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1. 1 Abstract (English) 
The objective oftlùs final-year thesis (mémoire) is to create a synthesis of the classical, and some more 
recent, methods of segmentation and edge detection, with a bias towards automating the procedure. We 
have a particular interest in segmentation and edge detection in the field of medical imagery, as a 
required step in the process of image coregistration. 
The methods are presented in order of increasing complexity, and each is explained step-by-step. 

Sorne of the methods have been implemented for use on three-dimensional images (most of the 
references are concerned with two-dimensional images), and their results are presented. 
Judgement of segmentation and edge detection methods from their results is a very controversial subject 
in image processing, and there is no widely used method for it. A thorough evaluation of the methods 
from the results of the implementations that were made has not been attempted, because 

-the author has not enough knowledge in human anatomy to judge by himself a segmentation or 
edge detection in an image from the specialised field of medicine 
-no "ground truth" results were available for each image, to compare results with 
-the organisation of evaluation sessions with a number of judges ([l]) was not feasible. 

Thus all estimations of performance in terms of quality of the output are conclusions from related work, 
or obvious deductions from the mechruùsm of the algorithm. 

Also included alongside this document is the source code behind the implementations, and a set of 
Internet bookmarks with links to the references from the Internet, and other sites of interest on the 
subject. 

1.2 Résumé (Français) 
L'objectif de ce Mémoire de dernière année est de créer une synthèse des méthodes classiques, et 
certaines plus récentes, de segmentation et de détection de contours dans les images, avec une 
orientation vers l'automatisation des procédés. Nous avons un intérêt particulier pour la segmentation et 
détection de contours dans le domaine de l'imagerie médicale, comme une étape nécessaire de la 
coregistration d'images médicales. 
Les méthodes sont présentées par complexité croissante, et chacune est expliquée étape par étape. 

Certaines des méthodes ont été implémentées pour application sur des images tridimensionnelles (la 
plupart des références concernant les images bidimensionnelles), et leurs résultats sont présentés. 
L'évaluation des méthodes de segmentation et de détection de contours à partir de leurs résultats est un 
sujet très controversé dans le domaine du traitement d'images, et il n'existe pas de méthode largement 
répandue pour cela. Une évaluation complète des méthodes implémentées à partir de leurs résultats n'a 
pas été tentée, car 

-l'auteur a pas assez de connaissances en anatomie humaine pour juger par lui-même le résultat 
d'une segmentation ou d'une détection de contours dans une image d'un domaine spécialisé tel 
que la médecine 
-aucuns résultats reconnus de segmentation ou détection de contours n'étaient disponibles, pour 
comparaison avec chaque résultat obtenu dans ce travail 
-l'organisation de sessions d'évaluation par des juges ([l]) n'était pas possible. 

Ainsi toutes les estimations de performances qualitatives sont des conclusions d'autres travaux, ou des 
déductions évidentes à partir du mécanisme de l'algorithme. 

Annexé au texte, on trouvera le code source des implémentations réalisées, et un ensemble de signets 
Internet contenant des liens aux sites Internet servant de références et autres sites d'intérêt sur le sujet. 
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4. Preliminaries 

4. 1 Medical images 

The images used in modem medicine are increasingly three-dimensional images. These are bitmap 
images, and an element of the data array is called a voxel ("volume pixel"); the elements making up a 
two-dimensional image are pixels ("picture element"). 
Medical images are grey-level images, so the value at a voxel is an intensity. In some cases, the grey 
levels may be replaced by colours; since these colours are not related to the physical colour of the object 
being imaged they are known as pseudo-colours. 
The images most used in medical coregistration (the larger project that this work fits into; see section 
4.2) are images of the brain, since it moves very little, and its shape remains the same; this means that 
there will be, relative to other body parts, little change from one image of the head to the next; these are 
ideal properties for coregistration. 
The possible sources for these images are: PET (Positron Emission Tomography), MRI (Magnetic 
Resonance Image), SPECT (Single Photon Emission Computed Tomography), CT (Computed 
Tomography), MRS (Magnetic Resonance Spectroscopy), ultrasound, or other; images of the same 
source are said to be of the same modality. 
The real-world dimensions of a voxel are different; for a 3D image, often the scanning creates layers of 
2D images, where the distance between layers is different from the width and height of the inter-layer 
pixels. The real-world size of a voxel is usually between 1 and 4 mm (PET: 2.0 * 2.0 * 3.125, MR: 1.88 
* 1.88 * 1.3, SPECT: 4.4 * 4.4 * 4.4). This must be taken into account for most image transformations 
(such as rotation). 

It is important to know that different modalities show anatomical structures very differently (some 
especially detect extrinsic objects such as injected fluids or solid markers). 
Thus, scans of different modalities from a single subject will look quite different from one another. For 
example, white matter structures will appear bright in MRI and dark in PET, whereas grey matter will 
be darker than white matter in MRI and brighter than white matter in PET [2]. 
Also, different anatomical structures may appear with similar voxel intensities (e.g. the scalp and white 
matter in MR images). 

"SPECT, PET, and MRS provide functional information, but delineate anatomy poorly, whereas MRI, 
ultrasound, and X-ray imaging (including CT) depict aspects of anatomy, but provide little functional 
information" [3]. 

The figures below show horizontal (transverse) slices of the head from three modalities: PET, MR and 
SPECT. 

Figure 1: PET image Figure 2: MR image Figure 3: SPECT image 
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4.2 Medical Image Matching (Coregistration) 

To perform Medical Image Matching, or coregistration ([2] , [3], [4]), is to create an accurate map of 
data between two different images into a common space; this technique can provide unique insights not 
readily apparent when examining the images separately. 
In many instances, it would be desirable to integrate the information obtained fiom two or more studies 
of different modalities of the same patient. Also useful is registration of monomodal images, whether a 
study of the same patient over a period of time to detect any changes, or a study of a group of patients. 

In order to perform the difficult task of medical image matching, one must take into account important 
factors such as the different imaging modalities' distinct physical properties, and the differences in 
patient positioning. 

A general coregistration technique methodology was presented by Gerlot-Chiron and Bizais: 
(1) extraction of features in each image, 
(2) pairing of these features, 
(3) choice of a geometric transformation and estimation of its parameters, 
( 4) effectuation of this transformation. 

It is in step (1), the extraction of features in each image, that segmentation and edge detection corne into 
play, as they themselves are feature-extraction techniques. Whether one uses segmentation or edge 
detection (or both) for feature extraction depends on the type of feature Iooked for, but also, if 
knowledgeable, on the types of images to be coregistered. 
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5. Segmentation 

"Image segmentation is a process which partitions the spatial domain of an image into mutually 
exclusive subsets. Each subset is uniform and homogeneous" ([5]). 
These subsets are known as regions, and the purpose of segmentation in medical imaging is to have 
regions which accurately represent objects of interest in the image. 
Regions are homogeneous if they obey a predetermined homogeneity rule; homogeneity ensures that 
voxels in a region are sufficiently statistically similar to the other voxels in the same region, more than 
to those in any other region. There is no mathematical definition for region homogeneity, and it often 
varies from one method to the next; one possible homogeneity requirement is that the difference between 
voxel intensity and region mean value must be less than a threshold. 
It is not required that a region be connective; it is said that there is region connectivity if any two voxels 
belonging to a region can be joined by a path of voxels belonging to that region. 
The output of a segmentation algorithm is an image where voxel values are labels, indicating region 
number. In the case of a single object and background, the output will be a binary image. 
It is then easy to create an image containing only the object(s) of interest, by subtracting any unwanted 
regions. 

Current clinical tools allow radiologists to "band-segment" objects in images by drawing contours 
around the objects of interest on a slice-by-slice basis. This is slow and tedious, and sometimes not very 
accurate because prone to human error. 

5. 1 Threshold Segmentation 

Threshold segmentation works by comparing voxel intensity with one or more threshold values, such 
that all voxels with intensities above one threshold will belong to a different region than those below that 
threshold. 
Since the pixels or voxels of a same object in an image tend to have the same intensity values, an 
accurate set of thresholds will segment the image into meaningful regions. 
If a single object is of interest in the image, a single threshold is necessary to distinguish the object from 
the background. 

