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Summary 

During the last decades, ongoing economic pressure as a result of increasing specialisation, 

mechanisation and globalisation have led to a continuous decrease in farmers numbers in many 

parts of the world. This process is leading to profound changes in the socio-ecological system of 

rural areas worldwide and confronts policy makers and rural planners with new challenges. 

To better understand such complex systems that are, to a certain extent, the outcome of the 

individual decisions of interacting agents, agent-based modelling (ABM) is a promising simulation 

tool. Reliable model simulations could provide more insight in current processes and in possible 

future evolutions in rural areas and could support decision making processes in rural planning.  

Since agent-based models (ABMs) require the simulation of the behaviour of every individual agent 

in the system, they need a large amount of data. Therefore, until now, the application of ABMs has 

been limited to small regions, or when applied to larger areas, with a great loss of detail due to 

strong generalization. There is therefore a gap between the level at which ABMs are designed to be 

used (the detailed, individual level) and the level that is relevant for policy making and planning (the 

regional or national level).  

This research aims to bridge that gap by developing and applying ADAM (Agricultural Dynamics 

through Agent-based Modelling): a simple agent-based farming model that operates at national 

scale but with the spatial resolution of individual fields. Belgium, that holds many different 

agricultural landscapes and farming types on a relatively small area, was used as a case study 

throughout this dissertation.  

In the first part of this work the current situation and trends of agriculture in Belgium were analysed 

and positioned in a global context. This enabled us to define relevant characteristics and key 

processes of the farming activities in Belgium.  

In the next part, these characteristics and key processes were generalized and put into a conceptual 

framework that led to the development of ADAM. ADAM firstly estimates the drop-out and 

succession of farmers depending on both the characteristics of the farmer and his land. Farmlands 

without a successor are redistributed among neighbouring farmers or abandoned. The evolution of 

the agricultural population in ADAM was calibrated and validated with data from agricultural 
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censuses for the period 2000-2010, resulting in a relative RMSE of 4.77 % for the number of farmers 

and 13.2% for the evolution in the number of farmers when validated at the level of individual 

municipalities.  

The validation process showed an impact of urban expansion processes on the obtained results for 

Belgium. This impact can be direct through urban expansion on farm land or indirect when the 

farmland is used for suburban activities such as recreation or hobby farming. To incorporate the 

impacts of urban expansion, in the third part of this research, the original model was coupled with 

a constrained cellular automata land use change model. 

With this coupled model structure various scenarios on possible futures for Belgium’s rural areas in 

2035 were run. All scenarios showed a continuous decrease of the number of farms and an increase 

in average farm size. The simulations showed a very distinct spatial pattern with the highest 

decrease in farm numbers in the central part of the country and in the east of the country.  

In the last part, the results of the scenarios were used as an input for a species distribution model 

on bumblebees. The use of the high thematic resolution land use data as input allowed for a higher 

accuracy when modelling the distribution patterns of bumblebees. The added value of using these 

high thematic resolution land use data as input was seen when modelling more localized species as 

opposed to widespread bumblebee species, making the added value of the high thematic land use 

data dependent on the specific use case.
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Samenvatting 

Aanhoudende economische druk, als een gevolg van toenemende specialisatie, mechanisatie en 

globalisatie, hebben de laatste jaren tot een voortdurende afname van het aantal boeren in vele 

gebieden ter wereld geleid. Dit proces leidt wereldwijd tot verregaande veranderingen in het socio-

ecologisch systeem van rurale gebieden en confronteert beleidsmakers en stedenbouwkundigen 

met nieuwe uitdagingen. 

Om een dergelijk complex systeem dat, in zekere mate, de uitkomst is van de individuele 

beslissingen van interagerende agenten, beter te verstaan wordt agent-gebaseerd modelleren 

(agent-based modelling; ABM) naar voren geschoven als een beloftevolle simulatietechniek. 

Betrouwbare modelsimulaties kunnen meer inzicht verschaffen in de huidige processen en 

mogelijke toekomstige evoluties in rurale gebieden, net zoals de ondersteuning van 

besluitvormingsprocessen bij ruimtelijke ordening. 

Gezien in agent-gebaseerde modellen (agent-based models; ABMs) het gedrag van elke individuele 

agent in het systeem gesimuleerd wordt, is er nood aan een grote hoeveelheid data. Daardoor is de 

toepassing van ABMs tot op heden beperkt gebleven tot kleine regio’s, of, indien toegepast op 

grotere gebieden, met een groot verlies aan detail door de sterke generalisatie. Hierdoor is er een 

zekere kloof tussen het niveau waarop ABMs vooral gemaakt zijn om gebruikt te worden (het 

gedetailleerde, individuele niveau) en het niveau dat relevant is voor beleidsmakers en ruimtelijke 

ordening (het regionale en nationale niveau) 

Dit onderzoek heeft als doel die kloof te dichten door de ontwikkeling en toepassing van ADAM 

(Agricultural Dynamics through Agent-based Modelling): een agent-gebaseerd landbouwmodel dat 

toepasbaar is op nationale schaal maar werkzaam is op het niveau van de individuele boeren en 

percelen. België, met zijn vele agrarische landschappen en verschillende landbouwtypes op een vrij 

beperkte oppervlakte, werd gebruikt als studiegebied doorheen dit proefschrift. 

In het eerste deel werden de huidige situatie en trends in de landbouw in België geanalyseerd en 

geplaatst binnen een mondiale context. Dit laat ons toe om de relevante eigenschappen en de 

sleutelprocessen van de landbouw in België te bepalen. 
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In het volgende deel werden deze eigenschappen en sleutelprocessen gegeneraliseerd en toegepast 

in het conceptuele kader dat tot de ontwikkeling van ADAM leidde. ADAM bepaalt eerst het aantal 

landbouwers dat uitvalt en of ze al dan niet opgevolgd worden, gebaseerd op de kenmerken van de 

landbouwer en het landbouwbedrijf. Landbouwgronden van bedrijven waar geen opvolger 

aanwezig is, worden herverdeeld onder de naburige landbouwbedrijven of worden verlaten. De 

landbouwpopulatie in ADAM werd gekalibreerd en gevalideerd op basis van de data van de 

landbouwenquêtes tussen 2000 en 2010. Deze analyse resulteerde in een relatieve RMSE van 4.77% 

voor het aantal landbouwers en een relatieve RMSE van 13.2% voor de evolutie van het aantal 

landbouwers op gemeenteniveau. 

Dit validatieproces toonde de impact van urbanisatie en suburbanisatie op de resultaten voor België 

aan. Deze impact kan zowel direct zijn door de urbanisatie van landbouwgrond, of indirect indien 

landbouwgrond wordt gebruikt voor niet-commerciële suburbane activiteiten zoals ontspanning of 

hobbyboeren. Om deze gevolgen van urbanisatie in rekening te brengen werd ADAM in het derde 

deel van dit onderzoek gekoppeld aan een cellulaire automaten landgebruiksveranderingsmodel 

Op deze manier werden verschillende mogelijke toekomstscenario’s voor het landbouwareaal in 

België tot 2035 doorlopen. Alle scenario’s resulteerden in een verdere afname in aantal 

landbouwbedrijven en een toename in de gemiddelde bedrijfsgrootte. Hierbij toonden de 

simulaties een zeer duidelijk ruimtelijk patroon, waarbij de grootste afname in aantal 

landbouwbedrijven te vinden was in het centrale en oostelijke deel van het land. 

In het laatste deel werden de resultaten van de scenario’s gevoed aan een soortendistributie model 

gericht op hommels. Het gebruik van landgebruiksdata met een hoge thematische resolutie als 

invoer voor het modelleren van distributiepatronen van hommels verhoogde de accuraatheid van 

de modellen. De toegevoegde waarde werd vooral duidelijk bij het modelleren van meer lokale 

soorten ten opzichte van meer wijdverspreide hommelsoorten. Dit leidde tot de conclusie dat de 

meerwaarde van modelleren met een hoge thematische resolutie vooral afhankelijk is van de 

specifieke toepassing.
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Résumé 

Au cours des dernières décennies, la pression économique actuelle causée par une augmentation 

de la spécialisation, de la mécanisation et de la mondialisation a conduit à une diminution continue 

du nombre d’agriculteurs dans de nombreuses régions du monde. Ce processus occasionne de 

profondes mutations du système socio-écologique des zones rurales de toute la planète et les 

décideurs et responsables doivent faire face à de nouveaux défis. 

La modélisation multi-agents (agent-based models; ABMs) est un outil de simulation prometteur 

qui nous permet de mieux comprendre de tels systèmes complexes qui sont, dans une certaine 

mesure, le résultat des décisions individuelles des agents et de leurs interactions. Des simulations 

fiables de modèle pourraient nous éclairer sur les processus actuels ainsi que sur les éventuelles 

évolutions futures dans les zones rurales et pourraient étayer les prises de décision de 

l’aménagement rural. 

Étant donné que les ABM doivent simuler le comportement de tous les agents individuels du 

système, ils ont besoin d’un grand volume de données. En conséquence, jusqu’à présent, 

l’application des modèles basée sur les agents a été limitée à de petites régions, ou son application 

à de grandes zones s’est soldée par une perte importante de détails à cause d’une intense 

généralisation. Il existe ainsi un décalage entre le niveau prévu pour l’utilisation des ABM (niveau 

détaillé, individuel) et le niveau pertinent pour les décisions et la planification de politiques (niveau 

régional ou national). 

L’objectif de cette recherche est de combler cette lacune par la création et l’application de la 

modélisation ADAM (Dynamique Agricole grâce à la Modélisation Basée sur les Agents): un ABM 

parcimonieux et destiné à l’agriculture qui fonctionne à l’échelle nationale avec toutefois la 

résolution spatiale de champs individuels. La Belgique, dotée de nombreux différents paysages 

agricoles et types d’agricultures sur une zone de taille relativement petite a été utilisée comme 

étude de cas dans cette dissertation. 

La première partie de cet ouvrage correspond à l’analyse de la situation actuelle et des tendances 

agricoles en Belgique ainsi qu’à leur place dans un contexte mondial. Cela nous permet de définir 

les caractéristiques importantes et les processus essentiels des activités agricoles en Belgique.  
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Dans la partie suivante, ces caractéristiques et processus essentiels ont fait l’objet d’une 

généralisation et ont été placés dans un cadre conceptuel qui a abouti au développement de ADAM. 

Dans un premier temps, ADAM estime les abandons et successions d’agriculteurs en fonction des 

caractéristiques de l’agriculteur et de ses terres. Les terres agricoles sans successeur sont 

redistribuées parmi les exploitants agricoles voisins ou abandonnées. L’évolution de la population 

agricole dans ADAM a été calibrée et validée grâce à des données de recensements agricoles pour 

la période 2000-2010 et donne le résultat suivant : un RMSE relative de 5.11% pour le nombre 

d’agriculteurs et 46,4% pour l’évolution du nombre d’agriculteurs lorsque la validation se fait au 

niveau des municipalités individuelles. 

Ce procédé de validation a démontré l’impact de l’urbanisation et de la périurbanisation sur les 

résultats obtenus pour la Belgique. Cet impact peut être direct en cas d’urbanisation des terres 

agricoles ou indirect lorsque les terres agricoles sont utilisées pour des activités telles que 

l’agriculture d’agrément à la périphérie urbaine. Dans la troisième partie de cette recherche, le 

modèle original a été associé à un modèle d’automates cellulaires sur l’utilisation des sols, pour 

incorporer les impacts de l'urbanisation. 

Grâce à cette structure de modèle associé, plusieurs scénarios d’avenirs possibles pour les zones 

rurales en Belgique en 2035 ont été examinés. Tous les scénarios indiquent une diminution continue 

du nombre d’exploitations agricoles et une augmentation de la taille moyenne des exploitations 

agricoles. Ces simulations dénotent un modèle spatial très net avec la plus forte diminution du 

nombre d’exploitations agricoles au centre et à l’est du pays. 

Dans la dernière partie, les résultats des scenarios ont été utilisés comme données d’entrée pour 

un modèle de distribution d’espèces de bourdons. Le recours à des données d’utilisation de sol à 

fine résolution thématique en tant que données d’entrée nous a apporté une meilleure précision 

pour la modélisation de distribution des bourdons. La valeur ajoutée du recours à ces données 

d’utilisation des terres à fine résolution thématique comme données d’entrée a été démontrée lors 

de la modélisation d’espèces plus localisées par opposition à une espèce de bourdon plus largement 

répandue. Cela rend la valeur ajoutée des données d’utilisation de terres à fine résolution 

thématique tributaire des cas spécifiques d’utilisation.
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Chapter 1 Introduction 

1.1 A complex world 

The world we are living in is complex. To better understand it and to gain insight into how it may 

evolve in the future, models have been created as schematic representations of reality. Modelling 

has become a widespread technique in research on weather, climate change, soils, economy etc. As 

soon as living beings get involved however, modelling gets more complex. Living beings interact 

with each other and the environment, influencing each other’s decisions and reacting differently to 

the same situation. In order to model the interactions between all these individuals, agent-based 

models (ABMs) are often used as a modelling approach. By modelling every individual actor 

involved, unexpected results may emerge as the sum of individual actions. ABMs are now 

increasingly used to model complex ecological, economic and societal systems. The fact that in such 

ABMs the behaviour of every individual actor is modelled makes it difficult to create models that 

are applicable to large areas with a large number of agents. Therefore, until now, most ABMs have 

been applied either on a small community or region (Acosta-Michlik and Espaldon, 2008; Bakker et 

al., 2015; Fontaine et al., 2013; Happe et al., 2009; Le et al., 2008; Vermeiren et al., 2016), or have 

started from hypothetical situations, without real-world application (Ligtenberg et al., 2004; 

Murray-Rust et al., 2014). Therefore, a challenging question is: can we create applicable, large scale 
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ABMs, useful in scenario analysis and for decision making and, if so, what can be the added value of 

these detailed large-scale ABMs for other research fields? 

To address these questions, the case study of agriculture was chosen. The agricultural system is an 

ideal example of a system where individuals, i.e. farmers, take individual decisions, based on the 

(socio-economic, biophysical and political) environment and their own characteristics, and thereby 

shape the agricultural landscape. At the same time, the agricultural sector is an interesting case 

since it is currently facing many challenges and would therefore benefit of gaining some insights on 

future developments under different scenarios.  

This introduction will first describe the agricultural sector and the many challenges it is facing at 

present, after which, the current state-of-the-art research in agricultural modelling is presented. 

The research questions will then be further detailed in relation to the agricultural case study. The 

chapter will conclude with an overview of the dissertation’s structure, and on the different chapters 

that will be introduced. 

1.2 Agriculture: a sector in crisis 

Agriculture as a mean to produce food has 

been an important part of our society since 

the Neolithic (Figure 1.1), having an ever 

increasing impact on the environment 

(DeFries, 2014; Ehrlich and Holdren, 1971) 

and thereby becoming the most important 

land use in Europe (Verburg et al., 2006). 

The continuous population growth led to 

phases of deforestation that, together with 

innovations, increased the output of 

agricultural systems. Growth continued, until 

limits to the system were reached and a crisis 

emerged. New techniques and 

developments, allowed for new phases of 

growth, until limits were reached again 

Figure 1.1 – Percentage of land in use for crop production in 1700 
and 2000 based on SAGE data (Alston et al., 2010). 
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(DeFries, 2014; Mazoyer and Roudart, 2006). This continuing cycle of crises and revolutions resulted 

in an unprecedented demographic, economic and urban expansion, and to the current system of 

highly intensive farming with high inputs and high outputs per hectare where continuously less 

labour is needed (Figure 1.2). At the same time, the advancements in transportation opened up the 

world, putting farmers into global competition. As a result, the worldwide export of agricultural 

products has increased from 187 billion real USD in 1962 to 1.6 trillion real USD in 2016 (FAO, 2018; 

Würtenberger et al., 2006). 

 
Figure 1.2 – Evolution of the percentage of employment in agriculture (The World Bank, 2017) and the evolution of the total 
percentage of agricultural land (The World Bank, 2019) from 1970 to 2015. 

Globalisation of the agricultural market creates opportunities for farmers, but also puts them under 

pressure. The continuous fall of real agricultural prices in the last century as a consequence of 

technological advancement and thus declining product costs together with global over-production 

and increased competition reduces the gross margins of farmers. This requires them to continuously 

find ways to stay competitive, often resulting in further specialization and increasing farm size 

(Mazoyer and Roudart, 2006). Other farmers focus on increasing gross margins by selling through 

short chain markets or selling products that customers are willing to pay higher prices for (organic 

products, products of certified origins or with quality labels) (Mathijs and Relaes, 2012). Farmers 

that do not find a way to stay competitive, might fail to find a successor and disappear from the 

agricultural population. This has, from halfway the 19th century until today, resulted in a strong and 

continuing decrease in the farmers’ population, notably in developed countries (The World Bank, 
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2008). At the same time, these trends in agriculture have an impact on the environment and the 

landscape (Harms et al., 1984; Ihse, 1995; Poudevigne and Alard, 1997). With agriculture managing 

to stay relatively competitive in comparison to other land uses, often helped by laws through spatial 

planning or subsidies, the decrease of agricultural land is minimal and therefore farms grow in size 

(European Commission, 2016; USDA, 2017). 

Apart from this economical pressure, from the 1960s and 1970, agriculture has become increasingly 

associated with different environmental problems like eutrophication from fertilization (Withers et 

al., 2014), soil erosion (Montgomery, 2007), climate change through the emission of greenhouse 

gasses (Cole 1997) and biodiversity losses (Díaz et al., 2019) with some of the declining species 

having a crucial role as the pollinator of certain crops (Aguirre-Gutiérrez et al., 2017).The future of 

agriculture remains uncertain: the overproduction in some regions in the world together with the 

declining production costs, lead to a structural fall in real agricultural prices, outcompeting and 

impoverishing other regions (Mazoyer and Roudart, 2006), while at the same time, around 10% of 

the world population is currently still undernourished (FAO et al., 2018). Until 2050, the global 

population is projected to further increase, plateauing at around 9 billion (Godfray et al., 2010), 

possibly resulting in a doubled global grain demand (Tilman et al., 2002). Combined with the issues 

that might result from climate change (Schmidhuber and Tubiello, 2007) and biodiversity losses 

(Díaz et al., 2019), the necessary adaptations resulting from a diminishing fossil fuel reserve (Shafiee 

and Topal, 2009) and the further urban expansion onto agricultural lands (Du et al., 2014; Rounsevell 

et al., 2006), it is clear that many challenges are arising, or will arise in order to feed the entire global 

population in a healthy and sustainable way. These evolutions will further lead to changes in 

agriculture, the (agricultural) landscape, the management of the land and the ecosystem services it 

provides. In heavily urbanised countries, the long period of human presence has a large impact on 

the current landscape, often resulting in a fragmented landscape that limits the current possibilities 

of agriculture (for example in) Western-Europe. In the future, similar issues might arise in countries 

that are heavily urbanised but also experience a continuous urban expansion, such as China, Brazil 

and some African countries. There is as such a need to obtain a deeper understanding on how and 

why these trends occur and how they may evolve in the future. 
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1.3 Research in agricultural systems 

The agricultural system can be seen as the result of the combination of different processes occurring 

in, and impacting, the physical, the socio-economic and the political environment (Figure 1.3). 

Agriculture is a key sector where humans interact with their biophysical environment: humans are 

being limited by the specifics of the biophysical environment (topography, climate, soil type) and 

have, wantingly and unwantingly, an important impact on it (both negative through erosion, soil 

degradation, pollution, habitat destruction, and positive through agro-ecology, preservation of 

specific ecosystems…), and on the ecosystem services it provides. Humans are however, completely 

dependent on these ecosystem services for their living and well-being and for the conservation of 

the socio-economic environment. Since agriculture has a strong impact on the workings of our 

society, in Europe, it is heavily regulated through different policy measures. These policies focus 

both on the environmental (e.g. erosion measures) as well as on the socio-economic impacts (e.g. 

through subsidy measures). 

 

Figure 1.3 – Agricultural system studies, at the centre of different research fields. 

Although there is a strong interaction between these three environments impacting agriculture, the 

highly complex nature of the agricultural system results in most agricultural studies reverting to a 

reductionistic approach, thereby focussing on only one of these research fields. Related to the 

biophysical environment, research has looked at different aspects ranging from the impact of 

agriculture on biodiversity (Bengtsson et al., 2005; Gabriel et al., 2013; Koh and Wilcove, 2008), 
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surface run-off and erosion processes (Basic et al., 2004; Dilshad et al., 1996; Langdale et al., 1992; 

Montgomery, 2007; Prosdocimi et al., 2016; Reganold et al., 1987), eutrophication (Sharpley and 

Rekolainen, 1997; Ulén et al., 2007; Withers et al., 2014; Withers and Haygarth, 2007) and soil 

quality (Hamza and Anderson, 2005; Horn et al., 1995; Raper, 2005), to the impact of different 

aspects of the environment, like climate, climate change, soil fertility and soil type on agriculture 

itself. Studies from a socio-economic point of view on agriculture focus on different aspects of rural 

poverty (Datt and Ravallion, 1998; Meert et al., 2005), technological diffusion (Boserup, 1965), and 

farming networks (Hoang et al., 2006; Stain et al., 2008). In the field of political research on 

agriculture, the focus is on the effect of different policy measures on agriculture, for example the 

effects of measures in the European Union’s Common Agricultural Policy (EU-CAP) (Ciaian et al., 

2010; Knudsen, 2009; Weyerbrock, 1998). 

Some research however, also investigates the overlap between thematic fields. In the overlapping 

fields of socio-economic research and research on the biophysical environment, examples can be 

found on agricultural intensification (Harms et al., 1984; Stoate et al., 2001; Van Meijl et al., 2006), 

on the impact of urban expansion on agriculture (Delbecq and Florax, 2010; Verhoeve et al., 2015), 

and on the different links between rural poverty and the environment (Reardon and Vosti, 1995). 

Agricultural research on the overlap between political and biophysical research can be found in 

studies on the impact of the EU-CAP measures on the environment, like the fallowing of fields (Van 

Rompaey et al., 2001) or the effects of creation of grass strips (Borin et al., 2010; Dorioz et al., 2006) 

both due to policy measures on erosion reduction or the impact of the EU-CAP on ecosystem 

services (Hauck et al., 2014). Studies on the impact of different policy measures specifically aimed 

at helping rural, disadvantages areas (Lasanta and Marín-Yaseli, 2007; Rahoveanu and Rahoveanu, 

2013; van Berkel and Verburg, 2011) can be positioned on the overlap between political and socio-

economic research. 

1.4 Modelling agriculture dynamics at the rural-urban fringe 

Due to the complexity and multi-disciplinarity of research in agriculture, research adopting a 

systemic approach is rare. A systemic approach, whereby components from different disciplines are 

combined and interact, is needed to study and understand complex systems like the agricultural 

system (Bawden, 1991; Jones et al., 2017). Approaching agriculture from a modelling point of view, 

allows adopting a systematic stance. Modelling allows for a better understanding of the different 
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processes and their future outlook, together with the expected environmental and socio-economic 

impact, using a systemic approach.  

Throughout the years, different modelling techniques and frameworks have been developed within 

the field of agricultural modelling (Bakker et al., 2015; Britz and Wieck, 2014; Fontaine and 

Rounsevell, 2009; Malawska and Topping, 2016; Rounsevell et al., 2006, 2005; Spangenberg et al., 

2010; Valbuena et al., 2010; Verburg and Overmars, 2009; Westhoek et al., 2006; Yamashita and 

Hoshino, 2018) and land use change (Berger, 2001; Lambin et al., 2000; Qiang and Lam, 2015; 

Verburg et al., 2004; Yalew et al., 2016). As such, modelling has become a frequently applied 

technique to gain insight in the complex processes related to agriculture, agricultural land use and 

land use change. It has led to a wide variety of models, with different goals, starting from different 

thematic backgrounds, methodological origins and paradigms. With the abundance of proposed 

modelling techniques, different classifications have been proposed (Azadi et al., 2016; Heistermann 

et al., 2006; Lambin et al., 2000). Based on this research and for this dissertation, three types of 

spatially explicit land-use models can be distinguished: statistical models, probabilistic models and 

optimization models. 

1.4.1 Spatially-aggregated statistical models 

Lambin et al. (2000) define empirical-statistical models as models that focus on explicitly identifying 

the correlation between land-cover changes and a wide variety of variables through the use of 

multivariate analyses in order to define the contribution of these different external variables to the 

empirically-derived change rate. The nature of these models, however, allows to only explain the 

land use change patterns that are present in the original data set and without a certainty of 

causality. An example is research on the relationship between land cover and land use change in 

relation to population growth (López et al., 2001) or the importance of incorporating spatial 

autocorrelation in modelling land use (Dendoncker et al., 2007). Another well-known example is the 

link between agricultural intensification and population growth by Boserup (1981, 1965). 

1.4.2 Probabilistic models 

Probabilistic or stochastic models try to define the transition probability of a certain location, 

combined with the expected amount of land, covered by different types of land cover or land use. 

Similar as for the empirical-statistical models, only transitions that have been observed in the 
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dataset can be applied in the model and they provide only a limited insight in the motivation of land 

users (Lambin et al., 2000). Examples of probabilistic models in agricultural modelling can be found 

in the different variations of the CLUE model (Veldkamp and Fresco, 1996; Verburg et al., 2002; 

Verburg and Overmars, 2009), but also in the study of Van Rompaey et al. (2002) looking at the 

impact of agricultural land use change on erosion, the study of Mustafa et al. (2018a, 2018b) on 

modelling urban expansion, and in the downscaling of aggregated land use data and scenarios 

(Dendoncker et al., 2006). 

1.4.3 Optimisation models 

General overview 

Optimisation models, often used in economics, focus on optimisation at the microeconomic level or 

general equilibrium models at the macroeconomic scale. These models assume entities to steer 

their behaviour based on economic optimisation. 

One of the first and best-known models on economic optimisation in agriculture is the model 

proposed by Von Thünen, combining economic theories linked to the physical environment to 

explain the agricultural patterns near urban areas. The theory states that the intensity of agricultural 

land use decreases with the distance from a city, given that the primary force is the transport cost 

to the market (Von Thünen, 1826). This results in different agricultural land uses shaped as rings 

around a single, central, isolated market (Figure 1.4). Although this theory has its value (e.g. 

pedagogical), it is considered outdated in many advanced industrialized countries. While Von 

Thünen saw the city as a static entity, with set boundaries, Sinclair (1967) states that the rural land 

use is affected even before the expansion of the built up area. This has little to do with the market 

situation in the city but is more related to the urban and rural land prices, the flexibility offered 

through different modes of transportation and the preferences of the people using the land. The 

assumptions made by Von Thünen, that demand of products exceeds supply, that transport costs 

are an important part of the total cost and that the concerned area is an isolated commercial 

settlement (Alonso, 1964), can no longer be applied to today’s cities in the global north. Also the 

improvement of transportation techniques and transportation modes made the model less 

relevant. 
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Figure 1.4 – Representation of the Von Thünen model with different rings of production around a central market (left) with different 
profit functions for each product in function to their distance to the city (adapted from Von Thünen, 1826). 

Agent-based models 

A more recent modelling approach based on the optimisation idea, is agent-based modelling (ABM). 

ABM relies on the creation of virtual objects that define individual agents representing real-world 

actors, with autonomous behaviour and decision-making strategies based on their environment and 

their specific characteristics (Rounsevell et al., 2012). It allows for a spatially explicit systemic 

approach, and the inclusion of heterogeneity in the population and the environment. 

According to Hare and Deadman (2004) and Matthews et al. (2007), the advantages of ABMs are 

their capability to (1) incorporate decision-making at the individual level, (2) combine social and 

environmental models and (3) allow the emergence of unexpected results from the aggregated 

behaviour at the macro-scale level. Parker et al. (2002b) also mention the possibility to combine 

decision-making processes at different levels and the modelling of adaptive behaviour as an 

advantage. 

Axelrod (1997) argues that ABM is a combination of deductive and inductive approaches, since it 

starts from assumptions, deducted from perceptions of the phenomena taking place, and uses them 

to generate data that are to be analysed inductively. The different advantages of ABM make 

Rounsevell et al. (2012) conclude that the ability to introduce heterogeneity in an agent population 

that results into different outcomes, sets it apart from equation-based models. It makes it an 

appropriate technique to model human decision processes, especially for researching the land 

system. With the possibility of a one-to-one mapping between the virtual and real-world entities 
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allowing for calibration, validation and explorative future modelling of complex systems through 

scenarios. 

As such, ABM, with its ability to link sociological and environmental systems (Huber et al., 2018), 

and with the decisions being affected by the environment, which then also impact the environment, 

combined with the capability to look at the emerging patterns from the aggregated behaviour at 

the macro level, is a relevant approach for modelling agricultural dynamics. 

Although ABM seems an ideal modelling approach that allows the integration with different models, 

across different disciplines, ABMs are rarely linked to different models in different research fields. 

The problem is that for linking models, developed with different purposes in mind, the spatial and 

temporal scales do not always align (Parker et al., 2002b; Veldkamp et al., 2001). Not only do 

processes sometimes take place on different temporal or spatial scales, but sometimes the models 

are also restricted by the resolution at which the underlying data are available. When this is not at 

the level at which the actor’s decision making is taking place, results might need to be aggregated 

causing a loss of information or loss of heterogeneity. 

1.5 Research gap and research questions 

The previous overview shows the possibilities of the application of ABMs for modelling agricultural 

dynamics: they can be used to incorporate the social, economic and political landscape, as well as 

the biophysical environment and they can be used in scenario testing. ABMs suffer, however, from 

a few shortcomings that hamper their use. ABMs are mostly defined for very specific detailed (small 

scale) cases, reducing the reusability. They are also rarely combined with other existing models in 

other thematic fields. 

This research gap can be translated into the following research questions, that will be the main focus 

of this dissertation. 

RQ1: To what extend can agent-based models simulate farmers decision at country scale? 

As mentioned above, ABM allows the modelling of human decision-making behaviour in its relation 

to its socio-economic, political and physical environment (Hare and Deadman, 2004; Parker et al., 

2002b; Rounsevell et al., 2012), making it an interesting approach to look into modelling agriculture 

in a systemic way. The goal is to see whether a framework for a basic, generic agricultural agent-
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based model that incorporates the relevant thematic fields can be developed, permitting adaptation 

to allow modelling in different contexts and needs. Agricultural ABMs have been created before 

(e.g. Bakker et al., 2015; Happe et al., 2009). However, due to the high level of detail and their focus 

at very specific regions, they are less relevant for policy makers and hardly replicable in other 

settings. In order to use the model in other regions and to make them politically relevant, it is 

important to create ABMs for larger regions (Rounsevell et al., 2012). It is however crucial for an 

agent-based model to operate at the level at which the actors take their decisions, to consider the 

local conditions and heterogeneities (Berger and Troost, 2014). Therefore, the model needs to be 

applicable for a larger region (e.g. the country level), even though the modelling of the decision-

making is to take place at the smallest spatial unit relevant for farmers decision-making: the 

agricultural parcel. 

In order to allow the model to be adapted and used relatively easily in regions that currently 

experience similar agricultural developments, it is important to work with data that is generally 

available for many regions, without the necessity to gather extra data in the field. 

RQ2: What is the possible impact of different scenarios on the future of farming? 

A model of agricultural dynamics might provide better insights in the processes that resulted in the 

current outlay of the agricultural sector. Such a model becomes even more relevant if it can be used 

to compare different scenarios for the future. The possible impact of continued urban expansion 

following different scenarios together with changes in agricultural subsidies is especially relevant 

for agriculture in a highly urbanised and fragmented landscape. The outcome of such scenarios 

allows an insight in the possible impacts of different choices in policy making. The proposed model 

will therefore be combined with different policy scenarios to look at the possible impacts these 

might have on the agricultural sector. 

RQ3: What is the added value of high thematic resolution ABMs in combination with models from 

other research fields (e.g. ecological modelling)?  

ABMs require a high amount of input data and a high time investment in order to set up and execute 

the model. Apart from the usefulness of the model on its own, this high investment could be further 

justified if the model can be integrated and prove its usefulness for other research applications and 

models. As previously mentioned, ABMs are in general seldom linked to models in other research 
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fields because of the incompatibilities in the spatial and temporal resolution (Parker et al., 2002b; 

Veldkamp et al., 2001). Given the impact of agriculture on the environment and biodiversity it would 

be interesting to investigate the possibilities of linking the proposed model with an ecological 

model. Past research has shown the importance of (agricultural) land use change in species 

distribution modelling of pollinator species (Aguirre-Gutiérrez et al., 2017). This makes it an 

interesting case study for looking into the added value of highly detailed agricultural land cover 

modelling on models in other research areas.  

To summarize: the aim of this dissertation is to create a reusable model, at the national scale level, 

incorporating the core mechanisms relevant for 

agricultural dynamics at the rural-urban fringe. 

The model should allow the testing of different 

scenarios and the combination with models 

stemming from other thematic fields. 

1.6 Thesis outline 

A case study area is required to tackle these 

research questions. In this research, the country 

of Belgium was chosen as an interesting case 

study due to the high dynamics currently 

present in agriculture and the large diversity in 

the (agricultural) landscape. It is a highly 

urbanised country, with a fragmented 

landscape, leading to a strong interwoven land 

use, posing many challenges on the agricultural 

sector. Furthermore, it is representative for 

European countries in terms of data and data availability. This is important since the aim is to create 

a model that is reusable in regions or countries undergoing similar dynamics. The study area will be 

further discussed in the next chapter. 

The dissertation will follow the structure visualised in Figure 1.5. In the next chapter, the study area 

in all its relevant aspects is presented together with an overview of the different datasets available 

Figure 1.5 – Overview of the dissertation 
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and useful in the process of modelling agriculture. Chapter 3 focusses on the methodological 

background, looking into the history of ABM, its applications in agriculture and some of its current 

shortcomings. Based on the background gathered in chapter 2 and 3 and in relation to our first 

research question, an agent-based model is developed and presented in chapter 4. The major 

achievements and the remaining limitations are thereby further discussed. Chapter 5 focusses on 

the second research question and looks into the possibilities of using the model for testing different 

scenarios on urban expansion and farm subsidies as a result from different storylines. Chapter 6 is 

related to the third research question, linking the agent-based model to a bee distribution model to 

assess the added value of the proposed, detailed type of modelling to other research fields. The last 

chapter, chapter 7, discusses the results, based on the initially defined research gap and research 

questions, before concluding.  

