
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Intrusion detection through autonomous agents

Dumont, Frédéric

Award date:
1999

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 09. Apr. 2024

https://researchportal.unamur.be/en/studentTheses/091961fd-d3b8-4346-9ffa-529bf9ca09ab

Facultés Universitaires Notre-Dame de la Paix
Institut d'Informatique

Rue Grangagnage, 21, B-5000 Namur, (Belgium)

Intrusion Detection
through Autonomous

Agents

Frédéric Dumont

September 1999

Supervisor: Baudouin Le Charlier

Acknowledgements

First, I would like to thank my supervisor, Baudouin Le Charlier, for his help, his
advices, and his patience. Then, in no specific order, Gene Spafford and Diego
Zamboni, who made my internship so enjoyable, David Corcoran, for being such
a nice buddy, and all the other members of the Coast Laboratory, my family and
especially my sister Catherine who took the time to correct my English.

Finally, this work could not have been done without the efforts of Donald E.
Knuth, Richard M. Stallman, Larry Wall and Linus Torvalds.

iii

Abstract

Computer security is a requirement of modern business. Intrusion Detection Sys­
tems are an essential part of that security. Several types of IDS must be used to
ensure a maximal monitoring. Moreover, autonomous agents working together to
evaluate threats is a promising idea. Therefore, it is natural to integrate IDS and
agents into a coherent system with a single point of control. Current AAFID's evo­
lution could lead to a framework where such an integration is made easier. Part of .
this evolution is due to the new communication mechanism based on events.

V

Foreword

This dissertation is divided in two parts. The first part is an introduction to com­
puter security and security tools. It was not meant to be an extensive description
of computer security. Its purpose is to place Intrusion Detection Systems in their
context.

The second part devoted to IDS, and mostly to AAFID. While I was in Purdue,
I was given the opportunity to work on it. My first modifications were mostly bug
fixes, but the later could not be merged into the main code without many other
adaptations. Therefore, I will also explain why such a change was needed, how it
was done and what else can be done.

vii

Contents

Acknowledgements

Abstract

Foreword

1. Introduction to Computer Security
1. 1. Privacy and Integrity of Data and Computers .
1. 2. Security Policy
1. 3. Vulnerabilities
1.4. Intrusions
1. 5. Security through Obscurity

1.5. 1. Why it does not work .
1.5.2. When it could work .

1.6. Softwares' Ecology
1. 7. Planning
1.8. Users' Education
1. 9. Conclusion . . .
1. 10 .Static Security .

1. 10. l .Operating System .
1. 10.2.Cryptography . . .
1. 10.3.Firewall
1.10.4.Vulnerabilities Scanner

1.11.Active Security
1. 11. 1.Entrapment System . .
1.11. 2 .Intrusion Detection System

2. 1 ntrusion Detection Systems
2 . 1. Kind of threats .

2 . 1. 1. Misuse . .
2. 1.2. Anomaly . .

2.2. I DS Architectures .
2.2. 1. Host based I DS

iii

V

vii

1
1
2
2
3
4
4
5
5
5
6
7
8
8
8

10
10
10
11
11

13
13
13
13
14
15

ix

Contents

2.2.2. Multi-hosts based
2.2.3. Network based . .

2.3. Reactive or Proactive IDS

3. Autonomous Agents
3 . 1. Genetie Algorithms
3. 2. Genetie Algorithms in Autonomous Agents
3. 3. GA

5sAyA: Genetie Algorithms with a twist
3.3. 1. Problem .
3.3.2. Solution
3.3.3. Results
3.3.4. Disadvantages

4. AAFID: Autonomous Agents For Intrusion Detection
4.1. Architecture of MFI D
4.2. Architecture of an MFID agent
4.3. Communication is the key

4.3. 1. Conditions
4.3.2. Sending messages .
4.3.3. Acceptors
4.3.4. Reactor's loop . . .
4. 3. 5. Advantages of the new structure .
4.3.6. Disadvantages
4. 3. 7. Channels
4.3.8. Services

4.4. What is coming

5. Conclusion

A. Source code
A. l. Timer.pm .
A.2. Reactor.pm .
A.3. Service.pro .
A.4. Channel.pro.
A.5. Service: :Trace.pm
A.6. Service: : Ping.pm
A. 7. Service: :Ack. pm

Bibliography

Index

X

15
16
17

19
20
20
21
21
22
22
22

25
25
27
28
31
32
32
32
33
33
33
34
37

39

41
41
44
52
57
64
66
69

73

76

List of Figures

1.1. Replay attack scenario 9

3 .1. Communication as described in [5] 19

4.1. Physical representation of a sample I DS that follows AAFI D architec-

ture (as in [2]) 26

4.2. Logical architecture of an AAFI D agent 27

4.3. Sample of organisation of agents 29

4.4. Timer Interface 29

4. 5. Reactor Interface 30

4.6. Logical architecture of an AAFI D agent with the Reactor . 34

4. 7. Channel Interface
35

4.8. Services Interface . 36

xi

1. Introduction to Computer Security

In today's Information Society, we have become dependent on the rapid flow of
and easy access to data. Computers play a central role in this scheme. They can
manage huge amount of information and networks make access to remote fi.les easy
and transparent. It seems we can not live without such an infrastructure.

1 .1 . Privacy and I ntegrity of Data and Computers

Information is an interesting concept. It may be duplicated at no cost, yet some
people may be willing to pay to have it. Many organisations' business is to collect,
process and sell information. So, although information does not look like any other
goods, it seems it can behave in similar ways.

Information can be attacked in two ways. First it can be destroyed or corrupted.
Secondly it can be copied. This means the original owner may fmd it harder to sell
it. In both cases, the value of this information is lower, maybe null. It is thus
natural for organisations to try to protect their data.

In addition some kind of information (private information, for instance) is sub­
ject to legal restriction regarding their use. This is common in many countries. One
typical restriction is that the information cannot be made public.

Computers being the key to information, they are also at risk. Their behaviour
can be changed to allow easier access to restricted data to an opponent. Or some­
one can try to make them stop operating to interrupt the business that depends
on them. Potentially worse, one could use these computers to attack another or­
ganisation. Even if legally the owner of these computers is not Hable, retaliation
is a common practice. Finally, the owner could be held responsible for any kind of
illegal contents found on his computers.

No one is safe in this game. Because computers must be inter-connected in order
to be useful today, all are a potential target. Therefore security is mandatory.

But what is Computer Security? [26] presents it as the realization of confiden­
tiality, integrity and availabilityin a computer system. But this definition needs to
be expanded.

1

1. Introduction to Computer Security

1.2. Security Policy

The first step to protect the system is to use appropriate tools to enforce any ac­
cess restrictions needed. Identification, authentication and non-repudiation are
best left to computers. Most of the time, operating systems already in use in the
organisation provide such mechanisms. It is necessary to make sure that these
mechanisms are complete with regard to the privacy and integrity of data.

Of course, the security level should balance with the burden imposed on users.
If the users feel the need to bypass any security in order to work, then the level
may be to high.

The next step is to make the whole system secure. [8] defines a secure system
as one that can be depended upon to behave as it is expected to. So the first step
is to state and formalize this behaviour. Or, as [15] says it:

The expected behavior is formalized into the security policy of the com­
puter system and governs the goals that the system must meet.

This policy allows to make assumptions about the level of security offered by
the system, such as resistance to brute force attacks and to various spoffing attacks.

1 . 3. Vulnerabilities

Vulnerabilities are defined by [15] as functional defects that could result in viola­
tion of the security policy. I would rather first define a vulnerable system as the
one that allows a violation, then try to identify the flaw that caused that violation
according to the following classification:

2

Design flaws

This category groups weak algorithms and softwares written with no concern
for security. They cannot enforce security and should not be used for this.

An important fact about security algorithms (such as encryption) is that most
of them will be weak one day or another. No one would use Enigma coding for
any serious purpose, although it proved to be very good. Modern algorithms
are also being studied, and new methods to crack them are being found. This
means that the assumptions we can do on software (such as " it would take
billions of years to break this algorithm ") may become suddenly wrong. Yet,
those assumptions are what we use to implement a security solution.

Trying to fix the problem can be harder than changing the tool. This also is
true for softwares initially written without security. Ad ding it afterwards is
always a tricky task.

1.4. Intrusions

Implementation flaws

This category groups all defects in software (bugs) resulting in a difference
between the expected functionality and the actual behaviour. The only way
to fix it is to change the source code and recompile. Of course, if the source
code is not available, the user must wait for an upgrade from the author. If
he is unavailable, then that flaw cannot be fixed.

It is important to remember that a functional defect in some software does
not imply a vulnerability. Only those that could result in a violation of the se­
curity policy regarding the confidentiality, integrity or availability of computer
systems are vulnerabilities.

Use flaws

This last category groups mistakes that can be made when using security tools,
such as misconfiguration or weak passwords. A simple change in the way the
tools are used is enough to fix the flaw.

I mention them because too often people rely on a security tool without un­
derstanding its limit or the potential weakness that result from its interaction
with other tools. No tool operates alone. The global behaviour must be ob­
served with care.

These kinds of flaws may result in exploitable vulnerabilities. When there is no
way to fix the flaw, other measures must be taken in order to restore the security
level, as we will see later.

1 .4. Intrusions

Intrusions are security policy violations. In short, it means that the security tools
supposed to enforce this policy are not working. This definition is compatible with
the one found in [11 J, where an intrusion is

any set of actions that attempt to compromise the integrity, confiden­
tiality, or availability of a resource.

and the one of [1],

the potential possibility of a deliberate unauthorized attempt to

• access information,

• manipulate information or,

• render a system unreliable or unusable.

Although some authors use a very detailed list of different intrusions, 1 will use
the simple one given in [15].

3

1. Introduction to Computer Security

• Misuse intrusion
This kind of intrusion uses the vulnerabilities in the security tools in order
to break into the computers. They can be recognized by the fact that the
observed events do not follow any logic. But most of the time, it is easier to
use the vulnerability signatures (that is, the set of operations one must use
to exploit the vulnerability) to spot misuse intrusions.

• Anomaly intrusion
What happens when the attacker is using someone else's password? Or if he
is a regular user who suddenly misbehaves? The problem here is that proper
authentications have been given. Yet something wrong is going on. We will
see later what can be done about these.

1 . 5. Security through Obscurity

Many people think secrecy is important to security. This is often referred to as
Security through Obscurity, and means that the less we let others know about the
security tools, the more secure they are. Therefore the algorithms and the source
code are not published. This sounds like a good idea, but it actually is not.

1.5.1. Why it does not work

The main assumption this idea uses is that if the algorithms and the source code
are not available, no one will be able to reverse engineer them. It has been proven
wrong so many times that it is surprising some people may still believe in it.

Sooner or later (and it tends to be sooner these days), someone will understand
the inner working of both the algorithms and the software. What happens then? Is
the security mechanism enforced by this software in any way compromised? It de­
pends. If the actual security was the secrecy of the algorithm, then yes, definitely.
If it is found that a weak algorithm was used, or that defects were hidden in the
code, again, yes. If not, then the software is just as secure as it used to, not less.

But if there is no gain to keep an algorithm secret, why do it? More importantly:
if a weak algorithm is used because the author has not the knowledge to implement
proper security algorithm, public review will spot it. This in turn will force the
author to remove the weak algorithm, otherwise the software will not be used.
The same applies to the source code. Peer review can help to spot and fix the
defects that could result in vulnerabilities.

It is in fact surprising that so many people trust softwares that have not been
reviewed (either by independent specialists under a N.D.A, or by every one as in
the Open Source system). As one anonymous administrator once said

N ever trust a program you don't have the source code for.

4

1 . 5. 2. When it cou Id work

1. 6. Softwares' Ecology

But secrecy could work sometimes. As a matter of fact, passwords are kept secret
in the head of the users (no other place is appropriate). So where is the border
between the useful secrecy and the harmful one?

The passwords' case is quite simple. We saw that secrecy in software was not
efficient because of reverse engineering. But there is no way to investigate one
user's brain that way (at least, not yet). So hiding a secret where it cannot be
investigated is good. A binary only software cannot hide anything.

Another important issue is time. The reverse engineering process can take some
time (but that time can be as short as one day). Therefore using such an approach
for timely protection can be effective, maybe more than effective than a costly but
more robust solution.

Finally, secrecy can be used to confuse attackers, or increase the risk of attacks.
For instance, configuring a server so that it uses another port would force any at­
tacker to probe all the ports to fmd it. With modern scanners this is not hard to do.
But monitors could have been put on other ports, and the scanning will be seen.
Any good cracker knows it and would not take the risk.

1 . 6. Softwares' Ecology

Softwares behave like living beings in some respects. When a vulnerability is found
in a specifi.c tool, all systems using that tool are at risk. Vulnerabilities are just like
predators for a given species. Software's code can also been seen as DNA, with
families and lineage. Using software coming from a single source can be effective
from a management point of view, but is a disaster waiting to happen for security.
Recent problems with the Melissa macro virus are a good example.'

