) Confidence interval for the generated ar-
chitecture type DENSENET

(d) Confidence interval for the generated ar-
chitecture type RESNET

Figure 34: Confidence interval for all the type of architecture genereted

45

8. RESULTS

So the current generator, based on the results seen previously, allows great vari-
ability in these constructions both from an architectural point of view (i.e. the
arrangement of layers) and from a hyperparameter point of view (i.e. values). We
can also increase this variability, for example, add new values for optimisation or
loss functions that have not been taken into account in this work. We presented
activation functions (See Section 5.2.3) like SeLu or ReLu but why not add eLu
or another. We can also reduce this same variability. This flexibility of the gener-
ator has allowed it to catch up with state-of-the-art performance (see Figure 29)
while others may provide worse performance than random. Nonetheless, they can
remain useful to recover knowledge (i.e. new constraints) in order to specialise the
generator and make it better.

46

Automated and Disciplined ConvNet Architecture Exploration

9 Conclusion and Future work

9.1 Conclusion

The aim of our work is to explore the variability of several advanced convolu-
tional neural network architectures (LeNet, ResNet, DenseNet). In particular, we
provide generators that allow cross-architecture variations and help select hyper-
parameters including slot constraints.

In our work, we propose a methodology/workflow to model the variability of con-
volution neural network with a state machine. We modelled the architecture using
a state machine and the hyperparameters using a feature model. We also struc-
tured the architecture and the hyperparameters in our DSL. We show how to
build a cross-architecture generator for three popular architectures. Our genera-
tor is based on knowledge constraints. Each constraint imposed on the generator
triggers improvements towards better results. For the evaluation of the generator,
we compare it to the state of the art. Some generated architectures manage to
match the state of the art, most stay slightly below and some simply could not
converge.

We therefore have a generator capable of adjusting the variability (i.e. increase
or decrease) both from the point of view of architectures and hyperparameters.
However, the generator still builds architectures that cannot be used except to
extract new knowledge or constraints.

In the following, we discuss different perspectives and some ideas that can help to
improve the work we propose in this master thesis.

9.2 Future Work

The expressiveness of DSL has been improved throughout this work despite the
fact that we can still ask ourselves the question of its expressiveness. We have also
the current generator can be further improved either by adding a new architecture
(SqueezeNet [13], Xception [3], AlexNet [20] ...) or by adding new constraints. We
also noticed that some hyperparameters had requirements. For example the ac-
tivation function SeLu (Section 5.2.3.2) requires an initialization function named
LeCun Normal and used the alpha dropout rather than the dropout. We can
further improve our generator, our DSL in parallel and see if these various im-
provements allow to outperform the state of the art.

47

9. CONCLUSION AND FUTURE WORK

Another possible improvement would be to add a spatial search algorithm [12].
The current generator creates an architecture based on constraints but in a ran-
dom way. One possibility would be to investigate how it can work along Neural
Architecture Search (NAS) techniques [21, 31, 5, 6, 2] research area. This domain
emerged from various efforts to automate the architectural design process. An ex-
ample of NAS that we have seen previously (Section 3.2) is the network morphism
[30] used by Auto-Keras [15].

Our current workflow is manual and would be interesting to make it more auto-
matic. For instance to extract a new constraint or knowledge of architectures with
bad accuracy, we had to do trial and error to find where the error was. It would
be interesting to use an algorithm able to find its errors then to integrate them in
the generator, in other words, we aim at adapting program repair techniques for
neural architectures.

48

Automated and Disciplined ConvNet Architecture Exploration

List of Figures

1 A feature model representing a configurable e-shop system 2
2 Deep Learning Neural Network . 3
3 Example of CNN architecture . 3
4 LeNet-5 architecture . 4
5 Residual block . 5
6 Example of DenseNet . 5
7 Empirical workflow . 12
8 Visualisation of a convolution . 13
9 Max and Average Pooling . 14
10 Example of global max pooling . 15
11 Example of Flatten on matrix 3× 3 16
12 Stride example . 17
13 Activation function ReLU . 18
14 Activation function SeLu . 19
15 Activation function Softmax . 20
16 Activation function TanH . 21
17 CNNs Feature Model . 24
18 Feature Model of Hyper-parameters 26
19 Example of an architect validated by the feature model 27
20 LeNet State Machine . 28
21 ResNet State Machine . 29
22 Resnet block . 30
23 DenseNet Generator State Machine 31
24 DenseNet block . 32
25 End Architecture block . 33
26 Box-plot for the number of epochs per architecture generated 36
27 Generator workflow . 38
28 Example of part of DSL . 39
29 Result from last experiment with Generator DenseNet 41
30 Accuracy on testset per type of architecture 42
31 Training Time per type of architecture 42
32 Epochs per type of architecture . 43