This dissertation is mostly based on papers that have been published or are submitted to 

international peer-reviewed journals. There is therefore sometimes some overlap between 

chapters.
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Chapter 2 Study area characteristics and available data 

2.1 Available data to create an agricultural agent-based model 

Since the aim is to create a large-scale model, applicable to a large set of industrialized countries, it 

is important to work with data that are in general already available, so no own collection of data for 

large regions is necessary. With our case study of Belgium, a country part of the European Union 

(EU), the aim is to make use of datasets that the EU requires to be collected. The main datasets used 

are the yearly agricultural survey, the agricultural parcel dataset from the Integrated Administration 

and Control System (IACS), the mortality rate, a time series of crop prices and data on average yield 

for a limited number of crops. These data are later combined with scenarios on urban expansion.  

2.1.1 Agricultural survey 

Belgium has a large collection of socio-economic data on agriculture. The first surveys were 

organized in 1846, after which they were held every 10 to 20 years. In 1970 the National Institute 

on Statistics (NIS) started with yearly surveys, to gain insight on the amount of cattle and pigs, the 

sowing plans for winter, and expected production volumes. To reduce the burden of this yearly 

survey on farmers, the survey was simplified and connected to existing datasets. This resulted in the 

yearly obligatory survey being replaced by a sample, covering 75% of farmers from 2008 onwards 
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and whereby every farmer would be requested to fill in the survey at least every two years. This was 

combined with a large consecutive simplification of the survey from 2011 until 2014, reducing the 

number of questions. These surveys are now also obligatory by the European Union (EU) (Eurostat, 

2015a) and information on the number of farms, farm size, farm types and farmer characteristics at 

the NUTS2 level can, for most countries, be found in the Farm Structure Survey and the Agricultural 

census of the EU on a three yearly basis. For Belgium, the aggregated data of the agricultural survey 

is available yearly at the municipality level. Although largely simplified in recent years, these survey 

data give an interesting insight into the evolution of different aspects of farm characteristics. The 

full survey contains 900 variables but not all variables are available for all years or for all aggregation 

levels. The available data can be found on the website of Statbel (statbel.fgov.be). 

2.1.2 Agricultural parcel data  

The agricultural land use data is derived from the Système intégré de gestion et de contrôles (SIGEC) 

and Landbouwgebruikspercelen dataset for respectively Wallonia and Flanders-Brussels. These 

datasets are collected yearly as required by the EU in the IACS dataset in order to distinguish, 

identify and measure the main crop production areas in Europe and check the validity of farmers’ 

applications for EU subsidies (European Commission, 2018a). The dataset contains the agricultural 

parcels with the main crop being cultivated that year as well as data on pools, wood edges, farm 

yards and barns, sheds and other agricultural buildings as vector data and without any information 

on ownership or right of use. The dataset also provides information on crop rotations when creating 

a timeseries for the crops for each parcel in consecutive years for the parcel dataset. Based on this 

sequence the probability that one crop is followed by another crop can be defined. 

2.1.3 Other datasets 

Mortality 

To model the demographic component, the model uses the data on the mortality rates for the male 

Belgian population in 2000 for each age, from 18 until 105 according to the Belgian statistical office 

(Statistics Belgium, 2019a). At 105 the probability of decease is set to 100%. 

Crop prices 

For the economic data on the prices per ton for each crop, the yearly real producer prices in local 

currency unit (LCU) per tonne are used. They were extracted from the database of the Food and 
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Agricultural Organization of the United Nations (FAO) for Belgium-Luxembourg from 2000 to 2015 

(whereby the years 2000 and 2001 are converted from Belgian francs to euro by dividing them by 

40.3399) (Food and Agriculture Organization, 2019). 

Yield data 

Data on expected yield for Belgium were obtained from the Dynamic Vegetation Model (DVM) 

CARAIB (CARbon Assimilation In the Biosphere) (Jacquemin et al., 2017). For the main Belgian crops 

(winter wheat, barley, maize, sugar beet, rapeseed and potatoes), CARAIB provides yearly the 

expected yields for the entire country at the spatial resolution of 1km2. These data might not always 

be available for other study areas, but could be replaced by regional averages for the local main 

crop types. At the time of model completion, the time series on yield were not available, therefore, 

yield expectations were kept constant. 

2.2 Belgium: an urbanised country in the centre of Europe 

Belgium is a sovereign state in the densely populated area of Western Europe with an area of 30 528 

km2 (11 787 sq. mi), bordered by the Netherlands in the north, Germany in the east and Luxembourg 

and France in the south. In 2019, Belgium had a total population of about 11.4 million inhabitants 

(Statistics Belgium, 2019b), resulting in an average population density of about 376.7 inhabitants 

per km2 (Figure 2.1 & Figure 2.2).  

The major cities in Belgium are Brussels (the capital), Antwerp, Charleroi, Ghent and Liège (Figure 

2.2). Most cities in Belgium date back to the Middle Ages and started expanding in the 19th century 

in relation to the developing industries and trade but, at that time, maintaining clear boundaries 

with the surrounding land. During the second part of the 19th century, under the impulse of 

increased mobility, cities started to spread out past their initial city boundaries. With the 

development of the railway system, the richer upper class started escaping the busy unhealthy city 

centres by moving to the greener countryside. After World War I, the population densities in the 

historic cities started to decrease, with people moving to the suburban areas, blurring the previously 

marked boundary between cities and their surroundings. The absence of a well thought out spatial 

planning, together with increasing mobility options, resulted in a further urban expansion towards 

the countryside, creating a strongly fragmented landscape (Van Hecke et al., 2010). These 

evolutions lead to the current spatial configuration of population density (Figure 2.2) and, to some 
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extent, materialize in the current land use map (Figure 2.3): the highest population densities can be 

found in and around the major cities. Agricultural areas are in the fertile areas around the cities and 

less productive areas remained or returned forested. 

 
Figure 2.1 – Belgium situated in Western Europe (left) and population density by NUTS3 region in 2015 (right)(European Commission, 
2018b). 

2.3 Agriculture in Belgium 

2.3.1 General overview 

The aforementioned evolutions, together with the environmental and regional socio-economic 

circumstances, resulted in a great diversity of rural landscapes largely shaped by agriculture. 

Belgium has a maritime temperate climate with regular precipitation throughout the year, allowing 

for a wide variety of agricultural choices and making the soil specifications one of the most 

important environmental constraints. Based on the differences in local characteristics, Belgian 

authorities have delineated 14 agricultural areas, largely following east-west belts (Figure 2.4): the 

Dunes and Polders in the north-west, the Campine in the north-east, the Sand region in the central 

north and the Sand Loam and Loam region in the centre, containing the small region of the Hainaut 

Campines. Further south is the Condroz, followed by the Fagne and Famenne, the Ardennes and 

finally the Jurassic region in the lower south-east. In the most eastern part of the country are the 

High Ardennes and the Pasture region of Liège (AGIV, 2013). 
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The percentage of agricultural land remains the highest in the central loam belt, the most fertile 

part of Belgium and in the northwest, where agriculture has been historically important and where 

urban expansion remained relatively low. The percentage is the lowest in the south of the country, 

where the less fertile Ardennes region is located (Figure 2.5).  

 

Figure 2.2 – Population density in 2018 and major cities in Belgium (Statistics Belgium, 2019b). 
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Figure 2.3 – Dominant land use in Belgium at 1ha resolution based on Corine Land Cover data (Büttner et al., 2014). 

 
Figure 2.4 – Agricultural areas in Belgium (AGIV, 2013). 
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Figure 2.5 – Percentage agricultural area in every municipality in 2010 according to the land registry (Statistics Belgium, 2019c). 

2.3.2 Historical context 

Belgium has a long agricultural history, but apart from the specific physical environmental 

conditions, the roots of the current outlay of Belgian agriculture go back to the 13th century where 

an increase in the population led to first forms of agricultural intensification and specialisation (Van 

Hecke et al., 2010). The already higher population density in the north of the country with an 

important domestic industry resulted into on average smaller farms with more intensified systems 

in the north and larger farms, with more extensive farming in the south (Figure 2.6).  

The situation was further enhanced by the implementation of the Napoleonic inheritance law, 

where heirs received equal shares of the inheritance, leading to a further fragmentation of the 

agricultural land (Mathijs and Relaes, 2012). 

At the end of the 19th century, the small farms could not compete with the cheap import of grains 

from America. The combination with upcoming factories, which decreased revenues from domestic 

industries, led to an agricultural crisis. Especially the north of the country suffered, due to their 
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higher dependence on these activities for their income. It only slowly recovered under the impulse 

of increased scientific knowledge on agricultural techniques, machinery, biology and chemistry. 

After the world wars, the agricultural landscape changed fast. Improvements in mechanisation and 

automatization led to a reduction in required labour forces, resulting in an urbanisation wave. 

Change in selection methods, fertilization techniques and knowledge on hygiene and nutrition, 

increased production for both crops and animal related farming. Many of these new techniques and 

methods required heavy investments and farms not able to do this, dropped out (Mazoyer and 

Roudart, 2006). Remaining farms reinvested their income and increased their debts often reducing 

the farm income.  

2.3.3 Regional differences leading to the present situation 

The historical context set the main scene for agriculture in Belgium, but it was regionally influenced 

by differences in the social, economic, and physical environment. These differences however, only 

became clear when the focus of agriculture shifted from self-sufficiency to highly commercialized 

and market driven production, and when at the same time, transport options improved. At this 

point, soil properties and the historical context in terms of landscape and population became more 

pronounced (Van Hecke et al., 2010).  

The average farm size per municipality (Figure 2.6) shows a clear north-south distinction: farms in 

the north of the country are on average much smaller than in the south of the country (an average 

of 25.4 ha in the north of the country (Flanders) versus 48.9 ha in the south of the country (Wallonia) 

in 2014), with the largest average farm sizes located in the centre of the country, in the fertile loam 

area. A high population density, results in smaller farms, and a higher farm density: The highest farm 

densities can be found in the north-west of the country, the highly urbanised central Antwerp – 

Brussels axis in the north shows a very low farm density. The farm density further decreases from 

north to south, with very low farm densities in the less fertile south of the country, where the less 

favourable pedoclimatic conditions, together with the absence of urban expansion led to more 

extensive types of farming on large farms (Figure 2.7). 

The prevalence of different farm types is a result of the differences in historical context and the 

opportunities provided by the environmental conditions. These differences show in the specific 

spatial distribution of the share of the standard gross margin (SGM) of the different farm types in 
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Figure 2.6 – Average farm size for each municipality in 2010 (Statistics Belgium, 2018). 

 
Figure 2.7 – Number of farms per km2 in 2010 (Statistics Belgium, 2018). 
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every municipality (Figure 2.9). The SGM is a measure for the business size of a farm, and an 

approximation of profit, incorporating revenue, subsidies and estimated costs. After direct 

payments were decoupled from production in 2005, the SGM could be negative without subsidies, 

making it hard to be used as classification criteria. From 2010 onwards, the SGM was replaced by 

the EU by a new indicator: the standard output (SO). The SO is the average monetary value of the 

agricultural output at farm-gate price, in euro per hectare or per head of livestock. Since the new 

indicator used by the EU, the SO, does not take subsidies nor costs into account, it results in a 

distorted image due to the large differences in costs between different agricultural sectors. 

Therefore, and although no longer in use, we preferred to use the SGM for discussing the economic 

importance of agriculture in Belgium. 

The combination of the earlier mentioned changes in the socio-economic conditions from the 19th 

century onwards together with the local pedoclimatic conditions led to grassland currently being 

the most dominating agricultural land cover in the Ardennes, the High Ardennes and the Pasture 

areas on the stony soils in the south, and in the Campine with its sandy soils. Maize can be mostly 

found in areas with intensive cattle and granivore farming, due to its high nutritional value and high 

uptake of the overabundant fertilizers (Figure 2.8). The high population density in the north of the 

country, on the other hand, led to more intensive types of farming that require less space, like 

horticulture and poultry and pig farming (Figure 2.9). Croplands can be mostly found in the most 

fertile part of the country, the loam area, which is highly suitable for different grain types and sugar 

beets (Figure 2.8). 

The combination of the different regional characteristics, the historical context and traditions as 

well as the environmental conditions, results in the current lay-out of Belgian agriculture, 

summarized through the SGM per hectare and SGM per farm. The SGM per hectare (Figure 2.10) is 

on average higher in the north than in the south of the country, due to the presence of more 

intensive types of farming in the former, especially for the areas with a high intensity of horticulture 

or granivore farming. The SGM per farm (Figure 2.11), on the other hand, shows that the 

economically most important farms can be found in the central loam area with its large farms on 

highly fertile fields, and in the north of the country, where the small but intensive horticulture farms 

also result in a high SGM per farm. The centre of the country, with small farms, less fertile soils and 

under the pressure of urban expansion of Brussels and Ghent, clearly stands out due to its on 

average low SGM per farm.  
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Figure 2.8 – Presence of Different crops and agricultural land use in 2013 according to the IACS dataset of the European Union 
(European Commission, 2018a). 
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Figure 2.9 – Share in the standard gross margin of different farm types for the different municipalities. Data for municipalities with 
less than 5 farmers per type are unavailable due to possible privacy issues. They are marked accordingly (Statistics Belgium, 2018). 
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Figure 2.10 – Standard gross margin per hectare in 2006 (Statistics Belgium, 2018). 

  
Figure 2.11 – Standard gross margin per farm in 2006. Data for municipalities with less than 5 farmers per type are unavailable due 
to possible privacy issues. They are marked accordingly (Statistics Belgium, 2018). 
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2.3.4 Current trends 

Since the 1980s there has been a dramatic decrease in the number of farms in Belgium, with 

between 1980 and 2010 on average more than 6 farmers a day quitting. Recently, this number is 

decreasing, with an average of less than 2 farmers a day from 2011 onwards. A trend that can be 

expected given the diminishing number of farmers remaining. At the same time the average farm 

size has been increasing from an average of 12.5 ha in 1980 to 36.5 ha in 2015 (Figure 2.12). The 

decrease in the number of farms is most prominent in the central north of the country (the Flemish 

Diamond), in the east of the country and in the less fertile south. The regions with a strong 

agricultural tradition (West-Flanders and the loam belt) experience a much lower decrease (Figure 

2.13). 

This decrease can be related to the above discussed changes in the agricultural landscape after the 

world wars and the global trends discussed in the Introduction: the continuously improving 

techniques and methods require heavy investments, increasing input costs and reducing margins, 

especially with structurally falling agriculture prices in a globalised market. In order to be more 

competitive or even merely stay in business, farmers are forced to upscale. Farms that cannot make 

the required investments fail to stay competitive and leave the agricultural population at some point 

(Mazoyer and Roudart, 2006). While from an economical point of view, this can be seen as a 

necessity to increase the competitiveness of the sector in its whole, it also often leads to personal 

dramas with bankruptcies or (hidden) poverty and social exclusion for the farmer and his family or, 

together with their families, live in (hidden) poverty (Meert et al., 2005, 2002; Van Hecke, 2001). 

Studies in different countries have also identified a higher suicide rate in farming than in the general 

population (e.g. 5.9% vs 3.9% in Québec) (Behere and Bhise, 2009; Klingelschmidt et al., 2018; Roy 

et al., 2013). 

This decrease in number of farmers can also partly be related to the demographic situation of the 

agricultural population and the succession rate for farms. Belgium, like many European countries, 

has an old farmer population. 85% of farmers are male, 44.4% of farmers are older than 55 in 2010 

and 20% are even older than 65 (Statistics Belgium, 2018). The oldest farmers can be found in the 

central west of the country (Figure 2.16), the area that was also clearly marked by a low average 

SGM. Given this aging farmer population and the low average succession rate for farmers over 50 

years old (15.6% have a successor, 51.7% do not and 32.7% do not know), a further decrease of the 
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number of farmers can be expected. Differences between succession rates can however be 

observed between regions and between farm sizes: succession rate is higher in the central loam 

area, and south of it (Figure 2.17). Succession rate in the north of the country and the southernmost 

part of the county is clearly lower. Succession rate also relates to farm size: the larger the farm, the 

higher the succession rate (Figure 2.14). This strong link between farm size and succession rate 

therefore also results in an over-representation of younger farmers in the farm size categories 

above 30 and especially 50 hectares. While the older farmers tend to manage smaller farms, up to 

20 hectares (Figure 2.15). 

 
Figure 2.12 – Evolution of the number of farmers and the average farm size since 1980 (Statistics Belgium, 2018). 

 
Figure 2.13 – Relative decrease in the number of farmers between 2000 and 2010 (Statistics Belgium, 2018). 
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Figure 2.14 – Percentage of farmers having a successor in function of farm size (Statistics Belgium, 2018). 

 

Figure 2.15 – The relation between the farmer’s age and the size of the farm in 2016 (Statistics Belgium, 2018). 
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Figure 2.16 – Percentage of farmers over 55 years old in 2010 (Statistics Belgium, 2018). 

 

Figure 2.17 – Percentage of farmers over 50 years old having a successor in 2010 (Statistics Belgium, 2018). 
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2.3.5 Common Agricultural Policy 

Since Belgium is part of the European Union, it falls under the Common Agricultural Policy (EU-CAP) 

of the EU, a system of income and market support programmes for the agricultural and rural sectors. 

It sets out the lines of the national agricultural policies of its member states. A first step towards the 

EU-CAP was already introduced in the Treaty of Rome in 1957, which defined the start of the 

European Economic Community, the origin of the EU (European Commission, 2012). 

The Treaty of Rome mentions the main aims of the EU-CAP as (1) to increase agricultural 

productivity, (2) to provide a reasonable standard of living for the agricultural population, (3) to 

stabilize agricultural markets, (4) to provide food security, and (5) to guarantee reasonable prices 

for customers (Mathijs and Relaes, 2012). These aims led to the creation of the EU-CAP, which was 

introduced in 1962 and still exists today, undergoing several changes along the way. 

The first major period, from 1962 until 1992, was based on 3 basic principles: a single market, 

community preference and financial solidarity. Production and trade within the EU was regulated 

through common market organisations to guarantee steady incomes for farmers and steady prices 

for consumers by regulating supply (quota, import taxes, grubbing-up premiums, temporary 

storage) and demand (export subsidies, promotional campaigns, buying-in interventions) (European 

Commission, 2012; Mathijs and Relaes, 2012). the result was a strong increase in agricultural 

production, moving from an insufficient agricultural production to a situation of overproduction. 

Guaranteeing prices with overproduction was resolved by heavy export subsidies, requiring an 

increasingly higher budget. Especially in the dairy sector, budgets were derailing, which led in 1984 

to the setting of strict (tradable) quotas for milk (Mathijs and Relaes, 2012). The will to also maintain 

agriculture in less favourable and less populated regions resulted in a rural development plan, that 

later became an integrated part of the EU-CAP (the second pillar, market- and income policy being 

the first). 

The derailing of the budgets led to the first important reform in the history of the EU-CAP: the Mc 

Sharry-reform. With the Mc Sharry-reform, price support was gradually decreased and replaced by 

income support (per animal or per hectare) independent of production level (Mathijs and Relaes, 

2012). According to the reform, farmers were asked to fallow part of their land and were also 

encouraged to produce more environmentally friendly. After the Mid Term Review in 2003, support 
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was completely decoupled from production level and more subsidies were foreseen for agro-

environmental measurements (European Commission, 2012; Mathijs and Relaes, 2012). 

In 2013, the EU-CAP was reformed to reduce differences between and within member states. It also 

focusses on making the payments to farmers more related to environmentally farming practices and 

more directed towards young farmers, farmers in low income sectors and farmers in unfavourable 

areas (European Commission, 2013). 

In 2018, the European Commission communicated the legislative proposals for the future of the EU-

CAP, after 2020. The focus is on making the EU-CAP more responsive to current and future 

challenges through nine objectives: ensuring fair income for farmers, increasing competitiveness, 

improve farmers’ position in the food chain, climate change action, environmental care, 

preservation of landscape and biodiversity, supporting generational renewal, vibrant rural areas and 

protection of food and health quality (European Commission, 2019). 

2.4 Challenges for agriculture in Belgium in a global context 

2.4.1 Urban expansion 

In the last decades, Belgium, like many western European lands, has been characterized by a 

remarkable expansion of urbanised areas, at the expense of agricultural lands and nature 

(Pointereau et al., 2008).  

Not only did this evolution reduce the available land for farmers, it also resulted in the loss of the 

exclusive use of agricultural land by farmers. These lands were increasingly adopted for other 

functions with a weak or even no link to agricultural production, like horse-riding, agro-tourism, 

construction or for residents practicing a rural lifestyle (Bomans et al., 2011; Primdahl et al., 2013). 

In the northern part of the country this led up to 15% of agricultural area not being used for 

commercial agriculture (Verhoeve et al., 2015).  

The urban expansion and fragmentation of the agricultural land in Belgium currently still continues 

(Crols et al., 2017; Mustafa et al., 2018a; Poelmans, 2010) with the decrease in agricultural land 

being most pronounced in the north of the country, namely in the highly urbanised Flemish 

Diamond, and around major Belgian cities (Figure 2.18). 
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In order to put a stop to the further loss of open space to built-up areas, different policy measures 

are being proposed (Departement Ruimte Vlaanderen, 2017; SPW, 2018). These plans are however 

long term (by 2040 and 2050 for Flanders and Wallonia respectively) and are difficult to implement, 

due to legal difficulties and resistance from the population (Leonardi, 2018; Paelinck, 2019; 

Rombaut, 2018; Verbergt, 2018).  

 

Figure 2.18 – Relative decrease of the agricultural area between 2000 and 2010 following the land register (Statistics Belgium, 2019c). 

2.4.2 Environmental challenges 

From the 1960s and 1970s, there has been an increasing interest in the environment and awareness 

of environmental problems. A first environmental problem related to agriculture is eutrophication. 

Eutrophication occurs when water becomes very rich in minerals and nutrients, resulting in an 

increasing growth of plants and algae. These plants increase the turbidity of the water and use large 

amounts of the available oxygen. These processes alter the water, making it an uninhabitable 

environment for many other species, living in it. Eutrophication is almost always the result of the 

discharge of nitrate or phosphate-containing substances in the water (Withers et al., 2014; Withers 

and Haygarth, 2007), namely the products used and produced by agriculture for fertilizing the land 
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and as a result of animal farming. In Belgium especially for the northwest of the country, with a high 

amount and high density of pig farming, this proved to be problematic (Van Hecke et al 2010). To 

tackle this issue, the EU created the Nitrates Directive in 1991, requiring countries to limit the use 

of organic and inorganic fertilizers and to monitor all farms in relation to their fertilizer 

management. This directive was implemented in Belgium through the Mest Actie Plan (MAP) in 

Flanders and the Programme de Gestion Durable de l’Azote (PGDA) in Wallonia. In 1997, in Flanders, 

a balance of the amount of fertilizers produced and the amount that could be used, showed a 

surplus of about 34% of the total nitrogen production and 40% of total phosphate production 

(Van Hecke et al., 2000). The imbalance resulted is many negotiations between farms over and 

under the limits and in slurry transportation (sometimes over long distances) between these farms, 

often at a high cost for overproducing farmers (Van Hecke et al., 2000). 

Problems related to erosion are also closely linked to the eutrophication issue. In the first place, soil 

erosion leads to valuable, high-quality soil to wash away, whereby also impacting the turbidity of 

the water. Sometimes the high run-off on agricultural lands results in muddy floods impacting 

residential areas, with a subsequent significant financial cost (Verstraeten and Poesen, 1999). The 

eroded soil also contains the fertilizers applied to the land (Montgomery, 2007). As such, even with 

strong restrictions on the amount of applied fertilizer on the land, eutrophic elements still arrive in 

water bodies. In 2003, for the Mid Term Review of the EU-CAP, the EU included a cross-compliance 

system, which required farmers to follow a set of rules in order to receive financial support from 

the EU. The set-out rules included measures to reduce soil erosion, like the use of grass buffer strips, 

certain land management techniques and the avoidance of bare soil in order to reduce erosion 

(European Commission, 2018c). 

Since halfway the 20th century, agriculture increasingly started using different forms of pesticides to 

increase agricultural output: organophosphate insecticides in the 1960s, followed by carbamates, 

herbicides, fungicides and pyrethroids in the 1970s and 1980s (Aktar et al., 2009). The use of these 

pesticides resulted in an increased pest control and a higher agricultural output but also had an 

impact on the environment and human health. An estimation in 1999 states that yearly about 1 

million deaths and chronic diseases can be linked to pesticide poisoning (Environews Forum, 1999). 

Through run-off and percolation, these pesticides also contaminate the surface- and groundwater 

(Hildebrandt et al., 2008). Recent studies have also shown pesticide contamination of air (Socorro 

et al., 2016) and different non-target organisms (Mancini et al., 2019; Yohannes et al., 2017). 
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Recently, climate change has become an important environmental concern and might require 

severe adaptations of current farming techniques. Although there is uncertainty about the impact 

of climate change on the climate of temperate regions in Europe (Kovats et al., 2014), there is a high 

certainty on the increase of variability and extreme weather events (Beniston et al., 2007; Lenderink 

and van Meijgaard, 2008). The impacts of these changes are already showing, for example, in the 

yield losses for agriculture as a result of the 2018 drought (European Commission, 2018d). 

One of the focus points to mitigate climate change is the reduction of the emission of greenhouse 

gasses. Already in 1997, research pointed to agriculture as an important contributor to greenhouse 

gas emissions (Cole et al., 1997). Consequently, farmers are required to implement measures and 

make extra investments to reduce their greenhouse gas emissions. The Effort Sharing Regulation 

for example requirs a 35% reduction of greenhouse gasses for Belgium by 2030 as compared to 2005 

(European Union, 2018).  

Last but not least, the 2019 published global assessment report of the Intergovernmental Science-

Policy Platform on Biodiversity and Ecosystem Services (IPBES) (Díaz et al., 2019) indicates the 

strong, rapidly and accelerating deterioration of biodiversity and ecosystem functions worldwide. 

Land use change, and more specifically agricultural expansion and intensification, is denoted as 

having the largest relative negative impact on nature for terrestrial and freshwater ecosystems, with 

climate change increasingly exacerbating the impact (Díaz et al., 2019). Among species experiencing 

a rapid decline are some species with a crucial relation to agriculture for their role as pollinator 

(Aguirre-Gutiérrez et al., 2017). A large extinction wave of pollinating species could ultimately have 

a dramatic impact on agricultural production. 

2.4.3 Challenges arising from globalisation 

The issues resulting from globalisation, as discussed in the introduction and earlier in this chapter, 

have a significant impact on Belgian agriculture. Farmers remain in a constant competition with 

other local farmers, as well as with farmers worldwide. Differences in the socio-economic conditions 

(e.g. wages and tax systems) and legal obligations (e.g. environmental, social, or animal welfare 

laws) make it impossible for Belgian farmers to be compete with farmers from countries like Brazil 

or Argentina. In 2016 Brazil was the most important exporter of prepared meat and comes only 

second, after the USA, on soy and maize exportation, worldwide the two most important fodder 

crops (FAO, 2016). This does not only affect the competitiveness of Belgian farmers directly but also 
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indirectly: the carbon footprint of food commodities through greenhouse gases from 

transportation, together with the large deforestation campaigns to support the production (Barona 

et al., 2010; Morton et al., 2006) are not taken into account. They have an important impact on 

climate change and raise questions about the sustainability of the food production (Elgert, 2013; 

van Berkum and Bindraban, 2008). This has, in turn and as described above, its impact on the 

environment and biodiversity and thus on farming itself. 

2.5 Conclusion 

Belgium, as other Western Europe countries, has a long agrarian history, shaping the landscape for 

ages. Together with environmental limitations and historic evolutions, it resulted in the current 

agrarian landscape of the country. As many Western countries, the agricultural sector in Belgium 

faces large challenges. These challenges, together with the fact that Belgium is part of the EU, 

making it representative for other EU countries in terms of data availability, make Belgium an 

interesting case study area. The listed datasets will be used as an input and starting point for 

modelling agricultural dynamics. They were specifically chosen on the basis of their availability for 

other EU countries, allowing making the model transferable to other regions. The analysis of this 

data however shows that, throughout the years, progressively less data on farming is being collected 

and made easily accessible, reducing representativeness and hampering the study of time series. 

The chosen datasets are therefore generally available for many countries within the EU at the time 

of writing, but no guarantee can be expected for the future. 
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Chapter 3 Methodology 

3.1 Agent-based models 

3.1.1 History of agent-based models 

Agent-based models (ABMs) allow a one-to-one mapping of virtual agents to real world actors in a 

spatially explicit way (Berger & Troost 2012). The agents can represent a wide range of individual 

entities, from animals or plants to persons, firms and organisations (Rounsevell et al., 2012). These 

agents interact both with each other and with their environment. Through the decisions they make, 

they influence each other and the environment (Ferber, 1999; Matthews et al., 2007; Rounsevell et 

al., 2012). The nature of this modelling technique allows for a holistic approach (Berger and Troost, 

2014) and the ability to investigate the emergence of macro-scale phenomena at the aggregated 

level as the results of the individual decisions of all agents (Crooks et al., 2008). 

Agent-based modelling (ABM) is a relatively new technique that has gained increased attention in 

the last decades. The first notions of ABM can be traced back to the 1950s with the Von Neumann 

machine (Burks et al., 1946), a machine capable of self-reproduction. The idea was further 

developed into the concept of Cellular Automata (CA) through the incorporation of concepts on 

working with a lattice network that considers neighbours’ behaviour (Figure 3.1) (Bialynicki-Birula 

and Bialynicka-Birula, 2005). CA only became more widespread with the development of Conway’s 
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“Game of Life” in 1970 (Figure 3.2) (Adamatzky, 2010; Gardner, 1970) and Wolfram’s classification 

of CA rules (Adamatzky, 2010; Wolfram, 1984). A CA is typically represented as a grid, where every 

cell is in one of a finite number of states. Each cell state can change every timestep according to a 

given set of rules using information on the current state of the cell and the state of its neighbours. 

CAs can be seen as a simplistic agent-based model, where every cell is an agent, with the rules being 

the agent’s behaviour (Macal and North, 2009). 

     

  N   

 W X E  

  S   

     

Figure 3.1 – Neighbourhood lattice for cellular automata 

Generation 0 Generation 30 

  

Figure 3.2 – Conway’s “Game of Life” simulation, with the initial state, and the state after 30 time steps (dCode, 2019). 

Also in the 1970s, Schelling (1971) proposed a basic model with simple dynamics on segregation in 

populations, containing both autonomous and interacting agents in a shared environment resulting 

in an aggregate, emergent outcome. In the 1980s, ABMs became more into use, for example in the 

field of political science (Axelrod, 1997; Axelrod and Hamilton, 1981) and biology, with Reynolds’ 

(1987) famous “Boids” simulation on flocking behaviour of animals (Figure 3.3). 
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Figure 3.3 – Boids simulation with initial situation (left) and the situation after a series of time steps (right) (Veltman, 2019). 

Since those first models, ABM has become more complex, often focussing on specific cases, 

sometimes related to real-world situations, with efforts towards increased empirical grounding 

(Matthews et al., 2007; Rounsevell et al., 2012) and is now used in a wide variety of domains, from 

ecology (de Vries and Biesmeijer, 1998; DeAngelis and Mooij, 2005; Grimm and Railsback, 2013) to 

social sciences (Epstein and Axtell, 1996; Gilbert and Troitzsch, 2005; Macy and Willer, 2002), 

economics (Axtell, 1999; Farmer and Foley, 2009; Magliocca et al., 2011; Tesfatsion, 2002), 

demography (Billari et al., 2007, 2006; Wu et al., 2008), epidemiology (El-Sayed et al., 2012; Marshall 

and Galea, 2014; Roche et al., 2011) and land use change (Bakker et al., 2015; Bousquet and Le Page, 

2004; Hare and Deadman, 2004; Matthews et al., 2007; Parker et al., 2002b; Valbuena et al., 2010; 

Zhang et al., 2013). 

ABMs also made their entrance in the domain of agriculture. Balmann (1997), for example, created 

a simple cellular automata in a hypothetical landscape for analysing structural change in agriculture, 

while Berger (2001) created an empirically grounded multi-agent/cellular automata focusing on 

technology diffusion in agriculture. Recently, ABMs in agriculture have become more and more 

advanced with empirically based real-world agricultural ABMs like AgriPoliS (Happe et al., 2009, 

2008), RULEX (Bakker et al., 2015) and a model on structural farm change in Canada by Freeman et 

al. (2009). A full overview of agricultural ABMs can be found in the review paper of Huber et al. 

(2018), where an overview is given on the different characteristic elements of the models (purpose, 

extent, interactions, environment, etc.) together with a comparison on the complexity of the 

decision-making processes involved. They show that many agricultural ABMs model changes in land-

use (16 out of 20), but only a limited number looks at farm structure (5 out of 20), or incorporate 

farm types (4 out of 20). Interaction between farmers is in most cases limited to interaction through 

a land market (Huber et al., 2018). 
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In general, different results produced by ABMs in the domain of land use and land use change can 

also be estimated through statistical models. This approach, however, estimates the average effect 

based on the available data, making it only useful for processes that are static and constant over 

space and time. It does not allow the inclusion of possible feedback mechanisms that can emerge 

and cannot represent the effects of individual, independent and heterogeneous human decision 

making on the landscape (Parker et al., 2002b). On top of that, ABM allows an interdisciplinary 

approach with an empirical grounding. 

