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Abstract

Dimensionality reduction (DR) is a popular approach to data exploration in which instances in a given dataset are
mapped to a lower-dimensional representation or “embedding.” For nonlinear dimensionality reduction (NLDR),
the dimensions of the embedding may be difficult to understand. In such cases, it may be useful to learn how the
different dimensions relate to a set of external features (i.e., relevant features that were not used for the DR). A
variety of methods (e.g., PROFIT and BIR) use external features to explain embeddings generated by NLDR methods
with rotation-invariant objective functions, such as multidimensional scaling (MDS). However, these methods are
restricted to two-dimensional embeddings. In this paper, we propose BIOT, which makes it possible to explain an
MDS embedding with any number of dimensions without requiring visualization.

Keywords: Multidimensional Scaling, Explainability, Lasso, Orthogonal Transformations

1. Introduction

Interpretability and explainability are hot topics in
machine learning. Interpretability refers to the intrin-
sic capacity of a model to be understandable for a user
[1, 2], and the problem of explainability arises for non-
interpretable (i.e. black-box) models [3]. Indeed, when
machine learning models are black boxes, techniques
that are external to the model must be used to provide
explanations.

While most of the machine learning literature on in-
terpretability and explainability is framed for a super-
vised learning context, the need for such concepts also
exists in unsupervised learning. For instance, in clus-
tering (or cluster analysis), users may want to under-
stand the meaning behind the clusters found. Similarly,
users that perform dimensionality reduction (DR) on
their data may be interested in understanding the mean-
ing of the reduced dimensions.

∗Corresponding authors. Both authors contributed equally.
Email addresses: adrien.bibal@unamur.be (Adrien Bibal),

rebecca.marion@uclouvain.be (Rebecca Marion),
rainer.vonsachs@uclouvain.be (Rainer von Sachs),
benoit.frenay@unamur.be (Benoı̂t Frénay)

DR is often used when the high-dimensionality of the
original dataset makes it difficult to perform data ex-
ploration and/or makes data analysis victim to the curse
of dimensionality [4, 5], among other problems. How-
ever, some of the most effective DR techniques (i.e.
UMAP [? ], t-SNE [6], MDS [7], etc.) are nonlinear,
which makes the embeddings they generate difficult to
interpret. One solution to this problem is to use a set
of additional features to explain the dimensions of the
low-dimensional embedding.

For example, in psychology, nonlinear dimension-
ality reduction is commonly applied to datasets con-
taining pairwise comparisons between objects (e.g.,
the perceived (dis)similarity between pairs of social
groups [8]). Additional interpretable features are then
used to determine the meaning of the embedding dimen-
sions [8]. In sensometrics, it is also common to study
the relationship between embedding dimensions and an
external feature set. For instance, some studies seek to
identify sensory attributes in one dataset (e.g., flavor,
smell of products) that could be used to explain embed-
dings of consumer preferences in a second dataset (e.g.,
product appreciation scores) [9].

The aforementioned examples depend on the as-
sumption that the embedding dimensions are them-
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selves meaningful. This is not necessarily the case
for neighborhood-preserving methods such as t-SNE
or UMAP, which do not preserve small distances
in the same way as large distances, generating em-
bedding dimensions that can be spatially misleading.
However, methods that seek to preserve pairwise dis-
tances between instances, like multidimensional scaling
(MDS) [7], are good candidates for this explanation ap-
proach.

Metric and non-metric MDS [7] are very popular
nonlinear dimensionality reduction (NLDR) methods
[10] in this category, especially in fields like psychol-
ogy and ecology, and they are well-developed in the lit-
erature. Explanation techniques, such as property fit-
ting (PROFIT), exist to explain MDS embeddings by
regressing external features onto the embedding dimen-
sions [11]. PROFIT has several shortcomings [12], but
these limitations can be overcome by regressing the
embedding dimensions onto the external features using
sparse regression techniques such as the Lasso. How-
ever, for NLDR methods with objective functions in-
variant to rotation, such as MDS, this approach requires
the optimization of the embedding orientation. Indeed,
all rotations of an MDS embedding are equivalent for
MDS, but can result in very different regression models
in terms of sparsity, interpretability and error.

Best interpretable rotation (BIR) is a state-of-the-
art method for solving this problem [13, 12], but it
(i) involves exhaustively exploring all possible rota-
tion angles and (ii) is restricted to explanations of
two-dimensional (2D) embeddings. In this paper, we
propose best interpretable orthogonal transformation
(BIOT), a new method that tackles these two issues.
First, the objective function for BIOT can be optimized
without performing an exhaustive exploration of all pos-
sible rotation angles. Second, BIOT makes it possible to
easily explain embeddings with more than two dimen-
sions. This second feature of BIOT lifts the requirement
of having two dimensions to explore the data, which
makes, e.g., 5D and 6D embeddings now useful. Thanks
to this, embeddings that have a lower DR loss, and are
thus more faithful to the original high-dimensional data,
can be studied. Moreover, we show that the perfor-
mance of BIOT is better than BIR and other state-of-
the-art techniques.

This paper is structured as follows. Section 2 moti-
vates the need for explaining NLDR embeddings and
highlights the potential explainability of MDS. Sec-
tion 3.1 introduces the notations used in this paper. The
problem tackled in this paper is formally stated in Sec-
tion 3.2. BIOT, the method proposed to solve this prob-
lem, even for embeddings with more than two dimen-

sions, is introduced in Section 3.3. Section 4 presents
how regressing embedding dimensions onto external
features can be performed using state-of-the-art tech-
niques. A numerical evaluation of the proposed method
and state-of-the-art methods is presented in Section 5.
In order to clearly highlight the usefulness of BIOT, a
case study demonstrates the application of BIOT to ex-
plain MDS embeddings in Section 6. Finally, Section 7
concludes the paper.

