
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

A prototype for lessons learned systems oriented towards safety-critical software

Defat, Simon; Jeunejean, Félix

Award date:
2004

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 26. Apr. 2024

https://researchportal.unamur.be/en/studentTheses/8b8b1192-e7c5-4745-94ca-b1c1ec9bfbed

Facultés Universitaires Notre-Dame de la Paix, Namur

1 nstitut d' 1 nformatiq ue

Année Académique 2003 - 2004

A prototype for lessons learned

systems oriented towards

safety-critical software

Simon Defat & Félix Jeunejean

Mémoire présenté en vue de l'obtention du grade de Maître en Informatique.

Résumé

Selon le rapport réalisé par le groupe de travail de l' "Association for
Computing Machinery " sur le "Licensing of Software Engineers Working
on Safety-Critical Software " [Knight & al. , 2001], un système p ermettant de
rassembler les accidents survenus lors des développements logiciels de sys
tèmes critiques devrait être mis en place, afin d 'étudier les causes de ces
accidents logiciels et d'y remédier. Une analyse ainsi qu'une structuration
et une présentation appropriées de ces données pourraient avoir un impact
important sur la prévention d 'accidents futurs similaires.

Nous proposons d 'employer une approche basée sur le knowledge mana
gement - un "lessons learned system" implanté sur le web - afin d'atteindre
cet objectif. Les objectifs du "lessons leamed system" proposé sont de cap
turer et de fournir des leçons qui pourront bénéficier à d 'autres utilisateurs,
opérateurs et ingénieurs, dans le but d 'augmenter la connaissance qui peut
mener à l 'établissement de produits et dispositifs logiciels plus sûrs. Afin
de valider cette approche, nous avons élaboré un prototype exploratoire
"jetable".

Abstract

According to the influential report by the "Association for Computing
Machinery Task Force" on "Licensing of Software Engineers Working on
Safety-Critical Software" [Knight & al., 2001], a reporting system to collect
and evaluate data on what undermines the software development of safety
critical systems should be established; on the other hand, a proper analysis ,
which consists of the structuring and presentation of these data, could have
a substantial impact on the prevention of future accidents.

We propose to use a knowledge management approach - a web-based
lessons learned system - to help achieve t his purpose. The goals of the
proposed lessons learned system are to capture , as well as to provide lessons
that can benefit users, operators and engineers by increasing the knowledge,
which can lead to safer software-related products and devices. In order to
validate this approach, we built an exploratory throwaway prototype.

Acknowledgements

Before starting the writing of our master thesis, we would like to
thank our supervisor Andres Silva, teacher at the Polytechnical
University of Madrid, and of course our promoter Patrick Heymans,
as well as Pierre- Yves Schobbens, prof essors at the University of
Namur, who allowed us to carry out our training course in Madrid.
We express our gratitude for their patience and judicious advice, as
well as for the interest they expressed throughout the realization of
this project.

Our acknowledgements also go to Paloma Jimenez and César
Hemandez Martin, our roommates during our stay in Madrid, and
all our Spanish friends for their welcome. We would like to personally
express that, in our virtual world, we are lucky to have quite real
parents!

Finally, we insist on bringing in our work all the people who have
allowed us, by their advice, their assistance, their encouragements
and their availability, to bring this project to a successful conclusion.

To all of them, we say "thank you".

Contents

Introduction

I State of the art

1 Accident reporting and software
1.1 Introduction
1.2 Examples of current accident reporting systems

1.3
1.4

1.5

1.2.1 Comp.risks forum
1.2.2 After Action Review program ..
Identified problems of current systems .
Solution based on KM and LL systems .
Conclusion

2 KM in software engineering
2.1 Introduction
2.2 KM definition
2.3 Individual and organizational levels of learning
2.4 Explicit and tacit knowledge
2.5 KM systems and supported processes .
2.6 Forms of learning

2.6.1 Individual learning
2.6.2 Learning through communication
2.6.3 Learning with a knowledge repository

2.7 Needs of KM in software engineering
2.7.1 Business needs
2.7.2 Knowledge needs

2.8 Roles of KM in software engineering

2.8 .1 Supporting core software engineering activities
2.8.2 Supporting product and project memory .

2.8.3 Supporting learning and improvement
2.9 KM artifacts

V

1

5

7
7

8

8
8

8

9

10

11
11
11
12
13
13
14
14
15
16
18
18
18

19
19
19
20
20

vi CONTENTS

3 LL systems
3.1 Introduction .
3.2 LL definitions

3.2.1 LL artifact
3.2.2 Other KM artifacts .

21
21
22
22
23

3.3 Goals of LL systems oriented towards safety-critical software 25
3.3.1 Goals 25
3.3.2 Collaboration and communities 25
3.3.3 Uncertainty 26

3.4 LL process 27
3.4.1 Collection . 27
3.4.2 Verification 27
3.4.3 Storage . . 27
3.4.4 Dissemination . 28
3.4.5 Reuse 29
3.4.6 LL process and processes supported by KM 30

3.5 Classification of LL systems 31
3.5.1 Collection and dissemination sub-processes 31
3.5.2 Other characteristics 32

3.6 General qualities and requirements of LL systems . 34

II Analysis and implementation 35

4 Mission statement and development method 37
4.1 Mission statement 37
4.2 Development method 38
4.3 Classification of our LL system 40

5 Attributes of LL systems 41
5.1 Attributes of general LL systems 41
5.2 Attributes of LL systems oriented towards safety-critical soft-

ware
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6

LL general attributes
Accident structure and accident event sequence
Solution
Usage feedback and evaluation
User profile
Expert

6 Features of LL systems
6.1 Collection .
6.2 Verification
6.3 Storage . .

44
45
49
53
57
60
62

63
63
64
65

CONTENTS

6.4 Dissemination .
6.5 Reuse

6.6 Administration

6.7 Summary of the features .

7 Class diagram of the LL system

8 Use cases of the LL system
8.1 Use cases schema and description

8.1.1 Use cases related to profile management
8.1.2 Use cases related to collection and reuse
8.1.3 Use cases relat ed to verification ...

8.1.4 Use cases related to dissemination .
8.1.5 Use cases related to administration .

8.2 Relation between use cases and features

9 Database of the LL system

10 Architecture of the LL system and tools used
10.1 Architecture

10.2 Tools used and technical choices
10.2.1 PHP and Apache
10.2.2 PostgreSQL

10.2.3 Monitoring with macros

11 Implementation results
11.1 Navigation menu ..
11 .2 Profile management

11 .3 Collection .. .

11 .4 Validation .. .
11.5 Dissemination .
11.6 Reuse
11. 7 Administration

65

66

66

67

69

73

73

74

76

83

90

92

94

95

101
101

102
102

102

103

105
105
108

114

118
123
130
131

III Creation of an environment for LL through KM 133

12 Organizational culture and cultural barriers
12.1 Individualism

12.2 Lack of trust

12.3 Intolerance for mistakes

12.4 Lack of time to share knowledge

135
135

136

136

136

vii

viii CONTENTS

13 Recommendations to incite sharing knowledge and using LL
systems 137
13.1 Reward systems and performance evaluation. 137
13.2 Additional mechanisms for lesson learning 138

13.2.1 Mentoring . . 138
13.2.2 Storytelling 138
13.2.3 Other means 139

13.3 Strategic plan for KM and knowledge manager 139
13.4 Filling up the LL repository . . 139
13.5 Performance measurement ...
13.6 Investing in knowledge sharing

IV Ethical questions

140
140

141

14 Ethical questions 143
14.l Responsibility and usage problems 143
14.2 Quality of information and confidence in the system 143
14.3 IEEE and ACM code of ethics 144
14.4 Bowie and Duska's four questions 144

V Future works

15 Interaction between LL systems
15.l Broker architecture

15.1.1 Interaction with comp.risks forum
15.1.2 Peer-to-peer KM

15.2 Generic LL systems and specific format
15.2.l Specific format ...
15.2.2 Generic LL systems

16 Positive as well as negative experiences

17 Monitored distribution
17.1 Features of monitored distribution
17.2 Example of architecture for embedded LL systems

18 Other perspectives of research
18.1 LL accessibility rights
18.2 Confrontation of experts' opinions

Conclusion

Bibliography

147

149
150
150
151
151
151
151

153

155
155

. 157

159
159

. 159

161

162

List of Figures

2.1 Individual learning [van Heijst & al., 1997]. 15
2.2 Learning through communication [van Heijst & al., 1997]. . . 16
2.3 Learning with a knowledge repository [van Heijst & al., 1997]. 17
2.4 Interaction between forms of learning and relation with knowl-

edge processes [van Heijst & al., 1997]. . 17

3.1 Generic LL process [Weber & al., 2001].

4.1 Iterative approach

7.1 Class diagram - Part 1.
7.2 Class diagram - Part 2.

8.1 UC related to profile management.
8.2 UC related to collection and reuse.
8.3 UC related to verification - Part 1.
8.4 UC related to verification - Part 2.

29

39

70
71

74
76
83
84

8.5 UC related to dissemination. 90
8.6 UC related to administration. 92

9.1 Summarized E/R diagram. 96
9.2 E/R subschema (1) - User profile. . 97
9.3 E/R subschema (2) - LL. 98
9.4 E/R subschema (3) - LL / solution / feedback / evaluation. 99
9.5 E/R subschema (4) - Interaction between user profile and

LL / solution / feedback / evaluation. 100

10.1 Web-based architecture.

11.1 Menu when user is logged out.
11.2 Menu when normal user is logged in.
11.3 Menu when expert is logged in.
11.4 Welcome and login.
11.5 User profile subscription (1) .
11.6 User profile subscription (2).

ix

101

106
106
107
108
110
111

x LIST OF FIGURES

11.7 User profile subscription (3). 112
11.8 User profile subscription (4). 113
11.9 User profile subscription - Help icon. 113
11.10 LL submission (1). . 114
11.11 LL submission (2). . 115
11.12 LL submission (3). . 116
11.13 LL submission (4). . 117
11.14 Non verified LL and solution retrieval. . 118
11.15 LL validation (1). 119
11.16 LL validation (2). . . 120
11.17 LL validation (3). . . 121
11.18 My LL and solutions. 122
11.19 LL search by keywords. 123
11.20 LL search by attributes. . 124
11.21 Search results. 125
11.22 LL display (1). 126
11.23 LL display (2). 127
11.24 LL display (3). 128
11.25 LL display (4). 128
11.26 Macro download. . 129
11.27 Macro call. 129
11.28 Feedback selection and evaluation submission. 130
11.29 Expert management . . 131
11.30 Database management. 132

17.1 The lesson distribution gap [Weber & al., 2002].. 156
17.2 An architecture for integrating monitored distribution in a

decision support system [Weber & al., 2002] 158

Introduction

Context

This master thesis has been written in the context of our master degree
in computer science at the University of Namur. Its subject is tightly linked
with our training course at the Polytechnical University of Madrid (UPM).
Our thesis cornes within the scope of the works of [Silva & al. , 2002], lecturer
at the UPM.

Subject

Accident analysis and reporting systems are very important for the safety
of many organizations in the world. The goal of this master thesis is to ex
plain the principles of Lessons Learned (LL) systems that allow exchanges of
information between software engineers and computer scientists. It concerns
software accident investigation, as well as reports in a variety of application
fields, such as aviation, aerospace, biomedical industries, military systems,
or nuclear applications.

According to the influential report by the "Association for Computing
Machinery (ACM) Task Force " on "Licensing of Software Engineers Work
ing on Safety-Critical Software " [Knight & al., 2001], a reporting system to
collect and evaluate data on what went wrong in the software development
of safety-critical systems should be established, and a proper analysis, struc
turing and presentation of these data could have a substantial impact on the
prevention of future accidents.

We propose to use a Knowledge Management (KM) approach - a web
based lessons learned system - to help achieve this purpose. The goals of
the proposed LL system are to capture and provide lessons that can benefit
users, operators and engineers by increasing the knowledge that can lead to
safer software-related products and devices.

1

2 Introduction

Content

First part: state of the art

We start by describing the state of the art. We then present the problems
with current methods and approaches about accident reporting and software.
The second chapter explains the main principles and concepts of KM and
shows how an approach based on KM can be used in order to build a LL
system oriented towards safety-critical software. The last chapter is about
LL systems; it focuses mainly on the LL process which consists of five tasks:
collection, verification, storage, dissemination and reuse. It gives definitions
of LL and explains the clifferent roles, requirements and types of LL systems.

Second part: analysis and implementation

We proceed with the analysis and implementation of the conceived pro
totype. First, we describe the typology and the various attributes that
compose a LL oriented towards safety-critical software. We then explain
the development method we used, which is mainly inspired from the spi
ral model (definition of features , class diagram and use cases, design of the
database, implementation, tests). We finish by illustrating some screenshots
of the application we conceived, which consists of an exploratory throwaway
prototype.

Third part: creation of an environment for lessons learned
through knowledge management

We demonstrate that the success of LL systems, and more generally
KM systems, heavily depends on the culture of the organization. Cultural
barriers must be necessarily taken into account. Sorne recommendations to
incite and improve sharing knowledge, as well as using LL systems are also
given in this third part.

Fourth part: ethical questions

Ethical questions about the functioning and the use of LL systems are
exposed in the fourth part.

Fifth part: future works

Finally, we give ideas that could improve the effi.ciency of LL systems.
We approach inter alia the possible interaction between different systems,
the benefits of conceiving a generic LL system, as well as the concept of
monitored distribution.

Introduction

Sources

This master thesis is mainly based on the unpublished article by [Silva & al. , 2002] .
The following papers have also helped us during our writing: [van Heijst & al. , 1997] ,
[Rus & al. , 2002], [GAO, 2002] and [Weber & al. , 2001].

3

Part I

State of the art

5

Chapter 1

Accident reporting and
software

1.1 lntrod uction

Accident investigation and reporting systems play a primary role in the
safety of many industries across the globe. Currently, almost all complex
systems and safety-related devices depend on software to perform their tasks.
This concerns a high number of crucial fields such as aviation, aerospace, au
tomotive industry, chemical industry, healthcare, military systems, marine
systems, rail industry, or nuclear power. These fields ' safety-related fonc
tions depend on software and therefore on software engineering. Nowadays
both practitioners and scientists widely recognize that software engineer
ing is still unperfected, regardless of fifty years of progress [Jackson, 2001].
Current methods are not always efficient. This advice is supported by the
fact that several software-related accidents have occurred in the past and,
unfortunately, others are expected to happen in the future [Peterson, 1996],
[Neumann, 1995], [Wiener, 1993].

What we should essentially realize is that every accident, failure or
mishap can help everyone, as it is an opportunity to learn to avoid similar
catastrophes in the future. Collecting, analyzing and publishing accidents
can be very positive exercises, and learning from failed experiences is more
constructive than learning from successes [Petroski, 1994]. "Human beings
have assessed negative eT{Jeriences since ancient times, as an indication of
what they should not attempt to do. The cleverest human beings learned
their tessons from the failures of others, but most people learned from their
own, even repetitive, errors" [Minsky, 1996].

7

8 Accident reporting and software

1.2 Examples of current accident reporting sys
tems

This section illustrates some problems, mainly technical, concerning cur
rent reporting systems. These problems should be taken into account before
developing and deploying such systems.

1.2.1 Comp.risks forum

One of the most important media on the web used to collect and dis
tribute information about software-related accidents is the comp.risks forum.
However, some engineers have noted that this approach is inefficient when it
cornes to extract general lessons and retain the most important information
about an accident . For example, several accident reports are not completed,
and some lessons are reported by writers who are not experts in the field of
the accident they describe [Silva & al., 2002].

1.2.2 After Action Review program

Another example is the "After Action Review" program of the Center
for Army Lessons Learned (CALL), that increases the performance of the
US Army. According to this program, every successful or failed mission
should be followed by an inquiry about what actually happened, what was
expected to happen, the difference between both, and, finally, what can be
learned from it. A specific application of this program takes place each time
a disaster has occurred. In this situation, the concerned authorities and the
affected organizations perform an analysis and write a report. The problem
is that these reports seldom evolve into real lessons designed for general and
practical reuse [Silva & al., 2002].

1.3 Identified problems of current systems

According to the influential report by the ACM [Knight & al., 2001],
"an anonymous reporting system to collect and evaluate data on what went
wrong in software development of safety-critical systems should be estab
lished, and a proper analysis, structuring and presentation of these data
could have a major impact on the prevention of future accidents. This is
already being done in other fields (FAA/NASA Air Safety Reporting Sys
tem, Marine Safety Reporting System ...), but not in software engineering"
[Knight & al., 2001].

Several recent studies and workshops [Fisher & al., 1998], [GAO, 2002],
[Johnson & al. , 2000], [Reimer, 1998] [Secchi & al., 1999] , [Weber & al., 2001]

1.4 Solution based on KM and LL systems

established that:

• Systems to collect and disseminate crucial information are underused.
Most of them are managed by various governments and organizations.
For example, the survey carried out by the NASA [GAO , 2002] asserts
that there is no guarantee that information stored in its knowledge
system will be reused in future missions. This survey reveals weak
nesses in the collection and sharing of crucial information which is not
routinely identified, collected, or shared by programmers and project
managers . Employees are dissatisfied with the system. They do not
have enough time to share knowledge and do not trust the system. On
the other hand, they have also the impression that using the system
is not advantageous.

