
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE PROFESSIONAL FOCUS IN DATA SCIENCE

Unsupervised Concepts Extraction in Neural Networks

CORBUGY, Sacha; Septon, Thibaut

Award date:
2021

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 25. Apr. 2024

https://researchportal.unamur.be/en/studentTheses/594fcfc1-e407-4e91-abac-4d339be8e631

Université de Namur
Faculté d’informatique

Année académique 2020–2021

Unsupervised Concepts Extraction in Neural

Networks

Sacha Corbugy & Thibaut Septon

Mâıtre de stage : Adrien Bibal

Promoteur : (Signature pour approbation du dépôt - REE art. 40)

Benoit Frénay

Co-promoteur : Adrien Bibal

Mémoire présenté en vue de l’obtention du grade de
Master en Sciences Informatiques.

1

Acknowledgements

Dear reader, through this master thesis, you are about to discover the work that
has occupied us for approximately 4 months. Although confusing at times, it
showed us a glimpse of what the scientific research field of explainable artificial
intelligence is. We hope you will enjoy it as much as we did writing it.

First of all, we would like to thank our promoter Mr Benoit Frénay who gladly
helped us during our research. You gave us an expert advice and your help was
very valuable.

We would like to thank Adrien Bibal for his endless patience and all his valuable
feedbacks, ideas and discussions on our work. The final result would not have
been the same without your help and you made the work more enjoyable.

Finally, thanks to our family and friends who were there to listen to what seemed
to be nonsense to them.

1

Abstract

Recently, the domain of Explainable Artificial Intelligence saw the advent of
Testing with CAV (TCAV). Although very practical as they allow to check
the importance of a concept in the decision making of a neural network, they
pose the prerequisite of knowing the concept at stake and having a dedicated
dataset. In order to remedy this, a method is proposed to obtain an overview
of the different concepts that are important in the decision making process of a
neural network. The idea beneath the proposed method is to compare and label
the neural network instances based on their activation at a given layer inside the
network itself. Using two different kinds of neural network, an image classifier
and a game agent, the method is tested to see if an unsupervised extraction of
concepts is possible.

2

Contents

1 Introduction 5
1.1 Context and Problem . 5
1.2 Research Question . 5
1.3 Proposed Solution . 6
1.4 Thesis Structure . 6

2 Background 7
2.1 AI for Board Games . 7

2.1.1 Hearthstone’s Description 7
2.1.2 State Space Search . 10

2.2 Machine Learning & Deep Learning 11
2.2.1 Classification Task . 12
2.2.2 Subdivision of the Machine Learning Field 12
2.2.3 Neural Networks . 13
2.2.4 Convolutional Neural Network 15

2.3 Deep Learning for Board Games 16
2.3.1 AlphaZero . 16

2.4 Explainable Artificial Intelligence 18
2.4.1 Definitions . 18

2.5 Summary . 20

3 Understanding an Artificial Intelligence 21
3.1 Integrated Methods . 21

3.1.1 Purely Interpretable . 21
3.1.2 Hybrid . 21

3.2 Post-hoc Methods . 22
3.2.1 Partial Dependence Plot 22
3.2.2 Individual Conditional Expectation 23
3.2.3 Accumulated Local Effects Plot 23
3.2.4 Feature Interaction . 24
3.2.5 Permutation Feature Importance 25
3.2.6 Saliency Map . 25
3.2.7 LIME . 26
3.2.8 Anchors . 27
3.2.9 SHAP . 28
3.2.10 Testing with CAV . 29

3.3 Discussion . 31

3

4 Unsupervised Extraction of Concepts 32
4.1 Retrieving Activation Vectors . 32
4.2 Extracting the Concepts . 32
4.3 Understanding the Concepts . 33

4.3.1 Visualising Images . 33
4.3.2 Visualising Tabular Data 35

4.4 Evaluating the Concepts . 36
4.5 Summary . 36

5 Method Evaluation on Image Classifier 37
5.1 Model Introduction . 37
5.2 Unsupervised Extraction of Concepts 37

5.2.1 Retrieving Activation Vectors 38
5.2.2 Extracting the Concepts 38
5.2.3 Understanding the Concepts 39
5.2.4 Fixing the Results . 44

5.3 Conclusion . 46

6 Method Evaluation on Board Game Agent 47
6.1 Model Introduction . 47

6.1.1 Hearthstone Existing Implementations 47
6.1.2 Alphastone . 48

6.2 Unsupervised Extraction of Concepts 48
6.2.1 Retrieving Activation Vectors 48
6.2.2 Extracting the Concepts 49
6.2.3 Understanding the Concepts 49

6.3 Conclusion . 51

7 Conclusion 52

A Alphastone Matrices 58

Acronyms 60

4

Chapter 1

Introduction

1.1 Context and Problem

Last decade has seen huge improvements over the field of Artificial Intelligence
(AI) notably due to the Machine Learning researchers. That period of time
saw the emergence of black box applications that proved to be capable of beat-
ing the world best player of Go, painting realistic portraits or driving a car
without any human help just to cite a few of them. However, with the rise
of such applications, emerges some ethical questions too. Should a user place
his trust without questioning the reasoning behind such tools? Understanding
the reasoning of an uninterpretable model falls within the realm of Explainable
Artificial Intelligence (XAI).

This work examines already trained and developed AIs and, if need be, see what
can be done to troubleshoot them. To do this, attempting to see if the Neural
Networks have learnt high-level concepts can help to better understand their
reasoning. If the AI is performing well, it should improve the trust a user place
within its decision. If the AI does not operate effectively, learning how it works
provides insights on how to improve it.

1.2 Research Question

After exploring the state of the art techniques, it is discussed what constitutes a
problem regarding the Testing with CAV (TCAV) method. This technique aims
to check the importance of user-defined concepts onto the predictions of a Neural
Network model. Therefore, defining these upstream is necessary. However,
acquiring the data that represents these concepts in order to apply this method
can be hard and need human intervention.

Regarding the problem defined above, this work aims to answer the following
question: “Is an unsupervised extraction of concepts possible given a
Neural Network ?”.

5

1.3 Proposed Solution

In order to answer the research question, this work proposes a new approach to
extract the concepts learnt by a Neural Network. Also, to verify the assumptions
made, two different kinds of AIs are analysed through that method. One being
an image classifier, another one being a video game agent.

1.4 Thesis Structure

To begin with, Chapter 2 introduces the background required to understand
the rest of this thesis. Then, Chapter 3 oversees the different techniques that
constitutes the state of the art. Thereafter, Chapter 4 presents the contribution
of this document to the domain and Chapter 5 and Chapter 6 apply that con-
tribution to two different cases in order to better judge the work done. Finally,
Chapter 7 is a conclusion summing up the findings of this work, and discussing
at what can be done next in further works.

6

Chapter 2

Background

This chapter aims to introduce the knowledge necessary for the proposed method
and its applications. AI and Machine Learning domains are discussed, as well
as the field of Explainable Artificial Intelligence.

2.1 AI for Board Games

For many years, there has been a certain attention for board games in the world
of AI. This master thesis considers the specific case of Hearthstone, an online
trading card game. It was chosen as it is played at a professional level (e-sports)
and its state space is challenging for AI.

2.1.1 Hearthstone’s Description

Hearthstone is an online trading card game developed and published by Blizzard
Entertainment. At the beginning of a game, the player chooses among heroes
available in the game and a 30-card deck, previously created by the player, to
fight a battle against an opposing player. The two opponents compete on a
virtual game board, similar to a board game. Heroes have 30 health points and
one mana point on the first turn of the game, with the mana increasing by one
point per turn until reaching a maximum of 10 points. Mana points are used to
play the deck cards on the game board, as well as the hero’s heroic power. The
goal of the game is to reduce the opposing hero’s health points to zero, through
the use of minions, spells, weapons or through the use of the hero’s heroic power
controlled by the player. If one of the heroes reaches 0 health points, he loses the
game. Each Hearthstone card has a cost in mana to be played. The following
is a brief summary.

First, the minion cards, who summon a creature on the playing field. It has an
attack value, a health value, and possibly a special action (such as an action
upon arrival in the game, called a “battle cry,” or an action upon death, called
a “death rattle”. When placed on the game board, a minion must wait one turn
before he can attack (except for those with Charge or Rush effect who can attack
immediately). When a minion attacks an opposing minion, it receives damage

7

Figure 2.1: Hearthstone UI, taken from hearthstone.gamepedia.com1

equivalent to the latter’s attack. However, a minion does not take damage if he
attacks the opposing hero.

Second, the spell cards, which perform one or more special actions. The spells
can be of different categories. First, the ordinary spells, which are the ones that
do damage, heal, draw cards, steal cards from the opponent, etc. Next are the
secrets, which are cards that prepare an action unknown to the opponent and
which is triggered during his turn, under certain conditions. To conclude, the
quests spells are cards played at the beginning of the game for one mana point,
allowing to receive a reward after completing the quest several turns later.

The next type is weapon cards, which allow the hero to attack in addition to his
minions. These cards have an attack value and a number of uses (durability).
The weapon loses one durability point when the hero with the weapon attacks.
The weapon can also be destroyed in three different ways: when it reaches 0
durability, when a second weapon is equipped (the equipped weapon is then
replaced by the new one) or when the opponent plays specific cards to destroy
it.

Finally, the legendary heroes, which are “hero” cards that replace standard
heroes. When a card of this type is played, it allows you to add several armor
points to the hero and replace his heroic power with an improved version.

Each type of minion, spell, weapon or hero, when played or placed on the game
board, can generate or benefit from additional special actions, depending on the
characteristics of each card.

Figure 2.1 shows what the Hearthstone game board looks like from a player
point of view.

1https://hearthstone.gamepedia.com/File:Ui-guide-small.png (17/03/21)

8

Characteristics Description

Accessible If the game state is completely available to its agents. ×
Agents Number of players in a game. 2
Deterministic If the next environment state is completely determined

by the current state and the action that is going to be
performed.

X

Discrete If the information and possible actions are clearly de-
fined, then the environment is said to be discrete. Oth-
erwise it is continuous.

X

Episodic The agent’s experience is divided into episodes. This
means it will first perceive and then act.

X

Static If the environment can change while an agent is eval-
uating its choice, it is said to be dynamic, static oth-
erwise.

X

Table 2.1: Environment characteristics based on [Russell and Norvig, 1995].