2. Motivation

The nonlinear dimensionality reduction (NLDR)
methods used today produce embeddings that are not al-
ways understandable. To compensate for this lack of un-
derstandability, or interpretability, NLDR embeddings
are often restricted to two or three dimensions so that
the data can be explored and analyzed visually. Further-
more, some methods are not even designed to produce
higher-dimensional embeddings. For example, Barnes-
Hut, the widely used approximation for accelerating
the optimization of t-distributed stochastic neighbor em-
bedding (t-SNE) [6], is technically restricted to produce
embeddings with three or fewer dimensions (because it
uses quadtree for two-dimensional embeddings and oct-
tree for three-dimensional embeddings) [? ].

One problem with using visualization to analyze
NLDR embeddings is that it inherently limits the
amount of information from the original dataset that
can be represented in the embedding. Moreover, the
relative positions of instances in the visualization are
not always easy to explain (e.g., why some instances
are close together or far apart). This is especially true
for neighborhood-preserving NLDR methods (such as t-
SNE [6] and uniform manifold approximation and pro-
jection (UMAP) [? ]). These techniques can provide
interesting visual results, but are not completely faithful
to the original space, as large distances in the original
space are less well preserved than small distances [? ].
As a result, the axes of the visualization (i.e. the embed-
ding dimensions) have no particular meaning.

In contrast, methods that attempt to preserve pairwise
distances (e.g., multidimensional scaling (MDS) [7])
are able to generate more spatially meaningful embed-
ding dimensions. As a result, the embedding dimen-
sions can be used as features for characterizing the in-
stances. Moreover, if the meaning of these dimensions
is identified, the data can be explored without necessar-
ily resorting to visualization: similarities and dissimi-
larities between instances can be explained by the em-
bedding dimensions that characterize them.
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In this paper, we are interested in the problem of ex-
ploring high dimensional datasets using NLDR embed-
dings with more than two or three dimensions. In par-
ticular, we focus on embeddings generated by MDS,
a popular distance-preserving method in the literature.
The next section describes this problem in detail.

3. Proposed Method

3.1. Notations

Matrices are indicated with bold, upper-case letters
(e.g., X) and vectors are indicated using bold, lower-
case letters with dot notation, where x•, j is the j-th col-
umn vector in X and xi,• is the i-th row vector. Scalar
elements from a matrix or vector are indicated using
lower-case letters (e.g., xi j). Instances are indexed with
the letter i ∈ {1, ..., n}, external features with the letter
j ∈ {1, ..., d} and embedding dimensions with the letter
k ∈ {1, ...,m}.

3.2. Problem Definition and Background

Metric and non-metric multidimensional scaling
(MDS) [7] are nonlinear dimensionality reduction
(NLDR) [10] techniques that are widely used in
academia (e.g., in psychology), as well as in industry.
Given an n × n (dis)similarity matrix Q, where n is the
number of instances, MDS produces an n × m embed-
ding X for a chosen number of dimensions m.

In its most classical form, the objective of MDS is to
minimize the stress, a measure of reconstruction error.
This means maximizing the match between the dissimi-
larities of instances in the high-dimensional (HD) space
and the pairwise distances in the low-dimensional (LD)
space. For instance, Kruskal’s stress is defined as

Stress =

√√√∑
ii′ (dHD

ii′ − dLD
ii′ )2∑

ii′ dHD2

ii′
, (1)

where dHD
ii′ (resp. dLD

ii′ ) is the dissimilarity (resp. dis-
tance) between the i-th and i′-th instances in HD (resp.
LD).

The embedding X obtained when minimizing the
stress is usually used to visually explore the data when
m = 2. This latter case is called visualization through
NLDR [10]. In either case, it is often important to un-
derstand the meaning of the MDS dimensions in order
to draw conclusions about the data.

One approach for explaining MDS embeddings con-
sists of using an n × d matrix F of external features (i.e.
features that were not used to produce Q, and therefore

not involved in the NLDR process). These external fea-
tures also allow users to test whether they can explain
the embedding with features that were not used to pro-
duce it. One popular technique for explaining MDS em-
beddings with external features is to regress each exter-
nal feature f•, j in F onto the embedding X:

f•, j = Xw + e, (2)

where w is a vector of regression weights and e is an
error vector [7]. Property fitting (PROFIT) is based on
this idea of fitting external features (called properties)
to the induced embedding [11].

Two main issues arise from classical approaches like
PROFIT [12]. First, rather than using combinations of
external features to explain the embedding, external fea-
tures are used one by one, thereby providing less insight
about the dimensions. Second, the solution requires that
the embedding X be visualized. Indeed, the goal of
PROFIT is to show trends in an NLDR visualization.
However, one may be interested in explaining an NLDR
embedding with more than two dimensions.