The best way to prevent such an issue is to mix various softwares and operating
systems, so that if one part ever becomes vulnerable, everything else will still work.

Another problem is the inter-relationships between different computers in a
system. Once one is compromised, the integrity of other computers are at risk. A
vulnerability in just one tool is like a wound that could let to infect the whole or­
ganism. Unfortunately, the only way to prevent this is to configure each computer
so that it does not trust the others, even when located in the same room. This is
not a real solution, because of the hassle it would be for users.

1 . 7. Planning

The best way to prevent intrusion is to be prepared for it. First, the security offi­
cer or the administrator should review every security mechanism and ask himself
what would happen if they were compromised. In doing so, he can find that the

5

1. Introduction to Computer Security

configuration could be changed to lower permissions or that other tools could be
used to reinforce security, without adding any burden for users.

This operation has to be done on a regular basis, just to make sure that the
proper balance between security and users' burden has been achieved.

Then he should ask himself what to do when an intrusion has been done. To
spot it is of course mandatory. It would be dramatic if an unauthorized user was
allowed to use the system, and changes its behaviour without being noticed. A
constant or regular monitoring of the system audit trails as well of other system's
variables are just a first step in this direction.

The reaction to such an intrusion must be carefully thought. Restauration of
business is part of it and numerous books on general resources management will
provide methods to plan it.

But they may leave out some important issues: the local laws may define com­
puter intrusion as a crime, so the victim may want to contact law enforcement
agencies to bring the attack to justice. When prosecution is not an option (maybe
the intruder was operating from another country where there is no concept of com­
puter crime), the law enforcement agencies are still useful to investigate the case,
identify the vulnerabilities used in the attack, and possibly provide some hints
about the identity of the intruder. His identity can be used to warn his access
provider about his wrong doings and most of the time the provider will take some
action of his own. So, in all cases, those agencies should be called, even if it is only
for their technical knowledge (law enforcement agencies have or will soon have
such a knowledge in most European and American countries).

Another issue is public relation: the public (and shareholders maybe) could have
concerns about the ability of the organisation to continue its operations. The pub­
lic relation department of the organisation is the best suited to prevent those con­
cerns, but will only be effective if it was informed.

Finally, sharing any knowledge gained alter this attack (for instance, a new
vulnerability) with the Security Community should be considered. If every vic­
tim shared this information with everyone, others could prevent an attack and the
world would be a safer place. This is what is done in the anti-virus industry and it
has proven to be good for both this industry and the users. Again, the law enforce­
ment agencies can provide help for this, because they are likely to know where to
put this information.

1 .8. Users' Education

Users should be part of the solution, not part of the problem. This is also true
with security. Viruses and Trojan horses are too often brought in by unsuspecting
users. Teaching them about security to increase their awareness is probably the
most important aspect of computer security. They should understand the reasons
for authentication and know how to create good passwords, how to identify and

6

1.9. Conclusion

deal with suspect contents and more generally how to reinforce security themselves
by monitoring the system during their day-to-day activities.

1 . 9. Conclusion

One important aspect of computer security to keep in mind is that perfect security
is a myth. As Professor Gene Spafford once said:

" The only system that is truly secure is one that is switched off and
unplugged, locked in a titanium safe, buried in a concrete vault on the
bottom of the sea and surrounded by very highly paid armed guards.
Even then I wouldn't bet on it. "1

One could argue that this system is not very useful. It is rather hard to use.
So no matter what we do, the resources are always at risk. This is no different

than any other kind of resources. A building could always be destroyed by an
earthquake (even if it is unlikely). We can reduce risk, not suppress it. The lower
the risk, the higher we pay.

1 I use to think that a destroyed system was quite secure, until I learned that a hard-disk smashed
to pieces, although unusable, could give back huge amounts of information.

7

1. Introduction to Computer Security

chapterSecurity's Tool-box
There is a wide variety of tools a security officer can use to increase the security

level of his system. The following classification is an attempt to present these tools
in a short and informative way.

1 .1 0. Static Security

Static security includes all tools whose purpose is to block attacks by protecting
the security policy. These tools are said to be static because they do not handle
intrusions, they just try to prevent them.

1 .1 0 .1 . Operating System

Any good operating system must provide a basic authentication and security mech­
anisms. Multi-users operating systems offer some kind of property and access per­
missions concept. On these systems, one user must authenticate himself before he
can use the computer.

The kind of operating system should be chosen according to security require­
ments. For instance, if a very high level of security is needed, a system that can
produce detailed audit trails is better than one that cannot.

It should be noted that most of the time an operating system as shipped by
the producer is very insecure. All the default configuration parameters must be
reviewed and possible changed. There is a trend towards more sensible defaults,
but double-checking is always a good idea2

.

It is important to remember that passwords have a limited impact when remote
login is allowed. This is because the default method to send passwords is in plain­
text, and that it is very easy to listen to any broadcast media (such as Ethernet) for
specific information (such as passwords).

1 .1 0. 2. Cryptography

Cryptography has many uses in security. Here is a short list of them:

• one-way encryption3 of passwords, to prevent their recovery by anyone.

• encryption over insecure channels.

• encryption of data to raise the level of security (so that even if an intruder has
access to a file, he still cannot read it).

2The only sensible defaults are to close everything and to permit console access to the sysadmin
only. lt takes longer to configure a system that way, but the result is much better.

30ne-way encryption is a function that cannot be inversed.

8

password I I.__ _ __, ._ _ __,

jpassword 1
copy of the packet
with the password

encrypted data

.__ _ _.I I.______. .__ _ _, ._ _ __,
new encrypted data

Figure 1. 1.: Replay attack scenario

1 . 1 0. Static Security

Legitlmate user

• non-repudiation, with signatures, to make sure any action can be traced back
to their author.

• prevention of corruption or modification of data, either by signing the data,
or a stamp (produced by a hash function).

Cryptography should be used with care. Its only goal is to make it hard to un­
derstand what has been encrypted without the proper key. The following scenario
shows a case where cryptography is totally useless (see figure 1. 1):

• the communication between the server and the user's computer is encrypted
using the server's public key,

• the cracker records the encrypted communication,

• he connects to the server, and when asked for the a password, simply sends
the copied packet where this passwords must be.

This is known as the Replay Attack. It can be done because the cracker has not
need to decrypt the password. If a new key is used for each new connection, this
attack is useless .

Correctly used, cryptography can greatly increase the security a of system. Gen­
erally, it should be used for every remote connection.

9

1. Introduction to Computer Security

It is rather unfortunate that there so many political obstacles to the widespread
use of cryptography.

1.1 O. 3. Firewall

Firewalls are most often seen as the last line of defense (which they are not) because
of their power. They are used to filter network packets based on some properties
of these packets. These properties include origin, destination (IP address and/or
port) , protocol, nature, and contents. Sorne firewalls are able to group IP frag­
ments and can then investigate the TCP packet . More elaborated ones can even
understand a broad range of protocols and make their decision based on very high
level consideration.

The filtering can be to reject, log, forward, duplicate or any other action. Thus
firewalls can be used for various tasks, such as gateway (between an hidden network
and the Internet). So much, as a matter of fact, that a whole book could (and many
times had been) devoted to the subject.

Yet that flexibility is also a drawback. lt is quite easy to misconfigure a firewall
and prevent legitimate traffic, or allow data to leak.

1 .1 0 .4. Vulnerabilities Scanner

Vulnerabilities scanners are a very important kind of tools that everyone serious
about security should use often. They can detect various problems, either func­
tional defects in software or misconfigurations.

They should be used even for no other reason than because intruders will use
them against the system.

Of course, the main problem with them is that they must be updated to be ef­
fective. And they only include known vulnerabilities. Even though it may seem
obvious, it should be kept in mind that some people may know about a vulnera­
bility for a long time before it becomes public.

1 . 1 1 . Active Security

The tools presented so far try to prevent intrusions but are rather useless once an
intruder has found his way into the system. The following class of tools deals with
this.

An intrusion is an hide and seek game. The security officers, helped by the
system, try to find the intruder, while the later do his best to leave no trace. In
this game, the timing is very important. Being able to detect an intrusion as soon
as it started is always better than having to understand la ter what happened.

10

1. 11 . Active Security

1 .11 .1 . Entrapment System

The security officer has an edge over intruders because he knows how the system
is configured. If he uses vulnerabilities scanners (and he should), he also knows
where the system can be attacked.

Entrapment systems are programs that reproduce a vulnerability, but that are
not exploitable. Once installed on the system, they will respond to scanning the
same way the vulnerability they simulate . They have the same signature as the
vulnera bility.

If an intruder tries to exploit them, he may think he has found a breach but the
programs will just record his activities (and other parameters). It is ideal to catch
script kiddies" .

They are different from general Intrusion Detection Systems (see below) because
of their relatively limited area of action.

1 .11 . 2. 1 ntrusion Detec:.tion System

Finally, what can be done when everything else has failed? The intruder may know
the configuration of his target (including the traps), he may have a password, and
is about to do some damage.

Intrusion Detection Systems take this possibility into account. They are the last
line of defense of a system. I include virus scanners in this category.

The next chapters are entirely dedicated to these tools.

4Wanabee crackers who lack the elementary knowledge about security and who use cookbook
methods to break in.

11

2. Intrusion Detection Systems

Static security is like a door. It will only stop the opponent long enough so that
the opponent will be spotted. This is what I DS are for.

This chapter uses case studies to hi-light the specific features of each kind of
system. The next one introduces a specific architecture.

2 .1 . Kind of threats

Here we return to the kind of intrusions as defined in [15] , and outline the nature
of I DS targeted at these intrusions.

2 .1 .1 . M isuse

Misuse is plain violation of security policy. That is, the exploitation of a vulnera­
bility is the system. Of course, vulnerabilities should be fixed as soon as they are
found, but sometimes it cannot be done. For this reason, many IDS have been
designed to detect such violation.

What kind of information is available? A vulnerability can be ex:ploited by a se­
quence of actions. Once the vulnerability has been properly studied, this sequence
can be known ([15] refers to it as the signature of the vulnerability).

Different operating systems generate different amount of audit events for each
action they carry on. The range is from nothing to a detailed list of every parameter
of the operation. So a vulnerability can be formalized as the list of audit events it
generates.

2.1.2. Anomaly

Anomaly intrusion is more vicious. In this case, the intruder has a legitimate pass­
word (maybe the intruder is a legitimate user), so he does not have to break the
system.

How can we say that something wrong is going on? The only way to detect that
kind of intrusion is to detect a variation in the behaviour of the user (from the
system's point of view, anyone with a legitimate password is a legitimate user).

Here are the main techniques to detect these anomaly intrusions.

1 3

2. Intrusion Detection Systems

Statistical approach

A profile is defined by a set of measures . Periodically, the system generates a
value that measures the abnormality of the profile. This value is a function of the
abnormality values of each measures in the profile. For instance a simple function
could be a weighted sum of the squares of the individual abnormality values.

Such an approach is interesting because statistics is a well studied area, whose
complete tool box can be used here.

But there are some drawbacks:

• the order of events is irrelevant for the profile

• graduai modifications of the profile can change it to allow behaviour that used
to be regarded as abnormal

• the threshold above which an anomaly is considered intrusive may be hard to
define. If it is too low the number of false positives will rise. If it is too high
the number of false negatives will rise.

More information on such systems can be found in [19].

Bayesian Classification

I DS using Bayesian classification are able to determine the most probable numbers
of classes and to calculate the probabilistic membership function of each datum
(element of data) in the classes (see [3]).

This is a very recent approach and it has not yet been extensively tested.

Neural Networks

In this case, the neural network is trained on a sequence of commands. The input
of the net is the current command, and the past w commands. Once the neural
network is trained on a set of representative command sequences of a user, it is
considered to be the profile of the user. The fraction of incorrectly predicted com­
mands represents the variance of the user behaviour from his profile ([7]).

Neural networks are known to cope well with noisy data. But they can be very
slow to converge.

2 . 2 . 1 DS Architectures

There are severals way to collect the data for an IDS . Each offers a balance between
scaling, and the precision of the information.

14

2. 2. IDS Architectures

2.2.1 . Host based IDS

A host base IDS monitors just one computer. This means the events it collects are
all generated on that computer.

An instance of that kind of IDS is ASAX. This system is described in [21] (there
are many other documents. Please see the bibliography).

ASAX was a research project of the Computer Department of the Notre-Dame
de la Paix University, and Siemens S.A, Namur, Belgium. It is targeted on misuse
vulnerabilities and uses a Turing-complete language (RUSSEL) to describe vulnera­
bility signatures. This language can be considered as a query language on the audit
trails.

Audit trails are first translated by a Format Adaptor into a portable format be­
fore they are feeded to the RUSSEL engine. The later activates rules at the ini­
tialisation, and these rules can activates other rules on specific events. The set
of activated rules represents potential attacks that the engine investigates. The
engine has been designed so that the activation of a rule is just an allocation of
memory (from the heap) for its parameters.

