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Abstract In this paper we study a generalized case of best-of-n model, which consid-
ers three kind of agents: zealots, individuals who remain stubborn and do not change
their opinion; informed agents, individuals that can change their opinion, are able to
assess the quality of the different options; and uninformed agents, individuals that
can change their opinion but are not able to assess the quality of the different opin-
ions. We study the consensus in different regimes: we vary the quality of the options,
the percentage of zealots and the percentage of informed versus uninformed agents.
We also consider two decision mechanisms: the voter and majority rule. We study
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this problem using numerical simulations and mathematical models, and we vali-
date our findings on physical kilobot experiments. We find that (i) if the number of
zealots for the lowest quality option is not too high, the decision making process is
driven towards the highest quality option; (ii) this effect can be improved increasing
the number of informed agents that can counteract the effect of adverse zealots; (iii)
when the two options have very similar qualities, in order to keep high consensus to
the best quality it is necessary to have higher proportions of informed agents.

Keywords Collective Decision Making · Swarm Intelligence · Swarm Robotics ·
Stubborn agents

1 Introduction

Collective decision making is a collective behavior where a group of agents (or
swarm) makes a joint decision using only local perception and communication, with-
out any centralized leadership (Valentini et al., 2017). The distinctive feature of any
collective decision making process is that once the decision is made, it is no longer at-
tributable to any of the individual agents participating to the process. The mechanisms
underlying this type of processes are widely studied in behavioral biology (Camazine
et al., 2001), in statistical physics (Bialek et al., 2012; Vicsek et al., 1995; Cavagna
et al., 2018), social sciences (Kok et al., 2016), and more recently in behavioral eco-
nomics (Bose et al., 2017). Collective decision making is also studied in artificial
systems such as robotic swarms, in which relatively simple autonomous robots in-
teract to generate collective responses through self-organisation processes (Hamann,
2018). In swarm robotics, examples of contexts where collective decision making is
studied are the following: i) aggregation behaviour, where a swarm has to aggregate
either on a site among those available in the environment (Firat et al., 2020), or in
any location of environments that do not offer specific aggregation sites (Gauci et al.,
2014); ii) collective motion, where the group has to choose, among a virtually infinite
number of options, a direction of motion (Couzin et al., 2005); iii) collective percep-
tion, where the relative abundance of certain environmental features is assessed by
local measurements and communication among the agents (Valentini et al., 2016a).

A specific case of collective decision making is represented by the best-of-n prob-
lem, where n is the number of the different available options, that can vary with re-
spect to their qualities. Choosing the best quality option among the n available is a
challenging tasks for a group of agents since it is assumed that none of the group
members can evaluate the quality of all the n options (Valentini et al., 2016b; Reina
et al., 2014, 2015). The best quality is the one associated to the lowest exploita-
tion cost and/or highest benefit. Various studies have show that the mechanism re-
ferred to as “modulation of positive feedback” can generate consensus among inter-
acting agents engaged with the selection of the best option among the n available (see
Font Llenas et al., 2018; Valentini et al., 2014, 2016b). This mechanism is based on
the following: i) each agent advertises its currently selected option for a time propor-
tional to the option’s quality; ii) each agent can change its currently selected option
if influenced by its neighbors. Repeated local interactions among the agents, under
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the above mentioned conditions, generate a consensus with all agents achieving a
common decision on which option to choose.

In the best-of-n problem it is normally given for granted that agents are either
all able to measure the quality or all unable to do so. In the latter case, the best-of-n
problem reduces itself to a symmetry breaking scenario, whereby in absence of envi-
ronmental heterogeneities the swarm converges to a random option rather than to the
best one (Valentini et al., 2017). Recently, few studies have pointed to the relevance
of the individual ability to evaluate the option quality with respect to the collective
decision dynamics (Khaluf et al., 2019; Berekméri and Zafeiris, 2020). We referred to
this ability as “quality awareness”. These studies have called for further investigations
to go beyond the “all or nothing” scenarios with respect to quality awareness, and for
a deeper understanding of how the variability among the agents in quality aware-
ness bears upon the collective decision making process. Indeed, this is an issue that
may affect the group dynamics in multiple biological and artificial collective systems.
Thus, there is an interdisciplinary interests in developing a principled understanding
of how this variability affects the collective dynamics in different decision making
contexts. For example, from a social science perspective, the variability in quality
awareness may be caused by individual differences in perceiving and assessing the
qualities of different options, due to differences in level of education, restricted access
to information, etc. From a swarm robotics perspective, variability in quality aware-
ness is not exclusively left to the designer’s decision on how to assemble the robotic
swarm. Indeed, it can be an ineluctable consequence of the inherent functional differ-
ences that are generally observed in seemingly identical hardware components such
as sensors. For example, the same type of sensors on different robots may respond
differently to the same stimulation. This can prevent some but not other robots from
correctly evaluating and disseminating the quality of a specific option.

In this paper, we contribute to develop a principled understanding of how the vari-
ability in individual quality awareness in the best-of-n problem with n = 2 changes
the decision making dynamics. We study a group of simulated agents required to col-
lectively choose one of two options which differ for their quality. In brief, each agent
in the swarm goes through two sequential phases that periodically repeat: the explo-
ration phase and the dissemination phase. During the exploration phase, the agents
explore the environment and evaluate the options quality. During the dissemination
phase, the agents interact with each other, an interaction that consists of two steps.
First, each agent advertises (i.e. communicates via local broadcast) the individually
selected option. We call an option opinion when it is the currently selected option by a
focal agent. Then, the focal agent may change its current opinion under the influence
of the other agents according to the rules of the specific decision mechanism (or vot-
ing system). The above phases are executed by all agents in an asynchronous manner.
This type of scenario has already been studied in the literature (refer to Prasetyo et al.,
2019, for a recent model). Differently from previous work, in this study groups are
made of agents that differ with respect to either their capability to directly evaluate
the quality of each option, or their flexibility in changing option through interac-
tions with group mates during the dissemination phases. The original contribution of
this research resides in an in-depth analysis of the decision making dynamics devel-
oped by systematically varying the model parameters, and carried out with a large
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methodological toolkit made of simulation models, mathematical models, and phys-
ical robots experiments. Consistently with the literature (Valentini et al., 2017), we
consider the two most commonly studied decision mechanisms: the voter model and
the majority rule.