• There was strong evidence of the distribution process' weaknesses and
few organizations performed a costs/benefits analysis on the impact of
their KM systems.

• None of the observed organizations implemented a process that ac
tively and intelligently distributes reported accidents to interested
users .

• Generally, accident and error reporting systems poorly satisfy their
initial goal of encouraging knowledge reuse and sharing. This problem
is related to the textual representation of the knowledge assets as a
set of free-text fields (lack of structure), and also to the bad incorpo
ration of software systems into the processes , which they are intended
to support. Impractical representation and integration with internal
processes are therefore the main reasons of current accident report
ing methods. Consequently, one could generally point out that the
main problem is that accident reports about software engineering are
imprecise and difficult to understand, and that the most important
information is very hard to find among these reports.

1.4 Solution based on KM and LL systems

The problem also cornes from the fact that sometimes knowledge is fuzzy,
unclear and uncertain. It is therefore natural that a solution to the afore
mentioned problems may corne from KM. LL systems or repository based
LL systems are build from KM , which allows to extract a specific piece of
knowledge at a specific place and time. Such systems support the main
tasks of developing, combining, distributing and consolidating knowledge
[van Heijst & al., 1997] . For example, the solution found by a worker in
Montreal who faces a particular software problem can be submitted by him

9

10 Accident reporting and software

and reused by another worker in Tokyo. Accordingly, why not build and use
LL systems for managing lessons related to safety-critical software systems?
Such systems should provide [Silva & al. , 2002]:

• A way to collect, store and distribute LL from/to the right people.

• Values for all the attributes that characterize a LL.

• A solution to index LL, in order to support their collection and future
dissemination.

• A solution to allow users to define the LL they are interested in.

• A solution to maintain the accuracy, consistency and integrity of the
LL repository.

1.5 Conclusion

There is a clear need to gather LL from accidents in the field of safety
critical software and to distribute them among the interested parties. The
same mistakes and errors are repeated all the time. This is why it is possible
and highly desirable to build a system that can prevent it from happening
in the future.

Chapter 2

Knowledge management
software engineering

2.1 Introduction

•
Ill

The previous chapter focused on the problems of current reporting tech
niques related to software accidents. The current one demonstrates the
utility of using KM based on a LL system. We first define KM and then
describe the processes it supports. Afterwards, we explain the forms of
learning present in an organization. We will proceed with the definition of
needs and roles of KM in software engineering. The chapter ends with an
explanation of the various types of KM artifacts.

2.2 KM definition

The concept of KM emerged in the mid-1980s from the need to sort the
high amount of information that organizations need to manipulate. In the
1990s, many industries started to use the term KM in association with com
mercial computer technologies [Rus & al. , 2002].

The aim of KM is to capitalize on the intellectual property of an organi
zation, as well as to increase productivity, cooperation and innovation in the
workplace. The purpose also is to shorten development times, reduce costs
and risk , as well as to increase performance, quality and scientific return
[GAO, 2002].

Holtshouse [Powers, 1999], Corporate Strategy Director for Xerox, di
vided KM into ten distinct areas:

• Sharing knowledge and best practices.

• Instilling responsibility for knowledge sharing.

11

12 KM in software engineering

• Capturing and reusing past experiences.

• Embedding knowledge in products, services, and processes.

• Producing knowledge as a product.

• Driving knowledge generation for innovation.

• Mapping networks of experts.

• Building and mining customer knowledge bases.

• Understanding and measuring the value of knowledge .

• Leveraging intellectual assets.

2.3 Individual and organizational levels of learn-
1ng

"Capturing and reusing past experiences" is the most relevant domain
with regard to LL systems. Activities related to KM involve learning, captur
ing and reusing experience. Learning is a fondamental part of KM. Learning
experience is a process that occurs at two interacting levels, the individual
and the organizational (or group) levels.

• Knowledge spreads from groups to individuals, who have to
assimilate shared knowledge before they can use it for a specific task.
This implies that learning is a basic mainstay.

• Knowledge also spreads from individuals to groups . "KM aims
to elevate individual knowledge to the organizational level by capturing
and sharing individual knowledge and tuming it into knowledge that
the organization can access " [Rus & al. , 2002]. As Seuge says, "Orga
nizations only leam through individuals who leam. Individual leaming
does not guarantee organizational learning. But, without it, no orga
nizational leaming occurs" [Seuge, 1994] .

2.4 Explicit and tacit knowledge

2.4 Explicit and tacit knowledge

We can distinguish two forms of knowledge: explicit knowledge and
tacit knowledge. Explicit knowledge, or codified knowledge, is expressed
knowledge and is generally easy to use. It corresponds to information and
skills that someone can easily communicate and document , as processes ,
templates and data. Tacit knowledge is personal knowledge that em
ployees accumulate by experience. This knowledge can be very difficult to
express and is often subjective [Rus & al. , 2002].

Knowledge is also characterized by its scope, which indicates when and
where it is applicable, to whom it is accessible, and which activities it sup
ports [Rus & al., 2002].

2.5 KM systems and supported processes

A KM system, also called a knowledge repository, is a tool which
supports KM. [van Heijst & al., 1997] distinguishes four basic processes: de
velopment, consolidation, distribution, and combination.

• Developing/ creating new knowledge: Members of organizations
acquire knowledge through learning, problem solving, work in R&D
departments, innovation, failure analysis, daily experiences, creativity,
and acquirement from other sources. KM systems can support this
fi.rst process by recording knowledge.

• Consolidating new and existing knowledge: By storing knowl
edge in a repository, it becomes persistent over time and it can be
retrieved easily. Consequently, knowledge is accessible at the right
time and place, and can be delivered to individuals who need it .

• Distributing knowledge: Knowledge should be actively or passively
distributed to those who need it. KM systems need features to decide
who should be informed about this or that knowledge.

• Combining available knowledge: An organization can increase its
performance if its available knowledge areas are combined in new prod
ucts. KM systems make the access to knowledge developed in other
departments of the organization easier.

A KM system should be organized in order to support each of these
processes, but taking each of them individually is not enough. All processes
interact in complex ways. In order to be efficient, organizations should take
this interaction into account.

13

14 KM in software engineering

2.6 Forms of learning

According to [van Heijst & al., 1997], there are two main types of learn
ing in an organization: top-clown learning and bottom-up learning.

Top-down learning means that someone at a high or management
level estimates that a particular knowledge domain will be promising, and
he decides to do all the necessary actions to obtain it.

"Bottom-up learning refers to the process where a worker, either at
the management level or on the work fioor, learns something which might be
useful and then this Lesson learned is distributed through the organization.
The term LL represents any positive or negative experience or insight that
can be used to improve the performance or the security of the organization
in the future" [van Heijst & al. , 1997].

Bottom-up learning has three sub-types: individual learning, learn
ing through communication, and learning with a knowledge repos
itory. An organization should develop and promote each form of learning,
because it is an intellectual capital that cannot be lost. The three sub-types
are complementary and occur in parallel.

2.6.1 lndividual learning

Employees accumulate personal experience through their daily work and
use it to enhance the work processes of their organization. They create new
knowledge. In fact, this personal experience may be a kind of practical LL
for the organization. However, individual learning is not always and every
where possible. In order to allow employees learning from themselves, they
need to get reactions and opinions about the accuracy and the pertinence of
their LL, and their consequences on the work processes of the organization.
All workers also need to have some freedom in deciding how they do their
jobs , otherwise they cannot be able to experiment.

With individual learning, the problem is that knowledge is not collected
and disseminated for reuse. This is the reason why a LL system needs to
be elaborated, allowing workers to distribute and share their personal ex
periences. Obviously, this need depends on the size and the nature of the
organization.

Figure 2.1 shows the process of individual learning.

2.6 Forms of learning

lndividual
learning

Work
experieneie

Apply lesson)
learned .

.,,

Figüre 2.1: Individual learning [van Heijst & al. , 1997].

2.6.2 Learning through communication

Learning through communication allows employees to share their per
sona! experience and knowledge among them. This starts necessarily from
individual learning. Learning through communication is obviously comple
mentary with individual learning and is more efficient, because LL are shared
throughout the organization.

Organizations should encourage their employees to share their experience
throughout this communication process, and should develop an environment
in which it is rewarding for them to share positive and negative experi
ences. There are different ways of communicating knowledge depending on
how many workers have to be informed: a few people (personal casting), a
complete department or organization (broadcasting) , or only directly con
cerned and interested people (narrow casting).

Learning through communication completes and reinforces individual
learning because knowledge is created, shared or combined with other knowl
edge. However, if we consider that knowledge is volatile, a repository could
be helpful, as it will allow the retaining of knowledge developed from indi
vidual learning and communication.

Figure 2.2 shows the process of learning through communication.

15

16

lndividual
learning

Work
experience

KM in software engineering

Apply lesson
leamed

Learning by
others

Figure 2.2: Lcarning through communication [van Heijst & al., 1997].

2.6.3 Learning with a knowledge repository

The knowledge repository will be used in order to store LL developed
by individual learning and learning through communication. It is the same
as learning through communication but communicating pieces of knowledge
is replaced by collecting, verifying, storing, disseminating and reusing these
pieces.

The main role of the organization in this kind of knowledge sharing is to
motivate and encourage employees to take time to write and submit their
LL into the knowledge repository, a sometimes diffi.cult task.

Figure 2.3 shows the process of learning with a knowledge repository,
while figure 2.4 shows how the forms of learning interact with the processes
supported by KM.

2.6 Forms of learning

Apply lesson
leame□

Figure 2.3: Learning with a knowledge repository [van Heijst & al. , 1997].

Forms
of learning

Knowledge
processes

lndividual

Oeveloping
knowledge

Combining
knowledge

Dislributing
lmowledge

...,._ - - _.,_ lnteracUon between forms of leamlng

\

Learning with
a corporale

Consolidaling
knowledge

◄--- Relation betwe,en forms of leaming and knowtedge proœs::.es

Figure 2.4: Interaction between forms of learning and relation with knowl
edge processes [van Heijst & al. , 1997].

17

18 KM in software engineering

2.7 N eeds of KM in software engineering

The main asset of a software organization is its intellectual capital.
Knowledge in software engineering is diverse, enormous and regularly in
creasing. Hence , organizations have problems in identifying the content, the
location and the use of knowledge. The basic motivation and driver for KM
in software engineering is an improved use of its primary asset: knowledge
[Rus & al., 2002].

2.7.1 Business needs

Decreasing time and cost and increasing quality

Organizations need to decrease the development time and cost of soft
ware projects. Reducing errors reduces rework. If the context is similar,
repeating successful processes increases productivity and favors future suc
cesses. For this reason, organizations should apply the knowledge acquired in
previous and similar projects . Unfortunately, developers do not reuse past
experience frequently and repeat well known errors within organizations .
Software engineers gain experience in each project and both organizations
and individuals learn more if they share it [Rus & al., 2002].

Making better decisions

In software development , each employee is involved in the decision pro
cess. Most of the time, decisions are based on individual knowledge and
informal content. In a small organization, this way of proceeding is often
workable, but in a large organization, inefficient. The individual knowledge
should be shared and leveraged at project and organization level, in such a
way that employees can take better decisions across the organization. Sorne
knowledge is also shared by informal exchange. Experienced developers can
share their experience with inexperienced developers in an informal way.
Nonetheless , informal capturing and sharing is not enough. The only way
for everyone to access the needed knowledge is if organizations formalize
ways of knowledge sharing [Rus & al., 2002].

2.7.2 Knowledge needs

Knowing who is knowledgeable is necessary for organizations to easily
access the good persans, to efficiently staff project, to identify training needs,
to match employees with training offers and to create a strategy to prevent
valuable knowledge from disappearing. If individuals own information that
is not explicitly captured, organizations can leverage that knowledge only if
they manage to identify and access these people [Rus & al., 2002].

2.8 Roles of KM in software engineering

The knowledge of software organizations is relat ed to various areas. Or
ganizations have to acquire knowledge about new technologies and master
t hem , as, most of the time, project members resort to the "learning by do
ing" approach, which costs a lot of t ime. Software development also requires
an access to knowledge about the application domains for which software is
being developed [Rus & al. , 2002].

2 .8 Roles of KM in software engineering

[Rus & al. , 2002] distinguishes three roles of KM in software engineer
ing: supporting core software engineering activities, supporting product and
project memory, and supporting learning and improvement.

2.8.1 Supporting core software engineering activities

The first role consists of supporting core software engineering activit ies.
It includes:

• Document management focuses on authoring, reviewing, editing
and using documents , which become the organization's assets in cap
turing explicit knowledge. Document management systems allow em
ployees to share documented knowledge.

• Competence management and expert identification is a solu
tion to the problem of tracking experts who own important undocu
mented knowledge. Competence management systems (or skills man
agement systems) analyze email repositories, as well as documents,
and build keyword-based profiles that characterize each employee. Af
t erwards, organizations can use them to identify experts in a specific
domain.

• Software reuse intends to reduce programmers' rework. Program
mers continuously reinvent the wheel. ln order to prevent it , software
reuse suggests to record software which would be useful for others in
a repository.

2.8.2 Supporting product and project memory

The second role of KM in software engineering consists of supporting
product and project memory. Learning from practice requires a product and
project memory. Memory is built through version control, change manage
ment, documenting design decisions, and requirements' traceability. There
fore, each version of a document has information about who, when and why
the change was made.

19

20 KM in software engineering

2 .8.3 Supporting learning and improvement

The last role of KM in software engineering consists of supporting learn
ing and improvement . Most of the time, the project managers' personal
experience guide their decisions; the problem is that not all of them have
enough experience. Building, using and improving predictive models, which
can guide decision making for future projects based on past projects,
become a natural part of KM strategy.

2.9 KM artifacts

The field of KM does not only cover LL but also best practices, incident
reports and alerts [Silva & al., 2002]:

• Best practices refer to examples and cases that illustrate the good
use of something. They capture only successful stories.

• Alerts aim to warn an organization about particular problems with a
particular technology.

• Incident reports describe negative experiences or accidents and ex
plain them.

As we will see in the next chapter, these artifacts are too restrictive to
be considered as LL.

Chapter 3

Lessons learned systems

3.1 Introduction

The first chapter explained the problems that lead to the setup of a LL
system oriented towards safety-critical software. The second chapter high
lighted the need to build a system based on KM.

This chapter provides definitions of LL; it explains the goals of LL sys
tems oriented towards safety-critical software and describes the LL process,
as well as the different types of LL systems resulting from it. It ends with
an explanation of the general qualities and requirements of LL systems.

LL systems are based on KM. They have been settled in commercial,
government, and military organizations since the early 80's to collect, store,
distribute and share knowledge and experience. Nevertheless, their ability to
encourage knowledge and experience sharing was limited [Weber & al., 2001].
Current LL systems are not often used and the main proof of it is that many
of them contain large amounts of non-reused information. It is therefore cru
cial to exactly understand what a LL system should be, which are its features
and which processes they are intended to support.

21

22 LL systems

3.2 LL definitions

3.2.1 LL artifact

There are several definitions of LL in formally written resources. We
have chosen the last definition of the list below, because we think that it is
the most adequate and complete . Moreover, this definition explains clearly
the reuse of a LL.

• "LL were originally conceived as guidelines, tips, or checklists of what
went right or wrong in a particular event" [Stewart, 1997] . Concer
ning organizations who want to improve their performance with a LL
system, this definition is out of date , because they have now adopted
criteria to check, accept and validate lessons for rightness in their
systems.

• "A LL is the change resulting from applying a lesson that significantly
improves a targeted process" [Bartlett, 1999]. This definition expresses
one of the main goals of LL systems.

• "A LL is a good work practice or innovation approach that is captured
and shared to promote repeated application. A LL may also be an
adverse work practice or experience that is captured and shared to avoid
recurrence" [DOE-STD-7501-99, 1999].

• "A LL is the knowledge acquired from an innovation or an adverse
experience that causes a worker or an organization to improve a pro
cess or activity to work safer, more efficiently, or with higher quality"
[Bickford, 2000] .

• The United States Air Force gives a more concrete definition: "A LL
system is a recorded experience of value; a conclusion drawn from ana
lysis of feedback information on past and/or current programs, poli
cies, systems and processes. Lessons may show successes or innovative
techniques, or they may show deficiencies or problems to be avoided"
[Weber & al. , 2001] . A lesson may be:

l. An informal policy or procedure.

2. Something you want to repeat .

3. A solution to a problem, or a corrective action.

4. How to avoid repeating an error.

5. Something you never want to do (again).

• "A LL is a knowledge or understanding gained by experience. The ex
perience may be positive, as in a successful test or mission, or nega
tive , as in a mishap or failure. Successes are also considered sources

3.2 LL definitions

of LL. A lesson must be significant in that it has real or assumed im
pact on operations; valid in that it is factu ally and technically correct;
and applicable in that it identifies a specific design, process, or deci
sion that reduces or eliminates the potential for failures and mishaps,
or reinforces a positive result" [Secchi & al., 1999].