The major advantage of threshold segmentation is speed; once the threshold(s) is/are known, there is a 
single comparison for each voxel. As will be shown shortly, for automatic segmentation, calculating the 
threshold itself can be more complicated. 

Because thresholding is performed only on a voxel basis, and no neighbourhood information is taken 
into account, threshold segmentation does not guarantee region connectedness (a region Ris said to be 
connected if any two voxels belonging to R can be connected by a path consisting entirely of voxels 
belonging to R). 
Also, threshold segmentation will be hazardous if different actual objects, or the object and background, 
share some of the same intensities (i.e. their intensity spectres overlap). 

To avoid the first problem, if it is known that the object of interest is the largest, connectivity can be 
used to remove smaller unconnected objects in the image; there may still be some unwanted objects 
connected though, the misclassification being due to intensity overlap between the objects. 

Below are some methods for calculating the threshold. 
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5.1.1 User Choice 

The user must choose the threshold; this will be an iterative procedure by the user, as the optimal 
threshold is not likely to be guessed. 

5.1.2 Mean Value 

Using the mean grey level in the image as a threshold is a simple procedure, but rarely good, because 
the segmentation causes about half of the pixels to become black and about half to become white. 1his 
is only appropriate if it is known that the object takes about half the image volume ([6]). 

5.1.3 Threshold from Histogram 

If necessary, please refer to the annex section on histograms. 

Using the histogram to select a threshold ([6], [7]) is done very often for finding thresholds. 
Objects (including the background) in an image form the bulk of the image' s volume, the rest being 
areas of transition between the objects. Also, each object will tend to have a similar intensity 
throughout. 
Therefore, when a threshold is obvious, it occurs at the local minimum between two peaks in the 
histogram. 

If the image contains one object and one background having homogeneous intensity, it usually possesses 
a bimodal histogram (the histogram has two peaks), and this selection for the threshold would appear to 
be a good one. 

rtn 

r 
Figure 4: selecting a threshold at a minimum between two maximums 

It is possible, however, that the transitions between two regions contribute much, making it difficult to 
distinguish the histogram maximums representing distinct abjects. 
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To avoid this, a suggested method is to remove these edge voxels from the image histogram by 
performing edge detection and excluding the detected edge voxels from the histogram, when building it. 

Another approach, is to build a histogram where the contribution from each voxel depends on a function 
of an edge detector output. 

In a normal histogram, the contribution from each voxel toits intensity value is 1. 
1 

In this case, it should be a monotonically decreasing function such as 
1 
+ le(x, y,z)j 

(where e is the edge detector function) 

The resulting histogram tends to have well-defined peaks and valleys. 

Finding the first peak in the histogram is simple: it is the largest value. However, the second largest 
maximum is probably not the second peak (this is usually right next to the peak), but the peak of 
another histogram lobe. Thus, locating the second peak is harder than it appears at first. 
There are a large number of suggested methods to automatically find the two maxima and minimum: 

5.1.3.1 Top-Hat transformation 

The local histogram maxima can be detected using the Top-Hat transformation ([7]), which 
transforms a signal such that it emphasises peaks (for example, it has been used to detect stars 
in astronomical images). 
The top-hat transformation is the original signal minus its opening (please refer to sections on 
mathematical morphology pages 17 and 40). 
Because the opening operation will destroy peaks, subtracting it from the original signal will 
highlight peaks. 
If the signal is noisy, either a larger structuring element should be used, or a smoothing 
operation should be performed. 

The figures below show the top-hat transformation applied to a sample histogram. The 
structuring elements used is 

1 

The largest peak is at intensity 500 and is off the scale; the second peak can be easily seen, but 
ail other peaks are due to noise; since these are rather large, smoothing would have been 
recommended. 
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Sample Histogram (Y - scale 0 -1000) 
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Figure 5: histogram of PET brain image 

Histogram minus Opening (Y - scale 0 -100) 
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Figure 6: Top-Hat Transformation 

5.1.3.2 Approximation 

A simple trick that frequently works well enough is to look for the second peak by multiplying 
the histogram values by the square of the distance from the first peak. 'This gives preference to 
peaks that are not close to the maximum. 

My method for finding the minimum was to find the longest run of minimum, and setting the 
threshold to the middle. 

'This is the method which was implemented for automatic threshold segmentation. 
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5.1.3.3 Gaussian Curves and Least-Squares Method 

The idea behind this method ([6]) is to approximate the pealcs by Gaussian curves. It is 
necessary to know the number of pealcs, so it is assumed that the histogram is bimodal . 
A bimodal histogram can be expressed as the sum oftwo Gaussians; to "fit" two Gaussians to 
the histogram, an intensity is iteratively selected such that if each side of the curve is assumed 
to be a Gaussian curve, the sum of the squared residuals will be minimised (least squares 
method): 

1- 1 

Residual = "f (Gi(i)+G2(i)-F(i)f 
i=O 

where / is the maximum intensity (x-axis on the histogram) 

The threshold selected is the intersection point of the two Gaussians. 

The figures below show the result of automatic threshold segmentation (implemented as part of this 
project), the threshold being calculated from the image histogram using approximation 5.1.3.2 seen 
above. 
In figure 7, it is difficult to see that apart for the brain object, there is much data variation in the 
background. This has been equalised (see annex on histograms for histogram equalisation) to show this, 
in figure 8. The same has been done for figure 11, which would otherwise look almost entirely black. 
Equalisation is not part of the threshold segmentation process, it is for illustration purposes only. 

Figure 7: PET image Figure 8: equalised PET image 



Figure 9: binary image result of segmentation 

Figure 10: object, background removed Figure 11: background, object removed (equalised) 
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5.1.4 Using edge pixels (Weszka) 

It has been suggested earlier to build the histogram without the edge voxels, to better distinguish 
the histogram maximums representing distinct objects. 
Weszka ([6]) suggested a similar idea: find the threshold from a histogram built considering 
orùy voxels with large Laplacians (edges will be at zero-crossings of the Laplacian - refer to 
annex on the Laplacian). 
First the Laplacian of the image is computed, by convolution (see annex on convolution) with 
themask: 

0 1 0 
1 -4 1 

0 1 0 

Nowa histogram of the original image is found considering only those pixels having large 
Laplacians; it is suggested to consider those having Laplacians greater than 85% of the others 
(i.e. those in the 85th percentile), and exclude all the others. 
Tuen the threshold is calculated from this histogram. 

Using a better approximation to the Laplacian should give better results, but in many cases this 
simple procedure will show an improvement over the previous methods. 
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The figures below show the results of Weszka's edge pixel segmentation on a MR image, using a 
percentile of 0.9 (implemented as part of this project). The result is very different from the normal 
threshold segmentation. 
Tests on the MR image gave better results with the percentile of 0.9 instead of the recommended 0.85, 
the latter including too much background noise in the segmented object. 
ln MR images different actual objects have the same intensities, so the object is unconnected, as said 
previously this is a problem of threshold segmentation. 

Figure 12: Original MR image Figure 13: equalised MR image 

Figure 14: binary Image result of segmentation, percentile 0.9 
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Figure 15: object wlth background removed (equalised), percentile 0.9 

Figure 16: background, object removed, percentile 0.9 

Figure 17: binary Image result of segmentation, percentile 0.85 
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5.1.5 Iterative selection 

In this method, the threshold is iteratively calculated until there is no change in the last iteration. The 
initial guess for the threshold value is the mean grey level in the image. 
For each current threshold, the mean grey value of each segmented region is calculated; the threshold for 
the next iteration is 

Tk+1 = (meanlk + mean2J/2 

When T k+1 = T k , the algorithm stops. 

The histogram can be used to quickly calculate the mean values. 

5.1.6 Using Entropy 

''Entropy is a measure of information content". 

The total entropy of an image is 
/-1 

Hr=-Lp;log(p) 
i=O 

where p; is the probability of grey Ievel / 
and I is the largest intensity. 

