
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Automatically extracting news articles from the Internet

Jasselette, Arnaud; Vanderwhale, Mathieu

Award date:
2005

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 25. Apr. 2024

https://researchportal.unamur.be/en/studentTheses/ee4b9102-7599-4fea-8ce9-23bf84fd6a8f

-- -----------------------

Facultés Universitaires Notre-Dame de la Paix, Namur

Institut d'Informatique

Année académique 2004-2005

Automatically Extracting

News Articles

f rom the Internet

Arnaud Jasselette - Mathieu Vanderwhale

Mémoire présenté en vue de l'obtention du grade de Maître en informatique

Abstract

As information of interest is scattered around the World Wide Web , the

need for fully automatic extraction processes to fetch relevant data cannot

be ignored . Nowadays , five billion pages are available on the Internet and

almost two million new pages are being added daily. This thesis aims at

defining a comprehensive issue to extract news articles specially, from the

early classification of significant pages to the article retrieval properly speak­

ing. We developed News Ripper, a "wrapper" that achieves this Web mining

task by clustering similar news pages before comparing their layouts to bring

the articles to light .

L'information utile étant éparpillée à travers le Web, le besoin de proces­

sus automatiques d 'extraction de données pertinentes se fait manifestement

ressentir. Actuellement, cinq milliards de pages sont disponibles sur Inter­

net et pratiquement deux millions de pages sont ajoutées chaque jour. Ce

mémoire vise à définir en particulier une solution complète pour extraire des

articles de presse en ligne, depuis la classification de pages concernant un su­

jet jusqu 'à l'extraction proprement dite des articles. Nous avons développé

News Ripper, un "wrapper" qui accomplit cette tâche de Web mining en

regroupant les pages similaires avant de comparer leurs contenus pour en

extraire les articles.

lll

Foreword

This thesis is based on our internship at the University of Technology in

Sydney, Australia .

We wish to thank our promoter, Mrs Noirhomme-Fraiture, and our res­

ident professor abroad, Mr Simeon Simoff, for their help. We also want

to especially thank Debbie Zhang, who patiently supervised us during our

internship.

V

Contents

Introduction

1 Intuitive approach

1.1 Introduction

2

1. 2 Context . . .

1.3 Applications

1.4 Trivial algorithms to extract news articles

1.4.1 Example one: The header and tail filter .

1.4.2 Example two: Table break-down .

1.5 The smart issue

1.5.1 From HTML to a tree structure

1.5.2 Clustering similar pages . . .

1.5.3 Extracting the news articles .

1.6 Contents of Part 1 - State of the Art

1.6.1 Need for a preliminary Web classification

1.6.2 No panacea for news extraction

State of the Art

Web sites classification

2.1 Introduction

2.2 Context . . .

2.3 Web directories .

2.4 Classification through metatags

2.5 Classification by topics

2.5.1 Classification of superpages

Vll

1

3

3

4

5

7

7

8

10

10

11

11

12

12

12

15

17

17

17

19

20

23

23

Contents

3

4

2.6

2.5.2 Classification of Web site trees

Conclusion

Web pages classification

3.1 1 ntrod uction

3.2 Context . .

3.3 URLs and table layout classification

3.3.1 URLs hierarchy . . .

3.3.2 Table layout

3.3.3 Mathematical model

3.4 Classification through summarization

3.4.1 SLuhn •

3.4.2 SLsA

3.4.3 ScB

3.4.4 Ssup

3.4.5 The final equation

3.4.6 Classification process .

3.5 Ant-Miner

3.6 Conclusion

Tree structures

4.1

4.2

4.3

4.4

4.5

4.6

Introduction

Context .

Document Object Model tree

Style tree . .

4 .4.1 Noisy blocks

4.4.2 The style tree

4.4.3 The site style tree

4.4.4 Presentation importance and composite importance

4.4.5 Noise definition

4.4.6 Web page cleaning .

Rooted, ordered , labelled trees .

Conclusion

24

27

29

29

30

30

30

31

32

35

36

37

37

38

39

40

40

44

45

45

46

47

48

48

50

51

52

54

54

55

57

5 Wrappers 59

5.1 Introduction . 59

Contents

5.2 Definition . 60

5.3 Classifying Web data extraction tools 61

5.3.1 Languages for wrapper development . 61

5.3.2 Wrapper induction tools 62

5.3.3 HTML-tree based Tools 63

5.3.4 N LP-based T ools . 65

5.3.5 Structure-based tools 65

5.4 RoadRunner 66

5.5 Conclusion 67

6 Induction tools 69
6.1 Introduction 69

6.2 Lifecycle of an induction wrapper 70

6.3 How to locate the information on the page 71

6.3.1 Extraction rules 72

6.3.2 Working with both start and end rules 73

6.4 STALKER 73

6.4.1 Example 75

6.5 Verifying the extracted data 75

6.6 Automatically repairing the wrapper . 76

6.7 How could induction tools be useful for news retrieval? . 77

6.8 Conclusion 79

7 RoadRunner 81

7.1 1 nt rod uction 81

7.2 Why is RoadRunner better? 82

7.3 Context , definitions and assumptions 82

7.4 Data extraction in RoadRunner 83

7.4.1 Introduction 83

7.4.2 Before executing the algorithm 84

7.4.3 ACME algorithm 84

7. 5 Useful for our topic ? 88

7.6 Conclusion 89

8 NLP-based methodologies 91

8.1 Introduction . 91

lX

Contents

8.2 Information extraction 92

8.3 Natural Language Processing 93

8.4 Grammatical text 93
8.4.1 Autoslog 94

8.5 Ungrammatical text 95
8.5.1 RAPIER 95

8.5.2 SRV 96

8.5.3 WHISK . 97

8.6 Conclusion 98

9 News extraction using tree edit distance 99
9.1 1 ntrod uction 99
9.2 Context. 100
9.3 News extraction using tree edit distance . 100
9.4 Tree edit distance and mapping 101

9.5 Top-down mapping. 104

9.6 Web news extraction . 105

9.6.1 Page clustering . 106
9.6.2 Extraction pattern generation 106
9.6.3 Data Matching . 108
9.6.4 Data labelling 110

9.7 Applications 111

9.8 Conclusion 113

Il News Ripper 115

10 Context 117

10.1 Introduction 117

10.2 Our internship 117
10.3 Major functions 118

10.4 Contents of Part 11 119

11 Smartly building layout trees 121

11.1 Introduction 122

11.2 Why parsing HTML is hard 122

11.2.1 Different versions of HTML 122

X

11 .2.2 "Badly'' formatted text

11.2.3 HTML parsers avai lable on the Internet .

11 .3 Lightening the HTML source

11 .3.1 Main idea

11 .3.2 Careful ly choose the tags to select

11.3.3 Tables

11 .3.4 Lists

11.3.5 Objects .

11.3.6 HEAD tags .

11.3.7 Text management

11 .3.8 Miscellaneous

11.3.9 Headings

11 .3.10 Phrase elements

11 .3.11 Font styles

11 .3.12 Forms

11 .3.13 Scripts

11 .3.14 Frames

11.4 From the source to the layout tree

11.4.1 Pseudo-code of the parser .

11 .5 From the layout tree to HTML . .

11 .5.1 Pseudo-code of the algorithm

11.6 Limits of the parser

11 .7 Conclusion ..

12 News pages clustering

12.1 Introduction

12.2 The fast top-down mapping

12.2.1 Pseudo-code of the fast top-down algorithm

12.2.2 Example

12.2.3 Limits of the fast top-down mapping

12.3 The fine top-down mapping

12.4 Pseudo-code of the fine top-down algorithm

12.5 News pages clustering

12.5.1 Similarity rate and similarity threshold .

12.5.2 Impact of the tag selection

Xl

Contents

122

123

125

126

126

127

127

128

129

129

130

131

131

132

132

133

133

135

136

136

137

138

139

141

141

142

142

143

145

147

149

149

150

150

Contents

12.5.3 The clustering algorithm

12.5.4 Application

12.6 Conclusion

13 Extracting the news articles

13.1 Introduction

13.2 Fetching the leaves that contain text

13.3 Removing common text leaves .

13.3.1 Complexity .

13.3.2 Assumptions

13.3.3 Example . .

13.4 Concatenation of the remaining leaves

13.5 Extracting the article with its formatting

13.6 Conclusion

Conclusion

A News Ripper User Guide

A.1 Introduction

A.2 Launching News Ripper

A.3 Main window . . .

A.4 Menus & toolbar .

A.4 .1 File

A.4.2 Operations

A.5 The Opened files area

A.6 The Clustering area

Bibliography

Xll

152

154

157

159

159

160

160

161

162

162

163

165

165

167

I

I

I

II

II

IV

. VII

. VIII

Introduction

This thesis aims at designing a fully automatic process for extracting news articles from

the World Wide Web. Such an automatic task is not straightforward because it is only

of great interest on a large scale, as the World Wide Web counts to date more than five

billion pages. Furthermore, this process must be completely independent of both the

page structure and the news topic to be as worthwhile as possible.

ln order to take the full extraction process into account, we were led to consider three

successive core steps. First and foremost , the Web classification pre-classifies both sites

and pages of interest . Afterwards, the conversion of the HTML source code into a given

data structure allows to handle HTML efficiently. Eventually, the Data extraction strictly

speaking targets at fetching relevant data within Web pages.

Chapter 1: Intuitive approach explains how our work during the internship inspired the

contents of this dissertation . The latter is split in two parts: Part I - State of the Art

discusses the literature about the three steps mentioned above while Part Il - News

Ripper focusses on the implementation of the application we developed .

ln Part 1, the Web classification is analysed in both chapter 2: Web sites classification

and chapter 3: Web pages classification. Since we are going to work on tree data

structures , chapter 4: Tree structures goes into the field in greater depth . Chapter 5:

Wrappers, chapter 6: Induction tools, chapter 7: RoadRunner, chapter 8 : NLP-based

tools illustrate tools called "wrappers" which are intended for retrieving data of interest

from the Internet . They actually cover both second and third steps, since they often

create their own data structures before extracting data . As we wanted to concentrate

specially on news articles retrieval, chapter 9: News extraction using tree edit distance,

the main inspiration for our application, closes the State of the Art .

1

Introduction

News Ripper, as for it, embraces only the two last steps as wrappers do. The conversion

of the HTML source code into a given data structure concentrates on the particular tree

structure we designed: the "layout tree", which is an abstract representation of a Web

page layout. The Data extraction steered us to the News Extraction specifically.

However, we realized the requirement of an extra step between the building of layout

trees and the extraction of news articles : this intermediate step is the clustering of

similar pages. Notice that the clustering is completely different from the classification:

the former aims at grouping pages having a common general layout together while the

Web classification is meant for fetching pages of interest on the Internet .

Chapter 10 : Context outlines our work experience at the University of Technology in

Sydney and the major functions of News Ripper. Chapter 11 : Smart/y building layout

trees explains why we needed to define a suitable data structure, the layout tree , to

achieve the comparison of Web pages and the retrieval of news articles. The clustering

of similar pages is developed in chapter 12: News pages clustering. The extraction of

news articles properly speaking is treated in chapter 13 : Extracting the news articles at

last.

2

Chapter 1

Intuitive approach

Contents
1. 1 Introduction

1.2 Context ...

1.3 Applications

1.4 Trivial a lgorithms to extract news articles

1.4.1 Example one: T he header and tail fil ter

1.4.2 Example two: Table break-down

1.5 The smart issue

1.5.1 From HTML to a t ree structure.

1.5.2 Clustering similar pages

1.5.3 Extracting t he news articles

1.6 Contents of P art I - State of the Art

1.6.1 Need for a preliminary Web classificat ion

1.6.2 No panacea for news extraction

1.1 lntrod uction

3

4

5

7

7

8

10

10

11

11

12

12

12

Th is chapter aims at introducing intuitively the topic of our dissertation . We shall first

present t he context and the applications of the news extraction process from the Internet .

This task belongs to a wider application domain : the extraction of pert inent data from

Web pages.

We shall help the reader to understand why the news extraction process is no sinecure

by presenting two trivial examples (section 1.4) tha t will help the reader realize the

objectives we target.

3

Chapter 1: Intuit ive approach

The solution we implemented during our internship is explained in section "A smart

issue" . This solution comprises three successive steps. These steps will explain the chain

of ideas of our work . We shall finally notice that other previous steps are necessary

to consider the fully automatic news extraction process as comprehensive. We shall

describe the contents of the State of the Art by matching its different chapters with the

successive steps of the smart issue (section 1.5) .

1.2 Context

"The Web poses itself as the largest data repository ever available in the history of

human kind. Major efforts have been made in order to provide efficient access to relevant

information within this huge repository of data ." [1]

This information is generally stored on HTML files . HTML defines the layout of a Web

page, by structuring the data in tables, divisions, columns, titles, buttons, etc. This

layout is crucial for the display of the information on a screen but is useless when the

aim is to fetch the relevant information for a database or a program . ln case of a news

Web site, there are often an advertisement banner at the top, a menu on the left side,

some links at the bottom, various pictures, so that the news article represents just a

small part of the source code.

Therefore , the issue is a program that manages to throw away this so called "useless

code" defining the layout of the Web page, in order to keep the information of interest .

Our work is to provide these fetched articles, notwithstanding the further use. There are

various techniques designed to extract the information of interest but the major challenge

is to provide this information quickly. As a lways , the "easy-to- program" techniques are

effective but inefficient. That is the reason why smart and efficient techniques are

necessary.

4

1. 3. Applicat ions

1.3 Applications

News extraction can be useful in many ways . The news articles can be extracted for the

purpose of either a user or a program .

To help out users, an obvious solution would be the display of the news article on a

PDA screen, where there is not enough space for pictures , menus, banners, etc. On

such a device , the layout can be unfair , so that the aim is to be able to resize (zoom)

the text in order to make it easily readable . Apart from the display PDA's have a

relatively slow Internet access. The efficiency would be better because the PDA's would

not have to download all the heavy data such as images or backgrounds and would

not have to execute the javascript code. This approach could be extended to mobile

phones (WAP, 3rd generation , UMTS) . Showing fertile imagination , it could be useful

for people working daily with news articles who only need the unformatted text . They

want to display several articles of a topic on the same screen so they can compare them

easily.

Information can also be used further by mining agents. For instance , a chatterbot 1 that

would be able to discuss any news topic . Let us suppose a user wants to talk about the

war in Iraq, the chatterbot has got a database with links to Web sites of some famous

newspapers , it extracts all the Web pages relating to this topic and then it fetches the

articles inside these pages. Once it has got the articles, it can be able to discuss "war in

Iraq" by analysing them with the usual chatterbot techniques .

Anot her use of news extraction is to create a database of structured or semi-structured

data where text mining agents can effectively fetch the data available on the Web. ln

t he context of news mining, the bots fetch the news articles , which then are transformed

in to a structure form and both the structured and unstructured data are stored on the

mining base for accessing by the mining agents [1] (figure 1.1) .

The news extraction process can actually be applied to other on-line sources , such as

virtual communities , company sites and government sites . ln the same way, text mining

agents can become other specified data mining agents that could find useful information

in t he mining base (figure 1.2) .

1 a chatterbot i a program designed to converse with a user.

5

Chapter 1: Intuitive approach

N ~ s sources

" \[--
/

........ News Transforminc Minio1
bot to structure base miner

Figure 1. 1: The news mining portion of the system

On-!inc SOIUCCS

News ! Virtual Company GoVfflllDCllt
sources i COlllll'.lllllitics sites sites

t
Univcrsal News Community Cmq,any Govcmment

Bot Monitor Monitor Monitor

Mining
Base

Mining agmts
(mining md:hods)

JQbtiooal
miner

Source
evaluator

Output
(patterns.
models)

Figure 1.2: A smart data mining system

For instance, an obvious text mining agent is a news search engine, that would retrieve

only t he relevant articles linked to a given keyword . Most of the current search engines

treat t he information, regardless the HTML structure. When a keyword is found , the Web

page is displayed , without taking into account where it has been found . The keyword

cou ld appear in a link , a meta tag, the title of the news article, or in the article itself,

hence nothing can prove the results are real ly relevant .

An obvious issue would be therefore the creation of a search engine that would not use

t he META tags t o find the relating pages but that would try to match the keywords with

t he relevant text only. The relating Web pages found would be more pertinent since the

6

1.4. Trivial algorithms to extract news articles

searched keywords are ensured to be at least present in the article, ignoring words that

would have been only in a link, an advertisement , a menu, a pop-up, etc. The advantage

of this technique is obviously counterbalanced by its slowness.

1.4 Trivial algorithms to extract news articles

Here we present two trivial solutions [1] to extract an article from a news Web site . The

goal is to extract the plain text of the article , i.e . without its layout . Every object in the

page that does not matter with the news article has to be deleted .

These solutions are imperfect . Anyway, they are an understandable manner to explain

the main issues.

1.4.1 Example one: The header and tail filter

This is a trivial algorithm we found in the literature [1].

• Two similar pages are extracted from the same Web site, under the same category.

The news sources on the Internet can be found on the Web sites of major news­

papers. Another way is to use the news portal provided by search engines such as

Google or Yahoo.

• Ali the HTML tags are removed, so that only the unformatted text is kept .

• Both texts are transformed into arrays . Each cell is a line of text .

• A structure Header will contain all the text that is common at the beginning of

both files .

• A structure Tai! will contain all the text that is common at the end of both files.

• The algorithm starts and appends the common cells to Header.

• Once the cells are different, the algorithm goes to the end of both files and starts

to append the common cells at the end to Tail.

• At the end , Header and Tail contain the text to be removed by the filter .

• Once the filter has been created , it can be used to delete useless text in similar

pages from the one Web site and then to extract the articles {see figure 1.3) .

7

Chapter 1: Intuitive approach

Input: two text files from the smne web site, each contains a news article
Output: a data struchire contains:

String URL
String Heade1'
String Tai!

1. Remove all the html tags in the files .
2. Break down the files into one dimensional arrnys (a and b), each cell

contains a line of text.
3. For each cell of the anay from beginning

1. if a[i] = b[i], append a[i] at the end of Header string
2. if a[i] != b[i], break;

4. For each cell of the anay from the end
1. if a[i] = b[i], insert a[i] at the begüming of Tai! string
2. if a[i] != b[i] , break

5. Set the URL value to the common part of the URLs of two text file
Rehm1 the data strnch1re that contains URL, Header and Tai!.

Figure 1.3: The pseudo-code of Header and Tail filt er

However, the common structure between two similar pages can not be restricted to three

parts (a header, the text, a tail). The common structure is much more complicated .

We have to take the HTML structure into account in order to identify the page format

before locating the article.

1.4.2 Example two: Table break-down

This algorithm (see figure 1.4) improves the "header and tail filter" as it deals with the

different <table> elements. [1]

• An HTML page is broken down into content blocks. The news article is expected

to be the content block which is displayed on the centre of the page. Therefore ,

it is reasonable to assume that the biggest block of text is the news article .

• Most Web sites employ HTML tables to divide the page into blocks by using

<table> tags . The idea is to copy text blocks found between <table> and </table>

tags into an array.

• Once the array is complete, we count the number of words in each cell . The

one that contains the maximum number of words is the largest text block, so the

8

1.4. Trivial algorithms to extract news articles

Input: HTML file
Output: The largest body of text contained in a table
Begin

1. Break clown the HTML file into a one dimensional anay where
each cell contains a line of text or an HTML tag

2. Remove the HTML tags except <table> and </table>
3. Set table counter to 0
4. For each cell in the anay:

a. if <table> tag is encotmtered, increase table _counter by 1
b. if <\table> tag is encountered, decrease table_ counter by 1
c. if it is a text element, append it to the end of con­

tainer[tab/e _counter]
5. Retum container[i] that contains the largest body of text by count­

ing the number of worcls.
End

Figure 1.4: The pseudo-code of the break-down algorithm

article .

Notice that the algorithm handles the tag hierarchy between <table> tags . As the array

index is increased by 1 when a <table> tag is encountered and decreased by 1 when a

</table> tag is encountered, all the text portions that belong to the same depth in the

tags hierarchy are concatenated . That way, we do not understand how the article can

be identified since there is maybe more than one text block in each cell of the array. If

all the text blocks from the same level of hierarchy are concatenated , a lot of "noisy"

text will be added . Finally, the concatenation of all the noisy text blocks from the same

level of hierarchy can lead to a cell that contains more words than the article does.

If the array index was increased by 1 each time a <table> tag is encountered without

being ever decreased , each cell would contain a separate text block. However, in this

case, nothing guarantees that the entire article is always stored on a single element

<table>.

The extraction accuracy can be improved by algorithms that do not rely only on <table>

tags information but on the whole HTML structure.

9

Chapter 1: Intuitive approach

1.5 The smart issue

The pages on most news Web sites are automatically generated and filled-up with articles

coming from a database . Hence we can use the common format from a set of similar

pages to detect the parts that have nothing in common with each other. These distinct

parts are likely to be the news articles . Yet, before being capable of comparing similar

pages, we need to group them together . For this reason we need to identify why and

how pages are similar. We shall use a tree structure that reflects the hierarchy of HTML

tags in order to compare their likenesses.

1.5.1 From HTML to a tree structure

The structure of a Web page can be nicely described by a tree (DOM tree)[2] . Tree

structures can be useful for both clustering similar pages and improving the efficiency of

the algorithms that extract articles . Figure 1.5 shows the transformation from an HTML

source to a DOM tree.

<html>
<head>
<title>Portals</title>

</head>
<body>

Yahoo

Lycos

</body>

</html>

Figure 1.5: An HTML source and its DOM tree

The HTML file is analysed by an HTML parser. Building the tree is rather easy because

the parsing of an HTM L file corresponds to a preorder traversai in a tree. Let us analyse

the example in figure 1.5 .

10

1.5. The smart issue

A root node is created with the <HTML> tag, the only root of the tree. A child node

is created each time an enclosed element is encountered and so on recursively. ln this

example, <HTML> is the root node. <HEAD> . .. </HEAD> is an enclosed element in the element

<HTML> ... </HTML> , so that <HEAD> becomes a chi Id of the <HTML> node. The process

goes on and adds the child <TITLE> -to the <HEAD> node, then adds the contents of

the element <TITLE> . .. </TITLE> (Portais) to the <TITLE> node. As there is no further

enclosed element, the algorithm goes up until it finds a second enclosed element: <BODY>

in the example, and so on .

There is a relation between a tree structure and the layout of the displayed Web page:

the deeper in the tree, the more specific in the layout . The vertices close to the root

represent the main separations in the page, for example the division between tables ,

menus, and advertisements. ln the same way, the vertices close to the leaves represent

the formatting of a specific object, for example text .

However, all the HTML tags are not involved in the layout, so that we can remove tags

which are "useless" considering our goals . The tree structure we shall use is then a

lightened DOM tree that reflects the layout of the page, hence we called it a "layout

tree" .

1.5.2 Clustering similar pages

We can therefore apply an algorithm that goes from the root to the leaves and compares

the identical nodes between two layout trees. As soon as two nodes are different, the

subtrees below these nodes are given up . The output is thus the largest common subtree

between two layout trees from the top to the bottom. The larger is the common tree,

the more similar are the pages layout.

1.5.3 Extracting the news articles

The text containing the article of interest is always located in the leaves of the layout

t ree. Notice that it is often split between a couple of leaves, according to t he complexity

of its format . An algorithm is used to compare dissimilarities in the leaves between a set

of layout trees. If we assume that pages are similar to each other and that the article

11

Chapter 1: Intuitive approach

is different in each page, we are likely to extract the news articles if we extract the

dissimilar leaves. That is the reason why we have to find similar pages before executing

the algorithm .

1.6 Contents of Part I - State of the Art

As we went along with the implementation of our tool, we analysed the extraction process

from the end to the beginning. We first tried to directly extract the news articles. Then

we realized that we needed to cluster similar pages beforehand by comparing layout trees .

After, we became conscious of the usefulness of an appropriate HTML parsing, in order

to improve the quality of both clustering and news extraction algorithms.

1.6.1 Need for a preliminary Web classification

Despite the clustering step, the fully automatic process is still not complete; it could begin

a few steps sooner. lndeed, we assumed that pages have been previously downloaded

from well-chosen Web sites and yet we should automate this earlier step as well.

For this reason , we decided to introduce the state of the art with two chapters about the

Web classification , a well-developed topic that is too large to be covered by our program.

The Web classification is presented as two separate fields: the Web sites classification

(chapter 2) and the Web pages classification (chapter 3) . The former is used to find a

set W of Web sites which contain one or many specific keywords . The latter is used to

fetch the pages of interest inside the Web sites E W .

As said in the introduction , it is quite important to distinct the Web classification from

the page clustering. The former aims at finding the relevant Web sites and pages while

the latter aims at clustering pages that have a similar layout.

1.6.2 No panacea for news extraction

We decided to handle layout trees in order to cluster similar pages. We shall see that

other tree structures can be used for achieving this task or other purposes (chapter 4) .

12

1.6. Contents of Part I - State of the Art

The data extraction on the Internet can be done by many ways . We had to present

several approaches to extract data from the Internet . Tools that extract data from

Web pages are called "wrappers" in the literature . We gathered them up in generic

classes thanks to their major features and we shall explain the main functioning of each

class (chapter 5) . Three classes of wrappers are likely to be useful for news extraction :

Induction tools (chapter 6), RoadRunner (chapter 7) and Natural Language Processing­

based tools (chapter 8) .

ln our case, we were inspired by a recent proceeding from the 13th International Confer­

ence on World Wide Web (chapter 9) about the news extraction .

13

Part I

State of the Art

15

Chapter 2

Web sites classification

Contents
2.1 Introduction . . 17

2 .2 Context 17

2.3 Web directories . 19

2.4 Classification through metatags . 20

2.5 Classification by topics 23

2.5.1 Classification of superpages . . 23

2.5.2 Classification of Web site trees 24

2.6 Conclusion . 27

2.1 Introduction

ln this chapter we shall present the classification of Web sites of interest it would be

useful to do before a Web pages classification. From this perspective , a context briefly

outlines the need for a beforehand Web sites classification . Then major classification

techniques such as Web directories, classification through metatags and classification

by topics are analysed in order to understand the main issues related to this Web sites

classification.

2.2 Context

The amount of information available on the World Wide Web is huge and growing each

year. For the present, Google searches through more than 5 billion pages with 1.5 million

17

Chapter 2: Web sites classification

pages being added daily. One reason for this development is the relatively low cost of

publishing a Web site: a Web site is quite cheaper than brochures or advertisements in

newspapers, it is more interactive for Web users, more easy to update and it reaches

millions of people.

Such a growth ra1ses a maJor problem : the quality of a search query becomes more

and more poor unless an effective process of classification is beforehand realized . The

need to provide automated assistance to Web users for Web pages classification and

categorization is thus well real. This huge growing amount of pages is however not the

only reason for automated classification . Two other main reasons are taken into account .

The first one is the ever-changing nature of resources available on the Web. lt is simply

not feasible to keep up with the fast pace of growth and change on the Web through

a manual classification effort without expending immense time and effort. The second

reason is that classification itself is a subjective activity. Different classification schemes

are needed for different applications. No single classification scheme is suitable for ail

applications. Therefore different types of classification schemes, representing different

facets of knowledge, may need to be applied in an ongoing fashion as new applications

demand them .

About classification , a significant distinction has to be made. While the Web contains

more than 5 billion pages, the total amount of Web sites is clearly less considerable. lt

is consequently useful to bring out two points : the classification of Web sites and the

classification of Web pages . These two demains are not distinct from each other but ,

on the contrary, complement each other.

The Web sites classification considered in this chapter is rather not simple because of

the ever-changing nature of Web sites and the eclecticism of tapies within Web sites.

Though such a categorization can reduce the search space dramatically. The problem of

spotting complete Web sites of special interest to a user is not handled adequately yet , in

spite of its importance for various applications. Various methods have been applied such

as t he directory services like Yahoo, the metadata records and the topics classification

and drew our attention in this thesis.

18

2.3. Web directories

2.3 Web directories

Categorization is an important ingredient in the classification process of Web sites . Web

directories such as Yahoo! 1, Looksmart 2 and the Open Directory Project 3 (Figure 2.1)

have know an evident popularity these last years.

These directory services can offer useful information but the entries there are often

incomplete and out of date due to manual maintenance. Furthermore, these resources

have been created by large teams of human editors and represent only one type of

classification scheme that , while widely useful , can never be suitable to all applications.

Categorization is an intellectual task and it is really not easy to create a system that

spots special kinds of Web sites and offers the opportunity to search them while it would

turn out to be very useful.

1 http: //www.yahoo.com
2 http: //www.looksmart.com
3http: //www.dmoz.org

Arts Business Çompaters
~Irlci!i2n.~ 12lll,Rul..i1w!, 1n,·uring. Î!lltm!l.Sofh\--a:i'f'~

G2mes Healtb Home
\14rn0m•• Blfl.,.~- Eimr,• M<Jlil:int.ôlwnrn.- <JIIDlb:.Cmnlnru.~

Kids aod Teeo.s News Recreatioa
Aw,~wa..l.ü-- M<Jli;i.~1wlliu.- I.iwl-fliluj,.lllrulo=lilllla<--

Refere ace Regio■a l
~Eduç••on. ut .. .nn._ i&.~ l.!&. ~ -

Shoppiag SodetY
dllW. ~ !iift1_, ~ M.wn. lIB!a-

World

Srieace
Biol9gy. fsyçholo;y. ~

mm
BumD.~~--·

làuuili w.uîoJ.funUÎL- ill!lll<ll, ~Mulll,Qll. illlllli--

l·ièl:ifAiiiRMI H~p buddthe .a:,g~ hum:.~éd ted 1e(lory tsfthê v.eb

Ma®-i:ii -lEs F· il r 5 1•

4 685.186 srtu 68 .948 edrtors 787 185 cat990nes

Figure 2.1: The Open Directory Project home page

19

Chapter 2: Web sites classification

2 .4 Classification through metatags

John M. Pierre [3] from the Linkëping University in Sweden gives us an interesting au­

tomated classification of Web sites based on the metatags . He analyses the nature of

Web contents and metadata in relation to requirements for text features . He describes a

system for automatically classifying Web sites into industry categories thanks to targeted

spidering including metadata extraction and opportunistic crawling of specific semantic

hyperlinks.

The first step in this classification process is the analysis of Web contents and its quality.

Therefore Mr Pierre worked on a set of 29 .998 Web demains, randomly chosen . He

assumed as well that it is common to include a title and possibly a set of keywords and

description metatags. One of the more promising sources of text features should be

found in Web page metadata .

Within the huge collection of Web demains, he counted the number of words used in the

contents attribute of the <META name="keywords"> and <META name="description" > tags

as well as <TITLE> tags and <BODY> tags. Table 2.1 shows the result of this inventory.

