
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Data analysis for reverse engineering of relational databases

Lamouchi, Olfa

Award date:
2000

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 25. Apr. 2024

https://researchportal.unamur.be/en/studentTheses/b08c8b37-4181-4e72-a6d8-677a93d7f16a

1
1
1
1
1
1
1
1
1·

1
1

Facultés Universitaires Notre-Dame de la Paix

University of Namur, Belgium

Computer Science Department

Data Analysis for Reverse
Engineering of Relational

Databases

0 lfa Lamouchi

1 Director: Prof. Jean-Luc Hainaut

1 Academic year 1999-2000

1 l/- }- . '6/ ~ ~1-~

1
,j

1
1 Master thesis presented in order to obtain the title of "Maître en Informatique"

1
1 1

1

..
11

1
1
1
1
1
1
1
1
1
1 ,,
1
1
I '
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Abstract

Among the panoply of techniques and information sources available during a
database reverse engineering process, this work puts emphasis on the use of
data analysis to recover implicit constructs and constraints encountered in
relational databases. Data analysis is a costly technique which involves com
plex issues. Any attempt to reduce the complexity of the various tackled
problems is worthwhile. Heuristics to reduce this complexity will be pro
posed. A strategy to organise the reasoning is eventually presented. Then
other reverse engineering techniques will be rapidly investigated and, for
some implicit constructs and constraints, strategies will be proposed. Last but
not least, a prototype designed to implement some of the heuristics proposed
in the theoretical part will be depicted.

Résumé

Parmi la panoplie de techniques et de sources d'informations qui sont à notre
disposition lors d'un processus de rétro-conception de bases de données, ce
travail met l'accent sur l'analyse de données afin de recouvrer des contraintes
et autres constructions implicites cachées dans des bases de données relation
nelles. L'analyse de données est une technique onéreuse qui amène son lot de
problèmes complexes. Toute tentative de réduire cette complexité vaut la
peine d'être entreprise. Différentes heuristiques vont être proposées à cette
fin. Une stratégie pour organiser ce raisonnement sera finalement présentée.
D'autres techniques de rétro-conception seront ensuite examinées afin
d'approfondir la recherche de certaines constructions et contraintes implici
tes, et de nouvelles stratégies seront proposées. Finalement, un prototype im
plémentant certaines des heuristiques sera décrit.

111

!V

1
1
1

1

11
1
1
1
1
1
1
l 1

!

1 :

1
1
1
1
1
,1 i
1
1
11

1
1
1
1
1
1
'I
1
1
1
1
-1

To Adhir, la rose de la famille. ,,
1
1
1
1
1
1
1 V

1

VI

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

LI

Table of contents

Chapter 1 Introduction _______________________ l-1

1.1. Reverse engineering 1-1

1.2. Specific DBRE problems 1-3

1.3. State of the art 1-4

1.4. Objectives of this work 1-9

Chapter 2 Database reverse engineering methodology 2-1

2.1. Database Forward Engineering 2-2
2.1.1. Information system life cycle 2-2
2.1.2. Database Design 2-3

2.2. The DBRE approach 2-6
2.2.1. The phases involved in the DBRE methodology 2-8

Chapter 3 Implicit constructs _____________________ 3-1

3.1. Implicit constructs 3-1
3 .1.1. Definition 3-1
3.1. 2. Example 3-1

3.2. Sources of implicit constructs 3-1
3.2.1. Structure hiding 3-2
3.2.2. Genetie expression 3-2
3.2.3. Non declarative structures 3-2
3.2.4. Environmental properties 3-2
3.2.5 . Lost specifi.cations 3-2

3.3. Main implicit constructs 3-2
3.3.1. Finding the fine-grained structure of attributes 3-2
3.3.2. Optional attributes 3-2
3.3.3. Attribute aggregates 3-3
3.3.4. Multivalued attributes 3-3
3. 3. 5. Multiple-domain attribute 3-3
3.3.6. Secondary identifiers 3-3
3. 3. 7. Identifiers of multivalued attributes 3-3
3.3.8. Foreign keys 3-3
3.3.9. Sets behind arrays... 3-4
3.3 .10. Functional dependencies 3-4
3 . 3 .11. Existence constraints 3-4
3.3.12. Exact min/max cardinality of attributes and relationship types. 3-4
3 . 3 .13 . Redundancies 3-4
3. 3 .14. Enumerated value domains 3-4
3.3.15. Constraints on value domains 3-5
3. 3 .16. Meaningful names 3-5

Chapter 4 Information sources and elicitation techniques ___________ 4-1

4.1. Generic DMS code fragments 4-1

..
Vll

1
1

4.2. HMI procedural fragments ____________________ _

4.3. Current documentation

4-2 1 4-3 ----------------------
4 .4. Non-database sources -----------------------
4. 5. Technical/physical constructs ___________________ _

4-3

1 4-3

4.6. Names ____________________________ _

4. 7. External data dictionaries and case repositories ____________ _

4-3

1 4-3

4.8. Program execution _______________________ _

4.9. Domain knowledge _______________________ _

4-3

4-3 1
4.10. Screen/form/report layout ____________________ _ 4-4

4.11. Data __________________________ _ 4-4 1
4.12. Application programs _____________________ _ 4-7

Chapter 5 The use of data analysis with relational databases ________ _

5.1. Relational databases

5-1 1
5-1 -----------------------5. l. l . Basic concepts: ________________________ _

5.1.2. Relational Algebra _______________________ _
5.1.3. Integrity constraints in Relational Databases _______________ _

5-1 I l 5-2
5-4

5.1.4. Data dependencies _______________________ _ 5-4
5.1.5. Keys ____________________________ _
5.1.6. Normal Fonns: ________________________ _

5-8 1 5-9

5.2. Elicitation of implicit constructs __________________ _
5.2.1. Data dependencies _______________________ _
5.2.2. Optional attributes _______________________ _

5-10
5-11 1 5-13

5.2.3.MIN/MAXCardinality ________________ -----'---- 5-13
5.2.4. Fine grained structure of attributes: _________________ _
5.2.5. Attribute aggregates ______________________ _
5.2.6. Multivalued Attributes

5-13

1 5-13
5-13 ----------------------

5. 2. 7. Multiple-Domain attributes ____________________ _
5.2.8. Candidate keys ________________________ _
5.2.9. Sets behind arrays ... ______________________ _

5-13
5-13 1 5-13

5.2.10. Existence constraint ______________________ _ 5-13
5.2.11. Redundancies ________________________ _
5.2.12. Enumerated value domains ___________________ _
5.2.13 . Constraints on value domains ___________________ _

5-13

1 5-13
5-13

5.3. Strategy __________________________ _

Chapter 6 The use of several techniques of elicitation __________ _

5-13 1 6-13

6.1. Foreign key _________________________ _
6.1.1. Elicitation Techniques _____________________ _
6.1.2. Elicitation strategy _______________________ _

6-13

1 6-13
6-13

6.2. Functional dependencies ____________________ _
6.2.1. Elicitation Techniques _____________________ _
6.2.2. Elicitation strategy _______________________ _

6-13 1 6-13
6-13

6.3. Existence constraint ______________________ _
6.3.1. Elicitation Techniques _____________________ _

6-13 1 6-13
6.3.2. Elicitation strategy _______________________ _ 6-13

6.4. Min/ Max Cardinality Constraint _________________ _
6.4.1. Elicitation Techniques _____________________ _

6-13 1 6-13
6.4.2. Elicitation strategy _______________________ _ 6-13

Vlll 1 ,1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

6.5. Fine--grained structure of attributes _________________ 6-13
6.5.1. Elicitation Techniques 6-1 3
6.5.2. Elicitation strategy 6-13

6.6. Optional attributes 6-13
6.6.1. Elicitation Techniques 6-13

6.7. Field aggregates 6-13
6.7.1. Elicitation Techniques 6-13

6.8. Multivalued fields 6-13
6. 8.1. Elicitation Techniques 6-13

6.9. Multiple-Domain attribute 6-13
6.9.1. Elicitation Techniques 6-13

6.10. Candidate keys 6-13
6.10.1. Elicitation Techniques 6-13

6.11. Enumerated value domains 6-13
6 .11 .1. Elicitation Techniques 6-13

6.12. Redundancies 6-13
6.12.1. Elicitation Techniques 6-13

6.13. Constraints on value domains 6-13
6.13.1. Elicitation Techniques 6-13

6.14. Sets behind arrays... 6-13
6.14.1. Elicitation Techniques 6-13

Chapter 7 The program architecture 7-13

7.1. The Architecture 7-13
7. 1.1. The General Architecture 7 -13
7.1.2. The Raw Input 7-13
7 .1.3 . The architecture of the Voyager2 module. 7-13
7 .1. 4. The architecture of the Data Analysis module. 7-13
7 .1. 5. Communication module 7-13

7.2. DB-Main 7-13 ---------------------------7. 2. l. The transformation toolkit 7-13
7.2.2. The schema analyser 7-13
7.2.3 . The text analysers 7-1 3
7.2.4. Integration assistant 7-13
7.2.5 . Foreign key searching assistant 7-13
7.2.6. Functional extensibility 7-13

Chapter 8 Conclusion and perspectives 8-13

!X

11

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

X 1
L 1

1
1
1
1
1
1
1
1
1
1
1
1 ,,

1 Il

1
1
1
1
1
1
1

Acknowledgetnents

I t is a great pleasure for me to acknowledge the assistance of man y people.

First, I would like to thank Professor Hainaut for his assistance, comments and for the efforts
he made to push me to be more realistic. The task was arduous. It was really a learning experi
ence for me.

I would like to thank, the DB-Main team and especially Jean Henrard for reviewing chapter 6
of this work and for his suggestions and comments and Didier Roland for his reviewing and
support.

I would like to thank Doctor Shao and all the researchers at the university of Cardiff.

I would like to thank my friends Roberto Giglioli, Montassart, Moussa and Nisf-Rab for all
the support and encouragement.

There are also a lot of people that I have not cited above but who helped me in various ways.
I thank all of them too.

Last but not least I gratefully acknowledge the continuous support, patience, encouragement
of Alain, my husband.

XI

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

XII 1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 1

Introduction

Reverse engineering databases is a very complex and expensive task. Every single source of
information is worth to catch attention. One of them is the data handled by the database. In
this work, we will survey this particular source and examine it from all possible points of view.

This chapter includes three sections: a presentation of reverse engineering, the state of the art
and the objectives of this work.

Sorne concepts related to Database reverse engineering and the different phases involved in
this process will be presented.

A presentation of the state of the art will be clone, especially these works related to the reverse
engineering of relational databases.

1.1. Reverse engineering
We will start this section by a definition of reverse engineering followed by the objectives of
such a process.

Reverse engineering can be defined as analyzing a system to identify its components and their
relationships and to create representation of the system at higher levels of abstraction. Alter
natively: "reverse engineering is a process to support the analysis and understanding of data
and processing in existing computerized systems" [Hainaut98].

Note that reverse engineering is just a step among others in the information system lifecycle; it
is not an end in itself, its results are intended to give an aid for comprehension and to help for
the maintenance. These results are also used to redocument, convert, restructure, or extend
the subject information system.

The objectives of database reverse engineering (DERE) are numerous, below we will try to
give a list of the most frequent ones:

• Knowledge acquisition in system development:

When developing a new system, one starts by gathering and formalizing user's require
ments. It is frequent to have some partial implementation of the future system. The analy
sis of this system could bring useful information.

• System maintenance:

To be able to find out the bugs and to modify the system fonctions, one needs a good un
derstanding of the concemed component. The benefits brought by reverse engineering are
here primarily in terms of maintenance cost savings. There has been recognition that

maintenance is not just concerned with fixing the bugs. Indeed, there exists a range of
maintenance types:

Corrective maintenance in volves the correction of the errors discovered during the system li fe.

Adaptative maintenance is concerned with the adaptation of the system to environmental
changes, e.g. new hardware, system software, laws, ...

Perfective maintenance involves the improvement of the system according to some new re
quirements and its enhancement by adding some functionalities.

Preventive maintenance is concemed with the updating of the system to prevent future prob
lems.

Each of these different types of maintenance involves interrogating the subject system and
documentation.

• System reengineering:

It is the process of reverse engineering a system to a certain level of abstraction and then
reconstructing it. It consists on changing the internai architecture of the system or rewrit
ing the code of some components without modifying the external specifications.

• System extension:

It is concerned with changing and enhancing the functionalities of a system.

• System migration:

It consists in replacing one or several implementation technologies, for example, Co
bol / C, centralized / distributed, . . .

• System integration:

The cooperation between several information systems may arise in a number of cases. Dif
ferent organizations may want to cooperate. Two companies may merge, or an organiza
tion may have several information systems developed independently and new managerial
needs push them to interoperate.

Integration of two or more systems is to consolidate a new one that comprises ail of them
in a consistent, coherent and complete way.

The new system could be a physical or a virtual system (e .g. federated database architec
ture), in this case a dynamic interface is used to translate the queries into local queries to
be applied on the source systems.

Reverse engineering could help in this case and it faci litates the integration.

• Quality assessment:

Hints about the quality of a system could be derived from an analysis of its code and its
data structures.

According to Blaha " Reverse engineering provides an unusual source of insight. The
quality of the database design is an indicator of the quality of the software as a whole "
[Blaha97].

• Data extraction/ conversion:

1-2

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
,I
1
1

Knowledge about the physica1 and semantic characteristics of the data to be converted
into another format is needed when the only source of information available is the data
base.

• Data administration:

To develop a data administration function, we need to know and record the description of
a11 the information resources of the organization.

• Component reuse:

In emerging system architectures, reverse engineering allows developers to identify, extract
and wrap legacy functionalities and data components in order to integrate them in new
systems.

• Documentation:

Reverse engineering can elucidate poorly documented and undocumented existing soft
wares when the developers are no longer available for advice.

It has the same role when the documentation is available but is out of date.

As already mentioned, the documentation produced by the reverse engineering process
can greatly assist maintenance.

1.2. Specific DBRE problems1

Database reverse engineering is to yield the complete logica1 schema and the conceptua1
schema of the database.

This process is more complex than just analyzing Data Description Language (DDL is the
part of database management system facilities by which the declaration and the built of the
data structures of a database is made). The information included in the DDL code is not suffi
cient to capture the whole structures and semantics of the system, other information sources
have to be explored to get the structures and constraints that have been untranslated. Besicles
that, one could face non standard implementation techniques and bad designed schemas that
add another degree of difficulty.

The task is particularly arduous when one deals with old and poorly documented applications.

The most frequent sources of problems that have been identified are:

• Weakness of the DBMS models:

The technical mode! provided by the data management system can express just a subset of
the structures and constraints expressed in the conceptua1 schema.

The discarded constructs might be managed in procedura1 components of the application
such as programs, triggers ...

• Implicit structures:

It seems to be a choice of the designer not to declare these structures in the DDL. They
are generally implemented by the mean of procedura1 components.

1 Derived from [Hainaut98] .

1-3

• 0ptimised structures:

For technical reasons, many database structures include non-semantic constructs; redun
dant and unnormalized constructs could be added to improve response time.

• Awkward design:

ovice and untrained developers often produce poor or wrong structures.

• 0bsolete constructs:

The current programs can ignore some parts of a database.

• Cross mode! Influence:

The professional background of designers can lead to very strange results . For instance
some relational databases are translations of Cobol fil es or of spreadsheets .

1.3. State of the art
Reverse engineering is of increas ing importance these days and several researches have been
done in this field. The complexity of the process of reverse engineering gives raise to various
approaches .

Sorne of them aim at recovering a schema in a conceptual mode! which is, most of the time,
either the Entity-Relationship mode! (ER), in one o f its variants such as the Extended Entity
Relationship model2 (EER), or an 0bject 0riented (00) mode!.

0thers have worked on special issues without trying to get up to the conceptual mode!. In this
category we find works on functional dependencies, inclusion dependencies and multivalued
dependencies.

Note that Reverse engineering transformations are not as straightforward as forward engi
neering ones, this is because each source schema can be transformed into several different
schemas.

We are interested here by the works concerned with relational databases.

Up to now, a generally accepted methodology for reverse engineering has not been estab
lished, but we can class ify the approaches concemed with the translation of relational data
bases to conceptual models into two sub-classes:

In the first sub-class, the approaches elicit the semantics of a given relational schema by evalu
ating its inclusion dependencie/. Each inclusion dependency is interpreted according to the role of
its attributes (key, part of key, foreign key, non key). Most of these approaches require the
complete set of inclusion dependencies and keys of the relations, some take into account only
those inclusion dependencies that are key-based [Fahmer 95].

The approaches in the second sub-class derive an ER schema through an evaluation of krys,
their construction through other keys, and a discovery of fo reign keys. otice that the name
semantics is of prior importance here, since relationships between keys are mainly identified
through their names. These approaches are applicable only if keys and attribute names are
given. The evaluation of the name semantics can be considered as a heuristic to derive foreign
keys.[Fahrner95] . Severa! of these approaches also class ify the relations with respect to the

2 For more detail about the EER mode!, see [Chiang 94].
3 See chapterS.

1-4

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
11

1

•1
l i
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

construction of their keys. Most of the approaches of this category assume relational schemas
are in third normal form4.

The approach of Chiang differs from the others, since the only prerequisite is the existence of
a database instance. It is a mixture of a key-based and of an inclusion dependency-based ap
proach, indeed, the relations are classified first w.r.t their primary keys and then inclusion de
pendencies are generated by applying heuristics.

We will try below to explore in some details some of the works clone in the field:

[Na va the 87]

The authors propose two procedures, one maps a database schema from the relational model
into an Entity Category Relationship model5 (ECR) and the other one is a mapping from the
hierarchical model into the ECR model. We are interested here only by the mapping from the
relational to the ECR model. The relational schema has to be in 3 F (if it is not the case, it is
normalised first) and possibly 2 F.

They start by renaming the primary and candidate keys (the user is involved in this step). The
input relations and their attributes are classified, then the mapping process takes place. The
cardinality of binary relationships is derived by checking the dependencies between the keys of
the entity types that are linked by this relationship.

When some entities have the same attributes as their primary key, the user is asked whether
there are any subclass or superclass among such entities.

[Davis 88]

This work presents an algorithm that converts the relational model to the ER model. It as
sumes that all relations are in 3NF. Only the primary keys are considered.

Tables with single or composite keys are translated into entity types. Tables with dangling keys
(where a dangling key attribute is an attribute that is included in the primary key of the relation
but not in that of the correspondent entity) are converted to weak entity types. She considers
also the foreign keys, to get the relationship types. She does not specify the information
sources.

[Markowitz 90]

In this work a procedure for translating relational schemas into Extended Entity Relationship
(EER) schemas is developed. I t first transforms a relational schema into an appropriate form
for identifying EER abjects structures, thus certain cyclic inclusion dependencies are detected
and removed, then every relation is mapped into an object-set (e.g. weak entity, specialisation
entity ...). By examining the set of inclusion dependencies (INDs) and the structure of the
keys in each relation, he derives the type of the object-set and the type of the object-set con
nections. The INDs considered here are key-based ones.

Uohannesson 94]

Johannesson presents a method for translating a relational schema into the EER conceptual
schemas. He assumes that all relations are in 3 F. He starts by transforming the relational
schema into an appropriate form for identifying abject structures. He considers primary keys,

4 For more details about normal forms, see chapter five.
5 For more details about the ECR mode!, see [Navathe 87]

1-5

candidate keys, foreign keys and inclusion dependencies where both sicles are keys. This later
gives rise to either mandatory attributes or generalisation constraints; this choice is clone by a
user having knowledge about the semantics of the relational model.

The object structures are identified on the basis of the interactions between keys and inclusion
dependencies.

The only explicit source of information is the participation of the user.

(Permalani 94]

In this article, the authors adopt the Object Modelling Technique6 (OMT) notation for mod
elling data. There are three sources of information: schemas, data analysis and semantic under
standing of application intent.

They use the candidate keys for the analysis rather than primary keys. They accept schemas in
a normal form less than 3 F. The candidate keys are derived from unique indexes, automated
scanning of the data and the semantic knowledge. If the fo reign keys are not specified in the
DBMS, foreign key groups (a foreign key group is a group of attributes within which FKs
could be found) can be deduced (after resolving homonyms and synonyms) by investigating
matching names, data types and domains; information about FKs could be found in view
definitions and secondary indexes. They also deduce the cardinalities of the associations. They
use data analysis to confirm the hypotheses about the discovered generalisations.

(Kalman 91]

An algorithm that converts a relational database to an ECR mode) is presented. The input of
the program is a relational schema in the 3 F. In this work, the user interaction is needed.

Relations are classified, with the help of the user, according to their primary keys . On the basis
of this classification, the relational schemas are interpreted and transformed. The relationships
are derived from the analysis of keys and their inclusions. He considers candidate keys in a
pre-processing step by replacing the primary key by a candidate key in some special cases, for
example, in the case that a candidate key of a relation is fou nd to be equal to a primary key of
another relation and if there exists a subclass-superclass relationship the two relations.

[Tari98]

The authors address the problem of recovering 00 schemata from relational databases. Their
methodology involves two main steps:

A classification of relations to reflect the different 00 constructs and consists in partitioning
relations into three categories: base relations which form the core classes of the target 00
schema i.e. relations that do not contain FKs, dependant relations that describe binary rela
tions between classes and, finally, composite relations that describe temary relationships be
tween classes.

The identification of the different types of relationships between classes is based on:

• the analysis of relation keys (from the relational schema).

• the analys is of constraints defined explicitly in referential integrity constraints and implic
itly in data sources .

• The translation

6 For more details about the OMT notation, see [Permalani 94]

1-6

1
1
1
1
1
1
1
1
1
1
1
11
1
1
1
1
1
1
1
11
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

The relational schema is assumed to be in 3 F.

They use the relational schema and data analysis. At the schema level, the correlation between
relation keys is analysed. At the data level, the correlation between data store is checked.

[Andersson 94]

It is an approach based on the use of data manipulation statements to extract the semantic
information stored in a relational database.

By the analysis of equi-joins clauses, he identifies the semantically related attributes which rep
resent references between the relation schemas in the database. The resulting information is
represented in a connection diagram. o assumption is made about the normal form, no in
formation is needed for the keys (i.e. he will not use the data dictionary to determine the keys).

Cyclic joins can be used to draw conclusions about keys e.g. attributes that are tested against
themselves for equality cannot be keys and if the query does not include the keyword distinct
and if no cursor or similar construction is defined on the result that means the attributes in the
selection criteria are primary keys.

The data manipulation statements can also be analysed w.r.t where-in clauses (the equivalence
for the join condition in SQL).

The use of the distinct keyword in a query implies that the attributes have non unique values
and the attributes on which agroup l?J clause are defined are not keys.

The data extension is examined to establish a functional dependency graph and an inclusion
dependency graph.

[Chiang 94]

The authors present a methodology for translating relational database to the Extended Entity
Relationship (EER) mode!.

The assumption about the input database are:
• At least 3NF.
• Consistent naming of key attributes.
• o error data in values of key attributes.

The user, data schema and data instances are the sources of information. This methodology is
made of four steps:
1. Decomposition of input relations into at least 3 F.
2. Classification of relation and attributes.
3. Generation of inclusion dependencies.
4. Identification of modelling structures of the EER mode!.

Primary keys are obtained by querying the target DBMS or are specified by the user. Candi
date keys are considered only when there are ambiguities in the classification of relations
and/ or when the user specifies inclusion dependencies (INDs) between non key attributes.
Thus, the data instances are analysed to verify the proposed INDs and to identify the candi
date keys.

ote that some heuristics are used to:

• Propose possible primary key attributes for each relation.

• Formulate possible key-based INDs.

• Specify default cardinality ratios for binary relationship types.

1-7

[Hainaut 97]

A generic methodology fo r database reverse engineering is proposed [Hainaut 97). By generic,
we have to understand that it could be app lied to various fi le management systems and data
base management systems.

The main processes of this approach are:

• Data structure extraction: Which consists in recovering the complete DMS (Data Man
agement System) schema, including ail the implicit and explicit structures and constraints.
A first-cut logical schema will be provided, which has to be refined by furth er analysis o f
some other components of the system such as screen and reports, views, subschemas,
procedures, program execution . ..

• Data structure conceptual isation: This phase deals with the conceptual interpretation of
the DMS schema. I t consists, among others, in detecting and transforming or discarding
non-conceptual structures, redundancies, technical optimisation and DMS-dependent con
structs. It consists o f two sub-processes, namely Basic conceptualisation and conceptual
normalisation .

This approach will be explained in more details in furth er chapters.

We will end this section with a summary of most of the different approaches explained
above.(see T able 1) . ote that the symbol ? stands fo r no in fo rmation is available.

1 'U "'-< C:
0 0 0

u V -5
....,
C:

...c:
...., -5 V V
V

"'-< ~ E u b.O ~ (,;$
~ 'ë<l Q) 0 'U V V 0 0, l: "' ~, B -u

o.. -~ -5 ::l 0 ::l

~
V 0... 0

c8 B o.. ;> V
~ V E C: .5 -5 ' ' ~

[Navathe 87] E CR Keys Keys, 3 F Yes

[Davis 88] E R Keys Keys, 3 F. No

[Markowitz 90] EER I DS Keys, FD , FK. No

[Kahnan 91] ECR Keys Keys,3 F, proper naming. Yes

Uohannesson 94] EER I DS Keys, I D s, 3 F. Yes

[P ermalani 94] 0 MT Candidate Instances, ?
schema keys semantic understanding of applica-

tion in tent.

[Tari] 0 0 ? Keys,3 F,instances. ?

[Andersson 94] E CR ? D ata manipulation statement, in- ;i

stances.

[Chiang 94] EER Keys and Instances . Yes
I D s

[Hainaut 97] E R one Instances, views,screen . . . Yes

Table 1- Summary of the different approaches dealing with the reverse engineering of
relational databases.

1-8

1
11

1
11
1
11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
11
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1.4. Objectives of this work
The aim of this work is the use of data ana!Jsis, in a reverse engineering project, to recover
implicit constructs and constraints that could be embedded in relational databases.

Among the different techniques conceming the recovery of implicit constructs and con
straints, data analysis is the one we will emphasis on, without neglecting other techniques
contributions . Data analysis could be used lonely or coupled with other techniques where ei
ther the results provided by data analysis are used as input for the variety of techniques used
or conversely.

..,
the use of data analysis not on! '-'.-~ rove a p othesis but also
no information is available and n source of information is

Although data analysis is a very costly technique, it provides information that is impossible to
gather from other sources such as what we can cal] fuzzy ieformation. An example for that is the
recovery of a foreign key, which is true to 65%.

One of our goals will be to help recovering a relational schema that will be as complete and
comprehensive as possible. It will be achieved by eliciting the implicit constructs that could be
found in a relational database such as functional dependencies, foreign keys .. . A sub-goal will
be to produce results that could be considered as part of the (re)documentation of the system
being reverse engineered.

We will also use data analysis to help us in discovering the alteration of constraints or struc
tures found in the DDL; i.e. a field is declared ULL; whereas the instances show two things:
first, the field has no ULL values, and, second, the presence of a special value that is in
tended to simulate the u.11 value.

This work is realised in the framework of the DB-Main project. A prototype is intended to be
integrated into the DB-Main CASE tao!. It will be built to measure the perfo rmances and to
test the theoretical results.

To meet the different goals, we will make use o f heuristics which are guided by the needs of
the user and could use some prerequisites.

1-9

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1

1
1

1
i 1

Chapter 2

Database reverse engineering
methodology7

The approach adopted here considers that the complexity of the process of reverse engineer
ing concerned with applications whose central component is a database or a set of permanent
files can be reduced by considering that the files or the databases can be reverse engineered, in
most cases, independently of the procedural part.

The reasons of this claim are among others:

• The semantic distance between the conceptual specifications and the physical implemen-
tation is most often narrower for data then for procedural parts.

• The permanent data structures are generally the most stable part of applications.

When the structure of the data has been recovered, it is easier to deal with the reverse engi
neering of the procedural part.

It is argued [Hainaut98] that dealing first with reverse engineering of the data components of
the application increases the chances of success and is more efficient than dealing with the
whole application. The data reverse engineering process is divided into two sub-processes
namely data structure extraction and data structure conceptualisation.