49

LIST OF FIGURES

33 Confidence interval for the generator DenseNet 44
34 Confidence interval for all the type of architecture genereted 45

50

Automated and Disciplined ConvNet Architecture Exploration

Bibliography

[1] Md Zahangir Alom et al. “The History Began from AlexNet: A Comprehen-
sive Survey on Deep Learning Approaches”. In: (2018). url: https://www.
researchgate.net/publication/323570864_The_History_Began_from_

AlexNet_A_Comprehensive_Survey_on_Deep_Learning_Approaches.

[2] Yi-Wei Chen et al. “On Robustness of Neural Architecture Search Under
Label Noise”. In: Frontiers in Big Data 3 (2020), p. 2. issn: 2624-909X.
doi: 10.3389/fdata.2020.00002. url: https://www.frontiersin.org/
article/10.3389/fdata.2020.00002.

[3] François Chollet. “Xception: Deep Learning with Depthwise Separable Con-
volutions”. In: (2016).

[4] Paul Clements and Linda Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley Professional, 2002.

[5] Thomas Elsken, Jan Hendrik Metzen, Frank Hutter, et al. “Neural architec-
ture search: A survey.” In: J. Mach. Learn. Res. 20.55 (2019), pp. 1–21.

[6] Thomas Elsken, Jan-Hendrik Metzen, and Frank Hutter. “Simple And Effi-
cient Architecture Search for Convolutional Neural Networks”. In: (2017).

[7] Salah Ghamizi et al. “Automated Search for Configurations of Convolu-
tional Neural Network Architectures”. In: Proceedings of the 23rd Interna-
tional Systems and Software Product Line Conference - Volume A. SPLC
’19. Paris, France: Association for Computing Machinery, 2019, pp. 119–
130. isbn: 9781450371384. doi: 10.1145/3336294.3336306. url: https:
//doi.org/10.1145/3336294.3336306.

[8] David Harel. “Statecharts: A visual formalism for complex systems”. In:
Science of computer programming 8.3 (1987), pp. 231–274.

[9] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In:
(2015). url: https://arxiv.org/pdf/1512.03385.pdf.

51

https://www.researchgate.net/publication/323570864_The_History_Began_from_AlexNet_A_Comprehensive_Survey_on_Deep_Learning_Approaches
https://www.researchgate.net/publication/323570864_The_History_Began_from_AlexNet_A_Comprehensive_Survey_on_Deep_Learning_Approaches
https://www.researchgate.net/publication/323570864_The_History_Began_from_AlexNet_A_Comprehensive_Survey_on_Deep_Learning_Approaches
https://doi.org/10.3389/fdata.2020.00002
https://www.frontiersin.org/article/10.3389/fdata.2020.00002
https://www.frontiersin.org/article/10.3389/fdata.2020.00002
https://doi.org/10.1145/3336294.3336306
https://doi.org/10.1145/3336294.3336306
https://doi.org/10.1145/3336294.3336306
https://arxiv.org/pdf/1512.03385.pdf

BIBLIOGRAPHY

[10] Christopher Henard et al. “PLEDGE: a product line editor and test gen-
eration tool”. In: 17th International Software Product Line Conference co-
located workshops, SPLC 2013 workshops, Tokyo, Japan - August 26 - 30,
2013. 2013, pp. 126–129. doi: 10.1145/2499777.2499778. url: https:
//doi.org/10.1145/2499777.2499778.

[11] Gao Huang et al. “Densely Connected Convolutional Networks”. In: (2016).

[12] Forrest Iandola. “Exploring the design space of deep convolutional neural
networks at large scale”. In: arXiv preprint arXiv:1612.06519 (2016).

[13] Forrest N. Iandola et al. “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and ¡0.5MB model size”. In: (2016).

[14] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift”. In: (2015).

[15] Haifeng Jin, Qingquan Song, and Xia Hu. “Auto-Keras: An Efficient Neural
Architecture Search System”. In: Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. ACM.
2019, pp. 1946–1956.