We consider swarms made of three different types of agents. First, we have zealots
which are characterised by the fact that their chosen option is attributed to them by
the designer — rather than through the dynamics of the simulation scenario — and
by definition they never change their opinion. In other words, neither the discov-
ery of a better quality option nor the influence of group mates makes them change
option. During dissemination, zealots disseminate the option attributed to them for
a time proportional to its quality. Second, we have informed agents which are not
associated to any specific option. They explore the environment, choose an option,
and disseminate their chosen option for a time proportional to its quality. During dis-
semination, informed agents can eventually change their mind under the influence of
group mates. Third, we have uninformed agents which, like informed agents, select
their option either through exploration or during dissemination through the influence
of other agents. Contrary to informed agents, uninformed agents are not able to prop-
erly evaluate the options quality. Thus, during dissemination time, they disseminate
their current opinion for a fixed amount of time that does not depend on the quality
of the chosen option. As for informed agents, also uninformed agents can eventu-
ally change their mind under the influence of group mates. With this experimental
design, we generate interesting results that contribute to shed light on the effects of
the variability of quality awareness on the dynamics of collective decision making
in best-of-n type of scenarios. For example, we illustrate and discuss the dynamics
resulting from scenarios in which the options have different qualities, and the rel-
ative proportion of zealots for each option and the proportion of informed versus
uninformed agents within the group play a fundamental role in shifting the group
consensus to one or the other option.

The paper is organized as follows. The methodologies are described in Section 3
with details of the mathematical model illustrated in Section 3.1. The results are
reported in Section 4. The methodology used and the results obtained with physical
robots are illustrated in Section 5. Finally, in Section 6 we draw our conclusions and
we illustrate a research agenda for the future.

2 Related Work

The two central concepts explored in this article are those of informed agency and
zealotry. In this section, we will review the related work, across different fields, per-
formed around these two concepts.

The attention to the role of different level of information among the agents is be-
ing studied in different fields since at least two decades. One of the pioneering work
is the one of Couzin et al. (2005) in the context of modeling collective motion of
biological systems: they studied the effect of implicit leaders, individuals that have a
preferred direction of motion, but are not seen as leaders by their co-specifics. This
seminal study has motivated a body of experimental work in biology with real ani-
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mals, including fish schools (Leblond and Reebs, 2006) and sheep herds (Pillot et al.,
2010). The role of informed agents has been highlighted in the context of multi-agent
system by Yu et al. (2010), who shows that one or a few informed agents allow all
agents to agree on a decision, acting in this sense as “leaders” of the swarm: the con-
sensus process is essentially determined by the number of informed agents and their
confidence levels.

Inspired by Couzin et al. (2005), researchers in robotics have studied the effect of
implicit leaders in the collective motion of self-organized robot swarms. One of the
earliest studies is the one of Celikkanat and Şahin (2010), who introduced implicit
leaders within the collective motion model designed by Turgut et al. (2008), which
in turn was one of the earliest faithful implementation of Reynold’s boids (Reynolds,
1987) model in swarm robotics. Subsequent studies have extended the study of in-
formed individuals to robot swarms able to communicate and influenced by more than
one subgroups of informed individuals with different goals (Ferrante et al., 2014), and
to robot swarms with more minimalist individual capability that self-organize without
exchanging orientation information (Ferrante et al., 2012). More recently, the notion
of informed individuals has been ported to a different collective behaviour than col-
lective motion, namely to self-organized aggregation (Firat et al., 2020). In this paper,
we port the notion of informed individual for the first time to the best-of-n problem.

There are additional recent studies that analyzed the role of informed robots in an
interdisciplinary context. Mann (2020) studies how the differences in information and
differences in preferences among the agents affect the use and efficacy of social infor-
mation, analyzing the collective behavior generated by rational agents with differing
preferences. Another very recent paper (van Veen et al., 2020) studies the impact
of overload of information on the accuracy and precision in collective decision mak-
ing. Berekméri and Zafeiris (2020) focus their attention to the role of the topology
of interactions among agents in a collective decision making process, finding that
a fully connected topology promotes consensus, while a hierarchical structure favor
accuracy, more than consensus.

The effect of zealots on collective decision making is of interest in different com-
munities. While zealots are sometimes called in different name, like “committed
agents” or “stubborns” or “stubborn individuals”, their impact has been investigated
from a biological perspective, in social physics models as well as in robotic swarms.
In the latter field, zealots have recently been introduced as a mechanism that allows
the swarm to cope with changes in the environments (Prasetyo et al., 2019), a setting
that is recently gaining momentum (Wahby et al., 2019).

In the context of physics, Colaiori and Castellano (2016) introduced zealots in a
model of pairwise social influence for opinion dynamics, showing a rich phase dia-
gram of the possible dynamics in presence of a small percentage of zealots. In the
context of Internet social networks, Hunter and Zaman (2018) studied the best place-
ment of zealots that maximizes the impact on the consensus dynamics of the popu-
lation, showing that a small number of zealots can significantly influence the overall
opinion dynamics and influence the consensus of the population over disputed issues,
such as Brexit. Mistry et al. (2015), using the naming game as decision mechanism,
showed that even a very small minority can drive the opinion of a large population,
if committed agents are more active than the others. However, this effect can be hin-
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dered if nodes with the same opinion are more connected with each other than with
nodes with different opinion, producing a polarization inside the network.

Ghaderi and Srikant (2014) and Mukhopadhyay (2016) studied the impact of
zealots in a social network, considering different degrees of zealotry. The focus of
Ghaderi and Srikant (2014) is studying the effect of zealotry on the convergence time
of the system. Mukhopadhyay (2016), despite having used the majority rule instead
of the voter, was able to find similar results as in Prasetyo et al. (2019) and De Masi
et al. (2020), in which introducing equal number of zealots on both option sides pre-
vents the network from reaching a consensus state. Similarly, Yildiz et al. (2013),
proved that the presence of zealots is able to prevent the formation of consensus,
introducing instabilities and fluctuations in a binary voter model of a small-world
network. A recent study by Bhat and Redner (2019) aimed at studying the influence
of zealots on “politically polarized” state vs consensus state and found that higher
“influence of zealots” produces more polarization, shorter time to polarization, and
conversely less consensus and longer to impossible time to consensus.

