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Chapter 5 The impact of urban expansion on agricultural 

dynamics  

This chapter is under review as: Beckers V., Poelmans L., Van Rompaey A., Dendoncker N. (2019). The impact of urban expansion on 

agricultural dynamics: a case study in Belgium, Journal of Land Use Science. 

5.1 Introduction 

Early European farmers created their first settlements on fertile lands. The most fertile areas 

prospered, flourished and gave rise to historical cities. Through time, many of these cities continued 

to grow under an increasing population, resulting in many of the largest cities being built and 

expanding on the most fertile lands, with often a continuation of this urban growth until today (Du 

et al., 2014; van Vliet, 2019; van Vliet et al., 2017). As such, farmers close to city centres have often 

been under pressure of urban expansion. Specifically for Europe this has led to a majority (64%) of 

regions either having a combination of land highly suitable for agriculture and a high degree of 

urbanisation or with low suitability for agriculture and low degrees of urbanisation (Primdahl et al., 

2013). During the last decades, the transformation of Western European landscapes has mainly 

been characterised by an expansion of the built-up area at the expense of fertile arable land and 

natural areas. The loss of these lands under urban expansion has had important environmental and 
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socio-economic impacts (Frumkin, 2016; Johnson, 2001; Lambin et al., 2001). It is expected that 

urban expansion will continue in the near future (Rounsevell et al., 2006) with an increase from 

2.06% of ice-free land being urbanised in 2000 to an estimated 4.71% by 2040 (van Vliet et al., 2017).  

Several studies (Archer and Lonsdale, 1997; Cabus and Vanhaverbeke, 2003; Delbecq and Florax, 

2010; Livanis et al., 2006; López et al., 2001; Lopez et al., 1988; Verhoeve et al., 2015; Wu et al., 

2011) have also shown that the impact of urban expansion on farming practices goes beyond the 

simple conversion of farming land into urban area. For example Delbecq and Florax (2010) show 

that the increasing land rent at the urban fringe attracts speculators that buy farming land not for 

farming but as a strategic investment, anticipating future land development possibilities. This 

typically leads to an increase of the set-aside land in the urban fringe. Furthermore, the farming 

land in the urban fringe receives the attention of urban dwellers who want to use the open space 

for leisure activities such as hobby farming, horse keeping and riding. Bomans et al. (2011) indicated 

that circa one third of the grassland in the northern part of Belgium (Flanders) is now being used for 

hobby horse keeping and horse riding, a phenomenon referred to as ‘horsification’. Another factor 

is that the high rent and the lack of space in the city centres pushes away some industrial and 

commercial activities for which a new location is found on peri-urban farmland. Verhoeve et al. 

(2015) made an inventory of non-farming use of farms in Flanders and came to the conclusion that 

in the last two decades about 20% of the farms were being used for other activities such as the 

storage of building material, garages for car repair, restaurants and catering, wellness centres and 

farm tourism. 

Finally, the nearby presence of a city stimulates in some cases the development of alternative 

farming practices such as ecological farming, short supply chain farming, collective farming and self-

harvest farms (Renting et al., 2003). 

The above mentioned developments in the urban fringe will lead in the coming decades to a 

complete transformation of the peri-urban landscapes and are expected to have important impact 

on both the biophysical and social environment (Cabus and Vanhaverbeke, 2003; Power, 2010; 

Stoate et al., 2001; Zhang et al., 2007). Not surprisingly spatial planning in peri-urban areas is 

receiving increasing attention from policy makers and land managers (Departement Ruimte 

Vlaanderen, 2017; SPW, 2018). At present, however, a sustainable spatial planning of the rural-
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urban fringe is hampered by the lack of integrating theories and integrated models that allow to 

evaluate the impact of possible policy interventions (Meyfroidt, 2013).  

This can partially be explained by the fact that rural studies and urban studies have been clearly 

distinct academic fields that have evolved differently, neglecting the increasing spatial interactions 

between rural and urban. Some rural-urban interactions models were developed (Fontaine and 

Rounsevell, 2009; Rounsevell et al., 2006, 2005; Spangenberg et al., 2010; Valbuena et al., 2010; 

Verburg and Overmars, 2009; Westhoek et al., 2006), but many of them do not go further than a 

simple land take procedure in which urban expansion eats away existing farming land.  

The aim of this chapter is to assess both the direct and indirect impacts of urban expansion on the 

agricultural population in the urban fringe. For this assessment a rasterized land use model 

describing the urban expansion processes and its related land use changes is coupled with an agent-

based model simulating the decisions of individual farming households. The model is run for a set 

of different storylines for future urban development until 2035. Belgium was selected as a case 

study because the country is characterized by a strong urbanization, with a gradient from the centre 

towards the periphery and a long agricultural history. Firstly, the study area and its farming practices 

are described. Secondly, the modelling approach is presented in relation to the study area. Finally, 

the model is used to simulate the future of farming practices in a business-as-usual scenario and 

two contrasting policy scenarios. 

5.2 Study area 

Belgium is situated in the densely populated region of Western Europe (Figure 5.1) with an average 

population density of circa 370 inhabitants per km2. The areas with the highest presence of 

agriculture can be found in the centre of the country (the Loam region) and the northwest of the 

country (the Polders) (Figure 5.1). Most cities in Belgium date back to the Middle Ages, but only in 

the 19th century the first important urban expansion took place under the influence of the 

developing industries and trade. At this point, cities were mostly still clearly delineated from the 

surrounding land. Increasing urban population first led to a more compact housing, but from the 

second part of the 19th century, urban expansion started to spread out past the initial city 

boundaries. Increasing urban mobility (e.g. trams) allowed a further expansion of cities. At the same 

time, the richer upper class started escaping the busy unhealthy city centres, moving to the greener 
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countryside. After World War I, the population density in the historic cities started to decrease, with 

people moving to the suburban areas. After World War II, the delineation between cities and their 

surroundings became less and less clear: the lack of spatial planning, together with increasing 

mobility options and policies promoting home ownership, resulted in a further urban expansion 

towards the countryside. The result is a strongly fragmented landscape (Paredis, 2015; Van Hecke 

et al., 2010). Together with this direct effect of urban expansion on the available agricultural land, 

there is also the indirect effect of losing the exclusive use of agricultural lands by farmers. 

Agricultural lands became increasingly used for other services, such as horse-riding or residents 

enjoying a rural lifestyle (Bomans et al., 2011; Primdahl et al., 2013). For Flanders for example, this 

leads up to 15% of designated agricultural area not being used for commercial agriculture (Verhoeve 

et al., 2015). The different evolutions in agriculture, urban expansion and forest dynamics led to the 

current land use configuration in Belgium, with a highly urbanised and fragmented landscape, 

especially in (but not limited to) the northern part of the country (Figure 5.2) and also had its impact 

on the agricultural landscape. The agricultural landscape in Belgium is dominated by cropland and 

land-based animal farming. However, a combination of historic, traditional and environmental 

factors led to a spatial differentiation of the farming practices in the country. In regions with a 

relative high population density, labour-intensive farming practices such as greenhouse farming and 

barn-based animal farming were further developed, resulting in relatively small farm sizes. 

Rotational crop farming and land-based cattle farming, which are associated with large farm sizes, 

are relatively more present in regions with a lower population density (Van Hecke et al., 2010).  

Despite governmental efforts to put a halt to the further urban expansion at the expense of the 

countryside (e.g. the ambition to not take up any more open space in Flanders by 2040 

(Departement Ruimte Vlaanderen, 2017) and in Wallonia by 2050 (SPW, 2018)), urban expansion 

and landscape fragmentation is still ongoing in Belgium (Crols et al., 2017; Mustafa et al., 2018a; 

Poelmans, 2010). In the period 2000-2015 the built-up area in Belgium increased with more than 

11%, mainly in the form of ribbon development in the peri-urban zone (Statistics Belgium, 2015). 