If the image is segmented by a threshold, the entropy for each region can be calculated. 
This method is to search for the threshold that will maximise the sum of the entropies of both segmented 
regions: 

H=H,+H2 
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5.2 Binary Mathematical Morphology 

Binary mathematical morphology ([6], [11]) provides a set of methods to erode and dilate a binary 
image. 
It is not a segmentation algorithm in itself, but it can be used to deal with misclassification due to 
threshold segmentation ( or other intensity classification) of images, by incorporating neighbourhood 
information. If used for this purpose, the original image must be one in which different objects share 
intensities, such as MR images. 
Binary mathematical morphology is used in more advanced segmentation algorithms such as that 
presented in [ 11]. 

The application of the mathematical morphology operators is by convolution of an image with a mask 
(known in this case as a structuring element). The masks can be spherical or cube-shaped, where the 
elements are set to one. 

The possible operations are (for an image I, structuring element S): 

5.2.1 Erosion 
changes the value of pixel i in I from 1 to 0, if the result of convolving S with I, centred at i, is 
less than some predeterrnined value (this value can be the number of pixels in S). 
S is also known as the erosion kemel. 

5.2.2 Dilation 
changes the value of pixel i in I from O to 1, if the result of convolving S with I, centred at i, is 
more than some predetermined value (this value can be 0). 
S is also known as the dilation kemel. 

5.2.3 Conditional Dilation 
this is a dilation operation with an added condition: only pixels that are 1 in another binary 
image, l e, will be changed to 1 by the dilation process. It is equivalent to masking the results of 
the dilation by the image le (or doing an AND operation between their pixels). 

5.2.4 Opening 
an erosion followed by a dilation with the same structuring element. The name opening 
describes the observation that this tends to open small gaps between the abject. Opening also 
tends to remove noise in the background. 

5.2.5 Closing 
an erosion followed by a dilation with the same structuring element. A closing operation will 
fill, or close, the gaps between objects in the image, tends to remove noise in the abjects. 

These operations can be used to 'shave off' the misclassified abjects in a segmentation output, then use 
connectivity to find the largest connected component in the image. The sequence of operations is as 
follows: 
• Perform an erosion operation on the input with a spherical structuring element with radius 

corresponding to the thickness of the connector between wanted and unwanted misclassified object. 
The erosion should remove this connector. 

• Use connectivity to find the Iargest connected object in the image. 
• Perform conditional dilation, with a structuring element slightly larger than the one used in erosion, 

conditioned on the original input image. 
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The figures below show this sequence of events on an MR image which is the output of an intensity
based segmentation: 

A- Binary image result of 
segmentation 

B - Re suit of erosion 
C- Largest connected 

component 
D - Result of Dilation 
E - Re suit of Conditione.l 

Dile.tion 

Figure 18: Binary mathematical morphology for shedding unwanted connected objects 

In the tests conducted in [11 ], this method successfully isolated the brain tissue from the cranium for 
about 90% of MR images. 

Note that this method also rernoves background noise, if the structuring element is larger than the noise 
elements, but not noise in the object. 
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5.3 Region Growing and Merging 

Segmentation algorithms based solely on voxel intensity fail to use the fact that voxels in the same 
neighbourhood tend to have similar statistical properties and belong in the same image regions. To 
produce homogeneous connected image regions, segmentation algorithms must therefore incorporate 
both proximity and homogeneity. 
The region growing approach is to select some voxels representing distinct image regions, and grow 
these, until they cover the entire image. The voxels from which the regions grow are called seeds. The 
seeds are easily chosen interactively by the user. 
The growth mechanism is: 
• for each border voxel in the image (a border voxel is one which has been assigned to a region and 

has at least one neighbouring voxel which has not been assigned), regardless of region, check if there 
are any unclassified neighbour voxels; 

• if so, to assign the neighbour voxels to the region, check if their sequential incorporation into the 
region will maintain region homogeneity. 

A possible homogeneity test is to see that the difference between voxel intensity and proposed 
region mean value must be less than a threshold. 

lt(k,L)-ml ~ T 
• Repeat the above mechanism until every voxel has been assigned to a region, or until no changes 

were made in the last iteration. 

The quality of the region growing algorithm depends heavily on the voxels chosen as seeds. A badly 
placed seed may, for example, grow from a transition area between two objects. 

The image histogram, again, can be used to choose the seeds: image pixels whose intensity correspond 
to histogram peaks can be seeds. 

If there's more than one initial seed per actual region, adjacent regions in the output with sirnilar 
statistical properties must be merged. 
A possible test to decide merging: if two adjacent regions have means close to each other, the regions 
are allowed to merge: 

lm1 -m2l < k (Ji 1=1,2 O' is standard deviation. 

Region merging can be incorporated in the growing mechanism, in order to construct a combined 
merging/growing segmentation algorithm, in which initial seeds are not necessary. 
The image is scanned in a top-down, row-wise manner (for a two-dimensional image). Each pixel is 
therefore adjacent to at least one region (except the first scanned pixel). The pixel is considered for 
merging with all its neighbouring regions, and the proposed region which is most homogeneous is 
chosen. If the current pixel cannot be assigned to a region, it becomes a new region. 
The quality of the combined region merging/growing depends on the choice of the merging rule. 

One advantage of region-growing algorithms for three-dimensional images is that the seeds can often be 
deterrnined in a single two-dimensional slice; these can therefore be found much more quickly, 
especially for their interactive selection. 
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5.4 Split-and-Merge 

As its name indicates, the region splitting algorithms split regions until they are homogeneous (as 
opposed to region growing). 
The splitting mechanism starts by assuming the entire image is one homogeneous region. Tuen, 

• If the region is homogeneous, break. 
• If the region is not homogeneous, split it into four (for a two-dimensional image) equally

sized regions. 
• For each region, repeat the mechanism. 

Therefore, when the algorithm stops, ail regions will be homogeneous. 

A major disadvantage of pure splitting techniques is that they create regions that, because they have 
been split from different regions, may be adjacent and homogeneous together, and should be merged. 

Thus the split-and-merge algorithm includes merging and splitting at each iteration: 
• For all regions, if a region is inhomogeneous, it is split into four new sub-regions. 
• If two adjacent regions are homogeneous, and merging them would produce a new 

homogeneous region, they are merged. If more than one merge is possible, the best merge is 
chosen. Repeat this step until no merging is possible. 

• Repeat the mechanism, until no further splitting or merging is possible. 

The split-and-merge method will produce less, and smoother, regions than the basic splitting algorithm. 

A major problem of splitting algorithms is that they produce regions with sharp square edges, since 
regions are split into squares. 
This is because the homogeneity check is made over large regions; for example, if the region is large, a 
small inhomogeneous sub-region within it would not change global region statistics much. Checking if 
each pixel really belongs to a region would avoid this problem, but would be much more 
computationally expensive. 
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Figure 19: Original Image 

Figure 20: Segmentation by Region Splltting 

Figure 21: Segmentation by Split-and-Merge 
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5.5 Competitive Region Growing 

The normal region growing algorithms have the disadvantage that they allocate voxels to a region 
without considering if that voxel would be better allocated to another region. If the scanning algorithm 
searches border voxels from top to bottom, left to right (in a two-dimensional image), regions nearer the 
top-left corner will be privileged; and it is even possible that most of the image will be allocated to the 
fi.rst region in a single pass. 
Competitive region growing ([10], [12]) solves this problem: it doesn't artificially prioritise any regions, 
because all the regions are grown simultaneously, and it chooses the best pixel allocation from all 
possible competing allocations, so it is order independent. 

Like in the normal region growing, an initial set of seeds must be specified, from which regions will 
grow. 
Competitive region growing works by first building a set of all possible pixel-pairs where, where one 
pixel in the pair is allocated to a region, and its paired neighbour is not. For each pair a measure of 
homogeneity between the two pixels is calculated. Tuen, 
• It selects the pair with the best calculated homogeneity value ofthis set. If the set is empty, then the 

entire image has been segmented. 
• If the chosen pixel-pair's homogeneity value is higher than the limit, the segmentation is completed 

because further region growing would render the regions inhomogeneous. 
• Otherwise, the pixel in the pair not belonging to any regions is allocated to the region of its pair. 
• The chosen pixel-pair is removed from the set, which is updated with pixel-pairs including the newly 

added region pixel. 
• Repeat the steps until no allocation is possible. 