Whereas the data structure extraction process is intended to recover the complete logical
schema, the data conceptualisation process recovers the conceptual schema. Let us note that
in this work, we will be only interested in the first process i.e. the data structure extraction
process.

We canas a first step consider that the process of reverse engineering is nothing else than the
reverse of forward engineering which is a series of transformations starting with the user's
requirements and ending with the production of a code.

Under this hypothesis we can say that:

CS= FK1(code).

Where CS stands for c9 -ceptual schema, FE represents the function that has lead us from the
conceptual schema to the code and code stands for the operational code.

We will not have the same analysis for systems developed according to an ideal approach and
those developed according to some empirical approach. The main difference between the two

7 This chapter is derived from [Hainaut98]

-- 7

systems is that for the second type a part of the semantics is not comprised into the code part
but could be in the environment of the application or in the data itself.

We will introduce the database forward engineering and the different steps involved in this
process. The understanding of these steps is essential to understand the steps of reverse engi
neenng.

2.1. Database Forward Engineering
Because database design is one of the multitude of activities in the development of an infor
mation system li fecycle, we will start by a reminder about the information system lifecycle.

2.1.1. Information system life cycle

The database system is part of the information system of an organisation. This in fo rmation
system normally includes different kinds of resources involved in the management, use and
collection of the in fo rmation resources of an organisation. T he information system li fecycle is
often called macro !iferycle, whereas the database system lifecycle is called micro !tferycle [El
masri00].

The distinction between the macro lifecycle and the micro lifecycle is fuzzy fo r in fo rmation
systems which major component is a database. The macro lifecycle includes six steps or ac
tivities as shown in figure1.

Feasibili ty study

Collection + Analysis of requirements

D esign

lmplementation

Validation + testing

D eployment Op

Figure !-Information system life cycle

• Feasibility study: It is intended to define the costs of the different solutions and to set up
priorities among applications.

• Requirement collection and analysis: It consists in the definition and study of the proper
ties of the information system [Atzeni99] . The interaction with potential users is required;
the output will be a complete but in forma! description of the data and of the operations to
be carried out on it.

2-2

1
11
1
11
1
1
1
, 1
1
I l
11

1
1
1
1
1
1
1
11
I l
1

1
1
1

1
1

1
! 1

1
1
1
1
1

1 1
1
1
1
1

• Design: This phase is divided into two activities, which could be carried out simultane
ously or consecutively: database design and operational design that uses and processes the
database. The first activity is more concemed with the structure and the organisation of
the data whereas the second one is concemed with the definition of the characteristics of
the application programs.

• Implementation: It consists in the creation of the information system according to the
output of the previous activity or phase; the database is constructed and loaded and the
programs are coded.

• Validation and acceptance testing: The system is tested against performance criteria and
behaviour specifications.

• Deployment operation and maintenance: It requires only management and maintenance
operations.

2.1.2. Database Design

We will deal now only with those steps of the information system lifecycle that are close to
databases. The problem of database design can be formulated as follows:

"Design the logical and physical structure of one or more databases to accommodate the in
formation needs of the users in an organisation for a defined set of applications" [Elmasri00].
Five phases of the database design process can be identified (see figure2).

Before starting the design of the database, users requirements are analysed i.e. the expectations
of the users and the intended uses of the database must be analysed. The identification of the
other parts of the information system which will interact with the database system have to be
carried out in order to allow the specifications of the requirements. We will explain here below
some of the phases involved in database design (see figure3).

• Conceptual design or conceptual analysis

It involves two parallel activities. The first activity has as purpose to represent the data re
quirements produced by the analysis of users's requirements, in terms of formai and complete
description independently of the DBMS to be used. After translating the semantics of the in
formation system into conceptual structures, a normalisation on these structures will be car
ried out to give them enhancement in terms of quality such as normality, minimality, extendi
bility ... The product of this phase will be a conceptual schema which refers to a conceptual data
mode! such as an Entity Relationship (ER) model. The second activity [Elmasri0O] will be the
transaction design with the purpose of designing the characteristics of database transactions in
a DBMS-independent way.

• Logical design

It consists in mapping the conceptual schema to the data mode! of the chosen DBMS. The
product will be a logical schema that refers to a logical data mode! such as the relational data
model. The data are still represented independently of the physical details. Knowing the op
erations to be carried out on the data, some optimisations could be clone, such as minimising
response time or minimising disk space ... It exists a range of optimisation techniques such as
discarding constructs, leaving aside identifiers and foreign-keys, splitting tables, adding struc
tural redundancy which consists in adding new constructs in a schema such that their in
stances can be computed from instances of other constructs (for example attribute duplica
tion), aggregated values representation, normalisation redundancy and restructuration ...

2-3

.§)
Cl)
Q.)

0
Q.)

~
..D

~
0

• Physical design

Conceptual Analysis

Logical design

View design Physical design

sers Views Coding

Figure 2- the main activities of database design

"It is the process of choosing specific storage structures and access paths for the database files
to achieve good performance for the various database applications" [Elmasri00] .

• Coding

Because the DMS cannot cope with ail the structures and constraints, we will have two kinds
of operational code, codeddJ which comprises the explicit declaration of constructs, expressed
in the DDL and codeext which comprises ail those structures and constraints not supported by
the DMS. To express and code the non-DMS constructs, we have several techniques such as
predicates, views with check option, triggers, sto red procedures, access module, pre-validation
programs, post-validation programs ...

We will try to formalise the forward engineering process and we can say that:

code= FE (CS).

where:

2-4

code denotes th e operational code = code ddI u code ext·

CS denotes th e conceptual schema.

1
1
1
1
1
1
1
1
I l
1
1
1
1
1
1
1
1
1
1
1
1

1•
1
1
1

V, . ën
>-

1 ë<!

~
ë<!
2

1
o..
<I)
u
C:
0 u

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Basic Analysis Conceptual Optimisation
Coding

Normalisation Logical Optimisation
Figure 3-3-Coding

ormalise
ceptual Sc

Figure 3-1 Conceptual Analysis Figure 3-2-logical design

Fiir1.ue 3-Conceptual Analvsis, Loirical Desiiru and Codinir.

Let LS and PS be consecutively logical scherna and physical schema.

Let LD, PD and COD be consecutively the logical design phase, physical design phase and
coding phase. We can express the transformations of the forward engineering as fo llows:

With

LS = LD (CS)

PS = PD (LS)

Code= COD (PS).

COD= {COD ddl; COD ext·}

LD = { OPT; TRANS} .

Where:
OPT: represents the processes of optimisation on the logical and conceptual levels.
TRANS: represents mode! translation.

Note that the notation S = S1 ; S2 means to carry out the process S implies to carry out S1
and S2 in any order.

For an IdealApproach of forward engineeringwe will have:

code = FE (CS)

with FE= COD O PD OLD ⇒ FE= { CODddl; CODext } 0 PD O { OPT; TRANS} .

Where the notation S = S2 o S 1 means that an order is expected and to carry out S we have to
first carry out S1 and to carry out S2 on the result obtained.

In an Empin'cal Approach things are more complicated than in ideal approaches; indeed, a part

of the sernantics (~) is outside the system (E(~)).

2-5

Where:

Li = Li1 U Lip U Lie
Li1: conceptual speciftcations igno red during LD.

LiP: the semantics ignored during PD.

Lie : the semantics discarded in COD.

We will have:

Code u E(Li) = FE(CS).

LS u E(Lii) = LD(CS) .

PS u E(Lip) = PD(LS).

Code ddl u E(LiJ = CODddt (PS).

Code ext = COD0x1 (PS) .

Code = code ddt U code exi·

2.2. The DBRE approach
The suggested DBRE approach consists of three phases(see figure 4) :

• Extraction of PS: I ts consists in recovering the physical schema from the operational code.

• Recovery of LS: I t consists in recovering the logical schema from th e physical o ne.

• Conceptualisation of LS: From the logical schema, the conceptual schema will be derived;
it consists in two activities nam ely de-optimisation of LS, which deals with removing and
transforming the optimisation constructs, and unstranslation of LS which cope with the in
terpretation of the logical constructs in terms of conceptual structures.

Note that the symbol invused in .igure4 m eans that each process is the inverse of th e other
and that the symbol = means the two processes are the same.

For those systems that are developed with respect to an ideal approach we have:

CS= FE ·1(code).

FE-1= {OPT1; TRANS-1}0 PD - l O {CODddl -l; CODext -l }.

For th e system developed according to an empirical approach we have:

2-6

CS= RE (code u E) .

RE = conceptualisatio n o extraction.

extraction = schema cleaning o schema reftn ement o DDL code-extraction.

conceptualisation = no rmalisation o { de-op timisation ; unstranslation } o preparation.

LS = extraction (code u E(Li)) .

CS = conceptualisation (LS) .

E PS= explicit-phys ical-schema = DDL-code-extraction (code ddÙ ·

CPS = complete-physical-schema = schema reftnement (EPS, code ext u E).

1
1
1
11
1
1
1
1
11
1
1
1
I l
1
1
1
1
1
1
-1
1

1
1

1 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Database Foiward Engineering Database Reverse Engineering

1

Normalisation 1

1
Conceptual schema + = t Conceptual schema L

1

Normalisation

1 + n
~ Optimisation D e-optimisation

0
::, . vi mv n

Q.) (1)

"d 2
'"i,l !::...
u Model Translation Un translation ên.

"Sc mv ~
0 ct .

....:l 0
::,

1

Preparation
1 ~ ,

Logical schema t
Logical schema

, , t
"O Physical Design Schema-Cleaning 0 mv u
~~ ~

Schema-Refinement i::t > ~ n
U)~ ct .
Q.) 0
Q ::,

...c:: Coding mv D DL-code-Extraction
p..

, Ir

E(~) ~-

...
Code.xi7

- CodeddI .,..,

Figure 4-The main DBRE processes seen as the inverse of forward engineering process.

LS = schema cleaning (CPS)

RCS = raw con cep tuai schema = { de-optimisation ; unstranlation } o preparation (LS).

CS = normalisation (RCS).

2-7

As indicated in the formula above: we notice that more steps are involved in the second kind
of systems than those involved in systems of the first kind; Each of these steps will be pre
sented.

schema cleaning is a sub-process of the extraction step and where the PS is translated into LS.

DDL code extraction: its purpose is to extract specifications from codeddl

schema refinement refers to the analysis of code ex, and E(Ll).

schema preparation is a sub-process of the conceptualisation process; it will deal with awkward
constructs of LS if any.

conceptual normalisation: consists in restructuring the conceptual schema obtained from the con
ceptualisation process, to make it fit a corporate standard.

2.2.1. The phases involved in the DBRE methodology

We have three phases namely project preparation, data structure extraction and data structure
conceptualisation.(see figure 5)

Project Preparation

D ata Structure Extraction

(Optimised)
Logical schema

Data Structure Conceptualisation

ormalised
ceptual sch

Figure 5-General architecture of the reference database reverse engineering methodology.

A . Pro/·ect preparation

Its purpose is to identify and evaluate the components to analyse, to evaluate the resources
needed and to define the operations planning. It is made of five sub-processes:
System identificatio n: its purpose is to identify and to evaluate usefulness and completeness of
different sources of information such as fi les, program sources, documentation, screens, re
ports, forms ...

• Architecture recovery: it aims to draw both the procedural and data components of the
system and their relationships.

2-8

1
1
1
1
1
1
1
11
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

• Identification of the relevant components: its aim is to discard the components that bring
no information.

• Resource identification: it identifies the human, the technical resources and the budget ...

B. Data structure extraction

Its goal is to produce a complete logical schema including ail the structures and constraints.
The main problem to tackle here is the discovery of the implicit constructs and to make them

DMS-DDL code Extraction

Physical Integration Schema refin ement

Schema Cleaning

Figure 6- General architecture of the data structure extraction phase

explicit. It includes four main processes: (see figure 6)

• DMS- DDL code extraction: It produces a first-cut logical schema by analysing the data
structure declaration statements from the schema scripts and application programs.

• Physical integration: It is to envisage when more than one DDL source were processed. In
this case, each extraction will provide a partial schema; the final schema must include ail
the partial ones. This process produces the explicit physical schema.

• Schema Refinement: It produces the complete physical schema by adding to the explicit
physical schema implicit and lost constructs; it is a complex process because of the variety
and complexity of the information sources. The code.x, and E (~) are analysed looking for
hints/ evidences of implicit constructs and even lost ones; by variety of information

2-9

sources we mean and think about what could be found in the codeex, , procedural sections
in the application programs, forms, reports, triggers and stored procedures ...

• Schema cleaning: It will produce th e complete logical schema by m oving away the techni
cal constructs such as indexes and clusters.

C Data structure conceptualisation

It will specify the semantic structures of the logical schema produced by Data structure ex
traction process into a conceptual schema. It is formed by three processes:

• Preparation: The constructs included in to the logical schema that have no semantics are
discarded, for example, the technical data structures (program counter . . .) or the dead data
structures. It could also improve th e naming conventions and restructure the schema.

• Basic conceptualisation: I t tackles two kinds of tasks (see figure 7):

schema unstranslation consists in transforming the logical schema to a conceptual schema by
trying to identify the translations clone in the forward engineering design and applying
their reverse transformations.

schema de-optimisation looks for the optimisation constructs hidden in the logical schema,
which are de-optimised.

Conceptual normalisation restructures th e conceptual schema in order to make it expressive,
simple and extendable.

2-10

c::
0 -~
c<!
V)

-~ ~
~ B

ço o.
Q.)
u
c::
0
u

(Optimised)
Logical schema

De-optimisation

Un translation

(Normalised)
nceptual sch

Figure 7-General architecture of the Data Structure Conceptualisation phase.

1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1

1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 3

Implicit constructs8

Our aim in this work is to recover the structures and constraints that are not specified in the
Data Definition Language (D DL) fi les. We will give a definition and a survey of these implicit
constructs and the variety of reasons and practices behind the adoption of such tricks .

3.1. lmplicit constructs

3.1.1. Definition

A component or property of a data structure that is explicitly declared through a specific
statement of a DDL file is referred as an explicit construct while an implicit construct is de
fined as:

" A component or property that holds in the data structure, but that has not been declared
explicitly" [Hainaut98].

Although the Database Managing System (DBMS) participates to the management of the im
plicit constructs, it is unaware of their existence.

3.1.2. Example

Let Players and Team be two relation schemas defined as fo llows:

Players (num:integer, name:char, address:char).

Team (teamnum:integer, id:integer) .

Where num and teamnum are primary keys consecutively of Players and Team. The analysis
of the data shows the existence of a foreign key not declared, Team.id targeting Players .num.

3.2. Sources of implicit constructs
Five sources of implicit constructs have been identified. Their origin is the combination of the
habits of the programmers and the expressiveness of the available DBMSs. Indeed, some of
the constraints expressed in the conceptual schema are not supported by the DBMSs such as
data dependencies.

8 This section is derived from [Hainaut98] .

l

3.2.1. Structure hiding

Structure hiding deals with structures and constraints that are supported by the DBMS but the
programmer has preferred to declare them under another fo rm that is more general and less
expressive. The reasons behind that could be reusability, genericity, simplicity and efficiency.

For example, a one-to-many relationship could be implemented as a many-to-many relation
ship through a record type, or by an implicit foreign key.

3.2.2. Generic expression

Sorne DMS o ffer general functionalities to express and to veri fy constraints. As a conse
quence, a problem arises and resides in the fact that a constraint could be expressed in a vari
ety of ways; this makes th e task of recovering it more complex i. e. if we want to recover such
a constraint we have to envisage the different kinds of implementation.

Examples of this general functionalities included in relational DBMSs are triggers, stored pro
cedures and views w ith check options .

3.2.3. Non declarative structures

on declarative structures are the structures that are not supported by the DBMS. As a con
sequence, they have to be represented and checked by other means that differ from the
DBMS. They are often checked by procedural sections in the application programs or in the
user interface, which are often not centralised.

3.2.4. Environmental properties

Sometimes, the properties of the data are guaranteed by the environment of the system and
some programmers choose not to en force these properties and / or not to translate them. So,
their elicitation cannot be based on data structure extraction and program analysis.

3.2.5. Lost specifications

Lost specifications are the facts that have been moved away or ignored, intentionally or not,
by the programmer.

3.3. Main implicit constructs
A large range of implicit constructs exists and could vary from a DMS to another.

H ereafter one can find the main implicit constructs that can occur in large reverse engineering
projects, as well as in smaller ones.

3.3.1. Finding the fine-grained structure of attributes

An attribute declared as atomic could be a concatenation of some other attributes. It is the
case when one transforms a multivalued attribute by the concatenation of its set of values,
then this set is transformed into either an array or a list. lt could be also the case when a com
pound attribute is replaced by the concatenation of its components.

3.3.2. Optional attributes

It is rare in practice that ail the information stored in a database is complete. There are differ
ent kinds of incompleteness. Among them, we are interested here by the missing information

3-2

1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1

1
1
1
1
1
1
1
1
1
1

that is generally of two categories namely unkn01vn ieformation, for example, if the name of the
course that the student is taking is applicable but unknown at the present time, and inappkcable
ieformation, for example, if the student is not married or did not have another diploma. This
missing information is modelled by a special value called NULL value.

In the context of this work, the problem could be of two kinds: attributes that are declared
mandatory and those which are declared optional (NULL). For the first type, analysis could
give hints about the presence of a special value that simulates the fact that this attribute is not
really mandatory; for the second type, we will have just the opposite problem, the field is de
clared optional but ail the records seem to have a value for that field, so, maybe it is in fact a
mandatory attribute and, for some obscure reasons, the programmer has preferred to declare
it as optional.

3.3.3. Attribute aggregates

We talk about attribute aggregates when a compound attribute is replaced by its components.
As a consequence, we have a certain number of attributes which seem to be independent but
are in fact just components of one unique attribute.

3.3.4. Multivalued attributes

The task here is to recover multivalued attributes from single-valued ones for which the analy
sis has shown a kind of repeating structure.

These single valued attributes were obtained by applying a transformation which replaces a
multivalued attribute by the concatenation of its values.

3.3.5. Multiple-domain attribute

An attribute could be used as a container, a further analysis could show that this attribute in
cludes values of different types.

For some reasons of optimisation, an attribute could conta.in several different attributes issued
most of the time from different tables.

3.3.6. Secondary identifiers

The secondary identifier of table is not declared or not supported by the DBMS.

3.3.7. ldentifiers of multivalued attributes

It concems multivalued compound attributes for which the identifier was not declared.

3.3.8. Foreign keys

Foreign keys express the interrelational constraints between key attributes in two relations. If a
set of attributes in a relation schema is specified as a foreign key referencing the primary key
of another relation schema, or if there exists hints about this property, then the values of that
set in the database must satisfy the foreign key constraints i.e. the values of the set have to be
a subset of the values of the primary key being referenced.

3-3

3.3.9. Sets behind arrays .. .

The DBMSs do not offer the possibility to implement sets which are collections of unordered
and distinct values, instead they offer o ther means to represent the repeating values that is
more complex than sets.

In fact, arrays is the main option offered by the DBMSs and can be defin ed as collections of
ordered and non-distinct values with empty cells.

3.3.10. Functional dependencies

Functional dependencies generalise the notion of keys and represen t the most common data
dependency that arises in practice.

Unfo rtunately, many relational DBMSs do not provide much support for specifying functional
dependencies, which remain implicit in the extensions of the database.

Bes icles that, some fun ctional dependencies could be los t because o f the unnormalized struc
tures . The objective will be to recover them.

3.3.11. Existence constraints

We have four kinds of existence constraints to be recovered: coexistence, exclusive, exact-one
and at- least-one.

• Two optional attributes are said to be coexistent if they both have a value or are nul! to
gether.

• Two optional attributes are said to be exclusive when at most one of them has a value.

• Two optional attribu tes are related by an exact-one constraint if exactly one o f them has a
value (at any time).

• Two optional attributes are related by an at-least-one constraint if at least one o f them has
a value (at any time) .

The existence constraints give hints about subtype implementation.

3.3.12. Exact min/ max cardinality of attributes and relationship types.

Multivalued attributes declared as arrays have a maximum size that can be limited to a con
stant. The value of this constant could be an implementation constraint that is independent of
the property of the problem. When it is the case, the maximum cardinali ty of an attribute or a
relationship could be relaxed to instead of the value specified.

The minimum size is under the responsibility of the programmer, the minimum cardinality
could be restricted.

3.3.13. Redundancies

Redundancies could be included for performance reasons.

In order to normalise the schema, it is important to detect these redundancies.

3.3.14. Enumerated value domains

We are in presence of enumerated domains when the attributes draw their values from a set of
predefin ed values. It is important to recover this set.

3-4

1
1
1
1
1
1
1
1
1
1
1
1
11
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

3.3.15. Constraints on value domains

The domain of an attribute is a set of values associated with that attribute, frequently there
exits restrictions on the values of the domain. For instance, an integer has to be smaller or
equal to 100.

3.3.16. Meaningful names

Sorne applications have been developed without fo llowing any conventions as far as the
naming is concemed, which leads to meaningless names and sometimes contradictory ones.

In the other hand, some technical constraints or some programming discipline sometimes
impose the usage of meaningless names or condensed ones whose meaning becomes difficult
to understand.

3-5

1
11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Chapter 4

Inf ortnation sources and
elicitation techniques9

Figure 8 represents a sumrnary of the main information sources and the techniques related to
each of them. In most projects, different sources could be analysed and even coupled to re
cover the implicit constructs.

4.1. Generic DMS code fragments
SQL code sections such as check/assertion, predicates, triggers and stored procedures could
monitor the behaviour of a database. Thus, their exploration can give information of prior
importance for the recovery of the structures and constraints they in tend to express . We will
describe each of them in some detail.

ote that the lack of standard methodology fo r coding a specific constraint, make the analysis
of the generic DMS code fragments difficult.

• Stored procedures: "A stored procedure is a certain piece of code (the procedure), con
sisting of declarative and procedural SQL statements stored in the catalog of a database
that can be activated by calling it from a program, a trigger or another stored procedure"
[Van der Lans00].

A stored procedure is thus a set of SQL statements that are declarative such as CREATE,
UPDATE and SELECT, with possibly some procedural statements such as IF-Then-Else.
It is executed only when it is called. It is stored in the catalog (a catalog is a set of tables in
which al! database abjects are described).

• Check predicates: The aim of a check predicate is to specify a constraint that has to be
verified at any time by the tuples of a table. It is evaluated each time a record is added, up
dated or removed from the table.

• Assertions predicates: An assertion is a constraint that normally involves several tables.

• Triggers: "A trigger is a piece of code consisting of procedural and declarative statements
stored in the catalog and activated by the DBMS if a specific operation is executed on the
database and only then when a certain condition holds" [Van der Lans00].

9 This chapter is derived from [Hainaut98]

ote that triggers can not be called explicitly (as it was the case for the stored procedures),
they are called by the DBMS itself, they are executed when an interactive user or stored
procedure performs a specific operation such as adding a new row or deleting a row.

4.2. HMI procedural fragments
The validation of some integrity constraints can be implemented by the procedures that
monitor the user-program dialogs. These procedures are triggered by interface events or by
the updates of the database.

-------··············· ____ ~
Check

Schema analysis

1
1
1
1
1
1
1
1
1

Incomplete
physical
Schema

Program analys is , .. 1
Codeext

4-2

Schema
Refinement

Complete
physical
Schema

Forms/screen
analysis

Extem.
Specific
analysis

Interview
analysis

Data
analysis

Extem
Documents

analysis

Experimen tation

Forms

Data

Worksheets

Figure 8-The main information sources and techniques of elicitation.

1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

4.3. Current documentation
In the case that the documentation exists, and even if it is partial, obsolete or incorrect, it can
bring some useful information about the structure of data and constraints among them.

4.4. Non-database sources
When data is implemented with general purpose software such as spreadsheets and word
processors or when large text databases are implemented according to representation stan
dards such as HTML, it is interesting to analyze these parts.

4.5. Technical/physical constructs
A correlation could exist between logical constructs and their technical implementation. If it is
the case, important hints could be given about the logical constructs. For example, foreign
keys and indexes are highly related and the fact of finding an index can be considered as an
evidence of the existence of a foreign key.

4.6. Names
The interpretation of narnes, when the variables or the attributes have meaningful ones can
bring information about the meaning of the a bject or about its purpose. The structure of data
can also be derived from the analysis of names.

In addition, Synonyms (the same abject is referred with different names) and homonyms (dif
ferent objects with the same name) can be detected.

4. 7. External data dictionaries and case repositories
Information about data can be derived from in-house-data dictionary systems. Although this
information could be incomplete or obsolete, it helps to catch the semantics of data. Case
repositories can also be used to get information about data.

4.8. Program execution
Examining the dynamic behavior of programs working on data could provide the structure
and constraints on that data.

4.9. Domain knowledge
The domain knowledge represents the starting point of any reverse engineering project. In
deed, the process of reverse engineering is applicable to systems belonging to different appli
cation domains, where each domain has its own specificities. We can say that the process of
reverse engineering is domain-dependent, thus, the need to get knowledge on the application
domain before starting a reverse engineering process . This knowledge could be derived,
among others, from the interviews of analysts, developers and users .

Taking into account the application-domain will help resolving specific problems and enhance
the quality of the process of reverse engineering.

4-3

In this field we can find different researches such as KBRE project and the work of Jean-Marc
D ebaud [Debaud96].

The KBRE project (knowledge Based Reverse Engineering of legacy Telecom Software) [TIM
97] represents the domain expert's knowledge within a knowledge-database. The first layer of
this base includes the description of a bjects of interest (without the details). It is obtained
from interviewing the users and examining the documentation. They argue that this layer will
help in discovering the conceptual problems and (or) the terminology of the domain. Other
layers are included such as:

1. The one concerned with the specializations.
2. The one concerned with the representations o f the concepts on the source code.

The work o f J ean-Marc D ebaud [Debaud96] models the application domain and takes it as an
input for the reverse engineering process. He considers that the description of th e domain
provides a set of constructs to search in the code.

4.10. Screen/ form/ report layout
A screen, a form or a structured report can be considered as derived views of data [Hai
naut98]. Indeed, forms gather structured information and constraints among data.

Forms are the most widely used formal communication abjects within the organizations. It
seems natural that the collection of an organization's forrns has to be considered in the proc
ess of reverse engineering.

A fo rm can be defined as "Any structured collection of variables (forrn fields) which are ap
propriately formatted to communicate with the database, es pecially for data retrieval and data
display" (Mfourga 97] .

Forms are generally designed with the aim to be user-friendly. As a consequence they may not
mirror the structure of the underlying database, that is the reason according to Mfourga of the
necessity of abstraction in order to make the components of the fo rm, their relationships and
the constraints among data explicit. He argues that sorne information such as cardinality con
straints, functional dependencies, and existence dependencies could be derived. This informa
tion is provided by a phase called by the author the Dynamic Analysis. H e derives the struc
tural components and their relationships during the Starie Analys is where the intention and
the layout are explored.

4.11. Data
The main goal o f database design is the storage and manipulation of data which contain useful
domain semantics. In the relational mode!, for instance, the semantics is expressed through
the constraints and most of relational DBMSs do not provide support for specifying a certain
range of them. As a consequence, to recover them, one do not have to search in the schema
but in the extensions that could exhibit some properties such as uniqueness, inclusion. This
in fo rmation could be used to confirm or disprove structural hypotheses; but data could also
be used to discover some rules that govem data.

From data analysis, we can derive information about implicit constructs such as functional
dependencies . The problem of data dependency was addressed by the specialists of database
and by the specialists of an emerging field called data mining.