The strategic aspects of the game make Hearthstone a competitive game with
its own e-sport scene. Indeed, tournaments are regularly organized allowing
the best players to compete for cash price. This competitive aspect makes the
creation of AI even more interesting. Indeed, a powerful AI can allow players
to discover innovative strategies.

Environment

A game environment is the context in which it lets its players evolve in. By
relying on some useful environment characteristics described in [Russell and
Norvig, 1995] (table 2.1 does a brief summary of these characteristics), the
game can be analyzed and characterized.

Hearthstone offers a partially visible game state (it is said to be inaccessible)
and lets two agents interact with it. This means it is not a perfect information
game (like Chess or Go, for instance) and, therefore, offers a challenging problem
for Artificial Intelligence (AI). Furthermore it offers a deterministic, static and
discrete gameplay. Hearthstone being a turn-based game, it is episodic, which
means that the state of a game does not change while an agent evaluates its
possible actions before taking one. All these characteristics make Hearthstone
a challenging game from an AI point of view. Indeed, the inaccessibility of a
game state makes the evaluation of an action complex.

Simulation

Training and using an AI with the official game client is delicate. Directly
interacting with the game by evaluating the screen in real time is a challenge
on its own. Still this situation would have the advantage to offer the same
information as a human player has while playing. Looking at the game logs
would be another option. While being feasible, it does not let the AI interact
with the game as it is fixed. This is why using a simulator allows to have good
performance and to interact with a game through a dedicated API. To this day,
there exist a few implementations but the most popular of them is probably

9

Name Language Discontinued

Fireplace Python
Heartbreaker Python ×
Metastone Java ×
Rosettastone C++
Sabberstone C#

Table 2.2: Most known Hearthstone simulators.

Fireplace. Written in python and available as a package. See Table 2.2 for a
more exhaustive list.

2.1.2 State Space Search

In board games, it is common for an AI to express the problem of finding the best
move to be played through a search. This is the process of finding a particular
state starting from another one. In that space of states, each state offers a set
of actions to be realized, leading to other states having their own properties.
Visiting each one of these states is a problem that belongs to the NP problem
class, this is why algorithms exist to find the goal state faster.

Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is an heuristic search algorithm used in de-
cision making [Browne et al., 2012]. It explores the game tree. The root cor-
responds to the initial configuration of the game. Each node is a configuration
and its children are the subsequent configurations. MCTS keeps in memory a
tree that corresponds to the already explored nodes of the game tree. A leaf of
this tree is either a final configuration (i.e., one of the players has won, or there
is a draw), or a configuration from which no simulation has yet been launched
(i.e., this part of the tree has not yet been explored). In each node, two numbers
are stored; the number of winning simulations and the total number of simula-
tions that passed through that node. Each step of the algorithm is composed of
four phases: selection, expansion, simulation and backpropagation (see Figure
2.2).

Selection From the root, children are successively selected until a leaf is
reached. In this phase, the choice of children is guided by a trade-off between
exploitation (a child that has been shown to be promising) and exploration (an-
other child, who looks less promising but that could lead to better results latter
on).

Expansion If the selected node is not a leaf, create all child nodes and choose
one of the children.

Simulation Next, it simulates an execution of a random game from this child,
until reaching a final configuration.

10

https://github.com/jleclanche/fireplace

Figure 2.2: MCTS steps illustration [Browne et al., 2012]

Backpropagation Finally, MCTS uses the result of the random game and
update the branch information from the child node to the root.

Exploration and exploitation During the selection phase, it is not easy to
find a good compromise between exploiting the choices that look promising and
exploring the nodes from which few simulations have been performed. To do
this, a variant of the Upper Confidence Bound-1 (UCB-1) formula [Auer et al.,
2002] is used, which is called Upper Confidence Bound 1 applied to Trees (UCT)
[Kocsis and Szepesvári, 2006]. The chosen child is the one that maximizes

wi
ni

+ c

√
lnNi
ni

, (2.1)

where wi is the number of wins for the node considered after the ith move, ni
is the number of times the node i was visited, Ni is the number of times the
parent node of i has been visited and c is the exploration parameter, usually
chosen empirically.

In Equation 2.1, the first part stands for the exploitation (wn is high for successors

that have a lot of success), while the second stands for the exploration (c
√

lnN
n

is large for successors that were not involved in a lot of simulations).

2.2 Machine Learning & Deep Learning

The search methods presented in Section 2.1 are often coupled with techniques
from machine learning. Machine Learning is an AI field of study that relies
on mathematical and statistical approaches to give a computer the ability to
learn. In order to do so, lots of data is necessary to train a model, which can
be thought of as a function mapping inputs (i.e., instances) to outputs (i.e.,
targets). This set of data where each value is associated with a variable (or
attribute) and an observation is called a dataset. Once that process is done, if
correctly trained, the model will have the capacity to make predictions on new
instances it has never seen before. Machine Learning is constituted of several

11

Figure 2.3: Comparison of the error rate of various classification models with
respect to humans on the ImageNet dataset, from [Alom et al., 2019].

sub-categories, Deeplearning is one of them. It includes algorithms that are
called Neural Network (NN).

2.2.1 Classification Task

Classification is a task in which data must be labelled. Typically, an observation
made must be related to a category which it belongs to. To do this, it is common
today to use a machine learning algorithm that attempts to find the correct class
for any given observation. With the rise of these algorithms in recent years,
classification automation has taken a big leap forward.

One interesting problem of recent years that deserves to be considered is image
classification. With today’s machine learning methods and computing resources,
it has been possible to beat humans in many applications. Figure 2.3 shows that
some classifiers perform really well on a complex image classification problem.
As explained in [Lu and Weng, 2007], there are a lot of algorithms capable of
classifying images in an efficient way.

2.2.2 Subdivision of the Machine Learning Field

Machine learning is generally divided into three subcategories.

Supervised Learning

Given a dataset of instances, each one matching its desired target, these algo-
rithms have to find a function that approximates the mapping between these
two. In the optimal situation, this function is able to find the correct target
for a unseen instance. For example, given a dataset where each instance corre-
sponds to the characteristics of a dog matching its breed, it is possible to find
a function that can predict the breed from the characteristics of an unseen dog
instance.

12

Figure 2.4: Neural Network representation, from [Bre et al., 2018]

Unsupervised Learning

Unlike for supervised learning algorithms, the instances here do not have any
target. When training such models, the learning phase is all about finding
patterns in the inputs. The best known algorithms are clustering algorithms.
These aim to divide a set of data into different homogeneous clusters, so that the
data in each subset share common characteristics, which most often correspond
to proximity criteria that are defined by introducing distance measures.

Reinforcement Learning

Reinforcement learning consists, for an autonomous agent, in learning the ac-
tions to be taken, based on experiences, in order to optimise a quantitative
reward over time. Among the first reinforcement learning algorithms, there
are Temporal difference learning (TD-learning) [Sutton, 1988] and Q-learning
[Watkins and Dayan, 1992].

2.2.3 Neural Networks

Neural networks are a set of machine learning methods. They are generally
associated with supervised learning since they tend to learn based on labelled
dataset. These methods are called neural networks because they losely mimic
the structure and inner working of a human brain. Figure 2.4 gives a visual
representation of a Neural Network structure.

Description

An artificial Neural Network is composed of l layers of neurons. The first one
is the input, the last one is the output, and in between there are the hidden
layers. Each layer constitutes a level of abstraction, the more there are, the more

13

Figure 2.5: Forward propagation illustration, from stackexchange.com2

complex the Neural Network becomes. Training a neural network generally takes
a lot of time due to the enormous amount of calculation needed. The training
is composed of the following steps.

Initialisation The neurons in each layer have a connection to some, or all,
neurons in the next layer. For each one of these connections, there exists a
specific weight. These weights determine the output of any given input. Each
connection has its weight randomly initialized at the start of the learning pro-
cess.

Forward Propagation This step consists of forwarding an input through the
network. An instance from the dataset is taken, passed through the network,
and the resulted prediction is then compared with the target.

For instance, a forward propagation for the Neural Network from figure 2.5
would be calculated as follow:

• For each hi, sum the respective weights time inputs. For instance, h1 =
x1 ∗ w1 + x2 ∗ w3 + x3 ∗ w5.

• Then, apply an activation function (see Figure 2.6) to each hi to get its
output.

2https://stats.stackexchange.com/questions/295251/forward-propagation-calculation-for-
single-layer-neural-network (26/03/21)

14

Figure 2.6: Activation functions example, from paperspace.com3

• The final output fout is then calculated based on the weighted input fin =
h1 ∗ u1 + h2 ∗ u2.

Backpropagation Backpropagation minimises the error E, which is the er-
ror between the target and what the forward propagation step outputs for an
instance.

In order to do so, a Stochastic Gradient Descent (SGD) is realized to update
each weight that contributed to the result. SGD is an iterative gradient descent
method used for the minimisation of an objective function. Once done, the
training goes back to the forward propagation step.

2.2.4 Convolutional Neural Network

Convolutional Neural Network (CNN) [Indolia et al., 2018] are powerful Neural
Networks commonly used for image recognition. They automatically assign to
each input image a label corresponding to its class. The Convolutional Neural
Network architecture has two parts (Figure 2.7 shows a classic architecture for
a CNN).

The first one is the convolutional part whose objective is to extract specific
characteristics from each image. This part is composed of three types of layers.
The first is the convolution layer, which allows to identify the presence of a set
of features in the images received as instances. To do this, convolution filtering
are performed. Filters (or convolution kernels) are applied iteratively. They
scan the data to extract attributes in order to build a feature map, which tells

3https://docs.paperspace.com/machine-learning/wiki/activation-function (12/05/2021)

15

Figure 2.7: Classical architecture of a CNN from [Albelwi and Mahmood, 2017]

where the features are located in the image: the higher the value, the more
the corresponding place in the image looks like the feature. The second layer
is the pooling layer. It receives as input several feature maps, and applies to
each of them the pooling operation. This consists in reducing the size of the
images, while preserving their important characteristics. The output is the same
number of feature maps as the input, but they are much smaller. The last layer
is the ReLu correction layer (see Figure 2.6). Its purpose is to replace all the
negative values received as inputs by zeros. It plays the role of an activation
function.

The second part of the CNN is the classification part. It consists of fully con-
nected layers and its role is to combine the feature maps in order to classify the
image.

2.3 Deep Learning for Board Games

In 1997, a supercomputer called Deep Blue is the first machine to beat the
chess world champion Garry Kasparov. Recently, AI has known a lightning
advance thanks to AlphaGo, which proved to be capable of beating the world
champion of go, something that was thought of to be unachievable before. The
inner working of AlphaGo heavily relies on Deep Learning and its successor,
AlphaZero, has been adapted to a multitude of other games, Hearthstone being
no exception.

