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mipfp: An R Package for Multidimensional Array
Fitting and Simulating Multivariate Bernoulli

Distributions

Johan Barthélemy
University of Wollongong

Thomas Suesse
University of Wollongong

Abstract

This paper explains the mipfp package for R with the core functionality of updating an
d-dimensional array with respect to given target marginal distributions, which in turn can
be multi-dimensional. The implemented methods include the iterative proportional fitting
procedure (IPFP), the maximum likelihood method, the minimum chi-square and least
squares procedures. The package also provides an application of the IPFP to simulate
data from a multivariate Bernoulli distribution. The functionalities of the package are
illustrated through two practical examples: the update of a 3-dimensional contingency
table to match the targets for a synthetic population and the estimation and simulation
of the joint distribution of the binary attribute impaired pulmonary function as used by
Qaqish, Zink, and Preisser (2012).

Keywords: iterative proportional fitting procedure, maximum likelihood, minimum chi-square,
minimum least squares, multivariate Bernoulli distributions, R.

1. Introduction and motivation
Combining information from two or more data sets is an operation commonly required to
estimate unknown population counts. Typically this involves integrating fully detailed and
disaggregated data from one source with aggregated data from another source. Such processes
are frequently implemented when generating synthetic populations (Beckman, Baggerly, and
McKay 1996; Guo and Bhat 2007; Barthélemy and Cornelis 2012; Huynh, Barthélemy, and
Perez 2016)
For example, let xijk be the unknown population count referring to a cell of a 3-way con-
tingency table. Index i stands for the household type, j for the gender and k for the age
category. Often only marginal tables are released by statistical agencies, such as the gender

https://doi.org/10.18637/jss.v086.c02
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population counts x•j• = ∑
i

∑
k xijk. A survey, a random sample from a population, or

previous estimates may also be available to generate an initial table x∗ijk known as the seed.
The aim is, then, to estimate xijk from the marginal counts and the seed.
A number of packages already exist in R (R Core Team 2018) to achieve estimation using
the iterative proportional fitting algorithm (IPFP), including ipfp (Blocker 2016), but they
are usually limited to initial 2-dimensional tables and 1-dimensional target margins. These
packages, however, do not provide a facility to assess the variability of the estimators.
The R function loglin from the stats package (R Core Team 2018) also relies on the IPFP to
compute maximum likelihood estimates for log-linear models of multidimensional contingency
tables. However this function only relies on the margins of the given initial array to perform
the fitting and does not allow the use of externally supplied margins. The fitted log-linear
models also assume a model of conditional independence given the margins, which can be
an unrealistic assumption. Similar functionality is also provided by the packages MASS
(Venables and Ripley 2002) and cat (Harding and Tusell 2012).
These observations led the authors to create the mipfp package (Barthélemy and Suesse 2018)
for R providing in its original release a user friendly multidimensional implementation of the
IPFP (giving rise to the name of the package). The current version 3.2.1 of the package also
includes several other distance-based fitting methods such as: maximum likelihood (ML),
minimum χ2 (MCSQ) and minimum least square (LSQ). All methods can deal with con-
tingency tables and target margins of arbitrary dimensions. The package also includes an
application of the IPFP to simulate data from multivariate Bernoulli distributions, as well
as estimating their parameters from given marginal probabilities and association parameters,
such as correlations and odds ratios. The package is available from the Comprehensive R
Archive Network (CRAN) at https://CRAN.R-project.org/package=mipfp.
The remainder of this paper is organized as follows. In Section 2, we first present the fitting
methods available in the package before illustrating how they are used. The simulation and
estimation of a multivariate Bernoulli distribution using the package functions is detailed in
Section 3. Concluding remarks are found in Section 4.

2. Fitting multidimensional arrays

In this section we will briefly detail the methods implemented in the mipfp package to fit
an initial multi-way (contingency) table with respect to known target marginal distributions
(counts). The interested reader can find more details in Suesse, Namazi-Rad, Mokhtarian,
and Barthélemy (2017).
The notations in this section refer to a 3-way table, which can be straightforwardly generalized
to any dimensions. Assume three categorical variables X1, X2 and X3 with I, J and K
levels, respectively. Their initial contingency table, referred to as the seed, has given initial
components (or cell counts) x∗ijk ∈ R+ where i ∈ {1, . . . , I}, j ∈ {1, . . . , J} and k ∈ {1, . . . ,K}
correspond to the level of the first, the second and the third variable, respectively. The
unknown and estimated components of the fitted table are denoted by xijk and x̂ijk ∈ R+,
respectively. The notations x, x∗ and x̂ represent the vectors containing the elements of
the unknown, initial and fitted tables respectively. The vectorization (or reshaping) of the
multidimensional arrays is performed with the last index changing fastest. The set of known

https://CRAN.R-project.org/package=mipfp
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desired target marginal countsM is a non-empty subset of