3.1.2 Challenges for ABMs 

The research on ABMs in the last years has shown many interesting opportunities, but has at the 

same time revealed its difficulties, limitations and shortcomings. One of the most encountered 

issues is related to the high amount of data required to set up an agent-based model. In most ABMs, 

the representation of actors and their characteristics in space and time is crucial (Crooks et al., 

2008). Robinson et al. (2007) compared different approaches to obtain these data and to provide 

ABMs with an empirical ground, namely sample surveys, participant observation, field and 

laboratory experiments, companion modelling and GIS and remotely sensed data (Figure 3.4). The 

research shows that the chosen approach depends heavily on what is expected from ABM and that 

the final outlay of ABMs is heavily dependent on the available data. The lack of spatial data at the 

scale relevant for decision-making processes might lead to a need of upscaling and hence the loss 

of information and the possible loss of spatial heterogeneity (Parker et al., 2002b). 

However, Rounsevell et al. (2012) insist that there is a need for ABMs covering larger geographical 

regions in order to combine them with other models like ecosystem and vegetation models, and to 

be able to model at the level relevant for policy processes and politics. This problem, together with 

the high data requirement of ABMs, makes this challenging. They argue that especially social surveys 

are useful in the empirically grounding of ABMs, allowing the introduction of a degree of 

heterogeneity in the characteristics of the population, which influences decision-making. 
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Figure 3.4 – Comparison of five different empirical approaches for ABM: sample surveys (SUR), participant observation (PO), field and 
laboratory experiments (EXP), companion modelling (CM), and GIS and remotely sensed spatial data (SPAT) in terms of (A) 
socioeconomic and biophysical information, (B) qualitative and quantitative information, (C) agent learning and interaction and (D) 
temporal and spatial information by Robinson et al. (2007). 

A typical characteristic of ABMs is their almost inherent interdisciplinarity (Parker et al., 2002b; 

Rounsevell et al., 2014), as behavioural sciences provide insights on a decision-making process 

based on, but also impacting the physical environment (Bithell et al., 2008; Collins et al., 2010). This 

requires a broad knowledge of the researchers involved or a broad team of researchers, creating 

new challenges intrinsic to interdisciplinary research. Two main challenges can be identified: the 

first is the possible desire to unify models, both within ABMs itself and in the outcomes of the ABMs. 

The models from different disciplines, however, might be initially developed to operate at different 

spatial and temporal scales. The second challenge is the wide variety of results that might be 

anticipated from the research, based on the expectations related to a specific discipline (Parker et 

al., 2002b). For the same agent-based model, researchers might expect economic, ecological, social 

or geographical results, in relation to their proper field. To cope with this challenge and to avoid 

confusion on the expected result, it is necessary to clearly define the framework or structure of the 
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model, the expected outcomes and the key factors that will be considered, together with the degree 

of abstraction that will be applied (Parker et al., 2002b). 

 Another important reason to define the modelling framework and the boundaries of the model is 

to not get caught in a never-ending iterative loop, since designing ABMs is typically an iterative 

process where every modelling step leads to new opportunities for more detail, improvements and 

refinements (Parker et al., 2002b; Rounsevell et al., 2012). Even with a good fit of the model in 

relation to reality or theory, there always seems to be missing features (Crooks et al., 2008) and 

every new finding or new dataset can provide an opportunity to adapt the framework and thus the 

model (Rounsevell et al., 2012). Due to the iterative nature of ABMs, Rounsevell et al. (2012) 

conclude that they should be seen more as an approach for scientific analysis than an application 

tool, making it useful for discussions, formalising assumptions based on the results and as a 

computational laboratory to experiment with different policies. 

Specifically for agent-based land-use models, Matthews et al. (2007) come to a similar conclusion. 

They state that for decision support, these models have possibly more potential in providing insight 

to define some simple rules-of-thumb, than for direct decision support based on the results. 

3.1.3 Creating an agricultural agent-based model 

Apart from the aforementioned general challenges in working with ABMs, specific requirements 

and challenges are present when defining the key components of an agricultural agent-based 

model. The most important one being collecting the collection or the availability of data to populate 

and initialize these models. A first work around has been to propose hypothetical ABMs, using 

artificial data (Ligtenberg et al., 2004; Murray-Rust et al., 2014), allowing to work with detailed 

datasets that however have no link to the real-world. Another approach was to create very detailed 

real-world ABMs, whereby the focus is on relatively small regions (Acosta-Michlik and Espaldon, 

2008; Bakker et al., 2015; Fontaine et al., 2013; Happe et al., 2009; Le et al., 2008). Efforts to develop 

large scale ABMs were made, but resulted in less detailed models, working with large grid cells (e.g. 

Rounsevell et al., 2014). To the best of our knowledge, no further research on improving ABMs over 

large extents at individual scales has been undertaken over the last few years (see Appendix 1). This 

results in current agricultural ABMs either losing touch with reality in hypothetical models with 

artificial data or, losing political relevance in working on small specific regions or losing detail in 

working on large regions.  
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The modelling of the relevant actors is crucial for an agricultural agent-based model, namely the 

farmers, their characteristics, and their decision-making strategies and behaviour. Valbuena et al. 

(2010) state that farmers’ decisions are based on a complex combination of internal and external 

factors. Internal factors are related to the personal, socio-economic and biophysical factors of the 

farmer and farming system. Examples are the type of the farm, the presence of a successor but also 

the possibilities and limitations of the local environment, like local soil quality and land availability. 

External factors refer to the biophysical and socio-economic context, such as climate, market and 

policies. 

According to Rounsevell et al. (2012), ABMs are ideal to be combined with social survey data. These 

datasets can be used to create a static or dynamic agent population. When creating a dynamic 

population, the surveys can provide information on the demography and on the creation and the 

disappearance of agents. Furthermore, they can be used to obtain information on the 

characteristics of the agents. After deciding on the most relevant characteristics, they need to be 

mapped onto the agents, constituting the agents’ attributes and as such providing heterogeneity 

amongst the agents. In the model, these attributes are then used to enable or constrain behaviour, 

to allow for changes in decisions when attributes change or as a reason to react to the attributes of 

other agents. Troost et al. (2012) propose to create a synthetic but realistic population by drawing 

a random sample based on the available data to estimate agent properties. The result is then an 

agent population with a large degree of variability. 

To represent the actual decision-making strategies, different approaches have been proposed. The 

first and most simple one, is through heuristics or decisions trees (Gigerenzer and Todd, 1999; Macal 

and North, 2010) whereby the decisions are based on a true or false result for a given characteristic 

or measurement. This allows the decision-making process to be transparent and empirically 

grounded by using survey data (Rounsevell et al., 2012). A second strategy is based on the concept 

of utility maximization, assuming that agents make rational decisions to maximize their utility, based 

on a selection of given options and assuming perfect information (i.e. Homo economicus) (Edmonds, 

1999; Manson, 2006; Simon, 1997, 1955). Given the fact that most of the time perfect information 

is not plausible and with humans not being able to process the combinations of the large amount 

of data involved, ABMs mostly assume bounded rationality. With bounded rationality, agents take 

their decisions based on a limited number of possible choices (Rounsevell et al., 2012). This 

adaptation however, still assumes rationality, while human behaviour is often influenced by social 
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comparison, imitation and habits in order to limit cognitive resources and to pursue satisfying 

instead of optimal behaviour. A third approach is therefore the inclusion of these behavioural traits, 

creating a Homo psychologicus instead of a Homo economicus, resulting in a better perspective on 

human behaviour (Jager et al., 2000). A fourth approach, is the learning and adaptation technique, 

where agents have a memory and change their behaviour based on what they have learned, linking 

to the field of artificial intelligence (Promburom, 2010; Reschke, 2001). This technique however 

often leads to a black box, where transparency and insight is lost (Rounsevell et al., 2012). 

3.1.4 Implementation strategy 

The aforementioned challenges together with possibilities conditioned by the available data, were 

kept in mind when creating an innovative agricultural agent-based model. This means defining the 

boundaries, the possibilities and limitations of the model, the key components of the model, and 

the right scale of operation, keeping in mind possibilities to connect it to other existing models. 

Furthermore, choices need to be made on how to define the agents: what are the critical elements 

that define the actors and which are the key components of those actors that need to be 

incorporated in the model. This will require incorporating some elements from the diverse fields of 

agricultural economics, environmental sciences, demography and sociology among others. The 

following choices were made: 

1. Modelling boundaries: The aim is to create a nationwide agent-based model that simulates 

the farmer population, their farms and the changes on the land they manage. 

2. Possibilities and limitations: The model allows to look at the evolution of an agricultural 

population and how these evolutions impact the evolution of farms and the agricultural land 

use. The model is not able to make any predictions, nor does it pretend to make an exact 

reproduction of reality. The model is also not capable of simulating the financial situation and 

long-term strategy of a farm. 

3. Key components: The creation of a plausible starting situation, a demographic component, a 

succession method and a land-use and crop changing method. 

4. Scale of operation: The model is set to work at the individual farmer level, managing 

individual parcels for an entire country. 

5. Agent definition: Agents are defined by their age, typology, location and the farm they 

manage. The location, size and type of their farm impact their succession chance. Their 
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growth opportunities are dependent on the type and succession changes of other nearby 

farms. 

6. Connection to other models: The model accepts external input and creates external output 

through open formats (CSV), through which they can be integrated in other models or 

processes. 

These considerations, in combination with the available data, led the development of the model 

ADAM (Agricultural Dynamics through Agent-based Modelling) which is described briefly below and 

further discussed in Chapter 4. Full documentation of the initialisation and yearly simulation 

processes and the different process flows is available in the technical appendix. 

Initialisation 

In order to create a model with widely available data, on a scale relevant for the decision-making 

process, while at the same time being relevant for policy makers and the possibility to combine it 

with other models, specific methodological choices need to be made. The agricultural surveys (see 

Chapter 2) allow to empirically ground the agent population in the model, and for an easy 

adoptability in other, comparable, regions. To create a heterogenous demographically 

representative farmer population the data on the number of farmers and their age distribution at 

the municipality level are used. Farmers are assigned a farm type based on the data on farm 

typology per municipality (aggregated to yearly crop farmers, permanent crop farmers, greenhouse 

farmers, land-based animal farmers and non-land-based animal farmers. Since these data are only 

available for 2006 and 2016, for starting years 2000 and 2013 an extrapolation and interpolation 

were done respectively, with the help of the total number of farmers per municipality for that year. 

The succession rate for farmers is also based on the agricultural survey. Since this data is not 

available at the municipality level, the average succession rate for each agricultural area is used. 

Lastly, to finish the demographic situation for farmers, the mortality rate for the male Belgian 

population for each age was used, based on the data from the Belgian statistical office (see Chapter 

2). The rationale behind this is that farmers are still mostly male (85% in 2000 (Statistics Belgium, 

2018)) and mortality rates are different for sexes at all ages. 

The data from the agricultural survey permits to define the model at the national scale, putting it at 

a level relevant for policy making. The available parcel data (see Chapter 2) allows the model to be 

set up and run at the level relevant for the decision-making of the agents creating a direct link with 
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the real-world situation. The choice for working with existing parcel datasets results in a closer 

representation of reality, but at the same time, turns away from the more commonly used 

technique in ABMs to work with a rasterised presentation of the environment. By combining the 

location and agricultural land use data in the parcel dataset together with the farmer types 

initialised at the municipality, farms are created. As a first parcel a farmer is being assigned a parcel 

with an agricultural building on it in its own municipality, making it its home parcel. From that home 

parcel the farm grows, by adding neighbouring parcels of an agricultural land use type, that are 

compatible with the farmers type. The neighbouring parcels of a parcel are arbitrary defined as the 

20 most nearby parcels according to a spatial analysis in GIS of the parcel dataset. When this process 

is not able to allocate all parcels to farmers, the allocation process for a parcel is redone, dropping 

the neighbouring constraint and looking at all suitable farmers for that parcel within the 

municipality and the neighbouring municipalities. After this step, the allocation process using the 

neighbouring constraint is rerun, given that the newly added parcels to the farm, results in new 

neighbouring parcels. If parcels are still not allocated after this process, they are added to farms of 

neighbouring parcels while dropping the type restriction. This process creates the farms within the 

model and defines the size of the farm through the combined size of the parcels.  

Yearly simulation 

The yearly simulations largely result from the evolution of the farmer population, based on their 

age and mortality rate added with the component of succession, change of parcel ownership, 

change of agricultural land use and change of crop type. Every time step, the farmers age. If the 

farmer simply continues farming, nothing changes, apart from the choice for a new crop for the crop 

rotating farmer type. In that case, the farmer chooses a new crop based on a combination of crop 

rotation (based on the parcel dataset), yield (from the CARAIB data) and price (from the FAO 

dataset) (see Chapter 2 for description of the data) combined with a stochastic component to 

represent non-rational decision making.  

If the farmer is below retirement age and dies that year, the age of the farmer is simply reset if he 

has a successor. Whether or not a farmer has a successor, is based on the combination of the farm 

size, farm type and farm location, that define the farmers estimated profitability. The higher the 

profitability, the higher the chance of succession. An average farm profitability will result in the farm 

having a succession chance according to the average succession change of the agricultural region it 
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is located in, a higher profitability will increase the succession chance, a lower profitability will lower 

the chance. If there is no successor, the parcels are transferred to farmers managing neighbouring 

parcels. These farmers preferably have the same or similar farm typology as to reduce the cost of 

having to change the agricultural land use (for example, not having to change an animal barn to a 

field for crop farming). If necessary, the agricultural land use of the parcel is changed in function of 

the farm type of the new farm it belongs to. The home parcel of the farmer that stopped farming is 

converted to a residential parcel and is no longer available for agriculture. 

The same process applies if the farmer decides to retire. A farmer will retire at the legal retirement 

age if a successor is present (following the decision process on succession above), if not, a farmer 

continues farming with a reduced farm size. The farm size is reduced according to the average 

percentage of rented agricultural land in the country. The motivation is that the farmer will only 

keep the parcels he owns and no longer the parcels that he rents. The rented parcels are reallocated 

to neighbouring farmers (following the process above).  

After retirement age, farmers can still decide to retire. The percentage of farmers retiring after 

retirement age is unknown and needs to be calibrated (see Chapter 4). If a farmer dies past 

retirement age, the assumption is made that no successor is present, since in that case, the farmer 

would have stopped at retirement age. 

3.2 Cellular Automata model 

3.2.1 Concepts 

In Chapter 5, ADAM is combined with a cellular automata (CA) model to include the impact of urban 

expansion. As earlier discussed, cellular automata, with a lattice network of cell states, were a 

precursor to ABM. Every time step, the cell state changes based on a certain set of rules related to 

the current state of the cell and the state of its neighbouring cells. CA models have a widespread 

application and have also been used many times for urban modelling (Poelmans, 2010; Sakieh et al., 

2015; van Vliet et al., 2009; White et al., 1997). CA models are defined by: (1) the cellular space, (2) 

the possible states of the cell, (3) the definition of its neighbourhood and (4) the transition rules 

between different cell states (White and Engelen, 1993). 

The cellular space is usually a regular 2D grid of square cells (as earlier presented in Figure 3.1). This 

is however not a necessity. Earlier models have also worked with one-dimensional data (Wolfram, 
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1984) or, more recently, with a 3D approach which includes building height (Benguigui et al., 2008). 

Also the use of square cells have been challenged through the use of hexagons (Iovine et al., 2005), 

Voronoi polygons (Shi and Pang, 2000) or irregular, parcel based polygons (Stevens and Dragićević, 

2007). The size of the grid is usually fixed, but other methods are possible, e.g. through the use of a 

variable grid size, acting at different levels (Crols et al., 2015; van Vliet et al., 2009).  

The cellular state of a grid cell defines the value of a grid cell which is re-evaluated every time step. 

These values are usually two or more discrete or categorical values (e.g. the land use type), but 

some model approaches also use fuzzy membership (Liu and Phinn, 2003) or vectorized states 

whereby the cell value can also have continuous or mixed values (van Vliet et al., 2012). 

The neighbourhood is defined as the spatial entities surrounding a cell. In simple regular square cell 

grids, the neighbourhood is usually defined as the four surrounding cells in cardinal directions (as in 

the van Neumann machine, Figure 3.1) or through the eight surrounding cells in cardinal and 

diagonal directions (the Moore neighbourhood) (Birch, 2006). Throughout the years other 

approaches to define the neighbourhood have been proposed, e.g. a large circular neighbourhood 

(Engelen et al., 2007) the entire study area (van Vliet et al., 2009) or a dynamic sized neighbourhood 

(Moreno et al., 2009). 

The transition rules are the set of rules through which the state of cell is determined every time 

step. The rules usually take the current state of the cell in account, together with the state of the 

cells that are defined as the neighbourhood (White and Engelen, 1993). 

3.2.2 Used approach 

The CA model used in Chapter 5 is based on the constrained cellular automata (CCA) model 

developed by White et al. (1997). First development focussed on the Flanders region (Engelen et al., 

2011), afterwards it was extended to the entire country in the GroWaDRISK BELSPO project 

(Verbeiren et al., 2013).  

Cellular space 

The model works on three hierarchically embedded levels, whereby the lowest level consists of a 

regular grid of square cells of 1 ha. 
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Cell state 

The 1 ha cells represent the dominant land use at the 1 ha resolution. The possible categories for 

each cell are the following:

1. grassland 
2. deciduous forest 
3. coniferous forest 
4. mixed forest 
5. heathland 
6. dunes 
7. wetland 
8. other 
9. arable land 
10. orchard 
11. pasture 
12. greenhouse 

13. unregistered arable land 
14. residential 
15. commerce and services 
16. industry 
17. recreation 
18. park 
19. military 
20. mining 
21. infrastructure 
22. harbour 
23. water

 

Neighbourhood 

For the neighbourhood, a Moore neighbourhood (8 neighbours) is used, nested in increasingly 

larger supercells relative to the distance of the centre cell allowing long-distance effects (see Crols 

et al., 2015). 

 
Figure 3.5 – Variable grid structure with nested Moore neighbourhood in the CCA model (Crols et al., 2015) 

Transition rules:  

In yearly time steps the transition potential to another land use is calculated based on (1) the cell’s 

current land use, (2) the land-use categories in the neighbourhood of the cell, (3) a number of cell-
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specific properties, such as the physical characteristics (defining the suitability for each land-use 

type), the accessibility and the zoning status (based on spatial planning documents), and (4) a 

stochastic factor (representing the fact of non-rational decisions). The transition potential defines 

the likeliness that the land use of a cell changes and is calculated every time step (t) for every land 

use (l) and every cell (c). The calculation of the transition potential depends on whether the effect 

of the land use is positive or negative: 

If tNl,c	³	0 

tPl,c=(	ws	×	Sl,c+wz	×	tZl,c)	×	tAl,c	×	tNl,c	×	tRl,c	

If tNl,c	<	0 

tPl,c=(	ws+wz	-	(	ws	×	Sl,c+wz	×	tZl,c)	×	tAl,c	×(	tNl,c	×	tRl,c)	

Thereby, the noise factor tRl,c is defined as: 

tRl,c	=	-	10log(trand	l,c)a	

whereby: 

tPl,c	 	 Transition potential	

	ws	and	wz		 Weights for suitability and zoning respectively	

Sl,c		 	 Suitability for a certain LU, a constant factor based on environmental variables	

tZl,c		 	 Zoning according to policies, a Boolean factor to determine if a LU is allowed or not 	

tAl,c		 	 Accessibility of a cell through the transport network	

tNl,c		  CA-environmental effect that calculated the interaction between land uses	

tRl,c		 	 Noise factor	

trand	l,c			 Random choice from a uniform distribution (0,1) with P(trand	l,c	<	x)	=	x	

a	 	 Stochastic parameter 

The formulas for each of these individual parameters can be found in the report of Engelen et al. 

(2011) 
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The land-use class with the highest transition potential was assigned as new cell state, constrained 

by the regional land demand for each land-use category. The regional demand is calculated at the 

NUTS3-level based on scenarios on the evolution of the population and the economy. Once the land 

demand for a certain land use category is met, the land-use category with the second highest 

transition potential is attributed to a cell, and so on. A full description of the CCA-based land-use 

model and its application can be found in White et al. (2015).  

3.3 Species Distribution Model 

In Chapter 6, the results of the combination of the agent-based model ADAM and the Cellular 

automata (Chapter 5) are used as an input to a species distribution model (SDM) on bumblebees. 

An SDM is a statistical tool that combines the occurrence of species with the environmental 

conditions to create an insight into their distribution patterns (Elith and Leathwick, 2009; Franklin, 

2010). This allows the projection of the distribution of the species in non-sampled environments 

and into the future. 

3.3.1 Occurrence data 

To determine the distribution pattern of a species, an SDM requires the input of spatially explicit 

occurrence observations. Observations are considered to indicate the presence of a species, but 

surveys are not usually sufficiently detailed to indicate the absence of an animal species (Barbet-

Massin et al., 2012), especially for small, mobile, species like bumblebees. Therefore, in SDMs 

absences of a species can be estimated by randomly defining pseudo-absences (Phillips et al., 2009) 

of a species. One method to produce pseudo-absences is to only select them from areas where 

other species have been found (i.e. the target background sample) (Mateo et al., 2010).  

To allow the projection to other areas or to an unknown time period, it is also crucial to train the 

model with as much data as possible to get as near as possible to the entire range of the species 

that is being modelled (Titeux et al., 2017). Therefore, it is often necessary to take species record 

with a large temporal range. This allows to work with a larger sample but also results in the loss of 

knowing the exact conditions of the observation. 



Methodology 

53 

3.3.2 Maxent algorithm 

Different algorithms are available to construct an SDM and statistically represent the relationship 

between occurrences and the environment. In this research, the Maximum Entropy algorithm 

(Maxent) is used, since it has been shown to perform well when only presence occurrence records 

are available and having true absences of a species is not possible (Phillips and Dudík, 2008). Maxent 

is considered to be one of the best algorithms for working with presence-only data (Elith et al., 2011, 

2006; Elith and Leathwick, 2009; Hirzel et al., 2002; Pearce and Boyce, 2006; Phillips et al., 2009). 

Maxent requires the definition of the covariates that define the habitat and spatially explicit 

occurrence data of the modelled species to define its presence probability for the given resolution 

of the dataset. Maxent estimates this presence probability of a certain habitat for the modelled 

species by comparing the variation in probability density for this habitat to the probability density 

of a background sample of the same habitat (Elith et al., 2011). Therefore, first the probability 

density for the covariates of the habitat where a species is present is calculated. Next, the same is 

done for the total study area. Then, the ratio between both probability densities is used to create 

the probability distribution for all locations, which can be considered as an estimate of habitat 

suitability (Elith et al., 2011). 

3.3.3 Validation  

After the training of the model, a validation step is necessary to see if the proposed model is suitable 

for its purpose. The validation is usually done by splitting the data in a training and a validation set. 

This cross validation is repeated multiple times with different splits to derive a statistically relevant 

validation result (Elith and Leathwick, 2009) based on a confusion matrix comparing observed 

records to predicted occurrences. The confusion matrix provides values on the true positive fraction, 

the true negative fraction, the false positive fraction and the false negative fraction. Based on these 

fractions, sensitivity can be calculated as the ratio between true positives and the total number of 

presences and specificity can be calculated as the ratio between true negatives and the total 

number of absences (or pseudo-absences) (Fielding and Bell, 1997). In order to obtain this confusion 

matrix, the data needs to be converted from a habitat suitability into a binary presence or absence 

prediction. These binary maps not only allow the creation of the confusion matrix, they also allow 

the analysis of changes in the species distribution when creating future projections. The creation of 

binary maps is done based on a threshold value. This threshold value is determined by testing 
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different threshold values until the point where the model maximizes the sum of sensitivity and 

specificity from the confusion matrix as proposed. 

The confusion matrix also provides the input to validate the model based on the area under the 

curve (AUC) of the receiver operating characteristic (ROC; Figure 3.6). The ROC is measured as the 

rate between false positives and true positives for a range of thresholds. A model is considered 

accurate when a high number of true positives is combined with a low number of false positives 

whereby the threshold varies between 0 and 1. In the case where no absences are available, the 

false positives are determined based on a background of pseudo-absences. This means the AUC 

measures indicates whether the model indicates a true presence based on a random background 

(Phillips et al., 2006).  

 

Figure 3.6 – Receiver operating characteristic (ROC) curve. For the random classifier, the area under the curve (AUC) is 0.5. An increase 
of the AUC implies an increase in accuracy based on Draelos (2019).
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Chapter 4 A country scale application of an agent-based 

model: farm growth in Belgium 

This chapter is based on the paper: Beckers V., Beckers J., Vanmaercke M., Van Hecke E., Van Rompaey A., Dendoncker N. (2018). 
Modelling farm growth and its impact on agricultural land use: a country scale application of an agent-based model, Land 7, 109. 

4.1 Introduction 

The ongoing industrialisation of agriculture and the recent globalisation of agricultural markets put 

pressure on the profitability of farming activities in countries with an above-average population 

density (Anderson, 2010). The increasing competition among farmers together with the continuous 

requirement to invest and improve, has resulted in a decrease in the number of farmers. Often, 

small and uncompetitive farmers are either forced to end their activities or do not find a successor 

after retirement (FAO, 2000). This may allow the remaining farmers to upscale their activities by 

taking over the land of their former competitors. This process is often accompanied by specialisation 

and a change in agricultural management (Altieri, 1998; FAO, 2000) allowing investments in 

specialised equipment and farming technology. The introduction of these more intensified farming 

practices increases the productivity and allows the production of more food on less land (Mather et 

al., 1999; Van Hecke et al., 2010). In the global North, the continuous decrease in agricultural 
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employment (The World Bank, 2008), and the increase in average farm size (European Commission, 

2016; USDA, 2017) has been going on for decades. 

The agricultural transition has both socio-economic and environmental impacts. Since 

approximately one fourth of the food produced for human consumption is traded internationally 

(D’Odorico et al., 2014), prices of food commodities are influenced by events on the global stock 

market. 

In developed countries, a highly efficient cereal farmer sometimes earns the equivalent of the salary 

of an unskilled worker (FAO, 2000) meaning many farmers and farmer families live in (hidden) 

poverty (Meert et al., 2002; Van Hecke et al., 2000; Van Hecke, 2001). These farmers are no longer 

able to invest in the farm, resulting in a gradual decline in competitiveness of those farms in 

comparison to others. Furthermore, when they cease their farming activities and find no successor, 

their farms might be taken over by neighbouring expanding farms. Through this process, most farms 

have disappeared, with only a minority progressing and reaching today’s high demands of capital 

and productivity (Mazoyer and Roudart, 2006). These transitions lead to a disappearance of a large 

part of the agricultural population. The continuing growth of farms also has a significant impact on 

the landscape, e.g. through the removal of trees, ditches and hedges, and as such, decreases its 

ecological value (Björklund et al., 1999; Harms et al., 1984; Ihse, 1995; Poudevigne and Alard, 1997). 

This push-out of non-competitive farmers is also noticed at regional scales. Farming systems in flat 

regions with good environmental conditions that allow for low cost mechanized farming, have (also 

encouraged by the European Common Agricultural Policy (EU-CAP), see Chapter 2) created large 

surpluses that can be exported to regions with less favourable environmental conditions, leading to 

farm and farmland abandonment in these non-profitable regions (FAO, 2000). These evolutions 

tend to make agriculture a non-attractive sector, which leads to a limited influx of new farmers and 

a relatively old farmer population with almost a third aged 65 or over, and only 6% younger than 35 

in the EU in 2013 (Eurostat, 2015b). 

Agriculture has been high on the agenda of regional, national and supra-national policy-makers in 

order to intervene, support farmers and steer evolutions in specific directions. Examples are the EU-

CAP and its various reforms (European Commission, 2012), the New Deal (1933), the Food and 

Agriculture Act (1965), and the Federal Agriculture Improvement and Reform Act (1996) in the 

United States (USDA, 2002), all of which have been widely studied.  
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Existing studies can be categorized in (1) detection studies, exploring the major trends and their 

related spatial patterns and how they can be monitored (e.g. Alston et al., 2010; Beddow and 

Pardey, 2015; Eurostat, 2015; Headey, 2016; Lerman et al., 2003); (2) analysis studies, looking at the 

controlling factors of transitions and the impact of policy (e.g. Alston et al., 2010; FAO, 2017, 2000; 

Rivers and Schaufele, 2014) and (3) modelling and scenario studies: exploring what future 

transitions can be foreseen, and to what extent transitions can be steered (e.g. Alexandratos and 

Bruinsma, 2003; Berger, 2001; Brown et al., 2014; Spangenberg et al., 2010; Westhoek et al., 2006) 

The latter domain led to the development of a whole range of agricultural simulation models at 

various spatial scales (see Appendix 1). These models help in obtaining a macro-scale understanding 

of how and why certain trends occur and how they may evolve in the future under different 

scenarios. However, these models provide only limited insights into the decision mechanisms of 

individual farmers and households that lay at the basis of macro-scale trends. An understanding of 

the decision mechanisms is important for the development of tailored policies that aim to steer the 

agricultural sector and its corresponding landscapes in a certain direction.  

Recently, agent-based modelling (ABM) has become increasingly popular as an approach for 

modelling different spatially explicit processes. Agent-based models consist of autonomous 

decision-making objects, called agents, that act with and react to the environment based on a set 

of rules (Parker et al., 2002a). These models allow the representation of the decision-making 

strategy of individual actors related to e.g. agricultural land use change by incorporating the 

complexity, emergence and cross-scale dynamics of the topic (Bousquet and Le Page, 2004; Parker 

et al., 2002b, 2001).  

The on-going trend of upscaling of farming practices and specialization driven by the non-succession 

of non-profitable farms is an interesting case to describe with agent-based models since existing 

statistical models cannot fully capture the complexity of these processes in a spatially explicit way. 

Therefore, not allowing to see the impact on the landscape. However, the simulation of farmers’ 

behaviour and the evolution of farms is lacking in present-day agent-based agricultural models. 

Attempts to work with ABM and incorporate the explicit modelling of farmers’ population are often 

synthetic applications (e.g. Murray-Rust et al., 2014, 2011; Schelling, 1971) or are restricted to 

relatively small study areas (Bakker et al., 2015). As such, a weakness of ABM currently is the lack of 

convincing real-world applications on a national or sub-continental scale.  
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The main objective of this chapter is therefore to introduce an agent-based model, capable of 

working in a real-world situation, allowing to obtain insights in the farmer population and its impact 

on the agricultural land at the national scale, based on national statistics and cadastral maps, that 

can be used in scenario analyses.  

This chapter presents ‘ADAM’ (Agricultural Dynamics through Agent-based Modelling), a model that 

simulates the evolution of a farmers’ population, their farms and the corresponding land use on the 

national scale. The paper starts by describing the proposed model framework in a generic way. 

Thereafter the model will be set up for the case study area, the country of Belgium. The case study 

area is discussed, after which we describe how the model is initialised, calibrated and validated for 

Belgium, then run until 2030 under a business-as-usual scenario. In part 5, the model and the results 

of the model simulations are further analysed and discussed. The final section provides some 

concluding remarks and a scope for further research. 

4.2 Description of the ADAM model framework 

For the description of ABMs, often the ODD-protocol (Overview – Design concepts – Details) 

developed by Grimm et al. (2010, 2006) is used as a means to standardize descriptions of ABMs. It 

has previously been used by many authors to describe ABMs ever since it was published (e.g. Bakker 

et al., 2015; Bert et al., 2011; Yamashita and Hoshino, 2018). In this paper however, the model is 

presented in a descriptive manner, in order to explain the different steps in the model in a more 

consecutive order. For completeness, a summarized version following the ODD protocol is added in 

the appendix (Appendix 2) and a full description of the processes, including flow charts, is available 

in the technical appendix. 

The ADAM model is developed to represent the main processes driving agricultural land use change 

(Figure 4.1). ADAM was created through object-oriented programming (OOP, as almost all ABMs 

(Heppenstall et al., 2012)) in Java 1.8-se in the Eclipse IDE. It simulates the number of farmers, the 

size of farms and the corresponding land use at the parcel level, trying to capture the main current 

processes of farms’ abandonment or growth. The model starts from a set of different types of 

farmers that are combined with agricultural parcels to create farms. The farmers and their farms 

have different characteristics, listed in Table 4.1: a farm is of a certain type and is managed by a 

farmer of a certain age. The farm consists of a number of parcels that, combined, form the entire 
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farm and determine its size. The parcels are the agricultural parcels according to the datasets 

collected yearly as required by the EU in order to distinguish, identify and measure the main crop 

production areas in Europe and check the validity of farmers’ applications for EU subsidies. A 

combination of internal (farm size, farm type) and external (market, policies and physical 

environment) properties give the profitability of a farm. For model simplification purposes, farms 

were considered to be involved in only one of the following farming activities: (1) yearly crop 

rotation farming, (2) permanent crop farming, (3) greenhouse farming (4) land-based animal 

farming and (5) barn-based animal farming (The model is driven by the yearly decisions made by 

individual farmers. The decisions are based on a combination of the characteristics of the farm and 

define whether a new farm will be created, whether a farmer continues, stops its activities, or takes 

over an individual parcel or an entire farm. These decisions are steered by external factors such as 

the availability of new agricultural land, employment alternatives and the reference wage in the 

region. Furthermore, the survival threshold for a farm, the characteristics of the parcels, the farmers 

age and the availability of a successor also play a role in these decisions.  

 

Table 4.2). Each farming type was then associated with a specific agricultural land use. The mixed 

farms, being farms that are involved in two or more of farming activities and which consisted of 13% 

of the total number of farms in 2016 (Statistics Belgium, 2018), were reduced to a single activity 

farm by assuming their dominant activity as the single activity. This choice was taken because the 

inclusion of mixed farms would oversimplify the assignment of parcels to farms in this initialisation 

phase, since this would allow to assign almost any parcel to these farms. They would also greatly 

increase complexity in the modelling phase. Furthermore, for Belgium, a continuous decrease in 

mixed farming can be observed with an increase in monoculture farming systems (Statistics 

Belgium, 2018). 
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Table 4.1 – Description of the different characteristics of farms and farmers in the model.
 Variable Description Variable type Update 

Farm type 
Type of farming practice (e.g. 
animal farming, crop farming 
etc.) 

Categorical variable 
related to the type of 
farming practice 

Farm type can change when 
new farmer takes over 

Age of farmer 
The age of the farmer to create 
a population with a 
representative demography. 