The ongoing urban expansion creates an extra challenge for farmers, which are already under 

pressure because of (1) the increasing international competition in a globalized market with lower 

margins and (2) stricter environmental policies resulting in new rules and regulations for the farm 

management (Maertens, 2011; Mathijs and Relaes, 2012; Van Hecke et al., 2000; Van Hecke et al., 
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2010). As a result, relatively few Belgian farmers find a successor when they reach their retirement 

age. 

Figure 5.2 shows that the present-day succession rate is in most cases lower than 30%. Especially in 

the less fertile parts of the country on the sandy soils in the north (Campine and Sand area), and the 

shallow soils in the south (Condroz, Fagne-Famenne and Ardennes) the number of farmers has been 

decreasing significantly. At national scale the number of farmers decreased by 70% in the period 

1980-2015. Figure 5.3 shows that, over the same period, the area of agricultural land did not 

decrease at the same rate as the number of farmers, resulting in an average increase of the farm 

size.  

5.3 Data & methodology 

In order to evaluate the impact of expected future urban expansion on farming practices in the peri-

urban and rural settings of Belgium, a two-step methodology was developed. Firstly, existing 

qualitative storylines on the future of urban expansion and farming in Belgium were explored. 

Secondly, three storylines were selected and downscaled to quantify the impact of urban expansion 

on the level of individual farms. This is done by combining the urban expansion from a cellular 

automata land use change model and an agent-based model to model the individual farms. 

 
Figure 5.1 – Population density by NUTS3 region in 2015 and percentage of agricultural land by NUTS2 region in Western Europe 

(European Commission, 2018b) 
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Figure 5.2 – Dominant land use in Belgium based on Corine land cover data (left) (Büttner et al., 2014) and agricultural regions in 

Belgium with the average farm succession rate (right)(Statistics Belgium, 2018). 

 
Figure 5.3 – Evolution of the number of farmers and farm size (left) and evolution of the relative proportion of different farm sizes in 

2010 (right) (Statistics Belgium, 2018). 

5.3.1 Storylines on urban expansion & farming 

The storylines used to create the scenarios were based on the family of storylines created in the 

“Welvaart en Leefomgeving” project of the Dutch Planning Bureaus (CPB, MNP, RPB, 2006). The 

starting point of the storylines from the Dutch Planning Bureaus were two key uncertainties for the 

future in Europe: the level of international cooperation and the direction of institutional reforms 

(Lejour, 2003). Variations in these uncertainties led to the creation of 4 storylines: the Strong Europe 

(SE) storyline (high international cooperation, high importance of public institutions), the Global 

Economy (GE) storyline (high international cooperation, focus on private initiatives), the Regional 

Communities (RC) storyline (low international cooperation, emphasis on public institutions) and the 

Transatlantic Market (TM) storyline (low international cooperation, prominence of private 

initiatives). Even though these storylines are already relatively old, they are still relevant because of 

their explorative character, without the ambition to be predictive.  
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From the set of storylines described above, two contrasting storylines were selected: the GE and 

the RC storyline. The GE storyline assumes a further urban expansion, increased global competition 

and reduction of regulations from the EU-CAP to control agricultural supply and demand. The RC 

storyline assumes a slowing down of the urban expansion rate through a strong regulatory 

framework and the focus of the EU-CAP on subsidies to small, local and organic farms. These 

storylines were complemented with a Business-as-usual (BAU) storyline, developed by Engelen et 

al. (2011) for the Flanders region. The BAU-storyline was based on a continuation of current trends 

of population growth and changes in population densities combined with a continuation of the 

current spatial policy and no changes in agricultural policies on the local level or in the EU-CAP. The 

assumptions behind these 3 storylines were translated into expected impacts on urban expansion 

in the Belgian context in the BELSPO Growadrisk project (Verbeiren et al., 2013). For this study, they 

were combined with expected impacts on farming. An overview of the main characteristics for each 

storyline is shown in Table 5.1. 

Table 5.1 – Overview of the different storylines and their impacts based on the WTO storylines (CPB, MNP, RPB, 2006) that were 

translated to the Belgian case by Engelen et al. (2011) and in the Growadrisk project (Verbeiren et al., 2013) and combined with the 

expected impact on farming in this study. 

Storyline General assumptions 
Impact on urban 

expansion 
Impact on farming 

BAU 

Continuation of current trends of 

population and employment growth 

and current (spatial) policies. 

Continued growth, 

continuing urban 

expansion. 

Continuation of current trends, with 

same subsidy levels 

GE 

Economic growth with decreased 

trade barriers. Liberal market with 

little political interference. 

Strong urban expansion 

due to little spatial 

planning. Increased 

competition. 

Increased competition in a global 

market due to the removal of trade 

barriers and decrease in subsidies 

received via the EU-CAP. 

RC 

Reduced international trade, focus 

on social and environmental 

measures at a regional scale. 

Reduced urban 

expansion. 

Small local organic farms are 

encouraged and subsidised through 

the EU-CAP and farmers focus on 

short chain markets. 

Finally, the resulting land demands were used as an input to drive the constrained cellular automata-

based land-use model (CCA-model) developed by White et al. (1997). The CCA-model was based on 

three hierarchically embedded levels: (1) the macroscopic level, represented by the country level in 

the applied model, (2) the regional level, represented by the 49 EU-NUTS3 entities in Belgium, and 

(3) the local, cellular level, consisting of a matrix of individually modelled cells with a 1 ha resolution 

(Figure 5.6). These cells represent the dominant land use at a 1 ha resolution. For every 1 ha cell the 

model calculated the transition potential to all possible land use categories in yearly time steps. The 

transition potential was determined by (1) the cell’s current land use, (2) the land-use categories in 

the neighbourhood of the cell, (3) a number of cell-specific properties, such as the physical 
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characteristics (defining the suitability for each land-use type), the accessibility and the zoning 

status (based on spatial planning documents), and (4) a stochastic factor (representing the fact of 

non-rational decisions) (see Chapter 3). Each time step, for each cell, the land use class with the 

highest transition potential was assigned. This process was constrained by the regional land demand 

(at the NUTS3-level) for each land-use category. This means that once the land demand for a certain 

land use category is met, the land-use category with the second highest transition potential is 

attributed to a cell, and so on. A more detailed description of the CCA-based land-use model can be 

found in Chapter 3 and in White et al. (2015) and (Engelen et al., 2011).  

The outputs of the land-use model consist of land-use maps in a raster-GIS format with a spatial 

resolution of 1 hectare and a temporal resolution of 1 year. For this study, the model was run from 

2013 until 2035, so yearly outputs for the period 2013-2035 are available. The results on urban 

expansion will be used as input in the agent-based model in order to evaluate the impact of urban 

expansion on the farming practices. The land-use model for all the scenarios show an increase in 

urbanised area in Belgium by 2035: + 14.3% of the area of urban land for BAU, +16.1% for GE and 

+3.3% for RC (Figure 5.5).  

 

Figure 5.4 – Expectations for population and employment in commerce, services and industry until 2035 under different storylines 

(Verbeiren et al., 2013). 
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Figure 5.5 – Change in area for each type of land use for the three storylines between 2013 and 2035 (Verbeiren et al., 2013). 

 

Figure 5.6 – Different levels in the cellular automata land use change scenario modelling: the general trends are defined for the entire 

study area (the global level), they are translated to specific land demands at the regional level (49 NUTS3 regions), which are used to 

constrain the land use change at the local level (1ha cells). 

5.3.2 Spatial downscaling of the impacts on farming 

Agent-based models (ABMs) allow looking into the evolution of a population at the level of the agent 

in a spatially explicit way (see Chapter 3 and Chapter 4). These models define autonomous decision 

making objects, called agents, which act and react to the environment and to the actions of other 

agents, allowing the representation of the decision-making process of these agents in relation to 

changes (Bousquet and Le Page, 2004; Parker et al., 2002a, 2002b, 2001). 
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The agent-based model ADAM (Agricultural Dynamics 

through Agent-based Modelling) that simulates, on a 

yearly basis, the decisions of the farming population of 

a whole country (Chapter 3 and 4) is adapted to 

analyse the impact of urban expansion (Figure 5.7). 

