
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Providing relative services in IP routers

Swinnen, Louis

Award date:
2001

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Apr. 2024

https://researchportal.unamur.be/en/studentTheses/9c0b8fce-3005-4d25-b0ce-d0783832b243

Facultés Universitaires Notre-Dame de la Paix
Institut d'Informatique

Providing Relative Services
in IP routers

Louis SWINNEN

Travail de fin d'études réalisé en vue de l'obtention
du titre de Maître en Informatique

Année Académique 2000-2001

Abstract
Because of the development of the Internet and the price descrease of fast connections

like ADSL or cable connections, new applications appear on Internet like streaming appli
cations (video on demand for instance). These kinds of application have more requirements
and can't work correctly with the default service used today inside the IP routers : first
arrived, first served service.

This thesis focus on the relative services and shows how these services can be used to
meet all new application requirements. Because application requirements can be usually
expressed in terms of loss, delay or bandwidth, it 's possible to provide several levels of ser
vices (i .e. clasees of service) that allow delay or loss sensitive applications to work correctly.
The different levels of services can be achieved by using delay and loss differentiation . De
lay differentiation allows to priviledge some packets inside the router (the time that some
packets passed inside a queue can be tuned) while loss differentiation allows to determine
which packet must be discarded first in case of congestion. Because TCP is mainly used in
the Internet, it's also possible to provide bandwidth differentiation by combining the two
previous differentiations.

This thesis also contains an important discussion about the implementation of such
mechanisms inside a FreeBSD based router using ALTQ and several experiments are done
to validate this implementation.

Résumé
Le récent développement d'Internet ainsi que la diminution des prix concernant les

connexions rapides comme l'ADSL ou le cable ont fait apparaître de nouvelles applications
sur Internet telles que les applications de streaming (vidéo à la demande par exemple).
Ces types d'application ont plus d 'exigences et ne peuvent fonctionner correctement avec
le service habituellement utilisé aujourd'hui dans les routeurs IP : premier arrivé, premier
servi.

Ce mémoire se concentre sur les services relatifs et montre comment ces services peu
vent être utilisés pour rencontrer les nouvelles exigences des applications. Généralement ,
ces nouvelles exigences peuvent être exprimées en terme de perte, délai et/ou bande pas
sante, c'est pourquoi il est possible de fournir plusieurs niveaux de services (appelé aussi
classes de services) qui permettent à ces nouvelles applications de fonctionner correctement.
Les différents niveaux de services sont obtenus en proposant une différenciation sur le délai
et sur les pertes. La différenciation sur le délai permet de privilégier certains paquets à
l'intérieur du routeur (de sorte que le temps passé par certains paquets dans le routeur peut
être réglé) tandis que la différenciation sur la perte permet de déterminer quels paquets
doivent d'abord être rejetés en cas de congestion. L'utilisation très généralisée de TCP sur
Internet rend possible la différenciation de bande passante simplement par combinaison
des deux différenciations précédentes.

Ce mémoire accorde également une part importante à l'implémentation de tels mécan
ismes à l'intérieur d'un routeur FreeBSD en utilisant ALTQ et propose également quelques
expériences afin de valider cette implémentation.

Acknowledgments

1 would like to thank all people that helped me during the writing of this thesis. ln particular, 1
thank Prof. Olivier Bonaventure, my promoter, for his help and his precious advice.

Because he was always available for me when it was necessary, during the writing of this
thesis , 1 thank Mr. Stefaan De Cnodder from Alcatel.

For his comments about my work, 1 also would like to thank Mr. Steve Uhlig from the
lnfonet group.

Mr. G.H. Petit, Director of the research department, gave me the opportunity to make my
t raining course at the Corporate Research (enter of Alcatel Antwerp. There, 1 collaborated
with Mr. Stefaan De Cnodder and Mr. Goeffrey Cristallo on the subject presented here. Thank
you for your help during this training course.

Without them, my stay at Antwerp would have been boring, thank you Cédric and Cristel
for your good mood .

Finally, 1 would like to thank my whole family for all the support they always gave me.

Contents

1 Differentiated services
1.1 Introduction
1.2 Basic definitions
1.3 Quality of Service .

1.4

1.3.1 Integrated Services
1.3.2 Differentiated Services
Conclusion . . .

2 Relative Services
2.1 Introduction ..
2.2 Relative Differentiation Model ...
2.3 Proportional Differentiation Model

2.3.1 Proportional delay differentiation
2.3.2 Proportional loss differentiation .

2.4 Approximation of proportional differentiation model
2.4.1 Proportional delay differentiation ...
2.4.2 Proportional loss differentiation
2.4.3 Proportional bandwidth differentiation

2.5 Conclusion . .

3 Implementation
3.1 Introduction
3.2 Overview of FreeBSD . .

3.3 Description of FreeBSD
3.3.1 Main features ..

3.3.2 TCP / IP network layer
3.4 Description of ALTQ . . .

3.4.1 Architecture

3.4.2 Working of ALTQ
3.5 Extensions to ALTQ ...

3.5 .1 Architecture of the solution
3.5.2 Implementation of WTP scheduler
3.5.3 Implementation of WRED
3.5.4 Statistical Variables

3.6 Conclusion

3.6.1 Limitations of this implementation

1
1
4
5

5

8

12

15
15
15

16
17
17

18
18
24
30
31

33
33
33
34
34

37

42
42

44
45
45
46

55

58

60

60

11

4 Experiments
4.1 Introduction
4.2 Traffic generator ..
4.3 Network configuration
4.4 Experiment results ..

4.5

4.4.1 Background ..
4.4.2 Heavy-load condition .
4.4.3 Equal distribution (TCP)
4.4.4 Unequal distribution
Conclusion .

Conclusion

A Implementation
A.l altq_ wtp.h
A.2 altq_ wtp _ opt.h
A.3 altq_ wtp _ util.h
A.4 altq_ localq.c . .
A.5 altq_ wtp _ wred.h .
A.6 altq_ wtp _ wred .c .
A.7 wtpd.c ..
A.8 wtpstat.c

CONTENTS

63
63
64
64
67
67
67
70
76
80

81

83
87
90
91
92

111
114
121
132

Chapter 1

Diff erentiated services

1.1 Introduction

The development of Internet is now a reality. During several years , Internet was used
only by the military and universities for research. Today Internet connects corporations,
universities, administrations and personal users, and is used to provide more and more
services (like e-commerce, e-mail, data exchange, video on demand, ...).

Internet is composed of many local and wide area networks (called also autonomous
systems) connected together to build a worldwide network. An autonomous system (or
AS) is a network or a set of networks under the same authority. For instance, Belnet forms
an AS composed with all university networks (see figure 1.1).

BELNET

Figure 1.1: Example of autonomous system

The model that is used to allow two computers to communicate together is a modified
version of the OSI (Open System Interconnection) model. This theoretical model supposes
five layers (as can be seen on figure 1.2) :

Physical layer The physical layer allows to send bits on a given physical media (like
twisted pair, coaxial cable or optical fiber) through a given interface (i.e. encodes
the bit stream to a form compatible with the selected media and that can be de
coded without ambiguity) . Each media has a lot of characteristics that will limit the
performances of the communication.

1

2 CHAPTER 1. DIFFERENTIATED SERVICES

Data link layer The data-link layer allows a data exchange between two computers.
Based on an address, it's possible to exchange structured information using the first
layer. Several types exist, some allow to exchange information in a reliable way (by
using acknowledgement when data is received by the destination) while others not.
Exchanged information between two data-link layers is called frame .

Network layer The network layer allows to connect more than two computers together.
Indeed, many computers with different data link layers can be connected together.
Several mechanisms (called routing protocols) exist to find the destination host and
to determine the path to transmit the information. This layer relies on the previous
layer to provide its services (i.e. an unreliable service is always assumed because
of possible differences between successive data link layers). Exchanged information
between two network layers is called packet.

Transport layer The transport layer allows two programs on different hosts to commu
nicate together. Mainly, two kinds of transmissions can be offered : reliable and con
nection oriented or unreliable and connection less service. The first can be compared
with a common phone communication : the communication must be established and
once the communication is terminated, this connection must be closed. Moreover,
in this case, the caller knows if his communication is received. The second can be
compared with the post service : a letter is sent to a destination address but the
sender has no guarantees that his letter is arrived or not. Exchanged information
between two transport layers is called Transport Protocol Data Unit (or TPDU).

Application layer This layer allows to provide new network applications to the final user.
Many network applications are used today on Internet like e-mail or some others are
very popular like WWW, FTP, . .. This layer is used to provide new services and relies
on the previous layer to transmit all needed information Exchanged information
between two application layers is called Application Protocol Data Unit (or APDU)

Application Applicat ion

Transport Transpo rt

Network Networ k

Data-Link Data-Li nk
Physical Bit Physic al,l

Physical media

Figure 1.2: A modified version of the OSI model

As part of this thesis, the most important layers are the network, transport and appli
cation layers . So when an application sends data to another application on another host,
it asks to the underlying layers, especially the transport layer to send its information. The

1.1. INTRODUCTION

transport layer splits information into blocks that the network layer can send. If it is a
reliable transmission, all lost or wrong packets are sent again. The network layer finds the
path to reach the destination and sends packet to the destination (by using the data-link
and physical layers). The network layer of the destination host receives from underlying
layers several packets and forwards these packets to the transport layer. The transport
layer sends the information to the selected application.

The data exchange on Internet works today on the concept first came, first served
(FCFS) with no distinction between users or applications. Several types of network appli
cations can be observed :

Elastic applications This type of application uses available resources. When resources
are not available, this kind of application can wait without serious consequences until
needed resources become available. This kind of application can work independently
of available resources (the application waits for resources if they are not available).
For instance: web traffic, X-Window, NFS, RPC, e-mail, . ..

Streaming applications (or real-time applications) This type of application requires
a minimum of resources to work. Without this minimum, the application doesn ' t
work. This kind of application can't wait when the resources are not available. For
instance : Voice over IP, video on demand, network games, ...

The default service (first corne, first served), called best effort, is sufficient for elastic
applications. Today, more and more providers propose real-time applications and the
default service is not adapted to these new application requirements (i .e. minimum of
resources). These requirements are usually expressed in terms of delay (i .e. maximum
delay), loss rate (i.e. maximum loss rate) and finally bandwidth (i.e. minimum bandwidth) .

en
en
0

....:i

Distributed games

Adaptive multimedia

Conferencing

www

Banking
applications

Delay

Telnet

Background FTP

Ema1l

Figure 1.3: Loss and delay requirements for Internet applications [27]

On figure 1.3 (from [27]), a taxonomy of application requirements is presented in terms

3

4 CHAPTER 1. DIFFERENTIATED SERVICES

of delay and loss : streaming applications (network game, conferencing and adaptive mul
timedia on the figure) require mainly low delay and loss to work correctly while elastic
applications (like e-mail or web traffic) can tolerate high delay.

The idea of providing more services was old because already inside the IP protocol , a
field , called type of service, was reserved to specify the required service for the information
contained inside the packet. But this characteristic was not often used. Today, IETF1 has
two approaches to provide more services : Integrated Services and Differentiated Services.

This chapter is organized as follows : some basic definitions are given first, a description
of integrated service and differentiated services is proposed after .

1.2 Basic definitions

IP Packet A packet is the way used to transport information through an IP network. A
packet contains two parts : the header and the data. The header is structured into
several fields (see figure 1.4), the most important fields are :

32 bits

Version 1 Header Lengthl Type of service ITOS) Total :ength

Identificat,on Flags
1

Fragment ofi set

Time to live ITTL)
1

Protocol 1dentlt!er Header checksum

Source address

Destmanon address

Options

Figure 1.4: IP Header description [1 7]

• source and destination addresses : references the source and destination host of
this packet

• type of service : indicates the required level of service.

• protocol number : informs of the transport protocol (TCP or UDP) used.

The maximum size for packets are 64 kilobytes with minimum 20 bytes for the header.

Protocol A protocol is a description of all valid commands. It is used to describe how
computers can communicate together (i.e. all messages exchanged to allow a com
munication between two computers or more).

1Internet Engineering Task Force attempt to standardize ail protocols and mechanisms used on the
Internet

1.3. QUALITY OF SERVICE

User Datagram Protocol (UDP) This is a transport protocol (i.e. it works over IP
to provide its service) that offers a connectionless and unreliable transmission : it is
useful when retransmission of lost packets is too expensive (takes tao much time).

Transmission Control Protocol (TCP) This transport protocol is used to provide a
connection oriented and reliable transmission (by using retransmission if necessary).
It provides complex congestion control algorithm to avoid congestions by reducing
its sending rate if packet drop occurs.

Flow of packets A set of IP packets that share a common property like source and des
tination address and sometimes same protocol identifier and the same port numbers.

1.3 Quality of Service

Quality of Service attempts to provide more architectures that can meet new application re
quirements. Two different architectures have already been defined : the Integrated services
and Differentiated services.

Integrated Services The integrated services [4] [11] (also called IntServ or IS) attempt
to provide strong (i.e. deterministic) guarantees to each individual flow : a flow is
defined as a set of packets [4] "that results from a single user activity and requires the
same guarantees". Each flow asks for a level of service (a given amount of resources
like buffer space or bandwidth) and the IS router decides whether the requested
service can be guaranteed or not. The level of service is usually expressed in terms
of maximum end-to-end delay, loss rate or minimum service rate.

Differentiated Services The second architecture is the differentiated services [22] [l].
They are based on the definition of several levels of services (also called classes of
service). According to the traffic con tract (also called SLA) signed between an user
and the network provider, the incoming traffic will be distributed among the defined
classes to obtain the agreed service.

These two architectures will be described in details in the sequel.

1.3.1 Integrated Services

The integrated services focus on the end-ta-end guarantees : they attempt to provide
guarantees along the path follow by the traffic (from the source to the destination through
all routers) . That is why IS uses a new protocol to inform the destination hast and all
routers along the path that a new reservation is requested. This protocol is the Resources
reservation protocol (also called RSVP). When a new reservation is requested by a host
Source (depicted on figure 1.5) , a RSVP message PATH is sent such that all routers along
the path knows that the host Source would like make a reservation of a given amount of
traffic to the Destination hast . A PAT H message contains information about the amount
of traffic that will be send but no reservation is made now : it's only an invitation. This
message is also used to establish the route between the source and destination host .

5

6 CHAPTER 1. DIFFERENTIATED SERVICES

For instance, when the PATH message arrives at the router RI (figure 1.5), it selects
the next hop based on its routing information (R2 in this case), then it creates a new state
for this flow with the following information : identification of this flow, senders of this
PAT H message and finally, it sends the PAT H message to the selected hop R2. When
the PAT H message arrives at the destination host, the destination will accept or reject
this new reservation. If it accepts, a message RESV is sent to the sender of the received
PAT H message (R3 in this case). This message contains all information needed and when
a router receives a RESV message, it proceeds to make the reservation (or refuses it if not
enough resources are available). It is necessary · that the RE SV messages follow exactly
the same route as the PAT H messages to confirm the reservation to all routers from the
source to the destination (i.e. because of dynamic feature of routing protocol, the route
followed by packets can be different according to the packet direction). The routers can
find the correct route because they have saved needed information inside the associated
flow state. When the source receives the RESV message, it knows that the reservation is
done. If a router can't make the reservation, a special message is sent to inform that the
reservation failed.

The integrated services architecture has already two services defined : the guaranteed
service and controlled load :

Guaranteed Service Attempts to simulate a physical link between the source and des
tination host . It provides, for conforming flows, firm guarantees (with a bounded
end-to-end delay and no losses caused by congestion).

Controlled load Attempts to provide for conforming flows a service similar to the best
effort service when no congestion occurs and the network is lightly loaded (i .e. with
low delay and low loss rate).

Source [Q]
iiilii±j

RI R2 R3
/j~ i ~ Destination

PATH PATH PATH PATH

RESV RESV RESV
RESV

Figure 1.5: Example of resource reservation

The IS architecture relies on special routers (called IS routers) composed of many
building blocks (as can be seen on figure 1.6). The specific IS blocks are the reservation
setup agent, the admission control, the classifier and the packet scheduler.

Routing agent The routing agent implements a common routing protocol (for instance
inter-domain BGP routing protocol or intra-domain OSPF routing protocol) and

1.3. QUALITY OF SERVICE

Routing
Aqent

Reservation
Setup Agent

i
Admission

Control

Management
Aqent

Routing
Database Traffic Control Database

---•,._ !classifier 1 ----•► Packet . . Scheduler

Input Internet
Driver Forwarder Output Driver

Figure 1.6: lmplementation reference model for IS router [4]

constructs a routing database used to select the good path for a packet to reach its
destination.

Packet scheduler The packet scheduler uses a set of queues to manage the traffic. Ac
cording to a specific scheduling algorithm, the packet scheduler selects among queues
the packet that has to be sent on the output link.

Classifier Usually based on information included inside the header of the incoming packet ,
the classifier maps the packet (or flow) to a selected class. AU packets from the same
class receive the same treatment and a class can hold one or many flows. Finally, the
classification is local : inside another router , this packet (or flow) can be classified
diff erently.

Admission control The admission control algorithm must decide if an incoming flow can
be guaranteed. Before accepting a new flow, this algorithm checks if enough resources
are available to assure that this flow can be accepted without consequences for all
guaranteed flows. Moreover, this algorithm has to check if all flows respect their
promises : if one flow exceeds its guarantee : other mechanisms are used to enforce
the flow to match with its guarantees. These mechanisms : shaping or policing can
delay or discard some packets of this flow if necessary.

Reservation Setup agent This agent implements the RSVP protocol described above.

This approach appears to be very interesting to solve the problem of streaming appli
cation (i.e. a minimum of forwarding resource must be available otherwise the application
doesn't work) but it has the following problem (known as the scalability problem) : to
accept a new request , each router must maintain a state for each flow. Because the re
sources (memory and CPU power for instance) inside a router are limited and the number

7

8 CHAPTER 1. DIFFERENTIATED SERVICES

of flows can be very high so the maximum number of flows that a router can support would
be an important limitation. A second limitation is the need to support RSVP protocol (all
routers on Internet can't be changed at the same time to support this new protocol).

1.3.2 Differentiated Services

The second approach is the differentiated services [22] [1] (also called DiffServ or DS).
DiffServ proposes to classify incoming traffic into a limited number of classes of services
according to the service level agreement signed between a client and the service provider.
A network that is compliant with the DiffServ model is called a DS-Domain.

The service level agreement (or SLA) is a contract that specifies [1] "the forwarding
service (i.e. the class of service) that a customer should receive". A class of service corre
sponds to a level of service (i.e. a given amount of resources) and each level of service is
associated with a given value called DiffServ CodePoint (DSCP). This value indicates the
requested service : the expected behaviour of the router (also called Per-Hop Behaviour
or PHB). Many PHBs have already been standardized by the IETF. The DSCP value is
set by the user or by a special router (edge router). All flows from the incoming traffic
requiring the same service are aggregated together into the selected class of service (the
class that corresponds wi th the forwarding requirements).

DiffServ has been developed according two models, the absolute and relative services :

Absolute Services Like IntServ, attempt to provide strong guarantees but without per
flow state and [11] : "with only some semi-static resources reservations (by the use
of centralized entity), instead of a dynamic resource reservation protocol". This
approach relies on a semi-static resource reservation and requires admission control
mechanism.

Relative Services The idea is to have several classes that are ordered such that a class
i provides a "better" service than previous classes in terms of local per-hop metrics
(from [11]). The service is usually expressed in terms of queueing delay and packet
lasses. It doesn't require new signaling protocols or complex admission control mech
anisms. Finally, no state must be maintained with each individual flow. Better
service usually means lower delay, lower loss rate or higher bandwidth.

An important distinction with regard to the Integrated Services is the use of two types
of routers (see figure 1. 7). DiffServ proposes to have routers located in the core of the
domain while others are located at the border of the domain. The idea is to keep all
complexity at the border of the DS domain.

Core router High-speed router located in the core of the DS domain and that supports
several level of services, provides an adequate behaviour2 according to the DSCP
value.

Edge router An edge router is located at the border of the DS domain, it supports
the forwarding mechanisms implemented inside a core router and provides other
more complex mechanisms to analyze and performs traffic conditioning if necessary.

2 also called Per-Hop Behaviour or PHB

1.3. QUALITY OF SERVICE

Figure 1.7: Example of DS domain

Legend:
ER = Edge Routers
CR = Core Routers
A, B = Clients

The traffic conditioning uses some mechanisms to assure that the incoming traffic is
conforming to the SLA. Traffic conditioning includes the following mechanisms :

• Metering : Measuring several properties of a traffic stream ([1]).

• Marking : Setting/ Updating the DSCP value (i .e. reduces the requested ser
vice). Because the core router only checks this value to decide the good be
haviour, the re-marking is sufficient to reduce the provided service.

• Shaping : Delaying packets to enforce the traffic stream to conform to the SLA.

• Policing : Discarding packets to enforce the traffic stream to conform to the
SLA.

To keep the complexity at the border, some mechanisms are only present inside an
edge DS router while other are available in all DS router : metering, marking , shaping
and policing mechanisms are often present in a DS edge router only.

Because the field type of service was not often used, the IETF proposes to replace the
TOS field with the DSCP value. The TOS byte indicated the packet precedence (i .e. the
packet priority) and other information that specifies if the packet or corresponding flow
requires a low delay, a high throughput or a high reliability ([17]) . It was redefined as
follows (see [22]) :

D.S.C .P. C.U.

D.S.C.P. Differentiated Service Code Point (6 bits)

C.U. Currently Unused (but currently assigned to be used for explicit congestion notifi
cation). This is not a part of DiffServ (2 bits).

Several arrangements have been made to provide a limited compatibility with the old
TOS byte specification.

9

10

Input

link

,___,

:~
UJ
UJ
rO

u

CHAPTER 1. DIFFERENTIATED SERVICES

Router

Queueing
strate

Figure 1.8: Logical view of a router

Output

link

Description of router mechanisms

As shown on figure 1.8, a DS router has the following fonctional building blocks (arrows
in bold represent the path that packets follow inside the router) :

Classifier Based on some information included inside the packet, the classifier can de
termine the flows to which the packet belongs. The classifier can work at several
levels :

• Network layer fiow : Two packets belong to the same flow if they have the same
source and destination addresses.

• Transport layer fiow : Two packets belong to the same flow if, in addition to
the network layer requirements, they have the same protocol identifier, source
and destination port number.

• Application layer fiow : Two packets belong to the same flow if, on top of
transport layer needs, they have same application-dependent information. This
type of classifier is very expensive (in terms of required resource) because it
must inspect the payload (i.e. the data) of the packet to determine the correct
flow.

The classifier can also use other rules to determine the flows.

Meter - Marker - Shaper They implement respectively the metering, marking and
shaping fonction described above.

Buffer acceptance algorithm The buffer acceptance algorithm relies on the meter to
decide whether incoming packet must be discarded or can be accepted inside the
buffer (policing fonction). To take a decision, the buffer acceptance algorithm also
takes into account the buffer occupancy and the DSCP included in the packet.

Scheduler Like the packet scheduler in the IntServ model, the fonction of the scheduler
is to decide the next packet to transmit on the output link first based on computed

1.3. QUALITY OF SERVICE

packet priority. The computation of the packet priority will depend on the imple
mentation of the scheduler algorithm.

Queueing strategy It is a part of the scheduler, it describes how packets are organized
inside the buffer and what type of queues are used (FIFO, ...).

As already des.cribed above, some blocks are only implemented in an edge router while
others are present in all types of routers : an edge router determines the flow of a packet,
marks the packet with a good DSCP value and delays , sends or discards the packet if neces
sary while acore router has a "light-classifier" (that only checks the marking to determine
the correct behaviour for this flow) and, usually, no shaping or policing mechanisms.

Per-Hop Behaviour

Two PHBs have already been standardized : the Assured Forwarding PHB [16] and the
Expedited Forwarding [18] . The IETF only exposes some guidelines and doesn't propose
any implementation of these PHBs.

• Assured Forwarding PHB (AF)

-~C:::J

- Packet with hlgh drop precedence
C:::J Packet wi th medi uro drop precedence
f.;;r I Packet wi th lowdrop precedence

Ü Scheduler

Ü Buff er acceptance algoritm

Figure 1.9: Possible implementation of AF PHB

This mechanism aims to [16] assure that IP packets will be forwarded through the
network with a high probability as long as the traffic does not exceed the predeter
mined profile. That's why four classes are defined : these classes provide different
levels of service. Inside each class, three drop precedences are defined and packets
are discarded according to their drop precedences. To identify the requested level of
service (the queue and the drop precedence), each packet is marked (by the source
or by an edge router) with a correct DSCP value . Most important rules are :

Packets from one class must be forwarded independently from packets in another
class i.e. packets from different classes must not be aggregated together. This
rule assures the independence between classes : packets are forwarded according
to the requested service and the selected drop precedence independently of the
load of the other classes.

- The router associates with each class a defined quantity of resources (buffer
space, bandwidth, ...) . Each class should receive the configured service rate
over small and large time scales .

11

12 CHAPTER 1. DIFFERENTIATED SERVICES

Packets from the same transport flows must not be reordered.

A possible implementation of these guidelines is depicted in the figure 1.9. Four
classes of service are defined with three drop precedences. The buffer acceptance
algorithm discards packet when it is needed while the scheduler is configured to
provide the expected level of service.

• Expedited Forwarding PHB (EF)

This mechanism proposes [18) to have one special class that is served such that the
resulted loss, latency and jitter are low. To provide such guarantees, this class must
experience low queueing delays. Low queueing delay means that :

The departure rate of this class must be independent of the load of other classes

The arrivai rate of this class must be less than its departure rate.

It 's also important to limit the traffic for the EF class to avoid a starvation effect
with the other classes. This PHB can be used to emulate a leased line between two
hosts through a network.

For these two PHBs, the IETF has proposed several DSCP values to give the con
figuration of the router easier : the default configuration of all routers is the same.
Many PHBs can be combined together to proposed extended service (i.e. combining
of EF and AF for instance).

1.4 Conclusion

This chapter has presented the current working of Internet (first corne, first served) and
proposed two evolution models : the Integrated Services and Differentiated Services. A
summary of the most important differences between IntServ and DiffServ is presented on
table 1.1.

The Integrated services proposes deterministic guarantees by requesting resource reser
vation. This can be achieved by using new mechanisms : the admission control mechanism
and the resource reservation protocol. The admission control mechanism is needed to eval
uate the impact of new reservations on existing guarantees and available resources while
the resource reservation protocol is used to proceed the reservation inside routers along the
path. The Differentiated services proposes to classify incoming traffic into several classes
of service. This classification can be done by the user or by a special router located at the
border of the DS domain. Indeed, two types of router are proposed : core routers and edge
routers. Core routers are located in the core of the DS domain and are constructed to be
fast while edge router are located at the border of the DS domain and implement more
complex mechanisms.

This table shows the main problems of the IntServ architecture : states in IS routers are
per-flow while the state in DS routers are per-aggregate (so are limited by the number of
classes) . This distinction is the cause of the scalability problem and is the main limitation
of the IntServ model.

1.4. CONCLUSION

Integrated Serv ices Differentiated Services
Granularity of Individual flow Aggregate of flows
service differentiation
State in routers Per-flow Per-aggregate
(e.g. scheduling,
buff er management)
Traffic classification Several header fields The DS field (6 bits) of the IP
basis header for core routers

Several header fields
for edge routers

Type of service Deterministic or statistical Absolute or relative
diff erentiation guarantees assurances
Admission control Required Required for absolute

differentiation only
Signalling protocol Required (RSVP) Not required for relative schemes

Absolute shemes need semi-static
reservations

Coordination for service End-to-end Local (per-hop)
differentiation
Scalability Limited by number of Limited by number of

flows classes of service

Table 1.1: A comparison of the IntServ and DiffServ architectures (11]

In the DiffServ architecture, the relative services appears to be less complex than the
absolute services because no admission control algorithm and no resource reservation mech
anism are required to support it.

That is why IntServ architecture appears not really adapted to Internet because of
scalability problem : states inside an IS router are per-flow, the maximum number of flows
that an IS router can support is the main limitation. DiffServ architecture seems to be very
interesting particularly the relative model (because the absolute service relies on semi-static
resources reservation) for incremental deployment. Indeed, because of local coordination,
DiffServ can be deployed incrementally and provide (local) differentiation while IntServ
must be deployed completely to provide guarantees.

This thesis is structured as follows : the next chapter discuss about the relative ser
vices and which mechanisms can be used, the chapter three describes the implementation
of selected mechanisms and finally the chapter four proposes experiments to validate and
evaluate the proposed implementation. The whole implementation is included in the ap
pendix A.

13

Chapter 2

Relative Services

2.1 Introduction

The previous chapter has introduced several new architectures to replace the default first
corne first serve service inside the routers. Architecture like Integrated Services and Dif
ferentiated services have been explained and the Differentiated Services appear to be very
interesting because they have not the scalability problem (i.e. with the integrated services,
a router must maintain a state per fl.ow but the number of fl.ows can be very high and that
leads to an important limitation).

The Differentiated services architecture proposes two models : relative and absolute
services. Relative services seem to be easier to implement (they do not require semi-static
resources reservation mechanism) : they are based on the idea of classes of services. Indeed,
several classes of service are defined and each class is associated to a defined level of service
(i.e. usually expressed in terms of delay, loss and bandwidth). Classes are ordered such
that the class i provides a better service (i.e . higher level of service) than the previous
classes.

This chapter will expose some relative differentiation models first and then, the pro
portional differentiation model is described. This model was used for delay and loss differ
entiation. After existing mechanisms that can meet the requirements of the proportional
differentiation mode! are discussed. Finally the combination of these two differentiations
to obtain a proportional bandwidth differentiation is exposed.

2.2 Relative Differentiation Model

Severa! models exist to provide differentiation . A good mode! must be predictable and
controllable : predictable means that the model is consistent (i.e. a high class always
receives a better service than a low class) and not-dependent of the variations of the class
load; controllable means that the network operator can tune the differentiation according
to his criteria.

Strict Prioritization This mode! proposes to serve highest not-empty class first (i.e. for
delay differentiation) and when packets must be dropped (i .e. for loss differentiation) ,
it proposes to discard packets from the lowest not-empty class first . This mode! is not

15

16 CHAPTER 2. RELATIVE SERVICES

controllable : the quality spacing between classes cannot be tuned. Moreover, higher
classes can be served continuously if no restriction is placed with the consequence
that lower classes can never be served (i.e. starvation effect) .

Price Differentiation The Paris Metro Pricing [23] proposes that a differentiation can
be achieved _by using pricing (higher prices lead to lower loads). This model makes
the distinction between users that can pay for a high service level and users that
can't pay. It is not consistent because lower class can experience a lower load than a
higher class if many 'rich' users are active at the same time. The conclusion is that
this model is unpredictable : the service level of a given class depend of the current
class load.

Capacity Differentiation The capacity differentiation model proposes to allocate a larger
amount of forwarding resources to higher classes according to the long-term expected
load in each class. This approach has an important problem : sometimes higher
classes can obtain a worse service than lower classes because of deviation between
the short-term and long-term load. Indeed, the reason is that "forwarding resources
allocated to each class do not follow the actual class load variation" (from [11]).