2.3.1 AlphaZero

In October 2015, a British company called DeepMind created AlphaGo [Silver
et al., 2016], an AI agent that uses reinforcement learning to play the game
of go. It became the first AI to beat a professional player. The AI combines
machine learning and graph traversal technologies, like explained earlier (see
Section 2.1.2). Since then, this algorithm has been further improved over the
following versions. AlphaGo Zero [Silver et al., 2017], in October 2017, reached
better performance by playing only against itself. This has been followed by a
more generic version, AlphaZero [Silver et al., 2018], which is capable of winning
not only in go, but also in chess and shōgi (japanese version of chess).

16

AlphaZero Algorithm

The AlphaZero algorithm takes place in 3 phases [Silver et al., 2018]. The first
one consists in playing a certain number of games against itself, the second one
retrains the model and the last one evaluates the model.

First Step During this step, AlphaZero creates its training set. To do this, the
algorithm uses MCTS of Section 2.1.2. At each move, the following information
is stored: the game state, the search probabilities (from the MCTS) and the
winner (+1 if the player won, -1 otherwise).

Second Step At this stage, the algorithm retrains the Neural Network to
optimise its weights. It then samples a mini-batch of positions with the infor-
mation (state, search probabilities and winner) stored at the previous step and
retrains the Neural Network from these positions. The instances correspond
to the game states. The loss function compares the prediction of the Neural
Network with the search probabilities and the actual winner.

Third Step This last step consists of evaluating the network. It is done by
comparing the latest Neural Network and the current best one. Several games
are played between these two networks. Each player uses the MCTS to select
their move and their respective Neural Network to evaluate the leaves. To
become the new best model, the latest Neural Network must win 55% of the
games.

Deep Learning Heuristic Function

As mentioned in Section 2.1.2, standards MCTS uses the Upper Confidence
Bound 1 applied to Trees (UCT) formula to find a good compromise between
exploration and exploitation. AlphaZero uses a version called Polynomial Upper
Confidence Trees (PUCT) [Czech et al., 2020]. PUCT is defined as

PUCT (s, a) = Q(s, a) + U(s, a), (2.2)

where Q is the mean action value. It corresponds to the average game result
of the current simulation that considers action a. In Formula 2.2, U(s, a) =

cpuctP (s, a)
∑

bN(s,b)

1+N(s,a) , where P is the prior probabilities given by the Neural

Network and N is number of times this action was taken during current simu-
lations.

All possible actions b are added in the numerator, and the number of visits for
the considered action a is in the denominator. Therefore, the less this action was
tried, the larger U is. This encourages exploration. When c puct increases, it
gives more weight to this exploration term. When it decreases, the exploitation
of the expected result Q is given more weight.

Neural Network Architecture

As shown in Figure 2.8, the Neural Network consists of several residual layers
[He et al., 2016] that splits into two completely connected heads. One that
gives the probability distribution on all actions and one that gives the winning

17

likelihood value for the current state (+1 or -1). An instance corresponds to a
game state.

2.4 Explainable Artificial Intelligence

Explainable Artificial Intelligence (XAI) tries to answer different problems that
arise from the use of AI. It is necessary (even required sometimes [Došilović
et al., 2018]) for certain domains to understand the predictions of a model
[Bibal and Frénay, 2016]. An example often mentioned to better understand
this need is that of a doctor using a model that gives diagnostics about patients
health. If it tells him a certain patient has the flu, the doctor will surely need
an overview of how it came to that conclusion before taking any initiative to
cure the patient.

Explainable Artificial Intelligence (XAI) is the set of techniques that aim to
provide a humanly understandable explanation of a model. When speaking
about XAI, two related terms often comes up: explainability and interpretabil-
ity. Even though they might seem to be synonym and they do not have any
fixed definition, it is important to distinct them.

2.4.1 Definitions

Interpretability is about understanding the reasoning behind a model by under-
standing its inner workings. An interpretable model is also said to be trans-
parent. In opposition to this, explainability is about understanding a black
box model, which is said to be uninterpretable by definition. An explanation
is therefore an approximation of the internal functioning of a model. Most of
the time, these explanations are said to be post-hoc (meaning they are obtained
after the training of the model).

Interpretability

Originally, using a transparent method was the approach used to keep a high
level of interpretability when dealing with AI. Indeed, there is no better ex-
planations for a model than the model itself. But even transparent models
are obviously becoming much more complex than they originally were and it
is becoming hard to find relevant explanations that can be understood by hu-
mans. Also, transparency reduces the number of algorithms one can choose
when elaborating an AI even though some of these nontransparent algorithms
would achieve better performance. Indeed, integrated approaches and perfor-
mance have conflicting objectives [Edwards and Veale, 2017]. Also, this ap-
proach can be costly if one already has a working model. This is why XAI
methods were created.

Explainability

By contrast, finding an explanation to a model is often achieved after the train-
ing, therefore such techniques are said to be post-hoc. A post-hoc approach

4https://nikcheerla.github.io/deeplearningschool/2018/01/01/AlphaZero-Explained/
(26/05/2021)

18

Figure 2.8: Alphazero Neural Network architecture, from
https://nikcheerla.github.io4

19

would take an already trained model and try to extract information out of it.
This way, one can keep a black-box model as it is, nor does he have to reduce
his choice of available algorithms, since most of these techniques are said to
be model agnostic, which means they can work regardless of the model nature.
This kind of method has the advantage of letting the user keep a black-box
model and the performance that comes with it. However, they generally keep
the scope of an explanation to a local input. They do not permit the user to
learn the inner mechanisms of a model [Montavon et al., 2018].

2.5 Summary

This chapter explains the application of AI in the field of board games and in
classification tasks such as image classification. A brief introduction to machine
learning and deep learning is also detailed. Finally, Section 2.4 explains the
field of Explainable Artificial Intelligence and why it is a necessity nowadays.
This allows to understand the next part of this work, which is the different XAI
methods that constitute its state of the art.

20

Chapter 3

Understanding an Artificial
Intelligence

In order to answer this master thesis question, it is necessary to explore the dif-
ferent techniques that constitute the state of the art for the Explainable Artificial
Intelligence field. Before exploring the post-hoc methods, a brief summary for
the integrated methods is done.

3.1 Integrated Methods

This section discusses multiple ways of having a transparent AI, and therefore,
making it interpretable.

3.1.1 Purely Interpretable

Using this approach, one is limited to choosing in the set of models that are
completely transparent. For instance, decision tree algorithms are considered to
be fully transparent since they appear to be exclusively a set of if-then condition
statements. However, these models often perform poorly compared to more
complicated ones and increasing the size of such models does make them more
opaque [Došilović et al., 2018].

3.1.2 Hybrid

Hybrid models combine the use of transparent methods with black box ones.
This way, it is therefore possible to do the right trade-off between performance
and interpretability. For instance, in [Piltaver et al., 2014], they train hybrid tree
classifiers where certain leafs are replaced with black box classifiers, therefore
trading transparency for better performance.

21

Figure 3.1: Partial dependence Plot, from scikit-learn.org1

3.2 Post-hoc Methods

This part focuses on the post-hoc methods that make an uninterpretable model
explainable. The structure of the book [Molnar, 2020] has been adapted since
it reviews most of the available techniques as for the time of the writing of this
work.

3.2.1 Partial Dependence Plot

Partial Dependence Plot (PDP) [Friedman, 2001] is an explanation method that
shows the impact of one or two features on a machine learning model prediction.
The partial dependence function is defined as

f̂xS
(xS) = ExC

[
f̂(xS , xC)

]
=

∫
f̂(xS , xC)dP(xC), (3.1)

where xs are the features relative to the partial dependence function and xc are
the other features. xs and xc put together contain all the features. What partial
dependence does is marginalising the model’s output over the distribution of the
features in the set C. By doing so, the function only depends on the features in
s.

f̂xS
can be estimated with the Monte Carlo method,

f̂xS
(xS) =

1

n

n∑
i=1

f̂(xS , x
(i)
C). (3.2)

For given values in the set S, 3.2 gives the average marginal effect on the pre-

diction. In Equation 3.2, x
(i)
C are the irrelevant features and n is the number

of instances in the dataset. Figure 3.1 shows the partial dependence of house
value on non-location features for the California housing dataset.

In the PDP method, features in C must not be correlated with the features
in S. Otherwise, the averages calculated for the Partial Dependence Plot will
come out with data points that are improbable or impossible.

1https://scikit-learn.org/stable/modules/partial dependence.html (07/05/21)

22

Figure 3.2: ICE plot, from towardsdatascience.com2

3.2.2 Individual Conditional Expectation

Individual Conditional Expectation (ICE) plots [Goldstein et al., 2015] is the
equivalent of PDP but for an individual instance. A PDP is the average of the
lines of an ICE plot.

Concretely, in ICE plots, for each instance in the set {(x(i)S , x
(i)
C)}Ni=1, the curve

corresponding to the function f̂
(i)
S is plotted against x

(i)
S , while x

(i)
C remains

fixed (see Figure 3.2).

3.2.3 Accumulated Local Effects Plot

As explained before in Section 3.2.1, to use the PDP method, the features must
not be correlated. If this is not the case, then the result is not reliable. To
overcome this, there is a method called M-plots [Apley and Zhu, 2020]. The
idea is to average over the conditional distribution of the two correlated features.
However, the solution is not optimal since it is an estimation of their combined
effect.

The Accumulated Local Effects (ALE) [Apley and Zhu, 2020] method is a so-
lution for correlated features. Instead of calculating the average, it calculates
the difference between the features. It avoids to mix the effect of a feature
with the effects of correlated features. As explained in Equation 3.1, Partial
Dependence Plots average the predictions over the marginal distribution while

2https://towardsdatascience.com/how-to-explain-and-affect-individual-decisions-with-ice-
curves-1-2-f39fd751546f (07/05/21)

23

Location Size Prediction

good big 300.000
good small 200.000
bad big 250.000
bad small 150.000

(a) No interaction.

Location Size Prediction

good big 400.000
good small 200.000
bad big 250.000
bad small 150.000

(b) Interaction.

Figure 3.3: Feature interaction example adapted from [Molnar, 2020].