Tag Type 0 words 1-10 words 11-50 words 51+ words
Title 4% 89% 6% 1%

Meta-Description 68% 83/c 21 % 3%
Meta-Keyword 66% 5% 19% 10%

Body Text 17% 5% 21% 57%

Table 2.1: Percentage of Web pages with words in HTML tags

As we can see, a title generally counts between one and ten words . The body text often

counts more than 51 words . But a really interesting result is the lack of Meta-description

and Meta- keywords for the Web pages . lt is quite surprising as we all know that they play

an important role in the ranking and the display of search results given by several major

search engines . lndeed metatags can be useful when they exist because they contain

text specifically intended for aiding in the identification of Web site 's subject areas.

Good text features , that is words that describe a domain , are needed to accurately

discriminate between different categories in order to build an automated classification

20

2.4. Classification through met at ags

process . According to D. Lewis[4] a feature must be :

1. Relatively few in number

2. Moderate in frequency of assignment

3. Low in redundancy

4. Low in noise

5. Related in semantic scope to the classes to be assigned

6. Relatively unambiguous in meaning

Metatags seem to meet for subject classification those requirements better than other

sources of text such as titles and body text.

The second step of the classification is the choice of a classification scheme. ln this

work, the North American lndustrial Classification System (NAICS) has been chosen .

The original NAICS is actually not presented as in table 2.2. The full NAICS has six

levels of hierarchy and contains several thousand subcategories. But for the experiment,

it has been simplified to the main top-level categories. The job is now to arrange the

Web sites in this classification system using the metatags as features.

The next step, the third one, is the targeted spidering. Due to the lack of homogeneity

in Web contents, the existence of key features can be rather inconsistent . A targeted

spidering approach tries to gather as many key features as possible with as little effort

as possible . These key features are the metatags but in the case of their absence , other

sources of text such as titles and body text were needed to provide adequate coverage

of Web sites . The spider begins at the top level page of the Web site and attempts to

extract useful text from metatags and titles if they exist , and then follows links for frame

sets if they exist . lt also follows any hyperlinks that contains key substrings in their anchor

text and again looks for metatag contents in those pages. Only if no metatag contents

was found did the spider gather the actual body text of the Web page. Finally, all the

extracted texts are concatenated to a single document representative of the concerned

Web site .

The fourth step of the categorization is the training data . 13,557 domain names among

the 29,998 at first had usable text contents and were pre-classified according to one

or more industry categories. Two approaches were used . Mr Pierre firstly used among

21

Chapter 2: Web sites classification

NAICS Code
11
21
22
23

31-33
42

44-45
48-49

51
51
53
54
55
56

61
62
71
72
81
92
99

NAICS Description
Agriculture, Forestry, Fishing and Hunting
Mining
Utilities
Construction
Manufacturing
Wholesale Trade
Retail Trade
Transport and Warehousing
Information
Finance and Insurance
Real Est ate and Rental and Leasing
Professional, Scientific and Technical Services
Management of Companies and Enterprises
Administrative and Support,
Waste Management and Remediation Services
Educational Services
Health Care and Social Assistance
Arts, Entertainment and Recreation
Accommodation and Food Services
Other Services (except Public Administration)
Public Administration
U nclassified Establishments

Table 2.2: NA ICS categories

others a combination of 426 NAICS category labels as training example. The second

approach is the more conventional classification by example. He used 3618 pre-classified

domain names a long with text for each domain obtained using the targeted spider. an

information retrieval engine for comparing queries to training examples is applied.

The final step, the classifier algorithm, analyses the results (text documents representa­

tive of Web sites) given by the spider . A decision algorithm assigns the Web sites to the

NAICS categories . lt is based on the K-nearest neighbours algorithm and is capable of

producing good results even when the amount of training data is limited . This decision

module is also responsible for thresholding and presenting the final set of automatically

assigned categories.

To conclude, this type of system have the advantage of being adjustable. lt can be applied

22

2.5. Classification by topics

to any domain specific classification scheme. Ali that is needed is to define the categories,

assemble the training data, and configure the spider to extract the appropriate features .

The spider may be constructed to follow specific types of links, or extract sections of

Web page contents that are most useful for a given domain.

2. 5 Classification by topics

Another interesting approach of Web sites classification has been developed by Martin

Ester, Hans-Peter Kriegel and Matthias Schubert[5]. They define the Web sites classi­

fication as follows : given a set of site classes C and a new Web site S consisting of

a set of pages P, the task of Web sites classification is to determine the element of C

which best categorizes the site S . They introduce three approaches of classifying Web

sites based on different representations:

• Classification of superpages : a Web site is represented as a single virtual Web page

consisting of the union of all its pages, i.e. the Web site is represented by a vector

of term frequencies .

• Classification of topic vectors : a Web site is represented by a vector of topic

frequencies . This classification method will not be discussed in this thesis .

• Classification of Web site trees : a Web site is represented by a tree of pages with

topics.

2.5.1 Classification of superpages

This simple technique is an extension of the methods used for the Web pages classi­

fication . The Web site is considered as a graph : the Web site of a domain D is a

directed graph Gv(N, E) . A node n E N represents an HTML page whose URL starts

with D . A link between n 1 and n 2 with n 1 , n 2 E N is represented by the directed edge

(n1 , n2) E E. Thus, every HTML document under the same domain name is a node

in the site graph of the domain and the hyperlinks from and to other pages within the

same domain are the connecting edges .

The Web site is downloaded very simply the starting page (the page whose URL

23

Chapter 2: Web sites classification

consists of the domain name only) is downloaded and read. An HTML parser is then

applied to determine the links to the other pages within the site . Then every link to a

page, beginning with the same domain name, is followed . The pages already visited are

marked to avoid circles.

An algorithm walks through the nodes of the site graph and counts terms with a vector

counting the frequency of terms over all HTML pages of the whole site. The Web site

is represented by a single superpage. Afterwards the vector can be classified by any

standard data mining package.

This technique is very simple and is not much more complex than the classification of

single pages. But it is only valid for small and medium-size business sites where the

actual site really stands behind the domain name. The right choice of the key terms is

a delicate problem as well. But the worst drawback of this method is the loss of local

context : keywords appear anywhere within the site and are aggregated to build up a

bag-of-words view of the whole Web site graph. This leads to a no distinction between an

appearance within the same sentence, the same page or the same site while the context

is a major actor in the classification task.

2.5.2 Classification of Web site trees

ln this approach , single key terms are no more used and are exchanged for complete

HTML documents, that is , for topics. Topics have the advantage to preserve the local

context . ln order to summarize the contents of a single Web page, a topic is assigned out

of a predefined set of topics (or page classes) to it . This is done by text-classification on

terms using the Nave Bayes classifier . If the page doesn 't belong to any of the predefined

topics, we assign the " other" -category to it.

ln their work, Ester, Kriegel and Schubert found that after examining many business

sites in several trades, the following categories of pages, although their trades varied

widely, are to be found in most classes of business-sites : company, company philosophy,

online contact , places and opening hours, products and services, references and partners,

em ployees , directory, vacancies and other . Therefore, it is possible to find a list of

recurrent topics for a specific type of site . For the news Web sites, it is easy to find such

24

2.5. Classification by topics

topics : politics, economy, sports, culture, weather, etc .

Once the topics have been identified within a Web site, the classification task need

to build a Web site tree based on the labelled pages of a Web site and on a directed

graph of the previous section . The idea is that the structure of most sites is very

hierarchical. Sites begin with a unique root node provided by the starting page and

commonly have directory- pages that offer an overview of the topics and the links leading

to them. Furthermore, the information in most sites begins very general in the area

around the starting page and is getting more and more specific with increasing distance.

For building Web site trees, our three researchers use the minimum number of links as

a measure of distance between two pages of a site and build up the tree as the set

of minimum paths from the starting page to every page in the graph . Therefore, they

perform a breadth-first search through the Web site graph and ignore the links to pages

already visited . Note, that in the case of two paths to the same page of equal length ,

the one occurring first is chosen. Figure 2.2 shows an example of a Web site tree for an

IT-service provider .

Figure 2.2: Example of Web site tree for small IT-service provider

Now a Web site tree has been built , the classification is now possible · with this tree. A

Web site class is the class that contains all the topics of a class. Thus, to classify this

Web site, we define the most likely Web site class as:

C = maxarg Pr[Ci lS] = maxarg (Pr [Ci] · Pr[SICJ)

25

Chapter 2: Web sites classification

Th is definition is based on the Nave Bayes approach and means that the predicted class

C of the site S is the class Ci that explains the occurrence of the given site S best. Due

to the Bayesian rule the probability Pr[Ci lS] is the product of the a priori probability

Pr[Ci] and the probability Pr[SICi] that given the model for class Ci the Web site tree

S would have been constructed. We therefore estimate Pr[Ci] as the relative frequency

of Web sites in t he class Ci.

To calculate Pr[SICi], let us take a simple example for our news Web site . Let us assume

that there are three topics in the news Web site class : politics (a) , economy (b) and

culture (c) . Our news Web site tree is represented at the center of figure 2.3 .

We have now to build a probability table for all possible transitions between the topics

of t he news site class as shown in figure 2.3.

The left table in figure 2.3 shows all the possible transitions between the topics. The

values are given as example. For instance, the probability to transit from the politics

topic to the economy topic is 0 ,7. The probability to stay in the same culture topic is

0,4. The none state indicates the probabi lity to start with a given topic. For all the

other Web site classes , a similar table must be build .

The concept of k-order Markov chains is then applied to web site trees using the following

procedure. Beginning with the probability for the label of our root node we multiply the

probabilities of the transition between the k last nodes and their successors. ln the simple

case of 1-order Markov chains, for example, the transition probability for the page classes

X and Y with respect to site class S is the probability that within a Web site of class S

a link from a page of class X leads to a page of class Y . Since there can be more than

one successor in the tree, we multiply the transition probabilities for every child node,

traversing along every path that a tree contains simultaneously.

To calculate the conditional probability Pr[SICi] of the Web site tree S, let us use t he

fo llowing definition :

Pr[SIC] = IJ Pr [lt I pre(k , t) , pre(k - l , t) , ... , pre(l , t)]
t ES

26

2.6. Conclusion

Transition p1·obabillties for d ass 1: Transition probabllities for dass J:

➔ a b C ➔ a b C

a 0.2 0.7 0.1 a 0.2 0.5 0.3

b 0.2 0.2 0.6 b 0.2 0.4 0.4

C 0.1 0.5 0.4 C 0.1 0.1 0.8

none- 0.1 0.6 0.3 none 0.1 0.1 0.8

p(t lI) • 0 .1 • 0. 1 • 0 . 5 • 0.2 •

0.2 *
0 . 4 *

(a-c- b - b) p (t lJ) - 0. 1 • 0 . 2 • 0. 1 • 0 . 4 •

(---b) 0.4 •

(a - c-b-b)

(_ - _ - _ -b)

(- -c)

(_-a) 0.2 •

0.2 * 0.2 * 0.7 *

(_ - _ -c)

(_ - a)

(_- a - a -b)

0.2 • 0 . 2 * (_- _ -_- a-a }

• 0.2 * (_-_-_-_- a}

0.2 (_ - _ - _ - _ - a)

0 . 8 *

0 .4 *
0. 4 * 0 . 4 * 0 . 4 * (_ - a - a - b)

0. 4 • 0 . 4 • (_ -_-_-a - a)

• 0. 4 • (_-_ -_-_- a}

0. 4 (_ - _ - _ - _ -a)

Figure 2.3: The calculation of Pr[SICi] for two site classes I and J

where:

• l = topic of a node

• t = node

• S = path

• k = number of predecessors of a node

• pre(k , t) = function which returns the topic of the k th predecessor of node t.

Thus, for every node t in the site tree S the probability that its label lt occurs after

the occurrence of the labels of its k predecessors is multiplied . Figure 2.3 shows the

calculation of Pr[SICi] for two site classes J and J.

Finally, we are able to calculate the most likely Web site class C = maxarg (Pr[Ci] •

Pr [SI Ci]) while we have Pr[n] and Pr[SICi]- The considered Web site is thus associated

with the topic C .

2.6 Conclusion

This second chapter was all about the Web sites classification . As more than a million

Web pages are being added every day on the World Wide Web, it is necessary to classify

27

Chapter 2: Web sites classification

this huge amount of data . The first step in order to tidy up the Internet is the classifi­

cation and the categorization of Web sites. The three techniques studied in great detail

in this chapter allow such a task . ln our case, about the extraction of news articles,

it would be very interesting to firstly classify the news Web sites or news portais and

secondly classify the Web pages of interest within each of these news sites. For instance,

if we are looking for sports news, we could classify the Web sites that only give sports

news to restrict the field of research and then classify the relevant news within these

sports Web sites. The second step of the Web classification is therefore the Web pages

classification considered in chapter 3.

28

Chapter 3

Web pages c lassification

Contents
3.1 Introduction 29

3 .2 Context ... 30

3 .3 URLs and table layout class ification 30

3.3.1 URLs hierarchy . . . 30

3.3.2 Table layout 31

3.3.3 Mathematical model 32

3.4 Classification through summarization 35

3.4.1 SLuhn 36

3.4.2 SLsA. 37

3.4.3 ScB 37

3.4.4 Ssup 38

3.4.5 The final equation 39

3.4.6 Classification process . 40

3.5 Ant-Miner. 40

3.6 Conclusion 44

3.1 Introduction

ln this third chapter we shall present the classification of relevant Web pages. lt is the

second step, after the Web sites classification , in the scheme of the news extraction .

ln order to analyse such a task, we shall go into three pages classification methods in

depth. The first one concerns the URLs and table layout classification , the second one

29

Chapter 3: Web pages classification

the classification through summarization and the third one the Ant- Miner algorithm . We

shall finally close this chapter by a conclusion.

3.2 Context

Web pages classification is necessary to help the Internet user to cope with the mass

of information on the World Wide Web. Web site classification, argued in the previous

section , is the first step of this task but is actually not often used . Even if it is, the second

step, the pages classification , has to be done to give the final results of a user query.

Various techniques have been suggested but are based on the same idea : analysing the

contents of Web pages with keywords. Though some interesting and original approaches

have been discussed these two last years: the URLs and table layout classification , the

classification through summarization and the ant colony concept .

3.3 URLs and table layout classification

The first method of pages classification concerns the use of URLs and the placement of

links t o them on a referring page placed in a table layout . Both researchers, Lawrence

Kai Shih and David R. Karger, assume that contents providers tend to choose URLs and

page layouts that coherently structure their contents according to topic. They want to

formalize such intuitions into a general way of algorithmically predicting the properties

of t he links targets.

3.3.1 URLs hierarchy

While the World Wide Web Consortium argues that document URLs should be opaque,

L.K . Shih and D.R . Karger[6] noticed that most URLs nowadays have human-oriented

meanings and are useful for recommendation problems. On many Web sites, URLs

are organized in a hierarchy according to subject . For example , on the CNN news

Web site, the articles about space of the last year are placed under the following URL:

cnn.com / 2004/ tech / space. That means that all articles about this topic are placed in a

firs t space subtree, then in a second more general tech subtree, and so on of the CNN

30

3.3. URLs and table layout classification

tree. The location of an article in the URL tree is therefore suggestive of the user ' s

interest in it . But this technique is also helpful for the Internet user. A good URL

structure provides helpful contextual dues for the reader. Browsers use besides this URL

hierarchy advantage displaying URLs along with the text description of a link . The user

can infer from a URL that a document serves a particular function or relates to a topic.

This hierarchical organization is the main advantage of URLs for this work .

Another plus is that they are easy to extract and relatively stable. Each URL maps

uniquely to a document , and any fetchable document must have a URL while other Web

features , like words or texts , are optional and not unique to a document .

The last asset is that URLs can be read without downloading the target document . This

makes t o perform Web pages classification more quickly possible.

Technically, to convert a URL hierarchy into a tree structure,L.K . Shih and D.R. Karger

tokenized the URL by the characters / , ? and &. The character / is a standard delimiter

for directories that was continued into Web directories. The characters ? and & are

standard delimiters for passing variables into a script . http : is the root of the tree and

successive tokens in the URL become the children of the previous token .

3.3.2 Table layout

Another technique of this classification approach is the use of a table layout within a

Web page. This layout , following the example of URLs , is hierarchical as well. For

instance, the CNN Web site front page offers a "table of contents" partitioning its news

articles under a number of labels such as "U.S .", "World", "Travel" and "Education"

representing subject classifications that may well be strong indicators of "interestingness"

for a reader . This also allows to help a user understand how to use a site: the layout

tends to be templated (most pages will retain a "look and feel") and different articles

on one particular topic might appear in the same place on the page day after day.

The table layout is delimited by HTML table tags that have to obey a standardized HTML

grammar making the table feature easy to extract. The HTML table tags correspond to

rectangular groupings of text, images and links. But this layout often contains much more

than the site 's navigation . The contents of a site might use tables to group together

31

Chapter 3: Web pages classification

A

... IIJ ,...,,..
T tl K. arm , ... , lrt! • a f! S
-~---• ■ il.alll 10• •• .,... -• :lfr. · • 1r11a .i-1U1 • t1 •• r w-a 1 .%. 111 • aJf! • dt•W:t: •~·••.-,,;a•a• ,•••••• .. .t1aK■nM
· 1'l1J• • P2Jl• !Jr• :f•,um .. •

.._,
11, ■ • ■• l'l• :t•• •••U•t••

· Sft.WIM :t"'~ Jtlll! - «.%1
, 't"- ~ il llil.~J • .,..

• ··• " .t.••~ !,_t_S. II A ■ l'J: - ~~t}.a.'l..(,f! Willa§'.■'9 Œfl,a:S
• P..a& , t_.,.I: lle.JH h

B-1

A-1 B-1

IM· .. 1

B-!

- - --~ <HTM
<Table ... ></Table>
<Table ... >

<Td><Table> . . .
<a lu-ef= .. . > A-1

 A

< able></Td>

<Td><Table> . . .
a bref= ... > B-1

 B-l

</ta ble></td>

..,., </HT fL>

A-1 B-1 B-2

Figure 3.1 : A table layout, its HTML code and its conversion into a tree structure

articles by importance (i .e. the headline news section) , by subject, or chronologically

(newest items typically at the top).

To convert the HTML table structure into a tree-shape, they used a hand-written Perl

program that extracted the HTML table tags <table> and <td> . The root of the tree

is t he entire page's HTML. The children of a node are the next lower level of table

elements. Figure 3.1 shows an example of such a tree structure of a table layout .

3.3.3 Mathematical model

As we can now notice, each of both elements (URLs and table layout) of the Shih and

Karger 's classification approach have been transformed into a tree structure. From this

point , these tree structures, while coming from two different elements, are the same and

32

3.3. URLs and table layout classification

will be handled indistinctly as Bayes nets .

The underlying idea of the classification problem of the Bayes nets is as follows : imagine

that you do not understand the Chinese language. A friend of yours knows this complex

language and you ask him to recommend you a good Chinese news article. He gives you

the URL of this article (B-1 in figure 3.1) and you find on the same page, just below the

news article, what it seems to be another article (B-2 in figure 3 .1) , even if you do not

know the Chinese language. Your mind just guessed and assumed that it was strongly

possible that the other series of signs just below the recommended article is a news

article as well. lt made good guesses about some of its semantic attributes. Another

intuition would be that if one person mentioned that the top link in box A (Figure 3.1)

was an advertisement, it might be reasonable to guess that everything in box A was an

advertisement too. The work of both researchers tries to formalize and build algorithms

that automatically make generalizations like these.

The aim of the automated generalization is to work out the class of each node of the

tree . Formally, a probability distribution is defined over the possible classes of items in

the tree . To accomplish this , the tree holding the items to be classified is considered

as a Bayes net . The assumption that the class to be learned is correlated to the tree

position is captured in a model based on mutations. Sorne children of internai nodes

may "mutate" into different classes.

There are two classes (0 and 1) and two mutation probabilities (forward : 0 and back­

ward : </>) . The class of a node follows probabilistically from the class of its parent.

Suppose node x has parent y in the tree . Let Nx and Ny denote the classes of nodes x

and y respectively. Then

Pr[Nx = ll Ny = O] = 0

Pr[Nx = OINy = 1] = </>

Applying this rule from the root to the leaves, it is possible to assign classes to the nodes.

Given the root' s class , we can flip coins according to the formulas above to determine

the children's classes; given these we can generate the grandchildren's classes, and so

on .

To initiate the process, we must choose a value for the root class. ln order to minimize

33

Chapter 3: Web pages classification

the number of parameters, it is useful to choose a root class function with the already

existing parameters 0 and <p. For the root node r, we declare that

</> Pr[Nr = O] = --
0 + </>

This formula is useful: if x is a child of the root, then

Pr[Nx = O] Pr[Nx = OI Nr = O] Pr[Nr = O] + Pr[Nx = OI Nr = 1] Pr[Nr = 1]
</> 0

(1-0)- + </> -
0 + </> 0+ </>

</>
0 + </>

ln other words , with this root probability, a ll nodes in the tree have the same probability

of being class 0, prior to labelling any of the leaves. Later , as the leaves are labelled ,

these probabilities will change. If 0 and </> are small, the model asserts that a node is

likely to have the same class as its parent, and thus likely to have the same class as its

siblings and other nearby nodes in the tree. As the mutation probabilities increase, the

correlation between nearby nodes in the tree decreases. 0 and </> are usually constrained

to be less than 0 ,5 .

The Bayes net is created by setting conditional probabilities for all edges in the tree as

follows: for node x with parent y, Pr[Nx = ll Ny = O] = 0 and Pr[Nx = OI Ny = 1] = cp;

and by setting the root prior as follows : Pr[N0 = 1] = m·
How do the probabilities in the tree change when leaves are labelled? As we are working

on Bayes nets, we must use the concept of evidence. If we use no evidence, each node

x will have the probability Pr[Nx = ü] = iR;, that is of being class O. But if we

use evidence, the problem is not the same. For example, let us assume that we know

the classes of a set of nodes E. This will influence our predictions about other nodes .

The previous probability is now conditioned on the evidence E . We can expand this

conditional probability as
Pr[Nx = 0 n E]

Pr[E]

Let us suppose now that the root r has two children x and y, and let Ex and Ey denote

34

3.4. Classification t hrough summarization

the labelled leaf nodes in the x and y subtrees, respectively. Given the class of the root

r, the classes of nodes in the two subtrees are independent of one another, and their

probabilities can be multiplied: Pr[EI Nr = O] = Pr [ExlNr = ü] Pr[EylNr = ü] and

similarly for the case Nr = l. But to calculate this multiplication, we must, as said

above, pick a random class for x , and then assign classes to items below x based on the

class of x. That is

Pr[ExlNx = O] Pr[Nx = OINr = O] + Pr[ExlNx = 1] Pr [Nx = ll Nr = O]

(1 - 0) Pr[ExlNx = O] + 0 Pr[ExlNx = 1]

Generalizing that Pxo = Pr[ExlNx = O] and Px1 = Pr[ExlNx = 1] , the formula above,

generalized to an arbitrary number of children, says that for any node x ,

Pxo = II
y E children(x)

Pxl = II
y E children(x)

Working up from the leaves, two quantities Pxo and Pxl at each node x in the tree are

calculated . At the end of the recursion we have Pro and Pri and the root . At this point

we can compute

Pr[E] Pro Pr[Nr = O] + Prl Pr[Nr = 1]
</> 0

Pro 0 + </> + Pr 1 0 + </>

Thanks to this classification method based on the Bayes nets concepts, each node of

the original tree has been assigned to a class.

3.4 Classification through summarization

While categorization is expected to play an important role in future search services, Dou

Shen, Zheng Chen , Qiang Yang, Hua-Jun Zeng, Benyu Zhang, Yuchang Lu and Wei-

35

Chapter 3: Web pages classification

Ying Ma [7] are working on a new Web pages classification algorithm based on Web

summarization for improving the accuracy. This summarization is made through four

methods for each Web page. These four methods give each one a set of sentences

associated to a high significance factor . T he set of sentences given by the particular

summarization methods is the summary. The final result is the sum of the significance

factors of the four methods .

3.4.l SLuhn

The first measurement to get, SLuhn , cornes from the Luhn's method . ln this extraction­

based method , every sentence of a Web page is assigned with a significance factor , and

the sentences with the highest significance factor are selected to form the summary. ln

order to compute the significance factor of a sentence, a significant words pool is created

for each category by selecting the words with high frequency after removing the stop

words (words that from a non- linguistic point of view do not carry information) in that

category. Then a 3-steps method is applied to the Web page:

1. Set a li mit L for the distance at which any two significant words cou Id be considered

as being significantly related .

2. Find out a portion in the sentence that is bracketed by significant words not more

than L non-significant words apart .

3. Count the number of significant words contained in the portion and divide the

square of this number by the total number of words within the portion .

The result is the significant factor related to the sentence.

But this method is only available when the category of a Web page is known, i.e. for a

training set of Web pages. If we take a testing Web page from the Internet, its category

is not yet known . The significant score of each sentence can not be calculated according

to the significant words pool corresponding to its category label because we do not know

its category. To solve this problem we need to calculate the significant factor for each

sentence according to different significant words pools over all categories separately. The

significant score for the target sentence will be averaged over all categories and referred

36

3.4. Classification through summarization

to as SLuhn· The summary of this testing page will be made up by the sentences with

the highest scores. Th is SLuhn is t he first member of the final summarization equation .

3.4.2 SLsA

SLsA is the second measurement to calculate. LSA stands for Latent Semantics Analysis

and represents terms and related concepts as points in a very high dimensional "semantic

space" . LSA is based on singular value decomposition (SVD), a mathematical matrix

decomposition technique that is applicable to text corpora experienced by people . SVD

uses among others singular vectors representing patterns and singular values indicating

the importance degree of the corresponding pattern within the document . Any sentence

of a given Web page containing a word combination pattern will be projected along the

singular vector corresponding. The sentence that best represents this pattern will have

the largest index value SLsA with this vector. As in the Luhn 's method , the sentences

with the highest SLsA are selected to form the summary.

3.4.3 ScB

ln this third method , the structure of Web pages is taking into account . A Web page

contains a lot of noisy blocks (see section 4.4.1) leading to a more difficult summarization .

The Function- Based Object Mode! (FOM) allows to utilize this structure of the Web

page. ln FOM , objects are classified into a Basic Object (BO) or a Composite Object .

A BO is the smallest information body that cannot be further divided , i.e . a jpeg file .

HTML speaking, there is no other tag inside the contents of a BO. A CO as for it is

a set of Objects (BO or CO) that perform some functions together . Once all the BOs

and COs have been identified , they are characterized by a category such as information

object , navigation object , decoration object , etc. Then the contents body (CB) of the

Web page, that is the main objects conveying important information about the topic of

that page , is identified as follows :

1. Consider each selected objectas a single document and build the TF x I DF index

for the object .

37

Chapter 3: Web pages classification

2. Calculate the similarity between any two abjects using cosine similarity computa­

tion, and add a link between them if their similarity is greater than a threshold

chosen empirically. After processing all pairs of abjects, we will obtain a linked

graph to connect different abjects.

3 . ln the graph , a core object is defined as the object having the most edges.

4. Extract the CB as the combination of all abjects that have edges linked to the

core object.

A score Sc8 is then assigned to each sentence. If the sentence is included in the CB

then Sc8 = 1.0 otherwise Sc8 = 0.0 . The summary of the Web page is the set of

sentences having a ScB = 1.0.

3.4.4 Ssup

The last measurement to get is the Ssup· For each Web page we want to summarize, a

series of eight features are automatically extracted from the page. These eight features ,

thanks t o a Nave Bayesian classifier, will then be used to identify whether a sentence

should be selected into its summary or not. Here are the eight features utilized : Given

a set of sentences Si, (i = 1 ... SN) in a page,

l. f il measures the position of a sentence Si in a certain paragraph .

2. fi2 measures the length of a sentence Si which is the number of words in Si.

3. fi3 = L T Fw · SFw. This feature takes into account not only the number of

word w into consideration , but also its distribution among sentences. We use it

to punish the locally frequent words .

4 . f i4 is the similarity between Si and the title. This similarity is calculated as the

dot product between the sentence and the title .

5. fi 5 is the cosine similarity between Si and all text in the page.

6 . f i6 is the cosine similarity between Si and meta-data in the page.

7 . f i7 is the number of occurrences of word from Si in special word set. The special

word set is built by collecting the words in the Web page that are italic or bold or

underlined .

38

3.4. Classification through summarization

8. fis is the average font size of the words in Si. ln general , larger font size in a Web

page is given higher importance.

where

• P N: the number of paragraphs in a document

• SN: the number of sentences in a document

• P L k: the number of sentences in a certain paragraph k

• Para(i): the associated paragraph of sentence i

• T Fw: the number of occurrences of word w in a target Web page

• SFw: the number of sentences including the word w in the page

The Nave Bayesian classifier using the eight features to find the sentences to select for

the summary is :

where

8

TI Pr [fj I s E S] Pr [s E S]
j=l

Pr[sESlfi , h , ... f s] = ---
3

- ----

TI Pr[fj]
j=l

• Pr[s ES] stands for the compression rate of the summarizer which can be prede­

fined for different applications

• Pr[fi] is the probability of each feature i

• Pr[fils ES) is the conditional probability of each feature i

This equation gives a score Ssup to each sentence.

3.4.5 The final equation

Finally, we obtain a temporary summary for the Web page we wanted to summarize.

This summary is made up of the set of sentences given by the four methods applied on

the concerned Web page. The final score of each sentence is calculated by the following

sum :

s = SLuhn + SLsA + ScB + Ssup

The final summary will be made up of the sentences having the highest score S .

39

Chapter 3: Web pages classification

3.4.6 Classification process

Now all the summaries of the Web pages we want to classify have been created, we are

able to apply once again a Nave Bayesian Classifier. lt will allow us to use the joint

probabilities of words and categories to estimate the probabilities of categories given a

document. The Nave Bayesian Classifier uses the following Bayes' rule:

where

• Pr[cjlB] can be calculated by counting the frequency with each category Cj occur­

ring in the training data ;

• ICI is the number of categories;

• Pr[wilcj] stands for probability that word wi occurs in class Cj which maybe small

in training data, so the Laplace smoothing is chosen to estimate it ;

• N(wk , di) is the number of occurrences of a word wk in di ;

• n is the number of words in the training data .

Experimental results show that this classification approach through summarization can

achieve a 12.9% improvement of correct Web pages found compared with a classical

search query through the Yahoo or LookSmart directories.

3.5 Ant-Miner

The last Web pages classification method is based on Ant-Miner, an Ant Colony algo­

rithm for discovering classification rules [8] . This approach is very original and innovative

and is an important research direction followed by Nicholas Holden and Alex A. Freitas

from the University of Kent in England. As this method uses rules, the goal of the

classification task is to discover rules from a set of training data and apply those rules

to a set of test data (unseen during training), and hopefully predict the correct class in

the test set.