Proportional Differentiation This model proposes to have a proportional differentia
tion between classes. This differentiation can be tuned by the network operator
such that this model is controllable. On the other hand, this model assures that
high classes receive a better service than lower classes according to the proportional
parameters defined by the operator.

The proportional differentiation models appears to have all required qualities : it is pre
dictable and controllable. It will be described in details in the sequel.

2.3 Proportional Differentiation Model

This model was described by C. Dovrolis first. The main idea is that [11] "certain class
performance metrics should be proportional to the differentiation parameter that the net
work operator chooses". Network performance can be measured in terms of queueing delay
and loss ratio. In this case, better class performance means lower queueing delays and/ or
lower loss probabilities.

Assume that iÏi(t, t+T) is the measure of performance for class i during the time interval
[t, t + Tl, T > O. Classes are ordered such that a class i receives a better service than the
previous classes (< i) . The following relation is defined between the classes :

iÏi(t,t+T)

iJj(t, t + T)

where c1 < c2 < ... < CN (if N classes are defined) are the Quality Differentiation Param
eters {QDPs). The relations f between classes are called quality ratios. They remain fixed

]

even if the quality level of each class (i.e. the class performance) changes according to the
class load. These ratios express the proportional relation between classes. This model does

2.3. PROPORTIONAL DIFFERENTIATION MODEL

not propose strong guarantees but only the assurance that a class will receive a service
that will be a fraction of the service proposed by another class.

For instance, assume that three classes are defined with the following QDPs : c1 = 1,
c2 = 2 and c3 = 3, it appears that :

(]1 (t, t + T) 1 1
- {::} iï1(t,t+r) = 2q2(t , t+r)

iï2(t, t + r) 2

iï1 (t, t + r) 1 1
- {::} iï1(t,t+r) = 3q3(t,t+r)

q3(t, t + r) 3

iï2(t, t + r) 2 2
- {::} th(t, t + r) = 3q3(t, t + r)

q3(t, t + r) 3

If class 3 receives a performance of 6 during the time interval [t, t + r], class 2 should
receive a performance of 4 while the class 1 receives a performance of 2 during the same
time interval. In summary, the performance of class 3 will be three times better than the
performance of class 1 and the performance of class 2 will be two times better than the
performance of class 1.

This model can be used for delay differentiation and loss-rate differentiation.

2.3.1 Proportional delay differentiation

[13] proposes to take into account the average queueing delay metric of a class to provide a
proportional delay differentiation. The more queueing delays are high , the more provided
service is poor. To use the proportional differentiation model in context of queueing delays ,
the following relation is set :

1
iïi(t, t + r) = di(t, t + r)

where Ji (t, t + r) is the average queueing delay of the packets belonging to the class i that
left during the time period (t, t + r). If no packets of class i were served during this interval,
di(t, t + r) is not defined . The relation between all pairs (that are defined) of classes is :

Ji(t, t + r)
dj(t, t + r)

where 01 > 02 > ... > ON > 0, are the Delay Differentiation Parameters (DDPs) (if N
classes are defined) , ordered such that a class i provides a better service than a previous
class (< i).

2.3.2 Proportional loss differentiation

This model can also be used to provide a proportional loss-rate differentiation [12]. To
make the loss differentiation, the average loss rate of each class will be evaluated : a low
loss ratio indicates that the class provides a good service (in terms of loss differentiation
only). The following relation is observed :

17

18 CHAPTER 2. RELATIVE SERVICES

where li (t , t + T) is [11] "the fraction of class-i packets that were backlogged (i.e. not-empty)
at time t or that arrived during the interval (t, t + T), and that were dropped in this same
time interval". Relations between two classes are defined as follows :

li(t,t+T)
lj(t,t+T)

with a 1 > a2 > ... > aN are the loss-rate differentiation parameter {LDPs}, and ordered
such that a class i offers a lower loss ratio than the previous classes .

2.4 Approximation of proportional differentiation model

Several mechanisms exist to realize differentiation in terms of delay or loss-rate. These
mechanisms will be detailed to show how they approximate the proportional model.

2.4.1 Proportional delay differentiation

Router buffers

~ IBM]

============-=:
~ f-1----1>,{

tiiw,,:eft6J

Figure 2.1: Scheduler mechanism

Packet ~--

Inside a router, the scheduler is the mechanism (see figure 2.1) that can provide delay
differentiation because it selects the next packet that is sent on the output link. By this
selection, the scheduler alters the packet queueing delay and can provide a differentiation :
the scheduler can privilege delay-sensitive applications like real-time applications if packets
from this application are selected before packets from an elastic application.

To achieve the correct differentiation, the DDPs parameters ô1 > 82 > ... > ÔN (from
the proportional delay differentiation model) will be used. Severa} scheduler mechanisms
will be described now.

Generalized Processor Sharing

Generalized Processor Sharing (GPS) [25] is the first model that provides delay differen
tiation. The basic idea behind this scheduler is that it considers traffic like a fluid flow.
This assumption is very interesting because fluid flows are infinitively divisible. It serves
sessions (i .e. classes) at a fixed rate r and can provide delay differentiation between ses
sions that are active. According to the sequence of positive real numbers <I>1, .. . , <P N (if N
sessions are active), GPS is defined as follows (for sessions continuously not-empty during
the interval [T, t]) :

(2 .1)

2.4. APPROXIMATION OF PROPORTIONAL DIFFERENTIATION MODEL

where Si(T, t) is the amount of traffic from session i sent during the interval [r, t] .
The following relation is obtained if all sessions j are summed (Yi E [1, ... , N] : <Pi, Si ~

0) :
Si(T, t) L <P1 ~ (t - r)r<Pi

j

And the guaranteed rate is the amount of traffic processed during the interval [r, t] over
the time needed to transmit this traffic :

<Pi Si(T, t)
9i=-- *r<---

I:1<P1 - t-T
(2.2)

This scheduler has the following advantages :

• Assume that ri is the average rate of session i. While ri :=:; 9i, the throughput
will remain independent of the demands of the other sessions (protection between
sessions).

• Unlike traditional schedulers (FCFS, LCFS, ...), the delay guarantee of an arriving
bit from session i depends only of the queue length of this session.

• The numbers <Pi allow to tune the behaviour of the scheduler. For instance, if all <Pi
are equal, all sessions will receive the same guarantees.

Because it considers traffic like a fluid flow, this scheduler can't be implemented (it's
an ideal scheduler). The traffic from an IP network is packet based : a packet is the lowest
information unit that a scheduler can send unlike GPS that considers traffic like a flow (i.e.
the transmission can be "stopped" anywhere).

But several schedulers attempts to simulate the GPS behaviour and are packet-based.
These schedulers will be studied now.

Weighted Fair Queuing (WFQ)

The first approximation of GPS is the Weighted Fair Queueing scheduler [10] also known
as Packet Generalized Processor Sharing [25]. This scheduler computes the time at which
the GPS scheduler would have served the packet (called finish time). The WFQ scheduler
is characterized by W1 , ... , WN the weights associated with the N queues (i .e. sessions).
These weights are equivalent to the <1> 1 , ... , <PN in the GPS scheduler, and are useful to
tune the scheduler behaviour. WFQ guarantees, like GPS, the following rate :

wi
9i = --- *T

I:1w1
(2.3)

where : Wi Weight of the queue i
r Rate of the output link

The scheduler selects the packet with the smallest finish time and sends it on the output
link first .

The computation of the finish time is the key of this scheduler . The first way to compute
the finish time appears to be :

19

20 CHAPTER 2. RELATIVE SERVICES

where Fl , af and Lf are, respectively, the finish time, the arrival time, and the size of
packet k in the queue i. In other words, the finish time of a packet is its arrival time plus
the time needed to transmit this packet. This approach has the following problem : if the
queue holds already several packets, the finish time will not be correct because it doesn't
take into account the queueing delay. The finish time is corrected as follows :

Lk
pk = max(ak pk-l) + _i

i i , i 9i

This relation takes into account the queueing delay but there exists another problem
when a queue is empty and a packet arrives, its finish time F/-1 can be less than the
finish time of a queue with a higher weight that holds packets. The reason is that the
computation of finish time takes the maximum between the arrival time and the last finish
time of this queue. But, this last finish time can be zero or less than all current finish time.
To correct that, a new fonction is used to evaluate the arrival time and the finish time is :

pO Ü
t

pk
t (2.4)

Where : v(t) computes the virtual finish time. It assures that an empty queue will not
build up credits. It is computed as follows :

v(O) 0

v(t) (2.5)

is the set of not-empty queues at time t where: B(t)
l(t) is the time instant in the past when the set of not-empty queues

changed for the last time (on packet arrival and departure)

l(t) = max{s: B(s)-/= B(t)}, Vt: t > l(t)

But, WFQ has the following problems and drawbacks :

(2.6)

• Last value of v(l(t)) and l(t) must be saved when they change (on packet arrival or
departure). To avoid the need to check, per packet, the finish time, the scheduler
can order packets according to their finish time ;

• This algorithm is static : it doesn't take into account the current queue occupancy;

• Computation of finish time can be complex.

Virtual Spacing

This scheduler is also an approximation of GPS ([15]) : the guaranteed rate 9i is computed
in the same way as for GPS and WFQ. This scheduler associates, like WFQ, a finish time

2.4. APPROXIMATION OF PROPORTIONAL DIFFERENTIATION MODEL

with each packet and serves these packets according to their finish time. It attempts to
reduce the complexity of the finish time computation (proposed in WFQ).

The main difference with the previous scheduler is that the last finish time (the finish
time of the last transmitted packet) is saved only on packet departure. Assumes that V is
always this last finish time and the arriving packet k will be stored inside the queue i :

where:

9i

~a
Fi 0

is the finish time of the arriving packet k in queue i
is the finish time of last packet stored or sent by the queue i
is the size of packet k from queue i
is the guaranteed rate for the queue i

The scenario of this scheduler can be summarized as follows :

(2.7)

l. {The packet arrives) The scheduler computes the finish time and the packet is stored
in the selected queue (according to the classifier)

2. {The packet is at the head of the queue) When it arrives at the head of the queue,
the scheduler :

(a) sends the packet with the lowest finish time (assuming that the selected packet
is packet m from the queue h), its associated finish time is P;:-

(b) updates the value V = F!:'"

The computation of the finish time is less complex because the mechanism used to assure
that a queue will not build up credits is more simple (with V).

This scheduler has the following drawbacks :

• The scheduler must save, with each packet, the finish time because of the presence
of V (the update of this value requires that the finish time must be known for each
packet). So the required memory can be large.

• This algorithm is also static (like WFQ).

Dynamic schedulers

An important problem of these schedulers is the static behaviour : once the finish time is
computed, it doesn't change anymore and the consequence is that the scheduler selects the
next packet according to parameters that doesn 't show the current state. Moreover, to be
an approximation of the proportional delay differentiation, weights must be computed as a
fonction of the queue length (to take into account the queueing delays). Sever al extensions
will be presented here :

1. Dynamic Weighted Fair Queuing (D _ WFQ) [8]:
The main difference with the WFQ scheduler is that weights are not fixed and are
computed as a fonction of the queue length :

Wi (t) = QueueLengthi (t) * 0i

21

22 CHAPTER 2. RELATIVE SERVICES

Where Wi(t), QueueLengthi(t) are, respectively, the weight and the length of the
queue i at time t and finally Ôi is the class i's DDP. The finish time is computed like
WFQ. D _ WFQ uses the sarne mechanisms to avoid that a queue builds up credits.

The scenario of this scheduler is the following :

(a) (A pac¾et arrives in the queue i) The weight Wi is updated and the finish time
of this packet is computed.

(b) (The packet k arrives at the head of its queue i) The scheduler selects the packet
with the lowest finish time among packets at the head of the queues. When the
packet is sent, the scheduler computes Wi.

When the queue length is high (at time t), the associated weight will also be high to
ensure that the scheduler meet proportional differentiation model requirements (the
queueing delays are proportional). Because of dynamic weights, the complexity of
the scheduler is higher : these weights must be updated regularly. In fact, they are
recomputed when the queue changes (on packet arrival and departure). That is why
the complexity increases really.

The D _ WFQ scheduler has also the following drawbacks :

• Once the finish time is computed for a queued packet, it doesn't change even
if weights change afterwards. So we can have some packets with a wrong finish
time because it doesn't correspond to the current queue length.

• Computation of finish time can be complex.

2. Dynamic Virtual Spacing (D _ VSPACING) [8] :
This scheduler is a VSPACING variant : the main difference is that the weights
are dynamics (recomputed at a given time) according to the current queue length
(like D _ WFQ). These weights are evaluated just before the finish time computation.
Moreover, this scheduler computes only the finish time when a packet arrives at the
head of the queue.

The scenario of this scheduler is the following :

(a) (the packet k arrives in the router). It is stored in the selected queue i (according
to the classifier).

(b) (packet k is at the head of the queue i). The weights are updated and the
scheduler computes the finish time (for all packets at the head of queues) like
VSPACING:

where:

9i

(2.8)

is the finish time of the arriving packet k in queue i
is the finish time of last packet stored or sent by the queue i
is the size of packet k from queue i
is the guaranteed rate for the queue i

2.4. APPROXIMATION OF PROPORTIONAL DIFFERENTIATION MODEL

(c) The scheduler selects , among all not-empty queues, the smallest finish time and
sends the packet.

(d) The value of V is updated to avoid that a queue builds up credit (like in VS
PACING)

This scheduler has the following disadvantages :

• The computation of the finish time can be complex

• Because of weights varying, the behaviour of the scheduler can be strange
when a lot of packets from one flow arrive into a queue : the associated weight
decreases such that the queue's rate increases but, when the queue empties, the
weight increases and the queue's rate decreases. That 's why the last packets
from the flow can be served with a low rate. With fixed weights, the scheduler
serves all packets at fixed rate.

Waiting Time Priority scheduler (WTP)

This scheduler was described by L. Kleinrock first. A detailed description can be found
in [19] . Unlike GPS based schedulers, WTP doesn't compute a complex finish time. The
principle behind this scheduler is simple : the scheduler computes a packet priority and
this priority increases with the time that the packet has passed inside the buffer (i.e. its
queueing delay) .

When the packet k arrives, the router puts this packet in the selected queue i and its
arriva! time af is saved. When this packet arrives at the head of the queue, its priority is
computed as follows :

Priorityf = (now - a~) * qi

where : now represents the current time
af arriva! time of the packet k at the head of the queue i

now - a~ represents queueing delay of the packet k in the queue i
qi weight associated with the queue i.

(2.9)

Weights { qi} associated with the queues allow the network operator to tune the be
haviour of the WTP scheduler (i.e. it defines the differentiation between queues). The
scheduler will transmit the packet with the highest priority among the packets at
the head of the queues first.

This scheduler meets, like GPS based scheduler with dynamic weights, the requirements
of the proportional delay differentiation :

(2.10)

if the following constraint is verified :

(2.11)

23

24 CHAPTER 2. RELATIVE SERVICES

And the proportional delay differentiation equation is :

di* Qi = d 1 * Qj <=> (now - af) * Qi = (now - aJ) * Qj (2.12)

The service provided by a class i is better than the service provided by a previous class.
The QI < Q2 < ... < QN are the (inverse of) DDPs.

For instance, assume that three queues are configured with the following constraints :

• The delay of queue 3 must be the third of the delay of the queue 1

• The delay of queue 3 must be the half of the delay of the queue 2

Weights must be configured as follows : QI = ½, Q2 = ½ and Q3 = 1
The WTP scheduler has the following advantage and drawback :

• This scheduler is less complex than the previous rate-based scheduler (i.e. no virtual
time or other complex operations to compute).

• The WTP scheduler requires that the arriva! time of all packets is saved. The amount
of required memory can be large : that will depend of the number of packets currently
inside the router

Conclusion

Severa! schedulers have been described and each scheduler has many drawbacks and advan
tages. A scheduler must not be too complex because if the time needed to select the next
packet to transmit is too high, the performance of the scheduler will be not good. More
over, it is also important to pay attention to the required memory (if too much memory is
required, the scheduler can't be deployed on Internet). It appears that the D _ VSPACING
or WTP schedulers are good trade-off between the complexity and required memory. More
over, many simulations have been done at Alcatel and are presented in [8] and they show
that the WTP scheduler provides the best differentiation on small and large time scales.
This scheduler is also proposed in [13] because of very good delay differentiation.

That's why this scheduler will be implemented.

2.4.2 Proportional loss differentiation

The mechanism that provides relative loss differentiation is the buffer acceptance al
gorithm (see figure 2.2) . It decides whether the incoming packet can be accepted or must
be discarded and it protects the buffer to avoid overflows. This algorithm determines the
loss rate.

Severa! mechanisms are available : the first and simplest is the tail drop mechanism :
it drops incoming packets when the corresponding queue is full. This mechanism is easy
to implement but can't provide any guarantee so it is not useful for loss differentiation.

An other mechanism is Random Early Detection [14] (or RED). RED attempts to
maintain a low buffer occupancy. To realize that, RED drops packets statistically when the
buffer occupancy is above a defined threshold. RED algorithm can't do loss differentiation
but there are RED extensions [7] which can do this loss differentiation according to the
packet drop precedence.

/

2.4. APPROXIMATION OF PROPORTIONAL DIFFERENTIATION MODEL

Packet G;::::J

c=i
From the classifier/
shaper/poticer

c=ic=i l

Butter acceptance algorithm

Figure 2.2: Buffer acceptance algorithm

Packet accepted

Packet dropped

The "simple" RED algorithm (without drop precedence) is explained first and RED
variants that supports more drop precedences are described after.

The RED algorithm

Loss
probability

Maxp

Min_th

Con estion contrai

Congestion avoidance

Max_th Average queue size
(bytes)

Figure 2.3: RED mechanism

As we can see on the figure 2.3, three parameters must be defined. The minimum
Minth and maximum M axth threshold and maximum drop probability M axp. When the
average queue size reaches the minimum threshold, it begins to discard packets. Packets
are discarded with an increasing probability ; this phase is called congestion avoidance.
The maximum threshold defines the upper limit, packets are discarded with the defined
maximum drop probability when the average queue size is equal ta this threshold. Above
the maximum threshold, the router is considered as highly congested and all incoming
packets are dropped (congestion control phase) .

This mechanism is friendly with TCP flows because it drops packets statistically. In
deed, when packet drops occurs, TCP decreases automatically its sending rate (congestion
control mechanism) because it considers that packet drops occur when a router or network
link is congested.

The RED behaviour can be summerazied as follows :

25

26 CHAPTER 2. RELATIVE SERVICES

• Below minimum threshold : all packets are accepted in the buffer. The buffer occu
pancy is not critical.

• Between minimum and maximum threshold: packets are discarded with an increasing
probability p E [ü, Maxp] given by the graph of figure 2.3.

• Above maximum threshold : all incoming packets are discarded.

The use of RED algorithm is recommended in [3] :

"Internet routers should implement some active queue management mechanism to
manage queue lengths, reduce end-to-end latency, reduce packet dropping, and
avoid lock-out phenomena within the Internet.

The default mechanism for managing queue lengths to meet these goals in FIFO
queues is Random Early Detection (RED). Unless a developer has reasons to provide
another equivalent mechanism, we recommend that RED be used."

RED has the following advantages and drawbacks :

• Low buffer occupancy

• Packet drops that are friendly for TCP (avoids to drop a burst of packets)

• Discards packets from flows according to their network usage.

RED algorithm also has important drawbacks : the number of parameters (i.e. minth ,

maxth and maxp) - They must be fixed correctly to reach the assumed behaviour. But , it
doesn 't exist any guidelines to set the optimal values for these thresholds . The minimum
threshold defines a lower limit : it defines the occupancy that is accepted inside the buffer
(and, into a not-highly loaded1 network : a lower bound on the queueing delay). The
difference maxth - minth describes the aggressiveness of the dropper. For a fixed maxp
value, if this difference is low : the dropper will be aggressive. Conversely, if this difference
is high, the dropper will be less aggressive and that will modify the buffer occupancy (4

the queueing delay) . If this traffic has a congestion control mechanism, it will be preferable
to have a non-aggressive dropper. On the contrary, if the traffic has no such mechanism,
the dropper must be aggressive.

Weighted RED (WRED)

This variant of RED algorithm can do loss differentiation . The first proposed mechanisms
was known as RIO for RED with In/ Out [7] bit. As can be seen on figure 2.4 , this version
supports two drop precedences and assumes that arriving packets are marked with a special
bit that indicates if this packet is conforms to the traffic contract (i .e. the SLA) . The RIO
mechanism can be considered as two RED algorithms that run simultaneously.

When a packet is received, the scheduler checks its drop precedence first . If the packet
is marked as in-profile, the scheduler modifies the average of received in-profile packets
(avg _ in on the figure) and total average (i.e. average of all received packets - avg _ total

1we consider here router where the minimal threshold is almost reached

2.4. APPROXIMATION OF PROPORTIONAL DIFFERENTIATION MODEL

P(drop_in) P(drop_out

l · l ························· ·· ··~---

Pmax_ ou: ·•·•························

Pmax_:n avg_in avg_tota

Ill!ll_iil max_ m Ill!ll_ou: max_ou:

Figure 2.4: RIO mechanism [7]

on the figure). It discards in-packets using the avg_in while out-packets are discarded
with avg_out .

Six parameters must be configured, three for each drop precedence : the minimum
and maximum threshold and maximum drop probability. They can be configured inde
pendently : the figure 2.4 shows two RED mechanisms configured differently. Indeed, the
dropper is more aggressive with out-packets because [7] :

• the maximum drop probability Pmax out is higher than the drop probability defined
for in-packets .

• the minimum threshold for out-packet min_out is smaller : out-packets are dropped
earlier than in-packets .

• all out-traffic is discarded before in-traffic because the maximum threshold for in
packets max_ in is smaller than max_ out.

The use of total average avg _ total for out-packets can be justified because out-traffic is
considered as excess traffic (traffic that does not conform to the contract) and the network
is not sized to be able to forward this traffic.

Versions of RED with more than two drop precedences exist : they are known as
Weighted RED (also called WRED). WRED works exactly like RIO but supports three or
more drop precedences.

A Weighted RED variant will be described now : Weighted RED in shared buffer
mode. This version supports more than two drop precedences and is adapted to meet the
proportional loss differentiation model requirements .

As can be seen on figure 2.5, the value of minimum and maximum thresholds (Min_th
and Max_ th respectively on the figure 2.5) are the same for all drop precedences and only
the maximum drop probability (Maxp(X)) must be defined for each case. On the other
hand, only the total average is used while separate averages are used in RIO. That assures
that the loss differentiation and delay differentiation are not linked together (if separate
averages are used, a packet will be accepted only if its corresponding delay queue has not
reached the configured threshold : so the low delay classes have also a lower loss rate) .

This variant meets the requirements of the proportional loss differentiation : if only
one drop precedence is defined, the drop probability can be computed by the straight line
defined between the minimum and maximum threshold and maximum drop probability (as
shown on figure 2.6).

27

28 CHAPTER 2. RELATIVE SERVICES

Loss
probability

Maxp(H)

Maxp(M)

Maxp(L)

Min_th Max_th

Figure 2.5: Weighted RED in shared buffer mode

y

Maxp =Yb

X
a

Min_th
Xb

Max_th

Figure 2.6: Drop probability

X

If a line is defined by two points (a and b), its equation is obtained as follows :

(y - Ya)

m

m(x - Xa)

Yb -ya

Xb - Xa

The RED algorithm has the following constraints :

Ya = 0
Yb= maxp

Xa = minth

Xb = maXth

x = avg
y is the drop probability (called Pb)-

2.4. APPROXIMATION OF PROPORTIONAL DIFFERENTIATION MODEL

We can compute the drop probability as follows :

Pb = maxp(avg - "!inth) (2_13)
maxth - mznth

If this result is extended to more drop precedences, the following relation is obtained :

pbi avg - mznth

where pbi is the computed drop probability of the queue i
maxpi is the configured loss ratio for the queue i

This last equation conforms to the loss differentiation model :

pbi pbj l l -~- {:} _:_ = _L
maxpi maxpj O'i O'j

So the maxp1 > maxp2 > ... > maxpN are the LDPs (i .e. the {Œi} values) and a
higher class i will receive a better service (lower loss rate) than previous classes .

The WRED mechanism has exactly same drawbacks than the RED mechanism.

Rate-based RED (RB-RED)

Another RED extension is the rate-based RED. lt is dynamic and rate-based : it attempts
to adapt its configuration itself according to network conditions. lt is less sensitive to its
initial configuration than RED algorithm and only one parameter has to be configured
(RB-RED is described in [9]).

Working of RB-RED

Based on an estimation of the arrival rate (for each drop precedence) EAR, it computes
the total estimated arrival rate TEAR(t) as follows, at time t:
(Assume that three drop precedences are configured : low, med, high}.

T EAR(t) = EAR(Packetzow, t) + EAR(Packetmed, t) + EAR(Packethigh, t)

With:
EAR(prec, t) : Estimated arrival rate for the drop precedence prec at time t.

Packetzow : Packets with a low drop precedence
Packetmed : Packets with a medium drop precedence
Packethigh : Packets with a high drop precedence

lt computes the drop probability Pdrop(t) at time t :

TEAR(t) - R
Pdrop(t) = max(O, TEAR(t))

where Ris the service rate.

(2.14)

(2 .15)

Packets have to be dropped when the total estimated arrivai rate is larger than
the service rate. [9] proposes the use of a correction factor to fix the aggressiveness of
the dropper as a fonction of the buffer occupancy. If the buffer occupancy is low, packets
will be dropped less aggressively and when it is high, its behaviour can be more aggressive.

Assume now that three drop precedences are defined, four situations are possible :

29

30 CHAPTER 2. RELATIVE SERVICES

1. if the total arrival rate T EAR(t) is below configured service rate R : no
packet is dropped .

2. if the total arrival rate T EAR(t) is above the service rate R and :

(a) EAR(Packetz0 w) + EAR(Packetmed) < R => Packethigh are discarded statisti
cally, else

(b) EAR(Packet10 w) < R => Packetmed are discarded statistically and allpackethigh
are dropped, else

(c) EAR(Packet10 w) > R => Packet1aw are discarded statistically, all Packetmed
and Packethigh are dropped.

In RB-RED, only the aggressiveness parameter has to be configured (service rate and
queue size are not RB-RED specific parameters).

A RB-RED mode for proportional loss differentiation also exists.
The dynamic feature of RB-RED allows to reduce the number of parameters that must

be configured. Because of the use of estimations, small inaccuracy in the EAR estimation
can lead to strange behaviour (i.e. too many packets can be dropped) and not meet our
expectations.

Conclusion

Many dropper have been examined : but which is good for loss differentiation ? Like
schedulers, droppers should not be too much complex but must provide loss differentiation :
so WRED, WRED in shared buffer mode and RB-RED are mechanisms that can be used.
The WRED (extension of RIO) has too many parameters that have to be configured.
Moreover, as seen ab ove, the delay and loss differentiation will not be independent such
that the dropper will privilege queues with a lower occupancy (and a lower queueing delay
leads to higher rate and lower queue occupancy) that is why the WRED dropper is not
interesting. The RB-RED mechanism appears to be interesting to implement but more
complex (more estimations to compute for instance) than WRED. Finally the WRED in
shared buffer mode offers a trade-off between the number of parameters that must be
configured and the complexity of the mechanism. That is why this mechanism will be
implemented while the RB-RED is also another acceptable solution.

2.4.3 Proportional bandwidth differentiation

It is possible to provide a bandwidth differentiation only by combining delay and loss
differentiation. Indeed, some studies have shown that bandwidth for TCP flows can be
estimated by the formula from Mathis et al. [20] :

where MSS
C

RTT
l

MSS*C
throughput < v'l

- RTT* l

is the maximum segment size
is a constant that depend of the TCP implementation
is the round trip time
is the loss ratio

(2 .16)

2.5. CONCLUSION

This relation shown that delay and loss differentiation can have an important impact
on the resulting throughput . Because delay differentiation will privilege some packets, it
will affect the RTT value (by reducing the queueing delay) . The loss differentiation have
also a great impact because it allows to decide whether packets must be discarded and so
changes the l loss ratio.

Proportional loss differentiation combined with proportional delay differentiation leads
to proportional bandwidth differentiation.

2.5 Conclusion

This chapter has described the proportional differentiation model first and then how this
model can be achieved by using existing mechanisms. Many mechanisms have been dis
cussed and two mechanisms have been selected : the WTP scheduler to provide the propor
tional delay differentiation and the WRED (in shared buffer mode) dropper to provide the
proportional loss rate differentiation. These two mechanisms have several characteristics :

• They are not too complex : networks become more and more fast so that the router
must react quickly.

• The required memory is not excessive : but today, it is less important than the
complexity because the price of memory chips is low.

This chapter has explained also how a proportional bandwidth differentiation can be
achieved only by combining proportional delay and loss differentiation.

31

Chapter 3

lmplementation

3.1 Introduction

In the previous chapter, the proportional model was presented and was used to provide
a proportional delay and loss differentiation. The way to provide bandwidth was also
described. Several mechanisms have been proposed to achieve the delay, loss and band
width differentiation : the waiting time priority scheduler for the delay differentiation, the
weighted RED dropper for the loss differentiation while the bandwidth differentiation for
TCP micro-flows can be achieved by combining the delay and loss differentiation using
studies done by Mathis et al. and presented in [20] .

This chapter aims to show how relative services can be implemented into a FreeBSD
based router using the ALTQ architecture. This chapter is organized as follows : first,
FreeBSD and its kernel will be described in details; after, the ALTQ architecture will be
presented and finally the proposed solution will be discussed.

3.2 Overview of FreeBSD

FreeBSD is a free UNIX system. It works on several architectures like Intel x86 based
processors, DEC/ COMPAQ Alpha, etc. FreeBSD is already used by large companies or
organizations on the Internet.

FreeBSD operating system has the following advantages : preemptive multitasking,
TCP / IP based, multi user, 32-bits, documented, open-source,. . . . It is also an excellent
development platform because it provides the most popular compilers for free. It is based
on 4.4BSD-Lite from Berkeley (University of California). FreeBSD is mainly used in the
context of networking because "FreeBSD Project has put in many thousands of hours in fine
tuning the system for maximum performance and reliability in real-life load situation" [26] .

FreeBSD allows us to "transform" a simple PC with several Ethernet interfaces into a
router with complex packet filtering and forwarding mechanisms. That is why we will use
FreeBSD to implement mechanisms as described in the previous chapter. Several stable
versions of FreeBSD are available, we will use FreeBSD 2.2.8. New versions are available but
that doesn 't change anything for this implementation (more information about FreeBSD
can be found on http://www. freebsd. org).

33

34 CHAPTER 3. IMPLEMENTATION

3.3 Description of FreeBSD

3.3.1 Main features

The kernel can be seen like a server that provides some functionalities to user applications.
So an application can send a request (called system cal0 to the kernel to obtain a service
in connection with its functionalities. The kernel proposes the following functionalities :

• process management

• memory management service

• time service

• user and group identifier

• resource management service

• starting of the system

• communication

After the description of these functionalities, we will see how the kernel can answer to
a system call.

