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Abstract

As information of interest is scattered around the World Wide Web, the
need for fully automatic extraction processes to fetch relevant data cannot
be ignored. Nowadays, five billion pages are available on the Internet and
almost two million new pages are being added daily. This thesis aims at
defining a comprehensive issue to extract news articles specially, from the
early classification of significant pages to the article retrieval properly speak-
ing. We developed News Ripper, a “wrapper” that achieves this Web mining
task by clustering similar news pages before comparing their layouts to bring

the articles to light.

L’information utile étant éparpillée a travers le Web, le besoin de proces-
sus automatiques d’extraction de données pertinentes se fait manifestement
ressentir. Actuellement, cing milliards de pages sont disponibles sur Inter-
net et pratiquement deux millions de pages sont ajoutées chaque jour. Ce
mémoire vise a définir en particulier une solution compléte pour extraire des
articles de presse en ligne, depuis la classification de pages concernant un su-
Jet jusqu'a l'extraction proprement dite des articles. Nous avons développé
News Ripper, un “wrapper” qui accomplit cette tache de Web mining en
regroupant les pages similaires avant de comparer leurs contenus pour en

extraire les articles.
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Introduction

This thesis aims at designing a fully automatic process for extracting news articles from
the World Wide Web. Such an automatic task is not straightforward because it is only
of great interest on a large scale, as the World Wide Web counts to date more than five
billion pages. Furthermore, this process must be completely independent of both the

page structure and the news topic to be as worthwhile as possible.

In order to take the full extraction process into account, we were led to consider three
successive core steps. First and foremost, the Web classification pre-classifies both sites
and pages of interest. Afterwards, the conversion of the HTML source code into a given
data structure allows to handle HTML efficiently. Eventually, the Data extraction strictly
speaking targets at fetching relevant data within Web pages.

Chapter 1: Intuitive approach explains how our work during the internship inspired the
contents of this dissertation. The latter is split in two parts: Part | — State of the Art
discusses the literature about the three steps mentioned above while Part /I — News

Ripper focusses on the implementation of the application we developed.

In Part |, the Web classification is analysed in both chapter 2: Web sites classification
and chapter 3: Web pages classification. Since we are going to work on tree data
structures, chapter 4: Tree structures goes into the field in greater depth. Chapter 5:
Wrappers, chapter 6: Induction tools, chapter 7: RoadRunner, chapter 8 : NLP-based
tools illustrate tools called “wrappers” which are intended for retrieving data of interest
from the Internet. They actually cover both second and third steps, since they often
create their own data structures before extracting data. As we wanted to concentrate
specially on news articles retrieval, chapter 9: News extraction using tree edit distance,

the main inspiration for our application, closes the State of the Art.




Introduction

News Ripper, as for it, embraces only the two last steps as wrappers do. The conversion
of the HTML source code into a given data structure concentrates on the particular tree
structure we designed: the “layout tree”, which is an abstract representation of a Web
page layout. The Data extraction steered us to the News Extraction specifically.

However, we realized the requirement of an extra step between the building of layout
trees and the extraction of news articles: this intermediate step is the clustering of
similar pages. Notice that the clustering is completely different from the classification:
the former aims at grouping pages having a common general layout together while the

Web classification is meant for fetching pages of interest on the Internet.

Chapter 10 : Context outlines our work experience at the University of Technology in
Sydney and the major functions of News Ripper. Chapter 11 : Smartly building layout
trees explains why we needed to define a suitable data structure, the layout tree, to
achieve the comparison of Web pages and the retrieval of news articles. The clustering
of similar pages is developed in chapter 12: News pages clustering. The extraction of
news articles properly speaking is treated in chapter 13 : Extracting the news articles at

last.




Chapter 1

Intuitive approach

Contents
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1.1 Introduction

This chapter aims at introducing intuitively the topic of our dissertation. We shall first
present the context and the applications of the news extraction process from the Internet.
This task belongs to a wider application domain: the extraction of pertinent data from

Web pages.

by presenting two trivial examples (section 1.4) that will help the reader realize the

We shall help the reader to understand why the news extraction process is no sinecure

objectives we target.
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The solution we implemented during our internship is explained in section “A smart
issue” . This solution comprises three successive steps. These steps will explain the chain
of ideas of our work. We shall finally notice that other previous steps are necessary
to consider the fully automatic news extraction process as comprehensive. We shall
describe the contents of the State of the Art by matching its different chapters with the

successive steps of the smart issue (section 1.5).

1.2 Context

“The Web poses itself as the largest data repository ever available in the history of
human kind. Major efforts have been made in order to provide efficient access to relevant

information within this huge repository of data.” [1]

This information is generally stored on HTML files. HTML defines the layout of a Web
page, by structuring the data in tables, divisions, columns, titles, buttons, etc. This
layout is crucial for the display of the information on a screen but is useless when the
aim is to fetch the relevant information for a database or a program. In case of a news
Web site, there are often an advertisement banner at the top, a menu on the left side,
some links at the bottom, various pictures, so that the news article represents just a

small part of the source code.

Therefore, the issue is a program that manages to throw away this so called “useless

code” defining the layout of the Web page, in order to keep the information of interest.

Our work is to provide these fetched articles, notwithstanding the further use. There are
various techniques designed to extract the information of interest but the major challenge
is to provide this information quickly. As always, the “easy-to-program” techniques are
effective but inefficient. That is the reason why smart and efficient techniques are

necessary.




1.3. Applications

1.3 Applications

News extraction can be useful in many ways. The news articles can be extracted for the

purpose of either a user or a program.

To help out users, an obvious solution would be the display of the news article on a
PDA screen, where there is not enough space for pictures, menus, banners, etc. On
such a device, the layout can be unfair, so that the aim is to be able to resize (zoom)
the text in order to make it easily readable. Apart from the display PDA's have a
relatively slow Internet access. The efficiency would be better because the PDA's would
not have to download all the heavy data such as images or backgrounds and would
not have to execute the javascript code. This approach could be extended to mobile
phones (WAP, 3rd generation, UMTS). Showing fertile imagination, it could be useful
for people working daily with news articles who only need the unformatted text. They
want to display several articles of a topic on the same screen so they can compare them

easily.

Information can also be used further by mining agents. For instance, a chatterbot ! that
would be able to discuss any news topic. Let us suppose a user wants to talk about the
war in lraq, the chatterbot has got a database with links to Web sites of some famous
newspapers, it extracts all the Web pages relating to this topic and then it fetches the
articles inside these pages. Once it has got the articles, it can be able to discuss “war in

Iraq” by analysing them with the usual chatterbot techniques.

Another use of news extraction is to create a database of structured or semi-structured
data where text mining agents can effectively fetch the data available on the Web. In
the context of news mining, the bots fetch the news articles, which then are transformed
into a structure form and both the structured and unstructured data are stored on the

mining base for accessing by the mining agents [1] (figure 1.1).

The news extraction process can actually be applied to other on-line sources, such as
virtual communities, company sites and government sites. In the same way, text mining
agents can become other specified data mining agents that could find useful information

in the mining base (figure 1.2).

la chatterbot is a program designed to converse with a user.

()]
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Figure 1.2: A smart data mining system

For instance, an obvious text mining agent is a news search engine, that would retrieve
only the relevant articles linked to a given keyword. Most of the current search engines
treat the information, regardless the HTML structure. When a keyword is found, the Web
page is displayed, without taking into account where it has been found. The keyword
could appear in a link, a meta tag, the title of the news article, or in the article itself,

hence nothing can prove the results are really relevant.

An obvious issue would be therefore the creation of a search engine that would not use
the META tags to find the relating pages but that would try to match the keywords with

the relevant text only. The relating Web pages found would be more pertinent since the




1.4. Trivial algorithms to extract news articles

searched keywords are ensured to be at least present in the article, ignoring words that
would have been only in a link, an advertisement, a menu, a pop-up, etc. The advantage

of this technique is obviously counterbalanced by its slowness.

1.4 Trivial algorithms to extract news articles

Here we present two trivial solutions [1] to extract an article from a news Web site. The
goal is to extract the plain text of the article, i.e. without its layout. Every object in the

page that does not matter with the news article has to be deleted.

These solutions are imperfect. Anyway, they are an understandable manner to explain

the main issues.

1.4.1 Example one: The header and tail filter

This is a trivial algorithm we found in the literature [1].

e Two similar pages are extracted from the same Web site, under the same category.
The news sources on the Internet can be found on the Web sites of major news-
papers. Another way is to use the news portal provided by search engines such as
Google or Yahoo.

e All the HTML tags are removed, so that only the unformatted text is kept.

e Both texts are transformed into arrays. Each cell is a line of text.

e A structure Header will contain all the text that is common at the beginning of
both files.

e A structure Tail will contain all the text that is common at the end of both files.

e The algorithm starts and appends the common cells to Header.

e Once the cells are different, the algorithm goes to the end of both files and starts
to append the common cells at the end to Tail.

e At the end, Header and Tail contain the text to be removed by the filter.

e Once the filter has been created, it can be used to delete useless text in similar

pages from the one Web site and then to extract the articles (see figure 1.3).
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Input: two text files from the same web site, each contains a news article
Output: a data structure contains:
String URL
String Header
String Tail
1.  Remove all the html tags in the files.
Break down the files into one dimensional arrays (a and b). each cell
contains a line of text.
3. For each cell of the array from beginning
1. if a[i] == b[i]. append a[7] at the end of Header string
2. 1fa[i] !=b[i], break:
4. For each cell of the array from the end
1. if a[i] == b[i], insert a[7] at the beginning of Tail string
2. if a[i] !=b[i], break
5. Set the URL value to the common part of the URLs of two text file
Return the data structure that contains URL, Header and Tail.

Figure 1.3: The pseudo-code of Header and Tail filter

However, the common structure between two similar pages can not be restricted to three
parts (a header, the text, a tail). The common structure is much more complicated.
We have to take the HTML structure into account in order to identify the page format

before locating the article.

1.4.2 Example two: Table break-down

This algorithm (see figure 1.4) improves the “header and tail filter” as it deals with the

different <table> elements. [1]

e An HTML page is broken down into content blocks. The news article is expected
to be the content block which is displayed on the centre of the page. Therefore,
it is reasonable to assume that the biggest block of text is the news article.

e Most Web sites employ HTML tables to divide the page into blocks by using
<table> tags. The idea is to copy text blocks found between <table> and </table>
tags into an array.

e Once the array is complete, we count the number of words in each cell. The

one that contains the maximum number of words is the largest text block, so the
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Input: HTML file
Output: The largest body of text contained in a table
Begin
1. Break down the HTML file into a one dimensional array, where
each cell contains a line of text or an HTML tag
2. Remove the HTML tags except <table> and </table>
3. Set table_counter to 0
4. For each cell in the array:
a. 1f <table> tag 1s encountered, mcrease table counter by 1
b. 1if <\table> tag i1s encountered, decrease table counter by 1
c. 1f 1t 1s a text element, append it to the end of con-
tainer[table counter]
5. Return container[/] that contains the largest body of text by count-
ing the number of words.
End
Figure 1.4: The pseudo-code of the break-down algorithm
article.

Notice that the algorithm handles the tag hierarchy between <table> tags. As the array
index is increased by 1 when a <table> tag is encountered and decreased by 1 when a
</table> tag is encountered, all the text portions that belong to the same depth in the
tags hierarchy are concatenated. That way, we do not understand how the article can
be identified since there is maybe more than one text block in each cell of the array. If
all the text blocks from the same level of hierarchy are concatenated, a lot of “noisy”
text will be added. Finally, the concatenation of all the noisy text blocks from the same

level of hierarchy can lead to a cell that contains more words than the article does.

If the array index was increased by 1 each time a <table> tag is encountered without
being ever decreased, each cell would contain a separate text block. However, in this
case, nothing guarantees that the entire article is always stored on a single element

<table>.

The extraction accuracy can be improved by algorithms that do not rely only on <table>

tags information but on the whole HTML structure.
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1.5 The smart issue

The pages on most news Web sites are automatically generated and filled-up with articles
coming from a database. Hence we can use the common format from a set of similar
pages to detect the parts that have nothing in common with each other. These distinct
parts are likely to be the news articles. Yet, before being capable of comparing similar
pages, we need to group them together. For this reason we need to identify why and
how pages are similar. We shall use a tree structure that reflects the hierarchy of HTML

tags in order to compare their likenesses.

1.5.1 From HTML to a tree structure

The structure of a Web page can be nicely described by a tree (DOM tree)[2]. Tree
structures can be useful for both clustering similar pages and improving the efficiency of
the algorithms that extract articles. Figure 1.5 shows the transformation from an HTML

source to a DOM tree.

<html>
<head>
<title>Portals</title>
</head>
<body>
<ul>
<li>
<a href="..">Yahoo</a>
</1li>
<li>
<a href="“..">Lycos</a>
</1li>
</ul>
</body>
</html>

Figure 1.5: An HTML source and its DOM tree

The HTML file is analysed by an HTML parser. Building the tree is rather easy because
the parsing of an HTML file corresponds to a preorder traversal in a tree. Let us analyse

the example in figure 1.5.
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A root node is created with the <HTML> tag, the only root of the tree. A child node
is created each time an enclosed element is encountered and so on recursively. In this
example, <HTML> is the root node. <HEAD>...</HEAD> is an enclosed element in the element
<HTML>...</HTML>, so that <HEAD> becomes a child of the <HTML> node. The process
goes on and adds the child <TITLE> to the <HEAD> node, then adds the contents of
the element <TITLE>...</TITLE> (Portals) to the <TITLE> node. As there is no further
enclosed element, the algorithm goes up until it finds a second enclosed element: <BODY>

in the example, and so on.

There is a relation between a tree structure and the layout of the displayed Web page:
the deeper in the tree, the more specific in the layout. The vertices close to the root
represent the main separations in the page, for example the division between tables,
menus, and advertisements. In the same way, the vertices close to the leaves represent

the formatting of a specific object, for example text.

However, all the HTML tags are not involved in the layout, so that we can remove tags
which are “useless” considering our goals. The tree structure we shall use is then a
lightened DOM tree that reflects the layout of the page, hence we called it a “layout

tree” .

1.5.2 Clustering similar pages

We can therefore apply an algorithm that goes from the root to the leaves and compares
the identical nodes between two layout trees. As soon as two nodes are different, the
subtrees below these nodes are given up. The output is thus the largest common subtree
between two layout trees from the top to the bottom. The larger is the common tree,

the more similar are the pages layout.

1.5.3 Extracting the news articles

The text containing the article of interest is always located in the leaves of the layout
tree. Notice that it is often split between a couple of leaves, according to the complexity
of its format. An algorithm is used to compare dissimilarities in the leaves between a set

of layout trees. If we assume that pages are similar to each other and that the article

11




Chapter 1: Intuitive approach

is different in each page, we are likely to extract the news articles if we extract the
dissimilar leaves. That is the reason why we have to find similar pages before executing

the algorithm.

1.6 Contents of Part I — State of the Art

As we went along with the implementation of our tool, we analysed the extraction process
from the end to the beginning. We first tried to directly extract the news articles. Then
we realized that we needed to cluster similar pages beforehand by comparing layout trees.
After, we became conscious of the usefulness of an appropriate HTML parsing, in order

to improve the quality of both clustering and news extraction algorithms.

1.6.1 Need for a preliminary Web classification

Despite the clustering step, the fully automatic process is still not complete; it could begin
a few steps sooner. Indeed, we assumed that pages have been previously downloaded

from well-chosen Web sites and yet we should automate this earlier step as well.

For this reason, we decided to introduce the state of the art with two chapters about the
Web classification, a well-developed topic that is too large to be covered by our program.
The Web classification is presented as two separate fields: the Web sites classification
(chapter 2) and the Web pages classification (chapter 3). The former is used to find a
set W of Web sites which contain one or many specific keywords. The latter is used to

fetch the pages of interest inside the Web sites € W.

As said in the introduction, it is quite important to distinct the Web classification from
the page clustering. The former aims at finding the relevant Web sites and pages while

the latter aims at clustering pages that have a similar layout.

1.6.2 No panacea for news extraction

We decided to handle layout trees in order to cluster similar pages. We shall see that

other tree structures can be used for achieving this task or other purposes (chapter 4).
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The data extraction on the Internet can be done by many ways. We had to present
several approaches to extract data from the Internet. Tools that extract data from
Web pages are called “wrappers” in the literature. We gathered them up in generic
classes thanks to their major features and we shall explain the main functioning of each
class (chapter 5). Three classes of wrappers are likely to be useful for news extraction:
Induction tools (chapter 6), RoadRunner (chapter 7) and Natural Language Processing-
based tools (chapter 8).

In our case, we were inspired by a recent proceeding from the 13t International Confer-

ence on World Wide Web (chapter 9) about the news extraction.
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Web sites classification
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2.1 Introduction

In this chapter we shall present the classification of Web sites of interest it would be
useful to do before a Web pages classification. From this perspective, a context briefly
outlines the need for a beforehand Web sites classification. Then major classification
techniques such as Web directories, classification through metatags and classification
by topics are analysed in order to understand the main issues related to this Web sites

classification.

2.2 Context

The amount of information available on the World Wide Web is huge and growing each

year. For the present, Google searches through more than 5 billion pages with 1.5 million
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pages being added daily. One reason for this development is the relatively low cost of
publishing a Web site: a Web site is quite cheaper than brochures or advertisements in
newspapers, it is more interactive for Web users, more easy to update and it reaches

millions of people.

Such a growth raises a major problem : the quality of a search query becomes more
and more poor unless an effective process of classification is beforehand realized. The
need to provide automated assistance to Web users for Web pages classification and
categorization is thus well real. This huge growing amount of pages is however not the
only reason for automated classification. Two other main reasons are taken into account.
The first one is the ever-changing nature of resources available on the Web. It is simply
not feasible to keep up with the fast pace of growth and change on the Web through
a manual classification effort without expending immense time and effort. The second
reason is that classification itself is a subjective activity. Different classification schemes
are needed for different applications. No single classification scheme is suitable for all
applications. Therefore different types of classification schemes, representing different
facets of knowledge, may need to be applied in an ongoing fashion as new applications

demand them.

About classification, a significant distinction has to be made. While the Web contains
more than 5 billion pages, the total amount of Web sites is clearly less considerable. It
is consequently useful to bring out two points : the classification of Web sites and the
classification of Web pages. These two domains are not distinct from each other but,

on the contrary, complement each other.

The Web sites classification considered in this chapter is rather not simple because of
the ever-changing nature of Web sites and the eclecticism of topics within Web sites.
Though such a categorization can reduce the search space dramatically. The problem of
spotting complete Web sites of special interest to a user is not handled adequately yet, in
spite of its importance for various applications. Various methods have been applied such
as the directory services like Yahoo, the metadata records and the topics classification

and drew our attention in this thesis.
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2.3 Web directories

Categorization is an important ingredient in the classification process of Web sites. Web
directories such as Yahoo!!, Looksmart? and the Open Directory Project *(Figure 2.1)

have know an evident popularity these last years.

These directory services can offer useful information but the entries there are often
incomplete and out of date due to manual maintenance. Furthermore, these resources
have been created by large teams of human editors and represent only one type of
classification scheme that, while widely useful, can never be suitable to all applications.
Categorization is an intellectual task and it is really not easy to create a system that
spots special kinds of Web sites and offers the opportunity to search them while it would

turn out to be very useful.

Thttp:/ /www.yahoo.com
http:/ /www.looksmart.com
3http://www.dmoz.org

LQ!EJ\QJLZJ opan directory projact
il ~  about dmoz | suggest URL | help | fnke | editor login

aadvanced
Arts Business Computers
Movies, Television, Music, Jobs, Real Estate, Investing Intemet, Software, Hardware
Games Health Home
Video Games, RPGs, Gambling.. Fitness, Medicine Al s... Famuly, G Cooking.
Kids and Teens News Recreation

Reference Regional Science

Maps, Education, Libtaries - US, Canada UK Europe... Biology, Psychology. Physics..
Shopping Society Sports

Autos, Clothing, Gifts People, Refigion, Issues, Baseball Soccer, Basketball.
World

| SRR e b he et huan-ected iectry of the e | T

Copyright @ 199¢-200% Netscape

4,685,186 sites - 68,948 editors - 787,185 categories

Figure 2.1: The Open Directory Project home page
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2.4 Classification through metatags

John M. Pierre [3] from the Linkoping University in Sweden gives us an interesting au-
tomated classification of Web sites based on the metatags. He analyses the nature of
Web contents and metadata in relation to requirements for text features. He describes a
system for automatically classifying Web sites into industry categories thanks to targeted
spidering including metadata extraction and opportunistic crawling of specific semantic

hyperlinks.

The first step in this classification process is the analysis of Web contents and its quality.
Therefore Mr Pierre worked on a set of 29.998 Web domains, randomly chosen. He
assumed as well that it is common to include a title and possibly a set of keywords and
description metatags. One of the more promising sources of text features should be

found in Web page metadata.

Within the huge collection of Web domains, he counted the number of words used in the
contents attribute of the <META name="keywords"> and <META name="description"> tags

as well as <TITLE> tags and <BODY> tags. Table 2.1 shows the result of this inventory.

Tag Type 0 words 1-10 words 11-50 words 514 words
Title 4% 89% 6% 1%
Meta-Description — 68% 8% 21% 3%
Meta-Keyword 66% 5% 19% 10%
Body Text 17% 5% 21% 57%

Table 2.1: Percentage of Web pages with words in HTML tags

As we can see, a title generally counts between one and ten words. The body text often
counts more than 51 words. But a really interesting result is the lack of Meta-description
and Meta-keywords for the Web pages. It is quite surprising as we all know that they play
an important role in the ranking and the display of search results given by several major
search engines. Indeed metatags can be useful when they exist because they contain

text specifically intended for aiding in the identification of Web site's subject areas.

Good text features, that is words that describe a domain, are needed to accurately

discriminate between different categories in order to build an automated classification
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process. According to D. Lewis[4] a feature must be :

Relatively few in number

Moderate in frequency of assignment
Low in redundancy

Low in noise

Related in semantic scope to the classes to be assigned

2

Relatively unambiguous in meaning

Metatags seem to meet for subject classification those requirements better than other

sources of text such as titles and body text.

The second step of the classification is the choice of a classification scheme. In this
work, the North American Industrial Classification System (NAICS) has been chosen.
The original NAICS is actually not presented as in table 2.2. The full NAICS has six
levels of hierarchy and contains several thousand subcategories. But for the experiment,
it has been simplified to the main top-level categories. The job is now to arrange the

Web sites in this classification system using the metatags as features.

The next step, the third one, is the targeted spidering. Due to the lack of homogeneity
in Web contents, the existence of key features can be rather inconsistent. A targeted
spidering approach tries to gather as many key features as possible with as little effort
as possible. These key features are the metatags but in the case of their absence, other
sources of text such as titles and body text were needed to provide adequate coverage
of Web sites. The spider begins at the top level page of the Web site and attempts to
extract useful text from metatags and titles if they exist, and then follows links for frame
sets if they exist. It also follows any hyperlinks that contains key substrings in their anchor
text and again looks for metatag contents in those pages. Only if no metatag contents
was found did the spider gather the actual body text of the Web page. Finally, all the
extracted texts are concatenated to a single document representative of the concerned

Web site.

The fourth step of the categorization is the training data. 13,557 domain names among
the 29,998 at first had usable text contents and were pre-classified according to one

or more industry categories. Two approaches were used. Mr Pierre firstly used among
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NAICS Code NAICS Description

11 Agriculture, Forestry, Fishing and Hunting
21 Mining
22 Utilities
23 Construction
31-33 Manufacturing
42 Wholesale Trade
44-45 Retail Trade
48-49 Transport and Warehousing
51 Information
51 Finance and Insurance
53 Real Estate and Rental and Leasing
54 Professional, Scientific and Technical Services
bb Management of Companies and Enterprises
56 Administrative and Support,
Waste Management and Remediation Services
61 Educational Services
62 Health Care and Social Assistance
71 Arts, Entertainment and Recreation
72 Accommodation and Food Services
81 Other Services (except Public Administration)
92 Public Administration
99 Unclassified Establishments

Table 2.2: NAICS categories

others a combination of 426 NAICS category labels as training example. The second
approach is the more conventional classification by example. He used 3618 pre-classified
domain names along with text for each domain obtained using the targeted spider. an

information retrieval engine for comparing queries to training examples is applied.

The final step, the classifier algorithm, analyses the results (text documents representa-
tive of Web sites) given by the spider. A decision algorithm assigns the Web sites to the
NAICS categories. It is based on the K-nearest neighbours algorithm and is capable of
producing good results even when the amount of training data is limited. This decision
module is also responsible for thresholding and presenting the final set of automatically

assigned categories.

To conclude, this type of system have the advantage of being adjustable. It can be applied
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to any domain specific classification scheme. All that is needed is to define the categories,
assemble the training data, and configure the spider to extract the appropriate features.
The spider may be constructed to follow specific types of links, or extract sections of

Web page contents that are most useful for a given domain.

2.5 Classification by topics

Another interesting approach of Web sites classification has been developed by Martin
Ester, Hans-Peter Kriegel and Matthias Schubert[5]. They define the Web sites classi-
fication as follows : given a set of site classes C' and a new Web site S consisting of
a set of pages P, the task of Web sites classification is to determine the element of ('
which best categorizes the site S. They introduce three approaches of classifying Web

sites based on different representations:

e (lassification of superpages: a Web site is represented as a single virtual Web page
consisting of the union of all its pages, i.e. the Web site is represented by a vector
of term frequencies.

e (lassification of topic vectors: a Web site is represented by a vector of topic
frequencies. This classification method will not be discussed in this thesis.

e (lassification of Web site trees: a Web site is represented by a tree of pages with

topics.