This definition is the most complete and is currently used by the Ame
rican, European, and J apanese Space Agencies. It clarifies the criteria
needed to reuse lessons and how it should focus on processes that a
lesson can impact [Weber & al., 2001].

F\irthermore , [Silva & al. , 2002] underlines the fact t hat ''the goals of a
LL system are ta capture and provide lessons that can benefit users, ope
rators, engineers and, society, by increasing the knowledge that can lead ta
safer software-related products and device". He considers that a LL is a
"knowledge artifact derived from a negative experience that suggests the
means ta avoid the occurrence of similar negative experiences in the future ".
This definition only focuses on negative experiences, unlike the definition
of Secchi. We will consider the definition of Secchi but , as Silva, restrict
our work to negative experiences, due to the prohibitive costs of errors and
failures in safety-critical software field. Positive experience is useful, and
could be incorporated into a LL system. However, negative examples are
much more useful in safety because the main focus of the engineer is to avoid
negative experiences (accidents). Therefore, after an accident took place, the
analysis of its causes leads to better measures to avoid same accidents in the
future. It also is difficult in safety-critical field to define exactly what a
positive experience is and what we can really learn from t hat to avoid other
accidents in the future.

3.2.2 Other KM artifacts

In section 2.9, KM artifacts (best practices , incident reports and alerts)
have been defined. Under the light of the definition we just adopted, we can
say t hat these such KM artifacts are not considered as LL mainly because
a LL must be significant, valid, applicable and must derive from a negative
experience.

• Best practices capture only successful (positive) stories. They are
not necessarily derived from specific experiences.

• Alerts are derived from negative experiences and are aimed to warn
an industry of particular problems with a particular technology. They
are just "alarms", i.e. that there is no necessarily an accident which
has happened (yet).

23

24 LL systems

• Incident reports describe accidents but never give a solution, sug
gestion or recommendation to solve the problems caused by theses
accidents (negative experiences).

Best practices, incident reports and alerts suffer from inconsistency, im
precision and incompleteness [Silva & al., 2002].

Originates Describes Describes Describes Describes

from experiences failures successes accidents solutions

LL Yes Yes No Yes Yes

Incident Yes Yes No Yes No

report

Alert Yes Yes No No No

Best Possibly No Yes No Yes (1)

practice

Table 3.1: Differences between KM artifacts.

(1) Best practices do not really contain solutions because they are not related to accidents
(problems) or not necessarily derived from a specific experience.

If an alert happens, we have a failure but not yet an accident (the cause
and the solution of the failure are not identified). If an accident occurs af
terwards, this alert may be transfor-med into an incident report (the cause
and the solution of the accident are not still identified). Once the cause and
the solution of the accident are identified, the incident report may become a
LL.

3.3 Goals of LL systems oriented towards safety-crit ical software

3.3 Goals of LL systems or iented towards safety
critical software

This section explains the main goals and aims of a LL system oriented
towards safety-critical software, the identity of interested organizations or
industries and, finally, the uncertainty bound over such a system.

3.3.1 Goals

"The goal of a LL system is ta increment the learning capacity of the
organization in order ta increase its competitiveness by continuously adapt
ing ta a changing environment "[van Heijst & al., 1997], and also "ta shorten
development times, reduce cost and risk and increase performance, quality
and scientific return" [GAO , 2002] . The above goal is unsatisfying and must
be adapted to the characteristics of a LL system oriented towards safety
critical software.

The first goal of this kind of system, which is also called a LL reposi
tory for safety-critical software, and the main difference with other current
systems, is not to increase the competitiveness of an organization, but
to increase the safety of the systems being built . It aims to harvest and
deliver lessons that could help operators, engineers and, more generally, so
cieties and communities, by augmenting the knowledge that can conduct to
safer software-related products and devices.

A LL oriented towards safety-critical software is a
piece of knowledge constructed from a negative ex
perience that gives solutions in order to prevent the
recurrence of similar experiences in the future.

3.3.2 Collaboration and communities

We can observe that many organizations or industries collaborate in the
field of safety-critical software. "On the one hand, increasing safety is a
different goal, and on the other hand, there is a tendency within any in
dustrial sector to collaborate in relation to safety issues , as negative
incidents can affect the whole sector. This tendency ta cooperate is sa clear
that even defense-related safety procedures were transferred from the US ta
the USSR during the cold war, when competition between the two superpo
wers was at its height" [Leveson, 1995].

Specific LL systems related to safety-critical software are mainly designed
for groups of organizations or particular industrial sectors (nuclear,
defense, aerospace ...), and communities , particularly the software engi-

25

26 LL systems

neering community. These systems do not target a single or particular com
pany, because safety and security related to software is a subject that goes
beyond the limits of a single organization. In these systems, communities
are very important, which is the reason why the forum comp.risks exists.
"There is a similar distinction for safety and reliability standards. Most are
industry-specific standards, but there are non-industry-specific standards as
well. A LL can be of interest only to a particular organization or industry,
but it could have non-industry-specific interest. LL can be beneficial if
they are reused by other organizations that are in the same industry or share
the same interests" [Weber & al., 2001].

Currently, there are mainly LL systems for construction industries, mi
litary and government organizations. In the field of safety-critical software,
similar and adequate systems for the software engineering community
do not exist, except the comp.risks forum [Silva & al., 2002]. On the other
hand, similar LL systems exist in specific organizations, such as the system
established by the NASA [GAO, 2002].

3.3.3 Uncertainty

"There is some information on LL approaches for the construction indus
try, focused on risk management at the supply chain. But software has very
different characteristics, and this leads to problems. One such problem is re
lated to the fact that there is not always a complete or satisfactory amount of
information regarding a software-related accident, nor is it always clear what
the best approach for avoiding a similar accident in the future is. However,
this uncertainty is not so much of a problem for a LL system, as long as it
is explicitly reported, so potential receivers of this information are aware of
its volatility and/or lack of justification" [Tah & al., 2001].

3.4 LL process

3.4 LL process

Subsection 2.6.3 pointed out that a knowledge repository can store the
LL developed by individual learning and learning through communication.
According to [Weber & al. , 2001], sharing and communicating knowledge
among workers is achieved by the following tasks: collecting, verifying, sto
ring, disseminating and reusing knowledge. These five tasks represent the
LL process which is schematized in figure 3.1.

3.4.1 Collection

[Silva & al., 2002] distinguishes two main types of collection sub-processes:
the active and the passive collection.

• In the active collection, [Knight & al., 2000] says that "LL are sear
ched and scanned by humans or automatically by the system itself
throughout the organization, analyzing the documents and the com
munications for example".

• In the passive collection, workers directly submit and record their
lessons into the system, using a web form for example, with specific
attributes and free text-fields describing the structme of the lessons.
This kind of collection takes place in 2/3 of the organizations dealing
with KM processes [Weber & al., 2001].

3.4.2 Verification

The LL repository should be evaluated and validated for relevance, cor
rectness, non-redundancy and consistency. Experts are needed in order to
perform this task and their roles go beyond those of the moderator as in
forums like comp.risks. Experts have to take decision and accept, modify
or reject the LL submitted. ln some cases , a dialog between them and the
submitter of a LL should be necessa.ry.

Experts will also determine whether or not "a lesson is relevant across
many other projects, is unique ta a particular department or project, or
applies globally ta the organization as a whole" [GAO, 2002].

3.4.3 Storage

Storage concerns the physical representation, indexation and structme of
the lessons in the repository (database). It transforms lessons into persistent
lessons. "Lesson representation can be structured, semi-structured, or in
different media" [Weber & al., 2001].

27

28 LL systems

3.4.4 Dissemination

There are two main types of dissemination sub-processes: the active and
the passive dissemination [Weber & al., 2001], [Silva & al., 2002].

• In the active dissemination, users automatically receive, and gene
rally without personal intervention, the lessons they are interested in.
We can distinguish four types of active dissemination:

Broadcasting: Everybody in the organization receives the LL.
Broadcasting may be sometimes useful in case of emergency, but
a large number of users can receive lessons in which they are not
interested.

Active dissemination with user profiles: Users have to fill
in a profile to receive lessons. This allows them to be notified
only of the lessons they are interested in, which results from a
matching between the user profiles and the content of the LL in
the repository.

Proactive dissemination: "The system builds a model of the
user 's interface events to predict when to prompt users with ap
propriate lessons" [Weber & al., 2001]. In other words, the LL
system is incorporated into the process/application it intends to
support, by listening and observing the operations performed by
the user. It is a kind of monitoring, which will be presented in
the last part about future works. Proactive dissemination, also
called monitored distribution, is very difficult to build, and it
is hard not to drown the users with lots of irrelevant information.

Reactive dissemination with user profiles: Users can call
the system directly (via a link) to retrieve appropriate lessons.
It is useful when they need to obtain additional information con
cerning the job they are currently doing.

• In the passive dissemination, users retrieve themselves lessons from
the system. It is the most common form of dissemination. Users
can perform different kinds of searches in the repository: hierarchical
search, search by attributes (matching with the attributes of a lesson)
or search by keywords. However, passive dissemination is also the most
inefficient dissemination method. Recent studies and workshops have
established that these kinds of systems are underused. The main rea
sons is that users do not necessarily know about the existence of the LL
system, nor know how to use it , where to find it, and how to understand
its results [Secchi & al., 1999], [GAO, 2002], [Johnson & al., 2000] .

3.4 LL process

3.4.5 Reuse

In order to be reused, a LL must contain a recommendation or solu
tion. The choice of whether to reuse a lesson's solution or recommendation
is made by the user. In order to improve reuse, users should be encouraged
to frequently post negative or positive feedbacks about the reuse of the so
lution posted by someone else. This will be very useful for future potential
users.

n
reuse

V
Organizational

Processes

Domain
Experts

st.oi::e

Figure 3.1: Generic LL process [Weber & al., 2001].

29

30 LLsy~ems

3.4.6 LL process and processes supported by KM

As mentioned in section 2.5, a good KM system should fill all the fol-
lowing roles:

• Developing new knowledge.

• Consolidating new and existing knowledge.

• Distributing knowledge.

• Combining knowledge.

Table 3.2 shows the relationships between the processes supported by
KM and the LL process. Since a LL system is a kind of KM system, it
is no surprise to observe that the two processes are very similar. We can
see that the LL process is more precise than the KM process which does
not take into account the verification of a knowledge piece. The LL process
specializes the KM process which is more generic.

Processes supported by KM LL process
Developing new knowledge Collection

Consolidating new and existing knowledge Storage

/ Verification
Distributing knowledge Dissemination
Combining knowledge Reuse

Table 3.2: Correspondence between processes supported by KM and LL
process.

3.5 Classification of LL systems

3.5 Classification of LL systems

There are different kinds of LL systems. They can be catalogued accor
ding to the collection and dissemination sub-processes, as well as according
to other characteristics.

3.5.1 Collection and dissemination sub-processes

In the previous section, the LL process has been described (collection ,
verification, storage, dissemination and reuse). [van Heijst & al., 1997] clas
sifies LL systems according to the collection and dissemination sub-processes.
The authors distinguish different ways of doing both the sub-processes, with
different implications for the users and the organizations or communities that
will use the system. Table 3.3 is a classification of LL systems which depends
on whether the collection sub-process is active or passive and whether the
dissemination sub-process is active or passive:

• Knowledge attic: Collection and dissemination are both passive,
generally performed through a web form . It is the simplest type of
LL system to build. The best example of this kind of system is the
comp.risks forum. It is also used in organizations like NASA. The
benefit is that it is not intrusive for the employees, but the disadvan
tage is that knowledge attic systems are underused, because it requires
a high discipline and an organizational culture (described in the chap
ter 12) that incites workers to use it . However , this approach seems
to be suitable for a community of interests.

• Knowledge sponge: Collection is active and dissemination is passive.
If the collection is performed by the system automatically, lessons are
recorded in real time and are immediately available. This type of
system is very rare; there are only but a few examples in the world
[Silva & al., 2002].

• Knowledge publisher: Collection is passive and dissemination is
active (by filling a user profile or by subscribing to a mailing list).
It is used for example by the US Department of Energy. Lessons
are posted by the users, which means that they need to be checked.
Validation and consolidation by experts t akes time and the team of
experts decides to disseminate the lessons to the potential users.

• Knowledge pump: Collection and dissemination are both active. It
is used , for example, by t he US Army. Knowledge pump is the most
difficult and complex type of LL system to achieve.

31

32 LL systems

Active collection Passive collection
Active dissemination Knowledge pump Knowledge publisher
Passive dissemination Knowledge sponge Knowledge attic

Table 3.3: Types of LL systems [Silva & al., 2002].

3.5.2 Other characteristics

[Weber & al., 2001] proposes to classify LL systems according to the fol
lowing characteristics:

• Content : Based on the content of a LL system, it is possible to make
distinction between pure and hybrid systems:

Pure LL systems only include LL.

Hybrid systems also include other KM artifacts, described in
subsection 3.2.2, such as alerts, incidents reports and/or best
practices. For example, the hybrid system of the National Se
curity Agency (NSA) contains three different types of LL in his
system which are informational, successful or problematic.

• Nature: LL systems can be classified according to the nature of the
processes and users they are designed to support:

Planning lessons teach something related to plan execution and
their content aims to change an evolving plan in order to help
achieve its goals. Typical examples are planning processes in
military organizations and operations.

Technical lessons are the result of a technician's experience
and refer to problems, their causes and their solutions. Tech
nical work is not delivered through plans, but through jobs or
projects. These lessons are related to technical processes which
often require applying domain-specific expertise for analysis and
troubleshooting.

• Orientation: Typically, LL systems are implemented in order to sup
port a specific organization, and they should be built in accordance
with that organization's goals. On the other band, some LL systems
are built to support a group of organizations or community, as
explained in subsection 3.3.2 about collaboration and communities.

• Duration: LL systems can be permanent or temporary (due to a
temporary job or event). This characteristic can depend on the or
ganization type. Sorne organizations are adaptable in which case

3.5 Classification of LL systems

they can quickly incorporate LL in their processes. Others are rigid
in which case they use doctrine that is slowly updated . Adaptable
organizations do not necessarily need to maintain a permanent lesson
repository because lessons , once incorporated into these organization's
processes, have already been learned/ reused. In contrast, rigid orga
nizations (e.g. military organizations) have a greater need to maintain
lesson repositories because there is often a long time prior to the in
corporation of lesson knowledge into doctrine, or lessons may not be
deemed sufficiently general for inclusion into doctrine.

• Architecture: "LL systems can be standalone or integrated in
a targeted and internal process. lntegration allows active dissemina
tion, they can also be accessed by a link in the decision support tool"
[Bickford, 2000]. Proactive dissemination and reactive dissemination
with user profiles allows a LL system to be integrated in a targeted
process / application.

• Attributes and format : Most LL repositories have both textual and
non-textual attributes. For example, a LL may be described by a set
of att ributes and supplemented with a video , a diagram or a report.

• Confidentiality: Sorne LL systems give access rights to the users,
allowing or disallowing them to see the lessons. This implies that
some lessons are classified and restricted (by industrial sector for
example: nuclear, aerospace ...), and others unclassified .

• Size: It concerns the number of LL that can be stored in the reposito
ry. Technically, it is possible to store a huge number of LL in a reposi
tory. The system will be more useful if it stores a huge number of LL.
Examples about the size of LL systems are given [Weber & al., 2001]:

Idaho National Engineering and Environmental Laboratory
(< 100 LL)

Department of Energy (DOE) Corporate LL Collections
(100 - 1000 LL)

Marine Corps LL System (1000 - 5000 LL)

Center for Army Lessons Learned (CALL) (5000 - 10000 LL)

Eureka (Xerox) (> 30000 LL)

From most of the sets of values of the characteristics mentioned above,
it is strongly recommended to build LL systems by choosing only one value
for each of them, otherwise it complicates the future collection, storage and
dissemination of lessons.

33

34

3.6

LL systems

General qualities and requirements of LL sys
tems

[van Heijst & al., 1997] listed general qualities and requirements that a
LL system should satisfy.

l. Accessibility: Users should have facilities to access knowledge in the
LL repository and to link it with other knowledge.

2. Localization: Users should know which other users or groups of users
could have the knowledge needed for a particular activity.

3. Profiles of interest : Expert users should be able to choose which
other users or groups of users should be interested in a particular LL.
According to the active dissemination sub-process, the system should
be able to recognize LL in which a user is interested .

4. Ease of use: Users should have a certain ease of use when submitting
and retrieving a LL in the system, and it should be gratifying for them
to use the system.

5. Verifiability: LL should be precisely defined, formulated and exactly
described by well-defined attributes.

6. Consistency: LL repository should keep relevant , correct, no redun
dant and consistent.

7. Dissemination: LL repository should have facilities to distribute
existing and new LL to the users who are interested.

8. Reusability: LL should absolutely include a solution/recommendation
which helps to prevent occurrences of similar accidents, failures or more
generally unwanted situations in the future.