Xie et al. (2011) showed the presence of a tipping point at which a minority of
zealots is able to swing the initial majority opinion in a network. The study described
by Masuda (2015) focused on zealots with the voter model to perform peer-to-peer
opinion influence, however, differently from our work, zealots were nodes of a com-
plex network. Galam and Jacobs (2007), introducing zealots in a majority model,
showed that the system has spontaneous symmetry breaking when zealots numbers
are symmetrical for the two options, while consensus towards one option emerged
even with minimal unbalance in the number of zealots. In these studies options did
not have an intrinsic quality.

In a biologically inspired model, Couzin et al. (2011) show that strongly opinion-
ated minorities (like groups of zealots) can drive the consensus of other individuals,
but uninformed individuals spontaneously inhibit this process returning the consensus
to the majority, favoring in this sense a democratic consensus. We found this work
very inspiring and also found an interesting parallel between our and their results
which we will explore.

Compared to the latest works in swarms (Prasetyo et al., 2019; Canciani et al.,
2019; Primiero et al., 2018; Maı̂tre et al., 2020), to the best of our knowledge, in this
paper we study for the first time the interplay between different option quality, zealot
quantity and proportion of informed agents, by extending the preliminary studies
in Prasetyo et al. (2020) and De Masi et al. (2020), in which either all agents or
none of the agents were able to measure the quality of their opinion and disseminate
differentially based on that. In particular, we introduce here the explicit distinction
between informed and uninformed agents, and study for the first time the case in
which these two types of agents co-exist in the swarm at the same time.

3 Methods

We focus on a classic best-of-n with n = 2 scenario, in which a population of agents
is required to collectively choose one between two foraging sites: site A and B. As
mentioned above, the distinctive features of this scenario is the heterogeneity of the



Robot swarm democracy: the importance of informed individuals against zealots 7

Fig. 1 Probabilistic finite state machine. Ei with i ∈ A, B refers to the exploration state; Di with i ∈ A, B
refers to the dissemination state, with A and B being the two options. Solid lines denote deterministic
transitions between states, while dotted lines refers to stochastic transitions. The symbol V/M/Z indicates
that an agent can move to an exploration state chosen accordingly to voter model (V), majority rule (M) or
zealotry (Z).

population, with zealots, informed, and uninformed agents. The behavior of all agents
is determined by the same finite state machine made of four possible states: two
exploration states referred to as EA and EB, and two dissemination states referred
to as DA and DB (see Figure 1). The agents behave asynchronously with respect to
each other, meaning that at a given time agents may be in any of the above states.
This asynchronicity is ensured by having stochastic switching times between states,
as explained below. Thus, even if multiple agents start from the same state, they soon
break this synchronicity because they will switch state at different times. When in
any of the two exploration states, an agent moves randomly within a square arena for
a time that is randomly extracted from an exponential distribution. Agents in state
EA are those holding opinion A, while agents in EB are holding opinion B. In our
minimalist simulation scenario, during exploration none of the agents can change
opinion. At the end of the exploration state, every agent enters into the dissemination
state. Zealots and informed agents disseminate their currently held opinion for a time
randomly extracted from another exponential distribution, where the time parameter
depends on the quality of site A, for those agents in state DA, or on the quality of site
B, for those agents in state DB. Contrarily to zealots and informed agents, uninformed
agents disseminate their opinion for a time that is exponentially distributed with a
parameter that is fixed to 1. Thus the agent disseminates always proportionally to
a default quality value of 1 that represents the lack of information on the quality.
At the end of the dissemination state, informed and uniformed agents can change
their mind based on the logic of a voting system. In this research work, we compare
the dynamics generated by two different voting systems: the majority and the voter
model. When the majority is in place, an agent samples the opinion of G−1 randomly
chosen neighbours, where G the group size in the majority model including the focal
agent. A single agent changes opinion when the majority of the sampled neighbours
holds an opinion different from its opinion. In situations where the agent has fewer
than G − 1 agents, it skips the application of the decision rule and does not change its
opinion. In this way, we are sure that the effect of the parameter G is well captured
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and studied. When the voter is in place, an agent samples the opinion of a randomly
chosen neighbour. It changes opinion when the sampled neighbour holds an opinion
different from its opinion. Contrary to informed and uniformed agents, zealots never
undergo this opinion changing process. Thus, zealots never change their opinion.

The proportion of zealots holding opinion A and those holding opinion B are
set by the simulation designer at the beginning of each simulation. This proportions
will be systematically varied to study how they affect the collective decision making
dynamics. Given that the population size is fixed, it follows that the proportions of
informed and uniformed agents depend on the number of zealots in the population.
Nevertheless, the relative proportion of informed with respect to uniformed agents is
also systematically varied by the model designer to study how it affects the collective
decision making dynamics.

The scenario is modelled using the Netlogo 1 multi-agent simulation software.
Agents world is a 2D squared arena divided into a grid of squared patches. Each
patch is a piece of “ground”. Each agent occupies a patch and cartesian coordinates
are used to indicate the position of each agent. Each agent can perceive the presence
of other agents up to a distance of two patches in any direction. The size of the arena
is 100x100 patches. A simulation run starts with the agents randomly placed within
the arena. As for the termination condition, we do not base it on the reaching of
consensus, as consensus is not always guaranteed in presence of zealots (De Masi
and Ferrante, 2020). We also do not use time as a termination condition, because
convergence times in presence of zealots present strong non-linearities as a function
of the proportion of zealots parameter, thus it would be tricky to select the same
termination time for all runs. Instead, we decide to terminate a run if its dynamics
have reached a steady state. We define the following protocol to determine whether
a steady state has been reached: every 10000 steps a check-point is included; the last
10000 results are split into two sets and then the average and standard deviation of the
percentage of consensus to the option A of each set are compared; if the difference
of the average value is very small (less than 0.004%) and the difference of standard
deviation is less than 0.5, we assume that a steady state has been reached, thus the
run is terminated. The agents start the experiment in an exploration state. Regardless
of the proportion of zealots, a run begins with 50% of the agents holding opinion
A and 50% holding opinion B. Regardless of the state in which an agent finds itself
(i.e., exploration or dissemination), the agent performs a pseudo random motion by
which, at each time step, it moves for a distance equal to half of a single patch in a
randomly selected direction chosen within the range [−30◦, 30◦] with respect to its
current heading. Collisions between agents are not considered, in line with previous
work (Valentini et al., 2016b) that show that best-of-n dynamics can be well predicted
without collisions (real-robot validation performed in this paper will further reinforce
this point). Only when colliding with the arena wall, the agents make a 180◦ turn.