Static auditing (verification of the configuration) can be done in real time by
ASAX. It uses a declarative language to mimic the reasoning of an attacker trying
to find holes in the configuration. The result is a facts database that can be used to
update the rules. The RUSSEL engine triggers the reasoning process when an audit
record relative to the modification of a security configuration file is encountered.

Experiments show that it could be used in real time on real life systems with
minimal burden.

Disadvantages

• A single host is most of the time nothing but a small part of a larger system.
Any intruder will target the system as a whole rather than a host (this is a
general drawback of every host-based IDS) .

• To write attack patterns specifications, one has first to learn RUSSEL, while it
may be easier with other tools.

• A monolithic IDS is the first target of an intruder.

2.2.2. Multi-hosts based

A network is a bit more than the sum of its hosts. An intrusion can be invisible
when seen from any host, but obvious from the network.

But the hosts are still the places where things happen. This is were the audit
trails are generated.

Therefore, one must define a way to collect information on hosts and to process
it globally.

1 5

2. Intrusion Detection Systems

Distributed ASAX, described in [21] and [22] implements this simply. On each
host, the audit processing is used to filter interesting events. An Audit State Con­
troller can be used to alter the granularity level used by the auditing m.echanism.
The Format Adaptor translates the audit events for the Evaluator.

Filtered events are then sent to a central host where a second level processing
can be done and where the Console is running. This Console is used to configure
and control the whole system. The Central Evaluator is in no way different than
the other evaluator .

The communication is implemented with PYM.
It is obvious that this is a natural extension of ASAX, whose independence to

the format of audit trails allows such a multi-levels analysis.

2.2.3. Network based

It seems that a multi-hosts based IDS can monitor every aspects of a system. That
is, as long as the goal of the attacker is to break into the system. But denial of
services do no require such an intrusion.

As a matter of fact, there are several kind of attacks that can only be discovered
by monitoring the network. But traditional tools are not able to process such an
amount of data. A new kind of IDS located between the firewall and the Internet
is used for this purpose.

Shadow ([13]) is a IDS specifically designed for network analysis. It was able to
spot new attack patterns such as coordinated probings and exploits from multiple
hosts (possibly from different networks or even countries).

The setup of Shadow is simple:

• a sensor, located between the firewall and the Internet collects information
on packets (by using tcpdump).

• inside the firewall, an analysis station performs the actual monitoring.

• the only way to access the sensor through the firewall is by using a secure
shell to copy the data between the sensor and the

• the analysis station is configured to fetch the data from the sensor every hour.

On the analysis station, a number of filters is used to find attack patterns in the
data . The data is kept for several days, so it is possible to investigate suspicious
activities that were not initially seen.

Evaluation

A network-based IDS provides valuable information about the attackers. It can
detect various probes and forged packets. Moreover, when a computer suddenly
crashes, the only way to understand what happened is to used the network data.

16

2. 3. Reactive or Proactive IDS

But the analysis is very hard. It requires a deep understanding of the protocols.
Any mistake in the configuration of the analysis station will result in very high
number of false negatives or false positives.

Finally, the sensor's location (outside the firewall) allows attacks from the in­
side.

2. 3. Reactive or Proactive IDS

How much reactive or proactive an IDS should be? My answer is that an IDS should
not perform any kind of actions other than raising an alarm. This is based on the
following three step reasoning:

1. any IDS has false positives.

2. in case of false positive, a legitimate user (and possibly a customer) will be
the target of the reacting IDS.

3. " the last thing you want is to blow away a legitimate customer. " [25]

A more elaborated answer can be found in [24].

1 7

3 . Autonomous Agents

lt is easy to see a major problem with monolithic intrusion detection systems: once
the program stops, there is no monitoring anymore. An intruder knowing that such
an IDS is in operation on the computer he wants to attack is likely to do his best
to fool or crash the IDS.

Other kinds of structure should be looked for to solve this problem. looked for.
[5] proposes the use of autonomous agents. By agents, we mean

a group of free-running processes which can act independently of each
other and the system. ([5])

The basic architecture should look like in figure 3. 1 . We see that agents com­
municate with each other and the triggering of an intrusion alarm is the result of a
collaboration between agents, each of them raising the level of a global intrusion
risk factor.

No agent is mandatory. If one of them fails, the others are still able to monitor
the system. The resulting architecture is much more flexible and foolproof than the
monolithic design.

Agents

Figure 3. 1 . : Communication as described in [5]

19

3. Autonomous Agents

3 .1 . Genetie Algorithms

As [5] suggests the use of a genetic algorithm to train the agents, I will first intro­
duce this technique.

The Genetie Algorithm FAQ presents it as

. . . a model of machine learning which derives its behavior from a metaphor
of some of the mechanisms of evolution in nature.

Its purpose is to find an optimum to some function.
It uses the concept of population where individuals are described by elementary

words (such as chromosomes in real life), the coding.
To select promising individuals, one must define a fitness fonction for each pos­

sible individual. In fact this is the function we want to optimize.
We start with a randomly filled population, and do the following operations for

a given number of generation:

evaluation: apply the fitness function to each individual.

reproduction: a fitness-proportionate reproduction is then applied. Most promis­
ing individuals' coding tends to influence the new individuals more than less
promising ones.

mutation: some individuals are stochastically modified. This ensures that no infor­
mation is lost by always allowing any coding to be inserted.

iteration: the old population is discarded

Although simple, this method can be quite effective. Even though it looks like
a random search its use of past solutions to evaluate the present ones allows it to
converge quickly.

3 . 2 . Genetie Algorithms in Autonomous Agents

The idea that we could use genetic algorithms to create agents able to recognize
attacks patterns without having to hard code these patterns (maybe these patterns
are not completely known) is a natural one.

Yet, it may be hard to do. First, we must select the coding. To give agents more
flexibility, some kind of language must be used. Each elementary word could be a
syntactic element of that language, with place-holders for child elements. More­
over, the syntactic and semantic correctness of the structure must be guaranteed
somehow1

. This can be achieved either by using a very weakly typed language or
1 It is true that we could use the fitness function to filter out incorrect codings but reproductions

and mutations are likely to produce more incorrect codes than correct ones, so the convergence
may be too slow.

20

3. 3. c;A5sA1A: Genetie Algorithms with a twist

by using a language syntactically so simple that it is hard to create an incorrect
program. The later can be done by using words to represent complex operations.
But it means that a lot of effort has to be put in defining these words to make this
language as complete as possible with regard to the task2

•

It is clear that such a coding is a tree, not a simple sequence. The reproduc­
tion process must be designed according to this structure. And because each node
has more importance than the leaves (because the execution is governed by these
nodes), a weight-based mixing may be needed.

Finally the agents can only be evaluated when working together. So either we
train them to recognize a part of an attack (but then it may be easier to hard code
that part) or we train them as a whole (and we have some kind of extended coding
composed of each agent's coding). In the later case, what would happen if the
genetic algorithm converged so well that the agents stopped working properly if
one of them was missing? We would have lost the advantages (at least one of
them) of having autonomous agents.

Therefore we see here that even though genetic algorithms sound very interest­
ing to automatically train agents, it is unclear whether this can be achieved.

3 . 3 . c;A5sA1A: Genetie Algorithms with a twist

Another way to use genetic algorithms is to identify a specific attack. Here, po­
tential attacks are our population and the evolution process is used to select the
most likely attack hypothesis. In this case, the attacks patterns are well known,
and there is a finite number of them.

This is the basis for c;A5SAJA (Genetie Algorithm for Simplified Security Audit
Trails Analysis), as described in [20].

3.3.1. Problem

To formalize the problem, we have:

• NE the number of audit events and N0 the number of potential known attacks,

• AE an Nf x N0 attacks-events matrix which gives the set of events generated
by each attack.

• R, a N0-dimensional weight vector, where R,;, (R,;, > 0) is the weight associated
with the attack i.

• 0, a Nf-dimensional vector where Oi counts the number of events of type i
present in the audit trail (O is called " observed audit vector ").

2 1 don't expect such a language to be Turing complete.

21

3. Autonomous Agents

• H, a N0-dimensional hypothesis vector, where Hi = 1 if the attack i is present
according to the hypothesis, and Hi = O otherwise.

The problem is thus to find H that maximizes R x H, subject to the constraint
(AE.H\ :::; ai, (1 :::; i :::; N0) . This is a zero-one integer programming problem, thus
NP-complete.

3. 3 . 2. Solution

Individuals are hypotheses and the fitness fonction is

with T the number of audit events for which (AE.H)i > ai, f3 the slope of the
penalty fonction, and a a parameter allowing elimination of too unrealistic hy­
potheses (a negative fitness value is equaled to O and the corresponding hypothesis
is discarded).

3 .3 . 3 . Results

This prototype has been tested on an AIX system, with 24 attacks, 28 audit events
and 4 users. The audit trails are filtered in one pass into user-by-user audit vector
limited to 30 minutes. The time limit is needed because if the audit trail is too
long, the algorithm converges on the N0-dimensional unit vector.

For this situation, the maximum fitness value converges after about 20 genera­
tions and the average fitness value is about 99% of the maximum fitness after 100
generations. So the convergence is very fast.

Of course, the test system is a minimalist one. An experiment on a real system
has still to be done.

3 . 3 .4. Disadvantages

While this algorithm is very promising, it has some drawbacks:

22

• it only works against known attacks

• the absence of event is not taken in account

• multiple realisations of the same attack for a given user are not detected (be­
cause of the use of a binary coding)

• multiple attacks can share audit events, in which case the optimum fitness is
not reached

3. 3. cA5SA1A: Genetie Algorithms with a twist

• GAsSA1A is just an alarm, and the precise attack has then to be located in the

audit trails.

23

4. AAFID: Autonomous Agents For
Intrusion Detection

AAFID is an ongoing research project of the CERIAS (Center of Education and Re­
search on Information Assurance and Security) of the University of Purdue, West­
Lafayette, I N USA. The current version (public-alpha-04) was released September
28th, 1998, but a new version (probably public-alpha-07) should be released in
September 1999 .

Its purpose is to investigate the strengths and weaknesses of a distributed agents
based Intrusion Detection System. It is based on [5] , although it does not imple­
ment all the ideas developed in this paper (there is no genetic algorithm so far).
The current version is documented in [2] (other papers should follow soon and
there are many texts included in the package).

It is written in Perl because this language offers a good trade-off between speed
and ease of use, and its very dynamic nature (code can be created at run time)
makes it ideal for prototypes.

I had the occasion to work on AAFID during my internship at Purdue (from
September 1998 to January 1999). Here I explain what I did and why.

4.1 . Architecture of AAFI D

AAFID's architecture is described in [2] , and reproduced in short here.

monitors are at the highest level. They provide the user with a graphical interface
into the system. A monitor is directly called by the user.

transceivers are simply relays between the monitors and the agents on a given host.
Each transceiver runs on a single host. The are launched by a monitor when
the user requests an agent to be executed on a host. The monitor first checks
for a communication channel to a transceiver or another monitor. If there is
one, it is sent a message to load the required entity. Otherwise the monitor
first call the Starter program (using any remote activation system. Currently
AAFID uses ssh.), then set a flag to indicate it is waiting for a connection
from that host. The Starter instantiates a transceiver, contacts the monitor
(through TCP) and redirects its standard input and output to the connection.

25

4. AAFID: Autonomous Agents For Intrusion Detection

··-··-··-..

··-------.... ·-........ ··

·-........

Legend

■ Transceivers D Hosts

■ Monitors 0

-···-···-···-··-�

Agents

Control flow

Data flow

Figure 4 .1 . : Physical represehtation of a sample IDS that follows AAFID architec­
ture (as in [2])

Then it runs the transceiver, which registers with its monitor. The later rec­
ognizes the former as the one in which an agent has to be started, and sends
the appropriate commands to it.

agents are launched by a transceiver. The agent is first loaded into the transceiver,
and a new instance is created. Then a process is spawned to run the new
instance. The agents communicate with their transceiver using Unix pipes.

The communication is only clone between a parent and its child's (between a
given process and the processes its spawned) . The figure 4.1 shows the whole
structure.

From this figure, it is quite obvious that the communication is vertical and
mostly upward and that the hierarchy looks like a pyramid.

26

4. 2. Architecture of an AAFID agent

Normal Agent's

ope rations

_...----1� Entity: :processlnput

Message management functions

Figure 4. 2 . : Logical architecture of an AAFID agent

The entities (agents, transceivers and monitors) communicates with each other
by sending messages. A message is a line of tex:t (a line of tex:t is terminated by a
newline character) with a specific format1 .

In its current incarnation, AAFID is a framework in which various IDS are man­
aged, with a single point of control.

4. 2 . Architecture of an AAFI D agent

An AAFID agent is simply a program taking commands from its standard input and
sending messages on its standard output2

• This is useful for debugging purpose.
The message management is done in Entity::processlnput, a huge function handling
everything from simple message sending and receiving up to error management,
including logging . This means that the semantic (i .e . the format) of messages is
defined in this function .