Process management

A process is a task that the system must execute. With each process, the system associates
information. The most important is :

• Process identifier {PID) : A number given by the kernel to reference this process.
This PID is very useful referencing process in a system call.

• Parent process identifier (P P ID) : A reference to the process that asked the creation
of the current process. An initial process is created during the initialization phase
so that all processes have a parent process. We must remember here that a process
can't create by itself a new process, only the kernel can do that because it manages
all resources needed by a process. A process must ask through a system call the new
process allocation.

• State of the process : To allow multitasking and process multiplexing, the kernel
associatesa state with each process. This state describes the activity (or the life) of
the process : under creation, can be executed (if all required resources are available) ,
waiting for a given event, stopped or terminated (just before its deat.h).

The kernel proposes system call to allow process to request the creation of another
process (i.e. fork system call). When a process is created, the system sets its PID, PPID
and state. The kernel must also support process destruction : all allocated resources must
be freed (memory, file, Iock, etc.). A process termination can be intentional or not (in case
of errors). Indeed, it 's possible that a system call can 't answer to the request for several
reasons (access not allowed, not enough memory, hardware problem).

3.3. DESCRIPTION OF FREEBSD

The system provides signal management. A signal is an event (hardware and software
event like illegal instruction, floating point exception, bus error, etc.) that a user or the
system can sends to a process . A process can catch selected signals and provide actions.
In this way, the system can report some hardware problems to a process.

Memory management

The kernel must also manage all kinds of memory available on the system. Memories can
be dassified according to their access time and size : some are fast (i.e. less than 10 ns)
like the main memory but are volatile and have limited size (i .e. less than 1 Gb) while
others are less fast (i .e. 10 ms) like secondary memory but are permanent and have great
size (i.e. several Gb). The kernel must put the information in the appropriate memory
type. These memory types have different usages : fast memory allows to execute a process,
it contains all instructions of this process and all variables while slower memory is used to
hold user data and programs.

The kernel supports also the swapping: this functionality allows the multitasking and is
used when the kernel decides to change the current process. Indeed, the state (all registers
values, program counter and data values) from the process must be saved usually on a
slower memory to allow another process to start. When the process must be restored, its
state is restored into the main memory and its execution can continue.

Time service

The kernel maintains the current time. Usually, time is updated when the system receives
a dock interrupt . At each dock interrupt, the system increments time with a given number
ofmicroseconds (that corresponds with one dock tick). The interna! representation of time
(granularity of a tick) is a trade-off between the cost of dock interrupt management and
dock precision. But today with fast processor, the dock precision can be high .

The external representation is always the same. It is the number of seconds and mi
croseconds elapsed since the Epoch (January 1, 1970 00:00 UTC). This time can be obtained
by a system call gettimeofday{).

User and group identifier

Users and user groups must be identified by the kernel to decide whether a given action
can be authorized. All users and groups are represented by a number given by the system
administrator (User IDentification and Group IDentification) . A user belongs to a primary
group and to a number of other groups.

The system administrator is represented by the identifier zero (UID = 0) and can do
anything on the system. Users are structured in groups so that it's possible to give several
rights to a set of users . These identifiers are useful to check if a user can access to a given
resource (like a file) and determine the kind of access (read, write, execute) .

Resource management service

Because resources are limited, a resource management must be present. Indeed, the system
has to limit the quantity of resource a user can allocate (for instance, it is not reasonable

35

36 CHAPTER 3. IMPLEMENTATION

that a "regular" user can allocate all available memory). That 's why some limitations on
the resource utilization are fixed by the administrator.

The main resource to control is the processor. Because of the multitasking feature of
this operating system, the processor must be shared in a fair way among all processes. The
kernel orders processes according to their priorities. The processor is granted to a process
during a defined time period. Once the time period has expired, the state of current
process is saved and the next process is selected to start or continue its processing (the
system restores the state of the process). To allow a user to tune the process priority, a
special variable nice is defined and used in the priority calculation. Naturally, a user can
only tune the priority of his processes .

Other resources must be controlled :

memory It's important to bound the amount of memory that a process canuse.

disk space With quota system, the kernel can check if a user exceeds the allowed space.

The administrator sets for each resource the maximum limit and the kernel controls if
the current utilization does not exceed these maximums for each resource.

Starting of the system

The kernel must also ensure the bootstrapping of the system. During this startup phase,
the kernel must analyze the configuration of the system, initialize all hardware devices,
launch all required software processes to allow users to use the system.

Communication

The kernel supports also two kinds of communication : communication between processes
on the same host and communication through a network.

Communication between two processes This communication can be clone by using
some mechanisms like tube, shared memory, semaphores or signals. A tube is memory
space that allows two processes to exchange bytes of data in a reliable way. The two
processes must be executed on the same host. Shared memory is another way to
exchange data: two processes have access (can read and write) to the same memory
buffer. Semaphores and signals are mechanisms supported by the system that allow
synchronization between two processes (i .e. a process can wait after a given event
generated by another process).

Communication through a network Today the most used mechanism to exchange data
between two processes through a network is the socket. A socket is the end point
of a bidirectional communication. It must be allocated, then connected to a host
(by using the host address) and then data can be exchanged using input and output
streams. Once the communication is finished, the socket must be closed such that
the communication can be interrupted and all allocated resources can be freed.

But today this distinction isn't made : communication between processes on the same
hosts can be clone using socket also : the destination and source hosts are the same in this
case.

3.3. DESCRIPTION OF FREEBSD

System call processing

When the kernel receives a system call , the processing changes from current process to
the kernel : the state of the process is saved and the action corresponding to this system
call is executed. Before, the kernel must check if the parameters of the system call are
valid. Special system calls are often used : the ioctl system call. "The ioctl system call
supports a generic command interface used by a process to access features of a device that
aren't supported by the standard system calls" (from [26])

The system call succeeds or fails . Once it is finished, the kernel must return the result
value (of the error code) to the process and resumes it. To do that , the kernel will restore
the saved state and the process will be reactivated.

3.3.2 TCP /IP network layer

Description of Memory Buffer

The network protocols need a good memory management to have good performance : they
must manipulate data with varying size, add or remove headers, send data to another
layer. The kernel proposes a special structure, the memory buffer (called mbuf) , to store
information for the network protocol. In fact , a memory buffer is a memory area of a
fixed size, usually 128 bytes (this fixed size assures that mbufs are aligned by the kernel's
memory allocator with 128 bytes blocks of memory) . According to the mbuf type, between
100 and 108 bytes of (user) data can be stored inside.

Four types of mbufs are possible depending on the mbuf type and fl.ags :

m_next

m_nextpk

m len -
-- m data

m_type

m_flags _.

Data
108 bytes

0-108

MT_xxx

0

m next -
m_nextpk

m len -
~t- m data

m_type

m_flags

m_pkthdr.len

m_pkthdr.rcvif
~

Data
100 bytes
{Headers)

0-100

MT XXX

M_PKTHDR

Figure 3.1: Left: Mbuf with data [29] . Right: Mbuf with header [29]

• As can be seen on figure 3.1, the first type of mbuf has a type m_type = MT xxx and
flags m_flags = O. This mbuf contains only data.

m data It is a pointer to the first byte of data in the buffer.

37

38 CHAPTER 3. IMPLEMENTATION

m len It indicates the data length (in byte) inside the buffer.

A description for m_next, m_nextpk will be given later. These six fields are always
present in all mbuf types.

• Figure 3.1 also shows the second type of mbuf. The value of m_type is unchanged
but the m_flags value is now M_PKTHDR. This indicates that the mbuf holds a packet
header. Only 100 bytes are available because two new fields are defined (m_pkthdr. len
and m_pkthdr. revif). The first will be described later. The second indicates the
interface from which the packet cornes (a given Ethernet interface or PPP inter
face, etc.). Consequently, a packet that the kernel sends (output packet) has the
m_pkthdr. revif field sets to NULL.

• This third type of mbuf (figure 3.2) is used when more than 208 bytes of data must
be stored in a mbuf. The M_EXT value indicates that data is saved inside an ex
ternal buffer (called cluster) of 2048 bytes (cluster size can also be 1024 bytes).
Three extra fields are defined into mbuf to manage this cluster (m_ext. ext _buf,
m_ext. ext_free and m_ext. ext_size). The first is a pointer to the cluster, the
second is currently unused, the third is the cluster size. The space for the packet
header information (i.e. fields m_pkthdr. len and m_pkthdr. revif) is reserved but
left blank. All data is saved in the cluster so space remains free and unused inside
the mbuf (i.e. bytes beyond the m_ext. ext_size field).

'I' •
2048 bytes
clus ter

m next -
m_nextpk

m l en -
m data
m_type

m_flags

m ext.ext buf - -
m ext.ext free

m ex t.ext size - -

208-2048

MT_xxx

M_EXT

2048

Figure 3.2: Mbuf with cluster [29]

• The last mbuf type (depicted on figure 3.3) shows that cluster and packet header ,can
be combined. Indeed, the cluster contains packet headers with more that 208 bytes
of data. Contrary to the previous case, all fields are filled in this case.

When the router receives a packet, this packet is stored inside a mbuf chain . Headers
inside the packet are extracted to be stored inside the first mbuf of the chain. This mbuf

3.3. DESCRIPTION OF FREEBSD

m ne x t -

m_nextpk

m len -
m data
m_type

m_flags

m_pkthdr.l en

m_pkthdr .rcvif

m ext.ext buf
i - -1,

m ext.ext free - -

2048 bytes m - ext.ext - size
cluster
(Headers)

208-2048

MT_xxx

M_PKTHDR

2048

Figure 3.3: Mbuf with header and cluster [29]

M EXT

with the flag set to M_PKTHDR, contains packet headers (IP and TCP for instance). The
total chain size is specified in the field m_pkthdr. len (m_pkthdr. len = I: m_len from all
mbufs in this chain). That also corresponds to the size of the whole packet . The following
mbufs contain data from the packet.

The mbufs can be linked together with the fields m_next and m_nextpk (see figure 3.4).
AU mbufs from the same packet are linked with the field m_next. AU mbufs that contain
packet header (from different packets) are linked together with m_nextpk (so all packets
are linked together). To avoid a long chain, when the packet size exceeds 208 bytes, the
kernel allocates a cluster to store information from the packet . So packets are structured
in a queue (because all packet headers are linked together with the m_nextpk field) . The
queuing strategy provided by the kernel is first in first out (FIFO). Moreover, all mbufs
from one packet are linked together into a chain (by the m_next field).

Figure 3.4 shows an example with a UDP packet (i .e. the first packet that contains
UDP and IP headers) of 192 bytes and a TCP packet of 1514 bytes (i.e. it contains a TCP
and IP headers) . These two packet types have different m_type value.

Several fonctions have been defined to support mbufs : mbufs allocation and destruc
tion, some fonctions to duplicate mbufs and to destroy a packet (all mbuf from the same
chain).

Packet Handling

This section will describe how the FreeBSD kernel processes packets. Figure 3.5 shows the
main fonctions used to process IP packets .

A packet arrives from the network interface, is queued inside the IP input queue associ
ated with this interface (ipintrq: on figure 3.5). The ipintr fonction contains all actions
for input processing. If the packet reaches its destination (the destination address matches
one network interface address), it is transmitted to the transport layer for processing. On

39

40 CHAPTER 3. IMPLEMENTATION

Next m but in chain Next m but in chain m - next - rn next - rn - next NULL - ~

~- m_nextpk m_nextpk NULL rn_nextpk NULL
m len - 46 rn len 108 rn len 42

- m data - rn data [r rn data
m_type MT_DATA rn_type MT_DATA rn_type MT_DAT

- rn_flags M_PKTHDR rn_flags 0 m_flags 0 Q)

-"'

A

0 rn_pkthdr . len 192 --. -2l
x m pkthdr.rcvif NULL

Data
Q) (42 bytes) C:
Q)

fi UNUSED 0
t- ·~D,,

' Data

➔
UDP & IP & (1 08 bytes)
Ethernet UNUSEO
HEADERS(46 b l

-,i,'.t :,

Next m but in chain
~ rn_next . m next NULL . -

rn_nextpk NULL rn_nextpk NULL
rn - len 58 m len 1460 2048 bytes duster

.- rn data m data ~ ·1
m_type MT_HEADER rn_type MT_DATA

rn_ flaqs M_PKTHDR rn_flags M_EXT
1460 bytes of data

rn_pkthdr . len 1514
rn_pkt hdr .rcvif NULL .;,i " "J,i!f!

~ rn ext.ext buf - -
rn_ext.ext_free

' ., size TCP & I P rn - ext.ext - 2048
~ &

Ethernet
HEADERS(58 bl

Figure 3.4: Queue with two packets [29]

the contrary, if this router is not the destination and if it can be forwarded (this decision
depends of the ip_forward fonction) , the packet is sent (usually through another interface)
by the output processing (ip_output fonction). The transport layer can also generate a
packet and this packet is also sent by the output processing.

The input processing, forwarding mechanism and output processing will be described
in the following paragraphs.

Input processing When a packet arrives from a network interface, the following tasks
must be done :

Verification The packet is dequeued (from ipintrq) and its content is checked to detect
errors in the packet. The kernel looks the IP version encapsulated inside the IP
packet (current IP version is 4), if the IP version isn't valid, the packet is discarded.
A checksum is included inside an IP packet to protect the packet header, it must be
verified. The packet length is also checked to assure that all data is present and no
extra data is added.

Option processing and forwarding If this packet has not reached its destination (its

3.3. DESCRIPTION OF FREEBSD

-r-
ipintrq: ~

Transport
Protocols

Network
Interfaces

NETWORK.

UDP, TCP, ICMP, IGMP
Transport level

ip_output

Figure 3.5: IP layer processing (29]

IP protocol
Network level

destination does not correspond to an address of this host), the packet can be for
warded (according to the result of the ipforwarding fonction). Sorne IP options can
be included inside the packet, these options are processed by this fonction.

Packet reassembly An IP packet can be fragmented in several small fragments. This
fonction reconstructs the whole IP packet from all fragments.

Demultiplexing The information from the packet is passed to the transport level layer
for processing if this router is the destination , after, the kernel has removed the IP
header before.

Forwarding To allow packet forwarding, the kernel must be configured as a router. In
this case, when a packet arrives and doesn 't reach its final destination, it is forwarded
through a network interface to the next hop (by using the output processing). At each
hop, the time to live (TTL) field is decremented. When TTL is equal to zero, the packet
is dropped. It is also possible that the kernel does not know a valid route to reach the
destination , an error message (ICMP message) is, in this case, sent to the sender.

Output processing Packets can corne from the forwarding mechanism or from the trans
port layer. The output processing has mainly three fonctions :

Header initialization If the packet cornes from the transport layer, the kernel must
construct a new IP header with the necessary information. Sorne information is set
by the upper layer (destination address, data length, TTL, protocol identifier, ...)
while several other fields of the IP header are filled by the output processing (like IP
version, ...) . On the contrary, if packet cornes from the forwarding mechanism, a
header already exists and must be preserved.

41

42 CHAPTER 3. IMPLEMENTATION

Route selection A route can be provided by the transport layer (called cached route) for
optimization propose. If no route is provided, the kernel has to determine the next
hop according to the routing table entries and destination address .

Source address selection and fragmentation Because a router has many network in
terfaces with various IP addresses, a valid source address must be included inside
the IP header. This address will depend of the interface used to send the packet.
Fragmentation is only used if the selected network interface has a maximum transfer
unit (MTU) smaller than the current packet length.

Before sending the packet to the selected network interface, the kernel has to compute
the checksum.

3.4 Description of ALTQ

Alternate Queuing (or ATLQ) is a framework created by K. Cho from Sony Corp. to build
new behaviours into FreeBSD based routers [5] [6] . ALTQ is free and already provides
several mechanisms : WFQ, RED, RIO , . . . are implemented inside ALTQ architecture.

ALTQ is presented as a patch for the FreeBSD kernel. This patch updates the kernel
source code to add new behaviours. As we have seen, FreeBSD provides only a FIFO queue
(for input and output packets) and ALTQ permits to use more complex algorithms.

3.4.1 Architecture

ip_output

if_output

· IF _ENQUEUE

if snd

. IF _DEQUEUE

if start

----- altq_enqueue

Alternative
discipline 1

-------- altq_dequeue

Alternative
discipline 2

Figure 3.6: Alternate Queueing Architecture [5]

Output
processing

Interface
layer

3.4. DESCRIPTION OF ALTQ

Figure 3.6 shows the ALTQ architecture. The ip_output implements the output pro
cessing mechanism already described before. The interface layer contains all hardware
devices and software drivers that allow the kernel to send information through a particular
network. Interface layer provides, in particular , a standard queueing method for outgoing
packets ([29]) . An alternative discipline is a new behaviour implemented inside the kernel :
mechanisms described in the previous chapter are good example of new behaviours. In
figure 3.6, the main fonctions are also showed (from [29]):
1 Function name I Description

if_output queues outgoing packet for transmission
if_snd the queue of outgoing packets for a given interface
IF_ENQUEUE adds a packet to the end of the queue (for a given interface)
IF_DEQUEUE takes the first packet of the selected queue
if_start begin transmission

To help to develop new alternative discipline, ALTQ proposes the queueing architecture
described in figure 3.7.

This architecture follows the IP layer processing (see figure 3.5) with the distinction be-

ingress interface

Classifier Meter
dropper
rnarker

Forwarding

Egress interface

Queues

~ Shaper

~9h~~c9w-: 1
---~ ..

Dropper

marker

Figure 3.7: Queueing Architecture [5]

tween the input, forwarding and output processing. At the ingress interface (see figure 3.7),
ALTQ allows to develop classifier, meter, dropper or marker. At the egress interface, usu
ally, a classifier, queues with dropping mechanism and a scheduler are implemented; a
shaper can be also implemented before the transmission of the packet. The following
fonction blocks are defined :

Classifier The classifier identifies the flow and puts the packet in the correct queue based
on the content of several fields of the packet header. This classification is done to
ensure that the packet will receive the required service.

Meter The meter will measure some traffic characteristic (like bandwidth, packet count)
to adapt the behaviour of the router if necessary.

Marker The marker will put an acceptable DSCP value in the IP header. This marking
can be static (always the same value) or dynamic (the value will depend on the
metering for instance). This value can be used by the classifier to identify the flow
to which a packet belongs.

43

44 CHAPTER 3. IMPLEMENTATION

Dropper The dropper will decide if a given packet must be discarded or not. It will
attempt to limit the queue occupancy in order to avoid congestion.

Queues The queues are finite buffers and will contain packets.

Scheduler The scheduler will select the next packet to be transmitted on the output link.

Shaper The shaper will delay some packets to ensure that the outgoing flow conforms to
the configured value (from the SLA).

All fonction blocks are not always present. Especially, at the ingress interface because
it is used for more complex algorithms like mechanisms implemented inside an edge router :
a router can mark packet according to the metering block. For high speed core network
routers, only mechanisms at the egress interface are usually implemented.

3.4.2 Working of ALTQ

Assume the host running ALTQ is configured as a router (packet forwarding is allowed
with ip_forward) so all incoming packets are received by the input processing ipintr (see
figure 3.5), forwarded by the forwarding mechanism ip_forward and finally sent to the
network by the output processing ip_output through another interface.

• If ALTQ isn't enabled and a packet arrives at the router :

1. The kernel checks the queue occupancy to know if enough space is available to
hold this packet (if_output on figure 3.6).

- The queue is (almost) full and can't hold this packet : the packet is dropped,
i.e. tail drop. The processing of this packet stops here.

If queue can hold the packet, it is stored at the end of the queue (by us
ing IF _ENQUEUE). The interface driver is called if it isn't already active
(if _start).

2. The interface driver is used to send all queued packets to the network. Packets
will be dequeued (using IF _DEQUEUE) and send. The driver will remain active
as long the queue isn't empty.

• If ALTQ is enabled and a packet arrives :

1. The kernel (i.e. the if_output) calls the new queueing fonction (altq_enqueue)
and bypasses the default queue occupancy check. This fonction calls the user en
queue method : this method usually encapsulates the classifier and the dropper
(i .e. the buffer acceptance algorithm) :

- The dropper decides to discard this packet : the processing of this patket
stops, or

- The packet is accepted inside the buffer : it must be stored inside the
appropriate queue (i.e. the queue that matches with the requested level of
service). The interface driver is called at that time.

3.5. EXTENSIONS TO ALTQ 45

2. The interface driver has been modified to use the new dequeue fonction (altq_dequeue).
This fonction calls the user dequeue method : it contains the scheduling mech
anism that must choose the packet that will be send. Like in the default be
haviour, the driver remains active until the queue is empty. The driver doesn't
know that separate queues are used (several delay queues), it continues to work
while the dequeue fonction returns packets (i.e. all queues are empty) .

3.5 Extensions to ALTQ

This implementation will propose new extensions to support WTP and WRED inside
ALTQ. These extensions will be described in this section.

3.5.1 Architecture of the solution

Egress interface

Delav aueues
(\ ~

---~•8+ ~ =-i
Classifier V ~

Dropper
Scheduler

Figure 3.8: Architecture of the solution

As it can be seen on figure 3.8, the following fonction blocks has to be implemented :

DSCP classifier : this classifier checks whether or not the marking is valid. If it is valid,
the classifier attempts (because of the WRED mechanisms) to put the packet in the
right delay queue (according to the DSCP value). If the marking isn't correct, the
packet must be placed in the default queue. Here we assume that packets are already
marked when they arrive at this router. Packet metering mechanisms used to check
if the SLA is respected are complex and are outside the scope of this thesis.

WRED dropper : the WRED must decide whether the incoming packet is queued or
discarded according to the queue occupancy.

Delay queues : delay queues are used to store packets. The number of delay queues
depends on the number of valid DSCP values because packets requiring different
service are stored in a different queue.

WTP scheduler : the WTP scheduler provides the delay differentiation. It computes
the queueing delay, selects the next packet and sends it .

46 CHAPTER 3. IMPLEMENTATION

The most important fonctions are wtp_ifenqueue and wtp_ifdequeue, which are in
voked by ALTQ when a packet , respectively, arrives or leaves the router. The first fonction
contains a part of the WTP scheduler (the computation of packet priorities and the packet
selection) while the second fonction contains the classifier, the WRED dropper and the
first part of the WTP scheduler (about the saving of the packet arrival times) .

3.5.2 lmplementation of WTP scheduler

Here the implementation of delay differentiation will be described (see 2.4.1 for a theo
retical description of the WTP scheduler and the WTP implementation is included in the
appendix A) . Problems to solve are :

1. To find where to store the arrival time.

2. To determine how to store the arrival time.

Where to store the arrival time ?

m_n ext Next mbuf m_next

- m ne xtpk
in ma;,,

m_nextpk

m 1 en 100 m_len

ai - m d ata m_data

i m t ype MT_DATA m_type

rn fl ags M_PKTHDR m_flags x
a, rn_pkth dr. len 208 C
a, m pkthd r.rcvif NULL E
0

HEAD ERS Data
(100 b y tes) (108 bytes)

m next
NULL

~ m nextpk
NULL

m l en
108

ai - m data

MT_DATA

0

tl m type
2l. rn flags x
a, m_pkthdr.len C
a,

m pkthdr . rcvif E
0

HEADERS
11 00 bytes)

Next mbuf
in chain

MT DATA [
M_PKTHDR

NULL

m_next

m nextpk

m !en
m da t a
m_type

m_flags

Data
1108 bytes)

NULL

NULL

MT_DATA

0

,, 1•

Figure 3.9: Left : No free space inside mbuf Right : Mbuf extended with a new field

The main issue in the WTP implementation is where to store the arrival time. Several
solutions are possible :

• Use free space inside the mbuf structure. According to the mbuf type, it is often
possible to find free space inside the mbuf structure. But, this method is not deter
ministic and in several cases, all mbufs of the chain can be folly filled. For instance,
if the first packet contains 100 bytes with headers and the following packet holds 108
bytes of data (depicted on figure 3.9).

• Extend the mbuf structure and add a new field to store the arrival time (as can be
seen on figure 3.9). This is not a good idea because :

1. it assumes that inside the kernel a mbuf structure is MSIZE bytes (fixed) .

2. With this method, a field will be reserved in each mbuf among the chain so space
mside mbuf will be reserved but never used. Moreover, it seems that extending
the data area to use this field when no arrival time will be stored is a complex

3.5. EXTENSIONS TO ALTQ

task because the code of the kernel memory allocator must be reviewed to take
into account this modification : the size of the mbuf is used to determine the
mbuf type and to decide when a cluster must be allocated. Finally, side effects
can't be excluded : because of optimization, the kernel takes a lot of assumptions
that can be modified easily.

• Create a new structure to save this arrival time. Two linked chains will be handled
at the same time : the first with packets and the second with arrival times. This
solution is depicted on figure 3.10.

Chain of arrivai time
mb mb mb mb NULL

~ mbuf mbuf mbuf NULL

Chain of packets

Figure 3.10: mbuf structure

When a packet arrives , its arrival time will be stored inside the mb structure. When
the packet priority must be computed (when this packet is at the head of the queue),
the saved arrival time will be used. If this packet is dequeued, the associated mb
structure is destroyed. Because of linked chains, a pointer to the previous member
must be reserved. It 's not necessary to have a connection between a packet (contains
inside the mbuf chains) and its arrival time because packets shouldn't be moved inside
the router (queues are handled by our implementation so it 's possible to enforce this
constraint).

How to store the arrivai time

In a UNIX based environment, time can be stored inside a special structure called timeval.
Recall that time is represented by the number of seconds and microseconds since the Epoch.
That's why the timeval structure is defined as follows :

struct timeval {
long tv_sec; I* seconds *f
long tv_usec; I* and microseconds *I

};

Inside the kernel, the current time can be obtained by the microtime fonction. The
structure definition shows that to store the arrival time, 8 bytes are needed (a long value
takes 4 bytes). It's possible to reduce that by using a "compressed" time. To keep a
data-type that can be processed easily, a 32 bits integer is used (this solution is shown on
figure 3.11).

For microseconds, an upper bound exists : 999 999 µs (because 106 µs = 1s). So
maximum 20 bits are needed to store microseconds and second can be encoded onto 12

47

48

I ◄ 12 bits ► I◄

j Seconds j

20 bits

Microseconds

CHAPTER 3. IMPLEMENTATION

►I

Figure 3.11: Proposed compressed time

bits. That 's not a problem : this assumption enforces that packets leave the router after
a maximum of 4096 seconds (212) , but that is always true. This time compression reduces
the space required by a factor of two (only four bytes are needed to store the arrival time).

Conversion to compressed time An important point for the proposed compressed
time is that conversion between the two representations (original timeval format and its
compressed version) must not be complex to compute. This is possible by using fast shift
operations.

Assume that time is a timeval structure and comptime is the associated compressed
time.

comptime = (time.tv_sec << 20) 1 (time.tv_usec & 0x000FFFFF);

In addition the uncompressed time can be obtained as follows :

time.tv_sec = comptime >> 20;
time.tv_usec = comptime & 0x000FFFFF;

lmplementation details

We define the mb structure :

struct mb
{

unsigned long arr_time; I* Arrival time [COMPRESSED TIME] *I
struct mb* next; I* pointer to next mb structure *I

};

An arrival time must be associated with each packet : 8 bytes per IP packet (32 bits
for arrival time and 32 bits for the "next" pointer. The compressed time enforces a limit of
4096 seconds : an overflow appears if the router works more than 4096 seconds. To avoid
it, the arrivai time can be encoded as the time elapsed since the previous packet arrival
time in the same queue. To allow the computation of this arrivai time, it 's necessary to
keep the last arrivai time per queue. Another problem has to be solved : only the time
between two packets is saved so it's not possible to convert the compressed arrivai time
into a UNIX compatible time (i.e. the original timeval format) without a reference time
per queue. When the first packet arrives in the queue, the reference time is assigned to the
current time. The first arrivai time is zero (i.e. the arrivai time of a packet arriving at an
empty queue) while others are encoded as the time elapsed since the previous packet. The
reference time is used to compute the packet arrivai time :

PacketArrivalTime~ = ReferenceTimeq + PacketCompressedTime~

3.5. EXTENSIONS TO ALTQ

where PacketArrivalTime~ is the arrival time (in UNIX compatible format) of
the packet k at the head of the queue q

Rej erenceTimeq : is the reference time (in UNIX compatible format) of
the queue q

49

PacketCompressedTime~ : is the compressed time of the packet k in the queue q
The queueing delay is computed as follows :

QueueingDelay: == CurrentTime - PacketArrivalTime~

where QueueingDelay: : is the queueing delay (in µs) of the packet k at the head of
the queue q

CurrentTime : is the current time of the system
The reference time of the queue q has to be updated when the packet k leaves the

router :

Rej erenceTime;ew = Rej erenceTime~ld + PacketCompressedTime~

For instance, assume that the router receives 3 packets. The first packet arrives when
the queue is empty so its arrival time is zero and the reference time is set to the current
time. The second packet arrives after 10 microseconds so its compressed arrival time is 10
and finally, the last packet arrives 15 microseconds after the first packet. Its compressed
arrival time is 5 (15 - 10). This situation is depicted in figure 3.12.

Values oi arr_ time ~ Contains the compressed
~ arrivai time (mb)

lre f time!
~ Contains the IP Packet
~ (mbuf)

Figure 3.12: Example of arr_time

When this queue is selected by the scheduler, the packet arrival time is computed :
Rej erenceTime+O, the packet is sent and the queue reference time is updated: Rej erenceTime =
Rej erenceTime + O. When the second packet has to be sent, its arrival time is calculated :
RejerenceTime + 10. When it is sent, the reference time is modified: RejerenceTime =
Rej erenceTime + 10. Finally, when the last packet is transmitted, its arrival time will be
Rej erenceTime + 5 and the reference time will be updated.

A queue (or class) for WTP is defined as follows :

typedef struct wtp_queue
{

struct mb *head_at, *tail_at;
struct mbuf* head, *tail;
int size;
int weight;
short int dscp;
struct timeval ref_time;
struct timeval last_time;

f* arrival time chain *f
I* packets in this queue *f
f* Bytes in this queue (for the dropper) *f
f* Weight of this queue (integer) *f
f* ID/DSCP of this queue (for the classifier) *f
I* Reference time [COMP_TIME] *f
f* Arrival time of last packet *f

50 CHAPTER 3. IMPLEMENTATION

I* Statistical variables *I

} wtp;

HEAD of the queue TAIL of the queue

b* tail_ao-------------------'

rnbuf* head

rnbuf * ta i 1 f------------------'

ref_tirne

last_tirne

DSCP

Reference time
Arrivai time of the last packet

Figure 3.13: main queue field

- Contains the compressed
arrivai time (mb)

- Contains the IP Packet
- (mbuf)

As it can be seen on figure 3.13, two linked chains are used. The first contains the packet
arrival times (mb structure) and the second contains the packets stored in this queue (mbuf
structure). The size of each queue is also saved : usefol for a tail drop mechanism. To
avoid that a queue overflows, all queues are limited by a tail drop mechanism.