The demographic component of the model updates 

the age of the farmers, leading to a possible retirement 

or decease with or without a successor for the farm. 

Whether or not a successor is present depends on the 

farm characteristics: the farm size and type and the 

characteristics of its parcels. In the case where no 

successor is found the parcels of the farm are 

abandoned or taken over by neighbouring farms 

(Chapter 3 and 4). 

In this study, 5 different farm types were considered: 

(1) yearly rotating crop farmers, (2) permanent crop 

farmers, (3) greenhouse farmers, (4) land-based 

animal farmers and (5) barn-based animal farmers. 

Each of them has different characteristics in terms of 

profitability, dependence on soil type, and minimum 

size to survive (Chapter 4). 

After the initialisation of ADAM (a parcel-based 

vector model, see Chapter 3 and Chapter 4), the 

model is coupled with yearly land-use maps on urban expansion produced by the CCA LUC model 

(raster model with a spatial resolution of 1 ha, see Chapter 3), to consider the direct and indirect 

impacts of urban expansion as follows: 

1. The direct loss of parcels was included by considering an agricultural parcel as urbanised and lost 

for farming when it has a 25% overlap with an urbanised raster cell from the land use change 

scenario (Figure 5.8). As a result, the farm size of affected farmers is decreasing, resulting in a 

Figure 5.7 – Overview figure of ADAM adapted to include 

urbanisation. 
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lower profitability for their farm. An overlap threshold of 25% was chosen since this value resulted 

in the best correspondence with observed decline in agricultural area in the period 2000-2010. 

The land lost can thus only be compensated when other land in the area becomes available from 

other farmers quitting. 

2. The indirect impacts of urban expansion on farming activities were taken into account by 

considering the isolation of farmland due to fragmentation of the landscape. When a farmland 

parcel was disconnected from other farmland because of urban expansion, the parcel was no 

longer considered to be profitable for commercial farming and withdrawn from the model’s 

simulation. These parcels were then assumed to be used for non-commercial farming activities 

such as hobby farming, horse keeping or other leisure activities. A parcel is considered to be 

disconnected if no other farmland parcel is present in a radius of 1 km or when the 20 nearest 

neighbours is urbanised.  

3. The impact on farming activities as assumed under the different storylines (BAU, RC or GE) were 

included. This was done because policy measures such as direct subsidies or possible price 

interventions directly affect the profitability of farms and therefore their survival chances.  

• For the BAU-storyline the assumption was made that the profitability of the farms (based on 

the combination of farm type, farm size and farm location; see Chapter 3 and the technical 

appendix) will not change and that current trends will persist. 

• The GE-storyline assumed a general decrease of profitability of 10% for land-based farming 

and 10% decrease in succession chance for non-land-based farming, caused by an increased 

competition in a more globalized market that results from a removal of trade barriers and a 

decrease in subsidies. These subsidies form an important component of the total income of 

Belgian farmers: According to an assessment of the EU circa 30% of the income of Belgian 

farmers in the period 2011-2015 came from subsidies of which 25% in the form of direct 

payments (European Commission, 2017). Since this scenario assumes a decrease in subsidies 

and not a complete abolishment, a decrease of 10% in general profitability was assumed. 

• The RC-storyline assumed an increase of the agricultural subsidies oriented towards land-

based farming with a below-average profitability. In this storyline small local organic farms 

are seen as an important asset, they are encouraged and subsidised by the government and 

are able to increase profits due to short chain markets (Pearson et al., 2011) and a higher 

appreciation from customers (Crowder and Reganold, 2015). This assumption was 

implemented by raising the profitability of the small land-based farms, being farms with a 

below average profitability, by 20%. Non-land-based farms, which are considered as not 

environmentally friendly in this storyline, do not receive subsidies. 
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Figure 5.8 – Combining raster-based scenarios with the parcel-based ADAM. 

5.3.3 Model initialization 

The model set-up as described above requires a database with the location of all farms and their 

parcels, the farm type and the age of the farmer. The available Belgian agricultural census data 

(Statistics Belgium, 2018) do not reveal these data at the level of individual farmers due to privacy 

regulations. Therefore, the data available at municipality level was downscaled to simulate a 

realistic farming population and their corresponding farm structure. 

The number of farmers per farm type and their age structure at municipal level was extracted from 

the agricultural surveys of 2013 and 2016 (Statistics Belgium, 2018). This dataset was combined with 

agricultural parcel databases from 2013 (Landbouwgebruikspercelen dataset for Flanders and the 

Système intégré de gestion et de contrôles (SIGEC) dataset for Wallonia (European Commission, 

2018a)). These databases contain information in a vector-GIS format with the location and shape of 

individual farmland parcels. 

Both datasets were combined by assigning parcels from the parcel map to the individual farmers in 

the municipality (or a neighbouring municipality) based on the farm type. The result of this 

procedure is a farmland distribution that is not the exact farmland distribution but realistic and 

suitable for model simulations. 

5.4 Results 

5.4.1 Simulated urban expansion patterns for 2035 

Figure 5.9 shows the expected spatial pattern of urban expansion for the surrounding area of three 

medium sized cities (with each around 100.000 inhabitants) in Belgium: Namur, Leuven and 

Mechelen. The BAU and GE scenarios show the largest level of urban expansion with a diffusion  
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Belgium  

2013 

 

 BAU GE RC 

Namur 

2035 

   

Leuven 

2035 

 
 

 

Mechelen 

2035 

   

Figure 5.9 – Urban land use for 2013 (grey) and newly urbanised cell in 2035 (red) for all the scenarios for 2035 focussing on three 

average sized cities. 
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from existing urban area through continuous ribbon development along the major roads. This is a 

form of urban expansion often referred to as urban sprawl. The RC scenarios, on the other hand, 

shows the lowest increase in urbanised areas. Moreover, newly urbanised areas are mostly located 

within the current urbanised areas resulting in a densification of existing centres. 

5.4.2 Simulated impact on agriculture 

The mismatch in land use data resulting from the combination of rasterized urban expansion data, 

with vectorized agricultural parcel data, leads to a higher than average loss in the first year 

modelled. In the first year about 8.5% of parcels is lost through urban expansion. Not unexpectedly, 

this mostly concerns small agricultural parcels resulting therefore in a loss of only 2% of agricultural 

area (about 32.000 hectares) in total. 

Figure 5.10 shows the relative decrease of farmland as a result of urban expansion. Municipalities 

in the surroundings of cities lose a significant part of their agricultural land (in some cases more than 

10%). This is especially the case in the area in the central north of the country, the highly urbanised 

area of the so-called Flemish Diamond in between the cities Brussels, Antwerp, Ghent and Leuven 

and in the greater Liège area in the east of the country. Only in the RC-scenario, the loss of farmland 

is clearly lower, with the loss being the lowest in the central loam belt, south of Brussels. For all 

scenarios the Standard Deviation (SD) on the estimated agricultural area in 2035 is small (max 9.72 

km2 on a total of 13 853 km2 in BAU). 

In Figure 5.11 the expected average decrease in number of farmers at the municipality level after 

100 model runs is visualised. All scenarios show a high loss of the number of farmers of about 50% 

over the period 2013-2035 with a similar spatial pattern. The SD on the total is low and similar in all 

three scenarios, with a maximum of 78 on a total of 15 448 farmers for the GE scenario and 16 050 in 

the RC scenario. In all three scenarios, the largest relative losses can be found in the north of the 

country between Antwerp and Brussels, in the central-west of the country to the west of Brussels, 

and in the south-east of the country around Liège, while the decrease is the least in the centre of 

the country. The relative decrease of farmers is the highest for the GE scenario, where even in the 

central loam belt, there is a higher decrease. The SD on the results is low and similar in all three 

scenarios. The large decreases in the central west of the country, to the west of Brussels, have a low 

SD in all scenarios. The differences in total number of farmers by 2035 are small, but still 
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noteworthy. The largest decrease can be found in the very competitive GE scenario with on average 

only 15 448 farmers of the 37 703 farmers that were present in 2013 remaining (Figure 5.11). 