One approach to solving the first issue is (i) to re-
verse the regression direction in order to explain each
dimension of the embedding X on the basis of a linear
combination of the external features F, and (ii) to apply
a sparsity penalty to the regression weights W so that
each dimension of X is explained by as few features in
F as possible [13, 12]:

X = FW + E, (3)

where W is sparse. However, the authors in [13, 12]
demonstrate that the arbitrary orientation of an MDS
embedding is often not the best for balancing model er-
ror with sparsity. They show that it is necessary to si-
multaneously optimize both the sparse weight matrix W
and a rotation matrix R that controls the orientation of
the embedding. The model of interest becomes

XR = FW + E, (4)

where W is constrained to be sparse. In other words,
one must find the rotation R leading to the sparse re-
gression model that best explains the rotated MDS em-
bedding XR.

In principle, any transformation matrix R that pre-
serves all meaningful structure from the original em-
bedding could be used in this framework. Orthogonal
transformations, which preserve all pairwise Euclidean
distances between instances, are thus good candidates.
In this paper, we are interested in the problem of find-
ing the best orthogonal transformation of MDS embed-
dings of any number of dimensions such that they can
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be explained with sparse linear models based on exter-
nal features. The next section introduces our proposed
method, Best Interpretable Orthogonal Transformation
(BIOT), for solving this problem.

3.3. BIOT, the Proposed Method

The overall objective of Best Interpretable Orthogo-
nal Transformation (BIOT) is to explain the dimensions
of an embedding X (n × m) using a matrix of external
features F (n×d). BIOT does this by finding an orthogo-
nal m×m matrix R such that the transformed embedding
can be explained by a sparse weight matrix W (d × m).
Given a hyperparameter λ > 0, the optimization prob-
lem for BIOT is

arg min
R,W

1
2n
||XR − FW||2F + λ

m∑
k=1

||w•,k ||1 (5)

s.t. R is an un-truncated orthogonal matrix, i.e. RR> =

R>R = Im.
The orthogonality constraint for R ensures that the

transformed embedding XR retains all meaningful
structure from the original embedding: pairwise eu-
clidean distances and the dimensionality of the embed-
ding are preserved. The Lasso penalty on the columns
of W (i.e.

∑m
k=1 ||w•,k ||1) encourages the selection of

fewer features per embedding dimension. As a result,
the transformed dimensions can be explained by poten-
tially distinct sets of features. The best R for this prob-
lem is the orthogonal transformation that results in the
model with the best balance between model error and
sparsity, as controlled by the hyperparameter λ.

3.3.1. Optimizing W for Fixed R
Given a fixed embedding orientation R, the optimiza-

tion of the weights W is a Lasso problem. For a partic-
ular embedding dimension k, the optimal weight vector
is

arg min
w•,k

1
2n
||Xr•,k − Fw•,k ||22 + λ||w•,k ||1. (6)

Following cyclic coordinate descent optimization [14],
all values of w•,k are fixed, except a certain value w jk

at each iteration. The problem to solve can therefore be
rewritten as

arg min
w jk

1
2n
||e− jk − f•, jw jk ||

2
2 + λ||w− jk ||1 + λ|w jk |,

(7)
where e− jk = Xrk − F− jw− jk, F− j is F without its j-th
column f•, j and w− jk is the weight vector w•,k without

its j-th value w jk. The optimal w jk can be calculated
using soft thresholding [14]:

w jk =
sign(f>

•, je− jk)(|f>
•, je− jk | − nλ)+

f>
•, jf•, j

. (8)

3.3.2. Optimizing R for Fixed W
When W is found, the next step is to adjust the orien-

tation of the embedding. Since RR> = Im, for fixed W,
Eq. (5) can be rewritten as

arg min
R

1
2n
||X − FWR>||2F + λ

m∑
k=1

||w•,k ||1

s.t. R is an un-truncated orthogonal matrix,

(9)

because

||XR − FW||2F
= tr((XR − FW)>(XR − FW))
= tr(R>X>XR − R>X>FW −W>F>XR + W>F>FW)
= tr(X>X − X>FWR> − RW>F>X + RW>F>FWR>)
= tr((X − FWR>)>(X − FWR>))

= ||X − FWR>||2F ,
(10)

thanks to the cyclic property of the trace and the fact
that R is an un-truncated orthogonal matrix.

Finding the optimal matrix R is an orthogonal Pro-
crustes problem [15]. Indeed, for a fixed W, Eq. (9) can
be rewritten as

arg min
T

||A − BT||2F s.t. TT> = T>T = Im, (11)

where A = X/
√

2n, B = FW/
√

2n and T = R>. The
matrix T that minimizes Eq. (11) can then be found by
decomposing the matrix C = B>A = 1

2n (FW)>X using
SVD, such that C = UΣV>, where U and V contain the
left- and right-singular vectors of C and T = UV> [16].
The transformation matrix R optimizing Eq. (9) is thus
R = T> = VU>.

3.3.3. Optimization Algorithm
Algorithm 1, inspired by [17], presents BIOT. It is

composed of two repeated steps: 1) optimizing W given
an embedding transformation R and 2) optimizing R
given regression weights W. These steps are repeated
until the change of W from one iteration to another is
lower than a predefined threshold1.