Descrete numerical 
variable 

Yearly update, changes when 
farmer is succeeded 

Parcel 
Agricultural parcel managed by 
a farmer, the smallest spatial 
unit present. 

Geographical variable 
(polygon with location 
and size) 

Farmer and type (agricultural 
land use) can change if 
parcels are taken over 

Farm size 
The total farm size managed by 
a farmer, determined by the 
sum of the size of all parcels. 

Continuous numerical 
variable 

Increases when farmer takes 
over other parcels 

 
The model is driven by the yearly decisions made by individual farmers. The decisions are based on 

a combination of the characteristics of the farm and define whether a new farm will be created, 

whether a farmer continues, stops its activities, or takes over an individual parcel or an entire farm. 

These decisions are steered by external factors such as the availability of new agricultural land, 

employment alternatives and the reference wage in the region. Furthermore, the survival threshold 

for a farm, the characteristics of the parcels, the farmers age and the availability of a successor also 

play a role in these decisions.  

 

Table 4.2 – Characteristics of different farm types. 

Farm type Main parcel type Common agricultural product 
Yearly rotating crop 
farmers 

Arable land with temporary 
crops 

Wheat, barley, maize, beets, potatoes, 
rapeseed 

Greenhouse farmers Greenhouses Tomatoes, bell peppers, cucumbers, zucchinis, 
strawberries, flowers 

Barn based animal farmer Barns and cropland Meat (pork & poultry) & eggs 
Land based animal farmer Barns, grassland and cropland Meat (beef), milk 

Permanent crop farmers Arable land with permanent 
crops Apples, pears, cherries 
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Figure 4.1 – Overview of ADAM, including urbanisation. 

In the first phase, the land use of agricultural parcels is changed if spatial information is available 

(urban expansion, nature conservation…). Next, all farmers decide whether they continue or stop 

farming. A farmer stops farming if he retires or dies or if his farm falls below a survival threshold. 

The farms of the farmers that stopped are taken over if the farmer has a successor. Whether or not 

a farm has a successor is stochastically decided (representing the fact of non-rational decisions) 

based on the succession rate in the region combined with the profitability of the farm. Farms 

without a successor are split up and the individual parcels are taken over by farmers in the old 

farmer’s network, provided the agricultural land is suitable for the envisioned farming activities (e.g. 
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fertility, existing infrastructure, local topography, soil characteristics). The farmer’s network is 

defined as the farmers who cultivate the parcels in the vicinity of the parcels of a farmer. The list of 

parcels in the vicinity of a certain parcel are required as an input. Through spatial analysis in GIS, it 

can be determined as a certain (limited) number of nearest parcels or all the parcels within a certain 

distance, whereby the method and parameters are up to the modeller to choose. For the freed-up 

parcels, priority is given to farmers from the same farming type as the quitting farmer or to a farmer 

who can easily convert the parcel to a desired agricultural land use (crop land, permanent crops and 

grassland are easily converted, while greenhouses and agricultural buildings are more difficult and 

costlier to convert). Currently, the price of the land is not included in this step. 

These transformations are part of the last phase of the simulation where the agricultural land use 

is updated. This agricultural land use change can happen through (1) abandonment of unfavourable 

agricultural parcels when no new owner can be found, because the parcel is too far away from other 

parcels, (2) conversion to residential houses of former farm houses, (3) changing cultivated crops 

on arable land stochastically (representing the fact of non-rational decisions) by combining the 

probability of crop rotation cycles combined with expected yields for the area and crop prices and 

(4) converting the land to another type of agricultural land use when a farmer of another type 

acquires the parcel (e.g. through the removal of permanent crops, the conversion to pasture or the 

construction of agricultural buildings). This conversion of the land to another agricultural land use 

is important for the farmer in order to not having to face new investments related to the original 

agricultural land use (Rounsevell et al., 2003) and engaging in different farming activities could lead 

to alienation from the farmer’s social network (Karali et al., 2014, 2013).In order to apply the model 

to a certain region, data is needed on (1) the initial total farmer population, the age of these farmers 

and their farm type (2) the location of all agricultural parcels, the farmer cultivating each parcel and 

the current use and quality of each parcel (3) a list with for every parcel, the parcels in its vicinity, 

and (4) the typical crops or crop rotations present in the area together with their expected yield 

according to the local environmental characteristics. 

Furthermore, other parameters need to be determined, namely, (1) the local average retirement 

age, together with the effective number of retirements at that age, (2) the mortality rate for farmers 

at every age, (3) the age of new-coming farmers, (4) the survival threshold of the farm and (5) the 

chance of succession. 
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4.3 A case study for Belgium 

4.3.1 Study area background 

In this section, the model is applied to the country of Belgium, situated in the centre of Western 

Europe (Figure 4.2). The highest percentages of cultivated areas in the country can be found in the 

central loam belt of the country and the northwest of the country, the Polders (Figure 4.2 & Figure 

4.3). The Polders also has the highest farm density. The Belgian Polder area dates from the Middle 

ages and is, due to its typical heavy soils, more suitable for animal-based farming (grasslands and 

fodder crops). Farms in the north-western part of the country are on average smaller than those in 

the east and south. This is a consequence of the population density before the industrialisation 

period in the south and the lower fertility of the soil in the east and south. Currently, the relation 

between population density and farm size is less prevalent (Van Hecke et al., 2010).  

Belgium has a long agrarian history, shaping the environment for centuries and leading to a great 

diversity of rural landscapes. Ever since the implementation of the Napoleonic inheritance law, heirs 

were to receive equal parts of the inheritance, leading to a strong fragmentation of the agricultural 

land (Mathijs and Relaes, 2012). The lack of spatial planning led to a rapid urban expansion at the 

expense of the countryside, increasing pressure on rural areas and open spaces, resulting in a 

strongly fragmented landscape. Former agricultural lands largely became residential areas, reducing 

space for farmers. The lack of space to grow encouraged farmers to intensify. This allowed them to 

keep earning a living on smaller and more fragmented parcels (Mazoyer and Roudart, 2006; Van 

Hecke et al., 2010).  
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Figure 4.2 – Land use in Belgium according to classification of Corine Land Cover data (Büttner et al., 2014). 

 
Figure 4.3 – Succession rate for agricultural regions in Belgium (Statistics Belgium, 2018). 
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Despite these difficulties, the second half of the 20th century experienced an agricultural boom in 

Belgium as a result of technical progress and mechanization, which increased productivity and 

turnover (Van Hecke et al., 2010). Additional support received through the first Common 

Agricultural Policy (EU-CAP) of the EU also contributed to this boom. In parallel, non-competitive 

and small farmers, unable to keep up with new necessary investments were driven out of 

agriculture. For the farmers that managed to continue farming, the pressure remains: residential 

land remains an attractive economic alternative to agricultural land, competition might further 

increase with the further phasing out of some of the trade barriers by the EU-CAP under pressure 

of the World Trade Organisation (WTO) (Mathijs and Relaes, 2012) and with the further decrease in 

subsidies from the EU-CAP after 2020 (European Commission, 2018e; European Council, 2013). 

Moreover, price fluctuations on the market can have a strong and immediate impact, and stricter 

environmental policies put new constraints on established farming techniques. Additionally, the 

possible role of climate change remains uncertain (Maertens, 2011; Olesen and Bindi, 2002; 

Van Hecke et al., 2000; Van Hecke et al., 2010; Van Passel et al., 2017). This requires farmers to 

constantly adapt and invest thus creating lasting land use changes on agricultural land. This 

continued pressure caused a further decline of farms of 70% between 1980 and 2015, an average 

of 6 farms per day (Statistics Belgium, 2018). A simple linear extrapolation of this trend would imply 

that no more farmers would remain by 2028 (Figure 4.4). Although this linear extrapolation is a 

simplification as the decrease might tail-off, it still gives a general idea on the speed of the decrease 

over the last decades and highlights the urgency of the necessity of a policy change, to curb this 

dramatic decline. 

In contrast, total farmland area has only decreased slightly since 1980, resulting in an increase of 

the average farm size (Figure 4.5). Belgium is dominated by farms focussing on yearly rotating crops 

and herbivore farming. Greenhouse farming, permanent crop farming and non-land-based farming 

are mostly found in Flanders, in the north of the country (Figure 4.6). The greenhouse and non-land-

based farms can be related to the relatively small farms in the north of the country which is a result 

of the high population density, pressure from urban expansion, and the overall historical evolution 

of agriculture. 
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Figure 4.4 – Evolution of the number of farmers in Belgium between 1980 and 2016 and a linear extrapolation of the trend together 
with the trend for regions Flanders and Wallonia from 2000 to 2016 (Statistics Belgium, 2018). A change in the trend can be observed 
after the change in methodology in 2010. 

 
Figure 4.5 – Evolution of the farm size distribution as a fraction of the total amount of farms from 1980-2014 in Belgium based on 
data from the agricultural surveys 2010 (Statistics Belgium, 2018). 
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Figure 4.6 – Number of farmers of each type in Belgium, Flanders and Wallonia 2010 (Statistics Belgium, 2018). 

The sharp decrease in farmers’ numbers and large regional variation, characterized by a diverse 

landscape with diverse farming practices, together with a high competition for space, a high 

participation in the global market and being part of the EU from the very beginning, makes Belgium 

representative for the general trends observed in Western-Europe and an interesting case study for 

the model. 

4.3.2 Data 

Data on the agricultural population was obtained from national agricultural surveys, which were 

collected on a yearly basis from 1970 onwards by the National Institute of Statistics of Belgium (NIS) 

(Statistics Belgium, 2018). The data of the survey of 2000 were used to create a realistic farmer 

population in the initialization phase of the model. The surveys until 2010 were used to calibrate 

and validate the modelled results. 

Agricultural land use data were derived from the Système intégré de gestion et de contrôles (SIGEC) 

and Landbouwgebruikspercelen datasets for respectively Wallonia and Flanders-Brussels which are 

collected yearly as required by the EU (European Commission, 2018a). This yearly collection is done 

in order to distinguish, identify and measure the main crop production areas in Europe and check 

the validity of farmers’ applications for EU subsidies. The dataset contains the agricultural parcels 

as vector data, including the size of every parcel but without any information on ownership or right 
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of use. The combined data for the year 2000 of Flanders, Brussels and Wallonia were used to 

initialize the model. 

Prices on the different modelled crops from 2000 to 2015 were obtained from the Food and 

Agriculture Organization (FAO) dataset on annual producer prices (Food and Agriculture 

Organization, 2019), were converted to real price and were linearly extrapolated based on the 2000 

to 2015 trend. 

4.4 Model initialisation and calibration 

4.4.1 Initialisation 

As discussed in the last part of the methodology section, in order to apply the model, some 

initialisation of data and parameters is needed. The initial total farmer population and farmers’ type 

and age are derived from the agricultural surveys. The location, current agricultural land use, typical 

crops, nearby parcels and crop rotations come from the agricultural parcel dataset. The crop 

rotations were extracted by creating a timeseries for the crops for each parcel in the available years 

for the parcel dataset and defining the probability that one crop is followed by another crop (see 

Appendix 3). These datasets are used to create the initial situation, since no information on the 

individual farmers and which parcels they cultivate is available. The first step in this initialisation is 

the creation of the different individual farmers of a certain age, located in a municipality and who 

will manage a certain farm type with characteristics shown in The model is driven by the yearly 

decisions made by individual farmers. The decisions are based on a combination of the 

characteristics of the farm and define whether a new farm will be created, whether a farmer 

continues, stops its activities, or takes over an individual parcel or an entire farm. These decisions 

are steered by external factors such as the availability of new agricultural land, employment 

alternatives and the reference wage in the region. Furthermore, the survival threshold for a farm, 

the characteristics of the parcels, the farmers age and the availability of a successor also play a role 

in these decisions.  

 

Table 4.2. These different types of farmers currently only serve the purpose of making a distinction 

in the profitability and succession rate between different farming types and the resulting 

agricultural land use. This distinction of farmer types, however, also allows to further refine the 
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decision-making process in the future by adding differences in characteristics and behaviour. van 

Vliet et al. (2015) state the importance of the farmer characteristics when looking into agricultural 

land use change, and processes of intensification and disintensification. They are however found to 

be less important in the decision making process on whether or not a farmer decides to quit (van 

Vliet et al., 2015), and there is currently no data available that could be applied on the national scale 

in order to include this in the model. Once the farmer population is created, each farmer receives a 

first parcel as their home parcel. This parcel contains agricultural buildings according to the parcel 

dataset (or a random other parcel if there are not enough parcels with agricultural buildings). From 

this initial parcel, each farm starts growing by adding an agricultural parcel near the initial farm 

(arbitrarily defined as the 20 nearest parcels) that suit the farmer’s type (barns, grassland, 

greenhouses, permanent crops, arable land). After each iteration, a new random agricultural parcel 

from the list of 20 nearest parcels of all parcels defining the farm, is added to the farm. The 

remaining parcels that could not be allocated to farms through this process, are randomly added to 

a neighbouring farm.  

As mentioned before, apart from the initial dataset, other parameters need to be defined (see last 

part of methodology section). The local retirement age was set to 65, the legal retirement age in 

Belgium. Since many farmers continue farming even after they reach the legal retirement age (one 

third of EU farmers were 65 or older in 2013 (Eurostat, 2015b)), a farmer retires immediately at 65 

if there is a successor. If there is no successor, farmers continue, downsizing the farm in the 

meanwhile by giving up land they lease (about 2/3 of the total farmed area). Since no exact 

information is available on this chance of continuation after legal retirement age, the percentage is 

calibrated in the first model run. The mortality rates were defined using mortality statistics for the 

male Belgian population in 2000, aged 18 to 105, at which point the mortality rate is set to 100%. 

This dataset was chosen since, in Belgium, farmers are still mostly male (85% in 2000 (Statistics 

Belgium, 2018)) and mortality rates differ between sexes at all ages. The age of the newcomer taking 

over a farm is arbitrarily set to a random age normally distributed around 35, with a standard 

deviation of 5 and a lower limit of 18 years (similar to Bakker et al. (2015)). 

For the Belgian case study, it is important to note that population density is high and land is rather 

scarce (Bouchedor, 2017; Mollen, 2018; Mustafa et al., 2018b; Poelmans and Van Rompaey, 2009). 

This results in a high demand for land, and farmland is hardly abandoned. There is almost always 

someone interested in taking over agricultural parcels that become available. If a successor is not 
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found, neighbouring farmers take over the agricultural parcels and the farm house itself is converted 

to residential land use. The long agricultural history resulted in the most fertile lands being 

cultivated, while unfavourable plots have been abandoned. As such, the opening up of new 

agricultural land through for example deforestation, hardly happens in Belgium. Therefore, 

deforestation was not considered relevant and was not incorporated in the model. Furthermore, 

two open unstructured interviews with key experts in the government and the agricultural unions 

revealed that Belgian farmers in general do not quit farming unless they have a successor. When a 

farm is unsuccessful and falls below the survival threshold, farmers continue farming, even if this 

means living in poverty. Hence, the following assumptions were made for the Belgian case: 

newcomers can only enter the system by taking over another farm, a new cultivator can always be 

found for agricultural land that becomes available and a farmer continues farming at least until the 

retirement age, even if the farm is unprofitable. 

In Belgium, no information is available on succession at the farm level from the Agricultural surveys. 

These surveys show however that for farmers over 50 years, only 15 to 16% are sure of having a 

successor, around 50% do not have a successor and the remaining 35% are unsure. These numbers 

vary greatly between agricultural areas, with higher succession certainty in fertile areas like the 

Polders and the Loam area (respectively 19% and 23%) and much lower in less fertile areas like the 

High Ardennes (4% having a successor, 74% having none). The decision for a successor to take over 

a farm was defined through the profitability of the farm. Defining the profitability of a farm requires 

complicated calculations and a large amount of specific information that is mostly unavailable. For 

land-based farming types, the profitability (as defined through the standard gross margins or SGM) 

is strongly correlated to the size of the farm on the municipality level (examples for cropland and 

dairy in Figure 4.7). Even though a linear regression between farm size and profitability is a 

simplification of reality and does not take into account many other factors contributing to the 

profitability of a farm, the slope of a linear regression between the farm size and the profitability at 

the municipality level was used as an approximation to define the profitability on the individual farm 

level (Profitability = farm size * linear regression slope). This profitability, is then compared to the 

profitability of other farms through the mean and standard deviation. The succession probability 

(P(succ)) is defined according to succession probability for each agricultural region (Figure 4.3) 

corrected with a factor depending on the relative profitability (Table 4.3). After discussions with 

experts, this correction factor was based on a discretized logistic curve whereby the most profitable 
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farms see an increase of their survival chance with a factor four, an average farm having a survival 

chance equal to the regional average and farms with a less than average profitability see their 

chances being reduced with a factor 2 to 10. 

 
Figure 4.7 – Relation between average SGM and average farm size for cropland (left) and dairy farming (right) in Belgium on the 
municipality level 2010 in 2006 (Statistics Belgium, 2018). 

Table 4.3 – Relation between the profitability and the succession chance. 

Profitability > (μ + SD * 2.5)  è P(succ) = regionalSurvChance * 4 

Profitability > (μ + SD * 1.5)  è P(succ) = regionalSurvChance * 3 

Profitability > (μ + SD * 0.5) è P(succ) = regionalSurvChance * 2 

Profitability > (μ - SD * 0.5) è P(succ) = regionalSurvChance * 1 

Profitability > (μ - SD * 1.5) è P(succ) = regionalSurvChance * 0.5 

Profitability < (μ - SD * 1.5) è P(succ) = regionalSurvChance * 0.1 

 

For non-land-based agriculture, other factors such as the technological advancement and modernity 

are more important than the size in determining the succession probability. Since no data is 

available on the subject, for these types of farms, the average succession rate in the region was 

used, and farm size was not considered. Hence, for each farm, the probability of having a successor 

was assessed based on a combination of the regional succession probability, the type of farm and, 

in the case of land-based agriculture, the size of the farm.  
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An overview of all the mentioned choices and assumptions can be found in Appendix 4. 

4.4.2 Model calibration 

Most model inputs are derived from empirical data or defined through discussions with experts in 

the field (see above). As previously mentioned, data on the retirement probability after passing the 

legal retirement age (65) are not available, making it the only parameter requiring calibration. In 

order to calibrate this percentage, the model was run for Belgium for yearly retirement percentages 

ranging from 10 to 30%. The yearly predicted results for the farmer population aged 65 and older 

between 2000 and 2010 were compared to the observed values from the Agricultural Surveys 

(Statistics Belgium, 2018) for half of the municipalities (the other half was used to validate the 

results). Results from after 2010 are available but from 2011 onwards, farmers could choose to be 

registered collectively in the survey. This option was given in order to simplify administrative work, 

but has led to a direct decrease of the number of farmers and increasing the average farm size, 

which is derived from the number of farmers (Platteau et al., 2014). This change in methodology 

makes the comparison between observations and predictions difficult from 2011 onwards. 

The predicted and observed data were evaluated by the means of a relative root mean square error 

(RRMSE): 

𝑅𝑀𝑆𝐸 =	C
1
𝑛E(𝑚G − 𝑜G)J

K

GLM

 

𝑅𝑅𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐸	 × 	
100%
𝑜PQRK

 

with n the number of observations, mi the modelled value, oi the observed value and omean the mean 

of the observed values. The RRMSE gives insight on the difference between modelled and observed 

values, the lower the RRMSE value, the better the model performs. The model run with a retirement 

percentage of 14% was found to produce the lowest RRMSE (2.54%, Figure 4.8). This retirement 

probability was therefore used for subsequent simulations. 
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Figure 4.8 – Calibration through the RRMSE for different percentages of farmers retiring after they passed the legal retirement age. 

4.5 Results and discussion 

4.5.1 Farmer population validation 

The initialisation phase resulted in a farm size distribution comparable to the farm distribution in 

Figure 4.5 for 2000, with an overestimation in the smallest category and an underestimation in the 

category 5 to 10 ha. The reason for the initial underestimation is linked to the organic growth of 

farms in the initialisation phase, that does not take the farm size distribution into account. Adding 

this in the initialisation phase would greatly increase complexity due to the requirement of having 

to comply with a type as well as a location and a size restriction and possible making it unsolvable. 

The model was furthermore validated by comparing, for the other half of the municipalities (see 

calibration), the predicted number of farmers for the time period ranging from 2000 to 2010 with 

observed data from the agricultural surveys (Statistics Belgium, 2018) by means of the RRMSE. For 

the evolution of the total number of farmers in Belgium between 2000 and 2010, an RRMSE of 4.77% 

was obtained. These are promising results at the level of the entire Belgian farmer population, but 

possibly conceal discrepancies at the more detailed level of the municipality. 

A municipality level comparison between observed and predicted number of farmers in 2010 after 

100 model runs results in an RMSE of 11.2. The observed versus predicted evolution of the number 

of farmers between 2000 and 2010 at the municipality level, results in an RMSE of 13.2%. Figure 4.9 

visualises the different over-and underestimations in the evolution of the number of farmers. 

Highest underestimations (i.e. observed decrease is higher than modelled decrease) can be found 

in the highly urbanised central north of the country and around the city of Liège, underestimations 
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in the south of the country show a more randomised pattern. Overestimations (i.e. the observed 

decrease is lower than the modelled decrease) are rarer. 

The underestimations in the municipalities in the north and around Liège can most likely be 

explained by the fact that these municipalities are under pressure of urban expansion, being located 

in the most urbanised parts of the country (see Figure 4.2). This urban expansion decreases the 

amount of available agricultural land and as such might make farms smaller (relative to other farms 

in the region) and therefore less interesting for succession, but is currently not incorporated in the 

model. The proximity of larger cities might also provide alternative jobs for possible successors, 

making it harder for farmers to find one. Furthermore, urban expansion may complicate farming 

indirectly by making some parcels less accessible and through extra regulations to manage negative 

externalities (for example slow traffic, noise and smells)(Delbecq and Florax, 2010). 

Data for validation of the farm types are not available in 2010, this parameter was only included in 

the surveys of 2006 and 2016 (see part 4.4.2). 

 

Figure 4.9 – Average difference between observed and predicted percentage of farmer decrease between 2000 and 2010 after 100 
model runs. 
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4.5.2 Agricultural land use validation 

The average percentage of each agricultural land use of the modelled output for 2018 after 100 runs 

(Table 4.4), is similar to the data found in the agricultural survey (for cropland, grassland, permanent 

crops and greenhouses) and the cadastral data (agricultural buildings).  

For the different crops that are being modelled within the cropland class, a difference with the 

observed crops for 2018 (agricultural survey) can be observed. Rapeseed, sugar beet and maize are 

overestimated, while grains, and potatoes are underestimated. A mapping of the most occurring 

crop on each parcel (the mode) in 2018 after 100 runs is visualised in Figure 4.10. These maps show 

very similar results to the observed spatial distribution of crops in Belgium (Figure 2.8). The 

overestimation of rapeseed, is mostly focussed in the west of the country (West Flanders), where, 

at the same time, potatoes are underestimated. This can be explained when looking at the average 

yield in West Flanders combined with the average producer price (2013-2018) for these crops. For 

rapeseed an average of 5.1 ton/ha is to be expected in West Flanders (data from CARAIB (Jacquemin 

et al., 2017), see Chapter 2), while for potatoes this is 3.6 ton/ha. The prices for both crops between 

2013 and 2018 average 218 and 135 euro respectively, resulting in an average of 1121 EUR/ha and 

490 EUR/ha . This is not the case in the rest of the country (see Appendix 5). 

Given the simplicity of the crop decision module (based on yield, market price crop rotation and a 

stochastic factor), the found differences are to be expected and can be considered as acceptable. 

Especially since the different data sources on agricultural land (the land register, the ICAS data and 

the agricultural survey) lead to different results, since they are made with different purposes in 

mind. Agricultural LUC models have also shown to have greater amounts of uncertainty in 

comparison to other LUC models (Alexander et al., 2017). 

Table 4.4 – left: The observed compared to the modelled percentage of agricultural land use for 2018 and right: the observed 
compared to the modelled percentage of different crops in the cropland class. 

 
Observed Modelled   Observed Modelled 

Cropland 50.15% 49.34%  Grains 19.73% 14.19% 

Grassland 42.04% 42.19%  Maize 15.75% 17.36% 

Permanent crops 1.61% 0.99%  Sugar beet 5.50% 9.16% 

Greenhouses 0.20% 0.17%  Rapeseed 0.99% 3.88% 

Agricultural buildings 2.30% 2.67%  Potatoes 8.18% 4.75% 
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Figure 4.10 – Most frequently modelled agricultural land use per parcel for 2018 after 100 model runs. 
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4.5.3 Simulations of a business-as-usual scenario until 2030 

After calibration and validation, the model was run from 2013 until 2030 under a business-as-usual 

(BAU) scenario, under the assumption that current conditions and trends in agriculture would 

continue in the future. The simulations show that the number of farmers keeps decreasing and that 

the average farm size continues to increase with small farms leaving the system, by being taken over 

by bigger farms.  

These trends differ throughout the country. Results on the aggregated level of the municipality 

show that the percental decrease in number of farms is the lowest in the central part of the country 

and in the loam region (Figure 4.11). The relative size increase is the largest in the south and the 

central west part of the country. These results can be expected when comparing them with the 

average succession rate in Belgium for each agricultural region (Figure 4.3), to the percentage of 

farmers over 55 years old (Figure 2.16) and farmers over 50 years old without successor (Figure 

2.17). This is especially clear for the central south of Belgium (the most fertile part of the country, 

with the largest farms), where the succession rate is relatively high and the central west, with a 

relatively old farmer population and low succession rates.  

The spatial variation in relative increase in farm size, can largely be explained by the current farm 

sizes in these areas, which have the largest relative growth capacity. The projected change in 

agricultural land use for 2030 is minimal, with almost all changes in agricultural area per land use 

type being less then 5% and often less then 1% (see Appendix 6). 

Farmer decrease (2013-2030) Average farm size increase (2013-2030) 

  

Figure 4.11 – Percental decrease in farmers (left) and increase in farm size (right)between 2013 and 2030 as the result of 100 runs of 
the model until 2030  
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4.5.4 Discussion 

Ever since the start of the collection of farm data through agricultural surveys a continuing trend of 

farmers decrease and farm size increase is observed, together with a decrease in mixed farming and 

an increase in monoculture farming systems (Statistics Belgium, 2018). The most important driver 

of this change is the competition between farmers on the local and global level, requiring ever 

increasing intensification, rationalization and growth. 

The results from these BAU scenarios indicate that farm size will continue to increase, with small 

farms disappearing, confirming the trend of growth for survival that is mentioned by Mazoyer & 

Roudart (2006). The disappearance of the small farms can lead to more personal dramas in farmer 

households that often have been living in hidden poverty for many years. The Belgian society could 

anticipate these changes by offering socio-ecological pathways out of their lock-in situation. The 

activation of local farming and local food systems could reduce the necessity to increase farm size 

in order to stay competitive in a global market. 

Furthermore, this growth will lead to larger farms, sometimes creating larger parcels whereby parcel 

boundaries might disappear as a successful farm takes over an adjacent parcel. This upscaling will 

lead to a decrease in the landscape diversity (Björklund et al., 1999; Harms et al., 1984; Ihse, 1995; 

Poudevigne and Alard, 1997) and ecological value (Benton et al., 2003; Marshall and Moonen, 2002; 

Stoate et al., 2001). In current debates on the importance of ecology, ecosystem services and 

climate mitigation, these changes in landscape caused by current trends in agriculture, require an 

increased interest from policy makers and the creation of tools that allow the evaluation of different 

options in policy. 

Our results demonstrate that ADAM is able to simulate the evolution of a farmer population (with 

differences in prediction mostly under 10%) and the agricultural land use. The modelled farmer 

population and its evolution reproduces the observed trends and simulates a reliable agricultural 

population, making the model promising for use in future agent-based simulations of agricultural 

dynamics.  

Running the model until 2030 under a BAU scenario shows the expected increase in average farm 

size throughout the country. Although the largest relative growth is expected in the north west of 

the country, the largest farms can still be found in the southern part of Belgium. This is due to the 
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lower fertility of the soil, which historically already led to an on average larger farm size and still 

today results in an on average lower succession rate (Figure 4.12), ultimately leading to less farms 

being continued and a further growth of the remaining farms. 

 
Figure 4.12 – Percentage decrease of farmers between 2015 and 2030 and the succession rate used for each agricultural region. 

The model currently uses only a limited number of farming types: yearly crop rotation farming, 

permanent crop farming, greenhouse farming and land-based and non-land-based animal farming. 

In reality however, some farmers perform agricultural side activities, while others have two or more 

main activities and are categorized as mixed farms in statistics. Ignoring the reality of mixed farming 

is another constraint of the model, which might need to be addressed in a next version. 

Furthermore, results for the agricultural land use could be further refined by improving the farmers 

decision making process by adding more differences in characteristics and behaviour. A broader 

range of farming types and greater detail on the agricultural land cover could provide more insights 

into the impact of the agricultural evolutions on ecosystem services related to agriculture. 

Although the loss of agricultural land is limited (4% between 2000 and 2014), results show that local 

losses of agricultural land due to urban expansion are not negligible and must be included to 

improve the results of the model. Currently, a parcel containing the farm and the home of the 

farmer is no longer considered to be agricultural land but becomes a residential parcel and leaves 

the system. This type of urban expansion does not grasp the full reality of the resulting loss of 

agricultural land. At the same time, this transformation from a farm to a residential home does not 
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always match reality. Recently these farms have gained the interest of a new type of farmer, i.e. the 

peri-urban farmer, who produces for (and with) the local community. These farmers are interested 

in farms close to urban centres (Danckaert et al., 2010). Although this is a recent and still relatively 

small trend, it might nevertheless be important in the process of urban expansion at the expense of 

agricultural land. Another interesting phenomenon is the usage of peri-urban farm land for horses 

by non-farmers. These parcels are also considered to no longer be available for commercial farming. 

The current agricultural land use change, (when a different farmer type than the previous takes over 

an agricultural parcel) does not consider the impact of land ownership versus rented land, even 

though this might hinder the farmer to alter the agricultural land use. In Belgium, only about 37% 

of land is owned by the farmer himself. This might have an impact on the agricultural land use 

change as it is currently presented in the model. During the rental period of the land, the renting 

farmer is however, protected by laws that allow farmers to have a long-term strategy for the land 

and their farm. 

The aim of creating an agent-based model at the country scale, often with a limited amount of 

information, required a simplification of the decision-making process of the agents. This is because 

insights gained on agricultural decision making processes by previous studies (Bakker et al., 2015; 

De Lauwere, 2005; Fontaine and Rounsevell, 2009; van Vliet et al., 2016; Verburg et al., 2002), are 

often difficult to apply at country scale. This model framework, however, allows to create a more 

detailed decision-making process when more information is available.  

To summarize, ADAM allows to simulate the evolution of a farmer population. In further research, 

the model can be used under different scenarios and therefore evaluate the effects of different 

policies, different economic view-points, and a changing climate on different regions. For example, 

ADAM could be used to investigate the changes in expected yield as a consequence of different 

climate change scenarios, or the effect of subsidies on crop prices and to look on the effect these 

have on the decision-making process of the farmer. Another question that can be investigated by 

the model is how the farmer population reacts to changes in the legal retirement age or in changes 

in farmer subsidies, impacting the expected profitability of different farming types. 

Despite the fact that ADAM can adequately simulate the evolution of a farmer population, 

improvements can still be made. This could be achieved by refining the farmers’ behaviour together 

with the farms’ typology (e.g. eco-farming and peri-urban farming). Additionally, further including 
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regional differences, and including the impact of urban expansion on the availability of agricultural 

land would further improve the model.  

4.6 Conclusion 

In this paper, the agent-based model ADAM was presented. ADAM simulates the evolution of a 

farmer population at country scale, capturing basic farmer’s decision-making at the agent level, 

resulting in a comparable agricultural land use distribution. Thereby ADAM transcends the statistical 

level. As such, this research shows that it is possible to create ABMs simulating real-world situations 

at the country level. 

The study showed that ADAM performs less well in more densely populated communities. This can 

be explained by the fact that part of the municipalities with higher population densities are under 

pressure of urban expansion, especially municipalities located near large cities, but also by the fact 

that municipalities with higher population densities have less available room for agriculture, making 

the farms on average smaller and so more likely to disappear. Urban expansion thus leads to more 

rapid farm abandonment than expected. To address this issue, it would be useful to incorporate 

data on urban expansion in the model, to see what the effect is on the farms and farmers. 

ADAM was developed as a simple model that captures the main processes driving agricultural land 

use change while excluding other relevant but small-scale processes such as the emergence of urban 

farming and horsification. ADAM is capable of adequately simulating an agricultural population, 

useful for further application in agent-based simulation of agricultural land use change. The model 

is capable of creating farms that evolve over time, outputting information on which agent manages 

a certain piece of land. As such, ADAM can be used to investigate the impact of different scenarios 

on the farm evolution and therefore on the profitability and succession rate of a farm. Increasing a 

farm size for economic reasons (e.g. as a consequence of the reduction of gross margins) is thought 

to be valid within a broad international context. Since the model uses data sets that are required 

for EU-reporting, the model can be applied in other EU-countries. The application in other countries 

will depend on local data availability. Evidently, many assumptions and parameters in the present 

model application for Belgium are region-specific. Application in other countries would require a 

recalibration and possibly a re-evaluation of certain assumptions made on farm succession, land 

availability and land abandonment.
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Chapter 5 The impact of urban expansion on agricultural 

dynamics  

This chapter is under review as: Beckers V., Poelmans L., Van Rompaey A., Dendoncker N. (2019). The impact of urban expansion on 
agricultural dynamics: a case study in Belgium, Journal of Land Use Science. 