4-4

1
1
1
11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Data mining is the search for valuable info rmation in large volumes o f data [Weiss98). It draws
its principles from databases, machine learning and statistics. One can divide the generic types
of data-mining problems into two categories: prediction and knowledge discovery [Weiss98). Pre
diction problems are described in terms of specific goals, which are related to past records
with known answers. These are used to pro ject to new cases. Knowledge discovery is consid
ered as the process of nontrivial extraction of implicit, previously unknown and potentially
useful information from data. Knowledge discovery problems usually describe a stage prior to
prediction, where in fo rmation is insufficient fo r prediction. Sorne authors consider kn01vledge
discovery doser to decision support than to decision making. We will be interested here by the
knowledge discovery category. It uses different techniques to extract information from data,
fo r furth er details see [Weiss98]. In th is work, we will retain the association rules technique
and among all the researches clone in this area, the work of Agrawal [Agrawal94] will hold our
attention. The problem of association rules was introduced in (Agrawal93] for sales transac
tion databases. The association rules identi fy sets of items that are purchased together with
other sets of items. For example, an association rule may state that 95% of customer buy but
ter and bread together or 60% of customers that buy butter and bread buy also chocolate.

ote that association rules do not try to characterise the content of the database as a whole.
lnstead of that they try to find relations between the individual records or relation between
sets of records . The number of association rules is usually large. A user should not be pro
vided with ail of them, but rather with the original, nove! and interesting ones [kryszkiewicz98].
The interestingness o f a rule is expressed by some qualitative measure. The formai definition
of association rules will be as follows[Agrawal94]:

Let I = { i1, i2, ... , im} b a et of distinct literais, called items. In general, any set of items is
O< called an itemset. t D b a set of transactions, where each transaction T is a set of items

such that Tc 1. An ciation rule is an expression o f the fo rm X ⇒ Y, where X -:te 0, Yc I

and ~ Y = 0 . X is called the antecedent and Y is called the consequent o the e. e 1utwt1ve
eaning of such a rule is that abjects in the database which are covered by Y tend to contai

abjects covered by X . Statistical significance o f an itemset X is called the support and is de
noted by sup (X) . Sup(X) is defined as the number of transactioos_in...D that con tain . Statisti

cal significance (support also called f requenry) of a rule X ⇒ Y is denoted by sup(X⇒ Y) and
defined as sup(XuY) i.e. the percentage of transactions that contain both X and Y, formally,
sup (X ⇒ Y) = Pr (X u Y), where Pr stands fo r percentage. Additionally, an association rule is
characterised by coefidence (also called reabiliry), which expresses its strength. The confidence of
an association rule X ⇒ Y is denoted by conf(X⇒ Y) and defined as the ratio sup(XuY) /
sup (X) . His algorithm aims at producing ail the rules that have a support greater than some
user specified minimum support (minsup) and confidence not Jess than a user specified mini
mum confidence (minconf).

The main difference between functional dependencies and association rules resides in the fact
that the FD s are rules that require strict satisfaction i.e. support = confidence = 100 %
whereas association rules are probabilistic in nature. Indeed, the presence of a rule X ⇒ Z
does not mean that X + Y ⇒ Z holds because the second one may not have the minimum
support, but in the area of databases the second rule necessarily holds (augmentation rules1

~ ;

the same thing will be fo r the transitivity11
• In fac t, in the area of databases12

:

When x➔ Y holds and Y ➔z holds then x➔z holds by transitivity.

10 See chapter five.
11 See chapter five.
12 When dealing with the area of database, we will adopt the symbol "➔" instead of "⇒".

4-5

Which is not the case fo r association rules. ln fact, X ⇒ Z could not hold because it does not
have the minimum confidence.

In the database field, one can find the work of Cas tellanos, Mannila, and Li [Li93] who has
studied the Multivalued dependencies.

The work of Mannila [Mannila94] addresses the fun ctional dependency inference problem13
.

Severa! algorithms are presented (6 algorithms). The complexity of each one is studied (for
more details see [Mannila94]). The first algorithm with a complexity of O (n 2 2" p log p) where
n is the number of attributes and p is the number of tuples tries to infer a cover14 of dep(r)
where dep(r) represents the set of ail fun ctional dependencies holding in a relation r.

The second algorithm do the computation of lhs15 by pairwise comparison of tuples. D epend
ency in ference using transversal of hypergraphs is the base of two of his algorithms. His fifth
algorithm is a sort-based one: it is based on the idea of repeatedly sorting the rows of the rela
tion w.r.t. different orderings of the attributes and computing the lhs fo r dep(r) by consecutive
sorts. The last algorithm computes the lhs beginning with a sample, this lhs will be refin ed
later using the whole relation.

As a summary we can say that he has shown that the functional dependency inference prob
lem is exponential in the number of attributes. He tried to develop algorithms with better best
case behavior. The common base of ail the algorithms is that fo r a given rhs6, he generates the
set of possible lhs. H e stresses on the number of operations.

ln the work of Castellanos [Castellanos], one can find algorithms to extract fun ctional and
inclusion dependencies. She focuses on the minimisation of disk accesses and not in the num
ber of operations as it was th e case of Mannilla.

Data dependencies are extracted by analyzing the extensions of a database. H er approach is
the fo llowing:

1. If some semantic constraints are specified in the DDL, they are taken as the initial set of
dependencies.

2. The extensions of the relations are analyzed fo r additional dependencies, the dependencies
derived by implication rules are not checked by data analysis .

3. Involvement of the user.

In this approach, ail the possible rhs of a given lhs are generated (while Mannila's work gener
ated the lhs for a given rhs). Only the elementary fun ctional dependencies are considered. For
the inclusion dependencies (IND s), two algorithms are proposed. She uses some heuristics to
reduce the set of possible I Ds:

• T he attributes in the lhs and those in the rhs of an IND must have the same type.
• She considers only the domains used for identifiers .

• She imposes a limit on the length of the I Ds considered.
• She starts with unary I Ds and she discards ail poss ible non unary I Ds fo r which it

does not exist a unary IND fo r each pair of the co rresponding attributes.

• She discards ail the ternary IN Ds fo r which there does not exist a binary IND for each
pair any of the corresponding pairs of attributes.

13 See chapter five.
14 See chapter five.
15 X is the lhs of the funct:i onaJ dependency X➔ Y and Y is its rhs.

4-6

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Note that data dependencies are not the only information that can be derived from data. In
deed, existence constraints, optional fields are some examples of what one can derive from
data.

Note that datais the main source of information that will be used in this work. From the ap
proach of Mannilla, we will retain the use of samples when dealing with the whole database.
We will follow castellanos in generating the rhs for a given lhs.

4.12. Application programs
Programs that manage, use and transform data could be used to induct information on the
structural properties of these data. In the domain of program understanding, we are provided
with different tools and techniques of analysis that we wi ll try to describe in some details be
low.

Because structures and constraints could be encapsulated in a certain number of programs, the
program understanding can be useful to catch these structures and constraints and help the
process of reverse engineering.

The reason of using programs to express constraints and structures are numerous: it could be
because the developer wanted to meet genericity, simplicity or efficiency requirements or it
could be because of poor programming practices ...

• Dataflow analysis: "Examining in which variables data values flow in the program can put
in light structural or intentional similarities between these variables" [Hainaut98]. Where
the word flow has to be understood as "if two variables belong to the same graph, at some
time, their values could be the same or one of them is direct function of the other." [Hai
naut98].

• Dependency analysis: It is a generalization of the dataflow diagram. It is a graph where the
nodes are the variables of the program, the nodes are linked with each others (in the case
of the existence of a relation between the variables) by edges. These edges can be directed
or not. If, in the program, there exists a relation between variable X and variable Y, this
relation will be represented on the graph by a path (an edge) linking the node X to the
node Y.

• Program clichés analysis: When the pattern (or cliché) for a definite problem was identi
fied, it can be used to search the programs. This enables to locate where problems of this
kind are solved.

• Program slicing: Program slicing is a decomposition based on data flow and contrai flow
analysis, it reduces the space of search. Indeed, it starts from a subset of a program's be
havior, and produces a reduced program called slice that produces the same behavior of
interest as the complete program. A slicing criterion of a program P is a tuple (i, v) where i is
a statement in P and V is a subset of the variables in P. The definition of a slice follows:
"A slice S of a program P on a slicing criterion C = (i , v) is any executable program with
the following two properties : S can be obtained from P by deleting zero or more state
ments from P . Whenever P halts on an input I with state trajectory T, then S also halts on
input I with state trajectory T"[Weiser84].

4-7

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
11
1
1
1

Chapter 5

The use of data analysis with
relational databases

This chapter will be composed of two sections. The first section is a reminder about relational
databases where we will explain the major concepts related to this mode!. The second section
will deal with the recovery of the major implicit constructs and constraints using the technique
of Data Anafysis. For each construct/constraint, we will start by the theoretical background
which will be followed by an account for the proposed solution of elicitation. The second
section will end with a proposai of a strategy, which aims to organise, as much as possible, the
reasonmg.

We will .use the following notations:

• A I= F means A verifies (or satisfies) For A logically implies F.

• A ~ F denotes the fact that we can find in A a proof of F.

5.1. Relational databases
The aim of this section is to give a brief presentation of relational database systems . E.F Codd
has introduced the relational mode!, which is the basis of most database systems, in 1970. The
only data structure provided by the mode! is the relation: it is a formai notion that cornes from
set theory in mathematics. The mathematical definition does not indicate whether the sets on
which the relation is defined, are finite or not, so the relation itself could be finite or infinite.
In practice, and more precisely in the field of databases, the relations are necessarily finite
whereas the sets could be finite or infinite. We will start by the notion of attributes and do
mains then we will define some keywords used in the relational data mode! such as database
schema, relation schema, relation instance ... This section is based on [Atzeni99], [Levene99],
[Elmasri00] and the course of professor Hainaut [Hainaut98].

5.1.1. Basic concepts:

• An attribute of a relation is a property of that relation. An attribute is simple if it is made of a
single attribute otherwise it is composite. The domain of an attribute indicates the values
taken by that attribute i.e. it is a set of values associated with the attribute of interest, it can
be seen as giving semantics to the attribute. A domain is atomic (or primitive) if its values
are nondecomposable. Examples of atomic domain are the domain of ail positive integers,
the domain of integers between 5 and 500. A domain is set-valued if its values are finite sets
of atomic domains. Examples of set-valued domains are the domains of finite sets of inte
gers or finite sets of strings .

We can give an other de finiti on of domains will as fo llows:

Let U be a countably infinite set of attributes (A countably infinite set is a set that can be put
into one-to-one correspondence with the set of ail natural numbers) . U is called the universe
of attributes.

Let D be a countably infinite set of values. D is called the underlying database domain.

Given an attribute A in U, the domain of A, D om (A) is a subset o f D .

We introduce the notion of tuple by saying that a tuple on a set of attributes X is a fun ction

which associates with each A E X a value of D om (A).

• A relation schema 16R denoted by R(X) consists on the name of the relatio n R and the set of
its attributes X = { A1, A2, . .. A,,} where a domain is associated with each attribute. Two
notations are available R(A1, A2, . .. A,,) or R(A1:Dom (A1) .. . A,,:D om(A,,)). For example, if
we have (a relation) Players with as attributes set { name, address, age}, the relation schema
will be Players(name:char, address:char, age: integer) or Players(name, address, age).

Note that the set of attributes o f a relation schema R are denoted by schema(R), fo r the
above example we will have schema(Players) = { name, address, age}.

• A database schema Dis a set o f relation schemas denoted by D = (R1(X1), Rz(X2), ... R,, (X,,)),
wh ere V 1 :S i :S n , R (X;) is a relation schema.

• A relation instance (or relation state)17 r o f the relation schema R(A1, A2, . . . AJ is a set of n
tuples r= { ti, tz, .. . ~} . Each n-tuple t is an o rdered list o f n values t:= <v1,v2, ... v

0
>, where

each value vi, 1 :S i:S n, belongs to D om (~). The ith value in tuple twill be referred to as
t[AJ and said the restriction of t to ~ -

• A database instance on a database schema D = (R1 (X1), .. . R,,~)) is a set of relation in

stances d= (r1,rz, ... r0) where,V ri, fo r 1 ~ i ~ n, ri is a relation on the sch ema }\(X;) .

• The number of attr ibutes is called the degree of the relation schema.

• The number of tuples in the relation r is called the cardinality of the relation deno ted I ri or
card(r).

• A relational database is a set o f relations.

As we have seen it, the structure of the relational mode! is simple and powerful, but it also
imposes a certain degree of rigidity; in fact, the information has to be represented by homoge
nous tuples of data. In order to represent the non availability of values, a concept of " nul!
value" was introduced and it denotes an absence of in formation .

5.1.2. Relational Algebra

Th e relational algebra is a collection o f operators that was presented by Codd in 1970. The
aim of these operators is to derive new structures from one or more existing structures given
as input. We will start with the set theoretic operators: union, difference and intersection, after
which we will introduce the projection, selection, relational product and join operators.

1. Union: the union of r1 and r2 denoted by r1 u r2 or r1r2 is defin ed as:

r1r2 = { t I t E r1 or t E r2 }

16 Also called relation intension.
17 It is also called relation or relation extemion.

5-2

Intuitively, the union of two relations, r1 and r2 over relation schema R, is the set of tuples
that are either in r1 or in r2

Where r1, r2 are relations over relation schema R t is a tuple.

2. Difference: The difference between r1 and r2 denoted by r1 - r2 is defined as :

r1 - r2 = { t I t E r1 and t l,it r2 }

Intuitively, the difference between r1 and r2 over a relation schema R is the set of tuples
that are in r1 but not in r2

3. Intersection: it is the set of tuples that are in both r1 and r2. Formally:

r1n r2 = { t I t E r1 and t E r2 }

The intersection can also be defined in terms of difference:

r1n r2 = r1- (r1-rJ.

4. Projection: The projection, TI, of a relation r over R(X) onto a set of attributes Y (Y ç
schema(R)) is expressed as:

TI y (r) = { t(Y] 1 t E r}.

Where t[Y] is the restriction of t to Y.

5. The projection of a relation r over relation schema R onto a set of attributes Y included in
schema(R) is the set of tuples resulting from projecting each of the tuples in r onto Y.

6. Selection: It is denoted as cr<selection condition> (r). Where the symbol cr denotes the selection
operator and the selection condition is a Boolean expression specified on the attributes of
R. It is composed by clauses of the form

<attribute name> <op> <constant>, or <attribute name> <op> <attribute name>

where <attribute name> is the name of an attribute of R, <op> is an operator belonging
to the set{=,*, <, >, :S, 2:}and <constant> is a constant value from the attribute do-
main. Clauses can be connected by the Boolean operators D, OR and OT.

The selection operator is used to select a subset of the tuples from a relation r over a rela
tion schema R that satisfy the selection condition.

cr <selection condition> (r) = { t I t E r and selection condition on t is true}

7. Relational Product18
: It creates tuples with the combined attributes of two relations. the

relational product, @, of relations r1 over relation schema R1 and r2 over relation schema Rz
is a relation r that has one tuple for each combination of tu pies, one from r1 and one from
r2 (i.e. a concatenation of tuples). If r1 has n1 tuples and r2 has n2 tuples r will have n/ n2

tuples. It is a meaningless operation in itself but if combined with a selection that matches
values of attributes coming from the component relations, it becomes useful. Because this
sequence of Relational Product followed by a selection is frequently used, another opera
tor was created called Join.

18 It is refered as Cartesian Product by some authors, but we prefer to follow [Hainaut98) when he refers to this
operator as "Produit ReiationmA" to avoid any confusion wi t.h the mat.hematical notion ofCartesian Product. This
operator is also known as Cross Product or Cross Join [Elmasri00).

5-3

8. Join: Given two relation schemas R1 and R2, the join t><l of two relations r1over relation
schema R1 and r2 over relation schema ~ is a relation r over relation schema R. is defined
by:

r = { t 1 3 ti E r1 and 3 t2 E r2 , t[schema(R1)] =t1 and t[schema(RJ] =t2}

ote that schema(R) = schema(R1) u schema(RJ.

Info rmally, the join of two relations r1 over relation schema R1 and r2 over relation schema

~ ' with schema(R1) n schema~) being the set of attributes X, is the relation containing
tuples that are the concatenation o f every tuple of r1 with every tuple of r2 having the same
X-values.

5.1.3. lntegrity constraints in Relational Databases

ln general, we restrict relations to satisfy certain conditions, called constraints. They are the
properties that have to be respected by al! the instances of the database, these instances will be
called correct database instances. Each constraint could be seen as a first-order logic statement
that associates the value true or false with each instance. As a first app roach we can say, fo l
lowing [Atzeni99] that we have two categories of constraints:

1. Intra-relationa! constraint. it is a constraint defin ed with regard to a single relation. It includes
some sub-categories such as:

• A tuple constrain t: is a constraint that can be evaluated on each tuple independently
from the others.

• D omain constraint: it imposes a restriction on the domain of the attributes.

2. Inter-relationa! constraints: when more than one relation is involved.

Another kind of classi fication o f constrain ts is proposed in the literature: tatic Constraints
and D ynamic Constrain ts.

We deal with a Static Constraint if " lts satisfaction in a database can be checked by examining
the current database state" [Levene99] whereas the satisfaction of Dynamic constraints could be
checked by investigating two successive database states. The static constraints include data
dependencies, domain dependencies and cardinality constraints that will be explained in fur
ther sections.

A sub-type of dynamic constraints is the state transition constraints [Levene99]. By example, a
constraint about salaries of employees of a firm stating that the salary increases of one per
cent each year.

5.1.4. Data dependencies

Constraints that depend on the equality or inequality of values in tuples of relations such as
fun ctional and inclusion dependencies are called data dependencies . We will start by functional
dependencies then we will be interested in referen tial constraints and inclusion dependencies .

A . Functional dependencies

5-4

A functiona! dependenry F over R (FD) has the fo rm F: X ➔ Y where X and Y are simple or

composite attributes and X c schema (R) and Y c schema (R). X is called the determinant
or the left hand sicle (lbs) of the fun ctional dependency F and Y is called the right hand
sicle (rhs) of the fun ctional dependency F.

1
il
1
1
1
1
1
1
1
1
1
1
1
Il
1
1
1
1
1
1
1

A FD F: X➔ Y is satisfied in a relation r over a relation schema R if whenever two tuples in r
have equal X-values they also have equal Y-values . As a consequence, every X-value in r has
only one corresponding Y-value. The formai definition of satisfaction of a FD in a relation
follows.

A FD F: X➔ Y is satisfied in a relation r over a relation schema R denoted by r F X ➔ Y:

If V (ti,tJ Er, if t1[X] = t2 [X] ⇒ t1[Y] = t2[Y]. Where t[X] is the projection of a tuple ton a set

of attributes X and represents the restriction of ton X and X,Yc schema(R). That means,the
values of the X component functionally determine the values of the Y component.

We will try here below to present the different types of functional dependencies that one can
encounter. After that, we will have a glance at the inference rules for functional dependencies.
These rules will help us, when dealing with the retrieval of ail the functional dependencies
holding in a relation or a database, to reduce the space of search. Indeed, let A, B, C be
attributes of a relation schema R, finding out that A ➔ B and B ➔ C holds in R will permit us
to infer whithout checking the instances of the database that A ➔ C ho Ids also in the relation .
Theo we will investigate the theory about the implication problem fo r FDs and minimal
covers of FDs.

We have different types of FDs, their definitions is given below:

• A FD x➔Y is trivial if Y ç X.

• A FD x➔Y is standard if X-:/- 0 .

• A FD x➔Y is degeneratedor non standard if X= 0 (rare in practice).

• A FD X ➔ Y is said to be elementary if and only if Y is a single attribute, --, :l X' c X such
that X' ➔ Y (Xis minimal), and X ➔ Y is non trivial.

Before presenting the inference rules for FDs, we wi ll introduce some concepts. An ieference
rule is a rule which allows us to derive an integrity constraint from a given set of integrity con
straints. More precisely, an inference rule is a sentence of the form: if certain integrity con
straints can be derived from the given set of constraints then we can derive an additional con
straint. The if part is called the hypothesis of the rule and the then part of the rule is called its
conclusion.

An axiom is an inference rule with an empty if part, that is, th e additional constraint can be
derived unconditionally. An axiom system for a class C of integrity constraints is a set of in
ference rules with respect to C. A class of integrity constraints refers to a particular set of in
tegrity constraints over a given relation schema or database schema.

a. lnference rules for FDs

Let F be a set of FDs over schema R, we have the fo llowing inference rules for FDs.

1. Reflexivity: if YçX cschema(R), then F ~ x➔Y.

2. Augmentation: if F ~ x➔Y and W ç schema(R), then F ~ XW ➔YW.

3. Transitivity: if F ~ x➔Y and F ~ Y➔z, then F ~ x➔z.

These first three rules are known as Armstrong's axiom system

4. Union: if F ~ x➔Y and F ~ x➔z, th en F ~ x➔Yz.

5. Decomposition: if F ~ x➔Yz, then F ~ x➔Y and F ~ x➔z.

6. Pseudo-transitivity: if F ~ x➔Y and F ~ YW ➔z, then F ~ XW➔z.

5-5

The reflexive rule states that a set of attributes always determines itself or any of its subsets,
which is obvious. Because the reflexive rule generates dependencies that are always true, such
dependencies are called trivial. The augmentation rule says that adding the same set of attrib
utes to bath the left - and right - hand sicles of a dependency results in another valid depend
ency. According to third rule, functi onal dependencies are transitive. The decomposition rule
says that we can remove attributes from the right-hand sicle of a dependency ; applying this
rule repeatedly, we can decompose the FD x➔ {Al, A2, .. . , An} into the set of dependencies
{X➔Al, X➔A2, ... , x➔An}. The union rule allows us to do the opposite; we can combine
a set of dependencies {X➔Al , ... , x➔An} into the single FD X ➔ {Al , A2, . . . , An} .

It was established in the work of Mannila [Mannila94) that the complexity of the dependency

inference as a function of the number of rows requires in the worst case 0 19 (p log p) steps for
two attribute relations with p rows.

o te that two types of research are undertaken in the field of functional dependencies. The
first kind deals with the satisfaction problem of functional dependencies . The second research
deals with the implication problem for functional dependencies, which will be defined below.

b. The implication problem for functional Dependencies

It is the problem of deciding given a set of FDs F over a relation schema R, and a single FD
x➔Y, whether F F X ➔ Y (i.e. the FD X ➔ Y is a consequence of F). It was shown
[Levene99] that this problem is equivalent to that of deciding whether Y is in the closure of X

(i.e. Y ç X + h olds). Note that the closure o f a set of attributes C is defin ed by

c + = u {Y I F t- C ➔ Y using Armstrong's axiom system} where Y is a set of attributes.
This problem could be considered as a membership problem that will not be addressed in this
work.

c. Minimal covers for sets of functional dependencies

In this section, we start by giving some preliminary definiti ons. A set of functional dependen
cies Fis covered qy a set of functional dependencies G. if every FD in Fis also in G+; that is, if
every dependency in F can be inferred from G. We can determine whether G covers F by
calculating x + w.r.t. G for each FD X ➔Y in F, and then checking whether this x + includes
the attributes in Y. If this is the case for every FD in F, then G covers F. Two covers are said
to be equivalent, if F+ = G + that means the set of FDs derived from F can also be derived
from G and conversely. ote that the concept of a caver of a set of FDs is an equivalence
relation in the sense of set theory (reflexive, symmetric and transitive).

Before introducing the different types of covers, we will introduce the concept of minimal
FDs [Elmasri00) .

As set of functional dependencies E is minima/ if it satis fi es the following conditions:

1. Every dependency in E has a single attribute for its right-hand sicle.

2. We canno t replace any dependency x➔A in E wi th a dependency Y ➔ A, where Y is a
proper subset of X, and still have a set of dependencies that is equivalent to E.

3. We cannot remove any dependency from E and still have a set of dependencies that is
equivalent to E.

We have three types of caver for FDs:

19 Where the symbol Q denotes the complexity in the worsecase.

5-6

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1

1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1

1. F is non redundant if--, 3 a cover G of F such that G c F.

2. F is minimum if --, 3 a cover G of F such that G has fewer FDs than F. a minimal cover
could also be defined as follows: A minimal cover of a set of dependencies E is a minimal
set of dependencies Emin that is equivalent to E [Elmasri00].

3. F is optimum if--, 3 a cover G of F such that G has fewer attributes than F.

It can be easily verified that a minimum cover is non redundant. Note that minimising the
cover of F (a given set of FDs) permits to reduce the time to compute the closure of a set of
attributes. Note also that our interest on the notion of minimal covers and minimal FDs could
have man y justifications. One of the reasons, is that, when the question of the user consists on
finding ail the FDs holding in a relation or a database, it is useful to have some artefacts to
reduce the complexity of the problem and to limit the search to the most interesting FDs i.e.
minimal FDs.

B. Referentia! constraint

The referential integriry constraint is specified between two relations and is used to maintain the
consistency arnong tuples of the two relations. Informally, the referential integrity constraint
states that a tuple in one relation that refers to another relation must refer to an existing tuple
in that relation.

A foreign kry between a set of attributes X of a relation schema R1 on another relation schema
~ is satisfied if the values in X of each tuple of the instance of R1 appear as values of the
(primary) key of the instance of~- This constraint will be studied with more detail in the sec
ond section.

C. Inclusion dependencies

Inclusion Dependencies (I Ds) generalise the notion of referential integrity constraint. It is a con
straint specifying that the values of a given subset of attributes of a relation must be a subset
of a given set of attributes of a relation that could be similar or different of the first one. Note
that INDs are different from functional dependencies, in that they can express interrelational
constraints. I Ds can be defined as follows:

Let Ri, ~ be two relation schemas of a database schema. Let X, Y be sequences of attributes

such that X c schema(R1) and Y ç schema(~ and IX 1 = 1 Y 1- An IND is an expression of

the form: R1[X] c ~M- We say that an IND R1[X] ç ~Mis satiifùd in a database d which is

denoted as d F R1[X] ç ~M, if V t1 E r1 3 t2 E r2 such that t1 [X] = t2 M- Where ri, r2 E d
and are relations over respectively R1 and ~-

We have a very important class of INDs that we will introduce, it is that class of INDs where

the attributes in the right hand sicle are keys . An IND R1 [X] ç ~ M is said to be kry-based if

Y is a key for ~- An I D is trivial if it is of the form R[X] ç R[X]. A set of INDs I is said to

be circular if either a non trivial I D R[X] ç RM E I or it exists m distinct relation schemas
Ri,~, ... ,Ri, with m > 1 such that I contains the following INDs:

1. R1 [X1] C ~ [Y 2l
2. ~ [X~ c R3[Y3] and ... and R,,[XJ ç R1[Yi].

An IND is unary if IX J = 1. An IND R[X] ç SM is ryped if X=Y. A set of INDs is said to be
non circular if it is not circular.

5-7

ote that Foreign keys can be seen as a subclass of 1 D s called key-based INDs and that the
only I Ds known by SQL-92 are foreign keys.

The inference rules for INDs are expressed as fo llows:

Let 1 be a set of I Ds over a database schema D= {R1, R2 .. . R,,}. Let R be a relation schema
over D.

1. Reflexivity: if X ç schema(R) then 1 f-- R[X] c R[X].

2. P rojection and p ermutation:

if I f-- R1 [X] c Rz M then I f-- R1 (Ai,, Ai2, ••. Aik] Ç Rz [Bi1,Bi2, .. . BiJ.

Where

X= <A1 ... A,n> a sequence of distinct attributes and X ç schema(R1) .

Y=<B,, .. . Bm> C schema(Rz).

i1 ... ik is a sequence of distinct natural numbers from { 1 . .. m }.

3. Transitivity: if I f-- R1 [X] ç Rz M and 1 f-- Rz M ç Rz [Z] then I f-- R1 [X] ç R3 [Z] .

We will introduce below the implication problem for I Ds where the results of the work of
Levene [Levene99] will be presented:

• The implication problem for INDs is PSPACE -complete.

• The implication problem fo r non circular I Ds is P-complete.

• The implication problem for unary I D s is linear-time in the size of the input set of unary
1 D s.

• The implication p ro blem for typed I D s is polynomial-time in the size of the input set of
typed I D s.

5.1.5. Keys

We w ill deal here w ith the concepts of candidate keys, primary keys, alternate keys, superkeys
and antikeys.

Since the body of a relation is a set, which by definitio n does not con tain duplicate elements, it
follows that no two tuples of a relation can be duplicates o f each o th er. Let R be a relation
schema with attributes A1, Az, .. -~- The set of attributes C = (A,, A;, . .. , AJ of Ris said to be
a candidate key (also referred as secondary identifier) of R if and only if it satis fi es the two inde
pendent properties:
1. Uniqueness

At a given time, no two distinct tuples of R have the sam e value fo r A,, A; . .. Ak.
2. Minimality

one of the attributes of C could be discarded without destroying the uniqueness prop-
erty.