1The implementation of BIOT in R can be found at https://github.
com/rebeccamarion/BIOT.
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Algorithm 1: BIOT algorithm, inspired by [17].
Data: MDS embedding X and feature matrix F
Result: Explanation of X with sparse weights W
R = Im;
X = XR;
W is obtained by solving Eq. (6) for each k of X;
while W changes do

// Optimizing R
R is obtained by solving Eq. (9);
X = XR;
// Optimizing W
for each dimension k of X do

w•,k is obtained by solving Eq. (6);

return W and R

3.3.4. Selecting the Hyperparameters λ and m
BIOT requires the selection of two hyperparameters:

the λ used for the Lasso penalty, which represents the
relative importance of sparsity with respect to error, and
the number m of embedding dimensions to analyze. The
first hyperparameter, λ, is common to all Lasso prob-
lems and can be set according to the same strategies.
For instance, the λ leading to the smallest validation
mean squared error (validation MSE) can be considered.
Alternatively, the “one-standard error” rule [5] may be
used, whereby the largest λ within one-standard devi-
ation of the minimum validation MSE is chosen. This
corresponds to a sparser model than for the minimum
validation MSE model, without resulting in a signifi-
cantly different level of error.

While sparsity helps avoid issues like overfitting, it
is mainly used, in this work, as a means to obtain in-
terpretable regression models (i.e. models with a rea-
sonable number of non-zero weights). Therefore, while
the above heuristics can be used to select λ, the final
choice remains with the user. In practical settings, it
may be interesting to increase the sparsity of regression
models, and thus their interpretability, even at the cost
of increasing their validation MSE. For the evaluation
of BIOT in this paper (Section 5), however, one of the
methods presented in the previous paragraph is used to
maintain objectivity.

The number m of embedding dimensions is more sim-
ilar to the hyperparameters used in unsupervised learn-
ing. In clustering, for instance, different numbers of
clusters must be tested and analyzed, given the knowl-
edge of experts, to see which choice makes sense. Simi-
larly, for BIOT, different numbers of dimensions can be
tested to observe how the analysis changes. Oftentimes,
increasing m results in explanations with more and more

nuance, as seen in the example provided in Section 6.
In addition to increasing the granularity of the ex-

planation, increasing the number of dimensions reduces
the information loss in the embedding, making it more
faithful to the original dataset. It also makes the ex-
planation of each individual dimension easier, as less
information must be explained by the external features.
However, these advantages come at the cost of increas-
ing the cognitive load for the user: understanding 10 di-
mensions simultaneously may be difficult, even if each
dimension is explained by only two or three features.
Therefore, some balance must be found between cogni-
tive ease and the level of nuance and faithfulness. Grad-
ually increasing the number of dimensions provides a
practical means of evaluating when the number of di-
mensions m becomes too high for cognitive processing.

The next section presents methods that can be seen as
competitors to BIOT.

4. Related Work

Best interpretable rotation (BIR) finds rotations of 2D
MDS embeddings that can be explained by sparse mul-
tiple regression models [13, 12]. The authors of BIR
demonstrated that both the model error and number of
non-zero weights of Lasso multiple regression models
depend on the rotation of the response matrix X. In or-
der to find a rotation balancing model error with inter-
pretability, they proposed finding the best rotation angle
θ∗ as follows:

θ∗ = arg min
θ

1
2n
||XRθ − FWθ||2F + λ

m∑
k=1

||wθ
•,k ||0

, (12)

where m = 2, Rθ is the 2D rotation matrix for a given
angle θ and wθ

•,k is the Lasso solution explaining the
kth dimension of X rotated by Rθ. While the matrix of
weights Wθ is the solution to a regression problem with
an `1-norm penalty, BIR’s objective function is mini-
mized with respect to a scalar θ, making it feasible to
impose an `0-norm penalty.

Looking for such a θ∗ results in better solutions than
other potential competitors from the literature [12], but
BIR suffers from two important issues. First, θ is opti-
mized by performing an exhaustive search. In practice,
an optimization method for non-convex objective func-
tions is used, such as simulated annealing. The solution
for this kind of optimization depends on how long users
accept to wait for a solution, as a time-stopping thresh-
old is provided as input. Second, BIR can only find a
rotation matrix for 2D MDS embeddings.
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BIOT addresses both of these weaknesses. It relaxes
BIR’s constraint that R be a rotation matrix, allow-
ing R to be any type of orthogonal matrix (which in-
cludes rotation and reflection matrices as special cases).
This makes it possible to apply the method to higher-
dimensional embeddings, while preserving the mean-
ingful structure in the transformed embedding. BIOT
also relaxes the `0 norm in BIR’s objective function to
an `1 norm applied to the columns of W. This makes
the objective function bi-convex, and the solution can
be found using alternating optimization instead of an
exhaustive search.

For MDS embeddings with two or more dimensions
m, sparse reduced rank regression (SRRR) [17] could
potentially be used to regress transformed embedding
dimensions on external features. SRRR was originally
introduced as a method for predicting an untransformed
response matrix using a weight matrix C = WR> of
fixed rank r. The original problem presented in [17] is
to find R (m × r) and W (d × r) by solving

arg min
R,W

1
2n
||X − FWR>||2F + λ

d∑
j=1

||w j,•||2

s.t. R>R = Ir and rank(WR>) = r,

(13)

where w j,• is the jth row of W, λ > 0 and r ∈
{1, ...,min(d,m)}. The second term in Eq. (13) is a
Group-Lasso penalty that forces the elements of w j,• to
be either all zero or non-zero [18]. As λ increases, more
rows of W are set to zero, meaning that fewer features
are used to explain the response matrix.