2.5.1 Classification of superpages

This simple technique is an extension of the methods used for the Web pages classi-
fication. The Web site is considered as a graph : the Web site of a domain D is a
directed graph Gp(N, E). A node n € N represents an HTML page whose URL starts
with D. A link between n; and ny with ny,ny € N is represented by the directed edge
(n1,ny) € E. Thus, every HTML document under the same domain name is a node
in the site graph of the domain and the hyperlinks from and to other pages within the

same domain are the connecting edges.

The Web site is downloaded very simply : the starting page (the page whose URL
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consists of the domain name only) is downloaded and read. An HTML parser is then
applied to determine the links to the other pages within the site. Then every link to a
page, beginning with the same domain name, is followed. The pages already visited are

marked to avoid circles.

An algorithm walks through the nodes of the site graph and counts terms with a vector
counting the frequency of terms over all HTML pages of the whole site. The Web site
is represented by a single superpage. Afterwards the vector can be classified by any

standard data mining package.

This technique is very simple and is not much more complex than the classification of
single pages. But it is only valid for small and medium-size business sites where the
actual site really stands behind the domain name. The right choice of the key terms is
a delicate problem as well. But the worst drawback of this method is the loss of local
context : keywords appear anywhere within the site and are aggregated to build up a
bag-of-words view of the whole Web site graph. This leads to a no distinction between an
appearance within the same sentence, the same page or the same site while the context

is a major actor in the classification task.

2.5.2 Classification of Web site trees

In this approach, single key terms are no more used and are exchanged for complete
HTML documents, that is, for topics. Topics have the advantage to preserve the local
context. In order to summarize the contents of a single Web page, a topic is assigned out
of a predefined set of topics (or page classes) to it. This is done by text-classification on
terms using the Nave Bayes classifier. If the page doesn’t belong to any of the predefined

topics, we assign the "other”-category to it.

In their work, Ester, Kriegel and Schubert found that after examining many business
sites in several trades, the following categories of pages, although their trades varied
widely, are to be found in most classes of business-sites : company, company philosophy,
online contact, places and opening hours, products and services, references and partners,
employees, directory, vacancies and other. Therefore, it is possible to find a list of

recurrent topics for a specific type of site. For the news Web sites, it is easy to find such

24




2.5. Classification by topics

topics : politics, economy, sports, culture, weather, etc.

Once the topics have been identified within a Web site, the classification task need
to build a Web site tree based on the labelled pages of a Web site and on a directed
graph of the previous section. The idea is that the structure of most sites is very
hierarchical. Sites begin with a unique root node provided by the starting page and
commonly have directory-pages that offer an overview of the topics and the links leading
to them. Furthermore, the information in most sites begins very general in the area

around the starting page and is getting more and more specific with increasing distance.

For building Web site trees, our three researchers use the minimum number of links as
a measure of distance between two pages of a site and build up the tree as the set
of minimum paths from the starting page to every page in the graph. Therefore, they
perform a breadth-first search through the Web site graph and ignore the links to pages
already visited. Note, that in the case of two paths to the same page of equal length,

the one occurring first is chosen. Figure 2.2 shows an example of a Web site tree for an

[/mr ) (ot [mrrl e

N
| other | l other I g‘:};‘:‘% other

Figure 2.2: Example of Web site tree for small IT-service provider

IT-service provider.

Now a Web site tree has been built, the classification is now possible with this tree. A
Web site class is the class that contains all the topics of a class. Thus, to classify this

Web site, we define the most likely Web site class as:

C = mazxarg Pr[C;|S] = mazarg (Pr[C;] - Pr[S|Ci])
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This definition is based on the Nave Bayes approach and means that the predicted class
C of the site S is the class C; that explains the occurrence of the given site S best. Due
to the Bayesian rule the probability Pr[C;|S] is the product of the a priori probability
Pr[C;] and the probability Pr[S|C;] that given the model for class C; the Web site tree
S would have been constructed. We therefore estimate Pr[C;] as the relative frequency

of Web sites in the class C;.

To calculate Pr[S|C'], let us take a simple example for our news Web site. Let us assume
that there are three topics in the news Web site class : politics (a), economy (b) and

culture (c). Our news Web site tree is represented at the center of figure 2.3.

We have now to build a probability table for all possible transitions between the topics

of the news site class as shown in figure 2.3.

The left table in figure 2.3 shows all the possible transitions between the topics. The
values are given as example. For instance, the probability to transit from the politics
topic to the economy topic is 0,7. The probability to stay in the same culture topic is
0,4. The none state indicates the probability to start with a given topic. For all the

other Web site classes, a similar table must be build.

The concept of k-order Markov chains is then applied to web site trees using the following
procedure. Beginning with the probability for the label of our root node we multiply the
probabilities of the transition between the £ last nodes and their successors. In the simple
case of 1-order Markov chains, for example, the transition probability for the page classes
X and Y with respect to site class S is the probability that within a Web site of class S
a link from a page of class X leads to a page of class Y. Since there can be more than
one successor in the tree, we multiply the transition probabilities for every child node,

traversing along every path that a tree contains simultaneously.

To calculate the conditional probability Pr[S|C;] of the Web site tree S, let us use the

following definition:

Pr[S|Ci] = H Pr(l; |pre(k,t),pre(k — 1,t),...,pre(1,t)]

tesS
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Transition probabilities for class It Transition probabilities for class J:

- a b c - |a b ¢

a 02| 07| 0.1 a 02| 05| 03

b 02] 02| 0.6 b 02] 04| 04

< 01| 05| 04 ¢ 01] 01| 08

none| 0.1| 06| 03 none| 0.1| 0.1 | 08

web site tree 1

p(t|I) = 0.1 * 0.1 * 0.5 * 0.2 * (a-c-b-b) p(t|J) = 0.1 * 0.2 * 0.1 * 0.4 * {a-c-b-b)
0.2 * (_-_-_-b) 0.4 * (_-_-_-b)
0.4 * (-_-c) 0.8 * (_-_=c)
0.2 * (_-a) 0.4 * (_-a)

0.2 * 0.2 * 0.7 * (_-a-a-b) 0.4 * 0.4 * 0.4 * {(_-a-a-b)
0.2 * 0.2 * (_-_-_-a-a) 0.4 * 0.4 * (_-_-_-a-a)
*0.2* (- - - -a) * 0.4 * (- - -_-a)
0.2 (-_-_-_-a) 0.4 (_-_-_-_-a)

Figure 2.3: The calculation of Pr[S|C;] for two site classes I and J

where:

e [ = topic of a node

e t{ = node

e S = path

e k& = number of predecessors of a node

pre(k, t) = function which returns the topic of the £ predecessor of node t.

Thus, for every node t in the site tree S the probability that its label I, occurs after
the occurrence of the labels of its k predecessors is multiplied. Figure 2.3 shows the

calculation of Pr[S|C;] for two site classes I and J.

Finally, we are able to calculate the most likely Web site class C' = maxarg (Pr[C;] -
Pr[S|C;]) while we have Pr[C;] and Pr[S|C;]. The considered Web site is thus associated
with the topic C.

2.6 Conclusion

This second chapter was all about the Web sites classification. As more than a million

Web pages are being added every day on the World Wide Web, it is necessary to classify
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this huge amount of data. The first step in order to tidy up the Internet is the classifi-
cation and the categorization of Web sites. The three techniques studied in great detail
in this chapter allow such a task. In our case, about the extraction of news articles,
it would be very interesting to firstly classify the news Web sites or news portals and
secondly classify the Web pages of interest within each of these news sites. For instance,
if we are looking for sports news, we could classify the Web sites that only give sports
news to restrict the field of research and then classify the relevant news within these
sports Web sites. The second step of the Web classification is therefore the Web pages

classification considered in chapter 3.
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3.1 Introduction

In this third chapter we shall present the classification of relevant Web pages. It is the
second step, after the Web sites classification, in the scheme of the news extraction.
In order to analyse such a task, we shall go into three pages classification methods in

depth. The first one concerns the URLs and table layout classification, the second one
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the classification through summarization and the third one the Ant-Miner algorithm. We

shall finally close this chapter by a conclusion.

3.2 Context

Web pages classification is necessary to help the Internet user to cope with the mass
of information on the World Wide Web. Web site classification, argued in the previous
section, is the first step of this task but is actually not often used. Even if it is, the second
step, the pages classification, has to be done to give the final results of a user query.
Various techniques have been suggested but are based on the same idea: analysing the
contents of Web pages with keywords. Though some interesting and original approaches
have been discussed these two last years: the URLs and table layout classification, the

classification through summarization and the ant colony concept.

3.3 URLs and table layout classification

The first method of pages classification concerns the use of URLs and the placement of
links to them on a referring page placed in a table layout. Both researchers, Lawrence
Kai Shih and David R. Karger, assume that contents providers tend to choose URLs and
page layouts that coherently structure their contents according to topic. They want to
formalize such intuitions into a general way of algorithmically predicting the properties

of the links targets.

3.3.1 URLs hierarchy

While the World Wide Web Consortium argues that document URLs should be opaque,
L.K. Shih and D.R. Karger[6] noticed that most URLs nowadays have human-oriented
meanings and are useful for recommendation problems. On many Web sites, URLs
are organized in a hierarchy according to subject. For example, on the CNN news
Web site, the articles about space of the last year are placed under the following URL:
cnn.com /2004 /tech /space. That means that all articles about this topic are placed in a

first space subtree, then in a second more general tech subtree, and so on of the CNN
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tree. The location of an article in the URL tree is therefore suggestive of the user's
interest in it. But this technique is also helpful for the Internet user. A good URL
structure provides helpful contextual clues for the reader. Browsers use besides this URL

hierarchy advantage displaying URLs along with the text description of a link. The user

can infer from a URL that a document serves a particular function or relates to a topic.

This hierarchical organization is the main advantage of URLs for this work.

Another plus is that they are easy to extract and relatively stable. Each URL maps
uniquely to a document, and any fetchable document must have a URL while other Web

features, like words or texts, are optional and not unique to a document.

The last asset is that URLs can be read without downloading the target document. This

makes to perform Web pages classification more quickly possible.

Technically, to convert a URL hierarchy into a tree structure,L.K. Shih and D.R. Karger
tokenized the URL by the characters /, 7 and &. The character / is a standard delimiter

for directories that was continued into Web directories. The characters 7 and & are

standard delimiters for passing variables into a script. http: is the root of the tree and

successive tokens in the URL become the children of the previous token.

3.3.2 Table layout

Another technique of this classification approach is the use of a table layout within a
Web page. This layout, following the example of URLs, is hierarchical as well. For
instance, the CNN Web site front page offers a “table of contents” partitioning its news
articles under a number of labels such as “U.S.”, “World", “Travel” and “Education”
representing subject classifications that may well be strong indicators of “interestingness”
for a reader. This also allows to help a user understand how to use a site: the layout
tends to be templated (most pages will retain a “look and feel”) and different articles

on one particular topic might appear in the same place on the page day after day.

The table layout is delimited by HTML table tags that have to obey a standardized HTML
grammar making the table feature easy to extract. The HTML table tags correspond to
rectangular groupings of text, images and links. But this layout often contains much more

than the site’s navigation. The contents of a site might use tables to group together

31

L




Chapter 3: Web pages classification
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Figure 3.1: A table layout, its HTML code and its conversion into a tree structure

articles by importance (i.e. the headline news section), by subject, or chronologically

(newest items typically at the top).

To convert the HTML table structure into a tree-shape, they used a hand-written Perl
program that extracted the HTML table tags <table> and <td>. The root of the tree
is the entire page’'s HTML. The children of a node are the next lower level of table

elements. Figure 3.1 shows an example of such a tree structure of a table layout.

3.3.3 Mathematical model

As we can now notice, each of both elements (URLs and table layout) of the Shih and
Karger's classification approach have been transformed into a tree structure. From this

point, these tree structures, while coming from two different elements, are the same and
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will be handled indistinctly as Bayes nets.

The underlying idea of the classification problem of the Bayes nets is as follows: imagine
that you do not understand the Chinese language. A friend of yours knows this complex
language and you ask him to recommend you a good Chinese news article. He gives you
the URL of this article (B-1 in figure 3.1) and you find on the same page, just below the
news article, what it seems to be another article (B-2 in figure 3.1), even if you do not
know the Chinese language. Your mind just guessed and assumed that it was strongly
possible that the other series of signs just below the recommended article is a news
article as well. It made good guesses about some of its semantic attributes. Another
intuition would be that if one person mentioned that the top link in box A (Figure 3.1)
was an advertisement, it might be reasonable to guess that everything in box A was an
advertisement too. The work of both researchers tries to formalize and build algorithms

that automatically make generalizations like these.

The aim of the automated generalization is to work out the class of each node of the
tree. Formally, a probability distribution is defined over the possible classes of items in
the tree. To accomplish this, the tree holding the items to be classified is considered
as a Bayes net. The assumption that the class to be learned is correlated to the tree
position is captured in a model based on mutations. Some children of internal nodes

may “mutate” into different classes.

There are two classes (0 and 1) and two mutation probabilities (forward: € and back-
ward: ¢). The class of a node follows probabilistically from the class of its parent.
Suppose node x has parent y in the tree. Let N, and N, denote the classes of nodes x

and y respectively. Then

Applying this rule from the root to the leaves, it is possible to assign classes to the nodes.
Given the root's class, we can flip coins according to the formulas above to determine
the children’s classes; given these we can generate the grandchildren’s classes, and so

on.

To initiate the process, we must choose a value for the root class. In order to minimize
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the number of parameters, it is useful to choose a root class function with the already

existing parameters # and ¢. For the root node r, we declare that

9
0+ ¢

This formula is useful: if z is a child of the root, then

Pr[N, =0 = Pr[N, =0|N, = 0] Pr[N, = 0] + Pr[N, = 0|N, = 1] Pr[N, = 1]
_ (1-p-2? 0
= -9 75 %50
_ ¢
0+ ¢

In other words, with this root probability, all nodes in the tree have the same probability
of being class 0, prior to labelling any of the leaves. Later, as the leaves are labelled,
these probabilities will change. If # and ¢ are small, the model asserts that a node is
likely to have the same class as its parent, and thus likely to have the same class as its
siblings and other nearby nodes in the tree. As the mutation probabilities increase, the
correlation between nearby nodes in the tree decreases. € and ¢ are usually constrained

to be less than 0,5.

The Bayes net is created by setting conditional probabilities for all edges in the tree as
follows: for node = with parent y, Pr[N, = 1|N,, = 0] = 6 and Pr[N, = 0| N, = 1] = ¢;

and by setting the root prior as follows: Pr[Ny = 1] = e_%'

How do the probabilities in the tree change when leaves are labelled? As we are working
on Bayes nets, we must use the concept of evidence. If we use no evidence, each node
x will have the probability Pr[N, = 0] = 9{—(}), that is of being class 0. But if we
use evidence, the problem is not the same. For example, let us assume that we know
the classes of a set of nodes E. This will influence our predictions about other nodes.
The previous probability is now conditioned on the evidence . We can expand this

conditional probability as
Pr[N, =0N E]

Pr(E]

Let us suppose now that the root r has two children z and y, and let £, and E, denote
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the labelled leaf nodes in the = and y subtrees, respectively. Given the class of the root
r, the classes of nodes in the two subtrees are independent of one another, and their
probabilities can be multiplied: Pr[E|N, = 0] = Pr[E,|N, = 0] Pr[E,|N, = 0] and
similarly for the case N, = 1. But to calculate this multiplication, we must, as said
above, pick a random class for x, and then assign classes to items below z based on the

class of z. That is

Pr[E,|N, =0] = Pr[E,|N, = 0] Pr[N, = 0|N, = 0] + Pr[E,|N, = 1] Pr[N, = 1|N, = 0]
= (1—6) Pr[E,|N, = 0] + 6 Pr[E,|N, = 1]

Generalizing that p,o = Pr[E,|N, = 0] and p,; = Pr[E,|N, = 1], the formula above,

generalized to an arbitrary number of children, says that for any node z,

Pzo = H [(1 S 9) Pyo I gpyl]

y € children(x)

Pz1 = H [epyo + (1 - 9) pyl]

y € children(x)
Working up from the leaves, two quantities p,o and p,; at each node z in the tree are
calculated. At the end of the recursion we have p,q and p,; and the root. At this point

we can compute

Pr[E] = pyo Pr[N, = 0] + p,1 Pr[N, = 1]
¢
0+ ¢

S~

= DPro + Pr1

0+ ¢

Thanks to this classification method based on the Bayes nets concepts, each node of

the original tree has been assigned to a class.

3.4 Classification through summarization

While categorization is expected to play an important role in future search services, Dou

Shen, Zheng Chen, Qiang Yang, Hua-Jun Zeng, Benyu Zhang, Yuchang Lu and Wei-
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Ying Ma [7] are working on a new Web pages classification algorithm based on Web
summarization for improving the accuracy. This summarization is made through four
methods for each Web page. These four methods give each one a set of sentences
associated to a high significance factor. The set of sentences given by the particular
summarization methods is the summary. The final result is the sum of the significance

factors of the four methods.

3.4.1 Srumn

The first measurement to get, Spunn, comes from the Luhn's method. In this extraction-
based method, every sentence of a Web page is assigned with a significance factor, and
the sentences with the highest significance factor are selected to form the summary. In
order to compute the significance factor of a sentence, a significant words pool is created
for each category by selecting the words with high frequency after removing the stop
words (words that from a non-linguistic point of view do not carry information) in that

category. Then a 3-steps method is applied to the Web page:

1. Set alimit L for the distance at which any two significant words could be considered
as being significantly related.

2. Find out a portion in the sentence that is bracketed by significant words not more
than L non-significant words apart.

3. Count the number of significant words contained in the portion and divide the

square of this number by the total number of words within the portion.

The result is the significant factor related to the sentence.

But this method is only available when the category of a Web page is known, i.e. for a
training set of Web pages. If we take a testing Web page from the Internet, its category
is not yet known. The significant score of each sentence can not be calculated according
to the significant words pool corresponding to its category label because we do not know
its category. To solve this problem we need to calculate the significant factor for each
sentence according to different significant words pools over all categories separately. The

significant score for the target sentence will be averaged over all categories and referred
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to as Spunn- The summary of this testing page will be made up by the sentences with

the highest scores. This Sy, is the first member of the final summarization equation.

3.4.2 Siga

Spsa is the second measurement to calculate. LSA stands for Latent Semantics Analysis
and represents terms and related concepts as points in a very high dimensional “semantic
space”. LSA is based on singular value decomposition (SVD), a mathematical matrix
decomposition technique that is applicable to text corpora experienced by people. SVD
uses among others singular vectors representing patterns and singular values indicating
the importance degree of the corresponding pattern within the document. Any sentence
of a given Web page containing a word combination pattern will be projected along the
singular vector corresponding. The sentence that best represents this pattern will have
the largest index value S;s4 with this vector. As in the Luhn's method, the sentences

with the highest S; 54 are selected to form the summary.

3.4.3 Scp

In this third method, the structure of Web pages is taking into account. A Web page
contains a lot of noisy blocks (see section 4.4.1) leading to a more difficult summarization.
The Function-Based Object Model (FOM) allows to utilize this structure of the Web
page. In FOM, objects are classified into a Basic Object (BO) or a Composite Object.
A BO is the smallest information body that cannot be further divided, i.e. a jpeg file.
HTML speaking, there is no other tag inside the contents of a BO. A CO as for it is
a set of Objects (BO or CO) that perform some functions together. Once all the BOs
and COs have been identified, they are characterized by a category such as information
object, navigation object, decoration object, etc. Then the contents body (CB) of the
Web page, that is the main objects conveying important information about the topic of

that page, is identified as follows:

1. Consider each selected object as a single document and build the T'F' x I DF index
for the object.
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2. Calculate the similarity between any two objects using cosine similarity computa-
tion, and add a link between them if their similarity is greater than a threshold
chosen empirically. After processing all pairs of objects, we will obtain a linked
graph to connect different objects.

3. In the graph, a core object is defined as the object having the most edges.

4. Extract the CB as the combination of all objects that have edges linked to the

core object.

A score Scp is then assigned to each sentence. If the sentence is included in the CB
then Scp = 1.0 otherwise Scp = 0.0. The summary of the Web page is the set of

sentences having a Scp = 1.0.

3.4.4 Ssyp

The last measurement to get is the Sg,,. For each Web page we want to summarize, a
series of eight features are automatically extracted from the page. These eight features,
thanks to a Nave Bayesian classifier, will then be used to identify whether a sentence
should be selected into its summary or not. Here are the eight features utilized: Given

a set of sentences S;, (i=1...5N) in a page,

1. fi1 measures the position of a sentence S; in a certain paragraph.

2. fio measures the length of a sentence S; which is the number of words in S;.

3. fis =Y. TF, - SF,. This feature takes into account not only the number of
word w into consideration, but also its distribution among sentences. We use it
to punish the locally frequent words.

4. fis is the similarity between S; and the title. This similarity is calculated as the
dot product between the sentence and the title.

5. fis is the cosine similarity between S; and all text in the page.

6. fis is the cosine similarity between S; and meta-data in the page.

7. fi7 is the number of occurrences of word from S; in special word set. The special
word set is built by collecting the words in the Web page that are italic or bold or

underlined.
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8. fis is the average font size of the words in S;. In general, larger font size in a Web

page is given higher importance.
where

e PN: the number of paragraphs in a document
e SN: the number of sentences in a document

e PL;: the number of sentences in a certain paragraph k

Para(i): the associated paragraph of sentence i
e T'F,: the number of occurrences of word w in a target Web page

e SF,: the number of sentences including the word w in the page

The Nave Bayesian classifier using the eight features to find the sentences to select for

the summary is:

]§[ Pr[f;|s€S] Pr[s€ S|

Jj=1

Pr(s€S|fi, fo,... fs] =

]]i[l Pr(f;]

where

e Pr[se S| stands for the compression rate of the summarizer which can be prede-
fined for different applications

e Pr[f;] is the probability of each feature i

e Pr[fi|s€S) is the conditional probability of each feature i

This equation gives a score S, to each sentence.

3.4.5 The final equation

Finally, we obtain a temporary summary for the Web page we wanted to summarize.
This summary is made up of the set of sentences given by the four methods applied on
the concerned Web page. The final score of each sentence is calculated by the following
sum:

S = Sturn + SLsa + Scs + Ssup

The final summary will be made up of the sentences having the highest score S.
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3.4.6 Classification process

Now all the summaries of the Web pages we want to classify have been created, we are
able to apply once again a Nave Bayesian Classifier. It will allow us to use the joint
probabilities of words and categories to estimate the probabilities of categories given a

document. The Nave Bayesian Classifier uses the following Bayes' rule:

Prlc;|0] [T Prlwgle;, 6]V
Prlc;|d;, 6] = k=1

Cl — .
> Pric,|0] ] Prlwk|c,, 0]N (wed:)
r=i k=1

where

. Pr[cjlé] can be calculated by counting the frequency with each category ¢; occur-
ring in the training data;

e |C| is the number of categories;

e Prfw;|c;] stands for probability that word w; occurs in class ¢; which maybe small
in training data, so the Laplace smoothing is chosen to estimate it;

e N(wy,d;) is the number of occurrences of a word wy, in d;;

e 1 is the number of words in the training data.

Experimental results show that this classification approach through summarization can
achieve a 12.9% improvement of correct Web pages found compared with a classical

search query through the Yahoo or LookSmart directories.

3.5 Ant-Miner

The last Web pages classification method is based on Ant-Miner, an Ant Colony algo-
rithm for discovering classification rules[8]. This approach is very original and innovative

and is an important research direction followed by Nicholas Holden and Alex A. Freitas

from the University of Kent in England. As this method uses rules, the goal of the
classification task is to discover rules from a set of training data and apply those rules
to a set of test data (unseen during training), and hopefully predict the correct class in

the test set.
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Ant-Miner classification rules are based on words contained in unstructured or semi-
structured texts found in Web pages. As everybody knows, there is no program at the
moment that can fully understand the meaning of a given Web page. Simple inter-
pretation can only be made. The reason is twofold: first, the natural language is very
complicated and second, the number of possible classification rules is exponential on
the number of words, so that the search space becomes quickly very large. Therefore
N. Holden and A.A. Freitas decided to restrict the scope of the investigations about
words. For finding the best words representing a Web page they want to select appro-
priate words in the summaries or descriptions of the Web page in <meta> tags applying
linguistics-based text preprocessing techniques. They then use WordNet. WordNet is
an electronic lexicon that contains several relationships between words. It is an attempt
to match the human understanding of words and their relationships into an electronic

database. They use three linguistic resources from this lexicon to preprocess the data:

1. Removing the words suffixes: In order to cut down the number of attributes (words)
for their Ant-Miner, it is necessary to perform stemming on words. It allows also
to find patterns more easily. For instance, instead of selecting the three words eat,
eating and eater, they only select the word eat having the same stem and the
same meaning as the two last.

2. Identifying all the nouns in the text: Instead of taking all the important words
within a text such as verbs, nouns, adjectives, etc, they use WordNet to identify
only the nouns. The idea behind this technique is that nouns are usually the
subject of a sentence. Once again, it allows to cut down the number of attributes
to add to their list of words.

3. Capturing the idea of a given word in a more generic form: If different pages
have the same idea behind what they contain, expressed by a series of attributes,
WordNet must find the relationship between these words resulting in the selection
of only one or two relevant words to restrict again the number of attributes. For
example, if one page contains the words: window, roof, and door, and another
Web page contains the words chimney, room and brick then WordNet should find
the word house. This word generalization is unfortunately risky: if WordNet finds

the wrong relationship between the words, it could lead to wrong results of the
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Ant-Miner. That is the reason why both researchers apply an algorithm searching

for the hypernyms (generalizations) of a pair of words and returning the best one.