Since functional dependencies generalise the notion of keys, we can give another definition of

candidate keys as fo llows: A set of attributes C ç schema (R) is a candidate key fo r R with
resp ect to a set of functional dependencies F over Rif it satisfies two properties:

1. Uniqueness: C + = schema (R) w here c+ represents the closure of a set of attributes de

fined by c+ = u {Y I F f-- C ➔ Y} and Y is a set of attributes.

5-8

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
11

1

1

1
1
1
1
1
1
1
1
1
1
1
1
1
1

I•
1
1
:1

1

1

2. Minimality: no subset of C is a key for R with respect to F.

ote that every relation has at least one candidate key. For a given relation, one of the candi
date keys is called primary kry, where null values are forbidden and the others are referred as

alternate krys. A set of attributes C ç schema (R) is a superkry for R with respect to a set of
functional dependencies F over R, if C satisfies the uniqueness condition but not necessarily
the minimality condition. An antikry for a relation schema R with respect to F over R is a
maximal set of attributes included in R that is not a superkey for R with respect to F.

Note that an attribute in schema (R) that belongs to at least one candidate key for R with re
spect to F is called a prime attribute; an attribute that is in schema (R) which is not prime is
called nonprime. A key is said to be simple if it consists of a single attribute; otherwise it is said to
be composite. Surrogates krys (i.e. technical identifiers) are keys with no intrinsic meaning and are
normally simple attributes .

5.1.6. Normal Forms:

A . First Normal Form (1 NF)

A relation schema R is said to be in 1 F if ail its attributes are simple (atomic) and mono val
ued. It is also called a normalised schema or a Aat schema. Conversely, R is said to be non-
1NF (N1NF) when some of its attributes are composite and/ or multivalued. The different
other kinds of normal forms were introduced in the relational theory to salve the anomalies
and redundancies that could be present in 1 Frelations.

B. SecondNorma!Form (2NF)

A relation schema is in 2NF w.r.t a set F of FDs if:

• It is in 1NF.

• For every FD: x➔ A non trivial, either Xis a superkey or at least one of the attributes in
Xis non prime or Ais a prime attribute (i.e. no partial dependency) .

C ThirdNorma!Form (3NF)

A relation schema R is in 3 F if:

• It is in 2NF.

• It does not exist any non-prime attribute that depends on other non prime attributes (i.e.

no transitive dependency). In other words: R is 3 F <=> each attribute that is transitively
dependent on a key, this attribute is prime.

D. Bqyce-CoddNorma!Form (BCNF)

A relation schema R is in BCNF if:

• It is in 1NF.

• Every determinant of an FD is a key.

5-9

5.2. Elicitation of implicit constructs
This section will deal with the recovery o f a major part o f implicit constructs and constraints
mentioned in chapter three. The implicit constructs and constraints to be tackled here are
fun ctional dependencies, fo reign keys, optional attributes, cardinality constraint, fin e grained
structure of attributes, attribute aggregates, multivalued attributes, multiple-domain attributes,
candidate keys, sets behind arrays, existence constraints, redundancies, enumerated value do
mains and constraints on value domains.

ote that we have discarded some of the implicit constructs and constraints cited in chapter
three which is based on the work of Professor Hainaut [Hainaut98]. The reasons underlying
this, are that the author is not only interested in relational database but also in other kinds of
databases such as Cobol. As a consequence, some o f the implicit constructs and constraints
cited in chapter three are not applicable fo r relational databases. Besicles this, the approach of
the author, is more general than the approach adopted in this work. We mean by that, we are
restrained in this work to the use of a special technique, which is Data Analys is.

As already said, a range o f techniques is available, the technique used in this work is D ata
Analysis.

The organisation of this section will be as follows: fo r each construct/ constraint, we elaborate
a theoretical reminder fo ll owed by the proposed solu tio n and when necessary the diffi culty of
the problem will be discussed and the proposed heuristics to reduce this difficulty w ill be pre
sented. The proposed solutions are problem dependent, we mean by that, we do not try to
find general and global solutions for a construct or a constraint, instead of that we are guided
by the questions of the user for which we try to find out suitable resolutions. As it is the case,
the solution could be fo rmed by a set of SQL queries combined or not with a procedural part.

The approach adopted in this work, aim to be as practical as possible in the sense that we are
guided in the perfo rmed search by the questions of the user which reflect practical problems
encountered in real reverse engineering pro jects. That is one of the reasons o f the use of heu
ristics in this work. Bes icles that, D ata Analysis is a costly technique and any attempt to limit
the space of th e search, so the expensiveness o f this technique is worth so much.

We will end this section by establishing a strategy for the recovery o f implicit constructs and
constraints that one can encounter in relational databases, at this stage th e stress will be put on
the role of data analysis. By strategy one have to understand two things : a strategy organising
the different components inside the data analys is technique and a strategy where the data
analysis is seen as a whole among the other techniques. In this chapter, we will deal only with
the first kind of strategy whereas the second kind o f strategy will constitute the essence of
chapter 6.

Before tackling the essence of this work, we would like to raise a standpoint about which we
have to be conscious from the beginning to the end of this section. Although Data Analysis is
a very significant technique that could give hin ts about some situations that are impossible to
get when using the other techniques, the results provided by this technique have to be always
moderated. Indeed, as the bas is of the data analysis technique is data instances, which mirror
the current state of the database, any result that is provided by this technique has to be tem
perate. We mean by that, the results are closely dependent of th e current state of the database
and if the instances change the results are very likely to change.

In our approach data Analysis has to be registered inside an incremental process i.e. the results
provided today are hypotheses for the search to undertake in the future.

5-10

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I l
11
1
1

1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Before starting this section, we would like to point that in this work D ata Analysis is used for
proving/ disproving any hypothesis formulated about an implicit construct/ constraint or for
discovering them.

5.2.1. Data dependencies

Constraints such as functional and inclusions dependencies, which depend on the equality or
inequality of values in tuples of relations in a database, are called data dependencies. The theory
of data dependencies has been central in the research area of relational databases, since it deals
with the foundations of the integrity part of the relational mode! and generalises the funda
mental notions of keys and foreign keys [Levene99].

The data dependencies addressed in this work are functional dependencies and foreign keys .

A . Foreign krys

We will start with an introduction on the theory related to the concept of foreign keys. This
introduction will permit us to discover the large panoply of foreign keys that one can confront
and will help us to moderate our interpretation of the results provided by the process of elici
tation.

a. Introduction

A foreign key is an attribute (or a combination of attributes) of a relation, Ro, referred as the
origin of the foreign key whose values have to match th ose of the primary key of a relation Rd
called the target relation. ote that Ro and Rd are not necessarily distinct and that the foreign
key and the corresponding primary key have to be defined on the same domain. Unfortu
nately, it exists a variety of foreign keys where most of the time the definition given above is
not respected.

We propose to have a closer look to th e different kinds of foreign keys that one can encounter
in real situations. The panoply of foreign keys was established by professor Hainaut [Hai
naut97] and could be divided according to him into five groups namely Standard foreign keys,
Pathological foreign keys, Loose foreign keys, Complex foreign key patterns and Non stan
dard foreign keys. We will explore each group to find out the different sub groups and their
characteristics.

i. Standard foreign krys and basic variants

• Standard foreign keys: A foreign key is called standard when its attributes are mandatory, it
targets the primary key of a relation and it is defined on the same domain as the primary
key of the target relation.

• Optional foreign keys: If the attribute of the foreign key is optional , then this foreign key
is called optional foreign key i.e. it has one target or none. When the foreign key is multi
component, ail the component attributes are optional and are related by a coexistence
constraint (the component attributes are optional and present together or absent).

• Total foreign keys: When an inclusion constraint from the primary key of the target rela
tion to the foreign key holds, we refer to this foreign key as total foreign key.

• Identifying foreign keys: When the foreign key is a candidate key of the target relation.

• Cyclic foreign keys: We have a cyclic foreign key when the source relation Ro, and the
target relation Rd of a foreign key are the same.

5-11

1

ii. Non standardforeign krys

• Secondary foreign keys: A secondary fo reign key is a fo reign key based on the secondary
identifier o f the target relation.

• Multi-target fo reign keys: A multi-target fo reign key is a fo reign key that has more than
one target relation. The target relations can be referenced at the same time.

• Alternate fo reign keys: An alternate fo reign key is a fo reign key that has more than one
target but does not reference al! of them simultaneously, at the contrary of multi-target
fo reign keys where al! the targets can be referenced at the same cime.

• Computed fo reign keys: A computed fo reign key occurs when a component of the fo reign
key is an indirect reference to the correspondent component o f the key of the target rela
tion.

• Non 1N F fo reign keys: It occurs when the attributes of the foreign key are multivalued or
compound attributes.

• Partial foreign keys: When the foreign key matches a fragment of the target identifier, we
talk about a partial fo reign key.

iii. Complex foreign kry patterns

• Conditional fo reign keys: The reference behaves as a fo reign key under certain circum
stances, and when the conditions are not satisfied, it has another interpretation.

• Overlapping identifier fo reign keys: The foreign key shares some attributes with the identi
fier o f the source relation.

We have two cases :

♦ The attributes of the foreign key are strict subset of the identifier (target key).

♦ T he intersection between the fo reign key and the target key is no t empty, and neither
the identifier nor the fo reign key includes the o ther one.

• n on minimal foreign keys: It happens when the target key of the foreign key is not mini
mal.

• partially reciprocal fo reign keys: It is a way to represent a one-to-one relationship set in
cluded into ano ther relationship set.

iv. LJJose foreign krys

• Loosely matching fo reign keys: It occurs when the domain of the fo reign key and the do
main o f the target-key are not the same. The two keys satisfy the looser ru le, which means
they are comparable in som e way.

• 99 % correct fo reign keys: It is when the construct behaves as a fo reign key most of the
cime.

v. Pathological foreign krys

• Transitive fo reign keys: A transitive fo reign key is the composition of two or more other
foreign keys. In m ost cases, they are not explicit.

• Partly optional fo reign keys: Sorne o f the attributes of the fo reign key are optional.

5-12

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1

1
1
1
1
1
1
1
1
1
1

11
1
1
~

• Embedded foreign keys: An embedded foreign key is a foreign key composed of attributes
that are components of another foreign key.

• Reflexive foreign keys: It is a valid foreign key but useless.

b. Elicitation

We will examine in this section particularly how data analysis can help us in the process of
recovery of implicit fo reign keys in relational databases.

Note that D ata analysis could be used in several ways. It could be used fo r proving, disproving
fo reign key existence or detecting them when we do not have any prior knowledge.

We will first show how data analysis could be used for proving/ disp roving the existence of
fo reign keys then we will dem onstrate its use fo r discovering.

i. Use of data ana!Jsis for proving/ disproving

If we use data analysis for proving/ disproving we could have the situation where for example,
if we know that, let us say an attribute A1 of a relation A is a foreign key targeting the relation
BQ?.1,B2,B3, ... BJ where B1 is the primary key of the relation B, B2 is a candidate key o f B.

We have, first of all, to distinguish the different kinds o f foreign keys we are looking for.

The first case will be fo reign keys having as target a primary key o f a relation; we mean that
the target of the foreign key is the primary key of another relation or of the same relation . The
second case will be fore ign keys having as target a secondary identifier of a relation (a secon
dary identifier is an identifier that could be ULL. In this work we will deal only with the first
type o f foreign keys.

To recover the first kind of foreign keys, we will have an SQL query like:

select count(*)
from B
where A1 not in (s elect B1 from B)

This query will provide us with a number denoted n, the interpretation of th e result of the
query will depend on the value taken by this number and on the way we have clone the search
i.e. the number of tuples being tested. Thus, if we have used the whole database or al) the tu
pies of the target relation, th e interpretation of the result o f the query will be as in Table 2. If
we have used just a sample of the database, the results o f the query will have the interpretation
given in the Table 3.

1. The case where the whole database is used: Let m be the number of the tu pies o f the tar
get relation (m is the result of an SQL query applied to th e target relation: select(*) from
B) .(see Table 2).

Note that the process explained in Table 2 could be more refined, especially in th e case where

n te O. lndeed, before concluding hastily that the attribute of interest is not a foreign key, one
can explore other tracks such as whether the attribute is optional and may be it is a secondary
identifier foreign key.

2. A sample o f the database is used that represents t¾ of the tuples of the target relation.
This way of doing is very advantageous if we deal with very large databases where the
number o f tuples could be huge and as a consequence the time of search is also tremen
dous. The user has to specify the percentage (we will cal! it acceptance) above which the
tested attribute is accepted as a foreign key. If the size of the sample is equal or greater
than the acceptance than this case is ass imilated to that where the whole instances of the
database are checked.(see Table 3).

5-13

n=O • A1 seems to be a foreign key.

This result could be refined to know the exact type of the
fo reign key. Indeed, we can veri fy whether an inclusion de-
pendency holds from the target attribute to A1, if yes, then
we have a total foreign key else we have a standard fo reign
key.

• The instances could change. A1 may not be a fore ign key .

n -:t:. 0 and • A1 is nota FK.
m-n =c • A1 is a FK but there are data errors .

• A1 is a conditional FK.

• A1 is a 99% FK.

n -:t:. 0 and • A1 is nota FK.
m-n >>O • A1 is a conditional FK.

• A1 is a loosely matching FK .

n -:t:. 0 and • A1 is not a FK.
m = n • A1 is a conditional FK.

• A1 may be an identifying F I(.

• A1 may be an altemate FK .

Table 2-The interpretation of the results of the process of elicitation of foreign keys.
The use of the whole database.

The most interesting case will be when the size of the sample is smaller than the acceptance.
Instead o f rejecting the result, we will give it a first interpretation that has to be refined later.
This first interpretation will constitute a hypothesis. In fact, we will have in this case an incre
mental approach i.e. use another sample of the database to test the results derived from the
first sample.

We can think of introducing another fie ld in the database, a kind of counter that will be used
for sampling the database. The strength of the results, sure, will depend on the size o f the
sample. Moreover, the results also depend of the sample itself, which can be non representa
tive of the whole behaviour of the data. The choice of the sample has to be arbitrary. Such an
incremental approach is suitable especial ly fo r large databases. Its advantage is very attractive.

Table 3 will summarise the results and their possible interpretation.

ii. Use of data ana!Jsis for discovering

The second situation to be addressed is the use of data analysis for discovering fo reign keys. If
we have two relations with n and m attributes respectively, to search whether som e foreign
keys exits between them, we have to consider different cases:

1. The case where we have no information about the primary keys

In this case we will look for inclusion dependencies . To have an idea about th e difficulty of
the problem let us see w hat happens in terms of operations i.e the number of checks of each
pair of attributes to be performed . We will deal first with two relations and after that with the
whole database. If we check each pair o f attributes for two relations with n and m attributes
where m :S n, the number of operations(i.e checks) performed denoted by op will be:

5-14

1
1
1
1
1
J
1
1
1
1

1
1'

:1
1

1
1
1

1
1
1
1
1

1
1
1
1
1
1
1
1
1
1

n=O • A1 seems to be a FK (that could be conditional or
standard) for x¾.

Test it again with (acceptance-x) x tuples, the final
result will depend on this test.

n:;t=O and m-n =e • A1 is not a FK.

• A1 is a FK fo r x¾ but there are data errors .

• A1 is a conditional FK.

• A1 is a 99% FK .

Test it again with x tuples.

n:;t:O and n >>O • A1 is not a FK.

• A1 is a conditional FK.

• A1 is a loosely matching FK .

• A1 is a multitarget FK.

Test it again with x tuples,

Table 3-results and interpretation of the recovery process of foreign keys. The use of a
sample of the database.

0 = "m cncm = (n+m)! -1
p L.,;;=J 1 1 1 1 n.m.

If we adopt the same approach fo r the whole database and check each pair of attributes oc
curring in the database then the number of operations (i.e checks) performed denoted by opb
will be:

x-1 x ni

opb = L L z:c;jcr
i= l j =i+l k=I

Where:
x denotes the number of relations in the database.
ni,nj denote the number of attributes of the relations i and j.
i, j and k are integers such that 1~ i ~ x-1 and 2 ~ j ~ x and 1~ k ~ max (ni).

As demonstrated above the number of operations to perform is tremendous. As a conse
quence, it seems necessary to use some heuristics to reduce the set of INDs and thus the
complexity of the problem. These heuristics could be:

• Related to the question of the user: normally the user is interested in some fo reign keys
and not in ail the foreign keys holding in a database.

• The availability of information about the domains. In that case only the attributes having
compatible domains w ill be checked.

• The limitation of the space of search to the foreign keys composed by one or at most two
attributes .

• The discard oflong attributes .(example: char(200) ...).

5-15

2. The case when info rmation about keys is available

The set of INDs is normally reduced compared to the case above because we will just check
the key based-IN Ds. In this circumstance we have to envisage two different situations for the
appreciation of the complexity of the problem: the first situation is when the primary key of
the target relation is simple, we will check only the simple attributes included in the "origin
relation " of the fo reign key. then the number of operations, op,, will be such that

op= cm= m r 1

The second situation is when the primary key of the target relation is composite (with p at
tributes), we will check the composite attributes having p components included in the origin
relation of the fo reign key. Then the number o f operations to perfo rm, ope, will be:

C
m m!

op = =
C p (m- p)!p!

To reduce the number of operations in the above two cases, we can resort to other means.
First we can think about taking the foreign key declared in the DDL as input. Secondly, To
reduce the space of the search we can just consider attributes that have the same domain as
one or several primary or candidate keys .

We will tackle here below two situations of discovery of fo reign keys where we will be guided
by the questions of the user:

• Check if there is a foreign between relation A and relation B knowing that B has a primary key B1

and A has a primary key A1 i.e. checking if the primary key of a relation is in the same time
a fo reign key. If we suppose A the source o f the fo reign key and B is its target. ln this case
we can have an SQL query like:

selec t c ount (*) frorn A where A. A1 n o t in (selec t B1 frorn B)

The general case i.e. the attribute(s) is not necessarily the primary key of the source rela
tion of the fo reign key. The idea is to check whether some of the attributes of the relation
considered as origin o f fo reign keys (if any) have their values included in the set of values
of the primary key of the target relation. This situation will be solved by a proceduraJ part
that looks like:

for Vatt E A do
select c ount (distinct att) f rorn A
whe re A . att not in (select B1 f rorn B)

e nd- f o r

If we have information about the do main we can first fil ter the attributes of A and have as
input only the attributes having the same domain as that of the primary key of the target
relation, the proposed solution is:

f o r Vatt E A A dorn(att) =d orn (B1) d o
sele c t c ount (distinct att) fr orn A
where A. a t t not in (sele c t B1 f rorn B)

e nd- f o r

The interpretation of the resul ts of the query presented above will be the same as when we
have used data anaJysis for the purpose of proving/ disproving.

• Case where the question consists in finding aJI the fo reign keys.

H ere again, we will be just interested in standard fo reign keys. We can start by discarding
the optional attributes . If we have in fo rmation about keys, normally, we also have

5-16

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
)

1
1
1
1
1
1
1

information about domains then we will reject from the remaining set of attributes those
that do not have the same domain as primary keys.

As summary, we will say that the check will be perfo rmed only on the mandatory
attributes having the same domain as the PKs.

We have to check each relation occuring in the database against the others. T he solution
for this situation will look like:

Input: The set of PKs and the names of ail the relations of the database . Each primary
key is coupled with the name of its origin relation.

for V tabjE database do
for Vatt E tabj do

insert into Tfk
(select count(att) frorn tab j
whe re tabj.att not in (select Pki frorn tabi))

end-fo r
end- for

Where Pki denotes the primary key of the relation having the name tab i.

The interpretation of the results of the queries is the sarne as the discussion elaborated be
fore.

c. Remarks

To reduce the complexity of the problem when searching fo r foreign keys in the whole
database, we can use the results obtained from other components of the data analysis
technique.We can have, for exarnple, information from the cornponent dealing with functional
dependencies: if a FD holds in a relation and its left hand sicle is not a primary key. then
maybe it is a FK having as origin this relation and as target another relation . It could be hints
about the existence of redanduncies inside the database.

As far as we are interested by standard fo reign keys, the results provided by the component
searching fo r optional attributes could also be used.

Note that the search for foreign keys could also give hints about other constructs such as
cardinalities.

B. Functiona! dependencies

a. Introduction

A functional dependency (FD) is a property of the semantics of the attributes and it general
ises the notion of keys. It is a constraint irnposed on a relation. Its forma! definition is: afunc
tiona! dependenry F over schema R is a statement of the form F: X ➔ Y where X, Y are subsets
of the attributes of the relation schema R. In other words, the values of X uniquely determine
the values of Y.

b. Elicitation

The use of data analysis to recover the functional dependencies could caver a certain range of
situations . We will limit our selves in this work to some of them. Indeed, We can have four
representative different situations, which are as follows:

❖ Is there a FD between A1 and B1 ?

❖ Is there a FD between (A1,A2, .. . AJ and B1?

5-17

❖ Generate FDs that hold in table A.

❖ Generate the FDs holding in the database.

In fact, we can say that, we have only three cases which match the situations 2, 3, 4. The first
case will be used as an introductory example.

1. First case: it is a veri fication of the FD A1 ➔B1 we have to check whether ail the tuples
with the same value in A1 have the same value in B1. It could be solved by an SQL query
such as :

select count(distinct A1) as c from A tl
where l< (select count(distinct B1) from A t2
where tl . Al=t2 . Al)

The interpretation of the result will be based on the value taken by field c in the relation
resulting from the above query.

Table 4 will summarise the discussion .

Value of the field c. In terpretation.

c=O • A FD ho Ids between A 1 and B1 •

The result could be different tomorrow.

c;t:O and c=E • No FD holds between A1 and B1

• A FD holds between A 1 and B1 but the database
includes erroneous data.

c:;t:O and c >> • o FD holds between A1 and B1

Table 4-Casel:Interpretation of the results of the recovery of FDs.

2. Second case: This situation is similar to the first one, the only difference is that the left
hand sicle of the functional dependency is composite. ln this case, we have to verify
whether a functional dependency of the form A1, A2, ~ ➔ B1 holds in the relation, the
solution could be an SQL query as:

select Ai, A2, .. A 0

from A t l
where l<(select count(distinct B1)

fr om A t2
where tl.A1=t2.A1 and tl.A2=t2.A2 ... and tl . A0 =t2 . An)

Table 5 will summarise the discussion.

Result In terpretation

The resulting table is empty • The FD holds .

• The results could be different tomorrow .

The resulting table is not empty • No FD.

• A FD holds but the database includes
erroneous data.

Table 5-Case2:Interpretation of the results of the recovery of FDs.

5-18

1
1
1
1
1
J

' 1
1
1
1
1
1
1
1
1
1
1
1
1
1

r --,,
1 3.

1
1
1
1
1
1
1
1
1
1
)

1
)

1
1
1
1
1

-

Third case: The number of possible FDs in a relation of degree d is 2 2d, it is the case when
we consider that the left hand sicle, lhs, and the right hand sicle, rhs, of a FD could be
simple or composite.

That means any subset of the attributes of the relation could form the lhs, and could de
termine any other subset. If we discard trivial and generated FDs and those having a com
posite rhs, the possible number of FDs, according to [Castellanos] could be reduced to nr
where nr is as follows:

nr = d* (2d-1-1)

ln order to reduce this number of possible FDs to generate for a given relation we have
adopted in this work, an approach that is as follows:

❖ lhs is either a simple or a composite attribute.

❖ rhs of an FD is always simple attribute. The reason is that the inference rules, and es
pecially in this case the decomposition one, allows us to reduce a list of FDs with
composite rhs to a list of FDs with simple rhs. To recover the composite rhs, one can
use the union inference rule.

In this case, if we have a relation A with n attributes A1, , . . A..., the number of the possible
FDs to generate is nFD. Where nFD is such that:

n- 1

nrn = LCt(n-i)
i= l

If we have information about primary keys, the FDs having these PKs as lhs are discarded
which will permit us to reduce the number of possible FDs to generate.

If an FD1 is found, al] the other FDs with the lhs as superset of the lhs of FD1 are dis
carded. Note that these FDs are generated to permit us not checking them against the in
stances.

When we have information about FKs, we can take them as lhs of a FD to be checked.
The aim for doing so, is to optimise the number of operations to be performed.

If an index is not defined on an attribute or group of attributes which is not a primary key,
this attribute or group of attributes will be taken as lhs of a FD to be checked.

For this third case, we can have a program that will be as fo llows:

Input:
PK_set ~ {PKl }
set checked FDs
set att
relation

Output:
set Fd

Begin
set Fd ~ set checked FDs;
tested ~ set checked FDs;
candidat ~set att
while candidat~ 0 do

choose x E candidat
candidat~ candidat\ {x}
if x ~ PK set do then

set_couple rhs_lhs ~ Generate rhs (att , set_att\{att}) ;

5-19

l

for V (lhs,rhs) E set couple rhs_lhs do
if (lhs,rhs) ~ tested then

if check((lhs,rhs)) then
set Fd ~ set Fd u { (lhs, rhs)};
inf~rence((lhs , rhs), set_att\{lhs,rhs}, tested)

else
candidat ~ {lhs+rhs}
/* the syrnbol + stands for the fact that both rhs and

lhs will be considered as a composed attribute
lhs,rhs */

end-if
tested ~ tested u{ (lhs,rhs)}

end-if
end-for

end-if
end-while

end

PK_set. is a set that contains the primary key of the relation of interest. This set could be
empty if no information is available about primary keys.

set_Checked _ FDs: is a set containing the FDs that are already checked. This set could be
empty.

Set_att. is a set containing ail the attributes of the relation of interest. This set has to be
non empty.

Relation: indicates the narne of the relation of interest.

Generate_rhs: is a fonction that for every component of the set_att, referred as lhs, will gen
erate ail the possible rhs . The result will stored be in a structure set_couple_rhs_lhs. Note
that we store the pair Qhs, rhs).

For every pair (lhs, rhs) included in the structure set_couple_rhs_lhs, we will check
whether a functional dependency holds.

Check(lhs,rhs): A fonction that given a pair (lhs, rhs), will generate the appropriate query,
execute it and retum the result. Before performing ail this, it will check whether this hy
pothetic FD was already checked or no. The script of this fonction could be as follows:

check ((lhs, rhs))
bool result ;
string query;

begin
query ~ generate query(lhs,rhs) ;
result ~ excute_query (query);
return result.

end

Inference (): A fonction that given a FD that ho Ids in the relation, will use some of the in
ference rules to derive new FDs. This fonction will add to tested ail the inferred FDs. The
pararneter set_att\ { lhs,rhs} represents the set of attributes to be used for the inference.

5-20

Inference
begin

{lhs , rhs) , candidates , tested)

for V a E candidates do
tested ~ tested u { (lhs+a , rhs)}
Inference ((lhs+a,rhs) , candidates\{a} , tested)

end-for
end

1
1
1
1
1
J

' 1
1
1
1
1
1
1

1
1
1
1
1
1

1
1
1
1
1
1
1
J
1
1
1
1
1
J
1
1
1
1
1
1
1

tested· is a set containing ail the pairs for which we already know whether it is an FD that
holds or does not hold in the relation. This set will allow us not to test these pairs.

set_ Fd: is a set containing all the FDs holding in the relation of interest.

Generate_query (lhs, rhs): will generate the appropriate query. Its pseudo-code could be as
fo llows:

Select lhs
From relation tl

Where l<(select count (distinct rhs) from relation t2 where
tl . comp 1 (lhs) = t2. comp 1 (lhs) and ...
and tl. compi (lhs) = t2 . compi (lhs) and ...
and tl. compn (lhs) = t2 compn (lhs))

Comp, (): is a function that permits to access and extract the ith component of a composite
lhs where 1:Si:Sn. n is the number of attributes of the lhs.

ote that the transitive FDs are generated and tested, which can be seen as a weakness of
this approach, but the task of trying to avoid them is arduous. Indeed, it necessitates to re
compose rhs of several attributes . Furthermore, the detection depends on the order in
which FDs are recovered. By example, if we discover FDs A ➔ B and B ➔ C, we can
avoid to check A ➔ C, which can be derived, but if we first found A ➔ B and A ➔ C,
B ➔ C has to be checked anyway and A ➔ C could not be avoided.

4. When we deal with the whole database

We have to use the program used for the third case and reiterate it to take into account ail
the relations included in the database. ote that the interpretation of the results of the
queries is the sarne as the third case.