Part II

Analysis and implementation

35

Chapter 4

Mission statement and
development method

4.1 Mission statement

Before explaining in details the development method, it is important
to note that the analysis presented in this part is an analysis for an ex
ploratory throwaway prototyping and not for a complete application.
The first goal imposed was to rapidly implement an overview of the main
functionalities of a LL system oriented towards safety-critical software , to
evaluate whether future research and additional work could be useful in this
field.

As far as we know, there is currently no such LL systems oriented to
wards safety-critical software. The comp.risks forum concerns safety-critical
software but this forum is inefficient and in disorder. A moderator monitors
the forum but there is no structured information nor verification performed
by experts. It often reports problems and accidents but do not give any so
lution. For example, several accident reports are not completed, and some
lessons are reported by writers who are not experts in the field of the acci
dent they describe [Silva & al., 2002].

This implies that our LL system is complementary with comp.risks but
does not completely replace it . For example, it could be interesting to dis
cuss a problem in comp.risks before to submit it in the LL system. It would
allow to warn interested people earlier , while information is not yet complete
and structured.

37

38 Mission statement and development method

4 .2 Development method

The features and the analysis described below only take into account
the requirements that it was possible to implement during a work period of
four months . Therefore, the list of features presented is not meant to be
complete. In the last part of our thesis, some ideas about additional features
and future applications are presented. These latter requirements will also
have to be taken into account to conceive a full fledged LL system oriented
towards safety-critical software.

By analyzing a few LL systems on the Internet, such as the NASA Public
LL System 1, and several articles ([van Heijst & al. , 1997], [Weber & al., 2001],
[Silva & al., 2002] . . .), the main attributes of a LL system oriented towards
safety-critical software have been defined. This list of attributes is de
scribed in the next chapter. It logically follows the state of the art estab
lished before. Afterwards, a development method has been discussed and
put into operation. It consisted of the following steps:

• Features of the LL system: According to the LL process described
in the state of the art, the features have been defined. A level of
priority and an estimated technical risk have been attached to
each feature , defining which features are more important than others,
and should be implemented at first. The links and dependencies
among the various features have been also defined. It is important to
note that our features did not evolve during the different iterations.
We used the tool Omni- Vista On YourMark Pro to write our features .

• According to the features' priority, system analysis and implemen
tation were carried out following an iterative approach, known as
the "spiral model" in project management. Figure 4.1 shows this
iterative approach. Each step of the development method has been
reviewed, refined and validated iteration by iteration:

Class diagram and class dictionary: According to the list of
attributes, a class diagram representing the main classes of the
future application has been drafted to have an overview of the
application domain. A class dictionary also describes exactly each
class, its main components, and its relations with other classes.
We used UML Studio 5.0 to draw our class diagram.

- Use cases: Based on the features and their priority, the va
rious use cases of the system have been identified and linked to
the appropriate feature. Use cases are based on the typology of
[Cockburn, 2000]. For each use case with a user goal level, normal

1 http://llis.nasa.gov/llis/plls/ index.html

4.2 Development method

Figure 4.1: Iterative approach.

flow and alternative flows are presented. We used Microsoft Visio
to draw our use cases.

Screenshots: According to the features , the class diagram and
the use cases, some basic screenshots of the future prototype have
been drawn, aside from the database design. The goals of the
screenshots are to have an overview of the future look of the
application, the content and the sequence of the various screens,
as well as the interaction with the user. Screenshots also partly
allow to check whether features and use cases are fulfilled by the
implementation. We used Macromedia Dreamweaver MX to draw
our screenshots quickly.

Logical and physical design of the database: A complete
analysis has been carried out to design the database. We used
DB-MAIN to draw our E/R schema. PostgreSQL was our database
server and we used pgAdmin III to manage our database.

Coding: It concerns the technical implementation of the proto
type. The prototype has been mainly written in PHP and our
application server was Apache. We used Easy PHP to configure
and run our application, and PHP Expert Editor in order to write
our code.

Tests: Tests have been made to validate the prototype and to

39

40 Mission statement and development method

check the fulfillment of the features and the use cases.

Each step of the method described in the next chapters only concerns
the last iteration. It would have been boring to present details of each
iteration.

Table 4.1 gives more details about the work performed for each iteration.

Duration Number of use cases (25)

Iteration 1 5 weeks 5 uc
Iterat ion 2 7 weeks 11 uc
Iteration 3 4 weeks 5 uc
lteration 4 2 weeks 4 uc

Table 4.1: Iterations details.

Chapter 10 will describe the physical architecture of the system, based
on a web architecture. It also explains the different tools used to build the
prototype, and why we have opted for them.

Chapter 11 shows the main implementation results of the prototype and
their correspondence with the appropriate use cases.

4.3 Classification of our LL system

Table 4.2 shows the characteristics of our prototype according to the
classification established in section 3.5.

Collection & dissemination Knowledge attic & publisher

Content Pure

Nature Technical tessons

Orientation Croup of organizations or community

Duration Permanent

Arc hi tect ure Standalone

Integrated (Reactive dissemination with macro)

Attributes & format Textual and non-textual attributes

Confidentiality No rights management

Size Small (prototype)

Table 4.2: Classification of our LL system.

Chapter 5

Attributes of lessons learned
systems

5.1 Attributes of general LL systems

Following the article of [van Heijst & al. , 1997], [Silva & al. , 2002] de
fines a set of general attributes identifying a LL, extracted in part from
existing LL systems. This homogeneous representation is necessary because
several authors employ different lesson representation in the literature. It is
therefore indispensable to find a single, structured, stereotypical and effec
tive lesson representation. Attributes are typical of any kind of LL system
and they consider the goals of LL systems, the LL process and the LL re
quirements presented before. In the next section, attributes below are fitted
to LL systems oriented towards safety-critical software and we give for each
of them additional information, such as domain of values, multiplicity or
default value.

• Name: Name, label, general identifier of the LL 1 .

• Author's identity: Most LL systems indicate the identity of the
worker who posts a LL, but some do not disclose it. The reason is
that, after the author 's identity is revealed, it can be used for goals
other than sharing knowledge, such as job evaluation. On the contrary,
it can be gratifying and sometimes rewarding for a worker to show his
abilities to find and solve problems. Therefore, in some systems, it can
be practical to leave to the user the option of revealing his identity.

• Domain: Domain to which the LL is related. An inventory of the
main knowledge demains is needed.

1 Name is a secondary identifier but there is a lso a technical primary identifier. We do
not indicate ail technical attributes in this section because it is not very useful.

41

42 Attributes of LL systems

• Business processes: Processes, organizational activities in which
the LL is used. Possible values of this attribute change for every
organization.

• Organizational roles: Roles to which the LL is attached . "LL
systems differ according ta the nature of the processes (roles) and
us ers they are designed ta support. For example, military personnel
execute planning processes (i.e . tasks are part of plans with estab
lished goals , usually in a multi-person and distributed context). In
contrast, technicians are users whose technical processes often require
applying domain-specific expertise for diagnosis and troubleshooting"
[Weber & al., 2001].

• Relevant sources: Sources (persons , books, software ...) possessing
some knowledge related to the LL.

• Nature: Characteristics of the LL in terms of quality and accu
racy (heuristic, formal, complete, under development . . .)

• Proficiency level: Level of proficiency at which the LL is available
to the organization. For example, if the LL is written for a specific
technician, proficiency level will be high. On the contrary, proficiency
level will be low if the lesson can be understood by everyone.

• Stability: Rate of change of the LL's content.

• Time: Date at which the LL is made available.

• Form: Physical/symbolic representation of the LL (video, report,
manual, chart . ..). It could be an attachment downloadable, directly
reusable by a user who consults a lesson.

• Related knowledge assets: Cross-references to related LL stored in
the repository.

• Related products and services: References to other products and
services that bear any relation to the LL. These products and services
can be external or internal to the organization. This attribute suggests
that the submitted lesson could have impact on these products and
services.

• Justification: Method used to check the LL (proof, empirical, witness
confirmation ...) .

• History: Change history, backup management of the different ver
sions of the LL, from its origin to the current version.

5.1 Attributes of general LL systems

• Solution/recommendation: In most current LL systems, another
attribute is used to indicate what should be clone with a particular
lesson. When these conditions are met, this solution should be applied.
Concerning LL related to successes, the solution consists of repeating,
under similar conditions, the originating actions (occurred actions that
give birth to the lesson), to be sure that the lesson contribution will
cause the same results. Concerning LL related to failures or accidents,
the solution consists of means that allow to avoid the repetition of the
originating actions and prevent similar accidents in the future.

It has been observed that several LL systems include other attributes.
For example, some contain an attribute related to estimated saving/ costs
avoidance which could help to control the effi.ciency of the system. Safety
and cost are always in balance but, when the life of people is concerned,
safety gets the better of safety. This attribute is not really suitable in the
case of LL related to safety-critical software, because the goal is to increase
general safety and not to make more profit or less expenses. Indeed, there
are safety levels that are no negotiable. These levels must be achieved what
ever the price because they concern the life of people. Additionally, it is not
easy to correctly compute these estimations . However, this kind of estima
tions could be written by some users who submit feedbacks about a solution
they have reused.

The attributes presented above are not completely suited to our LL sys
tem oriented towards safety-critical software. Sorne should be redefined (e.g.
nature), completed (e.g. organizational role, business processes) , or removed
(e.g. time), and others may be missing. For example, it is also essential to
ask users to complete a user profile which allows them to define they areas
of interest and describe their own fonctions. Such profiles may be used in
the active dissemination method of the LL process, by matching the lessons
contained in the repository with profiles, allowing users to automatically
receive lessons they want. These profiles contain several attributes (do
main, business process, related products/services .. .) listed above but not
all , otherwise user profiles and matching with lessons would be too complex.

These reasons lead us to extend and refine these attributes for the par
ticular case of LL related to safety-critical software.

43

44

5.2

Attributes of LL systems

Attributes of LL systems oriented towards safety
critical software

The general attributes mentioned above can be used in any LL system.
In this section, some of these attributes will be redefined and others will be
added. All the attributes will represent a LL oriented towards safety-critical
software.

It is important to repeat that a LL oriented towards safety-critical soft
ware reports only negative experiences (failures and accidents), and not
successes. The system will only contain technical lessons and not planning
lessons, because it is software related. The main goal is to improve the ge
neral safety and not to increase the competitiveness. This system is aimed
at the software engineering community. These characteristics and the next
attributes presented distinguish our LL system from all other systems.

In summary, a LL:

• contains general attributes which characterize and index it,

• is linked to an accident which gives birth to the lesson, and which is
described by one or many accident event sequences,

• has one or many solutions on which users can post feedbacks or
evaluations,

• is posted by one user and sent to others, using user profiles,

• is checked and validated by an expert .

It is important to note that several attributes are filled by the system
automatically (see default value) and others are optional (see multipli
city). This is to make the encoding of LL as fast and easy as possible to
the user. As we will see later, this is the role of the experts to check and
determine most optional attributes.

5.2 Attributes of LL systems oriented towards safety-critical software

5.2.1 LL general attributes

• Name

Definition: N ame, label, general identifier of the LL 2
.

Domain of values : Undefined string

Multiplicity : 1-1

Default value: No

Example: Why software bug causes shut tle countdown hold at
T-31 seconds.

Source : [Silva & al. , 2002]

• Author's identity

Definition: Users have the choice to reveal their identity or not .
This attribute is included in t he user profile described in subsec
t ion 5.2.5 .

Domain of values: Undefined string (existing user)

Multiplicity: 0-1

Default value : Yes

Example: Karl Lehenbauer

Source : [Silva & al. , 2002]

• Industrial sector

Definition: Instead of speaking about domain , which is too gene
ral, we will speak about main industrial sectors relat ed to safety
critical software. A LL is always linked with at least one industrial
sector.

Domain of values: Aerospace, biomedical, defense, nuclear, trans
port . . . (extensible domain)

Multiplicit y : 1-N

Default value: No 3

Example: Aerospace

Source: [Silva & al. , 2002]

2 Name is a secondary identifier but there is also a technical primary ident ifier. We do
not indicate ail technical a ttributes in this section because it is not very useful.

3 It could be filled automatically with the industrial sector entered by the user in his
profile. However , it causes problems if he defines more than one industrial sectors in his
profile.

45

46 Attributes of LL systems

• Life cycle stage

Definition: Instead of speaking about "business processes" and
"organization role", it is more convenient in software engineering
to speak about main life cycle stages. It describes the phase(s)
that was not performed properly and finally led to the reported
problem. However, we decided that the multiplicity of this at
tribute is 0-N because it is not always easy to determine to which
life cycle stage a LL is linked.

Domain of values: System requirements definition, system de
sign, software requirements definition, software design, human
interface design, implementation, testing, deployment, usage, de- .
commission, maintenance ... (extensible domain)

Multiplicity: 0-N

Default value: No

Example: Software design, implementation

Source: [Silva & al., 2002]

• Consequence

Definition: Kind of damage provoked. It is important to add this
attribute.

Domain of values: Deaths , resource losses, environmental dam
age, risks to lives ... (extensible domain)

Multiplicity: 1-N

Default value: No

Example: Resource losses, risks to life

Source: [Silva & al., 2002]

• Relevant sources

Definition : Sources possessing some knowledge related to the LL.

Domain of values: P ersons, books, article .. .

Multiplicity: 0-N

Default value: No

Example: The Risk Digest , Volume 9, Issue 88, 2 May 1990

Source: [Silva & al., 2002]

• Proficiency level

Definition: Level of proficiency at which the LL is available to
the users.

5.2 Attributes of LL systems oriented towards safety-critical software

Domain of values: High, medium, low

M ultiplicity: 0-1

Default value: o

Example: High

Source: [Silva & al., 2002]

• Stability

Definition: Frequency measure of the change of the LL content.
This attributes is "dead" in our database because LL versioning
is not currently performed in our prototype. It represents the
number of times a LL has been changed, once it has been accepted
by experts.

Domain of values: Integer

Multiplicity: 1-1

Default value: Yes

Example: 3

Source: [Silva & al., 2002]

• Creation date

De finition: The original "time" attribute has no reason to exist in
a LL repository. Indeed, a LL is directly available once it is posted
and validated in the system. However, another time attribute is
needed, which is the date of LL introduction in the system.

Domain of values: A valid date

Multiplicity: 1-1

Default value: Yes

Example: 09/05/1998

• Attachment

Definition: Downloadable attachment, soit can be directly viewed
by a user who consults a lesson. An attachment is characterized
by a physical form that takes his values in the domain below.

Domain of values: Video, report, manual, chart ... (extensible
domain)

Multiplicity: 0-N

Default value: No

Example: Shuttle_ video.avi

47

48 Attributes of LL systems

• Related LL

Definition: Cross-references to related LL stored in the reposi
tory. It could be interesting to add semantics to these references,
i.e. different levels of similarity between LL could be established
(resemblance, consolidation, contradiction with another LL).

Domain of values: Existing LL

Multiplicity: 0-N

Default value: No

Example: Shuttle crash at T+l2 seconds after launching (Resem
blance and consolidation).

Source: [Silva & al., 2002]

• Related products and services

Definition: References to other products and services that bear
any relation to the LL. This attribute suggests that the submitted
lesson can have impact on these products and services.

Domain of values: Undefined string

Multiplicity: 0-N

Default value: No

Example: Hubble Space Telescope Website

Source : [Silva & al., 2002]

• History

Definition: Change history, management of the different versions
of the LL, from its origin to the current version . Each time a user
refines or modifies a LL, a new version of the LL is created. For
example, the validation of a LL is generally performed in several
steps, because there are interactions between the expert and the
submitter of the LL. During this stage of validation, each time
the LL is updated, a new version is created.

Domain of values: LL

Multiplicity: 1-N

Default value: Yes

Source: [Silva & al. , 2002]

• Statistics

Definition : Statistics about the lessons, such as the reuse rate
(number of feedbacks) of a lesson, the number of times it has
been consulted or searched, can be helpful to users when they
consult a specific lesson in the system.

5.2 Attributes of LL system s oriented towards safety -critical software

Domain of values: lnteger

Multiplicity: 1-1

Default value: Yes

Example: Search number: 1987, Consultation number: 156 , Reuse
rate: 23

Source: [GAO, 2002]

5. 2 .2 Accident structure and accident event sequence

Each LL is existing because an accident happened that led to the creation
of the lesson. There are several different accident models in risks analysis,
project management and software engineering. Sorne are flexible and adap
table in all organizations, and others are used only in specific organizations.
As said in (Silva & al., 2002], "Any organization could structure its LL repo
sitory according to any other accident model that it considers to better suit
its purpose. For example, there are accident models designed for the trans
port industry that can perf orm better than our propos al, at least for this
industrial sector. As software is used in many industrial sectors, the analy
sis of software-related mishaps in one industry (e.g., transport) can suggest
improvements for other industries (e.g ., nuclear). Taking this into account,
our model will take a more general approach, based on the well-known con
cepts of haz ard and on the events that lead to an accident, which are not
particular to any industrial sector".

The accident describes the structure of the reported problem and con
tains the following attributes:

• Accident name

Definition: Label that summarizes the accident. lt is important
to warn the submitter of a LL that accident name should be
different from LL name.

Domain of values: Undefined string

Multiplicity: 1-1

Default value : No

Example: Shuttle countdown hold.