5.1 Introduction 

Early European farmers created their first settlements on fertile lands. The most fertile areas 

prospered, flourished and gave rise to historical cities. Through time, many of these cities continued 

to grow under an increasing population, resulting in many of the largest cities being built and 

expanding on the most fertile lands, with often a continuation of this urban growth until today (Du 

et al., 2014; van Vliet, 2019; van Vliet et al., 2017). As such, farmers close to city centres have often 

been under pressure of urban expansion. Specifically for Europe this has led to a majority (64%) of 

regions either having a combination of land highly suitable for agriculture and a high degree of 

urbanisation or with low suitability for agriculture and low degrees of urbanisation (Primdahl et al., 

2013). During the last decades, the transformation of Western European landscapes has mainly 

been characterised by an expansion of the built-up area at the expense of fertile arable land and 

natural areas. The loss of these lands under urban expansion has had important environmental and 
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socio-economic impacts (Frumkin, 2016; Johnson, 2001; Lambin et al., 2001). It is expected that 

urban expansion will continue in the near future (Rounsevell et al., 2006) with an increase from 

2.06% of ice-free land being urbanised in 2000 to an estimated 4.71% by 2040 (van Vliet et al., 2017).  

Several studies (Archer and Lonsdale, 1997; Cabus and Vanhaverbeke, 2003; Delbecq and Florax, 

2010; Livanis et al., 2006; López et al., 2001; Lopez et al., 1988; Verhoeve et al., 2015; Wu et al., 

2011) have also shown that the impact of urban expansion on farming practices goes beyond the 

simple conversion of farming land into urban area. For example Delbecq and Florax (2010) show 

that the increasing land rent at the urban fringe attracts speculators that buy farming land not for 

farming but as a strategic investment, anticipating future land development possibilities. This 

typically leads to an increase of the set-aside land in the urban fringe. Furthermore, the farming 

land in the urban fringe receives the attention of urban dwellers who want to use the open space 

for leisure activities such as hobby farming, horse keeping and riding. Bomans et al. (2011) indicated 

that circa one third of the grassland in the northern part of Belgium (Flanders) is now being used for 

hobby horse keeping and horse riding, a phenomenon referred to as ‘horsification’. Another factor 

is that the high rent and the lack of space in the city centres pushes away some industrial and 

commercial activities for which a new location is found on peri-urban farmland. Verhoeve et al. 

(2015) made an inventory of non-farming use of farms in Flanders and came to the conclusion that 

in the last two decades about 20% of the farms were being used for other activities such as the 

storage of building material, garages for car repair, restaurants and catering, wellness centres and 

farm tourism. 

Finally, the nearby presence of a city stimulates in some cases the development of alternative 

farming practices such as ecological farming, short supply chain farming, collective farming and self-

harvest farms (Renting et al., 2003). 

The above mentioned developments in the urban fringe will lead in the coming decades to a 

complete transformation of the peri-urban landscapes and are expected to have important impact 

on both the biophysical and social environment (Cabus and Vanhaverbeke, 2003; Power, 2010; 

Stoate et al., 2001; Zhang et al., 2007). Not surprisingly spatial planning in peri-urban areas is 

receiving increasing attention from policy makers and land managers (Departement Ruimte 

Vlaanderen, 2017; SPW, 2018). At present, however, a sustainable spatial planning of the rural-
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urban fringe is hampered by the lack of integrating theories and integrated models that allow to 

evaluate the impact of possible policy interventions (Meyfroidt, 2013).  

This can partially be explained by the fact that rural studies and urban studies have been clearly 

distinct academic fields that have evolved differently, neglecting the increasing spatial interactions 

between rural and urban. Some rural-urban interactions models were developed (Fontaine and 

Rounsevell, 2009; Rounsevell et al., 2006, 2005; Spangenberg et al., 2010; Valbuena et al., 2010; 

Verburg and Overmars, 2009; Westhoek et al., 2006), but many of them do not go further than a 

simple land take procedure in which urban expansion eats away existing farming land.  

The aim of this chapter is to assess both the direct and indirect impacts of urban expansion on the 

agricultural population in the urban fringe. For this assessment a rasterized land use model 

describing the urban expansion processes and its related land use changes is coupled with an agent-

based model simulating the decisions of individual farming households. The model is run for a set 

of different storylines for future urban development until 2035. Belgium was selected as a case 

study because the country is characterized by a strong urbanization, with a gradient from the centre 

towards the periphery and a long agricultural history. Firstly, the study area and its farming practices 

are described. Secondly, the modelling approach is presented in relation to the study area. Finally, 

the model is used to simulate the future of farming practices in a business-as-usual scenario and 

two contrasting policy scenarios. 

5.2 Study area 

Belgium is situated in the densely populated region of Western Europe (Figure 5.1) with an average 

population density of circa 370 inhabitants per km2. The areas with the highest presence of 

agriculture can be found in the centre of the country (the Loam region) and the northwest of the 

country (the Polders) (Figure 5.1). Most cities in Belgium date back to the Middle Ages, but only in 

the 19th century the first important urban expansion took place under the influence of the 

developing industries and trade. At this point, cities were mostly still clearly delineated from the 

surrounding land. Increasing urban population first led to a more compact housing, but from the 

second part of the 19th century, urban expansion started to spread out past the initial city 

boundaries. Increasing urban mobility (e.g. trams) allowed a further expansion of cities. At the same 

time, the richer upper class started escaping the busy unhealthy city centres, moving to the greener 
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countryside. After World War I, the population density in the historic cities started to decrease, with 

people moving to the suburban areas. After World War II, the delineation between cities and their 

surroundings became less and less clear: the lack of spatial planning, together with increasing 

mobility options and policies promoting home ownership, resulted in a further urban expansion 

towards the countryside. The result is a strongly fragmented landscape (Paredis, 2015; Van Hecke 

et al., 2010). Together with this direct effect of urban expansion on the available agricultural land, 

there is also the indirect effect of losing the exclusive use of agricultural lands by farmers. 

Agricultural lands became increasingly used for other services, such as horse-riding or residents 

enjoying a rural lifestyle (Bomans et al., 2011; Primdahl et al., 2013). For Flanders for example, this 

leads up to 15% of designated agricultural area not being used for commercial agriculture (Verhoeve 

et al., 2015). The different evolutions in agriculture, urban expansion and forest dynamics led to the 

current land use configuration in Belgium, with a highly urbanised and fragmented landscape, 

especially in (but not limited to) the northern part of the country (Figure 5.2) and also had its impact 

on the agricultural landscape. The agricultural landscape in Belgium is dominated by cropland and 

land-based animal farming. However, a combination of historic, traditional and environmental 

factors led to a spatial differentiation of the farming practices in the country. In regions with a 

relative high population density, labour-intensive farming practices such as greenhouse farming and 

barn-based animal farming were further developed, resulting in relatively small farm sizes. 

Rotational crop farming and land-based cattle farming, which are associated with large farm sizes, 

are relatively more present in regions with a lower population density (Van Hecke et al., 2010).  

Despite governmental efforts to put a halt to the further urban expansion at the expense of the 

countryside (e.g. the ambition to not take up any more open space in Flanders by 2040 

(Departement Ruimte Vlaanderen, 2017) and in Wallonia by 2050 (SPW, 2018)), urban expansion 

and landscape fragmentation is still ongoing in Belgium (Crols et al., 2017; Mustafa et al., 2018a; 

Poelmans, 2010). In the period 2000-2015 the built-up area in Belgium increased with more than 

11%, mainly in the form of ribbon development in the peri-urban zone (Statistics Belgium, 2015). 

The ongoing urban expansion creates an extra challenge for farmers, which are already under 

pressure because of (1) the increasing international competition in a globalized market with lower 

margins and (2) stricter environmental policies resulting in new rules and regulations for the farm 

management (Maertens, 2011; Mathijs and Relaes, 2012; Van Hecke et al., 2000; Van Hecke et al., 
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2010). As a result, relatively few Belgian farmers find a successor when they reach their retirement 

age. 

Figure 5.2 shows that the present-day succession rate is in most cases lower than 30%. Especially in 

the less fertile parts of the country on the sandy soils in the north (Campine and Sand area), and the 

shallow soils in the south (Condroz, Fagne-Famenne and Ardennes) the number of farmers has been 

decreasing significantly. At national scale the number of farmers decreased by 70% in the period 

1980-2015. Figure 5.3 shows that, over the same period, the area of agricultural land did not 

decrease at the same rate as the number of farmers, resulting in an average increase of the farm 

size.  

5.3 Data & methodology 

In order to evaluate the impact of expected future urban expansion on farming practices in the peri-

urban and rural settings of Belgium, a two-step methodology was developed. Firstly, existing 

qualitative storylines on the future of urban expansion and farming in Belgium were explored. 

Secondly, three storylines were selected and downscaled to quantify the impact of urban expansion 

on the level of individual farms. This is done by combining the urban expansion from a cellular 

automata land use change model and an agent-based model to model the individual farms. 

 
Figure 5.1 – Population density by NUTS3 region in 2015 and percentage of agricultural land by NUTS2 region in Western Europe 
(European Commission, 2018b) 
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Figure 5.2 – Dominant land use in Belgium based on Corine land cover data (left) (Büttner et al., 2014) and agricultural regions in 
Belgium with the average farm succession rate (right)(Statistics Belgium, 2018). 

 
Figure 5.3 – Evolution of the number of farmers and farm size (left) and evolution of the relative proportion of different farm sizes in 
2010 (right) (Statistics Belgium, 2018). 

5.3.1 Storylines on urban expansion & farming 

The storylines used to create the scenarios were based on the family of storylines created in the 

“Welvaart en Leefomgeving” project of the Dutch Planning Bureaus (CPB, MNP, RPB, 2006). The 

starting point of the storylines from the Dutch Planning Bureaus were two key uncertainties for the 

future in Europe: the level of international cooperation and the direction of institutional reforms 

(Lejour, 2003). Variations in these uncertainties led to the creation of 4 storylines: the Strong Europe 

(SE) storyline (high international cooperation, high importance of public institutions), the Global 

Economy (GE) storyline (high international cooperation, focus on private initiatives), the Regional 

Communities (RC) storyline (low international cooperation, emphasis on public institutions) and the 

Transatlantic Market (TM) storyline (low international cooperation, prominence of private 

initiatives). Even though these storylines are already relatively old, they are still relevant because of 

their explorative character, without the ambition to be predictive.  
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From the set of storylines described above, two contrasting storylines were selected: the GE and 

the RC storyline. The GE storyline assumes a further urban expansion, increased global competition 

and reduction of regulations from the EU-CAP to control agricultural supply and demand. The RC 

storyline assumes a slowing down of the urban expansion rate through a strong regulatory 

framework and the focus of the EU-CAP on subsidies to small, local and organic farms. These 

storylines were complemented with a Business-as-usual (BAU) storyline, developed by Engelen et 

al. (2011) for the Flanders region. The BAU-storyline was based on a continuation of current trends 

of population growth and changes in population densities combined with a continuation of the 

current spatial policy and no changes in agricultural policies on the local level or in the EU-CAP. The 

assumptions behind these 3 storylines were translated into expected impacts on urban expansion 

in the Belgian context in the BELSPO Growadrisk project (Verbeiren et al., 2013). For this study, they 

were combined with expected impacts on farming. An overview of the main characteristics for each 

storyline is shown in Table 5.1. 

Table 5.1 – Overview of the different storylines and their impacts based on the WTO storylines (CPB, MNP, RPB, 2006) that were 
translated to the Belgian case by Engelen et al. (2011) and in the Growadrisk project (Verbeiren et al., 2013) and combined with the 
expected impact on farming in this study. 

Storyline General assumptions Impact on urban 
expansion Impact on farming 

BAU 
Continuation of current trends of 
population and employment growth 
and current (spatial) policies. 

Continued growth, 
continuing urban 
expansion. 

Continuation of current trends, with 
same subsidy levels 

GE 
Economic growth with decreased 
trade barriers. Liberal market with 
little political interference. 

Strong urban expansion 
due to little spatial 
planning. Increased 
competition. 

Increased competition in a global 
market due to the removal of trade 
barriers and decrease in subsidies 
received via the EU-CAP. 

RC 
Reduced international trade, focus 
on social and environmental 
measures at a regional scale. 

Reduced urban 
expansion. 

Small local organic farms are 
encouraged and subsidised through 
the EU-CAP and farmers focus on 
short chain markets. 

Finally, the resulting land demands were used as an input to drive the constrained cellular automata-

based land-use model (CCA-model) developed by White et al. (1997). The CCA-model was based on 

three hierarchically embedded levels: (1) the macroscopic level, represented by the country level in 

the applied model, (2) the regional level, represented by the 49 EU-NUTS3 entities in Belgium, and 

(3) the local, cellular level, consisting of a matrix of individually modelled cells with a 1 ha resolution 

(Figure 5.6). These cells represent the dominant land use at a 1 ha resolution. For every 1 ha cell the 

model calculated the transition potential to all possible land use categories in yearly time steps. The 

transition potential was determined by (1) the cell’s current land use, (2) the land-use categories in 

the neighbourhood of the cell, (3) a number of cell-specific properties, such as the physical 
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characteristics (defining the suitability for each land-use type), the accessibility and the zoning 

status (based on spatial planning documents), and (4) a stochastic factor (representing the fact of 

non-rational decisions) (see Chapter 3). Each time step, for each cell, the land use class with the 

highest transition potential was assigned. This process was constrained by the regional land demand 

(at the NUTS3-level) for each land-use category. This means that once the land demand for a certain 

land use category is met, the land-use category with the second highest transition potential is 

attributed to a cell, and so on. A more detailed description of the CCA-based land-use model can be 

found in Chapter 3 and in White et al. (2015) and (Engelen et al., 2011).  

The outputs of the land-use model consist of land-use maps in a raster-GIS format with a spatial 

resolution of 1 hectare and a temporal resolution of 1 year. For this study, the model was run from 

2013 until 2035, so yearly outputs for the period 2013-2035 are available. The results on urban 

expansion will be used as input in the agent-based model in order to evaluate the impact of urban 

expansion on the farming practices. The land-use model for all the scenarios show an increase in 

urbanised area in Belgium by 2035: + 14.3% of the area of urban land for BAU, +16.1% for GE and 

+3.3% for RC (Figure 5.5).  

 
Figure 5.4 – Expectations for population and employment in commerce, services and industry until 2035 under different storylines 
(Verbeiren et al., 2013). 
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Figure 5.5 – Change in area for each type of land use for the three storylines between 2013 and 2035 (Verbeiren et al., 2013). 

 
Figure 5.6 – Different levels in the cellular automata land use change scenario modelling: the general trends are defined for the entire 
study area (the global level), they are translated to specific land demands at the regional level (49 NUTS3 regions), which are used to 
constrain the land use change at the local level (1ha cells). 

5.3.2 Spatial downscaling of the impacts on farming 

Agent-based models (ABMs) allow looking into the evolution of a population at the level of the agent 

in a spatially explicit way (see Chapter 3 and Chapter 4). These models define autonomous decision 

making objects, called agents, which act and react to the environment and to the actions of other 

agents, allowing the representation of the decision-making process of these agents in relation to 

changes (Bousquet and Le Page, 2004; Parker et al., 2002a, 2002b, 2001). 
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The agent-based model ADAM (Agricultural Dynamics 

through Agent-based Modelling) that simulates, on a 

yearly basis, the decisions of the farming population of 

a whole country (Chapter 3 and 4) is adapted to 

analyse the impact of urban expansion (Figure 5.7). 

The demographic component of the model updates 

the age of the farmers, leading to a possible retirement 

or decease with or without a successor for the farm. 

Whether or not a successor is present depends on the 

farm characteristics: the farm size and type and the 

characteristics of its parcels. In the case where no 

successor is found the parcels of the farm are 

abandoned or taken over by neighbouring farms 

(Chapter 3 and 4). 

In this study, 5 different farm types were considered: 

(1) yearly rotating crop farmers, (2) permanent crop 

farmers, (3) greenhouse farmers, (4) land-based 

animal farmers and (5) barn-based animal farmers. 

Each of them has different characteristics in terms of 

profitability, dependence on soil type, and minimum 

size to survive (Chapter 4). 

After the initialisation of ADAM (a parcel-based 

vector model, see Chapter 3 and Chapter 4), the 

model is coupled with yearly land-use maps on urban expansion produced by the CCA LUC model 

(raster model with a spatial resolution of 1 ha, see Chapter 3), to consider the direct and indirect 

impacts of urban expansion as follows: 

1. The direct loss of parcels was included by considering an agricultural parcel as urbanised and lost 

for farming when it has a 25% overlap with an urbanised raster cell from the land use change 

scenario (Figure 5.8). As a result, the farm size of affected farmers is decreasing, resulting in a 

Figure 5.7 – Overview figure of ADAM adapted to include 
urbanisation. 
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lower profitability for their farm. An overlap threshold of 25% was chosen since this value resulted 

in the best correspondence with observed decline in agricultural area in the period 2000-2010. 

The land lost can thus only be compensated when other land in the area becomes available from 

other farmers quitting. 

2. The indirect impacts of urban expansion on farming activities were taken into account by 

considering the isolation of farmland due to fragmentation of the landscape. When a farmland 

parcel was disconnected from other farmland because of urban expansion, the parcel was no 

longer considered to be profitable for commercial farming and withdrawn from the model’s 

simulation. These parcels were then assumed to be used for non-commercial farming activities 

such as hobby farming, horse keeping or other leisure activities. A parcel is considered to be 

disconnected if no other farmland parcel is present in a radius of 1 km or when the 20 nearest 

neighbours is urbanised.  

3. The impact on farming activities as assumed under the different storylines (BAU, RC or GE) were 

included. This was done because policy measures such as direct subsidies or possible price 

interventions directly affect the profitability of farms and therefore their survival chances.  

• For the BAU-storyline the assumption was made that the profitability of the farms (based on 
the combination of farm type, farm size and farm location; see Chapter 3 and the technical 
appendix) will not change and that current trends will persist. 

• The GE-storyline assumed a general decrease of profitability of 10% for land-based farming 
and 10% decrease in succession chance for non-land-based farming, caused by an increased 
competition in a more globalized market that results from a removal of trade barriers and a 
decrease in subsidies. These subsidies form an important component of the total income of 
Belgian farmers: According to an assessment of the EU circa 30% of the income of Belgian 
farmers in the period 2011-2015 came from subsidies of which 25% in the form of direct 
payments (European Commission, 2017). Since this scenario assumes a decrease in subsidies 
and not a complete abolishment, a decrease of 10% in general profitability was assumed. 

• The RC-storyline assumed an increase of the agricultural subsidies oriented towards land-
based farming with a below-average profitability. In this storyline small local organic farms 
are seen as an important asset, they are encouraged and subsidised by the government and 
are able to increase profits due to short chain markets (Pearson et al., 2011) and a higher 
appreciation from customers (Crowder and Reganold, 2015). This assumption was 
implemented by raising the profitability of the small land-based farms, being farms with a 
below average profitability, by 20%. Non-land-based farms, which are considered as not 
environmentally friendly in this storyline, do not receive subsidies. 
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Figure 5.8 – Combining raster-based scenarios with the parcel-based ADAM. 

5.3.3 Model initialization 

The model set-up as described above requires a database with the location of all farms and their 

parcels, the farm type and the age of the farmer. The available Belgian agricultural census data 

(Statistics Belgium, 2018) do not reveal these data at the level of individual farmers due to privacy 

regulations. Therefore, the data available at municipality level was downscaled to simulate a 

realistic farming population and their corresponding farm structure. 

The number of farmers per farm type and their age structure at municipal level was extracted from 

the agricultural surveys of 2013 and 2016 (Statistics Belgium, 2018). This dataset was combined with 

agricultural parcel databases from 2013 (Landbouwgebruikspercelen dataset for Flanders and the 

Système intégré de gestion et de contrôles (SIGEC) dataset for Wallonia (European Commission, 

2018a)). These databases contain information in a vector-GIS format with the location and shape of 

individual farmland parcels. 

Both datasets were combined by assigning parcels from the parcel map to the individual farmers in 

the municipality (or a neighbouring municipality) based on the farm type. The result of this 

procedure is a farmland distribution that is not the exact farmland distribution but realistic and 

suitable for model simulations. 

5.4 Results 

5.4.1 Simulated urban expansion patterns for 2035 

Figure 5.9 shows the expected spatial pattern of urban expansion for the surrounding area of three 

medium sized cities (with each around 100.000 inhabitants) in Belgium: Namur, Leuven and 

Mechelen. The BAU and GE scenarios show the largest level of urban expansion with a diffusion  
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Figure 5.9 – Urban land use for 2013 (grey) and newly urbanised cell in 2035 (red) for all the scenarios for 2035 focussing on three 
average sized cities. 



Chapter 5 

 96 

from existing urban area through continuous ribbon development along the major roads. This is a 

form of urban expansion often referred to as urban sprawl. The RC scenarios, on the other hand, 

shows the lowest increase in urbanised areas. Moreover, newly urbanised areas are mostly located 

within the current urbanised areas resulting in a densification of existing centres. 

5.4.2 Simulated impact on agriculture 

The mismatch in land use data resulting from the combination of rasterized urban expansion data, 

with vectorized agricultural parcel data, leads to a higher than average loss in the first year 

modelled. In the first year about 8.5% of parcels is lost through urban expansion. Not unexpectedly, 

this mostly concerns small agricultural parcels resulting therefore in a loss of only 2% of agricultural 

area (about 32.000 hectares) in total. 

Figure 5.10 shows the relative decrease of farmland as a result of urban expansion. Municipalities 

in the surroundings of cities lose a significant part of their agricultural land (in some cases more than 

10%). This is especially the case in the area in the central north of the country, the highly urbanised 

area of the so-called Flemish Diamond in between the cities Brussels, Antwerp, Ghent and Leuven 

and in the greater Liège area in the east of the country. Only in the RC-scenario, the loss of farmland 

is clearly lower, with the loss being the lowest in the central loam belt, south of Brussels. For all 

scenarios the Standard Deviation (SD) on the estimated agricultural area in 2035 is small (max 9.72 

km2 on a total of 13 853 km2 in BAU). 

In Figure 5.11 the expected average decrease in number of farmers at the municipality level after 

100 model runs is visualised. All scenarios show a high loss of the number of farmers of about 50% 

over the period 2013-2035 with a similar spatial pattern. The SD on the total is low and similar in all 

three scenarios, with a maximum of 78 on a total of 15 448 farmers for the GE scenario and 16 050 in 

the RC scenario. In all three scenarios, the largest relative losses can be found in the north of the 

country between Antwerp and Brussels, in the central-west of the country to the west of Brussels, 

and in the south-east of the country around Liège, while the decrease is the least in the centre of 

the country. The relative decrease of farmers is the highest for the GE scenario, where even in the 

central loam belt, there is a higher decrease. The SD on the results is low and similar in all three 

scenarios. The large decreases in the central west of the country, to the west of Brussels, have a low 

SD in all scenarios. The differences in total number of farmers by 2035 are small, but still 



The impact of urban expansion on agricultural dynamics 

97 

noteworthy. The largest decrease can be found in the very competitive GE scenario with on average 

only 15 448 farmers of the 37 703 farmers that were present in 2013 remaining (Figure 5.11). 

AGRICULTURAL AREA DECREASE 

Agricultural area 2013 BAU – 2035 

  

Total: 14 611 km2 Average total: 13 853 km2 (SD: 9.72 km2) 

GE – 2035 RC – 2035 

  
Average total: 13 881 km2 (SD: 8.94 km2) Average total: 14 107 km2 (SD: 8.75 km2) 

Figure 5.10 – Total observed agricultural area in 2013 and the average expected decrease by 2035 at the municipality level for the 
different scenarios after 100 model runs with the standard deviation for each scenario as an inset. 
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FARMER DECREASE 

Farmers 2013 BAU – 2035 

  

Total: 37 703 farmers Average total: 15 815 farmers (SD: 65) 

GE – 2035 RC – 2035 

  

Average total: 15 448 farmers (SD: 78) Average total: 16 050 farmers (SD: 78) 

Figure 5.11 – Average number of farmers in 2013 and the average expected decrease by 2035 for the different scenarios after 100 
model runs with the standard deviation for each scenario as an inset. 



The impact of urban expansion on agricultural dynamics 

99 

FARM SIZE INCREASE 

Farm size 2013 BAU - 2035 

  

Average: 38.8 ha Average farm size: 87.9 ha (SD: 0.35 ha) 

GE – 2035 RC - 2035 

  

Average farm size: 90.2 ha (SD: 0.45 ha) Average farm size: 88.2 ha (SD: 0.41 ha) 

Figure 5.12 – Average farm size in 2013 and the average expected increase by 2035 for the different scenarios after 100 model runs 
with the standard deviation for each scenario as an inset. 

Figure 5.12 represents the expected changes in farm size between 2013 and 2035. The GE scenario 

results in the highest average farm size (90.2 ha), which is slightly higher than the average farm sizes 

for the BAU and RC scenarios (respectively 87.9 ha and 88.2 ha). The spatial patterns of farm size 

increase, as well as the SD, are similar in all scenarios with highest increases expected in the Liège 

area and the area west of Brussels. The increases in the central loam belt are the smallest. The SD 

is relatively small, with an SD ranging between 0.35 and 0.45 ha on an average between 87.9 and 

90.2 ha. 
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5.5 Discussion 

Figure 5.10 to 5.12 show the expected changes in agricultural area and the expected number of 

farmers and farm size for the different scenarios. The results show a further decline of farms and 

farmland under all selected scenarios and with similar spatial patterns. The continued strong 

decrease of the number of farmers also leads, in spite of the decrease in farmland area, to a 

continued increasing average farm size. These findings are in agreement with the model simulations 

for Saxony and Baden-Württemberg in Germany reported by Happe et al. (2008) that applied the 

AgriPolis model, an agricultural ABM with a strong economic focus. 

The produced maps show three hotspots of change: (1) the area around the city of Liège in the east 

of the country, (2) the fertile loam belt in the centre of the country and (3) the area to the west of 

Brussels. 

In the Liège area the low succession rate (on average lower than 10%; Figure 2.17 and Figure 5.2), 

together with a relatively high loss of agricultural area around the city of Liège (often more than 

10%; Figure 5.10) leads to a strong decrease in farmers numbers (mostly more than 55%), even 

though (but also because) the number of farmers is already relatively low in this area (Figure 5.11). 

The strong increase in farm size (>100%; Figure 5.12) is an obvious consequence of these trends and 

can also be related to the relatively small farm sizes as the start of the model runs (mostly 25-50 

ha). 

The fertile loam belt, going from east to west in the central south of the country, is, in agricultural 

terms, the most productive part of Belgium with a high standard gross margin per farm (Figure 2.11). 

The succession rate is also, with an average of more than 30 %, one of the highest of the country 

(Figure 5.2). Not surprisingly, the loss of agricultural land is very limited in this region (Figure 5.10), 

as well as the decrease in number of farmers (mostly less than 45%; Figure 5.11) and the on average 

already large farm sizes in 2013 show the least increase in size (often less than 75%; Figure 5.12). 

The area to the west of Brussels projects a strong decrease in farmers (>55% %; Figure 5.11) and 

increase in farm size (up to more than 100%; Figure 5.12) in all scenarios. In the BAU and GE 

scenarios, a strong decrease in agricultural land is also observed (Figure 5.10). These strong relative 

changes are a consequence of the relatively small number of farmers and small farm sizes in 2013. 

But similar trends do not immediately show in other areas with comparable farm size, number of 
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farmers and loss of agricultural land (e.g. the north-east of the country). Both regions even show 

similar succession rates (Figure 2.17). The difference between both regions shows however in the 

spatial distribution of farmers over 55 years old, whereby the region west of Brussels stands out 

with more than 55% of farmers being over 55 years old (Figure 2.16). 

The results in the different scenarios show little differences. Although the difference in the loss of 

agricultural area between the scenarios GE and RC is clear (13 881 vs 14 107 km2), the differences 

are relatively small for the number of farmers (15 448 vs 16 050) and the average farm size (90.2 vs 

88.2 ha). The higher loss of agricultural area in the GE scenario, combined with the relatively higher 

farmer dropout, results in an on average larger farm size. The BAU scenarios is also characterised 

by a high loss of agricultural area, but with a lower decrease in the number of farmers compared to 

the GE scenario. This ultimately leads to a smaller average farm size. Though the differences in the 

results between the scenarios are there, they show to be much smaller than the difference between 

the current situation (37 703 farmers and 38.8 ha in 2013) and these simulated results. 

The earlier analysis of the different regions, showed the importance of farmer age and succession 

rate. Therefore, the relatively small differences between the different model outputs can most likely 

be related to the much stronger inherent demographic mechanisms that result from the initial 

farmer population. In 2013 20% of farmers were older than 65, 65% were older than 55, and only 

4% were younger than 35. This automatically leads to a high number of dropouts due to retirement 

and decease. The loss of farmland around urban centres is the lowest in the RC-scenario, where 

small farms are being actively supported through subsidies. This shows the (current) importance of 

these subsidies (and other financial incentives) in making small farms more viable at the urban 

fringe, which fits well with the ambition of the Belgian government to slow down or even stop 

further urban expansion. A possible reorientation of traditional farming practices towards organic 

farming in the suburban area and the possible promotion of local food and short supply chains could 

support these farmers and reduce the required level of subsidies. 

The trends that are expected under these scenarios can be considered as a logical and necessary 

upscaling and consolidation of the farming sector in Belgium but also impose an important (social) 

challenge on society. Without accompanying measures this upscaling process can result in personal 

bankruptcy of small-scale farmers and their families and in many cases in long-term poverty and 

social exclusion (Meert et al., 2005, 2002; Van Hecke, 2001). Furthermore, these trends can have a 
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negative impact on biodiversity and ecosystem services. Farms growing in size are expected to 

continue the trend of parcel consolidation to improve efficiency. This will result in less parcel 

borders (Robinson and Sutherland, 2002) and a simplification of the agricultural landscape (Bianchi 

et al., 2006). Agricultural intensification and the reduction of hedges and other small landscape 

elements have proven to have a negative impact on biodiversity (Bäckman and Tiainen, 2002; 

Marshall and Moonen, 2002), reduce the ability of natural pest control of the landscape (Bianchi et 

al., 2006), and allow for increasing soil erosion (Evans, 1996; Ouyang et al., 2010), water run-off and 

pollution of rivers (Pätzold et al., 2007; Stoate et al., 2009; Withers et al., 2014).  

This also implies that if policy makers would want to alter these trends, drastic changes in the 

current policies and financial system in regard to agriculture would be required. This would require 

changes that result in a much higher succession rate, thereby encouraging new farmers to start. An 

issue which was also picked up by the European Commission, resulting in the inclusion of specific 

measures for young farmers in the revision of the EU-CAP in 2013 (payments between 20 and 90 

euro per ha for farmers under 40 for the first 5 years; Bori, 2018; European Commission, 2013) and 

further continued in the renewed EU-CAP in 2018 (European Commission, 2019). 

In other words, if there is an intent to keep the number of farmers at the current level, every retiring 

farmer needs to have a successor. An enormous challenge given that currently (2016), 28% of 

farmers are older than 55 and only 16% of farmers over 50 indicate that they have a successor 

(Statistics Belgium, 2018). Given that the results of the different scenarios are very similar, we can 

assume that possible measures that alter this trend, would work for all scenarios. The necessity of 

the implementation of these changes depends of course on the vision and aims that policy makers 

have on agriculture in the future. These trends can after all also be considered as a logical evolution. 

In that case, one could argue, that policy makers should make sure the individual impact on these 

outcompeted farmers is in some way mitigated. 

From that prospect, the agent-based model ADAM would further benefit from an improved 

economic model (or the combination with an external model) and improved behavioural 

mechanisms (social benefits, appraisal, desire to farm…) to allow the further investigation of trends.  

What is currently also not fully included is farmland abandonment in more remote areas. Farmland 

abandonment is the process where the land of the farm is not sold and cultivation stops. It is present 

throughout most of the EU (Hatna and Bakker, 2011) and is expected to continue in the next decades 
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(Hatna and Bakker, 2011; Renwick et al., 2013; Verburg et al., 2010). According to Renwick et al 

(2013), highest levels of abandonment are to be expected in GE-like scenarios (high global 

competition, with low levels of EU-CAP support), but also under other scenarios farmland 

abandonment continues. Though the rate of farmland abandonment in Belgium in the past has 

mostly been low (<0.5% decrease between 1990 and 2006), with the highest decrease in the south 

of the country (0.5%-2%; Hatna and Bakker, 2011), including the mechanisms on farmland 

abandonment might be necessary to create a more complete image on the evolution of agricultural 

lands and to extend the use of the model to other regions. 

The scenarios also do not consider possible changes in crop choices due to changes in trade 

mechanisms or the existence or not of trade barriers. For example, in 2014 Belgium imported about 

1 064 million tons of soybeans, 26% originating from outside the EU (Danckaert, 2016). An 

important decrease in the possibility to import soybeans could lead to a shift in locally produced 

crops, in order to provide the necessary crops for fodder. 

5.6 Conclusion 

The aim of this chapter was to gain an insight on the impact of different scenarios on the agricultural 

population in the urban fringe by coupling a raster-based CCA model on urban expansion with a 

vectorized agricultural agent-based model in order to gain insight in the different underlying 

processes.  

The results showed that most changes are expected in the area to the west of Brussels and the 

greater Liège area. But under the current conditions in the model, even the two extreme storylines 

resulted in a similar loss of farmland and farms both in numbers as in spatial distribution. 

The analysis of the results seems to imply that the model is more driven by the demographic process 

of an ageing population in combination with low succession rates than by the scenario specific 

economic and policy parameters. We can therefore assume that the current scenarios do not 

capture the elements that would be necessary to model a shift in the current trends in agriculture 

in Belgium.  

The added value of the results of the different models lies more in the recognition of the persistent 

spatial pattern of expected changes, showing the areas where most changes are to be expected, 
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and to the conclusion that the current demographic processes have an unavoidable impact on the 

results in the current model set-up. The different scenarios on urban expansion and changes in 

farming policies thereby further pronunciation and aggravates these processes. The results herefore 

also show that the combinations of different models from different backgrounds cannot provide 

insightful outcomes and are worth further exploring.
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Chapter 6 High thematic resolution land use data in species 

distribution modelling 

This chapter is under review as: Beckers V., Marshall L., Vray S., Rasmont P., Vereecken N., Dendoncker N. (2019). Increased Thematic 

Resolution of Land Use Change Models for Biodiversity Scenarios: Case study of Belgian Bumblebees, Journal of Biogeography. 