The agent is supposed to call Entity::processlnput between other operations.
These operations perform the actual monitoring. This architecture can be found in
figure 4. 2 .

An agent could be written in any language, but the actual ex:ecution mechanism
is currently tied to Perl.

1 The format is currently described in an unreleased paper.
2When it is created by a transceiver, the Unix pipes used for communication are first redirected to

the standard input and output.

27

4. AAFID: Autonomous Agents For Intrusion Detection

4. 3 . Communication is the key

If we compare current's AAFID communication (see figure 4. 1 on page 26) with what
is described in [5] (figure 3. 1 on page 19), it is clear that there is no horizontal
communications (between agents). In order to provide communication between
agents, a complete redesign of the communication mechanism is needed. Actually,
this was part of the needed near-term work on AAFID.

As we have seen, the problem with the current architecture is the lack of flex­
ibility in the message handler. This function achieve too much to do everything
correctly and the management of errors and other unusual conditions is poor at its
best. Sometimes the whole hierarchy of agents freezes because one of them does
not answer anymore. As [2] puts it:

If the communication between the entities is somehow disrupted, the
system essentially stops working.

My idea was that the use of several layers, with a central module monitoring
events and triggering appropriate callback functions on each of them would give
better granularity and flexibility.

I designed this module (named the Reactor) to be able to respond to time and
communication handles' conditions. Afterwards Diego Zamboni added support for
file handles, and signais should follow soon.

While designing the module, I kept in mind the saying

" Mechanisms, no policy. "

My perception is that AAFID's agents can be seen either as small IDS on their own,
or as members of a group targeted towards a given attack pattern. By mixing these
two views, we have an architecture like figure 4.3 on the facing page. In order
to attain such a goal, there must be as few restrictions as possible on how to use
the communication mechanisms. In particular, the semantic for messages is left
to another layer (see below). In short, the Reactor's only purpose is to deliver
messages without making any assumption about their format (for instance, the
fact that a message is a line of text has been dropped) and to do it with as much
reliability and flexibility as possible.

Another module, the limer, provides an interface to Timer objects (see figure 4.4
on the next page) that can manage a tasks list3

• The tasks can be added with a time
(resolution of one second) at which they must be triggered. Removing a task is
also supported. The source code can be found at page 41. The version AAFID uses
includes repeating events, added by Diego Zamboni (not yet release). The actual
execution of tasks must be done by the user of a limer object.

3When I first wrote the Timer module, I called the tasks " events ". This is because I had timeouts
in mind. So while I will talk about tasks in this document, the source code still refers to events,
although events are only what trigger the tasks.

28

4. 3. Communication is the key

Legend

Team of agents

0 agent

. ·. :

Figure 4. 3. : Sample of organisation of agents

Timer

+new () : cons tructor
+add_event (tirne : integer , func : function re ference)
+rernove_event (tirne : integer , func : func tion re ference)
+get_when () : integer
+get_next () : l i s t

Figure 4 .4. : Timer Interface

29

w
0

'T1
(JQ
c:: '"1 C1)
�
U1

:,::,
C1)
�
�
0 '"1
-

� C1) '"1
� n C1)

«Timer»

,l 1

- - - -
- - - -

Reactor
- -time;t:; Iime;r;: -

fb !:; s;1.llbs;1.!:;klii , bsàliib table
-fb !JJJeJJe::l; bsà::iib ts;1.ble
-!:;JJu:ent, bsàliib ts;1.ble
-reag; IQ; ;Sele!:;t
-J!irite; IQ; ;Seleçt
-errQi:;:; IQ; ;Sele!:;t
+s;1.gg bs;1.ngle(bs;1.ngle,Q�sà!JJJe,;r;:es;1.g;fJJn!:;tiQn ;r;:efe;r;:en!:;e,!:;lQ�e:fJJn!:;tiQn ;r;:efe;r;:en!:;e,e;r;:;r;:Q;r;:· fJJn!:;tiQn
+add_acceptor (handle : opaque , login : function reference , error : function reference)

- - -
+destroy_handle (handle : opaque)
+remove_handle (handle : opaque)
+add_event (time : integer, task : function reference) - - - +remove_event (time : integer , task : function reference)
+send_message (handle : opaque , message : string , error : function
+loop ()

[Handle callbacks]

read : function reference
close : function reference
errer : function referenceread : function reference

reference=null)

;r;:efe;r;:en!:;el

�
"l"1 -
�
)..
C: ...,.
0
:::,
0
:3
0
C:
t,)
)..

�
:::,
cr

ci1 .., -
:::,
q
C: t,)
0
:::,
tl
Cb ...,. Cb �
C!'.
0
:::,

4. 3. Communication is the key

The Reactor uses the limer and provides an API to insert and remove tasks and
communication handles to the system (see figure 4.5 on the facing page). These
handles have been chosen because they are an ideal interface to a large number of
communication concepts (such as pipes or sockets). The creation of handles is left
to the caller of the Reactor, therefore any kind of handles can be used, with the
exception of files. The management of these (an extension of Diego Zamboni, not
yet released) is done by repeating tasks, and other measures are taken on specific
conditions (such as when a file is truncated). Acceptor handles (communication
handle through which a new connection can be made) are dealt with correctly. The
source code can be found on page 44.

4. 3 .1 . Conditions

The Reactor's main work is to check for various conditions (change of state) on the
handles, as well as for time events. The work done on each condition is shown
below.

Read conditions

On a read condition on one handle, the Reactor::__read is called. It is written to be
able to manage half-read messages properly. If there is no current message for the
given handle, it first blocks to read the 4 bytes size4 of the new message, then tries
to read as much as it can before returning. If the message has not been entirely
read, it is first saved in a handle specific variable. If the message is complete,
the read callback for this handle is called. If any errors are detected during the
operations, the error callback for the handle is called.

Write conditions

Write conditions are only checked on handles for which there is a message waiting
to be sent. On a write condition on one handle, the Reactor::_send is called. It
takes the first entry of the messages queue for the handle, tries to write as much
as it can to the handle, then removes the written part out of the message. If the
message has been completely sent, it is removed from the messages queue. If there
are not any more messages in the messages queue for this handle, the handle is
remove from the writeh list (this list contains the handle the Reactor should check
for write condition). If any errors are detected, the error callback for the handle is
called.

4this is the only place where a blocking read is done. But given the size , it should not be a problem
except if less than 4 bytes are sent on purpose.

31

4. AAFID: Autonomous Agents For Intrusion Detection

Error conditions

The error is directly dispatched to the appropriate callba�k function.

lime events

The function implementing the previous checks for conditions is called to run for
at most a given amount of "time. This amount is calculated so that the function's
timeout occurs when the next set of tasks is to be triggered. When the function
returns, the Reactor first checks whether any conditions are set on handles then
checks if it is time to trigger the tasks.

4.3 . 2 . Sending messages

The message to be sent is first prefixed with its size in network encoding format,
then pushed into the messages queue for the given handle and the handle is added
to the writeh list. The actual sending will be done by Reactor::....send on a write
condition.

4. 3 .3 . Acceptors

Acceptors are specific handles whose purpose is to receive connection requests.
Acceptors handles are different because they are never written to and they never

receive messages. lnstead, they can be connected to. From the Reactor's perspec­
tive, it looks like a read condition. The Reactor::....read function manages this by
first checking if the handle is an Acceptor, and if it is, calling the login callback
function for this handle. This way, Acceptor handles can be checked with other
handles without hassle.

4.3 .4. Reactor's loop

The function named Reactor::loop is not a real loop. It is rather the place where the
Reactor waits for anything to happen until the next task is triggered. If there is no
task registered, the Reactor will simply check for any conditions on each handle in
its lists (readh for reading, writeh for writing, and errorh for errors). So if nothing is
expected to happen, it exits. The caller of this function should check for termination
conditions each time Reactor::loop returns.

The architecture of a program using the Reactor can be found in figure 4.6 on
page 34.

32

4. 3. 5. Advantages of the new structure

4. 3. Communication is the key

The Reactor does not completely replace the former mechanism, because it lacks
the support for relay and logging and procedures activation. But I certainly did
not designed it with this features in mind. Its main advantage is to provide easy
and flexible support for configurable behaviour for each communication handle. It
could be used for various other applications.

Below, I will describe other extensions whose purpose is to provide these fea­
tures and possibly many more.

4.3.6. Disadvantages

In order to benefit from this structure, the Reactor::loop should be used as the
application's main loop. This means agents are reactive instead of proactive. The
lack of a good multithreads support in Perl makes it hard to mix handles monitoring
and GUI management, except if the GUI library can manage all the pending events
in a single function, returning as soon as no more events are available.

The limer module cannot do hard real time. The tasks will not be triggered
sooner than expected, but maybe later (because there is no easy way to suspend
the execution at the appropriate time, so if the agent is doing some long processing
of inputs, the task can only be activated once the processing is over, when the
execution flow is in the Reactor::loop. Moreover, the resolution of one second
cannot be changed easily.

Finally, moving from a conventional agent to an event-based one is not simple.
One has to clearly define the kind of input each handle should manage.

4. 3. 7. Channels

The Channel module's purpose is to provide an easier way to manage handles. By
themselves, Channel objects are not really interesting. They just give an interface
to an handle and use the Reactor for most of the work. This interface is described
in figure 4. 7 on page 35 .

The main reason to use them is for the Services that can be dynamically added
to a Channel abject to change its behaviour.

A Channel can also be an Acceptor. In this case, a login function is supplied to
create a new handle for the connection and to register it to the Reactor. A function
provided by the application is then called on the handle to perform any needed
initialisation.

The source code for the Channel module can be found page 5 7 .

33

4. AAFID: Autonomous Agents For Intrusion Detection

H andles callback functions

Reactor: :_read

Reactor: :_ error
Tasks management

Tasks

r-···-···-···-···-···-·
!

! (__)
�c==)

!
i

1 !
, ,---... i

__) !
i

) i
----�

!
i

!
: ···-···-···-···-···-··· i

Figure 4.6.: Logical architecture of an AAFID agent with the Reactor

4. 3 . 8 . Services

Read

Close

Error

A Service is basically an extension for a Channel object. It can be called on each
sent or received message for any purpose (including a modification). Sorne Services
module are included (see figure 4.8 on page 36, and the source code on pages 52, 64,
66 and 69), but these are just samples of what can be done with this mechanism.

Services objects can be used to implement any kind of messages' semantic, on
a per-handle basis. Moreover, various semantics can be shared on a given handle.
Compared with the Entity::processlnput's approach, this is once again more flex­
ible. Since the exploration of the semantics of communication is a medium-term
work, I think Services can provide a good foundation for it.

Technical description

Services should be able to be added to several Channels (the Services given as
samples are able to do this). This way, a hierarchic configuration (one level for the
Service , one for each Channel and one for each sent or received message) is possible.
This configuration (named in the source code Service options) is simply a reference
to a list of values. It can be given when a message is sent (in this case, it should
have as first argument the name of the Service it is referring to) or be included
in the received message (as a space separated list of values, with the name of the
Service first, between braces { }, just before the actual message). In both case, the
message is an implicit argument.

34

Channel
-send_hookl : list of strings = []
-send_hook2 : list of strings = []
-read_hookl : string =

-read_hook2 : string = . .
+new (handle : IO : : Handle, read : function reference , close : function reference , error : function reference) : constructor
+new_acceptor (handle : IO : : Handl e , login : func ref , error : func ref , new_read : func ref , new_close : func ref , new_error : func ref) : constructor
+send (message : string, . . . : Services ' options=null)
+get_mess_id () : integer
+destroy ()
+add service (service : Service)

'T1
-·

(JQ r:: ..,
(1)

�
�

n
::r
1).)
::s
::s
(1)
-

-

�
(1) .., ,1:::-

..,., \.,J
1).) n
(1)

n
0
:3
:3
C:
:::::,
fJ
....
0
:::::,
VI

g.
('b

w :,,;-
('b

Ul "'<:

l.,J
O'l

'T1

&o·
C: ..,
(1)

�
00

(l'l
(1)

�
-· n
(1)
VI

-

g
(1) ..,
j;;1' n
(1)

Service

+new (name : string= " Empty") : constructor
+read (channel : Channel , message : string) : string
+send (channel : Channel , message : string , orig_message : string) : string
+activate (channel : Channel)
+deactivate (channel : Channel)
+close (channel : Channel)
+error (channel : Channel)
+destroy (channel : Channel)

� � � ��

Service: : Ping
+new (name : string= " Service : : Ping ") : constructor
+read (channel : Channel , message : string) : string
+activate (channel : Channel)
+deactivate (channel : Channel)
+destroy (channel : Channel)
-_ping (channel : Channel)

Service: :Trace

+new (name : string= " Service : : Trace") : constructor
+read (channel : Channel , message : string) : string
+send (channel : Channel , message : string , orig message : string) : string

Service: :Ack
+new (name : string= " Service : : Ack") : constructor
+read (channel : Channel , message : string, id : integer , ack : string=unde f) : string
+send (channel : Channel , message : string, orig_message : string , timeout : integer , cbfunc : function
+deactivate (channel : Channel)
+close (channel : Channel)
+destroy (channel : Channel)

reference) : string

�
"'ri
-

�
::i:,.
C:

8'
:::s
0

s
0
C:
t,)

t
:::s

Cl'

Q
-

:::s

q
C:
t,)
0
:::s

t,
('b

(ti
ri
("'t
0
:::s

4. 4. What is coming

Services can do many things. When they are activated for a given Channel, they
can request to be called for every message sent through the Channel or through the
associated handle5

• They can also be called for a specific message. Likewise, they
can be called automatically when a message is received, either for every message
coming from the handle, or only for messages that have not bee.n removed by other
Services. And as we just saw, a specific message can have Service options embedded
in it.