The objective function in Eq. (13) can be reformu-
lated to show that the matrix W in SRRR contains
the regression weights for predicting a transformed re-
sponse matrix XR. Indeed, thanks to the rotational in-
variance of the Frobenius norm, the first term in Eq. (13)
can be rewritten as follows:

1
2n
||X − FWR>||2F =

1
2n
||XR − FW||2F . (14)

For the current application, the meaningful structure
from the original embedding X must be preserved.
Therefore, SRRR is only applicable when its hyperpa-
rameter r (the rank of WR> and the number of columns
in R) is fixed to r = m, the number of embedding dimen-
sions. The setting r = m is the only one that ensures that
R is an orthogonal matrix and that the transformed em-
bedding XR retains the same number of dimensions as
the original embedding X.

Despite its potential relevance for the problem at
hand, the sparsity constraints in SRRR are less well

adapted than the constraints in BIOT. Indeed, for SRRR,
the same set of features would be selected for each
transformed embedding dimension, making it difficult
to attribute a distinct meaning to each dimension. In
contrast, BIOT makes it possible to select potentially
distinct sets of features for each embedding dimension,
providing greater model interpretability.

Other methods in the literature address either the
problem of finding an orthogonal transformation or
finding a sparse multiple regression model, but not both.
Sparse multi-task regression methods (e.g., multi-task
Lasso [19], adaptive multi-task Lasso [20], robust fea-
ture selection [21] and joint rank and row selection
[22]) find a sparse weight matrix but do not transform
the response matrix in any way. Latent variable meth-
ods, such as eigenvector partial least squares regression
(eigen PLS-R) [23, 24], find an orthogonal transfor-
mation of a response matrix that improves the predic-
tion of subsequent multiple regression models, but the
models are entirely non-sparse. Sparse latent variable
approaches such as sparse canonical correlation anal-
ysis (SCCA) [25, 26, 27, 28] and sparse partial least
squares regression (SPLS-R) [29] estimate sparse re-
gression models, but the transformation of the response
matrix is not orthogonal.

The next section evaluates BIOT by comparing its
performance with state-of-the-art methods.

5. Evaluation of BIOT

This section compares BIOT with competitors from
the literature for MDS embeddings of two or more di-
mensions.

5.1. Evaluation Datasets

Three real-world datasets are drawn from the field
of ecology: the Doubs river fish communities dataset
(Doubs) [30], the Oribatid mites dataset (Mite) [31, 32]
and the hunting spider dataset (Spider) [33]. Each
dataset is made up of two distinct feature sets. The first
feature set Q contains abundances of p different species
(of fish, mites and spiders, respectively) measured at n
different sampling sites. The second feature set F, in
each dataset, corresponds to d features measured at the
n sites, such as Cartesian coordinates, water pH and al-
titude. For each dataset, ordinal MDS is applied to the
first feature set Q in order to produce several embed-
dings with a number of dimensions m ranging from 2 to
min(p, d) − 1.
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Table 1: Characteristics of the evaluation datasets

dataset instances features
Q F total

Doubs 30 27 13 40
Mite 70 35 16 51
Spider 28 12 15 27
Stereotypes 80 80 31 111

The fourth dataset used in our evaluation comes from
an experiment in psychology about stereotypes (Stereo-
types) [8]. In this dataset, the first feature set Q con-
tains similarity comparisons made by participants be-
tween n social groups (e.g., students, homeless and ath-
letes). The second feature set F contains features that
encode stereotypes about these social groups (e.g., de-
gree of smartness, trustworthiness and sincerity). The
first feature set Q (n × n) is used to generate several
MDS embeddings, as for the other datasets.

For all datasets, the second feature set F (normalized)
is used to explain the mean-centered embeddings pro-
duced by the MDS of feature set Q. Table 1 summa-
rizes the characteristics of the datasets used in the ex-
periments.

5.2. Experimental Protocol

Four methods are compared in this study: BIOT,
BIR (for 2D embeddings only), SRRR and eigen PLS
with Lasso regression (ePLS+Lasso). For ePLS+Lasso,
we add a Lasso step to ordinary eigen PLS in order
to benchmark BIOT and to make the results compara-
ble. Eigen PLS is used to estimate a transformation
matrix R, then Lasso regression is performed based on
the transformed embedding. A range of 20 values for
λ ([0.0001, 3.5]/

√
d in logarithmic scale) was chosen

such that each method produces solutions ranging from
entirely sparse to entirely non-sparse. For SRRR, the
rank r of the matrix WR> is fixed to the number of em-
bedding dimensions, as explained in Section 4.

For each method, embedding and value of λ, 10-fold
cross-validation is performed to evaluate the average
validation mean squared error (MSE), where

MSE =
1
m

m∑
k=1

1
p

p∑
i=1

(x>i,•r̂•,k − f>i,•ŵ•,k)2, (15)

with m being the total number of embedding dimen-
sions, p being the total number of instances for which a
prediction is made, r̂•,k is column k from the estimated
orthogonal matrix R̂ and ŵ•,k is column k from the esti-
mated weight matrix Ŵ. Note that the instances i in the

formula were not used when estimating R̂ and Ŵ. The
average validation MSEs for each method and embed-
ding are plotted with respect to the average number of
non-zero weights in W per dimension, where each point
represents a value of λ. The minimum of each plotted
curve is the minimum validation MSE.

In order to statistically analyze the results obtained
for a given dataset and number of dimensions m, the
performance of the methods is compared using nested
k-fold cross-validation. Each dataset is first split into
k = 10 outer folds. For each iteration ` of an outer
loop, the instances in folds 1, ..., ` − 1, ` + 1, ..., 10 are
split into k = 10 inner folds. The instances in each
fold are characterized by both the (external) features
and the response variables, i.e. the MDS coordinates
to predict. k-fold cross-validation is performed using
the inner folds in order to calculate the average valida-
tion MSE for each method and λ. For each method, λ is
chosen as the value with the smallest average validation
MSE, then the matrices R̂ and Ŵ are estimated based
on all instances in the inner folds and used to predict
the instances in outer fold `. The average test MSE is
calculated as the average out-of-sample prediction error
(MSE) in the outer loop.