T = {(x•jk), (xi•k), (xij•), (x••k), (x•j•), (xi••) ∀i, j, k} ,

where • refers to the summation over the corresponding variable, e.g., x•jk = ∑
i xijk. It

should be noted that in this particular case each target is either a vector or a matrix. It is
also assumed that each component of the margins is non-negative. Consistency across the
target margins is also assumed, i.e., they all sum up to N . For example:

N = x••• =
∑
jk

x•jk =
∑
ik

xi•k =
∑
ij

xij• =
∑

k

x••k =
∑

j

x•j• =
∑

i

xi••. (1)

The initial cell probabilities are given by the sample proportions π∗ijk = x∗ijk/N
∗ where N∗ =

x∗•••. Similarly the estimated cell probabilities are obtained by π̂ijk = x̂ijk/N . Vectorization
of the unknown, initial and estimated cell probabilities are denoted by π, π∗ and π̂. Finally
let A be the matrix of full rank such that

A>π =
(

m
1

)
,

where vector m contains all components but one (to insure that A has a full rank) of every
target inM divided by N , i.e., the target probability margins. Note that A has r = I+J+K
rows and c columns (the last one being a vector of ones), and the degrees of freedom of the
x̂ijk is then r − c.
The aim is to find a suitable estimator x̂ijk for xijk, such that every resulting margin equals
its corresponding target margin in set M. This can be achieved by using either the IPFP,
the maximum likelihood (ML) method, the minimum χ2 estimation (CHISQ) method or the
least square estimation method (LSQ). These methods are briefly detailed in the remainder
of this section, followed by illustrating their application using the package’s functions on real
world data.

2.1. Iterative proportional fitting procedure
One of the most popular approaches to estimate a d-way table based on known marginal
tables and an initial contingency table is the iterative proportional fitting procedure originally
described by Deming and Stephan (1940), which has been extensively studied over the decades
(Lovelace, Birkin, Ballas, and van Leeuwen 2015). This procedure is also known in the
literature as raking, matrix scaling or the RAS algorithm.
This method is formally described below when d = 3 but can easily be extended to any
number of dimension. For the sake of completeness we also assume that every target margin
is available, i.e.,M = T . It should be noted that this assumption is not always satisfied with
real world data. The procedure iteratively updates the cells of the array depending on the
targets. The adjustments at iteration l are computed by the equations:

x
(1)
ijk = xl−1

ijk .
x•jk

xl−1
•jk

∀i, j, k;

x
(3)
ijk = x

(2)
ijk.

xik•

x
(2)
ij•

∀i, j, k;

x
(5)
ijk = x

(4)
ijk.

x•j•

x
(4)
•j•

∀i, j, k;

x
(2)
ijk = x

(1)
ijk.

xi•k

x
(1)
i•k

∀i, j, k;

x
(4)
ijk = x

(3)
ijk.

x••k

x
(3)
••k

∀i, j, k;

xl
ijk = x

(5)
ijk.

xi••

x
(5)
i••

∀i, j, k.

(2)
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These iterations are performed until either a maximum number of iterations iter has been
performed or the following stopping criterion is reached:

max |xl−1
ijk − x

l
ijk| ≤ tol ∀i, j, k,

where tol ∈ R+
o is a small constant. By default tol = 10−11 and iter = 1000 in the current

implementation. The values at the last iteration are the x̂ijk.
If only a subset of the target margins is available, i.e., M ⊂ T , then only the relevant
adjustments in (2) are performed.
Finally it can be noted that if an initial table is not available, this procedure can still be used
by choosing initial values for all x0

ijk. The choice of those initial values must then be done
carefully for the following reasons:

• IPFP preserves the correlation structure defined by the odds ratio of the initial table
(Mosteller 1968).

• If the initial table contains some cells x0
ijk = 0, then it can be easily observed that the

value of cells will remain 0 across the iterations. This property allows to easily fit tables
with structural zeros.

• If x0
ijk = 1 ∀i, j, k then IPFP produces the same results as a log-linear model of condi-

tional independence given the margins (such as the R function loglin, among others,
would). This may or may not be adequate depending on the application and should be
then be done only when such model is deemed adequate.