AGRICULTURAL AREA DECREASE 

Agricultural area 2013 BAU – 2035 

  

Total: 14 611 km2 Average total: 13 853 km2 (SD: 9.72 km2) 

GE – 2035 RC – 2035 

  

Average total: 13 881 km2 (SD: 8.94 km2) Average total: 14 107 km2 (SD: 8.75 km2) 

Figure 5.10 – Total observed agricultural area in 2013 and the average expected decrease by 2035 at the municipality level for the 

different scenarios after 100 model runs with the standard deviation for each scenario as an inset. 
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FARMER DECREASE 

Farmers 2013 BAU – 2035 

  

Total: 37 703 farmers Average total: 15 815 farmers (SD: 65) 

GE – 2035 RC – 2035 

  

Average total: 15 448 farmers (SD: 78) Average total: 16 050 farmers (SD: 78) 

Figure 5.11 – Average number of farmers in 2013 and the average expected decrease by 2035 for the different scenarios after 100 

model runs with the standard deviation for each scenario as an inset. 



The impact of urban expansion on agricultural dynamics 

99 

FARM SIZE INCREASE 

Farm size 2013 BAU - 2035 

  

Average: 38.8 ha Average farm size: 87.9 ha (SD: 0.35 ha) 

GE – 2035 RC - 2035 

  

Average farm size: 90.2 ha (SD: 0.45 ha) Average farm size: 88.2 ha (SD: 0.41 ha) 

Figure 5.12 – Average farm size in 2013 and the average expected increase by 2035 for the different scenarios after 100 model runs 

with the standard deviation for each scenario as an inset. 

Figure 5.12 represents the expected changes in farm size between 2013 and 2035. The GE scenario 

results in the highest average farm size (90.2 ha), which is slightly higher than the average farm sizes 

for the BAU and RC scenarios (respectively 87.9 ha and 88.2 ha). The spatial patterns of farm size 

increase, as well as the SD, are similar in all scenarios with highest increases expected in the Liège 

area and the area west of Brussels. The increases in the central loam belt are the smallest. The SD 

is relatively small, with an SD ranging between 0.35 and 0.45 ha on an average between 87.9 and 

90.2 ha. 
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5.5 Discussion 

Figure 5.10 to 5.12 show the expected changes in agricultural area and the expected number of 

farmers and farm size for the different scenarios. The results show a further decline of farms and 

farmland under all selected scenarios and with similar spatial patterns. The continued strong 

decrease of the number of farmers also leads, in spite of the decrease in farmland area, to a 

continued increasing average farm size. These findings are in agreement with the model simulations 

for Saxony and Baden-Württemberg in Germany reported by Happe et al. (2008) that applied the 

AgriPolis model, an agricultural ABM with a strong economic focus. 

The produced maps show three hotspots of change: (1) the area around the city of Liège in the east 

of the country, (2) the fertile loam belt in the centre of the country and (3) the area to the west of 

Brussels. 

In the Liège area the low succession rate (on average lower than 10%; Figure 2.17 and Figure 5.2), 

together with a relatively high loss of agricultural area around the city of Liège (often more than 

10%; Figure 5.10) leads to a strong decrease in farmers numbers (mostly more than 55%), even 

though (but also because) the number of farmers is already relatively low in this area (Figure 5.11). 

The strong increase in farm size (>100%; Figure 5.12) is an obvious consequence of these trends and 

can also be related to the relatively small farm sizes as the start of the model runs (mostly 25-50 

ha). 

The fertile loam belt, going from east to west in the central south of the country, is, in agricultural 

terms, the most productive part of Belgium with a high standard gross margin per farm (Figure 2.11). 

The succession rate is also, with an average of more than 30 %, one of the highest of the country 

(Figure 5.2). Not surprisingly, the loss of agricultural land is very limited in this region (Figure 5.10), 

as well as the decrease in number of farmers (mostly less than 45%; Figure 5.11) and the on average 

already large farm sizes in 2013 show the least increase in size (often less than 75%; Figure 5.12). 

The area to the west of Brussels projects a strong decrease in farmers (>55% %; Figure 5.11) and 

increase in farm size (up to more than 100%; Figure 5.12) in all scenarios. In the BAU and GE 

scenarios, a strong decrease in agricultural land is also observed (Figure 5.10). These strong relative 

changes are a consequence of the relatively small number of farmers and small farm sizes in 2013. 

But similar trends do not immediately show in other areas with comparable farm size, number of 
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farmers and loss of agricultural land (e.g. the north-east of the country). Both regions even show 

similar succession rates (Figure 2.17). The difference between both regions shows however in the 

spatial distribution of farmers over 55 years old, whereby the region west of Brussels stands out 

with more than 55% of farmers being over 55 years old (Figure 2.16). 

The results in the different scenarios show little differences. Although the difference in the loss of 

agricultural area between the scenarios GE and RC is clear (13 881 vs 14 107 km2), the differences 

are relatively small for the number of farmers (15 448 vs 16 050) and the average farm size (90.2 vs 

88.2 ha). The higher loss of agricultural area in the GE scenario, combined with the relatively higher 

farmer dropout, results in an on average larger farm size. The BAU scenarios is also characterised 

by a high loss of agricultural area, but with a lower decrease in the number of farmers compared to 

the GE scenario. This ultimately leads to a smaller average farm size. Though the differences in the 

results between the scenarios are there, they show to be much smaller than the difference between 

the current situation (37 703 farmers and 38.8 ha in 2013) and these simulated results. 

The earlier analysis of the different regions, showed the importance of farmer age and succession 

rate. Therefore, the relatively small differences between the different model outputs can most likely 

be related to the much stronger inherent demographic mechanisms that result from the initial 

farmer population. In 2013 20% of farmers were older than 65, 65% were older than 55, and only 

4% were younger than 35. This automatically leads to a high number of dropouts due to retirement 

and decease. The loss of farmland around urban centres is the lowest in the RC-scenario, where 

small farms are being actively supported through subsidies. This shows the (current) importance of 

these subsidies (and other financial incentives) in making small farms more viable at the urban 

fringe, which fits well with the ambition of the Belgian government to slow down or even stop 

further urban expansion. A possible reorientation of traditional farming practices towards organic 

farming in the suburban area and the possible promotion of local food and short supply chains could 

support these farmers and reduce the required level of subsidies. 

The trends that are expected under these scenarios can be considered as a logical and necessary 

upscaling and consolidation of the farming sector in Belgium but also impose an important (social) 

challenge on society. Without accompanying measures this upscaling process can result in personal 

bankruptcy of small-scale farmers and their families and in many cases in long-term poverty and 

social exclusion (Meert et al., 2005, 2002; Van Hecke, 2001). Furthermore, these trends can have a 
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negative impact on biodiversity and ecosystem services. Farms growing in size are expected to 

continue the trend of parcel consolidation to improve efficiency. This will result in less parcel 

borders (Robinson and Sutherland, 2002) and a simplification of the agricultural landscape (Bianchi 

et al., 2006). Agricultural intensification and the reduction of hedges and other small landscape 

elements have proven to have a negative impact on biodiversity (Bäckman and Tiainen, 2002; 

Marshall and Moonen, 2002), reduce the ability of natural pest control of the landscape (Bianchi et 

al., 2006), and allow for increasing soil erosion (Evans, 1996; Ouyang et al., 2010), water run-off and 

pollution of rivers (Pätzold et al., 2007; Stoate et al., 2009; Withers et al., 2014).  

This also implies that if policy makers would want to alter these trends, drastic changes in the 

current policies and financial system in regard to agriculture would be required. This would require 

changes that result in a much higher succession rate, thereby encouraging new farmers to start. An 

issue which was also picked up by the European Commission, resulting in the inclusion of specific 

measures for young farmers in the revision of the EU-CAP in 2013 (payments between 20 and 90 

euro per ha for farmers under 40 for the first 5 years; Bori, 2018; European Commission, 2013) and 

further continued in the renewed EU-CAP in 2018 (European Commission, 2019). 