5.3. Results and Discussion
In this experiment, BIOT and the competing methods

are applied to embeddings of different numbers of di-
mensions. The curves for 2D, 4D and 6D embeddings
are presented in Fig. 1. For 2D embeddings (Figs. 1a,
1d, 1g and 1j), BIOT finds solutions that are generally
as sparse or sparser than those of the other methods, for
a similar MSE. Indeed, if a horizontal line is drawn in
the graphs (representing a fixed MSE value), BIOT is
almost always to the left of the other curves.

Similar trends can be observed for embeddings of
more than two dimensions, as shown in the second and
third columns of Fig. 1. Note that BIR is not present
in these plots, as it can only be applied to 2D embed-
dings. Interestingly, the difference between the curves
is accentuated as the number of embedding dimensions
increases. This can be observed as a shifting pattern in
the 4D and 6D embeddings of Stereotypes in Fig. 1k
and Fig. 1l, compared to a similar but less clear pattern
in the 2D embedding of Stereotypes in Fig. 1j. This ob-
servation is important, as BIOT is designed for use on
higher-dimensional embeddings, where reconstruction
error (like the stress) is lower.

The comparison of all methods applied to all em-
beddings is shown in Table 2. The last embeddings of
Stereotypes (m > 13) are omitted, as they have stress
levels equivalent to the stress for m = 13. The results
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(a) 2D Doubs
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(b) 4D Doubs
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(c) 6D Doubs
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(d) 2D Mite
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(e) 4D Mite
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(f) 6D Mite
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(g) 2D Spider
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(h) 4D Spider
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(i) 6D Spider
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(j) 2D Stereotypes
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λ = 0.04

(k) 4D Stereotypes – The arrow indi-
cates the λ used in the case study in
Section 6.
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(l) 6D Stereotypes

Figure 1: Performance of BIOT, BIR, ePLS+Lasso and SRRR for several λ values. The average validation MSE is plotted against the average
number of non-zero weights per dimension. The three columns represent 2D, 4D and 6D embeddings, and the four rows represent the datasets
Doubs, Mite, Spider and Stereotypes. The minimum validation MSE is highlighted for each method with a colored symbol.
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for each method are shown as a pair of values (average
number of non-zero weights per dimension, average test
MSE). In order to report an error value that was not used
for selecting λ, nested 10-fold cross-validation is used
(see Section 5.2 for more details). On each line, results
with the highest sparsity (resp. lowest MSE) are high-
lighted in bold (resp. italics), as well as all other results
that are not significantly different according to a pair-
wise Wilcoxon signed-rank test (α = 0.05). Any results
not shown in bold or italics are significantly worse than
the best results across the different folds.

As seen in Table 2, the best MSE is generally not
significantly different for all methods, but the average
number of non-zero weights often is. Most of the time,
BIOT provides solutions with a lower number of fea-
tures per dimension, while having a test MSE similar to
its competitors. The average number of features used to
explain a dimension generally decreases as the number
of dimensions m increases. This can be explained by the
fact that each new embedding dimension adds less in-
formation than previous ones (the stress decreases less).
Therefore, fewer and fewer features are needed to ex-
plain each additional dimension.

In the next section, several embeddings of Stereo-
types are analyzed using BIOT to demonstrate the in-
terpretation of an MDS embedding with more than two
dimensions.

6. Case Study: Applying BIOT to Stereotypes

The Stereotypes dataset was collected in order to
study how people (in the US) implicitly assign stereo-
types to social groups. In a first experiment, partici-
pants ranked the similarity between social groups, such
as celebrities, students and criminals (feature set Q).
In a second experiment, participants scored these so-
cial groups with respect to stereotypes, such as wealthy,
altruistic and skillful (external features F). The goal
was then to see how these stereotypes could explain per-
ceived similarities between social groups.

Let us consider that a researcher in psychology de-
cides to use Lasso regression models to explain the di-
mensions of three MDS embeddings of the Stereotypes
dataset Q (embeddings with m = 3, m = 4 and m = 5
dimensions). In this scenario, the researcher initially
assumes that transforming the embeddings is not neces-
sary (i.e. R = Im). For Lasso, it is common practice to
choose a λ resulting in the sparsest, most interpretable
model possible while maintaining a low MSE. In order
to remain objective, λ is chosen as follows. For λ with
the smallest average validation MSE, a 95% confidence
interval is calculated. Then, the largest λ value with an

Table 2: Results for four datasets Doubs (Do), Mite (Mi), Spider (Sp)
and Stereotypes (St). Each result is a pair (average number of non-
zero weights, average test MSE) corresponding to the average across
the 10 outer folds of the nested 10-fold cross-validation.

m stress BIR BIOT ePLS SRRR
Do 2 0.070 6.7, 0.096 6.3, 0.092 7.0, 0.094 7.0, 0.098