2.2. Distance-based approaches

As an alternative to the IPFP, one can use a distance-based approach, consisting of solving
the following optimization problem:

π̂ = arg min
π

f(π)

s.t. A>π =
(

m
1

)

to find estimates π̂ijk, where different specifications of f(π) lead to different models, see
Little and Wu (1991) for the corresponding models. In particular, we consider the following
functions:

• the maximum likelihood (ML) method under random sampling obtained by:

f(π) = −N∗
∑
i,j,k

π∗ijk ln(πijk);

• the minimum χ2 method (MCSQ) characterized by:

f(π) =
∑
i,j,k

(
πijk − π∗ijk

)2

πijk
;
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IPFP ML LSQ MCSQ
D1 π̂ π̂2/π∗ π∗ π̂4/(π∗)3

D2 π∗ π̂2/π∗ (π∗)3/π̂2 π̂4/(π∗)3

Table 1: Diagonal elements of D1 and D2. The vector division is performed component-wise.

• and the minimum least square (LSQ) method defined by:

f(π) =
∑
i,j,k

(
πijk − π∗ijk

)2

π∗ijk

.

The count estimates are finally obtained by the relation x̂ijk = Nπ̂ijk.
Interestingly, all four estimations methods (IPFP, ML, MCSQ and LSQ) are also maximum
likelihood methods for various mis-specification models. Such models link a target population
with known margins and a sample obtained from a different population, the so-called non-
target population. This is practically important, as often the available sample is not a real
sample from the target population and a mis-specification model then allows estimation of
the target population counts (see Little and Wu 1991; Suesse et al. 2017, for more details).

2.3. Covariance estimation

Assuming that the distribution of the random sample used to derive π∗ can be approximated
by a multinomial distribution1, then following Little and Wu (1991) and Freeman and Koch
(1976) the asymptotic covariance matrix of the estimated probabilities providing an uncer-
tainty measure is derived from the Delta method and formally defined as:

ĈOV(π̂) = 1
N∗

U(U>D−1
1 U)−1(U>D−1

2 U)(U>D−1
1 U)−1U>,

where D1 and D2 are diagonal matrices whose diagonal elements are given in Table 1 and the
matrix U is the orthogonal complement of A such that A>U = 0 and (A|U) has full rank.
The asymptotic covariance of the estimated cell counts is then simply given by:

ĈOV(x̂) = N2ĈOV(π̂).

Lang (2004, 2005) also proposed the following covariance matrix for the estimators:

ĈOV(π̂) = 1
N∗

(
Dπ̂ − π̂π̂> −Dπ̂Hπ̂(H>π̂Dπ̂Hπ̂)−1H>π̂Dπ̂

)
,

where Hπ̂ denotes Jh(π̂), the Jacobian evaluated in π̂ of the function:

h(p) = AT
−1p−m.

The matrix A−1 is different from A in the sense that the last column of ones is removed.

1Typically the target population size is larger than the sample size hence this assumption is not unrealistic.



6 mipfp: Multidimensional Array Fitting and Multivariate Bernoulli Distributions in R

Variable Values
Household type C (couple), F (family with children), I (isolated), N (non family)
Gender F (female); H (male)
Professional status A (active); E (student); I (inactive)
Education level O (none); P (primary); S (high school); U (higher education)
Driving license O (no); P (yes)
Age class 0 (0–5); 1 (6–17); 2 (19–39); 3 (40–59); 4 (60+)

Table 2: Individuals’ characteristics.

2.4. Goodness of fit statistics

Lang (2004) proposes the following three statistics to perform a test of the null hypothesis,
informally expressed as:

H0 : data x∗ijk agree withM vs. H1 : data x∗ijk do not agree withM,

and formally as:
H0 : h(π∗) = 0 vs. H1 : h(π∗) 6= 0.

The statistics are:

• the Wilk’s log-likelihood ratio statistic:

G2 = 2
∑
ijk

x∗ijk ln
(
π∗ijk

π̂ijk

)
;

• the Wald statistic:
W 2 = h(x∗)>

(
H>x∗Dx∗Hx∗

)−1
h(x∗);

• and the Pearson χ2 statistic:

χ2 = (x∗ − nπ̂)>D−1
nπ̂(x∗ − nπ̂).

The degrees of freedom for these statistics corresponds to the number of components in m.

2.5. Functions description and illustrative example

The IPFP and the distance-based approaches are implemented in the Estimate() function.
Its arguments, along with their description, are listed in Table 4. The minimal requirements
for Estimate() consist of an initial array to be updated, a list describing the dimensions of
the target margins, a list containing the data of the target margins and the method to be used
for the estimation. The function will return an object of class ‘mipfp’, as detailed in Table 5
containing the updated array and information about the convergence of the selected algorithm.
It should be noted that in the case of the distance-based approaches, the optimization is
performed using the function solnp from the package Rsolnp (Ghalanos and Theussl 2015).
To illustrate the functionalities of the package, the data frame spnamur representing a syn-
thetic population of 105,248 individuals for the city Namur (Belgium) is used. We refer the
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interested reader to Barthélemy and Toint (2013) for a detailed analysis and description of
the generation of this data set. The variables of the data set are detailed in Table 2. For
the sake of simplicity we disregard in this example the last three variables, and focus only on
household type (hht), gender (gen) and professional status (pro).
For illustration purposes we obtain the seed and the target margins from the synthetic pop-
ulation. The margins are extracted from the contingency table of the synthetic population.
The seed is obtained by taking a 10% simple random sample extracted (without replacement)
from the synthetic population.
Nevertheless it should be noted that in a real world application, the original data from which
the seed and the target margins are derived are usually not available. Typically the target
margins come from current aggregated census data while the seed is provided from other data
sources, such as surveys or disaggregated partial census data.
The package and the data are loaded and a random seed is set with:

R> library("mipfp")
R> set.seed(1234)
R> data("spnamur", package = "mipfp")

The 3-dimensional contingency table hht× gen× pro is obtained by:

R> spnamur.sub <- subset(spnamur, select = Household.type:Prof.status)
R> true.table <- table(spnamur.sub)

The target margins can then be easily extracted from this table. In this illustrative example,
we consider the (multi-dimensional) target marginal distribution detailed in Table 3 which is
generated by:

R> tgt.hht <- apply(true.table, 1, sum)
R> tgt.hht.gen <- apply(true.table, c(1, 2), sum)
R> tgt.gen.pro <- apply(true.table, c(2, 3), sum)

It can be observed that the targets defined in tgt.hht can be derived from tgt.hht.gen.
Ideally the former should be discarded, but it is still included in this example to demonstrate
that the package functions are able to detect and remove the unnecessary target margins.2
The target margins and their description (i.e., the index of the variables involved) are then
stored in the lists tgt.list.dims and tgt.data respectively by:

R> tgt.data <- list(tgt.hht, tgt.hht.gen, tgt.gen.pro)
R> tgt.list.dims <- list(1, c(1, 2), c(2, 3))

The next step extracts the 10% sample from the original synthetic population in order to
generate the initial seed contingency table seed.table:

R> sample.idx <- sample(nrow(spnamur), ceiling(nrow(spnamur) * 0.10))
R> seed.df <- spnamur.sub[sample.idx, ]
R> seed.table <- table(seed.df)

2Hence insuring that A has full rank, an assumption required for the convergence of the distance-based
approach and the computation of the covariance estimators.
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Name Variables Dimensions
tgt.hht Household type 4
tgt.hht.gen Household type × Gender 4 × 2
tgt.gen.pro Gender × Professional status 2 × 3

Table 3: Description of the target marginal distributions.

Having a seed and a set of target margins, the IPPF and the distance-based approaches can
now be applied to obtain an estimate of the true contingency table. This is achieved by using
the function Estimate() returning an object of class ‘mipfp’:

R> r.ipfp <- Estimate(seed = seed.table, target.list = tgt.list.dims,
+ target.data = tgt.data, method = "ipfp")
R> r.ml <- Estimate(seed = seed.table, target.list = tgt.list.dims,
+ target.data = tgt.data, method = "ml")
R> r.chi2 <- Estimate(seed = seed.table, target.list = tgt.list.dims,
+ target.data = tgt.data, method = "chi2")
R> r.lsq <- Estimate(seed = seed.table, target.list = tgt.list.dims,
+ target.data = tgt.data, method = "lsq")

A summary of the results detailing the values of the estimates, their standard deviation, their
t score and associated p value, the absolute maximum deviation between every target and
its corresponding generated margin (referred as the margins errors) and the goodness of fit
statistics can then be obtained using the summary() method. For instance, the summary for
the object r.ipfp is given by:

R> summary(r.ipfp)

Call:
Estimate(seed = seed.table, target.list = tgt.list.dims,

target.data = tgt.data, method = "ipfp")