1 https://ccl.northwestern.edu/netlogo/
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3.1 Mathematical Model

We model the system using an Ordinary Differential Equation (ODE) model. We
adapted the model proposed in De Masi et al. (2020) which extends the ones in Valen-
tini et al. (2014, 2016b). All the variables are normalized by the total number of agents
N. Therefore, we consider only proportion of agents A (xA) and B (xB): the full popu-
lation is represented by xA + xB = 1. Agents are distinguished based on their opinion
A and B and on their state (exploring, denoted by e or disseminating, denoted by d).
Therefore informed agents can be distinguished in eAi, eBi, dAi, dBi, while uninformed
agents can be distinguished in eAu, eBu, dAu, dBu.

The variables modeling sub-populations of zealots are constant and denoted asσA

and σB. They are divided in the two states (exploration and dissemination). Therefore
σA = eAS + dAS and σB = eBS + dBS . The total proportion of agents with opinion A
and B are respectively xA = eAi + dAi + eAu + dAu + eAS + dAS and xB = eBi + dBi +

eBu + dBu + eBS + dBS .
The model includes a number of parameters which are explained in the follow-

ing. In principle, the model can be also defined with fewer parameters, if we allow
for rescaling of time and space. However, we chose not to do this in order to have
the model better matching the experiments, by letting each parameter of the model
have a corresponding one with the same name in the simulations. Some parameters
play a crucial role in the mathematical model: the quality of the options, called ρA

and ρB, the proportion of zealots of the two options σA and σB, and the proportion
factor of informed agents . This is defined as the ratio between informed agents over
the total number of non-zealots agents: φ = Ni

Nnon−zealots
= eAi+eBi+dAi+dBi

1−σA−σB
. The remaining

two parameters used in the model are the following: g is a factor that is multiplied by
the quality (or by 1 in the case of uniformed individuals) and represents the average
dissemination time (thus the inverse is the average dissemination rate), while q rep-
resents the average exploration time (thus the inverse is the average exploration rate).
The terms pAA, pAB, pBA, and pBB are not parameters but represents the probabilities
that an agents switches opinion or stays with its current opinion (depending on the
specific subscripts), and their expressions contain only state variables and depend on
the specific decision mechanism (the voter or the majority rule) as explained at the
end of this section. In particular, pAA is the probability to remain with opinion A,
while the probability to switch from A to B pAB is simply 1 − pAA. Similarly, pBA

is the probability to switch from B to A and it is related to pBB by the relationship
pBB = 1 − pBA.

The system consists of 12 ODEs with 12 state variables, given by:

˙dAu = −
1
g

dAu +
1
q

eAu (1)

˙dBu = −
1
g

dBu +
1
q

eBu (2)

˙eAu = −
1
q

eAu +
pAA

g
dAu +

pBA

g
dBu (3)
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˙eBu = −
1
q

eBu +
1 − pAA

g
dAu +

1 − pBA

g
dBu (4)

˙dAi = −
1
ρAg

dAi +
1
q

eAi (5)

˙dBi = −
1
ρBg

dBi +
1
q

eBi (6)

˙eAi = −
1
q

eAi +
pAA

ρAg
dAi +

pBA

ρBg
dBi (7)

˙eBi = −
1
q

eBi +
1 − pAA

ρAg
dAi +

1 − pBA

ρBg
dBi (8)

˙dAS = −
1
ρAg

dAS +
1
q

eAS (9)

˙dBS = −
1
ρBg

dBS +
1
q

eBS (10)

˙eAS = −
1
q

eAS +
1
ρAg

dAS (11)

˙eBS = −
1
q

eBS +
1
ρBg

dBS (12)

Equations 1- 8 describe the dynamics of uninformed agents (Eq. 1- 4) and in-
formed agents (Eq. 5- 8), while Equations 9- 12 describe the dynamics of zealots.
Informed/uninformed agents and zealots can never change their nature. In Equations
1 and 5, the proportion of agents disseminating opinion A increases because of agents
returning from the exploration of A at rate 1

q , and decreases because of agents termi-
nating dissemination at rate 1

g in Equation 1 (for uninformed agents that have no
dependency on quality) and at a rate 1

ρAg in Equation 5 (for informed agents that have
a dependency on quality). Similarly, Equations 2 and 6 describe the rate of change in
the proportion of agents disseminating opinion B. In Equations 3 and 7 the number
of agents exploring site A decreases because of agents finishing the exploration at rate
1
q , and increases because of two contributions: i) agents that had previously opinion
A and kept the same opinion after the application of the voter/majority model and ii)
agents that had previously opinion B but switch to A as a result of the voter/majority
model. Similarly, Equations 4 and 8 describe how agents exploring site B vary. The
rates pAA, pAB, pBA, and pBB describe the probabilistic outcome of the two decision
mechanisms and are described next. The dynamic of zealots is described in a very
similar way by the Equations 9-12. The only difference consists in the impossibility
for a zealot to change its opinion after any interaction, thus the terms that depend on
the decision mechanisms are omitted. For the zealot case, the dissemination always
takes place proportional to ρA and ρB.
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Regarding the decision mechanism, for the voter model the probability that the
outcome of the decision is A (resp. B) is the probability that, when observing a
random agent disseminating, that random agent is disseminating A (resp. B). This
is given by the ratio of agents disseminating A with respect to the total number
of disseminating agents pAA = pBA = dA

dA+dB
(resp. pBB = pAB = dB

dA+dB
), where

dA = dAu + dAi + dAS and dB = dBu + dBi + dBS .
For the majority model, where each agent switches its opinion to the one hold by

the majority of its G − 1 neighbors, the two probabilities are simply given by the cu-
mulative sum of probabilities distributed according to a hypergeometric distribution
modeling how many neighbors have each of the two opinions (Valentini et al., 2016b).