6.1 Introduction 

Land use and land use change have an important impact on the physical environment: land use 

change notably impacts erosion (Van Rompaey et al., 2002), hydrology (Poelmans et al., 2011), 

climate (Berckmans et al., 2018) and biodiversity (Polasky et al., 2011; Reidsma et al., 2006). 

Regarding the latter, many studies have shown the importance of land use and land cover change 

(LULCC) as drivers of species distribution patterns and biodiversity loss (Krauss et al., 2010; Lambin 

and Meyfroidt, 2011; Luoto et al., 2007; Ostberg et al., 2015; Tscharntke et al., 2005). Species 

distribution models (SDMs) have become a common approach to provide insights on the current 

and future distribution of species in relation to climate and land use. They combine the occurrence 
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of species together with environmental conditions, to get an insight on their distribution patterns 

(Elith and Leathwick, 2009; Franklin, 2010). These studies tend to only use a limited number of land 

use types, since land use change scenarios are often only available at low spatial and thematic 

resolution (Titeux et al., 2016; Verburg et al., 2013). 

Land use change modelling through agent-based modelling (ABM) has come up as a powerful 

approach to allow the modelling of fine scale and high thematic-resolution land use change 

(Rounsevell et al., 2012). The combination of ABM with SDMs is however, rarely done, partly due to 

differences in spatial and temporal scales used by the different models (Parker et al., 2002b). ABMs 

are, for example, often being developed to be either very detailed for a small region (Bakker et al., 

2015; Happe et al., 2008) or cover large regions losing detailed information in the process 

(Rounsevell et al., 2014) making them unsuitable for use in SDMs in both cases. The development 

of ADAM (Agricultural Dynamics through Agent-based Modelling) allows the modelling of a wide 

variety of agricultural land cover types at a fine resolution and for a large spatial extent. This allows 

for a greater complexity in predictors to estimate habitat suitability of landscapes in SDMs.  

Pollinators’ distributions have been highly impacted by LULCC (Kevan, 1999). For example, 

bumblebees, a well-studied pollinator group, have suffered from loss of habitat for feeding and 

nesting as a result of changes in agricultural land use and land cover (LULC; Aguirre-Gutiérrez et al., 

2017; Vray et al., 2019). Although the importance of LULC on historical bumblebee distributions has 

been proven (Aguirre-Gutiérrez et al., 2017) and land use and land cover models have shown their 

added value in bumblebee SDMs for future scenarios (Marshall et al., 2018), most SDMs only include 

changes in different climate related parameters, or use static LULC data (Titeux et al., 2016). 

Recently, Marshall et al (2018) showed that projections of loss and gain of bumblebees in the future 

varied depending on whether land use change scenarios were included in SDMs. However, the 

scenarios were limited to only six land use classes due to the absence of high thematic resolution 

LULCC models for Europe. Comparing the results of low thematic resolution SDMs versus high 

thematic resolution SDMs provides an interesting case study to assess the added value of a 

thematically detailed, parcel level, national scale agent-based model (like ADAM). Specifically, their 
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potential to improve the quality of biodiversity studies in general. Hence testing the hypothesis put 

forward by Martin et al. (2013) that increased thematic resolution is a necessity to better capture 

the effect of land use on species trends. We expect that the increased thematic resolution in land 

use, and more specifically in agricultural land use will result in less uncertainty in biodiversity 

projections and a greater detail on the connectivity and fragmentation of species distribution, 

therefore making models using a high thematic resolution an added value for SDMs on bumblebees. 

We also expect that the use of high-thematic resolution data will have a greater impact when 

modelling species with specific habitat preferences. 

The main aim of this research is therefore to assess the importance of high thematic resolution land 

use change projections in SDMs. First, the applied land use scenarios are briefly described, together 

with an explanation on the SDMs. Next, the results are presented through a comparison of the 

differences in future distribution patterns between SDMs with both high and low thematic 

resolution LULCC maps as an input. The obtained results are first presented for all bumblebee 

species. Subsequently, we specifically look at two bumblebee species: Bombus magnus, with 

specific habitat preferences and B. lapidarius, a widespread generalist species. The results are 

followed by a discussion and concluding paragraph. 

6.2 Material and methods 

6.2.1 Land use change scenarios 

The development of ADAM showed the possibility of creating ABMs able to model decision-making 

at the parcel level for a large (national) extent. In ADAM, farmers take yearly decisions on the next 

agricultural land cover for their land, based on their farming type, the current land cover of the 

parcel and the combination of rotation practices, crop prices and expected yield for each crop (see 

Chapter 3, 4 and the technical appendix). The result is a yearly agricultural land cover map of 

Belgium from 2013 to 2035, for all parcels with a high thematic resolution. In order to use the results 

in a species distribution model (SDM), a complete LULC map for the entire extent of Belgium is 

needed. Therefore, ADAM was combined with the Belgian land use change scenarios that resulted 
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from the storylines: Global Economy (GE), Regional Communities (RC) and Business-as-usual (BAU) 

which were earlier used to define the pressure from urban expansion on farming (see Chapter 5). 

The land use scenarios based on the work of Engelen et al. (2011, 2007, 2003) produce land use 

maps with 23 classes at a spatial resolution of 1 ha from 2013 to 2035. 

The SDM requires, as input, a grid with for every grid cell the percentage of the land use classes 

present. Therefore, the 1ha land use maps were aggregated to a grid of 1 km2 resolution with land 

use percentages for every grid cell (Figure 6.1). A similar process was done with the parcel map with 

the agricultural land use produced by ADAM. The presence of the different crops was translated 

into a percentage of the total agricultural land on the 1km2 resolution (Figure 6.1). In a last step, the 

crop percentages were used to further split up the arable land use class generated from the land 

use map, by defining the relative share of each crop in the total percentage of arable land on the 

1km2 resolution (Figure 6.1). The percentage of arable land was in that way further split up into four 

agricultural land use classes, namely: grains (containing the modelled amount of wheat, barley and 

maize), sugar beets, rapeseed and potatoes (Figure 6.1). Together with pasture, these four crop 

types make up more than 90% of the Belgian agricultural landscape (see Appendix 7). Pasture and 

fruit trees, are both modelled in ADAM and the CCA LUC model. In the CCA models these classes are 

part of a map covering all LU, while in ADAM, only agricultural land use is modelled. In order to 

guarantee a total of 100% for the land use percentages in the aggregated cell at the 1 km2 resolution, 

the percentages of pasture and fruit trees present in the CCA LU maps were used. With the arable 

land from the CCA LU map (containing 23 classes, see Chapter 3.2) being split up in 4 crop types, 

this results in aggregated 1 km2 land use maps containing a total of 26 classes. 
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Figure 6.1 – Simplified example of the resampling of the land use data at 1ha resolution and agricultural parcel data from ADAM to 

the 1km2 resolution 

6.2.2 Bumblebee collection records 

This study uses bumblebee collection records from Belgium since 2005 until 2017 as they best match 

the present period given the available land use data (Figure 6.2). Taking a larger range of data allows 

to have sufficient records to model the species, knowing however that this might mean a loss in 

knowledge about the exact observation conditions. The data were collated by the University of 

Mons and are available for view on the Atlas Hymenoptera webpage (Rasmont and Iserbyt, 2012). 

The data represent museum collection data, validated and verified citizen science data, and data 

systematically sampled as part of scientific research projects. Overall the data contains 28 252 

records for 24 bumblebee species. Five species had less than 15 records and were excluded from 

the further modelling process to avoid modelling under-sampled species, resulting in 19 remaining 

bumblebee species.  
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Figure 6.2 – Locations where bumblebees have been sampled in Belgium between 2005 and 2017, used as training data in the SDM 

and for creating the background sample. 

6.2.3 Bumblebee distribution modelling 

In order to model the distribution of Belgian bumblebees we first reduced the 26 LULC classes in the 

land use data to 21 land use variables (i.e. the predictor variables), since 5 classes (Industry, 

Commerce and services, Infrastructure, Mining and Harbour) were assumed to be too similar in land 

cover to be considered as different classes to train the models. These 21 remaining land use 

predictors were further reduced to 20, due to collinearity between the percentage of potatoes and 

percentage in grain crops (correlation < -0.7 or > 0.7 in Spearman correlation analysis). This is not 

entirely unexpected, since both crops have a similar spatial distribution (mostly concentrated in the 

central loam belt, see Figure 2.8). The 20 remaining land use variables were categorized into 6 

aggregated classes to be used as the low thematic resolution input. They were classified according 

to Table 6.1 in arable, forest, grassland, other, permanent crops and urban. This resulted in two 

separate sets of predictor variables used for the modelling, high thematic resolution predictors and 

low thematic resolution predictors. These six classes were chosen so as to be comparable to the 

previous research comparing future climate and land use change models for bumblebees (Marshall 

et al., 2018). 

Table 6.1 – Overview of the land use classes used in the high-resolution model and their categorization in 6 aggregated classes.  
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Arable Forest Grass Other 
Permanent 
Crops 

Urban 

• Grain crops 
• Unregistered 

agricultural 
land 

• Rapeseed 
• Sugar beet 
• Potatoes* 

• Mixed 
Forest 

• Deciduous 
Forest 

• Coniferous 
Forest 

• Pasture 
• Heathland 
• Semi-

natural 
grassland 

• Wetland 

• Water 
• Dunes 
• Military 
• Greenhouses 

• Fruit 
trees 

• Residential 
• Parks 
• Recreation 
• Sealed surfaces 
• Industry** 
• Commerce and 

services** 
• Infrastructure** 
• Mining** 
• Harbour** 

* Potatoes was removed due to collinearity (correlation = -0.77).  

** These classes were aggregated to Sealed surfaces due to high similarity in land cover properties. 

The bumblebee collection is spread over multiple years. To create a single presence map of the 

countrywide spread of the species for training the model, the presence of the species from 2005 to 

2017 are combined. If a species is present at least once in the grid cell during the period, the species 

is considered present for the training dataset. For the training, this presence map is to be combined 

with a land use map. Apart from agriculture, percentage of land use of each class for every grid cell 

is considered to be constant, whereby the year 2010 is taken as the reference. For agriculture, being 

a class with yearly variation, the average of crop percentages for every cell from 2009 to 2015 was 

taken from the Integrated Administration and Control System (IACS) dataset, a dataset on 

agricultural land use and main crop data collected yearly by the EU (European Commission, 2018a). 

Based on the defined land use classes, the distribution of the 19 bumblebee species of the dataset 

was modelled using the Maximum Entropy (MAXENT) modelling software (version 3.4-1, see 

Chapter 3) (Phillips and Dudík, 2008). MAXENT is considered to be one of the best algorithms for 

working with presence-only data (Elith et al., 2011, 2006; Elith and Leathwick, 2009; Hirzel et al., 

2002; Pearce and Boyce, 2006; Phillips et al., 2009). For both the low and high thematic resolution, 

MAXENT was run 50 times using an 80% training, 20% testing split of the data. These multiple runs 

allow to validate the runs, measure the uncertainty in the projection and to provide a more robust 

average of model performance and variable importance.  

The model performance with both low and high thematic resolution land use change as input was 

assessed by looking at the area under the curve (AUC) of the receiver operating characteristic (ROC) 
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curve. The AUC is a commonly used methodology to assess model performance. The value of the 

AUC, however, is strongly impacted by sampling size and species occurrence. Therefore, the 

comparison between models on different species is meaningless (Jiménez-Valverde and Lobo, 2007; 

van Proosdij et al., 2016). Since this evaluation parameter is based on a confusion matrix containing 

correctly predicted presences and absences (Fielding and Bell, 1997; see section 3.3.3), it requires 

absence data. True absences are however not available since it is not possible to be completely sure 

that a bee species is not present during sampling (Barbet-Massin et al., 2012; see Section 3.3.1). To 

account for this lack of absences, a random background sample (or pseudo-absence) is used (Phillips 

et al., 2009). This background sample is only taken from areas where other bumblebee species had 

previously been collected (Figure 6.2), referred to as a target background area (Mateo et al., 2010). 

This approach accounts for sampling bias by providing a more objective selection of grid cells that 

may be used to represent absence (Elith et al., 2011; Phillips et al., 2009) and has been shown to 

produce better performing models (Mateo et al., 2010).  

To test the ability of our model to capture the niche requirements of a single species and therefore 

perform significantly better than random, the average AUC value of all model runs was compared 

to the expected AUC values of 100 randomizations of a null model (Raes and ter Steege, 2007; van 

Proosdij et al., 2016). The null model is the result of the SDM based on a randomization of 

observations within the target background area. Being based on randomised observations, the AUC 

of the null model will on average be lower than the AUC of the model on true observations, since it 

will be harder for the SDM to find patterns. A model is performing well if it has a mean AUC value 

higher than a one-sided 95% confidence interval of the null distribution. If our model performs 

better than the null-model in 95% of the cases, it indicates a statistically clear difference. This means 

the model indicates that the bumblebees had specific niche requirements that were captured by 

the predictors. 

The result of the 50 MAXENT model runs for both low and high thematic resolution input, were then 

used in combination with the average of 100 runs for each of the three future land use change 

scenarios. 
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To assess the changes in distribution and to build the confusion matrix for the ROC analysis, binary 

presence/absence maps are made based on the habitat suitability maps for each species. These 

maps are created through the selection of a suitability threshold that would result in a maximum of 

10% of occurrence records being left out (see Section 3.3.3). 

6.2.4 Analysis 

The variable importance of the different predictors is analysed. Variable importance is thereby 

defined as the percentage increase in range gain as predictors are being added to the model (Phillips 

et al., 2006). For each variable a general direction of the effect (i.e positive or negative) of each 

variable was also determined. If the correlation coefficient between a single predictor and the 

habitat suitability is greater than 0.5, the effect is positive, if lower then -0.5, the effect is negative. 

The results for using the low and high thematic land use data are compared using five change 

metrics, namely: (1) changes in the distribution patterns analysed through the overall range change, 

(2) the total loss and (3) gain in range, (4) change in number of edges of suitable habitat and (5) the 

uncertainty of future model projections. Overall range change is defined as the percentage change 

in the total number of cells occupied. Loss and gain in range are measured as the total number of 

cells lost or gained between the present and future projections. These three range change metrics 

were calculated using the Biomod2 package in R (version 3.3.7; Thuiller et al., 2013). Fragmentation 

is defined as the edge density of the species distribution and is measured by taking the total number 

of edges (cells projected as presences that neighbour cells projected as absences) divided by the 

total area (Belgium). Fragmentation was calculated using the FragStats package in R (version 0.3.1; 

Hesselbarth et al., 2019). Uncertainty in modelling projections was simply measured as the per grid 

cell standard deviation in habitat suitability of all 50 projections for each scenario in 2035. To 

conclude, a widespread species (B. lapidarius) was compared to a more localized bumblebee species 

(B. magnus) in terms of variable importance and range change. 
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6.3 Results 

6.3.1 Model performance 

The average of the 50 models using high thematic resolution land use predictors were significantly 

better than random null models, the AUC value was higher than 95% CI of null distribution (Figure 

6.3). In contrast, four species modelled with low thematic resolution land use predictors, had AUC 

values that were not better than random, (B. hortorum, B. hypnorum, B. pratorum and B. sylvestris). 

Additionally, for all species AUC values are clearly higher (0.1 on average) for the models using high 

thematic resolution land use predictors versus low thematic resolution. 

 
Figure 6.3 – Mean area under the curve (AUC) of the receiver operating curve (ROC) value after 50 runs for 19 Belgian Bumblebee 

species when modelling with 20 and 6 land use classes. The X indicates the 95th percentile values of AUC from 100 random null models 

and is used to test model performance. The red X (n=4) indicates the models with mean AUC values lower than the 95th percentile 

and that therefore do not show a statistically clear difference. 
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6.3.2 Variable importance  

The mean variable importance (Figure 6.4a) and the number of species on which a variable has a 

positive or negative effect (Figure 6.4b) allow to compare the added value of using high thematic 

resolution input for each variable.  

The Grass class has a low mean variable importance and the usage of high thematic resolution input 

has a limited impact on the mean variable importance, with all subclasses showing similar values. 

The class however, shows a high variability in the effect of subclasses. The subclass Pasture has a 

positive impact on a large number of species, while both heathland and wetland have a negative 

impact on a large number of species. 

The Urban class has a very high mean variable importance with a strong negative effect. Using high 

thematic resolution input shows that the impact and effect are the result of the strong negative 

effect of the Residential class, while other subclasses (Sealed surfaces, Parks and Recreation areas) 

still have a positive effect on a certain number of species. 

Results on the Other class demonstrate the importance of using the high thematic resolution input 

for this class as it contains an amalgam of subclasses (water, dunes, military and greenhouses) with 

high differences in effect: The Water class has both positive and negative effects, depending on the 

species, while Military, Dunes and Greenhouses have a negative effect on more species than a 

positive. 

The impact of using high thematic resolution for the Forest and Permanent Crops class is limited. 

Forest subclasses show similar mean variable importance (Figure 6.4a) and effect, with a similar 

number of species for both positive and negative impact (Figure 6.4b). 
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Figure 6.4 – The mean variable importance and the effect of the different land use classes considered, both for the low (framed in 

black) and the high (framed in white) thematic resolution input. 
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6.3.3 Projections 

Distribution Change 

All parameters on distribution change show a strong response to the thematic resolution of the 

SDMs, while the differences in distribution measures show less difference between the different 

scenarios. For all measures the differences between the high and low thematic resolution are less 

pronounced for more widespread species (e.g. B. pascuorum, B. lapidarius, B. terrestris, B. 

pratorum, B. hypnorum, B. hortorum, B. lucorum) (Figure 6.5). The classification of species on being 

widespread or more localized was based on the current predicted range size (see Appendix 8). 

Considering the overall range change, on average, species were predicted to lose 20% more range 

when using low thematic resolution predictors rather than high (Figure 6.5a). This difference 

decreases for more widespread species.  

The overall pattern shows that modelling with low thematic resolution will result in a larger range 

loss for species, meaning the total number of cells occupied decreases. The percentage of grid cells 

lost and gained (Figure 6.5b) shows a more nuanced reality. In total, there is a greater turnover in 

the number of cells occupied by species on average for the high thematic resolution results. In other 

words, there is both a greater number of cells projected to be lost and gained when modelling using 

high thematic resolution. Figure 6.5 also clearly shows that low thematic resolution projects very 

little or no range gain for almost all species (only B. jonellus has a significant range gain). Again, we 

see that more widespread species will on average lose less grid cells. Fragmentation, in the form of 

edge density, both with high and low thematic resolution SDMs, increases on average for the 

species. For most species, there is a large difference between low and high thematic resolution 

modelling, with sometimes even contrasting results (B. sylvarum, B. ruderarius, B. soroeensis, B. 

campestris, B. bohemicus, B. vestalis, B. lucorum). Considering the more widespread species, edge 

densities are overall lower, and the results for high and low thematic modelling are more similar. 
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Figure 6.5 – The change in distribution parameters for the different bumblebee species, for both high and low thematic resolution 

with the differences between the scenarios indicated through a plot of the standard deviation. 
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Uncertainty 

The uncertainty in the future projections shows that the average standard deviation per cell of 

projections in the future is greater for high thematic resolution (0.11) than low (0.09). These 

differences show a statistically clear effect (W = 2173, p-value = 0.002, 95% CI: 0.008, 0.041).  

Focus on two contrasting species 

To look into detail on the effect of using high versus low thematic resolution in SDMs, two species, 

one widespread and one localised, that showed contrasting results were further examined: B. 

magnus, a very localized species, and B. lapidarius, a more widespread species. 

For B. magnus SDM results with low thematic resolution show the importance of the combination 

of grassland and forest. For model runs with high thematic resolution the variables heathland and 

coniferous forest are the most important (Figure 6.6 e). Since the combination of heathland and 

coniferous forest is limited in Belgium in comparison to the combination of grassland and forest, the 

current and future expected distribution of the species is much lower for model runs with high 

thematic resolution (Figure 6.6 a-c) as compared to runs with low thematic resolution (Figure 6.6 b-

d). 

For B. lapidarius the results of the SDM with low thematic resolution show a high and positive 

importance of the Arable class. For the high thematic resolution results, the Sugar beet class shows 

the highest importance within the Arable classes (Figure 6.7e). Noteworthy is also the Forest class, 

that has a slight negative impact on species occurrence in the model with low thematic resolution. 

Results from the model with high thematic resolution show the negative effect is limited to the 

Coniferous and Mixed Forest class, whereas the Deciduous Forest class shows a positive effect. With 

B. lapidarius being a widespread species, differences in the mapped results are limited. This can also 

be observed in the overall range change and the total range loss and gain for this species (Figure 6.5 

b-c). 
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Figure 6.6 – The modelled distribution of B. magnus for both high and low thematic resolution and in the present and for the BAU 

scenario in 2035, together with the importance of each land use variable to explain the distribution of the species. The inset in figure 

b shows where the species was collected. 



High thematic resolution land use data in species distribution modelling 

121 

 
Figure 6.7 – The modelled distribution of B. lapidarius for both high and low thematic resolution and in the present and for the BAU 

scenario in 2035, together with (e) the importance of each land use variable to explain the distribution of the species. The inset in 

figure b shows where the species was collected. 
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6.4 Discussion and conclusion 

Models with high thematic resolution predictors consistently performed better than randomised 

null models compared to models with low thematic resolution predictors. They also showed a more 

detailed relationship with the land use predictors which resulted in considerable variation in 

projected distribution patterns compared to low thematic resolution models. This suggests that the 

usage of high thematic resolution land use data as an input for SDMs has an added value allowing 

to better capture species trends, which confirms the hypotheses of this study and of Martin et al. 

(2013) 

The added value of using high thematic resolution land use varies between land use classes. In 

contrast to expectations, the highest added value of increasing thematic resolution is not related to 

the agricultural land use classes but rather for the classes Grass, Urban and Other.  

The land use class Other contains Military, Dunes, Greenhouses and Water, i.e. classes with little 

similarities and as such also very different habitats. The improvements when further detailing this 

land use class are therefore an expectable and logical result. At the same time, some of these 

classes, like Water, are relatively easy to model in future projections given their stable nature. While 

other classes, e.g. Military, might be a very hard class to model in future projections and sometimes 

also harder to sample. 

Splitting up the land use class Grass in the subclasses pasture, semi-natural grassland, heathland 

and wetland adds value to the SDM of bumblebees. For example, heathland has a relatively small 

distribution in Belgium, has a comparatively high importance, and is shown to be quite a restrictive 

land cover for many bumblebee species. Heathland is likely to be limiting to those bumblebee 

species not adapted to the specialized feeding resources present in these habitats (Moquet et al., 

2017). The difference in habitat conditions are less pronounced in comparison to the Other class, 

but are nonetheless important in relation to habitat requirements of certain bumblebee species. 
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For the Urban class, results show how the Residential sub class is on average very important and 

also determines to a large extent the effect of the Urban class. This is however more related to a 

lack of sampling within this land use category (causing a complete absence of bumblebees in this 

land category) than to reality. This not only shows the importance of the sampling method, but also 

underlines the importance of using higher thematic resolutions. Using a higher thematic resolution 

of land use, separating the Residential class from other Urban land use classes, results in the model 

being able to capture the positive effect of other urban classes such as Parks and Recreational Areas. 

The added value of splitting up the Arable class appears to be limited in these results. The high 

ecological value of Unregistered Agricultural Land results in this class being the most important 

subclass. It has been shown previously that mass flowering crops such as rapeseed can have a 

positive influence on the number of bumblebee species (Westphal et al., 2003). We observed that 

the percentage cover of rapeseed is positively influencing the distribution of six species and 

negatively influencing six species. 

Splitting up the Forest class in Coniferous, Deciduous and Mixed had a limited added value with all 

classes showing similar importance and similar effect. 

The use of high thematic resolution input proved to be especially interesting when modelling less 

widespread, or localized species, that have specific preferences and niche habitats, in contrast to 

more widespread species with little specific habitat needs. The benefit was illustrated by comparing 

the localized species B. magnus with the widespread B. lapidarius. 

The results show that uncertainty increases when using land use maps with high thematic resolution 

as input, as compared to maps with low thematic resolution. This could be expected, as with 

increased numbers of predictors the complexity of the landscape is likely to result in more complex 

model fit and therefore greater ambiguity. 

All together we could say that using high thematic resolution land use data as an input in SDMs has 

an added value, but that it is not equally useful for all land use classes and depends on the species 

that is modelled. This comes down to how well the species’ habitat requirements are being 
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represented, which is strongly related to whether a localized or widespread species is being 

modelled. For some species, other indicators may also be more important than the specific land use 

type, like for example, the management practices on the land. This can be especially relevant for 

the Arable class, where the added value of using data with a higher thematic resolution was limited. 

For this class, the added value of a higher thematic resolution in relation to management practices 

instead of crop types might still lead to significant improvement for capturing species trends. 

Specifically for bumblebees, their presence has been positively related to the presence of naturally 

regenerated field margins (Kells et al., 2001) or organic crops (Holzschuh et al., 2008). 

As shown with the distribution maps of two specific species (Figure 6.6 & Figure 6.7) the difference 

between two modelled distributions can be substantial, especially for B.magnus this difference 

clearly shows. Using only low thematic resolution LUC predictors for SDMs could lead to 

overpredictions and maybe even show contrasting trends. This might lead to wrong decisions being 

made in relation to conservation measures (Araújo et al., 2019). 

These results should however be treated with caution. As discussed earlier (Chapter 4 & 5), the land 

use modelling has its limitations and so does the SDM. Many methods for SDMs exist, and changing 

the model or model parameters might affect results (Aguirre-Gutiérrez et al., 2013). There are also 

limitations related specifically to the methodology used in this research. Since the main aim of this 

research is to look at the importance of high thematic resolution land use maps in SDMs, the impact 

of climate, although known to be an important parameter in SDMs (Rasmont et al., 2015), was not 

included. Araújo et al. (2019) specifically stresses the importance of considering relevant 

environmental and biotic variables. This means the resulting projections are not representative of 

future ranges but do specifically indicate the impact of increased thematic resolution. Another 

specific limitation results from the methodology of the calibration process. Bumblebee data were 

collected over a period of a few years and are, in the calibration process, linked to one observation 

year for land use, and a five-year average for agricultural land use, inconsistencies may arise due to 

land use change happening during that period. By working with percentages on the 1 km grid cell, 

the inconsistencies should remain limited. The aggregation to a 1 km grid however, might also 
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impact the results. A shift of the grid or a change in resolution would result in different land use 

percentages in the grid cell (being derived from land use at the 1 ha resolution) and might also affect 

the cell to which certain bumblebee observations are appointed. This problem is known as the 

modifiable areal unit problem (MAUP), which has been proven to possibly induce a statistical bias 

and can significantly impact the result of statistical tests (Holt et al., 1996; Unwin, 1996; Wong, 

2009). Given these limitations, it is important that the results should not be considered as 

predictions of future bumblebee distributions, but as an explorative study on the added value of 

high thematic resolution land use data in SDMs. 

While the importance of including land use and land use change data in species distribution models 

has already been identified (Aguirre-Gutiérrez et al., 2017; Marshall et al., 2018), this study further 

highlights the importance of including high thematic resolution data and high thematic resolution 

land use change models, showing the added value of models like ADAM, outside their own research 

context and highlighting the importance of further research in this field. Evaluating for which 

thematic classes the input of high resolution might be interesting, is an important exercise, given 

that the relevance is not the same for all classes. The use of climate data was absent in this research. 

To accurately model the impacts of high-resolution land use change alongside climate and climate 

change we would need collection records from the whole range of the species with correspondingly 

high-resolution land use change data, which is currently unavailable. As more detailed land use 

change models begin to be produced at larger scales, research including climate change might result 

in projections applicable to and useful in policy making processes. Given the results obtained from 

using land use change data with a high thematic resolution, it might be interesting to see if similar 

results might be obtained when using high spatial resolution data in the context of climate change.
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Chapter 7 Discussion and conclusion 

7.1 Overview 

The agricultural sector is worldwide characterized by a rapid transition which brings along many 

challenges (both social, environmental and economic, see Chapter 2). These challenges are complex, 

given the many interactions between the socio-economic, the biophysical and the political 

environment that are inherent to agriculture. For policy makers and rural planner, it is important to 

be able to get an insight on the possible outcomes of different policy scenarios and possible 

interventions in order to support the decision-making process. Due to the complexity of the 

processes involved, many models have showed scenario results that are either very detailed, 

focussing on smaller regions, or too generalised when focussing on large regions (such as the 

national scale level). The outcome of both model types offers limited support in a policy 

development context. The aim of this research was to create a real-world, large scale agent-based 

model that would be useful for scenario analysis in agriculture. Current trends in the agricultural 

dynamics in Western-Europe were chosen as a use-case, given the many problems the sector is 
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currently facing. Belgium was taken as a study area, given its central location within Europe, its long 

agricultural history and high levels of urbanisation, resulting in a strong competition for land. 

The starting point was an analysis of the current situation of agriculture in Belgium in a global 

context. In many ways, the agricultural sector in Belgium faces large challenges, similar to those in 

other countries in the EU, where competition both locally and globally have led to reduced margins, 

a low succession rate and thus an old and diminishing agricultural population. This, together with 

the competition for land and the many environmental challenges that farmers are facing, results in 

an agricultural sector in crisis, in Belgium, as well as in many other countries. 

The methodological chapter provides more insight in the concept of agent-based modelling (ABM), 

its history, current challenges and best-practices for implementation. Since all agents are modelled 

individually in a starting point population together with the relevant factors that influence the 

decision-making process, ABM often requires large data inputs. The result is that it is hard to apply 

agent-based models (ABMs) to large scale real-world situations. Other reviewed challenges were 

related to the inherent multidisciplinarity of ABMs and the iterative process that takes place during 

its development, which might lead to the inclusion of an increasing amount of detail. 

Keeping the relevant factors for decision-making processes in mind, ADAM (Agricultural Dynamics 

through Agent-based Modelling) was created to simulate the evolution of a farmer population at 

country scale. To allow ADAM to work for large scale real-world simulations, the focus was on 

creating a simple model simulating the key processes by including basic decision-making with an 

initialization based on a limited dataset. ADAM proved to be capable of simulating an agricultural 

system, with farms evolving over time in complex settings. The results of ADAM were less 

satisfactory in more densely populated communities due to the importance of urban expansion 

processes in these municipalities. Urban expansion impacts agriculture both directly, by reducing 

the available land, but also indirectly through land speculation (Delbecq and Florax, 2010) and the 

use of agricultural land for non-commercial agrarian activities (e.g. hobby farming, horse riding 

(Bomans et al., 2011)) in the urban fringe.  
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To include urban expansion in ADAM, the results from a constrained cellular automata (CCA) land 

use change model, (Engelen et al., 2011) adapted to the case study area of Belgium, were used. Two 

storylines (Global Economy (GE) and Regional Communities (RC)) were used, together with a 

business-as-usual (BAU) storyline to simulate the impact of policy changes on urban expansion and 

farming. This modelling approach was able to simulate the continuous decrease of the number of 

farms and its spatial pattern for the period 2013 until 2035. A comparison of the model output of 

the original results of ADAM (Fig 4.10) and the new results, including urban expansion, (Fig 5.10) 

showed the impact of urban expansion on Belgian farming practices with a clear spatial pattern: In 

urbanised regions of the Flemish Diamond in the central north of the country and the Liège area in 

the east, there is a significant loss of agricultural land. The comparison of the results of the GE and 

RC storylines showed a lower loss of agricultural land (5% versus 3% loss) and farmers (15 448 versus 

16 050 farmers remaining). 

However, compared to the total decline of the farmer population the differences imposed by the 

different regional economic development scenarios were small. This implies that the demographic 

process (the rapid aging of the farmer population and the low succession rates for farms) are more 

important factors than the economic parameters defined through the scenarios.  

In order to evaluate the potential of ADAM in other research fields, for example in the assessment 

of changing ecosystem services, the results on land use change in the different scenarios, were used 

as an input for species distribution models on bumblebees. The results showed that using high 

thematic resolution land use data allows to better capture the species’ trends. For the case of 

bumblebee species in this research, the highest added value was found in land use classes other 

than the Arable class. The mass flowering crop rapeseed, a crop gaining importance and important 

for bumblebees (Westphal et al., 2003), did have a positive influence on the distribution of certain 

species and a negative influence on other species. 
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7.2 Revisiting the research questions 

RQ1: To what extend can agent-based models simulate farmers decision at country scale? 

This research question was mainly tackled in Chapter 4, showing that it is indeed possible to apply 

an agent-based model at a high spatial resolution at the national scale for the case study of 

agricultural dynamics in Belgium through the development of ADAM, when accepting certain 

generalizations (limited to 5 farming types and ignoring the reality of mixed farming) and 

assumptions (new farmers can only enter the system through the take-over of another farm, a new 

cultivator can always be found for available agricultural land and farmers continue farming at least 

until retirement age). ADAM allows to model the individual decision-making process of farmers at 

the smallest spatial unit (i.e. the parcel level) relevant for farming at a national scale using data sets 

required for EU-reporting. This allows to model at a scale, relevant for policy makers, using data 

available in EU-countries, avoiding the need to gather extra data in the field. Although the 

framework is made based on the data that is required for EU-reporting, application in other 

countries will depend on local data availability, since requirements are not always met. Also, the 

assumptions and parameters being used in the current set-up for Belgium (e.g. the succession and 

retirement rate), are region-specific and might require recalibration and re-evaluation when 

modelling in other countries. 

RQ2: What is the possible impact of different scenarios on farming practices? 

In Chapter 5, the combination of ADAM with a CCA on land use change was used to run different 

scenarios on possible futures for the agricultural landscape in Belgium. The results generated more 

insight in the expected patterns of future urban expansion in Belgium and its expected impact on 

the agricultural landscape, both in terms of farm size as in the farmer population with clear 

differences between urbanised and more rural regions and between different agricultural regions. 