M-plots average the predictions over the conditional distribution. The equation
becomes

f̂xS ,M (xS) =EXC |XS

[
f̂(XS , XC)|XS = xs

]
=

∫
xC

f̂(xS , xC)P(xC |xS)dxC . (3.3)

ALE plots average the changes in the predictions and accumulate them. The
formula is

f̂xS ,ALE(xS) =

∫ xS

z0,1

EXC |XS

[
f̂S(Xs, Xc)|XS = zS

]
dzS − constant

=

∫ xS

z0,1

∫
xC

f̂S(zs, xc)P(xC |zS)dxCdzS − constant, (3.4)

where

f̂S(xs, xc) =
δf̂(xS , xC)

δxS
. (3.5)

3.2.4 Feature Interaction

To estimate the interaction strength between two features, it is possible to
measure how much the variation of a prediction depends on the interaction
of these two features. This measurement is called H-Stastic [Friedman et al.,
2008].

To better understand feature interaction, a great example is given in [Molnar,
2020]. Looking at Figure 3.3, there is the output of two given models that
predict the price of a house based on two inputs: its location and its size.

In Table 3.3a, a deconstruction can be done as such: a constant term (150.000)
and an effect for each of the features: +100.000 if the house is big but +0 if
small, and finally +50.000 if in a good location while +0 if not. In other words,
having a big size increase the price by 100.000, while having a good location
increases it by 50.000.

However, the above is not enough to explain Table 3.3b. For this, a new term
is needed. Introducing one that considers both the size and the location of
the house, such that when it meets the two conditions, the price increases by
100.000 can explain the price on the first line of the table. This new term is
called an interaction feature.

24

Figure 3.4: Permutation feature importance scores on Titanic dataset with Ran-
dom forest model, from medium.com3

3.2.5 Permutation Feature Importance

Permutation feature importance, introduced by Rudin, Fisher and Dominici
[Fisher et al., 2018], is a method that aims to measure the importance of a
feature. To do that, it computes the increase in a model prediction’s error when
permuting the feature. If the permutation of that feature increases the error,
then it is an important one. Otherwise it means that the feature is not, or at
least less, important. For instance, Figure 3.4 shows the permutation feature
importance scores on the Titanic dataset and a random forest model.

The algorithm described in [Fisher et al., 2018] proceeds in three steps. It
takes four parameters as inputs. The trained model f , the feature matrix X,
the target vector y and then the measure L(y, f) that corresponds to the er-
ror. The first step of the algorithm is to estimate the original error defined
as eorig = L(y, f(X)). After, for each feature i = 1, ..., p it computes Xperm

by permuting feature i in the matrix X, then based on the prediction of the
permuted matrix Xperm it estimates the error eperm = L(Y, f(Xperm)), finally
it computes permutation feature importance with either FIj = eperm/eorig or
alternatively FIj = eperm − eorig. The last step of the algorithm is sorting
features by descending FI.

3.2.6 Saliency Map

It is quite complicated to understand the choice of a model in the context of
image recognition. Saliency map is an explanation method used to interpret the
predictions of a Convolutional Neural Network (CNN) [Simonyan et al., 2013].
It shows (see 3.5) how much a pixel contributed in the computation of the score
(output of the CNN).

A CNN gives the class score Sc(I) for an image I belonging to class c. Sc(I)

3https://medium.com/@mudassirkhan19/use-this-for-feature-importance-5a8a068a3244
(07/05/21)

4https://usmanr149.github.io/urmlblog/cnn/2020/05/01/Salincy-Maps.html (22/03/21)

25

Figure 3.5: Saliency map, from usmanr149.github.io4

can be approximated with the first-order Taylor expansion such as,

Sx(I) ≈ wT I + b (3.6)

where b is the bias and w is the derivative of Sc with respect to the image
I,

w =
δSc
δI

. (3.7)

As mentioned in [Simonyan et al., 2013], the magnitude of w indicates what
pixels need to be changed the least to affect the class score the most.

Recently, in [Adebayo et al., 2018], it has been proposed a new technique to
evaluate the efficiency of saliency maps in giving human explanations they can
understand. This article highlights the fact “that visual inspection is a poor
guide in judging whether an explanation is sensitive to the underlying model
and data”. Furthermore, this method, while being interesting when working
with images, is not applicable otherwise.

3.2.7 LIME

Local Interpretable Model-Agnostic Explanations (LIME) is a technique that
aims to give local explanation for a given prediction. Its main goal is to give a
local approximation to a black box model using an interpretable model so that
he or she can trust the output prediction of a model.

What LIME does is solving

ξ(x) = argmin
g∈G

L(f, g, πx) + Ω(g), (3.8)

where G is the set of potentially interpretable models, Ω(g) is the complexity
of g, πx(z) is the proximity measure of z regarding to x. f : Rd → R is the
model that needs explanations, L(f, g, πx) is the measure of how unfaithful g is
for approximating f in the locality defined by πx.

26

Figure 3.6: Faithful local explanation using LIME [Ribeiro et al., 2016].

It is therefore simply a matter of minimizing L, while keeping the complexity
of g low enough for the explanation to be understandable by a human [Ribeiro
et al., 2016].

Figure 3.6 gives a better understanding of what LIME does. An explanation for
the Figure is given in [Ribeiro et al., 2016]: “The black-box model’s complex
decision function f (unknown to LIME) is represented by the blue/pink back-
ground, which cannot be approximated well by a linear model. The bold red
cross is the instance being explained. LIME samples instances, gets predictions
using f , and weighs them by the proximity to the instance being explained (rep-
resented here by size). The dashed line is the learned explanation that is locally
(but not globally) faithful.”.

3.2.8 Anchors

Anchors, from the same authors behind LIME, are model-agnostic explanations
based on if-then rules. This method has the benefit of being intuitive and easy
to understand. A defined anchor “anchors” (hence the name) its prediction
locally such that for any instance on which the anchor stands, the prediction
will (almost) be the same [Ribeiro et al., 2018]. Figure 3.7 is an Anchor example
while a comparison between LIME and a corresponding anchor explanation is

Feature Value

Age 20
Sex Female
Class First
Ticket Price 300$
... ...
Survived True

(a) Instance example.

IF SEX = female,
AND Class = first,
THEN PREDICT Survived = true,
WITH PRECISION 97%,
AND COVERAGE 15%

(b) Corresponding if-then explanation.

Figure 3.7: Anchors example from [Molnar, 2020].

27

Figure 3.8: LIME approximation for an instance compared to its Anchor expla-
nation, from [Ribeiro et al., 2018]

given in Figure 3.8.

Given the example in Table 3.7, [Molnar, 2020] explains that anchors provide
essential insights into a model’s prediction and its reasoning. “The result shows
which attributes were taken into account by the model, which in this case,
is the female sex and first class. Humans, being paramount for correctness,
can use this rule to validate the model’s behavior. The anchor additionally
tells that it applies to 15% of perturbation space’s instances. In those cases
the explanation is 97% accurate, meaning the displayed predicates are almost
exclusively responsible for the predicted outcome.” [Molnar, 2020].

In [Ribeiro et al., 2018], they argue the usefulness of anchors explanations on
a multitude of domains and models: Text classification, structured prediction,
tabular classification, image classification and visual question answering.

More formally, the definition of an anchor is

EDx(z|A)[1f(x)=f(z)] ≥ τ,A(x) = 1, (3.9)

wherein x ∈ X represents the instance being explained, f is the model to be
explained, A, is a set of predicates such that A(x) = 1 if all its feature predicates
are true for instance x. Dx(·|A) is the conditional distribution around x, when
rule A applies, and finally, 0 ≤ τ ≤ 1 is a specified threshold.

3.2.9 SHAP

SHAP (SHapley Additive exPlanations) by Lundberg and Lee is a game the-
oretic approach aiming to explain the output of any machine learning model
[Lundberg and Lee, 2017].

28

Figure 3.9: TCAV illustration from [Kim et al., 2018].

This method is based on Shapley Values introduced by L.S. Shapley in 1953
[Shapley, 1953]. In game theory (for cooperative games), the Shapley value
gives a fair distribution of payoffs to the players. The players collaborate to
obtain a certain gain. The problem is then the distribution of this gain among
the different players. Shapley proposed a “fair” distribution of the payoffs of
the coalition of n players.

The idea behind SHAP, is to compute the contribution of each feature in the
prediction of an instance x.

SHAP defines the explanation as

g(z′) = φ0 +

M∑
j=1

φjz
′
j , (3.10)

where g is the explanation model, z′ ∈ {0, 1}M is the coalition vector, M is
the maximum coalition size and φj ∈ R is the feature attribution for a feature
j, the Shapley values. In the coalition vector, 1 means that the corresponding
feature value is “present” and 0 that it is “absent”. To compute Shapley values,
it simulates that only some features values are playing and some are not. The
explanation can be simplified with a “trick” to a linear model and it is done to
simplify the computation of φ’s. An instance x has a coalition vector x′ with
only 1’s (all features are present):

g(x′) = φ0 +

M∑
j=1

φj . (3.11)

3.2.10 Testing with CAV

As introduced in [Kim et al., 2018], Testing with CAV (TCAV) provides an
interpretation of a Neural Network internal state in terms of human-friendly
concepts, which are called High Level Concept (HLC). CAV stands for Concept
Activation Vectors. Concretely, TCAV uses the directional derivative to quan-
tify the sensitivity of the model to a certain HLC represented by a CAV. Figure
3.9 shows a schematic explanation of the method. The steps are detailed in the
following section.

29

User-defined Concepts as Sets of Examples

The first step in this method is to define some HLCs. To do this, one must
choose sets of examples, each representing one of the chosen concept or find
independent datasets with the labelled concepts.

CAVs

The next step is to create the Concept Activation Vectors (CAV) in the space of
activations of layer l. To find this vector, it is explained in [Kim et al., 2018] that
“we consider the activations in layer l produced by input examples that in the
concept set versus random examples [sic]. We then define a concept activation
vector (or CAV) as the normal to a hyperplane separating examples without a
concept and examples with a concept in the model’s activations”.

In a more mathematical way, with C representing the concept, one actually has
to define a dataset containing the concept, let it be PC , and another one made
of random examples, N . A binary linear classifier has then to be trained to
distinguish between the layer activations of the two sets: {fl(x) : x ∈ PC} and
{fl(x) : x ∈ N}. The resulting vlC ∈ Rm is a linear CAV that is defined for the
concept C [Kim et al., 2018].