Method: ipfp - convergence: TRUE

Estimate StdDev t.value p.value
C.F.A 3503.915 140.713 24.9011 1.065e-11 ***
F.F.A 6663.454 166.755 39.9596 3.898e-14 ***
I.F.A 3064.765 125.276 24.4641 1.312e-11 ***
N.F.A 2441.866 121.823 20.0444 1.359e-10 ***
C.H.A 5257.993 144.859 36.2973 1.225e-13 ***
F.H.A 11201.509 171.377 65.3619 < 2.2e-16 ***
I.H.A 3363.671 120.921 27.8170 2.880e-12 ***
N.H.A 1722.827 100.330 17.1716 8.206e-10 ***
C.F.E 849.901 85.626 9.9257 3.882e-07 ***
F.F.E 8118.086 140.683 57.7047 4.844e-16 ***
I.F.E 557.856 67.750 8.2340 2.795e-06 ***
N.F.E 2522.157 118.211 21.3360 6.547e-11 ***
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C.H.E 822.065 81.752 10.0556 3.373e-07 ***
F.H.E 8076.191 137.015 58.9438 3.757e-16 ***
I.H.E 1148.761 90.880 12.6404 2.704e-08 ***
N.H.E 2019.983 100.649 20.0695 1.339e-10 ***
C.F.I 7491.184 148.535 50.4339 2.423e-15 ***
F.F.I 11364.461 179.373 63.3566 < 2.2e-16 ***
I.F.I 5108.378 129.340 39.4958 4.480e-14 ***
N.F.I 3310.977 129.792 25.5098 8.011e-12 ***
C.H.I 5736.942 144.312 39.7539 4.145e-14 ***
F.H.I 7012.299 162.893 43.0485 1.604e-14 ***
I.H.I 2339.568 114.756 20.3874 1.115e-10 ***
N.H.I 1549.191 97.144 15.9473 1.926e-09 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Degrees of freedom: 12

Variables:
* Household.type : C F I N
* Gender : F H
* Prof.status : A E I

Margins errors:
Household.type Household.type.Gender Gender.Prof.status

7.275958e-12 3.637979e-12 0.000000e+00

Goodness of fit statistics:
Stat p.value

G2 10.567 0.4802
W2 10.465 0.4891
X2 10.627 0.4750
Degrees of freedom: 11

These first results from the IPFP show that after the convergence of the algorithm, the margins
of the estimated cells fit the known target margins. Indeed Margins errors reports a small
absolute maximum deviation between the desired and estimated margins (≈ 3.6 × 10−12).
The p values behind each cell strongly reject the underlying null hypothesis that the cell is
zero. Hence every cell is significant in this example.
The goodness of fit statistics defined in Section 2.4 and their associated p value indicate that
the seed (10% sample) agrees with the imposed margins, as expected as the sample and the
margins were obtained from the same population data. More details about the inputs and
outputs of the summary() method can be found in Tables 6 and 7. It should be noted that
the results of the other methods stored in r.ml, r.chi2 and r.lsq are similar to r.ipfp.
The confidence intervals of the estimates (Smithson 2002) can be easily computed with the
confint method as illustrated for the object r.ipfp below.

R> confint(r.ifpp)
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2.5% 97.5%
C.F.A 3228.1220 3779.7081
F.F.A 6495.6289 6831.2781
I.F.A 2773.6426 3355.8880
N.F.A 2157.9479 2725.7844
C.H.A 5097.7618 5418.2247
F.H.A 10918.6639 11484.3548
I.H.A 3036.8371 3690.5039
N.H.A 1447.0928 1998.5610
C.F.E 498.3366 1201.4653
F.F.E 7782.1934 8453.9777
I.F.E 289.3115 826.4011
N.F.E 2202.8924 2841.4219
C.H.E 576.5281 1067.6018
F.H.E 7943.4034 8208.9789
I.H.E 895.2599 1402.2627
N.H.E 1782.9809 2256.9843
C.F.I 7313.0616 7669.3064
F.F.I 11139.5439 11589.3779
I.F.I 4869.6100 5347.1468
N.F.I 3079.2871 3542.6662
C.H.I 5482.5537 5991.3300
F.H.I 6815.6559 7208.9429
I.H.I 2142.2988 2536.8376
N.H.I 1358.7915 1739.5896

The inputs of the method are documented in Table 8 and the output is a matrix containing
the upper and lower bounds of the estimates. Other S3 methods for the objects of class
‘mipfp’ are also available such as vcov() to compute the variance-covariance matrix of the
estimates, coef() to extract the estimates and print() to print a short description of the
object (see Barthélemy and Suesse 2018).
In order to validate the implementation of the different methods, to asses their convergence
and to compare their results, the CompareMaxDev() function is provided. First we check the
absolute maximum deviation between every target and its corresponding generated margin:

R> CompareMaxDev(list(r.ipfp, r.ml, r.chi2, r.lsq), echo = TRUE)

Maximum absolute deviation between targets and generated margins:
Household.type Household.type.Gender Gender.Prof.status

ipfp 7.275958e-12 3.637979e-12 0.000000e+00
ml 2.910383e-11 1.818989e-11 2.182787e-11
chi2 1.455192e-11 1.273293e-11 2.182787e-11
lsq 1.455192e-11 1.273293e-11 1.637090e-11

These first results show that after the methods have converged to a solution, the generated
margins fit the (true) target margins (regardless of the method), as expected.
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In this example the true contingency table is stored in true.table. To confirm that the
methods performs well we can also compare the estimated contingency table with the true
(but usually unknown) table using the same function:

R> CompareMaxDev(list(r.ipfp, r.ml, r.chi2, r.lsq), echo = TRUE,
+ true.table = true.table)