Sample Services

These samples are just an illustration of the way Services work.

Trace simply prints on the standard output the messages sent or received through
the Channel.

Ping makes sure the peer (the process at the other end of the handle) is still oper­
ating by sending ping messages to it if nothing is received on the handle for a
given period of time. When the peer does not answer, a ping-timeout callback
function is called (this function is defined by the Ping's user) .

Ack guarantees a message has been properly received by the peer . The only case
when a message can be lost is if the peer is suspended or locked in an infinite
loop and never returns to the Reactor::loop. Of course, Ping should warn us
if this happens, but it may do it after a very important message (the kind
we do not want to loose) has been sent. Ack can be used to call a given
callback function that takes a message as argument to provide a way to send
the message somehow. This is actually a sample of message's semantic .

4.4. What is coming

So far, only the Reactor has been included in AAFID. According to Diego Zamboni,
the other parts look promising but will not make it into the main code for the next
public release. Yet I am confident that the whole communication mechanism offers
about everything one could want with the proper level of flexibility.

Yet, there are several features that could be added. Severa! of them (repeating
events, support for files) have already been written by Diego Zamboni. One other I
think would be worthwhile is the ability to configure the low level nature of a mes­
sage. Currently it is a string of characters prefixed by its size in network encoding.
But other formats can be used by existing IDS and this feature will allow them to
be integrated in the framework.

5There is a difference because Services can generate traffic of their own.

3 7

4. AAFID: Autonomous Agents For Intrusion Detection

Finally, the code does not require any Perl specific features, and could be rewrit­
ten in other languages quite easily6

•

6 As a matter of fact, any typed language would make it easy.

38

5. Conclusion

Intrusion Detection is without any doubt an essential part of any secure system.
To be effective, various approaches must be used to cover all the possibilities .

Practical requirements lead to opposite way. On one hand, small, specific IDS
are easier to write and to test than one big monolithic application. On the other
hand, a single point of control is mandatory.

Therefore, a general framework where IDS can cooperate and be managed is
ideal. Such a framework should support several kind of IDS, each of them with its
own communication mechanism and configuration format.

AAFID could be this framework. Even though this was not the original intent,
AAFID has the potential to integrate different IDS into one coherent system. The
current work on the flexibility of the communication mechanism is a big step to­
wards this goal. Services could be used to transparently translate messages' se­
mantic .

This is a new approach to IDS. So far, intrusion detection techniques have been
studied, but the cooperation between these techniques is still to be achieved.
ASAX, with its format independent rules approach, could be the network moni­
tor such a framework is currently missing.

39

A. Source code

A.1 . Timer.pm

The Timer module implements a very simple tasks list and provides a few fonctions
to insert and remove the tasks, and to activate the tasks at the correct time.

Package Timer
lmplements a queue for timed events.
Frederic Dumont, 1 998-1 999

=headl Timer.pm

Timer - Timed event queue

=headl SYNOPSIS

use Timer;

$ti mer=new Timer;

$timer->add_event(timeO+ 5, \&some_func);
$nexLevents= $time->geLnextQ;
$nexLtime=shift @$nexLevents;
if ($nexLtime-timeO< =0) {

}

foreach (@$nexLevents) {
&$_Q;

}

=headl CONSTRUCTOR

= over 4

=item new ()

The constructor return a timer abject.

= back

=headl M ETHODS

41

10

20

30

A. Source code

=over 4

=item add_event (TI ME, FU NC)

Add the task FUNC with the time TIME (given in seconds since 1 /1 /1 970).

=item remove_event (TI M E, FUNC)

Remove this task that was scheduled at time TIME. Both arguments must
match those given to the add_event method.

=item geLwhen ()

Return the time for the next events

= item geLnext ()

Return a list whose first element is the time of the events (that is,
tasks) given as the other elements of the list.

= back

= headl CALLBACK PROTOTYPE

=over 4

= item task ()

The task given to the timer cannot take any argument.

=back

=headl BUGS

I hope not.

=headl AUTHOR

Frederic Dumont ddumont@info.fundp.ac.be>

=eut

package Timer;

use strict;

Usage:
my $timer = new Timer;
sub new {

my ($pkg)=shift;

42

40

50

60

70

80

------------------------------------ -- --

A. 1 . Timer. pm

my ($self) = [] ;
return bless $self, $pkg;

}
90

Usage:
$timer->add_event(timeQ + $timeout, \&tune);

Rem:
use closure if you want to pass arguments to the tunetion

sub add_event {
my ($self, $timeout, $func) = @_;

my ($entry)= [$timeout, $func] ;

push @$self, $entry;
@$self = sort { return $$a[OJ < = > $$b[OJ or $$a[1] < = > $$b[1] ; } @$self;

}

Usage:
$timer-> remove_event($time, \ &tune);

both $time and \ &tune must match the arguments given at add_event

sub remove_event {
my ($self, $timeout, $func) = @_;

@$self=grep { $$_[0] ! = $timeout or $$_[1 J ! = $tune } @$self;

}

Usage:
$next_events= $timer->get_next0;

$next is a reference to a list : ($time, \&tuncl, \&tunc2, . . .)

with $time the Jowest time entry in the timer, and the corresponding

tunetion references

sub geLnext {

}

my ($self) = @_;
my ($timeout, @entries);
return [J unless @$self;
$timeout= $$self[O] [OJ ;
while ($$self[OJ [OJ = = $timeout) {

my $entry = shift @$self;
push @entries, $$entry[1] ;
last unless @$self;

}
return [$timeout, @entries] ;

Usage:
$time = $timer->get_when0;

if $time = = undef, it means there's no more seheduled events.

$time is a absolute time that can be compared to timeQ.

sub geL when {

}

my ($self) = @_;
return undef unless @$self;
return $$self[OJ [OJ ;

100

1 10

120

130

43

- - - -- - -----

A. Source code

1 '

A.2 . Reactor.pm

The Reactor module is the low-level communication mechanism. It simply holds a
list of file handlers and a task list (a Timer object). The main loop polls for events
and activate the appropriate callback function for each of them.

Package Reactor
Poll a set of flle handles plus a event queue
Frederic Dumont, 1 998-1 999

=headl Reactor.pm

Reactor - Poil a set of file handles plus a event queue

=headl SYNOPSIS

= head2 Server code

use Reactor;
use 10: :Handle;
use 10::Socket;

my $fha=new 10: :Socket: :UNIX(Local= > "toto", Listen=>1);

sub idle_func {
print " Idle function\n" ;
Reactor: :add_event(timeO + 5, \ &idle_func);

}

sub login {

}

my ($fh) = @_;
my $nfh = $fh->acceptQ;
Reactor: :add_handle($nfh,\&cb,\&close,\&error);

sub cb {

}

my ($fh, $msg) = @_;
if($msg eq "quit ") {

}

print "Received request to quit\n" ;
unlink ("toto");
exit(O);

print "Msg : $msg\n" ;

10

20

30

sub close { 40

my $fh =shift @_;

44

}

print "Connection closed . \n" ;
Reactor::destroy _handle($fh);

sub error {
my $fh = shift @_;

print "Dainn ! Error on the line . \n" ;

}

Reactor::add_acceptor($fha,\&login,\&error);
Reactor::add_event(time0+ 5 ,\&idle_func);

while(l) {
Reactor: : loopQ;

}

= head2 Client Code

use Reactor;
use 10: : Socket;

$fh = new 10: :Socket: :U N IX(Peer= > "toto");

while(l) {
print "Msg? (return f or quit) \n" ;

}

$ msg = <STD I N > ;
chop $msg ;
last if $ msg eq " " ;

Reactor::send_message($fh,$ msg);

Reactor::loopQ;

last if $ msg eq "quit" ;

= headl Interface

lt has been assu med that an application would need only one Reactor.

=eut

package Reactor;

use strict;

A. 2. Reactor.pm

use 10: :Select;
use vars qw(%acceptor $ti mer %current %fh_callbacks %fh_queues $ readh $writeh $errorh);

use Timer;

Private variables
my $timer= new Timer;
my %fh_callbacks;
my %fh_queues;
my %current;

the event queue

maps the file handles to the callback functions

maps the file handles to the send queue

maps the file handles to the current read message

50

60

70

80

90

45

A. Source code

my $readh =new 10: :Seleet;
my $writeh=new 10: :Seleet;
my $errorh =new 10::Seleet;

=over 4

=item add_handle (HAN DLE, FUNC, FUNC, FUNC)

Add the given handle to the reactor with the given funetions as a callbaek
(order is ' read ' , ' close ' and ' error ')

=eut

sub add_handle {

}

my ($fh , $ read, $close, $error)= @_;
$ readh->add($fh);
$errorh->add($fh);
$fh_callbaeks{$fh } ->{ "read"} = $read;
$fh_callbaeks{$fh } ->{ "close" } = $close;
$fh_callbaeks{$fh } ->{ "error"} = $error;

=item add_aeceptor (HAN DLE, FUNC, FUNC)

Add the given handle as an aeceptor to the reaetor with the given funetions as
eallbaeks (login and error). An aeceptor bypass the message mecanism of the
Reaetor and thus has to manage the messages by itself.

=eut

sub add_aeceptor {

}

my ($th , $iogin , $error)=@_;
$ readh->add($fh);
$errorh->add($fh);
$aeceptor{$fh } ->{ "login" } = $log in ;
$aeceptor{$fh }-> { "error" } = $error;

=item destroy_handle (HAN DLE)

Remove the given handle from the Reaetor. This includes the queue of messages
to be sent. That means that once a handle is destroyed, any queued messages
are simply disearded.

=eut

sub destroy_handle {

46

my ($fh)=@_;
$ readh->remove($fh);
$errorh->remove($fh);
$writeh->remove($fh);

100

1 1 0

120

1 30

140

A. 2. Reactor.pm

delete $fh_callbacks{ $fh} if exists $fh_callbacks{ $fh} ;
delete $fh_queues{ $fh} if exists $fh_queues{ $fh} ;
delete $cu rrent{ $fh} if exists $cu rrent{$fh} ;
delete $acceptor{ $fh} if exists $acceptor{$fh} ;

= item remove_handle (HAN DLE)

Remove the given handle from the Reactor, but will empty the message queue
first . Once the handle is removed from the Reactor, it can ' t be listened on .

=eut

sub remove_handle {

}

my ($fh) =(Q_ ;
$readh->remove ($fh) ;
$errorh->remove ($fh) ;
delete $fh_eallbaeks{$fh} if exists $fh_eallbaeks{$fh} ;
delete $eurrent {$fh} if exists $eurrent{$fh} ;
delete $aeeeptor{$fh} if exists $aeeeptor{$fh} ;

=item add_event (TIME , FUNC)

See add_event in Timer . pm

=eut

sub add · event {
$timer->add_event ((Q_) ;

}

=item remove_event (TIME , FUNC)

See remove_event in Timer . pm

=eut

sub remove· event {
$t imer->remove_event ((Q_) ;

=item send_message (HANDLE , MSG [, FUNC])

Put the given message (as a string) in the queue for the given handle and
return . The message will be sent whenever it is possible . Bloeking is not
supported . The funetion , if provided , is the eallbaek error funetion .

=eut

sub send · message {

47

150

160

1 70

180

190

A. Source code

}

my ($fh , $mesg , $error) =©_ ;
$mesg=pack (' N ' , length($mesg)) . $mesg ;
push ©{$fh_queues{$fh} } , [$mesg , $error] ;
$writeh->add($fh) ;

=item loop ()

The main loop . It has to be called so that I/0 and time operations can occur .
If no event is scheduled then the function will only poll the handles and
return if nothing can be done . It should be used in a B<while (1) > loop .