The major implementation difference between this and the normal region growing will be the memory 
requirements: to lessen the execution speed difference, the implementation should store the results of 
dissimilarity between pairs of pixels, to avoid recalculations. 
The homogeneity measure calculated for each pair can be a measure of homogeneity of the proposed 
region; in this case some recalculation is required every cycle, as one region grows per chosen pixel
pair. 

In the referenced article [12], the test image used was a synthetic, 256 by 256, 65536 grey-level (16 bits 
per pixel) image, with two homogeneous regions. Two tests were completed with different amount of 
noise. The segmentation only took 0.3 seconds on a Pentium-class computer. It was found to "work 
exceptionally well with noisy images". 
The authors suggest their "algorithm should be used in automated and interactive segmentation where 
the definition of the segmentation limit causes problems or there is clear need for better image 
segmentation quality" 
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5.6 Relaxation algorithms 

1his is a similar algorithm to competitive region growing, in that each voxel is checked for best 
allocation with each region, until no changes are made in the last iteration. In this case, however, the 
segmentation method is not deterministic: for each voxel is kept a confidence vector that contains the 
probability of belonging to each region (soif there are three regions in the image, confidence vectors 
with three probabilities are stored for each voxel). The probabilities are also known as confidence 
weights ([7]). 

Producing deterministic segmentation from confidence vectors is easy: voxels are allocated to the region 
it is most likely to belong to. 

Probabilities must satisfy the relations, for each vector k, confidence weight p, N regions: 

05:p/i)5:l 
N 

LP (i) = 1 
i=I k 

An initial estimate of the confidence vectors can be found from the histogram: 

again, each histogram peak is taken as a distinct region. 
The initial confidence weights are: 

d; is the distance from the ith peak in the histogram. The probability is inversely proportional to this 
distance. 

di 
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Figure 22: Distance off(k,l) from the maxima 
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At this point, notice that if a deterministic segmentation was applied, like thresholding there could be no 
region connectedness, because confidence vectors are found only from intensity. 

From the initial estimates, an iterative competition and co-operation between neighbouring pixels 
algorithm is applied until it reaches a steady state. 
For this, a new function is introduced, called the probability function: this determines the odds that two 
regions could be found adjacent. The compatibility function r must have the range -1 ~ r(i,j) ~ 1. 

Ifr(i,j) < 0 
=Ü 
>Ü 

(Regions R, Ri are said to be incompatible, unlikely to be adjacent) 
(Regions R;, Rj are said to be independent) 
(Regions R;, Ri are said to be compatible, likely to become adjacent) 

A method to estimate the compatibility function from the initial confidence weights is described in (13]. 
lt can also be known a priori. 
If the compatibility function is not known, I suggest to use it to specify which regions are definitely not 
adjacent (for example, any small regions can be classified as noise and therefore set to be unlikely to be 
adjacent to any other region). 

In each iteration, each pixel receives confidence contributions from its pixel neighbourhood. The change 
in confidence weight for pixel x at step n is: 

(n ) ~ (n) 

~ pk (i) = .L.Jr(k,l) P1 (j) where j are the neighbouring pixels. 
J 

The updated probabilities for each pixel at step n are given by: 

n+I. p:ci)[l+~p:ci)] 
P k (l) = N n [ n ] Li=I p k (i) 1 + ~ p k (i) 

The iterations stop when convergence is achieved. This method should remove small noisy regions 
within larger regions. 
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5. 7 Watershed 

The principle behind the watershed segmentation method ([14], [15]) is to consider a two-dimensional 
gradient image as a topographie surface, where the numerical value of each pixel stands for the 
elevation at this point. 
A few definitions must be made in order to explain the watershed segmentation method: 
A minimum in this gradient image is a set of connected pixels at the same height (a plateau), from which 
it is impossible to reach a lower point of altitude without having to climb. 
These minima are subsets of distinct image regions, separated by lines of high altitude (high gradient 
values, thus edges), later defined as watershed lines. 
A catchment basin associated with a minimum Mis the set of pixels p such that a drop of water falling 
on p will slide down along the steepest slope into M. 
The lines dividing catchment basins are known as the watershed lines. Just like in geography, the 
watershed lines are the lines the side of which determines the catchment basin that a drop of water 
would fall into. 

Figure 23: catchment basins, watersheds 

The idea is to partition the gradient image into catchment basins, where these are distinct image regions, 
and the watershed lines are the edges separating them. At the end of the process the entire image will be 
segmented. 

A problem with the rain analogy is that it is difficult to calculate the real flow path that a drop of water 
would slide down along, because of the discrete nature of the pixel grid (for example, it' s difficult to 
calculate the gradient between four pixels, and there are only eight possible directions to a neighbouring 
pixel). 

So the analogy used in implementations is that of flooding: the mechanism is to "slowly immerse the 
surface into a lake. Starting from the minima oflowest altitude, the water will progressively fill up the 
different catchment basins of the surface". 
As the water tises, the catchment basins will meet where the watershed lines are lowest; the merging of 
waters coming from different sources is prevented (the analogy is to build dams where the waters meet) 
so that regions don't 'grow' into each other. 
An animated image in [14] shows this very well. 
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The algorithm is the following: 

1. Calculate the image gradient. 

,..,--•m-"' , . .,;:.;,;:. Cau:.·hmenl hasin~ 
~ / -

./ Waier lt:.v~l 

Figure 24: rising water level, dams 

For each pixel value, from minimum to maximum: 
2. find all connected subsets of pixels with current pixel value or less 
3. compare each new subset with the last iteration; there are three possible cases: 

• if the subset encompasses a single subset from the last iteration, the y correspond to the same 
catchment basin which has grown 

• if the subset encompasses no previous subset, it is a new catchment basin 
• if the subset encompasses two or more previous subsets, then the waters from these two 

catchment basins have merged; to determine where the watershed lines separates them, the 
geodesic influence zone of each previous subset is found. 

Because there is always noise and other intensity variations in the image, straight watershed 
segmentation will result in over-segmentation (even if the gradient image is first blurred). 
There are two possible ways to avoid this: 
• remove irrelevant watershed lines (for example, by ignoring low image gradients) 
• use predetermined markers representing distinct catchment basins; the algorithm is the same except 

that newly-flooded minima will no longer be considered as new catchment basins. At the end there as 
many regions as original markers. An animated image in [14] shows well how this works. 

The watershed segmentation is considered to be powerful, but the L. Vincent and P. Soille article ([15]) 
suggest many improvements in the algorithm to speed up computations greatly. 
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5.8 Ridge Flow Models 

This method by D. Eberly and S. M. Pizer [16] creates a hierarchy of many small primitive regions, and 
requires user interaction to select those that form the desired object. 

A ridge is a line of junction of two surfaces sloping upwards toward each other. In the field of imagery, 
as can be expected, there are numerous definitions for ridges, but it can be said to be a line of local 
intensity maximums. 

Figure 25: Ridges 

The ridges are segmented and labelled into curvilinear segments, so that each labelled pixel has a 
maximum of two neighbouring pixels with the same label. This necessitates thin ridge Unes, so a 
thinning algorithm is used to make the ridges one-pixel thick. 

Tuen, the construction of primitive regions is analogous to the watershed segmentation method, in that 
at each pixel in the image the flow line is followed, and terminates at a ridge segment; ail pixels on the 
flow line will be assigned to the label of the terminating ridge. 

Segmentation like this of the original image gives a myriad of segmented regions, so a hierarchy of 
segmented images is made, where levels (known as scales) in the hierarchy have different amounts of 
blurring on them: the inner scale has no blurring, and the outer scale has intense blurring. 

The blurring is done by convolution of a Gaussian kernel. The difference between levels is the standard 
deviation cr of the Gaussian. Blurring has the effect of annihilating detail, including ridges; as the scale 
cr tends to infinity, the blurred image tends to a constant. 

The nodes in the hierarchical tree are the distinct regions; the links between the nodes are determined by 
how regions atone scale correspond to regions at the next scale. 
A region of scale crn is considered a parent in the tree of any region(s) of scale cr0 • 1 that it overlaps more 
than any other. Higher scales will have less ridge segments, therefore Jess regions, so the outer scale will 
have very few regions in the segmentation. 