Source: [Silva & al., 2002]

• Accident date

Definition: Date when the accident happened.

Domain of values: Valid date

49

50

Multiplicity: 1-1

Default value: No

Example: 24/04/1998

• Accident description

Attributes of LL syst em s

Definition: Description of the accident .

Domain of values: Undefined string

Multiplicit y: 1-1

Default value: No

Example : A software problem caused three minutes hold at T-31
during the launch countdown of the shuttle mission that orbited
the Hubble Space Telescope on April 24th.

- Source: [Silva & al., 2002]

• Accident hazard

Definition: Precursor of the accident. "A hazard is a state that,
given certain conditions, will inevitably lead to an accident. For
example, if the distance between two planes is less than a re
quired minimum, we have a hazard but not an accident (yet)"
[Silva & al. , 2002].

Domain of values: Undefined string

Multiplicity : 0-1

Default value : No

Example: System reconfiguration was not enabled.

Source : [Silva & al. , 2002]

• Accident triggering conditions

Definition: By definition, a hazard alone does not cause an acci
dent. Other conditions are needed to lead to the accident. This
attribute captures these conditions. In summary, an accident
happens because there is a hazard and some triggering conditions
occur .

Domain of values: Undefined string

Multiplicity: 0-1 4

Default value: No

Example: Wrong code modification and the simulator could not
find error.

4 Multiplicity is 0-1 because it is a free-text field , so it could contain more than one
triggering condition.

5.2 Attributes of LL systems oriented towards safety-critical software

- Source: [Silva & al., 2002]

• Accident risk [1-1] : Risk is the product of the possibility of the
hazard occurring and the magnitude of the worst consequence. A
classification of risks is needed (in a range of tolerance) to decide w hich
kind of measures should be taken. Accident risk encapsulates:

Risk consequence

* Definition: Kind of consequence and damage clone by the
occurrence of the accident .

* Domain of values: Catastrophic, marginal, perceptible, crit-
ical. .. (extensible do main)

* Multiplicity: 1-1

* Default value: No

* Example: Critical

* Source: [Silva & al., 2002], [Silva, 2003]

Risk possibility

* Definition: Possibility / probability that the accident occurs.

* Domain of values: High , low, medium

* Multiplicity: 1-1

* Default value: No

* Example : Medium

* Source: [Silva & al. , 2002], [Silva, 2003]

Risk justification

* D efinition: Justification, explanation about the selected risk
consequence and possibility.

* Domain of values: Undefined string

* Multiplicity: 1-1

* Default value: No

* Example: This explosion could have caused death of people
and if new procedures are not respected, other problems with
shuttle launching can happen again.

* Source: [Silva & al., 2002]

51

52 Attributes of LL systems

Accident event sequences [0-N] : An accident can be explained
by one or more sequences of events that encapsulate all the chrono
logical steps leading to the accident. An accident is described by
[0-N] event sequences because it might be unknown. Each event
sequence contains the following attributes:

* Accident event sequence type

Definition: Type/form of the representation used to des
cribe the event sequence. If the same sequence is de
scribed with several event sequence types, it must be the
same source that relates it (see below).

Domain of values: Natural language narrative, cause
consequence diagram, temporal logics . . . (extensible do
main)

Multiplicity: 1-1

Default value: No

Example: Natural language narrative

Source: [Silva & al., 2002]

* Accident event sequence description

Definition: Description step by step of the events that
precede the accident.

Domain of values: Undefined string

Multiplicity: 1-1

Default value: No

Example: At T-48 seconds, newly written software de
tected that the outboard external tank liquid oxygen
fill and drain valve was open when it should have been
closed. The ground launch sequencer (GLS) stopped the
countdown clock at T-31 seconds.

Source: [Silva & al., 2002]

* Accident event sequence source

Definition: Description of the source (name and role)
that relates the accident. It can be a witness, a passenger,
a pilot, an injured person .. .

Domain of values: Undefined string

Multiplicity: 1-1 5

Default value: No

Example: Jean Aimar, supervisor of shuttle software sys
tems.

5 Multiplicity is 1-1 because it is a free-text field , so a same accident can be described
by more than one source.

5.2 Attributes of LL systems oriented towards safety-critical software

· Source: [Silva & al., 2002]

* Accident event sequence discrepancies

Definition : Disagreements and contradictions between
the different sources.

Domain of values: Undefined string

Multiplicity: 0-1

Default value: No

Example: J ean Aimar said that the shuttle countdown
stopped at T-31 seconds, while an astronaut said that the
instrument panel of the shuttle indicated T-29 seconds
when the countdown stopped .

Source: [Silva & al. , 2002]

* Accident event sequence accuracy

5.2.3 Solution

Definition: Level of certainty that users can have in the
description of the accident event sequence. This level is
important because it is sometimes very difficult to relate
with accuracy an event sequence.

Domain of values: High, medium, low

Multiplicity: 0-1

Default value: No

Example: Low

Source: [Silva & al. , 2002]

A LL must at least contain a solution or recommendation [1-N]. It in
dicates what should be done when some conditions happen. A solut ion is
the means that allows to avoid the repetition of similar accidents in the
future. This is essential because several systems, as the comp.risks forum,
report lessons but do not give any solution to the reported problems. This
implies that a LL system is complementary with comp.risks but does not
completely replace it. Indeed , comp.risks contains also best practices, acci
dent reports or alerts. Therefore, it could be interesting to discuss a problem
in comp.risks before to submit it in the LL system. It could allow to warn in
terested people earlier , while information is not yet complete and structured.

A LL can of course be solved by many solutions. This is why users
are allowed to post new solutions on a lesson submitted before. A solution
contains the following attributes:

53

54 Attributes of LL systems

• Author's identity

Definition: User who posts the solution is not necessarily the user
who posts the lesson, because a lesson can have many solutions.
Of course, the user who posts the first found solution is the user
who posts the lesson.

Domain of values: Undefined string (existing user)

Multiplicity: 1-1

Default value: Yes

Example: Karl Lehenbauer

Source: [Silva & al., 2002]

• Expert's identity

Definition: Expert who checks the solution. More details about
experts and validation are given in subsection 5.2.6. If it is the
first solution of the lesson, the expert also checks the lesson it
self. If it is an additional solution, expert only checks the solution
because the lesson to which it is attached has been already vali
dated.

Domain of values: Undefined string (existing expert)

Multiplicity: 0-1 (0 if the LL is submitted but not yet checked)

Default value: Yes

Example: Simon Defat, expert in shuttle systems.

Source: [Silva & al., 2002]

• Hazard dealing type

Definition: According to [Leveson, 1995], there is a hierarchy for
dealing with a hazard in safety engineering. The purpose of ha
zard analysis is (1) to identify the hazards (i.e. the unsafe states)
of the system under consideration, (2) evaluate the risks of the
hazards and (3) identify measures that can be taken to eliminate
or control the hazard, or to reduce the risk. In addition to redu
cing the hazards posed by a system, a secondary benefit of hazard
analysis is that tradeoffs involving safety are made explicit and
traceable. Concerning hazards related to accidents contained in
the LL repository, potential solutions should be classified accor
ding to the hierarchy below. It is assumed that , generally, hazard
elimination is the most difficult option, and damage reduction is
the easiest one.

5.2 Attributes of LL systems oriented towards safety-critical software

Domain of values:

* Hazard elimination: Taking measmes to make impossible the
happening of the hazard. If successful with respect to all
hazards, it means for the system to be intrinsically safe, i.e.
that the system is not capable of doing any significant damage
even in the case of the worst conceivable failure. If a system
can be designed in this way (which is of course not possible
for all systems) this is the safest option, and such a system
is not safety-critical.

* Hazard reduction: Taking measures to reduce the frequency
with which the hazard is expected to occur. Hazard reduction
is similar to fault tolerance techniques, where local failures
are contained without leading to system failures.

* Hazard control : Taking measures, if the hazard do occur, to
reduce the likelihood of the hazard leading to an accident,
i.e. reduce the likelihood of triggering conditions. Fail-safe
designs are examples of such measures. It means that, in the
event of a certain class of faults, the system will automatically
go into a safe state. The emphasis is on safety and damage
limitation. Continue functionality is not a priority. Hazard
control reduces the severity of failures, by weakening the link
between failures and accidents.

* Damage reduction: Taking measures to reduce the severity
of the accident, i.e. the damage and lasses caused by this
accident.

Multiplicity: 0-1

Default value: No

Example: Hazard control

Source: [Silva & al., 2002], [Leveson, 1995]

• Description

Definition : Complete and precise description of the solution.

Domain of values: Undefined string

Multiplicity: 1-1

Default value: No

Example: A train vacuum brake is mentioned as an example of
hazard control: if the pipe fails then the loss of the vacuum applies
the brakes. Railway signaling systems are designed so that, in the
event of failure, all trains should stop. This example illustrates
that fail-safe mechanisms increases safety but not reliability.

55

56 Attributes of LL systems

- Source: [Silva & al., 2002], [Terry, 1991]

• Creation date

Definition: When the solution has been submitted in the system.

Domain of values: Valid date

Multiplicity: 1-1

Default value: Yes

Example: 09/05/1998

• Validation status

- Definition: The attribute "nature"of a general LL system is very
vague. It is clearer to speak about "validation status", which
characterizes the LL solution in terms of quality and accuracy.

- Domain of values: Heuristic, forma!, complete, under develop
ment .. .
(extensible domain)

Multiplicity: 0-1

Default value: No

Example: Heuristic

Source: [Silva & al., 2002]

• Safety degree

- Definition: Degree of safety of the solution. Solutions to a prob
lem are not unique, and different solutions provide different de
grees of safety.

Domain of values: High, medium, low

Multiplicity: 0-1

Default value: No

Example: High

Source: [Silva & al., 2002]

• Priority descriptor

- Definition: Priority level at which the solution should be applied
and reused. Denotation of the risk, immediacy, and urgency of
the solution content.

Domain of values: High, medium, low

Multiplicity: 0-1

Default value: No

5.2 Attributes of LL systems oriented towards safety-critical software

Example: Low

Source: [van Heijst & al. , 1997], [GAO , 2002]

• Justification

Definition: Method used to check the solution.

Domain of values: Proof, empirical, witness confirmation . . .
(extensible do main)

M ultiplicity: 0-1

Default value: No

Example: Empirical

Source : [Silva & al. , 2002]

• U ncertainty

• Test

Definition: Rate of non confidence in the justification above.

Domain of values: High, medium, low

Multiplicity : 0-1

Default value: No

Example: High

Source: [Silva & al., 2002]

- Definition: Attribute indicating whether the solution has been
already tested in the past and whether it is currently used in
similar situations.

Domain of values: Yes , no

Multiplicity: 1-1

Default value: No

Example: Yes

Source: [Silva & al., 2002]

5.2.4 Usage feedback and evaluation

Users should have the possibility to submit feedbacks [0-N] and evalu
ations [0-N] on each solution of a LL. Both feedbacks and evaluations are
written only by users and are not validated by experts.

A usage feedback is a comment about a solution's reuse. It is applied
to a solution by potential users , with the aim of encouraging reuse or not.
The feedback can be positive and/or negative. Feedbacks are very helpful

57

58 Attributes of LL systems

for users who wish to reuse a solution. A feedback is more or less like a
message submitted in a forum , where subscribers can reply and exchange
their ideas. It contains the following attributes:

• Author's identity

Definition: User who posts the feedback.

Domain of values: Undefined string (existing user)

Multiplicity: 1-1

Default value: Yes

Example: Marc Hungoal

Source: [Silva & al., 2002]

• Subject

- Definition: General label that summarizes the feedback, as a
subject in a forum.

Domain of values: Undefined string

Multiplicity: 1-1

Default value: No

Example: Solution reused successfully on "FirstFootOnMars"project

Source: [Silva & al., 2002]

• Date

Definition: When the feedback has been posted in the system.

Domain of values: Valid date

Multiplicity: 1-1

Default value: Yes

Example: 09/09/1999

• Place

Definition: Site where the feedback was applied. It describes for
example the project in which the solution was reused.

Domain of values: Undefined string

Multiplicity: 1-1

Default value: No

Example: NASA, California - Project concerning the launch of
the first shuttle in the direction of Mars.

Source: [Silva & al., 2002]

5.2 Attributes of LL systems oriented towards safety-critical software

• Application time

Definition: Moment when the feedback was applied.

Domain of values: Valid date

M ultiplicity: 1-1

Default value: No

Example: 01 / 09/ 1999

Source: [Silva & al. , 2002]

• Description

Definition: How the feedback was applied, in which circumstances.

Domain of values: Undefined string

Multiplicity: 1-1

Default value: No
Example: In the "FirstFootOnMars"project, solution was applied
as described in the solution. There is nothing more to say: all is
perfect!

- Source: [Silva & al., 2002]

An evaluation is just a comment about a proposed solution, feedback or
other evaluation. It is completely different from a feedback because it does
not tell anything on the solution's reuse. The user will pay less attention
to an evaluation because it might just be an advice not sustained by any
evidence. An evaluation is like a message submitted in a forum. It contains
the following attributes:

• Author's identity

Definition: User who posts the evaluation.

Domain of values: Undefined string (existing user)

Multiplicity: 1-1

Default value: Yes

Example: P ascal Lendrier

Source: [Silva & al., 2002]

• Commented object

Definition: Object to which the evaluation is linked.

Domain of values: Solution, feedback, evaluation

Multiplicity: 1-1
Default value: Yes

Example: Evaluation (about the feedback above) .

Source: [Silva & al., 2002]

59

60 Attributes of LL systems

• Subject

- Definition: General label that summarizes the evaluation, as a
subject in a forum.

Domain of values: Undefined string

Multiplicity: 1-1

Default value: No

Example: Asking for more information.

Source: [Silva & al., 2002]

• Date

Definition: When the evaluation has been posted in the system.

Domain of values : Valid date

Multiplicity: 1-1

Default value : Yes

Example: 29/09/1999

Source: [Silva & al. , 2002]

• Description

Definition: Point of view of the submitter about a specific solu
tion, feedback or evaluation.

Domain of values: Undefined string

Multiplicity: 1-1

Default value: No

Example: The description of your usage feedback is not very pre
cise. Could you give more information about the FirstFootOn
M ars project?

Source: [Silva & al., 2002]

5.2.5 User profile

Throughout this document, we clearly mentioned that it is necessary
and useful to use a user profile associated with each user as an aid to match
the information contained in the repository with the potentially interested
individuals. In order to receive automatically attractive lessons and to be
identified, users have to fi.11 a precise and complete profile, in which they
define their areas of interest.

Active dissemination requires of course user profiles and is performed
by matching common attributes of the user profiles with attributes of the LL

5.2 Attributes of LL systems oriented towards safety-critical software

in the repository. Consequently, the list of these common attributes should
be firstly established to index the LL. They can be the main attributes used
in a manual and persona! search (passive dissemination) in the system. A
profile could be constructed according to a set of attributes, as industrial
sectors, life cycle stages or consequences .. . Consequently, in order to define
profiles, some attributes will have a higher priority to index the LL reposi
tory. These ones are directly related to the jobs of the workers. However ,
not all attributes are relevant to be included in a profile. "The reason for
adding these attributes to user profiles is that they can be used to classify
bath the lessons and the potential users, as each LL user has some respon
sibility in developing software in a particular industrial sector (industry),
is focused on a particular stage of the life cycle, and is interested in the
possible consequences. Any attempt to facilitat e user-profiling should, at
least, take into account these attributes. However, this list of attributes is
not necessarily complete or adapted for every situation" [Silva & al., 2002).

The suitable attributes of a user profile are enumerated below:

• Persona! and general information: Persona! information includes
the identity of the user [1-1], his login/password [1-1], his country [1-
1], his email [1-1], his job [0-1), the company or organization where he
works [0-1), his contact numbers [0-1), his choice to reveal or not his
identity [1-1). Persona! information allows to identify the user in the
system and to learn a little more about his skills.

• Profile information: If the user chooses to receive lessons by active
dissemination, he has to fill profile information. It concerns the main
common attributes of the profiles and the lessons, e.g. industrial sec
tors , life cycle stages, consequences, interested products and services,
proficiency level and types of attachment. At least one of these at
tributes must be selected by the user if he wants to receive lessons by
active dissemination. In the other case, they are all optional.

These profiles also help to know what the knowledge and skills of the
users are. Users should obviously have the possibility to update their pro
files, so they can manage the amount and type of information they receive.

61

62 Attributes of LL systems

5.2.6 Expert

Experts are playing the most important role in the system. They accom
plish the verification step of the LL process, which consists in evaluating and
validating all lessons and solutions submitted in the repository for relevance,
correctness, non-redundancy and consistency. Experts are needed to perform
this task and their roles go beyond those of the moderators in forums like
comp.risks . They have to take decisions about accepting , modifying or
rejecting all new LL and new solutions on existing LL.

Once they are stored in the repository, lessons and solutions are reviewed
and checked by technical experts before being disseminated and made ac
cessible to users . When the user submits a LL, most attributes are optional
because he could not understand their meanings . This implies that experts
have to check and determine most of these optional attributes in order to
refine the LL as most as possible. Experts can also update and create links
between LL. Before validating a lesson, a dialog between them and the
submitter of the LL is most of the time necessary. This dialog allows experts
to ask more questions and more precise information to the users . Therefore,
a profile will also be needed to identify experts and to define their areas
of knowledge and specialization. For example, it is possible to imagine a
classification of experts based on the industrial sectors (domains) in which
they are specialists.