40

3.5. Ant-Miner

Ant- Miner classification rules are based on words contained in unstructured or sem1-

structured texts found in Web pages . As everybody knows, there is no program at the

moment that can fully understand the meaning of a given Web page. Simple inter­

pretation can only be made. The reason is twofold : first, the natural language is very

complicated and second, the number of possible classification rules is exponential on

the number of words, so that the search space becomes quickly very large. Therefore

N. Holden and A.A. Freitas decided to restrict the scope of the investigations about

words. For finding the best words representing a Web page they want t o select appro­

priate words in the summaries or descriptions of the Web page in <meta> tags applying

linguistics- based text preprocessing techniques. They then use WordNet . WordNet is

an electronic lexicon that contains several relationships between words . lt is an attempt

to match the human understanding of words and their relationships into an electronic

database. They use three linguistic resources from this lexicon to preprocess the data :

1. Removing the words suffixes: ln order to eut down the number of attributes (words)

for their Ant- Miner, it is necessary to perform stemming on words . lt allows also

to find patterns more easily. For instance , instead of selecting the three words eat,

eating and eater, they only select the word eat having the same stem and the

same meaning as the two last .

2. ldentifying al/ the nouns in the text: lnstead of taking all the important words

within a text such as verbs, nouns, adjectives, etc, they use WordNet to identify

only the nouns . The idea behind this technique is that nouns are usually the

subject of a sentence. Once again, it allows to eut down the number of attributes

to add to their list of words.

3. Capturing the idea of a given word in a more generic form : If different pages

have the same idea behind what they contain , expressed by a series of attributes ,

WordNet must find the relationship between these words resulting in the selection

of only one or two relevant words to restrict again the number of attributes. For

example, if one page contains the words : window, roof, and door, and another

Web page contains the words chimney, room and brick then WordNet should find

the word house. This word generalization is unfortunately risky: if WordNet finds

the wrong relationship between the words, it could lead to wrong results of the

41

Chapter 3: Web pages classification

Ant-Miner. That is the reason why both researchers apply an algorithm searching

for the hypernyms (generalizations) of a pair of words and returning the best one.

Once the number of attributes has been strongly and efficiently eut down, they can be

used by the Ant-Miner algorithm . The Ant-Miner algorithm is based on the following Ant

Colony paradigm: in nature, ants work on finding food and taking it back to their ant

hill . To do that, they create "highways" to and from their food . But these "highways"

have not the same length. One ant takes a short path, another a bit longer, another one

the longest, etc. Each ant lays down an amount of pheromone and the other ants are

attracted to these amounts of pheromone. If an ant follows the shortest path, it will make

more trips from and to the ant hill, laying down consequently more and more amounts

of pheromone compared with the ant following the longest path . As ants are attracted

to pheromone, the ones following longer paths than the shortest will be attracted to the

large amounts of pheromone on the shortest path . Finally all of them will follow the

shortest "highway" .

This Ant Colony paradigm is the basic idea of the Ant-Miner algorithm. lnstead of

foraging for food the ants in the Ant-Miner algorithm forage for classification rules,

and the path they take correspond to a conjunction of attribute-value pairs (terms) .

A rule consists of an antecedent (a set of attribute values) and a consequent (class) :

IF <attrib = value> AND . . . AND <attrib = value> THEN <class>. Figure 3.2 gives a

high-level pseudo code of Ant-Miner helping to understand its inner working.

TrainSet = {all training cases};
DiscoveredRuleList = []; /* initialized with empty list */
REPEAT

Initialize all trails with the same arnount of pheromone;
REPEAT

An ant incrementally constructs a classification rule;
Prune the just-constructed rule;
Update the pheromone of all trails;

UNTIL (stopping criteria)
Choose best rule out of all rules constructed by allants;
Add the best rule to DiscoveredRuleList;
TrainSet = TrainSet - {cases correctly covered by best rule};

UNTIL (stopping criteria)

Figure 3.2: High-level pseudo code of Ant-Miner

42

3.5. Ant-Miner

The algorithm first starts by initializing the training set to the set of all Web pages and

initializing the discovered rule list to an empty list . As we can see, the main part of

the pseudo code in figure 3 .2 is an outer Repeat- Until loop with a smaller inner one.

Each iteration of the outer loop discovers one classification rule . This first step of th is

loop is to initialize al l trails with t he same amount of pheromone, which means that all

terms have the same probability of being chosen (by the current ant) to incrementally

construct the current classification rule . Then , the inner loop constructs an individual

rule in three steps.

ln the first step, an ant starts with an empty rule and incrementally constructs a classi­

fication rule by adding one term at a time to the current rule . A t ermij (representing a

triple < Attributei = Valuej >) is added to the current rule depending on whether the

product n ij · tij (t) is high where nô is essentially the information gain associated with

t ermij and t ij (t) is the amount of pheromone currently available in the position i , j of

the trail being followed by the current ant and associated with t ermij at iteration t . The

higher the value of nij the more relevant for classification termij is and so the higher its

probability of being chosen . The quality of the rule constructed by an ant is evaluated

and , as t ime goes by, the best trail positions to be followed , i.e. the best terms to be

added to a rule, will have large amounts of pheromone, increasing their probability of

being chosen to construct a rule .

The second step of the inner loop is the deletion of irrelevant terms of the current rule

if this operation does not decrease the quality of the rule .

The third step is the increase of the pheromone in the trail followed by the ant , propor­

t ionally to the rule 's quality. ln other words , the higher the quality of the rule , the higher

the increase in the pheromone of the terms occurring in the rule antecedent .

Finally the outer loop chooses the highest-quality rule out of all the rules constructed by

all the ants in the inner loop , and it adds the chosen rule to the discovered rule list. Then

it removes all cases that satisfy the rule antecedent and have the same classas predicted

by the rule consequent from the initial Web page set . The next iteration creates a new

rule with the smaller set of Web pages and so on .

The output of Ant- Miner is the discovered rule list with classes allowing the classification .

43

Chapter 3: Web pages classification

Experimental results on a set of 127 Web pages in three different classes (Education ,

Technology and Sport) were harvested from the BBC Web site. Ant- Miner produces

accuracies that are at worst comparable to the more established C5.0 algorithm , a

powerful data mining tool; and Ant-Miner discovers knowledge in a much more compact

form than C5.0, facilitating the interpretation of the knowledge by the user.

3.6 Conclusion

This chapter was about the Web pages classification . Various original and innovative ap­

proaches have been treated . Ali of them have special features that su it specific problems.

Experimental results , as well as those in the previous chapter, show that it is important

t o use t hem before the news extraction task as the amount of information available on

t he World Wide Web is huge and growing each year. But it is only the first process of

the whole extraction issue. The next chapter we shall present is about the study of data

st ruct ures that will be utilized for extracting news articles .

44

Chapter 4

Tree structures

Contents
4.1 Introduction 45

4.2 Context ... 46

4.3 Document Object Model tree 47

4.4 Style tree 48

4.4.1 Noisy blocks 48

4.4.2 The style tree . 50

4.4.3 The site style tree 51

4.4.4 Presentation importance and composite importance 52

4.4 .5 Noise definition . . 54

4.4.6 Web page cleaning 54

4.5 Rooted, ordered, labelled trees 55

4.6 Conclusion 57

4.1 Introduction

ln this chapter we shall present the various data structures that are utilized to handle

HTML , especially the tree structures (Context) . Then three tree structures are ana lysed :

the first one is about the Document Object Model tree , the second one about the site

style tree and the third one about the tree structure we use in our work: the rooted

ordered labelled tree, followed by a conclusion .

45

Chapter 4: Tree structures

4.2 Context

The amount of data available on the Web has been growing explosively during the past

few years . Users have now the opportunity to benefit from the available data in many

interesting ways. But unfortunately, these ways are not always efficient . And the need

for the user is, of course, a fast and efficient search that gives correct and accurate

results .

That is the reason why major efforts have been made in order to provide efficient access

to relevant information within this huge quantity of data. Two broad views of this

problem have recently evolved:

• The first one is characterized by the unstructured view of data . lt has developed

breakthrough technologies (such as Web search engines) based on information

retrieval methods . Browsing and keyword searching are two of these methods.

But they are intuitive and present severe limitations. Browsing is not suitable for

locating particular items of data because following links is tedious , and it is easy

to get lost. Furthermore, browsing is not cost-effective as users have to read the

documents to find desired data . Keyword searching is sometimes more efficient

than browsing but often returns vast amounts of data, much more than the user

can handle . How many times did you enter a keyword in a search engine resulting

in an infinite list of Web sites, most of them having nothing to do with what you

are looking for?

• The second one is characterized by the structured or semi-structured view of data .

lt borrows techniques from the database area to provide an efficient managing of

the data available on the Web. But these adapted methods are still not spread

mostly because of two intrinsic problems: the need for high human intervention

and the low quality of the extraction results.

The need of a more structured view of data in order to provide efficient access to pertinent

information still remains.

ln order to response to these problems about the structured or semi-structured view of

data , we have use in our work tree structures. These data structures are very specific

46

4.3. Document Object Model tree

and the research into this topic is considerable. Therefore , we shall only linger over the

state of the art of these tree structures related to our work .

4.3 Document Object Madel tree

The W3C defines the Document Object Model (DOM) as follows: "The Document

Object Mode/ (DOM) is an application programming interface (API) for HTML and

XML documents. lt defines the logical structure of documents and the way a document

is accessed and manipulated. ln the DOM specification, the term "document" is used in

the broad sense - increasingly, XML is being used as a way of representing many different

kinds of information that may be stored in diverse systems, and much of this would

traditionally be seen as data rather than as documents. Nevertheless, XML presents this

data as documents, and the DOM may be used to manage this data .

With the Document Object Mode/, programmers can build documents, navigate their

structure, and add, modify, or delete elements and contents. Anything found in an HTML

or XML document can be accessed, changed, deleted, or added using the Document

Object Mode/." [2]

This precise definition g1ves us a broad approach of the use of the Document Object

<html>
<head>
<title>Portals</title>

</head>
<body>

Yahoo

Lycos

</body>

</html>

Figure 4.1: From HTML code to the DOM tree representation

47

Chapter 4: Tree structures

Model. ln our work , we will actually only use the logical structure of this description .

lndeed, we just use the concept of representation that makes correspond an HTM L page

with a DOM tree where the tags are internai nodes and the detailed texts, images or

hyperlinks are the leaf nodes (see figure 4.1) .

The component that reads a text-formatted HTML file or stream and converts it to a

DOM tree is called a parser. There are many parsers available that all implement the

DOM interface. Sorne of the parsers are commercial softwares, some are free . The

parsers also differ with HTML versions. The parser we use is a free parser adapted by

ourselves in order to manipulate HTML (see Part Il).

4.4 Style tree

The main part of the work when you want to extract the news article from a news page

is to locate the article within the page, ignoring navigation panels , advertisements, links,

etc. Although these information items are useful for human viewers and even necessary

for the Web site owners, they are useless for the extracting task [9). The need to detect

and eliminate this useless information is important and an effective way to do that is to

use the style tree structure.

4.4.1 Noisy blocks

We can divide a typical Web page in two parts: a part containing the main content blocks

where the useful information is located (in our case, the news article) and another part

containing blocks of useless information such as banner advertisements, navigational

guides, decoration pictures, etc. We call these blocks that are not the main content

blocks of the page the noisy blocks or the local noises.

Eliminating these noises is thus of great importance because they seriously harm the

accuracy of data mining. The research of Lan Yi, Bing Liu and Xiaoli Li in this topic

is of great interest . They propose a pre- processing step called Web page cleaning that

eliminates the local noises within a Web page. This first task before mining becomes

critical for improving the data mining results .

48

4.4. Style tree

c.----~ , _______________ _

·~:: : 41 THB AUSTRALIAN ~~
0-,.Atct,,.. . .

~
arullngt1..,. I BREAKING NEWS

1 ► lJ&AIL UH STort

1

""' tclf tfftitt
• Yu-tffditJ'
► ,.,.age .. ,.,._
• 4 dlp,ago .. ,...,...,
► •----

Figure 4.2: Noisy blacks in a news Web page from The Australian

Figure 4.2 is an example of noisy blocks within a news page of the Web site of the

famous newspaper 'The Australian" .

The cleaning of the page is based on the following observation : "ln a typical commercial

Web site, Web pages tend to fol/ow some fixed layouts or presentation styles as most

pages are generated automatically Those parts of a page whose layouts and actual

contents (i.e., texts, images, links, etc) also appear in many other pages in the site are

more likely to be noises, and those parts of a page whose layouts or actual contents are

quite different from other pages are usually the main contents of the page."

49

Chapter 4: Tree structures

4.4.2 The style tree

Basing oneself on this observation, the three research workers introduce a new kind of

data structure: the style tree [9] . This one is based on the DOM tree structure. As seen

in the Document Object Model section, a DOM tree is the representation of an HTML

page where the tags are internai nodes and the detailed texts, images or hyperlinks are

the leaf nodes. But this data structure is too poor to study both the presentation style

and real contents of the Web pages.

The style tree, as for it, captures the common layouts (or presentation styles) and the

actual contents of the pages in a Web site . This structure is able to compress the

common presentation styles of a set of related Web pages.

Let us illustrate this new concept with an example (see figure 4.3).

ln this example d1 and d2 are two DOM trees. We can observe that , except for the tags

wid
hei~ i-..i:~---

width=800
he.ighr-20O

root

Style tree

------ - ---_--,
1 P Ilvf G P A 1 1 P BR P t
1 1 1 1 ------------- ----------

Figure 4.3: A style tree based on two DOM trees

50

4.4. Style t ree

at the bottom level , all the tags in d1 have their corresponding tags in d2 . Thus, d1

and d2 can be compressed . A count is used to indicate how many pages have the same

style at the same level of the style tree. For instance, we can see that the BODY tag

is in d1 and in d2 . BODY has thus a count of 2. The same phenomenon appears for

the TABLE-IMG-TABLE tags. This sequence of identical tags is called a style node that

represents a particular style at this level. A style node is thus a sequence tags node in

a DOM tree. ln this style node, the tag nodes are called element nodes, distinguishing

them from the tag nodes in the DOM tree.

Below the right most TABLE element node , we can see that d1 and d2 diverge . We

have two different style nodes: P- IMG-P-A and P-BR-P. The count is set to 1 for each

different style node .

Clearly, the style tree is a compressed representation of both DOM trees. lt enables us

to see which parts of the DOM trees are common and which parts are different .

Thanks to this example we can now construct a formai definition of a style tree: a style

tree consists of two types of nodes , namely, style nodes and element nodes.

• A style node (5) represents a layout or presentation style, which has two compo­

nents, denoted by (Es , n) , where Es is a sequence of element nodes (see below) ,

and n is the number of pages that has this particular style at this node level.

ln figure 4.3, the style node P-IMG- P-A has 4 element nodes , P, IMG, P and A,

and n = l.

• An element node (E) has three components, denoted by (TAC , Attr, Ss), where

T AG is the tag name, Attr is the set of display attributes of TAG and Ss is a set

of style nodes below E.

On Figure 4 .3 , "TABLE" is a tag name, the display attribute of TABLE is bgcolor

= RED and Ss are the styles nodes below TABLE.

4.4.3 The site style tree

The next step in this approach of the style tree is to build a site style tree (SST) for

t he pages of a whole Web site [9] . For this , a DOM tree for each page is built and then

merged into a style tree in a top-down fashion. At a particular element node E in the

51

Chapter 4: Tree structures

!~.
: . Body :
100 ..- -... /._.,,.,.,,, ,

- • • • • •• • • • • • • • • "iF===~ • • • • • • • • • • • ·•···· ■\ ..
: Table ' . / :
:---....- M~~ .._...-11: : ...

,,........__
1·. \

--- ~..:..i. -:-
1 : : . .
J : .:
1
1 \
\ l

I

Figure 4.4: An example of site style tree

style tree, which has the corresponding tag node T in the DOM tree, we check whether

the sequence of child tag nodes of T in the DOM tree is the same as the sequence of

element nodes in a style node S below E (in the style tree) . If the answer is yes, we

simply increment the page count of the style node S , and then go down the style tree

and the DOM tree to merge the rest of the nodes. If the answer is no , a new style node

is created below the element node E in the style tree . The sub-tree of the tag node T

in the DOM tree is copied to the style tree after converted to style nodes and element

nodes of the style tree.

4.4.4 Presentation importance and composite importance

The definition of noise is based on the following assumptions:

• The more presentation styles that an element node has , the more important it is ,

and vice versa .

• The more diverse that the actual contents of an element node are , the more

52

4.4. Style t ree

important the element node is, and vice versa .

The importance of an element node is given by combining its presentation importance

and contents importance. The greater the combined importance of an element node is,

the more likely it is the main contents of the pages. A metric is needed to measure the

importance of a presentation style:

Node importance: for an element node E in the SST, let m be the number of pages

containing E and l be the number of child style nodes of E (i .e. l = IE.Ss l), the node

importance of E, denoted by N odei mp(E) , is defined by

{

- "t, Pi logmPi i f m > l
Nodei mp(E) = i =l

l if m = l

where Pi is the probability that a Web page uses the ith style node in E.Ss.

lntuitively, if the number of chi Id style nodes (l) is small , the possibility that E is presented

in different styles is small. Hence the value of Nodelmp(E) is small. If E contains many

presentation styles, then the value of Nodelmp(E) is large. ln the example of figure 4.4,

the importance of the element node BODY is O (l log100 l = 0) since l = l. That is, below

BODY, there is only one presentation style Table- lmg-Table-Table. The importance of

the double- lined TABLE is - 0. 35 log100 0.35 - 2 * 0.25 log100 0.25 - 0.l5 log100 0. 15 =

0.292 > 0

But in this calculation , we do not consider the descendents of the element nodes. For

example, we cannot say that BODY is a noisy element by considering only its node

importance. We thus need another measure that takes into account the importance of

an element node and its descendents. For this , we must add to t he node importance, the

average of the node importance of its descendents, multiplied by an attenuating factor.

This sum is called the composite importance of a node.

While the presentation of node is important, we also need its contents importance.

That is the reason why the composite importance of a leaf element node based on the

informat ion is defined in its actual contents (i .e. texts, images, links, etc.) . Here is a

more formai definition :

53

Chapter 4: Tree structures

Composite importance: for a leaf element node E in the SST, let l be the number of

features (i .e. words, image files, link references, etc.) appeared in E and let m be the

number of pages containing E, the composite importance of E is defined by

{

l
I; H (ai)

Cvmplmp(E) - 1
- •~; 1

i f m > l

i f m = l

where ai is an actual feature of the contents in E . H (ai) is the information entropy of

ai within the context of E,

m

H (ai) = - L Pij logmPij
j = l

where Pij is the proba bi I ity that ai a ppears in E of page j.

4.4.5 Noise definition

Now we have given definitions for node importance and composite importance, we are

able to give a definition of noise: For an element node E in the SST, if all of its

descendents and itself have composite importance less than a specified threshold t, then

we say element node E is noisy.

Another definition is important, the one of meaningful: If an element node E in the SST

does not contain any noisy descendent, we say that E is meaningful.

4.4.6 Web page cleaning

Ali the definitions having been given , the cleaning process can be launched (see fig­

ure 4.5) . Given a Web site, the system first randomly crawls a number of Web pages

from the Web site and builds the site style tree based on these pages. Sometimes it is

impossible to crawl whole sites because they are too large. That is why the process does

it by a random way. Once done, the process calculates the composite importance of each

element node in the SST and finds the maximal noisy nodes and maximal meaningful

nodes. Then it maps the DOM tree of the page to the SST, and depending on where

54

- --- - -- ---- -------------------------

4.5. Rooted, ordered, labelled trees

1: Rando1nly crawl k pages fron1 the given Web site S
2: Set null SST with virtual root E (representing the root);
3: for each page Win the k pages do
4: BuildPST(W);
5: BuildSST(E, Ew)
6: end for
7: CalcCompltnp(E);
8: MarkNoise(E);
9: MarkMeaningful(E);

10: for each target Web page P do
11: EP = BuildPST(P) /* representing the root */
12: MapSST(E, Ep)
13: end for

Figure 4.5: The whole process of the Web page cleaning

each part of the DOM tree is mapped to the site style tree, we can find whether the

part is meaningful or noisy by checking if the corresponding element node in the SST is

meaningful or noisy. If the corresponding element node is neither noisy nor meaningful ,

we simply go down to the lower level nodes. The process finally gives as result the main

content s of the page after cleaning, in other words and in our case, the news article.

4.5 Rooted, ordered, labelled trees

The two previous types of tree have inspired us in our work. As beforehand said , we will

use t he DOM tree representation to stand for our trees.

More than a representation, the fo llowing mathematical properties of the trees will be

used in order to handle quickly and efficiently these data structures:

• Tree : a tree is a connected undirected graph with no simple circuits.

• Rooted tree : a rooted tree is a tree in which one node has been designated the

root, in which case the edges have a natu ra l orientation , towards or away from the

root .

55

Chapter 4: 'Iree structures

• Labelled tree: a labelled tree is a tree where labels have been added to each node.

ln our case , each node will be labeled with an HTML tag name.

• Ordered tree: an ordered tree is a tree where the children of each internai vertex

are ordered .

From now on, we will use rooted, ordered, labelled trees [10] . But to simplify, we will

only use the terminology tree to speak about rooted, ordered, labelled trees.

We shall also often speak about preorder traversai. A traversai algorithm is a procedure

for systematically visiting every vertex of an ordered tree. A preorder traversai is defined

recursively :

• Visit root .

• Visit left subtree in preorder .

• Visit righ t subtree in preorder.

Other traversais like inorder and postorder are also used but we will not apply them .

Figure 4 .6 is an example of these different traversais.

Figure 4.6: Preorder (b lue), inorder (green) , and postorder (red) traversals

56

4.6. Conclusion

4.6 Conclusion

This chapter was about the various tree structures used to handle HTML. The DOM

is a complex data structure and only its logical structure was pertinent for our work .

The site style tree is another sophisticated tree structure and introduces an important

notion for our research : the noisy blocks. Finally we conclude this chapter by giving a

definition of rooted ordered labelled tree. Now we have been briefed with these kind

of data structures, we are ready to attentively examine wrappers (which sometimes use

tree structures) in chapter 5.

57

Chapter 5

Wrappers

Contents
5.1 Introduction

5.2 Definition

5 .3 Classifying Web data extraction tools

5.3.1 Languages for wrapper development

5.3.2 Wrapper induction tool

5.3.3 HTML-tree based Tools

5.3.4 NLP-based Tools ...

5.3.5 Structure-based tools .

5.4 RoadRunner

5.5 Conclusion

5 .1 lntrod uction

59

60

61

61

62

63

65

65

66

67

We shall present from here and during the three following chapters the last step of the

long development through the news extraction process. Wrappers are tools that extract

data from the Internet. This chapter wil l introduce the most famous wrappers available

in the literature. We sha ll begin with a set of definitions to explain what a wrapper is. As

there are many wrappers in the literature, we classified them considering their common

features (section 5.3) . Five classes and an unclassifiable wrapper (RoadRunner) have

been found . We shall present each class and its usefulness for our topic briefly. Since

some tools are more suitable for news extraction , we decided to present them in separate

chapters.

59

Chapter 5: Wrappers

5.2 Definition

"Wrappers are specialized programs that identify data of interest and map them to some

suitable format" . [11]

"A wrapper is a piece of software that enables a semi-structured Web source to be

queried as if it were a database". [12]

Let us take a random example: we could imagine a wrapper that goes everyday on a

weather forecast Web site to extract the temperatures and store them on a database .

The wrapper knows exactly where the temperature is encoded, for example at line 65,

after the <a> tag. As the site is automatically generated from a database everyday, the

wrapper can hope the temperature will always be present at the same place, so the Web

site can be queried as if it were a database.

However, Web sites change and they change often .Nowadays , wrappers must be ca­

pable to adapt themselves to those changes; they must verify the retrieval data and

automatically correct themselves if this data is erroneous.

The problem of generating a wrapper for Web data extraction can be stated as follows .

Given a Web page S containing a set of implicit abjects, determine a mapping W that

populates a data repository R with the abjects in S. The mapping W must also be able

of recognizing and extracting data from any other page S' similar to S. A wrapper is a

program that executes W . (11]

Notice that "similar pages" generally means pages from the same Web site, with a

common layout . We shall study some wrapper generation tools whose goal is to be

highly accurate, robust and as automatic as possible.

The extraction of a news article is clearly more complicated that the one of a temper­

ature since we have to extract a big part of the whole page contents instead of a field .

Furthermore, the objective is not necessarily to extract data in order to store it on a

database. However , techniques utilized by wrappers to extract data can be very useful

to our topic.

60

5.3. Classifying Web data extraction tools

5.3 Classifying Web data extraction tools

There are many tools to develop wrappers available in the literature [11] . Sorne tools

have common features allowing classifying them . Five classes have been created, based

on the main technique used to generate a wrapper. Unfortunately, RoadRunner is too

specific to be clustered into one of those classes.

Table 5.1 is a summary of the main features belonging to each class.

1 Class of Wrapper 1 Main features

Languages for Wrapper
They are not really wrappers but languages de-

Development
signed to assist in constructing wrappers .

The wrapper is derived from a given set of exam-
Wrapper Induction tools ples. These tools rely on formatting features that

delineate the structure of t he data to extract.
They create a parsing t ree that reflects the HTML

HTML-tree based tools tag hierarchy of the document in order to extract
data semi-automatically.

NLP-based tools
They extract relevant information thanks to tech-
niques from natural language processing.
They decompose (portions of) a Web page to find

Structure-based tools its inherent structure, discover nested elements
and then extract semi-structured data.

RoadRunner
U nclassifiable. The only known wrapper that can
be considered as fully automatic.

Table 5.1: Classes of Wrappers

5.3.1 Languages for wrapper development

These are languages specially designed to assist users in constructing wrappers (survey).

lnstead of manipulating the HTML code with languages such as Java or Perl, they

proposed techniques to simplify the coding of a wrapper . Be aware that these tools do

not output wrappers; they are only languages to help writing them . The best known

tools are Minerva, TSIMMIS and Web-QQL.

61

Chapter 5: Wrappers

For example,Minerva parses HTML files using a grammar ,n EBNF style . For each

document, a set of productions is defined . Following, the user writes the code to access

the target data in procedural programming.

Web-QQL [13] is aimed at performing SQL-like queries over the Web. lt is capable of

locating selected pieces of data in HTML pages. lt creates a hypertree (an abstract

HTML syntax tree representing the document) whose can be queried using the syntax

of the language and it outputs the results in a suitable format.

Those tools are still "manual" because the user must examine the document and find

the HTML tags that separate the objects of interest . ln other words, the process of

discovering objects boundaries is carried out manually. This is the reason why this tool

can not be clustered with the tree-based tools, which are semi-automatic.

U seful for our topic ?

Those softwares are not suitable for the extraction of a news article, considering our

requirements. They are designed to extract specific data, which can be accessed at a

precise location . If the goal is to retrieve a single data field, for example the current

temperature , Web-QQL can easily find it by a query (for instance , go to the third child

at t he fifth level of depth). Yet, an article is spread over several vertices in an HTML

tree context ; it is also spread over several productions in a syntax grammar context , so

it could not be easily reconstitute by simple queries. Moreover, we want the process to

be fully automatic ; the user should not have to look at the HTML code to extract an

article.

5.3.2 Wrapper induction tools

The wrapper induction tools generate delimiter-based extraction rules derived from a

given set of training examples . They rely on formatting features that implicitly delineate

t he structure of the pieces of data found . These tools are really suitable for HTML

documents. This approach is used by tools such as WIEN and STALKER.

WIEN is a pioneer wrapper induction tool. The user gives a set of pages where data

of interest is labelled to serve as examples and WIEN returns a wrapper that works with

62

5.3. Classifying Web dat a extraction tools

TITLE
Begin Rule
SkipTo(" colid" value=" ">

)
End Rule
SkipTo(
 by

<a href = " /)

Figure 5.1: Example of delimiter-based rules to extract the title of a book

each labelled page. The pages are assumed to have a pre-defined structure and induction

heuristics are used to generate wrappers. For example, if a page has structure HLRT (a

head , a body with two colums (left, right), a tail), a HLRT wrapper is generated . These

wrappers do not deal with nested structures and are not able to adapt themselves to

variations .

STALKER [12] is similar to WIEN but can deal with hierarchical data extraction. lt

takes as input examples where data of interest has been labelled by the user . lt creates a

sequence of tokens representing the surrounding of the data to be extracted. STALKER

generates an extraction rule that covers as many as possible of the given examples .

When an example can not be covered , it generates a " disjunctive rule" . The solution

is a set of disjunctive rules . STALKER can handle hierarchy and nested objects . lt can

also verify the data extracted and automatically repair the wrapper in case of incorrect

results . We shall study in chapter 6 how STALKER works and how induction tools can

be useful for our topic.

5.3.3 HTML-tree based Tools

These are tools that rely on inherent structural features of HTML documents for accom­

plishing data extraction. These tools create a parsing tree that reflects the tag hierarchy

of the document (see chapter 4) . Following, extraction rules are applied to the tree to

perform the extraction process . Those rules can be either automatic or semi-automatic .

The most famous tools are W4F and XWRAP.

W4F (World Wide Web Wrapper Factory) is a toolkit to build wrappers:

63

Chapter 5: Wrappers

• First the user describes how to access the document (URL). He can choose some

rules to set how he wants the document to be extracted from the Web.

• Then, the document goes to a parser that constructs a DOM tree (Document

Object Model).

• Second the user describes what pieces of data to extract. He can choose extraction

rules for locating data into the parsing tree .

• Third, he declares which target structure to use for storing the data extracted

(String list, database, etc.) .

W4F features a graphie user interface and a wizard that can return a canonical path

expression for a piece of information selected by the user . Apart of the creation of a

tree , W4F is different from Web-QQL since the user is assisted to construct the extraction

rules instead of having to write code. These rules are defined by the HTML Extraction

Language (HEL) . As the wizard cannot deal with a collection of items, the user who is

interested in various items of the same type must manually write extraction rules that

generalize the path expression provided by the wizard . This program is then considered

as semi-automatic, it is not as manual as Web-QQL but it could not be classified as

automatic.

XWRAP [14] is another semi-automatic tool to construct wrappers . lt also has a graphie

user-friendly interface and features a component library that provides basic building

blocks for wrappers . Before the extraction the tool cleans up bad HTML tags and

syntactical errors and then turns the document into a parsing tree . The tool operates by

leading the user through a number of steps, selecting in each step proper components of

its library. The user may try among six data extraction heuristics to locate data objects

of interest; those heuristics are predefined to deal with several types of structuring HTML

mark-ups . ln the case of Web pages that match very well to the heuristics, XWRAP can

extract data very efficiently. By the way, if the user is not satisfied with the extraction

results , he can refine the process by specifying data types for the elements. XWRAP

outputs a wrapper coded in Java for a specific source.

