Institutional Repository - Research Portal

Dépébt Institutionnel - Portail de la Recherche

UNIVERSITE researchportal.unamur.be
DE NAMUK

THESIS / THESE

MASTER IN COMPUTER SCIENCE

Automatic generation of data converters

Lebailly, Christophe; Rosmant, Anne-Sandrine

Award date:
1999

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

« Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 09. Apr. 2024

https://researchportal.unamur.be/en/studentTheses/ae848ef1-d11b-4bdc-9768-d4b970c0249c

FACULTES UNIVERSITAIRES NOTRE-DAME DE LA PAIX, NAMUR
INSTITUT D’ INFORMATIQUE
RUE GRANDGAGNAGE, 21, B-5000 NAMUR (BELGIUM)

Année Académique 1998-1999

Automatic generation of data
converters

Christophe Lebailly
Anne-Sandrine Rosmant

Mémoire présenté en vue de 1’obtention du grade de

Maitre en Informatique

Abstract

Abstract

In this paper, we attempt to propose a tool that eases the data migration among two
databases or among a database and a data structure under textual format (XML). Our
purpose is to implement the program which automatically generates the code for what
we call the converter. The program that creates the converter bases itself on the
semantic correspondences between the schemas representing the databases and the XML
document. We explain the way we represent and analyse these correspondences (or
mapping), in order to generate the conversion program.

Résumeé

Dans ce document, nous tentons de proposer un outil qui facilite la migration de
données entre deux base de données ou entre une base de données et une structure de
donnée textuelle (XML). Notre but est d'implémenter le programme qui génére
automatiquement le code de ce qu'on appelle un convertisseur. Le programme qui crée
le convertisseur est basé sur les correspondances sémantiques qui existe entre les
schémas représentant les bases de données et le document XML. Nous donnons une
explication sur la maniére dont l'analyse et la représentation de ces correspondances
(mappings) sont effectués afin de pouvoir générer les programmes de conversion.

Acknowledgements

Acknowledgements

First of all, we want to thank Philippe Thiran for his kind attention and his priceless
help. We also want to thank our supervisor Jean-Luc Hainaut who followed us all along
the writing of this thesis. We add to our acknowledgements Majid for his everlasting
smile and his good advises, Miguel, Droli, Michela and all the friends who gave us help
on the completion of our work (sorry, we could not mention everyone).

We don’t want to forget professor Arne Sglvberg, Terje Brasethvik, Hallvard
Treetteberg, Tom Henriksen and all the people at NTNU Trondheim for their kindness
and the welcome they gave us. We have to add a special thank to Mats and Brage,
without them our stay in Norway would not have been so pleasant.

And finally, a very special thank to Mr Scott Adams who gave us inspiration.

"And how are these Java extractors?"

Terje

Table of contents

Table of Contents

DRI, o 0 siisiinisiainpioninbsisinsintoronsnsnsansovmsgsuinion s~ b
Chapter 1 Sate-0I-tRe-artccccnniriseossossoscscosionsisnsnssss 3
BB T ST SRS O N . 1115 T Sl S IRV 0 s . 3

Al b T T R e Wy ST U S 4

R T TR S e S TR BT L IS 1. N 4

2.2 PO SLBUENEHLo cinvaiiissmiistivinssssiies shesessnnsonerssssasiviversssas sosasvesses 4

1.3, SCRnlis BICIOEOCOMEII (.. ... koo s frdefisssnssissosin sigarssnetadosinpinpnsssunsionns canmis seas sasghis 3
AL M OIS T T T VL SR TR N S, O 5

1.3.2. Schematic heterogeneity conflict classification............c...ccoceeeviennnenee 6

1.4, SoRCte TERRERION | 55, ol vcsosmmirisibosssbuyssis sy mbonpihssmnavsisppsesimpbiiossssansises pefubnnetiy 8

L 1 OB TR SRR ..o dlnocsios v ossiiogiairesssriaohns ssvininiss aposs snoiands 8

LAR L VICORSTICRTRION /.. . foosisbcninriimmsen ssbors s anvsirssiatiebepnisisves rssyssssd bbb 9
EAGUSERENE VEMBEINION ... vosssmnnommisitiamonsesssipmbnnbsnssiissssivs sivgsrestsismesss 10

13, PRSI SRR, 012 oo ve v s rinreab e mnpigessr b L e eh s nssosie rpoisbsrimonsssss ey 10

1.5.1. Migration of data among heterogeneous databases..............cccccecvevunenee. 10
Pafiedore T TR RS o SR SIS TR M D R 11
Chapter 2 3 MOl cicaibimiviliipassssasinissnssssssivens, | 1D
2.1, Entit e aROnaID IO <. . i s it st hacs St s wrmns ssh vosnin s dinns 13
RIS T 2T T T R MR MU 4717 1 Cat PRI e SN S SR M 13

ol e T A A AR, N SR e TN S A L« A DRI 14

PO s T T g I A A S M ERY oSS N .5 14
AR SRt SRR SRS SN PR o S SR s 15

A T T R PSR s e S SIS A S R M MRROR P St 1 15

TG BT e SRR UM A W 1. o R (S r T Sl R 16

P BT I N M . S e SH RN S5 O R S S T O 17

e e N o T drnw st Fen S0 Pt S LR S SRt e 4 b e 17

2.0, Sk MVICICT CORBEIMCHS . fils, i sornilin sibss bbb soabybibon stnesinioibenssvibus ihs 23

2.40C OReepIRBT STBEV IRNAUAREo vesssisssnssissssmstiyonnonsseansbontd divesss soartossuss sasanfint 24
Chapier 3 1 AYCIIICEIUTE.cciviionmcisismressiseasirssaserssassnnasse. . B
X DB -DIB - GICIIICOUUIR ... ouvsesssosvisnsiois covnsonsinsbinpessssss soisbbinns annmersss esbonshassaobtss 29

32 DRI AU RIOINE . oo oo e s Bt fiaiana e bnbssviss s st ians s samd o hapadivs 31

SN ST T K NN NI Aok T LA SIS LI DO 32

BRCIT AL DL L R A S ORI e A 1t SRR N)t 32

DT BRI ety Lol o Lo st b oo e ey R B s e g 33
Chapter 4 : MEINOHOIOLYcirsrsissrirccsssesssssinssonsossossise I
4.1. The DB-to-DB converter generation methodology...........ccccceevveviiiienicnirennne. 35

Ao L L ORI VIRV 5. o ocoesinnins b b i s oh St oS sy el e i 36

4.1:2. DB16-DB cOnVerter eneration..... .\ v rsieesssrssssssoncsssnessonasssnesssansasanasion 36

Table of contents

4.2. DB-to-XML converter generation methodologycccceevervecceeniinieniinicnnnn.
2. 1 BIEDEDR ATIYSIS .. coooiiimms ienaBinsiesuasspssssmriabsss e ssrssemssbussrsesanssinsibbasvens
3. 2.2 TTTIN BEMOL IO osccvvvsiomprseasionphbosivmsibos s siBinpine oo rsnsavussssmss s bk sumr oot SeRanns
4.2.3; DB-to-XML Convertet SENCLation.mmussresasssinassmassssmssspecossihasiss
a0, AR CRRSLOTTMEINBDI . .. oy ons i S enr Akt st o5 s G B s b g s gP s ot s s SRt
AAS DUOPEL FOULE |\ it vcnceitiiinibinmsesvenisiisssssiissnimmdiyminivesssesssgs s fastomsssmshdogs
4.4, 1 - DB - TePOGIOINY ~. c.vvivsossvisisssiiiemssinsdsyvusibseines iommassnnoss eahomves s
A2 TSI INARABEE ..o ciitvorirmrassssSuomstrrbipsesss s ineipsibysunemsnnlilhs biomys cokemassiin
B3 VENRERED oo avinasssssssssniilomuiimisss i s i vttt Nenss

Chapter S : Mapping analysisccceeeeeeeeneecccssesscceceneneeces
2. L MIapDIng ACPIeSERIBUION .o oo cmuismpinidsmsinsssssssovipsisrasssssiossnsssni s Ao s
DR L PRI v ovecorssimpiintiniiurissimensss A DALl sbentainins dliyarsaiinvinginins gt

e 0 gl L5 gl e NIV SMIOIG? T PRSP O . NI { VW SO oD Sy

5.1.3. SPHEMIBTRE o/ o svicinsimmissrisimpmmlsats pis osiesssintresssssssssisam e ko
BT S T NN SR S L. NP % O

S EIBIAE B L oo iintimeiiliserissentidithssss oS ibie s tvmer b Bt e s vysexsniveensoelhs

= BN 0 LT OSSR T TR . JENDS . s, R VAN S
51T AR TINBRIE . .5 i vacsceinolh nastsiomasmntines spebigsinesssransss nngammea savissaiissyssloass

D1 B RO -ERINSIIRCE ...l cisvmessisson BTt ovsxkishubatibsnmessssn sansdpbresonit S irssi ol

Dol T RRBRERIRIIE.) crcisivoinsebivimimenins i S ciin s s s Fonsminsmssonsbintys aoxiumiligaisisss

Sl T IRBRIRIRIE . .occvianssonicionibessonisndisitrss sttty o e AR a3

O L AR o5y cevicnnssonesbmpr kossladysdammpenttbnalpins Bits g markkasiins s Sheii s ywt giu sl

5.2. Mapping analysis methodologyc.coouiiiiiniiieiieiiiiiiiiecccece e
3121 BRAETADIODOITIOE GPROBEIONL. ..osoinscvsinissspioomssiiimamantiongiposyinssssssrsiobusebissndiiny

S 2. MDD EXTRACHIOMN - s oo voncrdibeiomen v isssisramios s yeshis s R b s vt SRR e

D 207 MADPREE MBSEIMION | ... ommsne s ciMineionesapgihossn s bobonssspsvbsnsasi thssasnsndossisosiobBrbnnts
5.3..The AnalySeMap DIOBIAINvcivrsminsenissaiseiminsassbodbossibnsivnsses ssarsonsuesssisnosssess

Chapter 6 : DB-to-DB converter generation...........c.......
5.1 BEXteactiGNTH08NIE. .. .li i ammammpmnnbassisietin oo ip s armisbs dosnsvsnsesessenshe

0.2.1 Cotinection to the target 10Cal SELVEL.........cptiisesrmresssassioncnssiusinsssfbisarens
6. 2.2 "I TN, vccoiiorions dosiornss phvrsssnsakinsn o vsass s mep RES SRR SRUSHER I AR HIS SRR BT HH R
6.2.3 Disconnection to the target local Server.........coccoevueevieiniiinnieiiciniens

Chapter 7 : DB-to-XML converter generation...............
2.1 DY PV RCDCERIONL, .. .voxorimusivuivssmmssicinvmmesnamiseninnisillsbload hrmiins e BEBwchtasovap w il
7.1.1. Conceptilal schemato DTD translation - cu..cimwssississmsssivsssmwosvssssntasic

I8 s e T R SRT S JO N N E S T SR

7.2: DB-to-X ML, CONVETTET ZENETAION ..vv.cversensavesinnsaristorspamsaeseraniosssassssussnsesinsassenision
P2, BREORUOIIDONIG . oo i edinimssmnsmsmeeniihs iilenisssississinbmsrpsnessavivswiinsbiails

Ele el T N U I U R U T

Chapter 8 : Case Study....I.........II.I...................................
Bl CASe PIESERITONN o i@l ieesmeilibmandisiatismmmekainsims v docmrscssmpint ey
B3 DBAD-DIB GRS, i csssiimissnmmsistismignmsstimmsinprspss s exsssisspmss i atos

Table of contents

CONBIOBIEE S8 s siiine e vlisinsvssdboitiionasis danasvassnnssishssivians 85
34000 T T T R S R S P S N 87
Appendix A : Transformations plans...........ccccceeeeeeeccnnnn. 91
APPentix Bt MNTEECING o..... . o.oovniassssssessrossennsssosssassossanpanpes Lo
Appendis C i BDOSIEORY ..oioooosinrsessssrsisssssisassssnsassaisassensons 99
Appendix D : AnalyseMap Program............c.cceeeeeeeeeeeeen. 101
Appendix E : ConvertDB Program..............cccceeeeeeeeeeenee. 121
Appendix F : BNF of the DTD generation...................... 145
Appendix G : DTD Program......cccccccccveeeeeensenssnennennsacnenss 147
Appendix H : ConvertXML Program............ccceeeeeeeeeeee. 155
Appendix I : DB-to-DB Log file.......ccccceerrrennnnennnnnnnnennee. 177
Appendix J : Dbtodbconverter Program.............ccceeeeeee. 189
Appendix K : DB-to-XML Log file.......cccceveeeeeereerneenenenees 193
Appendix L : Dbtoxmlconverter Program 201
Appendix M : XML document......cccceeeeeereenennennnennesesensenes 209

Introduction

Introduction

Introduction

Subject

The purpose of this thesis is the implementation of a program that automatically
generates a data converter. The aim of this generated converter is to transfer the data
from one data structure to another. Of course, the data to be transferred must be
relevant, that is to say that there must be a corresponding structure to host them in the
target structure. That is precisely one of the goal of our program that has to take a look
at the schemas representing those data structures and find the correspondences between
them.
We develop two cases of converter generation :

Data conversion between two databases

e Data conversion between a database and a data structure under textual
format (XML)

Context

Many organisations legacy databases are nowadays obsolescent and ill-structured.
Hence, the need to migrate to newer devices. But this migration is not an benign
operation, most of the time it looks like a high precision surgery that can only be done
by human work. Moreover, sometimes most of the data are solely an artefact of the
implementation and need not to be migrated, like a transplant surgery when you only
need the vital organs to be taken.

It would be, thus, very effective to have tools able to extract the data from the legacy
database, drop the waste, validate the relevant data against the new Database
Management System (DBMS) and load them into it.

One of the biggest problem to handle is the semantic interoperability between the
databases. Most of the time, these are heterogeneous (physically and/or semantically)
and understanding the semantic at the schema or data levels is a huge work. Once
again, it would be interesting to automate the process as much as possible, provide tools
to assist the human trying to understand and map one or more schemas from the legacy
database service to the target.

We are in a time where globalisation becomes a usual word, organisations are
nowadays installed all over the world. These enterprises have thus to send their data
from one place to another. One easy way to achieve this is by the way of Internet, that is
why the transferred data may be stored in a textual format specially adapted for the Net,
called XML.

Page - 1

Introduction

Method

The method we use to implement the generator is the following :

e First, we analyse the schemas to retrieve the correspondences (mappings)

e Then, we store the information we gathered at the previous step

e Finally, we analyse both the target schema and the mappings to produce the
generator A

Thesis organisation

The division in chapter of our thesis follows this progression :

In chapter 1, we present a « state-of-the art » which defines some useful terms
and gives a detailed view of the problem statement and the context of our work.

Chapter 2 is dedicated to a description of the models we use, that is to say the
Entity-Relationship model, a limited one, the conceptual model and the XML model.

In the third chapter, we develop the generator architecture which is divided in
two cases : DB-to-DB and DB-to-XML. We also detail the converters support tools.

The fourth chapter is devoted to the converter generation methodology. Here
again, the methodology is divided in two cases, depending on the type of converter that
has to be generated.

In chapter 5, we first detail the way we analyse the mappings between the source
and the target schema. Then, we bring to light the manner we store the information
given by the mapping analysis.

Chapter 6 is dedicated to the explanation of the way we generate the DB-to-DB
converter, on the basis of the mappings analysis

The seventh chapter presents the description of the way the other case of the
converter (DB-to-XML) is generated.

Finally, in the ninth chapter we develop a double case study for the generation of
source code designed to transfer data, first from a DB to another and then from a DB to
a XML document.

Page - 2

Chapter 1
State-of-the-art

Chapter 1: State-of-the Art

Chapter 1 : State-of-the-art

This chapter deals with the current state of research in the data migration domain. We
first define the notions of data migration, schematic heterogeneity and schema
translation. Finally we give the position of this thesis in that domain.

1.1. Data Migration

Data migration' among heterogeneous databases has become a huge pole of interest as
many organisations need to migrate their data from their old legacy databases (DB) to
newer devices.

Legacy databases tend to be ill-structured and vast. Moreover, a considerable
amount of data is solely an artefact of the implementation and need not to be migrated.
It would be very effective to have tools that could extract data from the legacy DB,
validate it against the migration DB, ignore it if it were not relevant, translate relevant
data to the required formats, and load it into the target DB Management System
(DBMS).

« Semantic interoperability is one of the least appreciated challenges in legacy
database migration and also one of the most costly to resolve. Understanding the
semantics of one database at the schema and data levels is a massive job. »
[Brodie, 1995]

It is a job performed by human intervention for the most part. The more interesting
enhancement you can bring here, is to automate the process as much as possible,
provide tools to assist the human trying to understand and map one or more schemas
from the legacy DB service to the target.

XML is a subset of Standard Generalised Markup Language (SGML) that is
optimised for delivery data over the Web. It provides a universal method for describing
data and because of its very structure, XML can be used as an intermediate format
during a data migration. Indeed, a XML document contains both the data and their
representation, it facilitates thus more precise declarations of content and more
meaningful search results across multiple platforms.

' The process of translating data from one format to another

Page - 3

Chapter 1: State-of-the Art

1.2. Database Heterogeneity

1.2.1. Heterogeneity

« A information system is called homogeneous if the software that creates and
manipulates the data is the same at all sites. Furthermore, all data follows the same
structure and format (data model) and is a part of a single universe of discourse. In
contrast, a heterogeneous system is one that does not adhere to all/ the requirements for a
homogeneous system. This means that any dissimilarity at any level in the information
system design and implementation requires that the system be called heterogeneous. In
this respect, heterogeneity can happen at all levels of the database system. For instance,
different sites may use different languages to write applications, different query
languages, different models, different DB Management Systems (DBMS), different file
systems, etc. The more dissimilar the two systems are, the more difficult it is to bridge
that heterogeneity. » [Sheth, 1999]

1.2.2. Problem statement

One of the biggest problem for most large corporations is that their data are
stored in heterogeneous and independent databases that may have been developed on
different times, different platforms, different DBMS and by different people who may
have different « views of the real world ».

Large organisations’ legacy IS must support their current business requirements,
under penalty of seeing their competitiveness strongly decreasing. Therefore, it seems
necessary to upgrade their systems and one way for achieving this is to integrate their
different DBs. A first positive consequence to such an integration will be the important
savings in maintenance. Another solution would have been to reengineered the whole
but this is a really high financial cost. The replacement by a unique system, as for him,
would be really expensive in terms of reorganisation costs. From this, it seems
necessary to develop tools that allow users and application programs to access the
multiple DBs as if they were a unique and homogeneous one.

« Accessing and managing data from such heterogeneous databases pose
complex problems that can be classified into platform, Data Management System
(DMS), location and semantic level. » [Thiran, 98]

Platform problems come, inter alia, from the fact that the different DBs reside on
different machines, run under different operating systems and use different network
protocols.

Page - 4

Chapter 1: State-of-the Art

DMS problems are due to the diversity of existing DMS. Nevertheless, these can be
easily solved for some families of DMS by the way of tools like JDBC® or ODBC’.
The location problem resides in the difficulty for the user to know where the data are
stored. And the semantic difficulties are due to the multiple way a unique object can be
represented.
Some authors divide semantic conflicts into two kinds of difficulties [Kim, 1991], those
that arise from data heterogeneity and those that come from schematic heterogeneity.
The latter is the more interesting and will be developed more thoroughly in the next
section. We can say briefly that schema conflicts result from the use of different schema
definitions in different DBMS. Data conflicts are due to inconsistent data in the absence
of schema conflicts.
The two types of data conflicts listed are : wrong data and different representations. The
former is generally due to failures in maintaining a DB up to date (and failures to
enforce integrity constraint) and to the fact that some attributes are expected to have the
same value and actually, have not (this problem is also called incorrect-entry data). A
query on a view comprising these two attributes will give a wrong answer. E.g. if the
address of a person in a DB is different from that of the same person in another DB, a
query for the person’s address will return a wrong or corrupted information.
The different representations conflict can be easily understood by giving some
meaningful examples : conflicts can occur when different words are used for the same
data (E.g. : Texas, TX or Tx), or different codes (E.g. : ****, excellent or A) and even
different types (E.g. : some DB store some particular data as string meanwhile other
store them as integer). The difference can also come from different units used (E.g. : cm
or inches, degrees or gradient).

We will not go further in developing data heterogeneity conflicts as we will
concentrate on schematic heterogeneity conflicts.

1.3. Schematic heterogeneity

1.3.1. Definition

There are different definitions given in the DB heterogeneity literature. R.J.
Miller in [Miller, 1998] defines schematic heterogeneity like :

2 Short for Java Database Connectivity, a Java API that enables Java programs to execute SQL
statements. This allows Java programs to interact with any SQL-compliant database. Since nearly all
DBMSs support SQL, and because Java itself runs on most platforms, JDBC makes it possible to write a
single database application that can run on different platforms and interact with different DBMSs.

3 Abbreviation of Open DataBase Connectivity, a standard database access method developed by
Microsoft Corporation. The goal of ODBC is to make it possible to access any data from any application,
regardless of which DBMS is handling the data. ODBC manages this by inserting a middle layer, called a
database driver, between an application and the DBMS. The purpose of this layer is to translate the
application’s data queries into commands that the DBMS understands. For this to work, both the
application and the DBMS must be ODBC-compliant -- that is, the application must be capable of issuing
ODBC commands and the DBMS must be capable of responding to them.

Page - 5

Chapter 1: State-of-the Art

« Two schemas are schematically heterogeneous if data under one schema corresponds
to database or schema labels in the other. Schematic heterogeneity arises frequently
since names for schema constructs (label within schemas) often capture some intuitive
semantic information. »

E.g., a stock class may have subclasses, one for each company, where the name of the
companies serve as labels for the subclasses.

We do not privilege this definition because it seems to us that it is too restricted. We
rather use the interpretation given by Kim and Seo in [Kim, 1991] :

« Schema conflicts result from the use of different schema definitions in different DB’s »

This definition seems to be more general and anyway less restrictive than Miller’s view,
but it needs some further explanation. There are two basic causes of schema conflicts.
The first is the difference in the structures used to represent the same information (tables
or attributes). E.g., some DB’s may represent the address of a person as an attribute of
this person while others may represent it in a separate table. The second main cause of
schema conflicts is the use of different specifications for the same structure. We can
enumerate some examples like the use of different names, data types, and constraints for
semantically equivalent tables and/or attributes.

1.3.2. Schematic heterogeneity conflict classification [Kim, 1991]

The schematic heterogeneity conflict classification is developed for conflicts
between relational DB’s. A global view of the classification is shown in figure 1.1. Each
conflict is explained below.

Schema Conflicts Classification
A. Table-vs-table conflicts
1. One-to-one table conflicts
a. Table name conflicts
1) Different names for equivalent tables
2) Same name for different tables
b. Table structure conflicts
1) Missing attributes
2) Missing but implicit attributes
c. Table constraint conflicts
2. Many-to-many table conflicts
B. Attribute-vs-attribute conflicts
1. One-to-one attribute conflicts
a. Attribute name conflicts
1) Different names for equivalent attributes

Page - 6

Chapter 1: State-of-the Art

2) Same name for different attributes
b. Default value conflicts
c. Attribute constraint conflicts
1) Data type conflicts
2) Attribute integrity-constraint conflicts
2. Many-to-may attribute conflicts
C. Table-vs-attribute conflicts

Figure 1.1. Schema conflict classification

Table-vs-table conflicts

These conflicts occur when different DB’s use different definitions to represent
information in tables.