We define: pAA =
∑G−1

r= G−1
2

(G−1)!
r!(G−1−r)! pr

A(1−pA)G−1−r and pBA =
∑ (G−1)

2 −1
r=0

(G−1)!
r!(G−1−r)! pG−1−r

A (1−

pA)r, where pA = dA
dA+dB

.

4 Results

In order to investigate the effect of heterogeneity in quality awareness in a population
of agents engaged in the best-of-n with n = 2 scenario, we developed a simulation
study based on an experimental design in which we systematically vary: i) the pop-
ulation size N; ii) the proportion of zealots disseminating for option A (σA); iii) the
relative proportion of informed agents with respect to uninformed agents (φ); for
φ = 1, all non-zealots agents are informed, for φ = 0 all non-zealots agents are un-
informed; iv) the relative value of the quality of option B (ρB) with respect to option
A; v) the number of agents (G) considered during the running of the majority rule for
changing opinion. We keep the size of the arena fixed to 100x100 patches, therefore
while varying N we are effectively varying the agent density as well. However, in
previous studies on a similar system (see Prasetyo et al., 2019), we have established
experimentally that the density does not play a meaningful role provided it is con-
tained within certain large bounds, so that agents’ interactions are not significantly
affected (we refer the reader to the original study for more details).

All parameters values explored in the simulation model are illustrated in Table 1.
The parameters σB and ρA do not vary, with the proportion of zealots disseminating

Table 1 Parameters set used in simulations.

Parameter Description Values
N swarm size 1000
ρA option A quality 1
ρB option B quality {1, 1.05, 1.10, .., 2}
φ relative proportion of informed agents {0, 0.05, 0.10, .., 1}
σA proportion of zealots disseminating opinion A {0, 0.05, ..0.5}
σB proportion of zealots disseminating opinion B 0.0125
G group size in majority rule {3, 5, 7}
g dissemination time scale 50
q exploration time scale 6.072
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option B set to σB = 0.01252, and the quality of option A set to ρA = 1. Recall that
the option qualities ρA and ρB bear upon the agents’ dissemination time. With ρA = 1
and ρB defined as ρB =

ρB
ρA

, with ρB varying as indicated in Table 1, we explore con-
ditions in which the option B can be of equal or of higher quality than option A.
With σB = 0.0125, and σA varying as indicated in Table 1, we explore conditions
in which the proportion of zealots disseminating option A in the population can be
smaller (i.e., with σA = 0.0) or bigger (i.e., with σA ≥ 0.05) than the proportion
of zealots disseminating option B. With this parameters’ set, we investigate whether
and for which values of ρB a progressively higher number of zealots (i.e., σA) for
the less valuable option (i.e., ρA) generates a consensus to option A. With φ varying
as indicated in Table 1, we investigate whether the proportion of informed and unin-
formed agents within the population bears upon the decision making dynamics. Note
that the total proportion of informed and uniformed agents within the population is
computed as 1 − σA − σB

3. In the remaining of this section, we illustrate the results
of the simulations in combination with the predictions of the ODE model.

4.1 Decision making dynamics with Voter model

For each combination of all the different values of the simulation parameters illus-
trated in Table 1, we perform 50 runs. In this section, we discuss the results of the
simulations and of the ODE model for the conditions in which the agents use the
voter as voting system. These results are illustrated in Figure 2, where the graphs
indicate the average proportion of agents with opinion A for different proportion of
zealots disseminating option A (see x-axes, σA, in all graphs of Figure 2), and for
different ratio of the two options quality (see y-axes, ρB for all graphs in Figure 2).
The average (over 50 runs) proportion of agents with opinion A is computed, in each
run, by counting the proportion of agents disseminating opinion A on the last time
step of the run. Figure 2a and 2b refer to the proportion of agents with opinion A
when all non-zealots are uninformed agents (i.e., φ = 0). Figure 2c and 2d refer to
proportion of agents with opinion A when all non-zealots are informed agents (i.e.,
φ = 1). Figure 2a and 2c refer to the results of the simulations, while figure 2b and 2d
refer to the results of the ODE model. Looking at these graphs, first we notice that
simulations and ODE model generate identical results, which are characterized by
the emergence of a single stable solution for each combination of values of σA and
ρB. This holds for the two conditions with φ = 0 (see Figure 2a and 2b) and φ = 1
(see Figure 2c and 2d). In all graphs, the areas in blue refer to conditions in which all
non-zealot agents choose option B, while red areas refer to conditions in which there
is a consensus for option A. The white areas refer to conditions in which each run
terminates with roughly half of the non-zealots agents disseminating option A and
half of them disseminating option B. For intermediate values of φ, the white line pro-
gressively shifts from vertical position as in φ = 0 to the inclined position as in φ = 1.

2 As discussed in (Prasetyo et al., 2020), varying σB does not influence the decision-making dynamics,
hence we fixed this parameter to the same value used in (De Masi et al., 2020)

3 Specific videos, for selected values of the parameters, are provided as Supplementary Material in
http://swarm.live/robot-swarm-democracy-the-importance-of-informed-individuals-against-zealots/
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(a) (b)

(c) (d)

Fig. 2 Best-of-n scenario with the voter model as voting system. Graphs showing the proportion of agents
with opinion A when all non-zealots are uninformed agents (i.e., φ = 0, see figures a and b), and when all
non-zealots are informed agents (i.e., φ = 1, see figure c and d). Figures a and c refer to the results of the
simulations, while figures b and d refer to the results of the ODE model. Each point in panel a and c is an
average over 50 runs. A spline interpolation has been applied to the original plot.