64

5.3. Classifying Web data extraction tools

Useful for our topic?

As presented in chapter 1, we shall use tree structures to cluster similar pages and extract

the news article, so that our program would belong to this class . However, we want our

program to be fully automatic and completely transparent to the user, so that there will

be no wizard neither extraction rules in our application .

5.3.4 NLP-based Tools

Natural Language Processing (NLP) is used to find and extract relevant data existing

in natural language documents. These tools usually apply techniques such as filtering ,

part-of-speech tagging and semantic tagging to build relationships between phrases and

sentences elements, so that extraction rules can be derived. Such rules are based on

syntactic and semantic constraints that help to identify the relevant information within

a document.

These tools are more suitable for pages with grammatical text (job listings , rentai ad­

vert isements, announcements, etc). Famous tools based on this approach are RAPIER,

SRV and WHISK [15] . We shall study them in chapter 8 .

U seful for our topic?

These techniques are actually based on free text analysis. They can run on HTML files

as well since HTM L can be consider as text but this approach is completely different

from the usual tactics of data retrieval from Web sites. However , these techniques must

be mentioned as they are a very interesting alternative for news extraction .

5.3.5 Structure-based tools

NODOSE [16] (Northwestern Document Structure Extractor) is an interactive tool for

semi-automatically determining the structure of documents that contain semistructured

information and then extracting their data . The user has a graphical user interface

t o help him decomposing the document hierarchically ; he must outline the interesting

regions and describe their semantic. The decomposition process occurs in levels . For

65

Chapter 5: Wrappers

each level of decomposition, the user builds an object with a complex structure, and

then decomposes it in other objects with a more simple structure.

Following, once NODOSE knows how to construct some objects, he can automatically

identify other objects in the document (a mining component attempts to infer the gram­

mar of the document from objects constructed by the user).

DEBYE [17] (Data Extraction By Example) is an interactive tool that receives as input a

set of example objects taken from a sample Web page and generates extraction patterns

that allow extracting objects from other similar pages. Given a target structure for objects

of interest, it tries to locate in Web pages portions of data that implicitly conform to

that structure.

Trough a GUI, the user takes data from the sample page and assemble what is called

" nested tables" . The tables assembled are examples of the object to be identified on

the target pages. DEBYE generates object extraction patterns (OEP) to represent the

structure and the textual surrounding of the objects to be extracted .

The extraction on a target page is done by a bottom-up algorithm, which first identifies

the atomic values in the page a then tries to assemble complex objects using the structure

of the OEP as a guide.

U seful for our topic ?

Once again we want our program to be fully automatic and completely transparent for

the user , so that there will be no wizard neither extraction rules. Moreover, these tools

are designed to understand the structure of documents, to handle and extract complex

or semi-structured objects. We do not need these features to extract some text from a

page; the hierarchy in the document does not matter.

5.4 RoadRunner

[18] RoadRunner could not be classified in one of the five classes presented above .

RoadRunner is the only known wrapper which does not request a user intervention . lt

works by comparing the HTM L structure of two or more given sample pages. The sample

66

5.5. Conclusion

pages must belong to the same "page class" (which means similar pages from a Web

site) . lt generates as a result a schema for the data contained in the sample pages. A

grammar is inferred from this schema, this grammar is capable of recognizing in a random

Web page instances of the attributes identified in the sample pages . Ali the extraction

process is based on an algorithm that compares the tag structure of the sample pages

and generates regular expressions that handle structural mismatches found between both

structures. We shall explain in detail how this algorithm works in chapter 7.

5.5 Conclusion

We saw different techniques to extract data of interest from the Internet . Most of these

techniques are designed to extract data as if it were a field coming from a database, so

that they are not suitable for news extraction . No one of the presented Wrappers seems

to be the obvious issue to extract news articles but we could find in some classes ideas

to help implement it.

Two classes and RoadRunner deserve to be analysed in details as they present features

that could help us to extract news articles: We shall expia in the induction tools, especially

STALKER, in the next chapter. RoadRunner and its basic algorithm will be analysed in

chapter 7. Finally, the NLP-based tools are introduced in greater detail in chapter 8 .

67

Chapter 6

Induction tools

Contents
6.1

6.2

6.3

6.4

6.5

6.6

6.7

Introduction

Lifecycle of an induction wrapper .

How to locate the information on the page

6.3.1 Extraction rules

6.3.2 Working wit h both start and end rules .

STALKER.....

6.4.1 Example

Verifying the extracted data

Automatically repairing the wrapper

How could induction tools be useful for news retrieval?

69

70

71

72

73

73

75

75

76

77

6.8 Conclusion . 79

6.1 Introduction

As we saw in the previous chapter, an induction tool generates delimiter-based extraction

ru les derived from a given set of training examples. lt does not rely on the inherent struc­

tural features of HTML documents (nested data patterns) but rather on the formatting

features that delineate the data to extract. [19]

Notice that theses techniques based on the detection of the formatting features surround­

ing the target data assume to handle documents that contain semi-structured data , ,n

order to extract fields as if it were a database.

69

Chapter 6: Induction tools

We shall see that the extraction of data belongs to a larger process , offering the verifica­

tion of the extracted data and the automatic repair of the wrapper in case of wrong results

(section 6.2) . Then we shall introduce the features of extraction rules before showing

how the most famous induction tool, STALKER (section 6.4) [12]. creates those rules.

We shall conclude by showing whether induction tools are suitable or not for news

extraction (section 6.7) .

6.2 Lifecycle of an induction wrapper

.~ D Pagestobe ~ ~-;..----- s

Î ~-GUI labeled

l • • /

M -+
Wrapper -+ -+ Extracted
Induction data

System
Labeled • Web pages

t. Cha nge
/

detected
Automatic - Wrapper
Re-labeling Verification

Figure 6.1: Lifecycle of a wrapper

The figure 6.1 illustrates the lifecycle of a wrapper [12] :

• First the user provides the initial labelled examples using the GUI.

• The system can suggest the user to label extra pages in order to improve the

accuracy of the wrapper.

• The wrapper induction system takes a set of pages labelled with examples of the

data to be extracted.

70

6.3. How to locate the information on the page

• The output of the wrapper induction system is a wrapper that contains extraction

rules that describe how to locate the desired information on a Web page.

• Web pages can be given to the wrapper as input and it extracts the desired data .

• A wrapper verification system uses the functioning wrapper to learn patterns that

describe the new data that has just been extracted .

• If a change is detected, the system automatically repairs the wrapper: it uses those

new patterns to locate examples on the changed pages (automatic re- labelling).

• The system re-runs the wrapper induction system with the new labelled pages.

• An improved wrapper is outputted.

6.3 How to locate the information on the page

Let us consider the figure 6.2 presenting restaurants from the same Web site .

Netscape: Zagat Restaurant Sun,ev

File Edit View <b Corrwruniœbr

Name:
Cuisine:
Address:
Phone:

Ki/Ier Shrimp
Seafood
12 Pico St.
(213) 508-1570

"Heaven for shrimpophiles", since
this chain serves "nothing buf';
they corne peeled or unpeeled,

. - fi~ -';i. ,i;JII, 0WJ ~

.!.J Nets cape: Zagat Restaurant 5 un,ev

File Edit View G:, CollV11Llniœbr

Name:
Cuisine:
Address:
Phone:

Pao/o 's
Pizza
97 Adams Blvd.
(213) 508-1570

Once you taste Paolo's pizza, you
are guaranteed to corne back for

Help

more! This family-owned restaurant •
- ;; ·:.il. · s}~ @ ~ 11

Figure 6.2: Two sample pages of restaurants

Assume that the address on the right example is in bold style because the restaurant is

close to a specified address.

The HTML code of the left example contains somewhere :

El : . .. Cuisine:<i>Seafood</i><p>Address : <i>12PicoSt.</i><p>Phone :<i> ...

And the code of the right example looks like :

71

Chapter 6: Induction tools

E4: ... Cuisine:<i>Pizza</i><p>Address:97 Adams Blvd . <p>Phone:<i> .. .

We add two others examples close to the first one:

E2 : ... Cuisine : <i>Thai</i><p>Address : <i>51 2 Oak Blvd . </i><p>Phone : <i> ...

E3: ... Cuisine:<i>Burgers</i><p>Address : <i>416 Main St . </i><p>Phone : <i> ..

6.3.1 Extraction rules

For any given item to be extracted from a page, we need an extraction rule to locate

both the beginning and the end of that item . Each HTML document is analyzed as a

sequence of tokens (words, numbers, HTML tags, etc.). So we need to find the first and

the last token of an item . The issue is to create a set of extraction rules that work for

all of the pages in the source.

The extraction ru le is based on "landmarks" (i.e. groups of consecutive tokens) that

enable the wrapper to locate the start and the end of an item within a page.

Let us consider the three restaurant descriptions El , E2, E3 presented below figure 6.2 .

ln order to identify the beginning of the address, we can use the rule :

Ri= SkipTo(Address) SkipTo(<i>)

This means that the wrapper will start from the beginning of the document and skip

each token until "Address" and ignore everything until the landmark < i>. This rule is

called a start rule because it identifies the beginning of the field "Address" .

The rule:

R2 = SkipTo (Address : <i>)

is suita ble as well. R2 uses a 3-tokens landmark that precedes the beginning of the

address in examples El, E2 and E3.

Let us now assume E4, in that case, the address appears in bold style because the

restaurant is within one mile from a current location. We need to create an extraction

rule that allows the use of disjunctions:

72

6.4. STALKER

either SkipTo (Address <i>)

or SkipTo (Address :)

Disjunctive rules are ordered lists of individual disjuncts (i .e. decision lists) . The wrapper

successively applies each disjunct in the list in a straightforward process until it finds one

that matches.

Notice that in this case, one could have a non disjunctive rule:

SkipTo (Addres s : _HtmlTag_)

6.3.2 Working with both start and end rules

Ali the rules presented above are forward rules (they start at the beginning of the doc­

ument and stop when there is a matching between the rule and the document) . One

can use backward rules as well in order to improve the spotting of fields . A backward

rule starts at the end of the page and goes towards the beginning. ln the example the

address can be found by using the following backward rules:

R11 = BackTo(Phone) BackTo(_Number_)

R12 = BackTo(Phone :<i>) BackTo(_Number_)

This technique is called co-testing: the user labelled a few examples and the system

learns both a forward and a backward rule. Thanks to this technique, the wrapper can

detect mistakes more efficiently and then asks the user to label new examples .

6.4 STALKER

STALKER [12) is a wrapper induction algorithm that learns extraction rules based on

examples labelled by the user . A graphie user interface allows users to mark up several

pages on a site, and then the system generates a set of extraction rules that accurately

extract the required information. The approach uses a greedy-covering inductive learning

algorithm which incrementally bui lds the extraction rules from the examples .

The number of examples required is rarely above ten , in many cases, when sites have

been generated, based on a fixed template, two examples are enough.

73

Chapter 6: Induct ion tools

STALKER can deal with complex examples because it uses the hierarchical structure of

the source to decompose one difficult problem into a series of simpler ones. For instance,

instead of using one complex rule to extract all restaurants names, addresses and phone

numbers, STALKER decomposes the problem :

• lt applies a rule that extracts the whole list of restaurants;

• it uses another rule to break the list into tuples corresponding to each restaurant ;

• the name, address, etc. is finally extracted from each tuple .

STALKER is a sequential covering algorithm that, given the set of training

examples E, tries to learn a minimal number of perfect disjuncts that caver

al/ examples in E. [12]

A perfect disjunct is a rule that :

• covers at least one training example;

• produces the correct result on any example where the rule matches.

Once a perfect disjunct P has been found, STALKER removes from E all examples on

which P is correct, and the whole process is repeated until there are no more training

examples in E .

To generate a perfect disjunct, STALKER first creates an initial set of candidate- rules

C and then repeatedly applies the following three steps:

• select the most promising candidate from C;

• refine that candidate;

• add the resulting refinements to C.

STALKER uses two types of refinements:

• Landmark refinement : the rule is made more specific by adding a token to one of

the existing landmarks.

• Topology refinement : adds a new 1-token landmark to the rule.

74

6.5. Verifying the extracted data

6.4.1 Example

Let us assume that we want to learn a start rule for the address at figure 6.2 . STALKER

selects an example to guide the search, for instance E4. lt generates a set of initial

candidates, which are rules of a single 1-token landmark. These landmarks are chosen

so that they match the token that immediately precedes the beginning of the address.

We have two initial candidates:

R5 = SkipTo()

R6 = SkipTo(-1ItmlTag_)

R5 does not match with El, E2, E3 as the token appears only in E4. On the other

hand, R6 matches in all four examples, even though it matches too early (R6 stops as

soon as it finds an HTML tag, which happens in all four examples before the beginning

of the address) . Because R6 has a better generalization potential, STALKER selects R6

for further refinements.

R6 must be refined ; STALKER creates other candidates by using a landmark refinement

(a token is added to the landmark in R6) ...

R7 = SkipTo (: -1Itm1Tag_)

R8 = SkipTo (Yunctuation_ -1Itm1Tag_)

... and creates other candidates by topology refinement (a new landmark is added to R6) :

R9 = SkipTo(:) SkipTo(_HtmlTag_)

R10 = SkipTo(Address) SkipTo(-1ItmlTag_)

As RlO works correctly on El, E2, E3 and E4, STALKER stops the learning process and

returns Rlü .

6.5 Verifying the extracted data

Sites change and they change often. The wrapper must be capable of checking if the

extracted data is correct. Machine learning techniques are applied to learn a set of

patterns that describe the information extracted in a field labelled by the user. After

75

Chapter 6: Induction tools

having extracted data, the system can verify it by comparing its patterns to the learned

patterns.

The learned patterns represent the format of the field as a sequence of words or wild­

cards. Wildcards are syntactic categories to which words belong (alphabetic , numeric ,

capitalized, etc.). ln our example with addresses (12 Pico St., 512 Oak Blvd., 416 Main

St. and 97 Adams Blvd), all the fields start with a pattern (_Number __ (apitalized_)

and end with (Blvd.) or (St .) . The starting and ending patterns together are called the

data prototype of the field. Complex algorithms (that it would be inopportune to cover

in this dissertation) are designed to construct these data prototypes.

Notice that to improve the efficiency, the verification can be done randomly or every x

extractions instead of checking every single data field .

6.6 Automatically repairing the wrapper

We assume here that we are coping with minor formatting changes or slight reorganiza­

tions in a page. We shall use two techniques presented above to allow the wrapper to

be repaired automatically: the co-testing and the data prototype.

Let us consider figure 6.3 on the next page to help understand the process .The wrapper is

used to extract four fields (Author , Title, Price, Availability) . We examine the extraction

rule for the "title" field : this rule uses co-testing: both forward and backward rules are

applied. On the first example, the title is in bold style, the rules are defined to surround

a field between the tags and .

On the second example, the source has changed and the title has become yellow.Thanks

to the technique of co-testing, it is highly unlikely to find another field that would match

both rules. Even if it occurs, the data prototype analysis should discover the mistake.

ln the example, both rules do not match any field in the page and the wrapper outputs

"NIL".

Once the error is detected, the system takes the set of training examples (labelled by

t he user) and a set of new pages from the same source to identify the data field on the

new pages. lt learns all the starting and ending patterns that describe the field in the

76

6.7. How could induction tools be useful for news retrieval?

training examples (the data prototype) . Next , each new page is scanned to identify all

segments that begin with one of the starting patterns and end with one of the ending

patterns. Those segments , which are called candidates , are handled as follows :

• The candidates that are significantly longer or shorter than the training examples

are eliminated from the set .

• The candidates are then clustered to identify subgroups that share common fea­

tures. The features of the candidate that are considered are its position on the

page, its adjacent landmarks and whether it is visible or not for the user.

• Each cluster gets a score based on how similar it is to the training examples and

the highest score is expected to contain the correct examples of the data field .

On figure 6.3 , we can see the result of this automatic reinduction process, the extraction

rule has been updated automatically.

6. 7 How could induction tools be useful for news

retrieval?

lt is obvious that tools such as STALKER are not designed to retrieve a news article

from a Web page. The original goal is to extract fields from a structured Web page to

store them on a database . However, we can wonder if the techniques could be adapted

to our topic .

The major drawback is that induction tools assume that pages have a high degree of

similarity: the news articles must belong to the one Web site and must be presented

with the same layout . We could imagine for example an induction wrapper that goes

everyday on a definite porta l to extract the headlines .

Another drawback is that it seems impossible to handle the concept of data prototype

with a news article . How cou Id we identify patterns that describe the article? This

makes the difference between the extraction of a database field and a relevant text.

Unfortunately, without being able of identifying a data prototype, the application is also

unable to deal with data verification and automatic repairing of the wrapper.

77

Chapter 6: Induction tools

QJ
u
t.
:::1
0

rJJ -~
C

:~
t.
0

Q,j
u
t.
:::1
0

rJJ

LlndhH"p
by A Scon }!.,,..

U5t Price: Ql.W
Our Prtœ: $2 1.00
You Save: ~9.00 (30%)

Avallablllty: Thk. lltle u&u~lly sh tps withir"I 2-3 da

1 Need thls bV Dcœm ber 211 Ho problem. s
<hipping mothod (u.s . addro«o<).

Extrnctecl
Result:

AUTHOR
A.Scott Berg

TITLB
Lindbergh

Lindbergh

11,ien:Gn-DO.
,. Price: $21.00
1 Save; tM (JO~)

Avnllability : This title uru.ally ships wtthl"'I 2-3 da

[Nood this by Oocember 247 Setac t Naxt 0
,h,pping method (U s. aodresse,).

11rtce:$.ill..QO.
.- Price: $21.00
1 Savu : 19.0 0 (3016)

TITLB
NIL

Avallablllty : This t itle usuany l hips 'tlJ lthirl 2-3 d5

[. Neod this by Oscombor 24 ? Salax t Ne..,\ 0
,h,pping me1hod (u.s. aod,,,.se,).

TITLB
Berg Lindbergh

~ TITLB ::,
cr:::
C
C
-.:
y
~
~ ...

Begin Rule
SkipTo(" colid "value - 11 11 >

)
End Rule
SkipTo(
 by

;,,e <a href - " /)
~~------------------~

PRICE AVAILABILITY
21.00 This title usually s hips_

~ "3 TITLB
cr::: Begin Rule
c SkipTo (• col id " value - 11 11 >

:Ê)
~ End Rule
l:: SkipTo(
 by
io(

~

PRICB
21.00

<a hre f • " /)

AVAILABILITY
Thi s title u s u a lly ships_

~ TITLB ::,
cr::: Begin Rule

SkipTo(> <Btrong> <font
col or - # CC66 00 >l

End Rule
SkipTo(

<font size)

PRICB
21.00

AVAILABILITY
This title usually ships_

Figure 6.3: An example of the reinduction process

Positively, the programming of the extraction rules is rather easy and the processing is

efficient . Though, if we define extraction rules that fetch the contents between the tag

just before the beginning of the news article and the tag following the end of the article,

we shall be likely to extract some HTML code that characterizes the layout of the article.

We should then clean up the article by removing the remaining HTM L tags after the

extraction.

Finally, we want our process to be fully automatic and independent from the source. We

saw that induction tools need examples labelled by the user and work only on similar

pages, so that they are unfortunately unconvincing considering our topic.

78

6.8. Conclusion

6.8 Conclusion

We showed how to extract data thanks to induction tools , specially STALKER. We saw

that such tools are unsuitable for extracting large pieces of text since they are designed

to fetch fields as if the Web page were a data base. Moreover, the techniques concerning

the output verification and the automatic repair that were very attractive are not apt to

work in the case of our topic .

The next chapter will introduce RoadRunner, a wrapper that seems to be more appro­

priate for extracting news articles.

79

Chapter 7

RoadRunner

Contents
7.1 Introduction

7.2 Why is RoadRunner better?.

7.3 Context, definitions and assumptions

7.4 Data extraction in RoadRunner

7.4.1 Introduction

7.4.2

7.4.3

Before executing the algorithm

ACME algorithm

7.5 Useful for our topic ?

7.6 Conclusion

7 .1 Introduction

81

82

82

83

83

84

84

88

89

RoadRunner (18] is one of the most powerful wrappers. ln the literature, it is presented

as the only known wrapper to be fully automatic (11] . Since we want our program to be

fully automatic, it is interesting to briefly examine how RoadRunner works.

RoadRunner finds a regu lar grammar that represents the HTML code for a set of HTML

pages (samples) and then uses this grammar to parse other pages and extract pieces of

data .

We shall present why RoadRunner is considered as unique in the literature. Then we shall

have to introduce some definitions and concepts in order to explain the algorithm . The

presented algorithm is actua lly a simplified version of the original one. lt is comprehensive

81

Chapter 7: RoadRunner

enough to understand how RoadRunner works . Finally, we shall see how RoadRunner

could be useful for the news extraction .

7.2 Why is RoadRunner better?

• First, the authors' goal is that of " fui/y automating the extraction process, in such

a way that it does not rely on any a priori knowledge about the target pages

and their contents" [18] . lt does not need user-specified examples neither any

interaction with the user during the wrapper generation process.

• Second, it is usually assumed that a wrapper induction system has some a priori

knowledge about the page organization . Most wrappers assume that the sample

pages conta in a collection of fiat records. ln other cases, when a wrapper works by

searching nested data , it needs to know how the data are nested and the attributes

to extract . RoadRunner has no a priori knowledge about the page contents, which

means it does not know how the data is organized in the HTML page. Moreover,

RoadRunner is not restricted to fiat records or nested structures but can handle

both .

• Finally, most of tools generate a wrapper by examining one HTML page at a

time. RoadRunner works with two pages at a time. The discovery of a common

pattern is based on the study of similarities and dissimilarities between the pages;

mismatches are used to identify relevant structures.

7.3 Context, definitions and assumptions

The main intuition is that the site generation can be seen as an encoding process of

database contents into strings of HTML code and the data extraction can be seen as

the decoding process . Pages in data intensive sites are usually automatically generated .

These pages are produced by programs which query databases to generate a source

dataset ; that is serialized into HTML code to produce the actual pages (notwithstanding

the introduction of banners, images, links, etc.) . A source dataset is thus a set of tu pies

of a possibly nested type that wi/1 be published in the site pages.

82

7.4. Data extraction in RoadRunner

http: / / www. es books. com/ a uthor? J o hn+Smith http:/ / www. es books. com/ a uthor?Pa ul+ J o n es ~-----~ ~ -
CSbooks.com ~-- 1-1

• YCKl ... rr.f'lecl f«boottby~

Database Pdroec
~:, EdltOn. Paptft>aô. our Pf1ce: S20

s«:onc1Edll0n.Har4
eo-,cr OUrPrk:t :SJO
2000

Boot:Dncrlptlon

•

Tllll_.,.,,_._,. _______ ..._...._n. • .-.. ,.. ____ .._.._~
~er Sntcrot

~~ EdlUon, P•perl)Kt OUr Prtc•: $40 •
B001i.0tscrtp11on
,.._,! __ .._,.., __ ..., ____ ____ .,. __ _ _ , __ ,. _ _,_, _

-------•1.-.-

You ,ea,Chtd kit ~ by Paul Jones

~
~~EdKlon,P~ OurPrtee·m •

lloot.Dffcr1pclon
Au_...,,.îlfl."4-•---(UI. ,._MlJ

tfTML and Scripts
f HJ Our Prtce: $JO

Second Edeion. Hltd
C-.. OwPrtce:s-4 5 , ...

Book De$Cr1ptlon

•
•

ol.t'klOHTUl-,-1...W•--i.•-~fwlt.• -fl/..,...,h

~
2000 Ou r Priu: $50 •

lloM Onc:rtpclon __ ,,..._,,,........._.._.,,,..

Figure 7.1: Examples of automatically generated web pages

"

The problem can be summarized as follows : g,ven a set of similar pages as sample,

find the nested type of the source dataset and extract it . For example, let us consider

figure 7.1 from CSBooks.com . The pages have been generated from a script that queries

a database to produce a nested dataset in which each tuple contains data about one

author, his list of books and for each book a list of editions.

Roadrunner will compare the HTM L code of the two pages , infer a common structure and

a wrapper and use that to extract the source dataset. Figure 7 .2 presents the extracted

dataset in an HTML page to help understanding but is more likely to be useful in a

database. We can see the nested structure from the pages . The fields are anonymous

(here labelled A, B, C, D, etc .) ; they must be renamed manually after the dataset has

been extracted .

7.4 Data extraction in RoadRunner

7.4.1 Introduction

RoadRunner is a very complex application . We shall only show the main ideas of the

process that creates the grammar used to ext ract the data . The example below seems

to be too easy and is actually designed on purpose to explain the major concepts . For

an extraction on real web pages, RoadRunner uses powerful algorithms that can handle

situations far more complicated than the ones in the example. This explanation aims

83

Chapter 7: RoadRunner

Total number of SCHEMAs found: 1

SchemaNumber 1: A < B < < C 1, D E 1• F 1• Total Time: O" 160 ms •• ,,.,,,,,.html --------------
' A Jotvl Smith

••f'f1PM2.tânl
r--,.

B 1
Database Primer ij c r-c- l e 1iThis book introduces the

1First Edition, ~~ reader ta the theory and

Computer
~Systems

Paperback I technology ... {TRUNCATEDJ

Second Edition, 000 $30
Hard Cover

Pali Jones s I F

l
)(ML at Won< 1 c I o e IA comprehensive description

· First Edition, p 999 ~ :of XML and ail related
Paperback 1 ___ _llandards ... {TRUNCATEDJ

,ècHTM= L-and-,---l'nu// ~
5
;;;;==·1A uselul HTML h~ndbook,

Scripts 1cc-----,~- ~ th a good li.tonal on the
Second Edition, 1999 $45 use of sc ... {TRUNCA TEDJ

Hard Cover ,,_=='__j"=E'ir.----:-,------
1nul;

Figure 7.2: Output of RoadRunner

.=J

at g1ving a notion of how an HTML-aware wrapper (based on a grammar and fully

automatic) works .

7.4.2 Before executing the algorithm

To avoid errors in the sources due to missing tags, the HTML file is tra nsformed into

an XHTML file (a restrictive variant of HTML where all tags have t o be properly closed

and nested) . Severa! t ools are available on the Internet to do it . Sources must also be

pre-processed by a lexical analyzer to transform them into lists of tokens , each token 1s

either a HTML tag or a string value.

An initial version of the wrapper is defined from the first page (see figure 7.3, left

column) . At this step, the wrapper is exactly the same as the list of tokens representing

the first page (normal since the wrapper defines the regular grammar of one page only).

7.4.3 ACME algorithm

The algor ithm is based on a matching technique called ACME , for Align, Collapse under

Mismatch , and Extract .

84

7.4. Data extraction in RoadRunner

- Wmpper (initially Page 1):

01: <HTML>
02 : Books of :
03 :
04 : John Smith string mismatch (#PCDATA)
05 : </ B> ' 06: tag mismatch (?)

07:
08- 10 : <I>Titl e :</ I >
11 : DB Primer
12:
13 :
14-16 : <I>Titl e :</I>
17 : Comp . Sys .
18 : t

string mismatch (#PCDATA)

119 : tag mismatch (+)

20: </ HTML>
terminal tag search and

square matching

- Wmpper after solving mismatches:

<HTML>Books of:#PCDATA
(<I HG src= .. . />)?

(<I >Tit l e :</ I >#PCDATA) +

</HTML>

- Sample (P age 2):

01 : <HTML>
02 : Books of:
03 :
04 : Paul Jones
05 :
06 :
07 :
08 :
09-11 : <I>Tit l e : </ I >
12 : XML at Work
13: </ LI>
14 ,- ---- -- - - ------- -----

15-17 :
18 :
19 :

<I >Title :</I>
HTHL Scripts

</ LI > I -------------20 :
21- 23: <I >Ti tle: </ I >
24 : Javascri pt

--.. 25 :
26: </ UL>
27 : </HTML>

1

Figure 7.3 : A CME Algorithm

l
l

T he a lgorithm works on two abjects at a time: t he wrapper and the sample (another

similar HTML page transformed into a list of tokens) . The wrapper is progressively

refined : the algorithm tries to find a common regular expression for both pages by

solving mismatches between the wrapper and the sample.

The algorithm parses the sample using the wrapper, a mismatch happens when some

token in the sample does not comply with the grammar specified by the wrapper . Mis­

matches are important because they generalize the wrapper when they can be solved .

The algorithm succeeds if a common wrapper can be generated by solving all mismatches

encountered during the parsing. As seen above, the wrapper is thus a grammar that rep­

resent s t he HTM L code for a set of HTM L pages.

During t he parsing, two kinds of mismatches can occur: "String mismatch" or "Tag

mismatch".

85

Chapter 7: RoadRunner

String mismatch

A String mismatch means the discovery of a fie ld . Since the pages are similar (belong to

the same site) , string mismatches may be due only to different values of a database field.

ln figure 7.3, a string mismatch occurs between the names of the authors at line 04. The

wrapper which initially equals Page 1 is general ized by replacing the string 'John Smith '

by the regular expression #PCDATA. T he same thing occurs between the titles of the

books (DB Primer - XML at Work). #PCDATA is thus a code that means a possible

field in the original database has been found .

Tag mismatch

Two options are possible when a tag mismatch occurs. The algorithm can discover an

optional tag, a tag that is present only in one of both pages, in figure 7.3 an image

of the author is only avai lable on page 2 (line 6) . The algorithm can also discover an

iterator. An iterator is a repeated pattern, in the example, the author on page 1 has

two books while the one on page 2 has three books, the tag mismatch is thus due to an

extra instance of the nested structure "book" .

Let us suppose first that the search for an iterator has failed, we may assume that the tag

mismatch is due to the presence of optiona ls. This means that, either on the wrapper

or on the sample we have a piece of HTML code that is not present on the other page.

By skipping this piece of code, the parsing can be resumed . This is done in two steps.

1. Assuming the sample has the optional expression, a cross search is done through

the wrapper to be sure that the expression is not present elsewhere.

2. The wrapper is generalized by introducing one pattern "()?". ln our example the

line ()? is added to the wrapper.

The parsing is resumed, taking into account the difference due to the optional tag. ln

the example, token 6 in the wrapper wil l be compared to token 7 in the sample and so

on .