One-to-one table conflicts

e Table name conflicts

These conflicts come from the use of different table names in DB’s.
There are two types of these conflicts : those due to the use of different
names to represent semantically equivalent tables and those due to the
use of similar names to represent semantically different tables.

e Table structure conflicts

These conflicts occur when the number of attributes between
corresponding tables is different. There are two interpretations for
missing attributes : either the attribute is actually missing, or it is implicit
and thus can be deduced. To illustrate the latter, let’s take the example of
a DB with a table person. This table contains several attributes,
including the gender. Let’s suppose another DB with a corresponding
table person but with the gender attribute missing. If we assume that this
DB represent the members of a Japanese sumo fighting club, the attribute
gender is here implicit and has a default value male.

e Table constraint conflicts

These conflicts arise from differences in the specification of table
constraints. If an attribute is a primary key in a DB table and is a foreign
key in another DB table, there can be some problems transferring data
from a DB to another.

Many-to-many table conflicts

These conflicts occur when DB’s use different number of table to
represent the same information.

Page - 7

Chapter 1: State-of-the Art

Attribute-vs-attribute conflicts

These conflicts are caused by different definitions for semantically equivalent attributes
in different DB’s.

One-to-one attribute conflicts

e Attribute name conflicts
Attribute name conflicts are similar to the table name conflicts
discussed earlier, but on the attribute scale.

e Default value conflicts
These conflicts arise from the confusion that may be done if default
value are not the same from a table to another.

e Attribute constraint conflicts

These can be decomposed in data type conflicts and in attribute-
integrity constraint conflicts. The formers are due to the use of different
data types to represent semantically equivalent attributes in different
DB’s. The latter come from the possibly different definitions of attribute
integrity constraints defined by a Check clause.

Many-to-many attribute conflicts

These conflicts are similar to the many-to-many tables conflicts, but on
the attribute scale.

Table-vs-attribute conflicts

These conflicts occur if some DB’s use a table and others use an attribute to represent
the same information.

1.4. Schema translation

Schema translation is often combined with DB integration or view integration in a
heterogeneous environment, so we first need to introduce these terms before developing
the schema translation

1.4.1. Database Integration

DB integration or global schema design is a process that takes several, possibly
heterogeneous, schemas (i.e. local schemas) and integrates them into a view (i.e. global
schema) that provides a uniform interface for all the schemas [Batini, 1986].

If the local schemas are specified in different data models, they may be translated into a
common model before integration is performed. [loannidis, 1993]. (Figure 1.2)

Page - 8

Chapter 1: State-of-the Art

Database Integration

Integrated Translated Local
View Schemas Schemas

(EN

DB

Queries
_> -

Integration

—

DB
Translation

DL
IR
el bl b

e

Figure 1.2. : DB integration

1.4.2. View Integration

View integration or logical DB design is a process that takes a set of user views and
logically integrates them into a single conceptual schema [Batini, 1986].

These views contain requirements for the portion of a DB that interests different users.
The result of their integration is the schema for an actual DB. If the views are specified
in different data models, they may be translated into a common model before the
integration is done. Depending on the model used for integration, the resulting
conceptual schema may also be translated into a target schema in a final step. For
example, the Entity-Relationship model is commonly used for schema integration and
the relational model used for the target schemas. (Figure 1.3.)

Page - 9

Chapter 1: State-of-the Art

View Integration

Translated
User Translated Integrated Integrated
Views Views Schema Schema

e (RN T B O

Queries @
e —_— _— » > T8
Translation Integration Translation - /l

ek s DR

Figure 1.3. : View integration

1.4.3. Schema Translation

As explained above, schema translation is often combined with DB integration or view
integration as a part of the integration process. But schema translation can also be
required in situations not involving integration [Ioannidis, 1993]. In a unidirectional
system (for example, a data transfer between two DB’s), where we have only two
schemas S1 and S2, the mapping* from S2 to S1 involves only a translation. If the aim,
in this case, is to populate the target DB from the source DB, then it is compulsory that
S2 be at least a semantic subset of S1. If the system has to be bi-directional (transfer in
both ways) the schemas must be semantically equivalent (which is not the case in an
unidirectional system).

1.5. Position of our work

Our thesis is mainly dedicated to problems of data migration among heterogeneous DB's
and of schema translation.

1.5.1. Migration of data among heterogeneous database

The aim of our work is to develop a tool that automatically generates the conversion
program that performs the data migration either between DB's, or between a DB and a
XML document.

* « Mappings are functions that correlate the schema objects in one schema to the schema objects in
another schema » A. Sheth

Page - 10

Chapter 1: State-of-the Art

In the DB-to-DB conversion case, we face a problem of schematic heterogeneity, that is
to say that the schemas that represent the source and the target DB’s are both E-R
schemas, have some correspondences, but the information is stored in the DB’s under
different data structures. The DB-to-XML case is fairly similar, excepted that the
underlying models are heterogeneous (a physical DB and an XML document).

1.5.2. Schema translation

In both cases, the schemas that represent the target DB or XML document have been
translated from the schema attached to the source DB. Up to us to retrieve how it has
been transformed in order to find out the correspondences between the two schemas.

In the DB-to-DB part, the InterDB support case helps us to work only on the DB
conceptual layer, so we don’t have to worry about the conceptual to physical
conversion/translation.

In the DB-to-XML part, we have to manage another type of translation, that is to say,
the conversion of a E-R model based schema to an XML tree-structured document. Here
again, the InterDB tool gives us the ease to work on a source conceptual schema.

Page - 11

Chapter 2
Models

Chapter 2 : Models

Chapter 2 : Models

A DB is generally described by three schemas : the conceptual, the logical and the
physical schemas. The conceptual schema is a data independent, with high semantic,
data representation. The logical schema structures the data like the user and the
programmer are used to work with. Finally, the physical schema is the physical data
structure.

In the data transfer process, we work with conceptual schemas, whether it is a
source or a target schema. The DB schemas respect the Conceptual Model (CM), while
the XML model has its particular constructs. All these schemas are based on the Entity
Relationship (ER) formalism. A query language exists in order to make queries on CM
schemas. In this chapter, we first give an introduction to the ER formalism, then we
define the CM valid constructs. Next, we introduce XML and define the XML model.
Finally, we show how to make queries on such schemas.

2.1. Entity-Relationship Model

Conceptual schemas are often based on the Entity-Relationship (ER) model. Indeed, this
model offers constructs with high semantic that can easily be understood and
manipulated by the user that wants to represent reality.

In the ER model, the application domain is seen as an enfity set. Entities are
related one another and are characterized by attributes that describe their inner
properties. In this section, we give a definition and the graphical representation of the
entity type, attribute and relationship type concepts. [Hainaut, 94]

2.1.1. Entity type

Reality is perceived as a set of entity. Each entity has the same characteristics and
belongs to an entity type (ET). An ET can correspond to real objects (E.g. : Movie) or to
abstract concepts (E.g. : show).

ET are represented by a rectangle with the name inside.

Example :

MOVIE SHOW

Page - 13

Chapter 2 : Models

2.1.2. Attribute

Each ET has some characteristics, its attributes. Each attribute has a type such as
numeric or character. Attributes are optional or mandatory. Optional attributes may not
have a value for some entities, the other, no. Usually, attributes have only one value, but
sometimes, they can have many, these are multivalued attributes. Some attributes may
be composed of other attributes, they are called compound attributes, the other, atomic.

Attributes are written in the rectangle of their corresponding ET. The attribute
cardinality is written in square brackets [i-j] where i is the minimum cardinality and j
the maximum cardinality. E.g, if the cardinality is [0-1] that means that the attributes is
optional. The [1-1] cardinality is implicit, it is not represented on the schema. That is the
reason why nothing is written next to single-valued and mandatory attributes.

Example :

=y PRODUCER
Title Name
Year Address
Duration Street
Actor{0-1] City
Telephone[1-5]

A film has a title, a release year, a duration and may have one actor (or actress). A
producer is characterized by its name, address and telephone number. The address
is composed of the street and the city name. The producer has between one and
five different phone number.

2.1.3. Relationship type

ET’s are linked via relationship types (RT). RT may have some attributes and they all
have cardinalities. There is two kinds of RT, the one-to-many and the one-to-one. Let A
and B be two ET linked with a RT R. If R is one-to-many, there must be zero or one A
for each B and each B has many A via R. On the contrary, if R is many-to-many, each A
has many B and each B has many A via R. A RT that links two ET’s is called binary
while RTs that join more than two ET’s are called n-ary.

The graphical representation of the RT is an hexagon with the name of the RT

inside.
Example :
FILM PRODUCER
MUSIC Title Name
Composer _1-11_1— Year "—I‘I-N‘W Address
CDnumber Duration St.reet
Actor[0-1] City
Telephone[1-5]

Page - 14

Chapter 2 : Models

A film has one music and the music is for that film only. Each film has only one
producer but the producer may produce several films.

2.1.4. |dentifier

An ET can have an identifier. The identifier value is always different for each entity
which means that, given an identifier value, there is never more than one entity with that
value. Usually, this identifier is one attribute but it can be composed of several attributes
and/or a role in a RT. If the ET has several identifier, one is called the primary identifier
and the others are the secondary ones.

If the identifier is composed of attributes, the attributes are underlined. On the
other hand, if it is made up of at least a role, it is written in the bottom of the ET.

Example :

NPRODUCER CONTRACT
ame
e Number
Address Arbunt

Street —0- 1-14

City Date

id: Number

?:';‘::::eué] signs PRODUCER

Each producer has a different name. Several contracts may have the same number
but it is not possible to find ones signed by the same producer with the same
number.

2.1.5. Is-a relationship

An ET may be a subtype of another ET. The subtype inherits all the characteristics of
the supertype, i.e. its attributes, RT and identifier. We say that there is an is-a
relationship between the ET’s. An ET may have several subtype.

The are three particular is-a relationships : total, disjoint and partition. If it is total, each
supertype is at least one of the subtype. In a disjunction, the supertype can be only one
of the subtype. The partition is total and disjoint, i.e. each supertype has one and only
one subtype.

The graphical notation is a triangle that links both ET. The is-a relationship type
is written into the triangle. P stands for the partition, T, for total and D for disjoint. If
nothing is specified in the triangle, that means that the is-a relationship has no special
characteristic.

Page - 15

Chapter 2 : Models

Example :

MOVIE

Title

Year

Duration
CARTOON FILM
Technique Actor
Color

The cartoon and film are a specialization of a movie. They inherits its attributes
title, year and duration. A cartoon is characterized by the technique and the color
whereas the film has one actor (actress).

2.2. Conceptual model

One negative aspect of the ER model is the ambiguity that it creates. Indeed, this high
semantic model provides a profusion of constructs that allow the same information to be
represented in different data models. This ambiguity may create some schema conflicts
just as it is exposed in chapter 2. In order to restraint the risk of having such problems,
in the transfer process, the source and target schemas we work with are not full ER
schemas but rather simplified ones. Indeed, some constructs are not authorized. Let’s
name this limited ER model the Conceptual Model (CM). However, this restriction has
not too many consequences for the user considering that an ER schema can be
transformed into an equivalent CM schema (A transformation plan is given in appendix
A).

In CM, there are ET’s, RT’s and attributes. Table 2.1. shows the constructs with
their constraints.

Constructs Constraints

Entity type Any number of attributes and identifiers

Attribute Atomic or compound, mandatory or optional
Domain : Char(n), Num(n), Num(n,m)

Identifier n level-1 attributes or roles

Relationship type Binary, one-to-many or one-to-one

Role Cardinality : [1-1], [0,1] [0-j], [0-N]

Name Host language compliant

Table 2.1. Conceptual model constructs

Page - 16

Chapter 2 : Models

ET’s have any number of attributes which can be atomic or compound, mandatory or
optional (cardinality [1-1] or [0-1]). There are no multivalued attributes in the CM.
Identifiers are composed of one or more attributes or roles. Relationship types are binary
one-to-many ([1-N], [0-N], [1-j] or [O-j]') or one-to-one ([1-1] or [0-1]).

Example :

PRODUCER

Name FILM

Address Title
Street - Year

£ d el g

Number A I-1 Duration
Zi.p Actor[0-1]
City id: Title

id: Name

A producer is identified by his name. He has an address composed of the number,
street, zip code and city. He may produce several films that are identified by their
title. A film is characterized by its release year and its duration. One can give the
name of one actor (actress). A film always have a producer.

2.3. XML model

In the data transfer process, a XML document is represented by a conceptual schema.
This target schema is not a full ER schema, some constructs are not valid. This XML
special schema format is called the XML model. In this section, we first give an
introduction to XML and then we define the XML conceptual model.

2.3.1. XML

The eXtensible Markup Language (XML) is a markup language for documents
containing structured information. XML is a flexible way to create information formats
and is therefore used to share information over the Web in a consistent format.

A XML document may be validated through a Document Type Definition (DTD) which
defines the grammar of the document. It may be also validated through XML schemas
which are specially adapted for DB schemas.

It is interesting to extract data from the XML document. This can be done through the
use of special queries provided by the XML query language (XML QL.).

' N stands for any number, while j represents a fixed maximum cardinality (except 1).

Page - 17

Chapter 2 : Models

Definition

XML is a markup language, i.e. a system for marking or tagging a document that
indicates its logical structure and gives instructions for its layout on the page for
electronic transmission and display. XML is therefore a language for documents
containing structured information. The XML specification defines a standard way to add
markup to documents [Walsh,98].

In a XML document, the data, written between the begin and end tags (E.g. :
<Person> and </Person>), are tree structured. Indeed, each tag is composed of a series
of other tags and if one follows the structure of the document, he will find a tree.

Example :

This XML document contains only one data : a person named Smith that lives in
San Francisco :

<person>
<name> Smith</name>
<address>
<Street> Powell street </Street>
<City> San Francisco</City>
</address>
</person>

The format of that data is the following tree structure :

Person
Name Address
Street City

XML is a subset of the Standard Generalized Markup Language (SGML), this
means that XML is easier to learn and to use than the complete SGML.
XML differs from the Hyper Text Markup Language (HTML). HTML has predefined
tag set and semantics while XML has not. XML provides a facility to define tags and the
structural relationship between them (a node may be linked to another one). It describes
the content of the tags in terms of what data is being described. E.g : between the tags
<movie> and </movie> one can imagine that there is a movie. The consequence of this

Page - 18

Chapter 2 : Models

characteristic is that a XML document contains the data and their structure.
Furthermore, XML tags can be nested at any level of complexity in order to represent
complex document.

We use XML for structured documents because HTML, with its predefined tags and
semantics, doesn’t allow arbitrary structures, and SGML is too complex.

A XML document consists of a sequence of elements. The boundaries of these
elements are delimited by a start tag and an end tag. Each element has a type, is
identified by a name and may have a set of attributes. Each attribute has a name and a
value.

Example :

<film id="1">
<title>Trois couleurs: Bleu</title>

<actor>Juliette Binoche</actor>
</film>

This is a very simple XML document with three elements : film, title and actor.
The film element has one attribute : id that identifies it and is composed of the
two entities title and actor which are free text and have no attribute.

There is two categories of document : well formed and valid. A document is well
formed if the element tags match and nest properly and if the attribute appear only once
in the start tag. See [Walsh,98] for a complete list of the conditions.

Example :

<film>
<title>Trois couleurs : Bleu

<actor>Juliette Binoche</title>
</filmid ="1">

This document is not well formed while the previous example is a well formed
XML document

A document is valid only if it is well formed and if it contains a proper Document Type
Definition (DTD) and respects the constraints of that DTD, E.g., element matching and
nesting is valid, required attributes are provided and their values are of the correct
type,... An example of valid XML is given in page 21.

DTD

A Document Type Definition (DTD) is the grammar of the XML document, it specifies
which elements it could contain, with which attributes, and how they could nest. In the
DB environment, we can say that the DTD is the schema while the XML document
contains the data.

Page - 19

Chapter 2 : Models

A DTD is composed of elements, attributes, notations and entities. Here is a
brief definition of the grammar for the elements and the attributes as one can find in

[Bourret].

An element is defined, in the ELEMENT statement, as a group of one or more
subelements/subgroups (non-terminal elements), character data (PCDATA), EMPTY, or
ANY (terminal elements). Groups can be either a sequence or a choice of subgroups
and/or subelements. On groups, subgroups and subelements, we can apply the optional
(?7), one-or-more (+) or zero-ore-more (*) operétors. (Table 2.2.)

Element’s declaration

| Description:

<!ELEMENT cinema (name, addtess)>
<!ELEMENT name (#PCDATA)>

<!ELEMENT address (street, city, phonenbr?)>

The element film is defined as a sequence of
one subelement name and one subgroup address
The element name is composed of character
data

The element address is composed of one street,
one city and can contain one phone number

Table 2.2. : Element declaration

An element can have one or more attributes which are defined into the ATTLIST
statement. An attribute can be optional, required or fixed, and if it is optional or fixed, it
may have a default value (Table 2.3.). It also has a type. Table 2.4. contains a non

exhaustive type list.

Attribute’s declaration

Description

<!ATTLIST film year CDATA #REQUIRED
duration CDATA #IMPLIED>

<!ATTLIST person language CDATA "Norsk"

The element film has two attributes : one
is required (year) and one is optional
(duration). Both are character data and
have no default value.

The element person has an attribute
language which is optional and have the
default value "Norsk"

Table 2.3. : Attribute declaration

Attribute’s type Description
CDATA Character data
ID

elements.
IDREF
IDREFS

An attribute with this type identifies the element among the other

The attribute links its element to another element. Its value is
therefore the value of the ID attribute of the pointed element.
The attribute points to many elements

Table 2.4. : Attribute type

Page - 20

Chapter 2 : Models

Example :

Here is a valid XML document given the DTD which is inside the document.

The DTD is written a the beginning of the document.

<?XML version="1.0."?>

<IDOCTYPE cine [

<IELEMENT (cinema,movie)>
<IELEMENT cinema (name,location)>
<IATTLIST cinema presents IDREFS #REQUIRED>
<IELEMENT location (street, city)>
<IELEMENT movie (title, producer, actor*)>
<IATTLIST movie id ID #REQUIRED>
<IELEMENT name #PCDATA)>
<IELEMENT street #PCDATA)>
<IELEMENT city #PCDATA)>
<IELEMENT title #PCDATA)>
<IELEMENT producer #PCDATA)>
<IELEMENT actor #PCDATA)>

1>

<cine>
<cinema presents = "1", "2">
<name>Cameo</name>
<location>
<street>rue des carmes</street>
<city>Namur</city>
< /location>
</cinema>
<movie id="1">
<title>Trois couleurs : Bleu </title>
<producer>Karmitz</producer>
<actor>Juliette Binoche</actor>
</movie>
<movie id="2">
<title>Les schtroumpfs</title>
<actor> Le Grand Schtroumpf</actor>
<actor>Le Schtroumpf a lunettes</actor>
</movie>
</cine>

Cine is composed of a cinema that presents two movies. The cinema is the Cameo

and is located in Namur. The movies are Trois couleurs :

Bleu and Les

schtroumpfs. Each of them is identified by a number (respectively, 1 and 2).
This id is referenced by the idrefs attribute presents of the cinema element.

Page - 21

Chapter 2 : Models

XML schema

"XML schemas are an attempt to replace DTD's with something "better'[Walsh,99].

Indeed, the main default of DTD’s in the DB domain is that they have extremely limited
datatyping. They can only express the datatype for the attributes (CDATA, ID, IDREF).
For the elements, there is only one datatype : PCDATA, which means all possible
characters.

A XML schema defines a model for documents in terms of constraints. There are
two kinds of constraints :

e content model constraints which describe the order and sequence of the
element tags
e datatype constraints which describe valid units of data.

A XML document is valid if it is well formed and if a schema is associated to it and the
document does not violate any of the constraints of that schema. Therefore, there is two
validity, one for the content model and one for the data type. The content model validity
tests whether the order and nesting of tags is correct, while the datatype validity tests
whether the information are of the correct type and fall within the specified legal values.
Indeed, the datatype is characterized by the value space and the lexical space. The value
space is the set of permitted value for the datatype while the lexical space consists of a
set of valid literals. Each value in the datatype value space maps to one or more valid
literals in its lexical space.
The ability to express datatype validity is the real advantage of the schemas compared to
DTD’s.

The XML schemas are written in an XML syntax, unlike the DTD’. They are
XML documents where elements and attributes are used to express the semantics of the
schema.

Example :
<elementType name="Title">
<mixed/>
</elementType>
The elementType element is used to declare an element. The name of the element
is given in the name attribute. The tag <mixed/>* means that the Title element
can contain a mixture of character data and elements.
To define a datatype, we use the datatype element.

Example :

<datatype name="TelephoneNbr">

<basetype name="string" />

? <mixed/> is an empty element. This notation is equivalent to <mixed></mixed>

Page - 22

Chapter 2 : Models

<lexicalRepresentation>
<lexical>999/99-99-99< /lexical>
<lexical>999/99/99/99< /lexical >
/lexicalRepresentation>
</datatype>

The telephonenbr type is defined here as a string that has two possible formats.
The lexical space is defined in the LexicalRepresentation element. E.g. the
telephone number 081/23-13-48 has the correct format.

The complete definition of a XML schema is given in [W3C,99a] and [W3C,99b].

XML schemas seems a great improvement of the DTD’s. But, today, the DTD’s
have the virtue of being well understood and of offering a good way to describe the
document structure. Unfortunately, it will take some time before XML schemas are well
understood and used, that’s why we are going to use a DTD to define the DB schemas
we are working with in the transfer process.

XML QL

There is a special query language for XML document called XML-QL and which has
been defined by [W3C,98]. XML-QL is SQL-like and allows XML document to be
queried like a DB, the corresponding DTD being the DB schema. It can extract data and
perform some data transformations via operations as join and aggregate. It can also
support the data construction that is required by transformations. XML-QL syntax can
be found in [W3C,98].

An introduction to the language through examples is given in appendix B.

2.3.2. XML model constructs

The target XML conceptual schema represents the XML document using ER objects.
Not all constructs are valid, just like in the CM. All CM constructs are accepted but
there are less constraints on the ET, RT and attributes. Table 2.5. shows the constructs
and their constraints.

Constructs PR e Constraints
Entity type Any number of attributes and identifiers
Attribute Atomic or compound, mandatory or optional,

single valued or multivalued.
Domain : Char(n), Num(n), Num(n,m)

Identifier n level-1 attributes or roles
Relationship type Binary, one-to-many or one-to-one
Role Cardinality : [1-1], [0,1] [0-j], [0-N]
IS-A no constraint

Table 2.5. : XML model constructs

Page - 23

Chapter 2 : Models

The difference with the CM is that multivalued attributes and isa-constructs are
authorized.

Example :
FILM PRODUCER
Title Name
—1-1 roduces 0-

Duration F il Address

Year Telephone[0-5]
CARTOON MOVIE
Color Actor
Technology Director

A film is characterized by its title, duration and the release year. It has one
producer which can produce several films. A cartoon and a movie are a film, that
means that they have all the film attributes. The cartoon has particular attributes :
technology and color which is used to express whether it is colored or not. A
Movie is characterized by an actor and a director.

2.4. Conceptual Query Language

Data in a DB can be extracted, altered or deleted using queries. The Structured Query
Language (SQL) is a language that offers such queries. SQL queries are based on the
physical schema. Because, in the data transfer process, we work with conceptual
schemas, we would like to have queries based on them. Such queries are provided by the
Conceptual Query Language (CQL) defined by [Thiran,1999a].

CQL is based on SQL and specially adapted to support the CM. If we want to
execute queries on a conceptual schema, we have therefore to work on schemas that
respect the CM. CQL includes selection and update queries.