Chapter 6

Features of lessons learned
systems

As explained in chapter 4, an iterative process is used. Each iteration
is a new step towards the final system. Only the essential features of a LL
system have been considered , as the important goal was to have a rapid
overview of the implementation results. A priority has been assigned to
the features, so that successive iterations deal with features of decreasing
priority level.

This chapter is partially linked with a later part about future works and
perspectives. Features presented in this chapter are those which were ana
lyzed and/or implemented during the imparted t ime to build the prototype,
i.e. four months. Other possible features are enumerated in part V about
future works.

Features have been divided in six groups. The five first groups match
with the five t asks of the LL process: collection, verification, storage, dis
semination, and reuse. The last group concerns t he administration fonctions.

The list of the features below were first ly considered to design the pro
totype. Each feature has an alphanumeric identifier.

6.1 Collection

Only passive collect ion is used to gather lessons. Passive collection is
easier to implement than active collection and is better suited to our pur
pose. In the last part of this work, possibilities and advantages of active
collection, with the comp.risks forum, are presented. Two forms of passive
collection are distinguished.

63

64 Features of LL systems

• Passive collection of a new lesson (Fl.1)
The user submits his own LL to the system through a web form.

• Passive collection of a new solution on an existing lesson (Fl.2)
If a user finds a better solution concerning a problem submitted earlier,
he can post it to bring more possibilities about solving the encountered
problem.

6.2 Verification

As seen before, a LL repository should be evaluated and validated by
experts for relevance, correctness, non-redundancy and consistency.

• Manual verification of non-redundancy (F2.1)
Each time a lesson is submitted, it is validated by an expert moderator
for non-redundancy. This expert can check it by performing a search
in the repository, to see if other similar LL exist in the system. If
some lessons are very close, he should have the possibility to create
references between them, as well as create a new lesson which mixed
the similar lessons or remove one of them if a LL includes another LL.

• Computer-aided verification of non-redundancy (F2.2)
After a submission, the system can automatically search for lessons
that have direct relation with the current lesson. So, when experts
check lessons for the first t ime, they can directly see probable and
relevant related lessons .

• Verification of consistency, correctness and relevance (F2.3)
The expert moderator checks the consistency, the correctness and
the relevance of the new lesson or the new solution submitted on
an accepted lesson. Afterwards, he accepts, modifies or rejects the
new lesson/solution. During this time, he can also have an inter
active dialog with the submitter, to ask more details and to have
a complete exchange of information. If he decides to reject the les
son/solution, he should justify his refusal and the submitter must be
notified. After posting and during the validation, the user can list all
the lessons/solutions he has submitted and view the verification status
of each of them. He can also answer to the comments of the expert
moderator.

• LL versions (F2.4)
Lessons can be continuously updated during and after the validation.
An history of the different versions of the lessons would be helpful.

6.3 Storage

6.3 Storage

Storage concerns the physical representation, indexation and structure
of the database. Therefore, it does not really contain user-oriented features.

6.4 Dissemination

Users can retrieve or receive lessons by two different ways, called passive
and active dissemination.

• Profile management (F4.1)
Users can create, modify or delete their profiles in which they define
their areas of interest. Profiles are used in active dissemination and to
identify users.

• Passive dissemination
The user retrieves himself lessons on the system in one of the following
manners:

Hierarchical search (F4.2)
The user searches for lessons by browsing through a web form in
which lessons are hierarchically classified by themes. This kind of
search is not very useful in accidents related to critical software,
mainly because it is very diffi.cult to establish a classification fol
lowing our attributes topology. It would also be redundant with
the search by attributes and keywords.

Search by attributes (F4.3)
The user searches for lessons by filling a web form that contains
fixed attributes of the lessons.

Search by keywords (F4.4)
The user searches for lessons by typing a list of keywords in a kind
of web search engine, such as google. He can define the scope of
his search.

Integration with external systems (F4.5)
It could be useful to see if it is possible to integrate the LL sys
tem with cmrent applications, as Microsoft Word and Microsoft
Excel. For example, it could be clone by using macros. The user
selects a text and then clicks on a macro button. The macro then
links the selected text with the search by keywords of the system.
The browser of the user starts with a screen showing the search
results and he can select lessons corresponding to his search. An
API could also be available if someone wants to write a macro for
another application.

65

66 Features of LL systems

Active dissemination with user profiles (F4.6)
Active dissemination allows users to be reminded about lessons
without any solicitation. Users are notified by email of lessons
they are interested in. It requires user profiles , defining their
areas of interests.

6.5 Reuse

Evaluation or feedback about a LL helps future users in a better use or
understanding of a solution.

• Evaluation about reported solutions, feedbacks or evalua
tions (F5.l)
Each solution can be commented by users. The user can also comment
feedbacks and existing evaluations.

• Usage feedback about applied solutions (F5.2)
After a solution has been applied in practice by a user, the system
allows the user to record a feedback on the outcome. The feedback
includes also the place, the time and the description of the reuse.

6.6 Administration

• Fixed attribute value management (F6.1)
The administrator can add or remove new values of fixed attributes in
the database, as industrial sector or life cycle stage values for example.

• Expert management (F6.2)
The administrator can give/remove rights to a normal user/expert in
order to become an expert/normal user.

6. 7 Summary of the features

6.7 Summary of the features

The table below shows, for each feature, its priority, whether it was
analyzed and implemented , and in which iteration (version), if any. There
were four iterations.

Id. Feature Priority lmplemented Version

Collection

Fl.l Passive collection about a new lesson High Yes 1

Fl.2 Passive collection about a new solution Medium Yes 2

Verification

F2.l Non-redundancy (manual) Medium Yes 2

F2.2 Non-redundancy (computer-aided) Law No I
F2.3 Consistency, correctness and relevance Medium Yes 2

F2.4 LL versions Law No I
Storage

Dissemination

F4.1 Profile management High Yes 1

F4.2 Hierarchical search Law No I
F4.3 Search by attributes High Yes 2

F4.4 Search by keywords High Yes 2

F4.5 Integration with external systems Law Yes 4

F4.6 Active dissemination with profiles Medium Yes 3

Reuse

F5.1 Evaluation Medium Yes 3

F5.2 Usage feedback about applied solut ions Medium Yes 3

Administration

F6.1 Fixed attribute value management Law Yes 4

F6.2 Expert management Law Yes 4

Table 6.1: Summary of the features.

67

Chapter 7

Class diagram of the lessons
learned system

According to the list of attributes defined in section 5.2, we drafted the
following class diagram.

69

70 Class diagram of the LL sy st em

O •. •

0
U_s_e_r _______ _ rv~is interested by > --
-up_Login 0 .. it -,~-~-------,,-------,.-----~-

-up_Pas.sword
-up_Tlle
-up_Fi"stName
-up_Las!Name
-up_Email
-up_PhoneNumber
-up_FaxNumber
-up_Country
-up_Aff~•tion
-up_Position
-up_DisseminalionType
-up_Proficiencylevel

+crea1eAccountO
•updat,oAccount()
-><leleteAccount()
+connecto
+disconnect()
•i•Connected()
+getlesscnsB},Attributes()
+getles.s.onsByKeywords(}
.o.ge1MyLessons()

+addlndustrialSector()

1 . ."

affects>

O . ."

concerns >

O .. •

essonleamed

II_Name
,. ll_Creation□ate

. O.. 11 ProficiencyLevel
< is subm,tted by- Il-Slabiity
1 ·• 1 ll=R•u~,eRate

Consequence

-co_Name

+addConseque-nce[)

1 .. •

implies >

O . .'

O . ."

O .. • O.
< is disseminated to

II_ConsultetJonNbr
11_Searchfolbr
U_Ois.semin.ated
LExpertSubmitterUialog

< is linked with
O .. •

RelevantSource

-rs_type
-rs_rçfi;rence

•addRe\eYantSourceO

AccidentEventsSequence

-aes_OescriptionType
--aes_Oescription
-aes_Source

postLesson()
•acceptLesson()
+rejectLes.son()

updateLesson()
-<liffuselesson()

,----
0
-__ -. '-" postSolution()

addReference()
postQuestionRepty(i

1 .. 1

O . .*

O . ."

is referenced by >
1 .. 1

is the consequence of>

O . ."

-at_Type
-at_Upload

+addAttacilment()

O . ."

is exp ressed in >

ProductsAndSer,ices

-ps_Typt:
-ps_Name

•addProduct(i
•addService()

Q __ i

has impact on>

Accident

-acc_Name
-acc_Datë

-acc_Oescription
-acc_Hazard

-•cc_TriggeringCondfüns
-acc_RiskConsequence

-aes_ Accu rat)' >----- --- < is described by·-------<.i -scc_RiskPossibRiy
-aes_0iscrepancies
-•es_ExpertSubmitter0ialog

... addAccidentEventaSequence(}
•postQuestionReplyO

1 .. 1

Figure 7.1: Class diagram - Part 1.

-acc_R~kJustification
-acc_ExpertSubmitterOialog

•addAccident()
•postQuestionReply()

In figure 7.2, there is an "exactly-1" exclusion constraint between the
class Evaluation and t he three roles "is related to" played by this class.

~------------is reported by > ------------~

O .. '

Feedback

fe_Subject
fe_Place
fe_T,me
fe_Description
fe_Post_Date

~poslE'laluation()

O .. '

O .. •

0 __ 1 O . .' -ev_Subject
< is related to-- ev_Comment

-ev_Oate

+postEvaluation()

O . .'J
< is related to

0 .. 1

Solution

-so_Oescription O .. •
< is reused in -so_Oate

-so_SafetyOegree
-so_PriorilyOescriptor
-so_Uncertainty
-so_Tested
-so_ Verified

1 .. 1 -so_Accepted
'----4.i -so_ExpertSubmitterOialog

-so_1.Vhot,lustReply

< is solved by

+accep!Solution()
+modifySolution()
+rejec!Solution()
+postEvaluation()
+pos!Feedback()
+isVerified()
+getSolutionDetails()
+pos!QuestionReply()
+notifyUser()
+notifyExpert()
+addExplainationReject()

O . .' 1 .. *

O .. '

O .. •

is suggested by > ---~

0 .. 1
1 .. 1

< is related to

O .. • ; __ 1 1

is submitted b)" > __J

ValidationStatus

-vs_tlame

+addValidationStatu·s()

0 .. 1
has for accuracy >

Justification

-ju_Name

+addJustification()

0 .. 1
has been checked by >

11

User

0 .. 1 < is resolved by

HazardDealingType

-hdt_Name

+addHazardDealingType()

1 .. 1 ExpertModerator
~---is validated by > ---i==============l

+getNoVerified l essonsAndSolutions()
+changeUserStatus()

Figure 7.2: Class diagram - Part 2.

71

Chapter 8

Use cases of the lessons
learned system

8.1 Use cases schema and description

A description of the main Use Cases (UC) is given in this chapter. We
split t he UC in two categories, according to [Cockburn, 2000], depending on
the level of their goal:

• User goal level is "the goal the primary actor has in trying to get
work or the one the user has in using the system"-

• Subfunction level are "goals required to carry out user goals".

In the following description of UC, we give a summarized description
of the subfunction level goals . Only UC that have a user goal level are
described in detail. Several UC are represented in more than one schema,
but they are defined only once.

73

7 4 Use cases of the LL system

8.1.1 Use cases related to profile management

Submitter / Receiver / Expert

UC2-
ldentification

Figure 8.1: UC related to profile management.

UC4-
Unsubscription

8.1 Use cases schema and description 75

Profile subscription (UCl)

Description The user records his profile to have authorized access
in the system. Profile is used to identify the user and it
allows him to have access to active dissemination. The
user enters general information about himself (login,
password , first name, last name, email. . .) and infor-
mation about lessons in which he is interested (indus-
trial sectors, life cycle stages, consequences, products
and services, type of att achment, validation status,
proficiency level).

Level Subfunction level.

Identification (UC2)

Description The user enters his login/ password to be connected to
the LL system.

Level Subfunction level.

Profile update (UC3)

Description The user updates his profile information given in UCl.
Level Subfunction level.

Unsubscription (UC4)

Description It concerns unsubscription related to active dissemina-
tion. The user asks not to receive automatically any
lessons in the future.

Level Subfunction level.

76 Use cases of the LL system

8 .1.2 Use cases related to collection and reuse

UC5 • Svbirn a LL UC6 . Subnvta
solulion

UC9. 1 - Select and
cfrspby LL

UC1 6/17/19 • Search by
atlrlbutestke~5/rœao

SUbmitter

UC7 - Subtnit a
feedbadc

..

Figure 8.2: UC related to collection and reuse.

8.1 Use cases schema and description

Submit a LL (UC5)

Description The user submits a new LL. He provides the causes of
the encountered problem, and the recommended solu
tion he used.

Level User goal level.
Preconditions - The user has recorded a profile (UCl).

- The user is connected to the LL system (UC2).
Trigger The user clicks on the "LL submission" button.
Main success 1. The user enters the LL name [1-1), indus-
scenario trial sector(s) [1-N), life cycle stage(s) [0-N), conse

quence(s) [1-N], relevant source(s) [0-N], product(s)
and service(s) [0-N), proficiency level [0-1] and down
loads attachment(s) [0-N].
2. He enters information about the accident: name [1-
1), date [1-1], description [1-1), hazard [0-1] and trig
gering conditions [0-1].
3. He enters information about risk: consequence [1-
1], possibility [1-1] and justification [1-1].
4. He enters accident event sequence(s) [0-N].
5. He enters the recommended solution: hazard dea
ling type [0-1], description [1-1], safety degree [0-1],
priority descriptor [0-1], validation status [0-1], justi
fication [0-1], uncertainty [0-1], tested solution [1-1].
6. The system confirms that the LL and solution have
been posted successfully. LL and solution are not ac
cessible and disseminated to users because they have
not been yet validated by experts.

Extensions la. While the user does not properly enter LL name,
at least one industrial sector, and at least one conse
quence, the system asks it again.

Success
guarantee

2a. While the user does not properly enter accident
name, date and description, the system asks it again.
3a. While the user does not properly enter risk conse
quence, possibility and justification, the system asks
it again.
5a. While the user does not properly enter solution
description and indicates if it was tested before, the
system asks it again .
The LL and solution are recorded in the system.

77

78 Use cases of the LL system

Submit a solution (UC6)

Description The user submits a new recommended solution about
a validated LL.

Level User goal level.
Preconditions - The user has recorded a profile (UCl).

- The user is connected to the LL system (UC2).
- The LL on which the user wants to submit a new
solution has been accepted by an expert (UCll).
- The user has selected a LL (UC9.l) after having
performed a search in the system (UC16 or UCl 7 or
UC19) .

Trigger The user clicks on the "Post solution" button.
Main success 1. The user enters the recommended solution: type of
scenario the solution [0-1], description [1-1], safety degree [0-1],

priority descriptor [0-1], validation status [0-1], jus-
tification [0-1], uncertainty [0-1], if the solution was
tested before [1-1] .
2. The system confirms that the solution is recorded .
The new solution is not accessible and disseminated to
users because it has not been yet validated by experts.

Extensions la. While the user does not properly enter the des-
cription and indicates if the solution was tested before,
the system will ask it again.

Success The solution is recorded in the system.
guarantee

8.1 Use cases schema and description 79

Submit a feedback (UC7)

Description The user submits a feedback about a validated solution
he reused.

Level User goal level.
Preconditions - The user has recorded a profile (UCl) .

- The user is connected to the LL system (UC2).
- The solution on which the user wants to submit a
feedback and the related LL have been accepted by an
expert (UCll and/or UC12).
- The user has selected a LL and one of its solu-
tion (UC9.l and UC9.2) after having performed a
search in the system (UC16 or UCl 7 or UC19).

Trigger The user clicks on the "Post feedback" button.
Main success l. The user enters feedback information: subject [1-1],
scenario place [1-1], time [1-1] and description [1-1].

2. The system confirms that the feedback is correctly
recorded.

Extensions la. While the user does not properly enter the subject
and the description, the system will ask it again.

Success The feedback is recorded in the system.
guarantee

80 Use cases of the LL system

Submit an evaluation (UC8)

Description The user submits an evaluation about a validated so-
lution, a feedback, or an evaluation.

Level User goal level.
Preconditions - The user has recorded a profile (UCl).

- The user is connected to the LL system (UC2).
- The solution on which the user wants to submit an
evaluation and the related LL have been accepted by
an expert (UCll and/or UC12).
- The user has selected a LL and one of its solu-
tion (UC9.l and UC9.2) after having performed a
search in the system (UC16 or UCl 7 or UC19) .
- Once he has selected a solution, the user may have
selected a feedback or an evaluation (UC9.3 and/or
UC9.4) , but it is not obligatory.

Trigger The user clicks on the "Post evaluation" button.
Main success 1. The user enters evaluation information: subject [1-
scenario 1] and comment [1-1].