[16] Mira Jose. From Natural to Artificial Neural Computation. Sandoval Fran-
cisco (Eds.), 1995.

[17] Keras.io. url: https://keras.io/.

[18] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Opti-
mization”. In: (2014). url: https://arxiv.org/abs/1412.6980.

[19] Günter Klambauer et al. “Self-Normalizing Neural Networks”. In: (2017).
url: https://arxiv.org/abs/1706.02515.

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet classi-
fication with deep convolutional neural networks”. In: (2016).

[21] George Kyriakides and Konstantinos Margaritis. “An Introduction to Neural
Architecture Search for Convolutional Networks”. In: (2020).

[22] Yann Lecun et al. “Gradient-Based Learning Applied to Document Recog-
nition”. In: (1998).

[23] Marjan Mernik, Jan Heering, and Anthony M. Sloane. “When and How to
Develop Domain-Specific Languages”. In: ACM Comput. Surv. 37.4 (Dec.
2005), pp. 316–344. issn: 0360-0300. doi: 10.1145/1118890.1118892. url:
https://doi.org/10.1145/1118890.1118892.

[24] Klaus Pohl, Günter Böckle, and van der Linden Frank J. Software Product
Line Engineering : Foundations, Principles and Techniques. Springer Science
& Business Media, 2005.

52

https://doi.org/10.1145/2499777.2499778
https://doi.org/10.1145/2499777.2499778
https://doi.org/10.1145/2499777.2499778
https://keras.io/
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1706.02515
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1145/1118890.1118892

Automated and Disciplined ConvNet Architecture Exploration

[25] Ning Qian. “On the momentum term in gradient descent learning algo-
rithms”. In: (1999).

[26] Sebastian Ruder. “An overview of gradient descent optimization algorithms”.
In: (2017). url: https://arxiv.org/abs/1609.04747.

[27] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks
from Overfitting”. In: (2014).

[28] Tensorflow. url: https://www.tensorflow.org/.

[29] Andrew R. Webb and Keith D. Copsey. Statistical Pattern Recognition, 3rd
Edition. Wiley, 2011.

[30] Tao Wei et al. “Network Morphism”. In: (2016).

[31] Martin Wistuba, Ambrish Rawat, and Tejaswini Pedapati. “A survey on
neural architecture search”. In: arXiv preprint arXiv:1905.01392 (2019).

[32] Matthew D. Zeiler. “ADADELTA: An Adaptive Learning Rate Method”. In:
(2012). url: https://arxiv.org/abs/1212.5701.

53

https://arxiv.org/abs/1609.04747
https://www.tensorflow.org/
https://arxiv.org/abs/1212.5701

	Acknowledgments
	Abstract
	Introduction
	Background
	Software Product Lines
	Feature Models

	Deep Learning
	Convolutional Neural Network
	Architectures
	LeNet
	Residual Network
	DenseNet

	Context
	Automated Search for Configurations of Deep Neural Network Architectures
	Auto-Keras: An Efficient Neural Architecture Search System
	Challenge

	Questions & Experimental Protocol
	Research Questions
	Experimental Protocol
	Strategy
	Empirical Workflow

	Variation Points
	Layers
	Convolution
	Subsampling
	Pooling
	Average Pooling
	Max-Pooling
	Examples

	Global Pooling
	Fully Connected
	Flatten
	Dropout
	Batch Normalisation

	Hyperparameters
	Padding
	Stride
	Activation Function
	ReLu
	SeLu
	Softmax
	TanH

	Loss Function
	Categorical Cross-Entropy

	Optimization Function
	Learning Rate
	Adam

	Summary

	Variability Models
	Feature Models
	Architecture
	Description

	Hyperparameters
	Description

	Problem

	State Machines
	LeNet State Machines
	ResNet State Machines
	DenseNet State Machines

	RQ1: Modelling Variability

	Generators
	LeNet Generator
	ResNet Generator
	DenseNet Generator
	RQ2: Engineeing a Generator

	Results
	Experimental Settings
	Generator Workflow
	Datasets
	Training
	Hardware

	Constraints Results
	RQ3: Performance of Generated Architectures Compared to the State of the Art

	Conclusion and Future work
	Conclusion
	Future Work

	List of Figures

	Bibliography