CQL results objects are called entity objects. Their properties correspond to the
attributes of the entity types. E.g. to the ET producer, correspond the entity objects
producer and address. The last is an implicit entity object.

Example :

Page - 24

Chapter 2 : Models

EL

Entity type objects:

PRODUCER

Name
Address
Street

City

PRODUCER

String name
Address Address

Address

String Street
String City

CQL selection statements uses the select-from-where clause, their format is
given is table 2.6. We can access attributes of compound attributes via the name of the

compound attributes.
Example :

Select P.name
From Producer P

Where P.address.city ="Namur"

This query selects the name of all the producers that live in Namur.

CQL also offers the possibility to follows links in the conceptual schema by giving the
relationship name in the where clause. The order of entity names in the where clause is

irrelevant.
Example :

Select M.title
from Movie M, producer P
where P produces F

This query gives the title of all the movies that have a producer.

CQL updates queries allow to make some data modifications. The delete,
update and insert statements are defined on ETs while the link and unlink statements
are defined on the two ETs that are connected by the RT. Table 2.6. gives the format of

these statements.

Page - 25

Chapter 2 : Models

Statement

Format

Select
Delete
Update
Insert

Link
Unlink

select select-clause from ent-list where where-clause

delete object object-name from ent-name

update object object-namel into object-name2 from ent-name

insert object object-namel into ent-name [linked with object-name2 via rel-
name {and object-name-i via rel-name-i}]

link object] to object2 via rel-name

unlink object1 to object2 via rel-name

Table 2.6. : statements format

The delete statement removes one instance of the ET. This query also deletes all the
‘ entity relationships with other entities.

Example :

Delete object obj_producer from Producer

The object obj_producer is removed from the ET Producer

The update statement replaces one instance of an ET by another.

Example :

Update object obj_producer into new_obj_producer from Producer

The object obj_producer is replaced by the object new_obj_producer in the ET
Producer.

The insert statement is used to add a new entity in an ET. The /inked with clause in the
insert statement is optional. It is used to indicate the entity object(s) that is (are) in
relation with the new entity.

Example :

Insert object new_obj_producer into Producer linked with obj_movie via
produces

A new producer is inserted into the Producer ET. This instance is linked with a
movie entity represented by the obj_movie object.

The link statement is used to create a new relation between two entities.

Page - 26

Chapter 2 : Models

Example :
Link obj_producer to obj_movie via produces

A relation produces is created between the objects obj_producer and obj_movie

The unlink statement removes a relationship between entities.
Example :
Unlink obj_producer to obj_movie via produces

The link between the objects obj_producer and obj_movie is removed.

Page - 27

Chapter 3
- Architecture

Chapter 3 : Architecture

Chapter 3 : Architecture

The converter architecture differs regarding to the converter type : DB-to-DB or DB-to-
XML. In this chapter, we define the two converter architectures and then we bring to
light the converters support tools.

3.1. DB-to-DB architecture

The DB-to-DB converter architecture, as shown in figure 3.1. is fairly simple. There are
two conceptual schemas, the second being derived from the first one via symmetrically
reversible transformations. Let’s call the first the source schema and the latter the target
schema. The target schema is a subset of the source schema. A local server is attached
to each schema, its role being to manage the conceptual/physical conversion of each
local DB's and to give the availability to directly address the conceptual schemas. The
converter is built on the basis of the transformations performed on the source schema.
It comprises two parts : the extraction module and the insertion module. The aim of the
first module is to extract the relevant data from the first DB, using the local server. By
relevant, we mean every data supposed to be present in both the source and target DBs.
The insertion module is designed (obviously) to insert the extracted data in the
corresponding location of the second DB.
Each component is described below.

Source Target
Conceptual Converter Conceptual
Schema Schema
Source Local Target Local
Server Server
t S Insertion module|

module

A 4
S S
Source Target
DB DB

Figure 3.1. : DB-to-DB architecture

Page-29

Chapter 3 : Architecture

Source DB

The source DB is the local DB from which the converter collects the data. A local
server is linked to that DB.

Source local server

The source local server is attached to the local source DB. It offers a CQL interface
based on the source conceptual schema. That is to say that it is possible to address
queries at the DB conceptual-layer via the source local server, the latter managing the
conceptual/logical and logical/physical translations. This device is provided by the
InterDB support case, as explain in section 3.3.2.

Source conceptual schema

The source conceptual schema is the source DB representation. This schema is easily
read and understood by the user. It respects the CM constructs. Some symmetrically
reversible transformations are performed on this schema in order to produce the target
schema.

The converter CQL selection queries addressed to the local server are based on the
source conceptual schema.

Target DB

The target DB is the local DB to which the converter transfers the data picked up in the
source DB. It is attached to the target local server

Target local server

The target local server is attached to the local target DB. It is used by the converter to
insert the data into the target DB using update queries. It offers a CQL interface based
on the target conceptual schema. This device is provided by the InterDB support case, as
explain in section 3.3.2.

Target conceptual schema

The target conceptual schema is the representation of the target DB. It respects the CM

constructs. The update queries performed by the converter on the target local server are
based on this schema.

Page - 30

Chapter 3 : Architecture

Converter

The converter acts like a mediator between the two DB’s, its aim being to transfer data
from one to the other. It is composed of two parts, the extraction and insertion modules.
The extraction module is in charge of extracting the data from the source DB, while the
insertion module inserts them into the target DB.

The converter generation process is described in chapter 6.

3.2. DB-to-XML architecture

The DB-to-XML converter architecture is shown in figure 3.2. Just like in the DB-to-
DB case, there are the source and the target conceptual schemas. The first represents
the source DB and the second one, the XML document. The target schema is derived
from the source schema via symmetrically reversible transformations. A local server is
attached to the source DB. The converter, between the source and the target conceptual
schemas, is composed of two modules : the extraction and the write modules. The
extraction module is used to extract the data from the source DB via the local server.
The write module creates the XML document based on the target schema. The XML
document contains all the data in a textual format and is validated by its DTD.

The source DB, the source local server and the source conceptual schemas have
all the same definition and use than those already defined in the DB-to-DB architecture.
The other components are described below.

Source Target
Conceptual Converter Conceptual
Schema Schema

Source Local / \

Server Extraction
module

Write module

{

———
N———

Source XML documen
DB

Figure 3.2. : DB-to-XML architecture

XML Document

The XML document is used to store the data in a tree-structure format given by the
DTD. This document is produced by the converter.

Page-31

Chapter 3 : Architecture

Target conceptual schema

The target conceptual schema is the representation of the XML document. It is derived
from the source conceptual schema. The DTD associated to the XML document is based
on that schema. The strategy to translate the target schema into a DTD is explained in
chapter 7.

The target schema respects the XML model structures defined in chapter 3.

Converter

In this architecture, the converter resides between the source and target conceptual
schemas. Its two modules, the extraction and the write modules, transfer the data from
the local DB to the XML document. The extraction module, just as its DB-to-DB
counterpart, retrieves the data from the source DB via the source local server. The write
module, is designed to create the XML document and to fill in it with the extracted data.
The process of the DB-to-XML converter generation is described in section 7.2.

3.3 Support Case

3.3.1 DB-Main case tool

« The DB-Main CASE environment is a complete set of tools dedicated to
database applications engineering. This graphical, repository-based, software
engineering environment is dedicated to database applications engineering. Besides
standard functions such as specification entry, examination and management, it includes
advanced processors such as transformation toolboxes, reverse engineering processors
and schema analyses tools. In particular, DB-Main offers a rich set of semantics-
preserving transformational operators’ that allow developers to carry out in a
systematic way the physical/conceptual mapping. Another interesting feature of DB-
Main is the Meta-Case layer, which allows method engineers to customize the tool and
to add new concepts, functions, models and even new methods. In particular, DB-Main
offers a complete development language, Voyager 27, through which new functions and
processors can be developed and seamlessly integrated into the tool. » [Thiran, 1999]

We use the DB-Main graphical tools to draw the source schema, then we use the
semantics-preserving transformational operators to transform the source schema and
translate the target. DB-Main also offers the (more than useful) possibility to register all
the transformations made on the source schema.

' The set of transformations is defined in chapter 4.
* The Voyager2 programming language is defined in chapter 4.

Page - 32

Chapter 3 : Architecture

3.3.2 InterDB

InterDB is dedicated to the integration and the interoperability of heterogeneous and
distributed information systems. A part of the InterDB architecture is shown in figure
3.3. and described below.

Server | | Repository |
LCS
Local Local Conceptual
Server Server |y Module
A i
3 LLS
.
S
..-
k! Logical
Module
Y \
S N
ey e | e

Figure 3.3.: InterDB architecture

In the InterDB architecture, there are local servers attached to each DB. Each of these
mediators is based on the DB Local Conceptual Schema (LCS). A local server
comprises the logical and the conceptual modules. The logical module hides the
physical constructs of the DB and dynamically transforms queries and data from the
logical model to the physical one (Local Physical Schema). All logical modules offer a
common interface. The conceptual module provides a conceptual view of the Local
Logical Schema (LLS) and hides all the technical and optimization constructs.
Therefore, each local server appears as a conceptual BD with a unique interface for
application programs.

The global server’ offers a conceptual interface based on the GCS (Global
Conceptual Schema). It manages the global queries (queries addressed to the DB,
independently of their distributed locations).

The generator uses the local server provided by InterDB. Indeed, the generated
converter is linked to two or one local server, the DB-to-DB converter being attached to
the source and target local servers whereas the DB-to-XML converter being only linked
to the source local server. The local server allows the converter to operate, i.e. to address
queries, on conceptual schemas because it performs the conceptual/logical and
logical/physical translation of the queries.

¥ We don’t use the InterDB global server, this is why the description is just a brief one

Page-33

Chapter 4
~Methodology

Chapter 4 : Methodology

Chapter 4 : Methodology

In this chapter, we present the converter generation methodology which is quite
different according to the converter type we have to generate : DB-to-DB or DB-to-
XML. Then, we expose the set of theoretical transformation from which the mappings
are derived. Finally we show up some useful tools like the DB-Main repository.

4.1. The DB-to-DB converter generation methodology

The DB-to-DB converter generation methodology can be decomposed in two steps, as
shown in figure 4.1 :

e mapping analyse
e DB-to-DB converter generation

Target Transformations
conceptual schema history

Mapping analysis

Enriched target
conceptual schema

DB-to-DB converter
generation

Documentation

Figure 4.1. : DB-to-DB converter generation methodology

Page - 35

Chapter 4 : Methodology

4.1.1. Mapping analysis

The target conceptual schema representing the conceptual design of the target DB can
be found in the DB-Main repository. The latter also offers the transformation historic
(stored in a log file). This file contains the historic of all the transformations performed
on the source conceptual schema in order to produce the target conceptual schema. All
these transformations are described in section 4.3. By analysing the information given
by the repository and the log file, the generator is able to discover the mappings and to
produce an enriched target conceptual schema. The enriched target schema is the same
than the target schema except that the mappings are inserted, in a defined format, into
the repository. The correspondences between the source and target conceptual schemas
can now be found by the generator into the target schema.

4.1.2. DB-to-DB converter generation

The enriched target conceptual schema contains the mappings between the source and
the target schemas. Each mapping is analysed by the generator in order to create the DB-
to-DB converter.

The converter source code is therefore produced and, in the same time, some useful
documentation linked to the code is also generated.

4.2. DB-to-XML converter generation methodology

The DB-to-XML converter generation methodology is composed of three steps, as
shown in figure 4.2. :

e mapping analyse
e DTD generation
e DB-to-XML converter generation

Page - 36

Chapter 4 : Methodology

Transformations

Target ;
history

conceptual schema

A

Mapping analysis

Enriched target
conceptual schema

DTD generation

DTD

DB-to-XML converter
generation

o

Documentation Code

Figure 4.2. : DB-to-XML converter generation methodology

4.2.1. Mapping analyse

This process is similar to its DB-to-DB counterpart, the reader can refer to the
explanation in section 4.1.1.

4.2.2. DTD generation

As we are working here not with a target DB, but with a XML document, we have to
define the format in which we want to insert the data in the output file. The format of a
XML document is given by the DTD that can be internal or external to the document. In
our case, we produce an extern DTD on the basis of the enriched target conceptual
schema. The generated DTD is the translation of a conceptual view into a tree-

Page - 37

Chapter 4 : Methodology

structured view. All the information about the mappings can also be inserted in the
DTD. It is important to build a DTD for two reasons. The first one is that the DTD is
used by the generator to build the XML document. The second use of the DTD is to
validate the produced XML file.

4.2.3. DB-to-XML Converter generation

Now that the DTD is generated and that all the information needed lie in the enriched
target conceptual schema, we are able to produce the code that will effectively perform
the data transfer from the source DB to the XML document (respecting the format given
by the DTD). Alongside with the source code, the generator also produces some
documentation that explains what the converter is doing.

4.3. Transformations

"A schema transformation is an operator T that replaces a source construct C in
schema S with construct C', leading to schema S". C' is the target of source construct C
through T : C'=(C). [Hainaut,95]

A transformation X is specified by two mappings, the structural mapping T and
the instance mapping t : £ = <T,t>.
The structural mapping, which represents the syntax of the transformation, is such that
C=T(C). In order to define T, we use a predicative specification, i.e. we give the
precondition P and the postcondition Q on C. P and Q includes two kinds of statements :
structural declaration and naming and applicability constraints.
The instance mapping, which is the semantic of the transformation is such that ¢’ = t(c)
where c is an instance of C. t can be expressed by any data manipulation language
expressions.
The complete specification of X is therefore : £ =<P,Q,t>.

There are three classes of transformations : non reversible, simply reversible and
symmetrically reversible transformations.
Non reversible transformations are transformations that have no inverse. It is
impossible to recover the source C from target C’. These transformations are not
semantic preserving.
A transformation X1 = <T1,t1> = <P1,Q1,t1> is simply reversible iff, 3 X2 = <T2,t2>
= <P2,Q2,t2>, an inverse transformation, such that V ¢ of C : P1(C) =T2(T1(C)) =C
and t2(t1(c)) = c. X2 is the inverse of X1, but not conversely.
A transformation X1 = <T1,t1> = <P1,Q1,t1> is symmetrically reversible iff, Z1 is
reversible and its inverse X2 is reversible. In other words :
V cof C:PI(C) = [T2(T1(C)) = C and t2(tl(c)) =c]

P2(C’)= [T1I(T2(C’)) = C’ and t1(t2(c’)) = ¢’]

Since £2 = <Q1,P1,t2>, the concise notation for X1 + X2 is £ = <P,Q,t1,t2>

The symmetrically reversible transformations on DB conceptual schemas are shown in
table 4.1.

Page - 38

Chapter 4 : Methodology

Transformation
ET-to-RT
ET-to-ATT
Split-merge

Make-subtype
RT-to-ET
RT-to-ISA
Att-to-ET/value
Att-to-ET/instance
MultAtt-to-SingleAtt
MultAtt-to-Serial Att
Disaggregate

Aggregate
rename

Description

An entity type is transformed into a relationship type

An entity type is transformed into an attribute

Components of an entity type are extracted into a new entity type
(split) or can be added to an existing entity type (merge)

A supertype is given to two entity types

A relationship type is transformed into an entity type

The common entity type of two relationship types is transformed into
a supertype of the other entity types

An attribute is transformed into an independent entity type. Each new
entity represents a distinct value of the attribute

An attribute is transformed into an independent entity type. Each new
entity represents an instance of the attribute.

A multivalued attribute is transformed into an atomic attribute which
is the concatenation of its values

A multivalued attribute is transformed into a list of atomic attributes
A compound attribute is replaced by its components

A list of attributes is replaced by a compound attribute

A TE, RT or attribute name is changed.

Table 4.1. : Symmetrically reversible transformations

Rem : The MultAtt-to-SingleAtt and MultAtt-to-SerialAtt are not fully reversible
transformations, they are reversible from left to right.

4.4. Support Tools

The generator uses some tools in order to be supported during its generation process.
The main tool is DB-main with its repository and history file. DB-Main offers also a

language : Voyager2.

4.4.1. DB-Main repository

The repository contains the project current methodology and history. It is also
used by the DB-main tool to record the product specifications, mainly schemas and

texts.

The repository is composed of objects. All the instances of an object type must
respect the object definition. The aim of the repository is to store the definition of any
ER schema. It is thus normal that all the concepts like entity type, relationship type,
attribut have a corresponding object type. E.g., the entity_type object type corresponds
to the entity type concept.

Two kinds of relation may exist between object types : is_a and link relations.
The is_a relation expresses the generalization concept. When an object A derives from
another object B, we say that A is a specialization of B or that B is the generalization of
A. All the properties of the object A also hold for the object B.

Page - 39

Chapter 4 : Methodology

Example :

co_attribute —o—attribute

The co_attribute is-a attribute. The co_attribute and attribute object types
correspond to the concepts of compound attribute and attribute.

The link relation represents a one-to-many relation between two objects. If there is such
a link, to each instance of an object A corresponds a collection of instances of the object
B. Each side of the relation r plays a role r or @r.

Example :

owner_att i
_____— attribute

owner_of_att

the object owner_of_att plays the role owner_att with a cardinality 0-ee while the
object attribute plays the role @owner_att with cardinality 1-1. The object type
owner_of_att is a generalization of object of ent_rel_type (object that groups the
entity_type and rel_type object)and co_attribute types.

There is a special object in the repository : the meta_property. The meta-property
is used to dynamically extend the repository by adding new fields to one object-type in
the repository. Adding one new instance in the meta_property entity type and linking it
with one instance of a meta_object enables to add one property to the entity type
described by the meta-object. Once this modification is done, the new property is
available in the DB-Main Case tool and in Voyager 2.

The complete repository’s schema is given is appendix C.

4.4.2. History manager

Another specificity in the repository is the history manager. It records all the activities
carried out by the user. Though the historic is hidden inside the repository, a log file is
created when the analyst requests it either to examine its content or to replay some
actions. We use this file to recover all the transformations performed on the source
schema in order to build the target schema.

4.4.3. Voyager2

Voyager 2 is a complete, fourth-generation, semi-structural language. It is similar to
traditional languages like C and Pascal. Voyager 2 offers predicative access to the
repository, the analysis and the generation of external texts and the definition of
recursive functions and procedures. The very difference between Voyager 2 and the
other languages is the ability to make queries on the predefined repository. New object

Page - 40

Chapter 4 : Methodology

types and properties can be dynamically added and managed through Voyager 2
procedures.

Example :

attribute: att;

entity_type:ent;

begin

for att in ATTRIBUTE[att] {@OWNER_ATT : [ent]} do
{
print(att.name);

}

end

This program uses a predicative query that gives all the attributes of a given ET,
and prints their names on the screen.

The lexical analyzers offered by Voyager 2 are very useful in order to parse and analyze
an input file like the log file.

Once a program is written and compiled with the Voyager 2 compiler, it can be
executed in the DB-Main Case tool.

Page - 41

Chapter 5
Mapping Analysis

Chapter 5 : Mapping analysis

Chapter 5 : Mapping analysis

The first step in the converter generation methodology is the analysis of the mappings
between the source and target schemas. Once extracted from the log file, these mappings
are inserted into the target conceptual schema. Thus we have an enriched schema.
Given that the source conceptual schema is attached to a local server, it has to comply
with the Conceptual Model (CM). In the DB-to-DB transfer process, the target schema
is also attached to a local server, it has thus to respect the CM structures. The XML
schema has its own structures as defined in chapter 2.

The first section of this chapter describes the symmetrically reversible
transformations and defines the mapping format for each of them that can be applied on
the source schema. Then, we explain how to insert the mappings in the target conceptual
schema. Finally, we give a brief explanation of the AnalyseMap program.

5.1. Mapping representation

In table 4.1., one can find the list of the main symmetrically reversible transformations
that can be applied on a conceptual schema. Transformation on multivalued attributes
are not analyzed here because these attributes are no valid constructs in the CM. Some
other of these transformations must be more constrained in order to be performed on the
source conceptual schema, this is due to the very structure of that schema. These
transformations are defined and illustrated below. A comment on their potential use on
the source schema is given too.

For each transformation, we define the mapping format and give an example. A meta
property named "corresp" is created for each ET, RT and attributes of the target schema.
It contains the mapping, i.e. the correspondence with the source schema.

5.1.1. ET-to-RT

With ET-to-RT, an ET is transformed into a RT. This transformation can be applied
only under some conditions. Indeed, the ET must have an identifier and be linked to at
least two other ET with one-to-many RT.

A R B
al O'IH rl HO' bl

Page - 43

Chapter 5 : mapping analysis

al? i 10- bll3

This is the RT-to-ET inverse transformation.

The ET-to-RT transformation is used on the source conceptual schema with an
ET linked to only two other ETs and with no attributes. Indeed, a n-ary RT with

attributes is not a valid construct of the CM.

Although it is rare to find a schema that contains an ET without attributes, the

mapping format for each RT, and attributes obtained by ET-to-RT is :

e For each RT : ET-to-RT (enf) where ent is the transformed TE

e For each attribute : ET-to-RT (ent,atf) where att is the corresponding ent

attribute
Example :

Source schema :

SHOW
Hour

CINEMA

id: Hour

MOVIE

Name 2 o O-N— Title
Address P_O-Nl 17 Room bt Duration

Phone Rioni Summary
Target schema :
CINEMA :;Il?w MOVIE
Pke 0-N Room 0-N Lifle
Address T Duration
Phone Summary
Room
Mapping :

Show : corresp =ET-to-RT(show)
Hour : corresp = ET-to-RT(show,hour)
Room : correspt= ET-to-RT(show,room)

5.1.2. ET-to-Att

ET-to-Att transforms an ET into an attribute. Some conditions are required for this
transformation : the ET must be linked to only one other ET, have only one identifier

and all its attributes must belong to that identifier.

Page - 44

Chapter 5 : Mapping analysis

Al O-N <:> 1-1 a2
al

A2
Al
id: a2 Or ne"
R.A1
=
A
al
a2[0-N]

A2

a2

id: a2

This is the Att-to-ET/value or Att-to-ET/instance inverse transformation.

Given that the RT are binary, the ET-to-Att always transforms the ET into an ET
attribute and not into a RT attribute, which respects the CM. However, we should give
another constraint on that transformation : RT must be one-to-one because multivalued
attributes are no valid constructs. This additional condition is obviously not necessary in
the XML transfer process.

The mapping format for each attribute obtained by ET-to-Att is:

e ET-to-Att (ent,att,rel) where ent is the former TE, att its attribute and rel the
RT that linked ent with the ET.

Example :

Source schema :

Target schema :

Mapping :

PRODUCER

Name

-1 has >—1-1

Address

PRODUCER
Name
Address
Number[0-1]

Telephone

Number

Number : corresp = ET-to-Att (telephone,number,has)

Page - 45

Chapter 5 : mapping analysis

5.1.3. Split-merge

The split-merge transformation is used to extract (split) some components from an ET

and to insert (merge) them next into another ET.

a3

This transformation is symmetrically reversible and its inverse is itself.
Split-merge can be applied on the source schema in order to create the DB or the

-1-1)
a2 b b2

b3

XML conceptual schema.

The mapping format for each attribute transferred by the split-merge

transformation is:

e split-merge (ent,att,rel) where ent is the name of the ET from which the
attribute att is extracted. rel is the name of the RT that links ent to the ET

where att is inserted.