The weight parameter is used for delay differentiation between the classes while the
dscp field indicates the DSCP of this queue. Finally, the reference time and the last arrival
time are also saved. We also have some variables to maintain statistics.

The two main fonctions (i.e. wtp_ifenqueue and wtp_ifdequeue) will be described
now.

b* head __ a+-<-----

b* tail __ ar~------------------__J

mbuf* head ---►-~
mbuf* tail~-----------------___,

ref time
last time

DSCP

Figure 3.14: A packet arrives

wtp_ifenqueue When a packet arrives (see figure 3.14), we must:

1. extract its DSCP value. To extract packet information and identify the flow of a
packet , ALTQ provides a special fonction for doing this.

3.5. EXTENSIONS TO ALTQ

2. check if this packet must be discarded by the dropper (described in the section 3.5.3).

3. place the packet in the right queue.

This classifier is not complex : only the DSCP is needed because it indicates the required
level of service.

b* head a

b* tail_au------------------~
mbuf* head

mbuf* tail1--------------- ----'
ref_time
last_time

DSCP

Figure 3.15: mb allocation

If the packet is accepted by the buffer acceptance mechanism, a new mb structure
is allocated (see figure 3.15) and associated with this packet. If this structure can't be
allocated (not enough free memory for instance), an error is reported to the kernel and to
the user. If the mb structure is allocated without problem, the arriva! time has to be saved.
The arriva! time will depend on the queue occupancy. The pseudo-code is following :

if (QueueEmptyO)
{

f* insert packet at the head of the linked chain *I
queue->head_at = mb; I* the mb is put at the head of the mb chain *I
mb->next = NULL; I* no mb follows this *I
update_time(queue->ref_time); I* put the current time in ref time *I
queue ->last_time = queue->ref_time;
mb->arr_time = 0; I* First packet: compressed arrival time = 0 *I
queue ->head = mbuf; I* the packet is placed at the head of the queue *I

}else
{

}

tmp = queue - >last_time;
mb->next = NULL;
queue->tail_at->next = mb; I* mb stored at the tail of the queue *I
tmp = now - queue ->last_time;
/* tmp is the time since the last packet arrival *I
queue ->last_time = now;
mb->arr_time = (tmp.tv_sec << 20) 1 (tmp.tv_usec & 0x000FFFFF);
I* mb->arr_time is the compressed version of tmp *I
queue ->tail->m_nextpkt = mbuf; f* mbuf stored at the tail of the queue *I

If the chosen queue is empty, the mb (with arriva! time) and mbuf structure (with
incoming packet) must be saved at the head of the chains. The arrival time arr_ t ime will

51

52 CHAPTER 3. IMPLEMENTATION

be zero and it is important to update the reference time queue->ref_time and the last
arrival time queue ->last_time with the current time (if other packets arrive). On the
contrary, if the queue is not empty :

1. The arrival time is not zero anymore but it is equal to the time elapsed since the last
packet arrival and must be computed. Because the last packet arrival time is saved,
it 's easy to compute the new packet arrival time. Once computed, the last arrival
time must be updated .

2. The compressed arrival time is computed and stored inside the mb structure.

3. AU chains are updated to hold the new paçket and its associated arrival time.

Figure 3.16 shows the state of the two chains when the packet and its associated arrival
time are queued. The two structures have been added at the end of the chains and the last
arriva! time is updated.

b* head_a

b* tail_ au----------------------~

mbuf• tail
ref_time
last time

DSCP

Figure 3.16: Enqueue a packet

Finally, the tail pointers and statistic (this is done in all cases : if queue is empty or
not) are updated :

queue->tail_at = mb;
queue->tail = mp;
byte= mp->m_pkthdr.len;
queue->size += byte;

If the incoming packet is not accepted by the buffer acceptance mechanism, the packet is
destroyed. The kernel and user are informed that a packet has been discarded by returning
a special value ENOBUFS :

m_freem(mbuf); I* free the memory reserved for the packet *I
error = ENOBUFS; I* inform of this drop *I

wtp ifdequeue

Until queues are empty, the kernel calls this method to obtain the next packet to send.
That is why the first thing to dois to check if all queues are empty or not. If all queues are

3.5. EXTENSIONS TO ALTQ

empty, this method will return a NULL pointer to inform the kernel (especially the interface
driver) that queues are empty and no packet has to be sent . Otherwise, this method must
return the pointer of the packet that will be sent. This fonction implements the WTP
scheduler, it has to :

1. Check if queues are empty

2. Compute queue priorities

3. Select queue with highest priority

4. Dequeue and send the packet at the head of the queue

First, check if queues are empty. Because the size of each queue is maintained, it is
easy to verify that :

i=0;
while(i < number_queue and queue[i] . size -- 0)

i = i + 1;
if(i == number_queue)

return NULL; f* no packet in the queues *f

In fact, it's possible to implement this in a more efficient way : if the kernel maintains a
global queue size, this checking can be done with a simple instruction. For this implemen
tation, this optimization is used.

Then, queues priorities (i .e. the priorities of packets at the head of the queues) are
computed and the scheduler selects the queue with the highest priority :

for(i=0; i<number_queue;++i)
{

}

long prio = 0;
struct timeval delay;
if(isNotEmpty(queue[i])) f* if this queue isn't empty *f
{

}

delay = now - refîime(queue[i]); f* delay = queueing delay *f
prio = convertMicroSec(delay) * (long) queue[i] .weight;
queue[i] .head_at->arr_time = 0;

if(prio >= maxprio) f* if the priority of this packet is *f
{ f* >= than the current maximum priority *f

maxprio = prio ;
queueMAXPRI0 = queue[i];
SAVEDdelay = delay;

}

53

54 CHAPTER 3. IMPLEMENTATION

To obtain the queueing delay, a new refîime fonction is used. This fonction returns
the arrival time of the packet at the head of a given queue by using the reference and
compressed arrival times stored inside the mb structure.

static struct timeval refîime(wtp* queue)
f* this functio~ updates the ref_time inside the given WTP queue and returns it *f
{

}

struct timeval tmp;
unsigned long deltaîime = queue->head_at->arr_time;
tmp.tv_usec = deltaîime & 0x000FFFFF;
tmp . tv_sec = deltaîime >> 20;
queue->ref_time.tv_sec += tmp.tv_sec;
queue->ref_time.tv_usec += tmp . tv_usec;
if(queue->ref_time.tv_usec >= 1000000)
{

}

queue->ref_time.tv_usec
queue->ref_time.tv_sec +=1;

return(queue->ref_time);

1000000;

The reference time will be updated with the packet at the head of the queue. The
packet arrival time is equal to this reference time but when the reference time is computed,
it can't be sure that this queue will be selected by the WTP scheduler because another
queue can contain a packet with a higher priority so it is important to assign zero to the
compressed arrival time because the reference time has been updated. This ensures that
the reference time will be modified only one time for a given packet.

Once the scheduler has selected the queue with the highest priority, the packet from
the selected queue is dequeued :

f* queueMAXPRI0 is the selected queue by the scheduler *f
mbuf = queueMAXPRI0->head;

The packet at the queue's head is selected. This packet must be returned and the
associated mb structure must be destroyed. Finally, several statistics are updated.

int byte= mbuf->m_pkthdr.len; f* packet size in byte *f
if(!(queueMAXPRI0->head = mbuf->m_nextpkt)) f* if this queue doesn't *f

queueMAXPRI0 - >tail = NULL; f* holds more packet *f
mbuf->m_nextpkt = NULL;
queueMAXPRI0->size -= byte;

f* update some statistics *f

if(!(svg = queueMAXPRI0->head_at->next)) f* if this queue doesn't *f
queueMAXPRI0->tail_at = NULL; f* holds more mb *f

3.5. EXTENSIONS TO ALTQ 55

queueMAXPRIO->head_at->next = NULL;
FREE(queueMAXPRIO->head_at, M_DEVBUF); f* Free the mb structure *f
queueMAXPRIO->head_at = svg;
queueMAXPRIO->mbuf_bytes = byte;

f* WRED dependent code *f
return(mbuf);

3.5.3 Implementation of WRED

Here the implementation of the loss differentiation (by using WRED) will be described.
WRED was presented in the section 2.4.2. As can be seen on the architecture (figure 3.17),
the WRED mechanism must be called just after the classification (in the enqueue method).
The WRED implementation is included in the appendix A.

Egress interface

--... e-.
Classifier

Dropper
Scheduler

Figure 3.17: Architecture of the solution

Here we show the RED pseudo-code (from [14])

for each packet arrival
calculate the average queue size 'avg'
if min_th <= avg < max_th

calculate probability 'pa'
with probability 'pa' :

mark/drop the arriving packet
else if max_th <= avg

mark/drop the arriving packet

The implementation of (W)RED can be splited into small sub-problems :

1. Computes the average queue size

2. Calculates the packet drop probability

3. Drops incoming packet if necessary

56 CHAPTER 3. IMPLEMENTATION

RED is already implemented inside ALTQ . But it is only available with other mechanism.
So I must rewrite it to assure that WTP and (W)RED can work together (at the same
time). WRED algorithm is only a small extension to the RED algorithm to support several
drop precedences (see chapter 2).

We use WRED with shared buffer. It means that, for WRED, all packets are stored into
the same buffer (e.ven if we have several delay classes) to assure that the drop probability
is calculated with an average queue size independent of the delay classes.

Kernel programming issues

Programming at kernel level enforces some limitations. For instance, floating point number
can't be used inside a kernel because it's too difficult to support this data-type. Sorne
operations like <livide operation must be used only when it's necessary because they take
a lot of time.

Sometimes decimal expression have to be computed. In this case, a fixed point rep
resentation will be used : with a 32 bits integer, a decimal point will always be assumed
after the 20th bit. Indeed, in fixed point representation (also called FXP), the first 20 bits
are the integer fraction of the number while the last 12 bits are the decimal fraction of this
number. For instance, if the following number is considered (in binary) :

1000 1101 1000 1010 1100 1100 0101 1001 i.e. 8D8ACC59 in hexadecimal

It will be interpreted (in FXP) as :

1000 1101 1000 1010 1100 . 1100 0101 1001 i.e. 8D8AC. C59 in hexadecimal

Finally, in decimal representation : 219 + 215 + 214 + 212 + 211 + 27 + 25 + 23 + 22 + fr +
fi+~+~+~+ 2°ÎT = 579756.771728515625

Average Queue Size

The average queue size will be estimated with an Exponential Weighted Moving Average
(EWMA):

avg (l - wq) * avg + Wq * q

avg avg + Wq * (q - avg)

Where Wq is the weight for EWMA average (wq E[0,1])
q is the current queue size (instantaneous)

When the parameter wq is large (close to 1), the average queue size would be near to the
instantaneous queue size. Conversely, if wq is too low (close to 0), average queue size would
be too far from the queue size. [14] suggests to use wq = 0.002. •

The average queue size can be updated only when a packet arrives. A problem occurs
when a packet arrives and the buffer is empty (also reported in [14]), the average can't be
correct because its computation will take into account an old avg average as first value.
That's why when a packet arrives and buffers are empty, the average will be modified to
take into account the number of packets that the router would have transmitted during

3.5. EXTENSIONS TO ALTQ

the inactive time (time interval where the buffer is empty). So the following relation will
be used in this case :

avg = (l _ wq)(time- q_time)/s * avg

Where time - q _ time is the inactive time in µsec
s is the typical transmission time (e.g. 800 µsec)

lmplementation details To compute the avg value, the fixed point representation will
be used. The pseudo-code of the implementation is as follows :

if (isEmptyO)
{

}

t = time - q_time;
if(t > 60 seconds)

avg = O;
else
{

t = t / s;
if(t >= 0)

avg = avg * pow_w(t);
}

avg = avg + ((q - avg) >> inv_wq);

Where time : is the current time

57

pow_w(t) : is an estimation of the value of (1 - wq)t in fixed point representation.
inv _ wq : is the inverse of wq value. It must be a power of two.

The value of (1 - wq)l is estimated with a table lookup. At initialization phase, a table
w_ tab with the values of w_tab [t] = (1 - wqf is built. With this table it is possible to
compute the result of the fonction pow_w(t) . For instance, if t = 53, the value (1 - wq) 53

is computed as follows :

As can be seen from the pseudo-code, when a packet arrives and the buffers are empty,
the average queue size will be updated two times. The first time, the router evaluates the
number of packets that it would have sent during the inactive period and then , it updates
the average queue size using the EWMA algorithm and the new instantaneous queue size.

Packet Drop probability

In chapter 2, the relation to compute the packet drop probability has been established :

(3.1)

58 CHAPTER 3. IMPLEMENTATION

In [14], the author states that the drop probability is Pa = l -co~~t*Pb. It assures that the
drop probability Pa is a uniform random variate (count is the number of received packets
since last packet drop) .

Pa

Pa

Pa

Pa

maxp * avg - maxp * minth 1
. *------------,---

maXth - minth 1 - count * maxµMvg-maxp*minih
max1h -minth

maxp * avg - maxp * minth 1
* . (.) maXth - minth max th -mmth-count* maXp*avg-maxp*mmth

max th -min th
l

maxp * avg - maxp * minth maxp

maXth - minth - count * (maxp * avg - maxp * minth) * 1
maxp

avg - minth

max,h - mintb - count * (avg - min) maxp th
(3.2)

lmplementation details A description of how the kernel computes the drop probability
is given here. To compute this probability, three parameters are needed : fp_len, fp_probd
and count. fp len = avg - minth and fp probd = max,h-minth . - - m=p

int drop(int fp_len, int fp_probd, int count)
{

}

d = fp_probd - count * fp_len; I* denominator of drop-probability *I
if(d <= 0)

return(1); I* count exceeds the hard limit : drop*/

if(random() % d) < fp_len)
{

return(l);
}

return(O);

I* drop *I

I* no drop *I

To simulate the random behaviour of the dropper, the kernel uses a random number
given by the random() fonction (it generates numbers in the interval [O, 231 - 1]). The use
of modulo operator (% symbol) ensures that the random number is always in the interval
[O, d - 1] like the numerator. This interval is split into two sub-intervals : [ü, f p _ len[and
the interval [fp _Zen, d - 1]. If the random number x belongs to the first sub-interval (i.e.
x < fp_len), a small value of fp_len results in a small drop probability.

3.5.4 Statistical Variables

To check and validate this implementation, some experiments have to be done. During
these experiments, several statistical variables maintained by the router will be collected
to evaluate its performance. Here the focus is on the data that the router must collect to
provide enough information to validate this implementation. Information that is collected :

3.5. EXTENSIONS TO ALTQ

queue [i] . bytes amount of bytes currently in the queue i
queue [i] . nbpacket number of packets currently in the queue i
queue [i] . last_del_pack queueing delay of the last transmitted packet
queue [i] . sent_packets number of packets sent by this queue
queue [i] . drop_packets number of packets dropped by this queue
queue [i] . sent_bytes amount of bytes already sent by this queue
queue [i] . drop_ bytes amount of bytes already dropped by this queue

Additional information that collected :
AvgQS value of the current average queue size
tot_nbpacket current queue size (instantaneous)

These variables are updated :

• (when a packet arrives). The wtp_enqueue fonction is called. The AvgQS is updated.

(if the packet is accepted} . The router will determine the destination queue i
and update the following values : queue [i] . bytes, queue [i] . nbpacket and
tot_nbpacket.

(if the packet is not accepted). The router will also determine the queue i to

59

which the packet would belong and update the following values: queue [i] . drop_packets
and queue[i] .drop_bytes

• (when a packet leaves). The wtp_dequeue fonction is called. If the packet belongs to
the queue i, the following values are updated: queue [i] . bytes , queue [i] . nbpacket ,
queue[i] . last_del_pack, queue[i] .sent_packets and queue[i] .sent_bytes .

The differentiation can be checked by inspecting these variables :

Delay differentiation If the value of last_del_pack is monitored for all queues, the
queueing delay will be shown and it is possible to check if the expected differentiation
is reached based on the configured weight for each queue.

Loss differentiation To check the loss differentiation, the number of dropped packets
and the total number of packets is monitored to evaluate the drop ratio. Based on
the configured WRED parameters, it can be determined whether the differentiation
is correct or not.

Bandwidth differentiation (for TCP traffic only). The bandwidth used by a queue can
easily be known if the amount of bits b send during a given time t is also known.
Indeed, % represents this bandwidth. Based on the formula from Mathis et al. ([20]),
the bandwidth differentiation can be approximated and it's possible to check whether
the differentiation is good or not. The bandwidth that a queue receives is given by :

MSS*C
throughput < r,

- RTT*vl

The WRED dropper will affect the loss ratio l while the WTP scheduler will affect
the RTT value .

60 CHAPTER 3. IMPLEMENTATION

More statistics can be imagined and implemented inside the kernel but it's important
to pay attention to the required resources (in terms of memory and CPU) for maintaining
these variables . That 's why an external program will be used to do complex operations.
In that way, the kernel has to maintain simple counters.

Statistical program

The ALTQ package contains a lot of implementation and some statistical programs. These
can only be used with the associated mechanisms but these are good examples that can help
to construct new statistical program in connection with this implementation. This program
must ask to the kernel the value of variables. To ask something to the kernel, a system
call is used. This implementation supports the ioctl system call to collect information.
So, with an external program, it's possible to monitor the behaviour of the implemented
router.

Description of statistical program Only a high-level description of the statistical pro
gram will be given here. This program will ask to the kernel every t seconds, the value of
variables. This program can compute the real throughput per queue :

amount of bytes sent during the period ti - ti-1

ti - ti-1

Ali collected data are written into files . These are used to produce several graphies to
display the results.

Impact on kernel behavior Because of interruptions caused by the statistical program,
the behaviour of the kernel is modified. Indeed, the kernel answers to the submitted
requests (i.e. from the statistical program) and returns the value of several variables
instead of normal processing. It is difficult to measure the real impact of these requests
because the router is only a part of the kernel. It is also difficult to avoid this because the
evaluation of this implementation can only be done by using these variables.

3.6 Conclusion

This chapter has discussed the main features of the FreeBSD operating system. The
packet handling is also described in details and a description of ALTQ has shown the real
flexibility of a FreeBSD based router. Finally, the proposed implementation of delay and
loss differentiation was examined. Now, it's important to discuss about several limitations
of this implementation.

3.6.1 Limitations of this implementation

Sorne limitations are FreeBSD dependent while others are dependent of implemented mech
anism.

time granularity Because this implementation is done at kernel level, it is dependent
on the time granularity provided by the FreeBSD kernel. The time is represented

3.6. CONCLUSION

as the number of seconds and microseconds elapsed since January 1, 1970 00:00:00
(UTC). lt's not possible to be more accurate : if two packets arrive during the same
microsecond, it's difficult to do a correct delay differentiation. The the maximum
throughput that this implementation can handle is , in theory, 500 Gbps only because
of the timer granulari ty.

memory occupancy This implementation requires 8 bytes (64 bits) per packet. To avoid
an overflow, all queues are limited by a tail drop mechanism. If all packets have the
same size L and all the maximum queue size is q : this queue can hold Lts packets
at the same time. If L is small, the 8 bytes overhead can be significant.

61

Chapter 4

Experiments

4.1 Introduction

This chapter describes experiments done to validate the proposed implementation. These
results are useful to determine :

• "Quality" of this implementation : the implementation should be stable (i .e. no bugs)
and provide good performance;

• "Correctness" of the implementation : it should match with the model and the results
should match with our expectations.

Experiments vs Simulations

While several simulations are proposed (see [271) about the studied mechanisms, it is
important to show the interests of these experiments .

Experiments They are done using a real environment : a lot of computers with network
equipment (i .e network interfaces, cables, hubs, .. .) are needed. The traffic is
real : packets are sent by sources throughout the network and are received by the
destination.

Simulations They are done with a special program : the simulator. It allows the user to
build his network topology and to set all network parameters (like MSS, RTT, link
rate, ...). The network topology usually includes source and destination hosts, core
and edge routers. All traffic is simulated : the simulator generates all events (i.e.
packet arrival , packet departure, packet sent, packet received , ...) in connection
with the simulation and computes all needed statistics.

The following table shows a summary of the differences between the experiments and
simulations :

63

64 CHAPTER 4. EXPERIMENTS

Description Experiments Simulations
==========~

Limitations Limited by the available hardware Limited by the simulator
features and qualities

1--------1-----------------1-----
Traffic generators A n y network program can be used Only traffic generators provided by

to generate traffic (Web, FTP, .. .) the simulator can be used. 1--------l-----"------..:..._ _____ _;___-1-----
Performance
measures

D one by an external program Can be integrated inside the

Implementation
sensitivity
Usage

High, all optimizations have an
important impact on the performance
Used to validate simulations and
make mechanisms available

simulator
--------------<

Low. The network is simulated.

Used to validate theoretical model
(i .e. new mechanisms).

~-------~---------------~---
Both simulations and experiments are useful because the usage is different. This chapter

will present several experiments and present results from real environment in order to
validate this implementation. Unlike simulations, if this implementation provides good
results, it can be used inside IP routers to provide delay and loss differentiation.

This chapter is organized as follows : the first part shortly depicts traffic generators
because they are used to generate random packets, the performance measure are done
(to evaluate the quality of this implementation) and finally, the network configuration is
presented and the results are discussed (exactness of the implementation).

4.2 Tuaffic generator

The experiments are done using traffic generators . Two traffic generators have been used :
Netperf for TCP and UDP traffic. Traffic generators are useful to generate random traffic
and evaluate the behaviour of implemented mechanisms.

Traffic generators contains usually two programs : a server and a client. The server
runs on the destination host and listens on a selected port while the client runs on the
sen der hosts and send traffic to the recei ver (using the selected port) .

The quality of a traffic generator can be evaluated if it can reproduce the exact be
haviour of TCP sources. Indeed, the Internet traffic has some observed characteristics (like
TCP flows are usually less than 6 kb) that must be integrated inside the generator to
provide realistic traffic (and not ideal traffic).

4.3 Network configuration

The network topology is depicted on figure 4.1. Five hosts are used : three sources (A, B,
C), one router (D) and one destination (E) .

Experiments have the following characteristics :

Hosts All hosts are COMPAQ Pentium 200 Mhz running FreeBSD 2.2.8. Five computers
are used :

• Three computers (A, B, C) are used as source.

• One computer (D) is configured as a router. This router implements WRED
and WTP mechanisms.

4.3. NETWORK CONFIGURATION

Figure 4.1: Network topology for implementation validation

• One computer (E) is the receiver.

Network link All network links are fast Ethernet(l00 Mbit / s)

Marking All packets from one source can only be marked at the outgoing network inter
face (because of external marking program) : so three different DSCP values can be
used (they will be specified before the experiment results).

Many flows will share the link between the router and the receiver (link D- E). This
link will be congested and the router will react according to the configuration parameters.

The following parameters are used for all experiments :

• N umber of drop precedences = 3

• Number of delay queues = 3

• Link rate = fast Ethernet (100 Mbits / s)

• Packet size = 1500 bytes

• Maximum queue size = 512 kilobytes

• WTP parameters :
Queue qi
Queue10 w 1

Queuemed Î
Queuehigh

Queue10 w means the queue with the largest delay while Queuehigh means that the
queue is served with the smallest delay.

• WRED parameters :

65

66

Description
Minth
Maxth
Drophigh
Dropmed
Droplow

value
300 packets
1000 packets
1
1p
2p

CHAPTER 4. EXPERIMENTS

Recall that Drop is the drop ratio when the average queue size reaches the M axth·
The more this value is high the low it is good (i.e. the loss rate is high). In this case,
Drophigh experiences the largest drop rate while Drop1ow experiences the smallest loss
rate. The fixed thresholds (M inth and M axth) can appear high but the considered
queue size is the total average queue size (not per queue). Moreover, when the
minimum threshold is high, that means that the dropper is not aggressive : that's
good for TCP like flows (they reduce their sending rate when packet drop occurs). So,
packet drop occurs when the total average queue size reaches 450 kb1 and it discards
all incoming packets when this average queue size is more than 1,5 Mb (remark that
this maximum threshold is reach when all queues have reach their limits of 512 kb).
This loss differentiation is depicted on figure 4.2.

0.08

g 0.06

Il

0

ê
~ 0.04
0

0.02

400 500 600 700 800 900 1000

Average Queue Size (# packets)

Figure 4.2: Expected drop ratio in the interval [300,1000)

1 if 1 kb = 1 000 bytes

4.4. EXPERIMENT RESULTS

4.4 Experiment results

4.4.1 Background

Before exposing results , it is important to recall that the throughput for TCP traffic is
estimated using the formula from Mathis et al. (see [20]) :

Where: MSS
C

RTT
l

MSS*C
Throughput < ..jl

- RTT* l

is the maximum segment size
is a constant dependent on the TCP implementation
is the round-trip-time
is the loss ratio

Recall also that queueing delays have impacts on round-trip-time (RTT) parameter
while drop precedence have impacts on loss ratio l. The following formula take into account
the number of TCP connections (because this number has a effect on the throughput for
TCP micro-flows) :

MSS*C .
Throughput < ..jl * NumberOJTCPconnections

- RTT* l
(4.1)

4.4.2 Heavy-load condition

Parameters

This first experiment shows the behaviour of this mechanisms in case of heavy load condi
tion : it is important to see if this mechanism can support a highly loaded network because
this situation can appear. The parameters for this experiment are the default parameter,
but instead UDP traffic is used : the main consequence is that no congestion control algo
rithm is implemented inside UDP protocol (unlike TCP, UDP doesn't reduce its sending
rate when packet drop occurs) so it is easier to obtain heavy load condition with UDP
traffic. In this case, it is diffi.cult to foresee the behaviour of the mechanism because :

• UDP traffic is used : the throughput can't be estimated with the formula 4.1.

• The queue size will contains always 1000 packets or more and the loss differentia
tion will not be good (all incoming packets will be dropped because the maximum
threshold is al ways reached).

Results

The average queue size (see figure 4.3) reaches the maximum threshold : 1000 packets
and the router is always congested as can be expected : the heavy load conditions are
verified. The real queue size often exceeds the maximum threshold (it is normal because
the dropper only takes into account the average queue size and not the real queue size) and
should cause an overflow : that's why all queues are protected by a tail drop mechanism
that avoid overflows : if the queue size is 512 kb, all incoming packet will be rejected .

67

68

.l!l .,
-"'
" "' C.

~ .,
N

üi .,
::, .,
::,
a .,
C)

"' ai
>
<(

-;;;-

1200

1000

800

600

400

200

CHAPTER 4. EXPERIMENTS

Average Queue Size
R~j a! Queue Size

Minimum Threshold ·· · .,.. ·
Maximum Threstlold r•

• -'t -' >. :V: ,- :,. ;, <t- "< .,;, .(. 'f. _.. , X ~- } ·, 'I X , >

OQ~~~-~~~GOE

1 -;_ '('v ~ > :,..){ !'(. ' X C l
l

1

1)IE•>;-••il(-)lt-* .. ~· .. • ~ ·)lhllE-*"91E·•• :llHIH IHl(* •)IE-•• il(•)lf-)lfilf:-)l(-•)JBH IE-•• .._· llE-- llH l.._· _.)IE._ -)lf-)lfl(_,..

i
1

1

0 ..
0 10 20 30 40 50

Time

Figure 4.3: Average queue size

250 ..------~-----~------..------~-----~----,

200
~
1 y

HighDelay -+-
MedDelny
LowDelay,. . .

.s 150

î .,
D
C)
C
ëii
::,
~ 100
a

o..ii~-----'-----------'-------'-------'-----------'-+lHl'-l!HIE
0 10 20 30 40 50

Time

Figure 4.4: Queueing delay

Delay differentiation works quite well (see figure 4.4) according to the configured pa-

4.4. EXPERIMENT RESULTS

rameter:

QueueingDelaYLowDelay = 3 * QueueingDelayHighDelay

QueueingDelaYMedDelay = 2 * QueueingDelaYMedDelay

Because the delay differentiation is completely independent of the queue load, the expected
delay differentiation is reached.

Highloss -+-
MerJLoss ,
Lowloss, ...

0 .8

~
8 0.6

v -~ v -V-"' Jê--4 <· ➔ :><.,. -X· " .,(A. ,,...-t+- .'o("'v ,-. " · ,. .·.c, -_;;'- (-}'• of+(+-,,f-lo - :'(► 1'),. If' -). v ,'\ "E,. 1,(,• ·.,_ v 1\

)_t,)If.._~)Il(- 'li ~ -)IHIE-.:-• JE** JE-* --· JIE- il ilHIE- _.)If._ _. 3lt ._._. 3E il(-)IE-)lt- ~IHW:· * • -JC ·• * -)11. ·)IHi- • ._. _. ~
i!C .

::::,
0

~
li'

a. 0.4 e
0

0.2

0YH---~----~----~----~---~-~
0 10 20 30 40 50

Time

Figure 4.5: Drop per queue

As expected the loss differentiation (figure 4.5) doesn't match with the configuration,
the reasons are :

• deterministic drop behaviour of the dropper when the router reaches the maximum
threshold (i.e. all incoming packets are discarded) ;

• some packets are dropped by the tail drop mechanism.

This experiment shows that this implementation supports heavy load condition even
if the loss differentiation is not good, the router reacts according to the implemented
mechanisms. The use of UDP traffi.c instead of TCP traffi.c has only one consequence, the
throughput differentiation can't be checked because of no congestion control mechanism
in UDP protocol. Mechanisms for queue protection (like tail-drop) are indispensable to
assure the stability of the router. This point is very important : an unstable router can't
be tolerated.

69

70 CHAPTER 4. EXPERIMENTS

4.4.3 Equal distribution (TCP)

Parameters

In addition to the default parameters described above, the following marking parameters
are used :

Packets from requested requested #TCP Queue
source delay drop connections number
A Queue10 w Drophigh 30 0
B Queuemed DrOPmed 30 1
C Queuehigh Drop10 w 30 2

In this case, packets from source A should experience the largest queueing delay (among
the three defined queues) and the highest Joss-rate while the queueing delay for the source
B should be half of the source A's queueing delay and the half of the loss-rate. The last
source C should have a queueing delay that is the third and a loss-rate that is the fourth
of those of source A. Ali hast have 30 TCP connections to the receiver.

Theoretical results

This measure should show that the implementation meets our expectations when the traffic
is distributed equally (ail queues have the same number of TCP connections). This case is
not realistic (because the traffic distribution is rarely equally distributed) but it allows to
show and explain easier the expected values and deviations.