Let us now consider the iterator mismatch: A tag mismatch occurs between lines 19

and 20 because a third book appears in the sample. The pattern < I>Title : </I>-

86

7.4. Data extraction in RoadRunner

#PCDATA is repeated. The algorithm needs to identify these patterns that we shall

call squares to generalize the wrapper accordingly. This is done in three steps:

1. Square location by Terminal- Tag Search: We know that both the wrapper and the

sample conta in at least one occurrence of the square (otherwise it would be an

option al pattern). Let us call Ow and Os the number of occurrences of the square (2

and 3 in the example) . Before encountering the mismatch, the occurrences have

matched each other min(ow, os) times. So we can identify the last token of the

square as the token just before the mismatch position. Now we have the terminal

tag of the square, we must find the initial tag. When the mismatch occurs (line

19 on the wrapper) , we know that it means the end of the list of squares on one

sample and the beginning of a new square on the other one but we do not know

which one of the samples has got the longest list. We take the tag that follows

the terminal tag on both samples , so we have two possibilities for the initial tag:

</U> or in the example, which means a square of the form ... or

 To discover the good square, we look forward on the wrapper and

the sample to find an occurrence of the terminal tag . lt fails on the wrapper

and succeeds on the sample, so there is one candidate occurrence of the square at

tokens 20 to 25 .

2. Square matching: To check if the candidate really represents the square, we try to

match it with some upward portion in the sample. The process is done backwards;

it starts to match tokens 25 and 19, then 24 and 18 and so on . The search

succeeds since there is a correct matching between the square (lines 14 to 19) and

the candidate (lines 20 to 25)

3 . Wrapper generalization: The wrapper can now be generalized by replacing the

repeated occurrences of the square by (square)+. As you can see at the bottom

of figure 7.3, the square book is noted

(<I>Title:</I>#PCDATA) +

87

Chapter 7: RoadRunner

7. 5 U seful for our tapie ?

Once again, the algorithm has been intended for extracting fields between HTML tags

instead of a large and structured text . The algorithm is fully automatic but it is obvious

that it works quite better if the pages given as in put are similar. If the pages are

coming from different sources , it is likely to produce a useless wrapper after having

solved mismatches.

A possible application would be, after having clustered the Web sites to get similar pages,

to run the RoadRunner wrapper and to fetch all the # PCDATA fields . As seen above,

a # PCDATA field means the discovery of a "string mismatch".

Then we could assume that the longest fields contain the text corresponding to the news

article. By comparing large fields close to each others , we could reconstruct the article .

Notice that this issue is smarter than to remove ail the HTM L tags and fetch ail the

longest parts of text to reconstruct the article because in that case, we do not take into

account the contents between HTML tags that is common to both analysed pages. To

our opinion, we can easily assume that two news articles are not likely to have common

sentences, especially if they corne from randomly chosen pages .

Once the first two news articles have been extracted, the wrapper can be improved by

locating in the grammar the set of # PCDATA fields containing the article, so that all

the # PCDATA fields before the beginning and after the end of this set can be ignored .

T he major drawback is the necessity of analysing a lot of similar pages before the grammar

becomes fair enough to extract the text correctly. The creation of the grammar is a long

process that is better as the number of samples grows. RoadRunner is designed to be

useful and efficient when the goal is to extract data from a large a mou nt of similar pages .

Hence , this technique cou Id be useful only if we face a large set of similar pages . Since our

process must be fully automatic , a clustering of the different Web pages is required before

the extraction process starts. The latter could be adapted to the size of each cluster,

so that the extraction from large clusters could be improved by using tools analogous to

RoadRunner. Anyway, we chose to apply the same extraction process notwithstanding

the amount of Web pages to handle or the size of the clusters .

88

7.6. Conclusion

7 .6 Conclusion

Although RoadRunner is considered as fully automatic, we saw that it is likely to output

relevant results only if the Web pages given as input are similar . We can conclude that

there is an obvious necessity for a clustering of similar pages before execut ing almost any

wrappers available in the literature. One single class of wrappers cou Id work without that

constraint : t he Natural Language Processing-based tools. We shall study three famous

wrappers belonging to this class in the next chapter.

89

Chapter 8

NLP-based methodologies

Contents
8.1 Introduction

8.2 Information extraction

8.3 Natural Language Processing

8.4 Grammatical text

8.4.1 Autoslog

8.5 Ungrammatical text

8.5.1 RAPIER

8.5 .2 SRV ..

8.5.3 WHISK

8 .6 Conclusion

8.1 Introduction

91

92

93

93

94

95

95

96

97

98

ln this chapter we shall study another technique to extract relevant data : the NLP­

based method . A context briefs on its interest in our work and is followed by the

information extraction section . Then the natural language processing and its relation

with the artificial intelligence is mentioned . An NLP- based tool (Autoslog [15]) working

on grammatical text is analysed and three others (Rapier, SRV, WHISK) working on

ungrammatical text as well. We close the chapter by a short conclusion.

91

Chapter 8: NLP-ba ed methodologies

8.2 Information extraction

Information extraction [20] [21] is the mapping of natural language texts (such as newswire

reports , newspaper and journal articles , electronic mail , World Wide Web pages, any

textual database, etc.) into predefined, structured representation, or templates, which,

when filled, represent an extract of key information from the original text . The informa­

t ion concerns entities of interest in the application domain (e.g . companies or persons) ,

or relations between such entities, usually in the form of events in which the entities

take part (e.g. company takeovers, management successions etc .). Once extracted , the

information can then be stored in databases to be queried, data mined , summarised in

natural language, etc.

A trivial example of information extraction is to find the perpetrator of a terrorist attack

reported in the newspapers :

The Parliament was bombed by the guerrillas

The aim of the information extraction is to find the perpetrator (the guerrillas) giving

this sentence from a news article . Or to identify the targets of this terrorist attack (the

Parliament), etc.

The identification of such entities is done by the set of extraction patterns (or extraction

rules) that is used to extract from each document the information relevant to a particular

ext raction task . But the use of such rules is a difficult and time-consuming task. A lot

of various techniques are used in field IE because information extraction is actually a real

hard task . A single technique is only suitable for a few defined specialised problems in

IE. ln general , there is no common solution for the total problem fields of information

extraction. Currently, researchers try to use almost all artificial intelligent methods and

machine learning algorithms to achieve high performance and automatic information

extraction from documents. Advanced methods and algorithms such as bayesian model ,

Hidden Markov Model (HMM), Decision Tree, etc. use the NLP technology because it

is one of the most basic techniques.

92

8.3. N atural Language Processing

8.3 Natural Language Processing

N LP was initially used for machine translation , speech recognition and also knowledge

representation. The basic idea of using NLP in information extraction is analysing the

grammatical structure of a sentence and then constructing grammatical rules for some

useful information within this sentence. The rules based on syntactic and semantic

constraints are then applied to identify the relevant information to extract . Relationship

between phrases and sentence elements are built by various techniques such as automated

filtering, part-of-speech tagging and lexical semantic tagging to derive the extraction

rules.

"NLP techniques can be considered as an automated generalised indexing procedure

that extracts from the full textual contents of the document linguistically significant

structures."

With N LP, the text (e.g. a news article) is broken into tokens. lt is then possible to

identify sentences. Within the sentences we can determine context of words and phrases

using various dictionaries and dom a in specific lexicons. Actually, N LP techniques are

more suitable for information written in grammatical text or in telegraphic style such as

job listings, apartment rentai advertisements, etc.

The two following sections present various applications of N LP. The first one shall expia in

the different techniques used to identify useful information within a grammatical text.

The second one shall examine various representative tools applied in online documents,

mostly in the form of ungrammatical text .

8.4 Grammatical text

ln this section we assume that the document on which the NLP tool works contains a

grammatical text , that is a plain text .

Various NLP tools have been created in this case : AutoSlog, LIEP, PALKA, CRYSTAL,

CRYSTAL + Webfoot and HASTEN . Describing precisely all these applications is beyond

t he scope of this thesis but we shall nevertheless present AutoSlog to show the main

ideas of these N LP tools .

93

Chapter 8: NLP-based methodologies

8.4.1 Autoslog

This NLP tool builds a dictionary of extraction patterns that are called concepts. To each

concept is associated a conceptual anchor, actually a triggering word . A set of enabling

conditions represent constraints on the concepts. Let us take our trivial example about

a t errorist attack on the Parliament :

The Parliament was bombed by the guerrillas

To extract the target of the terrorist attack (the Parliament) , the triggering word is the

verb bombed and forms with the linguistic pattern "subject-passive-verb" the concept

we are analysing. Now we have thus defined an extraction pattern (or extraction rule).

Applying this rule gives us the possibility to activate the concept because the pattern

contains the trigger bombed and thanks to the linguistic pattern , the subject of the

sent ence is found as the target of the terrorist attack. Figure 8 .1 is the representation

of t his example .

CONCEPT NODE:
Name :
Trigger:
Va1iable Slots:
Constraints:
Constant Slots:
Enabling Conditions:

target-subject-passive-verb-bombed
bombed
(target (*S* 1))
(class phys-target *S *)
(type bombing)
((pass ive))

Figure 8.1: An AutoSlog extraction task

The Name slot is a human readable description of the concept , the Trigger is the con­

ceptual anchor and t he Variable slot is what we are looking for. The subject must be

a physical target (Constraint slot) and the verb must be used with its passive form

(Enabling conditions) .

Thanks to this example, we can see that AutoSlog applies syntact ical and semantic

rules to find the relevant information within a plain text. But AutoSlog determines only

t he syntactic field that contains the target phrase while other N PL tools identify the

exact phrase of interest. AutoSlog is single-slot, that is , it can only find one information

94

8.5. Ungrammatical text

of interest at a time, while others are multi-slot and can find , in our trivial instance ,

the target and the perpetrator. AutoSlog is one of these NLP-based tools having their

advantages and disadvantages. As a result, it is very important to analyse the problem

beforehand and to apply the NPL tool suiting to this particular problem.

8.5 Ungrammatical text

ln the previous section, we were interested in us1ng NLP-based tools on plain texts.

Let us see now the application of NLP tools on ungrammatical texts, especially those

coming from the World Wide Web. The information we read on many Web pages are

often presented in a mixture of grammatical , telegraphic , and / or ungrammatical texts .

For example, job postings, apartment rentais , etc. are usually written in informai text

and so it is quite difficult to syntactically and semantically parse the text. Moreover, the

various techniques used in the previous paragraph do not fit for these online documents .

Syntactic and semantic constraints are still applied but delimiters are introduced to

bound the text to be extracted . Particular NLP methods such as RAPIER, SRV and

WHISK have been created to extract correctly this special kind of information .

8.5.1 RAPIER

Robust Automated Production of Information Extraction Rules (RAPIER) [15] takes as

input a document and a filled template, used to learn extraction pattern, indicating

the data to be extracted. The RAPIER system uses three distinct slots : Pre-filler ,

filler and Post-filler patterns. The Pre and Post play the role of left and right delimiters ,

respectively, while the filler describes the structure of the data to be extracted . Figure 8.2

shows an intuitive example of extraction .

ln this example, the Pre-filler pattern means that the information to be extracted is

immediately preceded by the word leading and immediately followed by the words firm

or company (Post-filler pattern) . The filler pattern imposes constraints on the structure

of the data to be extracted .

95

Chapter 8: NLP-based methodologies

8.5.2 SRV

ORIGINAL DOCUMENT:
Al. C Programmer. 38-44K.
Leading Al firm in need of
an energetic individual to
fill the following position :

AREA extraction pattern:

EXTRACTED DATA:
computer-science-job

title : C Programmer
salary: 38-44K
area : Al

Pre-filler pattem: word: leading
Filler pattem: list: leu: 2

tags: [un, nns]
Post-tiller pattem: word: [finn, company]

Figure 8.2: A RAPIER extraction task

This NLP tool takes as input a set of tagged documents, and a set of features that

contrai generalization , and produces rules that describe how to extract information from

novel documents. lt generates extraction patterns that are based on attribute-value

tests and the relational structure of the documents [22] . Figure 8 .3 gives an instance of

extraction task .

DOCUMENT-!: .. . to purchase 4.5 min Trilogy shares at .. .
DOCUMENT-2: ... acquire another 2.4 min Roach shares .. .

Acquisition:- length(< 2),
some(? A [] capitalized true),
some(?A [next-token] all-lower-case tme),
some(?A [right-AN] wn-word 'stock ').

Figure 8.3: A SRV extraction task

This example shows how to extract the name of a company that was the target of

an acquisition process. The first two predicates of the extraction rule mean that the

company name consists of a single and capitalized word while the third predicate means

that the company name is followed by a lower-case word. The last predicate rules means

that the company name is followed by a word associated with stock.

96

8.5. Ungrammatical text

8.5.3 WHISK

WHISK [15] fits for online documents as well as for plain texts . lt is a general rule

extraction system which learns regular expressions as extraction patterns. These patterns

are a special type of regular expressions that have two components: one that describes

the context that makes a phrase relevant, and one that specifies the exact delimiters of

the phrase to be extracted .

Figure 8.4 shows a sample extraction task:

DOCUME T: EXTRACTED DATA:
Capitol Hill- 1 br twnhme. < Bedrooms: 1
D/W W/D. Pkg incl $675. Price : 675>
3BR upper tir no gar. $995. < Bedrooms: 3
(206) 999-9999 < br> Price : 995>

Extrac tion rule : * (< Digit>) 'BR' * '$ ' (<Nmb>)
Output: Rentai { Bedrooms @ l} { Price @2}

Figure 8.4: A WHISK extraction task

As we can see in this instance, the original document about an apartment rentai coming

from a Web page is written in the form of ungrammatical construction but , however,

human readable. The semantic class bedroom can be defined as follows :

Bedroom (br ; brs; bdrm; bedrooms; bedroom)

This allows to find various forms of telegraphic styles for the same word . The extraction

rule means : ignore all the characters in the text until you find a digit followed by the

"br" string; extract that digit and fill the first extraction slot with it (i.e . "Bedrooms") .

Then ignore again all the remaining characters until you reach a dollar sign immediately

followed by a number. Extract the number and fill the "Price" slot with it . WHISK is

more powerful than the two previous tools because it is multi-slots, that is, it is capable

of extracting several records from a document.

97

Chapter 8: LP-based methodologies

8.6 Conclusion

NLP- based methodologies of this eighth chapter is another way to extract data of inter­

est . The NLP tools learn extraction rules to mine out relevant data existing in natural

language documents . They can work on grammatical texts, that is plain texts , as well

as on ungrammatical texts such as those coming from the World Wide Web. But t hese

t echn iques are very complex and are related to the huge issue of the natural language

processing, a field of the artificial intelligence. Now that all the major automated extrac­

t ion tools have been considered , we can focus in chapter nine on the one that inspired

our work in Australia : the Web news extraction through a mapping process .

98

Chapter 9

News extraction using tree edit
distance

Contents
9.1 Introduction

9.2 Context

9.3 News extraction using tree edit distance

9.4 Tree edit distance and mapping .

9.5 Top-down mapping .

9.6 Web news extraction

9.6.1
9.6.2
9.6.3
9.6.4

Page clustering

Extraction pattern generation .

Data Matching

Data labelling .

9. 7 Applications

9.8 Conclusion

9.1 Introduction

. 99

. 100

. 100

. 101

104

105

106

106

108

110

111

113

ln this chapter we shall present two major notions for our work: the tree ed it distance and

the top-down mapping. An introduction summarizes the main difficulties encountered in

the previous chapters leading to a danger for the extracting task. Then we shall tackle

the extracting task strictly speaking. The first part is about the notions of tree edit

distance and mapping. The next part is about the top-down mapping. The third part

presents the Web news extraction through the article which we went by for our work

followed by its application in the fourth part before finally concluding.

99

9.2 Context

While important works have been made in order to provide efficient access to relevant

information on the Web, it is quite difficult to create generic methods that extract these

Web data . The reasons of such a difficult task are that the Web is very heterogeneous

and there are no rigid guidelines on how to build HTML pages and how to declare the

implicit structure of the Web pages [23]. This problem, raised in chapter 4 is one of our

main concerns.

Moreover, data structures are significant as well . Unstructured data where browsing and

keyword searching are applied do not allow to use efficient methods to extract these

data . Semi-structured or structured data that borrow techniques from the database area

have also internai problems.

ln order to develop effective methods for extracting data on the Web in a precise and

automatic way, we need to take into account specific characteristics of the domain of

interest . Ours is on-line newspapers and news portais on the Web, which have become

one of the most important sources of up-to-date information . lndeed , there are thousands

of sites that provide daily news in very distinct formats and there is a growing need for

tools that will allow users to access and keep track of this information in an automatic

manner .

ln addition to these difficulties , this step is at the end of the whole extraction process ,

after the parsing and the clustering process (see chapter 1) . This means that it can carry

out wrong results that are maybe not coming from the extracting task itself because these

previous processes can give bad results to the extracting job. ln consequence, we must

be vigilant and very critical towards the final results we shall analyse .

9.3 News extraction using tree edit distance

One of the most interesting approaches of the news extraction has been developed by

Davi de Castro Reis , Paulo B. Golgher, Altigran S. da Silva and Alberto H.F. Laender­

four [23], four Brazilian research workers . Their work influenced a lot our dissertation

100

9.4. Tree edit di tance and mapping

in the area of extraction news. They present a domain-oriented approach to Web data

extraction and discuss its applicat ion to automatically extracting news from Web sites .

This method is based on a highly efficient tree structure analysis that produces very

effective results: the tree edit distance. lt allows not only the extraction of relevant text

passages from the pages of a given Web site, but also the fetching of the entire Web

site contents, the identification of the pages of interest (the pages that actually present

the news) and the extraction of the relevant text passages discarding non-useful material

such as banners, menus, and links (noisy blocks) .

This method is thus an all-in-one method that first clusters the pages, generates an

extraction pattern, matches the data and finally labels these data.

9.4 Tree edit distance and mapping

This concept is based on the analysis of the structure of Web pages. As seen before,

these Web pages can be transformed into tree structures. The tree edit distance allows

to evaluate the structural similarities between different pages. The pages with similar

structures are putted together in a same group called cluster. The clustered pages are

then analysed to find a generic representation of the structure of the pages within a

cluster.

lntuitively, the tree edit distance between two trees TA and TB is the cost associated with

the minimal set of operations needed to transform TA into TB. These operations are:

vertex replacement (or non-identical substitution) , vertex insertion and vertex removal.

They are operated on rooted, ordered, labelled trees . To evaluate the tree edit distance,

a cost is assigned to each operation. The problem is resolved when we find the minimum

cost to transform a tree into another.

Another way to understand the problem is the mapping approach . A mapping 1s a

description of how a sequence of edit operations (replacement, insertion and removal)

transforms a tree into another, ignoring the order in which these operations are applied.

The discovering of a mapping with minimum cost between two trees will thus solve the

problem . Here is a formai definition of this important concept of mapping:

101

Chapter 9: News extraction using tree edit distance

Mapping: Let Tx be a tree and let Tx[i] be the i-ism vertex of tree Tx in a preorder walk

of the tree. A mapping between a tree T1 of size n 1 and a tree T2 of size n 2 is a set M

of ordered pairs (i,j), satisfying the following conditions V(i1,j1); (i2 ,j2) E M

{

i1 = i2 iff) 1 =)2

T1[i1] is on the left of T1[i2] iff T2[j 1] is on the left of T2[j2]

T1[i1] is an ancestor of Ti[i2] iff T2[j1] is an ancestor of T2[h]

The first condition establishes that each vertex can appear no more than once in a

mapping, the second one enforces order preservation between sibling nodes and the third

one enforces the hierarchical relation between the nodes in the trees. Figure 9.1 illustrates

a mapping between two trees.

Figure 9. 1: A mapping between two trees

As estimating the tree edit distance is equivalent to finding the minimum cost mapping,

we can now define the mapping cost:

Mapping cost: Let M be a mapping between tree T1 and tree T2 , let S be a subset of

pairs (i, j) E M with distinct labels , let D be the set of nodes in T1 that do not occur in

any (i , j) E M and let I be the set of nodes in T2 that do not occur in any (i , j) E M.

The mapping cost is given by c = Sp + Iq + Dr, where p, q and r are the costs assigned

to the replacement (or non-identical substitution) , insertion , and removal operations,

respectively. lt is common to associate a unit cost to all operations, however , specific

applications may require the assignment of distinct costs to each type of operation . Let

us apply these two definitions on a simple example (see figure9 .2) .

102

9.4. Tree edit distance and mapping

Figure 9.2: A mapping example

ln this mapping M from tree T1 to tree T2 , nodes Ti[l], Ti[7], Ti[8], Ti[9], Ti[lü] (r ,

e , e, e , c respectively) are mapped to nodes T2 [1], T2[5], T2 [6], T2 [7], T2 [8] (r, e , e, e , c

respect ively) , nodes Ti[2], Ti[3], Ti[4], Ti[5], Ti[6] (a , o , u, a , a respectively) are deleted

from T1 and nodes T2 [2] , T2 [3], T2 [4] (a, a , e respectively) are inserted into T2 . About

the mapping cost , there are O replacements, 3 insertions and 5 removals. The cost of

mapping M = (0 x 1) + (3 x 1) + (5 x 1) = 8 assuming that the cost of edit operations

is set t o 1.

The tree edit distance is a difficult problem and while several algorithms have been

proposed , their complexity is above quadratic. Further, it has been proved that , if the

trees are not ordered , the problem is NP-complete. The first algorithm of this problem

had a complexity of O(n1 n 2 h1 h2), where n 1 and n 2 are the sizes of the trees and

h1 and h2 are their heights . The best known complexity of this problem is O(n1 n 2 +
li 2 + li 2·

5 l2) where li and l2 are the number of leaves in each tree. But despite the

inherent complexity of the mapping, several practical applications can be modelled using

restricted formulations . For instance , it is possible to impose conditions on the three

edit operations. One of these formulations , the top-down distance is significant for our

work . The top-down distance is used in the Brazilians' approach . That is the reason

why it is now important to write about this topic.

103

Chapter 9: ews extraction using tree edit distance

9.5 Top-down mapping

lnformally, a top-down mapping restricts the removal and insertion operations to take

place only in the leaves of the trees. Moreover, in a top-down mapping, the parents of

nodes in the mapping are also in the mapping. Here is a formai definition followed by

an example (see figure 9.3) :

Top-down mapping: A mapping M between a tree T 1 and a tree T2 is said to be top­

down only if for every pair (i 1 , i 2) E M there is also a pair (par ent (i 1), parent(i 2)) E M ,

where i 1 and i 2 are non- root nodes of T1 and T2 respectively.

Figure 9.3: A top-down mapping example

Several well known algorithms for this top-down mapping have a complexity of O(n1 n2).

They have been successfully applied to many Web related applications such as the clus­

tering of XML documents. But in this case we are interested in the problem of evaluating

the sim ilarity between Web pages. The problem will be resolved by applying a top-down

mapping between two trees that represent these Web pages and , as a consequence, the

tree edit distance between them .

This top-down is a new kind of mapping called the Restricted Top-Down Mapping or

RTDM. lntuitively, besides the insertion and removal operations, the replacement oper­

ation of different vertices is also restricted to the leaves of the tree. Once again , here is

a more formai definition :

Restricted Top-Dawn Mapping (RTDM) : A top-down mapping M between a tree T 1

104

9.6. Web news extraction

and a tree T2 is said to be restricted top-down only if for every pair (i1 , i 2) E M , such

that T1 [i1] # T2 [i2], there is no descendent of i 1 or i 2 in M , where i 1 and i 2 are non-root

nodes of T1 and T2 respectively.

Related to this mapping, we can define the restricted top-down edit distance between

two trees T1 and T2 as the cost of the restricted top-down mapping between the two

trees.

The analysis of the algorithm of this mapping is beyond the scope of this thesis. But this

RTDM will be used in the different steps of the Brazilian approach , so it is important

to understand the main idea behind this mapping: the algorithm takes as input the two

trees to map and gives as output the minimal restricted top-down mapping between

these two trees.

9.6 Web news extraction

Now we have explained the important notions of tree edit distance and restricted top­

down mapping, we are able to discuss an automatic Web news extraction . This automatic

process will identify relevant text pages containing news and their components by crawl­

ing Web news portais and extract the news from these collected pages discarding the

noisy blocks.

The crawling of the pages will actually not be discussed here. This point is examined

in chapters 2 and 3 . We shall thus assume that we can directly access to these needed

downloaded news Web pages .

The extraction task, as for it, is divided into four ste ps: page clustering, extraction

pattern generation , data matching and data labelling (see figure 9.4). Three of them

(clustering, extraction and matching) are based on the RTDM algorithm.

News site contents can be divided in groups that share common format and layout

charact eristics. These common format and layout features are called templates:

Template : A template is the set of common layout and format features that appear in

a set of HTML pages produced by a single program or script that dynamically generates

the HTML page contents.

105

Chapter 9: News extraction using tree edit distance

Each field of a template (e.g. a news title) is called a data-rich object. ldeally, the

extractors generated by the Brazilian approach should be able to identify each one of

t hese data-rich objects, and discover, among them, which ones correspond to the title

and the body of the news article . Let us see now how this process actually works.

9.6.1 Page clustering

The clustering takes as input a previously crawled set of pages (a training set) and gen­

erates clusters of pages that share the same template. The technique used for clustering

is a classical one that takes as input the result of the RTDM algorithm with a cost model

having a cost unit for the edit operations. An arbitrary threshold of 80% determines the

similarity of the pages within a same cluster. The output of this step is a set of page

clusters sharing the same template.

9 .6.2 Extraction pattern generation

This second step refines the notion of cluster. We shall now use the term node extraction

pattern (ne-pattern):

Node extraction pattern (ne-pattern) : Let a pair of sibling sub-trees be a pair of sub­

t rees rooted at sibling vertices. A node extraction pattern is a rooted ordered labelled

t ree that can contain special vertices called wildcards. Every wildcard must be a leaf in

t he tree, and each wildcard can be of one of the following types:

• SINGLE (◊) : A wildcard that captures one sub-tree and must be consumed .

• PLUS (+): A wildcard that captures sibling sub-trees and must be consumed.

• OPTION (?): A wildcard that captures one sub-tree and may be discarded .

• KLEE NE (*): A wildcard that captures sibling sub-trees and may be discarded .

A wildcard is defined by every vertex in the tree that can match any symbol (any label)

with its associated type.

ln view of this definition, each wildcard corresponds to a data-rich object in the template.

SINGLE and PLUS wildcards should correspond to required objects , such as the title of a

106

9.6. Web news extraction

Training
Pages

1

ne patterns

~ -- ---- ------ - - 1

Clustering Extractor Generation

,---- -- --- --- ---- - --- --

: f + + D Crawled i
1 Pages ,
1 • 1

: A :
: • v d"b1 + □ ,

Data Mat.ching

------- -- ---- -- ,
1

_ <title.> ... </tille> 1
<body> ... <A>ody> 1

1

- <tille> ... <il[I~ :
<body> ... <IDOO'y> 1

1
1

------- --- ----- ~
Data Labeling

Figure 9.4: The four extraction steps

-+

ne pattem s

1

< tille> ... <./titlt>

<body> ... </body>

➔
< tille> ... <ltitle>

<body> ... </body>

news, and OPTION and KLEENE wildcards should correspond to optional objects, such

as related news lists .

The goal of this step of the extraction task is , ta king as input a page cluster , to generate

an ne- pattern that accepts all the pages in this cluster. The wildcards represent therefore

the contents differences between the pages in the same cluster. To reach this objective,

t he RTDM algorithm is once again applied . First it is said that vertices a and b of an

ne- pattern are equal if and only if:

• a and b are wildcards and both are of the same type;

• a and b are not wildcards and the labels associated with a and b are equal.

Given two ne- patterns T1 x and T2x , the RTDM algorithm finds a mapping between these

two ne-patterns (Mr1x_,r2 x). From this mapping , a composite ne- pattern is created

T3x = T1x o T2x using the following rules :

• if a is not in the mapping, then add a' to T3x where a' = f (a , ?);

• if a maps to b then add a' to T3x where a'= f(a, b);

107

Chapter 9: News extraction u ing t ree edit distance

• and f (a , b) is defined as :

!(* ,*) * ! (+, +) + f (o , o)

! (* ,+) * f (+,o) + J (o , ?)

! (*, ?) * ! (+ , ?) * J (o,n)

! (*, ◊) * ! (+, n) + ! (?,?)

!(*, n) * f (?,n)

f(n1 , n2) = n1 if n1 and n2 have identical labels

f (ni , n2) = ◊ if n 1 and n 2 have different labels

◊

?

◊

?

?

where n,n1,n2 are non-wildcard vertices and the parameter order is not relevant.

The first tree of the cluster is considered being the basic ne- pattern . This first ne-pattern

is then compared with the next tree applying the rules above, a new ne- pattern resulting

from this comparison . This new one is compared to the next tree and so on till the last

tree of the cluster. The result is an ne-pattern that accepts all the pages in that cluster.

Here is an example of this complex process (see figure 9 .5) .

9.6.3 Data Matching

Once the ne- patterns have been determined within each cluster, the data matching task

will find the most appropriate ne-pattern to a crawled HTML page. This process is also

based on the RTDM algorithm . An appropriate cost model for the three edit operations

(replacement, insertion and removal) will give us the cost of the mapping called in this

step a match. For that, we speak about the consumption of vertices: in a given mapping,

if one wildcard vertex in the ne- pattern maps to a vertex in the target HTML tree, then

the wildcard consumes the vertex . The data matching is defined as follows:

Match: a match between an ne-pattern and a target tree is a mapping such that the

following rules are satisfied in this order:

1. Every non-wildcard vertex in the ne-pattern must map to an identical vertex in the

target tree.

2. Every vertex in the target tree must map to an identical non wildcard vertex in the

ne- pattern or be consumed by a wildcard .

108

9.6. Web news extraction

~ ❖ ~--· d\ C

E E

Page Cluste r

1 1 Vari:1ble sizc objecls

The presenœ of oplional wildcards
Requircci wildcards foUowing another wildcard is the
If a vertex in the source tree maps evidence of a variable size objecc.

'
to a vertex with different labe l in Afte r creating each new pattern,
the targe! tree, we consider il as we look forw ildcards followed
~ req,~ d w;ldc ml, ,;, œ ;, " by a series of optional wi ldcards

resent m both tJees. and create a new wildcard that can .
C capture variable s.ized objects.

.

0 itional wildcards

When a vertex in a tree has no equivalent ·-~, A

in a target tree, we consider the presenœ ~
of the vertex optiooal in our extractor ? • c

~an_d_ ge_n_er_at_e_an_. o_p_ti_on_aJ__vil_· c1_c_arc1_ ._· --~···--·· ··· .. ······ ·~ ·• ?

Figure 9.5: Creation of an ne-pattern accepted by all the pages from the same cluster

3. Single wildcards (o) must consume one sub-tree of the target tree .

4. Plus wildcards (+) must consume at least one sub-tree of the target tree .

5. Option wildcards (?) must consume one sub-tree of the target tree, if it is possible.

6. Kleene wildcards (*) must consume at least one sub-tree of the target tree, if it is

possible .