Directional derivatives and Conceptual Sensitivity

Let vlC ∈ Rm be a CAV vector for concept C at layer l, and f1(x) the activation
for input x for the very same layer, the sensitivity for class k, to concept C, can
be computed as the directional derivative

SC,k,l(x) = lim
ε−→0

hl,k(f1(x) + εvlC)− hl,k(f1(x))

ε

= ∆hl,k(f1(x)) · vlC
(3.12)

where hl,k : Rm −→ R [Kim et al., 2018].

As explained in [Kim et al., 2018], this is because “CAV and directional deriva-
tives permit the calculation of the sensitivity of machine learning predictions to
changes towards the direction of a concept, at neural activation layer l”.

Testing with CAV (TCAV)

The following formula allows to compute the TCAV score of a given con-
cept,

TCAVQC,k,l
=
|{x ∈ Xk : SC,k,l(x) > 0}|

|Xk|
. (3.13)

It can be defined as the ratio of inputs x from class k that have a positive
directional derivative SC,k,l(x) towards the concept C at layer l given all inputs
from that very same class k [Kim et al., 2018].

Statistical significance testing

The drawback of using only one TCAV is that it could be meaningless. Indeed,
any randomly generated set, instead of PC , would still produce a CAV, and

30

therefore, would not be relevant at all. To prevent such pitfall, [Kim et al.,
2018] proposes a statistical test approach. Instead of training a CAV once on a
random set N, one could do it about 500 times. Therefore, if the TCAV scores
behave consistently across the runs, it can be considered meaningful.

TCAV Extensions: Relative TCAV

Using CAVs to distinguish between similar concepts will not mean that these
CAVs will be orthogonal between them. Indeed, related HLCs will likely over-
laps. In [Kim et al., 2018], a solution for such comparison is proposed: relative
TCAV. Taking two distinctive but alike concepts, C and D, training a classifier
on fl(PC) and fl(PD) yields a vector vlC,D ∈ Rm. That vector is defining a one
dimensional space where the projection of any fl(x) tells to which concept x is
more relevant.

3.3 Discussion

All the methods detailed in this chapter are what constitute the state of the
art in the Explainable Artificial Intelligence domain. Although they are diverse
and serve different purposes, not all of them are usable to answer this work
question.

While methods relative to features perform well with few features, they be-
come complicated to use when working with images and large feature space in
general.

Developing further the idea behind Saliency maps would have been an inter-
esting approach to the research question. However, they have received a lot of
criticism lately [Adebayo et al., 2018] and most importantly, they are not usable
with other types of networks than image recognition Neural Network.

Lime, SHAP and the Anchors methods are local explanations to a model pre-
diction. This master thesis aims to extract global concepts learnt by a Neural
Networks. Therefore, they may not be the most appropriate for the scope of
this thesis.

The idea behind TCAV is appealing. Having a way of determining the direction
of a concept given an activations space is interesting. However, it assumes that
the concepts, to be identified, are known to the user and therefore, that he has
a dataset to train the CAV on. Finding or creating datasets containing the
concepts to extract may be a very tedious task. Also, it can be very hard, if
not impossible, to be exhaustive. Therefore, the next chapter focuses on the
problem that comes from the use of TCAV, and gives a method to extract the
concepts from a Neural Network.

31

Chapter 4

Unsupervised Extraction of
Concepts

Given the problem that TCAVs need concepts to be defined in advance, and
the creation of their respective datasets, this chapter aims to automatically
determine the concepts learnt by a Neural Network and to build a dataset of
these concepts. Thus, this chapter describes an unsupervised method to extract
concepts learnt by a Neural Network, Figure 4.1 illustrates the method.

4.1 Retrieving Activation Vectors

The first step of the proposed method is to obtain instances for the given Neural
Network. These instances are passed through the network, and, for each one of
them, their activation vector (i.e., their output) at a chosen layer are retrieved
and saved. Choosing a layer cannot be automated and largely depends on the
network architecture. Testing different layers is necessary since the method
results differ depending on the chosen layer.

4.2 Extracting the Concepts

This step extracts the learnt concepts of the Neural Network. For this, the
previously retrieved activation vectors from Section 4.1 are regrouped based
on their similarities. A clustering is therefore done based on their position in
the space that they form. It allows comparing their respective instances and
to understand what links them together. A dataset is created for each cluster
formed, which contains the instances corresponding to the activation vectors
present in the cluster.

The datasets formed therefore contains instances with common concept, they
are referred to as concept datasets in the following sections.

To perform the clustering, an unsupervised classification method, called K-
Means [Schubert and Rousseeuw, 2019], is used. As it can be seen in Figure
4.2, the K-Means algorithm separates the data in k clusters. Given a set of

32

Figure 4.1: Illustration of the 4 different steps used to extract learnt concepts
out of a Neural Network.

points {x1, x2, ..., xn}, it partitions the n points into a chosen number k of sets
S = {S1, S2, ..., Sk} (k ≤ n) by minimising the distance between points within
each partition,

arg min
S

k∑
i=1

∑
xj∈Si

|| xj − µi ||2, (4.1)

where µi is the mean of the samples in the cluster Si.

4.3 Understanding the Concepts

When the concepts are extracted, the method identifies them. How it is done,
widely depends on the nature of the instances. Methods to identify the concepts
for two different types of instances are presented below.

4.3.1 Visualising Images

If instances are images, it is possible to visualise the images that resulted in a
cluster of activation vectors in order to better understand what is the common
concept between them. Visualising only one image does not help to identify what
links multiple activation vectors together. However, processing all of them is
tedious for a human. The proposed solution is to take a reasonable amount of
instances per cluster (i.e., 3 or 4) and show them to the user. That way, it is
possible to oversee the concept linking the image activation vectors.

A solution to find representative instances for a cluster is to perform a second
clustering on its activation vectors. Visualising the instances corresponding to
each center of the calculated sub-clusters allows having an overview of the overall
cluster concept.

To perform the second clustering, another unsupervised classification method,
called K-Medoids [Schubert and Rousseeuw, 2019], is used. It is a clustering
algorithm more robust to outliers than the traditional K-Means [MacQueen

0https://stanford.edu/∼cpiech/cs221/handouts/kmeans.html (10/05/2021).

33

Figure 4.2: K-Means illustration taken from stanford.edu.

Figure 4.3: K-Means vs K-Medoids illustration taken from [Entezami et al.,
2020].

34

et al., 1967] (see Figure 4.3 for a visual comparison of the two algorithms).
Furthermore, K-Medoids gives the possibility to retrieve a cluster center that is
an existing activation vector (i.e., the medoid), instead of the mean activation
vector that is provided by K-Means.

The K-Medoids algorithm minimises the mean squared error, which is the dis-
tance between the points of the class and its medoid. The medoid is the most
representative object of a cluster, for which the average dissimilarity with re-
spect to all objects in the cluster is the smallest. The medoid is defined as

xmedoid = arg min
y∈X

n∑
i=1

d(y, xi), (4.2)

where X is a set of n instances {x1, x2, ..., xn} in a space and d is a distance
function [Struyf et al., 1997].

4.3.2 Visualising Tabular Data

Tabular data instances cannot be viewed and understood as easily as images,
they require another method to better understand the concept behind the
datasets formed by the clustering in Section 4.2. Each instance in the datasets
is a vector of features. To understand what links the instances together in one
concept dataset, it is helpful to determine which features are common between
them. These features are the ones that do not change too much between the
different instances.

To sort out the features that do not change too much from the ones that do,
the Shannon entropy [Shannon, 1948], which is a measure of disorder, is useful.
Given a source X with n symbols, a symbol xi having a probability pi = P (X =
xi) to appear, the entropy H is defined as

H(X) = −
n∑
i

pi log2(pi). (4.3)

To omit the irrelevant features (i.e, those that change too much) and have a
clearer representation of each cluster, a mask is created. The mask is a way
to visualise the features that characterise a concept dataset (those who do not
change, or change only a little). To be representative of the concept, the mask
must match a significant amount of the instances in the concept dataset.

The mask is created in several steps. First, the mask is set to equal the instance
that resulted in the activation vector that is the closest to the cluster center.
The entropy of each feature is computed on all instances of the concept dataset.
The closer the entropy is to zero the more similar the feature values are. At the
start, the features that do not change (the entropy is equal to 0) and the feature
with the smallest non zero entropy value are kept. Then the instances where
the selected features have the same value as the mask are counted, ignoring the
values of the unselected features. If not enough instances are counted, the next
feature with the smallest non zero entropy is added. Every time a feature is
added to the mask, it selects more and more instances matching with the mask
until reaching the desired percentage. At this moment, the mask is a subset of
features that represents the concept dataset.

35

4.4 Evaluating the Concepts

Once the datasets of instances are created and their concepts identified, the
TCAV method can therefore be used to determine the influence of the concepts
over the model’s predictions. Classifiers needs to be trained on each clusters
from Section 4.2 to retrieve their corresponding Concept Activation Vectors,
each one pointing at the center of the cluster. To do so, the following is repeated
for each cluster.

All the activation vectors are taken in the cluster of interest and a correspond-
ing label for each is created. These labels are set to “1”, meaning that these
activation vectors correspond the identified concept. As negative samples, the
same amount of activation vectors is randomly taken from the other clusters and
their labels are set to “0”, meaning that they do not contain the concept.

A linear classifier is then trained over the previously labelled activation vectors
in order to differentiate the activation vectors that represent the concept from
those that do not. The corresponding CAV is the vector that is orthogonal to
the decision boundary of the classifier. At the end of this process, a CAV for
the evaluated cluster is obtained.

When the above is done for each determined cluster, it is possible to check what
concept prevails over a particular class of instances using the calculated CAVs
and the TCAV score method described in [Kim et al., 2018]. Taking a class
dataset and then applying the Formula 3.13 explained in Section 3.2.10 gives a
score for each identified concept, making it possible to compare them in order
to know how much each influence the Neural Network’s outputs.

4.5 Summary

This chapter gives a solution to the unsupervised extraction of concepts regard-
ing a Neural Network. By retrieving multiple activation vectors for the con-
cerned Neural Network, an algorithm (i.e., K-Means) can extract the concepts
by clustering the activation vectors. Once the clusters are formed, depending on
the nature of the instances, it is possible to identify the underlying concepts by
finding the most representative instances behind the activation vectors forming
the cluster.

Finally, to test the importance of an identified concept, the TCAV method can
be used based on the concepts dataset formed with this method. In the incoming
chapters, the method is applied to two different problems (images classification
and a Hearthstone agent) in order to evaluate its performance. The two chosen
problems are solved by models that have two different structures and are working
on different types of data, allowing this work to better evaluate its method and
to get more diversified results.