Based on the configuration , the following bandwidth differentiation can be expected
(throughputo means throughput of Queueo from source A i.e. queue with largest queueing
delay and loss rate) :

MSS*C
throughputo < 0o

- RTTo * la
The medium queue Queue1 (i .e. the queue with medium delay and medium loss rate) is
served with (remark that the fixed delay like processing or propagation delay is assumed
to be zero) :

MSS*C MSS*C
throughput1 ::; 17 {::} throughput1 ::; Ji

RTT1 * vl1 RTTo * !.o.
2 2

And finally the high quality queue Queue2 (i.e. lowest delay and loss rate) have the
following throughput :

MSS*C MSS *C
throughput2 ::; 17 {::} throughput2 ::; [fi

RTT2 * vl2 RTTo * !.o.
3 4

The following bandwidth proportional differentiation is obtained :

1
throughput1 ::; 2 * /½ * throughputo {=} throughput1 ::; 2.82 * throughputo (4.2)

1
throughput2 ::; 3 * 1 * throughputo {=} throughput2 ::; 6 * throughputo (4.3)

2

4.4. EXPERIMENT RESULTS

Because the maximum link rate is 100 Mbit/ s, the following throughput can be ex
pected for each queue :

100 Mbps

{::} 100

{::} 100
100

{::} 9.82

throughputo + throughput1 + throughput2

throughput0 + 2.82 * throughputo + 6 * throughputo

throughput0 * (1 + 2.82 + 6)

throughputo

Finally, the following throughput is obtained (these are depicted on figure 4.6) :

throughputo

throughput1

throughput2

100

80

60
îi:
.0

~
" 1o
a:

40

20

10.183299 Mbps

2.82 * throughputo = 28.716904 Mbps

6 * throughputo = 61.099796 Mbps

Toroughput queueO -
Tt,J,,,.1g'11:i1.1t :.:o;,;E-1 - J. -

Throughput queue2 ---,. ...

0 '-------'-------'----'-------'-----'--------'
0 10 20 30

Time

40 50 60

Figure 4.6: Expected Throughput per queue

Because the distribution of the traffic is equal among the queues, the following through
put per TCP micro-flows can be expected :

throughputFlowsQueueo

throughputFlowsQueue1

throughputFlowsQueue2

lO.l 83299Mbps = 0.33944331Mbps
30

28·716904Mbps = 0.95723014Mbps
30

5L099795Mbps = 2.0366599Mbps
30

The throughput per TCP micro-flows is very important for the client because it shows
exactly the service rate that he will receive.

71

72 CHAPTER 4. EXPERIMENTS

lt's difficult to have an approximation of the queueing delay because it depends on the
queue size and it can be evaluated in an easy way. But the delay differentiation must be
conform with the configuration :

QueueingDelayqueue2

QueueingDelayqueue1

QueueingDelayqueueo

3
Queuei ng Del ayqueueo

2

For the loss differentiation, the figure 4.2 shows the differentiation as a fonction of the
total average queue size. For instance, if the current average queue size is 500 packets, the
following drop probability are obtained :

Results

250

200

.l'l
<D
-" 150 0 ..
a.

""

100

50

0
0 10

P acket HighDrop

PacketMedDrop

P acket Law Drop

20 30
Time

0.028

0.014

0.007

40

Figure 4.7: Queue occupancy

Queue0 --+--
Oueue1 •
Oueue2

50 60

Figure 4. 7 shows the queue occupancy : it is not stable because of congestion control
mechanism of TCP sources. Indeed, TCP uses an AIMD (additive increase, multiplicative
decrease) algorithm. When no packet drop occurs , TCP increase its sending rate with 1
packet (i.e. additive increase) but when packet drop occurs , TCP reduces its sending rate
with a factor of two. lt's also important to remark that the statistical prograrn makes its
requests every two seconds (that can explain why the decreasing of the queue occupancy

4.4. EXPERIMENT RESULTS

appears smooth). The queue occupancy will be used to check if the queueing delay is good
and if the drop ratio is acceptable. The following average can be observed from figure 4. 7 :

160

140

120

"in 100 .§.
>-
"' ai
0 80
Cl
C ·.;
::,
CD
::, 60 0

40

20

0
0

AverageQueueSizeo

AverageQueueSize1

AverageQueueSize2

AverageQueueSize9tobal

10 20 30

Time

116 packets

164 packets

211 packets

491 packets

HighDelay --+--
MedDelay <
LowDelay . .. ,., ...

40 50

Figure 4.8: Queueing delay

60

Based on the computed average queue occupancy, the average queueing delay can be
computed as follows :

Q
. D l NumberO f Packet * PacketSize * 8

ueueing e ay = R
atequeue

where N umberO f Packet
PacketSize

Ratequeue

is the average queue size (in packets)
is the size of a packet in bytes (i.e. 1500 bytes)
is the rate at which the queue is served in bps

Because the size of the queue must be expressed in bits, the numerator is multiplied by
8.

The following average queueing delay can be expected (according to the rate of each
queue) :

QueueingDelayo
116 * l 5

00 * 8
= 0.13669441 = 136.69 m

10183299
5 5

73

74

QueueingDelay1

QueueingDelay2

CHAPTER 4. EXPERIMENTS

164 * 1500 * 8
28716904

= 0.068531064 s = 68.53 ms

211 * 1500 * 8
61099796

= 0.0414404 s = 41.44 ms

As can be seen on figure 4.8, a small deviation is observed, the queueing delay is less
than the expected. value. Observed average queueing delays are :

H ighDelay = QueueingDelayo

M edDelay = QueueingDelay1

LowDelay = QueueingDelay2

109 ms

56 ms

38 ms

This small deviation can be explained by the use of an "expected" throughput and
this expected throughput can be different from the real throughput (the throughput dif
ferentiation will be analyzed in the sequel). But, the delay differentiation is quite good :
the queueing delay of the queue LowDelay is one third of the queueing delay of the queue
H ighDelay while the queueing delay of the queue M edDelay is half the one of H ighDelay.
This corresponds to the configured parameters.

The warm up period must be ignored, it corresponds to the first seconds : this period
is the time needed by the mechanism to reach a stable behaviour. This period must be
as small as possible and is the consequence of the scenario : the statistical program is
started first (so empty statistics are collected because no sources have been started) then
the sources. In this case, the warm up period is the time needed by the sources to reach
their sending rate.

0.03

0.025

0.02
'il
0

~

:::. 0.015
0

·~
a. e
D

0.01

0.005

0
0

Highloss -+--
fv1edLoss -<
Lowloss ··· ><···

/ .. _/)' ,'(.*>-->t~- ""· :"•• >' · <(➔: ,,(- '1, f"<;-.(.. . x,< ;..-x,. -,.-'t x+. «-;. -'I , V- ► V y "'-~ '(, >: •,: '().:0" ,fY ~).: r('V ~ V '(

t .,
'/
·/
t

I
l •-:M:~.-~*~-----·)E- ... !ilf •• ;11(._ * JE-.....)IOIE•~---..- .. -ii(... •)l(*~ .••)!E-)IE,)lt

1:

r
:!

10 20 30

Time

40

Figure 4.9: The dropped packet ratio

50 60

4.4. EXPERIMENT RESULTS

Figure 4.9 shows the dropped packet ratio . Based on the theoretical values (see fig
ure 4.2), it appears that, with an average queue size of 491 packets, the following drop
ratios can be expected :

H ighLoss = DropQueueo

M edLoss = DropQueue1

LowLoss = DropQueue2

0.027

0.013

0.006

And a small deviation can be observed (see figure 4.9) here especially for the DropQueue0 .

but the loss differentiation is good too : the experiment parameters are configured such
that the difference in loss ratio between two consecutive classes is a factor of two. The
dropped packet ratio of the M edLoss class is almost half the dropped packet ratio of the
H ighLoss while the loss of LowClass is half the dropped packet ratio's M edLoss (the
warm up period must be ignored).

70 ,------r-----.-------,-----,------r-----,

60

50

-;;;- 40
a.
.0

6
a,

~ 30

20

10

Throughput queueo --+--
Througliput queue 1 ,
Throughput queue2 ·· · • · ··

0'-+-..►...----'------'------'-----~-----'------llE
0 10 20 30

Time

40

Figure 4.10: Throughput per queue

50 60

Figure 4.6 showed the expected throughput per queue while figure 4.10 shows the real
throughput per queue. The real throughput matches almost with the expected throughput
: small deviations can be observed but the throughput differentiation is almost good : as
can be seen, the throughputQueue2 is less than our expectations :

Average ThroughputQueueo

Average ThroughputQueue1

Average ThroughputQueue2

12.357885 Mbps

28.464231 Mbps

55.135192 Mbps

The throughput per queue and throughput per TCP micro-flows present the same
differentiation (and same small deviation in comparison with the theoretical values) : that 's

75

76 CHAPTER 4. EXPERIMENTS

Throughput per TCP • OueueO ---+--
Tl,rougtiput per TCP · Oueue1 >..
Throughput per TCP - Queue2 · · · ><· · •

2

1.5

0.5

0 ._......,. __ _,__ ___ __,_ ____ ..__ ___ _,_ ___ __,_ __ -llHI......,._,
0 10 20 30

Time

40 50

Figure 4.11: Throughput per TCP micro-flows

60

normal because the number of TCP connections are the same for all senders (an experiment
with different numbers of TCP connections will be shown in the sequel). The bandwidth
differentiation is good according to the configured parameters.

4.4.4 U nequal distribution

Parameters

Five hosts are needed : three sources (A, B, C on the figure 4.1), one router (D on the
same figure) and one destination (E on the figure) . The marking is configured as follows
(all other parameters are the same as previous experiment) :

Packets from requested requested # TCP Queue
source delay drop connections number
A Queuelow Drophigh 60 0
B Queuemed DrOPmed 20 1
C Queuehigh Droplow 10 2

Theoretical results

In the previous experiments, the stable behaviour have already been checked, the loss,
delay and bandwidth differentiation have been verified. This experiment will focus on the
throughput per TCP micro-flows : it will attempt to check if this throughput is good when
the number of TCP connections are not the same among sources. It's important to make
this experiments because an unequal distribution is common on the Internet.

4.4. EXPERIMENT RESULTS

Because the Queue0 (i.e. worst queue) has 60 TCP connections, it receives almost the
same TCP throughput as the other queues. Indeed, the following relations are obtained :

Qo
MSS*C

RTTo * ../lo
throughputo < Qo * 60

throughput1 < Qo * 20 * 2.82

throughput2 < Qo * 10 * 6

The maximum link rate is the same as previous 100 Mbps, so the following throughput
can be expected for each queue :

100 Mbps

<:=> 100

<:=> 100
100

<:=> 176.4

throughputo + throughput1 + throughput2

Qo * 60 + Qo * 56.4 + 60 * Qo

Qo * (60 + 60 + 56.4)

Qo

Finally, the following throughput is obtained (these are depicted on figure 4.6) :

throughputo = 100 * 60
176

.4 = 34.013605 Mbps

throughput1 lOO * 55
·
4 = 31.972789 Mbp

176.4
8

throughput2 lOO * 60 = 34.013605 Mb
176.4 ps

Remark that the throughputo and throughput2 values are the same (that is why these
two curves are mixed together on figure 4.6).

The following throughput per TCP micro-flows can be expected (depicted on fig
ure 4.13) :

Results

throughputFlowsQueueo

throughputFlowsQueue1

throughputFlowsQueue2

34
·
0136ii Mbps = 0.56689342 Mbps

3
1.

9727
:: Mbps = 1.5986394 Mbps

34
·
0136

;; Mbps = 3.4013605 Mbps

As can be expected and shown on figure 4.14, the bandwidth differentiation is not so clear
than the previous simulation. The reason is that the number of TCP connections is not
the same as before.

Because the Queueo (i.e. worst queue) has 60 TCP connections, it receives almost the
same TCP throughput as other queues. Deviations can be observed from the theoretical

77

78

.,
a.
.c
~
a,
1ii
a:

.,
a.
.c
~

~
a:

CHAPTER 4. EXPERIMENTS

100r-----.-------,--------.-----.------,-------,

BO

60

40

20

Throughputqueue0 ~
Tt1rougtiput queue 1
Throughput queue2 · · · .,. _ · -

0 '--------'-------'---------'-------''------...._----~
0 10 20 30

Time

40 50

Figure 4.12: Expected Throughput per queue

60

5r------,-------~-----.,.------,---------,,-------,
Throughput queue0 --
Througllput queue 1 ,
Throughput queue2 · · · ..,. ·

4

3

2

0'-------'--------'-------'------'-------'-------'
0 10 20 30

Time

40 50

Figure 4.13: Expected Throug-hput per TCP micro-flows

60

results (figure 4.12), a light "starvation effect" appears from the queues with a higher num
ber of TCP connections. Indeed, the Queueo receives a higher throughput than expected,

4.4. EXPERIMENT RESULTS 79

70

60

50

en 40
C.
.c
6
~
"' 30 a:

20

10

0
0 10 20 30 40 50 60 70

Time

Figure 4.14: Throughput per queue

4
Throughput per TCP · Queue0 --+--

3.5

Throughput per TCP • Queue 1 >.
Throughput per Tq> • Oueue2 · · · ,.. · ·

3

2.5

en
C.
.c
6 2
<D
1ü
a:

1.5

Time

Figure 4.15: Throughput per TCP micro-flows

and the Queue2 (with only 10 TCP connections) has a lower throughput than expected.

The most important curve in this experiment is the throughput per TCP micro-flows

80 CHAPTER 4. EXPERIMENTS

(see figure 4.15) the examination of throughput per TCP micro-flows (obtained if the
throughputqueue is divided by the N umberO JTC Pconnections) shows that the differen
tiation is good (small deviations can be observed between real and theoretical results like
in the throughput per queue figure), and Queue2 (i.e. the best queue) receives a higher
throughput than the previous classes. Like in the throughput per queue, the Queueo re
ceives a throughput higher than expected but the deviation is small (i.e. 0.63 Mbps instead
of 0.56 Mbps) while the Queue1 obtains a throughput conform with our expectation and
the Queue2 has a small deviation (2.9 Mbps instead of 3.4 Mbps).

So this mechanisms works also when the traffic is not equally distributed.

4.5 Conclusion

This chapter has shown that the proposed implementation is stable and matches with the
model through several experiments :

• The heavy load experiment has shown that this implementation is very stable even
if the network is highly loaded. Although the differentiations can't be verified in this
case, the results match the expected behaviour.

• The equal distribution experiment has shown that the studied proportional model is
verified and the delay and loss differentiation are good according to the configured
parameters.

• The unequal distribution experiment has shown that the throughput per TCP micro
flows (i.e. the most important throughput for the client) meets all expectations
because it was correct even if the distribution of the traffic is not the same among
the different classes.

More experiments can be clone to evaluate this implementation, especially performance
measures : because of short time, performance measures was not done This kind of measure
does not require complex programs or new hardware devices, these measures propose to
compare the performance provide by the default FCFS service with the new implemented
mechanism. The results indicate the complexity of this new implementation.

Conclusion

This thesis described alternative architectures that can be used to provide more services :
the Integrated Services and Differentiated Services architecture. The first attempts to pro
vide strong and deterministic end-to-end guarantees (i.e. from the source to the destination
hosts). The second, simpler, proposes several levels of services : according to the traffic
contract, the incoming traffic is distributed among all classes to achieved the requested ser
vice. Integrated Services do not appear very interesting because of the scalability problem :
the required resources to support this architecture are excessive and this model cannot be
deployed at the scale of the Internet.

The thesis also discussed relative services : they propose to have different classes of
service (each class is associated with a level of service that is measured in terms of local
queueing delays and packet losses). T he proportional differentiation model appears to
be adapted because it is controllable (i.e. can be tuned by the network operator) and
predictable. It was used to provide proportional delay, loss and bandwidth differentiation
(only for TCP flows). Various mechanisms have been described and two mechanisms were
selected to provide the proportional delay and loss differentiation : the WTP scheduler
and the WRED dropper in shared buffer mode. The bandwidth differentiation is achieved
by combining these two differentiations.

The thesis also showed how these mechanisms have been implemented inside a FreeBSD
based router using ALTQ. Sorne limitations have been described like the time granularity
that depends of the time service provided by the FreeBSD kernel or the memory occupancy,
the WTP scheduler need memory to save the arrival time of each packet .

Finally, this thesis also proposed experiments to validate the implementation. Three
experiments have been carried : heavy load condition, equal traffic distribution and un
equal traffic distribution. The first demonstrated the stability of this implementation (this
router can support an overloaded network) . The second showed that the delay and loss
differentiation work quite good according to the configured parameters . It also showed that
the bandwidth differentiation per queue is also quite good. The third experiment showed
that these mechanisms work also when the load is not equally distributed between classes
of services.

The proposed implementation is, in fact, a prototype that shows how such mechanisms
can be implemented. This kind of prototype can be used to evaluate the feasibility of
an implementation and to assess the performance of new mechanisms. Indeed, the im
plementation phase is important because it shows all practical problems of a theoretical
solution. In our case, the implementation of WRED and WTP has shown that these two

81

82 CONCLUSION

mechanisms can be implemented and can work together and that some technical problems
like the unavailability of floating point data type can be bypassed qui te easily. The second
interest is to measure the performance of a new mechanism. This aspect is not really taken
into account when using a simulator. The implemented mechanisms must be optimized
unless the resulted performance will be less good. Great improvements can be achieved,
for instance, by using faster operations (in WRED dropper) like the shift operation instead
of the multiplication or <livide operations.

More development can be clone in connection with this work :

• It is important to measure the real performance of this mechanism measure the
overhead of this mechanism in comparison with the default FIFO.

• This prototype can be extended by implementing rate-base RED instead of WRED.
Because RB-RED is a new mechanism, its implementation will allow its study into
a real environment.

• Performing the user experiments : because the mechanisms are implemented, it is
now possible to make new experiments with applications that are more relevant for
the client. Indeed, all network applications can be used as traffic generators.

Appendix A

lm plementation

This section contains the source code of the WTP scheduler and WRED dropper. It is
written in C language and is composed of many files : some header files (.h extention) and
others C source files (.c). A brief description of each source file can be found in the sequel.

This implementation was done at Alcatel Telecom's Corporate Research Center of
Antwerp.

The included version is the 0.6 BETA. But, when it is compiled without the option
EXT_STAT, the version can be considered as 0.5 STABLE.

The following files are included :

altq_ wtp.h This files contains many basic definitions used by the WTP scheduler and
WRED dropper. This file defines the DSCP values used , all data structures used to
store arrival time (mb structure), queue description and additional data types used
for statistic.

altq wtp opt.h This header file contains all available compilation options. It allows to
select mechanisms and features to compile. Five options are allowed :

COMP _ TIME When this option is present, the implementation will use a com
pressed time instead of standard UNIX time timeval format.

Q_ DELAY This option allows to collect the queueing delay from an external pro
gram : usefol if statistics are needed.

WTP _ WRED This option enables the WRED dropper with the WTP scheduler.
By default, the WTP scheduler is associated with a tail-drop mechanism.

WRED _ STAT When this option is present : the kernel will provide statistic about
the WRED dropper. Usefol for statistic.

EXT _ STAT This option allows to collect more statistic (extended statistic). This
option is experimental and must be used with caution.

altq wtp _ util.c This file contains some common fonctions. Indeed, it contains two
fonctions, the first elapsedFromNow computes the time elapsed between two times
tamps. The second convertusec converts a UNIX compatible time in microseconds
(no test is done to avoid overflows so it must be used with caution).

83

84 APPENDIX A. IMPLEMENTATION

altq localq.c This is the main file in this implementation, it contains the WTP sched
uler and the fonctions that are called when a packet arrives or leaves the router
(wtp_enqueue and wtp_dequeue respectively). Functions included inside this file are
described here :

refTime This fonction updates the queue reference time with the arriva! time of the
packet at the head of the queue and returns it.

localopen Function called to initialize all implemented mechanisms.

wtp _ flush This fonction allows to flush all delay queues attached to a given inter
face.

wtp _ setenable It allows to enable or disable the implemented mechanisms on a
given interface.

wtp _ ifattach It allows to initialize all implemented mechanisms on a selected inter
face. This fonction reserves all required memory to store queues, collects statis
tics and configures all mechanisms with default values (3 queues in addition to
the default queue, queue limit = 512 kb, WRED with 3 drop precedences).

wtp _ ifdequeue It contains all actions done when a packet leaves the router. The
WTP scheduler is implemented in this fonction : it returns the packet that the
router must transmit first. This fonction maintains also some statistics .

wtp _ config It allows to configure the WTP with other values than the default
values.

classifypacket This fonction provides the queue that corresponds with a given
DSCP value on a given interface. If the DSCP value is not valid , the default
queue is returned.

wtp _ enqueue It contains all actions done when a packet arrives at the router : it
relies on several fonctions to make the classification and to discard the packet
if necessary (WRED) .

wtp _ ifdetach Remove the WTP / WRED mechanisms on a selected interface : all
queues are flushed (all packets are discarded).

wtp _getstats This fonction is used when a request about statistic information (on
WTP / WRED) is received by the kernel.

wtp _ setweight This fonction is called when the weights for the WTP scheduler
must be set or updated.

localqclose This fonction is called when the mechanisms must be desallocated .

stat reset This fonction resets all statistic variables .

localqioctl This is the main ioctl fonction for WTP / WRED. It is the interface
between the kernel and all requests made by a user or on external program. Al
lowed operations are: enable or disable (with wtp_setenable fonction), attach
on a given interface (wtp_ifattach is called) or detach (by using wtp_ifdetach
fonction), setting the weights of WTP scheduler (with wtp_setweight fonc
tion) , configure WTP (with wtp_config fonction), obtain all current statistic
values (by using wtp_getstats) or reset these (with stat_reset). It allows

also to configure the WRED mechanism (by using the wred_ conf fonction in
cluded in another source file) or obtain statistic values (with wred_getinfo or
wred_getstats fonctions) .

altq wtp wred.h This file contains all data type descriptions usefoll for the WRED
mechanism.

altq wtp wred.c It includes all fonctions for WRED mechanism. Most important are :

mainwtab alloc This fonction is used to compute the value of (1 - Wq)t. It
allocat-;s the lookup table that contains all (1 - W qf values.

wred _pow _ n This fonction computes (1 - W q)t values by using the previous
fonction.

wred _drop_ early According to its drop precedence, this fonction decides if the
packet has to be dropped.

alloc WRED It allocates all needed variables to configure the WRED according to
the given parameters. The configurable parameters are : the thresholds, number
of drop precedences and associated maximum drop probabilities and the weight
for the EWMA.

allocWRED default This fonction allocates a new WRED with default values :
minimum threshold = 200, maximum threshold = 1000, number of drop prece
dences is 3 and the associated drop probabilities are 0.2 , 0.1 and 0.05. The
default value for the EWMA weight is 512.

acceptPacket This fonction is the heart of the WRED mechanism, it updates the
average queue size on packet arriva! and it decides whether a packet must be
discarded (by using wred _drop_ early finction) according to the extracted drop
precedence

wred conf This fonction allows to reconfigure the WRED mechanism.

wred getinfo This fonction returns the current configuration of the WRED mech
anism.

wred getstats This fonction provides all available statistics on the WRED mech
anism.

wtpd.c This file includes the (interactive) configuration program. It allows to enable,
attach and configure WTP / WRED on a given interface .

wtpstat.c This file includes the statistical program. This program can work interactively
or in background. In interactive mode, this program asks to the kernel all statistic
variables at given time (i.e. every x seconds and x can be configured) and displaies
all values for WRED and WTP. This program also allows to know the current con
figuration of all mechanisms and the following statistical information :

• WTP scheduler :

- instantaneous queueing delay

- instantaneous size of all queues

85

86 APPENDIX A. IMPLEMENTATION

- instantaneous number of packets or bytes sent / dropped by queues

- current throughput of all queues

• WRED dropper :

- number of packets and bytes sent / dropped for all drop precedences

- instantaneous average queue size

- current queue size

In background mode, the statistical program saves all values into CSV files such that
all values can be used easily by various program.

A.1 altq wtp.h

The first section contains all definitions used for WTP implementation.

!•
* WTP : Waiting Time Priority scheduler implementation for ALTQ 1.2
* by Louis SWINNEN - FUNDP & ALCATEL CRC ANTWERPEN
*
* Version 0.6 BETA
*I

!•
* Classifier method: we will use DSCP (DiffServ CodePoint) field to put
* a packet in the good class .
*
* Values:
* 000000 default class
* 001000 class 1 lower delay than default class
* 010000 class 2 lower delay than previous class
* 011000 class 3 lower delay than previous class
* 100000 class 4 lower delay than previous class
* 101000 class 5 lower delay than previous class
* 110000 class 6 lower delay than previous class
* 111000 class 7 lowest delay class

*
* these DSCP values are fixed automaticaly
*
* Maximum 7 delay classes are allowed (+ default class)
•!

#ifndef _NETINET_ALTQ_WTP_H
#define _NETINET_ALTQ_WTP_H

#ifdef WTP_WRED
#include<netinet/altq_wtp_wred2.h>
#endif /• WTP_WRED *I

#include<netinet/in.h>

#define MIN_QNUMS 2 /•Minimum: 2 queues (1 default and 1 delay) •/
#define DEFAULT_QNUMS 3 /• by default, 3 queues (2 delay queue and 1 default queue) are created *I
#define MAX_QNUMS 8 /• curr~ntly, maximum 8 queues (1 default and 7 delay queues) are allowed •/
#define DEFAULT_QLIMIT (512 * 1024) /• by default, queue size is 512 K •/
#define MIN_QLIMIT 1500 /• the minimum queue size is 1500 bytes•/
#define MAX_QLIMIT (1024 * 1024)
#define DSCP(i) ((i)==0?0:(i)==l?0x08:(i)==2?0x10:(i)==3?0x18:(i)==4?0x20:(i)==5?0x28:(i)==6?0x30 : (i)==7?0x38:0)
#define DSCP2int(i) ((i)==0?0:(i)==0x08?1:(i)==0x10?2:(i)==0x18?3:(i)==0x20?4:(i)==0x28?5:(i)==0x30?6:(i)==0x38?7:-1)

/• #if defined(KERNEL) 11 defined (_KERNEL) *f

#define ENABLE 0
#define DISABLE 1
#define WTP_ENABLE _IOW{'Q' , 1, struct wtp_interface)
#define WTP_DISABLE _IOW('Q', 2, struct wtp_interface)
#define WTP_IF_ATTACH _IOW('Q', 3, struct wtp_interface)
#define WTP_IF_DETACH _IOW('Q', 4, struct wtp_interface)

......

00
--._]

#define WTP_SET_WEIGHT
#define WTP_CONFIG
#define WTP_GET_STATS
#define WTP_STAT_RESET
#ifdef WTP_WRED
#define WRED_CONFIG
#define WRED_GETINFO
#ifdef WRED_STAT
#define WRED_GETSTAT
#endif I* WRED_STAT *I
#endif I* WTP_WRED *I
#ifdef EXT_STAT
#define GET_EXT_STATS
#endif /* EXT_STAT *I

#ifndef IFNAMSIZ
#define IFNAMSIZ 16
#endif

_IOWR('Q ', 5, struct wtp_setweight)
_IOWR('Q', 6, struct wtp_conf)

_IOWR ('Q', 7, struct wtp_getstats)
_IOW('Q', 8, struct wtp_interface)

_IOWR('Q', 9, struct wred_config)
_IOWR('Q', 10, struct wred_info)

_IOWR('Q', 11, struct wred_stat)

_IOWR('Q', 12, struct ext_stat)

/* I must store some information (like the arrival time) with each packet *I
struct mb
{

#ifdef COMP_TIME
unsigned long arr_time;

#else
struct timeval arr_time;

#endif f* COMP_TIME *I
struct mb* prev ;

#ifdef EXT_STAT
I* pointer to previous mb structure *I

char dscp;
#endif I* EXT_STAT *I
};

typedef struct wtp_queue
{

struct mb *head_at, *tail_at;
struct mbuf* head, *tail;
int size;
int nbpacket;
int weight;
short int dscp;

#ifdef COMP_TIME
struct timeval ref_time;
struct timeval last_time;

#endif f* COMP_TIME *I

I* Statistic variables *I
#ifdef Q_DELAY

int mbuf_bytes;
struct timeval last_del_pack;

#endif I* Q_DELAY *I
u_int sent_packets;
u_int drop_packets;
u_quad_t sent_bytes;
u_quad_t drop_bytes;

#ifdef EXT_STAT

/* arrival time *I
I* packet in this queue *I
I* Bytes in this queue (needed for the dropper) *I
/* Nwnber of packet in this queue *I
I* Weight of this queue (integer) *I
I* ID/DSCP of this queue (needed for the classifier) */

/* Reference time [COMP _TIME] */
I* time of last packet *I

I* Queueing Delay *I

I* packets sent in this queue *I
I* dropped packets *I
/* bytes sent in this queue *I
/* bytes dropped in this queue *I

00
00

u_quad_t *dscp_sent_bytes;
u_quad_t *dscp_drop_bytes;

#endif I* EXT_STAT *I
} wtp ;

typedef struct wtpstate
{

struct wtpstate •next ;
struct ifnet •ifp ;
int nums;
int bytes;
int qlimit;
wtp •queue;

#ifdef WTP_WRED
struct wred •wred;

#endif /• WTP_WRED */
} wtp_state_ t;

/• #endif KERNEL •/

typedef struct wtp_interface
{

char wtp_ifacename[IFNAMSIZ];
u_int wtp_ifacelen;

} wtp_iface_t;

struct wtp_setweight
{

};

wtp_iface_t iface;
int dscp; /• ID of the queue •/
int weight;

struct wtp_conf
{

iface;

/• For statistics only, bytes sent (with a given DSCP) •/
!• For statistics only, bytes dropped (with a given DSCP) •/

!• for wtpstate list •/
/•interface•/
/• number of queues•/
/• total bytes in all the queues •/
/• maximum bytes per queue•/
/• pointer to the queue list •/

/• WRED informations •/

wtp_iface_t
int nqueues;
int qlimi t;

/• number of queues•/
/• queue size in bytes•/

};

typedef struct one_queue_stats
{

int bytes;
int nbpacket;
int weight;

/• bytes currently in this queue•/
/• nuber of packet currently in the queue•/

/• queue weight */
#ifdef Q_DELAY
/ • struct timeval tot_delay; •/

struct timeval last_del_pack;
#endif /* Q_DELAY *I

u_int sent_packets;
u_int drop_packets;
u_quad_t sent_bytes;
u_quad_t drop_bytes;
int mbuf_bytes;

/* number of packets sent in this queue•/
I* number of packets drop in this queue•/
/* bytes sent in this queue•/
/* bytes dropped in this queue *I

.....

::i:-.
t-,
e--3
.0
1

} queue_stats;

struct wtp_getstats
{

};

wtp_iface_t iface;
int dscp;
queue_stats stats;

#ifdef EXT_STAT
struct ext_stat
{

wtp_iface_t iface;
int dscp;
u_quad_t dscp_sent_bytes[WRED_MAXDROP];
u_quad_t dscp_drop_bytes[WRED_MAXDROP];

};

#endif /• EXT_STAT •!

#endif /• _NETINET_ALTQ_WTP_H•/

A.2 altq wtp opt.h
This file contains the options that can be selected for the compilation.

#ifndef _WTP_COMPIL_OPTIONS
#define _WTP_COMPIL_OPTIONS

/• OPTION DOR WTP/WRED implementation •/
/• by Louis SWINNEN •/

!• ************************************** COMPILE OPTIONS*******************************~********* •!
/• TIME COMPRESSING (COMP_TIME)
* - - -- --- ---------
*
* With this option, this implementation will use a compressed version of time using the following description
*
* 32 bits are used (instead

*
* 20 bits for coding
* 12 bits for coding
•!

#define COMP_TIME
/• Q_DELAY
* -------

~sec
seconds

of 2•32 bits)

* This option allow to collect Queueing delay from external program (for statistic)
•!