5.2.2. Optional attributes

A . Introduction

Optional attributes are those attributes, which are declared using the key word NULL. It is a
kind of incompleteness of the information stored in a database. ULL values modelise the
missing information within a database. ull val ues could be ass igned fo r different reasons
[Atzeni99]:

• The value of the attribute exists but is unknown at the present time. An example, if we do
not know the narne of the course to which a student has subscribed.

• The value is non-existent. An example, the name of spouse when the persan is not married.

• The value is non-existent or unknown, which is called no-ieformation, because it tells us ab
solutely nothing: the value might or might not exist, and if it exists we do not know what it
IS.

With "NULL value" the concept of relation is extended to include the possibility that a tuple
could be present by having this special value that is not included in the domain. It is a kind of
extension of the domain.

Note that in relational databases, no hypothesis is made about the meaning of ULL values,
but according [Atzeni99] , in practice, it is always the third situation, that of the no-information
value.

Note That ULL values exhibit arbitrary behaviour in SQL [Date]

5-21

• Two NULL values are considered to be duplicates o f each other fo r the purposes of dis
tinct and unique and order qy.

• Count, S UM and AVG do not give satisfactory results in the presence of N ULL values .

• If F1 and F2 are fields, it could happen that

SUM (F1+FJ -:t- SUM (F1)+SUM(FJ in the presence o f N ULL values.

In this work we will not try to explore the different interpretations o f ULL values, instead of
that we will study special cases such as an attribute that is declared ULL but it has all its oc
currences OT ULL or an attribute that is declared OT ULL, and in the database we
find a certain value that is repeated many times, which could be a way that the programmer
has chosen to mode] the ULL value.

B. E licitation

We will be guided in the recovery of optional attributes, by the questions o f th e user.

We had envisaged several scenarios to face differen t situations such as:

❖ Is this set of attributes optional.

❖ When attribute A is optional what about attribute B.

❖ Given a set of attributes find the optional ones.

❖ Find the optional attributes o f a given table.

Depending on the case, an appropriate SQL query will be generated. Sorne o f the mentioned
cases will be tackled in this work.

For the first question, let us say, we have a relation A with the attributes Ai, A2, •.. , ~ - We
want to find out which attributes are really optional i.e the attributes are declared optional but
we want to veri fy whether they make use o f this pro perty or no. If, we call th e set of attributes
given by the user, set_att, we will have an SQL query such as the one presented below. This
query has to be applied to al! the attributes belonging to the given set o f attributes .

for VAi E s et_att do
Select coun t (*) a s C
From A
Where Ai is n o t null

e nd-fo r

For each attribute, we have to discuss acco rding to the value of the field C o f the resulting
relation. T able 6 will summarise the results and their interpretation .

Value of C In terpretation

C > 0 and C >> A , seems to be mandatory .

C > 0 and C=E A , is optional.

C=O A ; is optional.

Table 6-Summary of the results of the elicitation of optional attributes and their inter
pretation.

The most interesting case is when C>O and C> >, we can go furth er and try to see whether
there exists some values that could give hints about the simulation of ULL values. The idea

5-22

1
1
1
1
1
1
t
1
1
1
1
1
1
1
1

)

1
1
-1
1

1
1
1
1
1
1
1,
1
1
1
J
1
1
1
1
1
1
1

consists on applying a query to the relation A, and visualising the attributes of interest looking
for some "strange" values i.e. if for example, one of the attributes takes frequently, let us say,
the value 99 or the symbol *. It could be a hint, that in fact the attribute is in fact optional.

When checking the instances, we find that ail the occurrences of the attribute are not Ull.
One can conclude to three different things: first, may be the database includes erroneous data,
second may be the programmer is managing himself the not NUll and finally, the database
has evolved.

The same situation could happen when the attribute is declared not NUll, but we find some
values that occur very often (or rarely) but are meaningless. The analysis of these values, with
the help of the user, will clarify the situation.

To find out the "strange" values (if any), and if we have an attribute A i belonging to the rela
tion A, we can have a first SQL query such as:

create table intermediate (Ai , C) as
(Select Ai , count (A) as C

from A
group by Ail

On this table, we can apply another SQL query such as:

select* from
intermediate
order by C desc

The intervention of the user is required to interpret the results of the last query, and to pull
out the strange values. If some values are meaningless, we could assume that it is a way to
represent NUll values. This process can not be automated.

5.2.3. MIN/ MAX Cardinality

A. Introduction

To understand the notion of cardina!ity, we propose to have a quick look to the Entity Rela
tionship (ER) mode!. The ER mode! describes data as entities20

, relationships21 and attributes.

A re!ationship type R among n entity types22 E 1, E 2, . . . , En defines a set of associations, or a rela
tionship set23

, among entities from these types. A relationship type is a mathematical relation
on E 1,E2, . . . ,Erv or altematively it can be defined as a subset of the Cartesian product E 1 x E2

x ... x En. Each of the entity types E1, E 2, ... , E11 is said to participate in the relationship type
R, and similarly each of the individual entities e1, e2, .. . , en is said to participate in the relation
ship instance ri = (e1, e2, ... , eJ [Elmasri00].

Re!ationship types usually have certain constraints that limit the possible combinations of entities
that may participate in the corresponding relationship set. The cardina!ity ratio for a (binary)
relationship specifies the nwnber of relationship instances that an entity can participate in .

The participation constraint specifies whether the existence of an entity depends on its being re
lated to another entity via the relationship type.

20 An entity is a "thing" of the real world with an independent existence [Elmasri00) .
21 When an attribute of an entity type refers to another entity type, we are in presence of a relationship.
22 An entity type defines a collection (or set) of entities that have the same attributes. Each entity type in the data
base is described by its name and attributes [Elmasri00].
23 Mathematically, a relation.rhip set Ris a set o f relationship instances ri, where each ri associates n individual enti
ties (e1,e2, ... ,en) and each entity e; in r, is a member of entity type E;, 1:Sj:Sn. [Elmasri00).

5-23

T he different cardinality ratios one can have are : 0-1, 1-1, 1-N, 0-N, N-N, which will give 25
possibilities of the cardinality ratios of a relationship type. If we have two entity types A, B
and a relationship type C. Tuen the scheme below could be read as: T he entity type A partici
pates on the instances of the relationship type C at least X cimes and at most Y rimes. the
same thing could be said about B i.e. B participates to C minimum Z cimes and maximum T
cimes. We denote these cardinalities by X-Y /Z-T.

@-x-v---©-z-T-ŒJ
Figure 8 -Entities, Relationships and Cardinalities.

The possibilities could be reduced to 9 basic cases (if we consider that the other ones can be
derived from this basic cases), which are : 0-1/0-1 , 0-1/1-1, 1-1/ 1-1, 0-1/0- , 1-1/0- , 0-
1/ 1-N, 1-1/ 1- , 0-1/ - , 1-1/ -N. We will represent the logical schema of each case of
cardinality ratio (see figure 9-1 and figure 9-2).

E R mode!

Case 1-1/ 0-

A

Al
A2
id:A I

1-1©-0-N

B
BI
B2
id :BI

Case 0-1/ 0-N

A

A l - 0-1-©-o-N A2
id:Al

Case 1-1/ 1-

A

Al
1-1--©-I -N

A2
id :A I

B
Bl
B2
id :Bl

B

fil
B2
id:B I

A
Al
A2
B I
id:AI

ace
ref:Bl

ace

A

il
A2
B li 0- 1)
id : A 1

ace
ref:B 1

ace

A

Af
A2
B I
id:A l

ace
equ:8 1

ace

Relational mode!

B
BI
B2
id:BI

ace

B
!U.
B2
id:B 1

ace

~--..--i

B

fil
82
id :B 1

ace

Figure 9-1-Cardinality constraints in the ER model and their correspondence in the
relational model.

5-24

1
1
1
1
1
J
t
1
1
1
1
1
J
1
1
1
)

1
1
1
1

1
1
1
1
1
1
1
1
1

1
l
1
1
1
1
1
1

ERmodel

Case 0-1 / 1-N

~0-1-©-1-N
~--

Case 1-1 / 1-1

~1-1-(0-1-1
1

Case 1-1/ 0-1

w-1-1~ -1
1

Case 0-1/ 0-1

~ -1-@-o-1
1

B
Bl
B2
id:Bl

B

BI
B2
id:Bl

B

Bl
B2
id:Bl

B
BI
B2
id :Bl

Al

A
Al
A2
B1(0-1]
id :Al

ace
equ:Bl

ace

A
Al
A2
id:Al

ace

A

Al
Bl
A2
id :AI

ace
id': B l

ref ace

A

B 1 (0-1]
A2
id:Al

ace
id' :Bl

ref ace

Relational model

B
Bl
B2
id:Bl

ace

B
Bl
Al
B2
id:Bl

ace
id' :Al

equ ace

B
BI
B2
id:Bl

ace

B
BI
B2
id:Bl

ace

Figure 9-2--Cardinality constraints in the ER model and their correspondence in
the relational model.

5-25

B. Elicitation

We will be interested in recovering the exact minimum and maximum cardinality ratios of
relationship types of data models based on participation constraints. As in the relational mode!
ail what we have is a collection or a set of relation schemas, we need other information to
know which relations are related. This information will sure help us to reduce the space of
search.

If information about primary keys and foreign keys is available, cardinality constraint could be
derived by a collection of SQL queries.

Note that, the difficulty of the recovery of the cardinalities resides on the side of the target of
the foreign key. To recover the cardinalities of ail the different cases of the side of the target
relation, we will have an SQL query such as :

create table result
as (select count(*) as c from A
group by B1

union
select O from B
where B1 not in (select A. B1 from A where A. B1=B. B1))

While the fist part of the query will provide us with the number of times each value of B1 is
referenced, the second part, will supply count zero for the B.B 1 values that are not referenced.

We will apply another query on the resulting relation to get the maximum and minimum car
dinalities.

select min (c) as Cmin , max (c) as C max

from result

The interpretation of the result of the last query will be summarised in Table 7. ote that the
minimum cardinality given as result of the query has to be taken as an upper bound and that
the maximum has to be seen as a lower bound i.e. If, fo r example, the value of the field
min=10 and that of max=20, we conclude that the minimum cardinality is less than or equal
to 10 and the maximum cardinality is greater than or equal to 20. The recovery of the mini
mum and maximum cardinalities of the sicle of the origin of the foreign key, will also be sum
marised in the Table 8.

The value of cmin The value of c,n.'\X In terpretation

0 n>O • The maximum cardinality, in the side of the target of the
fo reign key, is greater than or equal to n.

• The minimum cardinality ,in the sicle of the target of the
foreign key, is O.

1 n>O • The maximum cardinality, in the sicle of the target of the
foreign key, is greater than or equal to n.

• The minimum cardinality, in the sicle of the target of the
foreign key, is Jess than or equal to 1.

Table 7-Max and Min cardinalities of the target relation.

5-26

1
1
1
1
1
J
·1
1
1
1
1
1
J

1

1
1
1

1
J
1
1
1
J
1
1
1
1
1
l
1
)

1
1
1
1

'

State of the attribute of interest Interpretation

Case1: the attribute referenced is an identifier of • The maximum cardinality in the sicle of the
the target relation of the foreign key. relation origin of the foreign key is 1.

Case2: ail the components of the foreign key are • The minimum cardinality in the sicle of the
mandatory. relation origin of the foreign key is 1.

Case3: ail the components of the foreign key are • The minimum cardinality in the sicle of the
linked by a coexitence24 constraint or are optional relation origin of the foreign key is O.
attributes.

Table 8-Max and Min cardinalities of the origin relation

5.2.4. Fine grained structure of attributes:

The problem here is when a field declared as atomic is in fact a concatenation of independent
fields or has an implicit decomposition. our aim is to try to recover the exact structure.

A . E licitation

The elicitation could be guided by the questions of the user i.e. the user gives us an attribute
or a set of attributes and wants to know whether an implicit decomposition is possible.

It could also be more general in the sense that what we want is to discover such attributes. In
this case an SQL queries like

select * from tab
or
select Ai from tab

For the second query, Ai represents the list of the attributes already filtered out on a criteria
about the length. for example we filter out ail the attributes of the relation and retain only
those that have, let us say, a length 2 20.

While the first query would provide us with the list of ail the attributes included in the relation
of interest, the second one will only give the list of the attributes exceeding a certain length,
note that the information about length could be derived from the DDL or system tables .

In the case that no info rmation is available about the length we will use the first query and its
result has to be analysed and a kind of filter has to be implemented which will enable us to
have only the long attributes, this could be a small program that calculates the length of each
attribute and to stock them elsewhere ; or we can also imagine to work on the result-relation
where we will delete ail the attributes having a length Jess than the length we have specified.

ote that the minimum length is very arbitrary and it could happen that some attributes with
a length smaller than the one specified are in fact a concatenation of some other small attrib
utes.

In both cases (the first or the second query) the result-relation have to be analysed, we can
imagine a program that having as input the attributes of interest will look whether separators
exist or not, separators are ail the characters non alphanumeric (we can remove some of these
non alphanumeric characters such as ?, $...), in any way this process can not be automated
100% and the intervention of the user is required. We can also imagine another solution
where an SQL query will look directly for the separato rs:

24 See section dealing with exis tence constraint.

5-27

select* from tab
where like

Example:

The application of one the ideas expressed before could provide us with a result like the
one presented below:

First attribute instances

Système d'exploitation / Base de D onnées (MA1) / Gestion de Projet.
Pratiques de Communication / Datamining / Base de Données (MA2).

Second attribute instances

Maitrise 2
Maitrise 3
Licence 2
Candidature 2

Informatique.
Informatique ..
Sciences Economiques.
Pharmacie.

Only by visualising the result and having a certain knowledge about the application do
main we can derive some useful information. ote that for the second attribute of the re
sult, one can imagine another solution. Indeed, we can spot the apparent alignment of the
component of this attribute which is in this case a hint about the concatenation. There
fore, the user has to be interviewed about the semantics of such an attribute. Besicles the
apparent alignment, one can notice other indications. Verily, one can perceive in the
structure that we have characters followed by two sequences o f integers then characters .
This later indication could constitute a worth hint to be exploited.

In the case of the first attribute, one can detect the presence of the separator "/". The user
have to be asked about the semantics o f the attribute, and only after that a conclusion
could be drawn about the structure.

Note that it does not exit a general approach for the recovery of the fin e grained structure of
an attribute. Each case or each category has to be seen as a specific case or category. In each
specific case, one has to be aware that (s) he has to show creativity to be able to perform the
recovery of this implicit construct. Thus it is necessary to adopta particular approach that we
will call here a learning qy examples approach.

5.2.5. Attribute aggregates

A compound attribute could be decomposed and represented by a sequence of apparently
independent attributes. The problem here is to recover the source attribute.

A . Elicitation

Data analysis is not of much help in the recovery of attribute aggregates. Indeed the only case,
where one could use data analysis when dealing with attribute aggregates, is when an existence
constraint holds between the attributes. One can ask if it is not, in fact, a way to represent
compound attributes. If a such constraint does not exist, we can not advance any proposa!.

The recovery of attribute aggregates is a thom y issue in itself and it is made more difficult with
the fact that generally the attributes do not have neither the same type nor the same length.

It will be more interesting, from our standpoint, to explore other techniques such as cliché
analysis.

5-28

1
1
1
1
1
J
t
1
1
1
1
1
1
1
1
1
)

1
1
1
1

1
1

1
1
1
J
1
1
1
1
1
J

1
1
1
1
1

5.2.6. Multivalued Attributes

The aim here is to recover the multivalued attributes. This implicit construct occur when an
attribute is declared single valued, and is in fact the concatenation of some values.

A. Elicitation

The process of data analysis could be guided by the questions of the user about an attribute or
a set of attributes or it could be more general i.e. we explore a relation or the set of relations
of the database by applying an SQL query or a set of SQL queries such as:

select * from tab
select att1 from tab

where att; is a set of attributes specified by the user.

As an example, we can have the fo llowing as a result of one of the two queries given above:

First attribute

081-441260 * 081-725167 * 081-231626 * 00216 (0)2467586
081-441360 * 081-745167 * 081-251626 * 0033-21467586
081-441260 * 081-725167 * 081-261626 * 00212/6667586
0476-114575* 080093003

Second attribute

Anne Marie Sophie
Tintin Joseph Marc Michel

Third attribute

Rue Jules Brosteaux
A venue Louise
Rue Aragon
Impasse de la Croisade

n°5,
n°10,
n°60,
n°120,

5150 Soye.
1000 Bruxelles.
5000 amur.
5150 Franiere.

The result of the query has to be analysed. To be able to conclude that the attribute of interest
is a multivalued attribute, the sub-attributes have to share two things. Firstly, they must have
the same type, such information could be derived from the DDL. Secondly, they should have
the same maximum length. Information about the length could be derived either from the
DDL or by applying a program on the result relation, which will provide us with the length of
the attributes.

We can then imagine, having the length of the attribute, to <livide it by ail its divisors, for ex
ample an attribute having a length of 40 could be divided by 2,4,5,8,10,20. For each divisor,
we <livide the attribute by this number, analyse the result with the help of the user and, if it is a
satisfactory result, we stop the process, else we choose the next divisor. It is nota general ap
proach and we can have erroneous results. For example, the instance" Anne Marie Sophie", if
the separators are taken into account, has a length of 17, which cannot be divided by another
number. The use of this variant will give good results when the fields have the same length,
which is in itself a very restricting condition, especially, if we know that the declared length is
an upper bound. We can also think of looking for the separators.

Note that a confusion could occur while trying to interpret the results, for example, the first
attribute could be a multivalued attribute or a compound attribute, only the user could help in
solving such a conflict.

5-29

5.2. 7. Multiple-Domain attributes

It is when a field is used as a container for different kinds of values.

A . E licitation

T he pro blem can not really be addressed by data analys is. In fac t, it requires knowledge of the
semantics of the database. We can only deal with the special case where the components of
the attribute are primary keys of other relations, which we will consider as included in the
search fo r foreign keys .

5.2.8. Candidate keys

The aim is to recover the candidate keys o f a relation when they are not declared. No te that a
candidate key of a relation is one of the keys of that relation i. e. its values have to be distinct
At the contrary of primary keys, it can contain ull values.

A . E licitation

If we are interested in recovering a secondary identifier A2 o f a relation A. We have to veri fy
that ail the occurrences o f A2 are distinct. For doing so, we can have an SQL query such as:

se l ect count(distinct A2) as c from A

The interpretation of the results provided by the ab ove query couJd be summarised as fo llows
(see Table 9):

Value of c

If ail the fi elds c are equal to 1.

If at least one the fields c is greater
than 1.

In terpretation

• A2 seems to be a secondary identifier .

The result couJd be different tomorrow

• A2 is not a secondary identifier.

• A2 is a secondary identifier but there are
data errors.

Table 9-Interpretation of the results of the recovery of secondary identifiers.

5.2.9. Sets behind arrays . . .

When a multivalued field is declared as an array or a list or a bag , it is important to recover its
original structure.

A . E licitation

We will introduce this section by an example, if we have a relation Customer with the fo llow
ing relation schema Customer (Id, ame, Phonel , Phone2, Phone3) where the attributes
Phonel , Phone2 and Phone3 record the phone numbers of customers. One can ask whether
these three attributes represent arrays, lists or bags .

We will start by extracting the attribute o f interest, then we analyse its contents in the sense
that we will look whether a relation exits between the different components. In other words,
we apply an SQL query such as select A Jrom A , to visualise the attribute of interest (A; in this
example), then we examine minutely the result by employing a procedural part on it. The pro-

5-30

1
1
1
1
1
J
1
1
1
1
1
1
1'
1
1
1
1
1
1
1
1

1
1
1
J

1
1
1
1
1
1
1
1
1
1
1
1
1

cedural part will try to find out whether an order or / and a repetition is comprised in the
structure.

unfortunately, there are several complex structures that need to be implemented in a relational
database: arrays, arrays without repetitions, lists, lists without repetitions, sets, bags. And there
are several ways to represent thern either with multiple attributes Qike in the example above),
with a big attributes containing the concatenation of several values, o r with a table and a FK.
Analysing every possible combination of the constructs cited above deserves a complete
chapter.

5.2.10. Existence constraint

One of the origins of the existence constraint is the concept of generalization / specialisation .
We propose to have a quick look to the entity relationship (ER) mode! and especially to the
concept of generalization. The concept of generalization represents logical links between an
entity E, referred as parent entity, and one or more entities E 1, ... , En, known as chi!d entities. E is
more general than E 1, ... , En, in that it comprises them as a particular case. We say that E is a
generalization of E 1, ... , En and E 1, ... , En are specialisation o f E [Atzeni99).

The relational mode! does not allow the direct representation of generalization/ specialisation
used in the GER mode! [Hainaut 89). Arnong the different possibilities of transformation of
generalization we will retain the one that consists in collapsing the child entities into the par
ent entity. We will first remind the different kinds of generalization, then we will represent
graphically the transformations of generalizations retained in this work.

ln regard to generalizations, and fo llowing in that [Atzeni99] , th ey can be classified on the
basis of two orthogonal properties :

• A generalization is total if every occurrence of the parent entity is also an occurrence of
one of the child entities. otherwise it is partial.

• A generalization is exclusive 25if every occurrence of the parent entity is at rnost an occur-
rence of one of the child entities. Otherwise it is overlapping.

Apropos of the transformations of the generalizations, we can say roughly that in the case of
the exclusive generalization; we will have an exclusion constraint, for the total generalization, we
will have an at least one constraint, and for the overlapping generalization, no constraint is added.
When a generalization is total and disjoint, we will talk about a partition and have an exact-one
constraint.

The scheme below sumrnarises (see figure 10) what was said above and it will include some
other details, it consists of two parts the first one will represent the conceptual mode! and the
second one will represent its relational equivalence. The definitions of the syrnbols T, P, D
used in the scherne follows.

• The symbol T stands for total i.e. if A is the parent entity of B and C, we will have

BuC=A and BnC :;t:0 in most cases.

• The symbol P stands for partition 1. e. if A is the parent entity of B and C, we have
BuC=A and BnC =0.

• The symbol D stands for disjoint i.e. if A is the parent entity of B and C, we will have

BuC c A and BnC =0.

25 Also known as dzjjoint.

5-31

A
Al
A2

A

Al
A2
C[0-1]

Cl
C2

B[0-1]
BI

A

Al
A2

A

Al
A2
C[0-1]

Cl
C2

8[0-1)
BI
B2 C

Cl
C2

B2
B

BI
B2

Cl
C2

at-lst-1 : C
BI
B2

B
BI
B2

exact-1:C
B

A
A

A

Al Al Al
A2 A2 A2

C[0-1]
Cl
C2

B[0-1]
C B1 C

Cl B2 B I Cl
C2 excl :C 82 C2

B

Figure 10-transformations of generalisation into the relational model.

A

Al
A2
C[0-1]

Cl
C2

B[0-1]
BI
B2

Another source among others of existence constraints will provide us with the coexistence con
straint which will be introduced by an example (see figure 11). If two (or more) optional attrib
utes participate to the same coexistence constraint then they occur together or none of them is
present.

A

Al
B[0-1]

Bl
B2

id :Al

A

Al
81[0-l]
s2ro-11
id : Al
coex: BI

B2

Figure 11- Disaggregation of an optional compound attribute.

5-32

B

1
1
1
1

1
1
11
1

1
1
1
1
1
1
1
1

Errata

Chapitre 1

Pa2"e Endroit dans la pa2"e Modification
p. 1-5 Phrase précédent le titre « [Navathe 871 » Mettre « details » au sin0.1lier
p. 1-6 Dernière ligne du point« [Kalman 91) » Insérer le mot « between » entre

« relationship » et « the two
relations »

p. 1-8 Phrase suivant les deux paragraphes démarqués Mettre « detail » au singulier
par des puces rondes, 8° mot

p. 1-8 Troisième case de la ligne de titre du tableau 1, Changer « methodMethod » en
4• mot « Method »

p. 1-9 Avant-dernier paraQ"faphe, 4• mot Remplacer « realised » par « done »

Chapitre 2

Page Endroit dans la pa2"e Modification
p. 2-8 Premier ovale de la figure 5 Remplacer le mot « ext » indiçant le

mot« Code », par le mot « ddl »

p. 2-8 Deuxième paragraphe commençant par Marqué le paragraphe par une puce
« System Identification ... », suivant le titre afin de le mettre au même niveau
« A. Project preparation », que le paragraphe le suivant, qui

commence par
« Architecture recovery ... »

p. 2-10 Dernier paragraphe précédent la figure 7 Monter d'un niveau le paragraphe
afin de le mettre au même niveau
que « Préparation » et « Basic
conceptualisation », en le marquant
d'une puce ronde

Chapitre 3

Page Endroit dans la page Modification
p. 3-3 Titre « 3.3.5. Multiple-doman attribute » Mettre le dernier mot du titre au

pluriel : « attributes »

Chapitre 4

Pa2"e Endroit dans la pa2"e Modification
p. 4-1 Dernier paragraphe de la page, 3• et dernière Enlever ce mot « then »

lime, 4• mot
p. 4-2 Ovale « Storage Procedures » de la fi0.1re 8 Remplacer « Storage » par « Stored »
p. 4-5 5• ligne, 9• mot Enlever ce mot « to »
p. 4-5 8° ligne du premier paragraphe, en comptant à Mettre ce mot « customer » au pluriel

partir de la fin, 15• mot
p. 4-5 2• paragraphe, 3• ligne Ajouter « , Xcl, Y t ,0 » à la fin de la

lime, après « Y cl »
p. 4-6 Dernier paragraphe, dernière ligne, 2• mot Enlever ce mot « any »
p. 4-7 Dernier paraITTaphe, 5• ligne, 6° mot Mettre ce mot « V » en minuscule

1

Chapitre 5

Pa2e Endroit dans la pa~e Modification
p. 5-2 Première ligne, s• mot Enlever ce mot « will »
p. 5-3 2• paragraphe, 2• ligne Placer le mot « and » entre « R » et

((t »
p. 5-6 1 ., paragraphe, 5• ligne Placer le mot « the » entre les mots

« to » et « third »
p. 5-6 Note de bas de page n° 19 Changer « worsecase » en « worst

case »
p. 5-13 Requête SQL du milieu de la page Modifier la requête par « select

count(*) from A where not exists
(select Bi, B2, .•. , Bn from B where
A.A1=B.B1 and A.A2=B.B2 and
... and A.~=B.Bn »

p. 5-13 Requête SQL du milieu de la page Ajouter la schéma suivant à la
requête:

1

A

1 l ► i~
1

Al

p. 5-19 Paragraphe marqué du chiffre 2, 3• ligne Placer entre« A2 »et«~» trois
points de suspension

p. 5-19 2• paragraphe, 2• ligne, 1 o• mot Remplacer de mot « generated » par
« degenerated »

p. 5-19 Avant-dernière ligne du programme Enlever le mot « do »
p. 5-19 Dernière ligne du programme Changer« (att, set_att\ { att}) ; » par

« (x, set att\ f x 1) ; »
p. 5-20 7• ligne du programme Changer« candidaH-{lhs+rhs} » par

« candidat~ candidat u {lhs+rhs 1 »
p. 5-20 9• ligne du programm, 7• mot Modifier le commentaire en

changeant le mot« composed » par
« composite »

p. 5-20 5• paragraphe après le programme commençant Déplacer le mot« be» en le plaçant
par « Generate rhs », 2• ligne entre les mots « will » et « stored »

p. 5-20 Pseudocode du base de la page, après le Précéder le pseudocode du titre : « It
paragraphe « InferenceO : » is pseudocode is as fo llows : »

p. 5-21 Requête SQL du début de la page, dernière ligne Mettre un point, au lieu d'un espace,
de la requête entre« t2 » et compn(lhs} »

p. 5-21 Paragraphe précédent le point Remplacer ce mot « found » par le
« 4. When we deal with the whole database », mot « find »
avant-dernière ligne, 14• mot

p. 5-21 Dernière phrase de la page Placer« : » après « SQL fDatel »
p. 5-22 Paragraphe précédent le pseudocode, Changer de mot « no » par le mot

commençant par« For this first question . .. », 3• « not »
liene, 13• mot

2

p. 5-26 1ère requête de la page, suivant le 3e paragraphe, Remplacer entièrement cette ligne,
dernière ligne de cette requête commençant par« where B1 not »,

par « where not exists (select * from
A where A.B1=B.B1 and ...))»

p. 5-28 4e paragraphe commançant par« Only by Remplacer ces mots« two
visualising the result ... », avant-dernière et 7e sequences » par « a sequence »
ligne, 8e et 9e mots

p. 5-30 3e ligne du tableau, 1ère case commençant par« If Placer le mot« of» entre ces mots
at least ... », 4• et 5e mots « one » et « the »

p. 5-24 1er paragraphe suivant la 1ère requête, 1ère ligne, Remplacer ces trois derniers mots « a
les trois derniers mots constraint exclusion » par« an

exclusion constraint »
p. 5-35 3e paragraphe du titre « A. Elicitation », 1ère et 2e Mettre en indice le « i » et le « n » des

ligne « Ai » et « An », afin d'obtenir « A, »
et « A.i » respectivement

p. 5-35 Avant dernier paragraphe de la page, Placer entre ces mots «Client» et
commençant par« Case2 could be .. . », 4e ligne, « As » un point
7e et 8e mots

p. 5-35 Avant dernier paragraphe de la page, Placer entre ces mots « than » et
commençant par« Case2 could be ... », 5e ligne, « we » le mot « if»
3e et 4e mots

p. 5-39 Dernier paragraphe, commençant par « Note Placer« : » après ces mots« Note
that », après ces deux 1 ers mots de la 1ère ligne that »

Chapitre 7

Page Endroit dans la page Modification
p. 7-2 Paragraphe en dessous de la figure 12, première Mettre ce mot « details » au singulier

ligne, 14e mot
p. 7-4 Phrase précédant la forure 13, dernier mot Mettre ce mot « details » au sin0..1lier
p. 7-7 Paragraphe du point« C. The executor », Remplacer« dependent of » par

dernière ligne, 6e mot « depends on »
p. 7-8 Dernier paragraphe, 2e et 3• phrases, mot en Corriger ce mot « developmnn t » par

césure « development »
p. 7-9 2e paragraphe, 1ère ligne, 3e mot Corriger ce mot « extacting » par

« extracting »
p. 7-11 Paragraphe « Voyager 2 » marqué d'une puce Changer« list most assistants. » par

ronde, 5e sous-point marqué d'un losange sur « list of most used assistants. »
pointe

Chapitre 8

Page Endroit dans la page Modification
p. 8-1 1er paragraphe, avant-dernière ligne, r mot Mettre la 1ère lettre de « These » en

minuscule

3

1
J
1
1

'

1
1
1
li
1

1•
~
Il

Chapter 8

Conclusion and perspectives

This work is a contribution to the process of reverse engineering of relational databases. It is
intended to recover the implicit constructs and constraints embedded in a relational database.
Among the range of techniques and sources of information, Data Anafysis is the one we have
put emphasis on. Two kinds of strategies have been proposed; the first organises the reason
ing when using D ata Analysis, the second organises the reasoning when using the different
other techniques available bes icles data analysis. either the first strategy nor the second are
claimed to be general, which is an unrealistic hope for two reasons: first, reverse engineering is
a complex and learning process; second, the problems tackled by reverse engineering are vari
ous, different almost each time. Instead, These strategies try to organise the reasoning and to
help in solving some practical problems.