Once the number of attributes has been strongly and efficiently cut down, they can be
used by the Ant-Miner algorithm. The Ant-Miner algorithm is based on the following Ant
Colony paradigm: in nature, ants work on finding food and taking it back to their ant
hill. To do that, they create "highways” to and from their food. But these “highways”
have not the same length. One ant takes a short path, another a bit longer, another one
the longest, etc. Each ant lays down an amount of pheromone and the other ants are
attracted to these amounts of pheromone. If an ant follows the shortest path, it will make
more trips from and to the ant hill, laying down consequently more and more amounts
of pheromone compared with the ant following the longest path. As ants are attracted
to pheromone, the ones following longer paths than the shortest will be attracted to the
large amounts of pheromone on the shortest path. Finally all of them will follow the

shortest “highway" .

This Ant Colony paradigm is the basic idea of the Ant-Miner algorithm. Instead of
foraging for food the ants in the Ant-Miner algorithm forage for classification rules,
and the path they take correspond to a conjunction of attribute-value pairs (terms).
A rule consists of an antecedent (a set of attribute values) and a consequent (class):
IF <attrib = value> AND ... AND <attrib = value> THEN <class>. Figure 3.2 gives a

high-level pseudo code of Ant-Miner helping to understand its inner working.

TrainSet = {all training cases}; —l
DiscoveredRuleList = []; /* initialized with empty list */
REPEAT
Initialize all trails with the same amount of pheromone;
REPEAT

An ant incrementally constructs a classification rule;
Prune the just-constructed rule;
Update the pheromone of all trails;
UNTIL (stopping criteria)
Choose best rule out of all rules constructed by all ants;
Add the best rule to DiscoveredRulelist;
TrainSet = TrainSet - {cases correctly covered by best rule};
UNTIL (stopping criteria)

Figure 3.2: High-level pseudo code of Ant-Miner

42




3.5. Ant-Miner

The algorithm first starts by initializing the training set to the set of all Web pages and
initializing the discovered rule list to an empty list. As we can see, the main part of
the pseudo code in figure 3.2 is an outer Repeat-Until loop with a smaller inner one.
Each iteration of the outer loop discovers one classification rule. This first step of this
loop is to initialize all trails with the same amount of pheromone, which means that all
terms have the same probability of being chosen (by the current ant) to incrementally
construct the current classification rule. Then, the inner loop constructs an individual

rule in three steps.

In the first step, an ant starts with an empty rule and incrementally constructs a classi-
fication rule by adding one term at a time to the current rule. A term;; (representing a
triple < Attribute; = Value; >) is added to the current rule depending on whether the
product n;; - t;; (t) is high where n;j is essentially the information gain associated with
term;; and t;; (t) is the amount of pheromone currently available in the position 7, j of
the trail being followed by the current ant and associated with term;; at iteration t. The
higher the value of n;; the more relevant for classification term;; is and so the higher its
probability of being chosen. The quality of the rule constructed by an ant is evaluated
and, as time goes by, the best trail positions to be followed, i.e. the best terms to be
added to a rule, will have large amounts of pheromone, increasing their probability of

being chosen to construct a rule.

The second step of the inner loop is the deletion of irrelevant terms of the current rule

if this operation does not decrease the quality of the rule.

The third step is the increase of the pheromone in the trail followed by the ant, propor-
tionally to the rule’s quality. In other words, the higher the quality of the rule, the higher

the increase in the pheromone of the terms occurring in the rule antecedent.

Finally the outer loop chooses the highest-quality rule out of all the rules constructed by
all the ants in the inner loop, and it adds the chosen rule to the discovered rule list. Then
it removes all cases that satisfy the rule antecedent and have the same class as predicted
by the rule consequent from the initial Web page set. The next iteration creates a new

rule with the smaller set of Web pages and so on.

The output of Ant-Miner is the discovered rule list with classes allowing the classification.
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Experimental results on a set of 127 Web pages in three different classes (Education,
Technology and Sport) were harvested from the BBC Web site. Ant-Miner produces
accuracies that are at worst comparable to the more established C5.0 algorithm, a
powerful data mining tool; and Ant-Miner discovers knowledge in a much more compact

form than C'5.0, facilitating the interpretation of the knowledge by the user.

3.6 Conclusion

This chapter was about the Web pages classification. Various original and innovative ap-
proaches have been treated. All of them have special features that suit specific problems.
Experimental results, as well as those in the previous chapter, show that it is important
to use them before the news extraction task as the amount of information available on
the World Wide Web is huge and growing each year. But it is only the first process of
the whole extraction issue. The next chapter we shall present is about the study of data

structures that will be utilized for extracting news articles.
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Chapter 4

Tree structures
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4.1 Introduction

In this chapter we shall present the various data structures that are utilized to handle
HTML, especially the tree structures (Context). Then three tree structures are analysed:
the first one is about the Document Object Model tree, the second one about the site
style tree and the third one about the tree structure we use in our work: the rooted

ordered labelled tree, followed by a conclusion.
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4.2 Context

The amount of data available on the Web has been growing explosively during the past
few years. Users have now the opportunity to benefit from the available data in many
interesting ways. But unfortunately, these ways are not always efficient. And the need
for the user is, of course, a fast and efficient search that gives correct and accurate

results.

That is the reason why major efforts have been made in order to provide efficient access
to relevant information within this huge quantity of data. Two broad views of this

problem have recently evolved:

e The first one is characterized by the unstructured view of data. It has developed
breakthrough technologies (such as Web search engines) based on information
retrieval methods. Browsing and keyword searching are two of these methods.
But they are intuitive and present severe limitations. Browsing is not suitable for
locating particular items of data because following links is tedious, and it is easy
to get lost. Furthermore, browsing is not cost-effective as users have to read the
documents to find desired data. Keyword searching is sometimes more efficient
than browsing but often returns vast amounts of data, much more than the user
can handle. How many times did you enter a keyword in a search engine resulting
in an infinite list of Web sites, most of them having nothing to do with what you
are looking for?

e The second one is characterized by the structured or semi-structured view of data.
It borrows techniques from the database area to provide an efficient managing of
the data available on the Web. But these adapted methods are still not spread
mostly because of two intrinsic problems: the need for high human intervention

and the low quality of the extraction results.

The need of a more structured view of data in order to provide efficient access to pertinent

information still remains.

In order to response to these problems about the structured or semi-structured view of

data, we have use in our work tree structures. These data structures are very specific
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and the research into this topic is considerable. Therefore, we shall only linger over the

state of the art of these tree structures related to our work.

4.3 Document Object Model tree

The W3C defines the Document Object Model (DOM) as follows: “The Document
Object Model (DOM) is an application programming interface (API) for HTML and
XML documents. It defines the logical structure of documents and the way a document
is accessed and manipulated. In the DOM specification, the term "document” is used in
the broad sense - increasingly, XML is being used as a way of representing many different
kinds of information that may be stored in diverse systems, and much of this would
traditionally be seen as data rather than as documents. Nevertheless, XML presents this
data as documents, and the DOM may be used to manage this data.

With the Document Object Model, programmers can build documents, navigate their
structure, and add, modify, or delete elements and contents. Anything found in an HTML

or XML document can be accessed, changed, deleted, or added using the Document
Object Model.” [2]

This precise definition gives us a broad approach of the use of the Document Object

<html>
<head>
<title>Portals</title>
</head>
<body>
<ul>
<1y
<a href="..">Yahoo</a>
</1li>
<lis
<a href="“..">Lycos</a>
</1a>
</ul>
</body>
</html>

Figure 4.1: From HTML code to the DOM tree representation
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Model. In our work, we will actually only use the logical structure of this description.
Indeed, we just use the concept of representation that makes correspond an HTML page
with a DOM tree where the tags are internal nodes and the detailed texts, images or

hyperlinks are the leaf nodes (see figure 4.1).

The component that reads a text-formatted HTML file or stream and converts it to a
DOM tree is called a parser. There are many parsers available that all implement the
DOM interface. Some of the parsers are commercial softwares, some are free. The
parsers also differ with HTML versions. The parser we use is a free parser adapted by

ourselves in order to manipulate HTML (see Part I1).

4.4 Style tree

The main part of the work when you want to extract the news article from a news page
is to locate the article within the page, ignoring navigation panels, advertisements, links,
etc. Although these information items are useful for human viewers and even necessary
for the Web site owners, they are useless for the extracting task [9]. The need to detect
and eliminate this useless information is important and an effective way to do that is to

use the style tree structure.

4.4.1 Noisy blocks

We can divide a typical Web page in two parts: a part containing the main content blocks
where the useful information is located (in our case, the news article) and another part
containing blocks of useless information such as banner advertisements, navigational
guides, decoration pictures, etc. We call these blocks that are not the main content

blocks of the page the noisy blocks or the local noises.

Eliminating these noises is thus of great importance because they seriously harm the
accuracy of data mining. The research of Lan Yi, Bing Liu and Xiaoli Li in this topic
is of great interest. They propose a pre-processing step called Web page cleaning that
eliminates the local noises within a Web page. This first task before mining becomes

critical for improving the data mining results.
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Figure 4.2: Noisy blocks in a news Web page from The Australian

Figure 4.2 is an example of noisy blocks within a news page of the Web site of the

famous newspaper “The Australian”.

The cleaning of the page is based on the following observation: “In a typical commercial
Web site, Web pages tend to follow some fixed layouts or presentation styles as most

pages are generated automatically. Those parts of a page whose layouts and actual

contents (i.e., texts, images, links, etc) also appear in many other pages in the site are
more likely to be noises, and those parts of a page whose layouts or actual contents are |

quite different from other pages are usually the main contents of the page.”
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4.4.2 The style tree

Basing oneself on this observation, the three research workers introduce a new kind of
data structure: the style tree [9]. This one is based on the DOM tree structure. As seen
in the Document Object Model section, a DOM tree is the representation of an HTML
page where the tags are internal nodes and the detailed texts, images or hyperlinks are
the leaf nodes. But this data structure is too poor to study both the presentation style

and real contents of the Web pages.

The style tree, as for it, captures the common layouts (or presentation styles) and the
actual contents of the pages in a Web site. This structure is able to compress the

common presentation styles of a set of related Web pages.
Let us illustrate this new concept with an example (see figure 4.3).

In this example d; and ds are two DOM trees. We can observe that, except for the tags
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Figure 4.3: A style tree based on two DOM trees
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at the bottom level, all the tags in d; have their corresponding tags in dy. Thus, d;
and d, can be compressed. A count is used to indicate how many pages have the same
style at the same level of the style tree. For instance, we can see that the BODY tag
is in d; and in dy. BODY has thus a count of 2. The same phenomenon appears for
the TABLE-IMG-TABLE tags. This sequence of identical tags is called a style node that
represents a particular style at this level. A style node is thus a sequence tags node in
a DOM tree. In this style node, the tag nodes are called element nodes, distinguishing

them from the tag nodes in the DOM tree.

Below the right most TABLE element node, we can see that d; and ds diverge. We
have two different style nodes: P-IMG-P-A and P-BR-P. The count is set to 1 for each
different style node.

Clearly, the style tree is a compressed representation of both DOM trees. It enables us

to see which parts of the DOM trees are common and which parts are different.

Thanks to this example we can now construct a formal definition of a style tree: a style

tree consists of two types of nodes, namely, style nodes and element nodes.

e A style node (S) represents a layout or presentation style, which has two compo-
nents, denoted by (F's,n), where Es is a sequence of element nodes (see below),
and n is the number of pages that has this particular style at this node level.

In figure 4.3, the style node P-IMG-P-A has 4 element nodes, P, IMG, P and A,
and n = 1.

e An element node (E) has three components, denoted by (T'AG, Attr, Ss), where
T AG is the tag name, Attr is the set of display attributes of TAG and Ss is a set
of style nodes below E.

On Figure 4.3, “TABLE" is a tag name, the display attribute of TABLE is bgcolor
= RED and S's are the styles nodes below TABLE.

4.4.3 The site style tree

The next step in this approach of the style tree is to build a site style tree (SST) for
the pages of a whole Web site [9]. For this, a DOM tree for each page is built and then

merged into a style tree in a top-down fashion. At a particular element node £ in the
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Figure 4.4: An example of site style tree

style tree, which has the corresponding tag node 7" in the DOM tree, we check whether
the sequence of child tag nodes of 7" in the DOM tree is the same as the sequence of
element nodes in a style node S below E (in the style tree). If the answer is yes, we
simply increment the page count of the style node S, and then go down the style tree
and the DOM tree to merge the rest of the nodes. If the answer is no, a new style node
is created below the element node E' in the style tree. The sub-tree of the tag node 7'
in the DOM tree is copied to the style tree after converted to style nodes and element

nodes of the style tree.

4.4.4 Presentation importance and composite importance

The definition of noise is based on the following assumptions:

e The more presentation styles that an element node has, the more important it is,
and vice versa.

e The more diverse that the actual contents of an element node are, the more
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important the element node is, and vice versa.

The importance of an element node is given by combining its presentation importance
and contents importance. The greater the combined importance of an element node is,
the more likely it is the main contents of the pages. A metric is needed to measure the

importance of a presentation style:

Node importance: for an element node E in the SST, let m be the number of pages
containing £ and [ be the number of child style nodes of E (i.e. [ = |E.Ss|), the node
importance of E, denoted by NodeImp(FE), is defined by

l
=Y pilogmpi if m>1
NodeImp(E) = i=1

1 of =1

where p; is the probability that a Web page uses the i style node in E.Ss.

Intuitively, if the number of child style nodes (1) is small, the possibility that E is presented
in different styles is small. Hence the value of Nodelmp(E) is small. If E contains many
presentation styles, then the value of Nodelmp(E) is large. In the example of figure 4.4,
the importance of the element node BODY is 0 (1 l0g100 ! = 0) since l = 1. That s, below
BODY, there is only one presentation style Table-Img-Table-Table. The importance of
the double-lined TABLE is —0.3510g1000.35 — 2 % 0.25 l0og100 0.25 — 0.1510g100 0.15 =
0.292 > 0

But in this calculation, we do not consider the descendents of the element nodes. For
example, we cannot say that BODY is a noisy element by considering only its node
importance. We thus need another measure that takes into account the importance of
an element node and its descendents. For this, we must add to the node importance, the
average of the node importance of its descendents, multiplied by an attenuating factor.

This sum is called the composite importance of a node.

While the presentation of node is important, we also need its contents importance.
That is the reason why the composite importance of a leaf element node based on the
information is defined in its actual contents (i.e. texts, images, links, etc.). Here is a

more formal definition:
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Composite importance: for a leaf element node E' in the SST, let [ be the number of
features (i.e. words, image files, link references, etc.) appeared in E and let m be the
number of pages containing E, the composite importance of E' is defined by

!
2. H(ai)
L e if m>1

CompImp(E) =
1 if m=1

where a; is an actual feature of the contents in E. H(a;) is the information entropy of

a; within the context of F,
m
H(a;) = — sz‘j logm pij
j=1
where p;; is the probability that a; appears in E of page j.

4.4.5 Noise definition

Now we have given definitions for node importance and composite importance, we are
able to give a definition of noise: For an element node E in the SST, if all of its
descendents and itself have composite importance less than a specified threshold ¢, then

we say element node F is noisy.

Another definition is important, the one of meaningful: If an element node F in the SST

does not contain any noisy descendent, we say that E is meaningful.

4.4.6 Web page cleaning

All the definitions having been given, the cleaning process can be launched (see fig-
ure 4.5). Given a Web site, the system first randomly crawls a number of Web pages
from the Web site and builds the site style tree based on these pages. Sometimes it is
impossible to crawl whole sites because they are too large. That is why the process does
it by a random way. Once done, the process calculates the composite importance of each
element node in the SST and finds the maximal noisy nodes and maximal meaningful

nodes. Then it maps the DOM tree of the page to the SST, and depending on where
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1:  Randomly crawl & pages from the given Web site §
2:  Set null SST with virtual root £ (representing the root);
3:  for each page W in the & pages do

4 BuildPST(W);

5 BuildSST(E, E,,)
6: end for

7:  CalcComplmp(£);

8 MarkNoise(E);

9:  MarkMeaningful(£);
10:  for each target Web page P do

11: E, = BuildPST(P) /* representing the root */
IZ: MapSST(E, E,)
13:  end for

Figure 4.5: The whole process of the Web page cleaning

each part of the DOM tree is mapped to the site style tree, we can find whether the
part is meaningful or noisy by checking if the corresponding element node in the SST is
meaningful or noisy. If the corresponding element node is neither noisy nor meaningful,
we simply go down to the lower level nodes. The process finally gives as result the main

contents of the page after cleaning, in other words and in our case, the news article.

4.5 Rooted, ordered, labelled trees

The two previous types of tree have inspired us in our work. As beforehand said, we will

use the DOM tree representation to stand for our trees.

More than a representation, the following mathematical properties of the trees will be

used in order to handle quickly and efficiently these data structures:

e Tree: a tree is a connected undirected graph with no simple circuits.
e Rooted tree: a rooted tree is a tree in which one node has been designated the
root, in which case the edges have a natural orientation, towards or away from the

root.
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e [abelled tree: a labelled tree is a tree where labels have been added to each node.
In our case, each node will be labeled with an HTML tag name.
e Ordered tree: an ordered tree is a tree where the children of each internal vertex

are ordered.

From now on, we will use rooted, ordered, labelled trees[10]. But to simplify, we will

only use the terminology tree to speak about rooted, ordered, labelled trees.

We shall also often speak about preorder traversal. A traversal algorithm is a procedure

for systematically visiting every vertex of an ordered tree. A preorder traversal is defined

recursively:

e Visit root.
e Visit left subtree in preorder.

e Visit right subtree in preorder.

Other traversals like inorder and postorder are also used but we will not apply them.

Figure 4.6 is an example of these different traversals.

Figure 4.6: Preorder (blue), inorder (green), and postorder (red) traversals
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4.6 Conclusion

This chapter was about the various tree structures used to handle HTML. The DOM
is a complex data structure and only its logical structure was pertinent for our work.
The site style tree is another sophisticated tree structure and introduces an important
notion for our research: the noisy blocks. Finally we conclude this chapter by giving a
definition of rooted ordered labelled tree. Now we have been briefed with these kind
of data structures, we are ready to attentively examine wrappers (which sometimes use

tree structures) in chapter 5.
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5.1 Introduction

We shall present from here and during the three following chapters the last step of the
long development through the news extraction process. Wrappers are tools that extract
data from the Internet. This chapter will introduce the most famous wrappers available
in the literature. We shall begin with a set of definitions to explain what a wrapper is. As
there are many wrappers in the literature, we classified them considering their common
features (section 5.3). Five classes and an unclassifiable wrapper (RoadRunner) have
been found. We shall present each class and its usefulness for our topic briefly. Since

some tools are more suitable for news extraction, we decided to present them in separate

chapters.
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5.2 Definition

“Wrappers are specialized programs that identify data of interest and map them to some

suitable format”.[11]

“A wrapper is a piece of software that enables a semi-structured Web source to be

queried as if it were a database”.[12]

Let us take a random example: we could imagine a wrapper that goes everyday on a
weather forecast Web site to extract the temperatures and store them on a database.
The wrapper knows exactly where the temperature is encoded, for example at line 65,
after the <a> tag. As the site is automatically generated from a database everyday, the
wrapper can hope the temperature will always be present at the same place, so the Web
site can be queried as if it were a database.

However, Web sites change and they change often.Nowadays, wrappers must be ca-
pable to adapt themselves to those changes; they must verify the retrieval data and

automatically correct themselves if this data is erroneous.

The problem of generating a wrapper for Web data extraction can be stated as follows.
Given a Web page S containing a set of implicit objects, determine a mapping W that
populates a data repository R with the objects in S. The mapping W must also be able
of recognizing and extracting data from any other page S’ similar to S. A wrapper is a

program that executes . [11]

Notice that “similar pages’ generally means pages from the same Web site, with a
common layout. We shall study some wrapper generation tools whose goal is to be

highly accurate, robust and as automatic as possible.

The extraction of a news article is clearly more complicated that the one of a temper-
ature since we have to extract a big part of the whole page contents instead of a field.
Furthermore, the objective is not necessarily to extract data in order to store it on a
database. However, techniques utilized by wrappers to extract data can be very useful

to our topic.
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5.3 Classifying Web data extraction tools

There are many tools to develop wrappers available in the literature [11]. Some tools
have common features allowing classifying them. Five classes have been created, based
on the main technique used to generate a wrapper. Unfortunately, RoadRunner is too

specific to be clustered into one of those classes.

Table 5.1 is a summary of the main features belonging to each class.

Class of Wrapper Main features

They are not really wrappers but languages de-

L for Wrapper | . - 4
AnEuages 1o PP signed to assist in constructing wrappers.

Development

The wrapper is derived from a given set of exam-
Wrapper Induction tools | ples. These tools rely on formatting features that
delineate the structure of the data to extract.
They create a parsing tree that reflects the HTML
HTML-tree based tools | tag hierarchy of the document in order to extract
data semi-automatically.

They extract relevant information thanks to tech-
niques from natural language processing.

They decompose (portions of) a Web page to find
Structure-based tools its inherent structure, discover nested elements
and then extract semi-structured data.

NLP-based tools

Unclassifiable. The only known wrapper that can

SR Ee be considered as fully automatic.

Table 5.1: Classes of Wrappers

5.3.1 Languages for wrapper development

These are languages specially designed to assist users in constructing wrappers (survey).
Instead of manipulating the HTML code with languages such as Java or Perl, they
proposed techniques to simplify the coding of a wrapper. Be aware that these tools do

not output wrappers; they are only languages to help writing them. The best known
tools are Minerva, TSIMMIS and Web-QQL.
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For example,Minerva parses HTML files using a grammar in EBNF style. For each
document, a set of productions is defined. Following, the user writes the code to access

the target data in procedural programming.

Web-QQL [13] is aimed at performing SQL-like queries over the Web. It is capable of
locating selected pieces of data in HTML pages. It creates a hypertree (an abstract
HTML syntax tree representing the document) whose can be queried using the syntax

of the language and it outputs the results in a suitable format.

Those tools are still "manual” because the user must examine the document and find
the HTML tags that separate the objects of interest. In other words, the process of
discovering objects boundaries is carried out manually. This is the reason why this tool

can not be clustered with the tree-based tools, which are semi-automatic.

Useful for our topic 7

Those softwares are not suitable for the extraction of a news article, considering our
requirements. They are designed to extract specific data, which can be accessed at a
precise location. If the goal is to retrieve a single data field, for example the current
temperature, Web-QQL can easily find it by a query (for instance, go to the third child
at the fifth level of depth). Yet, an article is spread over several vertices in an HTML
tree context; it is also spread over several productions in a syntax grammar context, so
it could not be easily reconstitute by simple queries. Moreover, we want the process to
be fully automatic; the user should not have to look at the HTML code to extract an

article.

5.3.2 Wrapper induction tools

The wrapper induction tools generate delimiter-based extraction rules derived from a
given set of training examples. They rely on formatting features that implicitly delineate
the structure of the pieces of data found. These tools are really suitable for HTML
documents. This approach is used by tools such as WIEN and STALKER.

WIEN is a pioneer wrapper induction tool. The user gives a set of pages where data

of interest is labelled to serve as examples and WIEN returns a wrapper that works with
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TITLE
Begin Rule
SkipTo (" colid " value = " " >
<font size = + 1 > <b>)
End Rule
SkipTo(</b> </font> <br> by
<a href =" /)

Figure 5.1: Example of delimiter-based rules to extract the title of a book

each labelled page. The pages are assumed to have a pre-defined structure and induction
heuristics are used to generate wrappers. For example, if a page has structure HLRT (a
head, a body with two colums (left, right), a tail), a HLRT wrapper is generated. These
wrappers do not deal with nested structures and are not able to adapt themselves to

variations.

STALKER[12] is similar to WIEN but can deal with hierarchical data extraction. It
takes as input examples where data of interest has been labelled by the user. It creates a
sequence of tokens representing the surrounding of the data to be extracted. STALKER
generates an extraction rule that covers as many as possible of the given examples.
When an example can not be covered, it generates a "disjunctive rule”. The solution
is a set of disjunctive rules. STALKER can handle hierarchy and nested objects. It can
also verify the data extracted and automatically repair the wrapper in case of incorrect
results. We shall study in chapter 6 how STALKER works and how induction tools can

be useful for our topic.

5.3.3 HTML-tree based Tools

These are tools that rely on inherent structural features of HTML documents for accom-
plishing data extraction. These tools create a parsing tree that reflects the tag hierarchy
of the document (see chapter 4). Following, extraction rules are applied to the tree to
perform the extraction process. Those rules can be either automatic or semi-automatic.

The most famous tools are W4F and XWRAP.

WA4F (World Wide Web Wrapper Factory) is a toolkit to build wrappers:
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e First the user describes how to access the document (URL). He can choose some
rules to set how he wants the document to be extracted from the Web.

e Then, the document goes to a parser that constructs a DOM tree (Document
Object Model).

e Second the user describes what pieces of data to extract. He can choose extraction
rules for locating data into the parsing tree.

e Third, he declares which target structure to use for storing the data extracted

(String list, database, etc.).

WA4F features a graphic user interface and a wizard that can return a canonical path
expression for a piece of information selected by the user. Apart of the creation of a
tree, WAF is different from Web-QQL since the user is assisted to construct the extraction
rules instead of having to write code. These rules are defined by the HTML Extraction
Language (HEL). As the wizard cannot deal with a collection of items, the user who is
interested in various items of the same type must manually write extraction rules that
generalize the path expression provided by the wizard. This program is then considered
as semi-automatic, it is not as manual as Web-QQL but it could not be classified as

automatic.