=back

=eut

sub loop {

48

my $next_event ;

my $timeout ;
my $fh ;
my $select ;
my ($rset , $wset , $eset) ;
while (1) {

$select=O ;
$next_event=$timer->get_when() ;
if (defined $next_event) {

$timeout=$next_event-time () ;
} else {

$timeout=O ;

}
($rset , $wset , $eset) =IO : : Select : : select ($readh ,

$writeh ,
$errorh ,
$timeout) ;

foreach $fh (©$rset) {
_read ($fh) ;
$select=! ;

}
foreach $fh (©$wset) {

_write ($fh) ;

$select=! ;

}
foreach $fh (©$eset) {

_error ($fh) ;
$select=! ;

}
$next_event=$timer->get_when() ;

i t may have changed
if ($next_event) {

if ($next_event-time () <=O) {
my ©tmp=©{$timer->get_next () } ;

200

210

220

230

240

A. 2. Reactor.pm

}
}

shift Otmp ;
foreach (Otmp) {

&;$_ ;

}

return unless $select ;

}
}

=head1 CALLBACK PROTOTYPES

=over 4

=item read (HANDLE , STRING)

The handle is the one on which the message has been read , and the string is
the message .

=item close (HANDLE)

The handle is the closed one .

=item error (HANDLE)

The handle is the one on which an error has been detected .

=back

=eut

Pri vate methods

_read is called when a f ile handle is readable . When the message has been
read , the callback is called . If an error occurs , it will simply call
_errors .
As the reading could be done in several steps , _read stores i ts state in the
f ile handler .
If anything can be read in a call , but that the connection is closed while
we ' re reading, it will be detected at next call.
The error handling is at best weak. It has almost no recovery of lost or
partial messages at all.

sub _read {
my ($fh)=@_;
if (exists $acceptor{$fh}) {

}

&{$acceptor{$fh } -> { " login" } }($fh);
retum;

my $bytes_read;
my $msg_len;

49

250

260

270

280

290

A. Source code

}

my $mesg;
my $read_stuff; # Did we read anything in this call
if(exists $current{$fh}) {

$msg_len= $current{$fh } ->{ "msg_len" } ;
$mesg = $current{$fh } ->{ "mesg"} ;

} else {
my $buff;
$bytes_read=sysread($fh, $buff, 4, O);
if(defmed $bytes_read) {

if($bytes_read= =O) {
&{$fh_callbacks{$fh }->{"close" } }($fh);
return;

} else {

}
} else {

$msg_len=unpack(' N ' , $buff);
$mesg = " " ;
$ read_stuff= l ;

&{$fh_callbacks{$fh }-> {"error" } }($fh);
return;

}
}
while($bytes_read=sysread($fh, $mesg, $msg_len,

}

length($mesg))) {
$read_stuff= l ;
$msg_len- = $bytes_read;
last if $msg_len= =0;

if(!defmed $bytes_read) {
$current{ $fh } ->{ "mesg"} =$mesg ;
$current{$fh } ->{ "msg_len"} =$msg-1en;
&{$fh_callbacks{$fh }->{ "error" } }($fh);
return;

} elsif($msg_len= = O) {
delete $current{$fh} ;
& {$fh_callbacks{$fh}-> {"read"} }($fh,$mesg);
return;

} elsif(!defined $read_stuff) {
We did not read anything on this call, so the connection is
closed.
&{$fh_callbacks{$fh } -> { "close" } }($fh);
return;

} else {

}

$current{$fh }->{"mesg"} =$mesg ;
$current{$fh } -> { "msg_len"} =$msg-1en;

_write is called when a file handle is writable. lt will push as much as it
can in the file handle and update the message queue. If an error occurs, it
will call the given error callback if it is defmed.

50

300

310

320

330

340

A. 2. Reactor.pm

sub _write {
my ($th)=@_; 350

my $bytes_written;
my $mesg = $th_queues{$th}->[0]->[0] ;
my $error=$th_queues{$th}-> [0]->[1] ;
while($bytes_written=syswrite($th, $mesg , length($mesg))) {

$mesg = substr($mesg ,$bytes_written,-1);
if($mesg eq " ") {

shift @{ $th_queues{ $th} } ;
unless (@{$th_queues{$th} }) {

$writeh->remove($th);
} 360

}

retum;

}
}
$th_queues{$th } -> [0] -> [0J = $mesg;
if(!defined $bytes_written) {

}

&error($th) if $error;
shift @{$th_queues{$th} } ; # we clean the message queue.
$writeh->remove($th);

_error just dispatch to the given callback

sub _error {

}

1 ,

my ($th)=@_;
if (exists $acceptor{$th}) {

&{$acceptor{$th } ->{ "error" } }($th);
} else {

&{$fh_callbacks{$fh }->{ "error" } }($fh);
}

=headl BUGS

The module will block to read the size of a message (a 4 bytes long integer).
If no more than 3 bytes are sent, the module freezes. This is not fun to fix.

=headl AUTHOR

Frederic Dumont ddumont@info.fundp.ac.be>

=eut

370

380

390

51

A. Source code

A.3 . Service.pm

The Service Module provides the base class for all Services. They are extensions
for the Channel objects. They can be activated (called on each message, sent or
received). Services can also generate their own messages. The application should
not see th ose.

Package Service

Frederic Dumont, 1 998-1 999

=headl Service.pm

Service - provides the base class for extensions to the Channel abjects

=headl SYNOPSIS

Service is supposed to be the base class for ail other Services.

=eut

package Service;

use strict;

sub _inserLread_hook;
sub _inserLsend_hook;
sub _remove_read_hook;
sub _remove_send_hook;

=headl CONSTRUCTOR

=over 4

=item new ([STRING])

Returns a new object. If a name is given, it will be used as the name of the
Service.

=back

=eut

sub new {
my $pkg = shift @_;
my $name;

10

20

30

if (@_) { 40

52

$name = shift @_;
} else {

$name = $pkg;

A. 3. Service.pm

}

use strict;
}
my $seff= { "name" = >$name} ;
return bless $self, $pkg;

=headl METHODS

=over 4

=item read (CHAN NEL, STRI NG, . . .)

read takes the channel and the read message to process, and any number of other
arguments of any kind (these are the options). It returns the processed
message, or undef if the message has completely been handled.

=eut

sub read {

}

my ($self,$chan ,$mess,@options)=@_;
return $mess; # The default behaviour is to do nothing

=item send (CHAN N EL, STRING, STRING, . . .)

send takes the channel sending the message and the message to process, the
original message (the one given to the Channel->send function) and any number
of other arguments of any kind. It returns the processed message, or undef if
the message has directly been sent.

= eut

sub send {

}

my ($self, $chan, $mess, $orig_mess, @options)=@_;
return $mess;

=item activate (CHAN NEL, . . .)

activate allows the given Channel to use the Service implicitely. Any number of
other arguments of any kind can be added (these are the default options) .

=eut

sub activate {
my ($self, $chan, @options)=@_;
if ($seff->_inserLsend_hook($chan->{ "send_hook1" })) {

$chan-> { "read_hook1" } =

}
}

$self-> _insert_read_hook($chan->{ "read_hook1 " });

53

5 0

60

70

80

90

A. Source code

=item deactivate ()

deactivate removes the Service from the list of implicitely called Services of
the given Channel. It always succeeds.

=eut

sub deactivate {
my ($self, $chan)=@_;
$self-> _remove_send_hook($chan-> { " send_hook1 " });
$chan->{ "read_hook1 "} = $self->..remove_read_hook($chan->{ "read_hook1 " });

}

=item close (CHAN N EL)

close may be called by the Channel when the handle has been closed. The default
action is to deactivate the Service.

=eut

sub close {

}

my ($self, $chan)=@_;
$self->deactivate($chan);

=item error (CHAN NEL)

error may be called by the Channel when there is an error on the handle. The
default action is to deactivate the service.

=eut

sub error {
my ($self, $chan)=@_;
$self->deactivate($chan);

}

=item destroy (CHANNEL)

destroy will be called when the Channel is destroyed.

=back

=eut

sub destroy {
}

1 1

54

100

110

1 20

130

140

A. 3. Service.pro

= headl PRIVATE FU N CTIONS

=over 4

= item _inserLsend_hook (LISTREF)

_inserLsend_hook takes the correct send_hook (1 or 2), add the Service
to it and return 1 . If the service is already in it, it returns O.

= eut

sub _inserLsend_hook {

}

my ($self, $send_hook)=@_;
foreach (@$send_hook) {

return O if ($_ = = $self-> { "name" });
}
push @$send_hook, $self->{ "name " } ;
return 1 ;

= item _inserLread_hook (STRI NG [, STR I NG])

_inserLread_hook will take the correct read_hook (1 or 2) and a string to
be added to the read_hook (if null, the name of the Service will be used) .
It add the Service to it, and retum the new read_hook.
The braces {} are added here.

= eut

sub _inserLread_hook {

}

my ($self,$ read_hook,$stri ng) = @_;
$stri ng = $self-> { " name " } unless $string;
return $ read_hook. " { " .$string . " } " ;

= item _remove_send_hook (LISTREF)

_remove_send_hook will remove the Service name from the list reference.

= eut

sub _remove_send_hook {
my ($self, $send_hook) = @_;
@$send_hook = grep { $_ ne $self-> { "name " } } @$send_hook;

}

= item _remove_read_hook (STRING)

_remove_read_hook will remove the Service options (the first one if there are
several Service options for the same Service) from the given string and
return the result.

55

150

160

1 70

180

190

A. Source code

= back

= eut

sub _remove_read _hook {

}

my ($self, $ read_hook) = @_;
if ($ read_hook=-/{$self-:-> { "name" }([� {J *)}/) {

return $ • . $ ' ;

}
return $read_hook ;

=head1 CLASS FONCTIONS

=over 4

=item extract_service (STRING)

extract_service f irst checks for the presence of a Service related data at
the start of the message , and if there is one , removes it and splits it to ·
an array . It returns an array with the message , then the Service data array
(may be empty) .

=eut

sub extra et· service {

}

=back

my $mess = shift ©_ ;
my ©service ;
if ($mess=~/ � { ([� {] •) } (. •) $/) {

$mess=$2 ;
©service=split /\s+/ , $ 1 ;

}
return ($mess , ©service) ;

=head1 AUTHOR

Frederic Dumont <fdumont©info . fundp . ac . be>

=eut

56

200

210

220

230

240

A.4. Channel.pro

A.4. Channel.pm

The application deals mainly with Channel objects. Messages are sent or received
through Channels. Any number of Services can be added and activated.

Package Channel

Frederic Dumont, 1 998-1 999

=headl Channel . pm

Channel - each Channel object manages a communication channel (hence the name)

=headl SYNOPSIS

The purpose of a Channel object is to manage a communication channel with
another Channel object through sockets , and to provide several Services (see
below) on this channel .

Services are extensions to the basic send-receive mechanism . Basic Services
include Ping and Ack . Others (such as encryption , configuration) can be added
easily .

=eut

package Channel ;

use strict ;
use Reactor ;
use Service ;
use vars qw (%fhmap) ;

Private variable

my 1/.fhmap ;
sub · 1ogin ;
sub · read ;
sub · c1ose ;
sub ·error ;

map file handle to the corresponding Channel object
login function for acceptors
main read function
main close function
main error function

=headl CONSTRUCTOR

=over 4

=item new (HANDLE , FU NC , FUNC , FUNC)

Creates a new Channel object with the given functions as read , close and error
callbacks . The handle must be a proper handle object (see 10 : : Handle) .

=eut

57

10

20

30

40

A. Source code

sub new {

}

my ($ pkg , $fh , $read , $close , $error) =<O ' ;
Reactor : : add ' handle ($fh , \&' read , \&' close , \&. error) ;
my $self={"handle" = > $fh, # file handle

"read" = > $ read , # read callback
" close " = >$close, # close callback
"error" = > $error, # error callback
" services" = > {} , # services dictionary
"mess_id" = >1 , # next message id;
" send_hookl " = > [] , # high Jevel filters (only for msg)
11 send_hook2" = > [J , # Jow Jevel filters (mandatory on this

Channel)
"read_hook2" = > 11 11

, # This string will be added in front
of each received message.

"read_hookl " = > 11 11
, # This string will be added in front
of each received message unless

} ;
$fhmap{$fh} = $self;
retum bless $self, $pkg ;

they are processed by a Service.
Activated Services can use it to
called when a message for the
application is received.

=item new_acceptor (HAN DLE, FUNC, FUNC, FUNC, FUNC, FU N C)

Creates a new acceptor Channel with the given function as error callback. The
next three functions are the read, close and error callbacks of new Channels
created by the acceptor. The last one is the init function that will be called
on each new Channel.

=eut

sub new_acceptor {

}

= back

58

my ($ pkg , $fh , $error, $new_read, $new_close, $new_error, $ i n it)= @_;
Reactor::add_acceptor($fh , \ &_login, \ &_error);
my $self= { "handle " = > $fh,

} ;

" log in" =>\ &-1ogin,
"error" = >\&_error,
"new_read" = > $new_read ,
"new_close" = > $ new_close,
"new_error" = > $ new_error,
" ini t " = >$ i n it,

$fhmap{$fh} = $self;
retum bless $self, $pkg ;

50

60

70

80

90

A.4. Channel.pro

= headl M ETHODS

=over 4

=item send (STRI NG,)

send takes the message to be sent, and a list of Services options. Each Service
option is a (reference to a) list, composed of the Service ' s name and the
options . A Service can take the message out of the Channel by returning undef
to its send call .