Maximum absolute deviation:
Deviation Prop

ipfp 227.1840 0.002158559
ml 227.8614 0.002164995
chi2 229.9759 0.002185086
lsq 230.6854 0.002191827

The absolute deviation between estimated table counts and the true counts are small, resulting
in deviations that are of maximum order of ≈ 0.3%.
It should also be noted that if the target margins are not consistent, for instance ∑i xi•• =
N ′ 6= N as defined in Equation 1, then the seed and target probabilities are automatically
used as inputs rather than the counts by the function Estimate. In this instance the target
becomes πi•• = xi••/N

′.
Finally the function Estimate() can also accommodate missing values (NA) in the targets
components when the selected method is IPFP.

3. Simulating multivariate Bernoulli distributions
Consider the K binary variables Y1, . . . , YK with success probabilities πi = P(Yi = 1) for
i = 1, . . . ,K. Under independence, random numbers or data referring to these K variables
can easily be generated by generating independently numbers from the Bernoulli distribution.
Under dependence simulation of multivariate binary data becomes more complicated, because
the underlying distribution is characterized by 2K probabilities which add up to 1.
When K is large, specifying and determining 2K probabilities becomes impractical and often
infeasible. A simpler approach is provided by using the IPFP, as suggested by various authors,
for example Lee (1993) and Gange (1995), and has been applied in various simulation studies,
e.g., Bilder, Loughin, and Nettleton (2000); Liu and Suesse (2008); Suesse and Liu (2012) for
simulating multivariate binary data. The approach is based on specifying the K probabilities
π1, . . . , πK and the (K − 1) × K/2 pairwise-probabilities πij = P(Yi = 1, Yj = 1). The
IPFP finds a solution of 2K probabilities such that the marginal one- and two-dimensional
probabilities equal {πi} and {πi,j}. In practice, specifying pair-wise probabilities is difficult,
as these are bounded by {πi}, i.e., max(0, πi + πj − 1) ≤ πij ≤ min(πi, πj).
There are often many solutions and the IPFP converges to one of these. There are also other
approaches, for example linear programming (Lee 1993), however IPFP is attractive because
the final solution has usually strictly positive joint probabilities, meaning that none of the
theoretically 2K sequences can be excluded. This is in contrast to linear programming which
often has several zero joint probabilities in the final solution, meaning these sequences can
never be generated in the sampling process, an undesirable practical property.
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Alternatively correlations and odds ratios are standard measures of association between two
random variables and can be used to determine the πij required by IPFP. While the correla-
tions are frequently used for continuous random variables, the odds ratio is frequently used
for categorical variables, because the correlation COR(Yi, Yj) between Yi and Yj :

COR(Yi, Yj) = πij − πiπj√
πi(1− πi)πj(1− πj)

is also bounded in a similar fashion as πij . In contrast the odds ratio ORij for variables Yi

and Yj defined by

ORij = P(Yi = 1, Yj = 1)P(Yi = 0, Yj = 0)
P(Yi = 0, Yj = 1)P(Yi = 1, Yj = 0)

is not bounded and can take any value in (0,∞).

3.1. Function description and illustrative example

Qaqish et al. (2012) analyze a frequently used data set on n = 407 parents and siblings
of subjects with chronic obstructive pulmonary disease and their controls with the binary
outcome of interest impaired pulmonary function. These data are clustered as observations
come from families and family size K = 1, 2, . . . , 10 varies. The primary focus of the authors
was to model the probability of impaired pulmonary function as a function of sex, race, age,
smoking status and an indicator as to whether a relative had the same disease. While a logit
model was applied to model {πi}, the odds ratio was used as a measure of association. To
simplify a model for theK(K−1)/2 odds ratios, each distinct family relationship was modeled
with a different parameter: parent-parent with αPP, parent-sibling with αPS and sibling-
sibling with αSS. Joint estimation of such mean and association models can be achieved
with generalized estimating equations (GEE2) or the method of orthogonalized residuals,
see Qaqish et al. (2012) and Liang, Zeger, and Qaqish (1992) for more information on these
approaches. For example OR estimates for the method of orthogonalized residuals, see method
ORTHMOMENT in Table 3 in Liang et al. (1992), are αPP = 0.283, αPS = 2.214, αSS = 2.186.
We aim not at estimation of these parameters but at generating data from the underlying
joint distribution. Let us consider for simplicity a family of four with two parents and two
siblings, then the matrix with the OR’s used in this example is loaded by:

R> library("mipfp")
R> data("Qaqish", package = "mipfp")
R> or <- Qaqish$or
R> or