The HTML pages in the clusters transformed into trees are matched with the different

ne-patterns. For each data matching, these six rules will lead to one of the three edit

operations associated with a cost .

For the replacement operation, if the compared vertices are both non-wildcards and

have the same label, the cost will be O. Or if the vertex in the ne-pattern is a wildcard,

the cost will be O as well. But if the compared nodes are both non-wildcards and have

not the same label, the cost will be infinite, meaning that the matching between these

two trees fails.

For the insertion operation, if there is an ancestor of the current vertex in the target

109

Chapter 9: News extraction using tree edit distance

tree (the HTML page) that can be consumed by a wildcard, the cost is O. Or if the left

sibling of this current vertex is consumed by a KLEENE wildcard (*) or a PLUS wildcard

(+) the cost is also O. Otherwise the cost is infinite.

Finally for the removal operation, if the wildcard of the current ne-pattern 1s an

OPTION (?) or a KLEENE (*) then the cost is 1. If not, it is infinite.

If the final matching cost is not infinite, the ne-pattern accepts the target page. ln this

case, the ne-pattern and the HTML page are traversed in pre-order and for each wildcard

found in the ne-pattern, the text passage in the vertices consumed by the wildcard is

extracted from the HTML page. Figure 9.6 shows a data matching example example.

9.6.4

5:!!J soro ar &
The extract ion re ult
Each wildcard of the ne pattern
consumes a set of ve1tices of the
target tree. Each set of vertices
results in one data-rich objecl.
ln the ex ample below, two
data-rich objects (B C and F)
were ex tracted.

~
~~

i\latcbing the ne 1>attern ,
Each HTML page is converted to tree, and a set of ne patterns 1

is matched against the tree. The first pattern matches '
with cost 1, because il discards its Kleene wildcard.
The second partem matches with O cost and is the selected
ne pattern. The last pattern fai ls to match because there is
no possible mapping for the G vertex.

Figure 9.6: How ne-patterns are matched with Web pages

Data labelling

This step is the only one that does not use the RTDM algorithm . lts objective is to

select from a set of ordered text passages (i .e. the output of the data matching) , the

110

9. 7. Applications

passages ti and tj that correspond to the title and the body of the news being extracted

from the Web page. T o achieve this, simple heuristics are applied to this set of text

passages. They can be defined as a set of T = (t1,p1) , (t2 ,p2), .. . , (tn,Pn) where each

ti is a text passage retrieved by a wildcard and Pi is the vertex position of this wildcard

by a pre-order traversai of the ne-pattern .

The heuristics are rather basic: about the text, the passage elected to be the body of

the news is the longest one with more than 100 words. Further, the passage selected

to be the title is one that has ranges from 1 to 20 words, has a maximum intersection

with a body passage, and is the closest one to the body. The intuition behind the title

selection is that most of the time the title is placed near the body and its terms usually

appear in the news body. These heuristics are here formally stated:

For a given T :

• length(ti) is the number of terms (words) in passage ti;

• ltk n ti l is the number of terms that occur in passages tk and ti;

• ti is a news body iff length(ti) > length(tk) Vk : 1 < k < n , k -=/:- i and

length(tk) > 100;

• tj is a news title iff 1 :S length(tj) :S 20 and ~:~;i1 ~ ~:~;} Vk: 1 < k < l , k -=j:. j

9. 7 Applications

This complex Web news extraction process has been applied in a large experimentation.

4088 HTML pages collected from 35 Brazilian news Web sites have been analysed. Each

output of these pages, i.e. the news extracted, has been manually compared with the

original HTML page. 87.71 % of the news were correctly extracted, while 9.25% were

erroneously extracted and 3.04% were not extracted . Figure 9.7 shows the results of this

application .

111

Chapter 9: ews extraction using tree edit distance

Site
A .noticfa Jœ1w1ll
AOLBras:Jl
Ag .nda Esta.do
Cor io Braz.il n

or io da Bahia
DCI
Dimo de Natal
Diario Grand ABC
Diârio do I\.lru-~ào
Diario Popular
Diârio de Cuiaba
Diâno do Com. BH
E starlo d fvlinas
Estado d Sâo Paulo
FolJha de P :rnam.
FoJhai de S âo Pau1o
Gaze.ta Dig1t:al
Gaze.ra 1\1ercanâl
Hojeem Dia
IDG-Now·
ITWeb
Inv stN \o'S

J ornai da Tarde SP
0 Dfa RJ
OGlobo
Tri buna Santos
Trib ma da Bahia
Trib-.ima da Imprensa
UOL
VaJor On Line

reri.'.la:de On Line
Vox Na ... ·s
Y:ahoo
Ze:roHora.
Total

83.95%
W/.60%
94.90%
7L43o/c
98.15%
96.55%
96.62o/c
100.00%
75.00%
lOllOOo/c
85.26%

92.31%
77.40%
84.33%
91.18%
T/.78%
88.17%
ff7 .01%
90.91%
93.18%
96.88%
95.47%
90.51%
75. '6%
99.35%
75.00%
8Ll o/c
90.63%
74.53%
9L45o/c
8_,6,1%
80.00%
93 .. 64%
83.22%
87 .. 71%

JJ,.58o/c
1 .40o/c
4 . .08%
11.90%
1.85%
0f.0%
0.00%
0.00%
2SOO%
0..00%
12.s :· %

.85%
1.47%

15 1%
1.47%
13.33%
10.75o/c
0.65%
9.09%
2Il%
0 .00 ,
0 .00%
5.66%
22.07%
0 .. 65%
2_,58%

1S.09o/c
9. · %
23.58%
4.27%
13.04%
0 .. 00%
0.91%
16.H%
9.25%

NotExuaClted
A1%

0.00%
1.02%

116.67%
0.00%
1.72
2.90%
0.()1)%

0%
0.00%
1.92%
3.&5%
1.13%
0.46%
7 .3S%
R89o/i
1.08%

12,34%
0.00%
4 .. 5So/c
3.J
4 .5 · %
3.77%
2.07%

09'
.:...4. %
3.77o/t.

0%
1.89 o

4. 7%
4.35%
20.00%
5.45 %
0.67%
3.04

Figure 9. 7: Results for the news extraction process

112

#pag s
81

121
98
119
54
228
206

8
48
85

154
26
177
217

168
225
185
154
66
44
32
329
159
144
300
123
53
J
106
117
22
35
208
149

4088

9.8. Conclusion

9.8 Conclusion

ln this chapter we presented the notions of tree edit distance and mapping used by four

Brazilian research workers that inspired our thesis. Then their uses were explained in

the third section through the Web news extraction task . Experimental results have been

shown in the applications section. This task is the final one in the whole process of data

extraction. lt has to be attentively considered because wrong results coming from the

outputs of the previous tasks have perhaps piled up along the complete process. The

extracted data are now ready for further use by mining agents . This chapter closes the

state of t he art.

113

Part II

News Ripper

115

Chapter 10

Context

Contents
10.1 Introduction . 117

10.2 Our internship . 117

10.3 Major fonctions . 118

10.4 Contents of Part II . 119

10.1 Introduction

We presented in the state of the art different steps that allow extracting information

from the Internet as automatically as possible. Obviously, we could not write a program

that would have covered the whole process. Moreover , the intentions of Debbie Zhang,

the person in charge of us changed during our internship.

We shall first explain how our work has evolved during the internship and where our

project stands in the three steps described in the state of the art . Then we will introduce

the major functions of our program News Ripper and their goals .

The information on how to use the program is at Appendix 1.

10.2 Our internship

At the beginning, we were asked to program an "HTML to DOM tree" parser and a

bottom- up algorithm. The goal was to show with a user-friendly graphie interface the

117

Chapter 10: Context

results of a bottom- up mapping between two DOM trees. A bottom-up mapping between

two trees consists to find identical nodes in both trees from the leaves to the root .

One month later , we were asked to give up the extraction of news articles using the

bottom- up algorithm, in order to concentrate on a "top-down" algorithm that would

be useful to cluster pages before applying the bottom-up mapping. ln the meanwhile,

as the trees were really large , we adapted the parser to lighten the DOM trees (i .e. to

reduce their size) in order to improve both effectiveness and efficiency of the clustering

algorithm .

We spent a lot of time to design the graphie user interface. As for the bottom-up

mapping, we had to graphically show the results of the top-down algorithm.

10.3 Major functions

As written above, we do not cover the whole process presented in the state of the art .

We assume the first step has been done, i.e. that pages have been downloaded from

relevant Web sites. Both first chapters presented in the state of the art, i.e . the web

sites classification and the web pages classification are not covered by News Ripper.

Our program actually operates on the following steps. lt features the transforming of an

HTML source to a layout tree with several options, the clustering of similar pages and

the extraction of the news article.

Our program is both useful and educational. lt allows a user to cluster pages without

any graphie results, so that the running is as fast as possible. On the other hand , if a

user aims at understanding the results, he can easily see on the layout trees how the

algorithms have been applied .

At the end of our internship, the major functions of our program can be summarized as

follows:

• A graphie user interface allowing the management of HTM L files . HTM L files can

be opened , edited , saved , closed,etc. A project (a set of all opened HTML files

and the results of their clustering) can be opened and saved . The purpose is to

118

10.4. Contents of Part II

make the handling of numerous files easier and to store the results of a clustering.

(Appendix 1)

• A graphie user interface allowing to download the source code of a page directly

from the Internet . (Appendix 1)

• A graphie user interface to show layout trees. (Appendix 1)

• An improved HTML to layout tree parser which manage to remove useless tags.

(Chapter 11)

• A graphie user interface to select the tags to be considered during the parsing

(Chapter 11)

• A layout tree to HTML parser. (Chapter 11)

• A top-down algorithm used to cluster similar pages. (Chapter 12)

• A user friendly interface to show on layout trees the results of a top-down mapping.

(Chapter 12)

• A graphie user interface to show the results of a clustering. (Chapter 12)

• An algorithm for extracting the news articles of pages from the one cluster. (Chap­

ter 13)

• A user friendly interface to show the results of the news extraction . (Chapter 13)

10.4 Contents of Part II

As we explain in the first chapter, an intuitive approach , we shall introduce the three

successive steps that allow to extract news articles from Web pages:

• The parsing of an HTML source in order to build a tree that represents the layout

of the HTML page (Chapter 11).

• The clustering of similar pages (i .e . similar layout trees) t hanks to a top-down

mapping algorithm (Chapter 12) .

• The extraction of news articles thanks to a an algorithm which compares the leaves

of similar layout trees inside a cluster . (Chapter 13)

119

Chapter 11

Smartly building layout trees

Contents
11.1 Introduction 122

11.2 Why parsing HTML is hard . . 122

11.2.1 Different versions of HTML 122

11.2.2 "Badly" formatted text 122

11.2.3 HTML parsers available on the Internet . 123

11.3 Lightening the HTML source 125

11.3.1 Main idea 126

11.3.2 Carefully choose the tags to select 126

11.3.3 Tables . 127

11 .3.4 Lists 127

11.3.5 Objects . . 128

11.3.6 HEAD tags 129

11.3.7 Text management 129

11.3.8 Miscellaneous . . 130

11.3.9 Headings 131

11.3. lOPhrase elements 131

11.3.11 Font styles 132

ll .3.12Forms . 132

11.3.13 Scripts . . . 133

ll.3.14Frames . . 133

11.4 From the source to the layout tree 135

11.4.1 P seudo-code of t he parser 136

11.5 From the layout tree to HTML 136

11.5.1 P seudo-code of the algorithm 137

11.6 Limits of the parser . 138

11. 7 Conclusion . 139

121

Chapter 11: Smartly building layout trees

11.1 Introduction

Once the relevant pages have been extracted from the Internet , we need to build a tree

structure (see chapter 4) from the source code in order to be able to cluster similar

pages . The parsing must be done as quickly as possible since there are lots of trees to

build.

We shall see why parsing HTML is not so easy and how the parsing can be improved by

removing useless information on the Web pages. Actually, if the pages are first "cleaned

up", the size of the generated trees is reduced . Then , the algori t hms that are applied

on the trees to cluster the pages give better and faster results . We shall see why some

HTML information is useless and the consequences of its removal.

11.2 Why parsing HTML is hard

11.2.1 Different versions of HTML

Parsing an HTML file is not an easy task [24] . First of all , there are many versions of

HTML defined by the W3C (HTML 2.0, HTML 3.2, HTML 4.0, HTML 4.01 , XHTML

1.0, XHTML 1.1 , XHTML 2.0,) .

Our parser has been designed to handle HTML 4.01 documents because it is the most

spread format. The parser can recognize the 90 different tags defined in the HTML 4.01

specification . ln most cases, it works on other HTML versions and on XHTML as well .

11.2.2 "Badly" formatted text

The second issue is the invalid or badly formatted text. Lots of pages on the Internet

contain structural errors that usual Web browsers can handle. The parser should manage

to cope with those errors as well; it should "repair" the invalid pages before transforming

them into a tree. Our parser can deal with several structural mistakes but we can not

guarantee that every malformed page that is readable on a Web browser could be parsed

without any errors.

122

11.2. Why parsing HTML is hard

Another issue is the possibility of optional end tags in the HTML code. Sorne tags

such as <P>, , <TD> can be used with or without the </P>, , </TD> end tags .

Moreover , some tags may or may not overlap. As this is allowed by the W3C , we had to

get by with these complications. The parsing of an HTM L file is then harder than the

one of an XML file . With an XML file , the structure definition is very stringent, so that

the file can not be badly formatted . Sorne famous programs like JTidy are designed to

transform a badly formatted HTML file into an XHTML file , a format between HTML

and XML where ail tags have to be properly closed . As we wanted our parser to be as

efficient as possible, it would have been a waste of time to "fix" each page containing

optional end tags before constructing the tree, we needed to parse and repair the file

simultaneously.

11.2.3 HTML parsers available on the Internet

A few libraries to help program HTML parsers are proposed on the Internet . Most of

them have bugs or restricting features that we have faced before finding the good one.

As we spent a lot of time to experiment various parsers, we think it can be useful to

explain the issues we had with each tested parser .

JavaCC HTML Parser by Quiotix Corporation

Can be found at http:j / www.quiotix.com/ downloads/ html-parser/.

This parser does not support document structure, which means it can not break down

an HTML page into blocks to extract its elements 1 . The parser recognizes start and

end tags and calls the functions defined by the user to handle them . So the user has

to write functions to cope with the discovery of a start tag or an end tag. That way,

the parser can not check if the document is badly structured : if tags are missing, the

program written by the user above the parser must handle them itself.

Moreover, a bug has been discovered . The attributes of an HTML field, may or may not

be quoted, and if they are quoted, either single or double quotes may be used . Quiotix

1 An element is defined by a start tag < ... >, an end tag </ ... > and ail t he content in between

123

Chapter 11 : Smartly building layout trees

parser does not manage to parse unquoted or single quoted attributes with some tags.

lt seems that the parser was designed for former versions of HTML.

Sun Java HTML Parser

This is the parser that cornes standard in the JDK (packagejavax.swing.text.html.parser).

lt supports document structure and is really high-quality. lt works by parsing first a DTD,

a grammar that defines the HTML version , so that it seems capable to work with every

version of HTML. The issue is that the JDK only cornes with HTML3.2 DTD, which is

unsuitable. The HTML 4.01 DTD can be found on W3C, but the DTD used by JDK

needs to be in the format of a "bdtd" file, which is a binary format used only by Sun

Microsystems in this parser implementation . There are many requests for a 4.01 bdtd

file in forums or newsgroups on the Web, but they all remain unanswered . Building it

from scratch is not so easy, so we need to wait for Sun Microsystems to write it.

J ericho HTML Parser

Jericho [25] is the best HTM L parser we found. lt has been written by a professional

who was bored with facing the bugs of all the HTML parsers he had ever tested . Jericho

HTML Parser is a simple but powerful Java library allowing both analysis and manip­

ulation of an HTML document. Ali classes and methods have been comprehensively

documented.

lt supports document structure since it works by finding all the elements in a given page.

lt can reproduce verbatim any unrecogn ized HTML in a bid of suiting future versions.

The library distinguishes itself from other HTML parsers because no parse tree of the

entire document is ever generated . ln this sense Jericho is strictly speaking not a true

parser because it does not infer a grammar as usual parsers do. ''The document source

text is searched on/y for the markup relevant to the current operation" [25]. This allows

the library to analyse and modify documents containing incorrect or badly formatted

HTML. Most other parsers can only handle contents that they are explicitly programmed

to accept.

Jericho can also recognize special tags, apart from HTML 4.01 specification : ASP, JSP,

124

11.3. Lightening the HTML source

PSP, PHP and Mason server tags are explicitly recognized . The library then allows any

of these segments to be ignored when parsing the rest of the document so that they do

not interfere with the HTML syntax.

11.3 Lightening the HTML source

Let us analyse the definition of HTML on Webopedia :

"Short for HyperText Markup Language, the authoring language used to

create documents on the World Wide Web [...). HTML defines the structure

and layout of a Web document by using a variety of tags and attributes [.. .).

There are hundreds of tags used to format and lay out the information in a

Web page."

First, we should remember that the objective is to cluster similar pages, i.e . pages that

have a common general layout . If we look at two Web pages, they will be considered as

similar if their global structure is common (how the blocks are divided ; how the menus ,

the main text, the images, .. . are positioned) . Not all the tags are responsible of this

general arrangement: some tags are designed to build the "block- level" layout of the

Web page, while others are used to format specific elements such as text ("inline-level") .

Moreover, a few tags are not designed to lay out Web pages but to give information that

is not displayed . For example, <div>, <table>, <t r > are block-level tags, <a >, , <i >

are inline-level tags , and <meta> , <address> tags give information that is not displayed .

As we target at extracting the contents of a news article, independently from its format­

ting , we do not need to keep tags that format only text . More generally, all the tags that

do not define the general structure of the page can carefully be considered as useless.

The HTML code sets up the page layout from general to specific features . If we look at

the DOM tree of an HTML page, nodes close to the root are the tags that define the

general arrangement while nodes close to the leaves concern specific format features .

Then , if we decide to remove those inline-level tags, we considerably reduce the amount

of nodes in deep levels of the tree without changing block-level nodes close to the root .

As t he top-down algorithm used to cluster similar pages works by comparing vertices

125

Chapter 11: Smartly building layout trees

between two trees from the top to the bottom , the purging of vertices close to the leaves

hardly affects the results. These DOM trees which contain only the tags responsible of

the general layout are called "layout trees" .

11.3.1 Main idea

As said above , the purpose of reducing the amount of nodes in the generated tree is

twofold :

• To improve the efficiency of the mapping algorithms.

• T o gather parts of text .

"To reduce the amount of nodes" actually means 'To ignore or remove some tags during

the parsing" . We need to carefully choose the tags to be ignored or removed . The main

idea can be stated as follows :

• The tags that define the arrangement of the blocks (block-level), 1.e. how the

page is displayed, must be kept . We need them to cluster similar pages.

• The tags that define the formatting of text (inline-level) , i.e . how the text 1s

displayed , can be ignored , which implies that the text inside the element is kept .

• The tags that do not enclose text, that have no (or slightly) effects on the layout

(which do not define the arrangement of the blocks), can be removed with their

contents .

lt is quite important to understand that "ignoring tags" means removing both start

and end tags without removing the text in between. The goal is to get rid of the text

formatting although keeping the text itself.

The objective is a bit paradoxical : on the one hand we use the "block-level" tags to

cluster similar pages and on the other hand we ignore the "inline-level" tags to get rid

of t he text formatting .

11.3.2 Carefully choose the tags to select

We analyzed each of the 90 tags presented in the HTML 4.01 specification made by the

World Wide Web Consortium (www.w3.org) [26) in order to classify the HTML tags into

126

11 .3. Lightening the HTML source

one of the three classes presented above. As this choice is arbitrary, it must be possible

for a user to select himself t he tags he wants to keep or ignore. The selection that we

shall present is a default selection that the program loads when it is launched.

However, since we could not display a frame allowing to (un)select 90 tags, we gathered

some tags into generic names (see figure 11 .1).

Notice that tags <HTML>, <HEAD> and <BODY> are automatically selected. (D) means that

the tag is deprecated.

11.3.3 Tables

Tables are one of the most used structures to tailor the layout on a page. We chose to

keep all the tags linked to tables.

TABLE Keep Delineates a table

THEAD Keep Delineates a row group in the head part in a table

TBODY Keep Delineates a row group in the body part in a table

TFOOT Keep Delineates a row group in the foot part in a table

TR Keep Delineates a row in a table

TD Keep Delineates a cell in a row

TH Keep Delineates a cell containing a header in a row

CAPTION Keep Contains the caption of the table

COL Keep Delineates a column in a table

COLGROUP Keep Delineates a column group in a table

ln order to show a lightened tag selection frame, we grouped the following tags like this:

• (de)select TABLE : keep or remove tables in the layout tree .

• (de)select row / col grou ps : keep or ignore THEAD' TBODY' TFOOT' COL' COLGROUP.

• (de)select TR: keep or ignore tables rows.

• (de)select TD, TH : keep or ignore table cells.

• (de)select CAPTION : keep or remove table caption .

11.3.4 Lists

Lists are also a usual way to structure information . They are often utilized to structure

menus in the left part of a news Web site . They can be block-levels and a fortiori

127

Chapter 11 : Smartly building layout trees

inline-levels.

A more seldom kind of list are the definition lists. "Definition lists vary on/y slightly from

other types of lists in that list items consist of two parts: a term and a description . The

term is given by the DT element and is restricted ta inline content. The description is

given with a DO element that contains block-level content." [26] Tags <DIR> and <MENU>

are deprecated and often replaced by but the parser should handle them anyway.

OL Keep Delineates an ordered list

UL Keep Delineates an unordered list

LI Keep Delineates a list element

DL Keep Delineates a definition list

DT Keep Delineates the definition term

DO Keep Delineates the definition description

DIR (D) Keep Designed to be used for creating directory lists
MENU (D) Keep Designed to be used for single column menu lists

ln the tag selection frame, it gives:

• (de)select UL, DL : keep or remove lists.

• (de)select LI : keep or ignore lists elements.

• (de)select DD : keep or remove definition lists.

• (de)select DT, DD : keep or ignore definition lists elements.

• (de)select DIR, MENU: keep or remove directory and menu lists .

11.3.5 Objects

Objects do not contain text but they play a large role in the page layout.

OBJECT Keep

IMG Keep

APPLET(D) Keep
IFRAME Keep

PARAM Remove

lncludes an object. Object is a generic name for
every media (image, sound , video, applet,etc.)

lncludes an image

lncludes an applett
(for lnline Frame) lncludes a frame in an "inline­
level''
Contains a "non-displayed" parameter used for the

<Object> tag

128

11.3. Lightening the HTML source

MAP Remove Specifies a "non-displayed" map that allows an

object to be split in several areas so that each

area interacts differently with the user

AREA Remove Specifies a "non-displayed" image map area

"The /FRAME element allows authors to insert a frame within a black of text. lt allows

you to insert an HTML document in the middle of another." [26] See also section 11 .3.14

ln the tag selection frame, the first four items are displayed and PARAM, MAP and AREA are

put together in "Objects parameters" . Deselecting an object means removing it .

11.3.6 HEAD tags

Sorne tags are enclosed only in the HEAD tag and contain information on the page.

TITLE

META

STYLE

LINK

BASE

ADDRESS

Keep Contains the title to appear in the window. News

Web sites sometimes show the title of the article

at this place

Remove Contains "not-displayed" information about meta­

data

Remove Contains "not-displayed" information about the

style sheets

Remove Contains " not-displayed" information about the

pages linked by this site

Remove Allows to specify a document's base path for the

URL 's

Remove Contains "not-displayed" information about the

author of the page

The same structure is kept in the tag selection frame. If title is deselected , the whole

title element is removed .

11.3.7 Text management

p

Q

Keep

Ignore

Represents the inline- level paragraph

Used for short quotations . Puts quotation marks

around the enclosed text

129

Chapter 11 : Smartly building layout trees

PRE Ignore For Pre-formatted Text . Means that the browser

should render the text verbatim

BR Remove Forces line break

INS Ignore lndicates the new text

DEL Remove lndicates the old text

"JNS and DEL are used to markup sections of the document that have been inserted

or deleted with respect to a different version of a document (A Sheriff can employ

3< /DEL><INS>5</INS> deputies}. " [26]

If P is kept , every paragraph of the news article will be stored in a separate leaf. If it is

ignored, all the paragraphs of the article will be put together in the same leaf (considering

that tags inside the paragraph element are a lso ignored) . We shall see later how the

extraction algorithm takes into account the nodes <P>, <Hl> ... <H6> and <TITLE> in order

to ensure a basic layout in the extracted text.

As we do not interpret text , the text inside a <PRE> element, will keep its original format

with or without the <PRE> tags.

11.3.8 Miscellaneous

Sorne tags were too specific and we had to create a "Miscellaneous" class.

A

DIV

SPAN

Blockquote

BDO

HR

Ignore

Keep

Ignore

Keep

Ignore

Keep

lndicated the enclosed inline-element is an hyper­

text link

Defines its content to be block-level but imposes

no other presentational idioms on the content

Defines its content to be inline- level but imposes

no other presentational idioms on the content

Used for long quotations (block-level content) .

Browsers generally indent the text inside BLDCK­

QUDTE

Forces to ignore the bi-directional algorithm that

allows arabic text to be read from right to left

Draws an horizontal rule

DIV and SPAN offer a generic mechanism for adding structure to documents . They are a

good example to show how to handle a block-level or an inline- level tag.

130

11.3. Lightening the HTML source

Links in text are ignored since their formatting is irrelevant for a plain text extraction .

However, in some cases such as "See also this" where this is a link to another article for

example, it is obvious that the extracted text will be useless.

11.3.9 Headings

Hl...H6 Keep lndicates the text is a level (1-6) heading

There are six levels of headings available in HTML from <Hi> to <H6> . As they are

inline- levels, we normally should ignore them . However, it is better to keep them in

a separate node, so that they are not melt with the paragraphs (if they are actually

headings belonging to the news article) .

11.3.10 Phrase elements

Phrase elements are inline- level tags that add structural information to text fragments.

EM

STRONG

CITE

DFN

CODE

SAMP

KBD

VAR

ABBR

ACRONYM

Ignore

Ignore

Ignore

Ignore

Ignore

Ignore

Ignore

Ignore

Ignore

Ignore

lndicates emphasis

lndicates stronger emphasis

Contains a citation or a reference to other sources

lndicates that this is the defining instance of the

enclosed term

Designates a fragment of computer code

Designates sample output from programs, scripts,

etc.

lndicates text to be entered by the user

lndicates an instance of a variable or program ar­

gument

lndicates an abbreviated form (e.g. WWW,

HTTP, URI, Mass., etc.)

lndicates an acronym (e.g. WAC, radar , etc.)

Phrase elements are designed to give information on the text . Browsers or other Web

agents can interpret them freely. ln our case, we do not want to interpret any form of

text and we simply ignore them .

131

Chapter 11: Smartly building layout trees

11.3.11 Font styles

This class could also be considered as "text management" but we preferred keeping the

structure of the W3C's HTML 4.01 specification as much as possible.

FONT (D) Ignore Selects the font for the enclosed content

BASEFONT Ignore Selects a default font for the document

SUP Ignore Puts the text in superscript

SUB Ignore Puts the text in subscript (ex: H₂O)

TT Ignore Renders as teletype or monospaced text

1 Ignore Renders as italic text style

B Ignore Renders as bold text style

BIG Ignore Renders text in a large font

SMALL Ignore Renders text in a small font

STRIKE (D) Ignore Render strike-through style text

S (D) Ignore idem STRIKE

U (D) Ignore Renders underlined text

ln order to lighten the tag selection frame, each of the Headings, Phrase elements and

Font styles sections became a generic item .

11.3.12 Forrns

'An HTML form is a section of a document containing special elements called contrais

(checkboxes, radio buttons, menus, etc.), and labels on those con trois. Users generally

"complete" a form by modifying its con trois (entering text, selecting menu items, etc.),

before submitting the form to an agent for processing. " [26]

There are many tags involved with forms : <INPUT>, <BUTTON>, <SELECT>, <OPTGROUP>,

<OPTION>, <TEXTAREA>, <ISINDEX>, <LABEL>, <FIELDSET> and <LEGEND> . We did not decide

to list all of them but just to create a check box "select forms". If the check box is

deselected, the form and its content will be removed . As a news article is not likely

to be inside a form , the entire form can be removed but this can have an impact on

the page look . There is often a little form with a text field and a button designed to

search for articles through the Web site . We chose to select forms by default in the tag

selection frame because we wanted to keep all the block-level elements for an accurate

comparison between general layouts.

132

11 .3. Lightening the HTML source

11.3.13 Scripts

"A client-side script is a program that may accompany an HTML document or be em­

bedded direct/y in it. The program executes on the client 's machine when the document

loads, or at some other time such as when a link is activated. HTML 's support for scripts

is independent of the scripting language."

Scripts , such as the famous javascript, aim at giving pages a better look or at modifying

the contents of the document dynamically, allowing more interaction with the user. As

they are written in various languages, it is impossible to handle them . We actually

compare the layouts of pages without having run the scripts. However, if two pages are

similar considering their look in a Web browser that handles scripts, they should be as

similar if the scripts are not executed on both pages.

Scripts often represent hundreds of lines in an HTML source. Since we are not able to

handle them , we decided to remove tags <SCRIPT> and <NOSCRIPT> with their contents by

default . See also section 11.6.

11.3.14 Frames

"HTML frames allow authors to present documents in multiple views, which may be

independent windows or subwindows (. . .) An HTML document that describes frame

layout (called a frameset document) has a different makeup than an HTML document

without frames. A standard document has one HEAD section and one BODY. A frameset

document has a HEAD, and a FRAMESET in place of the BODY . " [26]

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"
"http://www.w3 . org/TR/html4/frameset .dtd" >

<HTML>
<HEAD>

<TITLE>A frameset document</TITLE>
</HEAD>
<FRAMESET cols="33%,66%,33%">

<FRAME src="contents_of _frame1 .html">
<FRAME src="contents_of _frame2 .html ">

</FRAMES ET>
</HTML>

133

Chapter 11: Smartly building layout t rees

If a page is structured using frames, the parser does not go further through the source

referred by the attribute src=" . .. " . The layout tree is then limited to nodes representing

the FRAMESET and FRAME tags, so that the news extraction fails . The tag selection frame

has a check box the user can select if he wants the "frameset tree" to be built anyway.