3 0.038 4.8, 0.060 5.4, 0.061 5.4, 0.063
4 0.026 4.8, 0.046 5.3, 0.056 5.3, 0.049
5 0.018 3.9, 0.041 3.4, 0.047 3.4, 0.040
6 0.013 2.9, 0.037 2.9, 0.036 2.9, 0.038
7 0.012 1.8, 0.034 1.8, 0.032 1.8, 0.037
8 0.008 1.5, 0.029 1.5, 0.030 1.5, 0.033
9 0.006 1.3, 0.026 1.3, 0.028 1.3, 0.031
10 0.005 1.0, 0.022 1.0, 0.026 1.0, 0.030
11 0.004 1.1, 0.023 1.1, 0.024 1.1, 0.028
12 0.003 1.0, 0.022 1.0, 0.022 1.0, 0.026

Mi 2 0.144 1.0, 0.156 3.0, 0.161 3.4, 0.160 3.4, 0.159
3 0.112 1.7, 0.104 1.7, 0.107 1.7, 0.105
4 0.091 1.2, 0.084 1.2, 0.090 1.2, 0.088
5 0.077 1.2, 0.072 1.2, 0.075 1.2, 0.073
6 0.065 1.8, 0.061 1.8, 0.063 1.8, 0.063
7 0.057 1.5, 0.053 1.5, 0.054 1.5, 0.055
8 0.049 1.5, 0.048 1.5, 0.048 1.5, 0.049
9 0.044 1.2, 0.043 1.2, 0.044 1.2, 0.044
10 0.040 1.3, 0.040 1.3, 0.040 1.3, 0.039
11 0.036 1.0, 0.036 1.0, 0.037 1.0, 0.036
12 0.032 1.1, 0.033 1.1, 0.034 1.1, 0.033
13 0.029 0.9, 0.031 0.9, 0.031 0.9, 0.031

Sp 2 0.089 0.9, 0.085 8.5, 0.081 8.5, 0.077 8.5, 0.075
3 0.055 4.0, 0.071 4.0, 0.069 4.0, 0.080
4 0.037 4.3, 0.065 4.3, 0.062 4.3, 0.063
5 0.025 3.3, 0.060 3.6, 0.055 3.6, 0.059
6 0.019 2.4, 0.053 2.4, 0.048 2.4, 0.048
7 0.016 1.9, 0.044 1.9, 0.043 1.9, 0.042
8 0.012 1.6, 0.039 1.6, 0.039 1.6, 0.040
9 0.007 1.5, 0.036 1.5, 0.036 1.5, 0.036
10 0.004 1.4, 0.033 1.4, 0.033 1.4, 0.033
11 0.001 1.4, 0.031 1.4, 0.030 1.4, 0.030

St 2 0.291 11.3, 0.053 10.8, 0.058 10.4, 0.054 10.4, 0.060
3 0.207 12.7, 0.036 11.7, 0.033 11.7, 0.033
4 0.169 9.7, 0.040 9.7, 0.039 9.7, 0.039
5 0.146 10.2, 0.035 10.2, 0.034 10.2, 0.032
6 0.134 9.7, 0.030 9.7, 0.030 9.7, 0.029
7 0.127 6.5, 0.028 6.5, 0.028 6.5, 0.027
8 0.122 7.2, 0.025 7.2, 0.025 7.2, 0.025
9 0.120 8.0, 0.022 8.0, 0.023 8.0, 0.022
10 0.118 7.0, 0.022 7.0, 0.022 7.0, 0.021
11 0.116 6.4, 0.020 6.4, 0.020 6.4, 0.020
12 0.116 6.5, 0.018 6.5, 0.019 6.5, 0.018
13 0.115 5.0, 0.018 5.0, 0.018 5.0, 0.017

average validation MSE within this confidence interval
is selected. The regression weights for this approach are
shown in Table 3. It can be seen that the number of ex-
ternal features used to explain each of the embedding
dimensions is large, and that the same external feature
is sometimes used to explain several dimensions at once
(e.g., for m = 3, wealthy is used with a large coefficient
to explain the first and the third dimensions).

In order to generate results that are more inter-
pretable, the researcher then applies BIOT (i.e. R is op-
timized). The same approach is used to select the value
of the hyperparameter λ (the chosen value is highlighted
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Table 3: Lasso weights for three untransformed embeddings of the
Stereotypes dataset (embedding dimensions in rows, Lasso weights
for the original, untransformed dimensions in parentheses). The most
important features for each dimension are in bold.

m = 3 m = 4 m = 5
wealthy (0.14) wealthy (0.14) wealthy (0.13)

conservative (0.09) conservative (0.08) conservative (0.08)
conventional (0.07) conventional (0.1) conventional (0.06)

safety (0.07) safety (0.06) safety (0.05)
not smart (-0.03) not smart (-0.01) not smart (-0.03)
uniformity (0.02) uniformity (0.01) uniformity (0.02)
traditional (0.02) traditional (0.02)
confident (0.01) confident (0.01) powerful (0.02)
loyalty (0.01) loyalty (0.01) communal (0.02)

competitive (-0.08) competitive (-0.03) competitive (-0.06)
masculine (-0.03) masculine (-0.06) masculine (-0.04)
communal (0.02) communal (0.01)
religious (0.02) religious (0.01) religious (0.04)
typical (-0.02) typical (-0.01) typical (-0.03)
egoistic (-0.1) egoistic (-0.11) egoistic (-0.09)

not smart (-0.1) not smart (-0.06) not smart (-0.1)
uniformity (-0.01)

religious (-0.2) religious (-0.2) religious (-0.17)
wealthy (0.13) wealthy (0.1) wealthy (0.12)