#define Q_DELAY

/• WTP_WRED

c.o
0

* ------- -
* This option activate the WRED dropper over the WTP scheduler. Default dropper mechanism
•!

#define WTP_WRED

/• WRED_STAT
* ----------
* This option activate all statistics inside WRED dropper
•!

#define WRED_STAT

!• EXT_STAT (experimental - should not be used for stable version)
* --------
* This function enable extended statistics
•!

/• #define EXT_STAT •/

tail-drop

!• *** •!

#endif /• _WTP_COMPIL_OPTIONS •/

A .3 altq wtp util.h
/• Definition of ut i l functions

•
• ALTQ/WTP & WRED implementation

•
• Louis SWINNEN : FUNDP & CRC Alcatel ANTWERPEN

•
* version 0 .6 BETA
•!

#ifndef _ALTQ_WTP_UTIL_H
#define _ALTQ_WTP_UTIL_H
struct timeval elapsedFromNov(struct timeval, struct timeval•);
long convertusec(struct timeval);

struct timeval
elapsedFromNov(tv, gNov)

struct timeval tv;
struct timeval• gNov;

!• compute the time elapsed betveen 'tv' and nov•/

{

struct timeval • nov, novTime, res;

if(!gNov)
nov

else
&novTime;

nov= gNov;

microtime(nov);

res . tv_sec = nov->tv_sec - tv.tv_sec ;
res . tv_usec = nov->tv_usec - tv . tv_usec;
!••···

* Caution ! ! ! 11 now 11 is 'greater' than 11 tv 11
• So, i have :

• (nov . tv_sec > tv . tv_sec) 11 (nov . tv_sec = tv.tv_sec && nov . tv_usec > tv . tv_usec)
(.0

*
*****!

if(res . tv_sec > 0)
{

if(res . tv_usec < 0)
{

res.tv_sec- - ;
res . tv_usec = 1000000 + res . t v_usec;

}
} /* if res.tv_sec = 0, we can return res because res.tv_usec is greater than zero (res.tv_sec < 0 isn't possible) •/

return res;
}

long
convertusec(tv)

struct timeval tv;
{

return(tv . tv_sec•l000000 + tv . tv_usec);
}

#endif /* _ALTQ_WTP_UTIL_H •/

A.4 altq localq.c

!*****
* ALTQ L0CALQ/WTP & WRED implementation
* by Louis SWINNEN FUNDP & Alcatel CRC ANTWERPEN
* Version 0 . 5
*****!

#ifndef _N0_0PT_ALTQ_H_
#include "opt_altq.h"
#if !defined(__ FreeBSD __) 11 (__ FreeBSD __ > 2)
#include "opt_inet .h"
#endif
#endif /• !_N0_0PT_ALTQ_H_ •!
#ifdef L0CALQ /• localq is enabled by L0CALQ option in opt_altq . h •/

#include <sys/param.h>
#include <sys/malloc.h>
#include <sys/mbuf .h>
#include <sys/uio .h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/proc .h>
#include <sys/errno . h>
#include <sys/time .h>
#include <sys/kernel.h>

#include <net / if . h>
#include <net/if_types .h>

#include <net/altq_conf .h>
#include <netinet/in.h>
#include <netinet/in_systm . h>
#include <netinet/ip.h>

#include <netinet/altq_wtp_opt . h>
#include <netinet/altq.h>
#include <netinet/altq_wtp_util.h>

#ifdef WTP_WRED
#include <netinet/altq_wtp_wred2 . c>
#endif /• WTP_RED •/

#include <netinet/altq_wtp . h>

/• Debug options •/
#define WTP_DEBUG
/• #define WTP_DEBUG_TRACING
/• #define WTP_DBGLGHT •/

!•
* localq device interface
•!

altqdev_decl(localq);

static wtp_state_t •wtp_list

/• Function prototype•/

NULL;

static int wtp_flush(struct ifnet•);
static int wtp_setenable(struct wtp_interface•, int);
static int wtp_ifattach(struct wtp_interface•);
static struct mbuf• wtp_ifdequeue(struct ifnet*, int);
static int wtp_config(struct wtp_conf•);
static wtp* classifypacket(int, wtp_state_t•);
static int wtp_ifenqueue(struct ifnet•, struct mbuf*, struct pr_hdr•, int);
static int wtp_ifdetach(struct wtp_interface•);
static int wtp_getstats(struct wtp_getstats•);
static int wtp_setweight(struct wtp_setweight•);
static int stat_reset(struct wtp_interface•);
#ifdef EXT STAT
static int get_extstat(struct ext_stat •);
#endif /• EXT_STAT •/
#ifdef COMP_TIME
static struct timeval refîime(wtp•);

static struct timeval
refîime(wtp* queue)
{

struct timeval tmp;
unsigned long deltaTime queue->head_at->arr_time;
tmp.tv_usec = deltaîime & OxOOOFFFF;
tmp.tv_sec = deltaTime >> 20;
queue->ref_time .tv_sec += tmp .tv_sec;

queue->ref_time . tv_usec += tmp . tv_usec;
if(queue->ref_time . tv_usec >= 1000000)
{

queue->ref_time.tv_usec -= 1000000 ;
queue->ref_time.tv_sec +=1;

}

return(queue->ref_time);
}

#endif /• C0MP_TIME +/

int
localqopen(dev, flag, fmt, p)

dev_t dev ;

{

int flag, fmt;
struct proc +p;

/+ everything will be done when the queueing scheme is attached . +/
#ifdef C0MP_TIME

printf("Compressed Time enabled\n");
#else

printf("Compressed Time disabled\n");
#endif I* C0MP_TIME */
#ifdef WTP _WRED

printf("Weighted RED enabled/Tail Drop disabled\n");
#else

printf("Tail Drop enabled/Weighted RED disabled\n");
#endif /* WTP_WRED •I

return 0;
}

static int
wtp_flush(ifp)

struct ifnet •ifp;
{

struct mbuf •mp;

/* flush all WTP queues attached on this interface •/

while(mp = wtp_ifdequeue(ifp, ALTDQ_DEQUEUE)) /+ != NULL•/
m_freem(mp);

return 0;
}

static int
wtp_setenable(ifacep, flag) /*

{

struct wtp_interface* ifacep;
int flag;

wtp_state_t •wtps;
int errer= 0;

Enable / Disable ALTQ/WTP on this interface •/

if(!(wtps = altq_lookup(ifacep->wtp_ifacename, ALTQT_LOCALQ)))
#ifdef WTP_DEBUG

{

printf("Interface not found (RETURN) \n");
#endif /• WTP_DEBUG •/

return(EBADF);

#ifdef WTP_DEBUG
}

#endif I* WTP_OEBUG •/

}

switch(flag)
{

}

case ENABLE:
error = if_altqenable(wtps - >ifp);
break;

case DISABLE:
error = if_altqdisable(wtps->ifp);
break;

return error;

static int
wtp_ifattach(ifacep) I* Initialize WTP on this interface •/

{
struct wtp_interface •ifacep;

int error = 0, i,j;
struct ifnet •ifp;
struct wtpstate •new_wtps;
wtp •queue;

if((ifp = ifunit(ifacep->wtp_ifacename)) NULL)
{

#ifdef WTP_DEBUG
printf("wtp_ifattach() . . . no ifp found\n");

#endif I* WTP_DEBUG •/
return(ENXIO);

}

if(!ALTQ_IS_READY(ifp))
{

#ifdef WTP_DEBUG
printf("wtp_ifattach() ... altq is not ready\n");

#endif I* WTP_DEBUG •/
return(ENXIO);

}

/• allocate and initialize wtp_state_t •/
MALLOC(new_wtps, wtp_state_t *, sizeof(wtp_state_t), M_DEVBUF , M_WAITOK);
if(!new_wtps)

#ifdef WTP_DEBUG
{

'° CJl

printf("wtp_ifattach() ... not enough memory\n");
#endif /• WTP_DEBUG •/

return(ENOMEM); /* new_wtps == NULL •/
#ifdef WTP_DEBUG

}

#endif /• WTP_DEBUG •/

bzero(new_wtps, sizeof(wtp_state_t));
MALLOC(queue, wtp*, sizeof(wtp) * DEFAULT_QNUMS, M_DEVBUF, M_WAITOK);

if (!queue)
{ I* queue== NULL •/

#ifdef WTP_DEBUG
printf("wtp_ifattach() .. . not enough memory (2)\n");

#endif /• WTP_OEBUG *I

FREE(new_wtps, M_DEVBUF);
return(ENOMEM);

}

bzero(queue, sizeof(wtp) • DEFAULT_QNUMS);
queue [O]. dscp DSCP(O); !• default class
queue[1] .dscp DSCP(1);
queue[2] .dscp DSCP(2);
queue[3) .dscp DSCP(3);

/• keep the ifp •/
new_wtps->ifp = ifp;

!• Ox08; class
I* Ox10; class
!• Ox18; class

new_wtps->nums = DEFAULT_QNUMS; /• 3 •/
new_wtps->bytes = O;
new_wtps->queue = queue;
new_wtps->qlimit = DEFAULT_QLIMIT;

#ifdef EXT_STAT
for(i=O;i<new_wtps->nums;++i)
{

1
2
3

•!
(00)001000 •!
(00)010000 •!
(00)011000 *I

MALLOC(queue[i] .dscp_sent _bytes, u_quad_t*, sizeof(u_quad_t) * WRED _MAXDROP, M_DEVBUF, M_WAITOK);
MALLOC(queue[i] .dscp_drop_bytes, u_quad_t*, sizeof(u_quad_t) * WRED_MAXDROP, M_DEVBUF, M_WAITOK);

}

#endif /• EXT_STAT •/

#ifdef WTP_WRED
if(!(new_wtps->wred = allocWRED_default(new_wtps)))
{

}

printf("if_altqattach() . .. WRED initialisation error\n") ;
FREE(new_wtps->queue, M_DEVBUF);
FREE(new_wtps, M_DEVBUF) ;
return(ENOMEM);

#endif /• WTP_WRED •/

#ifdef WTP_DEBUG
printf("'l.d queues are created with maximum 'l,d bytes inside . \n", new_wtps->nums, new_wtps - >qlimit);
for(i=O;i<new_wtps->nums;++i)
{

printf ("Queue ['l.d] wi th DSCP='l.d/'l.x\n", i, queue [i] . dscp, queue [i] . dscp) ;

}

#endif /* WTP_DEBUG*/

for(i=O;i<new_wtps->nwns;++i, ++queue)
{

/* queue->next = queue->prev = NULL; *I
queue->head = queue->tail = NULL;
queue->head_at = queue->tail_at = NULL; /* We will allocate a struct mb when we will receive a packet •/
queue->size = O;
queue->nbpacket = O;
queue->weight = 1;

#ifdef EXT_STAT
for(j=O;j<WRED_MAXDROP;++j)
{

queue->dscp_sent_bytes[j]
queue->dscp_drop_bytes[j]

}

#ifdef WTP DEBUG
for(j=O;j<WRED_MAXDROP;++j)
{

(i==O?l:0);
O;

printf("Valeur de queue->dscp_sent_bytes[ï.d]
}

#endif /* WTP_DEBUG •/
#endif /• EXT_STAT •/

}

!•
• set WTP to this ifnet structure
•!

ï.u\n", j, queue->dscp_sent_bytes[j]);

if(error = if_altqattach(ifp, new_wtps, wtp_ifenqueue, wtp_ifdequeue, ALTQT_LOCALQ))
{ I* errer != O*/

FREE(new_wtps->queue, M_DEVBUF);
FREE(new_wtps, M_DEVBUF);

#ifdef WTP_DEBUG
printf("wtp_ifattach()

#endif /• WTP_DEBUG *I

}

return(error);
}

new_wtps->next = wtp_list;
wtp_list= new_wtps;
return(error);

errer while if_altqattach(error ï.d) \n", errer);

static struct mbuf• I* provide the next packet choosen by the WTP scheduler •/
wtp_ifdequeue(ifp, mode)

struct ifnet *ifp;
int mode; /* DEQUEUE /FLUSH•/

{

wtp_state_t •wtps;
wtp •queueMAXPRIO=NULL;

int byte, i;
unsigned long maxprio
struct mbuf •mbuf;

#ifdef Q_DELAY

O;

struct timeval SAVEDdelay;
#endif /• Q_DELAY •/

wtps = (wtp_state_t •)ifp->if_altqp;

if(mode == ALTDQ_FLUSH)
{

}

wtp_flush(ifp);
return NULL;

if(mode != ALTDQ_DEQUEUE)
printf("!! No Dequeue !!\n");

if(wtps->bytes == 0)
return NULL; /• no packet in the queues or no active queues•/

for(i=0; i<wtps->nums;++i)
{

long prio = -1;
#ifdef Q_DELAY

struct timeval delay;
#endif /• Q_DELAY •/

if(wtps->queue[i] .tail) /• if this queue isn't empty •/
{

#ifdef WTP_DEBUG
if(!wtps->queue[i] .head 11 !wtps->queue[i] .head_at 11 !wtps->queue[i] . tail_at)

printf("BUG LIST\n");
#endif /• WTP_DEBUG •/
#ifdef C0MP_TIME

#ifdef Q_DELAY
delay = elapsedFromNow(refTime(&wtps->queue[i]), NULL);

wtps->queue[i] .last_del_pack = delay;
prio = convertusec(delay) * (long) wtps->queue[i] .weight;

#else /• Q_DELAY •/
prio = convertusec(elapsedFromNow(refîime(&wtps->queue[i]), NULL)) * (long) wtps->queue[i] .weight;

#endif /• Q_DELAY •/
wtps->queue[i] .head_at->arr_time = 0;

#else /• C0MP_TIME •/
#ifdef Q_DELAY

delay = elapsedFromNow(wtps->queue[i] .head_at ->arr_time, NULL);
wtps->queue[i] . last_del_pack = delay;
prio = convertusec(delay) * (long)(wtps->queue[i] .weight);

#else /• Q_DELAY •/
prio = convertûsec(elapsedFromNow(wtps->queue[i] .head_at->arr_time, NULL)) * (long)(wtps->queue[i] .weight);

#endif /• Q_DELAY •/
#endif /• C0MP_TIME •/

#ifdef WTP _DEBUG
if(prio < 0)

printf("*** BUG PRIO •••\n");
#endif /• WTP_DEBUG •/

CO
00

if(prio >= maxprio)
{

maxprio = pria;
queueMAXPRID = &wtps->queue[i];

#ifdef Q_DELAY
SAVEDdelay

#endif /• Q_DELAY •/
}

}
}

#ifdef WTP_DEBUG
if(!queueMAXPRIO)

delay;

printf("*** BUG queueMAXPRIO NULL\n");
#endif /• WTP_DEBUG •/

mbuf = queueMAXPRID->head; /• queueMAXPRID is the selected queue by the scheduler •/

if(mode == ALTDQ_DEQUEUE) /• dequeue the selected packet •/
{

struct mb• svg;
#ifdef EXT_STAT

int dscp = (int)queueMAXPRID->head_at->dscp;
#endif /• EXT_STAT •/

int byte= mbuf->m_pkthdr.len;
if(!(queueMAXPRID->head = mbuf->m_nextpkt))

queueMAXPRIO->tail = NULL; /• mbuf->m_nextpkt
mbuf->m_nextpkt = NULL;
wtps->bytes -= byte;
queueMAXPRIO->size -= byte;
queueMAXPRID->sent_packets++;
queueMAXPRID->sent_bytes += byte;

EXT_STAT

NULL •/

#ifdef
I• printf("packet dscp = ï.x\n", dscp); •/

queueMAXPRIO->dscp_sent_bytes[DRDPPREC(dscp & Ox0007)]+= byte;
#endif I• EXT_STAT •/

if(!(svg = queueMAXPRIO->head_at->prev))
queueMAXPRIO->tail_at = NULL; /• queueMAXPRIO->head_at->prev

#ifdef WTP_DEBUG

NULL •/

if(queueMAXPRIO->head !=NULL && svg == NULL 11 queueMAXPRID->head == NULL && svg != NULL)
printf("BUG •ifdequeue()• svg and queueMAXPRIO->head doesn't have same size\n");

#endif /• WTP_DEBUG •/

#ifdef
I•

queueMAXPRID->head_at->prev = NULL;
FREE(queueMAXPRIO->head_at, M_DEVBUF); /• Free the mb structure•/
queueMAXPRIO->head_at = svg;

Q_DELAY
queueMAXPRIO->q_delay.tv_sec += SAVEDdelay.tv_sec;

queueMAXPRIO - >q_delay.tv_usec += SAVEDdelay.tv_usec;•/
while(queueMAXPRIO->q_delay.tv_usec >= 1000000)

{

} •/

queueMAXPRIO->q_delay.tv_usec -= 1000000;
queueMAXPRIO->q_delay.tv_sec++;

queueMAXPRIO->mbuf_bytes = byte;
'° '°

#endif I* Q_DELAY *I
#ifdef WTP_WRED

wtps->wred->nbpacket--;
queueMAXPRIO->nbpacket--;
if(!wtps->wred->nbpacket)
{

wtps->wred->idle = O;
microtime(&wtps->wred->last_time);

}

#endif f* WTP_WRED *I
}

return(mbuf);
}

static int
wtp_config(cf) I* configure WTP scheduler in terms of queues and queue limit */

struct wtp_conf *cf;
{

wtp_state_t *wtps;
wtp *queue;
int i,j;

if((wtps=altq_lookup(cf->iface.wtp_ifacename, ALTQT_LOCALQ))
#ifdef WTP_DEBUG

{

printf("wtp_config() ... bad interface\n");
#endif I* WTP_DEBUG *f

return(EBADF);
#ifdef WTP_DEBUG

}

#endif I* WTP_DEBUG *I

if(cf->nqueues < MIN_QNUMS 11 MAX_QNUMS < cf->nqueues)

NULL)

cf->nqueues = DEFAULT_QNUMS; /* CAUTION ! cf is modified if 'nqueues' is bad */

if(cf->qlimit < MIN_QLIMIT 11 cf->qlimit > MAX_QLIMIT)
cf->qlimit = DEFAULT_QLIMIT; /* CAUTION ! cf is modified if 'qlimit' is bad */

if((cf->nqueues != wtps->nums) 11 (cf->qlimit != wtps->qlimit))
{

/* free queued mbuf *I
wtp_flush(wtps->ifp);

#ifdef EXT_STAT
for(i=O;i<wtps->nums;++i)
{

FREE(wtps->queue[i] .dscp_sent_bytes, M_DEVBUF);
FREE(wtps->queue[i] .dscp_drop_bytes, M_DEVBUF);

}

#endif I* EXT_STAT *I

FREE(wtps->queue, M_DEVBUF);

MALLOC(queue, wtp *, sizeof(wtp) * cf->nqueues, M_DEVBUF, M_WAITOK);

if(queue == NULL)

......
0
0

#ifdef WTP_DEBUG
{

printf("wtp_configO . . . not enough memory\n");
#endif /• WTP_DEBUG•/

return(ENDMEM);
#ifdef WTP_DEBUG

}

#endif /• WTP_DEBUG•/
bzero(queue, sizeof(wtp) * cf->nqueues);
wtps->qlimit=cf->qlimit;
wtps->nums = cf->nqueues ;
wtps->bytes 0;
wtps->queue = queue;

#ifdef WTP_DEBUG
printf("'l.d queues are created with maximum 'l.d bytes inside\n", wtps->nums, wtps->qlimit);

#endif /• WTP_DEBUG •/
#ifdef EXT_STAT

for(i=0;i<wtps->nwns;++i)
{

}

MALL0C(queue[i] .dscp_sent_bytes, u_quad_t*, sizeof(u_quad_t) * WRED_MAXDRDP, M_DEVBUF, M_WAITDK);
MALL0C(queue[i] .dscp_drop_bytes, u_quad_t*, sizeof(u_quad_t) * WRED_MAXDR0P, M_DEVBUF , M_WAIT0K);
if(queue[i] .dscp_sent_bytes == NULL)
{

for(j=0; j < i;++j)
{

FREE(queue[j] .dscp_sent_bytes, M_DEVBUF);
FREE(queue[j] .dscp_drop_bytes, M_DEVBUF);

}

FREE(queue, M_DEVBUF);
return(EN0MEM);

}else
if(queue[i] .dscp_drop_bytes
{

NULL)

}

for(j=0; j < i;++j)
{

FREE(queue[j] .dscp_sent_bytes, M_DEVBUF);
FREE(queue[j] .dscp_drop_bytes, M_DEVBUF);

}
FREE(queue[i] .dscp_sent_bytes, M_DEVBUF);
FREE(queue, M_DEVBUF);
return(ENDMEM);

#endif I* EXT_STAT •/
for(i=0;i<wtps->nums;++i, ++queue)
{

queue->head = queue->tail = NULL;
queue->head_at = queue->tail_at NULL;
queue->size = 0;
queue->nbpacket = 0;
queue->weight = 1;
queue->dscp = DSCP(i);

#ifdef EXT_STAT
for(j=0 ;j<WRED_MAXDR0P;++j)
{

queue->dscp_sent_bytes[j] (i==0?l:0);

::i:.

~
,0
1

t--<
0

f2
t--<
,0

G

.....
0

queue->dscp_drop_bytes[j]
}

#endif /• EXT_STAT •/
#ifdef WTP_DEBUG

0;

printf ("Queue [1/.d] DSCP =1/.d/1/.x, weight
#endif /• WTP_DEBUG •/

}

}

}

if(cf->qlimit > 0)
wtps->qlimit cf->qlimit;

return 0;

1\n", i, queue->dscp, queue->dscp);

static wtp*
classifypacket(dscp, wtps)

int dscp;
/• Determine the right queue for the given flow •/

{
wtp_state_t •wtps;

inti;
wtp• default_queue, •queue;

dscp &= 0xF8;

default_queue =queue= wtps->queue;
for(i = 0; i<wtps->nums; ++i, ++queue)
{

}

if(queue->dscp == dscp)
break;

return(i==wtps->nums?default_queue:queue);
/• i wtps->nums --> DSCP is invalid !
* i < wtps->nums --> a queue with the given DSCP was found
•!

}

static int
wtp_ifenqueue(ifp, mp, pr_hdr, mode)

struct ifnet •ifp;

{

struct mbuf •mp;
struct pr_hdr *pr_hdr;
int mode;

wtp_state_t •wtps;
struct flowinfo flow;
struct mb •mb;
int dscp;
wtp •queue;
int byte, error = 0;

if(mode != ALTEQ_N0RMAL)
return 0;

/• Try to enqueue the given packet •/

......
0
I',.?

wtps = (wtp_state_t •) ifp->if_altqp;
rnp - >rn_nextpkt = NULL;

altq_extractflow(mp, pr_hdr, &flow, 0);
dscp = (((struct flowinfo_in•) &flow)->fi_tos) >> 2;

queue= classifypacket(dscp, wtps);

#ifdef WTP_WRED
if((queue->size < wtps->qlirnit) && acceptPacket(DROPPREC(dscp & Ox0007), wtps->wred))

#else
if(queue->size < wtps->qlimit)

#endif
{

MALLOC(mb, struct mb*, sizeof(mb), M_DEVBUF, M_WAITOK);
if(!rnb)
{

}

printf("Error during malloc for mb structure\n");
return(ENOMEM);

#ifdef EXT_STAT
mb->dscp = dscp;

#endif /• EXT_STAT •/
if(!queue->tail)
{

#ifdef WTP_DEBUG
if(queue->head)

/• Allocate the mb structure to store the packet arrival time •/

printf("BUG •enqueue• tail = NULL U head <> NULL\n");
if(queue->tail_at)

printf("BUG •enqueue• synchro mb <-> mbuf\n");
#endif /• WTP_DEBUG •/

/• queue->tail == NULL --> this queue was empty •/
queue->head_at = rnb;
mb->prev = NULL;

#ifdef COMP_TIME

#else

microtime(&queue->ref_time);
queue->last_tirne = queue->ref_time;
mb->arr_time = O;

microtime(&mb->arr_time);
#endif /• COMP_TIME •/

queue->head = mp;
}else
{

#ifdef COMP_TIME
struct timeval tmp queue->last _time;

#endif /• COMP_TIME •/
#ifdef WTP_DEBUG

if(!queue->head)
printf("BUG •enqueue• head = NULL U tail <> NULL !\n");

if(!queue->tail_at)
printf("BUG •enqueue• synchro mb <-> mbuf (2)\n");

#endif /• WTP_DEBUG •/
......
0
c.:,

f* queue->tail != NULL --> this queue isn't empty -> add the packet at the tail of the queue *f
mb->prev = NULL;
queue->tail_at->prev = mb;

#ifdef COMP_TIME
tmp = elapsedFromNow(tmp, &queue->last_time);
mb->arr_time = (tmp.tv_sec << 20) 1 (tmp.tv_usec & OxOOOFFFFF);

#else
microtime(&mb->arr_time);

#endif f* COMP_TIME *f
queue->tail->m_nextpkt = mp;

}

queue->tail_at = mb;
queue->tail=mp;
byte= mp->m_pkthdr . len;
queue->size += byte;
wtps->bytes += byte;
queue->nbpacket++;

#ifdef WTP_WRED
wtps->wred->nbpacket++;

#endif
f*
* call the driver's start routine.
*f

ifp = wtps - >ifp;
if(ifp->if_start && (ifp - >if _flags & IFF_OACTIVE) 0)

(*ifp->if_start)(ifp);
}else
{

queue->drop_packets +=1;
queue->drop_bytes += mp->m_pkthdr.len;

#ifdef EXT_STAT
queue->dscp_drop_bytes[DROPPREC(dscp & Ox0007)] += mp->m_pkthdr.len;

#endif f* EXT_STAT *f
m_freem(mp);
error = ENOBUFS;

}

return error;
}

static int
wtp_ifdetach(ifacep)

struct wtp_interface *ifacep;
{

int error =O;
#ifdef EXT_STAT

int i;
#endif f* EXT_STAT *f

wtp_state_t *wtps;

f* Remove WTP from this interface *f

if(!(wtps = altq_lookup(ifacep->wtp_ifacename, ALTQT_LOCALQ)))
#ifdef WTP_DEBUG

{

printf("wtp_ifdetach() . .. bad interface \n");
#endif f* WTP_DEBUG *f

return(EBADF);
#ifdef WTP_DEBUG

/* Bad interface +/

}

#endif I* WTP_DEBUG *I

I* free queued mb +/
wtp_flush(wtps->ifp);

I* Remove WTP/LOCALQ from the ifnet structure. +/
(void)if_altqdisable(wtps->ifp);
(void)if_altqdetach(wtps->ifp);

/+ Remove from the wtpstate list +/
if(wtp_list == wtps)

else
{

wtp_list wtps->next;

wtp_state_t +wt
do
{

wtp_list;

if(wt->next == wtps)
{

}

wt->next
break;

wtps - >next;

} while(wt = wt->next); /+ wp != NULL +/
}

/• deallocate wtp_state_t +/
#ifdef WTP_WRED

flushWRED(wtps->wred);
#endif
#ifdef EXT_STAT

for(i=O; i< wtps - >nums; ++i)
{

FREE(wtps - >queue[i] .dscp_sent_bytes, M_DEVBUF);
FREE(wtps->queue[i] .dscp_drop_bytes, M_DEVBUF);

}

#endif /+ EXT_STAT +/

}

FREE(wtps->queue, M_DEVBUF);
FREE(wtps, M_DEVBUF);
return error;

static int
wtp_getstats(gs) /+ Provide some statistics for the WTP scheduler +/

{
struct wtp_getstats +gs;

wtp_state_t +wtps;
wtp +queue;
queue_stats +stats;
int i;

if((wtps = altq_lookup(gs->iface .wtp_ifacename, ALTQT_LOCALQ))
#ifdef WTP_DEBUG

{

NULL)

;:i:..

~
-0
1
t--,
0
Q
t--,

~
G

......
0
c.n

printf ("wtp_getstats () . . . bad interface \n");
#endif I* WTP_DEBUG *I

return(EBADF); I* Bad interface *I
#ifdef WTP_DEBUG

}

#endif I* WTP_DEBUG •/

for(i=O, queue=wtps->queue;i<wtps->nums ;++i, ++queue) /• locate the queue with the given DSCP •/
{

}

if(gs->dscp == queue->dscp)
break;

if(i == wtps->nums)
#ifdef WTP_DEBUG

{
printf("wtp_getstats() invalid DSCP \n");

#endif /• WTP_DEBUG •/
return(EINVAL); /• invalid DSCP *I

#ifdef WTP_DEBUG
}

#endif /• WTP_DEBUG •/

stats &:gs->stats;

/• copy queue statistics to gsp structure•/
stats->bytes = queue->size;
stats->nbpacket = queue->nbpacket;
stats - >weight = queue->weight;
stats->sent_packets = queue->sent_packets;
stats->sent_bytes = queue->sent_bytes;
stats->drop_packets = queue->drop_packets;
stats->drop_bytes queue->drop_bytes;

#ifdef Q_DELAY
stats->mbuf_bytes queue->mbuf_bytes;
stats->last_del_pack = queue->last_del_pack;

#endif /• Q_DELAY •/
return O;

}

#ifdef EXT_STAT
static int
get_extstat(es)

{
struct ext_stat •es;

wtp_state_t •wtps;
int i, dscp;
wtp •queue;

if((wtps = altq_lookup(es->iface .wtp_ifacename, ALTQT_LOCALQ))
#ifdef WTP_DEBUG

{

printf("get_extstat() ... bad interface \n");
#endif /• WTP_DEBUG •/

return(EBADF); /• Bad interface *I
#ifdef WTP_DEBUG

NULL)

1-'
Cl
0,

}

#endif /• WTP_DEBUG •/
dscp = es->dscp & 0x00F8;
/• printf("get_extstat() .. . DSCP2int 'l,d, queue->dscp_sent_byte[0]

if(i = DSCP2int(dscp) < 0)
#ifdef WTP_DEBUG

{

printf("get_extstatO . .. invalid DSCP \n");
#endif /• WTP_DEBUG •/

return(EINVAL); /+ invalid DSCP •/
#ifdef WTP_DEBUG

}

#endif /• WTP_DEBUG •/
queue= &(wtps->queue[i]);

}

for(i=0;i<WRED_MAXDR0P;++i)
{

es->dscp_sent_bytes[i]
es->dscp_drop_bytes[i]

}

return 0;

#endif /• EXT_STAT •/

static int
11tp_set11eight(s11)

{
struct 11tp_set11eight •s11;

wtp_state_t
wtp •queue;
int i;

if(s11->11eight < 0)
#ifdef WTP_DEBUG

{

queue->dscp_sent_bytes[i];
queue->dscp_drop_bytes[i];

/• set weight of a queue•/

printf ("11tp_set11eight ... set weight in natural nwnber\n");
#endif /• WTP_DEBUG •/

return(EINVAL); /• wrong nwnber format•/
#ifdef WTP_DEBUG

}

#endif /• WTP_DEBUG •/

if((wtps = altq_lookup(s11->iface .11tp_ifacename, ALTQT_L0CALQ))
#ifdef WTP_DEBUG

{

printf("11tp_set11eight() .. . bad interface \n");
#endif /• WTP_DEBUG •/

return(EBADF); /• Bad interface •/
#ifdef WTP_DEBUG

}

#endif /• WTP_DEBUG •/

queue= wtps->queue;

NULL)

'l.qu\n", DSCP2int(dscp), wtps - >queue[DSCP2int(dscp)] .dscp_sent_bytes); •!