XWRAP [14] is another semi-automatic tool to construct wrappers. It also has a graphic
user-friendly interface and features a component library that provides basic building
blocks for wrappers. Before the extraction the tool cleans up bad HTML tags and
syntactical errors and then turns the document into a parsing tree. The tool operates by
leading the user through a number of steps, selecting in each step proper components of
its library. The user may try among six data extraction heuristics to locate data objects
of interest; those heuristics are predefined to deal with several types of structuring HTML
mark-ups. In the case of Web pages that match very well to the heuristics, XWRAP can
extract data very efficiently. By the way, if the user is not satisfied with the extraction
results, he can refine the process by specifying data types for the elements. XWRAP

outputs a wrapper coded in Java for a specific source.
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Useful for our topic?

As presented in chapter 1, we shall use tree structures to cluster similar pages and extract
the news article, so that our program would belong to this class. However, we want our
program to be fully automatic and completely transparent to the user, so that there will

be no wizard neither extraction rules in our application.

5.3.4 NLP-based Tools

Natural Language Processing (NLP) is used to find and extract relevant data existing
in natural language documents. These tools usually apply techniques such as filtering,
part-of-speech tagging and semantic tagging to build relationships between phrases and
sentences elements, so that extraction rules can be derived. Such rules are based on
syntactic and semantic constraints that help to identify the relevant information within

a document.

These tools are more suitable for pages with grammatical text (job listings, rental ad-

vertisements, announcements, etc). Famous tools based on this approach are RAPIER,
SRV and WHISK [15]. We shall study them in chapter 8.

Useful for our topic?

These techniques are actually based on free text analysis. They can run on HTML files
as well since HTML can be consider as text but this approach is completely different
from the usual tactics of data retrieval from Web sites. However, these techniques must

be mentioned as they are a very interesting alternative for news extraction.

5.3.5 Structure-based tools

NODOSE [16] (Northwestern Document Structure Extractor) is an interactive tool for
semi-automatically determining the structure of documents that contain semistructured
information and then extracting their data. The user has a graphical user interface
to help him decomposing the document hierarchically; he must outline the interesting

regions and describe their semantic. The decomposition process occurs in levels. For
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each level of decomposition, the user builds an object with a complex structure, and

then decomposes it in other objects with a more simple structure.

Following, once NODOSE knows how to construct some objects, he can automatically
identify other objects in the document (a mining component attempts to infer the gram-

mar of the document from objects constructed by the user).

DEBYE [17] (Data Extraction By Example) is an interactive tool that receives as input a
set of example objects taken from a sample Web page and generates extraction patterns
that allow extracting objects from other similar pages. Given a target structure for objects
of interest, it tries to locate in Web pages portions of data that implicitly conform to
that structure.

Trough a GUI, the user takes data from the sample page and assemble what is called
"nested tables”. The tables assembled are examples of the object to be identified on
the target pages. DEBYE generates object extraction patterns (OEP) to represent the
structure and the textual surrounding of the objects to be extracted.

The extraction on a target page is done by a bottom-up algorithm, which first identifies
the atomic values in the page a then tries to assemble complex objects using the structure

of the OEP as a guide.

Useful for our topic ?

Once again we want our program to be fully automatic and completely transparent for
the user, so that there will be no wizard neither extraction rules. Moreover, these tools
are designed to understand the structure of documents, to handle and extract complex
or semi-structured objects. We do not need these features to extract some text from a

page; the hierarchy in the document does not matter.

5.4 RoadRunner

[18] RoadRunner could not be classified in one of the five classes presented above.
RoadRunner is the only known wrapper which does not request a user intervention. It

works by comparing the HTML structure of two or more given sample pages. The sample
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pages must belong to the same “page class” (which means similar pages from a Web
site). It generates as a result a schema for the data contained in the sample pages. A
grammar is inferred from this schema, this grammar is capable of recognizing in a random
Web page instances of the attributes identified in the sample pages. All the extraction
process is based on an algorithm that compares the tag structure of the sample pages
and generates regular expressions that handle structural mismatches found between both

structures. We shall explain in detail how this algorithm works in chapter 7.

5.5 Conclusion

We saw different techniques to extract data of interest from the Internet. Most of these
techniques are designed to extract data as if it were a field coming from a database, so
that they are not suitable for news extraction. No one of the presented Wrappers seems
to be the obvious issue to extract news articles but we could find in some classes ideas

to help implement it.

Two classes and RoadRunner deserve to be analysed in details as they present features
that could help us to extract news articles: We shall explain the induction tools, especially
STALKER, in the next chapter. RoadRunner and its basic algorithm will be analysed in
chapter 7. Finally, the NLP-based tools are introduced in greater detail in chapter 8.
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6.1 Introduction

As we saw in the previous chapter, an induction tool generates delimiter-based extraction
rules derived from a given set of training examples. It does not rely on the inherent struc-
tural features of HTML documents (nested data patterns) but rather on the formatting
features that delineate the data to extract. [19]

Notice that theses techniques based on the detection of the formatting features surround-
ing the target data assume to handle documents that contain semi-structured data, in

order to extract fields as if it were a database.
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We shall see that the extraction of data belongs to a larger process, offering the verifica-
tion of the extracted data and the automatic repair of the wrapper in case of wrong results
(section 6.2). Then we shall introduce the features of extraction rules before showing

how the most famous induction tool, STALKER (section 6.4) [12], creates those rules.

We shall conclude by showing whether induction tools are suitable or not for news

extraction (section 6.7).

6.2 Lifecycle of an induction wrapper

Web
pages

Pages to be
labeled

Labeled
Web pages

Figure 6.1: Lifecycle of a wrapper

The figure 6.1 illustrates the lifecycle of a wrapper [12]:

e First the user provides the initial labelled examples using the GUI.

e The system can suggest the user to label extra pages in order to improve the
accuracy of the wrapper.

e The wrapper induction system takes a set of pages labelled with examples of the

data to be extracted.
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e The output of the wrapper induction system is a wrapper that contains extraction
rules that describe how to locate the desired information on a Web page.

e Web pages can be given to the wrapper as input and it extracts the desired data.

e A wrapper verification system uses the functioning wrapper to learn patterns that
describe the new data that has just been extracted.

e If a change is detected, the system automatically repairs the wrapper: it uses those
new patterns to locate examples on the changed pages (automatic re-labelling).

e The system re-runs the wrapper induction system with the new labelled pages.

e An improved wrapper is outputted.

6.3 How to locate the information on the page

Let us consider the figure 6.2 presenting restaurants from the same Web site.

Great Gift Idea !

Name: Killer Shrimp
Cuisine: Seafood
Address: 72 Pico St.
Phone: (213)508-1570

Name: Paolo’s
Cuisine: Pizza

Address: 97 Adams Blvd.
Phone: (213) 508-1570

"Heaven for shrimpophiles”, since
this chain serves "nothing but”;
they come or unpeele:

| Once you taste Paolo’s pizza, you
are guaranteed to come back for
more! This fami

Figure 6.2: Two sample pages of restaurants

Assume that the address on the right example is in bold style because the restaurant is

close to a specified address.

The HTML code of the left example contains somewhere :

El:...Cuisine:<i>Seafood</i><p>Address:<i>12PicoSt.</i><p>Phone:<i>...

And the code of the right example looks like :
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E4:...Cuisine:<i>Pizza</i><p>Address:<b>97 Adams Blvd.</b><p>Phone:<i>...
We add two others examples close to the first one:

E2: ...Cuisine:<i>Thai</i><p>Address:<i>512 QOak Blvd.</i><p>Phone:<i>...

E3: ...Cuisine:<i>Burgers</i><p>Address:<i>416 Main St.</i><p>Phone:<i>..

6.3.1 Extraction rules

For any given item to be extracted from a page, we need an extraction rule to locate
both the beginning and the end of that item. Each HTML document is analyzed as a
sequence of tokens (words, numbers, HTML tags, etc.). So we need to find the first and
the last token of an item. The issue is to create a set of extraction rules that work for

all of the pages in the source.

The extraction rule is based on "landmarks” (i.e. groups of consecutive tokens) that

enable the wrapper to locate the start and the end of an item within a page.

Let us consider the three restaurant descriptions E1, E2, E3 presented below figure 6.2.

In order to identify the beginning of the address, we can use the rule:
R1 = SkipTo(Address) SkipTo(<i>)

This means that the wrapper will start from the beginning of the document and skip
each token until "Address” and ignore everything until the landmark <i>. This rule is

called a start rule because it identifies the beginning of the field “Address”.

The rule:
R2 = SkipTo (Address : <i>)

is suitable as well. R2 uses a 3-tokens landmark that precedes the beginning of the

address in examples E1, E2 and E3.

Let us now assume E4, in that case, the address appears in bold style because the
restaurant is within one mile from a current location. We need to create an extraction

rule that allows the use of disjunctions:

72




6.4. STALKER

either SkipTo (Address : <i>)

or SkipTo (Address : <b>)

Disjunctive rules are ordered lists of individual disjuncts (i.e. decision lists). The wrapper
successively applies each disjunct in the list in a straightforward process until it finds one
that matches.

Notice that in this case, one could have a non disjunctive rule:

SkipTo (Address : _HtmlTag.)

6.3.2 Working with both start and end rules

All the rules presented above are forward rules (they start at the beginning of the doc-
ument and stop when there is a matching between the rule and the document). One
can use backward rules as well in order to improve the spotting of fields. A backward
rule starts at the end of the page and goes towards the beginning. In the example the

address can be found by using the following backward rules:

R11 = BackTo(Phone) BackTo(_Number.)

R12 = BackTo(Phone:<i>) BackTo(_Number._)

This technique is called co-testing: the user labelled a few examples and the system
learns both a forward and a backward rule. Thanks to this technique, the wrapper can

detect mistakes more efficiently and then asks the user to label new examples.

6.4 STALKER

STALKER[12] is a wrapper induction algorithm that learns extraction rules based on
examples labelled by the user. A graphic user interface allows users to mark up several
pages on a site, and then the system generates a set of extraction rules that accurately
extract the required information. The approach uses a greedy-covering inductive learning

algorithm which incrementally builds the extraction rules from the examples.

The number of examples required is rarely above ten, in many cases, when sites have

been generated, based on a fixed template, two examples are enough.
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STALKER can deal with complex examples because it uses the hierarchical structure of
the source to decompose one difficult problem into a series of simpler ones. For instance,
instead of using one complex rule to extract all restaurants names, addresses and phone

numbers, STALKER decomposes the problem:

e |t applies a rule that extracts the whole list of restaurants;
e it uses another rule to break the list into tuples corresponding to each restaurant;

e the name, address, etc. is finally extracted from each tuple.

STALKER is a sequential covering algorithm that, given the set of training
examples E, tries to learn a minimal number of perfect disjuncts that cover

all examples in E.[12]

A perfect disjunct is a rule that:

e covers at least one training example;

e produces the correct result on any example where the rule matches.

Once a perfect disjunct P has been found, STALKER removes from E all examples on
which P is correct, and the whole process is repeated until there are no more training

examples in E.

To generate a perfect disjunct, STALKER first creates an initial set of candidate-rules

C' and then repeatedly applies the following three steps:

e select the most promising candidate from C;
e refine that candidate;

e add the resulting refinements to C'.
STALKER uses two types of refinements:

e Landmark refinement : the rule is made more specific by adding a token to one of
the existing landmarks.

e Topology refinement : adds a new 1-token landmark to the rule.
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6.4.1 Example

Let us assume that we want to learn a start rule for the address at figure 6.2. STALKER
selects an example to guide the search, for instance E4. It generates a set of initial
candidates, which are rules of a single 1-token landmark. These landmarks are chosen
so that they match the token that immediately precedes the beginning of the address.

We have two initial candidates:

R5 = SkipTo(<b>)

R6 = SkipTo( HtmlTag.)

R5 does not match with E1, E2, E3 as the <b> token appears only in E4. On the other
hand, R6 matches in all four examples, even though it matches too early (R6 stops as
soon as it finds an HTML tag, which happens in all four examples before the beginning
of the address). Because R6 has a better generalization potential, STALKER selects R6

for further refinements.

R6 must be refined; STALKER creates other candidates by using a landmark refinement
(a token is added to the landmark in R6)...

R7 = SkipTo(:_HtmlTag.)

R8 = SkipTo(_Punctuation_ _HtmlTag.)
...and creates other candidates by topology refinement (a new landmark is added to R6):

R9 = SkipTo(:) SkipTo(HtmlTag-)

R10 = SkipTo(Address) SkipTo(_HtmlTag_)

As R10 works correctly on E1, E2, E3 and E4, STALKER stops the learning process and
returns R10.

6.5 Verifying the extracted data

Sites change and they change often. The wrapper must be capable of checking if the
extracted data is correct. Machine learning techniques are applied to learn a set of

patterns that describe the information extracted in a field labelled by the user. After
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having extracted data, the system can verify it by comparing its patterns to the learned

patterns.

The learned patterns represent the format of the field as a sequence of words or wild-
cards. Wildcards are syntactic categories to which words belong (alphabetic, numeric,
capitalized, etc.). In our example with addresses (12 Pico St., 512 Oak Blvd., 416 Main
St. and 97 Adams Blvd), all the fields start with a pattern (_Number_ _Capitalized.)
and end with (Blvd.) or (St.). The starting and ending patterns together are called the
data prototype of the field. Complex algorithms (that it would be inopportune to cover

in this dissertation) are designed to construct these data prototypes.

Notice that to improve the efficiency, the verification can be done randomly or every x

extractions instead of checking every single data field.

6.6 Automatically repairing the wrapper

We assume here that we are coping with minor formatting changes or slight reorganiza-
tions in a page. We shall use two techniques presented above to allow the wrapper to

be repaired automatically: the co-testing and the data prototype.

Let us consider figure 6.3 on the next page to help understand the process. The wrapper is
used to extract four fields (Author, Title, Price, Availability). We examine the extraction
rule for the “title” field: this rule uses co-testing: both forward and backward rules are
applied. On the first example, the title is in bold style, the rules are defined to surround

a field between the tags <b> and </b>.

On the second example, the source has changed and the title has become yellow. Thanks
to the technique of co-testing, it is highly unlikely to find another field that would match
both rules. Even if it occurs, the data prototype analysis should discover the mistake.
In the example, both rules do not match any field in the page and the wrapper outputs
“NIL".

Once the error is detected, the system takes the set of training examples (labelled by
the user) and a set of new pages from the same source to identify the data field on the

new pages. It learns all the starting and ending patterns that describe the field in the
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training examples (the data prototype). Next, each new page is scanned to identify all
segments that begin with one of the starting patterns and end with one of the ending

patterns. Those segments, which are called candidates, are handled as follows:

e The candidates that are significantly longer or shorter than the training examples
are eliminated from the set.

e The candidates are then clustered to identify subgroups that share common fea-
tures. The features of the candidate that are considered are its position on the
page, its adjacent landmarks and whether it is visible or not for the user.

e Each cluster gets a score based on how similar it is to the training examples and

the highest score is expected to contain the correct examples of the data field.

On figure 6.3, we can see the result of this automatic reinduction process, the extraction

rule has been updated automatically.

6.7 How could induction tools be useful for news

retrieval?

It is obvious that tools such as STALKER are not designed to retrieve a news article
from a Web page. The original goal is to extract fields from a structured Web page to
store them on a database. However, we can wonder if the techniques could be adapted

to our topic.

The major drawback is that induction tools assume that pages have a high degree of
similarity: the news articles must belong to the one Web site and must be presented
with the same layout. We could imagine for example an induction wrapper that goes

everyday on a definite portal to extract the headlines.

Another drawback is that it seems impossible to handle the concept of data prototype
with a news article. How could we identify patterns that describe the article? This
makes the difference between the extraction of a database field and a relevant text.
Unfortunately, without being able of identifying a data prototype, the application is also

unable to deal with data verification and automatic repairing of the wrapper.
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Figure 6.3: An example of the reinduction process

Positively, the programming of the extraction rules is rather easy and the processing is
efficient. Though, if we define extraction rules that fetch the contents between the tag
just before the beginning of the news article and the tag following the end of the article,
we shall be likely to extract some HTML code that characterizes the layout of the article.

We should then clean up the article by removing the remaining HTML tags after the

extraction.

Finally, we want our process to be fully automatic and independent from the source. We

saw that induction tools need examples labelled by the user and work only on similar

pages, so that they are unfortunately unconvincing considering our topic.
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6.8 Conclusion

We showed how to extract data thanks to induction tools, specially STALKER. We saw
that such tools are unsuitable for extracting large pieces of text since they are designed
to fetch fields as if the Web page were a database. Moreover, the techniques concerning
the output verification and the automatic repair that were very attractive are not apt to

work in the case of our topic.

The next chapter will introduce RoadRunner, a wrapper that seems to be more appro-

priate for extracting news articles.
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7.1 Introduction

RoadRunner [18] is one of the most powerful wrappers. In the literature, it is presented
as the only known wrapper to be fully automatic [11]. Since we want our program to be

fully automatic, it is interesting to briefly examine how RoadRunner works.

RoadRunner finds a regular grammar that represents the HTML code for a set of HTML
pages (samples) and then uses this grammar to parse other pages and extract pieces of

data.

We shall present why RoadRunner is considered as unique in the literature. Then we shall
have to introduce some definitions and concepts in order to explain the algorithm. The

presented algorithm is actually a simplified version of the original one. It is comprehensive
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enough to understand how RoadRunner works. Finally, we shall see how RoadRunner

could be useful for the news extraction.

7.2 Why is RoadRunner better?

e First, the authors’ goal is that of “fully automating the extraction process, in such
a way that it does not rely on any a priori knowledge about the target pages
and their contents” [18]. It does not need user-specified examples neither any
interaction with the user during the wrapper generation process.

e Second, it is usually assumed that a wrapper induction system has some a priori
knowledge about the page organization. Most wrappers assume that the sample
pages contain a collection of flat records. In other cases, when a wrapper works by
searching nested data, it needs to know how the data are nested and the attributes
to extract. RoadRunner has no a priori knowledge about the page contents, which
means it does not know how the data is organized in the HTML page. Moreover,
RoadRunner is not restricted to flat records or nested structures but can handle
both.

e Finally, most of tools generate a wrapper by examining one HTML page at a
time. RoadRunner works with two pages at a time. The discovery of a common
pattern is based on the study of similarities and dissimilarities between the pages;

mismatches are used to identify relevant structures.

7.3 Context, definitions and assumptions

The main intuition is that the site generation can be seen as an encoding process of
database contents into strings of HTML code and the data extraction can be seen as
the decoding process. Pages in data intensive sites are usually automatically generated.
These pages are produced by programs which query databases to generate a source
dataset; that is serialized into HTML code to produce the actual pages (notwithstanding
the introduction of banners, images, links, etc.). A source dataset is thus a set of tuples

of a possibly nested type that will be published in the site pages.
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Figure 7.1: Fxamples of automatically generated web pages

The problem can be summarized as follows: given a set of similar pages as sample,
find the nested type of the source dataset and extract it. For example, let us consider
figure 7.1 from CSBooks.com. The pages have been generated from a script that queries
a database to produce a nested dataset in which each tuple contains data about one

author, his list of books and for each book a list of editions.

Roadrunner will compare the HTML code of the two pages, infer a common structure and
a wrapper and use that to extract the source dataset. Figure 7.2 presents the extracted
dataset in an HTML page to help understanding but is more likely to be useful in a
database. We can see the nested structure from the pages. The fields are anonymous

(here labelled A, B, C, D, etc.); they must be renamed manually after the dataset has

been extracted.

7.4 Data extraction in RoadRunner

7.4.1 Introduction

RoadRunner is a very complex application. We shall only show the main ideas of the
process that creates the grammar used to extract the data. The example below seems
to be too easy and is actually designed on purpose to explain the major concepts. For
an extraction on real web pages, RoadRunner uses powerful algorithms that can handle

situations far more complicated than the ones in the example. This explanation aims
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Figure 7.2: Qutput of RoadRunner

at giving a notion of how an HTML-aware wrapper (based on a grammar and fully

automatic) works.

7.4.2 Before executing the algorithm

To avoid errors in the sources due to missing tags, the HTML file is transformed into
an XHTML file (a restrictive variant of HTML where all tags have to be properly closed
and nested). Several tools are available on the Internet to do it. Sources must also be
pre-processed by a lexical analyzer to transform them into lists of tokens, each token is

either a HTML tag or a string value.

An initial version of the wrapper is defined from the first page (see figure 7.3, left
column). At this step, the wrapper is exactly the same as the list of tokens representing

the first page (normal since the wrapper defines the regular grammar of one page only).

7.4.3 ACME algorithm

The algorithm is based on a matching technique called ACME, for Align, Collapse under

Mismatch, and Extract.
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Figure 7.3: ACMFE Algorithm

The algorithm works on two objects at a time: the wrapper and the sample (another
similar HTML page transformed into a list of tokens). The wrapper is progressively
refined: the algorithm tries to find a common regular expression for both pages by

solving mismatches between the wrapper and the sample.

The algorithm parses the sample using the wrapper, a mismatch happens when some
token in the sample does not comply with the grammar specified by the wrapper. Mis-
matches are important because they generalize the wrapper when they can be solved.
The algorithm succeeds if a common wrapper can be generated by solving all mismatches
encountered during the parsing. As seen above, the wrapper is thus a grammar that rep-

resents the HTML code for a set of HTML pages.

During the parsing, two kinds of mismatches can occur: “String mismatch” or “Tag

mismatch” .
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String mismatch

A String mismatch means the discovery of a field. Since the pages are similar (belong to
the same site), string mismatches may be due only to different values of a database field.
In figure 7.3, a string mismatch occurs between the names of the authors at line 04. The
wrapper which initially equals Page 1 is generalized by replacing the string 'John Smith’
by the regular expression #PCDATA. The same thing occurs between the titles of the
books (DB Primer - XML at Work). #PCDATA is thus a code that means a possible

field in the original database has been found.

Tag mismatch

Two options are possible when a tag mismatch occurs. The algorithm can discover an
optional tag, a tag that is present only in one of both pages, in figure 7.3 an image
of the author is only available on page 2 (line 6). The algorithm can also discover an
iterator. An iterator is a repeated pattern, in the example, the author on page 1 has
two books while the one on page 2 has three books, the tag mismatch is thus due to an

extra instance of the nested structure “book”.

Let us suppose first that the search for an iterator has failed, we may assume that the tag
mismatch is due to the presence of optionals. This means that, either on the wrapper
or on the sample we have a piece of HTML code that is not present on the other page.

By skipping this piece of code, the parsing can be resumed. This is done in two steps.

1. Assuming the sample has the optional expression, a cross search is done through
the wrapper to be sure that the expression is not present elsewhere.
2. The wrapper is generalized by introducing one pattern “( )?". In our example the

line (<IMG src=.../>)7 is added to the wrapper.

The parsing is resumed, taking into account the difference due to the optional tag. In
the example, token 6 in the wrapper will be compared to token 7 in the sample and so

on.

Let us now consider the iterator mismatch: A tag mismatch occurs between lines 19

and 20 because a third book appears in the sample. The pattern <LI><I>Title:</I>-

86




7.4. Data extraction in RoadRunner

#PCDATA</LI> is repeated. The algorithm needs to identify these patterns that we shall

call squares to generalize the wrapper accordingly. This is done in three steps:

1. Square location by Terminal-Tag Search: We know that both the wrapper and the
sample contain at least one occurrence of the square (otherwise it would be an
optional pattern). Let us call 0, and o, the number of occurrences of the square (2
and 3 in the example). Before encountering the mismatch, the occurrences have
matched each other min(o,, 0s) times. So we can identify the last token of the
square as the token just before the mismatch position. Now we have the terminal
tag of the square, we must find the initial tag. When the mismatch occurs (line
19 on the wrapper), we know that it means the end of the list of squares on one
sample and the beginning of a new square on the other one but we do not know
which one of the samples has got the longest list. We take the tag that follows
the terminal tag on both samples, so we have two possibilities for the initial tag:
</U> or <LI> in the example, which means a square of the form </uL>...</LI> or
<LI>...</LI>. To discover the good square, we look forward on the wrapper and
the sample to find an occurrence of the terminal tag </LI>. It fails on the wrapper
and succeeds on the sample, so there is one candidate occurrence of the square at

tokens 20 to 25.

2. Square matching: To check if the candidate really represents the square, we try to
match it with some upward portion in the sample. The process is done backwards;
it starts to match tokens 25 and 19, then 24 and 18 and so on. The search
succeeds since there is a correct matching between the square (lines 14 to 19) and

the candidate (lines 20 to 25)

3. Wrapper generalization: The wrapper can now be generalized by replacing the
repeated occurrences of the square by (square)™. As you can see at the bottom
of figure 7.3, the square book is noted

(KLI><I>Title:</I>#PCDATA</LI>) "
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7.5 Useful for our topic ?

Once again, the algorithm has been intended for extracting fields between HTML tags
instead of a large and structured text. The algorithm is fully automatic but it is obvious
that it works quite better if the pages given as input are similar. If the pages are
coming from different sources, it is likely to produce a useless wrapper after having

solved mismatches.

A possible application would be, after having clustered the Web sites to get similar pages,
to run the RoadRunner wrapper and to fetch all the #PCDATA fields. As seen above,
a #PCDATA field means the discovery of a “string mismatch”.

Then we could assume that the longest fields contain the text corresponding to the news

article. By comparing large fields close to each others, we could reconstruct the article.

Notice that this issue is smarter than to remove all the HTML tags and fetch all the
longest parts of text to reconstruct the article because in that case, we do not take into
account the contents between HTML tags that is common to both analysed pages. To
our opinion, we can easily assume that two news articles are not likely to have common

sentences, especially if they come from randomly chosen pages.