Most of the results provided by the technique of Data Analysis are approximate results, we
think for example about the recovery of maximum and minimum cardinalities where Data
Analysis can give only lower or higher bounds . Data analysis is used here for prov
ing/ disproving hypotheses and also for discovering them.

Although Data analysis is a costly technique, it gives information difficult to get with other
techniques such as the so-called (in this work) " fuzzy" information. Therefore, we have used
heuristics to reduce the space of search. Moreover, the process of recovery of some implicit
constructs and constraints cannot be fully automated; the involvement of the user is required.

We can say that data analysis is fully in the spirit of the DB-Main project and is a good com
plement to it, but there still a lot of work to do befo re this work deserves its place in the DB
Main CASE tool:

• To use data analysis for other kinds of databases such as Cobol, ...

• To exploit the idea expressed in this work, which consists in the use of samples of a data
base, especially when dealing with large databases.

• The use of samples has to be supported by a statistical study to enhance the reliability and
to guarantee the quality of the results.

• When we deal with Functional dependencies, try to find a technique to evaluate the ap
propriate level from which we can start the search (by level we mean the number of at
tributes considered in the lhs of a FD) .

• To see how we could couple this approach with other fields such as Data Mining.

• To analyse the possible interaction between the different components of the designed
prototype.

• To proceed with the prototype design in order to cover ail the irnplicit constructs and
constraints that are encountered in relational databases.

• To allow the prototype to exchange data with other modules irnplernenting the other re-
covermg techniques.

8-2

1
1

1

1
1
1
1

' J
1
J
1
1
t
1
1
J
1
1
1

A. Elicitation

The recovery of the existence constraints will be guided by the questions of the user. It will
take place when these constraints are not declared or when the user, having some hypotheses,
wants to verify them. For each constraint we have a range of questions that will be presented
here below. We will deal only with the first kind of questions.

• For the "At least one" constraint, we will try to generate the appropriate SQL queries for
the following questions:

❖ Given a set of optional attributes check if a constraint at least one holds between
them.

❖ Given a set of optional attributes check if a constraint at least one holds between a
subset of them.

❖ Given a table check if a constraint at least one holds .

For the first question, in the case we have, for example, three attributes A 1, A 2, A 3 of are
lation A, we will generate the following SQL query:

select A1, A2, A3 from A

where not (-, A1 /\ -, A2 /\-, A3 Or (-, A1 /\ -, A2 /\ A3)

or (-, A1 /\ A2 /\ -, A3 Or (A1 /\ -, A2 /\ -, A3))

If the resulting table is empty then we can conclude that probably a constraint At least one
holds between the attributes.

• For the "exact one" constraint we will generate the SQL queries suitable for the following
questions:

❖ Given a set of optional attributes check if an exact one constraint holds between them.

❖ Given a set of optional attributes check if an exact one constraint holds between a
subset of them.

❖ Given a table check if an exact one constraint exits.

For the first question, in the case we have three attributes A ,, A 2, A 3 of a relation A, we
will generate the following SQL query:

select A1, A2, A3 from A

where not (-, A1 /\ A2 /\ A3 Or (A1 /\ -, A2 /\ A3) Or (A1 /\ A2 /\ -, A3))

If the resulting table is empty then we can conclude that probably a constraint exact one
holds between the attributes.

• For the "exclusion" constraint we will generate the proper SQL queries for the following
questions:

❖ Given a set of optional attributes check if an exclusion constraint holds between them.

❖ Given a set of optional attributes check if an exclusion constraint holds between a
subset of them.

❖ Given a table check if an exclusion constraint exits.

For the first question, in the case we have three attributes A ,, A 2, A 3 of a relation A, we
will generate the following SQL query:

5-33

select A1 , A2, A3 from A

where not (-, A1 A A2 A A3 Or (A1 A -, A2 A A3)

or (A1 A A2 A -, A3) Or (A1 A A2 A A3))

If the resulting table is empty then we can conclude that probably a constraint exclusion
holds between the attributes.

• The "coexistence" component will generate the adapted SQL queries for the fo llowing
questions:

❖ Given a set of optional attributes check if a coexistence constraint holds between
them.

❖ Given a set of optional attributes check if a coexistence constraint holds between a
subset of them.

❖ Given a table check if a coexistence constraint exits.

For the first question, in the case we have three attributes A 1, A 2, A 3 of a relation A, we
will generate the following SQL query:

select A1, A2, A3 from A

where not (A1 A A2 A A3 Or -, A1 A -, A2 A -, A3)

If the resulting table is empty then we can conclude that probably a coexistence constraint
holds between the attributes.

Table 10 will summarise the different situations one can face with the existence constraints:

Resulting relation in terpretation

E mpty. • An existence constraint seems to hold be-
tween the attributes.

• I t is an accident.

Not empty but the number of • An existence constraint could hold between

tuples is very small. the attributes but there are erroneous data

• No existence constraint holds between the
attributes.

ot empty but the number of • N o existence constraint holds between the
tuples is very big. attributes.

Table 10-lnterpretation of the results of the recovery of existence constraints.

As we can notice, the only difficulty for all the different kinds of existence constraint is to
manage the number of null (not nul!) in the query. For example, when dealing with the at least
one constraint, we need to generate a query that translates the fac t, if we have n attributes, al!
of them are present or (n-1) or (n-2) or (n-i) ... or one . Where i :S n-1. A procedural part will
translate this constraint (or its opposite) then we construct the SQL query, which will be the
generalization of the example wi th three attributes .

5.2.11. Redundancies

Redundancies could be included into the database . The aim of their presence is among others
to enhance performance.

5-34

1
1
1
1
1
1

1

11 ,1
I l
11
11
,1 ,,
1
1

1

'

1
1
1
1
1
1
1
J
1
1
1
1
1
1
1
1
1
1
1
1
1

We can fin d in [Hainaut98] two kinds of redundancies namely Structura/ Redundanry and Nor
malisation Redundanry. We will present briefly each of them.

• Structural redundancy26

The main problem is to detect the redundancy constraint that states the equivalence or the
derivability of the redundant constructs. The expression of such constraints is of the form
Cl= f(C2, C3, ...) where Clis the designation of the redundant construct. Note that expres
sions such as f1(Cl,C2, . ..)=f2(C3,C4, .. .) generally do not express redundancy, but rather a
pure integrity constraint, in which case no constructs can be removed

• Normalisation redundancy27

An unnormalised structure is detected in entity type C by the fac t that the determinant of a
functional dependency is not an identifier of C. Normalisation consists in splitting the entity
type by segregating the components of the dependency. No te that the relationship type should
be one-to-many and not one-to-one, otherwise, there would be no redundancy.(see section
dealing with fun ctional dependencies fo r the recovery of this kind of redundancy) .

In order to normalise the schema, the recovery of the redundancies is important.

A . E licitation

We can have different kinds of redundancy, very often each one will need an appropriate ap
proach. This work will be based on two examples of redundancies that we will explicit below.

T he structural redundancy is a composition of the two examples of redundancies that will be
used in this work.

We have a relation A, its relation schema is the foll owing A (A1, A2, A3, Ai . .. An). We can have
another relation, let us cal! it B, such that case1: B(A1, A2, A3,Ai ... An) and the set of the values
of B is a subset of the set of values of A or case2: B(Ai, Aj where the set of the values of B.A1

is equal to the set of values A.A1.

In the real world the relation A can be a relation representing customers fo r example, Client
(numcli, name, address, phonenum). The case1 could be a relation comprising the customers
having placed an order fo r a value greater than 100.000Fb, let us call it, best_cli, with its rela
tion schema best_cli (numcli, name, address, phonenum). Since best_cli has much fewer rec
ords than Client, an index on its primary key organised as a B-tree will be made of fewer lev
els; so an access to a record of best_cli will be fas ter than an access to Client.

Case2 could be a relation comprising al! the customers, but just their numcli and their names
fo r faster access than in the bigger relation. Let us cal! this relation, reduced_cli, its relation
schema will be, reduced_cli (numcli, name). Since reduced_cli has fewer fields than Client, the
records are shorter than those of Client As a consequence a big number of records of re
duced_cli (more than we deal with the records of Clien~ can be put in a single page, reducing
the number of pages to be read when accessing to all the records, and reducing the reading
time.

A mixed example between case1 and case2 could be a relation comprising only the customers
that have placed at least an order the last three months. It could be to keep track of the last
orders, and ail what we need is the identi fiers of the clients and their phone numbers . Let us
cal! this relation, last_cl i, where its relatio n schema will be las t_cli (numcli, phonenum). For

26 Derived from [J-Iainaut98] .
27 Derived from [J-Iainaut98].

5-35

bath case l and case2 we have to verify if ail the instances of B are included in those of A. For
Case2, we have to check the opposite as well. For casel Data Analysis is used for proving or
disproving. In the case2, we have to go furth er and find which column is redundant, to reduce
the space of search we can be helped by getting the information about the type and the length
of the attributes of A and B and just compare those having the same type and length.

If we have the list o f the attributes of B denoted by L, we can imagine an SQL query such as:

select L from B where L not in (select* from A)

The problem with this query is that the in operator does not accept a list of attributes for the
second select. To compensate for that we can imagine a query such as:

select L from B
where L1 not in (select L1 from A) and .. .

and Ln not in (select Ln from A)

The problem with this query is that it will give a result that is not suitable for our case, For
example, if the instances of relation A are as follows:

A1 A2

3 6

5 5

2 4

And the instances o f relation B are as fo llows:

Bl B2

3 4

5 5

8 7

2 6

The query above (L=(B1,Bz), L1= B1=Ai, Lz= B2=Az) will give an empty table, which will lead
us to wrongly conclude that relation B is included in A. The reason for that is that each value
of the attribute is taken apart without considering the whole tuple.

To salve this we have to have a procedural part, which will read the relation B tuple by tuple
and, for each tuple, will verify whether is it included in A or not.

Or, in the case we have information about primary keys and only in the case where B2 is a
mandatory attribute because if B2 is optional and A2 is optional, we will not be able to com
pare them, we can perform an outer join, and we will have a query like:

select*
from A right outer join B
where A.A1=B . B1 and (not (B . B2=A.A2) ...)

The result for our example will be the table below:

5-36

1
1
1
1
t
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
J
1
1
1
1
1
1

' 1
'I
1
1
1
1

Bl B2 A2

3 4 6

2 6 4

8 7 ULL

The fact that the table is not empty indicates that B is not included in A. More generally, one
can have another case (Case3) where the relation B has its own attributes besicles some of the
attributes of A. B(l21,B2, .. . Bm, A1,A) and where A1 is a foreign key to the relation A. ~ could
be the name of the client for example.

5.2.12. Enumerated value domains

The aim here is to discover the set of limited and predefined values from which a given field
or a set of fields is drawing its values.

A . E licitation

We can extract the attribute of interest and analyse the values taken by this attribute. for doing
so, we can have an SQL query such as:

select distinct A from tab .

Where A is the attribute or the set of attributes of interest.

This query will provide us with the values taken by the attribute fo r the current time (the in
stances of the database will give us the values taken for the moment). We mean by that we can
never be sure to recover the whole set of values, we can only recover the used values . The
remaining values, if any, might be recovered when applying the process in the future. If the list
provided by the query is rather short, we can try to find if it is not hard coded in the applica
tion programmes.

Note that the designer could choose not to manage that himself, using SQL, for example, he
can create a relation representing the domain (dom_rel) and make the attribute in the relation
of interest be a fo reign key to the relation dom_rel.

5.2.13. Constraints on value domains

The aim is to find out the restrictions on the allowed values of an attribute or a set of attrib
utes.

A . E licitation

The problem is, we can not have a general and global approach, each restriction or maybe a
set of restrictions will have its proper solution. We will explore some cases.

We can look for the minimum and maximum size of an attribute, an SQL query such as:

select min(A),max(A) from tab

will provide the current min and max values, in this case the result have to be seen as a reflect
of the current instances; and that the result could be different later if other instances are intro
duced.

If the attribute is of type date we can try to find the range.

5-37

5.3. Strategy
We will try in this section to establish a strategy to recover the different implicit constructs
that could be recovered by the use of Data Ana!Jsis as a tool fo r Reverse E ngineering.

Having a general method that could be able to cover ail the kinds of prob lem is an unrealistic
hope in the field of Reverse Engineering, this fac t is due to the variety o f problems and their
specificity. As a consequence, the strategy proposed here is not claimed to be either general or
mandatory. It is just an attempt to organise the reasoning and to help in lighten ing and reduc
ing the complexity of the problem seen as a whole.

It is a strategy to be applied to some parts of the database i.e. the process can be incremental
and as repetitive as wanted. The complexity of the Reverse E ngineering pro jects, the difficul ty
of the issues addressed by this field and the quality of apprenticeship that has this process
have lead us to think about a strategy to be applied to some parts of the database. Besicles ail
these reasons, people are usually interested in some aspects o f the database to be reverse en
gineered and not in the whole database.

In the proposed strategy, we will first of ail recover the optional attributes, this decision can be
warranted by the fact that this recovery will help us, in one hand, eliminating the optional at
tributes from the set of attributes to be checked as minimal primary keys , and as a conse
quence we will reduce the space of search. In the other hand, it will help us when we are
dealing with cardinality constraint, for example a fo reign key defin ed on an optional attribute
is an implementation of a relationship type having minimum cardinality zero.

T hen we will consider the minimal primary keys and the candidate keys, the justification is that
the info rmation about these two constructs will reduce the complexity when we will be con
cerned with fun ctional dependencies.

In the third step we propose to deal with fin e-grained structure of attributes, multivalued at
tributes, attribute aggregates and existence constraints, which can be clone in any order. Dif
ferent reasons have guided us to do so. Indeed, recovering fo r example the fine-grained
structure o f an attribute could provide us with hints about foreign keys and functional de
pendencies. Sorne foreign keys and functional dependencies can be missed, if the fine-grained
structure of attributes was not recovered in prior of attribute aggregates. We are thinking of
the case where a component of the attribute is an implicit fo reign key or when a functional
dependency does exist between the components. Another case wo rth to mention is when a
fun ctional dependency exists between one or more components of the attribute and some
other attributes of the relation. In the same level, we will try to recover the multivalued attrib
utes, which we consider as a special case o f the recovery of the fin e-grained structure of at
tributes .

The las t thing in the third step will consist in the recovery o f attribute aggregates and existence
constraints. These two ac tions can be clone in parallel. T he recovery of attribute aggregates
can give indications about fun ctional dependencies. It is the case when a fun ctional depend
ency holds am ong the components or when the aggregate itself is the left hand sicle or the
right hand sicle of a functional dependency.

After that we will get to work on functional dependencies, which could among other things
give hints or help to formulate hypotheses about the existence of foreign keys. For example, if
we have a relation A (A1, B, C) and if we find a fun ctional dependency such as B➔C, we can
later on try to explore th e data to verify whether B is a fo reign key. It could also help to eluci
date redundancies. We will then grapple with fo reign keys and try to find multiple-domain
attributes. Finding multiple attribute structures could help in recovering the alternate fo reign

5-38

1
1
1
1

' 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
J
1
1
1
1
1
1
1

keys, it is the case when the components of the field are primary keys of other relations . When
all the other steps are clone, we can tackle redundancies. Finally, cardinality constraints can be
recovered using, in most of the cases, the results of the other actions.

The other constraints and constructs such as sets behind arrays, constraints on value domains
and enumerated value domains do not seem to be strongly related to the other implicit con
structs studied up to now, and can be clone in any order and even in parallel with the others if
wanted.

Table 11 will give a summary of the proposed strategy.

The action's number The implicit constructs/ constraints

1 Optional attributes.

2 Minimal primary keys.

Candidate keys .

3 Fine-grained structure of attributes.

Multivalued attributes.

Attribute aggregates.

Existence constraints.

4 Functional dependencies.

5 Foreign keys

Multiple-domain attributes.

6 Redundancies.

7 Exact min / max cardinality

1** Sets behind arrays . . .

2** Constraints on value domains

Enumerated value domains

Table 11-Summary of the proposed strategy.

Note that (**) indicates that no number is ass igned to that action, and that when a step having
a number from one to seven includes several sub-steps, no order in perfo rming the sub-steps
is required. T he step 1 ** could be done in parallel with actions 1 to 7. T he step 2** could be
clone independently o f ail the other actions. In the step number 3, the recovery of attribute
aggregates and existence constraints can be clone in parallel.

5-39

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
t
I,
1
1
1
1

' 1
1
1
1
1
1
1
t
1
1

Chapter 6

The use of several techniques of
elicitation

We will investigate, in this chapter, the different techniques of elicitation but the Data Analysis
technique that was explored in chapter five.

Although Data Analysis is the essence of this work, we propose to have a close look at the
other techniques for two major reasons. The first reason is that we believe that, in a reverse
engineering project, no technique, as powerful as it could be, can pretend to cover ail the
problems or to be the best. Indeed, each technique, as the case may be, can bring some inter
esting information that we are probably unable to get with the remaining techniques. The sec
ond reason is that this work is not self containing but is intended to be integrated to the DB
main project inside which some of the techniques of recovery of implicit constructs and con
straints have already been implemented. We will apply the different techniques but the docu
mentation and the domain knowledge, which can be used for ail the implicit constructs and
constraints. Note that the remaining techniques will be applied to some of the implicit con
structs and constraints, precisely, those that could be recovered by the Data Analysis tech
nique. Then we propose, for some of them, a strategy organising the use of the different tech
niques including Data Analysis . About the strategy, we use the methodology proposed in
[Hainaut98]. This methodology comprises four steps or four classes of the techniques of
elicitation: l!Jpothesis triggering, l!Jpothesis completion, l!Jpothesis proving and l!Jpothesis disproving. These
different classes of techniques are defin ed by the author as follows:

• A hypothesis triggering technique puts in light a possible implicit construct.
• A hypothesis completion technique help formulate the complete hypothesis.
• A hypothesis proving technique tends to increase the confidence in the hypothesis.
• A hypothesis disproving technique tends to decrease the confidence in the hypothesis.

6.1. Foreign key28

6.1.1. Elicitation Techniques

We will examine in which way the different techniques described in chapter four could help in
the recovery of implicit foreign keys.

28 this section is derived from [Hainaut 98]

A. Dataflow ana/ysis

The dataflow in a program is the transport of values by variables. If a fo reign key holds be
tween a set of columns in a table and the primary key of another table (possibly the same),
then, m ost probably, application programs will comprise some instructions establishing a flow
of values between the set of columns of the first table and the primary key of the second one.
If we draw a dataflow graph of the application program (nodes are variables, oriented edges
represent ass ignments, non-oriented edges represent equality testing), we will surely find a
path between the set of columns of the first table and the primary key of the second one.

B. Usage pattern ana/ysis

If a fore ign key holds between two tables A(A1, A2, A3) and B(121, B2, B3) where A is refer
enced by B (let B2 be that foreign key), one can observe some of the operations presented
below. As an example, let A be the relation Customer (Cid, Name, Address) and B be the re
lation Order (0-id, 0-cust, 0-date) , Customer and Order may be linked by the fo reign key 0-
cust.

1. When adding a new record in Order, a check of the validity of the referencing field in
Customer is performed. This operation could be formulated in an SQL-like expression as
fo llows:

if exists (select* from Customer where Cid=:NC)
then insert into Orcier values (:NO, :NC, . . .)

2. When removing a record in Customer, a program checks that this record is not refer
enced, or also rem oves ail records from Order that reference this particular record of
Customer. This operation could be formulated in an SQL-like expression as fo llows :

delete from Orcier
where O-cust in (select Cid from Customer where Cl) ;

delete from Customer where Cl (Cl stands for a condition)

3. Finding a record in Customer on the basis of a value of the referencing set of columns
from Order. This operation could be formulated in an SQL-like expression as follows:

select Cid , Name, Address
from Customer, Orcier
where Customer.Cid = Order.O-cust and O- id=:OID.

4. Accessing ail the records of Order for which the values o f the referencing set of columns
match the primary key of a record of Customer. This operation could be fo rmulated in an
SQL-like expression as follows:

select O-id,O-cust, O-date
from Customer , Order
where Customer.Cid=Order.O-cust and Customer.Name=:CN.

C S creen, formJ~ report lqyout

When we analyse the content of screens, forms or of report layouts, it is possible to find some
evidences about foreign keys.

The spatial relationships between data fields , for instance a customer name and, just below a
little shifted to right, a column of order numbers, can suggest an implicit relationship .

Labels and comments included in the panels can bring information on the meaning of the
various fields .

6-2

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1

' 1
1
1
t
1
1

Discarded fields can bring information too. If ail the columns from two tables appear in a
report except one column which content is the same as the content of another one, can sug
gest that a foreign key holds between these two tables.

D. Program execution

Sorne information can be obtained by acting on an application program. For example, by try
ing to give an invalid customer number when entering an order, we can see if the program
accepts it or not. If it is accepted then one can conclude that the customer number is not
mandatory, maybe the program allows users to make an invoice to a non registered customer.
If it is rejected, one can conclude that the customer number is mandatory, and maybe a strong
relationship exists between the order and the customer.

E. Physica! structure

• A field supported by an index, if it is not a primary key, may suggest that it is used as a
foreign key, because it is common practice to wish to access foreign keys in the reverse
sense.

• Data types and domains of the values of a foreign key and the referenced primary key
generally match, strongly or loosely.

• A physical cluster is defined on the identifier of A and on B.B2•

F. Name ana!Jsis

A simple analysis of table and column names may suggest the existence of foreign keys. we
can have several situations:

• a column name looks like a shortcut of a table name, in our example 0-cust.

• a column name looks like an identifying column name in another table.

• a column name con tains a prefix or a suffix like "ref" .

• the name of a column may suggest the ra ie played by its table within the database.

In these examples, when we say a name looks like another one, we mean that they are the
same, or maybe one is a shortcut of the other, possibly with different prefixes or suffixes i.e.
they are comparable in some way.

6.1.2. Elicitation strategy

Phase Heuristics Short description

Hypothesis • Name analysis • Name of column B.B2 suggests a table, or an extemal

Triggering id, or includes keywords such as ref, ...

• D omain knowl- • Objects described by B are known to have some

edge relation with those described by A.

• D ata analysis • Check whether a foreign key exits between A and B .

• Screen • When the attributes of two different relations are
included in the same screen.

Hypothesis • Name analysis • Select table A based on the name of B2•

Completion • D omain knowl- • Find a table describing abjects which are known to
edge have some relation with those described by B.

6-3

• Technical con- • Search the schema for a candidate referenced table
structs and id (with same type and length).

• Data analys is • Search the database for a relation that has the attrib-
utes sharing the same domain and length with those
comprised in B2.

Hypothesis • Technical con- • There is an index on B2.

provmg structs

• Technical con- • B2 and A.A1 are in the same cluster .
structs

• D ataflow analysis
• B2 and A.A1 are in the same dataflow graph frag-

ment.

• Usage pattern • A.A1 values are used to select B rows with same B2

values .

• Usage pattern • B2 values are used to select A row same A1 value.

• Usage pattern • A.row of B is stored only if there is a matching A
row.

Usage pattern • When a row is deleted.from A. Rows with B2 values •
equal to A.A1 are deleted as well.

• There are views based on a join with B.B2 = A.A1 . • Usage pattern
• There is a view with check option selecting Bs which

• Usage pattern match A rows.

• The values of B2 are included in the values of A.A1 •

• D ata analysis

Hypothesis • Data analysis • Prove that some B.B2 values are not in A.A1 value set
disproving

Table 12- Foreign key elicitation strategy.

6.2. Functional dependencies

6.2.1. Elicitation Techniques

The objective will be to recover the implicit fun ctional dependencies using the different tech
niques described in chapter four.

A. Usage pattern ana!Jszs

We are dealing with the attributes that are not identifiers. From the point of Forward engi
neering, one could have several situations.

The first situation can be introduced by an example (see Table 13). We have a relation, let us
cal! it Info, having the following relation schema, Info (id, NumProd, Prod, .. .), where the
second attribute records the product number and the third attribute records the name of the
product. The "forward engineer" is aware o f the existence of a FD (NumProd➔Prod), so
(s) he can write a program that looks for NumProd, for example, the value 2 in the example
above, and once it has found the first instance corresponding to value 2, it stops the loop and

6-4

1
1
1
1
1
1
1
1
1
1
1
I l
1
1
1
1
1
.1
1
.,

'

1
1
1
1
1
1
1
1
1
1
t
1
1 ,,
1
1
1
1
1
1
f

extracts the value of the attribute Prod. It is, in the field of reverse engineering, a hint about
the possible existence of a FD. Indeed, it is possible that the program does not loop because it
knows that al! the other values it could find are the same.

id umprod Prod

1 1 butter

2 2 chocolate

3 1 butter

4 3 sugar

5 4 sait

6 2 chocolate

Table 13 - Relation info

The second situation, could be expressed by a relation, A, with its relation schema as follows:
A (id, Numprod, Quantity) (see Table 14). There could exist a program that loops, when it
finds a value of umprod, it extracts the value of Quantity, then loops to extract al] the pos
sible values of Quantity (for the given value of umprod). It is a hint that a FD does not hold
between Numprod and Quantity.

id umprod Quantity

1 1 20

2 1 50

3 2 200

4 1 205

Table 14-relation A.