=eut

sub send {

}

my ($self , $mess , Oservice) = O_ ;
my %local_serv ;
my $orig_mess=$mess ;
foreach (Oservice) {

$local_serv{shift 0$_}=$_
}
my %first_serv=$self->_filter_serv (%local_serv) ;
We first select the services that are not in send_hook1 or send_hook2 .
foreach (keys %first_serv) {

}

$mess=$self-> { "services"}->{$_}->send($self ,

return unless $mess ;

$mess ,
$orig_mess ,
©{$first_serv{$_}}) ;

my ©local_stack=©{$self-> { "send_hook1 " } } ;
foreach (©local_stack) {

}

if (exists $local_serv{$_}) {
$mess=$self->{ " services" }->

{$_}->send($self ,
$mess ,
$orig_mess ,
©{$local_serv{$_}}) ;

delete $local_serv{$_} ;
} else {

$mess=$self->{ "services"}->
{$_}->send($self ,

$mess ,
$orig_mess) ;

}
return unless $mess ;

$self->_low_send($mess , $orig_mess ,%local_serv) ;

=item get_mess_id ()

59

100

110

120

130

140

A. Source code

get_mess_id returns a different integer each times it is called . It may be
used by Services f or tagging some messages .

=eut

sub get · messïd {
my $self =shift ©_ ;
return $ self-> { "mess_id" }++ ;

}

=item destroy ()

destroy will remove the handle from the Reactor and clean everything else .

=eut

sub destroy {
my $self = shift ©_ ;
delete $fhmap{$self-> { "handle" } } ;
Reactor : : destroy_handle($self->{ "handle" }) ;
foreach (keys %{$self -> { " services" } }) {

$self-> { " services" }->{$_}->destroy ($self) ;
}

}

=item add_service (SERVICE)

Add the gi ven Service .

=back

=eut

sub add·service {
my ($self , $serv) =©_ ;
my $name=$serv-> { "name " } ;
$self-> { " services" } -> { $name }=$serv ;

}

=headl ATTRIBUTES

The attributes are not meant to be used by the applicat ion . They are normally
reserved for the Services .

=over 4

=item send_hookl

This list is for activated Services that should be called on each message sent
by the applicat ion . Each Service can provide a way to deal with default

60

150

160

170

180

190

A.4. Channel.pm

opt ions .

=item send_hook2

This list is for activated Services that should be called for each messages on
this Channel . Keep in mind that a Service can generate messages too .

=item read_hook1

This is a string where activated Services can put a Service option (a string
that will be recognized by Services) . This string will be added in front of
each message received for the application (but not for the messages already
handled by a Service) .

=item read_hook2

This is a string where activated Services can put a Service option . This string
will be added in front of each recei ved message .

=eut

_login creates a new f ile handle with accept () and a new Channel with this
handle

sub · 1ogin {

}

my $fh=shift ©_ ;
my $self=$fhmap{$fh} ;
my $new_fh=$fh->accept () ;
my $new_fh=new Channel ($new_fh ,

$self->{"new_read" } ,
$self->{ "new_close" } ,
$self-> { "new_error " }) ;

&{$self-> { " init " } } ($new_fh) ;

_fil ter _serv takes a hash of Services options , and removes those whose name
is in send_hook1 or send_hook2

sub · fil ter ' serv {

}

my ($self , ¼serv) =©_ ;
my ¼result ;
my $key ;
foreach $key (keys ¼serv) {

unless ((grep { $key eq $_ } ©{$self-> { " send_hook1 " } })

}
}

or (grep { $key eq $_ } ©{$self-> { " send_hook2" } })) {
$result{$key}=$serv{$key} ;

return ¼result ;

61

200

210

220

230

240

A. Source code

_service parse the message , extract the f irst Service data and gives it to
the proper function .

sub · service {

}

my ($self , $mess) =©_ ;
my ©service ;
($mess , ©service) =Service : : extract_service ($mess) ;
return $mess unless ©service ;
$mess=$self-> { " services" } -> { shift ©service } ->read ($self ,

$mess ,
©service) ;

return $mess ;

_read is called by the Reactor . It checks for services calls , and if the
message has not been handled by a Service , it calls the read callback .

sub · read {
my ($fh , $mess) =©_ ;
my $self=$fhmap{$fh} ;
$mess=$self->{ "read_hook2" } . $mess ;
my $new_mess=$mess ;
do {

$mess=$new_mess ;
$new_mess=_service ($self , $mess) ;

} unt il ($new_mess eq $mess) ;
if ($mess) { # if the message has not yet been handled

by a Service
$mess=$self->{ "read_hook1 " } . $mess ;
$new_mess=$mess ;
do {

$mess=$new_mess ;
$new_mess=_service ($self , $mess) ;

} unt il ($new_mess eq $mess) ;
&{$self->{ "read " } } ($mess) ;

}
}

_close and _error are called by the Reactor . They f ind the appropriate
channel , and call the appropria te callback

sub · c1ose {

}

my ($fh) = shift ©_ ;
my $chan=$fhmap{$fh} ;
&{$chan-> { " close"}} ($chan) ;

sub ·error {

62

my ($fh) = shift ©_ ;
my $chan=$fhmap{$fh} ;
&{$chan-> { " error " } } ($chan) ;

250

260

270

280

290

300

A. 4. Channel. pm

}

_low_send send the message through the low level (and mandatory) f ilters
and f inally to the Reactor . A Service can remove the message from the
Channel by returning undef from i ts send call .

sub · low· send {

}

1 . 1

=back

my ($self , $mess , $orig_mess , ¼local_serv) = ©_ ;
my ©local_stack=©{$self-> { "send_hook2"}} ;
foreach (©local_stack) {

}

if (exists $local_serv{$_}) {
$mess=$self->{" services "}->

{$_}->send($self ,
$mess ,
$orig_mess ,
©{$local_serv{$_}}) ;

delete $local_serv{$_} ;
} else {

$mess=$self->{"services "}->
{$_}->send($self ,

$mess ,
$orig_mess) ;

}
return unless $mess ;

Reactor : : send_message ($self->{ "handle" } ,
$mess ,
$orig_mess) ;

no error callback here . We ' ll deal
with this through the normal error
callback.

=headl CALLBACK PROTOTYPES

=over 4

=item read (STRING)

read does not take an Channel argument because it is the boundary between the
Channel and the application. I f a message must be handled internally by the
Channel, it is best left to a Service (read callbacks for Services have a
Channel argument).

=item close (CHAN NEL)

It should either call the close function of each Services with

63

310

320

330

340

350

A. Source code

foreach (@{$seef-> { "services" }) { $_->close($seef); }

or destroy itself (that will automatically call destroy on the Services).

=item error (CHAN NEL)

If the error cannot be fixed, the same operations as for close should be done.

=item init (CHAN N EL)

This is where the new Channel can be initialized, and Services added and
activated.

=back

=headl BUGS

There is no intern configuration mechanism for the Services, which means that a
Channel could receive an unmanageable message (that is, it has not the correct
Service to handle it, making it crash). An external Configuration Service can
fixe this.

=headl AUTHOR

Frederic Dumont <fdumont@info.fundp.ac.be>

=eut

A. 5 . Service:: Trace. pm

The Service: :Trace module is an example of a somewhat useful Service. Once acti­
vated, it will print on the standard output each message received for the applica­
tion.

Package Service:: Trace

Frederic Dumont, 1 998-1 999

=headl Trace.pm

Trace - provides an easy way to print each messages for or from the
application.

=headl SYNOPSIS

Trace will print on the standard output each message for or from the
application.

64

360

370

10

A. 5. Service:: Trace.pm

=eut

package Service: :Trace;
use Service;
@ISA=("Service");

use strict;

=headl METHODS

=over 4

=item read (CHAN NEL, STRING)

read takes the channel and the read message to process. It prints the message
on the standard output then retum the message.

=eut

sub read {

}

my ($seef,$chan,$mess)= @_;
print "Trace : " ,$mess, 11\n" ;
retum $ mess;

= item send (CHANNEL, STRI NG, STRING)

send does the same thing as read, but for outbound messages.

= eut

sub send {

}

my ($seef,$chan,$mess, $orig_mess)=@_;
print "Trace : " ,$orig_mess, "\n" ;
retum $ mess;

=item activate (CHANNEL)

Eaeh message will be printed on the standard output. It uses the
Channel->read_hookl to be called on each read message, and the
Channel->send_hookl to be called on each sent message.

=eut

= item deactivate ()

deaetivate removes the Service from the list of implicitely called Services of
the given Channel. It always succeeds.

=eut

65

20

30

40

50

60

A. Source code

1 . '

=back

=headl AUTHOR

Frederic Dumont <fdumont@info.fundp.ac.be>

=eut

A.6 . Service:: Ping . pm

The Service:: Ping module shows how to use the JowJevel function of the Channel
abjects. It can also be used to verify that the peer is still alive (that is, not frozen).

The implementation is somewhat complex: due to the fact that this abject takes
any kind of message received from the peer as a proof that it is still alive. So it
uses Channel-i,read_hook2 to be called each time a message arrives.

Package Service::Trace

Frederic Dumont, 1 998-1 999

=headl Ping.pm

Ping - ping the peer to detect bad behaviour

=headl SYNOPSIS

The Ping Service can be used to detect frozen peers. Once activated, it pings
the peer, and wait for an answer. If none are given, it triggers the timeout
callback. If an answer is received, it pings again.

=eut

package Service: : Ping;
use Service;
@ISA=("Service");

use strict;

=headl M ETHODS

=item activate (CHANNEL, I NT, I NT, FUNC)

The Ping object will start to send ping messages to the peer, wait for an
answer, and ping again. If no answer cornes back before Ping->timeout seconds,
the timeout function is called. If anything cornes down the Channel, the Ping

66

70

10

20

A .6. Service::Ping.pm

service will takes this for an evidence that peer is alive, and will be put 30
on hold for an idle number of seconds before sending the next ping.

The arguments are the Channel on which it is activated, the idle time (the time
between a ping reply and the next ping), the timeout tune (the tune to wait
before triggering the timeout callback function) and the timeout callback
function.

=eut

sub activate {

}

my ($self, $chan, $idle, $timeout, $cbfunc)=@_;
$self->{$chan } ->{ " idle" } = $idle;
$self->{$chan } ->{ "timeout " } = $timeout;
$self->{ $chan } ->{" cbfunc" } = $cbfunc;
$self->{$chan} ->{"ping_func" } = sub { _ping($self,$chan); } ;
$self->{$chan}->{ "next_ping"} =timeQ+$idle;
$chan-> { "read_hook2" } =

$self->_insert_read_hook($chan->{"read_hook2" },
$self->{"name"} . " REPL");

Reactor: :add_event($self->{$chan}->{"next_ping"},
$self->{$chan } ->{ "ping_func" });

=item deactivate ()

The Ping abject will not ping anymore.

= eut

sub deactivate {

}

my ($self, $chan) = @_;
if (exists $self-> {$chan} ->{ "next_timeout"}) {

Reactor: :remove_event($self->{$chan}->{"next_timeout" },
$self->{$chan}->{" cbfunc" });

}
if (exists $self->{$chan} ->{"next_ping"}) {

Reactor: :remove_event($self->{$chan}->{ "next_ping" },
$self->{$chan }->{"ping_func" });

}
delete $self-> {$chan} ;
$chan-> { "read_hook2" } =

$self->_remove_read_hook($chan->{ "read_hook2" });

=item read (CHANN EL, STR I NG [, STR ING])

The first string (the message) is returned, and the second string
determines whether we should send a ping-reply or not.

= eut

40

50

60

70

80

67

A. Source code

sub read {

}

my ($self, $chan, $mess, $option) = @_;
if (! defmed $option) {

}

my $mess= " { " . $self->{ "name"}. " REPL}" ;
$chan->_low_send($mess,$mess);

if (exists $self->{$chan} ->{"next_timeout"}) {

}

Reactor: :remove_event($self-> {$chan} -> { "next_ timeout" } ,
$self->{$chan}->{"cbfunc" });

delete $self->{$chan}->{"next_timeout" } ;

if (exists $self-> {$chan} ->{ "next_ping"}) {
Reactor: :remove_event($self-> {$chan} -> { "next_ping"} ,

$self->{$chan }->{ "ping_func"});
}
$self->{$chan } ->{ "next_ping"} =timeQ+ $self->{$chan }-> { " idle " } ;
Reactor::add_event($self->{$chan}->{ "next_ping"} ,

$self->{$chan}->{ "ping_func" });
retum $ mess;

sub destroy {

}

my ($self, $chan) = @_;
$self->deactivate($chan);
delete $self->{$chan} ;

_ping: the low level function used in closure to send pings.

sub _ping {

}

1 1

my ($self, $chan)=@_;
my $mess = " { " .$self->{"name"}. " } " ;
my $time=timeQ+ $self-> {$chan}->{"timeout"} ;
$self-> {$chan }-> {"next_ timeout " } =$time;
Reactor: :add_event($time,$self->{$chan}->{"cbfunc"});
$chan->_low_send($mess,$mess);

= headl CALLBACK PROTOTYPES

=item timeout ()

The timeout callback function takes no arguments.