The differences between the outcome of the different scenarios were however relatively small. This 

led to the conclusion that economic and urban expansion scenarios are surpassed in importance by 

the underlying demographic processes resulting from an old farmer population with a low 
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succession rate. This research has shown the importance of including the demographic component 

in agricultural ABMs, while it often has been neglected in the past. ADAM is however more than a 

simple demographic model given that it is spatially defined up to the finest relevant scale and that 

the characteristics of the spatial configuration of the environment (e.g. urbanisation pressure, 

current farm size and farm type configuration as a result of historic processes, specific crop yield as 

a result of the physical environment) have an impact on the results. 

RQ3: What is the added value of high thematic resolution models in relation to other research 

fields like ecological modelling? 

Highly detailed agricultural ABMs like ADAM require a high investment in developing and execution 

time and need a large amount of input data but showed their usefulness in other research areas, as 

seen in this dissertation with the distribution modelling of bumblebees. The results in Chapter 6 

showed that there is indeed an added value of highly detailed land use data as an input for species 

distribution modelling, but also that it highly depends on the species being modelled. For 

bumblebees, the added value was much higher for localized species as compared to more 

widespread species. The added value of high thematic resolution models will thus mostly depend 

on the specific case. A pre-evaluation is therefore recommended before investing time in the extra 

effort coming from obtaining and including highly detailed data as input in other models. 

7.3 Overall discussion 

This dissertation proposed ADAM, an agent-based model for agricultural dynamics, modelling 

farmers at the parcel and farm level, which was applied to the country of Belgium. ADAM is a useful 

tool for doing research experiments to help define and understand the key processes in agricultural 

dynamics and study the possible futures by using different storylines and scenarios and showed its 

added value as input for other models.  

Apart from showing the spatial patterns of change that can be expected in the future, Chapter 5 

showed that the effect of the different storylines was surpassed by the effect of the current state 
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of the agricultural population (i.e. relatively old with a low succession rate). These characteristics of 

the farmer population are not limited to Belgium, but are present in most of the European Union 

(Eurostat, 2018). 

In all scenarios the highest losses were also found in the most urbanised regions of the country. The 

losses were however the lowest in the storyline with low urban expansion rates and where small 

farms receive extra financial support. This shows the impact urban expansion processes have on 

their surroundings and on other sectors, like agriculture, that are not directly related to it. The 

results also show the possible impacts of subsidies (or other financial incentives, like present in the 

EU-CAP) for small farms in the urban fringe, especially on the short term. In the long term, the 

reorientation of traditional farming practices towards alternative ways of farming that provide a 

competitive advantage (like organic farming, rebranding, short supply chains or self-harvest farms) 

could increase the income of these farmers (Crowder and Reganold, 2015; Pearson et al., 2011) and 

reduce the required amount of subsidies. 

Given the results ADAM can thus be seen as a useful model for the specific goal it was designed for, 

being the testing of the possibilities of country scale ABM at a fine spatial resolution, allowing the 

combination with external inputs (e.g. urbanisation scenarios) and other models (e.g. species 

distribution models). As with many other agricultural ABMs there is always room for the 

improvement of the decision-making processes. Highly sophisticated models often mostly focus on 

a specific aspect in order to explain certain trends or explore possible future scenarios, and do not 

include of full parameterization of the decision-making process (Huber et al., 2018). Increasing the 

complexity of the representation or the decision-making processes of farmers in agricultural ABMs 

are not always necessary or meaningful (Sun et al., 2016) therefore, improvements and further 

detailing are only to be done when the specific aim of the research question requires it. This was 

also shown through the results in Chapter 6 for the coupling with the bumblebee species distribution 

model, where the added value of increasing the thematic resolution was highly depended on the 

specific use case (in this case the specific bumblebee species that was being modelled).  

Possible improvements in the model that might be useful are:  
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• An improved financial and economic module or the combination of ADAM with an external 

micro-finance model (for example as done by Happe et al. (2009)) when wanting to have more 

insight in the results of changing market processes and farm accounting. This could allow for a 

better calculation of income and profit, or other survival strategies at the farm level (e.g. agro-

tourism, product upgrading, short chain initiatives, specific acquisitioning strategies…). Adding 

this could be especially interesting when more insight is wanted in the possible impacts from 

changes in the EU-CAP. 

• Increasing the variety in agents to gain insights on changes in land management (pesticides, 

fallowing, fertilisation). Currently, the model does not include differences in land management 

within the same farm type category. An example could be the subdividing of agent types in 

conventional or green farmer types, or the inclusion of personal preferences (for example as 

proposed by Murray-Rust et al. (2014)). This would allow changing the process on crop decision 

making and the amount or type of pesticides and fertilisation leading to a diversification in land 

management practices.  

• Starting the model from the real initial agricultural landscape to further improve the accuracy of 

the current model. The starting point in the current model was downscaled from aggregated 

data, which made the starting point of the model simulations in this study realistic but not reality. 

At the same time, better data would also to improve the calibration and validation process 

through less uncertainties and more variables that can be validated.  

• To get a more detailed insight in the processes that result in the loss of agricultural land, a further 

refinement of the land abandonment process would be recommended. Farmland abandonment 

both in remote areas as well as in the urban fringe (e.g. through horsification) is present 

throughout most of the EU and expected to continue (Hatna and Bakker, 2011; Renwick et al., 

2013; Verburg et al., 2010). 
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7.4 Recommendations for future research 

7.4.1 Recommendations for science 

The coupling of ADAM with scenarios on urban expansion, and its combination with a species 

distribution model on bumblebees, showed ABM at the country scale has an added value. This 

research also showed that the added value differs between use cases. Further development of high-

resolution models that allow to gain insight in the possible future developments of a population or 

of its impact on the environment is therefore recommended when an initial assessment of the 

objectives justifies the extra investment in data and time.  

In future research ADAM could be tested for regions or countries which experience similar trends 

and difficulties and with similar data, like other countries in the EU. Also, in areas that differ more 

from the current case study area, using ADAM might be interesting. 

It would also be interesting to link ADAM to other existing models, as was done with the species 

distribution modelling on bumblebees. It could be used as input for other species distribution 

models or in combination with other models on micro-economy and finance, climate change, 

vegetation dynamics, erosion etc. 

7.4.2 Recommendations for policy makers 

The presented research clearly shows the importance of the availability of consistent, extensive and 

elaborate data on a nationwide scale. This research is subject to an almost yearly reduction of 

available data, with less variables being registered and less farmers surveyed in order to reduce the 

administrative burden on farmers. This is understandable, given the high administrative load 

farmers are already facing, but it also leads to an important loss of information, which makes it 

harder for policy makers to have a good insight, or follow-up on taken measures. In addition, 

progressively less data is being published, due to privacy issues: when the number of farmers in a 

category (municipality, farmer type etc) is lower than five, the data is no longer published. Given 

the current trend of a decreasing number of farmers, this might result in an almost inexistent 

dataset in the future. Making further academic research and analysis on this topic more and more 
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difficult. On top of this decreasing data availability, definitions of categories and variables change. 

The decreasing data availability together with the changing categories and variables, makes trend 

analysis, model set-up, calibration and validation very difficult. Given the requirement of a high 

amount of consistent data for this type of research and models, it is in the best interest for research, 

as well as for policy makers to continue to collect and provide these data. Providing high quality 

data, while preserving privacy, is however not an easy task, especially in this specific case, with a 

strong decline in the surveyed population. However, data collection in a continuous, consistent way 

is beneficial to both researchers and policy makers in order to follow up on trends and look at the 

impact of certain policies. The most important factors are thereby the consistency in the data at a 

relevant spatial resolution to allow time series analysis and the validation of model set-ups. Thereby, 

for this type of research, the frequency of the data is less important than the consistency of the data 

definitions and the availability of a full dataset on farm numbers, farm size and farm type, age 

categories and the statistics on succession. To further reduce the administrative burden, the 

recurrence of some questions in the survey could be reduced to updates every 5 years: The use of 

a good, complete and consistent dataset at the initialisation of the model, would allow to fill in the 

data in the years between. This is especially the case for the demographic data and the farm 

characteristics. For the agricultural land use, a yearly reporting will continue to be necessary, 

because of the uncertainties in the model on this part and because it remains a requirement by the 

EU.  

For the case study of agriculture, the research showed a further decline in the number of farmers 

and increase in average farm size in all tested scenarios as a result of the current demographic 

situation of the farmer population, being an aging population with a low to extremely low succession 

rate. This can be seen as a logical and necessary trend of farm consolidation that has been going on 

for years, but it also implies personal dramas for non-competitive farmers with poverty, social 

exclusion and bankruptcy (Meert et al., 2005, 2002; Van Hecke, 2001) and has a negative impact on 

biodiversity and ecosystem services (Bäckman and Tiainen, 2002; Bianchi et al., 2006; Evans, 1996; 

Marshall and Moonen, 2002; Ouyang et al., 2010; Pätzold et al., 2007; Robinson and Sutherland, 

2002; Stoate et al., 2009; Withers et al., 2014). This finding might be tackled by policy makers 
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through two types of measures, namely measures that allow to alter this trend and measures that 

mitigate the effect. These measures are thereby not necessarily mutually exclusive. The changing of 

this trend will only be possible with a dramatic increase in the succession rate or the rate of new 

starters. A survey in 2015 requested by the EU showed that the most important needs for young 

farmers in Belgium, as well as in the rest of the EU, are: access to land (both to buy or to rent), access 

to loans for example and aid through subsidies (Zondag et al., 2015). Measures that focus on these 

needs, could make farming more attractive for young farmers by reducing some of the uncertainties 

inherent to farming. For the mitigation of the effects of these trends policy makers could focus on 

providing solutions for farmers that would like to stop farming in order to avoid social dramas. An 

example of support policy makers could provide could start with the services the non-profit 

organisation Boeren op een Kruispunt provides for both personal problems as farm related problems 

(individual support, psychological help, financial advice, etc). At the same time, the effects on 

nature, biodiversity and ecosystem services of consolidation processes should be mitigated (for 

example through stimuli for good agricultural practices). The latest EU-CAP revisions on greening 

measures and supporting young farmers (European Commission, 2019, 2013), are in that way a good 

start, and show the awareness among policy makers of the current challenges in agriculture. 

7.5 Concluding remarks 

For decades, researchers from different fields have presented agriculture as a system, as being the 

result of a combination of processes, being political, socio-economic or environmental in their 

nature. Research approaching agricultural systems from a systematic approach, are mainly 

descriptive in nature. This research has tried to translate the present knowledge on the agricultural 

system, to a practical agent-based model, surpassing previous small-scale attempts. In a way, this 

research opens up the research world to the use of large-scale systemic models, while using the 

individual agent as the starting point. This thesis should be considered as a first contribution to the 

research on highly detailed, large scale systemic models, opening up new perspectives for future 

research.
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Appendix 
Appendix 1- Non-exhaustive overview of agricultural simulation models in literature. 
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Appendix 2 - ADAM ODD protocol 

Overview 

Purpose 
The spatial simulation of the number of farmers and the size of farms in a real-world setting allowing the 
testing of different scenarios influencing the profitability of the farm. 

State 
variables 
and scales 

The main entity in the model is the farmer. Farmers can be of different types: animal farmer (land based or 
non-land based), greenhouse farmer, permanent crop farmer or rotational crop farmer. All farmers have 
an age, use a certain number of agricultural parcels that together form its farm, and belong to a certain 
municipality (the municipality where their “main” parcel or home is). The spatial unit of the model is the 
parcel, parcels have a certain size, belong to a farmer and to a municipality and have neighbours. The model 
is capable of running for larger extends (e.g. regions or countries) and each time step, represents a year. 

Process 
overview 
and 
scheduling 

Every time step (year), farmers die, retire of decide to continue farming. If the farmer dies or retires, a 
chance for succession is determined based on the location of the farm and its profitability for land-based 
farming types (crop farming and herbivore farming) or a general succession change for non-land-based 
farming types (greenhouses and granivore farming). The profitability of the farm is defined by a function 
which related the revenue of the farm to the total area of the farm. If the farm has no successor, for each 
of the parcels defining the farm a new farmer is searched in the vicinity of the parcel. If the new farmer is 
of a different type, the parcel is converted leading to agricultural land use change. 

Design concepts 

Design 
concepts 

Due to stochasticity in different steps of the model, the results will be different after every model run, with 
changes in the number of farmers and the farm size. The remaining number of farmers and their farm 
structure are, as such, the main results to obtain from the output. The decision of a farmer to retire and 
for a new farmer to take over a farm, are strongly depending on the profitability of the farm. Changes in 
the parameters determining the profitability (e.g. subsidies), will impact the decisions made by the farms. 
These can be used for future scenario testing. The interaction of farmers is limited to the exchange of 
parcels when a farmer quits, and the availability of information on expected yield for crops in the region, 
helping them in the decision-making process on next year’s crop. 

Details 

Initialization 

Initialization is based on the provided input data from surveys to create a starting situation close to reality 
for the starting year. The initial farmer population is created based on the number of farmers per spatial 
entity (e.g. municipality) and further information on farmers’ age distribution, farm types and initial 
agricultural land use of the parcels. This step is not necessary if information about the user of each 
agricultural parcel is available. 

Input data 

The model requires information on the number of farmers of each modelled type in each entity (e.g. 
municipality), the age distribution of the famers and the mortality rate at each age. Secondly, it requires 
the input of a dataset of agricultural parcels and their current agricultural land use, with derived 
information on location, size and neighbouring parcels and possible changes to the parcel on a yearly basis 
(urban expansion, conversion to nature). For the crop decision making process, information is required on 
the current price or expected price evolution of the modelled crops, the expected yield for each crop and 
information on the rotation of crops. 

Sub models 

First, the land use of parcels changes based on the input data (urban expansion, conversion to nature). 
Next, farmers leave the system by dying (stochastically determined based on the general mortality rate of 
the population) or retiring. The farmer retires at the legal retirement age when a successor is present, or 
at a later age according to a calibrated probability. The decision making of a possible successor to take over 
a farm or not is stochastically determined according to a probability based on the regional retirement 
chance available in statistics, which is combined with the profitability of the farm for land-based farming 
types. Farms without a successor, end activities and parcels are divided among farms cultivating 
neighbouring parcels. Priority is given to farms of the same type. If not of the same type, the parcel is 
converted to a suitable agricultural land use for the farm type. 
Lastly, farms with yearly crop rotations decide on a new crop on their fields based on the expected 
probability, defined by the combination of the expected yield for the possible crops and the price level for 
the crop, in combination with the rotation probabilities in the region. 
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Appendix 3 – Cross table for crop rotation succession for main Belgian crops based on the time series (2009-2015) of crops on each 
parcel in the Système intégré de gestion et de contrôles (SIGEC) and Landbouwgebruikspercelen datasets for respectively Wallonia 
and Flanders-Brussels. 

 
Winter 
wheat Barley Maize 

Sugar 
beet Rapeseed Potatoes 

Temp. 
grassland 

Winter wheat 0.90 0.02 0.01 0.02 0.01 0.01 0.03 

Barley 0.02 0.90 0.02 0.01 0.01 0.01 0.03 

Maize 0.02 0.02 0.90 0.01 0.01 0.01 0.03 

Sugar beet 0.01 0.01 0.02 0.90 0.01 0.02 0.02 

Rapeseed 0.01 0.02 0.01 0.02 0.90 0.01 0.03 

Potatoes 0.02 0.01 0.02 0.01 0.02 0.90 0.02 

Temp. grassland 0.01 0.02 0.01 0.02 0.01 0.02 0.91 

Appendix 4 – Overview of choices and assumptions made for the Belgian case study based on conversations with experts and gained 
insights in Belgian agriculture. 

Farmer 
population 

- Farmers can live to max. 105 years old 
- Famers retire at legal retirement age if a successor is present 
- Farmers without successor continue farmer until finally retiring or passing away 
- The age of the successor is normally distributed around the age of 35 with a minimum of 18 
- There are 5 farm types (yearly crop farm, permanent crop farm, greenhouse farm, land-based and non-

land-based animal farms), there are no mixed farm types 
Succession - For non-land-based farms (greenhouse farms and non-land-based animal farms), succession is based 

on the regional average succession chance. 
- For land-based farmers (permanent crop, rotating crop and land-based animal farms) succession 

chance is related to profitability and the regional average succession chance. 
- Profitability is thereby calculated as the farm size times the regional average SDM per ha per farm type. 
- The assumed profitability of a farm is compared to the average profitability for that farm type in the 

region and results in an adaptation of the average succession chance through a correction factor. The 
correction factor is based on a discrete logistic curve with steps according to the standard deviation 
from the average profitability. 

Parcel 
dynamics 

- If a farmer continues after retirement age, 2/3 of his parcels (i.e. the estimated rate of leased lands) 
are being redistributed among farmers in the neighbourhood of this parcel. 

- Parcels are given in preference to farmers that can use the land without land use change (as such 
avoiding extra costs). 

- A farmer that receives a parcel that he cannot immediately use given the current agricultural land use, 
will change the agricultural land use of the parcel. 

- If a farmer stops without a successor, the farm house becomes a residential parcel.  
- For farmers that yearly change the crop type, a crop is chosen stochastically from a limited list of 

popular crops (maize, sugar beet, barley, wheat rapeseed and potatoes) based on the expected yield 
in combination with the average price per ton for a crop. 

- If there are no agricultural parcels left within 1km of the parcels, the parcel is abandoned. 
Neighbours - The neighbours of a farmer are the farmers that manage the 20 nearest parcels to every parcel that is 

part of the farmers’ farm. 

 



 

 158 

Appendix 5 – Average price between 2013 and 2018 (Food and Agriculture Organization, 2019) and the average yield (Jacquemin et 
al., 2017) and average resulting producer prices per hectare for West Flanders specific, and for Belgium more generally. 

 

Appendix 6 – Modelled change in agricultural land use between 2013 and 2030 with increase in green and decreases in orange-red. 

Grains Rapeseed Maize 

   

Potatoes Sugar beet Grass 

   

Greenhouses Agricultural buildings Permanent cultures 

   

  West Flanders Belgium 

 
Average price 

2013-2018 

Average 

yield 
SD yield 

Average 

price/ha 

Average 

yield 
SD yield 

Average 

price/ha 

Crop EUR ton/ha ton/ha EUR/ha ton/ha ton/ha EUR/ha 

Wheat 159.89 € 6.34 1.05 1 013.10 € 7.59 0.78 1 213.27 € 

Barley 147.09 € 7.04 0.98 1 035.15 € 7.97 0.70 1 172.12 € 

Maize 173.44 € 6.20 4.56 1 074.84 € 15.30 5.55 2 654.32 € 

Sugar beet 25.55 € 19.86 8.42 507.48 € 36.28 22.06 926.99 € 

Rapeseed 217.98 € 5.14 0.73 1 121.03 € 5.76 0.49 1 256.18 € 

Potatoes 135.44 € 3.62 4.42 490.59 € 18.56 9.21 2 514.06 € 
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Appendix 7 – Area of common agricultural crops according to the agricultural survey (Statistics Belgium, 2018) 

Agricultural land (2018) 8505 km2 

Permanent grassland 4796 km2 

Grains 3045 km2 

Maize 2337 km2 

Potatoes 933 km2 

Sugar beets 627 km2 

Rapeseed 113 km2 

  

 

Appendix 8 – Modelled current range as the number of 1km cells with a certain Bombus species present. 
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29140 pascuorum 
 

30430 pratorum 
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Technical appendix 

TA.1. General introduction 

ADAM is an open-source object-oriented framework developed to analyse the evolution of an 

agricultural population and the agricultural landscape. ADAM is based on two major components: 

the initialization and the yearly update. In the initialization phase the agricultural landscape is 

created based on the available input information. In the yearly update, the farmers and their farms 

evolve over time and change the agricultural land they manage. ADAM was developed from an 

object-oriented design instead of a procedural program design since this would allow (1) a more 

easily transferability to other case-study areas, (2) working with a compartmented structure with 

independent pieces of code and (3) an easier way to further expand the model and increase 

complexity, without the need to adapt the original code. 

This technical documentation starts with an overview of the concepts, choices and assumptions 

made within the modelling framework followed by an overview of the required input files and 

parameters. Next, a detailed overview of the initialization and yearly update is given, supported by 

tables and flow charts when useful. The model overview is followed by an explanation of the 

different output files. Finally, relevant pieces of code that support the model explanation are added. 

ADAM is written in Java 1.8-se in the Eclipse IDE. The full code consists of 22 files with a total of 

3673 lines of code and is available through Github: 

 
 https://github.com/veroniquebeckers/ADAM 

  



 

 162 

TA.2. Concepts 

The following concepts were implemented in ADAM: 

Agents: 

- Farmers retire at legal retirement age only if a successor is present. 
- Farmers without successor continue farming until finally retiring or passing away. 
- The age of the successor is normally distributed around the age of 35 with a minimum of 

18. 
- There are 5 farm types (yearly crop farm, permanent crop farm, greenhouse farm, land-

based and non-land-based animal farms), there are no mixed farm types. 

Farm succession: 

- For non-land-based farms (greenhouse farms and non-land-based animal farms), 
succession is based on the regional average succession probability. 

- For land-based farmers (permanent crop, rotating crop and land-based animal farms), 
succession probability is related to profitability and the regional average succession 
probability. 

- Profitability is thereby calculated as the farm size times the regional average SDM per ha 
per farm type. 

- The assumed profitability of a farm is compared to the average profitability for that farm 
type in the region and results in an adaptation of the average succession probability 
through a correction factor. The correction factor is based on a discrete logistic curve with 
steps according to the standard deviation from the average profitability. 

Parcel ownership: 

- If a farmer continues after retirement age, he continues farming on the parcels he owns. 
The parcels he leases are being redistributed among farmers in the neighbourhood of this 
parcel. 

- Parcels that become available are given in preference to farmers that can use the land 
without land use change (as such avoiding extra costs). 

- If a farmer retires without a successor, the farm house becomes a residential parcel.  

Land use change: 

- For yearly rotating crop farms a crop is chosen stochastically from a limited list of popular 
crops (maize, sugar beet, barley, wheat, rapeseed and potatoes) based on the expected 
yield in combination with the average price per ton for a crop. 

- A farmer that receives a parcel that he cannot immediately use given the current 
agricultural land use, will change the agricultural land use of the parcel. 
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TA.3. Input 

TA.3.1. Data 

Required: 

• AgrNeighb.csv: A CSV file indicating the distance between parcels and their twenty most 
nearby neighbouring parcels. (separator = “,”) 

o InputID: The first parcel 
o TargetID: The second parcel 
o Distance: The distance between the centroids of the first and second parcel in meters 

• Market.csv: A CSV file containing expected real producer prices for all the different crops for 
each year. For each crop, a row is present. (separator = “,”) 

o Fields 1-41: The real producer price for a crop in the year “2000 + FieldNr - 1” 
• CropRot.csv: A CSV file describing the probability that crops follow each other each year 

(separator = “;”) 
o Field 1: First crop 
o Field 2: Second crop 
o Field 3: The probability that second crop follow first crop 

• DVM2ABMdict.csv: CSV file specifically made to link the yearly yield output of the CARAIB 
model (Jacquemin et al., 2017) to ADAM. Each parcel in ADAM is linked to a 1km2 cell that 
identifies the yield of CARAIB. (separator = “;”) 

o ParcelID: The parcel ID as used by ADAM 
o Longitude: The longitude of the cell in the CARAIB model 
o Latitude: The latitude of the cell in the CARAIB model. 

• Municipality.csv: CSV file containing information on the farmer population at the municipality 
level. (separator = “,”) 

o NIS_CODE: The NIS code of the municipality (the official code of the National Institute of 
Statistics for all municipalities) 

o NAME: The name of the municipality 
o Fields 3-7: The number of yearly rotating crop farms, permanent crop farms, greenhouse 

farms, land-based and non-land-based animal farmers 
o Fields 8-12: The number of farmers in age categories [18,35[, [35,45[, [45,55[, [55,65[ and 

[65,105[. 
• Parcels.csv: CSV file containing information on all the parcels that are used by ADAM. 

(separator = “,”)  
o ADAM_ID: The parcel ID (which allows to link it to the original GIS vector file to visualise the 

result) 
o LU: The current land use (being 2 for agricultural parcels) 
o CROP: The agricultural land cover for the start year (if known and if being a class being 

modelled, otherwise 0) 
o AREA: The size of the parcel in hectares 
o ZONE: The zone (a currently not used column that could be used to indicate a zoning 

(zoning plans, hydrological zones…) for relevant use within the model) 
o NIS: The NIS code 
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o NAME: The name of the municipality  
o LBS: The agricultural zone it belongs to 

• Mortality.csv: A CSV file indicating the mortality rate for farmers. The mortality statistics start 
at 18 years old and end at 105 years old, where the mortality rate is set to 1. (separator = “;”) 

o AGE: The age of the farmer 
o RATE: The mortality rate at the specified age. 

• PROD folder: Folder containing yield data for every year being modelled from CARAIB 
(Jacquemin et al., 2017). The yield input is available through TXT files, with the filename 
consisting of the word “yield”, followed by the year of the yield (e.g. yield2015.txt). Each file 
contains CSV data with 25 fields without a header. (separator = tab) 

o Field 1: Longitude of the CARAIB cell 
o Field 2: Latitude of the CARAIB cell 
o Field 3: Expected yield in tons per hectare of different types of crop or other 

vegetations being modelled. 
o Fields 4-18: Not used 
o Fields 19-25: The expected yield for wheat, barley, maize, sugar beet, rapeseed, 

potatoes and grassland respectively. 

Optional: 

• ABM2DVMdict.csv: An optional CSV file to aggregate the ADAM output at parcel level to a 
1km2 resolution. With this conversion file, the output of ADAM can be used as input for 
CARAIB. The file consists of 5 columns with a header. The file is required when DVM_output = 
true in Config.java (separator = “;”)  

o ADAM_ID: The parcel ID in ADAM 
o TARGET_FID: The ID of the grid used by CARAIB 
o X: The longitude of the 1km2 grid cell in CARAIB 
o Y: The latitude of the 1km2 grid cell in CARAIB 
o AREA_PERC: the contribution of the parcel identified in the first column to the total 

land use of the cell in the second column as a rate to a total of 1 
• (scenario)_urban.csv: CSV file containing information on when parcels will no longer be used 

in agriculture as a result of urban expansion. The file is required when urbanisation = true in 
Config.java (separator = “,”) 

o ADAM_ID: The parcel ID in ADAM 
o (scenario)-YEAR: A field for each year that the specific scenario provides data for. The 

standard value for every combination of parcel and year is 0, from the year a parcel is 
expected to be lost due to urban expansion, the value becomes 1 and stays 1 for the 
rest of the years. 

• SCENARIO folder: Folder containing CSV files to include a full land use map at a 1km2 
resolution as output when required. The file is required when DVM_output = true in 
Config.java. The names of the files are composed as “ScenarioName_ModelYear.csv”. 
(separator = “;”)  

o Field 1: The first column states the land use as an integer according to Table TA.1 
o Field 2: The ID of the DVM grid of CARAIB 
o Field 3: The total area of the DVM grid cells (approx. 1km2) 
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o Fields 4,5: Longitude and latitude of the cell 
o Field 6: The total area of the land use type of the total column into the specific 1km2 

cell,  
o Field 7: Contains the ratio relative to the total area of the 1km2 cell 

 

Table TA.1 – Land use code and land use name as used in the land use input 

ID Land use ID Land use 
1 Arable land 13 Water 
2 Orchard 14 Recreation 
3 Greenhouse 15 Park 
4 Pasture 16 Residential 
5 Grassland 17 Military 
6 Unregistered arable land 18 Commerce and services 
7 Deciduous forest 19 Industry 
8 Coniferous forest 20 Mining 
9 Mixed forest 21 Infrastructure 
10 Heathland 22 Harbour 
11 Dunes 23 Other 
12 Wetland 9999 Out of study area 

 

TA.3.2. Parameters and configuration  

Can be changed in Config.java 

o basePath: Path to the folder where the input data can be found, relative to where the code 
source is found. 

o outputFolder: Path to the folder where the output data will be written, relative to where 
the code source is found. When running in batch or shell, this can be added as an 
argument. 

o START_YEAR: The start year of the model run. When running in batch or shell, this can be 
added as an argument. 

o END_YEAR: The end year of the model run. When running in batch or shell, this can be 
added as an argument. 

o Scenario: The scenario that will be used in relation to the input files. When running in batch 
or shell, this can be added as an argument. 

o RETIREMENT_AGE: Legal retirement age in the study area. 
o RETIREMENT_CHANCE: Calibrated parameter that defines how many agents retire yearly 

when continuing after retirement age. 
o SUBSIDY: A fixed subsidy that each farmer receives if GENERAL_FARM_SUBSIDY = true. 

Standard value is 0. 
o SUBSIDY_PER_HA: Subsidies a farmer receives per hectare he manages if 

GENERAL_FARM_SUBSIDY = true. Standard value is 0. 
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o BSS_IMPACT_FACTOR: Correction factor on the expected total income (SGM) of a farmer if 
POLICY_BSS_IMACT = true or SMALL_FARM_SUBSIDY = true. Standard value is 1 When 
below 1, SGM is lowered, when above 1, SGM is increased. 

o CROP_SUBSIDY_FACTOR: Correction factor on the expected income per ton for a specific 
crop indicated in SUBSIDIZED_CROP. Standard value is 1. 

o SUBSIDIZED_CROP: Integer referring to the specific crop being subsidized by the 
CROP_SUBSIDY_FACTOR.  

o SMALL_FARM_SUBSIDY: Boolean to indicate if BSS_IMPACT_FACTOR should be applied on 
farms with farm size below average. 

o GENERAL_FARM_SUBSIDY: Boolean to indicate if a general subsidy is to be applied to all 
farms through the value indicated in SUBSIDY. 

o AREA_SUBSIDY: Boolean to indicate if subsidy per hectare should be given according to the 
factor indicated in SUBSIDY_PER_HA. 

o POLICY_BSS_IMPACT: Boolean to indicate if BSS_IMPACT_FACTOR should be applied to all 
farms. 

o CROP_SUBSIDY: Boolean to indicate if subsidy for a certain crop should be given according 
to the factor indicated in CROP_SUBSIDY_FACTOR for the crop indicated in 
SUBSIDIZED_CROP. 

o Agricultural land use codes 
o Succession percentage per agricultural zone 
o landOwnershipRate: Rate on the amount of land that is on average owned and not leased 

in regard to the total.  
o BSS_rot_(agricultural zone): Average standard gross margin (SGM) per hectare for yearly 

rotating crop farmers for each agricultural zone. 
o BSS_perm_(agricultural zone): Average standard gross margin (SGM) per hectare for 

permanent crop farmers for each agricultural zone. 
o BSSforLBAF: Average standard gross margin (SGM) per hectare for land-based animal 

farmers. 
o URBANISATION_DISTANCE: Threshold for the minimum distance to another agricultural 

parcel, before the parcel is considered to be too isolated to be still in use as agricultural 
parcel. 

o UrbanisationTreshold: Threshold for the number of agricultural parcels in the 
neighbourhood of the parcel (defined through AgrNeighb.csv) underneath which it will be 
considered as too isolated to be still in use as agricultural parcel. 

o startRate(crop): Average rate of every crop in comparison to the total for all cropland. This 
rate can be used to initialize crops when no start crops are available. 
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TA.4. Model overview 

TA.4.1. Initialisation 

The initialization procedure (init())is responsible for creating parcels and assigning them to 

agents. The initialisation phase follows the conceptual flow chart visualised in Chart 1 and is based 

on the following key methods: 

- MainModel.assignAgents() 
- MainModel.getFreeParcelForAgent() 
- MainModel.joinNeighbouringParcelbyFarmer() 
- MainModel.joinMunicipParcel() 

The method starts with loading in all the input data provided in the different files (see Input), after 

which it starts the module MainModel.assignAgents().  

For all municipalities, all agents get one parcel, considered to be their home parcel through the 

method Parcel.getFreeParcelForAgent(). If there are more farmers in the municipality than 

available farmers, the neighbouring parcels of the parcels in the municipality are added as potential 

home parcels for the farmer. This is preferably a parcel listed as an agricultural building. If there are 

not enough parcels of that type available in the municipality, another type of parcel is randomly 

assigned to the farmer as its home parcel. When a parcel is appointed to a farmer, it gets the land 

cover label “farm house” and it becomes part of the agricultural zone in which the farmer is located. 

Now that all farmers have at least one parcel, all the parcels that are not assigned to a farmer yet 

are listed and are assigned through the method Agent.joinNeighbouringParcelbyFarmer() using a 

type restriction. The neighbours are defined through the agrNeighbours.csv (see Input). The type 

restriction is checked through the function Agent.canOccupyParcel() and is defined as follows: 

 
Table TA.2 – Type of parcels that can be occupied by a certain farmer type 

Farmer type canOccupyParcel 

Land-based animal farmer Grassland & agricultural buildings 

Greenhouse farmer Greenhouses 

Non-land-based animal farmer Agricultural buildings 

Permanent crop farmer Fruit trees & arboriculture 

Yearly crop farmer Cropland 
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The method continues until there are no more parcels to be assigned or until it is no longer possible 

to find a suitable owner. When there are still unassigned parcels, new owners for these parcels are 

being searched within the entire municipality through the method Parcel.joinMunicipParcel(). 

When there are still unassigned parcels after this method, the model tries again to assign farmers 

to parcels through the method Agent.joinNeighbouringParcelbyFarmer(), given that the situation 

might have changed after the previous method. Since parcels are searching for neighbouring parcels 

that have an agent of the correct type, new neighbouring parcels of the correct type might have 

been created in the previous iteration. Hence, an iterative approach is needed. When there are still 

parcels that are not assigned, the method Agent.joinNeighbouringParcelbyFarmer() is executed 

again, now without the type restriction. This continues until all parcels are linked to a farmer, after 

which the farms are created and the output of the initialisation phase is printed out. 
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Chart 1: Flow chart of the initialization phase 
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TA.5. Yearly update 

The main program (MainModel.run()) covers the yearly update of the farmer population, the farms 

they own and the agricultural land by yearly calling the method MainModel.processYear (year) 

from the start year until the end year as defined in Config.java. 