Normally, some nodes in the tree will have only one child, and some will have many. However, the 
discretised process may introduce regions whose corresponding tree nodes have no children. These are 
not essential to the hierarchy and are removed from the tree. 

27 



To identify nodes in the tree, these are numbered, from the inner to the outer scales; anode label of -1 
indicates that the node has a single child. 

Figure 26: Scale Hierarchy 

The purpose of this segmentation method is to allow the user to select a primitive region of the inner 
scale, then easily select any regions belonging to the desired sub-tree. 

For this a graphical user interface tool was created which allows the user to traverse the hierarchy and 
quickly identify objects of interest. 
The operations available to the user are: 

select a region 
select all regions which are children of the currently selected node ("add more" operation) 
select all regions which are children of multiple selected nodes ("add more all" operation) 

All these operations are available for deselecting a nodes too. Pixels of user-selected regions can be 
shown in a different shade to easily recognise them on a screen. 

In the reference article, the example used was a 20*256*256 grey-level image; there were 31679 
primitive regions at scale cr= 1. 

For images with good contrast, the method can be used to successfully identify objects. Unfortunately, if 
the object-to-background contrast is poor, primitive regions at higher scale tend to overlap with some of 
the background, requiring tedious selections by the user to deselect these. The method needs a better 
blurring method that will not average across boundaries. 

If the objects in an image are precisely located and represented by an abstract structure such as a tree or 
a graph, then the objects can be identified by matching their representations against an atlas of 
representations stored as a database of previously segmented objects. Object-specific measurements can 
be made, including deviation from normality. 
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5.9 Active Contour Models 

Deformable models ([11], [17], [18], [19], [20], [21], [22], [23]) are also known as elastic models, and 
active contour models. 

They are used to represent classes of objects which vary in shape from one instance to the other, or 
objects which change shape over time. 
For example, everyone will have a brain shape different from the other, but some features of the brain 
are in common for all; thus, it is possible to store a representation of a brain object, such that a 
deformation of it will accurately represent any individual's brain. 
Deformable models may be 3D surfaces, like a balloon which can be squeezed out of shape, 3D space 
curves, which we bend to form figures, or 2D contours (splines) which are used to draw profiles. 

In segmentation in medical imaging, a very often used deformable model is the Snake (first proposed by 
Kass, Witkin and Terzopoulos [21]). 
This is an energy minimising spline; from a given starting point it deforms itselfto conform with the 
nearest salient contour. Snakes do not detect contours; the initial location must be provided either by 
other processing or by higher level knowledge. 

The snake is an energy function, a weighted combination of interna! and externat forces. To obtain the 
best fit between the snake and the object, the energy is minimised. 
Snakes require manual placement, but this is often done easily, by positioning "snaxels" (snake pixels) 
using a pointing device. 

Specifically, a snake is defined as 

1 

E snake = f Eint emal v(s) + Eimage v(s) + E constra int v(s).ds 
0 

Eintemal is the internai spline energy caused by stretching and bending. 

E . is a measure of the attraction of image features such as contours. rmage 

E . t is a measure of extemal constraints e.g. higher level understanding of the general shape or constra tn 

user-applied energy (from points through which the spline must pass). 

v(s) = (x(s),y(s),z(s)) or (x(s),y(s)) is the parametric representation of the contour in 3D or 2D space. 
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/ 
Figure 27: Externat and image forces which determine the snake 

The interna! energy provides a smoothness constraint. This can be further defined as 

2 2 

dv dv2 

E = a(s) - + R(s) --
internat /J 2 

ds ds 

a.( s) is a measure of the elasticity of the snake. 

J3(s) is a measure of the stiffness of the snake. 

The first order term makes the snake act like a membrane; the constant controls the tension along the 
spine (stretching a balloon or elastic band). The second order term makes the snake act like a thin plate; 
the constant controls the rigidity of the spine (bending a thin plate or wire). If J3(s) = 0 then the function 
is discontinuous in its tangent, i.e. it may develop a corner at that point. If a.(s) = J3(s) = 0 then this also 
allows a break in the contour, a positional discontinuity. 

The image energy is derived from the image data. Considering a two dimensional image, the snake may 
be attracted to lines, edges or terminations. 

E image = (JJ line E line + (JJ edge E edge + (ù term E term 

where (JJ; is an appropriate weighting function: 

Commonly, the line energy Eline is defined simply by the image function f (x, y) ; soif W tine 

is a large positive, the spline is attracted to light lines (or areas) and if a large negative then it is 
attracted to dark lines (or areas). 

If (JJedge is large, the spline is attracted to large image gradients. 

If (JJ1,erm is large, the spline is attracted to line terminations or corners. 
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Definitions of intemal energy: 

• Smoothness 
• Similarity to a predefined shape 
• Balloons 

Definitions of extemal energy: 

• Edge gradient 
• Intensity 
• Force field 

[19] presents interesting animations showing iterations in energy minimisation, in MPEG format (the 
images below are the start and end frames from one of these animations). 

Figure 28: Initial Snake spline placement Figure 29: Snake with energy minimised 

5.10 Statistical Analysis - Textures 

Texture ([6], [7], (24]) in an image can be said to be a repetitive arrangement of a basic pattern over an 
area, though there is no mathematical definition for it. 
Statistical analysis attempts to describe texture in terms of the size, shape, colour, and orientation of the 
elements of the pattern. 

Sets of adjacent voxels sharing similar texture characteristics can then be grouped in to a region. 

In medical imaging, if certain imaging modalities were known to highlight certain textures, one could 
look for a region with texture properties similar toit. 
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5. 11 Segmentation Methods Summary 
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6. Edge Detection 

Edge or boundary detection is a process which detects the pixels or v'oxels that separate two 
neighbouring areas with different statistical properties in an image. An edge is defined as a local 
variation of image intensity; its position is considered to be the centre of the range of pixels across 
which there is a change in intensity; it should be a thin line, one pixel wide. Any pixel with a gradient 
value above a certain threshold, can be considered to be an edge pixel ([7], [25]). 

The image gradient is 

attax, attëJy 

The magnitude is 

✓(df 1axf +(df 1ë)yf 
And its implementation can be used as an edge detector, where the magnitude of the gradient above a 
certain threshold can be said to be an edge. 

If we approximate 

then the gradient can be represented by 

Lix = f(x+l,y) - f(x-1,y) 
and 

Il.y= f(x,y+l) - f(x,y-1) 

Having the gradients along the different axes allows the calculation of an estimate of edge direction as 
well as edge magnitude. 
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6. 1 Mask or Templates operators 

Many rnethods approxirnate a derivative operator by using a srnall discrete template or rnask as a rnodel 
of an edge. Ternplate operators easily irnplernented (refer to annex on convolution of an image with a 
ternplate). 

For exarnple, the above equations for calculating dx and 11y can be irnplernented using the rnasks 

0 0 0 
-1 0 1 

t--

0 0 0 

/1y: 

0 -1 0 
0 0 0 
0 1 0 

Ternplates can also be used for line and point detection. 

6.1.1 Sobel 

The Sobel operator is a classic edge detector and is still used extensively in cornparisons with newer 
algorithrns. 

The rnasks used for the Sobel edge detector are 

Vertical ed,ges: 
-1 0 1 
-2 0 2 
-1 0 1 

and 

Horizontal edges: 
1 2 1 

1--

0 0 0 
-1 -2 -1 

A disadvantage of the Sobel edge detector is that, like all gradient operators, it produces thick edges; the 
response to a step edge is present over either two or three pixels width, depending on the precise position 
of the step relative to the pixel grid. 
This suggests the use of post-processing in the forrn of edge "thinning" and thresholding. 

Also, the Sobel operator is susceptible to noise. Better quality in the presence of noise can be achieved 
by using larger rnasks at the expense of cornputational effort, and thicker edges. 
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The figures below show results of the Sobel irnplernentation which was carried out in this project. The 
gradient thresholds were chosen interactively, refined frorn an initial guess. 