In other words, if there is an intent to keep the number of farmers at the current level, every retiring 

farmer needs to have a successor. An enormous challenge given that currently (2016), 28% of 

farmers are older than 55 and only 16% of farmers over 50 indicate that they have a successor 

(Statistics Belgium, 2018). Given that the results of the different scenarios are very similar, we can 

assume that possible measures that alter this trend, would work for all scenarios. The necessity of 

the implementation of these changes depends of course on the vision and aims that policy makers 

have on agriculture in the future. These trends can after all also be considered as a logical evolution. 

In that case, one could argue, that policy makers should make sure the individual impact on these 

outcompeted farmers is in some way mitigated. 

From that prospect, the agent-based model ADAM would further benefit from an improved 

economic model (or the combination with an external model) and improved behavioural 

mechanisms (social benefits, appraisal, desire to farm…) to allow the further investigation of trends.  

What is currently also not fully included is farmland abandonment in more remote areas. Farmland 

abandonment is the process where the land of the farm is not sold and cultivation stops. It is present 

throughout most of the EU (Hatna and Bakker, 2011) and is expected to continue in the next decades 
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(Hatna and Bakker, 2011; Renwick et al., 2013; Verburg et al., 2010). According to Renwick et al 

(2013), highest levels of abandonment are to be expected in GE-like scenarios (high global 

competition, with low levels of EU-CAP support), but also under other scenarios farmland 

abandonment continues. Though the rate of farmland abandonment in Belgium in the past has 

mostly been low (<0.5% decrease between 1990 and 2006), with the highest decrease in the south 

of the country (0.5%-2%; Hatna and Bakker, 2011), including the mechanisms on farmland 

abandonment might be necessary to create a more complete image on the evolution of agricultural 

lands and to extend the use of the model to other regions. 

The scenarios also do not consider possible changes in crop choices due to changes in trade 

mechanisms or the existence or not of trade barriers. For example, in 2014 Belgium imported about 

1 064 million tons of soybeans, 26% originating from outside the EU (Danckaert, 2016). An 

important decrease in the possibility to import soybeans could lead to a shift in locally produced 

crops, in order to provide the necessary crops for fodder. 

5.6 Conclusion 

The aim of this chapter was to gain an insight on the impact of different scenarios on the agricultural 

population in the urban fringe by coupling a raster-based CCA model on urban expansion with a 

vectorized agricultural agent-based model in order to gain insight in the different underlying 

processes.  

The results showed that most changes are expected in the area to the west of Brussels and the 

greater Liège area. But under the current conditions in the model, even the two extreme storylines 

resulted in a similar loss of farmland and farms both in numbers as in spatial distribution. 

The analysis of the results seems to imply that the model is more driven by the demographic process 

of an ageing population in combination with low succession rates than by the scenario specific 

economic and policy parameters. We can therefore assume that the current scenarios do not 

capture the elements that would be necessary to model a shift in the current trends in agriculture 

in Belgium.  

The added value of the results of the different models lies more in the recognition of the persistent 

spatial pattern of expected changes, showing the areas where most changes are to be expected, 
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and to the conclusion that the current demographic processes have an unavoidable impact on the 

results in the current model set-up. The different scenarios on urban expansion and changes in 

farming policies thereby further pronunciation and aggravates these processes. The results herefore 

also show that the combinations of different models from different backgrounds cannot provide 

insightful outcomes and are worth further exploring.
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Chapter 6 High thematic resolution land use data in species 

distribution modelling 

This chapter is under review as: Beckers V., Marshall L., Vray S., Rasmont P., Vereecken N., Dendoncker N. (2019). Increased Thematic 

Resolution of Land Use Change Models for Biodiversity Scenarios: Case study of Belgian Bumblebees, Journal of Biogeography. 

6.1 Introduction 

Land use and land use change have an important impact on the physical environment: land use 

change notably impacts erosion (Van Rompaey et al., 2002), hydrology (Poelmans et al., 2011), 

climate (Berckmans et al., 2018) and biodiversity (Polasky et al., 2011; Reidsma et al., 2006). 

Regarding the latter, many studies have shown the importance of land use and land cover change 

(LULCC) as drivers of species distribution patterns and biodiversity loss (Krauss et al., 2010; Lambin 

and Meyfroidt, 2011; Luoto et al., 2007; Ostberg et al., 2015; Tscharntke et al., 2005). Species 

distribution models (SDMs) have become a common approach to provide insights on the current 

and future distribution of species in relation to climate and land use. They combine the occurrence 
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of species together with environmental conditions, to get an insight on their distribution patterns 

(Elith and Leathwick, 2009; Franklin, 2010). These studies tend to only use a limited number of land 

use types, since land use change scenarios are often only available at low spatial and thematic 

resolution (Titeux et al., 2016; Verburg et al., 2013). 

Land use change modelling through agent-based modelling (ABM) has come up as a powerful 

approach to allow the modelling of fine scale and high thematic-resolution land use change 

(Rounsevell et al., 2012). The combination of ABM with SDMs is however, rarely done, partly due to 

differences in spatial and temporal scales used by the different models (Parker et al., 2002b). ABMs 

are, for example, often being developed to be either very detailed for a small region (Bakker et al., 

2015; Happe et al., 2008) or cover large regions losing detailed information in the process 

(Rounsevell et al., 2014) making them unsuitable for use in SDMs in both cases. The development 

of ADAM (Agricultural Dynamics through Agent-based Modelling) allows the modelling of a wide 

variety of agricultural land cover types at a fine resolution and for a large spatial extent. This allows 

for a greater complexity in predictors to estimate habitat suitability of landscapes in SDMs.  

Pollinators’ distributions have been highly impacted by LULCC (Kevan, 1999). For example, 

bumblebees, a well-studied pollinator group, have suffered from loss of habitat for feeding and 

nesting as a result of changes in agricultural land use and land cover (LULC; Aguirre-Gutiérrez et al., 

2017; Vray et al., 2019). Although the importance of LULC on historical bumblebee distributions has 

been proven (Aguirre-Gutiérrez et al., 2017) and land use and land cover models have shown their 

added value in bumblebee SDMs for future scenarios (Marshall et al., 2018), most SDMs only include 

changes in different climate related parameters, or use static LULC data (Titeux et al., 2016). 

Recently, Marshall et al (2018) showed that projections of loss and gain of bumblebees in the future 

varied depending on whether land use change scenarios were included in SDMs. However, the 

scenarios were limited to only six land use classes due to the absence of high thematic resolution 

LULCC models for Europe. Comparing the results of low thematic resolution SDMs versus high 

thematic resolution SDMs provides an interesting case study to assess the added value of a 

thematically detailed, parcel level, national scale agent-based model (like ADAM). Specifically, their 
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potential to improve the quality of biodiversity studies in general. Hence testing the hypothesis put 

forward by Martin et al. (2013) that increased thematic resolution is a necessity to better capture 

the effect of land use on species trends. We expect that the increased thematic resolution in land 

use, and more specifically in agricultural land use will result in less uncertainty in biodiversity 

projections and a greater detail on the connectivity and fragmentation of species distribution, 

therefore making models using a high thematic resolution an added value for SDMs on bumblebees. 

We also expect that the use of high-thematic resolution data will have a greater impact when 

modelling species with specific habitat preferences. 

The main aim of this research is therefore to assess the importance of high thematic resolution land 

use change projections in SDMs. First, the applied land use scenarios are briefly described, together 

with an explanation on the SDMs. Next, the results are presented through a comparison of the 

differences in future distribution patterns between SDMs with both high and low thematic 

resolution LULCC maps as an input. The obtained results are first presented for all bumblebee 

species. Subsequently, we specifically look at two bumblebee species: Bombus magnus, with 

specific habitat preferences and B. lapidarius, a widespread generalist species. The results are 

followed by a discussion and concluding paragraph. 