Parent1 Parent2 Sibling1 Sibling2
Parent1 Inf 0.281 2.214 2.214
Parent2 0.281 Inf 2.214 2.214
Sibling1 2.214 2.214 Inf 2.185
Sibling2 2.214 2.214 2.185 Inf

and let us fix the π = (π1, π2, π3, π4)> for simplicity as:

R> p <- c(0.2, 0.4, 0.6, 0.8)
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which would usually be determined by the logistic regression model for a given set of covariates
for the four individuals under consideration. Then estimating the joint distribution via IPFP
can be achieved with:

R> p.joint <- ObtainMultBinaryDist(odds = or, marg.probs = p)

These 24 = 16 joint probabilities are stored in the p.joint$joint.proba and can now be
used to generate multivariate binary data using RMultBinary(). For instance, simulating
100,000 data points of size 4 from the obtained joined-distribution can be done with:

R> y.sim <- RMultBinary(n = 1e5, mult.bin.dist = p.joint)$binary.sequences

To confirm the results, the estimated probabilities and odds ratios from the generated random
data are:

R> apply(y.sim, 2, mean)

Parent1 Parent2 Sibling1 Sibling2
0.19946 0.40101 0.60081 0.80101

R> cor(y.sim)

Parent1 Parent2 Sibling1 Sibling2
Parent1 1.0000000 -0.2125456 0.1481007 0.1053726
Parent2 -0.2125456 1.0000000 0.1838986 0.1432878
Sibling1 0.1481007 0.1838986 1.0000000 0.1567362
Sibling2 0.1053726 0.1432878 0.1567362 1.0000000

which should be compared with the true correlation matrix which can be obtained from the
odds ratios as:

R> Odds2Corr(or, p)$corr

Parent1 Parent2 Sibling1 Sibling2
Parent1 1.0000000 -0.2156821 0.1445775 0.1076353
Parent2 -0.2156821 1.0000000 0.1847014 0.1445775
Sibling1 0.1445775 0.1847014 1.0000000 0.1563619
Sibling2 0.1076353 0.1445775 0.1563619 1.0000000

or alternatively the estimated correlation matrix can be converted into OR estimates by:

R> Corr2Odds(corr = cor(y.sim), marg.probs = apply(y.sim, 2, mean))$odds

Parent1 Parent2 Sibling1 Sibling2
Parent1 Inf 0.2875149 2.266229 2.176636
Parent2 0.2875149 Inf 2.205761 2.199028
Sibling1 2.2662294 2.2057614 Inf 2.192198
Sibling2 2.1766357 2.1990276 2.192198 Inf

which is approximately the same as the initial OR matrix used in this example.
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4. Conclusion
In this paper we have presented the R package mipfp. It provides several methods for updating
an initial array (or seed) with respect to given target margins, namely the maximum likeli-
hood, minimum χ2 and minimum least squares methods as well as the well known iterative
proportional fitting procedure. The package provides the first and crucial step for generating
synthetic populations where a disaggregate sample and aggregate margins are available. Un-
like the other fitting methods already implemented in several packages it can also compute
an approximation of the covariance matrix and standard errors of the estimates which can be
used to assess their accuracy and confidence intervals.
Package mipfp also provides an application of the iterative proportional fitting to simulate
data from and estimate multivariate Bernoulli distributions, an important application for
simulation studies. The main functions of mipfp have been successfully illustrated through
the use of data sets included in the package.
Extensions will be implemented in future versions of the package. Those include additional
uncertainty measures for the estimated cells induced by fixed marginals such as Fréchet bounds
(Fienberg 1999; Dobra and Fienberg 2001) and rounding procedures of the estimated counts
(Lovelace and Ballas 2013). Finally, we also aim at adding methods for synthetic population
generation and other estimation methods.
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A. Documentation

Argument Description
seed An array storing the initial multi-dimensional table to be updated. Each

cell must be non-negative.
target.list A list of dimensions of the marginal target constraints in target.data.

Each component of the list is an array whose cells indicate which dimension
the corresponding margin relates to.

target.data A list containing the data of the target margins. Each component of the
list is an array storing a margin. The list order must follow the one defined
in target.list. Note that the cells of the arrays must be non-negative.

method An optional character string indicating which method is to be used to
update the seed. This must be one of the strings "ipfp" (iterative propor-
tional fitting procedure, the default.), "ml" (maximum likelihood), "chi2"
(minimum chi-squared), or "lsq" (least squares).

keep.input A Boolean indicating if seed, target.data and target.list must be
saved in the output when set to TRUE.

... Additional arguments that can be passed to the functions Ipfp() and
ObtainModelEstimates(). See their respective documentation for more
details (Barthélemy and Suesse 2018).

Table 4: List of arguments for the function Estimate().