Figure 30: Sobel segmentation of PET image (gradient threshold 30000) 

Figure 31: Sobel segmentation ofMR image (gradient threshold 5500) 

6.1.2 Prewitt 

This is another set of ternplate operators; the rnasks used for the Prewitt edge detector are 

V . aled eruc Iges: 
-1 0 1 
-1 0 1 
-1 0 1 

H . aled onzont tges 
1 1 1 
0 0 0 
-1 -1 -1 
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6.1.3 Other Edge Templates 

Many other types of edge templates exist, and can be used to detect edges along different directions. 
For a two-dimensional image, 3*3 edge template masks can detect edges only at four different directions 
(0, 45, 90, and 135 degrees). Templates oflùgher size can be more sensitive to edge orientation. 

Od egrees 
-1 0 1 
-1 0 1 
-1 0 1 

90d egrees 
1 1 1 
0 0 0 
-1 -1 -1 

135 d egrees 

0 1 1 
-1 0 1 
-1 -1 0 

and 
45d egrees 

1 1 0 
1 0 -1 
0 -1 -1 

At each pixel the selected result is that of the template that produces the maximal output. 
If the result of the convolution is close to zero, then there is no edge present at that pixel location. The 
direction of the edge cannot be reliably found if the result of the convolution at a pixel is similar for all 
masks. 

6.1.4 Laplace operator 

The first-order derivatives of the image function have local maxima or minima at edge locations due to 
large local intensity changes, and there the second-order derivatives have zero-crossings (please refer to 
annex on Laplacian). 

Convolving the image with the Laplace operator ([26]) and detecting the zero-crossings will yield the 
edges. 
Unfortunately, the Laplace operator on its own creates many false edges, because all variations in 
intensity are detected (including noise). 

Although this approach to edge detection is straightforward, there is often need for post-processing to 
remove zero crossings corresponding to weak edges (where the intensity gradient is small) and other 
false edges (such as positive minima and negative maxima of the first derivative). 
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6.2 Marr-Hildreth 

Marr and Hildreth were concerned with modelling the early stages of human visual perception, and 
designed their edge detection algorithm ([6], [25]) to consist of three steps: 

• convolve the image with a Gaussian function (to smooth the image, and remove noise) 
• complete the Laplacian of the convolved image 
• edge pixels are those where there is a zero crossing. 

The first two steps are associative, so the Laplacian of the Gaussian (LoG) can be computed (see annex 
on Laplacian). 

Using this method, the detected edge sometimes differs from the actual edge, and the edges are not 
always thin; it is however better than the previous ones for images with much noise. 

The figures below show the result of Marr-Hildreth edge detection from my implementation, on the test 
MRimage. 
The result of the Laplace convolution has been equalised to show detail, the original being too dark to 
distinguish any features. 

Figure 32: MR image, with Gaussian Blur ( a=l.4) 

Figure 33: above image, after the Laplace convolution (equalised) 
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Figure 34: edges from Marr-Hildreth edge detection 

6.3 Canny 

The Canny edge detector ([6], (25], (27]) arises from the earlier work of Marr and Hildreth. In 
designing his edge detector, John Canny assumed that the image was corrupted by a Gaussian noise 
process. In practice this is not an exact model but it represents an approximation to the effects of sensor 
noise, sampling and quantisation. 

John Canny specified three goals for an edge detector: 
• good error rate: edges should not be found where there are none and all real edges should be detected 
• good localisation: the distance between the detected edge and the actual edge should be minimum 
• multiple-response: only a single edge should be detected where a single edge exists. 

The Canny edge detection algorithm is composed of these stages: 
• Image Smoothing: convolve the image with one-dimensional Gaussian masks, in each direction; this 

is to smooth the image, removing the assumed Gaussian noise. Two one-dimensional Gaussians are 
used because two-dimensional convolution with large Gaussians is computationally much more 
expensive. 

• Differentiation: differentiate the smoothed image with respect to each direction. The resulting 
gradient magnitude can be calculated from Pythagoras' theorem, and the gradient angle can be found 
too. 

• Non-maximum Suppression: edges must now be placed at the points of maximum intensity gradient, 
where there is a peak in the gradient function. However, in this case we wish to suppress non
maxima perpendicular to the edge direction, rather than parallel to the edge direction, since we 
expect continuity of edge strength along an extended contour. 

This is the non-maximum suppression step: each pixel in turn forms the centre of a nine pixel 
neighbourhood. By interpolation of the surrounding discrete grid values, the gradient magnitudes are 
calculated at the neighbourhood boundary in both directions perpendicular to the centre pixel, as 
shown in the figure below. If the pixel under consideration is not greater than these two values, it is 
suppressed. 
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Figure 35: non-maximum suppression 

• Hysteresis Edge lbresholding: if a normal threshold lirnit was used to select edges, the edges would 
appear broken, because of fluctuation. The Canny edge detector uses hysteresis edge thresholding: an 
upper lirnit and lower lirnit are provided; any gradient value above the upper lirnit is accepted as an 
edge, and any gradient value below the lower lirnit is rejected; any gradient between the two lirnits 
that is adjacent to an accepted edge pixel is accepted as an edge pixel. 

The first derivative of the image function convolved with a Gaussian, is equivalent to the image function 
convolved with the first derivative of a Gaussian. Therefore, it is possible to combine the smoothing and 
detection stages into a single convolution in one dimension, convolving with the first derivati ve of the 
Gaussian and looking for peaks. 

This edge detector fares better than the detectors seen above, though results depend on the parameters 
used (but the best set of parameters for a particular image is not known). 
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6.4 Shen-Castan 

Shen and Castan ([6]) also suggest a smoothing convolution, prior to the search for edges. 
Instead of applying a Gaussian smoothing, they suggest that the function which minimises 

~ 2 ~ '2 

4 J f (x)dx. J f (x)dx 

è= 0 4 0 

f (0) 
(in one dimension) 

is the optimal smoothing filter for an edge detector. 

They found that the optimal function to minimise CN is the Infinite Symmetric Exponential Filter 
(ISEF): 

J(x) = _E.e-plxl 
2 

In two dimensions, the ISEF is: 

f ( ) _ -p(lxl+I YI) 
x,y -ae 

But, like in the Canny edge detector, these filters can be applied separately in the x and the y directions. 

Tuen the image is convoluted with a Laplacian operator. 

Before zero crossings are detected, there is a false zero-crossings suppression: 
Zero-crossings where there are negative maximum gradients, and positive minimum gradients are 
suppressed (not considered an edge); in other words we will allow positive zero crossings (where the 
second derivative changes sign from positive to negative) to have a positive gradient, and negative zero 
crossings (where the second derivative changes sign from negative to positive) to have a negative 
gradient. 

To deal with images that are very noisy, Shen and Castan suggest an adaptive gradient method: 
For each proposed edge pixel not suppressed in the previous steps, a window with fixed width W is 
centred on it. 
If this is indeed an edge pixel, then the window will contain two regions of differing grey level separated 
by anedge. 
The best estimate of the gradient at that pixel should be the difference in level between the two regions, 
where one region corresponds to the zero pixels in the binary Laplacian image (BLI) and the other 
corresponds to the one-valued pixels. 

Finally a hysteresis thresholding is applied to the edges found in the previous step. 
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6.5 Grey-Level Mathematical Morphology 

The binary morphological operators seen above can be extended to greyscale images ([7], (28]). 
For dilation, for each possible position of the structuring element, the results of the addition of the grey 
level of the source image and structuring element are compared. Tuen the greater of all the values is 
written to the output image. 
For erosion, it is the minimum value which is withheld. 

The changes which occur to an image from dilation and erosion are greatest near edges. 
Therefore, the difference between eroded and original image gives large values at edges, and this can be 
used as an edge detector (the "difference" is simply a subtraction voxel-by-voxel between the images, 
with absolute values). 

The figures below show the effects of greyscale morphology on an image well-k:nown by image 
processing specialists. The erosion and dilation were done using a Java program in (28], and the 
difference between eroded and original image was done in Paint Shop Pro. 