Once the first two news articles have been extracted, the wrapper can be improved by
locating in the grammar the set of #PCDATA fields containing the article, so that all
the #PCDATA fields before the beginning and after the end of this set can be ignored.

The major drawback is the necessity of analysing a lot of similar pages before the grammar
becomes fair enough to extract the text correctly. The creation of the grammar is a long
process that is better as the number of samples grows. RoadRunner is designed to be

useful and efficient when the goal is to extract data from a large amount of similar pages.

Hence, this technique could be useful only if we face a large set of similar pages. Since our
process must be fully automatic, a clustering of the different Web pages is required before
the extraction process starts. The latter could be adapted to the size of each cluster,
so that the extraction from large clusters could be improved by using tools analogous to
RoadRunner. Anyway, we chose to apply the same extraction process notwithstanding

the amount of Web pages to handle or the size of the clusters.
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7.6 Conclusion

Although RoadRunner is considered as fully automatic, we saw that it is likely to output
relevant results only if the Web pages given as input are similar. We can conclude that
there is an obvious necessity for a clustering of similar pages before executing almost any
wrappers available in the literature. One single class of wrappers could work without that
constraint: the Natural Language Processing-based tools. We shall study three famous

wrappers belonging to this class in the next chapter.
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8.1 Introduction

In this chapter we shall study another technique to extract relevant data :

based method. A context briefs on its interest in our work and is followed by the

information extraction section. Then the natural language processing and its relation

with the artificial intelligence is mentioned. An NLP-based tool (Autoslog[15]) working

on grammatical text is analysed and three others (Rapier, SRV, WHISK) working on

ungrammatical text as well. We close the chapter by a short conclusion.
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8.2 Information extraction

Information extraction [20] [21] is the mapping of natural language texts (such as newswire
reports, newspaper and journal articles, electronic mail, World Wide Web pages, any
textual database, etc.) into predefined, structured representation, or templates, which,
when filled, represent an extract of key information from the original text. The informa-
tion concerns entities of interest in the application domain (e.g. companies or persons),
or relations between such entities, usually in the form of events in which the entities
take part (e.g. company takeovers, management successions etc.). Once extracted, the
information can then be stored in databases to be queried, data mined, summarised in

natural language, etc.

A trivial example of information extraction is to find the perpetrator of a terrorist attack

reported in the newspapers :

The Parliament was bombed by the guerrillas

The aim of the information extraction is to find the perpetrator (the guerrillas) giving
this sentence from a news article. Or to identify the targets of this terrorist attack (the

Parliament), etc.

The identification of such entities is done by the set of extraction patterns (or extraction
rules) that is used to extract from each document the information relevant to a particular
extraction task. But the use of such rules is a difficult and time-consuming task. A lot
of various techniques are used in field |E because information extraction is actually a real
hard task. A single technique is only suitable for a few defined specialised problems in
IE. In general, there is no common solution for the total problem fields of information
extraction. Currently, researchers try to use almost all artificial intelligent methods and
machine learning algorithms to achieve high performance and automatic information
extraction from documents. Advanced methods and algorithms such as bayesian model,
Hidden Markov Model (HMM), Decision Tree, etc. use the NLP technology because it

is one of the most basic techniques.
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8.3 Natural Language Processing

NLP was initially used for machine translation, speech recognition and also knowledge
representation. The basic idea of using NLP in information extraction is analysing the
grammatical structure of a sentence and then constructing grammatical rules for some
useful information within this sentence. The rules based on syntactic and semantic
constraints are then applied to identify the relevant information to extract. Relationship
between phrases and sentence elements are built by various techniques such as automated
filtering, part-of-speech tagging and lexical semantic tagging to derive the extraction

rules.

“NLP techniques can be considered as an automated generalised indexing procedure
that extracts from the full textual contents of the document linguistically significant

structures.”

With NLP, the text (e.g. a news article) is broken into tokens. It is then possible to
identify sentences. Within the sentences we can determine context of words and phrases
using various dictionaries and domain specific lexicons. Actually, NLP techniques are
more suitable for information written in grammatical text or in telegraphic style such as

job listings, apartment rental advertisements, etc.

The two following sections present various applications of NLP. The first one shall explain
the different techniques used to identify useful information within a grammatical text.
The second one shall examine various representative tools applied in online documents,

mostly in the form of ungrammatical text.

8.4 Grammatical text

In this section we assume that the document on which the NLP tool works contains a

grammatical text, that is a plain text.

Various NLP tools have been created in this case : AutoSlog, LIEP, PALKA, CRYSTAL,
CRYSTAL + Webfoot and HASTEN. Describing precisely all these applications is beyond
the scope of this thesis but we shall nevertheless present AutoSlog to show the main

ideas of these NLP tools.
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8.4.1 Autoslog

This NLP tool builds a dictionary of extraction patterns that are called concepts. To each
concept is associated a conceptual anchor, actually a triggering word. A set of enabling
conditions represent constraints on the concepts. Let us take our trivial example about

a terrorist attack on the Parliament :
The Parliament was bombed by the guerrillas

To extract the target of the terrorist attack (the Parliament), the triggering word is the
verb bombed and forms with the linguistic pattern “subject—passive-verb"” the concept
we are analysing. Now we have thus defined an extraction pattern (or extraction rule).
Applying this rule gives us the possibility to activate the concept because the pattern
contains the trigger bombed and thanks to the linguistic pattern, the subject of the
sentence is found as the target of the terrorist attack. Figure 8.1 is the representation

of this example.

CONCEPT NODE:
Name: target-subject-passive-verb-bombed
Trigger: bombed
Variable Slots: (target (*S* 1))
Constraints: (class phys-target *S*)
Constant Slots: (type bombing)
Enabling Conditions:  ((passive))

Figure 8.1: An AutoSlog extraction task

The Name slot is a human readable description of the concept, the Trigger is the con-
ceptual anchor and the Variable slot is what we are looking for. The subject must be
a physical target (Constraint slot) and the verb must be used with its passive form

(Enabling conditions).

Thanks to this example, we can see that AutoSlog applies syntactical and semantic
rules to find the relevant information within a plain text. But AutoSlog determines only
the syntactic field that contains the target phrase while other NPL tools identify the

exact phrase of interest. AutoSlog is single-slot, that is, it can only find one information
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of interest at a time, while others are multi-slot and can find, in our trivial instance,
the target and the perpetrator. AutoSlog is one of these NLP-based tools having their
advantages and disadvantages. As a result, it is very important to analyse the problem

beforehand and to apply the NPL tool suiting to this particular problem.

8.5 Ungrammatical text

In the previous section, we were interested in using NLP-based tools on plain texts.
Let us see now the application of NLP tools on ungrammatical texts, especially those
coming from the World Wide Web. The information we read on many Web pages are
often presented in a mixture of grammatical, telegraphic, and/or ungrammatical texts.
For example, job postings, apartment rentals, etc. are usually written in informal text
and so it is quite difficult to syntactically and semantically parse the text. Moreover, the
various techniques used in the previous paragraph do not fit for these online documents.
Syntactic and semantic constraints are still applied but delimiters are introduced to
bound the text to be extracted. Particular NLP methods such as RAPIER, SRV and

WHISK have been created to extract correctly this special kind of information.

8.5.1 RAPIER

Robust Automated Production of Information Extraction Rules (RAPIER)[15] takes as
input a document and a filled template, used to learn extraction pattern, indicating
the data to be extracted. The RAPIER system uses three distinct slots : Pre-filler,
filler and Post-filler patterns. The Pre and Post play the role of left and right delimiters,
respectively, while the filler describes the structure of the data to be extracted. Figure 8.2

shows an intuitive example of extraction.

In this example, the Pre-filler pattern means that the information to be extracted is
immediately preceded by the word leading and immediately followed by the words firm
or company (Post-filler pattern). The filler pattern imposes constraints on the structure

of the data to be extracted.
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ORIGINAL DOCUMENT: EXTRACTED DATA:

Al. C Programmer. 38-44K. computer-science-job
Leading Al firm in need of title: C Programmer
an energetic individual to salary: 38-44K

fill the following position: area: Al

AREA extraction pattern:
Pre-filler pattern: word: leading
Filler pattern: list: len: 2
tags: [nn, nns]
Post-filler pattern: ~ word: [firm, company]

Figure 8.2: A RAPIER extraction task

8.5.2 SRV

This NLP tool takes as input a set of tagged documents, and a set of features that
control generalization, and produces rules that describe how to extract information from
novel documents. It generates extraction patterns that are based on attribute-value
tests and the relational structure of the documents[22]. Figure 8.3 gives an instance of

extraction task.

DOCUMENT-1: ... to purchase 4.5 min Trilogy shares at ...
DOCUMENT-2: ... acquire another 2.4 min Roach shares ...

Acquisition:- length( < 2),
some(?A [] capitalized true),
some(?A [next-token] all-lower-case true),
some(?A [right-AN] wn-word ‘stock’).

Figure 8.3: A SRV extraction task

This example shows how to extract the name of a company that was the target of
an acquisition process. The first two predicates of the extraction rule mean that the
company name consists of a single and capitalized word while the third predicate means
that the company name is followed by a lower-case word. The last predicate rules means

that the company name is followed by a word associated with stock.
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8.5.3 WHISK

WHISK [15] fits for online documents as well as for plain texts. It is a general rule
extraction system which learns regular expressions as extraction patterns. These patterns
are a special type of regular expressions that have two components: one that describes
the context that makes a phrase relevant, and one that specifies the exact delimiters of

the phrase to be extracted.

Figure 8.4 shows a sample extraction task:

DOCUMENT: EXTRACTED DATA:
Capitol Hill- 1 br twnhme. <Bedrooms: 1
D/W W/D. Pkg incl $675. Price: 675>

3BR upper flr no gar. $995. <Bedrooms: 3
(206) 999-9999 <br> Price: 995>
Extraction rule: * («Digit>) 'BR” * ’$’ (<Nmb>)
Output: Rental {Bedrooms @1} {Price @2}

Figure 8.4: A WHISK extraction task

As we can see in this instance, the original document about an apartment rental coming
from a Web page is written in the form of ungrammatical construction but, however,

human readable. The semantic class bedroom can be defined as follows :

Bedroom ::== ( br; brs; bdrm; bedrooms; bedroom )

This allows to find various forms of telegraphic styles for the same word. The extraction
rule means : ignore all the characters in the text until you find a digit followed by the
“br" string; extract that digit and fill the first extraction slot with it (i.e. “Bedrooms”).
Then ignore again all the remaining characters until you reach a dollar sign immediately
followed by a number. Extract the number and fill the “Price” slot with it. WHISK is
more powerful than the two previous tools because it is multi-slots, that is, it is capable

of extracting several records from a document.
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8.6 Conclusion

NLP-based methodologies of this eighth chapter is another way to extract data of inter-
est. The NLP tools learn extraction rules to mine out relevant data existing in natural
language documents. They can work on grammatical texts, that is plain texts, as well
as on ungrammatical texts such as those coming from the World Wide Web. But these
techniques are very complex and are related to the huge issue of the natural language
processing, a field of the artificial intelligence. Now that all the major automated extrac-
tion tools have been considered, we can focus in chapter nine on the one that inspired

our work in Australia: the Web news extraction through a mapping process.
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News extraction using tree edit
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9.1 Introduction

In this chapter we shall present two major notions for our work: the tree edit distance and
the top-down mapping. An introduction summarizes the main difficulties encountered in
the previous chapters leading to a danger for the extracting task. Then we shall tackle
the extracting task strictly speaking. The first part is about the notions of tree edit
distance and mapping. The next part is about the top-down mapping. The third part
presents the Web news extraction through the article which we went by for our work

followed by its application in the fourth part before finally concluding.
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9.2 Context

While important works have been made in order to provide efficient access to relevant
information on the Web, it is quite difficult to create generic methods that extract these
Web data. The reasons of such a difficult task are that the Web is very heterogeneous
and there are no rigid guidelines on how to build HTML pages and how to declare the
implicit structure of the Web pages [23]. This problem, raised in chapter 4 is one of our

main concerns.

Moreover, data structures are significant as well. Unstructured data where browsing and
keyword searching are applied do not allow to use efficient methods to extract these
data. Semi-structured or structured data that borrow techniques from the database area

have also internal problems.

In order to develop effective methods for extracting data on the Web in a precise and
automatic way, we need to take into account specific characteristics of the domain of
interest. Ours is on-line newspapers and news portals on the Web, which have become
one of the most important sources of up-to-date information. Indeed, there are thousands
of sites that provide daily news in very distinct formats and there is a growing need for
tools that will allow users to access and keep track of this information in an automatic

manner.

In addition to these difficulties, this step is at the end of the whole extraction process,
after the parsing and the clustering process (see chapter 1). This means that it can carry
out wrong results that are maybe not coming from the extracting task itself because these
previous processes can give bad results to the extracting job. In consequence, we must

be vigilant and very critical towards the final results we shall analyse.

9.3 News extraction using tree edit distance

One of the most interesting approaches of the news extraction has been developed by
Davi de Castro Reis, Paulo B. Golgher, Altigran S. da Silva and Alberto H.F. Laender-

four [23], four Brazilian research workers. Their work influenced a lot our dissertation
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in the area of extraction news. They present a domain-oriented approach to Web data
extraction and discuss its application to automatically extracting news from Web sites.
This method is based on a highly efficient tree structure analysis that produces very
effective results: the tree edit distance. It allows not only the extraction of relevant text
passages from the pages of a given Web site, but also the fetching of the entire Web
site contents, the identification of the pages of interest (the pages that actually present
the news) and the extraction of the relevant text passages discarding non-useful material

such as banners, menus, and links (noisy blocks).

This method is thus an all-in-one method that first clusters the pages, generates an

extraction pattern, matches the data and finally labels these data.

9.4 Tree edit distance and mapping

This concept is based on the analysis of the structure of Web pages. As seen before,
these Web pages can be transformed into tree structures. The tree edit distance allows
to evaluate the structural similarities between different pages. The pages with similar
structures are putted together in a same group called cluster. The clustered pages are
then analysed to find a generic representation of the structure of the pages within a

cluster.

Intuitively, the tree edit distance between two trees T’y and T’z is the cost associated with
the minimal set of operations needed to transform 7'y into Ts. These operations are:
vertex replacement (or non-identical substitution), vertex insertion and vertex removal.
They are operated on rooted, ordered, labelled trees. To evaluate the tree edit distance,
a cost is assigned to each operation. The problem is resolved when we find the minimum

cost to transform a tree into another.

Another way to understand the problem is the mapping approach. A mapping is a
description of how a sequence of edit operations (replacement, insertion and removal)
transforms a tree into another, ignoring the order in which these operations are applied.
The discovering of a mapping with minimum cost between two trees will thus solve the

problem. Here is a formal definition of this important concept of mapping:
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Mapping: Let T, be a tree and let T,[i] be the i-ism vertex of tree T, in a preorder walk
of the tree. A mapping between a tree T of size n; and a tree T5 of size n, is a set M

of ordered pairs (i, j), satisfying the following conditions V(iy, ji); (i, jo) € M

iy = g iff j1 = jo
T1[i1] is on the left of T} [is] iff T5[j1] is on the left of T5[js]

T1[i1] is an ancestor of T} [is] iff T5[j1] is an ancestor of T5[js]

The first condition establishes that each vertex can appear no more than once in a
mapping, the second one enforces order preservation between sibling nodes and the third
one enforces the hierarchical relation between the nodes in the trees. Figure 9.1 illustrates

a mapping between two trees.

Figure 9.1: A mapping between two trees

As estimating the tree edit distance is equivalent to finding the minimum cost mapping,

we can now define the mapping cost:

Mapping cost: Let M be a mapping between tree T and tree 15, let S be a subset of
pairs (i, 7) € M with distinct labels, let D be the set of nodes in T that do not occur in
any (i,7) € M and let I be the set of nodes in T, that do not occur in any (i,5) € M.
The mapping cost is given by ¢ = S, + I, + D,, where p, ¢ and r are the costs assigned
to the replacement (or non-identical substitution), insertion, and removal operations,
respectively. It is common to associate a unit cost to all operations, however, specific
applications may require the assignment of distinct costs to each type of operation. Let

us apply these two definitions on a simple example (see figure9.2).
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Figure 9.2: A mapping example

In this mapping M from tree T} to tree 75, nodes Ti[1], T1[7], T1[8], T1[9], T1[10] (r,
e, €, e, c respectively) are mapped to nodes T5[1], Ts[5], T5[6], To[7], T5[8] (r, €, €, €, c
respectively), nodes 77(2], 71[3], T1[4], T [5], T1[6] (a, o, u, a, a respectively) are deleted
from T} and nodes T5[2], T5[3], T»[4] (a, a, e respectively) are inserted into 7,. About
the mapping cost, there are 0 replacements, 3 insertions and 5 removals. The cost of
mapping M = (0 x 1)+ (3 x 1)+ (5 x 1) = 8 assuming that the cost of edit operations

is set to 1.

The tree edit distance is a difficult problem and while several algorithms have been
proposed, their complexity is above quadratic. Further, it has been proved that, if the
trees are not ordered, the problem is NP-complete. The first algorithm of this problem
had a complexity of O(n; nyhy hy), where n; and n, are the sizes of the trees and
hi and hy are their heights. The best known complexity of this problem is O(n; ns +
1, + 1,*°ly) where I, and I, are the number of leaves in each tree. But despite the
inherent complexity of the mapping, several practical applications can be modelled using
restricted formulations. For instance, it is possible to impose conditions on the three
edit operations. One of these formulations, the top-down distance is significant for our
work. The top-down distance is used in the Brazilians' approach. That is the reason

why it is now important to write about this topic.
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9.5 Top-down mapping

Informally, a top-down mapping restricts the removal and insertion operations to take
place only in the leaves of the trees. Moreover, in a top-down mapping, the parents of
nodes in the mapping are also in the mapping. Here is a formal definition followed by

an example (see figure 9.3):

Top-down mapping: A mapping M between a tree 77 and a tree 75 is said to be top-
down only if for every pair (i1,i2) € M there is also a pair (parent(i,), parent(is)) € M,

where i; and iy are non-root nodes of 7} and 75 respectively.

- —

Tl G _ ~p T.2
LA TTTEAN
A/A 1
/ a._ e/’ c’ a\\l
~ //
] e - /\
u a e e e

-

Figure 9.3: A top-down mapping example

Several well known algorithms for this top-down mapping have a complexity of O(n; ns).
They have been successfully applied to many Web related applications such as the clus-
tering of XML documents. But in this case we are interested in the problem of evaluating
the similarity between Web pages. The problem will be resolved by applying a top-down
mapping between two trees that represent these Web pages and, as a consequence, the

tree edit distance between them.

This top-down is a new kind of mapping called the Restricted Top-Down Mapping or
RTDM. Intuitively, besides the insertion and removal operations, the replacement oper-
ation of different vertices is also restricted to the leaves of the tree. Once again, here is

a more formal definition:

Restricted Top-Down Mapping (RTDM): A top-down mapping M between a tree T}
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and a tree T, is said to be restricted top-down only if for every pair (i1,72) € M, such
that 771 (1] # Ts[is], there is no descendent of i; or iy in M, where ¢; and i, are non-root

nodes of T and T’ respectively.

Related to this mapping, we can define the restricted top-down edit distance between
two trees T and 715 as the cost of the restricted top-down mapping between the two

trees.

The analysis of the algorithm of this mapping is beyond the scope of this thesis. But this
RTDM will be used in the different steps of the Brazilian approach, so it is important
to understand the main idea behind this mapping: the algorithm takes as input the two
trees to map and gives as output the minimal restricted top-down mapping between

these two trees.

9.6 Web news extraction

Now we have explained the important notions of tree edit distance and restricted top-
down mapping, we are able to discuss an automatic Web news extraction. This automatic
process will identify relevant text pages containing news and their components by crawl-
ing Web news portals and extract the news from these collected pages discarding the

noisy blocks.

The crawling of the pages will actually not be discussed here. This point is examined
in chapters 2 and 3. We shall thus assume that we can directly access to these needed

downloaded news Web pages.

The extraction task, as for it, is divided into four steps: page clustering, extraction
pattern generation, data matching and data labelling (see figure 9.4). Three of them
(clustering, extraction and matching) are based on the RTDM algorithm.

News site contents can be divided in groups that share common format and layout

characteristics. These common format and layout features are called templates:

Template: A template is the set of common layout and format features that appear in
a set of HTML pages produced by a single program or script that dynamically generates
the HTML page contents.
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Each field of a template (e.g. a news title) is called a data-rich object. Ideally, the
extractors generated by the Brazilian approach should be able to identify each one of
these data-rich objects, and discover, among them, which ones correspond to the title

and the body of the news article. Let us see now how this process actually works.

9.6.1 Page clustering

The clustering takes as input a previously crawled set of pages (a training set) and gen-
erates clusters of pages that share the same template. The technique used for clustering
is a classical one that takes as input the result of the RTDM algorithm with a cost model
having a cost unit for the edit operations. An arbitrary threshold of 80% determines the
similarity of the pages within a same cluster. The output of this step is a set of page

clusters sharing the same template.

9.6.2 Extraction pattern generation

This second step refines the notion of cluster. We shall now use the term node extraction

pattern (ne-pattern):

Node extraction pattern (ne-pattern): Let a pair of sibling sub-trees be a pair of sub-
trees rooted at sibling vertices. A node extraction pattern is a rooted ordered labelled
tree that can contain special vertices called wildcards. Every wildcard must be a leaf in

the tree, and each wildcard can be of one of the following types:

e SINGLE (¢): A wildcard that captures one sub-tree and must be consumed.

e PLUS (+): A wildcard that captures sibling sub-trees and must be consumed.
e OPTION (7): A wildcard that captures one sub-tree and may be discarded.

e KLEENE (x): A wildcard that captures sibling sub-trees and may be discarded.

A wildcard is defined by every vertex in the tree that can match any symbol (any label)

with its associated type.

In view of this definition, each wildcard corresponds to a data-rich object in the template.

SINGLE and PLUS wildcards should correspond to required objects, such as the title of a
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Figure 9.4: The four extraction steps

news, and OPTION and KLEENE wildcards should correspond to optional objects, such

as related news lists.

The goal of this step of the extraction task is, taking as input a page cluster, to generate
an ne-pattern that accepts all the pages in this cluster. The wildcards represent therefore
the contents differences between the pages in the same cluster. To reach this objective,
the RTDM algorithm is once again applied. First it is said that vertices a and b of an

ne-pattern are equal if and only if:

e ¢ and b are wildcards and both are of the same type;

e a and b are not wildcards and the labels associated with a and b are equal.

Given two ne-patterns 71" and 75", the RTDM algorithm finds a mapping between these
two ne-patterns (Mrp,=_1,=). From this mapping, a composite ne-pattern is created

15" =T" o T5" using the following rules:

e if a is not in the mapping, then add o’ to 73" where o' = f(a,?);

e if @ maps to b then add @’ to 73" where a' = f(a,b);
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e and f(a,b) is defined as:

fx,%) = x| f(H+) = + | flo,0) = o
fix,4) = x| f(+0) = + | flo,7) = 1
f(x7) = % | f(+7) = % | flo,n) = o
fx,0) = * | f(+n) = + | (07 =7
f(x,n) = x f(?l,n) = 7

f(ny,ny) = ny if ny and ny have identical labels
)

f(ny,n9) = o if ny and ny have different labels

where n,n1,n5 are non-wildcard vertices and the parameter order is not relevant.

The first tree of the cluster is considered being the basic ne-pattern. This first ne-pattern
is then compared with the next tree applying the rules above, a new ne-pattern resulting
from this comparison. This new one is compared to the next tree and so on till the last
tree of the cluster. The result is an ne-pattern that accepts all the pages in that cluster.

Here is an example of this complex process (see figure 9.5).

9.6.3 Data Matching

Once the ne-patterns have been determined within each cluster, the data matching task
will find the most appropriate ne-pattern to a crawled HTML page. This process is also
based on the RTDM algorithm. An appropriate cost model for the three edit operations
(replacement, insertion and removal) will give us the cost of the mapping called in this
step a match. For that, we speak about the consumption of vertices: in a given mapping,
if one wildcard vertex in the ne-pattern maps to a vertex in the target HTML tree, then

the wildcard consumes the vertex. The data matching is defined as follows:

Match: a match between an ne-pattern and a target tree is a mapping such that the

following rules are satisfied in this order:

1. Every non-wildcard vertex in the ne-pattern must map to an identical vertex in the
target tree.
2. Every vertex in the target tree must map to an identical non wildcard vertex in the

ne-pattern or be consumed by a wildcard.
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Figure 9.5: Creation of an ne-pattern accepted by all the pages from the same cluster

Single wildcards (¢) must consume one sub-tree of the target tree.
Plus wildcards (+) must consume at least one sub-tree of the target tree.

Option wildcards (?) must consume one sub-tree of the target tree, if it is possible.

= L o

Kleene wildcards () must consume at least one sub-tree of the target tree, if it is

possible.

The HTML pages in the clusters transformed into trees are matched with the different
ne-patterns. For each data matching, these six rules will lead to one of the three edit

operations associated with a cost.

For the replacement operation, if the compared vertices are both non-wildcards and
have the same label, the cost will be 0. Or if the vertex in the ne-pattern is a wildcard,
the cost will be 0 as well. But if the compared nodes are both non-wildcards and have
not the same label, the cost will be infinite, meaning that the matching between these

two trees fails.

For the insertion operation, if there is an ancestor of the current vertex in the target
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tree (the HTML page) that can be consumed by a wildcard, the cost is 0. Or if the left
sibling of this current vertex is consumed by a KLEENE wildcard (*) or a PLUS wildcard

(+) the cost is also 0. Otherwise the cost is infinite.