Example :

Source schema :

Target schema :

Mapping :

MUSIC

Number
Title
Composer
CDJ[0-1]

id: Number

1 from >-1.1—

a3

- -1-1@1-1~

bl
b2
b3
a2

FILM

Title
Director
Screenwriter
Duration
Abstract

id: Title

FILM

Title
Director
Screenwriter
Duration
Abstract
Composer

id: Title

composer : corresp = split-merge (music,composer,from)

Page - 46

Chapter 5 : Mapping analysis

5.1.4. Make-Subtype

A super type is given to some ET using the Make-subtype transformation. The common
attributes are moved into the super type. There are three special is-a relationships :
partition, total, disjoint. If it is total, each supertype is at least one of the subtype. If it is
disjoint, the supertype can be only one of the subtype. The partition is total and disjoint,
i.e. each supertype has one and only one subtype. With the make-subtype
transformation, we create a total relationship.

AB
al
a2
A B
al bl &
a2 b2
a3 b3
A B
a3 b3

As the is-a construct is not allowed in the CM, it is impossible to realise this
transformation. However, in the XML case, there is not this restriction and we can
imagine that a supertype is created.

The mapping is inserted in the meta-properties of the supertype and its attributes.
The mapping is not necessary for each subtype attributes because they are not changed
The mapping formats are :

e For each supertype : Make-subtype (entl, ent2) where entl and ent2 are the
former ET.

e For each supertype attribute : Make-subtype (entl.att, ent2.att) where att is the
attribute. In the transfer process, it is not necessary to have both the attributes
given that they are semantically the same. However, if we want to rebuild the
source schema with the target schema, this information will be very useful. For
example, one can imagine that the attributes in the two ET have different names
and without this mapping, it would be impossible to recover them.

Example :

Source schema :

CARTOON MOVIE
Title Title
Year Year
Producer Category
Color Actor
Technology Producer
Summary

Page - 47

Chapter 5 : mapping analysis

Target schema :

FILM

Title

Year

Producer
CARTOON MOVIE
Color Category
Technology Actor

Summary

Mapping :
Film : corresp = Make-subtype (cartoon, movie)
Title : corresp = Make-subtype (cartoon.title, movie.title)

Year : corresp = Make-subtype (cartoon.year, movie.year)
Producer : corresp = Make-subtype (cartoon.producer, movie.producer)

5.1.5. RT-to-ET

RT-to-ET transforms a RT into an ET. There is no constraint on that transformation.

B
bl

T

1-1

A | O IO-N\ C

al cl

A R C
al rl L5 o cl

Page - 48

Chapter 5 : Mapping analysis

It’s the inverse of the ET-to-RT transformation.

This transformation must be applied on a binary RT with no attribute and gives
an ET with no attribute. Although such an ET is not very used in conceptual schemas, it
is not rare to find a XML document where an element has no subgroup.

The mapping format for each ET and its attributes and each RT obtained by the
ET-to-RT transformation is :

e For each ET : RT-to-ET (rel) where rel is the transformed RT.

e For each ET attribute : RT-to-ET (relatt) where att is the corresponding re/
attribute.

e For each new RT : RT-to-ET (rel,ent) where ent is the ET linked by rel.

Example :

Source schema :

CINEMA I'? H?W MOVIE
Name O AL r AT Tltle

Address iy Room W Duration
Phone id: Hour Summar
Room y

Target schema :

SHOW
CINEMA Hout MOVIE
e —0-N1-1— Room -1-10—N— Jule
Address td: Hour Duration
Phone Room Summary
Mapping :

Show : corresp = RT-to-ET (show)

Hour : corresp = RT-to-ET (show, hour)
Room : corresp = RT-to-ET (show, room)
has : corresp = RT-to-ET (show, cinema)
presents : corresp = RT-to-ET (show, movie)

5.1.6. RT-to-ISA

RT-to-ISA transforms the common ET of a set of RT into a super type of the other ET
under constraint of one-to-one RT.

Page - 49

Chapter 5 : mapping analysis

A
al
7"\
0-1 0-1
1-1 1-1
B c
bl cl

Here again, this transformation would be accepted only in the XML conversion

al

bl

case because is-a constructs are only authorised there.

The RT-to-ISA transformation is used on the source schema transformed in

order to have the XML

target schema.

The mappings are, for each subtype :

e RT-to-ISA (ent, rel) where ent is the name of the supertype and re/ the RT

that used to link the ET with ent.

Example :

Source schema :

Target schema :

FILM

Title
Duration
Year
Producer

7 ~
0-1 0-1

(>

1-1
J]

1-1
\

cl

CARTOON MOVIE
Color Actor
Technology Director
FILM
Title
Duration
Year
Producer
CARTOON MOVIE
Color Actor
Technology Director

Page - 50

Chapter 5 : Mapping analysis

Mapping :

Cartoon : corresp = RT-to-ISA (film,is)
Movie : corresp = RT-to-ISA (film,is_2)

5.1.7. Att-to-ET/value

The Att-to-Et transformation is used to change an attribute into an ET. Two
representations are possible for these attributes, one is by value and the other is by
instance. With the Att-to-ET/value transformation, each new entity represents a distinct
value of the attribute.

A Al A2
0-N—®1-N— a2
al o al 2e
a2[0-N] id: a2

This is the ET-to-Att inverse transformation.
The Att-to-ET/value transformation always create a 1-N cardinality for a role. As
this construct is not valid in the CM, this transformation is not allowed.

5.1.8. Att-to-ET/instance

With Att-to-ET/instance, an attribute is transformed into an ET and each new entity
represents an instance of the attribute.

A2
A A N——@— a2
o 1-1—
al o al ? id:R.A
a2[0-N] a2

This is the ET-to-Att inverse transformation.

As multivalued attribute is not a valid construct in the CM, this transformation
will only be used with optional or mandatory single valued attributes. Let’s note that if
the transformation is performed on a mandatory attribute, it creates a one-to-one RT
with both minimum cardinalities equals to 1 which implies an unbearable constraint for
the data insertion. This problem is exposed in more thoroughly in chapter 6.

The mapping format for each new RT, ET and its attributes is :

e For each ET : Att-to-ET/instance (ent,att) where ent is the source ET and att its
transformed attribute.
e For each attribute : Att-to-ET/instance (ent,att)

Page - 51

Chapter 5 : mapping analysis

Example :

Source schema :

Producer

Name

Address -

Telephone[0-1]

Target schema :

Producer T -
Name 0-1 has 1-1 ;ele[;hone
Address umber

Mapping :
Telephone : corresp = Att-to-ET/ instance (producer,telephone)

Number : corresp = Att-to-ET/ instance (producer,telephone)
has : corresp = Att-to-ET/instance (producer,telephone)

5.1.9. Disaggregate

A compound attribute is replaced by its components using the Disaggregate
transformation.

A
al A
a2 al
a21 <~ a2_a2l
a22 a2_a22
a23 a2_a23

This is the aggregate inverse transformation.

No other requirements need to be fulfilled in order to perform this
transformation on the source schema.

The mapping format for each attribute obtained by the Disaggregate
transformation is :

e Disaggregate (ent, coatt.att) where ent is the ET that have the transformed
compound attribute coatt. Att is the corresponding coatt attribute.

Page - 52

Chapter 5 : Mapping analysis

Example :

Source schema :

PRODUCER

Name

Telephone

Status

Address
Street
Number
Zip-code
City

Target schema :

PRODUCER
Name
Telephone
Status
Add_Street
Add_Number
Add_Zip-code
Add_City

Mapping :
Add_street : corresp = Disaggregate (producer,address.street)
Add_number : corresp = Disaggregate (producer,address.number)

Add_zip-code : corresp = Disaggregate (producer,address.zip-code)
Add_city : corresp = Disaggregate (producer,address.city)

5.1.10. Aggregate

With Aggregate, a list of attributes is replaced by a compound attribute.

A
A al
al a2
a2_a2l — a2l
a2_a22 a22
a2_a23 a23

This is the disaggregate inverse transformation.
This transformation can be used on the source schema just as it is.

Page - 53

Chapter 5 : mapping analysis

The mapping format for each compound attribute and its attributes obtained by

the Aggregate transformation is :

For each compound attribute :

attribute list {att}

For each compound attribute

transformed attribute
Example :

Source schema :

Target schema :

5.1.11. Rename

Mapping :

attribute :

Aggregate (ent, {aft}) where ent contains the

Aggregate (ent, att) where att is the

PRODUCER|

Name
Telephone
Status
Street
Number
Zip-code
City

PRODUCER

Name
Telephone
Status
Address
Street
Number
Zip-code
City

Address : corresp = Aggregate (producer, {street, number,zip-code,city })
Street : corresp = Aggregate (producer, Street)

Number : corresp = Aggregate (producer, Number)

Zip-code : corresp = Aggregate (producer, Zip-code)

City : corresp = Aggregate (producer, City)

The rename transformation is used to change an ET, RT or attribute name.

A

al
a2

Page - 54

Chapter 5 : Mapping analysis

This transformation can be used without constraint on the source schema.
The mapping format for each TE, RT or attribute changed by the rename
transformation 1is :

e For each ET : Rename (ent) where ent is the transformed ET
e For each RT : Rename (rel) where rel is the transformed RT
e For each attribute : Rename (atf) where att is the transformed attribute

Example :

Source schema :

MOVIE
Title
Year
Category
Actor
Producer
Summary

Target schema :

FILM
Title
Year
Category
Actor
Producer
Synopsis

Mapping :

Film : corresp = Rename (movie)
Synopsis : corresp = Rename (Summary)

Sometimes, the same ET, attribute or RT of the source schema may have been
transformed several times. In this case, the metaproperty of the attribute, ET or RT
doesnt only contain one mapping but rather a list of mapping. If we compose the
mappings that are in the metaproperty, we have the real correspondence between the
source and the target construct.

Example :

PRODUCER ! il
N Street
ame . 1—has >—1-1— Number
Telephone 7 d
Status Mg
City

Page - 55

Chapter 5 : mapping analysis

The first transformation applied on this schema is ET-to-Att. The ADDRESS ET
becomes a compound attribute in the PRODUCER ET. The schema looks like :

PRODUCER
Name
Telephone
Status
Address
Street
Number
Zip-code
City

Now the Address attribute is disaggregated wusing the disaggregate
transformation. The schema becomes :

PRODUCER

Name
Telephone
Status
Street
Number
Zip-code
City

The metaproperty has therefore the values :

Street : Corresp = ET-to-Att (ADDRESS,Street,has)
Disaggregate (PRODUCER, Address.Street)

Number : Corresp = ET-to-Att (ADDRESS,Number,has)
Disaggregate (PRODUCER, Address.Number)

Zip-code : Corresp = ET-to-Att (ADDRESS,zip_code,has)
Disaggregate (PRODUCER, Address.Zip-code)

City : Corresp = ET-to-Att (ADDRESS,City,has)
Disaggregate (PRODUCER, Address.City)

5.2. Mapping analysis methodology

The mapping analysis is made in three steps :

e Metaproperties creation
e Mappings extraction
e Mappings insertion into the metaproperties.

Page - 56

Chapter 5 : Mapping analysis

5.2.1. Metaproperties creation

The metaproperty is the best way to add information for an ET, RT or attribute. A
metaproperty is created for each ET, attribute and RT of the target conceptual schema.
Its name is "corresp". The purpose of each corresp metaproperty is the storage of the
mapping in the format defined above.

To add these metaproperties in the target repository, we use the Voyager 2 language

5.2.2. Mapping extraction

Before inserting the mappings into the metaproperties, it is necessary to extract them out
of the transformation history. The DB-Main tool is used here in order to edit the historic
into a log file, using the log edit option of the tool. Once this file is created, it is parsed
using the Voyager 2 lexical analyzer. Key words are sought by the parser in order to find
the correspondences between the source and the target schemas. Then, the converter
generator stores in a temporary structure the information found. All these information
are transformed in order to have the correct mapping format. Finally, the mappings are
inserted into the metaproperties.

An important restriction has to be made in order to extract the correct mappings :
the rename transformation must be the last one applied on the source schema. Without
this condition, some name conflicts may appear and the metaproperty would give the
wrong correspondence.

Example :

The following schema is going to be transformed using the split-merge
transformation. In one case the name of the ET from which the attribute is taken
is rename before the split-merge transformation is performed, and in the other
case, after.

The source schema is :

Thi/:lg ¥ MUSIC
Actor —1-11-1— Title
Director Composer
Prodiicsér CDNumber

In the first case, the rename transformation is performed first on the source
schema. The MUSIC ET is renamed as SONG :

Thi/:l(z s412 SONG
Actor [—1-1 1—1 {Title
Director Composer
Producet CDNumber;

Page - 57

Chapter 5 : mapping analysis

Next, the split-merge transformation is applied on the SONG ET : the Composer
is now an attribute of the MOVIE ET :

MOVIE
I‘lcgzr SONG

i ‘1'11-1— Title
Director
Producer CDNumber
Composer

The mapping is therefore equal to :

Composer : corresp = split-merge (song,producer,from)
Song : corresp = rename(music)

The extractor, in this case, will extract the attribute composer from a SONG ET
in the source schema but this ET doesn’t exist!

In the second case, the split-merge transformation is applied first. The Composer
attribute is taken from the MUSIC ET and inserted into the MOVIE ET. The
schema is now :

MOVIE
W MUSIC
A?tor —1'11-1— :
Director Title
Producer CDNumber
Composer

Next, the name of the MUSIC ET is changed. The schema becomes :

MOVIE
Title .
D _1‘11-1— Title
Director
Producer CDNumber
Composer

We have thus the same target schema
We see that, if the rename transformation is the last one applied, we have the
same target schema, but this time, with the correct mapping :

Composer : corresp = split-merge(music,composer,from)

Page - 58

Chapter 5 : Mapping analysis

Song : corresp = rename(music)

The DB-to-DB converter will now extract the composer attribute from the
MUSIC ET.

5.2.3. Mapping insertion

The final step of the mapping analyse process is the insertion of the mappings into the
metaproperties. Each corresp metaproperty is filled with its corresponding mapping. If
an element is not transformed, the metaproperty is not empty, it contains the name of the
ET, RT or attribute' it is attached to. Once the mappings are stored into the
metaproperties because the latter are easily accessible through Voyager 2 procedures or
functions using predicative queries.

5.3. The AnalyseMap program

The AnalyseMap program designed to perform the mapping analysis is written in
Voyager2. In its actual version, this program supports the following symmetrically
reversible transformations :

ET-to-Att
split-merge
Att-to-ET/instance
disaggregate
rename

Furthermore, only one transformation can be performed on the same construct.

The AnalyseMap source code in appendix D.

' The attribute name is prefixed by the ET name. E.g. : MOVIE.Title

Page - 59

Chapter 6
DB-to-DB converter
generation

Chapter 6 : DB-to-DB converter generation

Chapter 6 : DB-to-DB converter generation

This chapter is dedicated to the explanation on how the DB-to-DB converter is
generated on the basis of the analysis of the mappings. The program that generates the
converter is written in Voyager2. The converter is a Java program'.

The converter is divided in two modules : the extraction and the insertion
modules. These modules are themselves divided in different steps as shown in figure
6.1. These modules are described below.

The DB-to-DB converter generator Voyager2 program is ConvertDB. Its source
code can be found in appendix E.

Source local server
connection

Data selection -+ Extraction module

Source local server
disconnection ||

Target local server
connection

Data insertion = |Insertion module

Target local server
disconnection =

Figure 6.1. : DB-to-DB converter

6.1 Extraction module

The aim of the extraction module is to collect, on the basis of the mappings, the relevant
data from the first DB. We can divide the extraction module in three components. The
first thing to do is to create the part of the program devoted to the connection to the
source DB through the local server. Afterwards, the next lines of code to generate are
those which address the selection queries to the local server. The last thing to generate is
the part of code designed to disconnect from the local server.

! We use the Java language because the local servers only support Java applications and the InterDB
driver offers a JDBC like interface.

Page - 61

Chapter 6 : DB-to-DB converter generation

The extraction module corresponds to the GenExtractMod procedure of the
ConvertDB program.

6.1.1 Connection to the source local server

To generate the connection to the source local server, we need to know some
information, like the url of the server, the user name and password. These are collected
by prompting questions on screen.

The connection to the source local server is made by the Connect procedure.

6.1.2 Data selection

Now that the lines dedicated to the connection have been written, the next part of the
code to generate is the selection of the relevant data. To discover which data is likely to
be picked up, we need to access the repository and collect the mapping in the meta-
properties. Once this is done, we are able to create the selection queries that access the
local server and store the data in ResultSet” Java objects.

The data selection and storage is achieved by the Extract procedure.

6.1.3 Disconnection to the source local server

The next instruction to generate is the disconnection from the source local server, which
is fairly simple, and written in one line.
The disconnection is handled by the Disconnect procedure.

6.2 Insertion module

The insertion module fills in the target DB with the extracted data stored in the
ResultSet java objects. This module can be parted in three components. The first one to
be generated is the connection to the target DB through the local server. Afterwards,
the next lines of code to produce are the insertion queries addressed at the target local
server. Finally, the generator has to create the instruction that closes the connection.

The insertion module corresponds to the GenlnsertMod procedure of the
ConvertDB program.

? The rows that satisfy the conditions of a query are called the result set. The number of rows returned in
a result set can be zero, one or many. One accesses the data in a result set one at a time, and a cursor
provides the mean to do that. [Hamilton, 1997]. Let us note that the data are only physically extracted

when the get method is invoked.

Page - 62

Chapter 6 : DB-to-DB converter generation

6.2.1 Connection to the target local server

Like for the connection to the source local server, we need to know the url of the server
and the user name and password. The generator acts in the same way : it prompts
questions on the screen. When all these information have been given, the connection
instructions creation becomes fairly simple, just like pieces of a puzzle to rearrange in
the right order.

The connection to the target local server is performed by the same procedure as
for the connection to the source local server : Connect

6.2.2 Data insertion

The next part of code to generate is related to the insertion of the data (stored in the
ResultSet) into the target DB. We need to analyse the repository to bring to light where
the data collected in the source DB are to be stored in the target DB. Once this is done,
we are able to create the insertion queries that access the local server.

These queries must follow a predefined order. The first entities to be filled in
are those which are never linked through roles with [1-1] cardinality. Then the converter
loads the entities that are only linked with those previously filled in. We act this way to
avoid an integrity constraint violation.

Example :

.MOVIE DISTRIBUTOR|
Title

3 Name
Sreenwriter ‘Addre At
Composer —1- lO-N—

: Street
Duration :
City

Year =
id: Title id: Name

1-1

0-N
PRODUCER

Name

Address
Street
City

id: Name

With this schema, the converter has first to insert the distributor and producer
entities, then the movies and the links to the two other entities. Indeed, if a movie
had been filled in without being linked to a distributor and a producer, an
integrity constraint would have been violated.

Page - 63

Chapter 6 : DB-to-DB converter generation

The data insertion process is carried out by the Insert procedure.

6.2.3 Disconnection to the target local server

When all the data have been inserted in the target DB, the last thing to do is to create the
disconnection instructions. Here again, these instructions are easy to generate.

The disconnection to the target local server is performed by... (can you believe
it?) the famous Disconnect procedure.

Page - 64

Chapter 7
DB-to-XML converter

generation

Chapter 7 : DB-to-XML converter generation

Chapter 7: DB-to-XML converter generation

The DB-to-XML converter is used to extract the data from a DB and to create a XML
document containing all these data. The DB and XML document are both described by a
conceptual schema. In this chapter, we explain the DB-to-XML converter generation
process.

A Document Type Definition (DTD) gives the valid structure of the XML document,
therefore, it is essential to dispose of it in the converter generation process.

This chapter first describes the DTD generation and then defines how to create the
converter.

7.1. DTD generation

As explained in chapter 4, the DTD generation process is based on the target XML
schema. The DTD contains the tree-structure of the XML document.

We first explain how to translate a conceptual schema into a DTD and then, we
describe the DTD generation process.

7.1.1. Conceptual schema to DTD translation

The XML document has a tree structure, we have to place the ET and attributes in the
nodes of the tree, i.e. to make them correspond to elements, while the RT are the links
between the nodes. The link is in fact an attribute of the element with the IDREF
type, what lays down the linked element to have an attribute with the ID type (to

which the IDREF attribute refers). The root of the tree is always the name of the
schema and its nodes are ETs whose nodes are their attributes (Figure 7.1.).

Page - 65

Chapter 7 : DB-to-XML converter generation

Schema
IDREF attribute
Element
l a4 ET-1 ET-2
Attl-1 Attl-2 Attl-3 Att2-1 Att2-2 Att2-3

Figure 7.1. : XML document tree structure

The correspondence between the XML schema and the DTD constructs is shown in
table 7.1.

XML model construct DTD construct
ET Element
Attribute Element
RT Attribute!
Is-a relationship Attribute

Table 7.1. : Correspondence between XML schema and DTD

Each ET corresponds to one element composed of the ET attributes. Each role played
by an ET in a RT is represented by an attribute in the corresponding element. There
is an attribute for each is-a construct, it links the element with the element
representing the supertype. The type of both attributes is IDREF.

In order to give the complete structure of the DTD, we use the BNF notation. A
commented BNF description of the DTD is given below. The complete version can be
found in appendix F.

DTD : := ‘<! DOCTYPE’ schema ‘[’ element_declaration ‘]>’ 1

' The reader will pay attention to the attribute notion. An attribute is an element attribute while an
attribute is an ET attribute.

Page - 66

Chapter 7 : DB-to-XML converter generation

A DTD is composed of a heading containing the name of the XML conceptual schema,
and of the elements declaration.

element_declaration : := root_declaration (one_ET_declaration)*
(one_attribute_declaration)*

The element_declaration is composed of three declarations. The first one is the one for
the tree root : the schema. The next two declarations are the ones for each ET and
attributes. The format for each of them is different and given below.

root_declaration ::= <!ELEMENT ’ schema ’@ntity_list *)>’
entity_list := ET | entity_list

The element that corresponds to the schema is composed of the elements that
represent each ETs.

one_ET_declaration : := ‘<! ELEMENT’ ET ‘(’ attributes_list ‘)>’
‘<! ATTLIST’ ET ‘id ID #REQUIRED’
(RT-ET reference ‘#’ mandat-optional)*
(isa-supertype IDREF # REQUIRED)*
(‘identifier CDATA #FIXED "’ identifier * "’) ?
‘corresp CDATA #FIXED " ' mapping “ " >’

The element corresponding of one ET is defined as a sequence of subelements or
subgroups. Each subelement is an atomic attribute, while the subgroup is for the
compound attribute.
The element attributes are :
e the identifier id. This is not the ET identifier but a special XML identifier.
This redundancy is necessary in order to identify each element. Indeed, we
can reasonably imagine that two entities in different ET have the same value
for their identifiers.
e alink to one or several elements. This link represents the role that plays the
ET in the RT. The attribute type depends on the RT cardinality as it is
explained below. There is such a link for each RT.
e alink to the element corresponding to the ET supertype. There is such a link
for each is-a relationship of that ET.

e the ET primary identifier. This is a fixed attribute : its value is the ET
identifier and it has not to be written into the XML document. This
information not necessary for the DB-to-XML converter generator but one
can imagine that the DTD may be used by a program that takes the data from
a XML document and inserts them into a DB. In such a case, the name of the
identifier is fundamental.

Page - 67

Chapter 7 : DB-to-XML converter generation

e the mapping. This is a also a fixed attribute whose value can be found the
ET metaproperty "corresp".

attributes_list : := one_attribute | one_attribute °,” attributes_list
one_attribute : := attribute cardinality
cardinality : := " | ‘P | ¥ | ‘4’

Each ET attributes are separated by a comma. If it is optional, it is followed by a '?', if it
is a multivalued attribute, there is a '+' or a '*' afterwards according to whether the
minimal cardinality is 1 or 0. Unfortunately, it is impossible to give the right maximum
cardinality, it is always regarded as equal to N.