Figure 36: "Lenna" 

Figure 37: dilated Lenna (using structuring element below) 
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Figure 38: eroded Lenna (using structuring element below) 

Figure 39: Difference between original and eroded image 

Figure 40: structuring element 
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6.6 Comparison of the edge detectors 

According to Parker ([6]), Shen-Castan seems to have the advantage as noise becomes greater. Overall, 
the Shen-Castan (ISEF) edge detector is ranked first by a slight margin over Canny, which is second. 
Marr-Hildreth is third, followed by Kirsh (not seen in this work), and Sobel, in that order. The 
comparison between Canny and Shen-Castan does depend on the pararneters selected in each case, and 
it is likely that evaluations can be found that use a better choice ofpararneters. The best set of 
pararneters is not known, and so ultimately the user is left to judge the methods. 

Article [l] presents a thorough methodology for the evaluation of edge detectors (although the 
methodology can be used to evaluate any results). 
Its authors say that obtaining ground truth for real (i.e. not synthetic) images is a practical 
impossibility; "even the definition of an intensity edge is debatable". 
Therefore "the traditional technique for comparing low-level vision algorithms is to present image 
results, side by side, and tolet the reader subjectively judge the quality". The problem is that this 
method is very subjective. 
They propose an evaluation methodology, where a tearn of human judges rate the outputs, and using 
statistical techniques from psychology, the rating statistics are compiled to rate the edge detectors, and 
the judges' coherence. The Analysis of Variance (ANOVA) technique was used to "separate the 
dependencies arnong the variables and to ascertain the statistical significance of observed differences". 
The methodology is very thorough, even statistically evaluating the consistency of the judges' ratings. It 
is slow though, as testing took place across many days; there were 8 judges and 8 original real images, 
for a total of 288 output images to rate. The judges' ratings were from 1 (incoherent edges) to 7 (all 
edges detected, no false edges). 
They tested their methodology on the results from four edge detectors: the Sobel, the Canny, the Nalwa
Binford, and the Sarkar-Boyer edge detectors (the last two are not presented in this work). 
One interesting aspect of their study is that they tested the edge detectors with many (six to twelve) 
parameter sets, in two scenarios: 
• fixed parameter set ("current practice"), where for each detector the selected parameter set is the one 

best for all images. 
• adapted parameter set ("ideal practice"), where for each detector and image the best parameter set is 

chosen. 

It was found that the difference between fixed and adapted parameters is greatest for the Sarkar-Boyer, 
followed by the Sobel, then the Canny, and the least for the Nalwa-Binford; this means that with the 
Nalwa-Binford edge detector, choosing a fixed pararneter set gives more consistent results over a range 
of images, though the quality may be lower for some images. 

The overall ranking of the edge detectors was found to be, from overall best to overall worst: Canny, 
Nalwa-Binford, Sarkar-Boyer, and Sobel. 
However, it was found that ( except the Sobel) all edge detectors were best for at least one of the test 
images, and "no one single edge detector was best overall: for any given image it is difficult to predict 
which edge detector will be best". This suggests that given image statistics it may be possible to select 
the best method and the best set of parameters, but more research needs to be done to develop strategies 
to do this. 
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6. 7 Edge Detectors Summary 
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7. Conclusions 

This has been a most fascinating project, provid.ing insights into the worlds of medical image processing 
and computer vision. 

Medical image comparisons have often been made by specialists to discover anomalies, but it is hoped 
that coregistration will help these make a much better (and faster) d.iagnosis, which will highlight 
problems which would otherwise be invisible to the naked eye. 

Segmentation and edge detection methods are still in full development. They are progressing both in 
terms of quality, and execution speed, but their evaluation is still a problem. Usually a new method is 
presented with a few results and comparisons, and sometimes the test images used are synthetic (i.e. not 
real-world images); no doubt in some cases the test images for the evaluation of a new method were 
chosen to the advantage of the method, without stating this restriction. 
It is recognised that thorough evaluation methods such as that presented by M . Heath, S. Sarkar, T. 
Sanocki and K. Bowyer ([l]) should be systematically used; unfortunately these are slow and still prone 
to human subjective reasoning (for example, it was noticed by the aforementioned researchers that 
humans tend to rate thick detected edges better than thin edges, while not at all necessarily better in edge 
detection). 

It is clear that the simpler methods of segmentation and edge detection are inadequate on their own for 
the purpose of medical image coregistration, but the more advanced ones could not be fully evaluated 
for such a purpose within the framework of this project. 

The Canny and Shen-Castan edge detectors are now widely recognised powerful, and are often used in 
comparison with other methods. For automatic segmentation, of all methods covered here, competitive 
region growing, the relaxation algorithm, and the watershed methods are best. If the segmentation can 
be interactive, using deformable models such as Snakes can be a very good edge detector, but a good 
visualisation tool should not be overlooked. 
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10. Annexes 

1 O. 1 Mean, Standard Deviation, Variance 

By definition mean can be considered as the one number in the set of numbers that best describes all the 
numbers in that set. 

- Lf(X) 
X= Lf 

Variance is a statistical measure of variation or dispersion or scatter of set of values from their mean. 

V
. LX1 

anance= --
N 

Where: 

xis the deviation of the value from the mean i.e. X - X . 
N is the total number of values. 

Standard deviation is very closely related to the variance, it is just the square root of the variance. 
Standard deviation represented by o. 

a = ✓Variance 
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10.2 Histograms 

The hlstogram ([7]) is a very often used statistical analysis of an image: it is a graph showing the usage 
of each intensity of an image. The x-axis lists the intensity values, the y-axis shows the number of pixels 
(sometimes the percentage) whlch are at the corresponding intensity. 
The image hlstogram carries important information about the image content. If its pixel values are 
concentrated in the low image intensities, the image is 'dark'. A 'bright' image has a hlstogram that is 
concentrated in the hlgh image intensities. 

L.+,.-r 
/ •. , .r 

Figure 41: sample histograms 

If the image lùstogram is concentrated on a small intensity region, the image contrast is poor and the 
subjective image quality is low. 
In thls case, image quality can be enhanced by a technique called lùstogram equalisation: 
Build a new hlstogram where the value for each colour is the sum of the (percentage) values in the 
original lùstogram of all colours of smaller intensity, including itself. Thus, the new lùstogram value at 
the hlghest intensity will be 1. Tuen multiply all the new hlstogram values by the maximum possible 
intensity (given the number of bits per pixel). The result is a table whlch gives a new replacement 
intensity for each pixel in the image. 
When the original image has a poor contrast, the equalised image has a much better one. 

Figure 42: Original MR image Figure 43: Equalised MR image 
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10.3 Zero Crossings 

There is a zero crossing at a pixel when the two opposing neighbours in one direction have different 
signs. 

10.4 Convolution 

Second 
Deriva~ 

F"(x) 

crossing 

Figure 44: Zero Crossing 

A convolution is the application of a mask, or template to an image. 
Applying a mask on a pixel (x,y) is easy: 

for the mask 

and an image functionf(x,y) 

the result at the pixel (x,y) will be 
1 a* f(x-l,y-1) + b * f(x,y-1) 
+ d * f(x-1,y) + e * f(x,y) 
+ g * f(x-1,y+l)+ h * f(x,y+l) 

Masks are not necessarily of size 3*3. 

+ c * f(x+l,y-1) 
+ f * f(x+l,y) 
+ i * f(x+l ,y+l) 1 

The mask presented above is for two-dimensional images; in a three-dimensional image the mask would 
be cube-shaped. 

51 



10.5 Gaussian Blur 

The Gaussian smoothlng operator ([6], [27], [29]) is a 2-D convolution operator that is used to blur 
images and remove detail and noise. The degree of smoothlng is determined by the standard deviation of 
the Gaussian. 

The Gaussian gives more weight to each pixels' nearest neighbourhood, which provides gentler 
smoothlng and preserves edges better than a similarly sized mean filter with a uniforrnly weighted 
average. 

A Gaussian has the form 

which looks like thls: 

0 
X 

Figure 45: Graph of Gaussian 

The derivative (used in the Canny edge detector) is therefore: 
2 

G'(x)=(-:2 Yi~' 
(clearly, the derivative is O at x = 0 and x ➔ 00) 

To show the smoothlng effect, the following figure shows a step edge convolved with a Gaussian 
function: 
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F(x) 

Smoothed 
step edge 

X 

Figure 46: Gaussian-smoothed step edge 

In two dimensions, a Gaussian is given by: 

G( x, y) = e -[ x~ J 
2

] and G has derivati ves in both the x and y directions. 