2. The system confirms that the evaluation is correctly
recorded.

Extensions la. While the user does not properly enter the subject
and the comment , the system will ask it again.

Success The evaluation is recorded in the system.
guarantee

8.1 Use cases schema and description 81

Select and display LL (UC9.1)

Description The user selects a LL he wants to see.
Level User goal level.
Preconditions - The user has recorded a profile (UCl).

- The user is connected to the LL system (UC2).
- The user has performed a search in the system (UC16
or UCl 7 or UC19) or has asked to see his submitted
LL (UC15). If the user is an expert , he could also have
asked for all non verified LL (UC13).

Trigger The user clicks on the LL link he wants to display.
Main success 1. The users select the LL.
scenario 2. The system displays the corresponding LL.
Success The corresponding LL is displayed.
guarantee

Select and display solution (UC9.2)

Description The user selects a solution he wants to see.
Level User goal level.
Preconditions - The user has recorded a profile (UCl).

- The user is connected to the LL system (UC2).
- The user has selected a LL (UC9.l).
- The user has performed a search in the system (UC16
or UCl 7 or UC19) or has asked to see his submit-
ted LL/solutions (UC15). If the user is an expert, he
could also have asked for all non verified LL/solutions
(UC13).

Trigger The user clicks on the solution link he wants to display.
Main success l. The users select the solution.
scenario 2. The system displays the corresponding solution.
Success The corresponding solution is displayed.
guarantee

82 Use cases of the LL system

Select and display feedback (UC9.3)

Description The user selects a feedback he wants to see.
Level User goal level.
Preconditions - The user has recorded a profile (UCl).

- The user is connected to the LL system (UC2).
- The user has selected a LL (UC9.1) and a solution
(UC9.2) that have been validated by an expert (UCll
and/or UC12).
- The user has performed a search in the system (UC16
or UCl 7 or UC19) or has asked to see his submitted
LL/solutions (UC15) .

Trigger The user clicks on the feedback link he wants to dis-
play.

Main success 1. The users select the feedback.
scenario 2. The system displays the corresponding feedback.
Success The corresponding feedback is displayed.
guarantee

Select and display evaluation (UC9.4)

Description The user selects an evaluation he wants to see.
Level User goal level.
Preconditions - The user has recorded a profile (UCl).

- The user is connected to the LL system (UC2).
- The user has selected a LL (UC9. l) and a solut ion
(UC9.2) that have been validated by an expert (UCll
and/or UC12). He could also have selected a feedback
or another evaluation (UC9.3 and/or UC9.4).
- The user has performed a search in the system (UC16
or UCl 7 or UC19) or has asked to see his submitted
LL/solutions (UC15).

Trigger The user clicks on the evaluation link he wants to dis-
play.

Main success 1. The users select the evaluation.
scenario 2. The system displays the corresponding evaluation.
Success The corresponding evaluation is displayed.
guarantee

8.1 Use cases schema and description

8.1.3 Use cases related to verification

Expert

UC11 • Validate a
LL

UC9. 1 - Select and
display LL

«U Slt

UC13 - List non
verified LL and solutions

«useSJ>
UC9.2 - Select and

display solution

Figure 8.3: UC related to verification - Part l.

83

84

Submiuar

UC14 - Reply to ll
e:i<perfs questions

«uses»

Use cases of the LL system

UC9. i - Select and
displayll

UC1S- List my
submltted LL and solutl.oos

Figure 8.4: UC related to verification - Part 2.

8.1 Use cases schema and description 85

Update a LL (UClO)

Description The expert updates a LL that is not yet validated. He
can ask questions and more information to the subrnit-
ter of the lesson and solution, by recording personal
comments for each part of the LL (LL general infor-
mation, accident , event sequences and solution). Once
the expert has asked questions and updated the LL,
the LL submitter is notified by mail and he can see
expert comments by consulting the LL and solutions
he has submitted.

Level User goal level.
Preconditions - The expert is connected to the LL system (UC2).

- The LL or a new solution related to the LL has been
submitted (UC5 or UC6) and is not yet validated.
- The expert has selected the LL (UC9.l) after having
retrieved all the non verified LL and solutions (UC13).

Trigger The expert clicks on the "Record" (update) or "Notify"
button.

Main success 1. The expert updates the fields of the LL and/or so-
scenario lution.

2. The expert enters and records comments (questions
to the submitter) about LL general information, acci-
dent, event sequences and/or solution.
3. The expert notifies the user (an email is sent) that
his LL/solution has been updated, i.e. that he wants
more details about it.

Success The LL and solution are updated.
guarantee

86 Use cases of the LL system

Validate a LL (UCll)

Description The expert accepts or rejects a submitted LL. The
submitter of the lesson is notified.

Level User goal level.
Preconditions - The expert is connected to the LL system (UC2).

- The LL has been submitted (UC5 or UC6) and is
not yet validated.
- The expert has selected the LL (UC9.l) after having
retrieved all the non verified LL and solutions (UC13).

Trigger The expert clicks on the "LL accept" or "LL reject"
button.

Main success 1. The expert accepts the LL.
scenario 2. The system notifies the user who posted the LL.
Extensions lal. The expert rejects the LL.

la2. The expert enters the reasons why he is rejecting
the LL.
la3. The system notifies the user who posted the LL.

Success The LL is accepted or rejected.
guarantee

8.1 Use cases schema and description 87

Validate a solution (UC12)

Description The expert accepts or rejects a submitted solution on
an existing lesson. The submitter of the solution is
notified.

Level User goal lev el.
Preconditions - The expert is connected to the LL system (UC2).

- The LL has been submitted (UC5) and ac-
cepted (UCll).
- A new solution on the LL has been submitted (UC6)
and is not yet accepted.
- The expert has selected the LL (U C9 .1) after having
retrieved all the non verified LL and solutions (UC13) .

Trigger The expert clicks on the "Accept solution" or "Reject
solution" button.

Main success 1. The expert accepts the solution.
scenario 2. The system notifies the user who posted the solu-

t ion.
Extensions lal. The expert rejects the solution.

la2. The expert enters the reasons why he is rejecting
the solution.
la3. The system notifies the user who posted the so-
lution.

Success The solution is accepted or rejected.
guarantee

88 Use cases of the LL system

List non verified LL and solutions (UC13)

Description The expert asks for obtaining the non verified new LL
and solutions related to his area of knowledge. He can
see the state (if it needs modification by submitter or
expert) of each lesson and solution, i.e. if submitters
have replied to his questions concerning a specific les-
son or solution.

Level User goal level.
Preconditions The expert is connected to the LL system (UC2).
Trigger The expert clicks on the "LL and solution validation"

button.
Main success 1. List of non verified LL and solutions is displayed.
scenario
Extensions la. There is no new non verified LL and solutions , so

the list is empty.
Success The list is displayed.
guarantee

8.1 Use cases schema and description 89

Reply to LL expert's questions (UC14)

Description In order to validate the LL or solution he submitted,
the user replies to the questions asked by the expert.

Level User goal level.
Preconditions - The user has recorded a profile (UCl).

- The user is connected to the LL system (UC2).
- The user has been submitted a new LL or solu-
tion (UC5 or UC6) that is not yet accepted.
- The expert has updated the LL and notified the user
about his modifications and questions (UClO).
- The user has selected a LL/solution (UC9.1 and/or
UC9.2) after having asked the list of all LL and solu-
tions he submitted (UC15).

Trigger The user clicks one the "Record" (update) button.
Main success l. The user enters his reply to the questions of the
scenario expert.

2. The system notifies the expert .
Success Answers to the questions are recorded and expert is
guarantee warned.

List my submitted LL and solutions (UC15)

Description The user asks to see all verified or non verified LL
and solutions he posted. He can see the state ("ac-
cepted", "refused", "needs modification by submitter",
"needs validation by expert '') of each of them.

Level User goal level.
Preconditions - The user has recorded a profile (UCl).

- The user is connected to the LL system (UC2).
Trigger The user clicks one the "My LL and solutions"button.
Main success 1. The list of his LL and solutions is displayed.
scenario
Extensions la. The list is empty, the user has never submitted

any LL or solution.
Success The list is displayed.
guarantee

90 Use cases of the LL system

8.1.4 Use cases related to dissemination

UC20 - S!arl acUve
disseminatlon

UC16 • Search by
atlributes

«use :;;

Reœiver

UC9. 1 - Select and
display Ll

« es ,.

Figure 8.5: UC related to dissemination.

Search by attributes (UC16)

Description The user searches for LL by giving values related to
fixed attributes of the LL (for example, industrial sec-
tor, life cycle stage or consequence) .

Level Subfunction level.

Search by keywords (UCl 7)

Description The user searches for LL by giving some keywords.
Level Subfunction level.

8.1 Use cases schema and description 91

Macro download (UC18)

D escription The user downloads and installs macros to integTate
automatic call to the LL system within his current
applications, as Microsoft Word and Microsoft Excel
for example.

Level Subfunction level.

Search with macro call (UC19)

Description The user searches for LL, through his Microsoft Word
or Excel applications.

Level User goal level.
Preconditions The user has downloaded a macro (UC18).
Trigger The user clicks on the "Search LL " macro but ton.
Main success l. The user selects a text.
scenario 2. He clicks on the "Search LL " macro button.

3. The LL system connects the user and displays the
corresponding LL.

Success The corresponding LL are displayed.
guarantee

Start active dissemination (UC20)

Description Every t ime a LL is accepted by an expert, the lesson
is automatically disseminated by mail to users whose
profile matches with these lessons.

Level User goal level.
Precondi tions The user has recorded a profile (UCl) in which he asks

for active dissemination.
Trigger An expert accepts a LL by pushing on the "LL accept"

button (UCll).
Main success l. The system sends an email to users w hose profile
scenario matches with the validated LL.

2. Users receive an email.
Success The corresponding LL is sent.
guarantee

92 Use cases of the LL system

8.1.5 Use cases related to administration

UC21 - Manage
experts

Administrator

UC22 - Manage
databasa

F igure 8.6: UC related to administration .

8.1 Use cases schema and description

Manage experts (UC21)

Description The administrator gives/removes rights to a nor mal
user/expert to become an expert/normal user .

Level User goal level.
Preconditions The administrator lS connected to the LL sys-

tem (UC2).
Trigger The administrator clicks on the "Manage expert l ist"

button.
Main success l. The administrator enters the login of the user for
scenario whom he wants to change the rights.

2. The system displays the rights of this user.
3. The administrator changes his rights.
4. The system confirms the update.

Extensions la. The administrator enters a wrong login and the
system asks it again.

Success User rights are changed.
guarantee

Manage database (UC22)

Description

Level
Preconditions

Trigger

Main success
scenario

Success
guarantee

The administrator adds or removes new values rela ted
rial to fixed attributes in the database, such as indust

sectors or life cycle stages values for example.
User goal level.
The administrator is connected to the LL sys-
tem (UC2) .
The administrator clicks on the "Data manager" but-
ton.
l. The administrator enters new values or
dates existing values related to fixed attributes in
database.
Values related to fixed attributes in the database
updated.

up
the

are

93

94 Use cases of the LL system

8.2 Relation between use cases and features

Features
1.1 1.2 2.1 2.2 2.3 2.4 4.1 4.2 4.3 4.4 4.5 4 .6 5. 1 5.2 6.1

UCl X

UC2 X X X X X X X X X X

UC3 X

UC4 X

UC5 X

UC6 X

UC7 X

UC8 X

UC9 X X X

UClO X X

UCll X X

UC12 X X

UC13 X X

UC14 X

UC15 X

UC16 X

UCJ7 X

UC18 X

UC19 X

UC20 X X

UC21

UC22 X

Table 8.1: Relation between UC and features.

UC with a user goal level are represented in bold in the table 8.1.

Features 2.2, 2.4 and 4.2 have not been implemented. This should be
done in a future iteration of the prototype. Consequently, it is logical they
do not have any correspondence with UC.

6.2

X

X

Chapter 9

Database of the lessons
learned system

It is impossible to represent on one page the normalized entity /relation
ship (E/R) diagram of the whole database. Hence, we first show a sum
marized global schema including only entities and relationships, without at
tributes. Secondly, this global schema is decomposed into four subschemas
including attributes. Sorne entities are present in more than one subschema.
The entities of the four subschemas are logically grouped: the first schema
is centered around user profile, the second around LL, the third around so
lution / feedback / evaluation, and the last around interaction between user
profile and the former three.

95

Js gi,·en by
l-1

0.1-------e(SOL_E,·aluatlonz_

0-l~ 0-N~

0-N

~ Re~;es--< SOL_Feedback?.
~ lsreusedm

Js sent by 0-N t l · ls posted by
- ,,..-----~---- 1-1 ------!SOLUTION

FEED_Submission

Posts
0-N

l s V erified by
0-1 -

1-l

VALIDATION_STATUS

i IL-\ZARD DBLING TYP[1
1

0-"1
1 < SOL_Hazard_Dealing_Type)

0-l ,::;.:,-

O-l~O-N1 JUSTIFICATION I

LL_Solution
1 ACCIDENT [VThïS _ S[QU[NCT 1

j
1-l

LL_Events _ Sequence

UP_Validanon_Status /_Subnuss1on).,._ _____ Is su~~edby 0-N

EVAI._Submission Subnuts 0-N < ~1 -N _,>LL_lndustnal_Sector /

Œve.s
0-N

1 INDUSTRI.-\L_ S[CTOR t°-N ,,-----L:..........0-"1

lL _ Life _Cycle_ Stage

0.N-< UP _Life_Cyc!e_Stage >-0-N~LIFE CYCLE STAG[r O.N

O.N
0-N ~0-N~O-N ~-----✓0."1

~ LL Product Senice
0-N 0-N --------.--0-N - -
~ -lPRODUCT SrRVICII - ~0-N"

0-"1~ -~
~ 0-N

LL _Reference

1s referenced by
0-::-S

0-N

RILIVA!'<ï _ SOURC[

tj
,:., ,...
,:.,
O"'
el
ro
0, ,...
::rro
t"i
t"i
[/J

'<:
[/J ,...
ro s

COUNTRY

Countty Id
Countty Name
id: Countty _Id
id': Country Name

0-N
1 < l .JP _Country>
(

1-1

USIR PROFILE

UP Id
UP_Type
UP_Title
UP _First_Name
UP _Last_Name
UP_Login
UP Password
UP Email
UP-Contact_By_Email
1:JP -Active Dissenùnation
UP-P11one --;_"\îumber(0-1]
UP- Fax N~ber[0-1]
UP -.i\ftlliation[0-1]
UP- Position[0-1]
UP-Products Ser\ices[0-1]
UP = Proficiency _ Level[0-1]
id: l .JP_Id
id': l .JP _Login
id': l)P _ Email

0-N

UP Validation_Status

0-N

____,..,,-0-N

UP _ Industrial _ Sector

UP _ Lïfe _Cycle_ Stage

0-N

VALIDATION_ STATUS
VS Id
VS Name
VS_Description
id:VS_Id
id~VS_Name

11'\'DUSTRHL SICTOR
IS Id
IS_Name
IS_Description
id:I S_Id
id': IS _ Name

LIFI CYCLE STAGE
LC Id
LC_Name
LC_Description
id: LC_ld
id': LC_Name

0-N~O-N

CONSIQUI]~CE

Co Id
Co_Name
Co_Description
id:Co_Id

UP Attachment

0-N

id': Co_Name

ATIACHMENT

MJg
At_Type
At_Upload
At Descri tion
id: At Id
id': At_Type

Figure 9.2: E/ R subschema (1) - User profile.

97

98 Database of the LL system

ACCIDENT IVL'ffS SEQUENCE

~
AES_Description_Type[0-1)
AES_Description
AES_Source[0-1]
AES _Accuracy[0- 1)
AES Discrepancies[0-1]
id:AES_ld

INDUSTRIAL SECTOR

lUJ:!
JS_Name
IS Description
id: IS_ld
id': IS Name

LITT CYCLE STAGE

~
LC_Name
LC Description
id: LC_ld
id': LC Name

CONSEQUENCE

1-1--(LL_E,·ents_Sequence > LESSON_LL\RNU>
S..::::

'0-N LL Id
LL_Name
LL_Proficiency_le\·el[0-1]
LL _ Stability
LL_Creation_Date
LL_Reuse_Rate

>---0-'i ~------~ LL Consultation Nwnber
- <(LL_lndustrial_Sector) LL=Search_Number

-

1-N LL __ .\ccident_Name

------~ 0-N
O-N_(LL_life_Cyc!e_Stage /

1-'i

LL_ Consequence

LL_Accident_ Date
LL _Accident_ Description
LL _Accident_ Hazard[0-1)
LL _Accident_ Triggering_ Conditions[0-1)
LL Risk Possibilitv
LL=Risk=Consequ~n ce
LL_Risk_Justification
U Disseminated

ÇçJ4 V--
08

LL)èxpert _ Submitter _ General _ Dialog[0-1 J
LL_Expert_Submitter_Accident_Dialog[0-1]
LL Ex ert Submitter AES Dialog 0-1

Co_Name
Co Description
id: Co_ld
1d}:Co Name

PRODUCT SIR\lCT
PS Id
PS_Type
PS_Name
PS Description
id: PS_ld
id': PS Name

ATTACHMENT
a.LJg
At_Type
At_Upload
At Description
id: At Id
id': A(Type

0-X

LL _Attachment

0-N

RILEVANT_SOURCE

RU!
RS_Type
RS _ Reference
id: RS_ld

0-N ls referenced by
0-N

Referen ces
0-N

LL _ Relevant_ Source LL _ Reference

0-N

Figure 9.3: E /R subschema (2) - LL.