>-'
0
-.J

for(i =0;i<wtps->nums;++i, ++queue)
{

}

if(queue->dscp == sw->dscp)
break;

if(i == wtps->nums)
#ifdef WTP_DEBUG

{

printf("wtp_setweightO ... invalid DSCP \n");
#endif f* WTP_DEBUG *I

return(EINVAL); f* Invalid DSCP */
#ifdef WTP_DEBUG

}

#endif /• WTP_DEBUG *I
queue->weight sw->weight;

return 0;

}

int
localqclose(dev, flag, fmt, p)

dev_t dev;

{

int flag, fmt;
struct pr oc *p;

struct ifnet •ifp;
struct wtp_interface iface;
wtp_state_t •wtps;
int s;

s=splimpO;

/• close L0CALQ/WTP on the device 'dev' •/

while(wtps = wtp_list) /• wtps != NULL •/
{

ifp = wtps->ifp;
#ifdef __ NetBSD __

sprintf (if ace . wtp_ifacename, "%s", ifp->if_xname);
#else

sprintf(iface.wtp_ifacename, "%s%d", ifp->if_name, ifp->if_unit);
#endif

}

iface .wtp_ifacelen = strlen(iface.wtp_ifacename);
wtp_ifdetach(&iface);

}

splx(s) ;
return O;

static int
stat_reset(ifacep) /• Clear all statistics variables •/

struct wtp_interface •ifacep ;

,....
0
00

{

wtp_state_t •wtps;
int i, j;

if(!(wtps = altq_lookup(ifacep->wtp_ifacename, ALTQT_LOCALQ)))
return(EBADF); /• Interface not found •/

for(i=O;i<wtps->nums;++i)
{

wtps->queue[i] .sent_packets
wtps ->queue[i] .drop_packets
wtps - >queue[i] . sent_bytes
wtps->queue[i] . drop_bytes = O;

= O;
= O;
O;

#ifdef Q_DELAY
wtps - >queue[i] . last_del_pack . tv_sec = O;
wtps->queue[i] . last_del_pack . tv_usec = O;

/• wtps->queue[i] .q_delay.tv_sec = O;
wtps->queue[i] .q_delay.tv_usec = O; •/

#endif /• Q_DELAY •/
#ifdef EXT_STAT

for(j=O; j<WRED_MAXDROP;++j)
{

wtps->queue [i] . dscp_sent_bytes [j] 0;
wtps->queue[i] .dscp_drop_bytes[j] O;

}

#endif /• EXT_STAT •/
}

#ifdef WRED_STAT
for(i=O;i<WRED_MAXDROP;++i)
{

wtps->wred->sent_packets[i]=O;
wtps->wred->drop_packets[i]=O;

}

#endif /• WRED_STAT •/

return(O);
}

int
localqioctl(dev, cmd, addr, flag, p) /• main ioctl function for LOCALQ/WTP. It executes the cmd command on the given device (dev) •/

dev_t dev;

{

ioctlcmd_t cmd;
caddr_t addr;
int flag;
struct proc *P;

int error O;
int s;

/• check cmd for superuser only •/
switch(cmd)
{

case WTP_GET_STATS:
break;

#ifdef WTP _WRED

>
t:--<
~
.0
1

t:--<
0

~
t:--<
.0
Q

......
0

'°

case WRED_GETINF0 :
break ;

#ifdef WRED_STAT
case WRED_GETSTAT:

break ;
#endif I* WRED_STAT *I

#endif I* WTP_WRED */
#ifdef EXT_STAT

case GET_EXT_STATS:
break;

#endif I* EXT_STAT *I
default :

}

if ((error = suser(p->p_ucred, &p->p_acflag)) !=0)
{

return(error);
}

break;

s=splimpO;

switch(cmd)
{

case WTP_ENABLE :
error = wtp_setenable((struct wtp_interface *) addr, ENABLE);
break;

case WTP_DISABLE :
error=wtp_setenable((struct wtp_interface *) addr, DISABLE);
break;

case WTP_IF_ATTACH:
error = wtp_ifattach((struct wtp_interface *) addr);
break;

case WTP_IF_DETACH:
error = wtp_ifdetach((struct wtp_interface *) addr);
break;

case WTP_SET_WEIGHT :
error = wtp_setweight((struct wtp_setweight *) addr) ;
break;

case WTP_C0NFIG :
error = wtp_config((struct wtp_conf *) addr);
break;

case WTP_GET_STATS:
error = wtp_getstats((struct wtp_getstats *) addr);
break;

case WTP_STAT_RESET:
error = stat_reset((struct wtp_interface *) addr) ;
break;

#ifdef WTP_WRED

......
0

case WRED_CONFIG:
error = wred_conf((struct wred_config •) addr);
break;

case WRED_GETINFO :
error = wred_getinfo((struct wred_info *) addr);
break;

#ifdef WRED_STAT
case WRED_GETSTAT:

error = wred_getstats((struct wred_stat *) addr) ;
break;

#endif I* WRED_STAT •/

#endif /• WTP_WRED •/
#ifdef EXT_STAT

case GET_EXT_STATS:
error = get_extstat((struct ext_stat •) addr);
break;

#endif /• EXT_STAT •/

}

default :

}

splx(s);

error EINVAL;
break;

return error;

#ifdef KLD_MODULE

#include <net/altq_conf .h>

static struct altqsw localq_sw
{"localq", localqopen, localqclose, localqioctl} ;

ALTQ_MODULE(altq_localq, ALTQT_LOCALQ, klocalq_sw);

#endif /• KLD_MODULE •/

#endif /• LOCALQ •/

A.5 altq wtp wred.h

/ • altq_wtp_wred.h
*
* ALTQ/WTP k WRED Implementation

*
* by Louis SWINNEN : FUNDP k CRC Alcatel Antwerpen

*
* version 0.6 BETA
*

......

*I
#ifndef _NETINET_ALTQ_WTP_WRED_H
#define _NETINET_ALTQ_WTP_WRED_H

#define WRED_MAXDROP 3 I* Maximum 3 drop precedence •/
#define FP_SHIFT 12
#include<netinet/altq_wtp.h>
I* #include<netinet/altq_wtp_opt.h> *I
I* DEFAULT VALUES *I
#define DEF_MINTH 200
#define DEF_MAXTH 1000
#define DEF_NUMDROP 3
#define DEF_WEIGHT 512
#define DEF_MAXP(i) (i)==0?20:(i)==1?10 :5
#define DEF_TTT 800
#define DROPPREC(i) ((i)==2?0:(i)==4?1:(i)==6?2:0)

I* *************** Weighted Random Early Detection ************************
* min_th = minimum threshold : we begin to drop when the average queue size exceed this threshold
* max_th = maximum threshold : All incoming packets are discarded if the Avg Queue Size is above this threshold
* maxp maximum drop probability
* ! maxp/(max_th - min_th) must be a power of two
* C1 maxp/(max_th - min_th) used for EWMA filter
* C2 (maxp * min_th)/(max_th - min_th) = C1 * min_th

*
*
* DROP PROBABILITY :
*
* The first drop probability 'pb' is given by the formula
*Pb= C1 * Avg - C2 Avg = Average Queue Size
*
* The final drop probablity is :
*Pa= Pb/(1- (count * Pb)) [Uniform Random Variable]
* Count = # received packets since the last dropped packet.

*
*
*
*
* ESTIMATED AVERAGE QUEUE SIZE

*
* We will estimate the average queue size with a EWMA filter
*
* Wq = 1/weight
* Avg (1-Wq) Avg + Wq * q
* = Avg + Wq•(q-Avg)
*

Wq must be a (negative) power of two
q = actual queue size

* Because we adjust only the average queue size when a packet arrives, we must take into account the
* time during queue is empty and estimate the number of packet that the queue would be send during this
* inactive time.
*Foran empty queue, we use the following formula :
*
* m = (time - q_time) /s
* Avg = Avg * (1-Wq)-m
*

* time - q_time = time elapsed since the last packet arrival.
* s = typical transmission time
*
*
*
* WARNING To avoid the use of*, /, - operators, we will estimate

these operators require a lot of time.
a lot of parameter because

*
*
*
*

In the kernel, we can't use floating point variable, so
use a fixed point representation.

when it is needed, we will

* FIXED-POINT REPRESENTATION

*
* 31 11 0

* +--- ---- -------------+- --------- --+
*
* +--------------------+------- -----+
*
*
* The bit 12 last bit are considered as decimal part and the 20 other bits are considered as integer part
*

struct wred
{

unsigned short int dropNum; I* number of used drop precedence */
unsigned int inv_maxp[WRED_MAXDROP];
unsigned int weight_power; I* Wq = 1/(2-weight_expo). For instance, 9 for 1/512 •/
unsigned int ttt; /* Typical Transmission Time •/
int count; /• number of received packet since last drop•/
unsigned int nbpacket; /• number of packet in buffers •/
int32_t min_th, max_th, fp_probd[WRED_MAXDROP];
int32_t min_th_s, max_th_s;
int32_t AvgQS;
struct timeval last_time;

/* Average Queue size in FXP notation•/
/• time instant of last packet sent•/

int idle;
int old;
wtp_state_t wtps; I* WTP information•/

#ifdef WRED_STAT
u_int drop_packets[WRED_MAXDROP];
u_int sent_packets[WRED_MAXDROP];

#endif /• WRED_STAT •/
};

struct wtab
{

int w_weight;
int w_param_max;
int32_t w_tab[32];

} * main_wtab;

struct wred_config
{

wtp_iface_t iface;
c..:,

int minTH, maxTH; I* Min & Max Threshold *I
unsigned short int NumDrop; /+ Number of dropPrec *I
unsigned int * maxp; /* table maxp--1 value•/
unsigned int weight ; /• weight used for EWMA filter !! must be a power of two !! •/
unsigned int ttt; /• typical transmission time •/

};

struct wred_info
{

wtp_iface_t iface;
int32_t minTH, maxTH, AvgQS;
unsigned int weightPW;
unsigned int nbpacket;
int count;
u_int •drop_packets, +sent_packets ;

};

#ifdef WRED_STAT
struct wred_stat
{

wtp_iface_t iface;
u_int drop_packets[WRED_MAXDROP], sent_packets[WRED_MAXDROP];

};
#endif /• WRED_STAT •/

#endif /• _NETINET_ALTQ_WTP_WRED_H •/

A.6 altq wtp wred.c

/• ALTQ/WTP & WRED implementation
* Louis SWINNEN : FUNDP & CRC Alcatel Antwerpen

*
* WRED version 0 .6 BETA
•I

#ifndef _NETINET_ALTQ_WTP_WRED_C
#define _NETINET_ALTQ_WTP_WRED_C

#include <netinet/altq_wtp_util.h>
#include <netinet/altq_wtp_wred2.h>
#define int2FXP(i) (i << FP_SHIFT)
#define isEmpty(wred) wred->nbpacket == 0

#define WRED _DEBUG

/• Prototype •I
void mainwtab_alloc(int weight);
int mainwtab_destroy(void);
int32_t wred_pow_w(int n);
int wred_drop_early(int fp_len, int fp_probd, int count);

struct wred• allocWRED(int min_th, int max_th, int numDrop, int maxp[WRED_MAXDROP], int weight, int ttt, wtp_state_t •wtps);
struct wred• allocWRED_default(wtp_state_t •wtps);
void updateAVG(struct wred• wred);
int acceptPacket(int drop, struct wred• wred);
void flushWRED(struct wred• wred);
int wred_getinfo(struct wred_info• info);
#ifdef WRED_STAT
int wred_getstats(struct wred_stat• stat);
#endif /• WRED_STAT •/
/ • The following code is from altq_red . c •/

!•
* helper routine to calibrate avg during idle.
* pow_w(wtab, n) returns (1 -Wq)-n in fixed -point
* here Wq = 1/weight and the code assumes Wq is close to zero.
*
* w_tab[n] holds ((1 - Wq)-(2 -n)) in fixed-point.

*
•!

void
mainwtab_alloc(weight)

int we ight;
{

}

int i;

MALLOC(main_wtab, struct wtab *, sizeof(struct wtab), M_DEVBUF, M_WAITOK);
if (main_wtab == NULL)

panic("wtab_alloc: malloc failed");
bzero(main_wtab, sizeof(struct wtab));
main_wtab->w_weight = weight;

/• Initialize the weight table•/
main_wtab->w_tab[O] = ((weight - 1) << FP_SHIFT) / weight;
for(i = 1; i< 32; ++i)
{

}

main_wtab - >w_tab[i] = (main_wtab->w_tab[i-1) * main_wtab->w_tab[i-1)) >> FP_SHIFT;
if(main_wtab->w_tab[i] == 0 && main_wtab->w_param_max == 0)

main_wtab->w_param_max = 1 << i;

int
mainwtab_destroy(void)
{

}

FREE(main_wtab, M_DEVBUF);
return(O);

int32_t
wred_pow_w(n)

int n;
{

CJl

}

int i, bit;
int32_t val;

if(n >= main_wtab->w_param_max)
return(0);

val= 1 << FP_SHIFT;
if(n <= 0)

return(val);

bit = 1;
i = O;
while(n)
{

if(n &: bit)
{

}

++i;

val= (val* main_wtab->w_tab(i]) >> FP_SHIFT;
n &:= -bit;

bit «= 1;
}

return(val);

I*
* early drop probability is calculated as follows :
* prob = p_max * (avg - th_min) / (th_max - th_min)
* prob_a = prob / (1-count*prob)
* = (avg-th_min) / ((th_max-th_min)*inv_p_max - count *(avg-th_min))
* here prob_a increases as successive undrop count increases.
*

int wred_drop_early(fp_len, fp_probd, count)

{

int fp_len; I* (avg - TH_MIN) in FXP *I
int fp_probd; I* (TH_MAX-TH_MIN) / pmax in FXP *I
int count; I* how many successive undropped packets *I

int d; /* denominator of drop-probability *I

d = fp_probd - count * fp_len;

if(d <= 0)
I* count exceeds the hard limit: drop or mark*/
return(1);

if((random() 7, d) < fp_len)
{

}

I* drop or mark*/
return(1);

I* no drop/mark *I
return(0);

......
0)

}

/• *********************************** end of altq_red.c code** •/

struct vred• allocWRED(int min_th, int max_th, int nwnDrop, int inv_maxp[WRED_MAXDROP] , int veight , int ttt, vtp_state_t •vtps)
{

inti= 0, v=veight;
int32_ t base;
struct vred• vred;

MALLOC(vred, struct vred+, sizeof(struct vred), M_DEVBUF, M_WAITOK);
if (!vred)

return(NULL);
bzero(vred, sizeof(struct vred));

/+ Compute veight expo (must be a power of two) •/
for(i=O; v>1; ++i)

w >>= 1;

vred->veight_power i;

wred - >min_th min_th;
vred->max_th max_th;
wred->min_th_s min_th
wred->max_th_s max_th

«
<<

(vred->weight _power + FP_SHIFT);
(wred->weight _pover + FP_SHIFT);

if(nwnDrop < WRED_MAXDROP)
vred->dropNum nwnDrop;

else
vred->dropNum WRED_MAXDROP;

wred->ttt = ttt;
vred->count = O;

for(i=O ; i<nwnDrop; ++i)
{

vred->inv_maxp[i]
wred ->fp_probd[i]

}

mainvtab_alloc(veight) ;

inv _maxp [i] ;
(1+ (max_th - min_th) * inv_maxp[i]) << FP_SHIFT;

microtime(&vred->last_time);

wred->AvgQS = 0;
wred->idle = 1;

#ifdef WRED_DEBUG
printf("Weighted RED initialized . . . \n");
printf(" . . . min threshold = 'l,d (in FXP)\n",vred->min_th);
printf(" . .. max threshold = 'l,d (in FXP)\n", vred->max_th);
printf(" ... number of drop precedence = 'l,d\n" , vred->dropNum);
printf(" ... veight power for EWMA filter = 'l.d\n", vred->veight_pover);
printf(" ... typical transmission time = 'l,d\n", vred->ttt);
for(i=O;i<nwnDrop;++i)
{

......
-.J

}

#endif

printf (" . . . fp_probd ['l.d]

wtps->wred = wred;
return(wred);

}

FXP('l.d), maxp['l.d]

struct wred* allocWRED_default(wtp_state_t *wtps)
{

int dropPrec[DEF_NUMDR0P] ,i;
for(i = 0; i<DEF_NUMDR0P; ++i)
{

dropPrec[i] = DEF_MAXP(i);
}

'l.d/FXP('l.d)\n",i,wred->fp_probd[i] ,i,inv_maxp[i], int2FXP(inv_maxp[i]));

return(allocWRED(DEF_MINTH, DEF_MAXTH, DEF_NUMDR0P, dropPrec, DEF_WEIGHT, DEF_TTT, wtps));
}

void flushWRED(struct wred* wred)
{

}

FREE(wred, M_DEVBUF);
mainwtab_destroy();

I* return O if packet is dropped and l if packet is accepted *I
int acceptPacket(int drop, struct wred* wred)
{

int avg = wred->AvgQS;
int droptype;

if(wred->idle)
{

}

struct timeval now;
int t, n;

wred->idle = O;
microtime(&now);
t = (now.tv_sec - wred->last_time.tv_sec);
if(t > 60)
{

}

else
{

avg = O;

t = t * 1000000 + (now . tv_usec - wred->last_time . tv_usec);
n = t / wred->ttt - l;
if (n > 0)

avg = (avg >> FP_SHIFT) * wred_pow_w(n);
}

avg += (wred->nbpacket << FP_SHIFT) - (avg >> wred->weight_power);
wred->AvgQS = avg;
f* wred->count++; *I

droptype = O; /• NO DROP•/

if(avg >= wred->min_th_s && wred->nbpacket > 1)
{

if(avg >= wred->max_th_s)
{

droptype = 1;
}else

if(wred->old == 0)
{

wred->count = 1;
wred->old = 1;

}else
if(wred_drop_early((avg - wred->min_th_s) >> wred->weight_power, wred->fp_probd[drop], 0 /• wred->count•/))
{

droptype = 1;
/• #ifdef WRED STAT

wred->drop_packets[drop]++;
#endif •/ /• WRED_STAT •/

}else
wred->count++;

}else
{

wred->old O;
}

#ifdef WRED_STAT
if(!droptype)

wred->sent_packets[drop]++;
else

wred- >drop_packets[drop]++;
#endif /• WRED_STAT •/

return(!droptype);
}

stat ic int
wred_conf(struct wred_config* cf)
{

int i=O, weight = cf->weight;
wtp_state_t •wtps;
struct wred* wred;

if((wtps= altq_lookup(cf->iface .wtp_ifacename, ALTQT_LOCALQ))
return(EBADF);

wred = wtps->wred;

mainwtab_destroy();

if(cf->NumDrop > WRED_MAXDROP)
cf->NumDrop = WRED_MAXDROP;

if (weight == 0)
weight = DEF_WEIGHT;

NULL)

if(cf->ttt == 0)
wred->ttt

else
wred->ttt

DEF_TTT;

cf->ttt;

for(i=0; weight>l; ++i)
weight »= 1;

wred->weight_power i;

cf->minTH;
cf->maxTH;

wred->min_th
wred->max_th
wred->min_th_s
wred->max_th_s

cf->minTH << (wred->weight_power + FP_SHIFT);
cf->maxTH << (wred->weight_power + FP_SHIFT);

wred->AvgQS = 0;
wred->idle = 1;

for(i=0; i<WRED_MAXDR0P; ++i)
{

if(i < cf->NumDrop)
{

}

else

wred->inv_maxp[i]
wred->fp_probd[i]

cf->maxp [i] ;
(1• (wred->max_th - wred->min_th) * wred->inv_maxp[i]) << FP_SHIFT;

wred->inv_maxp[i] 0;
}

mainwtab_alloc(cf->weight);

#ifdef WRED_DEBUG
printf ("Weighted RED initialized .. . \n");
printf(" . . . min threshold = %d (in FXP)\n" ,wred->min_th);
printf(" . .. max threshold = %d (in FXP)\n", wred->max_th);
printf(" . .. number of drop precedence = %d\n", wred->dropNum);
printf(" . .. weight power for EWMA filter = %d\n", wred->weight_power);
printf(" ... typical transmission time = %d\n", wred->ttt);
for(i=0;i<cf->NumDrop;++i)
{

printf (11
• • • fp_probd [%d] FXP(%d), maxp[%d] %d/FXP(%d)\n" , i,wred- >fp_probd[i] ,i,cf->maxp[i], int2FXP(wred->inv_maxp[i]));

}

#endif /• WRED_DEBUG +/

return(0);
}

int wred_getinfo(struct wred_info• info)
{

wtp_state_t •wtps ;
struct wred• wred;

1-'
l'-,)
C)

if((wtps= altq_lookup(info->iface.wtp_ifacename, ALTQT_LOCALQ))
return(EBADF);

wred = wtps->wred;
info->minTH = wred->min_th ;
info->maxTH = wred->max_th;
info->weightPW = wred->weight_power;
info->AvgQS = wred->AvgQS;
info->nbpacket = wred->nbpacket;
info->count = wred->count;
return(O);

}

#ifdef WRED STAT

int wred_getstats(struct wred_stat* stat)
{

inti;
wtp_state_t *Wtps;
struct wred* wred;

if((wtps= altq_lookup(stat - >iface.wtp_ifacename, ALTQT _LOCALQ))
return(EBADF);

}

wred = wtps - >wred;

for(i=O;i<WRED_MAXDROP;++i)
{

stat->drop_packets[i]
stat->sent_packets[i]

}

return(O);

#endif /* WRED_STAT *I

wred->drop_packets[i];
wred->sent_packets[i];

#endif /* _NETINET_ALTQ_WTP_WRED_C •/

A.7 wtpd.c

! •
* WTPd : Waiting Time Priority Scheduler
* for ALTQ/1 . 2 by Louis SWINNEN FUNDP & Alcatel CRC
* Version 0.6 BETA
•!

#include <stdio.h>
#include <stdlib .h>
#include <unistd.h>
#include <string.h>
#include <errno . h>
#include <sys/time .h>
#include <err.h>

NULL)

NULL)

::i,.

:-'1

~
~
~
G

.......
I'-,;)
.......

#include <ctype.h>
#include <signal .h>
#include <sys/socket .h>
#include <sys/ioctl . h>
#include <sys/fcntl . h>
#include <netinet/in.h>
#include <netinet/altq.h>
#include<netinet/altq_wtp_opt.h>
#ifdef WTP _WRED
#define WRED_CONF "wredconf"
#include<netinet/altq_wtp_wred2.h>
#else
#include <netinet/altq_wtp.h>
#endif /• WTP_WRED */
#include <arpa/inet.h>
#undef ENABLE
#undef DISABLE

#define WTP_DEV "/dev/localq"
#ifndef IFNAMSIZ
#define IFNAMSIZ 16
#endif
#define PROMPT "wtpd >"
#define QUIT 11 qUit 11

#define ENABLE 11 enable 11

#define DISABLE "di sabl e"
#define GETSTATS "getstats"
#define SETWEIGHT "setweight"
#define RESETSTAT 11 resetstat 11

#define IFLIST_SIZE 16

#define WTPD_DEBUG

int debug=O;
int interactive O;
int nqueue O;
int qlimit = O;
int niface = O;
char* if_names[IFLIST_SIZE];

!•
* function prototype
•!

static void usage(void);
static void sigint_handler(int sig);
int get_ifname(char* ifnaufe, char *p);
int do_command(int fd, char •buf);

static void
usage(void)
{

fprintf(stderr, "Usage: wtpd [-di] [-n nqueues] [-1 limit] [if_name ...]\n");
fprintf(stderr, " -d: debug (do not daemonize)\n");

-tv
tv

-i : interactive\n"); fprintf (stderr, "
fprintf(stderr, "
fprintf(stderr, "
exit(1);

-n: number of queues (Min : 2, Max : 'l.d\n", MAX _QNUMS);
-1: queue size limit in bytes\n");

}

static void
sigint_handler(int sig)
{

I* do nothing *I
}

void main(int argc, char* argv[J)
{

int fd, ch, i, if_idx;
char *cp, buf[256];

while((ch = getopt(argc, argv, "dil:n : ")) != EDF)
{

switch(ch)
{

case 'd': I* debug mode *I
debug = 1;
break;

case 'i' : I* interactive mode *f
interactive = 1;
break;

case 'l': I* queue size limit (in bytes) *I
cp = NULL;
qlimit = strtol(optarg, &cp, 0);
if(cp != NULL)
{

if(*cp == 'K' 11 *cp 'k')
qlimit *=1024;

else
if(*cp == 'M' 11 *cp == 'm')

qlimit *= 1024*1024;
}

if(qlimit < MIN_QLIMIT)
{

fprintf (stderr, "qlimi t: 'l,d bytes to small (min: 'l.d) ! \n", qlimi t, MIN_QLIMIT) ;
usage();

}

}

}

break;
case 'n' : /* number of queues *f

nqueue = atoi(optarg);
if(nqueue < MIN _QNUMS)
{

}

fprintf(stderr, "nqueues: minimum number of queues
usage();

break ;

#ifdef WTPD_DEBUG

'l,d\n" , MIN_QNUMS);

printf (" [DEBUG] Options
#endif /• WTPD_DEBUG •/

argc optind;
argv += optind;

if(argc > 0)
{

debug 'l,d, interactive 'l.d, qlimit

for(if_idx = O; if_idx < IFLIST_SIZE && argc > O; if_idx ++)
{

}

if_names[if_idx]
argc--;
argv++;

argv[O];

if(if_idx == IFLIST_SIZE)
errx(l, "-wtpd : too many interfaces specified ! ");

}

else if(!interactive)
{

}

fprintf (stderr, "missing interface name
usage();

signal(SIGINT, sigint_handler);
signal(SIGTERM, sigint_handler);

!•
* open file and get a file descriptor
•!

#ifdef WTPD_DEBUG

\n");

printf (" [DEBUG] Attempt to open the device 'l,s\n", WTP _DEV);
#endif /• WTPD_DEBUG •/

if ((fd = open(WTP_DEV, O_RDONLY)) <0)
err(l, "Can't open -wtp device file");

if(interactive)
{

-while (1)
{

printf("'l.s", PROMPT);
fgets(buf, sizeof(buf), stdin);

!•
* execute command
•!

if(do_command(fd, buf) < 0)
break;

}
}

else
{

for(i=O;i<if_idx;++i)
{

'l,d\n", debug, interactive, qlimit);

}

}

sprintf(buf, "%s %s %d", if_names[i], ENABLE, nqueue);
do_command(fd, buf);

if (!de bug)
daemon(0,0);

/* wait for signals and terminate */
pause();

if(debug)
printf("Got signal . Exiting . .. \n");

while(niface > 0)
{

#ifdef WTPD_DEBUG
printf("[DEBUG] Attempt to disable the interface %s\n", if_names[O]);

#endif I* WTPD_DEBUG *I

sprintf(buf, "%s %s", if_names [0], DISABLE);
do_command(fd, buf);

}

#ifdef WTPD_DEBUG
printf (" [DEBUG] Attempt to close the device %s\n", WTP _DEV);

#endif I* WTPD_DEBUG *I

close(fd) ;
}

int get_ifname(char* ifname, char *p)
{

inti ;

for(i=O; i<IFNAMSIZ -1 tt *P != ' ' tt *P != '\t' tt *P !='\n ' ; ++i)
ifname[i] = •p++;

ifname[i] = '\0';

return i;
}

void del_iface(int pos)
{

}

inti;
for(i=pos ; i<niface -1 ; ++i)

if_names[i]=if_names[i+1] ;
niface- -;

int exist_iface(char• ifname_)
{

inti;
f or(i=O;i<niface ;++i)

if(strlen(if_names[i])
return i ;

strlen(ifname_) tt !strcmp(if_names[i) , ifname_))
1-'
l',J
c.n

return -1;
}

int do_command(int fd, char •buf)
{

struct wtp_interface iface;
int len;
char •p, ifname[IFNAMSIZ];

for(p = buf; •p== ' ' 11 *P

if (•p==' \n')
return 0;

) \t); ++p)

if(!strncmp(QUIT, p, strlen(QUIT)))
return -1;

I•
• get interface name
•I

if((len = get_ifname(ifname,p)) == IFNAMSIZ - 1)
{

}

fprintf(stderr, "too long interface name : 'l,s\n", ifname);
return 0;

strcpy(iface.wtp_ifacename, ifname);
iface.wtp_ifacelen = len;

p += len;
while(•p == ' ' 11 *P == '\t')

p++;
if(!strncmp(ENABLE, p, strlen(ENABLE)))
{

int n, q;

#ifdef WTPD _DEBUG
printf(" [DEBUG] ENABLE Identified \n");

#endif /• WTPD_DEBUG •/

p += strlen(ENABLE);

while(•p == ' ' 11 •p == '\t')
++p;

for(n = 0; '0' <= *P && *P <= '9'; ++p)
n= n•l0 + *P - '0';

/• if(n != 0) •/
nqueue = n;

while(•p
++p;

' ' 11 *P '\t')

for(q = 0; '0' <= *P && *P <= '9'; ++p)
q= q•l0 + •p - '0';

/• if(q != 0) •/
qlimit = q;

#ifdef WTPD_DEBUG
printf (" [DEBUG] Attempt to ATTACH .. . \n");

#endif /• WTPD_DEBUG •/

if(ioctl(fd, WTP_IF_ATTACH, &iface) < 0)
err(l, "ioctl WTP_IF_ATTACH");

if(nqueue != 0 11 qlimit != 0)
{

/• configure the interface •/
struct wtp_conf conf;

conf . iface = iface;
conf.nqueues = nqueue;
conf.qlimit = qlimit;

#ifdef WTPD_DEBUG
printf (" [DEBUG] Attempt to configure interface with nqueue Ï,d, qlimi t Ï,d\n", nqueue, qlimit);

#endif /+ WTPD_DEBUG •/

}

if(ioctl(fd, WTP_CONFIG, &conf) < 0)
err(l, "ioctl WTP _CONF");

#ifdef WTPD_DEBUG
printf (" [DEBUG] Attempt to ENABLE\n");

#endif /• WTPD_DEBUG •/

}

else
{

if(ioctl(fd, WTP_ENABLE, &iface) < 0)
err(l, "ioctl WTP_ENABLE") ;

if_names[niface] = (char•)malloc(IFNAMSIZ);
strncpy(if_names[niface++], ifname, len);

if(!strncmp(DISABLE, p, strlen(DISABLE)))
{

inti= exist_iface(ifname);
#ifdef WTPD_DEBUG

printf(" [DEBUG] DISABLE identified \n");
#endif /• WTPD_DEBUG +/

if (i >=O)
{

#ifdef WTPD_DEBUG
printf (" [DEBUG] Attempt WTP _OISABLE \n");