To perform Gaussian smoothing we would like to produce a convolution mask to apply to the image. 
Since the image is stored as a collection of discrete pixels we need to produce a discrete approximation 
to the Gaussian function before we can perform the convolution. In theory, the Gaussian distribution is 
non-zero everywhere, which would require an infinitely large convolution mask, but in practice it is 
effectively zero more than about three standard deviations from the mean, and so we can truncate the 
mask at this point. 

The figure below shows a convolution mask that approximates a Gaussian with a cr of 1.4. The values 
in the mask are scaled so that the smoothing does not brighten or darken the image. 
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Figure 47: convolution mask of Gaussian (cr 1.4) 
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(Larger standard deviation Gaussians, of course, require larger convolution masks in order to be 
accurately represented.) 

To reduce computation, the 2-D convolution can be performed by first convolving with a 1-D Gaussian 
in the x direction, and then convolving with another 1-D Gaussian in the y direction. 
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10.6 Laplacian Operator 

If we want to detect edges, a fil ter operation is necessary which emphasises the changes in grey values 
and suppresses areas with constant grey values. Derivative operators are suitable for such an operation . 

...... .. ............. .... ..... ...... ..... .. ......................... .. ...... ·· ... · ... .,... __ , 
j first-order derivative ~. ! t------.------.JL~-~.---1 

Figure 48: Graph of image intensity function, with first and second derivatives 

The first derivative shows an extremum at the edge, whlle the second derivative crosses zero (thls is 
known as a zero-crossing) where the edge has its steepest ascent. Both criteria can be used to detect 
edges. 

The surn of the two second partial derivatives is called the Laplace operator ((6), (30), (31)) and is 
denoted by V. 

An estimator of the Laplace operator is given by: 

V2f(x,y) = f(x,y) - [ f(x,y+l) + f(x,y-1) + f(x+l,y) + f(x-1,y) ]/4 

whlch is equivalent to applying the mask 

0 1 0 
1 -4 1 
0 1 0 

A cubic mask can also be applied for a three-dimensional image, with a middle value of -6 instead of -4. 

An approximation to the Laplacian can be obtained quickly by simply subtracting the original image 
from the smoother image. If the filtered image is S and the original is I, the resulting image B = S - I is 
the band-limited Laplacian of the image. 

The binary Laplacian image BLI is obtained by setting all of the positive valued pixels in B to 1 and 
others to O. Zero crossings are the boundaries if the regions in BLI. 
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Because these masks are approximating a second derivative measurement on the image, they are very 
sensitive to noise. 

Therefore, the Laplacian is often applied to an image that has first been smoothed with a Gaussian 
smoothing filter in order to reduce its sensitivity to noise. 
Fortunately, the convolutions are associative, so the Gaussian and Laplacian masks can be convolved 
together first, to produce a new mask: this is called the LoG (Laplacian of Gaussian) mask can be 
calculated in advance so only one convolution needs to be performed on the image. For example, this is 
used in the Marr-Hildreth algorithm. 

A discrete mask that approximates the LoG (for a Gaussian cr of 1.4) is shown in the figure below: 

0 0 3 2 2 2 3 0 0 

0 2 3 5 5 5 3 2 0 

3 3 5 3 0 3 5 3 3 

2 5 3 -12 -23 -12 3 5 2 

2 5 0 -23 -40 -23 0 5 2 

2 5 3 -12 -23 -12 3 5 2 

3 3 5 3 0 3 5 3 3 

0 2 3 5 5 5 3 2 0 

0 0 3 2 2 2 3 0 0 

Figure 49: Laplacian of Gaussian (cr 1.4) 
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1 O. 7 Program Functions 

These are C functions, in this work implemented for the SUN Solaris 2.5.1 workstation. It should be 
portable without too much difficulty, the problem being the difference in bytesize of basic datatypes in 
different systems. 

The input images must be in AIR format. Outputs will be saved in that format too. 
All functions work for 65536 grey-level images (16 bit SIGNED-SHORT per byte), some for 256 grey
level images. 
Ali functions will return error messages if used with voxel datatypes it does not recognise. 

Typedef.h contains definitions and types required for these functions. 

10.7.1 General fonctions: 

char *str_concat(char *left, char *right, char *result) 
String concatenation function. String result is concatenation of string left and string right. 

int lmage_Open(air_img_ptr img_ptr, char *filename) 
Function to load an AIR-format image from disk, to an air_img_ptr structure 
note: filename is without extension 

int lmage_Save(air_img_ptr img_ptr, char *filename) 
Function to save an image to disk in AIR-format, from an air_img_ptr structure 
note: filename is without extension 

void print_image_info(air_img_ptr img) 
Prints the image header information to screen. 

air_img_ptr Convert_lmage_UCHAR(air_img_ptr img_in_ptr) 
Function to convert an AIR image to DT _UNSIGNED_CHAR datatype (256 grey levels). 

void Free_lmage(air_img_ptr img_ptr) 
Release memory allocated to img_ptr. 

air_img_ptr lmage_Absolute(air_img_ptr img_in_ptr) 
Transforms all negative voxel values in image to positive. 

air_img_ptr lmage_Difference(air_img_ptr img_1_ptr, air_img_ptr img_2_ptr) 
Function returns image 1 minus image2. 

10.7.2 Segmentation Functions: 

long Threshold_Percentile(hist_ptr h_ptr, float percentile) 
Function will calculate the threshold at which a voxel is greater than percentile of the other voxels. 
Can be used for the Weszka thresholding method. 

air_img_ptr lmage_Keep_Regions(air_img_ptr img_orig_ptr, 
air _img_ptr img_regions_ptr, 
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int numregionswtd, 
int *regionswtd) 

Function returns an image keeping only the regions in img_orig_ptr wanted; other voxels are set to O. 
numregionswtd is the number of regions to be kept; 
regionswtd is an array with region numbers to be kept. 

air_img_ptr Segmentîhreshold(air_img_ptr img_in_ptr, int numthresholds, int *thresholds) 
Function to perform threshold segmentation from given array of threshold values. 
The thresholds must be sorted by increasing values. 
The function returns an image where the voxel values are labels of region to which they belong. 

10.7.3 Edge Detection Functions: 

air_img_ptr Sobel(air_img_ptr img_in_ptr, long threshold) 
Function to perform Sobel edge detection on the input image, using the 2-D mask seen in the text above. 
Any gradient pixel above threshold is an edge. 

10.7.4 Histogram Functions: 

hist_ptr Build_Histogram(air_img_ptr img_in_ptr) 
Function to build a histogram from grey-level image. 

air_img_ptr Histogram_Equalization(air_img_ptr img_in_ptr) 
Function performs histogram equalisation as seen above. 

void Twopeaks(hist_ptr h_ptr, int *numthresh_ptr, int **thresholds_ptr) 
Function to calculate a threshold from the histogram of a grey-level image. 
Using approximation seen above. 
Only one threshold will be calculated, so: 
*numthresh_ptr will be 1 
*thresholds_ptr will be an array of one integer. 

hist_ptr Build_Histogram_Lap(air_img_ptr img_in_ptr, 
air_img_ptr img_lap_ptr, 
long threshold) 

Like Build_Histogram, builds histogram of img_in_ptr but puts in histogram only those voxels which 
are larger than threshold in the img_lap_ptr image. 

10.7.5 Gaussian, Laplacian, Zero-Crossings 

air_img_ptr Gaussian_Blur(air_img_ptr img_in_ptr) 
Function returns an image which is the Gaussian blurring of input image. The convolution mask used is 
the one seen above for cr=l .4. 

air_img_ptr lmage_Laplacian(air_img_ptr img_in_ptr) 
Approximation of the laplacian by convolving img_in_ptr image with 3-D mask. 

air_img_ptr Find_Zero_Crossings(air_img_ptr img_2nd_deriv_ptr) 
Function to find zero-crossings in img_2nd_deriv _ptr. 
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