This format is also used for the compound attribute attributes.

reference ::= ‘IDREF’ | ‘IDREFS’
mandat-optional ::= 'REQUIRED' | TMPLIED'

The reference and the mandat-optional value depends on the role cardinality is shown in
table 7.2.

Cardinality ~ reference mandat-optional
0-n IDREFS IMPLIED
1-n IDREFS REQUIRED
0-1 IDREF IMPLIED
1-1 IDREF REQUIRED

Table 7.2. : The reference and mandat-optional values

one_attribute_declaration : := atomic_attribute_declaration
compound_attribute_declaration
atomic_attribute_declaration ::=
‘< | ELEMENT’ attribute ‘#PCDATA>
< ! ATTLIST attribute 'corresp CDATA #FIXED " ' mapping * " >’
compound_attribute_declaration ::=
'<! ELEMENT! attribute '(" attributes_list)>
< ! ATTLIST" attribute 'corresp CDATA #FIXED " ' mapping ‘" >’
(one_attribute_declaration)+

The ET attribute declaration depends on the attribute type. If it is an atomic attribute, it
is represented by an element whose type is PCDATA. In the other case, if it is a
compound attribute, it corresponds to a element defined as a sequence of subelements
and/or subgroups that represent its attributes. Both elements have one attribute : the
mapping between the target schema attribute and the source schema construct.

Page - 68

Chapter 7 : DB-to-XML converter generation

Example :

The following XML model :

FILM PRODUCER
Title Name
Year _1-10-N— Address
Duration St.reet
Actor[0-1] City
Telephone[1-5]

is translated into the following DTD :

<! DOCTYPE cinema [

<! ELEMENT film (title, year, duration, actor?)>

<! ATTLIST film id ID #REQUIRED
produces-producer IDREF #REQUIRED
corresp CDATA #FIXED " ">

<! ELEMENT title ##CDATA>

<! ATTLIST title corresp CDATA #FIXED " ">

<! ELEMENT year ##CDATA>

<! ATTLIST year corresp CDATA #FIXED " ">

<! ELEMENT duration ##CDATA>

<! ATTLIST duration corresp CDATA #FIXED " ">

<! ELEMENT actor ##CDATA>

<! ATTLIST actor corresp CDATA #FIXED " ">

<! ELEMENT producer (Name, Address, telephone+) >

<!ATTLIST producer id ID #REQUIRED
produces-film IDREFS #IMPLIED
corresp CDATA #FIXED " ">

<!ELEMENT name #PCDATA>

<! ATTLIST name corresp CDATA #FIXED " ">

<!ELEMENT address (street, city)>

<! ATTLIST address corresp CDATA #FIXED " ">

<!ELEMENT street ##CDATA>

<! ATTLIST street corresp CDATA #FIXED " ">

<!ELEMENT city #PCDATA>

<! ATTLIST city corresp CDATA #FIXED " ">

<!ELEMENT telephone #PCDATA>

<! ATTLIST telephone corresp CDATA #FIXED " ">

1>

Page - 69

Chapter 7 : DB-to-XML converter generation

7.1.2. DTD generation

The DTD generation follows the strategy defined above. The first step is to query the
target schema repository in order to retrieve all the information needed, i.e. the ET's,
RT’s, attributes, is-a relationships, identifiers and the mappings. Finally, all these
information are written, according to the defined format, in the output file, the DTD.

The DTD is generated by the DTD Voyager2 program. The source code of this
program is given in appendix G.

7.2. DB-to-XML converter generation

In this section, we describe the DB-to-XML converter and explain how and where the
generator takes the information in order to create it.

The DB-to-XML converter is composed of two modules as described in figure
T2

The converter is generated by the ConvertXML program. This program can be
found in appendix H.

Source local server
connection

Data selection Extraction module

Source local server
disconnection

Data writing —» Write module

Figure 7.2. : DB-to-XML converter

7.2.1. Extraction module

The extraction module has three functions : source local server connection, data
extraction and the source local server disconnection.

This converter module is the same than the DB-to-DB extraction module
described in section 6.1.

7.2.2. Write module

The write module of the DB-to-XML converter has only one function : the data writing
into the XML document.

In order to create the XML document and to insert the data into it, the converter
has to know the document structure. The generator has thus to analyse the target schema
repository in order to find the constructs it has to fill. It also has to parse the DTD in
order to know how to insert the data in such a way that the XML document is well
formed and valid.

The write module corresponds to the GenWriteMod procedure.

Page - 70

Chapter 8
- Case Study

Chapter 8 : Case study

Chapter 8 : Case study

In this chapter, we present a case study for the converter generators. First, we present the
case and then we show the steps to follow in order to create the DB-to-DB and the DB-
to-XML converters. Some data are in the source DB and we will follow their route in

their transfer process to the target DB or XML document.

8.1. Case presentation

For the case study, we stay in the wonderful movie world. The source conceptual
schema shown below respects the CM constructs. It is composed of five ET’s :

e Film

e Producer

e Music

e Distributor

e Telephone
PRODUCER
Name
Address
Street
Zip-code
City
id: Name 0-N

1-1

MUSIC
Number
Title
Composer l_ll-lﬁ
CD[0-1]
id: Number

TELEPHONE

Number

id: has. DISTRIBUTOR!
Number

FILM

Title

Director
Screenwriter
Actor[0-1]
Duration
Abstract
Category

Year
Color[0-1]
Technique[0-1]

Address

id: Title

1-1

0-5
|
DISTRIBUTOR

Name

Zip-code
City
id: Name

Page - 71

Chapter 8 : Case study

Each film is characterised by a title, which identifies it among the other ones, a
director, an actor, a screenwriter, the duration, expressed in minutes, an abstract, a
category, the release year, the color and the technique. Some movie may not have
an actor (actress). The optional attribute color is a boolean, that means that its
only possible values are true and false (represented respectively by 1 and 0). The
technique attribute is for cartoons only, it represents the drawing technique used
by the drawer.

The producer and the distributor have the same attributes : the name which is
their identifier, and the compound attribute address. The address is composed of
a street, a zip-code and the name of the city.

Each distributor may have a most 5 telephone numbers.

The music is characterised by a number, the title of the song or theme and the
composer. The music may be released on a CD, in this case, the CD number is
given into the CD attribute.

This conceptual schema is the representation of a DB. In this source DB, there

are some data that are shown in the following tables. Each columns represents an
attribute. The links are also written in these tables as columns whose values are the
identifier value of the related entity.

PRODUCER
Name Address
Street Zip-code City
Cameron rue de Bruxelles, 22 5000 Namur
Spielberg chaussée de Nivelles, 56 5140 Sombreffe
Eastwood [rue du Condroz, 1 5590 Ciney
Burton Station, 17 5575 Gedinne
Di Novi Avenue du diamant, 96 1030 Bruxelles
Besson Avenue Bois I'Evéque, 33 5100 Wierde
Godfroid |rue du Chenois, 186 6000 Chatleroi
Clements |Square de Quinaux, 19 5100 Wierde
Karmitz Place franco-belge, 5 6200 Chatelet
DISTRIBUTOR
Name Address
Street zip_code City
20th Century Fox Hollywood Blvd, 150 9000 Los Angeles
Universal Hollywood Blvd, 151 9000 Los Angeles
Warner Hollywood Blvd, 152 9000 Los Angeles
Buena Vista Madison Avenue, 15 8000 New York

Page - 72

Chapter 8 : Case study

TELEPHONE
Number DISTRIBUTOR

1230450890 20th Century Fox

1230756452 Universal

1230085236 Warner

1500365000 Buena Vista

1230450891 20th Century Fox

1230756453 Universal

1230085237 Warner

1500365001 Buena Vista

1230085238 Warner

1500365002 Buena Vista

MUSIC
Number Title Composer CD

15492 Titanic BO Horner 233100
12250 E.T. Williams 233088
23560 Madison Niehaus 233500
16500 Jurassic soundtrack Williams 233087
33201 Mars Attacks Elfman
23655 The nightmare before Christmas |Elfman 233456
14587 Aladdin Menken 233962
98664 Rouge Priesner 145550
16545 Bleu Priesner 145500

Page - 73

Chapter 8 : Case study

FILM
Title Director Screenwritor Actor Dura. Abstract Category Year | Color | Technique | PRODUC. | MUSIC DISTRIBUTOR
Titanic Cameron Cameron Di Caprio [195 |The famous boat |drama 1997 Cameron 15492 20th Century Fox
sinks
BT, Spielberg Daviau Barrymore |115 |Akind ET.on |Comedy 1982 Spielberg 12250 Universal
earth
The bridges of Eastwood LaGravenese |Eastwood |135 |Four days for an |drama 1997 Eastwood 23560 Warner
Madison County eternal love
Jurassic Park Spielberg Crichton Goldblum |126 |Dinosaurs are |suspense 1993 Spielberg 16500 Universal
alive
Mars Attacks! Burton Gems Nicholson 103 Aliens attack science- 1996 Burton 33201 Warner
earth fiction
The nightmare before |Burton McDowell 74 Christmas tale cartoon 1993 animation |Di Nowvi 23655 Buena Vista
Christmas
Aladdin Clements Clements 90 Aladdin has some|cartoon 1992 drawing Clements 14587 Buena Vista
problems
Trois couleurs : Bleu |Kieslowski Kieslowski Binoche |98 First part of the |drama 1993 Karmitz 16545 Universal
trilogy

Page - 74

Chapter 8 : Case study

8.2. DB-to-DB case

In the DB-to-DB case, some data are taken from the source DB and inserted into the target
DB. The target schema is a subset of the source schema. It is obtained by applying some of the
symmetrically reversible transformations (exposed in chapter 5) on the source conceptual
schema. The DB-Main transformation tool helps the user in his task to transform the source
schema.

In our case study, the first operation performed on the source schema is the deletion of
ET and attributes : the TELEPHONE ET is removed, just like the attributes screenwriter,
category, year, color and technique of the FILM ET.
The next step of the schema transformation is the symmetrically reversible transformations
performance. Is this case, two of them are made :

e split merge : the attribute composer is taken from the MUSIC ET and inserted into
the FILM ET.

e disagregation : the compound attribute Address in the DISTRIBUTOR ET is
disaggregated into the attributes Street, Zip-code and City.

The target schema is therefore :

FILM
Title DISTRIBUTOR|
Director Name
Actor[0-1]] m Street
Duration o I.O-N— Zip-code
Abstract City
Composer id: Name
id: Title

The target DB is created on the basis of this target schema using the DB-Main forward
engineering process.

Now that he has the two DB and schemas, the user has to follow this scenario :

execute the AnalyseMap Voyager2 program
execute the ConvertDB Voyager2 program
compile the dbtodbconverter Java program
execute the dbtodbconverter Java program

These programs are described below.
AnalyseMap
The AnalyseMap program, given in appendix D, analyses the mappings between the source

and the target schema. This Voyager2 program uses a log file, that contains all the performed
transformations, as input. The log file of the target schema is given in appendix I.

Page - 75

Chapter 8 : Case study

AnalyseMAp creates the metaproperty "corresp” and gives it as value the mapping
representation. If an ET or attribute is not concerned by any of the transformations, than its
mapping is just its name. For the attributes Composer, Street, Zip-code and City, the mapping
1S :

e MOVIE.Composer : corresp = split-merge (MUSIC, composer, from)
e DISTRIBUTOR Street : Corresp = disaggregate (DISTRIBUTOR, Address.Street)

e DISTRIBUTOR Zip-code : Corresp = disaggregate (DISTRIBUTOR, Address.zip-
code)

e DISTRIBUTOR city : Corresp = disaggregate (DISTRIBUTOR, Address.City)

The mapping can be read in the DB-Main case tool. E.g., the mapping for Composer is given
is the following window :

Dynamic Properties List

split-merge[MUSloms,fto]

ConvertDB

On the enriched target schema, the user executes the ConvertDB program. The source code of
this program is given in appendix E. ConvertDB generates the source code of the Java
program named dbtodbconverter.java.

dbtodbconverter

The dbtodbconverter Java program is the data converter that extracts the relevant data from
the source schema and inserts them into the target schema. The source code is given in
appendix J.

Once this program has been compiled and executed by the user, the target DB contains the
following data :

Page - 76

Chapter 8 : Case study

DISTRIBUTOR
Name Street Zip-code City

20th Century Fox |Hollywood Blvd, 150 9000 Los Angeles

Universal Hollywood Blvd, 151 9000 Los Angeles

Warner Hollywood Blvd, 152 9000 Los Angeles

Buena Vista Madison Avenue, 15 8000 New York

FILM
Title Director Actor Dur Abstract Composer DISTRIBUTOR
Titanic Cameron Di Caprio 195 |The famous boat sinks |Horner 20th Century Fox
HIE Spielberg Barrymore 115 A kind E.T. on earth Williams Universal
The bridges of Madison |Eastwood Eastwood 135 Four days for an eternal | Niehaus Warner
County love
Jurassic Park Spielberg Goldblum 126 Dinosaurs are alive Williams Universal
Mars Attacks! Burton Nicholson 103 Aliens attack earth Elfman Warner
The nightmare before Burton 74 Christmas tale Elfman Buena Vista
Christmas
Aladdin Clements 90 Aladdin has some Menken Buena Vista
problems

Trois couleurs : Bleu Kieslowski Binoche 98 First part of the trilogy |Priesner Universal

8.3. DB-to-XML case

In the DB-to-XML study case, the XML schema is based on the same source schema. Some
operations are performed on it in order to create the XML target schema. The first thing to do
is to delete the ET and attributes that are not necessary. In this case, we remove the MUSIC
ET. The next step is the performance of symmetrically reversible transformation. We have

decided to make two changes :

e et-to-att : The TELEPHONE ET is transformed into the multivalued attribute
Phone in the DISTRIBUTOR ET.

e rename : the name of the FILM ET is changed, it is "movie" now.

Rename is the last transformation performed because it may create some name conflicts.
All these transformations are performed using the DB-Main transformation tool.

Page - 77

Chapter 8 : Case study

The XML target schema obtained is like :

PRODUCER MOVIE DISTRIBUTOR
Name Tide Name
Address Director : Address
Street —0-1_1_ Screenwriter| | | oN_| Street
Zip-code Actor{0-1] Zip-code
City Duration City
id: Name Abstract Phone[0-5]
id: Title id: Name

Now that he has the two schemas, the user has to follow this scenario :

e execute the AnalyseMap Voyager2 program
e execute the dtd Voyager2 program

e execute the ConvertXML Voyager2 program
e compile the dbtoxmlconverter Java program
e execute the dbtoxmlconverter Java program

All these programs are described below.
AnalyseMap

The AnalyseMap Voyager2 program analyses the log file (given in appendix D), creates the
metaproperty "corresp" and fills it with the mapping value.

The metaproperty, for the ET and attributes that have not been changed, simply contains their
name whereas, for the transformed attribute Phone and the MOVIE ET, its value is :

e Movie : corresp = rename (FILM)
e Phone : corresp = ET-to-Att (TELEPHONE, Number, has)

The user has now an enriched target schema.

DTD

On the enriched target schema obtained, the user executes the dtd Voyager2 program, given in
appendix G, that generates the DTD of the XML document described by the schema. The
DTD, named movie.dtd, is given below.

<IDOCTYPE Movie |

<IELEMENT Movie (DISTRIBUTOR, MOVIE, PRODUCER)

<! ELEMENT DISTRIBUTOR (DISTRIBUTOR.Name, DISTRIBUTOR.Address,
DISTRIBUTOR.Phone*)>

<IATTLIST DISTRIBUTOR

Page - 78

Chapter 8 : Case study

identifiant CDATA #FIXED "Name"
distributes. MOVIE IDREFS #IMPLIED
id ID #REQUIRED
Corresp CDATA #FIXED "DISTRIBUTOR">
<IELEMENT DISTRIBUTOR.Name #PCDATA>
<IATTLIST DISTRIBUTOR.Name
corresp CDATA #FIXED "DISTRIBUTOR.Name">
<IELEMENT DISTRIBUTOR.Phone #PCDATA>
<IATTLIST DISTRIBUTOR.Phone
corresp CDATA #FIXED "et-to-att((TELEPHONE,Number,has)">
<IELEMENT DISTRIBUTOR.Address(DISTRIBUTOR.Address.Street,
DISTRIBUTOR.Address.Zip-code, DISTRIBUTOR.Address.City) >
<IATTLIST DISTRIBUTOR.Addtess
corresp CDATA #FIXED "DISTRIBUTOR.Address">
<IELEMENT DISTRIBUTOR.Addtress.Street #PCDATA>
<IATTLIST DISTRIBUTOR.Address.Street
corresp CDATA #FIXED "DISTRIBUTOR.Address.Street">
<IELEMENT DISTRIBUTOR.Address.Zip-code #PCDATA>
<IATTLIST DISTRIBUTOR.Address.Zip-code
corresp CDATA #FIXED "DISTRIBUTOR.Address.Zip-code">
<IELEMENT DISTRIBUTOR.Address.City #PCDATA>
<IATTLIST DISTRIBUTOR.Address.City
cotresp CDATA #FIXED "DISTRIBUTOR.Address.City">

<! ELEMENT MOVIE (MOVIE.Title, MOVIE.Director, MOVIE.Screenwriter,
MOVIE.Actor?, MOVIE.Duration, MOVIE.Abstract)>

<IATTLIST MOVIE

identifiant CDATA #FIXED "Title"

distributes. DISTRIBUTOR IDREF #REQUIRED

produces. PRODUCER IDREF #REQUIRED

id ID #REQUIRED

Corresp CDATA #FIXED "rename(FILM)">
<IELEMENT MOVIE.Title #PCDATA>
<IATTLIST MOVIE.Title

corresp CDATA #FIXED "MOVIE.Title">
<IELEMENT MOVIE.Director #PCDATA>
<IATTLIST MOVIE.Director

corresp CDATA #FIXED "MOVIE.Directot">
<IELEMENT MOVIE.Screenwriter #PCDATA>
<IATTLIST MOVIE.Screenwriter

corresp CDATA #FIXED "MOVIE.Screenwriter">
<IELEMENT MOVIE.Actor #PCDATA>
<IATTLIST MOVIE.Actor

corresp CDATA #FIXED "MOVIE.Actor">
<IELEMENT MOVIE.Duration #PCDATA>
<IATTLIST MOVIE.Dutration

corresp CDATA #FIXED "MOVIE.Duration">
<IELEMENT MOVIE.Abstract #PCDATA>
<IATTLIST MOVIE.Abstract

corresp CDATA #FIXED "MOVIE.Abstract">

<! ELEMENT PRODUCER (PRODUCER.Name, PRODUCER.Address)>

Page - 79

Chapter 8 : Case study

<IATTLIST PRODUCER

identifiant CDATA #FIXED "Name"

produces. MOVIE IDREFS #IMPLIED

id ID #REQUIRED

Cotresp CDATA #FIXED "PRODUCER">
<IELEMENT PRODUCER.Name #PCDATA>
<IATTLIST PRODUCER.Name

corresp CDATA #FIXED "PRODUCER.Name">
<IELEMENT PRODUCER.Address(PRODUCER.Address.Street,
PRODUCER.Address.Zip-code, PRODUCER.Address.City) >
<IATTLIST PRODUCER.Address

corresp CDATA #FIXED "PRODUCER.Address">
<IELEMENT PRODUCER.Address.Street #PCDATA>
<IATTLIST PRODUCER.Address.Street

cortesp CDATA #FIXED "PRODUCER.Address.Street">
<IELEMENT PRODUCER.Address.Zip-code #PCDATA>
<IATTLIST PRODUCER.Address.Zip-code

cotresp CDATA #FIXED "PRODUCER.Address.Zip-code">
<IELEMENT PRODUCER.Address.City #PCDATA>
<IATTLIST PRODUCER.Address.City

cotresp CDATA #FIXED "PRODUCER.Address.City">
1>

ConvertXML

The ConvertXML Voyager2 program uses the DTD and the enriched XML schema in order to
generate the source code of the DB-to-XML converter named dbtoxmlconverter.

dbtoxmlconverter

The dbtoxmlconverter Java program extracts the relevant data form the source DB and write
them in the XML document. The source code of that program is given in appendix L.

Once run and executed, the Java program creates a XML document. A piece of that
document is shown below, the entire document is given in appendix M.

<? XML version ="1.0"?>
<IDOCTYPE Movie SYSTEM "Movie.dtd">

<DISTRIBUTOR id = "1" distributes. MOVIE = "5">
<DISTRIBUTOR.Name> 20t Century Fox </DISTRIBUTOR.Name>
<DISTRIBUTOR.Address>
<DISTRIBUTOR.Address.Street>Hollywood Blvd, 150
</DISTRIBUTOR.Address.Street>
<DISTRIBUTOR.Address.Zip-code>9000
</DISTRIBUTOR.Address.Zip-code>
<DISTRIBUTOR.Address.City> Los Angeles </DISTRIBUTOR.Address.City>
</DISTRIBUTOR.Address>
<DISTRIBUTOR.Phone>1230450890</DISTRIBUTOR.Phone>

Page - 80

Chapter 8 : Case study

<DISTRIBUTOR.Phone>1230450891</DISTRIBUTOR.Phone>
</DISTRIBUTOR>

<MOVIE id ="5" produces. PRODUCER = "13" distributes. DISTRIBUTOR = "1">
<MOVIE.Title>Titanic </MOVIE.Title>
<MOVIE.Director>Cameron </MOVIE.Director>
<MOVIE.Screenwriter>Cameron </MOVIE.Screenwriter>
<MOVIE.Actor>Di Caprio </MOVIE.Actor>
<MOVIE.Duration>195 </MOVIE.Duration>
<MOVIE.Abstract>The famous boat sinks </MOVIE.Abstract>
</MOVIE>

</PRODUCER id="13" produces. MOVIE = "5">
<PRODUCER.Name>Cameron</PRODUCER.Name>
<PRODUCER.Address>
<PRODUCER.Address.Street>rue de Bruxelles, 22
</PRODUCER.Address.Street>
<PRODUCER.Address.Zip-code>5000 </PRODUCER.Address.Zip-code>
<PRODUCER.Address.City>Namur </PRODUCER.Address.City>
</PRODUCER.Address>
</PRODUCER>

Some modifications may be made on this document by the user in order to give instructions
for the display of the XML document. In the following pages, we give an example of
presentation. The distributor, movie and producer elements are listed and the links between
the elements are represented by hyperlinks.

Page - 81

Chapter 8 : Case study

Cinema

-Distributor-

20th Century Fox

Address : Hollywood Blvd, 150 9000 Los Angeles
Phone : 1230450830 or 1230450891
distnibutes : Titanic

Universal
Address : Hollywood Blvd, 151 9000 Los Angeles

Phone ; 1230756452 or 1230756453
Distributes : E.T., Jurassic Park, Trois couleurs : bleu

-Movie-
Titanic

Director : Cameron
Screenwrter Cameron

Actor : D1 Capnio

Duration : 195 min

Abstract : The famous boat sinks
Producer : Camercon

Distributor : 20Th Century Fox

E.T.

Director ;, Spielberg
Sreenwriter : Daviau

Actor : Barrymore

Duration: 115 min

Abstract : A kind ET. on earth
Producer : Spielberg
Distributor : Universal

Page - 82

Chapter 8 : Case study

Jurassic Park

Director : Spielberg
Sreenwnter : Crichton

Actor : Goldblum

Duration : 126 min

Abstract : Dinosaurs are alive
Producer : Spielberg
Distributor : Universal

Trois couleurs : bleu

Director : Kieslowski
Screenwnter : Kieslowski
Actor : Bmoche

Duration : 98 min

Abstract : Fist part of the tnlogy
Producer : Earmitz

Distnibutor : Universal

-Producer-

Cameron

Address : rue de Bruxelles, 22 5000 Namur
Produces : Titanic

Spielberg

Address : chaussée de Nivelles, 56 5140 Sombreffe
Produces : ET., Jurassic Park

Karmitz

Address : place franco-belge, 5 6200 Chatelet
Produces : Trois couleurs : Bleu

Page - 83

Conclusion

Conclusion

Conclusion

We have introduced the concepts of data migration and the problems that arise in this
particular research area. We also outlined the notions of database heterogeneity and
schematic heterogeneity for which we gave a classification of the conflicts one may
encountered. We briefly defined schema integration, view integration and schema
translation and delineate the context in which our work is situated.