Another situation could be detected, if we find a program such as:

Accept P
Select Name from product where numpro=:P
Insert into Orderline values(:o-id, :P, :Name);

where P is the product number in a new orderline.

This program is performed on the relations product (numprod, Name) and Orderline (0-id,
P-id, 0-name). One can conclude to the probable existence of a functional dependency be
tween numprod and name.

B. S creen, forms, report !ayout

We have to be aware about the positioning or the level or the arrangement of the attributes i.e.
when there is a shift, it could be a hint about the possible existence of a FD between the at
tribute of level one (product number in the example below) and the attribute of level two (title
in the example below.

6-5

Batch number

Product number

title

C Program execution

We can think about the case, when one enters a value in a field, another field o f the same table
is automatically updated.

It is the case, when we scan a bar code, we are provided with the price; the bar code and the
price are stored together in an invoice table.

Another thing to be considered, is when the attribute o f the first level is editable and that of
the second level not i.e. when we type the first one, the second is updated.

D. Pl!Jsical structure

We can think about the following case: an index is defin ed on an attribute which is not an
identifier.

6.2.2. Elicitation strategy

We suppose that A and B are two attributes of the same relation.

Phase H euristics Short descrip tion

Hypothesis • Screen • One field, A, which is not an identifier is editable

triggering whereas B which is next to it is not editable.

Usage pattern • The program computes the value of B, when it sets •
the value of A.

• When putting the value o f A, the value of B appears,
• Program execution and it is not updateable.

• Is A a rhs/ lhs of a FD .
• D ata Analysis An index is defin ed on A, which is not a PK . •
• Physical structure

Hypothesis • Screen • Have a look to the labels of the fields A and B.

completion • Program execution • When A is filled, the value of B appears.

• D ata analys is • If A is supposed to be the lhs, we try to find the rhs
and conversely.

Hypothesis • Usage pattern • To find B, we only look for the first occurrence of A.

provmg • D ata analys is • Check if a FD holds between A and B.

Hypothesis • D ata analysis • For a given value of A, we oftentimes find several

disproving diffe rent values o f B.

Table 15-Functional dependencies elicitation strategy.

6-6

1
1
1
1
1
1
1
1
1
1
1
I l
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
!I
1
1
,I
1
1
1
1
1
1
1
1
1
1

6.3. Existence constraint

6.3.1. Elicitation Techniques

A. Usage pattern ana/y sis

If one can find a prograrn that accesses or modifies a group of optional attributes in the sarne
time. It could be a hint for the existence of a coexistence constraint.

Another situation could be also interesting, when we find a piece of program starting with "if'
fo llowed by a black that handles the creation or the update of a group of optional attributes in
the sarne time, we then have a hint about a probable coexistence constraint.

If we find a program comprising a cascade of " if', each one dealing with a special case. It is a
hint about a probable exclusion constraint.

B. S creen, forms, report layout

If some fields are linked to radio buttons then, it is a hint about a probable exclusion con
straint.

C. Program execution

When one is obliged to fi l! several optional fields together on screen, it makes us think that a
coexistence constraint is hidden.

When one has to choose just one fie ld to fill, probably an exact one constraint is hidden.

When we can choose some fields arnong several others and we are obliged to fil! at least one
of them, it is probably an at least one constraint.

When we are fi ll ing several fields and we take two incompatibles ones, we have an error mes
sage. Then, we can conclude that an exclusion constraints probably ho Ids between them.

D. Physical structure

One can verify whether a check or a trigger that verifies the existence constraint holds be
tween some attributes.

E. Name ana/ysis

If the attributes share the same prefix or suffix.

6.3.2. Elicitation strategy

Phase Heuristics Short description

Hypothesis • Usage pattern • A and B receive values at the same time.

triggering • Usage pattern • A and B never receive values in the sarne time.

• Usage pattern • When a record is created A or B, or both of them receive
values.

• Screen • Exclusive fields are linked to radio buttons .

• Physical struc- • A trigger verifies the existence constraint between A and

ture B upon creation and update of records.

6-7

Hypothesis • Usage pattern • Examine the grouping of the assignments in if-then-else

completion structures.

• Program execu- • When A and B are updated, C is also updated .

tion

• D ata analysis • Find every C that could share the same existence con-
straint as A and B.

H ypothesis • Usage pattern • Examine the grouping of the ass ignments in if-then-else

provmg structures.

• Physical struc- • check is defined on the relation .

ture

• D ata analysis • Check if the constraint is satisfied for every record.

Hypothesis • D ata analysis • Find ail the records for wh ich the constraint is not satis-

disproving fied.

Table 16-Existence constraint elicitation strategy.

6.4. Min/ Max Cardinality Constraint
The aim is to recover the exact minimum and maximum cardinalities .

6.4.1. Elicitation Techniques

A . Usage pattern ana/y sis

We can have a counter, or an upper bound check, or a lower bound check, o r constants.

If the access is performed directly, we can conclude that we have a maximum cardinality of 1.
On th e contrary, if a loop exists then we can say that the maximum is greater than one.

B. S creen, forms, report layout

We can count the number of fie lds to enter values of a same type.

In the case of a form to seize the persona! data for new customers, if we have for example, the
space for maximum five phone numbers, we can conclude that the maximum cardinality is 5.
(The phone numbers are stored in a separate relation).

C Program execution

When entering a value of an attribute, and press enter, the user is asked whether (s) he wants to
enter a second value or not.

It could also be the case, if one is asked explicitly to enter from 1 to n values.

D. Physical stmcture

We have to verify if a trigger is present. T his trigger would implement the equality constraint.

6-8

1
1
1
1

1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
Î
1
1

' 1
1
1
1
1
1

6.4.2. Elicitation strategy

Phase Heuristics Short description

Hypothesis • Screen • The screen shows a defined number of fields to

triggering enter the values of A.

• Program execution • T he program only retains the n first values entered .

• Program execution • The program accepts ULL values for A or not.

Hypothesis • Screen • Count the number of fields shown on the screen.

completion • Usage pattern • Constants representing the maximum and the
minimum cardinality.

• Data analysis • Computes the minimum upper bound/ maximum
lower bound of A.

Hypothesis • Usage pattern • Constants representing the maximum and the

provmg minimum cardinality.

Hypothesis • Data analysis • To find some occurrences, the number of which is

disproving out of bound.

T able 17-Cardinality constraint elicitation strategy.

6.5. Fine-grained structure of attributes

6.5.1. Elicitation Techniques

A . Usage pattern ana!ysis

If we fin d a pro gram that extracts sub-strings from A, then we can say that A could be a con
catenation of these sub-strings.

If a program perforrns a concatenation of strings to construct the value of A, then we can
conclude that A is composed of the values being concatenated.

B. S creen, forms, report layout

The screen shows several fields, which seem to be semantically linked to A.

The length of Ais of x but the length of the fie lds on the screen is Jess than x.

C. Physical structure

An attribute has a length abnorrnally long.

6-9

6.5.2. Elicitation strategy

Phase Heuristics Short description

Hypothesis • Screen • While A is a single attribute in the database, the

triggering screen shows several fields, which seem to be se-
mantically linked to A.

• When scrolling the content of column A on the
• Data analysis screen, its data seem to be aligned in several sub-

columns .

Hypothesis • Screen • Look at the length and the labels of the fields on

completion the screen.

• Usage pattern • Extraction of sub-strings from A.

Usage pattern • Concatenation of strings to construct the value of •
A.

• Look for separators included in A.
• Data analysis

• Look for tabulation columns
• Data analysis

Hypothesis • Usage pattern • Verify that an extraction of the su b-strings is per-

provmg formed on A.

• Usage pattern • Verify that a concatenation is perfonned to con-
struct A.

• Verify that ail the occurrences of each sub-field
• Data analysis have the type, length ... specified in the hypothesis.

Hypothesis • Data analysis • Verify that ail the occurrences of each sub-field do

disproving not have the type, length .. . specified in the hy-
pothesis .

T able 18- Fine grained structure of attributes elicitation s trategy.

6.6. Optional attributes

6.6.1. Elicitation Techniques

A. Dataflow ana!ysis

One have to verify whenever ail the fields are filled or not, when fi lling a record.

B. Usage pattern ana/ysis

One have to look whether ail fie lds are set, when writing a record into the database.

C Screen,forms, report /a,yout

When a special symbol, such as *, appears near some fie lds, it is nonnally conceived to show
that the field is mandatory.

6-10

1
1
1
1
1
1
1
1
1
1
1
i
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

If, white comparing two reports, one can find that certain fields are not always filled , (s)he can
conclude that the corresponding attributes in the database are optional.

D. Program execution

If when filling a record, we do not fill some fields, and we get no error message from the pro
gram, then we can conclude that this field is optional. The question that remains is, how is the
N ULL value managed.

6.7. Field aggregates

6.7.1. Elicitation Techniques

A . Dataflow ana!Jsis

Let us say we have the following attributes: Add-num, Add-street, Add-code.

If we have a local variable, and, once we read a record, the three attributes (Add-num, Add
street and Add-code) are transferred into this local variable, and if it contains th e three attrib
utes and nothing else, then we can conclude that, in fact, these three attributes belong to the
same aggregate. We can do the same comment if, white transferring the variable to the data
base, it includes the three attributes together.

B. Usage pattern ana!Jsis

If ail the assignments of the attributes Add-num, Add-street and dd-code are grouped, we
can suppose that they belong to the same aggregate.

C. S creen, forms, report !a,yout

If some attributes are grouped together in the same panel, in a way that th e group does not
contain any other attribute, we can conclude that they are in fact sub-attributes of an aggre
gate.

D. Program execution

When the values of several attributes, for example Add-num, Add-street and Add-code, are
always presented together, we can suppose that they belong to a same aggregate.

E . Name ana!Jsis

If some attributes share the same prefix or suffix, we can conclude that they may belong to
the same aggregate.

6-11

6.8. Multivalued fields

6.8.1. Elicitation Techniques

A. Dataflow ana!Jsis

If the intermediate variab les used to perform the transfer of the instances of the attribute of
interest have one of the following structures: list, set, array ... we can conclude that the attrib
ute is probably multivalued.

B. Usage pattern ana!Jsis

If we find a loop, in which some concatenations are performed, or a slicing of an attribute into
a list of sub-attributes, we can conclude that it is probably a multivalued attribute. The same
conclusion could be drawn if the transfer of the instances is done in loops to/from parts of
the attributes

C. S creen, forms, report !ayout

If the information about the length of an attribute is available, and let us say, it is of 50 char
acters, and we notice on the screen that we have only a fie ld with a length of 10 characters,
then we can suppose that we deal in fact with a multivalued attribute.

D. Program execution

When, for example, we are asked to enter the data one by one, and after that, the entered data
appears on the same line, we can think of a mul tivalued attribute.

E. Physical stmcture

When an attribute has a length abnormally long, it might be a hint that it is a multivalued at
tribute.

F. Name ana!Jsis

When the name of the attribute has the plural mark, we can think that this attribute could be
multivalued.

6.9. Multiple-Domain attribute

6.9.1. Elicitation Techniques

A . Dataflow ana!Jsis

The information used to fill an attribute A cornes from several different sources.

B. Usage pattern ana!Jsis

If we find a pro gram that, after reading the value of an attribute, performs a sequence of tests
on its value to determine its significance, o r shows that it accesses the proper relation to find
out the semantics of the attribute, we can think that we are dealing with a multiple-domain
attribute. For example, when we have a piece of program as fo llows:

6-12

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Read A
if A. contact= 33 then customer
If A. contact=** then supplier

Where A is a relation having among others an attribute contact. supplier, and customer are
two other relations.

C. S creen, forms, report lcryout

A persan is asked to enter either information 1 or information 2. For example, if one is asked
to enter either his/her e-mail or his/her address, we can think that we are in presence of a
multiple-domain attribute.

D. Program execution

If we have a field on screen that accepts two values of different types, we can suppose that we
have a multiple-domain attribute.

6.10. Candidate keys

6.10.1. Elicitation Techniques

We will try to recover the implicit candidate keys

A. Usage pattern ana/y sis

When we try to access the relation on basis of a field A which is not a primary key, and once
the field is found, the search is stopped, it could be a hint that A is a candidate key.

B. Program execution

When creating a new record, we get an error message telling that the value already exists. We
can conclude that the field could be a candidate key. Besicles the uniqueness, if NULL values
are accepted, we can also think about a candidate key.

C. Physica! structure

If an index is defined on the attribute A. we can conclude that it is a candidate key.

6.11. Enumerated value domains

6.11.1. Elicitation Techniques

A . Usage pattern ana/y sis

If, when a value is entered, it is checked by a comparison with a list of predefined values, we
can conclude that the domain is constituted by an enumeration.

In the case that an enumerated data type is declared explicitly in the application programs and
this type is used by the variables to handle the values from the database declared with a more
general type (char, integer ...), we can conclude to an enumerated value domain. Or, if the
predefined values are stored in a local data structure in the application programs, and we no-

6-13

tice that this structure is accessed every time that the verification of the validity is performed,
we can think of an enumerated value domain.

B. S creen, formJ~ report layout

A list of possible values from which we can choose is provided. For example, if we have a
field labelled as follows: Married (X /N) . Or if we have a list with check boxes on a form.
Then we can conclude that we have an enumerated value domain.

C. Program execution

We could have two different cases. The first, when we are obliged to choose the values from a
list instead of entering them. The second case, will be when we are allowed to enter the values,
but, if we enter a prohibited value, we get an error message. In both cases, we can think of an
enurnerated value domain.

D. Prysical structure

If there is a check to verify the values of the attribute, then it could be an enumerated value
domain

6.12. Redundancies

6.12.1. Elicitation Techniques

A. Dataflow ana!Jsis

If some fields are copied into other ones, then we can notice the presence of a redundancy. It
could happen while creating or updating a field or a relation.

B. Usage pattern ana!Jsis

If exists a program or a piece of program that performs the same actions on different tables at
the same time, we can conclude to the existence of a redundancy.

If it exists a trigger that, when it deals with a deletion or an insert in a relation, performs the
same thing on an another relation, then we can think of a redundancy.

C. Name ana!Jsis

It can help in a very special case. When attributes in different tables have the same names or
their names are comparable in a certain way, then we can conclude that a possible redundancy
exists .

6.13. Constraints on value domains

6.13.1. Elicitation Techniques

A. Usage pattern ana/y sis

If before performing a creation or an update, a verification on the validity of the different
fields is clone, then we can suppose that a constraint is defined on the domain.

6-14

1
1
1
1
1
1
1
1
1
1
11

' 1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

' 1
1
1
1
1
1
1
1
1

B. S creen, forms, report layout

If we are provided with a message indicating, for example, an upper bound or a lower bound,
we can suppose that a constraint is defined on the domain.

C Program execution

If, when entering a non permitted value we get an error message, we can suppose that there
exists a constraint on the domain.

D. Physical structure

If a check is defined to verify the validity of a value, then it is probable that a constraint is
defined on the domain.

6.14. Sets behind arrays ...

6.14.1. Elicitation Techniques

A. Usage pattern ana/ysis

If we notice that, before inserting a new component in a structure, a test is performed to
check whether the value already exists or not. we can conclude that we are dealing with one of
the fo llowing, namely, a set, a list without repetitions or an array without repetitions.

When the value is accepted, we have to find out its location on the underlying structure. Is it
added at the beginning, at the end or in a precise emplacement? If we are in presence of the
third case i.e. the emplacement of the value within the structure is a precise one, we can con
clude to the existence of an order, thus the structure cannot be a set.

Another element to explore: how is the search for the precise emplacement undertaken? If the
search is clone by comparisons with the other values, we can conclude to a list, a set, or a bag.
An example will be, if the emplacement is clone according to an alphabetic order. If the em
placement, is chosen according to an ordinal number, then we can conclude to an array. If the
value is added "systematically" at the beginning or at the end of the structure, then we are in
presence of either a bag or a set. If the emplacement is found out, after performing a compari
son with the other values, and if besicles this the test on the uniqueness of value is also clone,
then we have a list without repetitions. It is also possible that values are stored systematically
at the end of the structure but with the adjunction of an ordinal number which denotes its real
position in the structure, this can hide a list or an array.

If the "uniqueness" of the value is checked, we have a set, otherwise we have a bag.

B. S creen, forms, report lqyout

The following questions can help us recovering the structure:

• Do the screen layouts con tain grids or lists, buttons for reordering, ... ?

• Are lists on reports sorted or not?

C Program execution

Many tracks could be fo llowed here.

6-15

• We can try to find out, after entering some values of some fields , whether a sort is clone or
not.

• We can look if a test on the uniqueness is clone or not.
• We have to look if there exists a program that accepts holes or "doublons".

• One can look whether it is possible to enter a meaningless value that have a special speci
fication such as "N/ A" (stands for not available). This special value indicates that the em
placement will be a hole.

D. Pl!ysical structure

If we have a relation schema R (ig, name, tel1, tel2, tel3), and the attribute tel1 is mandatory
whereas the attributes tel2 and tel3 are optional, one can conclude that the structure is proba
bly a set or a list rather than an array.

6-16

1
1
1
1
1
1
1
1
1
1
1
1
I l
1
1·
1
1
1
1
1
1

1
1
1 ,,
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

Chapter 7

The progratn architecture

The program designed in this work is intended to use the methods and heuristics proposed in
chapter five, for the elicitation of the implicit constructs and constraints applicable in rela
tional databases. It is a prototype that will use the data analys is technique to recover mainly
the optional attributes, the existence and cardinality constraints, the functional dependencies
and the foreign keys . In this chapter, we will present the architecture of the program designed
in this work. The organisation of the different components will also be presented.

The program is made out of two main parts: the first partis written in Voyager2 which is a
language designed within the DB-Main project, the second partis designed in C++. At the
end of this chapter, we will present a reminder about DB-Main. The underlying reason is that
the program designed in this work is intended to be part of the DB-Main project.

7 .1. The Architecture

7 .1.1. The General Architecture

The program designed in this work, consists of two main components namely V2 module and
Data Ana!Jsis module. The relation between these two components is a cal! relation. The three
other components are Input, Output files and Communication module. The Input part is respon
sible for the delivery of the information introduced by the user to the V2 module which is
written in the V qyager2 language. This input will be processed by the V2 module and delivered
to the Data Ana!Jsis module. Once the information is delivered to the Data Analysis module,
Vqyager2 will be suspended and freed. It is worth to note that, at this stage, the user is not
obliged to wait for the results of the work (s)he has submitted to the Voyager 2 module, be
fo re using the abstract machine Voyager2 for other purposes. Then the processed input will
be taken on by the data analysis module which will generate the adequate queries, access the
database of interest, analyse the results of the queries and pro duce an output consisting of the
results of the work asked on the database. These results will be communicated to the V2
module. Indeed, once the Data Analysis module has finished, it calls the communication
module29 which is responsible of calling back the V2 module.

It is important to note that the user interacts only with the V2 module ba th for the input and
fo r the recovery of the results of the submitted work. As a consequence, the user is not asked
to have previous knowledge about C++. In fact, the work clone by the Data Analysis module
is hidden to the user.

29 The communication module was designed by Alain Goflot who had the amiableness to provide us with this
priceless part.

V2 module

5

2

. ---------' _4..____I --------,---~
~ ommunication module r--~ ata Analysis Module

l 3
~ 4-------

6

Figure 12-The General Architecture of the program.

Note that each componen t designed in this work, will be explained with more details in the
fo llowing sections.

Figure12 gives a global view of the general architecture.

7.1.2. The Raw Input

T he Input fo r the V2 module consists o f:

• An alias of the database (to be entered by the user) . We have chosen an alias instead of
the name of the database to have a certain kind of genericity and to have a kind of inde
pendence of the underlying database. Th is alias has to be managed by the database inter
face m odule30

.

• The function of search that the user is interested in e.g. fo reign key, primary key. This
function has to be entered by the user.

• T he name o f the tables fo llowed by their attributes. ote that th e user can make his
choice between entering the names manually or choosing them, in the case that the project
was built using DB-Main. The idea behind the second choice is that the process of reverse
engineering has already started and the user has already a schema that he wants to com
plete or he just wants to verify some hypotheses.

• T he name of the input file: It is a file in a special format produced by the V2 module. T his
file is intended to be used as an input fo r the Data Analys is module. The information de
scribed above regarding the alias of the database, the function of search, the names of the
relations and their respective attributes will be used by V2 module to fill the Input file.

• The name of the output file: The output file will be used to store the results provided by
the Data Analysis module in a special fo rmat. The user has the ability to read this fil e, in

30 Borland Database Engine in this work.

7-2

1
1

l i
1
1
1
11
1
1
1
I l
1
·I
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1 ,,
1
1
1·
1
1
1
1
1
1
1
1

case, (s) he wants to fo llow the process and to have a more precise idea rather than to be
content of the aggregated results shown in the console of Voyager2. It is the case when,
for example, the user is interested by the queries used by the D ata Analysis module. This
file is also used by the V2 module to retrieve the results provided by the Data Analysis
module.

7 .1.3. The architecture of the Voyager2 module.

The first three fields introduced by the user namely, the function, the alias of the database, the
names of the tables of interest and their attributes will be seized by V2 module to construct
the input file. The format of this input file is as follows:

#Function

#Database

#Tables:

For example, if the user wants to explore a database looking for minimal primary keys, the V2
module will ask him to enter the function which will be, in this case, Pkmin. Once the func
tion name is checked, the user will be asked to provide the alias of the database. After that, the
user will be asked to specify his choice of the way to give the names of tables and their attrib
utes i.e. to type them or to choose them. In the first case, the V2 module will check whether
the names are correct or not, following in that the naming conventions used by SQL. At the
end, the user is asked the input file and the output fil e names and paths.

When the input file is ready, the V2 module will call the Data Analysis module passing the
path and names of the input and output files, and interrupt itself. This interruption is foreseen
to allow the user to use Voyager 2 to do another work if needed while the D ata Analysis
module is working behind the scene.

An example for that, let us say that the user wants to check whether the attributes B1 and B2
belonging to table B, constitute a foreign key having as target table A with the attributes Al
and A2 as primary key. These two tables belong to a database having the alias "essai". The
input file for this example will be the following:

#Function : FK.
#Database : essai .
#Tables: A, [Al,A2);

B, [Bl , B2).

The names of the input file containing the structured input and the output file together with
their respective paths will be communicated to the Data Analysis module by the V2 module.

When the Data Analysis module finish es, the V2 module will access the output file, get back
the results and monitor them to the user. To get back the results the V2 module has to parse
the output file, and retain only the aggregated results .

7 .1.4. The architecture of the Data Analysis module.

The Data Analys is module is constituted of several parts, namely the parser, the generator, the
executor, the analyser and the raw output file. The generator comprises different functions or
components namely the optional attributes component, the existence component, the primary
key, the functional dependencies, the foreign key and the cardinality components.

The interaction between the different components is as fo llows:

7-3

The data structure constructed by the parser, on the basis of the in formation included in the
input file, will be used by the generator to constitute the adequate SQL queries. The generator
will cal!, on the basis of the field function of the input file, the adequate function for building
the proper SQL queries. Once the SQL queries are ready, the generator passes them to the
executor. Once the queries are executed on the databases, the executor passes their results to
the analyser. The interpretation of the results of the queries provided by the analyser will be
written in the raw output fil e.

The scheme on figure 13 will summarise the different components of the Data Analysis mod
ule and their interaction.

We will deal now with each component in some details .

Input

Parser

Generator

Executor

Analyser

Figure 13- Dataflow graph of the data Analysis Component

A. The parser

First, the input file provided by the V2 module, will be parsed to extract the information that
will be stored in a structure. A parser was designed for this purpose.

The data structure used to store the information is composed of the fo llowing elements (see
the figure14).

7-4

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

funct alias nbtab tab

* *

nametable1 nbcol1 *

namecolumn11 namecolumn01

Figure 14- The data structure.

Where:

funct represents the function of search e.g. functional dependency, foreign key ...
alias denotes the alias of the database of interest.
nbtab represents the number of tables on which the search will be performed.
tab is a pointer to an array of nbtab pointers to table descriptions.
nametabie, designates the name of table i with 0'.Si'.Snbtab.
nbco4 represents the number of columns of table i of interest.
namecoiumn

1
, is the name of the column number j belonging to tab le i, with 0'.Sj'.Snbcoli.

The information within this structure will be used by the generator to provide the adequate
SQL queries.

At least one

Cardinality component

Optional att component

Exact one

Existence
Module

Exclusion

PK component

Figure 15-The components of the Generator.

B. The generator

coexistence

FK component

FD component

According to the "funct" field, the generator executes one of its sub-modules (see figure 15):

• The optional attributes component has different parts depending on the question of the
user. We envisaged several scenarios to face different situations such as :

❖ Is this set of attributes optional?
❖ When attribute A is optional what about attribute B?

7-5

❖ Given a set of attributes, find the optional ones.
❖ Find the optional attributes of a given table.
❖ Depending on the case, an appropriate SQL query will be generated.

• The existence component has four parts: at least one, exact one, exclusion and coexis
tence. In each part we have different function to answer some specific questions.

♦ the "At leas t one" component will try to generate the appropriate SQL queries for the
following questions:
❖ Given a set of optional attributes, check if an at least one constraint holds between

them .
❖ Given a set o f optional attributes, check if an at leas t one constraint holds between

a subset of them.
❖ Given a table, check if an at least one constraint holds.

♦ The "exact one" component will generate the SQL queries suitable for the following
questions:
❖ Given a set of optional attributes, check if an exact one constraint holds between

them.
❖ Given a set of optional attributes, check if an exact one constraint holds between a

subset of them.
❖ Given a table, check if an exact one constraint exists .

♦ The " exclusion" component will generate the proper SQL queries for the following
questions:
❖ Given a set of optional attributes, check if an exclusion constraint holds between

them.
❖ G iven a set of optional attributes, check if an exclusion constraint holds between a

subset of them.
❖ Given a table, check if an exclusion constraint exists .

♦ The "coexistence" component will generate the adapted SQL queries for the following
questions:
❖ Given a set of optional attributes, check if a coexistence constraint holds between

them.
❖ Given a set of optional attributes, check if a coexistence constraint holds between

a subset of them.
❖ Given a table, check if a coexistence constraint exists.

• The primary key component will generate the appropriate SQL queries for the following
questions:

7-6

❖ Given a set of attributes known to be a key, check whether they constitute a minimal
primary key.

We will explain in more detail how we deal with this question. This component uses a
function that takes as arguments a function called test and a number specifying the level
where we have to stop the search i.e. the minimum number of attributes to consider at
one tirne, let us denote it n. The test function is responsible for calling the executor, in
other words, it enables the generator to cal! the executor. For example, the user has en
tered a set cornposed of five attributes and wants to stop the search at level two. This
function generates the inferior level by generating ail the (n-1) sets of attributes, discarding
each time one of the attributes . The test will be performed on th e database to check

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
t

1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

whether the generated sets are still keys of the relation. If the result of the test is satisfying,
the procedure is called recursively.

For example, we have th e attributes A, B, C, D and the minimum level is two.

In the first step, only the fo llowing combinations are generated ABC,ABD,ACD ,BCD.
The database is accessed to verify if these sets are keys. If the result of the test of at least
one of them, is positive and the minimum level is not reached, which is th e case in our ex
ample, then the inferior level will be generated and we will have AB, AC, AD, BC, BD and
CD as the new sets to tes t.

• T he functio nal dependencies component

This component will generate the proper SQL queries to answer one of the following
questions:

❖ Is there a FD between (A1,A2, . . . An) and Bl ?
❖ Generate FDs that hold in table A.
❖ Generate the FD s holding in the database.

• T he foreign key component

The foreign key component will generate the adequate SQL queries for each of the fol
lowing situations:

❖ Case wh ere the question consists in finding ail the foreign keys.
❖ Case wh ere we have to ch eck if a fo reign key ho Ids between relation A and relation B.

• T he cardinality component

This component is responsible o f generating the proper SQL queries to recover the mini
mum and maximum cardinalities.

C. The executor

This component will execute the queries provided by the generator. It w ill access the structure
given by the generato r, extract each query at a time, access the database using the provided
alias and create, if necessary, the in termediate tables. It could also cal! the generator, if the
generation of a new query dependent of the results of another query.

D. The Ana!Jser

This component is responsible for the analys is of the results of th e queries provided by the
excecutor. It fills the output file with some information. The output file will contain among
other the result o f th e search clone by the executor. This file has a special format that will be
explained here below.