Name Description
x.hat Array of the same dimension as seed containing the updated cell values

and whose margins match the ones specified in target.list.
p.hat Array of the same dimension as x.hat containing the updated cell prob-

abilities.
error.margins List returning, for each margin, the absolute maximum deviation be-

tween the desired and generated margin.
conv Boolean indicating whether the algorithm converged to a solution.
evol.stp.crit Vector containing the values of the stopping criterion over the iterations

if the selected method is "ipfp".
solnp.res The estimation process uses the solnp optimization function from the R

package Rsolnp and solnp.res is the corresponding object returned by
the solver (if the selected method is not "ipfp").

method The selected method for estimation.
call The matched call.
If keep.input = TRUE:
seed The original seed.
target.list The original target.list.
target.data The original target.data.

Table 5: Components of the object of class ‘mipfp’ returned by the function Estimate().
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Name Description
object An object of class ‘mipfp’, usually a result of a call to Estimate().
cov.method Indicates which method to use to compute the covariance. Possible values

are Delta ("delta", default) or Lang ("lang").
prop If set to FALSE (the default), the results return counts, probabilities other-

wise.
target.list The list of the dimensions of the targets used for the estimation process

(see Estimate() for more details).
l.names If set to a value greater than 0, then the names of the categories will be

shortened to a length of l.names characters.
... Further optional arguments that can be passed to the underlying print and

flat methods, or to other methods. See their respective documentation
for more details (Barthélemy and Suesse 2018).

Table 6: List of arguments for the S3 summary() method for ‘mipfp’ objects.

Name Description
call A call object in which all the specified arguments are given by their full

names.
conv A Boolean indicating if the specified method converged to a solution

(TRUE) or not (FALSE).
method The method used to generate estimates.
df Degrees of freedom of the estimates.
estimates An array containing the estimates generated by the selected method with

their standard deviations and associated t- and p values.
error.margins A list returning, for each margin, the absolute maximum deviation be-

tween the desired and generated margin.
vcov A covariance matrix of the estimates (last index moves fastest) computed

using the method specified in cov.method.
tab.gof A table containing the log-likelihood (G2), Wald (W2) and Pearson chi-

squared (X2) statistics with their associated p values.
stats.df Degrees of freedom for the G2, W2 and X2 statistics.
dim.names Original dimension names of the estimated table.
l.names The value of the parameter l.names.

Table 7: Components of the object of class ‘summary.mipfp’ returned by the S3 method
summary() for ‘mipfp’ objects.
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Name Description
object The ‘mipfp’ object containing the estimates.
parm A specification of which estimates are to be given confidence intervals, either a

vector of numbers or a vector of names. If missing, all estimates are considered.
level The confidence level required.
prop A Boolean indicating if the results should be using counts (FALSE) or proportions

(TRUE). Default is FALSE.
... Further optional arguments passed to other methods (for instance the S3 vcov

method for ‘mipfp’ objects, see Barthélemy and Suesse 2018).

Table 8: List of arguments for the S3 confint() method for ‘mipfp’ objects.

Name Description
n Desired sample size. Default = 1.
mult.bin.dist A list describing the multivariate binary distribution. It can be generated

by ObtainMultBinaryDist(). The list contains at least the element
joint.proba, an array detailing the joint probabilities of the K binary
variables. The array hasK dimensions of size 2, referring to the 2 possible
outcomes of the considered variable. Hence, the total number of elements
is 2K . Additionally the list can provide the element var.label, a list
containing the names of the K variables.

target.values A list describing the possibles outcomes of each binary variable, for in-
stance {1, 2}. Default = {0, 1}.

Table 9: List of arguments for the function RMultBinary().

Name Description
binary.sequences The generated K × n random sequence.
possible.binary.sequences The set of possible binary sequences, i.e., the domain.
chosen.random.index The index of the random draws in the domain.

Table 10: Components of the list returned by the function RMultBinary().

Name Description
odds A K ×K matrix where the ith row and the jth column represents the odds

ratio between variables i and j. Must be provided if corr is not.
corr A K × K matrix where the ith row and the jth column represents the

correlation between variables i and j. Must be provided if odds is not.
marg.probs A vector withK elements of marginal probabilities where the ith entry refers

to P(Xi = 1).
... Additional arguments that can be passed to the Ipfp function such as tol,

iter, print and compute.cov.

Table 11: List of arguments for the function ObtainMultBinary().
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Name Description
joint.proba The resulting multivariate joint probabilities (from Ipfp).
stp.crit The final value of the Ipfp stopping criterion.
check.margins A list returning, for each margin, the absolute maximum deviation be-

tween the desired and generated margin. Ideally the elements should be
close to 0 (from Ipfp).

Table 12: Components of the list returned by the function ObtainMultBinary().
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