Thereafter, we described the models we used, i.e. the Entity-Relationship and the
XML model. Considering that we did work with a simplified E-R model (i.e. the
Conceptual Model), in order to restrain the risk of ambiguity problem, we had to define
the constructs we authorised. The transfer process being performed on the basis of the
conceptual level of the DBs, we needed a query language that was able to address
directly at the conceptual schemas : the CQL (Conceptual Query Language).

Since the framework was drawn, we were able to outline an architecture for the
two cases of our converter (DB-to-DB and DB-to-XML) and concisely define the tools
that support them. The architecture showed that the converter is located between the
source and the target schemas and is made up of two components : the extraction
module (common for the two cases of the converter) and the insertion module (for the
DB-to-DB case) or the write module (for the DB-to-XML case).

The next thing we did was to describe the converter generation methodology,
here again we had to divide it in two cases according to the type of converter that was
generated. The two main processes of the converter generation were the mapping
analysis and the generation in itself. An important part of the mapping analysis process
was to examine the transformations performed between the source and target schemas,
hence the need to introduce a section devoted to the set of symmetrically reversible
transformations we could use. We also depicted the generator support tools, i.e. the DB-
Main repository, the history manager and the Voyager2 programming language.

Right after, we developed more thoroughly the mapping analysis process. We
exposed the mapping representation for the transformations we allowed (which were a
subset of the set of transformations we previously introduced) in order to comply with
the CM and XML model. Then we gave the mapping analysis methodology which was
divided in metaproperties creation, mapping extraction and mapping insertion; and we
briefly presented the program we implemented in order to physically perform the
analysis.

The next step of our work was to describe in a more exhaustive way the
converter generation process, first for the DB-to-DB case and then for the DB-to-XML
case. For the latter, we only had to explain the second part of the process, i.e. the write
module ; the first being identical to the DB-to-DB case first part. For both of the cases,
we included a section to present the programs that actually perform the generation
process.

Finally, the last thing we exposed was a small case study, including a scenario
showing how the converters are really generated

Page - 85

Conclusion

Our work gives another brick in the huge wall of the data migration problem.
We provide a tool that eases the transfer process among two databases but only if the
target schema has been build from the source. Another limitation is that we had to
restrict the set of transformations that can be performed on the source schema to obtain
the target. That was necessary as the E-R model was semantically too rich and, thus,
provides a great risk of ambiguity problems.

Nevertheless the solution we propose is rather original as we work directly on
the conceptual level of the DB’s and knowing only that the target schema was the subset
of the source, we are able to retrieve the correspondences between the two schemas and
then automatically produce the code for the converter.

Another interesting achievement of our thesis, is the useful tool we gave to
automatically translate the contents of a physical database into a XML document.

An enhancement that could later be made would be to limit the restrictions as far
as it is possible, for example to allow multiple transformations on the same attribute.
Another would be to retrieve the correspondences between a source schema and a target
that is no more subset of the source.

Page - 86

Bibliography

Bibliography

[Ahmed, 1991] Ahmed R., et al., The Pegasus Heterogeneous Multidatabase System,
IEEE Computer 24(12) : 19-27(1991)

[Batini, 1986] Batini C., Lenzerini M., Navathe B., 4 Comparative Analysis of
Methodologies for Database Schema Integration, ACM Computing Surveys 18(4):
323-364, December 1986

[Bourret] Declaring elements and attributes in an XML DTD, Ron Bourret, Darmstadt
University of Technology.
http://www.informatik.tu-darmstadt.de/DVS 1/staff/bourret/xml/xmldtd.html

[Brodie, 1995] Brodie M.L., Stonebraker M., Migrating Legacy Systems, Morgan
Kaufmann Publishers, San Francisco, 1995

[DB-Main, 1997] Hainaut J.L., Database reverse engineering, Problems, Methods and
Tools, FUNDP, March 1997.

[DB-Main, 1998] Hainaut J.L., The DB-Main database engineering CASE tool, version
4, Functions overview, FUNDP, November 1998.

[Englebert, 1998] Englebert V., Voyager 2 Reference manuel, Version 4 Release 0,
FUNDP, November 1998

[Hainaut, 1994] Hainaut J.L., BD et Modéles de calcul, outils et méthodes pour
['utilisateur, FUNDP, iia, 1994.

[Hainaut, 1995] Hainaut J.L., Transformation-based database engineering, VLDB9S5,
September 95.

[Hamilton, 1997] Hamilton G., Cattell R., Fisher M., JDBC Database Access with
Java : A Tutorial and Annotated Reference, Addison Wesley Longman, Reading, 1997

[Ioannidis, 1993] Ioannidis Y.E., Miller R.J., Ramakrishnan R., The Use of Information
Capacity in Schema Integration and Translation. VLDB 1993: 120-133

[Kim, 1991] Kim W., Seo J., Classifying Schematic and Data Heterogeneity in
Multidatabase Systems. IEEE Computer 24(12): 12-18 (1991)

[Mc Brien 1997] Mc Brien P., Poulovassilis A., A Formal Framework for ER Schema
Transformation, in Proceedings of ER’97, volume 1331 of LNCS : 408-421, 1997

Page - 87

Bibliography

[Microsoft,1998] Microsoft Corporation, XML : Enabling next-generation Web
applications, April 1998.
http://msdn.microsoft.com/xml/articles/xmlwp2.asp

[Miller, 1993] Miller R.J., Ioannidis Y.E., Ramakrishnan R., Understanding Schemas.
RIDE-IMS 1993: 170-173

[Miller, 1994] Miller R.J., Ioannidis Y.E., Ramakrishnan R., Schema equivalence in
heterogeneous systems: bridging theory and practice. IS 19(1): 3-31 (1994)

[Miller, 1998] Miller R.J., Using Schematically Heterogeneous Structures, in ACM
SIGMOD’98 conference, Seattle : 189-200

[Miller, 1999] Miller R.J., Haas L.M., et al., Transforming Heterogeneous Data with
Database Middleware: Beyond Integration. IEEE Data Engineering Bulletin 22(1): 31-
36 (1999)

[Ozsu, 1991] Ozsu T., Valduriez P., Principles of Distributed Database Systems,
Prentice-Hall, EngleWood Cliffs, 1991

[Saltor, 1997] Saltor F., Rodriguez E., On Intelligent Access to Heterogeneous
Information, in Proceedings of the 4™ KRDB Workshop Athens, Greece, 30-August-
1997

[Sheth, 1999] Shet A., Rusinkiewicz M., Elmagarmid A., Management of
Heterogeneous and Autonomous Database Systems, Morgan Kaufmann Publishers, San
Francisco, 1999

[Thiran, 1998] Thiran Ph., Hainaut J-L., Bodart S., Deflorenne A., Hick J-M.,,
Interoperation of Independent, Heterogeneous and Distributed Databases.
Methodology and CASE Support: the InterDB Approach. CooplS 1998: 54-63

[Thiran,1999a] Thiran Ph., Chougrani A., Hainaut J.L., InterDB driver, conceptual
server with JDBC, FUNDP, july 1999.

[Thiran, 1999b] Thiran Ph., Hainaut J-L., Hick J-M., Chougrani, A., Generation of
Conceptual Wrappers for Legacy Databases, in Proceedings of the DEXA’99
conference, Florence, September 1999

[Walsh, 1998] Norman Walsh, A4 technical introduction to XML, October 1998.
http:// www.xml.com/xml/pub/98/10/guide0.html

[Walsh, 1999] Norman Walsh, Schemas for XML, July 1999.
http://www.xml.com/xml/pub/1999/07/schemas/index.html

[W3C, 1998] World Wide Web Consortium, XML-QL : A query language for XML,
submission to the World Wide Web Consortium, August 1998.
http://www.w3.0org/TR/NOTE-xml-ql

Page - 88

Bibliography

[W3C,1999a] World Wide Web Consortium, XML Schema Part 1: Structures, May
1999.
http://www.w3.0rg/1999/05/06-xmlschema-1/

[W3C,1999b] World Wide Web Consortium, XML Schema Part 2: Datatypes, May
1999.
http://www.w3.0rg/1999/05/06-xmlschema-2/

Page - 89

Appendix

Appendix A : Transformation plans

Appendix A : Transformation plans

Definition

A transformation plan is an algorithm composed of steps of the form :

for each o € O, such that P(0), do Ty; (0);

where O is an object type and P a predicate.

This algorithm gives what transformations to apply, in what order and on what objects.

Transformation scripts

The following transformation script describes a transformation plan that transforms a

ER schema into a CM schema.

Let S be the current schema;

For each RT R such that ((R is n-ary) or (R has attributes)) do

RT-to-ET(R)

For each RT R such that ((R is binary) and (R is many-to-many)) do

RT-to-ET(R)
do
for each attribute A such that (A is multivalued) do
Att-to-ET/Instance (A)
until there is no more mulitvalued attributes
For ET E such that (E is a supertype) do
ISA-to-RT(E)

Example :

The following ER schema :

Page - 91

Appendix A : Transformation plan

PRODUCER
MOVIE
Titl it /receives \ AWARD
slt LN o B 0-N— Address ~ [—0-N 0-N—{Name
creewriter Street W Category
Duration City
CARTOON FILM
Technique Category
Color Actor[0-N]
is transformed into this CM schema :
PRODUCER
ol Name AWARD
ge - —l-l-N— Address Name
S rbamiine Street Category
Duration City
o1 o 0-N
0-1 0-N
G
I-1 p o I-1
CARTOON : ACTOR -
Technique FILM 0—N<pl£’§>—l-l—- Actor LSLUINGS
Color Category id: plays.FILM date
Actor id: rec_PRO.PRODUCER
rec_AWA.AWARD

The following transformation script describes a transformation plan that transforms a
ER schema into a XML model.

Let S be the current schema;

For each RT R such that ((R is n-ary) or (R has attributes)) do
RT-to-ET(R)

For each RT R such that ((R is binary) and (R is many-to-many)) do
RT-to-ET(R)

Page - 92

Appendix A : Transformation plans

Example :

The ER schema given here above is transformed into the following XML model:

CARTOON

Technique
Color

e PRODUCER
i Name
IMO, it Eae iy 0-N—1 Address
Screewriter
Duration St_reet
City
0-N

A
\ FILM

Category
Actor[0-N]

1-1

AWARD

Name
Category

7
0-N

1-1

receives

date

id: rec_PRO.PRODUCER
rec_ AWA.AWARD

Page - 93

Appendix B : XML-QL

Appendix B : XML-QL

We give this introduction to XML-QL using examples that are based on the following
DTD:

<!ELEMENT movie (title, producer+, actor)>
<!ATTLIST movie id ID #REQUIRED>
<!ELEMENT cartoon (producer+)>

<!ELEMENT producer (name, address)>

<!ATTLIST producer produces IDREF#REQUIRED>
<!ELEMENT actor (firstname?, name)>
<!ELEMENT title ##CDATA>

<!ELEMENT name #PCDATA>

<!ELEMENT address ##CDATA>

<!ELEMENT firstname #PCDATA>

XML-QL uses element patterns to match data in an XML document.

Example :

WHERE <movie>
<actor>Binoche</actor>
<producer> $p </producer>
<Title> $t</Title>

</movie> IN "cine.xml"

CONSTRUCT $p

This query matches every movie element, in the XML document cine.xml, that
has at least one producer and one title and whose actor is "Binoche". For each
match, it binds the variable t and p to every title and producer pair. The result is
the list of all producer bound to p. Variable names are preceded by $ in order to
make a distinction with the string literals (E.g : Binoche).

The construct part can be used to construct a new XML data, a data that doesn’t exist in
the input file.

Example :
WHERE <movie>

<actor>Binoche</actor>
<Title> $t </Title>

Page - 95

Appendix B : XML-QL

<producer> $p </producer>
</movie> IN "cine.xml"
CONSTRUCT <result>
<Title> $t </Title>
<producer> $p </producer>
</result>

This query returns both title and producer and builds a new element result
that groups the two elements.

In order to group the result, we can use nested queries. The result construct contains a
query.

Example :

WHERE <movie> $m </movie> IN "cine.xml",
<title> $t </title>
<actor>Binoche</actor> IN $m
CONSTRUCT <result>
<title>S$t</title>
WHERE <producer>$p</producer> IN S$Sm
CONSTRUCT <producer>$p</producer>
</result>

This query produce a result for each title and contains a list of all its
producer.

XML-QL can express joins by matching two or more elements that contain the same
value.

Example :

WHERE <cartoon>
<producer>
<name>$n</name>
<address>$a</address>
</producer>
</cartoon>
CONTENT_AS S$c IN "cine.xml"
<movie>
<producer>
<name>3$n</name>
<address>S$Sa</address>
</producer>
</movie> IN "cine.xml"

CONSTRUCT <cartoon> $c </cartoon>

This query gives all cartoons that have at least one producer that has also
produced one movie.

Page - 96

Appendix B : XML-QL

To support element sharing, XML reserves an attribute of type ID, which allows a
unique key to be associated with an element. An attribute of type IDREF allows an
element to refer to another element with the designated key, and one of type IDREFS
may refer to multiple elements. We can have joint query on these attributes.

Example :

WHERE <producer produces = S$p>
<name> </name> ELEMENT_ AS $n
</producer>
<movie id=$i>
<title> </title> ELEMENT_AS $t
</movie>,
CONSTRUCT <result> $n S$t</result>

This query produces all name and title pairs by joining the producer
element’s IDREF attribute value with themovie element’s ID attribute value.

Page - 97

Appendix C : Repository

Appendix C : Repository

Figure c.1. shows the repository’sschema. This figure is taken from [Englebert, 1998]

sys_mo
system -3 meta_object-1
system_sch mo_mp
pto
' meta_
connection -1 3 product -3 property -1
W)O/ \
sch_coll
collection -2 schema document
coll_et sch_data
BN " 1
data_colet o proc_unit
coll_et -1 data_object data_gr
/\O\ domain owner_pu
owner_of_
ent_rel_type —O—» ent_rel_type ey ent_rel_type proc_unit
/O/'\O\ \O\an /O/\O\
entity_clu
cluster -2 entity_type rel_type co_attribute si_attribute ;‘;‘:& b} group
" h
clu_sub entity_etr rt_ro do_attribute e
entity_sub
ro_e
X real
- - - —————O——» -
sub_type -1 et_role -1 role -2 component
real_comp
constraint -1 memb1er_cst group -2 component
. gr_comp
const_mem gr_mem f
y o generic_
1 object

2 —O—» graph_object

=3

complex_
graph_object

Figure c.1. : repository’sschema

Page - 99

Appendix D : AnalyseMap Program

Appendix D : AnalyseMap Program

e O K ¥ SOR K R ¥ Nk IR TTTRE Ne R K o Bkl ¥ N KK R

sraminie Vovager? qui analyse le fic

ere ceus of dans des metapropric

string: des_entl, des_att, des_pref,line2; |
schema: sch; |
file : f, map;

integer : rien,fin,cmpt2;

attribute : att;

owner_of_att : own;

entity_type : ent, entl,ent2;

list : I_att,]_ent,l_ass, I_des_att;

cursor : ¢,c2;

string:nom_att;

integer:comp;

i
o cible

|
list : I_attl; /7 Liste de liste composée de la transformation. de Pattribut dans le source et de Pattribut dan
list : I_entl; /idem pour les entités

list : 1_ass1; // idem pour les associations

wtion pour ouvrir un fichier. Retourne 1 si Pouverture

bien passée. O simon

function integer OuvreFichier()
{ print("Nom du fichier: ");
f:=OpenFile(read(_string),_R);
if IsVoid(f) then {
print("INCORRECT FILE !");
return 0;
}
else {
return 1;
¥
}

snetion powr passer des lignes dans un fichier

function integer SkipLine (string:s)

string : stemp;

integer : i,truc;

{

truc :=-1;

while eof(f)=0 and truc<0 do

Page - 101

Appendix D : AnalyseMap Program

{

stemp := readf (f,_string);

truc := StrFindSubStr (stemp,0,s);
i:=i+l;

}

return truc;

}

HSES 0

procedure cree_liste_ini ()

{

if not(IsVoid (sch)) then
{
InitListeEnt ();
InitListeAss ();
}

}

reruplic la liste des entités 1_entl

procedure InitListeEnt ()

entity_type : ent;
data_object : dat;

list : I;
{
for dat in DATA_OBJECT][dat]{ @SCH_DATA:[sch]with GetType(dat)=ENTITY_TYPE} do
{
ent := dat;
| := LEnt(ent);
AddFirst(l_entl,]);
InitListeAttCO(ent);
InitListe AttSI(ent);
}
}
1 qut done une liste pour les entites

function list LEnt(entity_type:ent)
list :1;

{

AddFirst(1,"");
AddLast(l,ent.name);
AddLast(l,ent.name);
return I;

}

Page - 102

Appendix D : AnalyseMap Program

procédure pour mettre des attributs simples dans 1_au

s

8 o 2 B P

procedure InitListe AttSI (entity_type:ent)

attribute:att;
list:1;

{

for att in ATTRIBUTE[att]{ @ OWNER_ATT:[ent]with GetType(att)=SI_ATTRIBUTE} do

{

l:= LAttSI(ent.name,att);
AddFirst(I_att1,1);

}

procedure InitListe AttCO (entity_type:ent)

attribute:att;

list:1;

{

for att in ATTRIBUTE[att]{ @ OWNER_ATT:[ent] with GetType(att)=CO_ATTRIBUTE} do
{
LAttCO(ent.name,att);
}

procédure réeursive pour la liste des attributs composés

procedure LAttCO(string:nom, attribute:att)

list:1;
co_attribute:coatt;

{

if GetType(att)=SI_ATTRIBUTE
then
{

AddFirst(1,"");

nom := StrConcat(nom,StrConcat(".",att.name));
AddLast(l,nom);

AddLast(l,nom);

AddFirst(1_att1,1);

}

else

{

nom := StrConcat(nom,StrConcat(".",att.name));
coatt := att;

AddFirst(1,"");

AddLast(I,nom);

AddLast(l,nom);

AddFirst(1_att1,1);

Page - 103

Appendix D : AnalyseMap Program

for att in ATTRIBUTE[att]{ @QOWNER_ATT:[coatt] } do
{
LAttCO(nom,att);
}

o poar donner 1 histe des attributs simples

E AT o L ¢

function list LAttSI(string:nom, attribute:att)
list :1;

{

AddFirst(1,"");
AddLast(l,StrConcat(nom,StrConcat(".",att.name)));
AddLast(1,StrConcat(nom,StrConcat(".",att.name)));
return 1;

fure pour remplie la liste des associatons |_ass|

procedure InitListeAss ()

rel_type:rel;
data_object:dat;
list:1;

{
for dat in DATA_OBIJECT([dat]{ @ SCH_DATA:[sch]with GetType(dat)}=REL_TYPE} do
{
rel := dat;
l:=LRel(rel);
AddFirst(l_ass1,l);
}

foncton gut donne une liste pour les relations

7 ORI/

function list LRel(rel_type:rel)
list :1;

{

AddFirst(1,"");
AddLast(l,rel.name);
AddLast(l,rel.name);
return I;

}

we pour afficher le contenu d'une liste de liste

hf
i

Page - 104

Appendix D : AnalyseMap Program

/*
procedure Affiche (list : 1)

list:1i;
string:s;
integer:i,j;
cursor: cl,c2;

{

attach cl to I;
foriin [1..Length(1)] do
{
li := get(cl);
attach c2 to li;
for j in [1..Length(li)] do

{
s:= get(c2);
print([s,"\t"]);
25>
}
cl>>;
print("\n");
}
}
¥
Procédure pour analyser la désaggrégation

procedure desag ()

string : line;

char : trash;

integer : cmpt, cmpt2,trash2;
list : fill;

cursor : ¢,c2;

{
line := readf (f,_string);
line := readf (f,_string);
SetParser (line);
SkipUntil (".");
trash := GetChar();
trash := GetChar();
des_entl := GetTokenUntil ("\"");
SkipUntil (".");
trash := GetChar();
trash := GetChar();
des_att := GetTokenUntil ("\"");
line := readf (f,_string);
if StrFindSubStr (line,0,"PRE") >-1 then
{
SetParser (line);
SkipUntil ("\"");
trash := GetChar();
des_pref := GetTokenUntil ("\"");

Page - 105

Appendix D : AnalyseMap Program

}
else
{
des_pref :="";
}
cmpt :=1;

line := readf (f,_string);
while StrFindSubStr (line,0,"DEL COA") <0

do
{
if StrFindSubStr (line,0,"NAM") > -1
then
{
line :=readf(f,_string);
trash2 :=SkipLine ("OID");
line :=readf(f,_string);
SetParser (line);
if StrFindSubStr (line,0,"_")>-1 then
{
SkipUntil ("_");
trash:=GetChar();
AddLast (I_des_att,GetTokenUntil ("\""));
}
else
{
SkipUntil ("\"");
trash:=GetChar();
AddLast (I_des_att,GetTokenUntil ("\""));
}
line := readf (f,_string);
cmpt:=cmpt+1;
}
else
{
line := readf (f,_string);
}
}
cmpt2:=1;

attach c to 1_des_att;

for cmpt2 in [1..cmpt-1] do

{

fill:=[];

AddLast (fill,"disaggregate");

AddLast (fill,des_ent1+"."+des_att+"."+get(c));
AddLast (fill,des_éntl+"."+des_pref+get(c));
>4

AddLast (1_att,fill);

}

}

pour analyser fe split_merge de deux eotités

procedure split_merge()

string : line,el,e2,temp,rel;

Page - 106

Appendix D : AnalyseMap Program

integer : trash,truc,cmpt,cmpt2;
char : bin;

list : 1_a;

Cursor : ¢,c2;

{

trash := SkipLine ("BEG");

line := readf (f,_string);
SetParser (line);

SkipUntil ("\"");

bin :=GetChar();

el := GetTokenUntil ("\"");

trash := SkipLine ("MOD ENT");
trash := SkipLine ("MOD ENT");
trash := SkipLine ("OID");

line := readf (f,_string);
SetParser (line);

SkipUntil ("\"");

bin :=GetChar();

e2 := GetTokenUntil ("\"");

trash := SkipLine ("MOD REL");
trash := SkipLine ("OID");

line := readf (f,_string);
SetParser (line);

SkipUntil ("\"");

bin :=GetChar();

rel := GetTokenUntil ("\"");

trash := SkipLine ("MOD SIA");
line := readf (f,_string);
truc:=0;
cmpt:=0;
while truc>-1
do
{
trash:=SkipLine ("END");
trash:=SkipLine ("OID");
line := readf (f,_string);
SetParser (line);
SkipUntil ("\"");
bin :=GetChar();
temp := GetTokenUntil ("\"");
line := readf (f,_string);
if StrFindSubStr (line,0,"OWN")<0
then
{
Lasz=11
AddLast (1_a,"split-merge");
AddLast (I_a,el+"["+e2+"."+rel+"]"+"."+ temp);
AddLast (I_a,e2+"."+temp);
AddLast (I_att,]_a);
line:= readf (f,_string);
if StrFindSubStr (line,0,"END") >0 then {truc:=-1;}
}