See also section 11.6. Finally, the tag selection frame is presented in figure 11 .1

· · · · Tags to select

HTML, HEAD and BODYtags are automatically selected

Comments and PHP tags are automatically removed

Tables Lists Objects

0~ABLE! 0 UL,OL 0 0BJECT

0 Row!Col groups 0 U 0 1MG

0 TR 0 DL 0 APPLET

0 TD,TH 0 DT,DD 0 1FRAME

0 CAPTION 0 DIR,MENU D Parameters

Text management Headtags iscellaneous

0 P 0 TITLE 0 A

D o □ META 0 DIV

□ PRE □ STYLE 0 SPAN

□ BR 0 ADDRESS 0 BLOCKQUOTE

O INS 0 UNK 0 HR

□ DEL □ BASE 0 BDO

T ext Formatting Advanced HTML

0 Headings 0 Forms

0 Font styles □ scripts

D Phrase Elements 0 Frames

.__ __ s_el_ect_ A_II _ __.I I Default Selection j I __ D_e_s_e1_ect_ A_11 _ _,

OK Cancel

Figure 11.1 : The tag selection frame with the default selection

134

11.4. From the source to the layout tree

11.4 From the source to the layout tree

Once a page has been cleaned up, the construction of the layout tree is rather easy.

Thanks to a library provided by the Jericho parser: public java. util. List findAllElements ()

that returns a list of all the elements enclosed between the begin and the end of the

source.

The class Element represents an HTML element (as defined by the W3C, HTML 4.01

specifications , 3.2.1), which encompasses a StartTag, an optional EndTag and all the

contents in between.

If the start tag has no corresponding end tag:

• If the end tag is optional, the end of the element occurs at the start of

the next tag that implicitly terminates this type of element.

• If the end tag is forbidden , the element spans on/y the start tag.

• If the end tag is required, the source HTML is invalid and the element

spans on/y the start tag. No attempt is made by this library to determine

how user agents might interpret invalid HTML. {25}

The method f i ndAllElements O works in a recurs1ve way. lt fetches the first element

(logically between <html> and </html>) .Then it fetches the first element enclosed in the

element html (logically between <head> and </head>) . lt goes on further by searching the

first element enclosed in the element head and so on . When an element does not have

any enclosed element, it goes one level up and searches for a second enclosed element

and so on.

This mean of searching all elements corresponds to a preorder traversai in the HTML

source. We can thus write a recursive algorithm that builds the layout tree as the Jericho

parser finds the elements.

135

Chapter 11 : Smartly building layout trees

11.4.1 Pseudo-code of the parser

Main function

Create an iterator for ail the elem ents found by jericho . findAllElements O;

Get the first elem ent (normally <html> . . . </html>) ;

Create an empty node called currentN ode;

Call the recursive function parse (el em ent);

Return the root node.

Recursive function

par se (elem ent)

11.5

Create a new node with the start tag of elem ent;

Add this node as a chi Id of the currentN ode;

currentN ode := new node;

WH ILE (elem ent encloses the next elem ent in the iterator) DO

Get this n extElem ent;

Extra et text stored between the start tag of elem ent ...

.. . and the start tag of nextElem ent;

par se(nextElem ent);

END WHILE

IF (there was an enclosed element)

TH EN Extra et text stored between the end of the enclosed element ...

... and the end of elem ent;

ELSE Extract text stored between both start and end tags of elem ent;

currentN ode := currentN ode.getParent() (the currentN ode is set on its parent).

From the layout tree to HTML

We shall see later that running the top-down algorithm on two trees T1 and T2 outputs

a thi rd tree TopDownTree that represents the common nodes between T1 and T2 .

136

11.5. From the layout tree to HTML

The more T1 and T2 are similar, the bigger T opDownTree will be. As TopDownTree

symbolizes the corn mon general layout of T1 and T2 , it can be interesting to do a "reverse

parsing", i.e, parsing the TopDownT ree to transform it into HTML code, so that it

can be opened by an Internet browser. Notice that this function is of no use for the

clustering of Web pages but can intuitively help understand the concept of top-down

mapping and similarity between page layouts.

11.5.1 Pseudo-code of the algorithm

Main function

Open a String Buffer to write text;

Cali parseTree with the root node of T opDownTree;

Write the String Buffer in a file .

R ecursive function

par seTree (currentN ode)

Get the contents of currentN ode;

(tag name + attributes if the node is an HTML tag)

(text if the node represents plain text)

Append the contents to the String Buffer;

FOR all the children of the currentNode DO

par seTree(child) ;

END FOR

IF currentNode is a Start Tag

THEN IF this Start Tag requires an End Tag

ENDIF

THEN Create an End Tag corresponding to the Start Tag ;

Append this End tag to the String Buffer;

ENDIF

137

Chapter 11: Smartly building layout trees

11.6 Limits of the parser

Our parser is not perfect . We shall present here three major limits and their possible

issues.

Comparing tag names only

We chose to cluster similar pages by comparing tag names in order to build a layout tree

that represents the structure of a page. We cou Id also analyse the attributes of the tags

which can allow a more accurate comparison between tags. If attributes are replaced by

style sheets (.css), the latter should be parsed as well.

Creating a layout tree is not the only solution to detect similar pages. For example,

analysing style sheets makes it possible as well.

Scripts

lt is well-nigh impossible to cope with the code inside the scripts tags 1n order to

understand their effects on the page layout .

Moreover, if a script is responsible of writing the news article, the latter does not appear

in the layout tree. Let us consider the following example:

<HTML>

</HTML>

<HEAD>
<TITLE>News in script</TITLE>

</HEAD>
</BODY>

<SCRIPT type="text/javascript">
document.write("<p><i>American air force bombed Baghdad<i>")

</SCRIPT>
</BODY>

As the article is written by the javascript function write{), it will not appear in the

layout tree as the scripts are deselected by default . Even if scripts were selected, a node

document.write("<p><i>American air force bombed Baghdad<i>") would be created .

138

11. 7. Conclusion

Frames

We saw in section 11 .3.14 that a frameset document will be limited to FRAMESET and

FRAME. The algorithm could go further : it could fetch the name of the HTML file inside

the attribute "src" , download this page and build its layout tree. The layout tree of the

framed page could be added as a chi Id of the related node <FRAME> in the original layout

tree.

11.7 Conclusion

We saw that parsing HTML is not an easy task . Despite all the efforts, the parser is far

from perfect. We saw that some limits can be improved , such as parsing the attributes,

style sheets or going further through the frames . We analysed each of the 90 tags

specified by the transitional.dtd of HTML 4.01 in order to define a default tag selection

which aims at improving results of the further algorithms. The main idea of the default

tag selection is to keep the block-level tags, to ignore inline-level tags and to remove

tags that are not involved in the layout of pages.

The parser can be run in two directions: from an HTML source toits related layout tree

or from a layout tree to the HTML source it represents.

We defined in this chapter the structure type that we shall use to cluster similar pages

and extract news articles . Ali the algorithms covered in both next chapters rely on the

trees we introduced here.

139

Chapter 12

News pages clustering

Contents

12.1

12.1 Introduction

12.2 The fast top-down mapping

12.2.1 P seudo-code of t he fast top-clown algorithm

12.2.2 Example

12.2.3 Limits of the fast top-clown mapping .

12.3 The fine top-down mapping

12.4 Pseudo-code of the fine top-down algorithm

12.5 News pages clustering

12.5. 1 Similarity rate and similarity threshold

12.5.2 Impact of the tag selection

12.5.3 The clustering algorithm .

12.5.4 Application . .

12.6 Conclusion

Introduction

. 141

142

142

143

145

147

149

. 149

150

150

152

154

. 157

The approach we have developed for finding and extracting data of interest from Web

pages is based on the analysis of the structure of target Web pages. More precisely, by

evaluating the structural similarities between pages in a target site we are able to perform

tasks such as grouping together pages with similar structure to form page clusters and

finding a generic representation of the structure of the pages within a cluster .

141

Chapter 12: News pages clustering

Various mappings have been described in chapter 9. To identify similar pages, we use

a top-down mapping that finds the common nodes between two layout trees from the

root node to the leaves . We shall see that we actually use two top-down mappings:

• A fast mapping: The algorithm is very simplistic and aims at efficiency but do not

manage to avoid mistakes.

• A fine mapping: The algorithm is more complicated and much slower but gives

better results.

Afterwards, we shall show how clusters are created thanks to the mapping results and how

t he tag selection affects those results . We shall conclude with an example of clustering

with original news Web pages.

12.2 The fast top-down mapping

12.2.1 P seudo-code of the fast top-down algorithm

Input : T1 and T2 , both trees to map.

Output: TopDownTree , the fast top-down mapping between T1 and T2 .

funct ion fa stMapping (T1 , T2)

Get the root node of T1 , rootT1 ;

Get the root node of T2 , rootT2 ;

IF (rootT1 == rootT2)

TH EN Create the root node of topDownTree with rootT1 ;

mapChildren (rootT1 rootT2);

ELSE STOP.

fu nct ion mapChildren (node 1 , node2)

Get the array of children of node1 , children1 [] ;

Get the array of children of node2 , children2 [] ;

FOR (int i = O; i < children1.length; i + +) DO

Get the child at children1 [i] , child1 ;

142

12.2. The fast top-down mapping

IF (i < children2 .length)

THEN Get the child at children 2 [i] , child2 ;

IF (child1 == child2)

ENDIF

ENDFOR

TH EN Add child1 to topDownTree;

mapC hildren (child1 , child2);

ELSE Break;

As we can see, the fast top-down mapping algorithm is rather simple. lt works by

comparing the children of current nodes from left to right recursively and by adding

common nodes to TopDownTree.

The top-down mapping algorithm gives as output the "top-down tree" . This tree is

actually not the biggest common part between the trees T1 and T2 . As the matching

between common children stops as soon as different children are found, children that

could have been identical after this mismatch are ignored (see section 12.2.3) .

12.2.2 Example

So as to understand properly the top-down mapping algorithm here follows a straight­

forward example. We have downloaded the original Web site www.perdu.com and con­

sidered its HTML source code (see figures 12.1 & 12.2). ln order to display correctly

the layout trees, perdu.corn has been taken as key example on purpose for its simplicity.

lt is indeed impossible to show the layout tree of a news Web page counting thousands

of nodes like a news page from the CNN Web site (www.cnn.com).

As you can see in figure 12.1 , this Web site is very elementary. The template of the Web

page is basic and the HTML source code very limited . The second layout tree we shall

take for our example is the same Web page but slightly changed : the element <h2>Pas

de panique, on va vous aider</h2> in the HTML source code has been removed . This

leads to a new Web page of www.perdu .com without the sentence "Pas de panique, on

143

Chapter 12: News pages clustering

Perdu sur Internet?

Pas de panique, on va vous aider

*<-----vous êtes ici

Terminé Poste de travail

Figure 12.1: the Web page www.perdu.com

va vous aider" in the middle of the page; and to a new corresponding HTML source

code (see figures 12.3 & 12.4).

<html>
<head>

<title>
Vous Etes Perdu?

</title>
</head>
<body>

<h1>Perdu sur Internet?</h1>
<h2>Pas de panique, on va vous aider</h2>
<pre> *<---- - vous êtes ici</pre>

</body>
</html>

Figure 12.2: HTML source of www.perdu.com

As we have the Web pages we want to map and their corresponding HTML source code,

we are now able to transform them into layout trees thanks to our program through the

HTML parsing. Figure 12.5 shows how the trees are actual ly displayed in our program .

Tree perdu1 corresponds to the origina l Web page of www.perdu .com and tree perdu2

to the slightly changed Web page of t he same Web site (figure 12.5) .

144

12.2. The fast top-down mapping

Perdu sur Internet?
* <-----vous êtes ici

Terminé

Figure 12.3: Modified version of www.perdu.com

<html>
<head>

<title>
Vous Etes Perdu?

</title>
</head>
<body>

<h1>Perdu sur Internet?</h1>
<pre> *<-----vous êtes ici</pre>

</body>
</html>

Figure 12.4: Modified source code of www.perdu. com

The next operation is the top-down mapping properly speaking. Both trees perdu1 and

perdu2 are taken as input of the top-down mapping algorithm . This one identifies the

common part of both trees and gives as output the top-down tree (see figure 12.6).

12.2.3 Limits of the fast top-clown mapping

First the fast top-down algorithm is too restrictive because it only tries to match common

nodes from left to right and stops when a mismatch occurs. ln figure 12.6, both <pre>

elements on the right are ignored a lthough they are identical. If we consider the Web

145

Chapter 12: News pages clustering

htm.l htm.l

~ ~
head body head body

! ~ ! ~
ti tle hl h2 pi:e title hl pi:e

! ! ! ! ! ! !
Vous Pei:du Pas d * <-- Vous Pei:du * <--

Figure 12.5: perdu1 and predu2 trees

htm.l htm.l

~ ~
head bod head body

! ! ~
title h2 pi:e ti tle hl pi:e

! ! ! ! !
Vous P Pas d * <-- Vous * <- -

Figure 12.6: The common part of perdu1 and perdu2 (orange)

pages as they are displayed (see figures 12.1 & 12.3) , we can consider that the bottoms

of both pages are similar. The presence of the extra title "Pas de panique, on va vous

a ider" does not affect the layout below it . So that we should try to match all the common

ch ildren when we are analysing two nodes instead of matching t hem from left to right .

Second , the fa st top-down algorithm can make some mistakes. To understand an exa mple

of mistake , let us consider figure 12.7. On the right tree, an extra <table> fool s t he

a lgorithm which does not match the corresponding table and drops a large set of common

nodes.

Finally, the output of fastMapping (T1 , T2) can be different from the output of

fastMapping (T2 , T1) .

We need to improve the fast top-down algorithm by comparing all the children whatever

146

12.3. The fine top-clown mapping

their position and by avoiding matching "noncorresponding tags" .

body

~
hl table hl table

! ~ ! ~
Perdu tr tr Perdu tr tr

! ! ! !
td td oui td td

! ! ! !
Pas de On va Pas de On va

Figure 12. 7: Limits of the fast top-down algorithm

12.3 The fine top-clown mapping

The main idea is to consider nodes according to the size of the children subtrees. lnstead

of comparing only the children names, the fine top-down mapping takes the size of the

subtrees into account in a bid to avoid mistakes. The children are not treated from left

to right ; they are sorted in descending order of the size of their subtree. Let us explain

with an example: consider figure 12.5 and let us assume we are treating the body node.

lnstead of matching children Hi, TABLE, TABLE from left to right , we first sort them

considering their subtrees. ln the left tree , subtrees of Hi and TABLE count respectively 2

and 7 nodes. ln the right tree, subtrees of Hi, the first TABLE and the second TABLE count

respectively 2, 3 and 7 nodes . The subtrees are sorted in descending order, so that the

children can be represented like this:

• Left tree , node body, children = (TABLE-7, TABLE-3, Hi-2)

• Right tree, node body, children = (TABLE-7 , Hi-2)

The algorithm first tries to match TABLE and TABLE. As it works, it tries to match TABLE

(the next one) and Hi, which fails. Since TABLE has a bigger subtree than Hi, the algorithm

147

Chapter 12: News pages clustering

searches for an instance of TABLE in the second tree , which fa ils. Finally, it tries to match

Hi with Hl, which succeeds. Notice that this example was intended for explaining how

to handle a set of children . The algorithm actually works recursively when a matching

is found, so that normally, after having compared both first TABLE, it goes recursively to

both TR nodes, then TD nodes and so on .

Thanks to this technique, the probability of matching noncorrespond ing nodes is reduced ,

especially when the tree is large and when the nodes are doser to the root. When there

are many children , each having a small subtree, the mapping can still be fooled . Anyway,

t he objective is to guarantee a matching as best as possible on the high-level nodes . A

mistake made close to the leaves, where the subtrees are smaller, matters less than a

mistake made close to the root since the second drops a bigger subtree.

As t he order of the children does not matter, every chi Id that has its corresponding node

in t he other t ree is matched, whatever the extra "single" children . Notice that calling

t he function (f ineM apping (T1 , T2) or f astM apping (T2 , T1)) gives the one output .

Let us consider figure 12.6: if the fine top-down mapping was appl ied to these trees , the

results would be completed by matching both nodes PRE and both nodes *<-- .

The fine top-down algorithm is more accurate than the fast one but should be utilized

only if the fast t op-down algorithm does not give suitable results . Most of the t ime,

the results of bot h algorithm will be the same but the fast top-down algorithm , as it is

called , is quite faster.

148

12.4. Pseudo-code of the fine top-down algorithm

12.4 Pseudo-code of the fine top-down algorithm

Input: T1 and T2 , both trees to map.

Output: TopD ownT ree , the largest common tree between T1 and T2 .

The function that calls mapChildren is the same as the one presented in section 12.2.1

function mapChildren (node1 , node2)

Get the array of children of node1 , chi ldreni[];

Get the array of children of node2, children2[];

Sort childreni[] in descending order of the sizes of the children subtrees;

Sort children2[] in descending order of the sizes of the children subtrees;

WHILE childreni[] and children2[] have non treated children DO

Get the next chi Id in childreni[] child1 ;

Get the next child in chi ldren2[] child2;

IF (child1 == child2)

THEN Add child1 to topDownTree;

mapC hildren (chi ld1 , child2);

ELSE

IF (size of the subtree (child1) ~ size of the subtree (child2))

TH EN Search in children2 [] for a node that matches child1 ;

ELSE Search in chi ldren 1 [] for a node that matches child2;

END WHILE

12.5 News pages clustering

Now that the structural similarities between two Web pages can be identified thanks

to our top-down mapping algorithms, it is possible to put various Web pages having

structural similarities together to form clusters. At this point , we faced two problems:

t he top-down mapping algorithm allows us to map only two layout trees at once while

the clustering task needs to map many layout trees and the percentage of similarity is

not yet known . For these two reasons, we created a clustering algorithm that can apply

one of t he top-down mapping algorithms to map an unlimited set of trees and we defined

149

Chapter 12: News pages clustering

a similarity rate.

12.5.1 Similarity rate and similarity threshold

ln order to cluster Web pages, we need to specify a similarity rate. This rate is the

number of identical nodes between two trees compared with the number of nodes of the

largest tree. lt is mathematically defined as follows:

. . . size (TopDownTree)
similarity rate = (. (T) . (T-)) max size 1 , size 2

where TopDownTree is the result of the top-down mapping between T1 and T2 , both

trees to map.

The similarity rate is based on the number of nodes of the trees T1 , T2 and TopDownTree.

As we are working on trees having hundreds of nodes, we deem that it is rather a correct

value. The reason why we chose the maximum size between both trees as denom inator

is straightforward : if two trees have a high-level of similarity, the top-down tree resulting

of their mapping will be large and the choice of the maximum size between T1 and T2

does not really matter . But if they have a low-level of similarity, the size of the top-down

tree will be small. So if we take the size of the largest tree as denominator, the ratio

will be very small as well, so that both trees are not likely to be clustered.

While the similarity rate has been defined, we must now estimate a similarity threshold,

that is a value from which similar Web pages are accepted within the same cluster.

This threshold has to be efficient , that is it has to be restrictive enough in order to put

together in the same cluster pages which are very similar to each other . Yet, it must not

be too restrictive to allow some structural differences.

12.5.2 Impact of the tag selection

To illustrate how the tag selection (see chapter 11) affects the results, let us take

figure 12.8 as key example. ln this example, all the tags have been transformed into

nodes but we saw in chapter 11 that we can actually ignore some tags during the parsing,

which leads to reducing the amount of nodes.

150

12.5. News pages clustering

htm.l htm.l

~ ~ hTd body her ~
tiîle hf st!ong i

!
tire T stTng

1 Vous E Pas de pr OK ? Vous E Pei:du pr OK ?

.. <--- .. <---

Figure 12.8: K ey example ta explain the tag selection impact

Henceforth we shall analyse two scenarios: the first one assumes that all the tags were

selected during the parsing and the second one assumes that the default tags selection

has been applied . As we have already shown the results of a fast top-down mapping ,

this t ime the scenarios are covered using the fine top-down mapping.

Ali tags selected

ln t his case, the left tree counts 13 nodes and the right tree counts 11 nodes . The fine

top-down tree (colored in orange) counts 8 nodes. The sim ilarity rate is max(~3,11) -

0, 615.

htal

~
her ~
tire T stTng

1
Vous E Pei:du pr OK ?

.. <---

Figure 12.9: Results of a fin e top-down mapping if all nodes are selected

151

Chapter 12: News pages clustering

Default tag selection

With the default tag selection, tags <PRE>, , and <I> have been ignored , so that their

contents have been put together (see the source code frame) . ln this case, the left

layout tree counts 9 nodes and the right layout tree counts 7 nodes. The fine top-down

mapping (colored in orange) has totally mapped the right layout tree, it counts 7 nodes

as well. The similarity rate is max
7
(7,9) = 0, 778.

This demonstrates the benefit of the defau lt tag selection . By removing nodes that are

not involved in t he block-level structure of the page, we can cluster similar pages in a

better way.

htal

~
hl h2 * <---

l l • <--- source code ~tWfJ/?:îtîf !Eli
Pei:du Pas de •<-----vous êtes ici

OK?

html

~
her A
title hl * <---

l l
Vous E Pei:du

Figure 12.10: R esults of a fin e top-down mapping with default selection

12.5.3 The clustering algorithm

As previously explained , the clustering is the operation taking all the Web pages we need

to analyse in order to group them together into clusters depending on their similarity

rat es . Ali the Web pages having structural similarities higher than the similarity threshold

value will be put together into the same cluster.

To perform this t ask, we created the clustering algorithm. This one can use the fa st or

t he fine top-down mapping algorithms. The user first chooses a t ag selection model in

t he tag selection frame (or he can use the default selection model) . Then he selects the

pages he wants t o cluster, a cluster threshold and a fast or fine mapping. Each page is

t hen converted into its related layout tree and the latter are stored on a vector.

152

12.5. News pages clustering

P seudo-code of t he clustering algorithm

Input : treeVector (a vector that contains all the layout trees) and simThreshold (the

similarity threshold above which pages are clustered) .

Create a vector to store the similarity rate after each top-down mapping: tdr Vector;

(Each element of tdrVector represents a triplet [treei, tree1, similarityRateij])

FOR each tree treei in treeV ector (0 ::; i::; treeVector.length- l) DO

1

FOR each tree tree1 in treeVector (i+ 1 ::; j:::; treeVector. length) DO

Run a top-down mapping (fast or fine) between treei and tree1;

Calculate the similarity rate between treei and tree1 : similarityRatei1;

Add the triplet [treei, tree1, similarityRateij] to tdrVector;

END FOR

END FOR

Sort tdrVector in descending order of similarityRatei1;

Get the first triplet [treei, tree1, similarityRateij] in tdrVector);

IF (similarityRatei1 < simThreshold) THEN STOP.

Create a new cluster containing treei and tree1;

FOR each triplet [treei, tree1, similarityRateij] in tdrVector DO

IF (similarityRateij 2: simThreshold)

2

THEN IF (treei is not yet clustered)

THEN Create a new cluster with treei;

ELSE IF (tree1 is not yet clustered)

THEN Create a new cluster with tree1;

FOR each tree treek of treeVector that is not yet clustered DO

Get the similarityRateik corresponding to treei, treek in tdrVector ;

IF (similarityRateik 2: simThreshold)

THEN Put treek into the current cluster ;

END FOR

ELSE STOP.

END FOR

Output : A set of clusters , each containing pages at least simThreshold % similar.

153

Chapter 12: News pages clustering

The first loop (1) aims at calculating the similarity rates between all the trees combina­

tions. Since the mapping algorithms can be run only with two trees at once, we need to

generate all the different "mapping combinations" . The algorithm takes the first tree of

treeVector, applies the top-down mapping algorithm to all the other following trees of

treeV ector and for each triple (T ree1 , T ree2 , T opDownTree), calculates the similarity

rat es . lt also puts the similarity results and its associated trees into the tdrVector . Then

it takes the second tree of treeV ector , applies the top-down mapping algorithm to all

the other following trees and so on .

Before entering the second loop , the clustering algorithm sorts the tdrVector in de­

scending order of similarity rate . Then, if the first element of the top-down mapping

results (so the best result) has a similarity lower than the similarity threshold , all the

t rees are a fortiori dissimilar and the algorithm stops. On the contrary, if the similarity

rate of the best top-down mapping is higher than the threshold , both trees involved in

this result are put together in a first cluster.

The second loop (2) goes on for each couple of trees in tdrVector associated to a

similarity result higher than the similarity threshold . lt creates a new cluster or puts trees

into an already existing cluster depending on their similarity results .

The output is a set of clusters , each containing pages at least simThreshold % similar.

12.5.4 Application

To illustrate the clustering algorithm , here follows a complete example. We have chosen

a set of Web pages coming from the World Wide Web. Sorne are news Web pages

coming from well-known news Web sites such as Le Soir, CNN , etc , some are coming

from other Web sites such as perdu .corn, Webkot .be, etc. Sorne have nothing to do

with each other, some present at the first glance high-level structural similarities (see

figure 12.11) .

We actually selected these pages in order to cover some important scenarios:

154

Ll$;0flf , l il I'" ~ 1--,---, 1 ,.... ,
--. Jœ- .--.1 • ,...,..., 91_,.,_....;-a. l ""'- •

._,_,,_._

. ,

. 411 ~

· 1.aru:nt ,.....,.., ,,.......,__.,.
•m--~..,,,~

12.5. ews pages clustering

.. ..,,_ ..
• i.- ~

. NiOiM-•--MWMn
•r c.-. ' '--_...,,___ •, .,... ,.,,.

~~-=Mt ,,_~'""'IN,.
.!:t:"'--:..":.--T"" .. ' 9'- ...

• 1.1.-.-CHN~

- ~ 'l!!'r--' ".._.....__..., ._._ _,,.......,.,..
' :..,.wu
• a..wi o.t

Figure 12.11: two sport news Web pages from www.LeSoir.be showing a high degree
of similarity

• For the first scenario, we fetched four news pages coming from LeSoir .be. Two

from these four pages present sports news and the two others are on the front

page. Normally, the first two pages should be grouped together into one cluster

and the last two others into another one.

• ln the second scenario, we downloaded two news pages from CNN .com . They

should be clustered together.

• The third scenario takes into account four pages having nothing to do with each

other. These four Web pages corne from LeMonde.fr , Liberation .fr , Perdu.corn

and Webkot.be. They should not be clustered .

• The last scenario is the consequence of the three previous ones. Each of the three

scenarios must not interfere with each other .

The first step is to choose the Web pages we want to cluster, to choose a fast or

fine top-down mapping and a similarity threshold {see User Guide for details). For our

experiment , we selected all the opened files , a fast top-down mapping and a similarity

threshold of 60%.

The results are as expected (see figure 12.12) . The first scenario is covered since both

sports news Web pages are in the same cluster {Cluster2) as well as both news being on

155

Chapter 12: ews pages clustering

the headlines (Clusterl) . The second case is correct: both CNN news Web pages are

in the same cluster (Cluster3). The third scenario has been respected: the four distinct

pages were not clustered. Finally, the non-interference condition of the fourth scenario

has been covered as well.

File Operations

Cluster files

Extract news

Clear Ali

'i CjAllfiles

>- Ll Cluster 1

1 Cl LeSoir.be - La Une.htm

Cl LeSoir.be - La Une2.htm

>- Cl Cluster 2

1 Cl LeSoir be - Sport.htm

Cl Le80Ir be - Sporl2 htm

'i Cj Cluster 3 t Cl CNN corn htm

[] CNN com2 htm

1) Perdu.com.html r IJ Webkot.be.htm 1

0 LeSoir.be - Sport2.trtm r 0 LeMonde.fr Jrtm r fl Llberatlon.fr.htm

I ..J LeSoir.be - La Une2.htm r 1J LeSoir.lle - Sport.htm

[) CNN.com.lrtm r [j CNN.com2.htm r 0 LeSoir.be - La Une.htm

<!DOCTYPE HTML PUBLIC "·/M/3C/IDTD HTML 4.01 Transitionall/EN">
<html> =
<head>
<meta http-equiv="Content-Type" content.="text/html; charset.=iso-8859-1 ">
<meta http-equiv="Expires" content.="0">
<meta name="description" content.="En mourant, Hariri lègue un sentiment d'unité nationale
<title>Libération : Liban, un peup le est né<ltitle•<meta http-equiv="Content-TyI
<meta name="ROBOTS" content="INDEX,FOLLOW,NOARCHIVE">
<meta name="KEY\/\IORDS" content.="LIBERATION, INFORMATIONS, INFOS, QUOTIDIEN, P
< li nk h ref=" http ://woNw.I i be ration . frics s/m a in.c s s" rel=" style sh eef' typ e="text/c s s· >
<link rel="alternate" type="application/rss+xml" title="RSS" href="http://woNw.liberation.fr/rss.p
<link re l="shortcut icon" href="http://woNw.liberation.fr/favicon.ico">
<script language="javascript'' type="text/javascripf' src="http:/twww.liberation.fr/inc/smartad .js
<script language="javascript'' type="text/javascripf' src="http :/twww.liberation.fr/inc/macro.js"•
</head>
<body onLoad="preloadO;">
<table width="792" border="0" cellspac ing="0" ce llpadding="0">
<Ir>

<Id height.="14" colspan="7">< img src="/img/puclpix.gir' alt.="pix'' width="14"
</tr>
<Ir>

<Id width="14" rowspan="3"><img src="limg/puc/pix. gif' alt.="pilt width="1 4" 1

<Id widlh="160" rowspan="3" align="right''>< a href="/index.php"><img src="li-;
. _,u

" 7 "
...... , ,..

◄ 1111 1 1 ►

Figure 12.12: The four scenarios have been covered

156

12.6. Conclusion

12.6 Conclusion

Two top-down mapping algorithms have been implemented to identify similarities be­

tween layout trees , from the root to the leaves. The fast top-down mapping is an efficient

algorithm , giving satisfying results most of the time but which can be easily fooled . To

compensate for this weakness , we developed the fine top-down mapping algorithm, which

is more accurate but slower. lt actually finds the largest common subtree between two

trees.

We saw how the tag selection has an impact on the mapping algorithms. Thanks to this

tag selection and the clustering, the extraction of the news articles related to the layout

trees that were clustered together is now made easier (see next chapter) .

157

Chapter 13

Extracting the news articles

Contents

13.1

13.1 Introduction

13.2 Fetching the leaves that contain text .

13.3 Removing common text leaves

13.3.1 Complexity .

13.3.2 Assumptions

13.3 .3 Example

13.4 Concatenation of the remaining leaves . . .

13.5 Extracting the article with its formatting .

13.6 Conclusion

Introduction

This is the last step of our extraction process . We assume here that:

159

160

160

161

162

162

. 163

. 165

. 165

• the Web pages have been transformed into layout trees with the same tag selection

options;

• the tag selection was complete enough to build layout trees that reflect the layout

of the Web pages;

• the similarity threshold was significant enough to detect (dis)similarities between

pages.