36

Chapter 5

Method Evaluation on
Image Classifier

This chapter aims to assess the performance of the method introduced in Chap-
ter 4. The GoogLeNet image classifier used in [Kim et al., 2018] is introduced as
well as the ImageNet dataset. Then, an unsupervised extraction of concepts is
done over the classifier using 22 different ImageNet’s classes and the technique
explained in Chapter 4.

5.1 Model Introduction

[Kim et al., 2018] use two models to produce their results. Only one of them,
GoogLeNet, is used in the following part of this chapter, since the two models
are ImageNet classifiers. The model’s architecture is given in [Szegedy et al.,
2015] and can be observed at Figure 5.1.

GoogLeNet is a classifier trained on the ImageNet dataset1, which is a large
dataset of labelled images used for computer vision research, with more than
1000 classes, each represented by hundreds and thousands of images. The pre-
dictions given by GoogLeNet are the probabilities for an input image to be part
of a class of the dataset.

When introduced, GoogLeNet outperformed its opponents with an error rate of
6.67%. It is therefore not a matter of debugging the model but of understanding
the reasoning behind its predictions.

5.2 Unsupervised Extraction of Concepts

In this section, the theory presented in Chapter 4 is applied to the GoogLeNet
model. Also, it shows that the clusters formed by the method are linked to high
level concepts.

1https://www.image-net.org/

37

Figure 5.1: GoogLeNet’s architecture, from [Szegedy et al., 2015].

5.2.1 Retrieving Activation Vectors

[Kim et al., 2018] use a subset of the ImageNet dataset containing only zebra-
labelled images. The method introduced in Chapter 4 is unlikely to be as
precise as the concept of stripes extracted in [Kim et al., 2018] (due to its own
dedicated dataset). A larger subset of ImageNet is therefore taken to better
isolate different concepts. Indeed, the method is unsupervised and a single class
out a 1000 is not representative of the potential concepts learnt by the Neural
Network.

To constitute the concept datasets, different classes that are likely to contain
concepts in common are chosen. However, in order to diversify these concepts,
some distant classes are taken too. For instance, different classes of fruits
(lemon, orange and banana) are taken, as well as various classes containing
motorised vehicles (cabs, steam trains, etc.). There are also a few breeds of
dogs, different types of fish (white sharks, lionfish, etc.) and finally the zebra
and tiger classes. In total, there are 22 different classes. For computing rea-
sons, the chosen subset of classes only include 20 to 35 images of the original
dataset classes. The images are then forwarded through the network and their
activation vectors are saved. This is done at the same layer [Kim et al., 2018]
selected, which is the layer named inception4c on Figure 5.2.

5.2.2 Extracting the Concepts

Once the activation vectors are retrieved, K-Means is used to create the clusters
that aim to extract each concept. It is therefore necessary to select the right
amount of clusters. For this, it is common to use the elbow method [Kingrani
et al., 2018] coupled with the silhouette score [Kingrani et al., 2018] of the
clustering. For the latter, the score is a measure of the similarity of an instance

38

Figure 5.2: Using the elbow method and the silhouette score to determine the
best number of clusters for the GoogLeNet network.

with its own cluster compared to others. For the former, it is entirely subjective
to choose the value that is supposed to be optimal (generally, the one in the
elbow of the curve, hence the name “Elbow method”). It is the value that
maximises the score that is supposed to be the best number of clusters for the
silhouette technique. Looking at Figure 5.2, two is the value that maximises
the silhouette score. However, 2 clusters for 22 classes is unlikely because it
means that there is only two concepts learnt by the Neural Network over all
these classes.

Since the value that maximises the silhouette score is unlikely to be the best
number of cluster, the other scores that peak on the graph at Figure 5.2 are re-
viewed below. These values are k = 5 and k = 8, and are more plausible.

It is important to mention that Figure 5.2 indicates very poor silhouette scores.
Indeed, the silhouette score lies between 1 and −1, with the former representing
well defined clusters and the latter poorly distinguished clusters.

5.2.3 Understanding the Concepts

Like explained in Section 4.3.1, looking at only one image per cluster is not
helpful to identify its extracted concept, it is therefore necessary to refine the
results.

A K-Medoids clustering is applied on each one of the clusters formed with k = 5
and k = 8. The images corresponding to the medoids for the sub-clusters are
retrieved. Visualising these images helps identifying the concept behind each
clusters. Although subjective, it exists a pattern between these images.

Figure 5.3 and 5.4 show the results of the K-Medoids clustering over the different
clusters for k = 5 and k = 8 respectively. The two figures show 4 images per
cluster that correspond to the images of the sub-clusters medoids.

First, the observations made over k = 5 are developed. When looking at Figure
5.3, even though each class is seen to be completely different from the Neural
Network perspective, the clustering made over the activation vectors isolate
similar classes together. Looking at the first cluster, it regroups the dogs breeds

39

Figure 5.3: GoogLeNet sub-medoids corresponding images for k = 5 (each row
corresponding to a different cluster).

40

Figure 5.4: GoogLeNet sub-medoids corresponding images for k = 8 (each row
corresponding to a different cluster).

41

Figure 5.5: 16 images taken from the 5th cluster for k = 5.

together (but also images of tigers), it does the same for the motorised vehicles
and for the third cluster, the different sort of fruits can be seen too. The
concept behind the images in cluster 4 is related to water or to the colour blue
at least. The concept behind the last group formed is unclear from the 3 medoids
displayed. Figure 5.5 shows more images forming the latter, and it can be seen
that there is no apparent pattern between the images. Indeed it contains a lot
of images from all the different classes and they have no distinct pattern.

Concerning the identified concepts mentioned above, it is important to keep
in mind that it is an unsupervised method and so, that descriptions for the
concepts were chosen based on what is seen of the images.

Figure 5.6 shows 5 images selected by hand from the fourth cluster, which are
the most representative of the cluster diversity. It is interesting because each
image belongs to a different class but they all have a very blue colorimetry and
are related to water most of the time.

The clusters made with k = 8 is now analysed. The medoids extracted from the
different clusters (see Figure 5.4) do not help to identify any new concept over
ones that are identified when k = 5. Instead, some seem to repeat themselves.
However, looking more precisely at the first and third ones, even though they
both contain images of fruits, this does not seem to be the prime concept of the
first cluster. Looking at Figure 5.7 shows the difference between the two. It can
be observed that the first cluster shows heaps of fruits sometimes grouped in a

42

Figure 5.6: 5 images taken from the 4th cluster for k = 5.

(a) 1st Cluster. (b) 3rd Cluster.

Figure 5.7: Comparison of the first and the second cluster for k = 8.

43

Figure 5.8: Elbow method and silhouette scores for GoogLeNet after applying
the PCA reduction.

very geometrical manner while the third cluster has its images containing a lot
less fruits. The clustering made with k = 5 does not make this distinction and
so the clustering with k = 8 has extracted a higher level concept.

It is important to note that no matter how the clustering is trained, it seems
that there is always a least one cluster containing images from the 22 different
classes with no apparent pattern. Indeed, they seem to correspond to all the
activation vectors that could not be labelled in a distinct cluster. Moreover,
some concept datasets contain too few images to be representative of a concept,
and therefore cannot produce a classifier robust enough to build a CAV.

5.2.4 Fixing the Results

The drawbacks of the results (i.e., the cluster with no apparent concept and
the very poor silhouette scores) obtained in the above experiments could be
due to the high dimensionality of activation vectors. To test this hypothesis,
this section presents additional experiments where a dimensionality reduction is
performed on the activation vectors before the clustering. Principal component
analysis (PCA) [Ringnér, 2008] is used to reduce the dimensionality of activation
vectors from 100.352 (= 14× 14× 512) to 20. Then, the clustering is performed
using K-Means and concepts are extracted from the clusters in the new space
with lower dimensionality. Since the corresponding CAVs live in the lower-
dimensional space, TCAV cannot be obtained directly. This is left for further
work.

Using the 22 same Imagenet’s classes from Section 5.2.1, results show that the
clustering is more stable: The silhouette score in Figure 5.8 is better (with larger
values) and a peak at k = 4 is visible.

Figure 5.9 shows the sub-medoids for the 4 clusters. The concepts are likely the
same (fur, fruits, vehicles and water) than the ones obtained without the appli-
cation of the PCA algorithm but there are some important difference; There is
no cluster regrouping images with no apparent similarities, no cluster containing
too few images and the clusters are containing a lot less images that seems to
be outliers. The clusters are clearly better formed. Therefore, it confirms that
there was a dimensionality problem due to the high dimension of the activation

44

Figure 5.9: GoogLeNet instances corresponding to the sub-medoids of the 4
different clusters (each row corresponding to a different cluster).

45

vectors.

5.3 Conclusion

The results obtained with the GoogLeNet model are encouraging. Indeed, the
method is able to extract some concepts. However, these concepts do not com-
pete with the stripped concept presented in [Kim et al., 2018], which is of higher
level. The extracted concepts still seem to be linked to classes. It remains to be
seen whether a larger dataset of activation vectors would allow more precision
in the concepts extraction.

Since the high dimensionality problem is solved by reducing the dimensions, the
CAVs cannot be created directly because they are in a lower dimension than
the initial activation vectors. Regarding this, TCAV scores still remain to be
done in further work.

The results presented by the clustering performed without PCA show a distinc-
tion between fruits. One cluster contains the images with a lot of fruits and the
other contains the images with few fruits. This result comforts the idea that a
much more precise concepts can be extracted.

This section tends to prove that concepts extraction works on images with the
proposed method. Therefore, next chapter will use the method in order to
troubleshoot a Hearthstone game agent and to show that concept identification
for tabular-data is more complex.

46

Chapter 6

Method Evaluation on
Board Game Agent

In this chapter, the technique from Chapter 4 is applied on a Hearthstone game
agent. The nature of the instances is different. Unlike images, a representation
of the Hearthstone game state is not designed to be visually understandable and
therefore, the mask solution from Section 4.3.2 needs to be applied to extract
concepts from the constructed clusters.

6.1 Model Introduction

In this section, different models implementations for Hearthstone are presented
followed by the reflection that led to the selection of one of them.

6.1.1 Hearthstone Existing Implementations

Finding an efficient Hearthstone AI is not something easy. Indeed, there exist
different implementations, but a lot of them are not viable options since they
are not documented or even finished. The following are the most important
ones.