Finally for the removal operation, if the wildcard of the current ne-pattern is an
OPTION (?) or a KLEENE (*) then the cost is 1. If not, it is infinite.

If the final matching cost is not infinite, the ne-pattern accepts the target page. In this
case, the ne-pattern and the HTML page are traversed in pre-order and for each wildcard
found in the ne-pattern, the text passage in the vertices consumed by the wildcard is

extracted from the HTML page. Figure 9.6 shows a data matching example example.

The extraction result

Each wildcard of the ne pattern
consumes a set of vertices of the
target tree. Each set of vertices
results in one data—rich object.
In the example below, two
data-rich objects (BC and F)
were extracted.

Matching the ne patterns

© Each HTML page is converted to tree, and a set of ne patterns
is matched against the tree. The first pattern matches

with cost 1, because it discards its Kleene wildcard.

0 Q The second pattern matches with 0 cost and is the selected
» ne pattern. The last pattern fails to match because there is
@ 0 no possible mapping for the G vertex.

Figure 9.6: How ne-patterns are matched with Web pages

9.6.4 Data labelling

This step is the only one that does not use the RTDM algorithm. Its objective is to

select from a set of ordered text passages (i.e. the output of the data matching), the
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passages t; and t; that correspond to the title and the body of the news being extracted
from the Web page. To achieve this, simple heuristics are applied to this set of text
passages. They can be defined as a set of T' = (t1,p1), (t2, p2), .. ., (tn, pn) Where each
t; is a text passage retrieved by a wildcard and p; is the vertex position of this wildcard

by a pre-order traversal of the ne-pattern.

The heuristics are rather basic: about the text, the passage elected to be the body of
the news is the longest one with more than 100 words. Further, the passage selected
to be the title is one that has ranges from 1 to 20 words, has a maximum intersection
with a body passage, and is the closest one to the body. The intuition behind the title
selection is that most of the time the title is placed near the body and its terms usually

appear in the news body. These heuristics are here formally stated:

For a given T

length(t;) is the number of terms (words) in passage t;;

|t N t;| is the number of terms that occur in passages t; and ¢;;
t; is a news body iff length(t;) > length(ty) Vk : 1 < k < n, k # i and
length(t;) > 100;

. s . tiNt; i 2 s L y
t; is a news title iff 1 < length(t;) < 20 and %j@% > %,%;l VE:1<k<l,k#j

9.7 Applications

This complex Web news extraction process has been applied in a large experimentation.
4088 HTML pages collected from 35 Brazilian news Web sites have been analysed. Each
output of these pages, i.e. the news extracted, has been manually compared with the
original HTML page. 87.71% of the news were correctly extracted, while 9.25% were
erroneously extracted and 3.04% were not extracted. Figure 9.7 shows the results of this

application.
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Site v x Not Extracted | # pages
A noticia Joenville 83.95% | 13.58% 2.47% 81
AOL Brasil 87.60% | 12.40% 0.00% 121
Agéncia Estado 9490% | 4.08% 1.02% 98
Correio Brazilense T71.43% | 11.90% 16.67% 119
Correio da Bahia 08.15% 1.85% 0.00% 54
DCI 96.55% 0.00% 1.72% 228
Diério de Natal 96.62% 0.00% 2.90% 206
Diério Grande ABC | 100.00% | 0.00% 0.00% 8
Diério do Maranhdo | 75.00% | 25.00% 0% 48
Diério Popular 100.00% | 0.00% 0.00% 85
Diério de Cuiaba 85.26% | 12.82% 1.92% 154
Diério do Com. BH 02.31% 3.85% 3.85% 26
Estado de Minas T1.40% | 21.47% 1.13% 177
Estado de Séo Paulo | 84.33% | 15.21% 0.46% 217
Folha de Pernam. 91.18% 1.47% 7.35% 68
Folha de S&o Paulo T1.78% | 13.33% 8.80% 225
Gazeta Digital 88.17% | 10.75% 1.08% 185
Gazeta Mercantil 87.01% 0.65% 12.34% 154
Hoje em Dia 9091% | 9.09% 0.00% 66
IDG Now 93.18% 2.21% 4,55% 44
ITWeb 96.88% | 0.00% 3.13% 32
InvestNews 95.47% 0.00% 4.53% 329
Jomal da Tarde SP 90.57% 5.66% 377% 159
O DiaRJ 75.86% | 22.07% 2.07% 144
O Globo 99.35% 0.65% 0% 307
Tribuna Santos T75.00% | 22.58% 2.42% 123
Tribuna da Bahia 81.13% | 15.09% 3.77% 53
Tribuna da Imprensa | 90.63% | 9.38% 0% 32
UOL 74.53% | 23.58% 1.89% 106
Valor On Line 91.45% 4.27% 4,27% 117
Verdade On Line 8261% | 13.04% 4.35% 22
Vox News 80.00% 0.00% 20.00% 35
Yahoo 93.64% 0.91% 545% 208
Zero Hora 83.22% | 16.11% 0.67% 149
Total 87.71% 9.25% 3.04% 4088

Figure 9.7: Results for the news extraction process
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9.8 Conclusion

In this chapter we presented the notions of tree edit distance and mapping used by four
Brazilian research workers that inspired our thesis. Then their uses were explained in
the third section through the Web news extraction task. Experimental results have been
shown in the applications section. This task is the final one in the whole process of data
extraction. It has to be attentively considered because wrong results coming from the
outputs of the previous tasks have perhaps piled up along the complete process. The
extracted data are now ready for further use by mining agents. This chapter closes the

state of the art.
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Context

Contents

10.) INtrodUuction « o s & s « & o5 » 5 6 % 5.0 & 5 65 & & 8 % 8 &

10:2 Ourinternship « . ¢ ¢ s 5 o o« 6 60 o506 o 6500 6 5 5.5 5 & &

10.3 Major functions . . . . . . . . ... e
10.4 Contents of Part IT . . . .. ... ... .. ... ...

10.1 Introduction

We presented in the state of the art different steps that allow extracting information

from the Internet as automatically as possible. Obviously, we could not write a program

that would have covered the whole process. Moreover, the intentions of Debbie Zhang,

the person in charge of us changed during our internship.

We shall first explain how our work has evolved during the internship and where our

project stands in the three steps described in the state of the art. Then we will introduce

the major functions of our program News Ripper and their goals.

The information on how to use the program is at Appendix 1.

10.2 OQOur internship

At the beginning, we were asked to program an "HTML to DOM tree” parser and a

bottom-up algorithm. The goal was to show with a user-friendly graphic interface the
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results of a bottom-up mapping between two DOM trees. A bottom-up mapping between

two trees consists to find identical nodes in both trees from the leaves to the root.

One month later, we were asked to give up the extraction of news articles using the
bottom-up algorithm, in order to concentrate on a “top-down” algorithm that would
be useful to cluster pages before applying the bottom-up mapping. In the meanwhile,
as the trees were really large, we adapted the parser to lighten the DOM trees (i.e. to
reduce their size) in order to improve both effectiveness and efficiency of the clustering

algorithm.

We spent a lot of time to design the graphic user interface. As for the bottom-up

mapping, we had to graphically show the results of the top-down algorithm.

10.3 Major functions

As written above, we do not cover the whole process presented in the state of the art.
We assume the first step has been done, i.e. that pages have been downloaded from
relevant Web sites. Both first chapters presented in the state of the art, i.e. the web

sites classification and the web pages classification are not covered by News Ripper.

Our program actually operates on the following steps. It features the transforming of an
HTML source to a layout tree with several options, the clustering of similar pages and

the extraction of the news article.

Our program is both useful and educational. It allows a user to cluster pages without
any graphic results, so that the running is as fast as possible. On the other hand, if a
user aims at understanding the results, he can easily see on the layout trees how the

algorithms have been applied.

At the end of our internship, the major functions of our program can be summarized as

follows:

e A graphic user interface allowing the management of HTML files. HTML files can
be opened, edited, saved, closed,etc. A project (a set of all opened HTML files

and the results of their clustering) can be opened and saved. The purpose is to
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make the handling of numerous files easier and to store the results of a clustering.
(Appendix 1)

A graphic user interface allowing to download the source code of a page directly

from the Internet. (Appendix 1)

A graphic user interface to show layout trees. (Appendix 1)

An improved HTML to layout tree parser which manage to remove useless tags.
(Chapter 11)

A graphic user interface to select the tags to be considered during the parsing
(Chapter 11)

A layout tree to HTML parser. (Chapter 11)

A top-down algorithm used to cluster similar pages. (Chapter 12)

A user friendly interface to show on layout trees the results of a top-down mapping.
(Chapter 12)

A graphic user interface to show the results of a clustering. (Chapter 12)

An algorithm for extracting the news articles of pages from the one cluster. (Chap-

ter 13)

A user friendly interface to show the results of the news extraction. (Chapter 13)

10.4 Contents of Part 11

As we explain in the first chapter, an intuitive approach, we shall introduce the three

successive steps that allow to extract news articles from Web pages:

e The parsing of an HTML source in order to build a tree that represents the layout
of the HTML page (Chapter 11).

e The clustering of similar pages (i.e. similar layout trees) thanks to a top-down
mapping algorithm (Chapter 12).

e The extraction of news articles thanks to a an algorithm which compares the leaves

of similar layout trees inside a cluster. (Chapter 13)
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11.1 Introduction

Once the relevant pages have been extracted from the Internet, we need to build a tree
structure (see chapter 4) from the source code in order to be able to cluster similar
pages. The parsing must be done as quickly as possible since there are lots of trees to

build.

We shall see why parsing HTML is not so easy and how the parsing can be improved by
removing useless information on the Web pages. Actually, if the pages are first “cleaned
up”, the size of the generated trees is reduced. Then, the algorithms that are applied
on the trees to cluster the pages give better and faster results. We shall see why some

HTML information is useless and the consequences of its removal.

11.2 Why parsing HT'ML is hard

11.2.1 Different versions of HTTML

Parsing an HTML file is not an easy task [24]. First of all, there are many versions of
HTML defined by the W3C (HTML 2.0, HTML 3.2, HTML 4.0, HTML 4.01, XHTML
1.0, XHTML 1.1, XHTML 2.0,).

Our parser has been designed to handle HTML 4.01 documents because it is the most
spread format. The parser can recognize the 90 different tags defined in the HTML 4.01

specification. In most cases, it works on other HTML versions and on XHTML as well.

11.2.2 “Badly” formatted text

The second issue is the invalid or badly formatted text. Lots of pages on the Internet
contain structural errors that usual Web browsers can handle. The parser should manage
to cope with those errors as well; it should “repair” the invalid pages before transforming
them into a tree. Our parser can deal with several structural mistakes but we can not
guarantee that every malformed page that is readable on a Web browser could be parsed

without any errors.
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Another issue is the possibility of optional end tags in the HTML code. Some tags
such as <P>, <LI>, <TD> can be used with or without the </P>, </LI>, </TD> end tags.
Moreover, some tags may or may not overlap. As this is allowed by the W3C, we had to
get by with these complications. The parsing of an HTML file is then harder than the
one of an XML file. With an XML file, the structure definition is very stringent, so that
the file can not be badly formatted. Some famous programs like JTidy are designed to
transform a badly formatted HTML file into an XHTML file, a format between HTML
and XML where all tags have to be properly closed. As we wanted our parser to be as
efficient as possible, it would have been a waste of time to “fix" each page containing
optional end tags before constructing the tree, we needed to parse and repair the file

simultaneously.

11.2.3 HTML parsers available on the Internet

A few libraries to help program HTML parsers are proposed on the Internet. Most of
them have bugs or restricting features that we have faced before finding the good one.
As we spent a lot of time to experiment various parsers, we think it can be useful to

explain the issues we had with each tested parser.

JavaCC HTML Parser by Quiotix Corporation

Can be found at http://www.quiotix.com/downloads/html-parser/.

This parser does not support document structure, which means it can not break down
an HTML page into blocks to extract its elements!. The parser recognizes start and
end tags and calls the functions defined by the user to handle them. So the user has
to write functions to cope with the discovery of a start tag or an end tag. That way,
the parser can not check if the document is badly structured: if tags are missing, the

program written by the user above the parser must handle them itself.

Moreover, a bug has been discovered. The attributes of an HTML field, may or may not

be quoted, and if they are quoted, either single or double quotes may be used. Quiotix

'An element is defined by a start tag <...>, an end tag </...> and all the content in between
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parser does not manage to parse unquoted or single quoted attributes with some tags.

It seems that the parser was designed for former versions of HTML.

Sun Java HTML Parser

This is the parser that comes standard in the JDK (package javax.swing.text.html.parser).
It supports document structure and is really high-quality. It works by parsing first a DTD,
a grammar that defines the HTML version, so that it seems capable to work with every
version of HTML. The issue is that the JDK only comes with HTML3.2 DTD, which is
unsuitable. The HTML 4.01 DTD can be found on W3C, but the DTD used by JDK
needs to be in the format of a “bdtd” file, which is a binary format used only by Sun
Microsystems in this parser implementation. There are many requests for a 4.01 bdtd
file in forums or newsgroups on the Web, but they all remain unanswered. Building it

from scratch is not so easy, so we need to wait for Sun Microsystems to write it.

Jericho HTML Parser

Jericho [25] is the best HTML parser we found. It has been written by a professional
who was bored with facing the bugs of all the HTML parsers he had ever tested. Jericho
HTML Parser is a simple but powerful Java library allowing both analysis and manip-
ulation of an HTML document. All classes and methods have been comprehensively

documented.

It supports document structure since it works by finding all the elements in a given page.
It can reproduce verbatim any unrecognized HTML in a bid of suiting future versions.
The library distinguishes itself from other HTML parsers because no parse tree of the
entire document is ever generated. In this sense Jericho is strictly speaking not a true
parser because it does not infer a grammar as usual parsers do. “The document source
text is searched only for the markup relevant to the current operation” [25]. This allows
the library to analyse and modify documents containing incorrect or badly formatted
HTML. Most other parsers can only handle contents that they are explicitly programmed

to accept.

Jericho can also recognize special tags, apart from HTML 4.01 specification: ASP, JSP,
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PSP, PHP and Mason server tags are explicitly recognized. The library then allows any
of these segments to be ignored when parsing the rest of the document so that they do

not interfere with the HTML syntax.

11.3 Lightening the HTML source

Let us analyse the definition of HTML on Webopedia:

“Short for HyperText Markup Language, the authoring language used to
create documents on the World Wide Web [...]. HTML defines the structure
and layout of a Web document by using a variety of tags and attributes [...].
There are hundreds of tags used to format and lay out the information in a

Web page.”

First, we should remember that the objective is to cluster similar pages, i.e. pages that
have a common general layout. If we look at two Web pages, they will be considered as
similar if their global structure is common (how the blocks are divided; how the menus,
the main text, the images,... are positioned). Not all the tags are responsible of this
general arrangement: some tags are designed to build the “block-level” layout of the
Web page, while others are used to format specific elements such as text (“inline-level").
Moreover, a few tags are not designed to lay out Web pages but to give information that
is not displayed. For example, <div>, <table>, <tr> are block-level tags, <a>, <b>, <i>

are inline-level tags, and <meta>, <address> tags give information that is not displayed.

As we target at extracting the contents of a news article, independently from its format-
ting, we do not need to keep tags that format only text. More generally, all the tags that

do not define the general structure of the page can carefully be considered as useless.

The HTML code sets up the page layout from general to specific features. If we look at
the DOM tree of an HTML page, nodes close to the root are the tags that define the

general arrangement while nodes close to the leaves concern specific format features.

Then, if we decide to remove those inline-level tags, we considerably reduce the amount
of nodes in deep levels of the tree without changing block-level nodes close to the root.

As the top-down algorithm used to cluster similar pages works by comparing vertices
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between two trees from the top to the bottom, the purging of vertices close to the leaves
hardly affects the results. These DOM trees which contain only the tags responsible of

the general layout are called “layout trees".

11.3.1 Main idea

As said above, the purpose of reducing the amount of nodes in the generated tree is

twofold :

e To improve the efficiency of the mapping algorithms.

e To gather parts of text.

“To reduce the amount of nodes” actually means “To ignore or remove some tags during
the parsing”. We need to carefully choose the tags to be ignored or removed. The main

idea can be stated as follows:

e The tags that define the arrangement of the blocks (block-level), i.e. how the
page is displayed, must be kept. We need them to cluster similar pages.

e The tags that define the formatting of text (inline-level), i.e. how the text is
displayed, can be ignored, which implies that the text inside the element is kept.

e The tags that do not enclose text, that have no (or slightly) effects on the layout
(which do not define the arrangement of the blocks), can be removed with their

contents.

It is quite important to understand that “ignoring tags’ means removing both start
and end tags without removing the text in between. The goal is to get rid of the text

formatting although keeping the text itself.

The objective is a bit paradoxical: on the one hand we use the “block-level” tags to
cluster similar pages and on the other hand we ignore the “inline-level” tags to get rid

of the text formatting.

11.3.2 Carefully choose the tags to select

We analyzed each of the 90 tags presented in the HTML 4.01 specification made by the
World Wide Web Consortium (www.w3.org) [26] in order to classify the HTML tags into

126




11.3. Lightening the HTML source

one of the three classes presented above. As this choice is arbitrary, it must be possible
for a user to select himself the tags he wants to keep or ignore. The selection that we

shall present is a default selection that the program loads when it is launched.

However, since we could not display a frame allowing to (un)select 90 tags, we gathered

some tags into generic names (see figure 11.1).

Notice that tags <HTML>, <HEAD> and <BODY> are automatically selected. (D) means that

the tag is deprecated.

11.3.3 Tables

Tables are one of the most used structures to tailor the layout on a page. We chose to

TABLE
THEAD
TBODY
TFOOT
TR
D
| TH
| CAPTION
| CoL

Keep
Keep
Keep
Keep
Keep
Keep
Keep
Keep
Keep

COLGROUP Keep

In order to show a lightened tag selection frame, we grouped the following tags like this:

keep all the tags linked to tables.

Delineates a table

Delineates a row group in the head part in a table
Delineates a row group in the body part in a table
Delineates a row group in the foot part in a table
Delineates a row in a table

Delineates a cell in a row

Delineates a cell containing a header in a row
Contains the caption of the table

Delineates a column in a table

Delineates a column group in a table

o (de)select TABLE : keep or remove tables in the layout tree.

(de)select row/col groups : keep or ignore THEAD, TBODY, TFOOT, COL, COLGROUP.

(de)select TD, TH : keep or ignore table cells.

e (de)select cAPTION : keep or remove table caption.

11.3.4 Lists

)
)
(de)select TR : keep or ignore tables rows.
)
)

Lists are also a usual way to structure information. They are often utilized to structure

menus in the left part of a news Web site. They can be block-levels and a fortiori
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inline-levels.

A more seldom kind of list are the definition lists. “Definition lists vary only slightly from
other types of lists in that list items consist of two parts: a term and a description. The
term is given by the DT element and is restricted to inline content. The description is
given with a DD element that contains block-level content.” [26] Tags <DIR> and <MENU>

are deprecated and often replaced by <UL> but the parser should handle them anyway.

oL Keep Delineates an ordered list

UL Keep Delineates an unordered list

LI Keep Delineates a list element

DL Keep Delineates a definition list

DT Keep Delineates the definition term

DD Keep Delineates the definition description

DIR (D) Keep Designed to be used for creating directory lists
MENU (D)  Keep Designed to be used for single column menu lists

In the tag selection frame, it gives:

e (de)select UL, OL : keep or remove lists.

(de)select L1 : keep or ignore lists elements.

(de)select pD : keep or remove definition lists.

(de)select pT, DD : keep or ignore definition lists elements.

(de)select DIR, MENU : keep or remove directory and menu lists.

11.3.5 Objects

Objects do not contain text but they play a large role in the page layout.

OBJECT Keep Includes an object. Object is a generic name for
every media (image, sound, video, applet,etc.)

IMG Keep Includes an image

APPLET(D) Keep Includes an applett

IFRAME Keep (for Inline Frame) Includes a frame in an "inline-
level”

PARAM Remove Contains a “non-displayed” parameter used for the

<Object> tag
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MAP Remove  Specifies a “non-displayed” map that allows an
object to be split in several areas so that each
area interacts differently with the user

AREA Remove  Specifies a “non-displayed” image map area

“The IFRAME element allows authors to insert a frame within a block of text. It allows
you to insert an HTML document in the middle of another.” [26] See also section 11.3.14
In the tag selection frame, the first four items are displayed and PARAM, MAP and AREA are

put together in “Objects parameters”. Deselecting an object means removing it.

Some tags are enclosed only in the HEAD tag and contain information on the page.

| 11.3.6 HEAD tags
TITLE Keep Contains the title to appear in the window. News
Web sites sometimes show the title of the article
at this place
META Remove  Contains “not-displayed” information about meta-
data
STYLE Remove Contains “not-displayed” information about the
| style sheets
| LINK Remove Contains “not-displayed” information about the
pages linked by this site
BASE Remove  Allows to specify a document’s base path for the
URL's

ADDRESS Remove Contains “not-displayed” information about the
author of the page

The same structure is kept in the tag selection frame. If title is deselected, the whole

title element is removed.

11.3.7 Text management

P Keep Represents the inline-level paragraph
Q Ignore Used for short quotations. Puts quotation marks
around the enclosed text
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PRE Ignore For Pre-formatted Text. Means that the browser
should render the text verbatim

BR Remove  Forces line break

INS Ignore Indicates the new text

DEL Remove Indicates the old text

“INS and DEL are used to markup sections of the document that have been inserted
or deleted with respect to a different version of a document (A Sheriff can employ

<DEL>3</DEL><INS>5</INS> deputies).” [26]

If P is kept, every paragraph of the news article will be stored in a separate leaf. If it is
ignored, all the paragraphs of the article will be put together in the same leaf (considering
that tags inside the paragraph element are also ignored). We shall see later how the
extraction algorithm takes into account the nodes <pP>, <H1>...<H6> and <TITLE> in order

to ensure a basic layout in the extracted text.

As we do not interpret text, the text inside a <PRE> element, will keep its original format

with or without the <PRE> tags.

11.3.8 Miscellaneous

Some tags were too specific and we had to create a “Miscellaneous” class.

A Ignore Indicated the enclosed inline-element is an hyper-
text link

DIV Keep Defines its content to be block-level but imposes
no other presentational idioms on the content

SPAN Ignore Defines its content to be inline-level but imposes
no other presentational idioms on the content

Blockquote  Keep Used for long quotations (block-level content).
Browsers generally indent the text inside BLOCK-
QUOTE

BDO Ignore Forces to ignore the bi-directional algorithm that

allows arabic text to be read from right to left
HR Keep Draws an horizontal rule

DIV and spAN offer a generic mechanism for adding structure to documents. They are a

good example to show how to handle a block-level or an inline-level tag.

130




11.3. Lightening the HT'ML source

Links in text are ignored since their formatting is irrelevant for a plain text extraction.
However, in some cases such as “See also this" where this is a link to another article for

example, it is obvious that the extracted text will be useless.

11.3.9 Headings

H1...H6 Keep Indicates the text is a level (1-6) heading

There are six levels of headings available in HTML from <H1> to <H6>. As they are
inline-levels, we normally should ignore them. However, it is better to keep them in
a separate node, so that they are not melt with the paragraphs (if they are actually

headings belonging to the news article).

11.3.10 Phrase elements

Phrase elements are inline-level tags that add structural information to text fragments.

EM Ignore Indicates emphasis

STRONG Ignore Indicates stronger emphasis

CITE Ignore Contains a citation or a reference to other sources

DFN Ignore Indicates that this is the defining instance of the
enclosed term

CODE Ignore Designates a fragment of computer code

SAMP Ignore Designates sample output from programs, scripts,
etc.

KBD Ignore Indicates text to be entered by the user

VAR Ignore Indicates an instance of a variable or program ar-
gument

ABBR Ignore Indicates an abbreviated form (e.g. WWW,

HTTP, URI, Mass., etc.)
ACRONYM Ignore Indicates an acronym (e.g. WAC, radar, etc.)

Phrase elements are designed to give information on the text. Browsers or other Web
agents can interpret them freely. In our case, we do not want to interpret any form of

text and we simply ignore them.
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11.3.11 Font styles

This class could also be considered as “text management” but we preferred keeping the

structure of the W3C's HTML 4.01 specification as much as possible.

FONT (D) Ignore Selects the font for the enclosed content
BASEFONT  Ignore Selects a default font for the document

SUP Ignore Puts the text in superscript

SUB Ignore Puts the text in subscript (ex: H<sub>2</sub>0)
TT Ignore Renders as teletype or monospaced text

I Ignore Renders as italic text style

B Ignore Renders as bold text style

BIG Ignore Renders text in a large font

SMALL Ignore Renders text in a small font

STRIKE (D) Ignore Render strike-through style text

S (D) Ignore idem STRIKE

U (D) Ignore Renders underlined text

In order to lighten the tag selection frame, each of the Headings, Phrase elements and

Font styles sections became a generic item.

11.3.12 Forms

“An HTML form is a section of a document containing special elements called controls
(checkboxes, radio buttons, menus, etc.), and labels on those controls. Users generally
"complete” a form by modifying its controls (entering text, selecting menu items, etc.),

before submitting the form to an agent for processing." [26]

There are many tags involved with forms: <INPUT>, <BUTTON>, <SELECT>, <OPTGROUP>,
<OPTION>, <TEXTAREA>, <ISINDEX>, <LABEL>, <FIELDSET> and <LEGEND>. We did not decide
to list all of them but just to create a check box “select forms”. If the check box is
deselected, the form and its content will be removed. As a news article is not likely
to be inside a form, the entire form can be removed but this can have an impact on
the page look. There is often a little form with a text field and a button designed to
search for articles through the Web site. We chose to select forms by default in the tag
selection frame because we wanted to keep all the block-level elements for an accurate

comparison between general layouts.
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11.3.13 Scripts

“A client-side script is a program that may accompany an HTML document or be em-
bedded directly in it. The program executes on the client’s machine when the document
loads, or at some other time such as when a link is activated. HTML's support for scripts

is independent of the scripting language.”