The message of these graphs can be summarised in the following: i) when φ = 0, a
proportion of zealots disseminating option A slightly higher than the proportion of
zealots disseminating option B can generate a consensus to option A even in the ex-
treme case in which the quality of option B is twice the quality of option A; ii) the
nature of non-zealot agents does change the collective decision making dynamics. In
particular, when all non-zealots are uniformed agents, a sharp transition occurs when
increasing the amount of zealots disseminating option A (σA), independently from
the value of ρB (see Figure 2a and 2b). When all non-zealot agents are informed, a
progressively higher proportion of zealots disseminating for option A is necessary
to counterbalance the effect of a progressive increase of the quality of option B (see
Figure 2c and 2d).
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(a) (b)

(c) (d)

(e) (f)

Fig. 3 Bifurcation diagram for majority model with φ = 0 (left column) and φ = 1 (right column) for
different values of ρB: ρB = 1 (first row), ρB = 1.5 (second row), ρB = 2 (third row). Stable equilibria are
represented by a continuous line, while unstable equilibria are represented by dashed lines and indicated
with an .̂

4.2 Decision making dynamics with Majority model

In this section, we discuss the results of the simulations and of the ODE model for the
conditions in which the agents use the voter as voting system. As indicated in Table 1,
we tested all combinations of parameters for three different values of the G parameter
(i.e., G=3, G=5 and G=7). In this section, we discuss only the results with G=3 since
for G=5 and G=7 we observed very similar collective decision making dynamics,
namely presenting the same number of equilibria each with the same stability.
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(a) (b) (c)

(d) (e) (f)

Fig. 4 Best-of-n scenario in simulation with the majority model as voting system. Graphs showing the
proportion of agents with opinion A when all non-zealots are uninformed agents (i.e., φ = 0, see figures
a and d), and when half all non-zealots are informed agents (i.e., φ = 0.5, see figure b and e) and all
non-zealots are informed agents (i.e., φ = 1, see figure c and f). Each point in these graphs is an average
over 50 runs. A spline interpolation has been applied to the original plot. Graphs in the top row show the
first attractor, while graphs in the bottom row show the second attractor, that only exists for certain regions
of the parameter space. The regions in which the second attractor does not exists are indicated in figure d,
e, and f, with white background and black diagonal lines.

When this best-of-n scenario with the majority rule is modelled with ODEs the
results suggest that a saddle point bifurcation can be observed in all tested conditions
(see Figure 3). Two different stable equilibria are observed for relatively low values
of σA. The progressive increase of the number of zealots disseminating opinion A
leads to a transition point after which only one equilibrium is observed. Addition-
ally, for φ = 1, the increase of the quality of option B (ρB) moves the transition
point towards progressively higher values of σA. The results of the simulations are
shown in Figure 4. The collective decision making dynamics are qualitatively simi-
lar to those observed and discussed in section 4.1 when the agents employ the voter
model as voting systems, with the only exception of the emergence of a bi-stability
region, as predicted by the ODE model. The areas characterised by the emergence
of two equilibria is the one corresponding to low values of σA, where the population
of non-zealot agents converges with equal probability to consensus to option B (see
Figure 4a, 4b, and 4c, blue areas of the graphs) and to consensus to option A (see
Figure 4d, 4e, and 4f, red areas of the graphs). As for the results discussed in sec-
tion 4.1, ODE model and simulation generate qualitatively and quantitatively similar
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results (data are not shown for the ODE model). The most important phenomena to
observe, is that variations in the nature of the non-zealot agents do change the collec-
tive decision dynamics. As discussed above, also for this scenario with the majority
model, when non-zealots are all informed agents, a progressively higher proportion of
zealots disseminating for option A is necessary to counterbalance the effect of a pro-
gressive increase of the quality of option B (see Figure 4a, 4b and 4c). Additionally,
we can also appreciate how the dynamics change with progressively lower values of
φ, the proportion of informed agents. When φ = 0, we observe that the dynamics
no longer depend on ρB. Furthermore, the degree of dependency from ρB smoothly
decreases for progressively lower values of φ, as we observe from Figure 4b/e, where
the white line separating the two equilibra becomes progressively more vertical as
the value of φ decreases.

Figure 5 shows an in-depth analysis of the impact of the proportion of informed
and uniformed agents on the collective decision making dynamics in the best-of-n
scenario with the majority model. In these graphs, we can observe how the propor-
tion of agents with opinion A varies when φ progressively increase from 0 (i.e., all

(a) (b)

(c) (d)

Fig. 5 Best-of-n scenario in simulation with the majority model as voting system. Graphs showing the
proportion of agents with opinion A (y-axes) for different proportion of informed agents among the non-
zealot agents φ for: (a) σA = 0.0125; (b) σA = 0.05; (c) σA = 0.1; (d) σA = 0.2.
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non-zealots are uninformed agents) to 1 (i.e., all non-zealots are informed agents),
for four different values of σA (i.e., the proportion of zealots disseminating option A)
and 11 values of ρB (i.e., the quality of the option B). The graphs indicate that for
very low values of ρB, high levels of proportion of agents favoring the worst qual-
ity option (i.e., option A) are maintained regardless of the nature of the non-zealots
agents. For increasing values of ρB, a phase transition occurs, characterized by a drop
of the proportion of agents with opinion A that becomes steeper for increasing values
of ρB. Such transition corresponds to crossing the white area vertically in Figure 4.
The results of these tests indicate that the proportion of agents with opinion A pro-
gressively falls when the value of φ increases for a given value of ρB. This is clearly
striking in Figure 5a, Figure 5b and 5c by observing the progression of the lines
with the different colours. Figure 5a shows the results with the same proportion of
zealots for the two options. shows the results with the same proportion of zealots
for the two options: symmetry breaking is observed in almost all the cases. Only for
the specific case where also the quality of the two options is the same (blue contin-
uous line), the symmetry is not broken. In the other figures instead, the quantity of
zealots A is always larger than the amount of zealots B, which is kept fixed to the
value σB = 0.0125. Nevertheless, when the difference in quality between the two
options is small (i.e., small value of ρB), informed agents tend to take the side of
the zealots disseminating option A, while they tend to take the side of zealots dis-
seminating option B when the difference in quality between the two options tend to
increase (i.e., for bigger value of ρB). In the graphs, this latter trend corresponds to
the fall of the proportion of agents with opinion A when the value of ρB increases for
a given value of φ. The drop of proportion of agents with opinion B tends to disappear
for progressively higher value of σA (see Figure 5d). For the remaining intermediate
cases, uninformed agents facilitate the rise in the proportion of agents with opinion
corresponding to the best option. This can be seen in Figure 5b and Figure 5c. In this
condition, the consensus to option B is achieved for a broad range of values of ρB

and whenever there is large enough proportion of informed agents φ, starting from
a minimum reasonable difference of quality ratio ρB = 1.2 (Figure 5b) or ρB = 1.4
(Figure 5c).