There exist inside some of the simulators themselves (such as Sabberstone or
Metastone) some already implemented AIs. A well known AI is Silverfish. It
was used during a time by the Hearthstone players to let them improve their
rank in the game, but the AI was not very effective against pro players. Also,
it is hard finding information about this particular AI since it seems its source
code is not available anymore (only a few copies are available on Github). Also,
there exists HearthAgent, which is an implementation using only MCTS, but
its results are not convincing. All these AIs are not suitable for this work since
they are not Neural Networks.

Since the advent of AlphaZero (Section 2.3.1) in 2017, there has been multiple
repositories on Github that try to adapt it for Hearthstone. Few of them are
documented or even usable since they are mainly the side project of enthusiasts.

47

The problem with such implementations is that AlphaZero was designed and
has shown results for games with a completely known game state such as Chess,
Shogi and Go. Its performance seems to fall off when it comes to imperfect-
information games such as Hearthstone (see Table 2.1 for an exhaustive list
of the game’s characteristics). More recently, Facebook introduced ReBeL to
overcome this problem, but no implementation for Hearthstone was found. For
the following section, an AI implementing AlphaZero is presented, its name is
Alphastone. It is the game agent chosen for the concept extraction part of this
chapter.

6.1.2 Alphastone

Alphastone1 is a repository on Github that consists in a reinforcement learning
bot that uses MCTS and a Neural Network to play Hearthstone. The imple-
mentation uses Firestone, a simulator written in Python.

The author of the project briefly explains its choice of architecture on his web-
site2. It is a work forked from an implementation3 based on the original Alp-
haZero paper [Silver et al., 2018]. One important point to consider is that the
game state representation is incomplete. Cards are not represented, only their
characteristics, which means the model ignores their special effects.

A trained model is available on the repository, which is said to have a winning
rate of 82% against a random AI, but the training methodology adopted is
not optimal. The author of the repository trained his model using randomly
generated decks over each new iteration of the AlphaZero algorithm. While
this approach makes the AI encounters any card the game has to offer, it can
also lead to unusable decks. Furthermore, a player would never learn to play
with every cards available, he rather specialises himself on a particular type
of deck. This is something that can partially explain the performance of the
model, which are therefore not astonishing. However, this is not a problem for
this evaluation since it aims at extracting the concepts learned by the Neural
Network whether they are good or not.

6.2 Unsupervised Extraction of Concepts

In this section, the theory presented in Chapter 4 is applied to the Neural Net-
work that Alphastone uses. The application of the method shows how it can help
to understand the strategies learnt by an agent and then how to troubleshoot -
partially - the Alphastone model.

6.2.1 Retrieving Activation Vectors

First, it is necessary to generate a number of valid game states. In order to do
so, the agent plays a high number of games thanks to the Fireplace simulator,
and each time it enters in a new state, it is saved in a file. Once this is done,
these states are loaded and only the unique ones are kept. Each one of them are

1https://github.com/sirmammingtonham/alphastone (26/02/2021).
2https://sirmammingtonham.github.io/projects/alphastone.html (22/04/2021)
3https://github.com/suragnair/alpha-zero-general

48

Figure 6.1: Using the elbow method and the silhouette score to determine the
best number of clusters for the Alphastone network.

then passed through the network and the corresponding activation vector at a
certain layer is saved.

6.2.2 Extracting the Concepts

To determine the best number of clusters, the elbow method is used combined
with the silhouette score as for GoogLeNet (see Section 5.2.2). Looking at Figure
6.1, it seems counter intuitive that there would be only two distinctive clusters
for all the activation vectors. Also, the elbow technique does not confirm that
assumption. Comparing the two methods, it looks like the best fitting value
for k, the number of clusters, is somewhere between 4 and 10. The choice of k
being not clear, for the rest of this chapter, k = 5 is considered in order to have
a first look at what comes out.

6.2.3 Understanding the Concepts

Once the clustering is done, it is necessary to find a way to understand what
each cluster represents. Since the model instances are tabular data, applying
the dedicated method explained in Section 4.3.2 is relevant. This means that for
each cluster, a mask is created based on the state corresponding to its closest
activation vector to the cluster center, which is a representative game state
for the cluster. Concretely, each state corresponding to the cluster instances
is taken and the entropy of each feature is computed as explained in Section
4.3.2. Once this is done, the mask is created based on the resulting entropy
values.

Figure 6.2a shows the entropy values of the first cluster for each feature. When
the value is equal to 0.0 it means that the value is the same for every state in the
cluster. Figure 6.2b shows the corresponding mask. To generate this mask, the
theory from Section 4.3.2 is applied. The percentage of states in the cluster that
must fit to the mask is fixed to 80% and the mask is generated until it reaches
this desired percentage. In Figure 6.2b, the values replaced by a dot are the
ones that change too much. It corresponds to the features with an entropy value
that is considered too high. These values are not meaningful to understand the
concept in the cluster.

49

(a) Entropy values (b) Mask

Figure 6.2: Entropy values and their corresponding mask for the first cluster.

Figure 6.3: Part of the mask description for the first cluster. Blue if the value
is 0 and the entropy is different than 0. Black if the value is 1. Grey if the value
and the entropy are 0.

As it stands, it is quite difficult to interpret the clusters based on their respective
masks. That is why more detailed descriptions are generated to understand
what each value of the mask represents. Since it is long and tedious, Figure 6.3
shows an example taken from the first cluster. A description can be observed
for some of the unmasked features with their corresponding value and entropy
score. Since each instance has 263 features, describing them all for the 5 different
clusters would overload the document. For the same reason, detailed matrices
for cluster 2, 3, 4 and 5 were placed in the Appendix A.

Analyzing the masks and the descriptions remains difficult. Apart from defining
the concept as what is literally described by the mask and its corresponding
description, it is difficult to summarise what exactly it consists of. For instance,
when looking at Figure A.5b, only features set to 0 are present in the mask.
Since it is not possible to differentiate the useless features from the useful ones,
the amount of features left to process is too high.

Finally, it is clear that the model has learnt very low level concepts. For instance,
for the first cluster, it is about having a card or two in hand, which corresponds
to a loosing state in the game. This makes sense because the representation of
the game state is quite poor and does not allow the model to learn higher level

50

strategies like playing a specific card in a specific situation.

6.3 Conclusion

This section is an evaluation of the method based on the results obtained in
Section 6.2.

The clustering identified groups of concepts but the visualising method dedi-
cated to tabular-data does not allow to highlight them easily. Since it is difficult
for a human to process too much text, the problem would rather lie in the given
solution of the mask which remains to be improved as well as in the difficulty
imposed by the representation of the game state.

Indeed, describing the observations made with this method is very time consum-
ing, especially for larger instances. The Alphastone game state representation,
with its 263 values, is a real barrier to the concepts identification. Indeed, even
when cleaned up using the mask technique, it remains abstract and difficult for a
human to grasp the concepts. Still, the Neural Network has learnt concepts and
the clustering isolated them, the difficulty remains in their representation.

Also, as mentioned in Section 6.1.2, the representation of a game state is in-
complete. The cards are not distinguished by an ID but by their characteristics
(life, attack,...), which does not really allow to differentiate them. For example,
2 spell cards having a mana cost of 2 do not have the same effects but can-
not be distinguished in the state representation used in this work. Fixing the
misrepresentation can certainly improve the ability of the Neural Network to
develop higher level concepts. Applying the method from Chapter 4 highlights
that misrepresentation.

This chapter shows that the task consisting of extracting concepts from a Neural
Network that has tabular data as instances is much harder than for image-
based instances. Still, the extraction of concepts is feasible, but getting a clear
representation is the real difficulty.

51

Chapter 7

Conclusion

This master thesis proposes a new method in the field of Explainable Artificial
Intelligence that aims to extract concepts learnt by a Neural Network. The
method performs a clustering on the activation vectors retrieved from a Neu-
ral Network, to afterwards identify concepts that link these activation vectors
inside each cluster. Instances corresponding to the clusters are then used to
build concept datasets, making possible to automate the creation of Concept
Activation Vectors [Kim et al., 2018].

The applications of the method made over the GoogLeNet Neural Network in
Chapter 5 proves that an unsupervised extraction of concepts is feasible. Also,
the method application over Alphastone in Chapter 6 shows that the extraction
of concepts highlights what is problematic with a model.

Although the proposed method is able to extract concepts, it remains to be
seen if the extraction of much more precise concepts is feasible. Using a larger
number of instances to better diversify each type of activation vectors would be
an approach to the problem and is left for further work.

Also, the feasibility of applying the TCAV method using a concept dataset
realised with the proposed method still needs to be demonstrated since the high
dimensionality issue from Chapter 5 prevents the creation of CAVs directly. The
CAV evaluation is left for further work.

It is important to keep in mind that the initialisation of the K-Means algorithm
affects the construction of the clusters and thus on the overall method results.
The choice of k is also essential and using the silhouette method does not assure
to have the best well isolated concepts as seen in Chapter 5 and Chapter 6.
An important improvement to mention is to optimise the selection of k, while
decreasing the user importance in that choice. Chapter 5 shows the problem
of high dimensional activation vectors. Indeed, K-Means does not perform well
when dealing with too much features. Performing a dimension reduction with
an algorithm like PCA improves the clustering, but loses information. Finding
the right trade-off between information loss and performance is left for further
work.

Finally, improving the concept identification step for tabular-data instances is

52

also necessary. In its current state, it is not user-friendly to grasp the idea
behind the masks formed using this work method as seen in Chapter 6. Im-
proving the method for concept identification over tabular-data is left for further
work.

53

Bibliography

[Adebayo et al., 2018] Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I.,
Hardt, M., and Kim, B. (2018). Sanity checks for saliency maps. arXiv
preprint arXiv:1810.03292.

[Albelwi and Mahmood, 2017] Albelwi, S. and Mahmood, A. (2017). A frame-
work for designing the architectures of deep convolutional neural networks.
Entropy, 19(6):242.

[Alom et al., 2019] Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S.,
Sidike, P., Nasrin, M. S., Hasan, M., Van Essen, B. C., Awwal, A. A., and
Asari, V. K. (2019). A state-of-the-art survey on deep learning theory and
architectures. Electronics, 8(3):292.

[Apley and Zhu, 2020] Apley, D. W. and Zhu, J. (2020). Visualizing the effects
of predictor variables in black box supervised learning models. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 82(4):1059–1086.

[Auer et al., 2002] Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-
time analysis of the multiarmed bandit problem. Machine learning, 47(2):235–
256.

[Bibal and Frénay, 2016] Bibal, A. and Frénay, B. (2016). Interpretability of
machine learning models and representations: an introduction. In ESANN.