Scripts, such as the famous javascript, aim at giving pages a better look or at modifying
the contents of the document dynamically, allowing more interaction with the user. As
they are written in various languages, it is impossible to handle them. We actually
compare the layouts of pages without having run the scripts. However, if two pages are
similar considering their look in a Web browser that handles scripts, they should be as

similar if the scripts are not executed on both pages.

Scripts often represent hundreds of lines in an HTML source. Since we are not able to
handle them, we decided to remove tags <SCRIPT> and <NOSCRIPT> with their contents by

default. See also section 11.6.

11.3.14 Frames

"HTML frames allow authors to present documents in multiple views, which may be
independent windows or subwindows (...) An HTML document that describes frame
layout (called a frameset document) has a different makeup than an HTML document
without frames. A standard document has one HEAD section and one BODY. A frameset

document has a HEAD, and a FRAMESET in place of the BODY." [26]

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"
"http://www.w3.org/TR/html4/frameset.dtd">
<HTML>
<HEAD>
<TITLE>A frameset document</TITLE>
</HEAD>
<FRAMESET cols="33%,66%,33%">
<FRAME src="contents_of_framel.html">
<FRAME src="contents_of_frame2.html">
</FRAMESET>
</HTML>
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If a page is structured using frames, the parser does not go further through the source
referred by the attribute src="...". The layout tree is then limited to nodes representing
the FRAMESET and FRAME tags, so that the news extraction fails. The tag selection frame
has a check box the user can select if he wants the “frameset tree” to be built anyway.

See also section 11.6. Finally, the tag selection frame is presented in figure 11.1

i

HTML, HEAD and BODY tags are automatically selected
Comments and PHP tags are automatically removed

~Tables -Lists ~Objects
TABLE UL, oL OBJECT
Row/Col groups LI IMG
TR DL APPLET
1D, TH DT, DD IFRAME
CAPTION DIR, MENU [ ] Parameters
-Text management— rHead tags——— Miscellaneous
P TITLE ClA
Lo [ IMETA DIV
[|PRE [ISTYLE []sPaN
[IBR [ ] ADDRESS BLOCKQUOTE
[ ]INS [ ]LINK HR
[ IDEL [ BASE [ IBDO
-Text Formatting————— rAdvanced HTML
Headings Forms
[ Font Styles (] Scripts I
[] Phrase Elements Frames
Select All 4 »Derault Selection Deselect all
OK I Cancel

Figure 11.1: The tag selection frame with the default selection
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11.4 From the source to the layout tree

Once a page has been cleaned up, the construction of the layout tree is rather easy.
Thanks to a library provided by the Jericho parser: public java.util.List findAllElements()
that returns a list of all the elements enclosed between the begin and the end of the

source.

The class Element represents an HTML element (as defined by the W3C, HTML 4.01
specifications, 3.2.1), which encompasses a StartTag, an optional EndTag and all the

contents in between.

If the start tag has no corresponding end tag:

e [f the end tag is optional, the end of the element occurs at the start of
the next tag that implicitly terminates this type of element.

e [f the end tag is forbidden, the element spans only the start tag.

o [f the end tag is required, the source HTML is invalid and the element
spans only the start tag. No attempt is made by this library to determine
how user agents might interpret invalid HTML. [25]

The method findAl1Elements() works in a recursive way. It fetches the first element
(logically between <htm1> and </htm1>).Then it fetches the first element enclosed in the
element html (logically between <head> and </head>). It goes on further by searching the
first element enclosed in the element head and so on. When an element does not have
any enclosed element, it goes one level up and searches for a second enclosed element

and so on.
This mean of searching all elements corresponds to a preorder traversal in the HTML

source. We can thus write a recursive algorithm that builds the layout tree as the Jericho

parser finds the elements.
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11.4.1 Pseudo-code of the parser
Main function

Create an iterator for all the elements found by jericho.findAl1Elements();
Get the first element (normally <html> ... </html>);

Create an empty node called current Node;

Call the recursive function parse (element);

Return the root node.

Recursive function

parse (element)

Create a new node with the start tag of element;

Add this node as a child of the currentNode;

current Node := new node;

WHILE (element encloses the next element in the iterator) DO
Get this next Flement,;
Extract text stored between the start tag of element...
...and the start tag of next Element;
parse(next Element);

END WHILE

IF (there was an enclosed element)

THEN Extract text stored between the end of the enclosed element...
...and the end of element;

ELSE Extract text stored between both start and end tags of element;

currentNode := current Node.get Parent() (the currentNode is set on its parent).

11.5 From the layout tree to HTML

We shall see later that running the top-down algorithm on two trees 7} and 75 outputs

a third tree TopDownT'ree that represents the common nodes between 7 and 75.
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The more T and T3 are similar, the bigger T'opDownT'ree will be. As T'opDownT'ree
symbolizes the common general layout of 7' and 75, it can be interesting to do a “reverse
parsing”, i.e, parsing the TopDownT'ree to transform it into HTML code, so that it
can be opened by an Internet browser. Notice that this function is of no use for the
clustering of Web pages but can intuitively help understand the concept of top-down

mapping and similarity between page layouts.

11.5.1 Pseudo-code of the algorithm
Main function

Open a String Buffer to write text;
Call parseT'ree with the root node of T'opDownTree;

Write the String Buffer in a file.

Recursive function

parseTree (current Node)

Get the contents of current Node;
(tag name + attributes if the node is an HTML tag)
(text if the node represents plain text)

Append the contents to the String Buffer;

FOR all the children of the current Node DO
parseT'ree(child);

END FOR

IF currentNode is a Start Tag

THEN IF this Start Tag requires an End Tag
THEN Create an End Tag corresponding to the Start Tag;

Append this End tag to the String Buffer;

ENDIF

ENDIF
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11.6 Limits of the parser

Our parser is not perfect. We shall present here three major limits and their possible

issues.

Comparing tag names only

We chose to cluster similar pages by comparing tag names in order to build a layout tree
that represents the structure of a page. We could also analyse the attributes of the tags
which can allow a more accurate comparison between tags. If attributes are replaced by

style sheets (.css), the latter should be parsed as well.

Creating a layout tree is not the only solution to detect similar pages. For example,

analysing style sheets makes it possible as well.

Scripts

It is well-nigh impossible to cope with the code inside the scripts tags in order to

understand their effects on the page layout.

Moreover, if a script is responsible of writing the news article, the latter does not appear

in the layout tree. Let us consider the following example:

<HTML>
<HEAD>
<TITLE>News in script</TITLE>
</HEAD>
</BODY>
<SCRIPT type="text/javascript">
document .write("<p><i>American air force bombed Baghdad<i>")
</SCRIPT>
</BODY>
</HTML>

As the article is written by the javascript function write(), it will not appear in the
layout tree as the scripts are deselected by default. Even if scripts were selected, a node

document.write("<p><i>American air force bombed Baghdad<i>") would be created.
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Frames

We saw in section 11.3.14 that a frameset document will be limited to FRAMESET and
FRAME. The algorithm could go further: it could fetch the name of the HTML file inside
the attribute "src", download this page and build its layout tree. The layout tree of the
framed page could be added as a child of the related node <FRAME> in the original layout

tree.

11.7 Conclusion

We saw that parsing HTML is not an easy task. Despite all the efforts, the parser is far
from perfect. We saw that some limits can be improved, such as parsing the attributes,
style sheets or going further through the frames. We analysed each of the 90 tags
specified by the transitional.dtd of HTML 4.01 in order to define a default tag selection
which aims at improving results of the further algorithms. The main idea of the default
tag selection is to keep the block-level tags, to ignore inline-level tags and to remove

tags that are not involved in the layout of pages.

The parser can be run in two directions: from an HTML source to its related layout tree

or from a layout tree to the HTML source it represents.

We defined in this chapter the structure type that we shall use to cluster similar pages
and extract news articles. All the algorithms covered in both next chapters rely on the

trees we introduced here.
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12.1 Introduction

The approach we have developed for finding and extracting data of interest from Web

’ pages is based on the analysis of the structure of target Web pages. More precisely, by

evaluating the structural similarities between pages in a target site we are able to perform

tasks such as grouping together pages with similar structure to form page clusters and

finding a generic representation of the structure of the pages within a cluster.
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Various mappings have been described in chapter 9. To identify similar pages, we use
a top-down mapping that finds the common nodes between two layout trees from the

root node to the leaves. We shall see that we actually use two top-down mappings:

e A fast mapping: The algorithm is very simplistic and aims at efficiency but do not
manage to avoid mistakes.
e A fine mapping: The algorithm is more complicated and much slower but gives

better results.

Afterwards, we shall show how clusters are created thanks to the mapping results and how
the tag selection affects those results. We shall conclude with an example of clustering

with original news Web pages.

12.2 The fast top-down mapping

12.2.1 Pseudo-code of the fast top-down algorithm

Input: 7% and 75, both trees to map.
Output: TopDownT'ree, the fast top-down mapping between 77 and T5.

function fastMapping (11, Ts)
Get the root node of T3, rootTy;
Get the root node of 15, rootTs;
IF (rootT; == rootT)
THEN Create the root node of topDownTree with rootT};
mapChildren (rootT) rootT,);
ELSE STOP.

function mapChildren (node;, nodes)
Get the array of children of node;, children,|];
Get the array of children of node,, childrens|];
FOR (int i = 0; i < children,.length; i+ +) DO
Get the child at children,[i], childs;
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IF (¢ < childrens.length)

THEN Get the child at childrensli], childs;
IF (child, == childs)
THEN Add child, to topDownT'ree;

mapChildren (child,, child,);

ELSE Break;

ENDIF

ENDFOR

As we can see, the fast top-down mapping algorithm is rather simple. It works by
comparing the children of current nodes from left to right recursively and by adding

common nodes to T'opDownT'ree.

The top-down mapping algorithm gives as output the “top-down tree”. This tree is
actually not the biggest common part between the trees 77 and 75. As the matching
between common children stops as soon as different children are found, children that

could have been identical after this mismatch are ignored (see section 12.2.3).

12.2.2 Example

So as to understand properly the top-down mapping algorithm here follows a straight-
forward example. We have downloaded the original Web site www.perdu.com and con-
sidered its HTML source code (see figures 12.1 & 12.2). In order to display correctly
the layout trees, perdu.com has been taken as key example on purpose for its simplicity.
It is indeed impossible to show the layout tree of a news Web page counting thousands

of nodes like a news page from the CNN Web site (www.cnn.com).

As you can see in figure 12.1, this Web site is very elementary. The template of the Web
page is basic and the HTML source code very limited. The second layout tree we shall
take for our example is the same Web page but slightly changed: the element <h2>Pas
de panique, on va vous aider</h2> in the HTML source code has been removed. This

leads to a new Web page of www.perdu.com without the sentence “Pas de panique, on
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__htp//wwwperducom

‘ Perdu sur Internet? |

| Pas de panique, on va vous aider

|
‘i * L vous étes ici {F

|
| i
\

Figure 12.1: the Web page www.perdu.com

va vous aider” in the middle of the page; and to a new corresponding HTML source

code (see figures 12.3 & 12.4).

<html>
<head>
<title>
Vous Etes Perdu?
</title>
</head>
<body>
<h1>Perdu sur Internet?</hi1>
<h2>Pas de panique, on va vous aider</h2>
<pred & ———-- vous &ecirc;tes ici</pre>
</body>
</html>

Figure 12.2: HTML source of www.perdu.com

As we have the Web pages we want to map and their corresponding HTML source code,
we are now able to transform them into layout trees thanks to our program through the
HTML parsing. Figure 12.5 shows how the trees are actually displayed in our program.
Tree perdu, corresponds to the original Web page of www.perdu.com and tree perdus

to the slightly changed Web page of the same Web site (figure 12.5).
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| Perdu sur Internet?

W AL remronrmns vous étes ici

Figure 12.3: Modified version of www.perdu.com

<html>
<head>
<title>
Vous Etes Perdu?
</title>
</head>
<body>
<h1>Perdu sur Internet?</hi1>
<pre> * <===== vous &ecirc;tes ici</pre>
</body>
</html>

Figure 12.4: Modified source code of www.perdu.com

The next operation is the top-down mapping properly speaking. Both trees perdu; and
perdus, are taken as input of the top-down mapping algorithm. This one identifies the

common part of both trees and gives as output the top-down tree (see figure 12.6).

12.2.3 Limits of the fast top-down mapping

First the fast top-down algorithm is too restrictive because it only tries to match common
nodes from left to right and stops when a mismatch occurs. In figure 12.6, both <pre>

elements on the right are ignored although they are identical. If we consider the Web
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html html
head body head body
S ™ AN
title hl h2 pre title hl pre
I R N Lo
Vous Perdu Pas d s Vous Perdu W

Figure 12.5: perdu; and predusy trees

html html
‘/\
head body head body
1 el i 1 N\
titlie hl h2 pre title hl pre
I T Lo
VYous Perdu Pas d * - Vous Perdu * -

Figure 12.6: The common part of perdu; and perdus (orange)

pages as they are displayed (see figures 12.1 & 12.3), we can consider that the bottoms
of both pages are similar. The presence of the extra title “Pas de panique, on va vous
aider” does not affect the layout below it. So that we should try to match all the common

children when we are analysing two nodes instead of matching them from left to right.

Second, the fast top-down algorithm can make some mistakes. To understand an example
of mistake, let us consider figure 12.7. On the right tree, an extra <table> fools the
algorithm which does not match the corresponding table and drops a large set of common

nodes.

Finally, the output of fastMapping (T}, T») can be different from the output of
fastMapping (Ts, T}).

We need to improve the fast top-down algorithm by comparing all the children whatever
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their position and by avoiding matching “noncorresponding tags”.

body body
hl table hl table table
Perdu tr tr Perdu caption tr e
Lo I
td td oui td td
Pas de On va Pas de On va

Figure 12.7: Limaits of the fast top-down algorithm

12.3 The fine top-down mapping

The main idea is to consider nodes according to the size of the children subtrees. Instead
of comparing only the children names, the fine top-down mapping takes the size of the
subtrees into account in a bid to avoid mistakes. The children are not treated from left
to right; they are sorted in descending order of the size of their subtree. Let us explain
with an example: consider figure 12.5 and let us assume we are treating the body node.
Instead of matching children H1, TABLE, TABLE from left to right, we first sort them
considering their subtrees. In the left tree, subtrees of H1 and TABLE count respectively 2
and 7 nodes. In the right tree, subtrees of Hi, the first TABLE and the second TABLE count
respectively 2, 3 and 7 nodes. The subtrees are sorted in descending order, so that the

children can be represented like this:

e Left tree, node body, children = (TABLE-7, TABLE-3, H1-2)

e Right tree, node body, children = (TABLE-7, H1-2)

The algorithm first tries to match TABLE and TABLE. As it works, it tries to match TABLE

(the next one) and H1, which fails. Since TABLE has a bigger subtree than H1, the algorithm
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searches for an instance of TABLE in the second tree, which fails. Finally, it tries to match
H1 with H1, which succeeds. Notice that this example was intended for explaining how
to handle a set of children. The algorithm actually works recursively when a matching
is found, so that normally, after having compared both first TABLE, it goes recursively to

both TR nodes, then TD nodes and so on.

Thanks to this technique, the probability of matching noncorresponding nodes is reduced,
especially when the tree is large and when the nodes are closer to the root. When there
are many children, each having a small subtree, the mapping can still be fooled. Anyway,
the objective is to guarantee a matching as best as possible on the high-level nodes. A
mistake made close to the leaves, where the subtrees are smaller, matters less than a

mistake made close to the root since the second drops a bigger subtree.

As the order of the children does not matter, every child that has its corresponding node
in the other tree is matched, whatever the extra “single” children. Notice that calling
the function (fineMapping (T, Ty) or fastMapping (Ts, 1)) gives the one output.
Let us consider figure 12.6: if the fine top-down mapping was applied to these trees, the

results would be completed by matching both nodes PRE and both nodes *<--.

The fine top-down algorithm is more accurate than the fast one but should be utilized
only if the fast top-down algorithm does not give suitable results. Most of the time,
the results of both algorithm will be the same but the fast top-down algorithm, as it is

called, is quite faster.
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12.4 Pseudo-code of the fine top-down algorithm

Input: 77 and 75, both trees to map.
Output: TopDownT'ree, the largest common tree between T and 7.

The function that calls mapChildren is the same as the one presented in section 12.2.1

function mapChildren (node;, nodes)
Get the array of children of node;, children[];
Get the array of children of node,, childrens|];
Sort children,[] in descending order of the sizes of the children subtrees;
Sort childrens[] in descending order of the sizes of the children subtrees;
WHILE children,[] and childrens[] have non treated children DO
Get the next child in children,[] childy;
Get the next child in childrens|] childy;
IF (childy, == childs)
THEN Add child, to topDownT'ree;
mapChildren (childy, childs);
ELSE
IF (size of the subtree (child,) > size of the subtree (child,))
THEN Search in childrens[] for a node that matches child;;
ELSE Search in children,[] for a node that matches childs;
END WHILE

12.5 News pages clustering

Now that the structural similarities between two Web pages can be identified thanks
to our top-down mapping algorithms, it is possible to put various Web pages having
structural similarities together to form clusters. At this point, we faced two problems:
the top-down mapping algorithm allows us to map only two layout trees at once while
the clustering task needs to map many layout trees and the percentage of similarity is
not yet known. For these two reasons, we created a clustering algorithm that can apply

one of the top-down mapping algorithms to map an unlimited set of trees and we defined
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a similarity rate.

12.5.1 Similarity rate and similarity threshold

In order to cluster Web pages, we need to specify a similarity rate. This rate is the
number of identical nodes between two trees compared with the number of nodes of the

largest tree. It is mathematically defined as follows:

size (TopDownTree)

stmilarity rate =
4 mazx ( size(T), size(Ts))

where T'opDownT'ree is the result of the top-down mapping between 7' and 75, both

trees to map.

The similarity rate is based on the number of nodes of the trees T}, T, and T'op DownT'ree.

As we are working on trees having hundreds of nodes, we deem that it is rather a correct
value. The reason why we chose the maximum size between both trees as denominator
is straightforward: if two trees have a high-level of similarity, the top-down tree resulting
of their mapping will be large and the choice of the maximum size between 77 and 7,
does not really matter. But if they have a low-level of similarity, the size of the top-down
tree will be small. So if we take the size of the largest tree as denominator, the ratio

will be very small as well, so that both trees are not likely to be clustered.

While the similarity rate has been defined, we must now estimate a similarity threshold,
that is a value from which similar Web pages are accepted within the same cluster.
This threshold has to be efficient, that is it has to be restrictive enough in order to put
together in the same cluster pages which are very similar to each other. Yet, it must not

be too restrictive to allow some structural differences.

12.5.2 Impact of the tag selection

To illustrate how the tag selection (see chapter 11) affects the results, let us take
figure 12.8 as key example. In this example, all the tags have been transformed into
nodes but we saw in chapter 11 that we can actually ignore some tags during the parsing,

which leads to reducing the amount of nodes.
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html html
head body head body
title hl h2 strong i title hl strong b
S T T | 1
Vous E Perdu Pas de pre 0K 2 Vous E Perdu pre 0K 2
R K I=

Figure 12.8: Key example to explain the tag selection impact

Henceforth we shall analyse two scenarios: the first one assumes that all the tags were
selected during the parsing and the second one assumes that the default tags selection
has been applied. As we have already shown the results of a fast top-down mapping,

' this time the scenarios are covered using the fine top-down mapping.

All tags selected

| In this case, the left tree counts 13 nodes and the right tree counts 11 nodes. The fine

top-down tree (colored in orange) counts 8 nodes. The similarity rate is m =

| 0,615.
|
|
|

head body head body

title ‘hl h2 strong i title hl strong b

Vous E Perdu Pas de pre 0K 2 Vous E Perdu pre 0K 2

- (l'“'— F L

Figure 12.9: Results of a fine top-down mapping if all nodes are selected
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Default tag selection

With the default tag selection, tags <PRE>, <B>, and <I> have been ignored, so that their
contents have been put together (see the source code frame). In this case, the left
layout tree counts 9 nodes and the right layout tree counts 7 nodes. The fine top-down
mapping (colored in orange) has totally mapped the right layout tree, it counts 7 nodes

as well. The similarity rate is m =0, 778.

This demonstrates the benefit of the default tag selection. By removing nodes that are

not involved in the block-level structure of the page, we can cluster similar pages in a

better way.
htnl html
/\
head body head body
l /\
title hl h2 title hl e
Vous E Perdu Pas de Vous E Perdu

Figure 12.10: Results of a fine top-down mapping with default selection

12.5.3 The clustering algorithm

As previously explained, the clustering is the operation taking all the Web pages we need
to analyse in order to group them together into clusters depending on their similarity
rates. All the Web pages having structural similarities higher than the similarity threshold

value will be put together into the same cluster.

To perform this task, we created the clustering algorithm. This one can use the fast or
the fine top-down mapping algorithms. The user first chooses a tag selection model in
the tag selection frame (or he can use the default selection model). Then he selects the
pages he wants to cluster, a cluster threshold and a fast or fine mapping. Each page is

then converted into its related layout tree and the latter are stored on a vector.
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Pseudo-code of the clustering algorithm

Input: treeVector (a vector that contains all the layout trees) and simT hreshold (the

similarity threshold above which pages are clustered).

Create a vector to store the similarity rate after each top-down mapping: tdrVector;
(Each element of tdrVector represents a triplet [tree;, tree;, similarityRate;; )
FOR each tree tree; in treeVector (0 < i < treeVector.length — 1) DO
FOR each tree tree; in treeVector (i +1 < j < treeVector.length) DO
Run a top-down mapping (fast or fine) between tree; and tree;;
1 Calculate the similarity rate between tree; and tree; : similarityRate;;;
Add the triplet [tree;, tree;, similarityRate;; | to tdrVector;
END FOR
END FOR
Sort tdrVector in descending order of similarityRate;;;
Get the first triplet [tree;, tree;, similarityRate;; | in tdrVector);
IF (similarityRate;; < simThreshold) THEN STOP.
Create a new cluster containing tree; and tree;;
FOR each triplet [tree;, tree;, similarityRate;; | in tdrVector DO
IF (similarityRate;; > simThreshold)
THEN IF (tree; is not yet clustered)
THEN Create a new cluster with tree;;
ELSE IF (tree; is not yet clustered)
2 THEN Create a new cluster with tree;;

FOR each tree tree, of treeVector that is not yet clustered DO

Get the similarityRate;;, corresponding to tree;, treey in tdrVector,

IF (similarity Ratey, > simT hreshold)
THEN Put tree, into the current cluster;
END FOR
ELSE STOP.
END FOR

Output: A set of clusters, each containing pages at least simT hreshold % similar.
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The first loop ( 1 ) aims at calculating the similarity rates between all the trees combina-
tions. Since the mapping algorithms can be run only with two trees at once, we need to
generate all the different “mapping combinations”. The algorithm takes the first tree of
treeVector, applies the top-down mapping algorithm to all the other following trees of
treeVector and for each triple (T'reey, Treey, TopDownT'ree), calculates the similarity
rates. It also puts the similarity results and its associated trees into the tdrVector. Then
it takes the second tree of treeVector, applies the top-down mapping algorithm to all

the other following trees and so on.

Before entering the second loop , the clustering algorithm sorts the tdrVector in de-
scending order of similarity rate. Then, if the first element of the top-down mapping
results (so the best result) has a similarity lower than the similarity threshold, all the
trees are a fortiori dissimilar and the algorithm stops. On the contrary, if the similarity
rate of the best top-down mapping is higher than the threshold, both trees involved in

this result are put together in a first cluster.

The second loop ( 2 ) goes on for each couple of trees in tdrVector associated to a
similarity result higher than the similarity threshold. It creates a new cluster or puts trees

into an already existing cluster depending on their similarity results.

The output is a set of clusters, each containing pages at least simT hreshold % similar.

12.5.4 Application

To illustrate the clustering algorithm, here follows a complete example. We have chosen
a set of Web pages coming from the World Wide Web. Some are news Web pages
coming from well-known news Web sites such as Le Soir, CNN, etc, some are coming
from other Web sites such as perdu.com, Webkot.be, etc. Some have nothing to do
with each other, some present at the first glance high-level structural similarities (see

figure 12.11).

We actually selected these pages in order to cover some important scenarios:
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Figure 12.11: two sport news Web pages from www.LeSoir.be showing a high degree
e For the first scenario, we fetched four news pages coming from LeSoir.be. Two
from these four pages present sports news and the two others are on the front
page. Normally, the first two pages should be grouped together into one cluster
and the last two others into another one.
e In the second scenario, we downloaded two news pages from CNN.com. They
should be clustered together.
e The third scenario takes into account four pages having nothing to do with each
other. These four Web pages come from LeMonde.fr, Liberation.fr, Perdu.com
and Webkot.be. They should not be clustered.

e The last scenario is the consequence of the three previous ones. Each of the three

scenarios must not interfere with each other.

The first step is to choose the Web pages we want to cluster, to choose a fast or
fine top-down mapping and a similarity threshold (see User Guide for details). For our
experiment, we selected all the opened files, a fast top-down mapping and a similarity
threshold of 60%.