This result is very relevant and confirms what has been previously observed
in Couzin et al. (2011) and Hartnett et al. (2016). Using a biological collective mo-
tion model, the authors of Couzin et al. (2011) found that uninformed agents (not
aware of the quality) can help the establishment of the option held by the majority.
The option held by the majority was considered in that study as the democratic one,
but it was also the option associated with the lowest weight or strength, or quality as
per the settings of our paper. Other words to describe the analogy between our work
and the one in Couzin et al. (2011) are the following: when there were more informed
agents and fewer uninformed agents, the ”non-democratic” choice preferred by a mi-
nority with stronger weight was prevailing. A comparison of the two papers show
similar results, even if the two collective decision model dramatically differs in their
motivation.
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(a) (b)

Fig. 6 a) Snapshot of two kilobots and the experimental apparatus showing the IR beacons underneath the
arena floor. b) Snapshot of the arena for the physical robots experiments.

5 Experiments with physical robots

In order to validate the results obtained with simulation and ODE model, we run fur-
ther tests with physical robots. For these tests we use kilobots which are small-sized
and low-cost robots that communicate using infrared transceivers positioned beneath
the robot body (Rubenstein et al., 2012) (see Figure 6a). We run two sets of exper-
iments: set I, in which the voting system is implemented with the voter model, and
set II in which it is implemented with the majority model. In set I, with swarm size
N = 20, the kilobots operate in a rectangular arena of 80x35cm2, with a relative
density of 0.007 robot/cm2 (see Figure 6b). In set II, with swarm size N = 40, the
kilobots operate in a larger rectangular arena of 85x50cm2, with a relative density of
0.009 robot/cm2. In both set I and set II, the arena is divided into 3 zones (see Fig-
ure 6b). The central zone which measures 37x35cm2 in set I, and 37x50cm2 in set II,
represents the nest. The lateral zones, positioned on the left and on the right of the
nest, correspond to exploration sites associated with quality ρA and ρB, respectively.
The robots are controlled by the same finite state machine illustrated above (see also
Figure 1). Each run lasts 20 minutes with the kilobots pseudo-randomly placed in
the nest. All robots are initialised in exploration state. It is imposed that at run start,
both options are chosen by half of the swarm. Robots in state EA move to option A,
while those in state EB move to option B. The movement towards and away from the
respective option (A or B), is controlled by a light source positioned on the right side
of the arena. This light works as a landmark with respect to which the robots develop
a phototactic or an anti-phototactic response depending on their state. Robots in state
EA perform phototaxis to reach site A; robots in state EB perform antiphototaxis to
reach site B. On entering the sites, each kilobot assesses the site quality by sensing
an infra-red signal emitted from an Arduino based platform placed beneath the trans-
parent arena surface, in correspondence of each site. Each Arduino based platform
continuously emit signals with message containing the site type (i.e., A or B) and the
quality associated with the site (i.e., the value of ρA or ρB). The robots remain in the
exploration state for a time sampled from an exponential distribution with rate equal
to roughly 1/4.76 s−1.

At the end of the exploration state, robots in state EA transition to state DA and re-
turn to the nest performing antiphototaxis; robots in state EB transition to state DB and
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return to the nest performing phototaxis. Once reached the nest, the robots dissemi-
nate their currently chosen opinion for a time randomly sampled from an exponential
distribution with characteristic time proportional to the opinion’s dissemination fac-
tor. While in the dissemination state, the robots move pseudo-randomly and continu-
ously broadcast their opinion as well as their unique 16-bit identifier to ensure their
vote is counted only once in each dissemination phase. Finally, after disseminating,
the robots (with the exception of zealots) apply the voting system to confirm or to
reconsider their currently chosen option and then they transition to the exploration
state for a new cycle.

5.1 Results

The experimental design with physical robots aims to reproduce the one used in sim-
ulation and ODE model. However, due to time constraints, with physical robots we
tested less experimental conditions, and the value of some parameters have been ad-
justed to the smaller swarm size (see Table 2, for a detailed description of the pa-
rameters used). For each set of experiments, we run 10 runs, with 5 runs in which all
agents are uninformed and only the zealots disseminate proportional to the quality
(i.e., φ = 0) and 5 runs in which all agents are informed and disseminate proportional
to the quality (i.e., φ = 1)4. The results of the runs for set I, where the robots use the
voter model as voting system, are shown in Figure 7a and 7b. Overall, these results
match those obtained with simulation and ODE model, illustrated in Figure 2. For ex-
ample, we observe that the maintenance of the proportion of agents with opinion A,
for a progressively better quality of option B, requires a progressively larger number
of zealots disseminating option A, when the non-zealots are all informed (see Fig-
ure 7b and Figure 2c and 2d for a comparison of the results with kilobots, simulated
agents and ODE model, respectively). For set-II, where the robots used the major-
ity model as voting system, given the low number of experiments, only the average
results have been plotted, being hard to define a robust criterion of assessment of bi-
stability with very few runs. The graphs in Figure 7c and 7d show results that match
those obtained with simulation and ODE model, illustrated in Figure 4. When only

4 Specific videos, for selected values of the parameters, are provided as Supplementary Material in
http://swarm.live/robot-swarm-democracy-the-importance-of-informed-individuals-against-zealots/

Table 2 Parameters set used with physical robots.

Parameter Description Values
N swarm size in set I/set II 20/40
σB proportion of zealots disseminating opinion B, set I 0.05
σB proportion of zealots disseminating opinion B, set II 0.025
σA proportion of zealots disseminating opinion A, set I {0.05, , 0.25, 0.45}
σA proportion of zealots disseminating opinion A, set II {0.025, , 0.225, 0.475}
ρA option A quality 1
ρB option B quality {1.05, 1.5, 2}
G group size in majority rule 3
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(a) (b)

(c) (d)

Fig. 7 Graphs showing the proportion of agents with opinion A in different experimental conditions: a)
set I, voter model, all non-zealots robots are uninformed (φ = 0); b) set I, voter model, all non-zealots
robots are informed (φ = 1); c) set II, majority model, all non-zealots robots are uninformed (φ = 0); d)
set II, majority model, all non-zealots robots are informed (φ = 1). A spline interpolation has been applied
to the original plot.

one solution is expected (right of the white area in Figure 7c and 7d), we can observe
a very good match between physical robots and simulated agents experiments. While,
when two solutions are expected (left of the white area in Figure 7c and 7d) the out-
come (consensus around 0.4) is simply the average of the two theoretical solutions.