#endif /• WTPD_DEBUG •!

if(ioctl(fd, WTP_DISABLE, &iface) < 0)
err(l, "ioctl WTP_DISABLE") ;

tv
----1

#ifdef WTPD_DEBUG
printf("[DEBUG] Attempt WTP_IF_DETACH ... \n");

#endif /+ WTPD_DEBUG +/

if(iectl(fd, WTP_IF_DETACH, tiface) < 0)
err(l, "iectl WTP_IF_DETACH") ;

free(if_names[i]);
del_iface(i);

}else
printf ("WTPD errer This interface is net enabled . \n");

#ifdef WTPD_DEBUG
printf (" [DEBUG] DISABLE end \n") ;

#endif /+ WTPD_DEBUG +/

}else
{

if(!strncmp(SETWEIGHT, p, strlen(SETWEIGHT)))
{

struct wtp_setweight sw;
sw . iface = iface;
p += strlen(SETWEIGHT);

#ifdef WTPD _DEBUG
printf(" [DEBUG] SETWEIGHT identified \n");

#endif /+ WTPD_DEBUG +/

while (+p== ' ' 1 1 *P '\ t ')
++p;

fer(sw.dscp
sw.dscp

0; '0' <= *P tt *P <='9'; ++p)
sw.dscp * 10 + *P - '0';

while(+p ==' ' 11 *P =='\t')
p++;

for(sw.weight
sw.weight

0; '0' <= *P tt *P <= '9'; ++p)
sw.weight * 10 + *P - '0';

if(exist_iface(ifname) >= 0)
{

#ifdef WTPD _DEBUG
printf("[DEBUG] Attempt WTP_SET_WEIGHT with DSCP
printf(" ... cmd value= Y,d\n", WTP_SET_WEIGHT);

#endif /+ WTPD_DEBUG +/

if(iectl(fd, WTP_SET_WEIGHT, tsw) < 0)
err(l, "iectl WTP _SETWEIGHT");

}else
printf("WTPd errer : interface net enabled\n");

#ifdef WTPD_DEBUG
printf (" [DEBUG] SETWEIGHT end! \n");

#endif /+ WTPD_DEBUG +/

Y,d/Y.x, WEIGHT Y,d ... \n", sw.dscp, sw .dscp, sw .weight);

......
1:0
00

}else
{

if(!strncmp(GETSTATS, p, strlen(GETSTATS)))
{

struct wtp_getstats gs;
gs . iface = iface;

#ifdef WTPD_0EBUG
printf("[DEBUG] GETSTATS identified \n");

#endif /* WTPD_DEBUG •/

#ifdef WTPD_DEBUG

p += strlen(GETSTATS);
while(•p==' ' 11 *P == '\t')

p++;

for(gs .dscp
gs .dscp

0; '0' <= *P && *p<= '9'; ++p)
gs .dscp * 10 + *P - '0';

printf("[DEBUG] Attempt WTP_GET_STATS with dscp 'l,d/'l,x\n", gs.dscp, gs.dscp);
#endif /* WTPD_DEBUG •/

#ifdef WTPD_DEBUG

if(ioctl(fd, WTP_GET_STATS, &gs) < 0)
err(1, "ioctl WTP_GET_STATS");

printf("Bytes = Ï,d\n", gs . stats.bytes);
printf("Weight = Ï,d\n", gs.stats.weight);
printf("Sent packets = ï.u, bytes= 'l,qu\n", gs.stats.sent_packets, gs . stats.sent_bytes);
printf("Drop : packets = Ï,u, bytes= ï.qu\n", gs.stats.drop_packets, gs . stats.drop_bytes);

printf("[DEBUG] GETSTATS end \n");
#endif /* WTPD_DEBUG •/

}

else
{

if(!strncmp(RESETSTAT, p, strlen(RESETSTAT)))
{

int i = exist_iface(ifname);
#ifdef WTPD_DEBUG

#endif /• WTPD_DEBUG •/

#ifdef WTPD_DEBUG

#endif /• WTPD_DEBUG •/

printf(" [DEBUG] RESETSTAT identified \n");

if (i >=0)
{

}

printf("[DEBUG] Attempt WTP_STAT_RESET \n");

if(ioctl(fd, WTP_STAT_RESET, &iface) < 0)
err(1, "ioctl WTP_STAT_RESET");

.....
tv
<.O

}

else
#ifdef WTP_WRED

{

if(!strncmp(WRED_CONF, p, strlen(WRED_CONF)))
{

struct wred_config
{

wtp_iface_t if ace;
int minTH, maxTH;
unsigned short int NumDrop;
unsigned int • maxp;
unsigned int weight;
unsigned int ttt;

} ; •/
struct wred_config conf;
int i = exist_iface(ifname);

if(i >=0)
{

int drop;

conf.iface = iface;
p += strlen(WRED_CONF);

while(•p==' ' 11 *P == '\t')
p++;

Min & Max Threshold
Number of dropPrec
table maxp--1 value
weight used for EWMA filter !! must be a power of two !!
typical transmission time

for(conf.minTH 0; '0' <= *P && •p<= '9'; ++p)
conf.minTH conf.minTH • 10 + •p - •o•;

while(•p==' ' 11 *P == '\t')
p++;

for(conf .maxTH O; '0' <= *P && •p<= '9'; ++p)
conf.maxTH conf.maxTH * 10 + *P - '0';

while(•p==' ' 11 *P == '\t')
p++;

for(conf.NumDrop
conf.NumDrop

O; '0' <= *P && *p<= '9'; ++p)
conf . NumDrop * 10 + *P - '0';

if(conf.NumDrop <= WRED_MAXDROP)
{

int wred_init[WRED_MAXDROP];
for(drop = O; drop< conf.NumDrop; ++drop)
{

while (•p==' ' 11 *P == '\ t ')
p++;

for(wred_init[drop] O; '0' <= *P && *p<= '9'; ++p)

,_.
C;J
0

#endif
{

#ifdef WTP_WRED

#endif I* WTP_WRED *I
}

}

}

}
}

return 0;
}

wred_init[drop] wred_init[drop] * 10 + *P - '0';
}

conf.maxp wred_init;

while (*p==' ' 11 *P == '\ t ')
p++;

for(conf.weight
conf.weight

0; '0' <= *P && *p<= '9'; ++p)
conf .weight * 10 + *P - '0';

while(*p==' ' 11 *P == '\t')
p++;

for(conf.ttt
conf . ttt

0; '0' <= *P && *p<= '9'; ++p)
conf.ttt * 10 + *P - '0';

if(ioctl(fd, WRED_C0NFIG, &conf) < 0)
err(1, "ioctl WRED_C0NFIG");

}else
{

printf("The given number of drop precedence is too large (MAX: Ï,d)\n", WRED_MAXDR0P);
}

}else
{

printf("This interface isn't initialised\n");
}

}else

fprintf(stderr, "Usage
fprintf (stderr, "
fprintf(stderr, "
fprintf(stderr, "
fprintf(stderr, "

fprintf (stderr, "

interface ï.s [nqueues [qlimit]]\n", ENABLE);
interface ï.s\n", DISABLE);
interface ï.s dscp\n", GETSTATS);
interface ï.s dscp weight \n", SETWEIGHT);
interface ï.s\n", RESETSTAT);

interface ï.s minTH maxTX numDrop {maxp} weight ttt\n", WRED_C0NF); }

......
C;J

A.8

I•
WTPStat . c

wtpstat.c

by Louis SWINNEN - FUNDP & Alcatel CRC ANTWERPEN
Version 0.6 BETA
•I

/• Compiler Option •I
#include <netinet/altq_wtp_opt.h>

#define int2FXP(i) ((i) « FP_SHIFT)
#define FXP2int(i) ((i) » FP_SHIFT)
#define FLOAT(i) ((float)

#include <stdio .h>
#include <stdlib .h>
#include <unistd .h>
#include <string . h>
#include <signal. h>
#include <errno .h>
#include <err.h>
#ifndef NO_CURSES
#include <curses . h>
#endif /• ND_CURSES •I

#include<math.h>
#include <sys/param . h>
#include <sys/ioctl.h>
#include <sys/fcntl .h>
#include <sys/time .h>

#include <sys/socket.h>
#include <net/if.h>

#include <netinet/altq . h>

(i))

#define WTP_DEVICE
#define NTDP 10

"/dev/localq"

#ifdef WTP_WRED
#include<netinet/altq_wtp_wred2 . h>
#else
#include <netinet/altq_wtp . h>
#endif /• WTP_WRED •/

/• #define WTPSTAT_DEBUG •/

int file=O;
u_quad_t •oldSentByte, •dscpSentByte;
FILE* fiSt[7], *fiWRED;

float convertmsec(struct timeval tv)
{

.....
c,...,
~

return(((float)tv . tv_sec•1000.0) + ((float)tv . tv_usec/1000 . 0));
}

struct wtpinfo
{

};

int dscp;
queue_stats stats;
u_quad_t last_bytes;
double mbps;

int fd = -1;
char* if_name = NULL;
int interval = 5;
int ntop = NTOP;

static void
usage (void)
{

}

fprintf(stderr, "usage: wtpstat [-i interval] [-n ntop] [-f base name of] interface\n");
exit(l);

static void
sigint_handler(int sig)
{

int i;
#ifndef NO_CURSES

if(!file)
endwin();

#endif /• NO_CURSES •/

fprintf(stderr, "Exiting on signal 'l.d\n", sig);

close(fd);
free(oldSentByte);
free(dscpSentByte);

for(i=O; i< file; ++i)
{

fclose(fiSt[i]);
#ifdef \ITP_\IRED

fclose(fi\lRED);
#endif /• \ITP_\IRED •/

}

exit(O);
}

int main(int argc, char ••argv)
{

struct wtp_getstats wtp_stats;
#ifdef \IRED_STAT

struct wred_stat wred_stats;
#endif /• \IRED _STAT •/

struct timeval cur_time, last_time;
u_quad_t xmit_bytes, last_bytes;
int msecG, i, j, k, nqueue;
char• if_name;
char fn[35], ffn[255];
int ch;
struct wtpinfo •qinfo, ••top;

#ifdef WTP_WRED
struct wred_info info;

#endif /• WTP_WRED •/
#ifdef EXT_STAT

struct ext_stat es;
#endif /• EXT_STAT •/

for(i=O;i<7;++i)
{

fiSt[7]=NULL;
}

while((ch=getopt(argc, argv, "i :n:f:")) != EDF)
{

switch(ch)
{

case 'i' :
interval
break;

case 'n' :

atoi(optarg);

ntop = atoi(optarg);
break;

case 'f' :
sprintf (fn, "'l.s", optarg) ;
printf (" [DEBUG] us ing OUTPUT FILE 'l,s \n" , fn) ;
file = 1;
break;

}
}

argc -= optind;
argv +=optind;
if(argc > 0)
{

}

else
{

}

if_name argv[O];

if(argc==O)
fprintf (stderr, "missing interface name\n");

usage();

signal(SIGINT, sigint_handler);
signal(SIGTERM, sigint_handler);

if((fd = open(WTP_DEVICE, O_RDONLY)) < 0)
err(l, "wtp open");

if(strlen(if_name) > IFNAMSIZ)
err(l, "interface name 1/,s too long!\n", if_name);

wtp_stats . iface .wtp_ifacename[IFNAMSIZ-1) = '\0';
strncpy(wtp_stats.iface.wtp_ifacename, if_name, IFNAMSIZ-1);
wtp_stats.iface.wtp_ifacelen = strlen(wtp_stats.iface .wtp_ifacename);

#ifdef WTP_WRED
info . iface .wtp_ifacename[IFNAMSIZ-1) = '\0';
strncpy(info.iface.wtp_ifacename, if_name, IFNAMSIZ-1) ;
info.iface.wtp_ifacelen = strlen(info.iface .wtp_ifacename);

#endif /• WTP_WRED •/

#ifdef EXT_STAT
es . iface.wtp_ifacename[IFNAMSIZ-1) = '\0';
strncpy(es . iface.wtp_ifacename , if _name, IFNAMSIZ-1);
es . iface.wtp_ifacelen = strlen(es.iface .wtp_ifacename);

#endif /• EXT_STAT •/

#ifdef WRED_STAT
wred_stats.iface.wtp_ifacename[IFNAMSIZ-1) = '\0';
strncpy(wred_stats . iface .wtp_ifacename, if_name, IFNAMSIZ-1);
wred_stats.iface .wtp_ifacelen = strlen(wred_stats.iface . wtp_ifacename);

#endif /• WTP_STAT •/

!•
* first, find out how many queues are available
•I

for (i=0; i<MAX_QNUMS; ++i)
{

wtp_stats.dscp = DSCP(i);

if(ioctl(fd, WTP_GET_STATS, &wtp_stats) < 0)
break;

}

if (file)
file

else
nqueue

nqueue = i ;

i;

printf("wtp on 1/,s: 1/.d queues are used\n", if_name, nqueue);

qinfo = malloc(nqueue * sizeof(struct wtpinfo));
top= malloc(ntop * sizeof(struct wtpinfo•));
if(!qinfo 11 !top)

err(l, "malloc failed");
if(!file)
{

#ifndef N0_CURSES
sleep(2) ; / * wait a bit before clearing the screen •/
ini tscr();

#endif /• N0_CURSES •/
}

C;.)
Cl1

gettimeofday(tlast_time, NULL);
last_time.tv_sec -= interval;
last_bytes = O;

if (file)
{

for(i=O;i<nqueue;++i)
{

sprintf (ffn, "'l.s . queue'l.i . csv" , fn, i) ;
fiSt[i] = fopen(ffn , "wt ");
if(!fiSt [i])
{

}

printf("Can't open 'l.s " , ffn);
exit(255);

fprintf (fiSt [i], "WTPStat file, Louis SWINNEN\n");
fprintf(fiSt[i], "Queue:, 'l.d, DSCP = 'l.x, 'l.d\n",i, DSCP(i), DSCP(i));

#ifdef Q_DELAY
#ifdef EXT_STAT

fprintf(fiSt[i] ,"Weight,QS # Packet,QS(KB),# packets sent, # KB sents, # pkts dropped, # KB dropped, \\
Throughput (mbps),Throughput DROP_O,Throughput DROP_1,Throughtput DROP_2, Avg Queueing Delay, Queueing Delay\n");

#else
fprintf(fiSt[i] ,"Weight,QS # Packet,QS(KB),# packets sent, # KB sents, # pkts dropped, # KB dropped, \\
Mbps, Avg Queueing Delay, Queueing Delay\n");

#endif /• EXT_STAT •/
#else

#ifdef EXT_STAT

#else

fprintf(fiSt[i] ,"Weight,QS # Packet,QS(KB),# packets sent, # KB sents, # pkts dropped, # KB dropped, \\
Throughput (mbps), Throughput DROP_O, Throughput DROP_1, Throughtput DROP_2\n");

fprintf(fiSt[i],"Weight,QS # Packet,QS(KB),# packets sent, # KB sents, # pkts dropped, # KB dropped, Mbps\n");
#endif /• EXT_STAT •/

#endif /• Q_DELAY •/

}

#i fdef WTP_WRED
sprintf(ffn,"'l.s .wred . csv", fn) ;
fiWRED = fopen(ffn, '.'wt");
if(!fiWRED)
{

}

printf("Can't open 'l.s", ffn);
exit(255) ;

fprintf(fiWRED, "MinTH,MaxTH,AvgQS,QS,Count\n");

#endif /•WTP_WRED •/
}

#ifdef EXT_STAT
oldSentByte = malloc(sizeof(u_quad_t)•nqueue•WRED_MAXDROP);
dscpSentByte = malloc(sizeof(u_quad_t)•nqueue•WRED_MAXDROP);

for(i=0;i<nqueue;++i)
for(j=0;j<WRED_MAXDR0P;++j)
{

}

/* printf("i= %d, j= %d, val= %d\n", i, j, i*WRED_MAXDR0P + j); *I
dscpSentByte[i•WRED_MAXDR0P+j]=0;
oldSentByte[i•WRED_MAXDR0P+j]=0;

#endif /• EXT_STAT •/

11hile (1)
{

for(j=0; j< ntop; ++j)
top[j] = NULL;

for(i=0; i<nqueue ; ++i)
{

}

11tp_stats.dscp = DSCP(i);

if (ioctl (fd, WTP_GET_STATS, &wtp_stats) < 0)
err(l, "ioctl WTP _GET_STATS ");

qinfo[i] .dscp = DSCP(i);
qinfo[i) . stats = wtp_stats . stats;

gettimeofday(&cur_time, NULL);
msecG = (cur_time . tv_sec - last_time.tv_sec) * 1000 + (cur_time.tv_usec - last_time . tv_usec) / 1000;
last_time = cur_time;

#ifdef WTP _WRED
if (ioctl (fd, WRED_GETINF0, &info) < 0)

err(l, "ioctl WRED_GETINF0");

#i fdef WRED_STAT
if (ioctl (fd, WRED_GETSTAT, &wred_stats) < 0)

err(l, "ioctl WRED_GETSTAT");
#endif /• WRED_STAT •/
#endif /• WTP _WRED •/

!•
* calculate the throughput of each queue
•!

for(i=0 ; i<nqueue ; ++i)
{

#ifdef EXT_STAT
es .dscp = DSCP(i);
/• printf("************** DSCP = %x *******************\n", es .dscp); •!
if (ioctl (fd,GET_EXT_STATS, &es) < 0)

err(l, " ioctl GET_EXT_STATS");

for(j=0;j<WRED_MAXDR0P;++j)
{

}

oldSentByte[i*WRED_MAXDROP + j] = dscpSentByte[i*WRED_MAXDROP + j];
dscpSentByte[i*WRED_MAXDROP + j] = es .dscp_sent_bytes[j];

#endif /* EXT_STAT */
xmit_bytes = qinfo[i] . stats . sent_bytes - qinfo[i] .last_bytes;
qinfo[i] .mbps = (double)xmit_bytes * 8 .0 / (double)msecG * 1000 .0 / 1000 .0 / 1000.0;
qinfo[i] . last_bytes = qinfo[i] .stats.sent_bytes;

for(j=O;j<ntop;++j)
{

if(top[j]==NULL)
{

}

top[j] = tqinfo[i];
break;

if (top[j]->mbps < qinfo[i] .mbps 11 (top[j]->mbps
{

qinfo[i] .mbps tt top[j]->stats . sent_packets < qinfo[i] . stats.sent_packets))

#ifdef

#else

}

}
}

for(k=ntop-l;k>j; --k)
top[k] = top[k-1];

top[j] = tqinfo[i];
break;

I*
• display top
*I

if(!file)
{

Q_DELAY
printf (" [ID] W. QS (KB) SENT(pkts) (KB) DROP(pkts) (KB)

printf (" [ID] W. QS (KB) SENT(pkts) (KB) DROP(pkts) (KB)
#endif !• Q_DELAY •/

for(j=O;j<ntop;++j)
{

if(top[j] != NULL)
#ifdef Q_DELAY

{

I* float msec = convertmsec(top[j]->stats.tot_delay);
float spack = (float) (top[j]->stats . sent_packets); •!
printf("[%2d] %1d %2d %4d %10u %14qu %10u %14qu %8 .2f %ld \t\t%d\n",

#else

#endif /• Q_DELAY •/
printf (" [%2d] %1d %2d %4d %10u %14qu %10u %14qu %8. 2f\n",

top[j]->dscp,
top[j]->stats.weight,
top[j]->stats.nbpacket,
top[j]->stats.bytes / 1024,
top[j]->stats . sent_packets,
top[j]->stats.sent_bytes / 1024,

Mbps Delay(msec)\n");

Mbps\n");

,_.
e,..,
00

top[j]->stats . drop_packets,
top[j]->stats . drop_bytes / 1024,

#ifdef Q_DELAY

}

#else

top[j]->mbps,
/• spack>O?(msec / spack) :O,•/
top[j]->stats.last_del_pack.tv_usec,
top[j]->stats.mbuf_bytes);

top [j] ->mbps);
#endif /• Q_DELAY •/

else
printf("\n");

}

#ifdef WTP_WRED
printf("\n\nWRED Informations :\n");
printf("MinTH (FXP) : 'l,d('l,d), MaxTH (FXP) : 'l,d('l,d)
printf ("MinTH_S : 'l,d, MaxTH_S : 'l,d

(info.maxTH << (info.weightPW + FP_SHIFT)));
printf("AvgQS(FXP) : 'l,d('l,d)
printf("QS(FXP) : 'l,d('l.d)
printf ("Count : 'l.d\n", info. count);

#ifdef WRED_STAT
for(j=O;j<WRED_MAXDROP;++j)
{

printf ("# drop ['l.d] ='l.d\ t", j, wred_stats. drop_packets [j]) ;

\n", info . minTH, int2FXP(info.minTH), info.maxTH, int2FXP(info.maxTH));
\n", (info.minTH « (info.weightPW + FP_SHIFT)) , \\

\n", (FXP2int(info . AvgQS) >> info.weightPW), info . AvgQS);
\n", info .nbpacket, int2FXP(info .nbpacket));

printf("# sent['l.d]='l.d\t('l.4 . 2f)\n",j, wred_stats.sent_packets[j], wred_stats . sent_packets[j]>O ? \\
FLOAT(wred_stats . drop_packets[j]) / FLOAT(wred_stats . sent_packets[j] + wred_stats.drop_packets[j]) O);

}

#endif /• WRED_STAT •/
#endif /• WTP_WRED •/

#ifndef NO_CURSES
refresh();
mvcur(ntop+l,0,0,0);

#endif
}else
{ /• ! FILE •/

for(j=O;j<ntop;++j)
{

#ifdef Q_DELAY

if(top[j] != NULL)
{

#ifdef EXT_STAT
fprintf (f iSt [DSCP2int (top [j] ->dscp)] , "'l.d, 'l.d, 'l.d, 'l.u, 'l.qu, 'l.u, 'l.qu, 'l.f, 'l.f, 'l.f , 'l.f, 'l.ld\n",

#else
fprintf (f iSt [DSCP2int (top [j] ->dscp)] , "'l.d, 'l.d, 'l.d, 'l.u, 'l.qu, 'l.u, 'l.qu, 'l.f, 'l.ld\n",

#endif /• EXT_STAT •/
#else /* Q_DELAY •/

#ifdef EXT_STAT
fprintf (fi St [DSCP2int (top [j] ->dscp)] , "'l.d, 'l.d, 'l.d, 'l.u, 'l.qu, 'l.u, 'l.qu, 'l.f, 'l.f, 'l.f\n",

#else
fprintf (f iSt [DSCP2int (top [j] ->dscp)] , "'l.d, 'l.d, 'l.d, 'l.u, 'l.qu, 'l,u, 'l.qu, 'l.f \n",

#endif /• EXT_STAT •/
.....
c.v
tO

#endif /• Q_DELAY •/

#ifdef Q_DELAY

#ifdef EXT_STAT

#endif /• EXT_STAT •/

#else

#ifdef EXT_STAT

#endif /• EXT_STAT •/

#endif /• Q_DELAY •/

}

}

#ifdef WTP_WRED

top[j] - >stats .veight,
top[j]->stats.nbpacket,
top[j]->stats.bytes / 1024,
top[j]->stats . sent_packets,
top[j] - >stats.sent_bytes / 1024,
top[j] - >stats.drop_packets,
top[j]->stats.drop_bytes / 1024,

top [j] ->mbps,

((double)(dscpSentByte[DSCP2int(top[j]->dscp) • WRED_MAXDR0P + 0] - oldSentByte[DSCP2int(top[j]->dscp) • \\
WRED_MAXDR0P + 0])) • 8 .0 / (double)msecG • 1000 .0 / 1000.0 / 1000 .0,

((double)(dscpSentByte[DSCP2int(top[j]->dscp) • WRED_MAXDR0P + 1]-oldSentByte[DSCP2int(top[j]->dscp) * \\
WRED_MAXDR0P + 1])) • 8 .0 / (double)msecG • 1000 .0 / 1000.0 / 1000 .0,

((double)(dscpSentByte[DSCP2int(top[j]->dscp) • WRED_MAXDR0P + 2]-oldSentByte[DSCP2int(top[j]->dscp) * \\
WRED_MAXDR0P + 2])) • 8.0 / (double)msecG • 1000 .0 / 1000.0 / 1000.0,

top[j]->stats . last_del_pack.tv_usec);

top[j]->mbps

,((double)(dscpSentByte[DSCP2int(top[j]->dscp) • WRED_MAXDR0P + 0]-oldSentByte[DSCP2int(top[j]->dscp)• \\
WRED_MAXDR0P + 0])) • 8.0 / (double)msecG • 1000 .0 / 1000.0 / 1000.0,

((double)(dscpSentByte[DSCP2int(top[j]->dscp) • WRED_MAXDR0P + 1]-oldSentByte[DSCP2int(top[j]->dscp) • \\
WRED_MAXDR0P + 1])) • 8.0 / (double)msecG • 1000 .0 / 1000 .0 / 1000.0,

((double)(dscpSentByte[DSCP2int(top[j] - >dscp) • WRED_MAXDR0P + 2]-oldSentByte[DSCP2int(top[j]->dscp • \\
WRED_MAXDR0P + 2])) • 8.0 / (double)msecG • 1000.0 / 1000.0 / 1000.0,

) ;

#ifdef WRED_STAT
fprintf(fiWRED,"7.d,7.d,7,d,7,d,7.d,",

#else /• WRED_STAT •/
fprintf(fiWRED,"7.d,7.d,7,d,7,d,7,d\n",

#endif !• WRED_STAT •/
info.minTH,
info.ma:xTH,
(FXP2int(info.AvgQS) >> info.veightPW),
info.nbpacket,
info. count);

#i fdef WRED_STAT
for(j=0;j<WRED_MAXDR0P;++j)
{

fprintf (fiWRED, "# drop [7.d], 7,d, ", j, vred_stats. drop_packets [j]);
fprintf(fiWRED, "# sent['l,d],7,d,",j, vred_stats.sent_packets[j]);

}

fprintf(fiWRED,"\n");
#endif /• WRED_STAT •/

......
,i,.
0

#endif /• WTP_WRED •/

}

}

sleep(interval);
}
return(O);

,_.
,1::.. ,_.

142
APPENDIX A. IMPLEMENTATION

Bibliography

[1] S. Blake, D. Blake, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An Architecture
for Differentiated Services. RFC 2475, December 1998.

[2] J-Y. Le Boudec and F . Parkas. A Delay Bound for a Network with Aggregate Schedul
ing, May 1998.

[3] R. Braden and al. Recommendations on Queue Management and Congestion Avoid
ance in the Internet. RFC 2309, April 1998.

[4] R. Braden, D. Clark, and S. Shenker. Integrated Services in the Internet Architecture:
an Overview. RFC 1633, June 1994.

[51 K. Cho. A Framework for Alternate Queueing: Towards Traffic Management by PC
.'TNIX Based Routers. In USENIX 1998 Annual Technical Conference, pages 247- 258,
Jù·ne 1998.

[6] K. Cho. Managing Traffic with ALTQ. In USENIX 1999
Annu'.tû Technical Conference: FREENIX Track, June 1999.
http://www.usenix.org/events/usenix99/technical_freenix.html.

[7] D. D. Clé. .. rk and W. Fang. Explicit Allocation of Best Effort Packet Delivery Service.
IEEE/ A C1'tf Transactions on Networking, 6:362- 373, August 1998.

[8] S. De Cnoddt•r and K. Pauwels. Relative Delay Priorities in a Differentiated Services
Network Arch1 çecture. Deliverable, Alcatel Corporate Research Center, 1999.

[9] S. De Cnodder, '. Pauwels, and O. Elloumi. A Rate Based RED Mechanism. In 10th
International Worrkshop on Network and Operating System Support Digital Audio and
Video - NOSSDA \V 2000, Chapel Hill , North Carolina, USA, June 2000.

[10] A. Demers, S. Keshav, and S. Shenker. Analysis and Simulation of a Fair Queuing
Algorithm. Internet working : Research and Experience, 1(1):3-26, 1990.

[11] C. Dovrolis and P. füamanathan. A Case for Relative Differentiated Services and the
Proportional Differentiation Model. In IEEE Network Magazine, September 1999.

l
[12] C. Dovrolis and P. Pfamanathan. Proportional Differentiated Services, Part II : Loss

Rate Differentiation .and Packet Dropping. In ACM SIGCOMM, June 2000.

}
143

144 BIBLIOGRAPHY

[13] C. Dovrolis, D. Stiliadis, and P. Ramanathan. Proportional Differentiated Services :
Delay Differentiation and Packet Scheduling. In ACM SIGCOMM, September 1999.

[14] S. Floyd and V. Jacobson. Random Early Detection Gateways for Congestion Avoid
ance. IEEE/ A CM Transaction on Networking, 1:397- 413, August 1993.

[15] S. Golestani. A Self-Clocked Fair Queueing Scheme for Broadband Applications. In
IEEE INFOCOM '94, pages 636-646, April 1994.

[16] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski. Assured Forwarding PHB Group.
RFC 2597, June 1999.

[17] Information Sciences Institute. Internet Protocol - DARPA Internet Program Protocol
Specification. RFC 0791, University of Southern California, September 1981.

[18] V. Jacobson, K. Nichols, and K. Poduri . En Expedited Forwarding PHB. RFC 2598,
June 1999.

[19] G. Jennes, G. Leduc, and M. Tufail. A Scheduler for Relative Delay Service Di.fferen
tiation, 2000.

[20] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The Macroscopic Behavior of the TCP
Congestion Avoidance Algorithm. Computer Communication R eview, 27(3):67- 82,
July 1997.

[21] K. McKusick, K. Bostic, M. Karels, and J . Quaterman. The Design and Implementa
tion of the 4.4BSD Operating System. Addison - Wesley, 1996.

[22] K. Nichols, S. Blake, F. Baker, and D. Black. Definition of the Differentiated Services
Field (DS Field) in the IPv4 and IPv6 headers. RFC 2474, December 1998.

[23] A. M. Odlyzko. Paris Metros Pricing : The Minimalist Differentiated Services Soluti~>n.
In IEEE/IFIP International Workshop on Quality of Service, June 1999.

[24] J. Padhye, V. Firoiy, D. Towsley, and J. Kurose. Modeling TCP Throughr,{it: A

[25]

[26]

Simple Model and its Empirical Validation, May 1998. '

A. K. Parekh and R. G. Gallager. A Generalized Processor Sharing Arproach to
Flow Control in Integrated Services Networks : The Single-Node Case. 1.EEE/ACM
Transaction on Networking, 1(3):344-357, June 1993. ;'

The FreeBSD Documentation Project. FreeBSD HandBook, Frebruary 1999.
ftp://ftp.FreeBSD.org/pub/FreeBSD/doc.

[27] T. Soetens, S. De Cnodder, and O. Elloumi . A Relative Bandwidtvh Differentiated
Service for TCP Micro-flows. In Proc. of Internet QoS IQ 2001, Br:tsbane, Australia,
May 2001.

[28] A. Tanenbaum. Computer networks. Prentice Hall, 1997.

[29] G. R. Wright and W. R. Stevens. TCP / IP Illustrated, volume h of Professional
Computing Series. Addison - Wesley, 1995.

J