The results are as expected (see figure 12.12). The first scenario is covered since both

sports news Web pages are in the same cluster (Cluster2) as well as both news being on
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the headlines (Clusterl). The second case is correct: both CNN news Web pages are

in the same cluster (Cluster3). The third scenario has been respected: the four distinct

pages were not clustered. Finally, the non-interference condition of the fourth scenario

has been covered as well.

B2 L) 8] X

[} Lesoir.be - La Une htm

[} LeSoirbe - La Une2.htm
¢ [ Cluster 2

D LeSoir.be - Sport.htm

[} LeSoirbe - Sport2.htm
¢ [ Cluster 3

) crncom htm

[y cNN.com2 bt

... Custersies | | ] Perdu.comhtmi | | ] Webkothentm |
| JLeSoirbe -Sport2htm [ [ LeMondefrhtm | | ] Liberationfrhtm
[l eaactnews | [ LeSoir.be - La Une2.htm ¥ [ LeSoir.be  Sporthtm
|JcuNcombtm | [JCNNcom2htm | [ LeSoirbe - LaUnehtm
Lm it CIoN Al b J IDOCTYPE HTML PUBLIC "-#W3C/DTD HTML 4.01 TransitionalfEN"» -
<htmi> =
¢ Allfiles et
¢ [ Cluster 1 <meta http-equiv="Content-Type" content="textthtml; charset=iso-8859-1">

=meta http-equiv="Expires" content="0">

<meta name="description" content="En mourant, Hariti Iegue un sentiment d'unité nationale
<title=Lib&eacute;ration :&nbsp;Liban, un peuple est né=fitle=<meta hitp-equiv="Content-Tyg
=meta name="ROBOTS" content="INDEX FOLLOW, NOARCHIVE"=

=meta name="KEYWORDS" content="LIBERATION, INFORMATIONS, INFOS, QUOTIDIEN, P
<|link href="hitp i liberation fricssimain.css” rel="stylesheet' type="texticss"»

<link rel="alternate" type="applicationfrss+xml" title="RSS" href="http fwww liberation frirss.p
<link rel="shortcut icon" href="http:iiwww liberation friffavicon.ico"=

=script language="javascript’ type="text/javascript' src="http:ivaww liberation fifincismartad js
=script language="javascript' type="text/javascript' src="http Shwww liberation frfinc/macro.js"=
</head=

=<hody onLoad="preload();"=

<table width="792" border="0" cellspacing="0" cellpadding="0">

<trs
=td height="14" colspan="7"=<img src="/img/puc/pix.gif' alt="pix" width="14"}
<ftr=
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«td width="14" rowspan="3"»<img src="/img/pucipix.gif' alt="pix" width="14" 1
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Figure 12.12: The four scenarios have been covered
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12.6 Conclusion

Two top-down mapping algorithms have been implemented to identify similarities be-
tween layout trees, from the root to the leaves. The fast top-down mapping is an efficient
algorithm, giving satisfying results most of the time but which can be easily fooled. To
compensate for this weakness, we developed the fine top-down mapping algorithm, which
is more accurate but slower. It actually finds the largest common subtree between two

trees.

We saw how the tag selection has an impact on the mapping algorithms. Thanks to this
tag selection and the clustering, the extraction of the news articles related to the layout

trees that were clustered together is now made easier (see next chapter).
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Extracting the news articles
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13.1 Introduction

This is the last step of our extraction process. We assume here that:

e the Web pages have been transformed into layout trees with the same tag selection

options;

e the tag selection was complete enough to build layout trees that reflect the layout

of the Web pages;

e the similarity threshold was significant enough to detect (dis)similarities between

pages.

This last step is the easiest. Once the similar layout trees have been clustered, the

extraction of the news article can be summarized as follows:
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e get all the layout trees from a chosen cluster (the cluster must have at least two
elements);

e for each layout tree, fetch all the leaves that contain text (section 13.2);

e remove the “text leaves” that are common between layout trees (section 13.3);

e for each layout tree, concatenate all the remaining leaves to a text file (sec-

tion 13.4).

Each of this four operations will be explained in a separate section. We shall finally
introduce how we could extract the news article with its formatting thanks to slight

changes in the parser.

13.2 Fetching the leaves that contain text

For each layout tree in the same cluster, a preorder traversal! fetches all the leaves in
the right order. When a leaf is found, we must check whether it is a node representing
a tag or a node containing text. We only keep nodes that contain text. Notice that, at
this time, we extract the “text leaves” themselves and not their contents. At the end of

this process, the output is a vector containing all the “text leaves”.

This approach can be compared with the RoadRunner [18] (see chapter 7) algorithm that
fetches all the #PCDATA elements (i.e. everything that is not an HTML tag). A text
leaf in our case would be a #PCDATA in RoadRunner.

13.3 Removing common text leaves

This step is a bit harder. We need to compare in twos by two all the text leaves in all
the text leaves vectors. The leaves that are common are eliminated from their vector,
so that at the end of the process all the leaves are different, notwithstanding the vector

they belong to.

'A postorder (or depth-first) traversal is also suitable but not a breadth-first traversal.
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Pseudo-code of the algorithm

Here is the pseudo-code of the algorithm, text LeavesV ectors[] is an array of text leaves

vectors.

FOR (int i = 0; i < textLeavesVector|].length; i + +) DO
Get the text LeavesVector stored at index i (called vectorOnl);
FOR (int j =i+ 1; j < textLeavesVector[].length; j+ +) DO
Get the textLeavesV ector stored at index j (called vectorOn.J);
FOR every text leaf tfI in vectorOnl DO
FOR every text leaf tf.J in vectorOnJ DO
IF ({f I ==ijJ)
THEN Remove tf.J from vectorOnJ;
Set tf1 to be removed at the end of this loop;
ENDFOR
IF tfI is set to be removed
THEN Remove tfI from vectorOnl,
ENDFOR
ENDFOR
ENDFOR

13.3.1 Complexity

Both first loops are designed to compare in twos all the text leaves vectors with each
other. If there are four text leaves vectors A, B, C, D, it will compare A — B, A —C,
A—D , B-C,B—Dand C-D.

Both inside loops are designed to compare in twos all the text leaves from both current

vectors. They remove the text leaves that are identical.

The theoretical complexity of this algorithm is very high, O(n? - m?), where n is the
number of text leaves vectors and m is the number of text leaves. The practical com-

plexity is lower: both first loops are repeated respectively (n — 1) and (n/2) times. So
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that in the example with four vectors we have 6 loops instead of 16. Both inside loops
are executed faster as the algorithm progressively goes on because the amount of text

leaves decreases.

However, this algorithm is too trivial and should be improved for a better efficiency.

13.3.2 Assumptions

If we remove common text leaves, we assume that all the news articles in a cluster do

not have common text. This assumption becomes restricting in two cases:

e As the amount of pages in the cluster grows. Moreover, as the complexity of the
algorithm is high, it is better to prevent clusters to be too big. This can easily be
done by increasing the similarity threshold before the clustering (see chapter 12).

e As the amount of words in the text leaves decreases. This can be prevented by
ignoring the tags in charge of the text formatting during the parsing (see sec-

tion 11.3). Let us explain with an example:

13.3.3 Example

Let us consider two trivial news articles (figure 13.1 and figure 13.2)

Both trees have been built by selecting all tags. Let us assume that both trees have

been clustered (the top-down tree is in orange).

If the tag <i> that emphasizes the word “Baghdad” is kept, a leaf containing “Baghdad”
is created in both trees. Since the leaves are identical, they will be removed during the

text extraction, which fails.

On the contrary, if tags <i> and </i> are ignored during the parsing (thanks to the
default tag selection), leaves will be created with the whole sentence below the parent
<p> (figure 13.3). By the way, notice that the fast top-down mapping gave better results

while tags that format text are ignored.
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YWorld News - Mozilla Firefox

. ~ head body
U.S. will bomb Baghdad | L
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Yesterday, Amenican troops entered Baghdad from the west.

World Troops  Yester i from t

Figure 13.2: The second article and its related tree (all tags selected)

htal
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Figure 13.3: Both layout trees with the default tag selection

13.4 Concatenation of the remaining leaves

Once the text leaves that were shared with other pages in the cluster have been removed,

the remaining text leaves are likely to be the news article.

For each page in the cluster, the remaining text leaves are appended in a text file, so

that the extracted article (in plain text) can be stored.
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Yet, the text leaves sometimes need a cleaning-up before appending them in order to
display the article correctly. We actually want to lay out the article as best as possible

despite the plain text format.

In order to achieve this objective, the algorithm:

e removes useless spaces between lines or words;

e transforms the characters coded between & and ; (such as &ecirc; for €) into their
corresponding value in ANSI format;

e must identify paragraphs and headings. The parent of the text leaf must be taken

into account:

— If the parent is a <P> node, we found a paragraph and a blank line is inserted;
— if the parent is a <TITLE> or a <H1> to <H6>, we found a heading and it is

written in upper-case.

That explains the reason why we needed to keep the tree node type until the last step of
the extraction. If the text leaves were transformed into strings, we would not be able to

detect paragraphs and headings, which are essential for the understanding of the article.

- The extracted text should be laid out like this:

U.S. WILL BOMB BAGDAD
The American Air Force intends to bomb Baghdad this night.

The spokesman at the White House said:Yes it is true

The leaves below <title> are identical so that they have been removed. They actually
do not represent the title of the article but the name of the Web site. On the contrary,
leaves below <h1> have been kept and put in upper-case. A blank space has also been
added before each paragraph.The text formatting on “Baghdad” and “Yes it is true” has
been dropped.

164




13.5. Extracting the article with its formatting

13.5 Extracting the article with its formatting

The goal of this thesis is to extract a news article without its formatting. However, the

news article can be extracted although keeping its layout easily.

During the parsing of an HTML page, we saw that tags responsible of the text formatting
are ignored; i.e. both start and end tags are removed but the text between them is kept.
These tags could be completely ignored, i.e. they could be considered as text, so that
they would be included in the text leaves (see figure 13.4). The extracted text would
consequently contain the HTML tags that format it. Yet in this case, the extracted text
can be read only by an agent that interprets HTML code.

html

head body

: The American Air Force intends to bomhb
title hl The An  i-Baghdad</i> this night.

<p>
The spokesman at the White House

NEELS LD S said: <g=Yes itis true<g>|

Figure 13.4: The same tree where tags <p>, <i> and <q> have been considered as text

Then, the output would be:

U.S. WILL BOMB BAGDAD

<p>

The American Air Force intends to bomb <i>Baghdad</i> this night.
<p>

The spokesman at the White House said:<g>Yes it is true</qg>

13.6 Conclusion

We saw that we simply extract the news article by fetching the leaves that contain text
and by removing text leaves that are common between layout trees in a given cluster. As

the amount of layout trees in the cluster grows, the extraction is slower but the results
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are better, on condition that the text leaves representing the article are significative
enough. Actually, text leaves which contain words instead of sentences are likely to be
found in more than one layout tree, so that they unfortunately would be removed. This
is the reason why it is important to ignore most of the tags that format text when the

HTML source is transformed into a layout tree.

After the extraction, the article needs a cleaning-up before storing or displaying it. Even
if we aimed at extracting plain text, it is necessary to give the article a minimal layout

in order to keep it understandable.
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The extraction of news articles from the Internet, as we understand it, is far beyond a
simple retrieval of the main text in a given news Web page. We wanted an agent to
be able to extract any news article about any topic without any prerequisite processing.
To be considered as fully automatic, the process must be covered from A to Z. The
extraction process should start with the classification of both Web sites and Web pages
of interest. Once the relevant pages have been downloaded, the HTML source code
must be transformed into a given data structure. The latter allows to cluster similar

pages (i.e. pages having a common layout) before extracting the news articles.

In the literature, tools that make the extraction of data possible, such as wrappers,
assume nevertheless that similar pages have been downloaded beforehand. In our opinion,
agents should not have to search for relevant pages themselves, or worse, to cluster similar
pages manually. We saw that various approaches have been developed in order to classify
sites and pages on the Internet. Although the Web sites classification is not a big hit,
it could be useful to reduce the search space dramatically, improving the results of the

Web pages classification.

News Ripper, our application, does not deal with classification but manages to cluster
similar pages. In order to group pages together according to their similarities, we had to
build a data structure that mirrors their layouts, the layout tree. This tree is built along
the parsing of an HTML source by keeping only tags related to the block-level layout
of a page and by ignoring tags involved in the inline-level formatting. We saw that this
tag selection conspicuously improves both efficiency and effectiveness of the clustering

algorithms.

Two top-down mappings algorithms have been implemented to identify similarities be-
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tween layout trees, from the root to the leaves. The fast top-down mapping is an efficient
algorithm, giving satisfying results most of the time but which can be easily fooled. To
compensate for this weakness, we developed the fine top-down mapping algorithm, which
is more accurate but slower. It actually finds the largest common subtree between two

layout trees.

The extraction of the news articles related to the layout trees that were clustered together
is now made easier thanks to the tag selection and the clustering algorithms. A smart
tag selection, that ignores text formatting, allows to reduce the amount of leaves that
make up the article. The clustering of similar pages, as for it, is necessary to identify
both common and uncommon leaves between similar layout trees. Given the assumption
that articles from news pages are not likely to have common sentences, we can extract
the news articles within a cluster by concatenating the contents of the dissimilar leaves

in each layout tree.

The news article, in plain text format, can be eventually conveyed to agents for further

use.

Despite our infatuation with News Ripper, each of the three steps of our application can
be enhanced. We only parse the tag names of an HTML source although its attributes
and style sheets could bring more exhaustive information. If the fast top-down mapping
algorithm has been fooled, the user should be warned instead of having to check the
output manually. The news extraction algorithm has a high degree of complexity because

it compares all the combinations of leaves between layout trees within a cluster.

Anyway, the crucial enhancement would be the coverage of the Web classification, so
that an agent would not have to fetch pages of interest by himself. Once this upgrade
combines with News Ripper, the whole news extraction process will be deemed as fully

automatic.
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Appendix A

News Ripper User Guide

A.1 Introduction

News Ripper is the application we developed in JAVA during our internship at the Univer-
sity of Technology in Sydney. This program allows the user to select a set of news Web
pages, to cluster them and to extract the news article inside each page. Here follows an

exhaustive description of all its functionalities.

A.2 Launching News Ripper

To run the application, you have to launch the batch file called NewsRipper.bat. The

main window will then be displayed in the centre of the screen.

A.3 Main window

The main window (figure A.1) is made up of three main elements:

1. the menus and the tool bar;
2. the Opened files area;

3. the Clustering area;
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File Operations Menus and toolbar
=210 () [ x> [B]n]e
) .
Clusterfiles || *[|[ [1perduthtm [ [ perdu2htm | [ ] testi.ntm
| [|=<htmi=
_ Extractnews || - <head>
" <title=Vous Etes Perdu?<ftitle=
</head=
=hody=
l HD i =h1=Perdu sur Internet?=/h1=
o 7 Cluster 1 <h2=Pas de panigue<ih2>
D erdul.htm -' <strong>
P ' 7 <pre= * =----- yous etes icizipre=
D perdu2.htm <fstrong=
¢ [ Cluster 2 =fhody=
— ) testt htm | [|=/html=
[ testz.htm ;
Clustering area Opened files area
Figure A.1: The main window of News Ripper
A.4 Menus & toolbar

A.4.1 File

B Open Project...

Opens an Open Project dialog box (figure A.2, left) allowing to open a project file (.pro)
beforehand saved. A project is a set of HTML files and a set of clusters. Thanks to the

projects, the user can save the results of a clustering for further use.

@ Open File(s)...

Opens an Open File(s) dialog box (figure A.2, right) allowing to open one or several
HTML files. The HTML source code of the selected files is then displayed in the Opened

files area.
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—Upen Project —Openkile(s)

Rechercher dans ][] (] [B8[E=] | | mechercher dans: =] (=[] e e
Nom | Taile | Type | modifie  [.] Nom [Taille | Type | odifie  [.[
oject.pro 1KB Fichier PRO  11/08/05 17:44 perduthtml | 1KB HTML Doc.. 18/02/05 11:43

perdu2.htmi 1KB HTML Doc... 10/08/05 14:20

Nom de fichier : |
Fichiers dutype : Project Files

Nom de fichier: | |
Fichiers dutype:  Htmi Files |~

|
=]

Figure A.2: The Open Project (left) and Open File(s) (right) dialog boxes

'O Open URL...

Opens a Search URL dialog box (figure A.3) allowing to enter the URL of a given
Web page. The HTML source code of the selected Web page is then downloaded and
displayed in the Opened files area. If the Launch browser check box is selected, the

default Internet browser is launched to display the Web page.

http:i | |

[v] Launch browser

Figure A.3: The Search URL dialog box

Opens a Save Project dialog box (figure A.4, left) allowing to save a project (.pro) for

Save Project As...

future work. It actually saves the opened files of the Opened files area and the state of

the Clustering area.
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H Save File As...

Opens a Save File dialog box (figure A.4, right part) allowing to save the HTML file
selected in the Opened files area. As the contents of the Opened files area are editable,

this options makes saving a modified file possible.

If a layout tree is selected in the Opened files area, Save File generates the HTML
code represented by the layout tree before saving it. This can be useful for showing the

similarities between two pages (the top-down tree) in an Internet browser.

Save File

Save Project.
Eavegistrer dons: Enveaistrer dans EIEIE)EREE
Nom  |Taille] Type [ Modific  [Attrib | Nom |[Taille ]  Type [ Modifie  [Attrib..]
[ projectpro  1KB Fichier PRO 11/08/05 17:44 perduthtml | 1KB HTML Doc.. 18/02/05 11:43
Igpemuz.mnl 1KB HTML Doc.. 10/08/05 14:20
Nom de fichier: | | Nom de fichier : | |
Fichiers dutype :  Project Files |w| || Fichiers dutype: |Htmi Files |~
Envegistrer || Annuler | | Enegistrer || Annuter |

Figure A.4: The Save Project (left) and Save File (right) dialog bozes

x x Close, Close All

Closes the selected file (or all the files) in the Opened files area.

A.4.2 Operations

This menu offers all the functions managing the various operations allowed on HTML

files and/or layout trees.

@ Tags selection...

Opens the Tags Selection dialog box (figure A.5) allowing to choose the list of HTML
tags that will be kept for the building of layout trees. The Default Selection button

selects a list of the most relevant tags for the clustering.
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HTML, HEAD and BODY tags are automatically selected
Comments and PHP tags are automatically removed

~Tables

iﬁBLE

TR
1D, TH
CAPTION

Row!Col groups

-Lists
UL, OL

LI

DL

DT, DD
DIR, MENU

-Objects
OBJECT
IMG
APPLET
IFRAME

[ ] Parameters

[_|PRE
[]BR

[]INS
(L] DEL

-Text management—
P
Lla

-Head tags
TITLE

[ ] META
[]STYLE

[_] ADDRESS
] LINK

[ BASE

-Miscellaneous
Cla
DIV
[ ] SPAN
BLOCKQUOTE
HR
[ |BDO

Headings
[] Font Styles

~Text Formatting

[_] Phrase Elements

Advanced HTML
Forms

[ ] Scripts
Frames

Select All

Default Selection

Deselect All

OK

Cancel

Figure A.5: The tag selection frame with the default selection

* Build Tree

Builds the layout tree of the selected file in the Opened files area (figure A.6). If the

selected file is not an HTML source, an error message is shown.
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html
//\
head body
) T
ritle hl r b
World U:.S--w The Am i this n The sp q
l |
Baghda Yes it

Figure A.6: An example of layout tree in the Opened files area

’ Mapping...

Opens a Mapping dialog box (figure A.7) allowing to choose two layout trees to map.
Two kinds of mappings are available : Fast top-down mapping and Fine top-down
mapping. The result of the chosen mapping is displayed in the Opened files area. Notice

that at least one layout tree must have been built beforehand.

LeSoir.be - La Une.htm

LeSoir.be - La Une2.htm

@ Fast Top-down () Fine Top-Down

o, Fm—" ~ Cancel

Figure A.7: The mapping frame

Cluster files...

Opens a Clustering dialog box (figure A.8) allowing to choose the various news Web

pages to cluster, to select a fast or a fine top-down mapping and a similarity threshold.
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CNN.com.htm
CNN.com2.htm
LeMonde.fr.htm
LeSoir.be - La Une.htm
LeSoir.be - La Une2.htm
LeSoir.be - Sport.htm
LeSoir.be - Sport2.htm
Liberation.fr.htm

Options

Similarity threshold : 25 E
® Fast Top-down () Fine Top-Down

Figure A.8: The Clustering frame

Extract News

Extracts the news articles from the Web pages inside the selected cluster in the Clustering

area and displays them in the Opened files area.

A.5 The Opened files area

The Opened files area (figure A.9) is the right part of the main window. The HTML
source code of chosen news Web pages, the related layout trees, the results of the
mappings and the extracted news articles are displayed in this area. When an HTML
source code is displayed, the area becomes a text editor so that the HTML source code
can be changed if necessary. Each file of the Opened files area is labelled at the top of

the area. The labelling of the different files in the Opened files area is made as follows:
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e each file is labelled under its file name,

e each HTML file is labelled with a “page"” icon,

e each layout tree is labelled with a “tree” icon,

e each file that is not clustered is labelled in black,

e the news Web pages within a same cluster are labelled in the same colour,

e the selected file has its label background in light blue.

[ ] Webkothe.tm | % Perdu.com.htmi | % LeSoir.he - Sporthtm | ¥ TopDownTree |
| LeSoir.be - Sport.htm I ] LeSoir.be - Sport2.htm el B e [ Perduconuhtmi
[ CNN.comhtm | |3 CNN.com2.htm [3 et | [JLeSoirbe-LaUnehtm [ [ LeSoir.be - La Une2htm

<IDOCTYPE HTML PUBLIC "-/WW3CHDTD HTML 4.01 Transitional/EN"> o
<html» =
<head= 1

<meta hitp-equiv="Content-Type" content="text’html; charset=iso-8859-1">

=meta hitp-equiv="Expires” content="0">

<meta name="description” content="En mourant, Hariri I2gue un sentiment d'unité nationale et de patriotisme absent depuis trente ans ">
=title=Lib&eacute;ration :&nbsp;Liban, un peuple est né<fitle=<meta hitp-equiv="Content-Type" content="text/htm|; charset=iso-8859-1">
=meta name="ROBOTS" content="INDEX,F OLLOW NOARCHIVE"=>

<meta name="KEYWORDS" content="LIBERATION, INFORMATIONS, INFOS, QUOTIDIEN, POLITIQUES, MONDE, INTERNATIONAL, SOCIETE,
<link href="http/iwww liberation fricssimain.css” rel="stylesheet' type="text/css">

=link rel="alternate" type="application/rss+xml" titte="RSS" href="httpiiwww. liberation fiirss php" />

<link rel="shortcut icon" href="http.fwww.liberation frifavicon.ico"»

<script language="javascript' type="textfjavascript' sre="httpiwww liberation friincismartad js"»</script=

=script language="javascript’ type="textfjavascript’ sre="hitp/Mww liberation frfinc/macro js"=<fscript>

<fhead>

=<body onLoad="preload();">

=table width="792" border="0" cellspacing="0" cellpadding="0"»

<tr=
<td height="14" colspan="7"><img src="fimg/puc/pix.gif' alt="pix' width="14" height=14>=</td>

=jtr=

<fr=
<td width="14" rowspan="3"=<img src="/img/puc/pix.gif' alt="pix" width="14" height=14></td>
=td width="160" rowspan="3" align="right'><a href="findex.php"=<img sre="fimgftetlogo_libe.gif" alt="logo libe" width="150" hei
<td width="17" rowspan="3"=&nbsp,<ftd=
<td width="468" height="4" valign="top"=<img src="fimg/pucicar_nr.gif" alt="car_nr" width="100%" height="1"></td>
=td width="17" rowspan="3" align="center" valign="middle"=<img src="/img/pubipub_vert gif' alt="publicite" width="17" height="|
=td width="102" rowspan="3"=<a href="hitp:iwaww liheration frfarchivess” target="pub"=<img src="hitpfiwww liberation flimagipu
=td width="14" rowspan="3"=<img src="fimg/puc/pix.gif' alt="pix' width="14" height=14=</jtd=

<ftr=

=fr>

=td width="468" height="60"><script language="JavaScript1 1" type="textjavascript'>

sas_pageid="252/1315",

sas_formatid=91;

sas_master="M",

sas_target=",

SmartAdServer_iframe(sas_pageid,sas_formatid,sas_master,sas_target,468,60),

L] D

[4]

Figure A.9: The Opened files area

A.6 The Clustering area

The Clustering area is composed of three buttons (see figure A.10) and of a frame that

displays the clusters (figure A.11).
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A.6. The Clustering area

Both first buttons are actually the main functions of the News Ripper application. They
have already been described in section A.4. The third button allows to reset all the

clustering results.

Each cluster in the frame contains the news Web pages having at least similarity thresh-
old % of structural similarities. The colour of the clusters (of the pages inside a cluster

actually) are applied to the corresponding labels in the Opened files area.

ECiustorllos o

__ Extract news

Lorete

oot Al

sl el

Figure A.10: Buttons of the Clustering area

o ] Al files
9 [ Cluster 1

D LeSairbe - La Une.htm
[} LeSoirbe - La Une2.htm
¢ [ Cluster 2
D LeSaoir.be - Sport.htm
D LeSair.be - Sport2. htm
¢ [ Cluster 3
D CMNM.com.htm
) e com2 hitm
¢ [] Cluster 4
- [} webkot be.htm
¢ [ Cluster 5
0
¢ [ Cluster 6
¢ [ Cluster 7

O

Figure A.11: Frame of the Clustering area
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