From the perspective of robotic applications in real scenarios, the voter model
seems more robust to the adverse action of zealots disseminating the worst quality
option (i.e., option A). In fact for σA around 0.25, high quality ratio ρB can still win
and drive the consensus. For the majority model, given the bi-stability, for similar
values of σA the consensus is driven in some cases to consensus to the best option A
and in some cases to the worst option B. From an engineering perspective, a deep un-
derstanding of the possible hidden dynamics of the majority rule plays a crucial role
for the proper design of a robot swarm. While most of the applied studies disregard
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the bi-stability, focusing only on the average behavior of the system, our paper shed
light on the micro-macro link, describing the different microscopic dynamics leading
to a macro effect at swarm level.

6 Discussions and Conclusions

In this paper, a generalized version of the best-of-n problem has been investigated for
n = 2. We consider informed agents, able to measure the quality of the two options
and to modulate their strategy based on it; uninformed agents, unable to measure the
quality of the two options; and zealots, able to measure the quality of the options but
unable to change their initial opinion. From this paper two interesting points emerge:
the first point is the interplay between the abundance of zealots for an option (e.g.
A) and the quality ratio between the two options; the second is instead the interplay
between the proportion of informed agents versus the quality ratio.

The first point (interplay between zealot abundance and quality) is explored in
two extreme scenarios, one in which all agents are informed and can thus measure
the quality and disseminate proportionally to it, and the other where only zealots
can measure quality and disseminate proportionally, while all the other (uninformed)
agents disseminate for a time that is independent from the option. In the first scenario
we show that for a limited abundance of zealots of the worst opinion, the consensus
dynamics converge to the best option. However, when the number of zealots of the
worst option is too high (above 10%), then the dynamics converge to the worst option.
This behavior is observed for both voting models (voter and majority rule). In the
second scenario, where only zealots can measure the quality, the option with the
highest abundance of zealots is almost always dominating the consensus dynamics,
except for the case with very few zealots.

The results of this paper shed further light on the potential dual role zealots can
have within a collective decision-making system. In fact, previous results have high-
lighted a potential beneficial role for zealots, whose presence was deemed necessary
to achieve adaptability of the system to changing environments (Prasetyo et al., 2018)
(i.e. to option qualities that change over time). Also in that study, it was found that
only a limited number of zealots was required to achieve adaptability, while increas-
ingly high abundance was disrupting the consensus dynamics. The above results for
the current paper further confirm this finding, in showing that if the abundance of
zealots is too high, this is not beneficial for the system because it is preventing the
consensus to the best option.

The second point (interplay between informed agents proportion and quality) has
been investigated by varying the proportion of informed agents able to measure the
quality. We considered, as values for the other parameters, those that kept the system
close to the transition between consensus to A and B. The main result of this section
shows that, whenever the two options can be sufficiently well discriminated thanks
to a high difference in their quality, only a small proportion of informed is necessary
to make the consensus dynamics converge to the best option. Conversely, when the
two options are too similar, the system requires a higher discriminatory capability
from the swarm, therefore more informed agents able to measure the quality are re-
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quired. These results have a strong analogy with the study of Couzin et al. (2011), in
which the focus was on uninformed agents (agents that are not aware of the quality)
which are able to ”restore democracy” to the option held by the majority even if it
had a lower strength or weight. Conversely, lower abundance of uninformed agents
(which means higher abundance of informed agents) promoted the ”non-democratic”
choice owned by a minority with stronger weight (the equivalent of quality in our pa-
per). Despite the different focus on what is good or bad in the two papers, the results
obtained are identical, which is remarkable as the two collective decision model dra-
matically differ: we use the best-of-n while the authors of Couzin et al. (2011) used
a collective motion model as the one of their previous study (Couzin et al., 2005).
Another analogy can be drawn also with one of the oldest known results in collec-
tive decision-making: the Condorcet’s jury theorem (Condorcet, 1785). Despite the
numerous differences (such as for example the centralized nature and the absence of
time dynamics in Condorcet’s description), both in our paper as well as in the orig-
inal theorem we draw a similar conclusion: that a critical mass of knowledgeable
or skilled individuals (in Condorcet: > 50%) is required for a system to reach the
correct collective decision. Our work could, in this light, be giving a mechanistic in-
terpretation of what it takes to be knowledgeable: the ability to measure quality and
to disseminate based on it.

The experiments with real kilobots confirm all the evidences coming from ODE
and simulations. These results show that this mechanism can in principle be used
also in real life applications, with minimal requirements in terms of hardware. For
example, when a swarm is used for the purpose of monitoring a wide region, one
can potentially split the region into smaller areas. A quality can be associated to each
small area, representing the interest of the area (Albani et al., 2018). The current
model can be applied for the choice of the best area to be further explored, in sce-
narios in which not all robots are equipped with specialized sensors (e.g. thermal or
infra-red cameras) to assess the potential interest of each area or the abundance of a
certain feature in the environment. In the near future, we plan to demonstrate these
approaches to applications in large unstructured environments. Furthermore, the re-
sults of this study offer to swarm designers another tool to engineer and control the
results of self-organising collective dynamics in best-of-n scenarios. In particular, the
role of the proportion of different types of agents on the collective decision process
could be exploited by the swarm designer to determine the way in which a swarm
of artificial agents respond to certain environmental conditions requiring a collective
decision to be made. For example, we can image a scenario in which the designer
has the possibility to communicate with some or all of the agents of a swarm in a
way to change their characteristics. Under these conditions, the design could mutate
a “normal” agent into a zealots or vice-versa. This action has the effect of varying the
proportion of each type of agent within the swarm and consequently can induce the
swarm to reach a consensus on one or the other option, as shown by the results of this
study. This idea is part of a larger experimental approach in which different forms of
swarm heterogeneity are used to control the collective dynamics (Firat et al., 2020).
We will test the effectiveness of this approach in the best-of-n scenario in our future
empirical studies.
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