=back

= headl AUTHOR

68

90

100

110

120

130

A. 7. Service: :Ack. pm

Frederic Dumont <fdumont@info.fundp.ac.be>

=eut

A. 7. Service::Ack.pm

The Service: :Ack can be called on sent messages to request that a confirmation of
reception by peer be sent. It is useful because some messages are too important
to be lost if the crash of the peer is discovered after the messages have been sent.
With Service: :Ack, those messages can be sent to an alternative location.

Package Service::Ack

Frederic Dumont, 1 998-1 999

=headl Ack.pm

Ack - send a message with a demand for confirmation

=headl SYNOPSIS

Ack is invoked in Channel->send to request that a confirmation be sent by the
peer. If that confirmation is not received within a given amount of time,
a timeout function is called.

=eut

package Service::Ack;
use Service;
@ISA=("Service");

use strict;

= headl METHODS

=over 4

=item read (CHAN NEL, STRI NG, I NT [, STRING])

read takes the channel, the read message to process, and the message id. The
optional string indicates this is a answer. If not, it replies with this
message id.

=eut

sub read {
my ($self ,$chan,$mess, $id, $ack)=@_;
if ($ack) {

69

10

20

30

A. Source code

}

if (exists $self->{$chan}->{$id}) {
Reactor::remove_event($self-> {$chan}->

}

{ $ id}-> { "timeout " } ,
$self->{$chan }->

{$ id}-> {"timeout_func" });
delete $self->{$chan}->{$ id} ;

} else {

}

my $new_mess= u { " . $self->{ "name" } . " " . $ id . " ACK} " ;
$chan->_low_send($new_mess,$new_mess);

retum $ mess;

= item send (CHANNEL, STRI NG, STRI NG, I NT, FU NC)

send uses the provide function as timeout callback, and the integer as the
timeout period .

=eut

sub send {

}

=back

=eut

my ($self,$chan,$mess, $orig_mess, $timeout, $func)=@_;
my $id = $chan->geLmess_idQ;
$mess = " { " . $self-> {"name" } . " $id} " .$mess;
$self-> { $chan } -> {$ id}-> {"timeout " } =timeQ+ $timeout;
$self-> { $chan }->{$id} ->{ "timeout_func" } =

sub { &$func($chan ,$orig_mess); } ;
Reactor::add_event($self->{$chan }->{$ id}-> { "timeout " } ,

$self->{$chan }->{$ id}->{ "timeout_func" });
retum $ mess;

sub destroy {
my ($self, $chan) = @_;
foreach (keys %{$self->{$chan}}) {

Reactor::remove_event($self->{$chan}-> {$-} -> { "timeout " } ,
$self->{$chan } ->{$_}-> { "timeout_func" });

delete $self->{$chan} ->{$-} ; # just to make sure we don 't
leave any circular
dependencies

}
delete $self->{$chan} ;

}

sub activate { } # Ack should be invoked directly.

70

40

50

60

70

80

A. 7. Service: :Ack. pm

Somewhat radical, but as a default action at least it is conservative (no
timeout callback will be called.) 90

sub deactivate {
my $self=shift @_;
$self->destroy(@_);

}

sub close {

1 . '

my $self=shift @_;
$self->destroy(@_);

=headl CALLBACK PROTOTYPES

=over 4

=item timeout (CHANNEL, STR ING)

The timeout function takes the Channel and the original message.

=headl AUTHOR

Frederic Dumont <fdumont@info.fundp.ac.be>

=eut

100

110

71

Bibliography

[1] J . P. Anderson. Computer Security Threat Monitoring and Surveillance. Tech­
nical report, J ames P Anderson Co. , Fort Washington, PA, April 1980.

[2] Jai Sundar Balasubramaniyan, Jose Omar Garcia-Fernandez, David Isacoff,
Eugene Spafford, and Diego Zamboni. An architecture for intrusion detec­
tion using autonomous agents. Technical report, COAST Laboratory, Purdue
University, West Lafayette IN 47907-1398, June 1998.

[3] Peter Cheeseman, Robin Hanson, and John Stutz. Bayesian classifi.cation with
correlation and inheritance. In 12th International Joint Conference on Artifi­
cial Intelligence, 1991.

[4 J G. F. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems, concepts
and design, Edition 2. Addison-Wesley, isbn0-201-62433-8 edition, 1994.

[5] Mark Crosbie and Gene Spafford. Active defense of a computer system using
autonomous agents. Technical Report 95-008, Purdue University, February
1995.

[6] Jan H. P. Eloff and S. H. von Solms, editors. Information Security - the Next
Decade, Proceedings of the 11 th International Information Security Confer­
ence IFIP SEC'95. Chapman & Hall, 1995.

[7] K. L. Fox, R. R. Henning, J . H. Reed, and R. P. Simonian. A neural network
approach towards intrusion detection. In Proc. 13th National Computer Se­
curity Conference. Information Systems Security. Standards-the Key to the
Future, volume I, pages 124-134, Gaithersburg, MD, 1990. NIST.

[8] Simson Garfmkel and Gene Spafford. Practical UNIX & Internet Security.
O'Reilly & Associates, 1996.

[9] Naji Habra, Baudouin Le Charlier, Aziz Mounji, and Isabelle Mathieu. ASAX:
Software architecture and rule-based language for universal audit trail anal­
ysis. In Y. Deswarte, G. Eizenberg, and J .-J. Quisquater, editors, Proceed­
ings of the Second ESORICS, Lecture Notes in Computer Science, Toulouse,
France, November 1992. Springer-Verlag, Berlin Germany.

73

Bibliography

[10] Naji Habra, Baudouin Le Charlier, Aziz Mounji, and Isabelle Mathieu. Pre­
liminary report on advanced security audit trail analysis on unix (ASAX
also called SAI-X). Technical report, Institut D' Informatique, FUNDP, rue
Grangagnage 21, 5000 Namur, Belgium, September 1994.

[11] R. Heady, G. Luger, A. Maccabe, and M. Servilla. The Architecture of a Net­
work Level Intrusion Detection System. Technical report, University of New
Mexico, Department of Computer Science, August 1990.

[12] D. K. Hsiao, D. S. Kerr, and S. E. Madnick. Computer Security. Academic
Press, New York, 1 edition, 1979.

[13] Irwin and Vazquez. Shadow indications technical analysis. Naval Surface
Warfare Center, Dahlgren Division, Code CD2S, 1998.

[14] Deborah G. J ohnson and Helen Nissenbaum, editors. Computers, Ethics &
Social Values. Prentice-Hall, Inc, 1995.

[15] Sandeep Kumar. Classifi.cation and Detection of Computer Intrusions. Ph.d.
thesis, Purdue University, Purdue, IN, August 1995.

[16] Sandeep Kumar and Eugene Spafford. A Taxonomy of Common Computer
Security Vulnerabilities based on their Method of Detection. (unpublished),
June 1994.

[17] Sandeep Kumar and Eugene Spafford. An Application of Pattern Matching
in Intrusion Detection. Technical Report 94-013, Purdue University, Depart­
ment of Computer Sciences, March 1994.

[18] Sandeep Kumar and Eugene Spafford. A pattern matching model for misuse
intrusion detection. In Proceedings of the 17th National Computer Security
Conference, pages 11-21, October 1994.

[19] T. F. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, P. G. Neumann, H. S.
Javitz, A. Valdes, and T. D. Garvey. A Real-Time Intrusion Detection Ex­
pert System (IDES) - Final Technical Report. Technical report, SRI Computer
Science Laboratory, SRI International, Menlo Park, CA, February 1992.

[20] Ludovic Mé. GA
5sAyA, a genetic algorithm as an alternative tool for security

audit trails analysis.

[21] Abdelaziz Mounji. Languages and Tools for Rule-Based Distributed Intrusion
Detection. Doctor of science, Facultés Universitaires Notre-Dame de la Paix,
Namur (Belgium), September 1997.

74

[22] Abdelaziz Mounji, Baudouin Le Charlier, Denis Zampunieris, and Naji Habra.
Distributed audit trail analysis. Technical Report RP-94-007, Faculté Univer­
sitaire Notre-Dame de la Paix, 1994.

[23] Biswanath Mukherjee, L. Todd Heberlein, and Karl N. Levitt. Network in­
trusion detection. IEEE Network, 8(3):26-41, May/June 1994.

[24] Richard E Overill. How re(pro)active should an ids be?

[25] R Power. Csi round table: Experts discuss present and future intrusion detec­
tion systems. Computer Security Journal, XIV No. l , 1998.

[26] Deborah Russell and G. T. Gangemi Sr. Computer Security Basics. O' Reilly
& Associates, Inc. , 981 Chestnut Street, Newton, MA 02164, USA, 1991. A
clear overview on many different security issues.

[27] Randal L. Schwartz. Learning Perl. O' Reilly & Associates, Inc. , 981 Chestnut
Street, Newton, MA 02164, USA, 1993.

[28] Larry Wall, Randal L. Schwartz, Tom Christiansen, and Stephen Potter. Pro­
gramming Perl. Nutshell Handbook. O' Reilly & Associates, 2nd edition, 1996.

75

I ndex

_close, 62
_error, 51, 62
_filter_serv, 61
J.nserLread_hook, 55
J.nsert_send_hook, 55
Jogin, 61
Jow_send, 63
_ping, 68
_read, 62
_remove_read_hook, 56
_remove_send.llook, 55
_service, 62
_write, 51

AAFI D, 25-38
agent, 26, 27
message, 27
monitor, 25
Starter, 25
transceiver, 25

Acceptor, 31-33
activate, 53, 67, 70
add_acceptor, 46
add_event, 43, 47
add_handle, 46
add_service, 60
agent, 19
ASAX, 15

distributed, 16
RUSSEL, 15

autonomous agent, 19

CERIAS, 25
Channel, 33, 34
Channel: : _close, 62
Channel: : _error, 62

76

Channel:: _filter_serv, 61
Channel::Jogin, 61
Channel::Jow_send, 63
Channel:: _read, 62
Channel: : _service, 62
Channel::add_service, 60
Channel::destroy, 60
Channel::geLmessJ.d, 60
Channel: :new, 58
Channel::new_acceptor, 58
coding, 20
computer security, 1
cryptography, 8

data
privacy and integrity of, 1

deactivate, 54, 67, 71
destroy, 54, 60, 68, 70
destroy .llandle, 46

Entity::processlnput, 27
entrapment system, 11
error, 54
extract_service, 56

firewall, 10
fitness function, 20

cA5SA1A, 21-23
gateway, 10
generation, 20
genetic algorithm, 20
get.messJ.d, 60
geLnext, 43
geLwhen, 43

handle, 28, 31

conditions, 31

IDS, 11, 13-17, 19, 25
architectures, 14

host based, 15
multi-hosts based, 15
network based, 16

proactive, 17
reactive, 17

individual, 20
Internet, 10
intrusion, 3

anomaly, 4, 13
Bayesian classification, 14
neural networks, 14
statistical approach, 14

misuse, 4, 13
Intrusion Detection System, 11

loop, 48

mutation, 20

new, 42, 52, 58
new _acceptor, 58

operating system, 8

Perl, 25, 27, 38
planning, 5
population, 20

Reactor, 32, 33, 37
Reactor: : _error, 51
Reactor: : _read, 31, 32
Reactor:: _send, 31, 32
Reactor:: _write, 51
Reactor::add_acceptor, 46
Reactor: :add_event, 47
Reactor: :add_handle, 46
Reactor: :destroy _handle, 46
Reactor: :loop, 32, 33, 37, 48
Reactor:: remove_event, 47
Reactor::send_message, 47
remove_event, 43, 47

Replay Attack, 9
reproduction, 20

security, 1
active, 10
static, 8
through obscurity, 4

security policy, 2
send_message, 47
Service, 34
Service: : _inserLread_hook, 55
Service:: .Jnsert_send.Jiook, 55
Service:: _remove_read_hook, 56
Service:: _remove_send_hook, 55
Service: :Ack::activate, 70
Service: :Ack: :deactivate, 71
Service::Ack: :destroy, 70
Service: :activate, 53
Service: :deactivate, 54
Service: :destroy, 54
Service: :error, 54
Service::extract_service, 56
Service::new, 52
Service:: Ping: : _ping, 68
Service:: Ping::activate, 67
Service:: Ping::deactivate, 67
Service:: Ping:: destroy, 68
Services, 33
Shadow, 16
softwares' ecology, 5
ssh, 25

task, 28
Timer, 28, 33
Timer::add_event, 43
Timer::geLnext, 43
Timer::geLwhen, 43
Timer::new, 42
Timer::remove_event, 43

users' education, 6

vulnerabilities, 2
vulnerabilities scanner, 10

Index

77