{
truc:=SkipLine ("END");
line:= readf (f,_string);

else

Page - 107

Appendix D : AnalyseMap Program

if StrFindSubStr (line,0,"END") >0 then {truc:=-1;}
}

your analvser Ia wansformatuen diune enttd en attribut

%/
T

procedure eta()

integer : bin;

char : trash;

string : line, el, €2, attl, att2, rel;
list : I_a;

{

bin := SkipLine ("BEG");

line := readf (f,_string);

SetParser (line);

SkipUntil ("\"");

trash := GetChar ();

el := GetTokenUntil ("\"");

bin := SkipLine ("POY");

while StrFindSubStr (line,0,"*") =-1 do

{
line := readf (f,_string);
}
if StrFindSubStr (line,0,"CRE COA") >-1
then {
}
else {

bin := SkipLine ("OID");
line := readf (f,_string);
SetParser (line);

SkipUntil ("\"");

trash := GetChar ();

attl := GetTokenUntil ("\"");
bin := SkipLine ("OWN");
line := readf (f,_string);
SetParser (line);

SkipUntil (".");

trash := GetChar ();

trash := GetChar ();

e2 := GetTokenUntil ("\"");
bin := SkipLine ("OID");
line := readf (f,_string);
SetParser (line);

SkipUntil ("\"");

trash := GetChar ();

att2 := GetTokenUntil ("\"");
bin := SkipLine ("DEL REL");
bin := SkipLine ("OID");
line := readf (f,_string);
SetParser (line);

SkipUntil ("\"");

trash := GetChar ();

rel := GetTokenUntil ("\"");

Page - 108

Appendix D : AnalyseMap Program

lLa:=[];

AddLast (I_a,"et-to-att");

AddLast (I_a,el+"["+e2+"."+rel+"]"+"."+att1);
AddLast (I_a,e2+"."+att2);

AddLast (I_att,]_a);

Procedure pour analyser fa transformation d'un atribut en entité

v 4
/

procedure ate()

integer : bin,bool;

char : trash;

string : line, coatt, el, e2, rel, att;
listy1l.a;

{

line := readf (f,_string);

line := readf (f,_string);
SetParser (line);
SkipUntil("\"");

trash := GetChar ();

coatt := GetTokenUntil ("\"");
line := readf (f,_string);
SetParser (line);
SkipUntil(".");

trash := GetChar ();

trash := GetChar ();

el := GetTokenUntil ("\"");
bin := SkipLine ("CRE ENT");
bin := SkipLine ("OID");

line := readf (f,_string);
SetParser (line);
SkipUntil("\"");

trash := GetChar ();

e2 := GetTokenUntil ("\"");
bin := SkipLine ("OID");

line := readf (f,_string);
SetParser (line);
SkipUntil("\"");

trash := GetChar ();

rel := GetTokenUntil ("\"");
bin := SkipLine ("desag");
bin := SkipLine ("MOD SIA");

bool :=0;
while bool>-1 do
{

bin := SkipLine ("OID");
bin := SkipLine ("OID");
line := readf (f,_string);
SetParser (line);
SkipUntil("\"");

trash := GetChar ();

att := GetTokenUntil ("\"");

Page - 109

Appendix D : AnalyseMap Program

Ia=1[];

AddLast (I_a,"att-to-et\\inst");

AddLast (I_a,el+"."+coatt+"."+att);

AddLast (I_a,e2+"["+e1+"."+rel+"]"+"." + att);
AddLast (I_att,1_a);

bin := SkipLine ("END");

line := readf (f,_string);

SetParser (line);

bool := StrFindSubStr (line,0,"MOD SIA");

}

rocedure pour analyser le renommage d'une enuté

procedure renam()

integer : bin,bool;
char : trash;

string : line, el, e2;
list : 1_a;

{

bin := SkipLine ("OID");

line := readf (f,_string);

SetParser (line);

SkipUntil("\"");

trash := GetChar ();

el := GetTokenUntil ("\"");

bin := SkipLine ("OID");

line := readf (f,_string);

SetParser (line);

SkipUntil("\"");

trash := GetChar ();

e2 .= GetTokenUntil ("\"");

if StrCmp (el,e2) = 0 then {}

else {

lLa:=[];
AddLast (I_a,"rename");
AddLast (I_a,el);
print ("FILM :"+el);
AddLast (I_a,e2);
AddLast (I_ent,l_a);}

seedure dimtégration des deux listes

procedure integre()

{

if not(IsVoid (sch)) then
{
I_attl := Compare(l_att,l_attl);
I_ent] := Compare(l_ent,]_entl);
//l_ass1 := Compare(l_ass,l_assl);

}

Page - 110

Appendix D : AnalyseMap Program

rocddure pour comparer deux isies of remplacer

i
function list Compare (list : 1, list : linit)

cursor : cl,c2;

cursor : ctrouv;

list : Itemp;

integer : i;

integer : poscro, poscro2;
string : s3;

string : temp;

list : Itrouv;

{
attach cl to [;
foriin [1..Length(l)] do
{
Itemp := get(cl);
s3 := GetLast(Itemp);
poscro := StrFindSubStr(s3,0,"[");
if poscro <> -1
then
{
poscro2 := StrFindSubStr (s3,0,"]");

temp := StrGetSubStr(s3,0,poscro)+StrGetSubStr(s3,poscro2+1,StrLength(s3)-poscro2-

1);
ctrouv := rechercher(temp,linit);
}
else
{
ctrouv :=rechercher(s3,linit);
}
Itrouv := get(ctrouv);
Itrouv := ltemp;
AddFirst(linit,Itrouv);
kill(ctrouv);
clss;
}
return linit;
}

renvore e cursor imdiguant sa position e cas échéant.

function cursor rechercher(string : s, list : 1)
Cursor : c;

integer: trouve;

integer : i;

string : s1;

{

sction gun recherche ta présence d'un string dans une liste
&

Page - 111

Appendix D : AnalyseMap Program

attachcto I;
=l
trouve := 0;
while trouve = 0 and i <= Length(l) do
{
s1 := GetLast(get(c));
if StrCmp(s,s1)=0
then
{
trouve := 1;
return c;
}
else
{
c>>;
1:=i+1;

}

edure sisert_map

procedure insert_map ()

{

if not(IsVoid (sch)) then
{
CreerMetaProp ();
EMEntite ();
EMRelation ();
EMAttribut ();

}

rocsdure sour creer les méta-propriétés

procedure CreerMetaProp()

meta_object:mo;
meta_property:mp;

{

mo := GetFirsttMETA_OBJECT[mo]{mo.type=ENTITY_TYPE});

mp:= create(META_PROPERTY, name:"corresp",type:VARCHAR_ATT,@MO_MP:mo);
mo := GetFirsttMETA_OBJECT[mo]{mo.type=REL_TYPE});

mp:= create(META_PROPERTY, name:"corresp",type:VARCHAR_ATT,@MO_MP:mo);
mo = GetFirsttMETA_OBJECT[mo]{mo.type=SI_ATTRIBUTE});,

mp:= create(META_PROPERTY, name:"corresp",type:VARCHAR_ATT,@MO_MP:mo);
mo := GetFirsttMETA_OBJECT[mo]{mo.type=CO_ATTRIBUTE});

mp:= create(META_PROPERTY, name:"corresp",type:VARCHAR_ATT,@MO_MP:mo);

}

eiire dans les méta-propriéiés des entités

/

Page - 112

Appendix D : AnalyseMap Program

procedure EMEntite ()

cursor:cl,c2;
list:1;
string:s1,s2;
integer:i;
entity_type : ent;
data_object:dat;
string:t;

{

attach cl to I_entl;

foriin [1..Length(l_entl)] do
{
I:= get(cl);
attach c2 to I;
t:=get(c2);
c2>>;
sl:= get(c2);
c2>>;
s2:= get(c2);

for dat in DATA_OBJECT][dat] { @ SCH_DATA:[sch] with GetType(dat)=ENTITY_TYPE } do

int:=dat;
if StrCmp(ent.name,s2)=0 then
{
ent."corresp” := mprop(t,s1);
}
}
clo>:
}

rocSdure pouy conre la micta propriced des relations

procedure EMRelation ()

cursor:cl,c2;
list:1;
string:s1,s2;
integer:i;
rel_type : rel;
data_object:dat;
string:t;

{

attach cl to 1_assl;

foriin [1..Length(l_ass1)] do
{
1:= get(cl);
attachc2 to l;
t:=get(c2);
e2>>;
sl:= get(c2);

Page - 113

Appendix D : AnalyseMap Program

25>
s2:= get(c2);
for dat in DATA_OBJECT][dat] { @ SCH_DATA:[sch] with GetType(dat)=REL_TYPE } do

{
rel:=dat;
if StrCmp(rel.name,s2)=0 then
{
rel."corresp":= mprop(t,s1);
}
}
elss;
}

nevion powr donner la Jiste des TE du schéma

£y

function list ListTE (schema:sch)
data_object : dat;
entity_type:ent;

list :I;

{

for dat in DATA_OBJECT[dat] { @ SCH_DATA:[sch] with GetType(dat)=ENTITY_TYPE } do
{

ent:= dat;
AddFirst(l,ent);
}

return I;

i cerue Ju méta-propridté des attributs

procedure EMAttribut ()

cursor:cl,c2;
list:1;
string:s1,s2,s3;
integer:i;
entity_type : ent;
data_object:dat;
attribute:att;
string:nom_ent;
string:temp;

{
attach c1 to I_attl;
foriin [1..Length(l_attl)] do
{
l:=get(cl);
attach c2 to I;
sl:= get(c2); // type de transformation
c2>>;
s2:= get(c2); // attribut dans le schema de base

Page - 114

Appendix D : AnalyseMap Program

c2>>;
s3:= get(c2); // attribut dans le schema dérivé
nom_ent := trouveent(s3);
ent := GetFirst(ENTITY_TYPE[ent]{ StrCmp(ent.name,nom_ent)=0 and
IsNoVoid(member(ListTE(sch),ent))});
trouveatt(s3);
if comp=0
then
{
EcrireAttComp(nom_att,ent,s2,s1);
}
else
{
att := GetFirsttATTRIBUTE[att]{ @ OWNER_ATT:[ent] with
StrCmp(att.name,nom_att)=0 });
att."corresp" := mprop(s1,s2);
}
cl>>;

}

fonction pour trouver le nom de 'entité dans 3

function string trouveent(string :s)

integer: pospoint;
integer: poscro;

{

pospoint := StrFindSubStr (s,0,".");
poscro := StrFindSubStr (s,0,"[");
if poscro <>-1
then
{
return StrGetSubStr(s,0,poscro);
}
else
{
return StrGetSubStr(s,0,pospoint);

}

‘attribut dans 83
procedure trouveatt(string :s)

fonetion pour trouver le nom de |

integer: pospoint;
integer: poscro;

{
pospoint := StrFindSubStr (s,0,".");
poscro := StrFindSubStr (s,0,"]");
if poscro <>-1

then

Page - 115

Appendix D : AnalyseMap Program

{
nom_att:= StrGetSubStr(s,poscro+2,StrLength(s)-poscro-2);
}
else
{
nom_att:= StrGetSubStr(s,pospoint+1,StrLength(s)-pospoint-1);
}
pospoint := StrFindSubStr (nom_att,0,".");
if pospoint = -1
then
{
comp = 1;
}
else
{
comp :=0;

}

srocédure pour ¢enre la mdta_proprdté des attributs composds

ol R ST O
procedure EcrireAttComp (string:s, entity_type:ent, string:s2, string:s1)

integer:pospoint;
integer:pospoint2;
string:a,suite,b,reste;
attribute:att,att2;
co_attribute:coatt;

{
pospoint := StrFindSubStr (s,0,".");
a := StrGetSubStr(s,0,pospoint);
suite := StrGetSubStr(s,pospoint+1,StrLength(s)-pospoint-1);
pospoint2 := StrFindSubStr (suite,0,".");
if pospoint2 = -1
then
{
att := GetFirst (ATTRIBUTE[att]{ @ OWNER_ATT:[ent] with StrCmp(att.name,a)=0 and
GetType(att)=CO_ATTRIBUTE})

coatt := att;

att := GetFirst(ATTRIBUTE[att]{ @ OWNER_ATT:[coatt] with StrCmp(att.name,suite)=0});

att."corresp":=mprop(s1,s2);

}

else

{

att := GetFirst (ATTRIBUTE[att]{ @ OWNER_ATT:[ent] with StrCmp(att.name,a)=0 and
GetType(att)=CO_ATTRIBUTE})

coatt := att;
b := StrGetSubStr(suite,0,pospoint2);
att2 := GetFirst (ATTRIBUTE[att]{ @ OWNER_ATT:[coatt] with StrCmp(att.name,b)=0});
if GetType(att2)=CO_ATTRIBUTE
then

{

Page - 116

Appendix D : AnalyseMap Program

reste:=StrGetSubStr(suite,pospoint2+1,StrLength(suite)-1-pospoint2);
coatt:=att2;

EcrireComp(coatt,reste,s2,s1);

}

else

{

att2."corresp" := mprop(s1,s2);

}

sour eerire les atributs des attributs composds---- recursit

7
procedure EcrireComp (co_attribute:coatt, string:s, string:s2, string:s1)

integer:pospoint;
attribute:att;
string:nom;
{
pospoint := StrFindSubStr (s,0,".");
if pospoint = -1
then
{
att := GetFirst (ATTRIBUTE[att]{ @ OWNER_ATT:[coatt] with StrCmp(att.name,s)=0});
att."corresp":=mprop(s1,s2);
}
else
{
nom := StrGetSubStr(s,0,pospoint);
att := GetFirst (ATTRIBUTE][att]{ @ OWNER_ATT:[coatt] with StrCmp(att.name,nom)=0 });
nom := StrGetSubStr(s,pospoint+1,StrLength(s)-pospoint-1);
EcrireComp(att,nom,s2,s1);

}

fonction pour donner le bon format de la metapropriete

x /
function string mprop(string:s1, string: s2)

integer:pospoint;
string:nom;
string:att;
string:rel;
integer:poscro;
integer:poscro2;
{
switch (s1)
{
case "rename" :
pospoint := StrFindSubStr(s2,0,".");
nom := StrGetSubStr(s2,pospoint+1,StrLength(s2)-pospoint-1);
print ("FILM2 :"+nom);
return s1+"("+nom+")";
case "att-to-et\\inst" :

Page - 117

Appendix D : AnalyseMap Program

pospoint := StrFindSubStr(s2,0,".");
nom := StrGetSubStr(s2,0,pospoint);
att:= StrGetSubStr(s2,pospoint+1,StrLength(s2)-pospoint-1);
return s1+"("+nom+","+att+")";
case "disaggregate" :
pospoint := StrFindSubStr(s2,0,".");
nom := StrGetSubStr(s2,0,pospoint);
att:= StrGetSubStr(s2,pospoint+1,StrLength(s2)-pospoint-1);
return s1+"("+nom+","+att+")";
case "split-merge" :
poscro := StrFindSubStr(s2,0,"[");
nom := StrGetSubStr(s2,0,poscro);
pospoint := StrFindSubStr(s2,0,".");
poscro2 := StrFindSubStr(s2,pospoint,"]");
rel := StrGetSubStr(s2,pospoint+1,poscro2-1);
att := StrGetSubStr(s2,pospoint+poscro2+2,StrLength(s2)-pospoint-poscro2-2);
return s1+"("+nom+","+att+","+rel+")";
case "et-to-att" :
poscro := StrFindSubStr(s2,0,"[");
nom := StrGetSubStr(s2,0,poscro);
pospoint := StrFindSubStr(s2,0,".");
poscro2 := StrFindSubStr(s2,pospoint,"]");
rel := StrGetSubStr(s2,pospoint+1,poscro2-1);
att := StrGetSubStr(s2,pospoint+poscro2+2,StrLength(s2)-pospoint-poscro2-2);
return s1+"("+nom+","+att+","+rel+")";

otherwise :
return s2;
}
}
wrat wincipal
begin
if OuvreFichier () then
{

sch := GetCurrentSchema();
if not (IsVoid (sch)) then

{
cree_liste_ini();
fin :=0;

line2 := readf (f,_string);
while fin =0 do

{
if StrFindSubStr (line2, 0,"*")>-1 then
{
if StrFindSubStr (line2, 0,"*TRF desagre_att")>-1 then
{ desag ();
line2 := readf (f,_string);}
else
{
if StrFindSubStr (line2, 0,"*TRF att_to_et_inst")>-1 then
{ ate ();
line2 := readf (f,_string);}
else
{

if StrFindSubStr (line2, 0,"*MOD ENT")>-1 then

Page - 118

Appendix D : AnalyseMap Program

{ renam ();
line2 := readf (f,_string);}

else
{
if StrFindSubStr (line2, 0,"*TRF split_merge")>-1 then
{ split_merge ();
line2 := readf (f,_string);}

else
{
if StrFindSubStr (line2, 0,"*TRF et_to_att")>-1 then
{ eta ();
line2 := readf (f,_string);}
else
{
if StrFindSubStr (line2, 0,"*POT \"end-file\"")>-1 then
{ fin:=1;
}
else
{line2 := readf (f,_string);}}}}}}}

else
{line2 := readf (f,_string);}

}
integre();
insert_map();
}

CloseFile (f);

}

end

Page - 119

Appendix E : ConvertDB Program

Appendix E : ConvertDB Program

7 N SRR B B SRk % S koK Bk

DB-1o-DB converter generatol

PR R

schema: sch;

file : f;

string : select_clause, from_clause, where_clause;
integer: renomme;

string : ancien;

integer: philou;

list: 1_first; // liste des entitds a inserer telles quelles. sans tenir compte des fiens.

list : 1_follow; // histe de Jiste dont chaque clement est une entite ot le nom du resaltsct de fa liste
orrespondance.

list : 1_link; /7 liste qui represente les liens many-to-many dinserer. ¢'est une liste de bste doat les léments
sont les noms des entités et le resultset.

list: correspondance; // liste de liste dont chaque clement est e nom du resultset (format: rsentfent2), les
deux enttes et les attributs identifiants.

Fonction potir eréer un fichier dans lequel sera éeritle DTD.

Retourne s la création gest bien passée, 0 stnon

function integer OuvreFichier()

{
f:=OpenFile("dbtodbconverter.java",_W);
if IsVoid(f) then {

print("INCORRECT FILE !");
return 0;
}
else {
return 1;
}
}

wedure qui donne la liste triee des entitds a vaiter

procedure initlistes ()

data_object:dat;
entity_type:ent,entl;
role:r;

et_role:er;
integer:ok;
rel_type:rel;

string : rsname;

Page - 121

Appendix E : ConvertDB Program

cursor:c,c2;

integer:i;
list:temp;
{
for dat in DATA_OBJECT([dat] { @ SCH_DATA:[sch] with GetType(dat)=ENTITY_TYPE } do
{
ok :=1;
ent := dat;
for r in ROLE[r]{RO_ETR: ET_ROLE]|er] { @ENTITY_ETR :[ent]}}
do
{
if r.min_con = 1 and r.max_con =1 then { ok :=0; }
}
ifok=1
then
{
AddFirst (I_first,ent.name);
}
else
{
listefollow(ent);
}
}
for dat in DATA_OBJECT][dat]{ @ SCH_DATA:[sch] with GetType(dat)=REL_TYPE} do
{
rel:=dat;
if Length(ROLE[r]{ @RT_RO:[rel] with r.min_con =0 and r.max_con <>1}) =2
then
{
r:= GetFirst(ROLE[r]{ @RT_RO:[rel]});
ent:=GetFirst(ENTITY_TYPE[ent] {ENTITY_ETR: ET_ROLE[er]{ @RO_ETR:[r]}});
entl := relation(ent,rel);
rsname:="rs"+ent.name+ent1.name;
rsname:=changeRSname(rsname,ent.name,ent1.name);
AddFirst(I_link,[ent.name,ent]1.name,rsname]);
}
}

ur renplin fa fiste qui contient les entités quitl faut inserer en respectant fes hiens

procedure listefollow (entity_type : ent)

rel_type:rel,;
role:r;

et_role:er;
entity_type:entl;
string:rsname;

{

for r in ROLE[r]{RO_ETR: ET_ROLE[er] { @ENTITY_ETR :[ent]}}
do
{

if rrmin_con = 1 and r.max_con =1

Page - 122

Appendix E : ConvertDB Program

then

{

rel := GetFirst(REL_TYPE[rel]{RT_RO:[r]});

entl :=relation(ent,rel);

rsname := "rs"+ent.name+entl.name;

rsname := changeRSname(rsname,ent.name,entl.name);
AddFirst(l_follow,[ent.name,rsname]);

}

ovedure d'alfichage des listes globales

£ H awrtlioresi
ippat dans ioitlistes

procedure affiche ()

cursor: c¢,el;
cursor: ¢2;
integer:i,j;
list:temp;

{

attach c to 1_first;

for i in [1..Length(l_first)] do
{
print(get(c)+"\n");
c>>;
}

print("\n");

attach c1 to |_follow;

print("\n");

for i in [1..Length(l_follow)] do
{
temp:= get(cl);
attach c2 to temp;
print(get(c2)+"\t");
c2>>;
print(get(c2)+"\n");
el>s;
}

print("\n");

attach c1 to I_link;

foriin [1..Length(l_link)] do
{
temp:=get(cl);
attach c2 to temp;
print(get(c2)+"\t");
c2>>;
print(get(c2)+"\t");
c2>>;
print(get(c2)+"\t");
cl>>;

}

attach c to correspondance;
print(Length(correspondance));

Page - 123

Appendix E : ConvertDB Program

for i in [1..Length(correspondance)] do
{
temp:=get(c);
attach c2 to temp;
print(get(c2)+"\n");
c>>;

}

on qut vendie gui change ke nom du resulset de facon & co qu'il soit bien carit

function string changeRSname(string:rsname, string:ent, string:ent1)
list : Itemp;

{

Itemp := recherche(rsname);
if Length(ltemp)=0

then

{

return "rs"+ent1+ent;

}

else

{

return rsname;

}

ction qui donne fa liste qu correspond au resultset dans correspondance
% f

“f
function list recherche (string:rsname)

cursor: cl, c2;
list: temp;
integer:i;

{

attach c1 to correspondance;
foriin [1..Length(correspondance)] do
{
temp := get(cl);
attach c2 to temp;
if StrCmp(get(c2),rsname)=0 then { return temp;}
cl>>;

}

cedure pour géundrer le module d'exraction
‘l/

procedure GenExtractMod ()

{

Page - 124

Appendix E : ConvertDB Program

Connect();
Extract();
extract2();
initlistes();
Disconnect();

}

srocedure pour inttialiser los resultsets

wse cur eree trop de resultsets

procedure initresultset ()

data_object:dat;
entity_type:ent,entl;
role:r;

et_role:er;
rel_type:rel;

{

for dat in DATA_OBJECT][dat]{ @ SCH_DATA:[sch] with GetType(dat)=ENTITY_TYPE}do
<{3nt:=dat;
printf(f,"ResultSet rs"+ent.name+" = null;\n");

for dat in}DATA_OBJECT[dat]{ @SCH_DATA:[sch] with GetType(dat)=ENTITY_TYPE}do
ént:=dat;

for rel in REL_TYPE[rel] {RT_RO: ROLE[r] {RO_ETR: ET_ROLE[er] { @ENTITY_ETR
:[ent]}}} do
{
entl :=relation(ent, rel);
printf(f,"ResultSet rs"+ent.name+ent1.name+" = null;\n");