6.2 Material and methods 

6.2.1 Land use change scenarios 

The development of ADAM showed the possibility of creating ABMs able to model decision-making 

at the parcel level for a large (national) extent. In ADAM, farmers take yearly decisions on the next 

agricultural land cover for their land, based on their farming type, the current land cover of the 

parcel and the combination of rotation practices, crop prices and expected yield for each crop (see 

Chapter 3, 4 and the technical appendix). The result is a yearly agricultural land cover map of 

Belgium from 2013 to 2035, for all parcels with a high thematic resolution. In order to use the results 

in a species distribution model (SDM), a complete LULC map for the entire extent of Belgium is 

needed. Therefore, ADAM was combined with the Belgian land use change scenarios that resulted 
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from the storylines: Global Economy (GE), Regional Communities (RC) and Business-as-usual (BAU) 

which were earlier used to define the pressure from urban expansion on farming (see Chapter 5). 

The land use scenarios based on the work of Engelen et al. (2011, 2007, 2003) produce land use 

maps with 23 classes at a spatial resolution of 1 ha from 2013 to 2035. 

The SDM requires, as input, a grid with for every grid cell the percentage of the land use classes 

present. Therefore, the 1ha land use maps were aggregated to a grid of 1 km2 resolution with land 

use percentages for every grid cell (Figure 6.1). A similar process was done with the parcel map with 

the agricultural land use produced by ADAM. The presence of the different crops was translated 

into a percentage of the total agricultural land on the 1km2 resolution (Figure 6.1). In a last step, the 

crop percentages were used to further split up the arable land use class generated from the land 

use map, by defining the relative share of each crop in the total percentage of arable land on the 

1km2 resolution (Figure 6.1). The percentage of arable land was in that way further split up into four 

agricultural land use classes, namely: grains (containing the modelled amount of wheat, barley and 

maize), sugar beets, rapeseed and potatoes (Figure 6.1). Together with pasture, these four crop 

types make up more than 90% of the Belgian agricultural landscape (see Appendix 7). Pasture and 

fruit trees, are both modelled in ADAM and the CCA LUC model. In the CCA models these classes are 

part of a map covering all LU, while in ADAM, only agricultural land use is modelled. In order to 

guarantee a total of 100% for the land use percentages in the aggregated cell at the 1 km2 resolution, 

the percentages of pasture and fruit trees present in the CCA LU maps were used. With the arable 

land from the CCA LU map (containing 23 classes, see Chapter 3.2) being split up in 4 crop types, 

this results in aggregated 1 km2 land use maps containing a total of 26 classes. 
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Figure 6.1 – Simplified example of the resampling of the land use data at 1ha resolution and agricultural parcel data from ADAM to 

the 1km2 resolution 

6.2.2 Bumblebee collection records 

This study uses bumblebee collection records from Belgium since 2005 until 2017 as they best match 

the present period given the available land use data (Figure 6.2). Taking a larger range of data allows 

to have sufficient records to model the species, knowing however that this might mean a loss in 

knowledge about the exact observation conditions. The data were collated by the University of 

Mons and are available for view on the Atlas Hymenoptera webpage (Rasmont and Iserbyt, 2012). 

The data represent museum collection data, validated and verified citizen science data, and data 

systematically sampled as part of scientific research projects. Overall the data contains 28 252 

records for 24 bumblebee species. Five species had less than 15 records and were excluded from 

the further modelling process to avoid modelling under-sampled species, resulting in 19 remaining 

bumblebee species.  
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Figure 6.2 – Locations where bumblebees have been sampled in Belgium between 2005 and 2017, used as training data in the SDM 

and for creating the background sample. 

6.2.3 Bumblebee distribution modelling 

In order to model the distribution of Belgian bumblebees we first reduced the 26 LULC classes in the 

land use data to 21 land use variables (i.e. the predictor variables), since 5 classes (Industry, 

Commerce and services, Infrastructure, Mining and Harbour) were assumed to be too similar in land 

cover to be considered as different classes to train the models. These 21 remaining land use 

predictors were further reduced to 20, due to collinearity between the percentage of potatoes and 

percentage in grain crops (correlation < -0.7 or > 0.7 in Spearman correlation analysis). This is not 

entirely unexpected, since both crops have a similar spatial distribution (mostly concentrated in the 

central loam belt, see Figure 2.8). The 20 remaining land use variables were categorized into 6 

aggregated classes to be used as the low thematic resolution input. They were classified according 

to Table 6.1 in arable, forest, grassland, other, permanent crops and urban. This resulted in two 

separate sets of predictor variables used for the modelling, high thematic resolution predictors and 

low thematic resolution predictors. These six classes were chosen so as to be comparable to the 

previous research comparing future climate and land use change models for bumblebees (Marshall 

et al., 2018). 

Table 6.1 – Overview of the land use classes used in the high-resolution model and their categorization in 6 aggregated classes.  
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Arable Forest Grass Other 
Permanent 

Crops 
Urban 

• Grain crops 

• Unregistered 

agricultural 

land 

• Rapeseed 

• Sugar beet 

• Potatoes* 

• Mixed 

Forest 

• Deciduous 

Forest 

• Coniferous 

Forest 

• Pasture 

• Heathland 

• Semi-

natural 

grassland 

• Wetland 

• Water 

• Dunes 

• Military 

• Greenhouses 

• Fruit 

trees 

• Residential 

• Parks 

• Recreation 

• Sealed surfaces 

• Industry** 

• Commerce and 

services** 

• Infrastructure** 

• Mining** 

• Harbour** 

* Potatoes was removed due to collinearity (correlation = -0.77).  

** These classes were aggregated to Sealed surfaces due to high similarity in land cover properties. 

The bumblebee collection is spread over multiple years. To create a single presence map of the 

countrywide spread of the species for training the model, the presence of the species from 2005 to 

2017 are combined. If a species is present at least once in the grid cell during the period, the species 

is considered present for the training dataset. For the training, this presence map is to be combined 

with a land use map. Apart from agriculture, percentage of land use of each class for every grid cell 

is considered to be constant, whereby the year 2010 is taken as the reference. For agriculture, being 

a class with yearly variation, the average of crop percentages for every cell from 2009 to 2015 was 

taken from the Integrated Administration and Control System (IACS) dataset, a dataset on 

agricultural land use and main crop data collected yearly by the EU (European Commission, 2018a). 

Based on the defined land use classes, the distribution of the 19 bumblebee species of the dataset 

was modelled using the Maximum Entropy (MAXENT) modelling software (version 3.4-1, see 

Chapter 3) (Phillips and Dudík, 2008). MAXENT is considered to be one of the best algorithms for 

working with presence-only data (Elith et al., 2011, 2006; Elith and Leathwick, 2009; Hirzel et al., 

2002; Pearce and Boyce, 2006; Phillips et al., 2009). For both the low and high thematic resolution, 

MAXENT was run 50 times using an 80% training, 20% testing split of the data. These multiple runs 

allow to validate the runs, measure the uncertainty in the projection and to provide a more robust 

average of model performance and variable importance.  

The model performance with both low and high thematic resolution land use change as input was 

assessed by looking at the area under the curve (AUC) of the receiver operating characteristic (ROC) 
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curve. The AUC is a commonly used methodology to assess model performance. The value of the 

AUC, however, is strongly impacted by sampling size and species occurrence. Therefore, the 

comparison between models on different species is meaningless (Jiménez-Valverde and Lobo, 2007; 

van Proosdij et al., 2016). Since this evaluation parameter is based on a confusion matrix containing 

correctly predicted presences and absences (Fielding and Bell, 1997; see section 3.3.3), it requires 

absence data. True absences are however not available since it is not possible to be completely sure 

that a bee species is not present during sampling (Barbet-Massin et al., 2012; see Section 3.3.1). To 

account for this lack of absences, a random background sample (or pseudo-absence) is used (Phillips 

et al., 2009). This background sample is only taken from areas where other bumblebee species had 

previously been collected (Figure 6.2), referred to as a target background area (Mateo et al., 2010). 

This approach accounts for sampling bias by providing a more objective selection of grid cells that 

may be used to represent absence (Elith et al., 2011; Phillips et al., 2009) and has been shown to 

produce better performing models (Mateo et al., 2010).  