[Bre et al., 2018] Bre, F., Gimenez, J. M., and Fachinotti, V. D. (2018). Predic-
tion of wind pressure coefficients on building surfaces using artificial neural
networks. Energy and Buildings, 158:1429–1441.

[Browne et al., 2012] Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M.,
Cowling, P. I., Rohlfshagen, P., Tavener, S., Perez, D., Samothrakis, S., and
Colton, S. (2012). A survey of monte carlo tree search methods. IEEE
Transactions on Computational Intelligence and AI in games, 4(1):1–43.

[Czech et al., 2020] Czech, J., Korus, P., and Kersting, K. (2020). Monte-carlo
graph search for alphazero. arXiv preprint arXiv:2012.11045.

[Došilović et al., 2018] Došilović, F. K., Brčić, M., and Hlupić, N. (2018). Ex-
plainable artificial intelligence: A survey. In 2018 41st International conven-
tion on information and communication technology, electronics and micro-
electronics (MIPRO), pages 0210–0215. IEEE.

54

[Edwards and Veale, 2017] Edwards, L. and Veale, M. (2017). Slave to the
algorithm: Why a right to an explanation is probably not the remedy you are
looking for. Duke L. & Tech. Rev., 16:18.

[Entezami et al., 2020] Entezami, A., Sarmadi, H., and Razavi, B. S. (2020). An
innovative hybrid strategy for structural health monitoring by modal flexibil-
ity and clustering methods. Journal of Civil Structural Health Monitoring,
10(5):845–859.

[Fisher et al., 2018] Fisher, A., Rudin, C., and Dominici, F. (2018). Model class
reliance: Variable importance measures for any machine learning model class,
from the” rashomon” perspective. arXiv preprint arXiv:1801.01489, 68.

[Friedman, 2001] Friedman, J. H. (2001). Greedy function approximation: a
gradient boosting machine. Annals of statistics, pages 1189–1232.

[Friedman et al., 2008] Friedman, J. H., Popescu, B. E., et al. (2008). Predictive
learning via rule ensembles. Annals of Applied Statistics, 2(3):916–954.

[Goldstein et al., 2015] Goldstein, A., Kapelner, A., Bleich, J., and Pitkin, E.
(2015). Peeking inside the black box: Visualizing statistical learning with
plots of individual conditional expectation. Journal of Computational and
Graphical Statistics, 24(1):44–65.

[He et al., 2016] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778.

[Indolia et al., 2018] Indolia, S., Goswami, A. K., Mishra, S., and Asopa, P.
(2018). Conceptual understanding of convolutional neural network-a deep
learning approach. Procedia computer science, 132:679–688.

[Kim et al., 2018] Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J.,
Viegas, F., et al. (2018). Interpretability beyond feature attribution: Quan-
titative testing with concept activation vectors (tcav). In International con-
ference on machine learning, pages 2668–2677. PMLR.

[Kingrani et al., 2018] Kingrani, S. K., Levene, M., and Zhang, D. (2018). Esti-
mating the number of clusters using diversity. Artificial Intelligence Research,
7(1):15–22.

[Kocsis and Szepesvári, 2006] Kocsis, L. and Szepesvári, C. (2006). Bandit
based monte-carlo planning. In European conference on machine learning,
pages 282–293. Springer.

[Lu and Weng, 2007] Lu, D. and Weng, Q. (2007). A survey of image clas-
sification methods and techniques for improving classification performance.
International journal of Remote sensing, 28(5):823–870.

[Lundberg and Lee, 2017] Lundberg, S. and Lee, S.-I. (2017). A unified ap-
proach to interpreting model predictions. arXiv preprint arXiv:1705.07874.

[MacQueen et al., 1967] MacQueen, J. et al. (1967). Some methods for classi-
fication and analysis of multivariate observations. In Proceedings of the fifth
Berkeley symposium on mathematical statistics and probability, number 14 in
1, pages 281–297. Oakland, CA, USA.

55

[Molnar, 2020] Molnar, C. (2020). Interpretable machine learning. Lulu.com.

[Montavon et al., 2018] Montavon, G., Samek, W., and Müller, K.-R. (2018).
Methods for interpreting and understanding deep neural networks. Digital
Signal Processing, 73:1–15.

[Piltaver et al., 2014] Piltaver, R., Luštrek, M., and Gams, M. (2014). Multi-
objective learning of accurate and comprehensible classifiers–a case study. In
STAIRS 2014, pages 220–229. IOS Press.

[Ribeiro et al., 2016] Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). ”why
should i trust you?” explaining the predictions of any classifier. In Proceedings
of the 22nd ACM SIGKDD international conference on knowledge discovery
and data mining, pages 1135–1144.

[Ribeiro et al., 2018] Ribeiro, M. T., Singh, S., and Guestrin, C. (2018). An-
chors: High-precision model-agnostic explanations. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 32.

[Ringnér, 2008] Ringnér, M. (2008). What is principal component analysis?
Nature biotechnology, 26(3):303–304.

[Russell and Norvig, 1995] Russell, S. and Norvig, P. (1995). Prentice Hall Se-
ries in Artificial Intelligence. Prentice Hall Englewood Cliffs, NJ:.

[Schubert and Rousseeuw, 2019] Schubert, E. and Rousseeuw, P. J. (2019).
Faster k-medoids clustering: improving the pam, clara, and clarans algo-
rithms. In International conference on similarity search and applications,
pages 171–187. Springer.

[Shannon, 1948] Shannon, C. E. (1948). A mathematical theory of communi-
cation. The Bell system technical journal, 27(3):379–423.

[Shapley, 1953] Shapley, L. S. (1953). A value for n-person games. Contributions
to the Theory of Games, 2(28):307–317.

[Silver et al., 2016] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam,
V., Lanctot, M., et al. (2016). Mastering the game of go with deep neural
networks and tree search. nature, 529(7587):484–489.

[Silver et al., 2018] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al. (2018).
A general reinforcement learning algorithm that masters chess, shogi, and go
through self-play. Science, 362(6419):1140–1144.

[Silver et al., 2017] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I.,
Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., et al. (2017).
Mastering the game of go without human knowledge. nature, 550(7676):354–
359.

[Simonyan et al., 2013] Simonyan, K., Vedaldi, A., and Zisserman, A. (2013).
Deep inside convolutional networks: Visualising image classification models
and saliency maps. arXiv preprint arXiv:1312.6034.

56

[Struyf et al., 1997] Struyf, A., Hubert, M., Rousseeuw, P., et al. (1997). Clus-
tering in an object-oriented environment. Journal of Statistical Software,
1(4):1–30.

[Sutton, 1988] Sutton, R. S. (1988). Learning to predict by the methods of
temporal differences. Machine learning, 3(1):9–44.

[Szegedy et al., 2015] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. (2015). Going
deeper with convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1–9.

[Watkins and Dayan, 1992] Watkins, C. J. and Dayan, P. (1992). Q-learning.
Machine learning, 8(3-4):279–292.

57

Appendix A

Alphastone Matrices

(a) Entropy values (b) Mask

Figure A.1: Entropy values and its corresponding mask created with the centroid
of the 1st cluster.

(a) Entropy values (b) Mask

Figure A.2: Entropy values and its corresponding mask created with the centroid
of the 2nd cluster.

58

(a) Entropy values (b) Mask

Figure A.3: Entropy values and its corresponding mask created with the centroid
of the 3rd cluster.

(a) Entropy values (b) Mask

Figure A.4: Entropy values and its corresponding mask created with the centroid
of the 4th cluster.

(a) Entropy values (b) Mask

Figure A.5: Entropy values and its corresponding mask created with the centroid
of the 5th cluster.

59

Acronyms

AI Artificial Intelligence. 5–7, 9–11, 16, 18, 20, 21, 47, 48

ALE Accumulated Local Effects. 23, 24

CAV Concept Activation Vectors. 29–31, 36, 44, 46, 52

CNN Convolutional Neural Network. 15, 16, 25

HLC High Level Concept. 29–31

ICE Individual Conditional Expectation. 23

LIME Local Interpretable Model-Agnostic Explanations. 26, 27

M-plots Marginal Plots. 23, 24

MCTS Monte Carlo Tree Search. 10, 11, 17, 47, 48

NN Neural Network. 5, 6, 12–15, 17, 19, 29, 31–33, 36, 38, 39, 47, 48, 51, 52

PCA Principal component analysis. 44, 46, 52

PDP Partial Dependence Plot. 22, 23

PUCT Polynomial Upper Confidence Trees. 17

SGD Stochastic Gradient Descent. 15

TCAV Testing with CAV. 2, 5, 29–32, 36, 44, 46, 52

TD-learning Temporal difference learning. 13

UCB-1 Upper Confidence Bound-1. 11

UCT Upper Confidence Bound 1 applied to Trees. 11, 17

XAI Explainable Artificial Intelligence. 2, 5, 7, 18, 20, 21, 31, 52

60

	Introduction
	Context and Problem
	Research Question
	Proposed Solution
	Thesis Structure

	Background
	AI for Board Games
	Hearthstone's Description
	State Space Search

	Machine Learning & Deep Learning
	Classification Task
	Subdivision of the Machine Learning Field
	Neural Networks
	Convolutional Neural Network

	Deep Learning for Board Games
	AlphaZero

	Explainable Artificial Intelligence
	Definitions

	Summary

	Understanding an Artificial Intelligence
	Integrated Methods
	Purely Interpretable
	Hybrid

	Post-hoc Methods
	Partial Dependence Plot
	Individual Conditional Expectation
	Accumulated Local Effects Plot
	Feature Interaction
	Permutation Feature Importance
	Saliency Map
	LIME
	Anchors
	SHAP
	Testing with CAV

	Discussion

	Unsupervised Extraction of Concepts
	Retrieving Activation Vectors
	Extracting the Concepts
	Understanding the Concepts
	Visualising Images
	Visualising Tabular Data

	Evaluating the Concepts
	Summary

	Method Evaluation on Image Classifier
	Model Introduction
	Unsupervised Extraction of Concepts
	Retrieving Activation Vectors
	Extracting the Concepts
	Understanding the Concepts
	Fixing the Results

	Conclusion

	Method Evaluation on Board Game Agent
	Model Introduction
	Hearthstone Existing Implementations
	Alphastone

	Unsupervised Extraction of Concepts
	Retrieving Activation Vectors
	Extracting the Concepts
	Understanding the Concepts

	Conclusion

	Conclusion
	Alphastone Matrices
	Acronyms