MainModel.processYear follows the conceptual flow chart visualised in Chart 2 and is based on the 

following key methods: 

- MainModel.terminateUncompetitveAgent(year,agent) 
- MainModel.farmSurvivalChance(agent) 
- MainModel.reassignParcel(year,parcel) 
- MainModel.getAverageBSSforType(year,parcel) 
- Agent.updateParcels(year) 
- Agent.updateCoverType 

TA.5.1. General farmer and farm update 

Every year, the method starts with loading in the year specific yield data provided in the input (see 

Input), after which the yearly update of agents and parcels starts.  

For every agent the model determines whether it dies this year or not, by a randomized probability 

based on the mortality rate for its age. If the agent dies: 

- If the agent has passed the retirement age, the agent is assumed to have no successor and 
is immediately terminated through (see Terminating Agents). 

- If the agent did not pass the retirement age, the probability of succession and thus survival 
of the farm is evaluated (see Succession). If there is a successor, the age of the farmer is reset 
to a random successor age, normally distributed around 35 (μ=35, σ=5). If there is no 
successor, the agent and farm are terminated (see Terminating Agents). 

If the agent does not die:  

- If its age equals the retirement age, a potential successor is identified (see Succession). If 
there is a successor, the age of the farmer is reset to a random successor age, normally 
distributed around 35 (μ=35, σ=5). If there is no successor, the farmer continues to farm, 
whereby the farm size is reduced by MainModel.reassignParcel(year,parcel) until a 
leftover percentage that equals the average landownership percentage.  

- If its age surpasses the retirement age, the probability of retirement is determined by 
comparing a random probability to the calibrated retirement probability. If the agent retires, 
it is assumed to have no successor and agent and farm are terminated (see Terminating 
Agents). 
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Chart 2 – Chart with overview of the main model, boxes in red are explained into more detail in their own flow chart 
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Terminating agents 

When farm and farmer are terminated through 

MainModel.terminateUncompetitveAgent(year,agent) the farm house is converted to residential 

land and all other parcels are reassigned through MainModel.reassignParcel(year,parcel) (Chart 

3). This method reassigns a parcel of the terminated agent amongst his neighbours. First the model 

checks whether the neighbour has not passed retirement age yet. Afterwards it looks for a potential 

owner among the neighbours of the same Farm Type 

(Agent.hasHigherChanceOfTakeOver(neighbour) (see Table TA.3), unless no farmers of the same 

Farm Type are available. 

Table TA.3 – Farmer types that have a higher probability of being taken over by a certain farmer type 

Farmer type hasHigherChanceOfTakeOver 

Land-based animal farmer Animal Farmer 

Greenhouse farmer Greenhouse Farmer 

Non-land-based animal farmer Animal Farmer 

Permanent crop farmer Crop Farmer 

Yearly rotating crop farmer Crop Farmer 
 

 

Chart 3 – Flow chart of the process of MainModel.terminateUncompetitveAgent(year,agent) 
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Succession 

The probability that a farm has a successor is defined through 

MainModel.farmSurvivalChance(agent). 

For the types Greenhouse farmer and Non-land-based animal farmer, the probability of succession 

is determined by the comparison of a random probability to the average succession probability in 

the agricultural zone of the farmer that is terminating (Config.getSurvivalPercentageForZone). A 

correction factor on the succession probability is applied when this is part of the scenario as 

determined in Config.java (see Input). 

For land-based farming types (land-based animal farmers and permanent and yearly rotating crop 

farmers) the method first defines the average profitability (defined as the bruto standard saldo 

(BSS)) and standard deviation (SD) for the retiring farmer’s farm type in its agricultural zone 

(MainModel.getAverageBSSForType). The BSS is thereby calculated (Agent.getBss(), Table TA.4) 

for every individual farmer of the same farm type in the same agricultural zone. These values are 

then combined to define the average and the SD. The SGM per hectare is defined as an input 

parameter (see Input) per agricultural zone for permanent (BSS_perm) and yearly rotating crop 

farmers (BSS_rot) and is defined as an average for the country for land-based animal farmers 

(BSSforLBAF). 

Table TA.4 – The calculation of the SGM for the different farmer types. 

Farmer type getBSS 

Land-based animal farmer BSSforLBAf * total farm size 

Greenhouse farmer 0 

Non-land-based animal farmer 0 

Permanent crop farmer BSS_perm for zone * total farm size 

Yearly rotating crop farmer BSS_rot for zone *total farm size 

 

Next the profitability of the terminating farmer (Agent.getBSS()) is corrected if this is part of the 

scenario determined in Config.java (see Input) and compared to the earlier defined regional 

average profitability and SD according to Table TA.5. 
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Table TA.5 – Succession percentage of a farm as based on a comparison to similar farmers  

From To Succession Percentage 

infinity mean + SD*2.5 Config.getSurvivalPercentageForZone * 4 

mean + SD*2.5 mean + SD*1.5 Config.getSurvivalPercentageForZone * 3 

mean + SD*1.5 mean + SD *0.5 Config.getSurvivalPercentageForZone * 2 

mean + SD*0.5 mean - SD *0.5 Config.getSurvivalPercentageForZone * 1 

mean - SD*0.5 mean - SD *1.5 Config.getSurvivalPercentageForZone * 0.5 

mean - SD*1.5 0 Config.getSurvivalPercentageForZone * 0.1 

 

This adapted survival chance is then compared to a random chance to define whether the farm is 

being taken over by a successor and thus survives. 

The last step in the agent update is the increment of the age of all agents by one. 

TA.5.2. Update of the agricultural land 

After the agents have been updated, the method MainModel.processYear (year) continues with 

updating the agricultural land.  

If urbanisation of agricultural land is foreseen as input (Config.urbanisation=true), the model 

checks in agent.updateParcels(year) for parcels that will change from agricultural (2) to urban (1) 

land use based on input data on urbanisation and on whether the nearest agricultural parcel is 

further away than the urbanisation threshold defined in Config.UrbanisationTreshold. 

For all remaining agricultural parcels that are not labelled as the farm house or as agricultural 

building, the next agricultural land cover is chosen in Agent.updateCoverType(year), based on the 

method getNextCoverType(year, parcel area, parcel) (see Table TA.6). 
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Table TA.6 – The result of getNextCoverType for each farm type. 

Farmer type getNextCoverType 

Land-based animal farmer If not farm house or building: grassland 

Greenhouse farmer If not farm house or building: Greenhouse 

Non-land-based animal farmer If not farm house or building: 

If cropland: maize 

If grassland: grassland 

Else: random maize (20%), grassland(30%) or building (50%) 

Permanent crop farmer If not farm house or permanent crop: fruit trees 

Yearly rotating crop farmer If not farm house or building: 

If grassland: random based on crop productivity & rotation statistics 

Else: random based on crop productivity, market value & rotation 

statistics 

 
After the land update, the different output files are printed. 

TA.6. Output 

The output is sorted in 4 folders: agent_dyn, agents, municipality and parcels. 

- agent_dyn: contains one CSV file with an overview of the total number of agents for every 
year of the model run. 

- agents: contains one CSV file for every year of the model run, plus one with the data after 
initialization, with summarized data for every living agent. The data consists of: 

o OWNER_ID: The unique identifier of an agent, which stays the same throughout the 
entire model run. 

o OWNER_TYPE: The farm type of the agent 
o AGR_ZONE: A numbered code referring to the agricultural zone in which the agent 

started its farm. The code is the same as the one used in the input files. 
o MUNICIPALITY_NIS: The NIS that refers to the official NIS code of the National 

Institute of Statistics for the municipality in which the agent started its farm. 
o OWNER_AGE: The current age of the agent. 
o TOTAL_LAND: The total land, or sum of all the parcels, the agent manages. 
o SGM: The calculated SGM based for land-based farming types. 

- municipality: contains one CSV file for every year of the model run, plus one with the data 
after initialization, with summarized data for every municipality. The data consists of: 

o NIS: The NIS that refers to the official NIS code of the National Institute of Statistics 
for the municipality. 

o NAME: Name of the municipality 
o AVG_SIZE: Average size of the farms in the municipality in hectares. 
o FARMERS_home: Number of farmers that are active and have their home parcel in 

this municipality. 
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o FARMERS_active: Number of farmers that manages one or more parcels in this 
municipality. Some of them might have their home parcel in another municipality. 

o Agr_area: The total agricultural area in the municipality. 
o 101: Number of hectares of wheat in the municipality. 
o 102: Number of hectares of barley in the municipality. 
o 103: Number of hectares of maize in the municipality. 
o 104: Number of hectares of sugar beets in the municipality. 
o 105: Number of hectares of rapeseed in the municipality. 
o 106: Number of hectares of potatoes in the municipality. 
o 107_91: Number of hectares of grassland in the municipality. 
o 92: Number of hectares of tree nurseries in the municipality. 
o 93: Number of hectares of fruit trees in the municipality. 
o 94: Number of hectares of greenhouses in the municipality. 
o 95: Number of hectares of agricultural buildings in the municipality. 

- parcels: contains one CSV file for every year of the model run, plus one with the data after 
initialization, with the data on every parcel. The data consists of: 

o ID: Unique identifier of the parcel. 
o NIS: The NIS that refers to the official NIS code of the National Institute of Statistics 

for the municipality in which the parcel is located. 
o AREA: The size of the parcel in hectares. 
o CROP_TYPE: A code referring to the current agricultural land use with: 

• -1: not agriculture, 101: wheat, 102: barley, 103: maize, 104: sugar beet, 105: 
rapeseed, 106: potatoes, 107: grassland, 91: (permanent) grassland, 92: tree 
nursery, 93: fruit trees, 94: greenhouses, 95: agricultural buildings 

o LAND_TYPE: A code referring to the current land use with: 
• 1: urban, 2: agriculture, 3: forest, 4: non-commercial agriculture 

o OWNER_ID: ID of the agent currently managing the parcel. 
o OWNER_AGE: Age of the current agent managing the parcel. 
o OWNER_CHANGE: Boolean value that shows whether the parcel did (1) or did not (0) 

changed owner that year. 

TA.7. Running the script 

The script can be run from any IDE suitable for Java.  

The code can also be compiled as a JAR-file, with pre-set parameters, allowing direct execution and 

inclusion in other Java projects. 

The JAR-file can also be executed (in a loop) from a batch (Windows) or shell (Linux) file whereby 

the following arguments are processed: [0] START_YEAR, [1] END_YEAR, [2] FOLDER_NAME and [3] 

SCENARIO. The build-up of the folder name or other changes in the argument can be preconfigured 

in MainModel.main(args). Running these batch or shell files from the command line allows the 

follow up of the script through print-outs. 
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TA.8. Code 

MainModel.assignAgents() 

/** 
* Links agents to parcels, until every parcel is connected to an agent.  
* First by giving every farmer one parcel,its home parcel, then by letting  
* the farm expand by joining parcels that are close to the home plot. 
*/ 
private void assignAgents() { 
   

// Loop over all municipalities 
 for (Municipality munic : this.municipalityList) { 
  // Loop over all agents within municipality 
  int nrOfAgents = munic.getAgents().size(); 
  ArrayList<Agent> agents = (ArrayList<Agent>) munic.getAgents().clone(); 
  // Find a home plot for every agent 
  for (int i = 0; i < nrOfAgents; i++) { 
   Agent a = agents.get(i); 
   if (a != Agent.INITIAL) { 
    Parcel p = getFreeParcelForAgent(munic.getParcels(), nrOfAgents, a); 
     p.setAgent(a); 
    } 
   } 
  } 
 
 // All agents now have at least one parcel 
 // Get all the parcels still assigned to Agent.INITIAL (i.e. unassigned parcels) 
 // and assign the parcel to the owners of neighboring parcels 
 int parcelsAtStart; 
 ArrayList<Parcel> currentList = (ArrayList<Parcel>) 
Agent.INITIAL.getParcelList().clone(); 
 
 // As long as something changed, keep assigning parcels 
 do { 
  currentList = (ArrayList<Parcel>) Agent.INITIAL.getParcelList().clone(); 
  parcelsAtStart = currentList.size(); 
 
  for (Agent a : this.myAgents) { 
   joinNeighboringParcelbyFarmer(a, false, true); 
  } 
 } while (parcelsAtStart != Agent.INITIAL.getParcelList().size()); 
   
   
 // Some parcels are still not assigned to an agent. We try to find a 
 // suitable owner for each parcel in the whole municipality 
 if (Agent.INITIAL.getParcelList().size() > 0) { 
  currentList = (ArrayList<Parcel>) Agent.INITIAL.getParcelList().clone(); 
  Iterator<Parcel> i = currentList.iterator(); 
  while (i.hasNext()) { 
   Parcel p = i.next(); 
   joinMunicipParcel(p); 
  } 
 }  
 
 // We try to assign parcels again looking at neighbours, after looking 
 // in the whole municipality for suitable owners 
 if (Agent.INITIAL.getParcelList().size() > 0) { 
  do { 
   currentList = (ArrayList<Parcel>) Agent.INITIAL.getParcelList().clone(); 
   parcelsAtStart = currentList.size(); 
 
   for (Agent a : this.myAgents) { 
    joinNeighboringParcelbyFarmer(a, false, true); 
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   } 
 
  } while (parcelsAtStart != Agent.INITIAL.getParcelList().size()); 
 } 
   
 // Some parcels are still not assigned to an agent. Parcels are now 
 // assigned to neighbouring farms without type restrictions until every 
 // parcel is linked to an agent (ie. Agent.INITIAL.getParcelList is empty). 
 
 currentList = (ArrayList<Parcel>) Agent.INITIAL.getParcelList().clone(); 
 while (Agent.INITIAL.getParcelList().size() > 0) { 
  currentList = (ArrayList<Parcel>) Agent.INITIAL.getParcelList().clone(); 
  Iterator<Parcel> i = currentList.iterator(); 
  while (i.hasNext()) { 
   Parcel p = i.next(); 
   joinNeighboringParcel(p, false, false); 
  } 
  log("Parcels left over after dropping type restriction: " + 
Agent.INITIAL.getParcelList().size()); 
 
 } 
 log("Number of final free plots: " + Agent.INITIAL.getParcelList().size()); 
} 

 

MainModel.getFreeParcelForAgent(parcelList, nrOfAgents, agent) 

/** 
 * Find a home parcel for every agent. First by looking at parcels that 
 * are labeled as agricultural building. Then by giving a random parcel 
 * within the municipality. 
 * @param parcels - An ArrayList of all parcels within the municipality 
 * @param nrOfAgents - The total number of farmers in the municipality 
 * @param a - The farmer for which a home parcel is currently sought. 
 * @return p - The parcel that is assigned a home parcel for this farmer. 
 */ 
 private Parcel getFreeParcelForAgent(ArrayList<Parcel> parcels, int nrOfAgents, Agent a) { 
  // Check if there are enough parcels for the agents within the municpality 
  // If not, add the neighbouring parcels of all parcels in the municipality. 
  if (parcels.size() < nrOfAgents) { 
   ArrayList<Parcel> addedParcels = new ArrayList<Parcel>(); 
   for (Parcel p : parcels) { 
    ArrayList<Parcel> neighbors = p.getNeighboringParcels(); 
    addedParcels.addAll(neighbors); 
   } 
   parcels.addAll(addedParcels); 
 
  } 
  //Sort parcels according to size 
  ArrayList<Parcel> potentials = (ArrayList<Parcel>) parcels.clone(); 
  Collections.sort(potentials, new Comparator<Parcel>() { 
   @Override 
   public int compare(Parcel a, Parcel b) { 
          return Float.compare(a.getArea(),b.getArea()); 
      } 
  }); 
  //Find a parcel that is currently not owned (i.e. Agent.INITIAL) and is 
  //labeled as an agricultural building. Make it into the home parcel of the agent. 
  for (Parcel p : potentials) { 
   if (p.getAgent() == Agent.INITIAL && p.getCoverType() == 
Config.agr_buildings) { 
    a.setAgrzone(p.getAgricultZone()); 
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    p.setCoverType(Config.farm_house); 
    return p; 
   } 
  } 
 
  // If farmers without parcels are still left, give another parcel than 
  // building and set parcel to farm house 
  for (Parcel p : potentials) { 
   if (p.getAgent() == Agent.INITIAL) { 
    a.setAgrzone(p.getAgricultZone()); 
    p.setCoverType(Config.farm_house); 
    return p; 
   } 
  } 
  throw new RuntimeException("Less parcels than farmers in the municipality"); 
 } 
 

MainModel.joinNeighbouringParcelbyFarmer(agent, boolean, boolean) 

/** 
 * Looks for a parcel in the neighbourhood of the farmer that can be added to the its farm. 
 * @param a - The agents that is looking for a new parcel to add to its farm. 
 * @param areaCheck - If true, a size restriction applies on the total farm size of the farm 
 * @param typeCheck - If true, a typeCheck is performed on the added parcel through 
Agent.canOccupyParcel. 
 * @return boolean - If true, a parcel has been found and the method is ended. 
 */ 
private boolean joinNeighboringParcelbyFarmer(Agent a, boolean areaCheck, boolean typeCheck) { 
 //Create a list of all parcels neighbouring the parcels owned by the farmer 
 ArrayList<Parcel> parcels = a.getParcelList(); 
 ArrayList<Parcel> neighbParcels = new ArrayList<Parcel>(); 
 
 for (Parcel p : parcels) { 
  ArrayList<Parcel> neighbours = p.getNeighboringParcels(); 
  neighbParcels.addAll(neighbours); 
 } 
 Collections.shuffle(neighbParcels); 
 int size = neighbParcels.size(); 
 for (int i = 0; i < size; i++) { 
  Parcel potParcel = neighbParcels.get(i); 
  //Looks whether the farmer can own the parcel, based on land use if typeCheck=true 
  if (potParcel.getAgent() == Agent.INITIAL) { 
   if (!typeCheck) { 
    potParcel.setAgent(a); 
    return true; 
 
   } else { 
   //Looks whether the farmer can own the parcel based on area if 
areaCheck=true 
   if (a.canOccupyParcel(potParcel)) { 
    if (!areaCheck) { 
     // This owner can take on the given parcel 
     potParcel.setAgent(a); 
     return true; 
    } else { 
     float potArea = potParcel.getArea(); 
     float ownerCanTake = potParcel.getAgent().getMaxLand() - 
potParcel.getAgent().getLandArea(); 
     if (areaCheck && ownerCanTake >= potArea) { 
      potParcel.setAgent(a); 
      return true; 
      } 
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     } 
    } 
   } 
  } 
} 
  //The parcel can not be added to the farmer's farm 
  return false; 
} 
 

MainModel.joinMunicipParcel(parcel) 

/** 
* Assign a parcel to any agent within the municipality or the  
* neighbouring municipality that can occupy it. 
* @param p - A parcel for which an owner is sought. 
*/ 
private void joinMunicipParcel(Parcel p) { 
 // List all agents in the municipality of the parcel 
 ArrayList<Agent> municipAgents = (ArrayList<Agent>) 
p.getMunicipality().getAgents().clone(); 
 ArrayList<Agent> neighbouringAgents = new ArrayList<Agent>(); 
 //Add agents in neighbouring municipalities that are not in the list yet. 
 for(Parcel potParcel : p.getNeighboringParcels()){ 
  ArrayList<Agent> neighbourAgents = potParcel.getMunicipality().getAgents(); 
  for(Agent aa : neighbourAgents) 
  { 
   if(!neighbouringAgents.contains(aa)) 
   { 
    neighbouringAgents.add(aa); 
   } 
  } 
 } 
 //Find a random agent form the agent list that can occupy the parcel. 
 municipAgents.addAll(neighbouringAgents); 
 Collections.shuffle(municipAgents); 
 int size = municipAgents.size(); 
 for (int i = 0; i < size; i++) { 
  Agent potOwner = municipAgents.get(i); 
  if (potOwner != Agent.INITIAL) { 
   if (potOwner.canOccupyParcel(p)) { 
    p.setAgent(potOwner); 
    return; 
   } 
  } 
 } 
} 
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MainModel.processYear(year) 

/** 
* Main method that yearly updates the farmer population and its farms, followed 
* by an update of the agricultural land. 
* @param year - The current year of the model run 
*/ 
private void processYear(int year) { 
 // Load new productivity data from input 
 myImporter.loadProductivityForYear(this, year); 
 
 int agentsAtStartOfYear = getNumberOfActiveAgents(); 
 int deadAgents = 0; 
 int succsAgents = 0; 
 int urbanisedAgents = 0; 
 
 @SuppressWarnings("unchecked") 
 ArrayList<Agent> allCurrentAgents = (ArrayList<Agent>) myAgents.clone(); 
   
 //1 - AGENT UPDATE 
 for (int i = 0; i < allCurrentAgents.size(); i++) { 
  Agent agent = allCurrentAgents.get(i); 
  int age = agent.getAge(); 
  double mortalityChance = agent.getMortality(age); 
 
  //Define whether an agent dies 
  if (CustomRandom.getDouble() < mortalityChance) { 
   // Decide what happens with the agent that died 
   if (age > Config.RETIREMENT_AGE) { 
    terminateUncompetitiveAgent(year, agent); 
    deadAgents++; 
   } else if (CustomRandom.getDouble() > farmSurvivalChance(agent)) { 
    terminateUncompetitiveAgent(year, agent); 
    deadAgents++; 
   } else { 
    agent.setAge(Config.getSUCCESOR_AGE()); 
    succsAgents++; 
   } 
  //For the agents that did not die... 
  } else { 
   // Check if any agents that did not die will retire 
   if (age == Config.RETIREMENT_AGE) { 
    //If the agent is retiring, check for successor 
    if (CustomRandom.getDouble() < farmSurvivalChance(agent)) { 
     agent.setAge(Config.getSUCCESOR_AGE()); 
     succsAgents++; 
    } else { 
     //If no successor, farmer continues farming with only its  
     // owned parcels, releasing the leased parcels. 
     ArrayList<Parcel> rentedParcelList = 
agent.getRentedParcels(); 
     for (int p = 0; p < rentedParcelList.size(); p++) { 
      reassignParcel(year, rentedParcelList.get(p)); 
      } 
     } 
    }  
   //Agents that did not die, but are over retirement age, have a 
   //retirement chance based on Config.RETIREMENT_CHANCE 
   else if (age >= Config.RETIREMENT_AGE && CustomRandom.getDouble() <= 
Config.RETIREMENT_CHANCE) { 
    terminateUncompetitiveAgent(year, agent); 
    deadAgents++; 
   } 
  } 
  //All living agents age 
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  agent.setAge(agent.getAge() + 1); 
    
  // 2 - LAND COVER CHANGE 
  if (Config.urbanisation && !agent.isDead()) { 
   //Urbanise parcels according to external data 
   agent.updateParcels(year); 
   //Check if there are now agents without parcels 
   if (agent.getParcelList().isEmpty()) { 
    agent.die(); 
    myAgents.remove(agent); 
    urbanisedAgents++; 
   } 
  } 
 } 
 //Update the agricultural land use  of all parcels 
 for (int i = 0; i < allCurrentAgents.size(); i++) { 
  Agent agent = allCurrentAgents.get(i); 
  agent.updateCoverType(year); 
 } 
 
 if (agentsAtStartOfYear - deadAgents - urbanisedAgents != this.myAgents.size()) { 
  throw new Error("uh oh"); 
 } 
 
 // 3 loop over all parcels and save their 
 // save data for creating history file 
 if (Config.ABM_output == true) { 
  for (Parcel parcel : myParcels.values()) { 
   parcel.saveCurrentState(); 
  } 
 } 
 
 // Print current crop type percentages to CSV for DVM 
 if (Config.DVM_output == true && (year==Config.END_YEAR || year==Config.START_YEAR)) { 
  myPrinter.printCropTypePercentage(this, outputMappingDict, year); 
 } 
 //Print output of the ABM 
 if (Config.ABM_output == true) { 
  this.agentHistory.add(myAgents.size()); 
  printParcelsCSV(Integer.toString(year)); 
  printAgentCSV(Integer.toString(year)); 
  printMunicpalityInfo(Integer.toString(year)); 
 } 
} 

 } 

MainModel.terminateUncompetitiveAgent(year, agent) 

/** 
* Terminates the given agent. This includes redistributing his parcels to 
* other Agents 
*  
* @param agent – The agent that is being terminated 
* @param year – The current year of the model run 
*/ 
private void terminateUncompetitiveAgent(int year, Agent agent) { 
 
@SuppressWarnings("unchecked") 
//Find new owner for the parcels through reassignParcel 
ArrayList<Parcel> parcels = (ArrayList<Parcel>) agent.getParcelList().clone(); 
for (int i = 0; i < parcels.size(); i++) { 
 if (parcels.get(i).getCoverType() != Config.farm_house) { 
  //Find a new owner for the parcel 
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  reassignParcel(year, parcels.get(i)); 
 } else { 
  //The home parcel becomes residential land 
  parcels.get(i).setAgent(agent.LANDLORD); 
  parcels.get(i).setLandUse(Parcel.URBAN); 
 } 
} 
agent.die(); 
 
// and off he goes 
myAgents.remove(agent); 
 } 
 

MainModel.reassignParcel(year, parcel) 

/** 
* Reassigns the given parcel. Currently, this is done by assigning it to a 
* random closest neighbor preferably from the same or similar type 
*  
* @param parcel – The parcel that is being reassigned 
* @param year – The current year of the model run 
*/ 
private void reassignParcel(int year, Parcel parcel) { 
Agent currentAgent = parcel.getAgent(); 
Integer landUse = parcel.getLandUse(); 
ArrayList<Agent> neighbors = parcel.getNeighbors(); 
ArrayList<Agent> potentialsSameClass = new ArrayList<Agent>(); 
ArrayList<Agent> potentialsOthClass = new ArrayList<Agent>(); 
 
for (int i = 0; i < neighbours.size(); i++) { 
 Agent neighbor = neighbours.get(i); 
 
 if (neighbor == currentAgent) { 
  // someone can't take over his own parcels 
  continue; 
 } 
 
 // Check if the given neighbour is able to take over this kind  
 // of land (i.e. is it agricultural land?) 
 if (!neighbour.canTakeOverLandOfType(landUse)) { 
  continue; 
 } 
      
 //Is the farmer young enough to expand? 
 if (neighbour.getAge() <= Config.RETIREMENT_AGE && neighbour.isFarmer()) { 
  if (neighbor.hasHigherChanceOfTakeOver(currentAgent)) { 
   potentialsSameClass.add(neighbor); 
  } else { 
   potentialsOthClass.add(neighbor); 
  } 
 }  
} 
 
if ((potentialsSameClass.size() == 0) && (potentialsOthClass.size() == 0)) { 
 parcel.setAgent(Agent.LANDLORD); 
 parcel.setLandUse(Parcel.FOREST); 
} else { 
 if (potentialsSameClass.size() == 0) { 
  int random = (int) Math.floor(CustomRandom.getDouble() * 
potentialsOthClass.size()); 
  Agent newOwner = potentialsOthClass.get(random); 
  parcel.setAgent(newOwner); 
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  parcel.setCoverType(newOwner.getGeneralCover()); 
 } else { 
  int random = (int) Math.floor(CustomRandom.getDouble() * 
potentialsSameClass.size()); 
  parcel.setAgent(potentialsSameClass.get(random)); 
 } 
} 
 

MainModel.farmSurvivalChance(retiringFarmer) 

/** 
 * The farmSurvivalChance defines the chance a farm has to find a successor based on a 
 * regional average survival chances of the farm type and, for land-based farms, 
 * based on its SGM (which is related to size) in comparison to similar farm types.  
 * The survival chance might be corrected based on scenario inputs from the Config class.  
 * @param retiringFarmer - The farmer that is leaving the system 
 * @return survivalChance - The chance the farm has that it is taken over by a successor. 
 */ 
 public double farmSurvivalChance(Agent retiringFarmer) { 
  //Get the regional average & SD SGM for a certain farm type 
  double stats[] = getAverageBSSforType(retiringFarmer); 
  double mean = stats[0]; 
  double SD = stats[1]; 
  double correctionFactorBSS = 1.0; 
  double correctionFactorSurv = 1.0; 
  //Define the correction factor if there is an impact on the SGM of policy changes 
  if (Config.POLICY_BSS_IMPACT) { 
   correctionFactorBSS = Config.BSS_IMPACT_FACTOR; 
   correctionFactorSurv = Config.BSS_IMPACT_FACTOR; 
  } 
  //Get the average survival size in the agricultural zone 
  double survivalChance = 
Config.getSurvivalPercentageForZone(retiringFarmer.getAgrZone()); 
  // Correct the SGM for small farms if a small farm subsidy is applied 
  if (Config.SMALL_FARM_SUBSIDY) { 
    if (retiringFarmer.getBSS() < mean) { 
    correctionFactorBSS = Config.BSS_IMPACT_FACTOR; 
   } 
  } 
  //The survival chance equals the regional survival chance for non-land-based farms 
  if (retiringFarmer.getFarmerType() == "NonLandBasedAnimalFarmer") { 
   return survivalChance* correctionFactorSurv; 
  } else if (retiringFarmer.getFarmerType() == "GreenhouseFarmer") { 
   return survivalChance* correctionFactorSurv; 
  //The survival chance depends on a comparison between the farms' SGM and the 
average 
  //SGM in the agricultural zone for the specific farm type. 
  } else if (retiringFarmer.getBSS() * correctionFactorBSS  > (mean + SD * 2.5)) { 
   return survivalChance * 4; 
  } else if (retiringFarmer.getBSS() * correctionFactorBSS > (mean + SD * 1.5)) { 
   return survivalChance * 3; 
  } else if (retiringFarmer.getBSS() * correctionFactorBSS  > (mean + SD * 0.5)) { 
   return survivalChance * 2; 
  } else if (retiringFarmer.getBSS() * correctionFactorBSS  > (mean - SD * 0.5)) { 
   return survivalChance * 1; 
  } else if (retiringFarmer.getBSS() * correctionFactorBSS  > (mean - SD * 0.75)) { 
   return survivalChance * 0.5; 
  } 
  return survivalChance * 0.1; 

} 
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MainModel.getAverageBSSforType(retiringFarmer) 

/** 
 * Define the average SGM and SDD for similar farms as the retiring farmer  
 * in the agricultural zone the farm is located in. 
 * @param retiringFarmer 
 * @return statistics - Containing the average and SD on the SGM for the  
 * farm type of the farmer in the agricultural zone the farm is located in. 
 */ 
public double[] getAverageBSSforType(Agent retiringFarmer) { 
 ArrayList<Double> farmBSS = new ArrayList<Double>(); 
 double totFarmBSS = 0; 
 double temp = 0; 
 double statistics[] = new double[2]; 
 for (Agent f : myAgents) { 
  //Look for all agents of the same farm type in the same agricultural zone 
  if (retiringFarmer.getAgrZone() == f.getAgrZone()  

       && retiringFarmer.getFarmerType() == f.getFarmerType()) { 
   //Get the SGM for the found farmer to calculate average and SD on. 
   farmBSS.add(f.getBSS()); 
   totFarmBSS += f.getBSS(); 
  } 
 } 
 //Calculate the average 
 double mean = (totFarmBSS / farmBSS.size()); 
 for (double a : farmBSS) { 
  temp += (a - mean) * (a - mean); 
 } 
 //Calculate the SD 
 double SD = Math.sqrt(temp / (farmBSS.size() - 1)); 
 statistics[0] = mean; 
 statistics[1] = SD; 
 return statistics; 
} 

 

Agent.getBSS() 

 
/* 
 * The SGM is returned for a farmer based on the farm type and the agricultural  
 * zone where the farm is located. For land-based farming types, the SGM depends 
 * on the farm size. The average SGM per ha is defined in the Config class. 
 *  
 */ 
public double getBSS() { 
 double BSS = 0.0; 
 if (this.getFarmerType().equals("YearlyCropFarmer")) { 
  BSS = Config.getBSSRotForZone(this.getAgrZone()) * totalArea; 
 } else if (this.getFarmerType().equals("PermanentCropFarmer")) { 
  BSS = Config.getBSSPermForZone(this.getAgrZone()) * totalArea; 
 } else if (this.getFarmerType().equals("LandBasedAnimalFarmer")) { 
  BSS = Config.BSSforLBAF * totalArea; 
 } else { 
  BSS = 0; 
 } 
 return BSS; 
} 
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Agent.updateParcels(year) 

/** 
  * Changes the land use of parcels from agriculture (2) to urban (1) 
  * land use based on the input data on urbanisation or based on whether 
  * the nearest agricultural parcels is further away than the UrbanisationTreshold 
  * @param year - The current year of the model run 
  */ 
 public void updateParcels(int year) { 
  for (int i = 0; i < this.parcelList.size(); i++) { 
   Parcel p = this.parcelList.get(i); 
   ArrayList<Parcel> nearbyNeighbours = p.getNearestParcels(); 
   ArrayList<Parcel> agriNeighbours = new ArrayList<Parcel>(); 
   //Check if the parcel is becoming urbanised this year 
   if (year == p.getUrbanisationYear()) { 
    p.setLandUse(Parcel.URBAN); 
    p.setAgent(Agent.LANDLORD); 
    p.setCoverType(-1); 
   } 
   //Check if the parcel still has nearby agricultural neighbours 
   for(int j=0; j<nearbyNeighbours.size();j++){ 
    if(nearbyNeighbours.get(j).getLandUse()==Parcel.AGRI){ 
     agriNeighbours.add(nearbyNeighbours.get(j)); 
    } 
    if(nearbyNeighbours.size()<=Config.UrbanisationTreshold){ 
     p.setLandUse(Parcel.AGRI_NONCOMM); 
     p.setAgent(Agent.LANDLORD); 
    } 
   } 
  } 
 } 
 

Agent.updateCoverType(year) 

/** 
* Updates the land cover of all agricultural parcels that are not 
* farm houses or agricultural buildings 
* @param year - The current year of the model run. 
*/ 
public void updateCoverType(int year) { 
 for (int i = 0; i < this.parcelList.size(); i++) { 
  Parcel p = this.parcelList.get(i); 
  if(p.getCoverType()!=Config.farm_house && p.getCoverType()!=Config.agr_buildings){ 
  int newCrop = getNextCoverType(year, p.getArea(), p); 
  p.setCoverType(newCrop); 
  } 
 } 
} 

 