To test the ability of our model to capture the niche requirements of a single species and therefore 

perform significantly better than random, the average AUC value of all model runs was compared 

to the expected AUC values of 100 randomizations of a null model (Raes and ter Steege, 2007; van 

Proosdij et al., 2016). The null model is the result of the SDM based on a randomization of 

observations within the target background area. Being based on randomised observations, the AUC 

of the null model will on average be lower than the AUC of the model on true observations, since it 

will be harder for the SDM to find patterns. A model is performing well if it has a mean AUC value 

higher than a one-sided 95% confidence interval of the null distribution. If our model performs 

better than the null-model in 95% of the cases, it indicates a statistically clear difference. This means 

the model indicates that the bumblebees had specific niche requirements that were captured by 

the predictors. 

The result of the 50 MAXENT model runs for both low and high thematic resolution input, were then 

used in combination with the average of 100 runs for each of the three future land use change 

scenarios. 
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To assess the changes in distribution and to build the confusion matrix for the ROC analysis, binary 

presence/absence maps are made based on the habitat suitability maps for each species. These 

maps are created through the selection of a suitability threshold that would result in a maximum of 

10% of occurrence records being left out (see Section 3.3.3). 

6.2.4 Analysis 

The variable importance of the different predictors is analysed. Variable importance is thereby 

defined as the percentage increase in range gain as predictors are being added to the model (Phillips 

et al., 2006). For each variable a general direction of the effect (i.e positive or negative) of each 

variable was also determined. If the correlation coefficient between a single predictor and the 

habitat suitability is greater than 0.5, the effect is positive, if lower then -0.5, the effect is negative. 

The results for using the low and high thematic land use data are compared using five change 

metrics, namely: (1) changes in the distribution patterns analysed through the overall range change, 

(2) the total loss and (3) gain in range, (4) change in number of edges of suitable habitat and (5) the 

uncertainty of future model projections. Overall range change is defined as the percentage change 

in the total number of cells occupied. Loss and gain in range are measured as the total number of 

cells lost or gained between the present and future projections. These three range change metrics 

were calculated using the Biomod2 package in R (version 3.3.7; Thuiller et al., 2013). Fragmentation 

is defined as the edge density of the species distribution and is measured by taking the total number 

of edges (cells projected as presences that neighbour cells projected as absences) divided by the 

total area (Belgium). Fragmentation was calculated using the FragStats package in R (version 0.3.1; 

Hesselbarth et al., 2019). Uncertainty in modelling projections was simply measured as the per grid 

cell standard deviation in habitat suitability of all 50 projections for each scenario in 2035. To 

conclude, a widespread species (B. lapidarius) was compared to a more localized bumblebee species 

(B. magnus) in terms of variable importance and range change. 
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6.3 Results 

6.3.1 Model performance 

The average of the 50 models using high thematic resolution land use predictors were significantly 

better than random null models, the AUC value was higher than 95% CI of null distribution (Figure 

6.3). In contrast, four species modelled with low thematic resolution land use predictors, had AUC 

values that were not better than random, (B. hortorum, B. hypnorum, B. pratorum and B. sylvestris). 

Additionally, for all species AUC values are clearly higher (0.1 on average) for the models using high 

thematic resolution land use predictors versus low thematic resolution. 

 

Figure 6.3 – Mean area under the curve (AUC) of the receiver operating curve (ROC) value after 50 runs for 19 Belgian Bumblebee 

species when modelling with 20 and 6 land use classes. The X indicates the 95th percentile values of AUC from 100 random null models 

and is used to test model performance. The red X (n=4) indicates the models with mean AUC values lower than the 95th percentile 

and that therefore do not show a statistically clear difference. 
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6.3.2 Variable importance  

The mean variable importance (Figure 6.4a) and the number of species on which a variable has a 

positive or negative effect (Figure 6.4b) allow to compare the added value of using high thematic 

resolution input for each variable.  

The Grass class has a low mean variable importance and the usage of high thematic resolution input 

has a limited impact on the mean variable importance, with all subclasses showing similar values. 

The class however, shows a high variability in the effect of subclasses. The subclass Pasture has a 

positive impact on a large number of species, while both heathland and wetland have a negative 

impact on a large number of species. 

The Urban class has a very high mean variable importance with a strong negative effect. Using high 

thematic resolution input shows that the impact and effect are the result of the strong negative 

effect of the Residential class, while other subclasses (Sealed surfaces, Parks and Recreation areas) 

still have a positive effect on a certain number of species. 

Results on the Other class demonstrate the importance of using the high thematic resolution input 

for this class as it contains an amalgam of subclasses (water, dunes, military and greenhouses) with 

high differences in effect: The Water class has both positive and negative effects, depending on the 

species, while Military, Dunes and Greenhouses have a negative effect on more species than a 

positive. 

The impact of using high thematic resolution for the Forest and Permanent Crops class is limited. 

Forest subclasses show similar mean variable importance (Figure 6.4a) and effect, with a similar 

number of species for both positive and negative impact (Figure 6.4b). 
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Figure 6.4 – The mean variable importance and the effect of the different land use classes considered, both for the low (framed in 

black) and the high (framed in white) thematic resolution input. 
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6.3.3 Projections 

Distribution Change 

All parameters on distribution change show a strong response to the thematic resolution of the 

SDMs, while the differences in distribution measures show less difference between the different 

scenarios. For all measures the differences between the high and low thematic resolution are less 

pronounced for more widespread species (e.g. B. pascuorum, B. lapidarius, B. terrestris, B. 

pratorum, B. hypnorum, B. hortorum, B. lucorum) (Figure 6.5). The classification of species on being 

widespread or more localized was based on the current predicted range size (see Appendix 8). 

Considering the overall range change, on average, species were predicted to lose 20% more range 

when using low thematic resolution predictors rather than high (Figure 6.5a). This difference 

decreases for more widespread species.  

The overall pattern shows that modelling with low thematic resolution will result in a larger range 

loss for species, meaning the total number of cells occupied decreases. The percentage of grid cells 

lost and gained (Figure 6.5b) shows a more nuanced reality. In total, there is a greater turnover in 

the number of cells occupied by species on average for the high thematic resolution results. In other 

words, there is both a greater number of cells projected to be lost and gained when modelling using 

high thematic resolution. Figure 6.5 also clearly shows that low thematic resolution projects very 

little or no range gain for almost all species (only B. jonellus has a significant range gain). Again, we 

see that more widespread species will on average lose less grid cells. Fragmentation, in the form of 

edge density, both with high and low thematic resolution SDMs, increases on average for the 

species. For most species, there is a large difference between low and high thematic resolution 

modelling, with sometimes even contrasting results (B. sylvarum, B. ruderarius, B. soroeensis, B. 

campestris, B. bohemicus, B. vestalis, B. lucorum). Considering the more widespread species, edge 

densities are overall lower, and the results for high and low thematic modelling are more similar. 
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Figure 6.5 – The change in distribution parameters for the different bumblebee species, for both high and low thematic resolution 

with the differences between the scenarios indicated through a plot of the standard deviation. 
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Uncertainty 

The uncertainty in the future projections shows that the average standard deviation per cell of 

projections in the future is greater for high thematic resolution (0.11) than low (0.09). These 

differences show a statistically clear effect (W = 2173, p-value = 0.002, 95% CI: 0.008, 0.041).  

Focus on two contrasting species 

To look into detail on the effect of using high versus low thematic resolution in SDMs, two species, 

one widespread and one localised, that showed contrasting results were further examined: B. 

magnus, a very localized species, and B. lapidarius, a more widespread species. 

For B. magnus SDM results with low thematic resolution show the importance of the combination 

of grassland and forest. For model runs with high thematic resolution the variables heathland and 

coniferous forest are the most important (Figure 6.6 e). Since the combination of heathland and 

coniferous forest is limited in Belgium in comparison to the combination of grassland and forest, the 

current and future expected distribution of the species is much lower for model runs with high 

thematic resolution (Figure 6.6 a-c) as compared to runs with low thematic resolution (Figure 6.6 b-

d). 