}

Procedure pour géndrer la connection au serveur local

procedure Connect ()

string: url, login, pswd;
{

printf (f, "// Connection au serveur local\n");

printf(f,"try {\n");

printf (f,"Class.forName(\"jdbc.interDB.cql\");\n");

printf(f,"} catch (java.lang.ClassNotFoundException €) {\n");
printf(f," System.err.print (\"ClassNotFoundException: \");\n");
printf(f," System.err.println (e.getMessage());\n");

printf(f," }\n");

print("URL du serveur local: ");

Page - 125

Appendix E : ConvertDB Program

url:=read(_string);
print("\nLogin : ");
login:=read(_string);
print("\nMot de passe : ");
pswd:=read(_string);
print("\n");

initresultset();

printf (f,"try {\n");

printf (f,["Connection con = DriverManager.getConnection(\"",url,"\",\"",login,"\" \"",pswd,"\");\n\n"]);

v géndrer la connection au serveur local

procedure Connect?2 ()
string: url, login, pswd;

{

printf (f, "// Connection au serveur local\n");

printf(f,"try {\n");

printf (f,"Class.forName(\"jdbc.interDB.cql\");\n");

printf(f,"} catch (java.lang.ClassNotFoundException €) {\n");
printf(f," System.err.print (\"ClassNotFoundException: \");\n");
printf(f," System.err.println (e.getMessage());\n");

printf(f," }\n");

print("URL du serveur local: ");

url:=read(_string);

print("\nLogin : ");

login:=read(_string);

print("\nMot de passe : ");

pswd:=read(_string);

print("\n");

printf (f,"try {\n");

printf (f,["Connection con = DriverManager.getConnection(\"",url,"\" \"",login,"\" \"",pswd,"\");\n\n"]);

a deconnecton au serveyr local

procedure Disconnect ()

{

printf (f,"// deconnection au serveur local\n\n");

printf (f,"con.close();\n\n");

printf (f," }\n");

printf(f,"catch(SQLException ex) {\n");
printf(f,"System.err.printin(\"SQLException: \" + ex.getMessage()); }\n");

}

Page - 126

Appendix E : ConvertDB Program

codure dextraction. orée un resultSei pour chagque enutd

*f

procedure Extract ()

entity_type:ent;

data_object:dat;

attribute:att,att1;
string:m;

{

printf (f,"// Extraction des données par TE\n");

printf (f,"Statement stmt = con.createStatement();\n");

for dat in DATA_OBJECT[dat] { @ SCH_DATA:[sch] with GetType(dat)=ENTITY_TYPE }
do

{

init();

renomme :=0;

ancien :="";

ent:=dat;

m := ent."corresp";

analysemapET(m);

for att in ATTRIBVTE][att] { @QOWNER_ATT:[ent] with GetType(att)=SI_ATTRIBUTE} do

{
m := att."corresp";
analysemapATT(m,ent.name);
}
printf (f,"rs"+ent.name+" = stmt.ExecuteQuery");
printf (f,"(\"SELECT "+select_clause+" FROM "+from_clause);
if StrCmp(where_clause,"")<>0
then
{
printf (f," WHERE "+where_clause+";\");\n");
}
else
{
printf (f,";\");\n");
}
for att in ATTRIBVTE[att] { @QOWNER_ATT:[ent] with GetType(att)=CO_ATTRIBUTE} do
{
init();
from_clause:=ancien;
m :=att."corresp";
analysemapCOATT(m, ent.name, att.name);
printf (f,"ResultSet rs"+att.name+" = stmt.ExecuteQuery");
printf (f,"(\"SELECT "+select_clause+" FROM "+from_clause);
if StrCmp(where_clause,"")<>0
then
{
printf (f," WHERE "+where_clause+";\");\n");
}
else
{
printf (f,";\");\n");
}
}

Page - 127

Appendix E : ConvertDB Program

“ procedure pour tihiser les vartables globales %/
procedure init()

{

select_clause:="";
from_clause:="";
nn

where_clause:="";

}

wocedure qui analyse le mapping d'un attributdecomposé

foncoionne que pour fa ransformation rename.
me transformalion permise pour ses attributs

ox clauses select-from-where

procedure analysemapCOATT (string:m, string:ent, string:coatt)

integer:pospar,pospoint;
string:t;
string:nom, nomCA;

{

pospar := StrFindSubStr (m,0,"(");
if pospar <>-1
then
{
t := StrGetSubStr(m,0,pospar);
}
else
{
t:= ("No");
}
switch (t)
{
case "No" :
pospoint := StrFindSubStr(m,0,".");
nom:=StrGetSubStr(m,0,pospoint);

nomCA:=StrGetSubStr(m,pospoint+1,StrLength(m)-pospoint);

if renomme = 1 then {nom := ancien;}
if StrCmp(select_clause,"")=0
then
{
select_clause := nom+"."+nomCA+" ";

}

else

{

"nn

select_clause := select_clause+" , "+nom+"."+nomCA+

}

if ismember(from_clause,nom)=0 and renomme = O then

{

"o,

’

Page - 128

Appendix E : ConvertDB Program

if StrCmp(from_clause,"")=0
then
{

from_clause := nom+" ";

}

else
{
if ismember(from_clause,nom)
then {from_clause:= from_clause+" , "+nom+" ";}
}
}

case "rename" :
nom := ent;
if renomme = 1 then {nom := ancien;}
if StrCmp(select_clause,"")=0
then
{

select_clause := nom+"."+StrGetSubStr(m,pospar+1,StrLength(m)-pospar-2)+"

}

else
{
select_clause := select_clause+"
"+nom+"."+StrGetSubStr(m,pospar+1,StrLength(m)-
pospar-
2)+" "
}
if ismember(from_clause,nom)=0 and renomme = 0 then
{
if StrCmp(from_clause,"")=0
then
{ 1

from_clause := nom+" ";

}

else
{
if ismember(from_clause,nom)
then {from_clause:= from_clause+" , "+nom+" ";}

}
}

otherwise : print(t+" est une transformation non traitée");

}

¢ gui analyse le mapping d'un attribut
ect-from-where

s {es clauses

wf
i

procedure analysemapATT(string:m, string:ent)

integer:pospar;

string:t;
string:nom,nomA,nomCA ,nomR;
integer:pospoint,posvir,posvir2;

{

Page - 129

Appendix E : ConvertDB Program

pospar := StrFindSubStr (m,0,"(");
if pospar <>-1
then
{
t := StrGetSubStr(m,0,pospar);
}
else
{
t:=("No");
}
switch(t)
{
case "rename" :
nom := ent;
if renomme = 1 then {nom := ancien;}
if StrCmp(select_clause,"")=0
then
{

select_clause := nom+"."+StrGetSubStr(m,pospar+1,StrLength(m)-pospar-2)+"

}

else

{

select_clause := select_clause+" ,
"+nom+"."+StrGetSubStr(m,pospar+1,StrLength(m)-

}

case "att-to-et\\inst" :
posvir := StrFindSubStr(m,0,",");
nom := StrGetSubStr(m,pospar+1,posvir-pospar-1);
nomA := StrGetSubStr(m,posvir+1,StrLength(m)-posvir-2);
if renomme = 1 then {nom := ancien; }
if ismember(from_clause,nom)=0 then

{
from_clause:= from_clause+" , "+nom+" ";
}
if StrCmp(select_clause,"")=0
then

{

select_clause := nom+"."+nomA+" ";

}

else

{ "n "nn

select_clause := select_clause+" , "+nom+"."+nomA+" ";
}
case "disaggregate" :

posvir := StrFindSubStr(m,0,",");

nom := StrGetSubStr(m,pospar+1,posvir-pospar-1);

pospoint := StrFindSubStr(m,0,".");

nomCA := StrGetSubStr(m,posvir+1,pospoint-posvir-1);

nomA := StrGetSubStr(m,pospoint+1,StrLength(m)-pospoint-2);

if renomme = 1 then {nom := ancien;}

if ismember(from_clause,nom)=0 then

{

from_clause:= from_clause+" , "+nom+" ";

}

if StrCmp(select_clause,"")=0
then

pospar-
2+" "

Page - 130

Appendix E : ConvertDB Program

select_clause := nom+"."+nomCA+"."+nomA+" ";

}

else

{ "nn "wn,

select_clause := select_clause+" , "+nom+"."+nomCA+"."+nomA+" ";
}
case "split-merge" :
posvir := StrFindSubStr(m,0,",");
nom := StrGetSubStr(m,pospar+1,posvir-pospar-1);
posvir2 := StrFindSubStr(m,posvir+1,",");
nomA := StrGetSubStr(m,posvir+1,posvir2);
nomR := StrGetSubStr(m,posvir+posvir2+2,StrLength(m)-posvir2-posvir-3);
if StrCmp(select_clause,"")=0
then
{

select_clause := nom+"."+nomA;

}

else

{ "non

select_clause := select_clause+" , "+nom+"."+nomA;

}

if ismember(from_clause,nom)=0 then

{ "n

from_clause:= from_clause+" , "+nom+" ";
}

if renomme = 1 then {ent := ancien;}

if StrCmp(where_clause,"")=0
then

{

where_clause := nom+

}
else
{
if ismember(where_clause,nom+" "+nomR+" "+ent)=0
then {where_clause := where_clause+" and "+nom+" "+nomR+" "+ent+" ";}
}
case "et-to-att" :
posvir := StrFindSubStr(m,0,",");
nom := StrGetSubStr(m,pospar+1,posvir-pospar-1);
posvir2 := StrFindSubStr(m,posvir+1,",");
nomA := StrGetSubStr(m,posvir+1,posvir2);
nomR := StrGetSubStr(m,posvir+posvir2+2,StrLength(m)-posvir2-posvir-3);
if StrCmp(select_clause,"")=0
then
{

select_clause := nom+"."+nomA;

}

else

{ "nn

select_clause := select_clause+" , "+nom+"."+nomA;

}

if ismember(from_clause,nom)=0 then

"o,

from_clause:= from_clause+" , "+nom+" ";
}

if renomme = 1 then {ent := ancien;}

if StrCmp(where_clause,"")=0
then

"non "non "o,

+nomR+" "+ent+" ";

Page - 131

Appendix E : ConvertDB Program

{

where_clause := nom+" "+nomR+

}

else
{
if ismember(where_clause,nom+" "+nomR+" "+ent)=0

then { where_clause := where_clause+" and "+nom+" "+nomR+" "+ent+" ";}

nn "o,

+ent+"

case "No" :
pospoint := StrFindSubStr(m,0,".");
nom:=StrGetSubStr(m,0,pospoint);
nomA :=StrGetSubStr(m,pospoint+1,StrLength(m)-pospoint);
if renomme = 1 then {nom := ancien;}
if StrCmp(select_clause,"")=0
then

{

select_clause := nom+"."+nomA;

}

else

{ "nn

select_clause := select_clause+" , "+nom+"."+nomA+" ";
}

if ismember(from_clause,nom)=0 and renomme = O then

{
if StrCmp(from_clause,"")=0

then
{

from_clause := nom+" ";

}

else

{

if ismember(from_clause,nom)
then {from_clause:= from_clause+" , "+nom+" ";}

}
}

otherwise : print(t+" est une transformation non traitée");

}

ture danalyse d'une métapropriété d'un ET
=

procedure analysemapET (string : m)

integer: pospar,pospar2,posvir;
string:t; // type de transformation

{
pospar := StrFindSubStr (m,0,"(");
if pospar <>-1
then
{
t := StrGetSubStr(m,0,pospar);

}

else

Page - 132

Appendix E : ConvertDB Program

= ("No");

e

switch (t)
{

case "rename" :
pospar2:=StrFindSubStr(m,pospar,")");

from_clause:= StrGetSubStr(m,pospar+1,pospar2-1)+

renomme := 1;

"o

ancien := StrGetSubStr(m,pospar+1,pospar2-1);

case "No" :
from_clause:=m+" ";

case "att-to-et\\inst" :
posvir:=StrFindSubStr(m,pospar,",");

"o,

from_clause := StrGetSubStr(m,pospar+1,posvir-1)+" ";

philou :=1;

otherwise : print ([t," est une transformation non traitée"]);

}

< fonction pour dire i un string est inclus dans un autre string
function integer ismember (string:s, string:s2)

{

s2 ;= 824" "
if StrFindSubStr (s,0,s2) >=0
then

{

return 1;

}

else

{

return 0;

}

<iure qui analyse fe maping d'un RT
where clause

procedure analysemapR (string : m, string : ent, string: entl)

integer:pospar,pospar2;
string:t;

{

pospar := StrFindSubStr (m,0,"(");
if pospar <>-1
then
{
t := StrGetSubStr(m,0,pospar);
}

else

{
t:=("No");

%/

/

Page - 133

Appendix E : ConvertDB Program

}

switch(t)

{

case "rename" :

pospar2:=StrFindSubStr(m,pospar,")");

where_clause := ent+" "+StrGetSubStr(m,pospar+1,pospar2-1)+

case "No" :

where_clause := ent+

"o "on

+entl+

"won "o

+m+" "+entl+" ";

otherwise : print (t+" est une transformation non traitée\n");

}

fure qui cree un ResultSet avece tes ET relides par un Rl

pronant gue fes wdentifiants

procedure extract2 ()

data_object:dat;
attribute:att,att1;
rel_type:rel;
entity_type:ent,entl;
role:r;

et_role:er;
string:me,ma,mr;
string:from_clause2;
integer:renommel ;
string:ancienl;
string:nom, nom1;

for dat in DATA_OBJECT([dat] { @ SCH_DATA:[sch] with GetType(dat)=ENTITY_TYPE}

list:1;
list:Inee;
{
do
{
philou :=0;
ent:=dat;
if visite(l,ent.name) =0
then
{

for rel in REL_TYPE[rel] {RT_RO: ROLE[r] {RO_ETR: ET_ROLE[er]

{ @ENTITY_ETR :[ent]}}}
do

{

ent] := relation(ent, rel);
if visite(l,ent1.name)=0

then

{

init();
renomme:=0;

",

ancien:="";

me := ent."corresp";
philou:=0;
analysemapET(me);

Page - 134

Appendix E : ConvertDB Program

if philou <> 1
then
{
renommel :=renomme;
ancienl := ancien;
from_clause2 := from_clause;
att := getid(ent);
ma := att."corresp";
analysemapATT(ma,ent.name);

renomme:=0;
ancien:="";
me := entl."corresp";
analysemapET(me);
if philou <> 1
then
{
attl := getid(entl);
ma := attl."corresp";
analysemapATT(ma,entl.name);
mr := rel."corresp";
if renommel =1 then {nom := ancienl;} else {nom

ent.nam
e}
if renomme =1 then { nom1 := ancien;} else {noml

entl.na
me; }
analysemapR(mr,nom,nom1);
from_clause2 := from_clause2+" , "+from_clause;
printf (f,"rs"+ent.name+entl.name+" =
stmt.ExecuteQuery");
printf (f,"(\"SELECT "+select_clause+" FROM
"+from_clause2);
printf (f," WHERE "+where_clause+";\");\n");
Inee :=
["rs"+ent.name+entl.name,ent.name,ent1.na
me,att.
name,attl.name,rel.name];
AddFirst(correspondance,lnee);

}
}
}
}
AddFirst(l,ent.name);
}
}
}

forction qui donne la deuxieme entite d"une relation

function entity_type relation (entity_type:ent, rel_type:rel)

et_role:er;
role:r;

Page - 135

Appendix E : ConvertDB Program

entity_type:entl;

{
for entl in ENTITY_TYPE[ent1]{ ENTITY_ETR : ET_ROLE][er]{ @RO_ETR : ROLE[r]{ @RT_RO :
[rel]}}} do

{
if entl.name <> ent.name
then
{
return entl;
}
}

vt donne Pattribut jant 4 an K

function attribute getid (entity_type:ent)

attribute:att;
group:gr;
real_component:rc;
component:co;
integer:typrc;

{
for gr in GROUP[gr]{ @DATA_GR:[ent] with gr.primary} do
{
for rc in REAL_COMPONENT][rc]{REAL_COMP:COMPONENT([co]{ @GR_COMP:[gr]}} do
{
if GetType(rc)=SI_ATTRIBUTE
then
{
att :=rc;
return att;
}
}
}
}
it 81 une enut e vIsHCC

function integer visite (list : 1, string:ent)

{

if IsVoid(member(l,ent)) then { return 0;} else {return 1;}

}

s donne le type d'un attribut & partice de son nom et de celu de

g ouint alors elle retourne un string vide

function string donnetype (string:nomatt, string:noment)

Page - 136

Appendix E : ConvertDB Program

entity_type:ent;
attribute:att;
si_attribute:siatt;

{
ent:= GetFirst(ENTITY_TYPE[ent]{ent.name=noment});
att:=GetFirst(ATTRIBUTE[att]{ @ OWNER_ATT:[ent]with GetType(att)=SI_ATTRIBUTE
and att.name=nomatt});
siatt:=att;
switch (siatt.type)
{
case CHAR_ATT : return "String";
case VARCHAR_ATT : return "String";
case NUM_ATT : return "int";

otherwise : return "";

}

Procedure pour géndérer fe madule dlinsertion

b f
W e B L S WP

procedure GenlInsertMod ()

{
Connect2();

insert();
Disconnect();

}

mction qui génere [e code pour insérer 1es données

procedure insert ()

integer : itof,jtof;

cursor : ctof,ctof2,ctof3,ctof4;

string : trash,tmp,entl,ent2,ident1,ident2,relat;
list : 1_visit, |_tmp,l_rech;

{

Di¢claranion des variables ndéceessaires au programme Java

printf (f, "stmt = con.createStatement();\n");
printf (f, "String ident2 = new String (\"\");\n");
printf (f, "String identl = new String (\"\");\n");
printf (f, "String tmp = new String (\"\");\n");
printf (f, "boolean bool;\n");

printf (f, "int id2,id1;\n");

/7 imtiahisation de a histe qui roprend les entités déja insérées

1_visit :=[];

Page - 137

Appendix E : ConvertDB Program

Boucle qua pormet de eréer les lignes de codes pour mserer

lex entites qui n'ont pas besoin d'étre lides a d'autres.

attach ctof to 1_first;
for itof in [1..Length(l_first)] do

{
AddLast(I_visit,get(ctof)); /7 On remplit 1a liste dos entités déji insérées

printf (f, get(ctof)+" "+get(ctof)+"1;\n");

printf (f, "while (rs"+get(ctof)+".next())\n\t");

printf (f," {\n\t");

printf (f, get(ctof)+" 1=("+get(ctof)+")rs"+get(ctof)+". getAll();\n\t");

printf (f, "stmt.ExecuteQuery(\"insert object "+get(ctof)+"1 into "+get(ctof)+"\");\n\t");

printf (f," }\n\n");

printf (f,"bool = rs"+get(ctof)+".First();\n");
ctof>>;

}

it de fa bouele qui va permetue d'insérer les entites

1 lices a d'autres par des relations one-to-many
attach ctof to 1_follow;

for itof in [1..Length(l_follow)] do
{

if visite (I_visit,GetFirst(get(ctof)))=0 then //Teste si Fentitd a déja éic insdrde

{

ctof2 := ctof;

l.tmp:=[];

trash := GetFirst(get(ctof));
AddLast(l_visit,trash);
AddLast(I_tmp,GetLast(get(ctof)));
ctof2>>;

‘but de ta boucle qui recherche les entités lices a
Fenté on cours de 1_follow

for jtof in [itof+1..Length(l_follow)] do
i{f StrCmp(GetFirst(get(ctof2)),trash)=0 then
,E\ddLast(l_tmp,GetLast(get(cton)));
ctof2>>; }

}

attach ctof3 to 1_tmp;

Diébut de la boacle qui va analyser tous les liens de Fentite
irs d'insertion ef qui va ensuite créer

e chargdes dmsérer cetie entitd

Page - 138

Appendix E : ConvertDB Program

for jtof in [1..Length(l_tmp)] do
| {

7 Teste st on analyse le premier len ou pas

if jtof = 1 then
{

/7 Recherche de la liste de correspondance attachée aux deux
#entites dont on cherche le Tien

1_rech:=recherche (get(ctof3));
attach ctof4 to 1_rech;
ctof4>>;

Fest pour voir laquelle des deux entités est du ¢6té

-1 de la relation

if IsVoid(member(l_first,get(ctof4))) then
{
entl := get(ctofd); // Nom de la premicre entité
ctof4>>;
ent2 := get(ctof4); // Nom de la dewxidme entité
ctof4>>;
ident1 := get(ctof4); // Nom du premidre identifiant
ctof4>>;
ident2 := get(ctof4); // Nom du deuxicme identifiant
ctofd>>;
relat := get(ctofd); /7 Nom de {a relation
}
else
{
ent2 := get(ctof4);
ctofd>>;
entl := get(ctof4);
ctofd>>;
ident2 := get(ctof4);
ctofd>>;
identl := get(ctof4);
ctof4d>>;
relat := get(ctof4);
}

‘herche fe type de Tidentifiant de Fentité A insérer

tmp := donnetype (ident1,ent1);

/ Selon que le type est String ou int.

if StrCmp (tmp,"String") =0 then
{
printf (f, entl+" "+entl+"1;\n");
printf (f, "String "+ent1+"2;\n");

Page - 139

Appendix E : ConvertDB Program

printf (f, "while ("+get(ctof3)+".next())\n{\n\t");

printf (f, "ident1
="+get(ctof3)+".getString("+ent1+"."+ident1+");\n\t");

printf (f, "while

(ident1l.compareTo(rs"+ent1+".getString("+ent1+"."+ident1+

"N!=0)\ n\t{\n\t");

printf (f, "bool =rs"+entl+".next();\n\t}\n\t");

printf (f, ent1+"1 =rs"+ent1+".getAll();\n\t");

printf (f, "bool = rs"+ent1+".First();\n\t");

¢ te type de Uidentifiant de Uentied a laquelle Tentité a

- st e

tmp := donnetype (ident2,ent2);

/ Selon que le type est String ou int...

if StrCmp (tmp,"String") =0 then
{

printf (f, "ident2
="+get(ctof3)+".getString("+ent2+"."+ident2+");\n\t
¥
printf (f, "while
(ident2.compareTo(rs"+ent2+".getString("+ent2+"."
+ident2 +"))!=0)\n\t{\n\t");
printf (f, "bool =rs"+ent2+".next();\n\t}\n\t");
printf (f, ent2+"1 =rs"+ent2+".getAll();\n\t");
printf (f, "bool = rs"+ent2+" First();\n\t");
}
else
{
printf (f, "id2
="+get(ctof3)+".getInt("+ent2+"."+ident2+");\n\t");
printf (f, "while
(id2!=rs"+ent2+".getInt("+ent2+"."+ident2+"))\ n\t{\
n\t");
printf (f, "bool =rs"+ent2+".next();\n\t}\n\t");
printf (f, ent2+"1 =rs"+ent2+".getAll();\n\t");
printf (f, "bool = rs"+ent2+" . First();\n\t");
}
}
else
{
printf (f, entl1+" "+ent1+"1;\n");
printf (f, "String "+ent1+"2;\n");
printf (f, "while ("+get(ctof3)+".next())\n{\n\t");
printf (f, "id1 ="+get(ctof3)+".getInt("+ent1+"."+ident1+");\n\t");
printf (f, "while (id1 !=
rs"+entl+".getInt("+ent1+"."+ident1+"))\n\t{\n\t");
printf (f, "bool =rs"+ent1+".next();\n\t }\n\t");
printf (f, ent1+"1 =rs"+ent1+".getAll();\n\t");
printf (f, "bool = rs"+ent1+".First();\n\t");

et rype de Pidentfiant de Tentité & laquelle Ventité &

s e

Page - 1<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>