/***Summary** */

/***Quer y_p ***/

/***Result_p***/

/***Interpretation ***/

/***Result g ***/

/***Interpretation_g***/

Note that the three fo llowing sections could occur many times (according to the number of
intermediate queries): Query_p, Result_p and Interpretation.

7-7

• The section entitled "summary" will be a reminder of the info rmation provided by the
user which is comprised in the input file, i.e. the fun ction, the alias of the database, the ta
bles and their attributes.

• The section entitled "query_p" is intended to comprise ail th e generated queries, even the
intermediate ones .

• The section "result_p" contains the result o f the intermediate queries.

• The section " Interpretation" con tains the interpretation o f partial or in termediate results.

• The section "result_g" contains the analys is of the intermediate results. The analysis will
be perfo rmed on the basis of the in fo rmation included in this section .

• The section " interpretation_g" contains the global interpretation. This interpretation will
be delivered to the user and represents the results of the submitted work.

7.1.5. Communication module

This component is responsible for call ing the V2 module when the Data Analysis module
fin ish es.

7 .2. DB-Main31

DB-main [Henrard 1995] is a general purpose CASE and meta-CASE environment which
includes database reverse engineering and program understanding tools. Its main goal is to
support ail the database application engineering processes, ranging from database develop
ment to system evolution, migration and integration. In this scope, mastering DBRE is an
essential requirement. The environment has been developed by the database engineering labo
ratory of the university of amur, as part o f the DB-MAI project. Extensions are being
developed towards federated database methodology through the InterDB project [thiran 1998]
and methodological support for temporal databases (TimeStamp pro ject). More specially, it
includes the following functi ons, components and capabilities :

• Specifications management: access, browsing, creation, update, copy, analysis, memorising.

• Rep resentation o f the pro ject history: processes, schemas, views, source texts, reports,
generated programs and their relationships.

• A generic, wide-spectrum, representation mode! for conceptual, logical and physical a b
jects : accept both enti ty-based and object-o riented specifications, schema abjects and text
lines can be selected, marked, aligned and coloured.

• Semantic and technical annotations can be attached to each specification object.

• Multiple views of the specifications (4 hypertexts and 2 graphical views); some views are
particularly intended fo r very large schemas; bo th entity-based and object-orien ted sche
mas can be represented.

• A toolbox of about thirty semantics-preserving transfo rmational operators which provide
a systematic way to carry out such activities as conceptual normalisation, or the devel
opemnt of optimised logical and physical schemas from conceptual schemas, and con
versely (i.e. reverse engineering) .

31 Derived from [Hainaut98].

7-8

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

• Code generators; report generators.

• Code parsers extacting physical schemas from SQL, COBOL, CODASYL, RPG and IMS
source programs.

• Interactive and programmable text analysers which can be used, among others, to detect
complex programming clichés in source texts, to build dataflow and dependency diagrams,
and to compute pro gram slices [Henrard 1998] .

• A name processor to search a schema fo r name patterns and to clean, normalise, convert,
or translate the names of selected abjects.

• A history manager which records the engineering activities of the analyst, and which
makes their further replay possible.

• Import and export of specifications.

• A series of assistants, which are expert modules in specific kinds of tasks, or in classes of
problems, and which are intended to help the analyst in frequent, tedious or complex ac
tivities. It allows the analyst to develop scripts which automate frequent processes. A li
brary of predefined scripts is provided for the most frequent activities. Six assistants are
available at present: basic global transformation, advanced global transformations, schema
analysis, schema integration, text analysis and reference key analysis.

• Meta CASE capabilities:

❖ o tool can be claimed to solve ai l current and future problems. Therefore, DB-
MAI also includes a meta-development environment that allow administrators and
method engineers to extend, specialise, and combine the existing concepts and func
tions, and to develop new ones. Extension can be performed in three ways. First, spe
cific methods can be defined, and enforced by the tool. A method is defined by an
MDL (Method D efinition Language) script, compiled as a part of the repository, then
enacted by the method engine.

❖ Then, new processors, such as specific report and code generators, DDL analysers, or
specifications checkers, can be developed in Voyager 2. This language allows to the
CASE engineers (analyst or method engineers) to develop new functions which will be
seamlessly incorporated in the tool without resorting to C++ programming. It is a
complete 4th-generation language which offers predicative access to the repository,
easy analysis and generation o f extemal texts, definition of recursive functions and
procedures, and a sophisticated list manager. lt makes the rapid development of com
plex functions possible.

❖ Finally, new properties can be dynamically added to the concepts stored in the re
pository. The latter is implemented as an object-base in which the tool records the
current methodology, the project history, and the product specifications (mainly
schemas and texts). The use of those properties is defined through Voyager 2 func
tions.

7 .2.1. The transformation toolkit

Transformations can be used at three different levels:

• E lementary transformation (T).

• Apply transformation T to current object O. By example:

7-9

❖ transform the current entity type into a rel-type.
❖ transform the current rel-type into an object-attribute (00-DBMS).
❖ desegregate the current compound attribute.
❖ change/add/remove prefix of names.

• Global transformation (P,1): Apply transformation T to the abjects that satisfy condition
P through Global Transformation Assistan t actions.

• Model-driven transformation: Apply the transformations needed to make the current
schema satisfy model M through Global Transformation Assistant scripts.

7 .2.2. The schema analyser

The schema analyser is a tool that allows the user to look for specific constructs in a schema.
It can be used in two ways:

• The first way consists in searching for constructs that verify some properties.

• The second way consists in evaluating the current schema against a specific submodel.
This provides a selection of the abjects that violate constraints.

Both the search and the validation criteria can be specified with predicative constraints. A
complete series of such constraints are built in the DB-MAI CASE too l.

7 .2.3. The text analysers

• Extractors: analyse data structure declarations, and store their abstract representation in
the repository of the tool, as a first eut logical schema: Cobol, SQL, Codasyl, IM , RPG, ...

• Pattern-matching engine: searches external texts, such as source programs, or the reposi
tory content, for instances of specific patterns.

• Dependency graph analyser: Builds the dependency graph (generalisation of dataflow dia
gram) of the variables of a program; nodes are variab les and edges are relations defined by
syntactic patterns linking variables (e.g. move A to B). Provides a visual way to trace the
data flow across the variables.

• Program slicer: Given a point P in a program and one of its variables V, this processor
selects ail the statements that contribute to the value of Vat point P. Allows the analyst to
narrow the scope of the program to examine when considering how a variable is proc
essed by this program.

7 .2.4. lntegration assistant

Helps merge specifications from different schemas, or within the same schema. Offers tools
to integrate schemas and entity types.

7.2.5. Foreign key searching assistant

H elps the analys t in searching a complex schema for candidate foreign keys. Proposes two
strategies:

Find ail the candidate fore ign keys referencing a given identifier, and

Find ail the candidate identifiers that can be referenced by a given foreign key. A search engine
allows the analyst to parameter the searching heuristics.

7-10

1
I!
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 ,,
1
1
1

7 .2.6. Functional extensibility

• methodological guidance: Database engineering processes can be modelled at a very fine
grain. Though database design methods have been fairly standardised, developers like to
fo llow their own way of working when they are faced with non-standard problems. This is
the case for reverse engineering, but every database engineering activity can, sooner or
later, require a high degree of flexibility in the way problems are solved. Though, develop
ers still require methodological guidance, but according to their own methodology. Hence
the need for powerful but flexible process models and for tools that are able to enact
them. That is why a method description language (MDL) was added to the DB-MAIN
CASE tool. When using an MDL method, the supporting CASE tool will explain the ana
lyst what to do or how to do it. The CASE tool will possibly perform well defined proc
esses that can be automated, or present to the analyst the list of processes that can or have
to be performed and let him do the job in a semi-controlled way. In the meantime, al! ac
tions performed by the user are recorded in the history.

• Voyager2: The voyager 2 language allows users to develop their own DB-MAIN func
tions: generators, extractors and loaders, evaluators, complex transformations, etc ...
These functions enrich the basic toolset without any limitation.

Main features:

❖ Communicating with the repository through either predictive or navigational queries.

❖ Functions and procedures can be recursive.

❖ Generic, shared, list structures are provided with powerful list operators; in particular,
lists of repository abjects can be built and processed; automatic garbage functions.

❖ Most DB-MAIN basic tools are availab le from V2.

❖ A V2 procedure can be dynamically added to the operators list most assistants .

❖ A V2 procedure is precompiled into an internai binary code. This code is interpreted
by virtual Voyager machine.

❖ A V2 procedure can run external programs, either synchronously or asynchronously.

• Metaproperties: Extending the repository

Besicles the built-in static meta-properties (name, short-name, type, cardinality, SEM,
TECH, etc) the user can dynamically add meta-properties to the abjects of the repository.
A meta-property is:

❖ Typed (bool, real, char, integer, string).
❖ Updateable/non-updateable.
❖ Single-valued/ multivalued.
❖ Free or with predefined values set.
❖ A meta-property can be documented.

7-11

1
1

•1
1
1
1
1
1
1
1
I:
1
1
1
1
1
1
1
1
1
~

1

1
1
1
1
1
1
1
1
1

1 1

1
1
1
1
1
1
11
1
1
1
1

Bibliography

[Agrawal 94] Rakesh Agrawal, Ramakrishnan Srikant, Fast Algorithms for Mining Association
Ru/es, Proceedings of the 20th VLDB Conference, Santiago, Chile, 1994, pp . 487-499.

[Agrawal 93] R.Agrawal, T.Imielinski, A.Swami, Mining Association Ru/es between sets ef items in
large databases, Proceedings of the 1993 ACM SIGMOD International Conference on
Management of Data, Washington, D.C., May 26-28, 1993 pp 207-216.

[Aiken 94] Peter Aiken, Alice Muntz, Russ Richards, Reverse Engineering Data Requirements,
Communications of the ACM, Vol.37, No 5, pp. 26-41.

[Andersson 94] Martin Andersson, Extracting an Entiry Re!ationship S chema from a Re!ationa! Da
tabase through Reverse Engineering, Database Laboratory, Department of Computer Science,
Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland, 1994, pp. 403-
419.

[Andersson 96] Roland Martin Andersson, Reverse Engineering ef Legary Systems: from va!ue-based
to Of?ject- BasedMode!s, Thèse n°1521 (1996), Lausanne 1996.

[Andersson 98] Martin Andersson, Searching for semantics in COBOL !egary applications, Data
Mining and Reverse Engineering, S. Spaccapietra & F. Maryanski (Eds), 1998, pp. 162-
183.

[Atzeni 99] Paolo Atzeni, Stefano Ceri, Stefano Paraboschi, Riccardo Torlone, Database Sys
tems Concepts, !anguages and architectures, McGraw-Hill, United Kingdom, 1999.

[Batini 86] C. Batini, M. Lenzerini, S.B. Navathe, A Comparative Ana/ysis ef Methodo!ogies for
Database Schema Integration, ACM Comparing Surveys, Vol. 18, No . 4, December 1986,
pp. 324-364.

[Beeri 87] Catriel Beeri, Michael Kifer, A Theory of Intersection Anomalies in Re!ationa! Database
Schemes, Journal of the Association fo r Computing Machinery, Vol. 34, No. 3, July 1987,
pp. 544-577.

[Bell 93] D.A.Bell, From Data Properties to Evidence, IEEE transactions on knowledge and data
engineering, vol. 5, no. 6, 1993, pp. 965-972.

[Blaha 97] Michael R. Blaha, Dimensions of Database Reverse Engineering, Proceedings of the 4tli
Working Conference on Reverse Engineering (WCRE'97), October 6-8, Amsterdam,
Netherlands, IEEE Computing Society, 1997; pp. 176- 183.

[Biggerstaff 93] Ted J. Biggerstaff, The Concept Assignment Prob!em in Program Understanding,
IEEE, 1993, pp. 482-498.

[Briand 88] H . Briand, C. Ducateau, Y. Hebrail, D. Herin-Aime, J. Kouloumdjian, From mini
mal cover to entiry-re!ationship diagram, Entity-Relationship Approach, S.T. March (Editor)
Elsevier Science Publishers B.V. (orth-Holland), ERI, 1988, pp. 287-304.

[Cai 91] Yandong Cai, ick Cercone, Jiawei Han, Attribute-Orientated Induction in Relational Da
tabases, Proceedings of AAAI Workshop on Knowledge discovery in D atabases, 1991,
pp. 213-228.

[Casanova 93] Marco A.Casanova, Luiz Tucherman, Alberto H.F. Laender, On the design and
maintenance ef optimized relational representations ef entiry-relationship schemas, D ata & Knowl
edge Engineering 11, orth-Holland, 1993, pp 1-20.

[Castellanos 93] Malu Castellanos, A Methodology for Semanticalfy Enriching Interoperable Data
bases, in Proceedings of the 11 th British National Conf. On D atabases, 1993, pp.58-75.

[Castellanos] Malu Castellanos, Felix Saltor, Extraction ef Data Dependencies, in Report LSI-93-
2-R, University of Catalonia, Barcelona, 1993.

[Chiang 94] Roger H .L.Chiang, Terence M.Barron, Veda C.Storey, Reverse engineering ef rela
tional databases : Extraction ef an E E R mode! from a relational database, D ata & Knowledge
E ngineering 12, 1994, pp 107-142.

[Chiang 97] Roger H.L. Chiang, T erence M. Barro n, Veda C. Storey, Aframeworkfor the design
and evaluation ef reverse engineering methods for relational databases, D ata & Knowledge Engin
erring 21 , 1997, pp . 57-77.

[Chikofsky 90] Ell iot J. Chikofsky, James H . Cross II, Revme E ngineering and Design Recovery:A
Taxinomy, IEEE Software, vol. 7(1), 1990, pp. 13-17.

[Cosmadikis 90] Stavros S. Cosmadakis, Paris C. Kanellakis, Moshe Y. Vardi, Pofynomial-Time
Implication Problems for Unary Inclusion Dependencies, Journal of the Association fo r Com
puting Machinery, Vol. 37, o .1, January 1990, pp . 15-46.

[Date] D ate, C. J., Relational database 2vritings: 199 1-1994, Addison-Wesley Reading (Mass.),
1995.

[Date 92] C.J.Date, Ronald Fagin, Simple Conditions for Guaranteeing Higher Normal Forms in Re
lational Databases, ACM Transactions on D atabase Systems, Vol.17, o .3, September
1992, pp. 465-476.

[Davis 88] Kathi H ogshead Davis, Adarsh K. Arora, Converting a relational database mode! into an
entiry-relationship mode!, 17th Int. Conf. on E ntity-Relationship Approach (ER'98), 1998,
pp. 271-285.

[Debaud 96] J -M. D e baud, Les sons from a Domain-based Reengineering Effort, Proceedings of the
third Working Conference on Reverse E ngineering (WCRE'96), 1996.

[Delmal 98] Pierre D elmal, SQL 2: A pplication à Oracle, Access et RDB. D e Boek & Larcier,
Belgiurn 1998, Second edition.

[Elmasri 00] Ramez E lmasri, Shamkant B. N avathe, Fundamentals ef database Systems, Addison
Wesley, 2000 third edition.

[Englebert 99] V. Englebert, Voyager 2 (version 5.0) - Reference manual, DB-MAI techni
cal manual, D ecember 1999, public. Institut d'in fo rmatique, FU DP

[Englebert 98] E nglebert, V., Voyager 2 (version 4.0) - Reference manual, DB-MAI tech
nical manual, ovember 1998, public. Institu t d'in fo rmatique, FU DP

[Englebert 96] E nglebert V., H enrard J., H ick J. -M., Roland D ., Hainaut J. -L., DB-MAI : un
atelier d'ingénierie de base de données, Ingénierie des Systèmes <l'Info rmation 4(1),
1996, H ERMES-AFCET.

Bibliography-2

1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1

1

1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

[Fahmer 95] Christian Fahmer, Gottfri ed Vossen, A survry of database design transformations
based on the Entity-Relationship mode/, Data & Knowledge Engineering, vol. 15, 1995, pp.
213-250.

[Fonkam 92] M.M. Fonkarn, W.A. Gray, An Approach to E !iciting the S emantics of Relational Da
tabases, Proceedings of the 4th Int. Conf. CaiSE'92, Manchester, UK, May 1992,
Springer-Verlag L CS 593, pp. 463-480.

[Frazer 92] Frazer A., Reverse engineering- fype, hope or here ?, Software Reuse and Reverse E ngineen·ng
in Pratice, Applied In formation Technology, The Institute of Software Engineering, ed
ited by P.A.V. Hall, Chapman & Hall, United Kingdom, vol. 12, 1992.

[Gottlob 87] G eorg Gottlob, Computing Covers for Embedded Functional Dependencies, Proceedings
of the Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, March 23-25, 1987, San Diego, California, 1987, pp. 58-68.

[Hainaut 93] J-L. Hainaut, C. Tonneau, M. Joris, M. Chandelon, Schema Transformation Tech
niques for Database Reverse E ngineering, in Proc. of the 12th Conference on Entity
Relationship Approach, Arlington-Dallas, D ecember. 1993.

[H ainaut 93a] Hainaut, J.-L., Chandelon, M., Tonneau, C., Joris, M., Contribution to a Theory of
Database Reverse Engineering, in Proc. of the IEEE Working Conf. on Reverse Enginee
ring, Baltimore, May 1993, IEEE Computer Society Press.

[Hainaut 95a] Hainaut, J-L., Englebert, V., Henrard, J., Hick, J-M., Roland, D., Requirements
for Information System Reverse Engineering Support, in Proc. of the IEEE Working Conf. on
Reverse Engineering, Toronto, July 1995, IEEE Computer Society Press.

[Hainaut 95b] Hainaut, J.-L., Englebert, V., Henrard, J., Hick, J.-M., Roland, D ., DB-MAIN:
a Database Reverse Engineering CASE tool, in Proc. of the 6th European Conference on

ext Generation CASE tools, Jyvaskyla, Finland, July 1995.

[Hainaut 96a] Hainaut J. -L., Englebert V., H enrard J., Hick J.-M., Roland D., Database Reverse
Engineering :from Requirement to CARE tools, Journal of Automated Software Engineering,
3(2), 1996, Kluwer Academic Press.

[Hainaut 96b] Hainaut J.-L., Roland D ., Englebert V., Hick J.-M., Henrard J., Database Reverse
E ngineering - A Case Stucfy, in Actes du 2ème Forum International d'Informatique Appli
quée, Tunis, 12-14 mars 1996.

[Hainaut 96c] Hainaut J.-L., Henrard J., Roland D ., Englebert V., Hick J. -M., Structure E!ici
tation in Database Reverse Engineen·ng, in Proc. of the 3rd Working Conf. on Reverse Engi
neering, IEEE Computer Society Press, ovember 1996.

[Hainaut 97] J -L. Hainaut, J-M. Hick, J. Henrard, V. Englebert, D. Roland, The Concept of
Foreign kry in Reverse E ngineering, A Pragmatic Interpretative Taxonomy, Technical report, Uni
versity of amur, Computer Science D epartment, March 1997.

[Hainaut 98] J-L. Hainaut, cours de base de données- matière apprefondie, University of amur,
1998.

[Han 92] Jiawei Han, Yandong Cai, ick Cercone, Knowledge Discovery in Databases : An At
tribute-On'entated A pproach, Proceedings of the 18th VLDB Conference, Vancouver, Brit
ish Columbia, Canada, 1992, pp. 547-559.

[Han 96] Jiawei Han, Yongjian Fu, Wei Wang, Jenny Chiang, Wan Gong, Krzystof Koperski,
D eyi Li, Yijun Lu, Amynmohamed Rajan, Nebojsa Stefanovic, Betty Xia, Osmar R.

Bibliography-3

- --- ------------ ----

Zaiane, DBMiner: A .rystem for Mining Kn01vledge in La'fl!,e Re!ationa! Databases, KDD, 1996,
pp. 250-255.

[Henrard 95] Henrard, J., Englebert, V., Hick, J.-M., Roland, D ., Hainaut, J.-L., DB-MAIN:
un atelier d'ingénierie de bases de données, in Proc. of the "11emes journées Base de Données
Avancées", ancy (France),September 1995.

[Henrard 98] Henrard, J., Englebert, V., Hick, J-M., Roland, D ., Hainaut, J-L., Program under
standing in databases reverse engineering, in Proceedings of DEXA'98, Vienna, August 1998.

[Henrard99] Henrard, J., Hainaut, J.-L., Hick, J.-M., Roland, D ., Englebert, V., Data structure
extraction in database reverse engineering, REIS'99 Workshop, Paris, November 1999.

Uohannesson 93] Paul Johannessen, Using Conceptua! Graph Theory to Support Schema Integration,
13th Int. Conf. On Entity-Relationship Approach (ER'93), 1993, pp . 283-296.

Uohannesson89] Paul Johannesson, Katalin Kalman, A Methodfor Trans!ating Re!ationa! Sche
mas into Conceptua! Schemas, in Entity-Relationship Approach to Database Design and
Querying, Proceedings of the Eight International Conference on Enity-Relationship
Approach, Toronto, Canada, 18-20 October, 1989, orth-Holland, 1989.

Uohannesson 94] Paul Johannesson, A Methodfor Transforming Re!ationa! Schemas into Conceptua!
Schemas, in Proceedings of the 10th International Conference on Data Engineering, Fe
bruary 14-18, 1994, Houston, Texas, USA, IEEE Computer Society, 1994, pp. 190-201.

[Kalman] Katalin Kalman, Imp!ementation and Critique of an a!gotithm 1vhich maps a Re!ationa! Data
base to a Conceptua! Mode!, in Proc. 3rd Int. Conf. On Advanced Information Systems En
gineering, Springer Verlag, L CS 498, 1991, pp. 393-415.

[Kryszkiewicz] Marzena Kryszkiewicz, Representative association ru!es and Minimum condition
maximum Consequence Association Ru!es, Princip les of Data Mining and knowledge discov
ery, 1999, pp361 -369.

[Leuchner 88] J. Leuchner, L. Miller, G. Slutzki, A Po!Jnomia! Time A!gorithm for Testing Impli
cations of a Join Dependenry and Embodied Functiona! Dependencies, in Proceedings of the 1988
ACM SIGMOD International Conference on Management of Data, Chicago, Illinois,
June 1-3, 1988, pp. 218-224.

[Levene 99] Mark Levene, George Loizou, A guided tour of Re!ationa! Databases and Bl!Jond,
Springer, London 1999.

[Li 93] Liwu Li, Fast In-Place Verification of Data Dependencies, IEEE Transactions on knowledge
and data engineering, vol. 5, no. 2, 1993, pp. 266-281.

[Mannila 94] Heikki Mannila, Kari-Jouko Raiha, A!gon'thms for ieferring functiona! dependencies
from relations, Data-knowledge Engineering 12, 1994, pp. 83-99.

[Markowitz 90] Victor M. Markowitz, Johann A. Makowsky, Identifying Extended Entiry
Re!ationship Object Structures in Re!ationa! Schemas, IEEE Transactions on software engi
neering, Vol. 16, no. 8, 1990, pp. 777-790.

[Mc Keamey 96] Stephen Mc Kearney, Huw Roberts, Reverse Engineering Databases for Kno1vl
edge Discovery, KDD, 1996, pp 375-378.

[McGill 92] McGill R., Reverse engineering - not yet ?, Software Reuse and Reverse Engineering
in Pratice, Applied Information Technology, The Institute of Software Engineering, ed
ited by P.A.V. Hall, Chapman & Hall, United Kingdom, vol. 12, 1992.

Bibliography-4

1
1
1
I l
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1

1
1
1
1
1

1
1
1
1
1
1
1
1

[Mfourga 97] N. Mfourga, Extracting Entity-Relationship Schemas from Relational Databases: A
Form-Driven Approach, in Proceedings 4th Working Conf. On Reverse Engineering, Octo
ber 6-8, 1997, Amsterdam, Netherlands, pp. 184-193.

[Narasimhan 93] Badri Narasimhan, Shamkant B. Navathe, Sundaresan Jayaraman 1993, On
mapping Er and relational models into 00 S chemas, 12th Int. Conf. on Entity-Relationship Ap
proach (ER'93), 1993, pp.402-413.

[Navathe 87] S.B. Navathe, Abstracting relational and hierarchical data with a semantic data mode!,
Proceedings of the 6th international conference on Entity-Relationship Approach
(ER'87), 1987, pp. 305-333.

[Premerlani 94] William J. Premerlani and Michael R. Blaha, An Approach for Reverse Engineer
ing ifRelational Databases, Communications of the ACM, vol. 37, No. 5, 1994, pp. 42-49.

[Petit 96] Jean-Marc Petit, Fondement pour un processus réaliste de rétro-conception de bases de données
relationelles, thèse de doctorat de l'université Claude Bernard, Lyon I, 1996.

[Roddick 93] J ohn F. Roddick, Noel G. Craske, Thomas J. Richards, A Taxonomy for Schema
Versioning Based on the Relational and Entity Relationship Models, ER 93, pp. 137-148.

[Rosenthal 94] Arnon Rosenthal, David Reiner, Tools and Transformations-Rigorous and Other
swisejàr Practical Database Design, ACM Transactions on Database Systems, Vol.19, No.2,
June 1994, pp.167-211.

[Shao 96] J. Shao Using Rough Sets for Rough Classification, 7th int. Workshop on Databases and
expert systems Applications, 1996, pp. 268-357.

[Signore 94] Oreste Signore, Mario Loffredo, Mauro Gregori, Marco Cima, Reconstruction if
ER Schema from Database Applications: a Cognitive Approach, 13th int. Conf. On E ntity
Relationship Approach Springer Verlag, Springer Verlag, LNCS 881, 1994, pp. 387-402.

[Storey 91] Vada C. Storey, Relational database design based on the Entity-Relationship mode!, Data &
Knowledge Engineering, Vol. 7, North Rolland, 1991, pp. 47-83.

[Tan 97] Hee Beng Kuan Tan, Tok Wang Ling, A method for the recovery if inclusion dependencies
from data-intensive business programs, Information and Software Technology 39, 1997, pp.
27-34.

[Tari 98) Zahir Tari, Omran Bukhres, John Stokes, Slimane Hammoudi, The Reengineering if
Relational Databases based on Kry and Data Correlations, Data Mining and Reverse Engi
neering S. Spaccapietra & F. Maryanski (Eds), 1998, pp. 184-215.

[Thiran98] Thiran, Ph., Hainaut, J -L., Bodart, S., Deflorenne, A., Hick, J-M., Interoperation if
Independent, Heterogeneous and Distributed Databases. Methodokgy and CASE Support: the In
terD B Approach, in Proceedings of Coopis'98, New-York, August 1998, IEEE Computer
Society Press, 1998.

[TIM 97] http:/ /www.csi.uottawa.ca/ ~tcl/kbre/ overview.html

[Tseng 93) Frank S.C. Tseng, Arbee L.P. Chen, Wei-Pang Yang, Refining imprecise data qy integ
rity constraints, Data & Knowledge Engineering, Vol. 11, 1993, pp. 299-316.

[Van der Lans 00) Rick F. van der Lans, Introduction to SQL: Mastering the Relational Database
Language, Addison-Wesley, Great Britain 2000, third edition.

Bibliography-5

[Weddell 92] Grant E . Weddell, Reasoning about Functional Dependencies Generalized for Semantic
Data Models, ACM Transactions on Database Systems,Vol.17, No. 1, March 1992, pp.
32-64.

[Weiser 84] Mark Weiser, Program Slicing, IEEE Transactions on software engineering, vol.
SE-10, IEEE, 1984, pp. 352-357.

[Weiss 98] Sholom M. Weiss, Indurkhya itin, Predicative Data Mining: a practical guide, Morgan
Keufmann, USA 1998.

[Y en 97] Show-Jane Yen, Arbee L.P. Chen, An Efficient Data Mining Technique for Discovering
Interesting Association Rules, in Proceedings of the Eighth International Workshop on Da
tabase and Expert Systems Applications, DEXA '97, September 1-2, 1997, Toulouse,
France, IEEE Computer Society Press, 1997, pp . 664-669.

[Yoon 93] Jang P. Yoon, Larry Kerschberg, A Frameworkfor Knowledge Discovery and Evolution in
Databases, IEEE transactions on knowledge and data engineering, vol.5, no.6, 1993, pp .
973-984.

Bibliography-6

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