familiarity (-0.06) familiarity (-0.04) familiarity (-0.05)
masculine (-0.05) masculine (-0.05) masculine (-0.05)
traditional (-0.02) traditional (-0.02) traditional (-0.05)

conventional (-0.01) promotion (0.01)
intolerant (-0.01)

loyalty (-0.01)
comfort (0.06) comfort (0.1)
friendly (-0.06) friendly (-0.03)

conventional (-0.04) conventional (-0.05)
loyalty (-0.02) loyalty (-0.04)

cold (0.02)
untrustworthy (0.02)

powerful (0.02)
typical (-0.02)

competitive (-0.01)
threatening (0.01)

change (0.06)
communal (0.06)
competitive (0.04)
masculine (0.02)

conservative (-0.01)
friendly (0.01)
powerful (0.01)

promotion (0.01)

in Fig. 1k) and regression weights are estimated for each
embedding (see Table 4).

In contrast to the initial approach (Lasso without em-
bedding transformation), BIOT selects fewer external
features per dimension, and each dimension is explained
by a distinct set of features. For the first embedding
(m = 3, first column of Table 4), BIOT explains the
three dimensions with the stereotypes wealthy, tradi-
tional/conventional and not smart. For the 4D embed-
ding (second column of Table 4), BIOT provides an ex-

Table 4: BIOT weights for three embeddings of the Stereotypes
dataset (embedding dimensions in rows, BIOT weights for the trans-
formed dimensions in parentheses). The most important features for
each dimension are in bold.

m = 3 m = 4 m = 5
wealthy (0.28)
scientific (0.06)

uniformity (0.05)

wealthy (0.26) wealthy (0.22)
powerful (0.05)

uniformity (0.01)uniformity (0.06)
traditional (0.17) traditional (0.04)

religious (0.15)
comfort (0.04)

prevention (0.02)
conventional (0.22)

loyalty (0.07)

traditional (0.08)
religious (0.09)
comfort (0.04)

prevention (0.04)
conventional (0.14)

loyalty (0.01)
communal (0.01)

friendly (0.01)

religious (0.01)

conventional (0.15)
loyalty (0.05)

familiarity (0.01)

not smart (0.16) not smart (0.13) not smart (0.16)
egoistic (0.07) egoistic (0.05) egoistic (0.01)

masculine (0.06) masculine (0.09) masculine (0.04)
competitive (0.06) competitive (0.05)

typical (0.04) typical (0.03) typical (0.03)
intolerant (0.02)
familiarity (0.01)

conservative (0.14)
masculine (0.03)

preservation (0.03)

planation of the fourth dimension by roughly separating
traditional and conventional into two dimensions. Fi-
nally, for the 5D embedding (third column of Table 4),
BIOT explains the new fifth dimension as a political di-
mension through the conservative-liberal stereotype.

The advantage of analyzing more than two dimen-
sions is that higher-dimensional embeddings have less
reconstruction error, which is quantified by Kruskal’s
stress (see Section 3.2). Moreover, with BIOT, it is pos-
sible to observe the way in which low dimensional em-
beddings approximate trends from higher-dimensional
embeddings. For example, when changing from 4D
to 3D (0.169 to 0.207 in stress), BIOT associates the
traditional/religious and conventional stereotypes with
a single dimension, rather than two. This combination
may explain the increase in stress in the 3D embedding,
as two orthogonal trends are approximated by a single
trend.

By adding dimensions, it is also possible to iden-
tify trends that are not apparent in lower-dimensional
embeddings. While the original study did not iden-
tify smartness as a relevant stereotype, the 3D analy-
sis with BIOT identifies it as important for explaining
a third dimension in the data. Indeed, social groups
such as criminals and red necks are identified as ego-
istic, masculine and not smart by the participants. At
the same time, the two other dimensions explained by
BIOT correspond to the findings in the original paper,
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where MDS embeddings were explained by two quasi-
orthogonal trends: the socio-economical status (repre-
sented here by wealthy) and the type of beliefs (repre-
sented here by the stereotypes conventional and tradi-
tional) [8].

This case study shows how insightful it is to use
BIOT to analyze MDS embeddings with more than two
dimensions. Given BIOT’s sparsity and MSE perfor-
mance, increasing the number of dimensions (and there-
fore reducing the stress) does not make the new embed-
ding much more difficult to understand. Indeed, each
new dimension is explained by small, generally disjoint
sets of external features. The results of this case study
were presented to the main investigator of the original
study [8], who found them coherent with current theory
in psychology, while providing interesting insights.

7. Conclusion

In this paper, we proposed a method, called BIOT,
that makes it possible to explain MDS embeddings of
any number of dimensions. BIOT is based on an iter-
ative optimization of two parameter matrices: a weight
matrix W and an orthogonal transformation matrix R.

BIOT was evaluated on datasets corresponding to
real-world problems. We demonstrated that BIOT out-
performs competitive methods with respect to the inter-
pretability of solutions. The analysis of MSE-sparsity
curves revealed that, for the same level of MSE, BIOT
provides models that are more sparse, and thus easier to
interpret. In order to demonstrate BIOT’s ease of use,
a case study based on a dataset from a psychological
experiment on stereotypes was presented.

In future work, a grouping-penalty could be added to
BIOT to encourage groups, rather than individual fea-
tures, to be selected for each embedding dimension.
By grouping features in a meaningful way, even mod-
els with many features could be easily interpreted. This
would be advantageous for datasets where mostly non-
sparse models have the best test MSE or for applications
where feature grouping is desired.
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