For B. lapidarius the results of the SDM with low thematic resolution show a high and positive 

importance of the Arable class. For the high thematic resolution results, the Sugar beet class shows 

the highest importance within the Arable classes (Figure 6.7e). Noteworthy is also the Forest class, 

that has a slight negative impact on species occurrence in the model with low thematic resolution. 

Results from the model with high thematic resolution show the negative effect is limited to the 

Coniferous and Mixed Forest class, whereas the Deciduous Forest class shows a positive effect. With 

B. lapidarius being a widespread species, differences in the mapped results are limited. This can also 

be observed in the overall range change and the total range loss and gain for this species (Figure 6.5 

b-c). 
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Figure 6.6 – The modelled distribution of B. magnus for both high and low thematic resolution and in the present and for the BAU 

scenario in 2035, together with the importance of each land use variable to explain the distribution of the species. The inset in figure 

b shows where the species was collected. 
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Figure 6.7 – The modelled distribution of B. lapidarius for both high and low thematic resolution and in the present and for the BAU 

scenario in 2035, together with (e) the importance of each land use variable to explain the distribution of the species. The inset in 

figure b shows where the species was collected. 

  



Chapter 6 

 122 

6.4 Discussion and conclusion 

Models with high thematic resolution predictors consistently performed better than randomised 

null models compared to models with low thematic resolution predictors. They also showed a more 

detailed relationship with the land use predictors which resulted in considerable variation in 

projected distribution patterns compared to low thematic resolution models. This suggests that the 

usage of high thematic resolution land use data as an input for SDMs has an added value allowing 

to better capture species trends, which confirms the hypotheses of this study and of Martin et al. 

(2013) 

The added value of using high thematic resolution land use varies between land use classes. In 

contrast to expectations, the highest added value of increasing thematic resolution is not related to 

the agricultural land use classes but rather for the classes Grass, Urban and Other.  

The land use class Other contains Military, Dunes, Greenhouses and Water, i.e. classes with little 

similarities and as such also very different habitats. The improvements when further detailing this 

land use class are therefore an expectable and logical result. At the same time, some of these 

classes, like Water, are relatively easy to model in future projections given their stable nature. While 

other classes, e.g. Military, might be a very hard class to model in future projections and sometimes 

also harder to sample. 

Splitting up the land use class Grass in the subclasses pasture, semi-natural grassland, heathland 

and wetland adds value to the SDM of bumblebees. For example, heathland has a relatively small 

distribution in Belgium, has a comparatively high importance, and is shown to be quite a restrictive 

land cover for many bumblebee species. Heathland is likely to be limiting to those bumblebee 

species not adapted to the specialized feeding resources present in these habitats (Moquet et al., 

2017). The difference in habitat conditions are less pronounced in comparison to the Other class, 

but are nonetheless important in relation to habitat requirements of certain bumblebee species. 
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For the Urban class, results show how the Residential sub class is on average very important and 

also determines to a large extent the effect of the Urban class. This is however more related to a 

lack of sampling within this land use category (causing a complete absence of bumblebees in this 

land category) than to reality. This not only shows the importance of the sampling method, but also 

underlines the importance of using higher thematic resolutions. Using a higher thematic resolution 

of land use, separating the Residential class from other Urban land use classes, results in the model 

being able to capture the positive effect of other urban classes such as Parks and Recreational Areas. 

The added value of splitting up the Arable class appears to be limited in these results. The high 

ecological value of Unregistered Agricultural Land results in this class being the most important 

subclass. It has been shown previously that mass flowering crops such as rapeseed can have a 

positive influence on the number of bumblebee species (Westphal et al., 2003). We observed that 

the percentage cover of rapeseed is positively influencing the distribution of six species and 

negatively influencing six species. 

Splitting up the Forest class in Coniferous, Deciduous and Mixed had a limited added value with all 

classes showing similar importance and similar effect. 

The use of high thematic resolution input proved to be especially interesting when modelling less 

widespread, or localized species, that have specific preferences and niche habitats, in contrast to 

more widespread species with little specific habitat needs. The benefit was illustrated by comparing 

the localized species B. magnus with the widespread B. lapidarius. 

The results show that uncertainty increases when using land use maps with high thematic resolution 

as input, as compared to maps with low thematic resolution. This could be expected, as with 

increased numbers of predictors the complexity of the landscape is likely to result in more complex 

model fit and therefore greater ambiguity. 

All together we could say that using high thematic resolution land use data as an input in SDMs has 

an added value, but that it is not equally useful for all land use classes and depends on the species 

that is modelled. This comes down to how well the species’ habitat requirements are being 
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represented, which is strongly related to whether a localized or widespread species is being 

modelled. For some species, other indicators may also be more important than the specific land use 

type, like for example, the management practices on the land. This can be especially relevant for 

the Arable class, where the added value of using data with a higher thematic resolution was limited. 

For this class, the added value of a higher thematic resolution in relation to management practices 

instead of crop types might still lead to significant improvement for capturing species trends. 

Specifically for bumblebees, their presence has been positively related to the presence of naturally 

regenerated field margins (Kells et al., 2001) or organic crops (Holzschuh et al., 2008). 

As shown with the distribution maps of two specific species (Figure 6.6 & Figure 6.7) the difference 

between two modelled distributions can be substantial, especially for B.magnus this difference 

clearly shows. Using only low thematic resolution LUC predictors for SDMs could lead to 

overpredictions and maybe even show contrasting trends. This might lead to wrong decisions being 

made in relation to conservation measures (Araújo et al., 2019). 

These results should however be treated with caution. As discussed earlier (Chapter 4 & 5), the land 

use modelling has its limitations and so does the SDM. Many methods for SDMs exist, and changing 

the model or model parameters might affect results (Aguirre-Gutiérrez et al., 2013). There are also 

limitations related specifically to the methodology used in this research. Since the main aim of this 

research is to look at the importance of high thematic resolution land use maps in SDMs, the impact 

of climate, although known to be an important parameter in SDMs (Rasmont et al., 2015), was not 

included. Araújo et al. (2019) specifically stresses the importance of considering relevant 

environmental and biotic variables. This means the resulting projections are not representative of 

future ranges but do specifically indicate the impact of increased thematic resolution. Another 

specific limitation results from the methodology of the calibration process. Bumblebee data were 

collected over a period of a few years and are, in the calibration process, linked to one observation 

year for land use, and a five-year average for agricultural land use, inconsistencies may arise due to 

land use change happening during that period. By working with percentages on the 1 km grid cell, 

the inconsistencies should remain limited. The aggregation to a 1 km grid however, might also 
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impact the results. A shift of the grid or a change in resolution would result in different land use 

percentages in the grid cell (being derived from land use at the 1 ha resolution) and might also affect 

the cell to which certain bumblebee observations are appointed. This problem is known as the 

modifiable areal unit problem (MAUP), which has been proven to possibly induce a statistical bias 

and can significantly impact the result of statistical tests (Holt et al., 1996; Unwin, 1996; Wong, 

2009). Given these limitations, it is important that the results should not be considered as 

predictions of future bumblebee distributions, but as an explorative study on the added value of 

high thematic resolution land use data in SDMs. 

While the importance of including land use and land use change data in species distribution models 

has already been identified (Aguirre-Gutiérrez et al., 2017; Marshall et al., 2018), this study further 

highlights the importance of including high thematic resolution data and high thematic resolution 

land use change models, showing the added value of models like ADAM, outside their own research 

context and highlighting the importance of further research in this field. Evaluating for which 

thematic classes the input of high resolution might be interesting, is an important exercise, given 

that the relevance is not the same for all classes. The use of climate data was absent in this research. 

To accurately model the impacts of high-resolution land use change alongside climate and climate 

change we would need collection records from the whole range of the species with correspondingly 

high-resolution land use change data, which is currently unavailable. As more detailed land use 

change models begin to be produced at larger scales, research including climate change might result 

in projections applicable to and useful in policy making processes. Given the results obtained from 

using land use change data with a high thematic resolution, it might be interesting to see if similar 

results might be obtained when using high spatial resolution data in the context of climate change.