This last step is the easiest. Once the similar layout trees have been clustered, the

extraction of the news article can be summarized as follows :

159

Chapter 13: Extracting the news articles

• get all the layout trees from a chosen cluster (the cluster must have at least two

elements);

• for each layout tree, fetch all the leaves that contain text (section 13.2) ;

• remove the "text leaves" that are common between layout trees (section 13.3) ;

• for each layout tree, concatenate ail the remaining leaves to a text file (sec­

tion 13.4) .

Each of this four operations will be explained in a separate section. We shall finally

introduce how we could extract the news article with its formatting thanks to slight

changes in the parser.

13.2 Fetching the leaves that contain text

For each layout tree in the same cluster, a preorder traversai 1 fetches all the leaves in

t he right order . When a leaf is found, we must check whether it is a node representing

a tag or a node containing text. We only keep nodes that contain text . Notice that , at

t his time , we extract the "text leaves" themselves and not their contents . At the end of

t his process , the output is a vector containing ail the "text leaves".

This approach can be compared with the RoadRunner [18] (see chapter 7) algorithm that

fetches ail the # PCDATA elements (i .e . everything that is not an HTML tag) . A text

leaf in our case would be a # PCDATA in RoadRunner.

13.3 Removing common text leaves

This step is a bit harder. We need to compare in twos by two ail t he text leaves in all

t he text leaves vectors . The leaves that are common are eliminated from their vector,

so that at the end of the process all the leaves are different , notwithstanding the vector

t hey belong to .

1 A postorder (or depth-first) traversal is also suit able but not a breadth-first traversal.

160

13.3. Removing common text leaves

P seudo-code of the algorithm

Here is the pseudo-code of the algorithm , textLeavesV ectors[] is an array of text leaves

vectors.

FOR (int i = O; i < t extLeaves V ector[] .length; i + +) DO

Get the textLeaves V ector stored at index i (called vectorOnI);

FOR (int j = i + l ; j < textLeavesV ector[].length; j ++) DO

Get the textLeavesVector stored at index j (called vectorOnJ);

FOR every text leaf tf I in vectorOnI DO

FOR every text leaf tf J in vectorOnJ DO

IF (tf I == tf J)

THEN Remove tf J from vectorOnJ;

Set tf I to be removed at the end of this loop;

ENDFOR

IF tf I is set to be removed

THEN Remove tf I from vectorOnI;

ENDFOR

ENDFOR

ENDFOR

13.3.1 Complexity

Both first loops are designed to compare in twos all the text leaves vectors with each

other. If there are four text leaves vectors A. B, C, D, it will compare A - B, A - C,

A - D, B - C , B - D and C - D.

Both inside loops are designed to compare in twos all the text leaves from both current

vectors. They remove the text leaves that are identical.

The theoretical complexity of this algorithm is very high, O(n2 • m 2), where n is the

number of text leaves vectors and m is the number of text leaves . The practical com­

plexity is lower: both first loops are repeated respectively (n - 1) and (n/ 2) times . So

161

Chapter 13: Extracting t he news art icles

that in the example with four vectors we have 6 loops instead of 16. Both inside loops

are executed faster as the a lgorithm progressively goes on because the amount of text

leaves decreases.

However, this algorithm is too trivial and shou ld be improved for a better efficiency.

13.3.2 Assumptions

If we remove common text leaves, we assume that all the news articles in a cluster do

not have common text . This assumption becomes restricting in two cases:

• As the amount of pages in the cluster grows. Moreover, as the complexity of the

algorithm is high , it is better to prevent clusters to be too big. This can easily be

done by increasing the similarity threshold before the clustering (see chapter 12) .

• As the amount of words in the text leaves decreases. This can be prevented by

ignoring the tags in charge of the text formatting during the parsing (see sec­

tion 11 .3). Let us explain with an example:

13.3.3 Example

Let us consider two trivial news articles (figure 13.1 and figure 13.2)

Both trees have been built by selecting al l tags . Let us assume t hat both trees have

been clustered (the top-down tree is in orange) .

If the tag <i> that emphasizes the word "Baghdad" is kept, a leaf containing "Baghdad"

is created in both trees. Since the leaves are identical, they will be removed during the

text extraction, which fails.

On the contrary, if tags <i > and </i> are ignored during the parsing (thanks to the

default tag selection), leaves will be created with the whole sentence below the parent

<p> (figure 13.3). By the way, notice that the fast top-down mapping gave better results

while tags that format text are ignored.

162

13.4. Concatenation of the remaining leaves

, fichier f;.<iion
htal -: U.S. l-vill bomb Baghdad

head body

!
1

The American kr Force intends to bomb Baghdad this night.
title

! A
The spokesman at the White House said: "Yes it is true"

Wotld The h i this n

!
Th.esp î

Bo.gilde. Yes it
Temn

Figure 13.1: The first article and its related tree (all tags selected)

lital

~
Troops entered Baghdad heo.d body

! ~
Y esterday, American troops entered Baghdad from the west. tir T ~

Wotld Ttoop• Yestet 1 rroa t

Baghdo.

TerlJWlé

Figure 13.2: The second article and its related tree (all tags selected)

htal htal

~ ~ hr ~ head body

1 ~
tit T 1 1

tit.le hl p

1 1 l
Wocld u. S. V The ,.. The :,p Voi:ld Tr::oops Yestec

Figure 13.3: Both layout trees with the default tag selection

13.4 Concatenation of the remaining leaves

Once the text leaves that were shared with other pages in the cluster have been removed,

the remaining text leaves are likely to be the news article .

For each page in the cluster, the remaining text leaves are appended 1n a text file , so

that the extracted article (in plain text) can be stored .

163

Chapter 13: Extracting t he news art icles

Yet, the text leaves sometimes need a cleaning-up before appending them in order to

display the article correctly. We actual ly want to lay out the article as best as possible

despite the plain text format .

ln order to achieve this objective, the algorithm:

• removes useless spaces between lines or words;

• transforms the characters coded between & and ; (such as ê for ê) into their

corresponding value in ANSI format;

• must identify paragraphs and headings. The parent of the text leaf must be ta ken

into account:

If the parent is a <P> node, we found a paragraph and a blank line is inserted ;

if the parent is a <TITLE> or a <Hi> to <H6>, we found a heading and it is

written in upper-case.

That explains the reason why we needed to keep the tree node type until the last step of

the extraction . If the text leaves were transformed into strings, we would not be able to

detect paragraphs and headings, which are essential for the understanding of the article.

· The extracted text should be laid out like this:

U.S . WILL BOMB BAGDAD

The American Air Force intends to bomb Baghdad this night .

The spokesman at the White House said:Yes it is true

The leaves below <title> are identical so that they have been removed. They actually

do not represent the title of the article but the name of the Web site . On the contrary,

leaves below <hi> have been kept and put in upper-case. A blank space has also been

added before each paragraph .The text formatting on "Baghdad" and "Yes it is true" has

been dropped .

164

13.5. Extracting the article with its formatt ing

13.5 Extracting the article with its formatting

The goal of this thesis is to extract a news article without its formatting . However , the

news article can be extracted although keeping its layout easily.

Du ring the parsing of an HTML page, we saw that tags responsible of the text formatting

are ignored; i.e . both start and end tags are removed but the text between them is kept .

These tags could be completely ignored, i.e. they could be considered as text , so that

they would be included in the text leaves (see figure 13.4) . The extracted text would

consequently contain the HTML tags that format it. Yet in this case, the extracted text

can be read only by an agent that interprets HTML code.

htllll

The Am source code IW.l?:!'tMtl:1~ ŒI
<p>
!The American Air Force intends to bomb
<i>Baghdad</i> this night.
<p>
!The spokesman atthe White House
said: <q>Yes it is true<q>I

Figure 13.4: The same tree where tags <p> , <i> and <q> have been considered as text

Then , the output would be:

13.6

U.S . WILL BOME BAGDAD
<p>
The American Air Force intends to bomb <i>Baghdad</i> this night .
<p>
The spokesman at the White House said : <q>Yes it is true</q>

Conclusion

We saw that we simply extract the news article by fetching the leaves that contain text

and by removing text leaves that are common between layout trees in a given cluster. As

the amount of layout trees in the cluster grows, the extraction is slower but the results

165

Chapter 13: Extracting the news articles

are better, on condition that the text leaves representing the article are significative

enough. Actually, text leaves which contain words instead of ~entences are likely to be

found in more than one layout tree, so that they unfortunately would be removed . This

is the reason why it is important to ignore most of the tags that format text when the

HTML source is transformed into a layout tree.

After the extraction , the article needs a cleaning-up before storing or displaying it. Even

if we aimed at extracting plain text, it is necessary to give the article a minimal layout

in order to keep it understandable.

166

Conclusion

The extraction of news articles from the Internet , as we understand it, is far beyond a

simple retrieval of the main text in a given news Web page. We wanted an agent to

be able to extract any news article about any topic without any prerequisite processing.

T o be considered as fully automatic, the process must be covered from A to Z. The

extraction process should start with the classification of both Web sites and Web pages

of interest . Once the relevant pages have been downloaded , the HTM L source code

must be transformed into a given data structure. The latter allows to cluster similar

pages (i.e. pages having a common layout) before extracting the news articles.

ln the literature, tools that make the extraction of data possible, such as wrappers,

assume nevertheless that similar pages have been downloaded beforehand . ln our opinion ,

agents should not have to search for relevant pages themselves, or worse, to cluster similar

pages manually. We saw that various approaches have been developed in order to classify

sites and pages on the Internet . Although the Web sites classification is not a big hit,

it could be useful to reduce the search space dramatically, improving the results of the

Web pages classification .

News Ripper , our appl ication, does not deal with classification but manages to cluster

similar pages. ln order to group pages together according to their similarities, we had to

build a data structure that mirrors their layouts, the layout tree . This t ree is built along

the parsing of an HTML source by keeping only tags related to the block-level layout

of a page and by ignoring tags involved in the inline-level formatting. We saw that this

tag selection conspicuously improves both efficiency and effectiveness of the clustering

algorithms.

Two top-down mappings algorithms have been implemented to identify similarities be-

167

Conclusion

tween layout trees , from the root to the leaves . The fast top-down mapping is an efficient

algorithm, giving satisfying results most of the time but which can be easily fooled. To

compensate for this weakness, we developed the fine top-down mapping algorithm, which

is more accurate but slower. lt actually finds the largest common subtree between two

layout trees.

The extraction of the news articles related to the layout trees that were clustered together

is now made easier thanks to the tag selection and the clustering algorithms. A smart

tag selection , that ignores text formatting, allows to reduce the amount of leaves that

make up the article . The clustering of similar pages, as for it , is necessary to identify

both common and uncommon leaves between similar layout trees. Given the assumption

that articles from news pages are not likely to have common sentences, we can extract

the news articles within a cluster by concatenating the contents of the dissimilar leaves

in each layout tree.

The news article, in plain text format, can be eventually conveyed to agents for further

use.

Despite our infatuation with News Ripper, each of the three steps of our application can

be enhanced. We only parse the tag names of an HTML source although its attributes

and style sheets could bring more exhaustive information . If the fast top-down mapping

a lgorithm has been fooled, the user should be warned instead of having to check the

output manually. The news extraction algorithm has a high degree of complexity because

it compares all the combinations of leaves between layout trees within a cluster.

Anyway, the crucial enhancement would be the coverage of the Web classification , so

t hat an agent would not have to fetch pages of interest by himself. Once th is upgrade

combines with News Ripper, the whole news extraction process will be deemed as fully

automatic.

168

Appendix A

News Ripper User Guide

A.1 lntrod uction

News Ripper is the application we developed in JAVA during our internship at the Univer­

sity of Technology in Sydney. This program allows the user to select a set of news Web

pages, to cluster them and to extract the news article inside each page. Here follows an

exhaustive description of all its functionalities .

A.2 Launching News Ripper

To run the application, you have to launch the batch file called NewsRipper.bat. The

main window will then be displayed in the centre of the screen .

A.3 Main window

The main window (figure A .1) is made up of three main elements:

1. the menus and the tool bar;

2. the Opened files area;

3. the Clustering area ;

I

Chapter A: ews Ripper User Guide

El Ri . N ~-?-;;;:l(;Fli(tlf'!!i'r.',f!lti:t:~1;~~~if*·i~;,i~tf!i~:=•::;f.11•~;;;-;:~111rt~~:.:;i;:;j::~:-.,~~'II,~,œ::'~;{:11fif!lll?,::t:r:i·•::f/:i(.:! 1(ri" pp1ng ews ~=:~t~~:r♦r❖~~,M❖-±!'f.:n❖!❖:~~.r:❖:rr-: !-i•:~~~r~•.-;.' •. 1:~f-!;:~: .. ~:i::~:~f:~; ... ;::::{tffa:!:~-!::~~ . . . ~~-tt*-:; .. t! .~ ?.~;-~!t!:-f:-~.,:".~:«•:,:::t~r;; .. :::~,:-:-: a..j

File Operations M enu s and toolbar

~~~ [i ][~ ~~ 00]~ ~ 
i 

1 
Cluster files 

1 

( 1 1 perdu1 .htm r I J perdu2.htm r I J test1.htm r I J test2.htm 

<html> 

1 
Extract news 

1 
<hea d> 

<title>Vous Etes Perdu?<ltitle> 

1 
Clear Ali 

1 

<lhead> 
<body> 

9 Cj lClusters l <h1 >Perdu sur lntern et?</h1 > 

Cj Cluster 1 <h2>Pas de panique<lh2> 

D perdu1 .htm 
<strong> 

<pre> * <----- vous êtes ici</pre> 
D perdu2.htm </stron g> 

Cj Cluster 2 </body> 

D test1 .htm </html> 

D test2 .htm 

Clustering area Opened files area 

Figure A.l: The main window of News Ripper 

A.4 Menus & toolbar 

A.4.1 File 

~ Open Project ... 

Opens an Open Project dialog box (figure A.2, left) allowing to open a project file (. pro) 

beforehand saved. A project is a set of HTML files and a set of clusters. Thanks to the 

projects, the user can save the results of a clustering for further use . 

~ Open File(s) ... 

Opens an Open File(s) dialog box (figure A.2 , right) allowing to open one or several 

HTML files . The HTML source code of the selected files is then displayed in the Opened 

files area. 

II 

[81 

1 



A.4. Menus & toolbar 

Rechercher dans : je, New test j"" 1 ~ ~ g [[fl§ Rechercher dans : jc::'.'.l perdu e><ample , .... 1 ~ ~ § [[fl§ 
Nom I Taille I Tvoe I Modifié 1 ..• 1 Nom Taille T e Modifié 

1 ') project.pro 1 1 KB Fichier PRO 11/08/05 17:44 perdu1.html 1 KB HTML Doc... 18/112/115 11:43 
perdu2.html 1 KB HTML Doc... 10/118/05 14:20 

!:!,om def"ichier: ttom de fichier : 

Fichiers du!l/Pe : ~IP_ro1_·ec1_ Fil_es _______ __._j ""_,J Fichiers du!YPe: ~IHt_m_l F_ne_s ________ ~j ""~I 
OIMlr 11 Annuler 1 OlMlr 11 Annuler 1 

Figure A.2: The Open Project (left) and Open File(s) (right) dialog boxes 

1 Pl Open URL. .. 

Opens a Search URL dialog box (figure A.3) allowing to enter the URL of a g1ven 

Web page. The HTML source code of the selected Web page is then downloaded and 

displayed in the Opened files area . If the Launch browser check box is selected , the 

default Internet browser is launched to display the Web page . 

... OpenURL ... 

http:JI 1 ·~----------------------' 
~ Launch browser 

Paste from Clipboard Il~ ___ o_K __ ___,l l""" __ c_a_n_c_e_l _ ____, 

Figure A.3: The Search URL dialog box 

1 ~ 1 Save Project As ... 

Opens a Save Project dialog box (figure A.4, left) allowing to save a project (.pro) for 

future work. lt actually saves the opened files of the Opened files area and the state of 

the Clustering area . 

III 



Chapter A: News Ripper User Guide 

1 ~ 1 Save File As ... 

Opens a Save File dialog box (figure A.4, right part) allowing to save the HTML file 

selected in the Opened files area . As the contents of the Opened files area are editable, 

this options makes saving a modified file possible. 

If a layout tree is selected in the Opened files area, Save File generates the HTML 

code represented by the layout tree before saving it. This can be useful for showing the 

similarities between two pages (the top-down tree) in an Internet browser. 

Enreg!strer dans : !LI New test , ... 1 êj [êJ [Q] ~ 
Nom I Taille I Tvne I Modifié IAttrib ... l 

tJ project.pro 1 K8 Fichier PRO 11/08/05 17:44 

t!_om de fichier : 1 
'~-=--=--=--=--=--=--=--=--=--=--=--=--=--=--=--=--=--=--=--:;..-::'.. 

Fichiers du !YJ)e : !Project Files 1..,. 1 

Enregistrer / I Annuler 

Enregjstrer dans : !LI perdu exa_ 1..,. 1 ~ [êJ [Q] [@:J.§ 
Nom Taille T e Modifié Altrib ... 

perdu1 .html 1 KB HTML OOC- - 18/02/0511:43 
perdu2.html 1 KB HTML Doc... 10/08/05 14:20 

t!_om de fichier : 
'-;::::::================::;::::'., 

Fichiers du !YJ)e: jHtml Files ~--~ H 
Enregistrer 11 Annuler 1 

Figure A.4: The Save Project (left) and Save File (right) dialog boxes 

1 x I xi Close, Close Ali 

Closes the selected file (or all the files) in the Opened files area . 

A.4.2 Operations 

This menu offers all the functions managing the various operations allowed on HTML 

files and / or layout trees. 

1 l!J I Tags selection ... 

Opens the Tags Selection dialog box (figure A.5) allowing to choose the list of HTML 

tags that will be kept for the building of layout trees. The Default Selection button 

selects a list of the most relevant tags for the clustering. 

IV 



A.4. Menus & toolbar 

El Tags to select ----
HTML, HEAD and BODYtags are automatically selected 

Comments and PHP tags are automatically removed 

Tables-----. 

0 ABLE 

0 Row/Col groups 

0 TR 

0 TD, TH 

0 CAPTION 

Text management 

0 P 

D o 
□ PRE 

□ BR 

O INS 

□ DEL 

Lists------, 

0 UL,OL 

0 u 
0 DL 

0 DT,DD 

0 DIR,MENU 

Headtags----. 

0 TITLE 

□ META 

□ STYLE 

0 ADDRESS 

O LINK 

□ BASE 

Objects-----, 

0 0BJECT 

0 1MG 

0 APPLET 

0 1FRAME 

D Parameters 

iscellaneous---, 

□ A 
0 DIV 

0 SPAN 

0 BLOCKQUOTE 

0 HR 

0 BDO 

Text Formatting-------. 

0 Headings 

Advanced HTML------. 

0 Forms 

D Font styles □ scripts 

D Phrase Elements 0 Frames 

~--s_e_le_ct_ A_H_~I I Default Selection 1 .... I __ D_e_s_e_le_ct_ A_H _......, 

OK Cancel 

Figure A.5: The tag selection fram e with the default selection 

1111' I Build Tree 

Builds the layout tree of the selected file in the Opened files area (figure A.6) . If the 

selected file is not an HTML source, an error message is shown . 

V 



Chapter A: News Ripper User Guide 

html 

head body 

! 
title hl p p 

! ! ~ ~ 
TJorld U. S. w The Am i this n The sp q 

! ! 
Baghda Yes it 

Figure A.6: An example of layout tree in the Opened files area 

1 tfl I Mapping ... 

Opens a Mapping dialog box (figure A.7) allowing to choose two layout trees to map. 

Two kinds of mappings are available : Fast top-down mapping and Fine top-down 

mapping. The result of the chosen mapping is displayed in the Opened files area . Notice 

that at least one layout tree must have been built beforehand . 

ILeSoir.be - La Une.htm 

jLeSoir.be - La Une2.htm 

@ t ast Top-downl O Fine Top-Down 

~--o_K __ ~ll~_c_a_n_c_el_~ 

Figure A.7: The mapping fram e 

Cluster files ... 

Opens a Clustering dialog box (figure A.8) allowing to choose the various news Web 

pages to cluster , to select a fast or a fine top-down mapping and a similarity threshold. 

VI 



Extract News 

A.5. The Opened files area 

EJ Select Files to Clu 

~ CNN.com.htm 

~ CNN.com2.htm 

~ LeMonde.fr .htm 

~ LeSoir.be- La Une.htm 

~ LeSoir .be - La Une2.htm 

~ LeSoir.be - Sport.htm 

~ LeSoir.be - Sport2.htm 

~ Liberation.fr .htm 

Options------- ----, 

Similarity threshold : 

@ ast Top-down O Fine Top-Down 

...__ __ o_K __ ___.I ~I __ c_a_n_c_el_ ~ 

Figure A.8: The Clustering fram e 

Extracts the news articles from the Web pages inside the selected cluster in the Clustering 

area and displays them in the Opened files area . 

A.5 The Opened files area 

The Opened files area (figure A.9) is the right part of the main window. The HTML 

source code of chosen news Web pages, the related layout trees, the results of the 

mappings and the extracted news articles are displayed in this area . When an HTML 

source code is displayed , the area becomes a text editor so that the HTML source code 

can be changed if necessary. Each file of the Opened files area is labelled at the top of 

the area . The labelling of the different files in the Opened files area is made as follows : 

VII 



Chapter A: News Ripper User Guide 

• each file is labelled under its file name, 

• each HTML file is labelled with a "page" icon, 

• each layout tree is labelled with a "tree" icon, 

• each file that is not clustered is labelled in black, 

• the news Web pages within a same cluster are labelled ,n the same colour, 

• the selected file has its label background in light blue. 

[l Webkot.be.htm r • Perdu.com.html r • LeSoir.be - Sport.htm r • TopDownTree 1 

1J LeSoir .be - Sport.htm r I .J LeSoir .be - Sport2.htm r 11 r I.J 
IJ CNN.com.htm r LJ CNN.com2.htm r IJ r 1J LeSoir.be - La Une.htm r 1J LeSoir.be - La Une2.htm 

<IDOCTYPE HTML PUBLIC "-/N-/3C//DTD HTML 4.01 Transitional//EN" ► ... 
>-

<hlml> -
• head> >-

• meta http-equiv="Content-Type" co ntenl="textlhlml; charsel=iso-8859-1 "> 
• meta http-equiv="Expires· contenl="O"> 
<meta name="descriplion" contenl="En mourant, Hariri lègue un sentiment d'unité nationale et de patriotisme absent depuis trente ans ."> 
•title ► Lib&eacute ; ration :&nbsp;Liban, un peuple est né• /title ><meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1 "> 
• meta name="ROBOTS' content="INDEX,FOLLOW,NOARCHIVE"> 
• meta name="KEYWORDS' contenl="LIBERATION, INFORMATIONS, INFOS, QUOTIDIEN, POLITIQUES, MONDE, INTERNATIONAL, SOCIETE, 
• link href="http :/fWWoN.liberation.fr/css/main.css" rel="stylesheer' type="textlcss"> 
<link rel="alternate" type="applicatlon/rss+xml" lltle="RSS" href="http://www.liberation.fr/rss .php" /> 
<link re l="shOrtcul lcon" href="http:/twww.liberalion.fr/favicon.ico"> 
• script lan guage="javascripr' type="textljavascripr' src="http://www. liberation .fr/in c/smartad . j s" ></sc ript► 

<script language="javascripr' type="lextljavascripr' src="http://Www.liberation.fr/inc/m acro.js"></script> 
</head> 
• body onLoad="preloadO;"► 
• table widlh="792'' border="O" cel lspacing="O" cellpadding="O"> 
<tr► 

• Id heighl="1 4" colspan="?"><img src="l img/puc/pix.gif' alt="pil/' widlh="14" height=14 ► </td > 

</tr> 

<tr> 
• Id widlh="1 4" rowspan="3"' ><img src="limg/puc/pix.gif' alt="pil/' width="14" height= 14 ►</td► 

• Id widlh="160" rowspan="3"' allgn="righr'><a href="lindex.php"><img src="limg/let/logo_libe.gif' alt="logo libe" widlh="150" hei 
• Id widlh="1 7'" rowspan="3" >&nbsp;<lld> 
<Id widlh="468'' height="4" va l ign="top"►•img src="/img/puc/car_nr.gif' alt="car_nr" widlh="1 00%" height="1 ·••/Id> 
• Id widlh="17" rowspan="3"' align=" center" valign="middle">•img src="limg/publpub_vert.gir alt="publicite" wldth="17" height=" 
<Id width="102'' rowspan="3"► <a pref="httpJtwww.liberation.fr/archivesf' target="pub"><img src="http://www.liberati on.fr/img/pu 
• Id width="14" rowspan="3"><img src="limglpuc/pix.gif' alt="pill' widlh="14" height=14 ► •/ld> 

</tr► 

<tr> 

<1d widlh="468'' height="60''► •sc ript language="JavaScript1 .1" type="lextljavascripr'> 
sas_pa geid='252/1315'; 
sas_formatid=91; 
sas_master='M'; 
sas_target="; -
SmartAdServer iframe(sas pageid,sas formatid,sas master.sas target,468,60); y 

◄ 1 Ill 1 I ► 

Figure A.9: The Opened files area 

A.6 The Clustering area 

The Clustering area is composed of three buttons (see figure A.10) and of a frame that 

d isplays the cl usters (figure A.11) . 

VIII 



L 

A.6. The Clustering area 

Both first buttons are actually the main functions of the News Ripper application . They 

have already been described in section A.4. The third button allows to reset all the 

clustering results . 

Each cluster in the frame contains the news Web pages having at least similarity thresh­

old % of structural similarities. The colour of the clusters ( of the pages inside a cluster 

actually) are applied to the corresponding labels in the Opened files area . 

Cluster files 

Extract news 

Clear Ali 

Figure A.10: Buttons of the Glu tering area 

9 LJ Ali files 

u Cluster 1 

[-- D Le Soir.be - La Une.htm 

L D Le Soir.be - La Une2.htm 

u Cluster 2 

[-- D LeSoir.be - Sport.htm 

L O LeSoir.be - Sport2 .htm 

u Cluster 3 

[-- D CNN.corrü1trn 

L O CNl\l.corn2J"1trn 

u Cluster 4 

LO Webkot.be.htm 

u Cluster 5 

L C) Pt? mf'ltrnl 

[ 
u Cluster 6 

L O LeM 1i:J8 ft t·1trr 

u Cluster 7 

LO . '1 't ,. t , 

Figure A.11: Frame of the Clustering area 

IX 



Bibliography 

[1] S.J. SIM0FF D. ZHANG. Informing the curious negotiator: Automatic news 

extraction from the internet. 2004. 

[2] M. CHAMPION S. ISAACS A. LE HORS G. NICOL J. ROBIE P. SHARPE B. SMITH 

J. S0RENSEN R. SUT0R R. WHITMER C. WILSON V. APPARA0, S. BYRNE. 

Document abject model (dom) level 1 specification version 1.0. Technical report , 

1998. 

[3] J.M. PIERRE. On the automated classification of web sites. In Computer and 

Information Science, volume 6, 2001. 

[4] D. LEWIS. Text representation for intelligent text retri val: A classification­

oriented view. In Text-Based Intelligent Systems, 1992. 

[5] M. SCHUBERT M. ESTER, H-P. KRIEGEL. Web site mining: A new way to spot 

competitors, customers and suppliers in the world wide web. 2002. 

[6] D.R. KARGER L.K. SHIH. Using urls and table layout for web classification 

tasks. 2004. 

[7] Q. YANG H-J. ZENG B. ZHANG Y. Lu W-Y. MAD. SHEN, Z. CHEN. Web-page 

classification through summarization. 2004. 

[8] A.A. FREITAS N. H0LDEN. Web page classification with an ant colony algo­

rithm. 2004. 

[9] X. LI L. YI, B. LIU . Eliminating noisy information in web pages for data 

mining. 2003. 



Bibliography 

[10] G. VALIENTE. An efficient bottom-up distance between trees. 2002. 

[11] B.A. RIBEIR0-NET0 J .S. TEIXEIRA A.H.F. LAENDER, A.S. DA SILVA. A brief 

survey of web data extraction tools. 2002. 

[12] S. MINT0N C.A. KN0BL0CK, K. LERMAN and l. MUSLEA. Accurately and 

reliably extracting data from the web: A machine learning approach. In IEEE 

Data Engineering Bulletin, 2000. 

[13] G.O. AROCENA and A.O. MENDELZON. Web-qql: Restructuring doc­

uments, databases ans webs. In Proceeding of the Jlh IEEE International 

Conference on Data Engineering, pages 24- 33, Toronto, Canada, 1998. 

[14] W. HAN L. Lru , C. P u. An extensible wrapper constru tion system for inter­

net information. In Proceedings of the 1 (!,h International Conference on Data 

Engineering, 2000. 

[15] I. MUSLEA. Extraction patterns for information extraction tasks: A survey. 

1999. 

[16] B.N0D0SE. Nodose a tool for semi-automatically extarcting structured ans 

semi-structured data from text documents. In SIGMOD Recors 27,2, pages 

283- 294, 1998. 

[17] A.S. DA SILVA A.H.F. LAENDER, B.A. RIBEIR0-NET0. Debye, data extraction 

by bxample. In Data & Knowledge Engineering, 2002. 

[18] G. MECCA V. CRESCENZI and P. MERIALD0. R0ADRUNNER: Towards auto­

matie data extraction from large web sites. In Proceedings of the 26th Interna­

tional Conference on Very Large Databases System , Rome, Italy, 2001. 

[19] S. MINT0N C.A. KN0BL0CK and I. M USLEA. Hierarchical wrapper induction 

for semistructured information sources. 2001. 

[20] U. GAST. Information Extraction, chapter 3. Information Extraction Tech­

niques. 2003. 

11 



Bibliography 

[21] B. THEODOULIDIS H. KARANIKAS, C. TJORTJIS. An approach to text mining 

using information extraction. 2000. 

[22] D. FREITAG. Toward general-purpose learning for information extraction. 2002. 

[23] A.S. DA SILVA D.C. REIS, P.B. GoLGHER and A.F. LAENDER. Automatic web 

news extraction using tree edit distance. In Proceedings of the 13th International 

Conference on World Wide Web , 2004. 

[24] Elliotte Rusty Harold. Web client programming with java: Parsing html is 

hard. 2000. 

[25] Anonymous. Jericho parser homepage - http: / /jerichohtml.sourceforge.net/. 

[26] WüRLD WIDE WEB CONSORTIOM W3C. 

www.w3.org/tr/html4. 1999. 

Html 4.01 specification -

[27] S. CHAKRABARTI. Integrating the document object model with hyperlinks for 

enhanced topic distillation and information extraction. 2001. 

iii 