FITDBACK
_StAL_Enluation)

"'-.

0-I [YAI.UATIO. 0-:si ~O-'.'l

E,· Id 0-1

'-.__ Eill
Fe_Subject
Fe Place

il.Jl!

Ev_Subject
E,· Com.mem
E,·-Date 0..1
id:Ev_ld

!.ISSO N IL.\R'\1])

LL Name
LL=Proficiency_ Le,·'1[0-1]
LL_Stability
LL Creation Dace
lL -Reuse Rate
LL -Cons\.tltation ~umber
LL -S,arch Number
li-Acc:îdeÏit Name
LL - . ..\ccident-Date
LL=.-\ccident=Description
LL _Accident_ Hazard(0-1]
LL _ .-\ccident_ T riggering_ Conditions[0-1]
Li Risi.: Pos51bility
L-L - Risk - Cons equénce
LL - R.isk -Justification
LL -Dissëminated
1L = E,.pert _ Submitter _ General _ Dialog(0..1 J
LL _ fapen_ Submitter_Accident_Dialog(O.. U
LL faoen Submitter AES Dialod0-iÏ
id: 1L Id

SOL_haluation

-

\
So Id

Fe-Time
Fe=Descriptio1
Fe Date
id:fe_ld

Reuses
1-1

< SOL_F;edbac!)

ls reused in
0-N

1

SOLUTIO!'i

So_Description
So _ Safety _ Degree[O..I]
So_Priority_Descriptor[O..IJ
So _ Uncertainty(0-1 J
So Tested
So=Verified
So_Accepted
So_Exp en_Submitter_Dialog[0-.
So_ \\-no_l\·!ust_Reply[0-1]
So Date
id: So_ld

I

1
o.

0. 1 , < SOL_Validation_Statu~ 0-I
l

SOL_ Hazard_ Dealing_ Type

0-N

Y.-\LIDATIO:,i_ST.-\TI,.

VS Id
VS_Name
VS Des tien
id:VS Id
id': vs-=:_Name

SOL_Justification

0-:'/

JUSTITTCATim

l!ùl!
Ju_Name
Ju Descrintion
id:Ju Id
id": Ju~)Jame

o.:,;

HAZARD_DL-\LING TI'P
HDT ld
HDT Name
HDT- Descri tion
id:HDT Id
idr: HDT-=._Name

Figure 9.4: E/R subschema (3) - LL / solut ion / feedback / evaluation.

99

100

IVALUATIŒ
E,· Id
fa·_ Subject
Ev Comment
Ev-Date

id:fa Id

1

Is sent by
1-1 -

Is given by ~----
- 1-1 · FEED_Submission "

EVA.L_Submission
Sends

0-N

USER_ PROFILI

Posts
0-N

FIIDBACK
Fe Id
Fe_Subject
Fe_Place
Fe Time
Fe=Descriptior
Fe Date
id: Fe Id

SOL_Submission

UP Id
UP_Type \"erifies

0-N

Database of the LL system

1s posted
l-1

by-

Is Verified
0- 1

/
by

ll Id
LL Name

SOLUTION
So Id
So _ Description
So _ Safety_ Degree[0-1]
So _priority_ Descriptor[0-1]
S o _ Uncertaimy[0-1]
So Tested
So -Verified
So_Accepted
So _Expert_ Submitter _ Dialog[O-J
So_ Who_Must_Reply[0-1]
So Date
id: So_ld

LESSON LIARNID

ll=Proficiency_lenl[0-1]
ll Stabilitv
LL=CreatiÔn_Date
LL Reuse Rate

UP Title
UP-First Name
UP=.Last.=Name
UP_Login
UP _Password
UP Email

Submits
0-:'i

1s submitted b
1-1

U = ConsÙÏtation_ Number
) LL Search Number

LCAccident Name

ul' = Contact_By_Email
UP _Active_Dissemination
UP _Phone_Number[0-1]
UP _Fax_Number[0-1)
UP _Affiliation(0-1]
UP _Position[0-1]
UP _Products _ Services[0-1
UP Proficiency Level 0-1
id:lil' Id
id':ul'-:::_Login
id":UP_Email

ll _ Submission

U =Acciden(Date
ll _Accident_ Description
U _Accident_ Hazard[0-1]
U _Accident_ Triggering_ Conditions[0-1]
ll_Risk _Possibility
ll _ Risk _ Consequence
U _ Risk _Justification
LL Disseminated
ll =Expert_ Submitter _ General _ Dialog[0-1}
U _ fapert _ Submirter _Accident_ Dialog[O-]
ll fapert Submitter AES Dialoa;[0-1]
id:LL_ld

Figure 9.5: E/R subschema (4) - Interaction between user profile and LL /
solution / feedback / evaluation.

Chapter 10

Architecture of the lessons
learned system and tools
used

10.1 Architecture

The architecture of our LL system is a web-based architecture.

Figure 10.1: Web-based architecture.

There is one server , and users can access the system from everywhere
t hrough a web browser .

101

102 Architecture of the LL system and tools used

The server follows a classical 3-tiers architecture. Data access, business
logic, and interface code are separated. It is a Model View Controler (MVC),
i.e. there is a clear separation of user-interface-control and data presentation
from application-logic. All database accesses are made by specific classes,
which encapsulate data access. Interfaces are recorded in a style sheet, in
such a way that it is easy to modify it.

10.2 Tools used and technical choices

The only t echnical constraint imposed was to work with open-source
software for obvious cost reasons. Keeping in mind that the final applica
tion had to be a prototype, we decided to use a scripting language, PHP ,
coupled with an open-source database system, PostgreSQL , distributed
under the BSD license, which basically allows any use of the code as long as
the credits are maintained.

The main reason for using a scripting language was efficiency. A scrip
ting language is the ideal solution for quick development and prototyping.

10.2.1 PHP and Apache

Considering the convenience of PHP versus Perl and the nature of our
work, we opted for PHP language. PHP is a free server sicle scripting lan
guage. It can be built into web servers like Apache and one can use it to
generate pages dynamically. Unlike Perl, which is a general purpose scrip
ting language that one can use for a wide variety of purposes (and not just
generating web pages), PHP was designed from the ground up for scripting
web pages. As a result, it has a large number of built-in facilities. Acces
sing databases is just as easy. There are built-in facilities in PHP to access
PostgreSQL and many more databases. However, PHP is not the perfect
solution for all web site needs. It probably cannot beat Perl in terms of
convenient and efficient text crunching, but in the case of our LL system
prototype, this is not an important factor. Additionally, learning PHP is a
piece of cake and we could get started writing our scripts after a very short
learning period.

10.2.2 PostgreSQL

We have chosen PostgreSQL because this database system is ACID
compliant, unlike MySQL, and it manages potential concurrent accesses to
the database. MySQL is not ACID compliant because it does not support

10.2 Tools used and technical choices

consistency, isolation, nor durability. However, MySql supports atomicity
using table locks. Because of its limited feature set, MySQL is very fast.

PostgreSQL offers many more features and one can be confident that
data are safe. PostgreSQL also supports a richer SQL dialect than MySQL:
PostgreSQL supports subqueries, stored procedures, views .. . Furthermore,
PostgreSQL's advanced features are more likely to be stable than the newer
MySQL equivalents, having been implemented for a longer time. Regarding
our need of features like subqueries and the non-priority of fast queries (do
not forget that it is a prototype!) , we have adopted the PostgreSQL system.

10.2.3 Monitoring with macros

One of the goals of the prototype was to monitor every action of the
user and deducing which LL he needs and when ("the right time at the right
place'~, as in the proactive dissemination. U nfortunately, the period of time
to develop such a system was too short. Despite the lack of time, we have
developed a tool allowing interaction between the LL system and an Office
application, as in the reactive dissemination. The easier technology allowing
user to adapt an Office application is the macro way.

103

Chapter 11

lmplementation results

This chapter gives an overview of the final application and graphical
interfaces. Each screenshot is linked with its corresponding UC. Only the
most interesting functionalities are presented in this chapter.

11.1 Navigation menu

The application has a general screen which possesses a navigation menu
on the left . Menu items are different depending on whether the current
user is logged in or off (figures 11.1 and 11.2), and whether he is a normal
user (figure 11.2) or an expert moderator (figure 11.3). The exp ert menu is
the same as the normal user menu. The main difference is that experts can
validate new LL and solutions.

105

106

User Menu

Efi LL Subnils-slon

f!! K'!:yword S11:-,rd1

E!! AUril,ul~ ~ .. r<:11

l:i My ll &. Solution

~ .. rof1Te. updotc

l:t:lnownlQ~(f,ç

Implementation results

Please enter your login and password to log in or dk.k her1;1 if you are
· not susai,@d in the system~

Looon, ;::=====~
Password: ~------~

LOO me on aut:omaticaly each visit : r
! Log ln j

Figure 11.1: Menu when user is logged out.

Figure 11.2: Menu when normal user is logged m.

11.1 Navigation menu 107

Figure 11.3: Menu when expert is logged m.

108 Implementation results

11.2 Profile management

Pie.a.se enter your login and passwotd to log in or click here if yoi.r are
· not suscribed in th~ system., ·

Subscri
complete
defining
intereste

Submiss
have èn
feedbàc

Validati
colisolidated by our t

Search. : 'l'ou can p
searchilig :· either like
attributes that coni:ains

Login : ._ _________ -

Password: ._ _________ ___.

Log me on auton113tically .each visit : "0.
.j Log in !

! forg.o t n\y pas.sworè ·

Figure 11.4: Welcome and login.

11.2 Profile management

The first screenshot above on figure 11.4 is the login and welcome screen
shot that contains general information about goals and features of the LL
system. It corresponds to UC2 Identification. If the user has not subscribed,
it invites him to fill in a form to be recorded in the LL system. He can ask
to receive by mail his password if he forgot it. He can also check an option
to be logged automatically the next time he visits the LL system.

The four next screenshots on figures 11 .5-11.6-11.7-11 .8 are relative to
UCl Profile subscription. They show the various steps a user has to go
through when filling in his profile:

1. He firstly gives persona! and general information.

2. He gives information about LL in which he is interested.

3. All the data entered by the user are displayed and the system asks him
to confirm his profile record.

Most of the screenshots have an help icon (figure 11. 9). If the user moves
on it his mouse pointer , an explanation box appears.

109

110 Implementation results

[General Information > Profile (1) > Profile f?) > C:mf!rmaoon]

Profile Subscription : Step 1 - General Information

Please fill in the. fiefds below to record youc,profile. in the system, Takè the \ïme~to càmplete.jt seriously'.
fiirst, in this screen, you have to Qive some. pe(sona\ information and alter, irl the following screens,
some; pon~man·datory informati.on defining your:: afeasof il')terest,wjll be asked to you. So, this profile will

, 'abl~ Ydll to · reœive · automaticalty :t,y riewslétter the LL · that yolP are interested in. If you want more
. infof(Tlation -abo~t-a special .itër:,,, ITiove the mou5e pointer to the help icon (i} Onœ you are registeredt

you can of course defir\e andÎ!pdate,yçur profile later if you want,

Items marie~~-with a • are required unless stated otherwise.

*Tttle

* Firstname

!fieuneje

1 ••••••••
1 ••••••••
1 fjeuneje~info.fundp.ac.be

Figure 11.5: User profile subscription (1).

11.2 Profile management

[Ger:eraf /nformot:on > Profile 1 > P."Ot!te ~ > Cc,nflf.'1?iJt;cn J

Profile Subscription : Step 2 - Profile Description

You can dt!fine here your areas of lnterest; So, If you have se/eded in the prt!vlous screeil ' tht! option to
receîve LL by active d;ssemination, you will receive automatlcal/y in the future the LL that you are
intl!r-ested in. If you want more information about a special item, move tbe mouse pointer to the hefp
icon 0 Onœ you are registt!(ed, you can of cours-" define and update your profile /"ter if you want.

· .~ Industrial sector(s) ®

1
1 ~ A~rospace ·

r· r Defense

+ P" Transport

l

üfe cycle stage(s) 0

r System requirements

J;;

[? Human interface design

r Mode/ing / Simulation

, r Depfoyment

• r Usa e
: ..• '

~

Consequence(s) ®

r Deaths

r Resource fosses

System design

P S-Oftware design

F Imp/ementation

r Testing

r Decommission

Figure 11.6: User profile subscription (2).

111

112 lmple m entation results

[General Jnformèhon :> ProMe l :, Profile 2 > Confirmatrcn J

Profile Subscription : step 3 - Profile Description

Items marked wltl) a • are required Unless stated otherwise.

Please, separate each produ,;tf,servke by a semico/on ;

W. Manua/

17 Report

P" Complete

r Heuristic

['""'°'""' k"" (!l
r High

1 Flight SimuJator ; P;fot 2.04

1 ' Script

P"''Vicfeo

r low r. None

Figure 11 .7: User profile subscription (3) .

11.2 Profile management

Attachment(s)

v_afida_!ion status(es_)

Profldency level

{G2neral Ir.fcrmar;cn > P:ofita 1 > Pro.'iia 2 > Confirmation }

!Mr ,

!J~u~je;~ , ,
. ..,, l- --·~·· - . -

Féf,x
7 IJ-;t~~~;:;-.
l tJeu~ejean@~~n.~· ···

loô3ï so 21 44 71 - -
1 , ,.
j

·v u.N,D,P
Teacher '

:--Be/gi~m - - ·-

Yes

.Aerospace
! TranSP':_1!__

; Software œquirements definition

l' Software design
Human Interface destun

__,.Impfe(11entation

:1 - - ~ -··--·-·-- ·-
• Right Simulator
Pilot 2.04
- -r-c~--:--::- ---

Manual
Report
Video

Figure 11.8: User profile subscription (4).

Figure 11.9: User profile subscription - Help 1con.

113

114 lmplementation results

11.3 Collection

The four next screenshots represented on figures ll.10-11.11-11.12-11.13
concern the steps leading to the submission of a LL (general information,
accident and event sequence, solution, and record confirmation). They cor
respond to UC5 Submit a LL.

[LL identity (1) ;, LL 1dentity (2) > Acr.ids,nt > Solut10,c]

Figure 11.10: LL submission (1).

11.3 Collection

[LL ,dent:ity (1) ;, LL identity (2) >Accident;, Solut:Jon]

Lesson Leamed Submission : Step 2 - LL Jdentity

~ . : ' . . ; '
Items marked with a " are required unless stated o,therwrse. ,. c>·

Push the "Add" button to record your relevant source. If you donl push it . '·
before pushing the ··step 3" record button in the bottom of the page, it w·ôr\"t
be recorded ïn the system ! · .i •

~ , \ ,. '~' ~ ~ ~ ' '
'i;·', ·~- ~t.,., t, Reference , : ~ . . ,

r Manual

! Report

Products

Services

l'""dfflcy """""
• High

Upload .••

Upload •.•

r Medium

Figure 11 .11: LL submission (2).

1
1

115

116 Implementation results

(LL 1de11t1ty (l / > LL 1dent1ty (2) > Accident > Solution]

Lesson Learned Submlsslon : Step 3 - Accident

') •: .', . '
ln this screen, yqu ôave , to descriQe the ~ccident YÇU have encouhte~,'•· _the!, _1-ifk rel~ted . to _the possible
occurrence of tllis accident, 1mdlbe,~.verits :sequences (related ,by ,SO(t)e ~itnèsses) t~t led to. tHe accident. lf yau
y,ant l'flOre information about a special Item, move the mouse pointer to the help 'ièon '(!) •

' ,(' ~

· Items marked with a ~ are required unless stated otherwise.

"'Name_ ·._ ________ _, Œl

• Date D / D / c::::J (dd/mm/yyyy) 0

·-··1
Hazard 1

;__===::...:..:..= :::....:..:=.::==---=-.::....,.:.;::::;

Push the "Add" button to record your relevant source. If you don't push it before pushing the
· step 4 • record button in the bottom of the page, it won't be recorded in the system l

·~ Type ■ ·l+HIH:
'"I N-a-,u-,-.-1 -1.-n-gu_a_g_e_n_a_rr_a_ti_v_e_..:J~. 1 RHŒBWhiiaiHiiii!ti·,1111

J i---=J i---=J t D 'H,

_J j _J j ..J

Figure 11.12: LL submission (3).

11.3 Collection

[LL 1dentity (1) > LL 1dent1ty (2) > Arndent > Solution]

Lesson Learned Submlsslon : Step 4 - Solution

ln this screen, you h~ve to describe the,solution you used to resolve the problcm relateéf in your LL. Your
solution must suggest what to do in the future. Your lesson must report solutions leamed from the course
of actions iliat were actually tz1ken in order to prevent it from happe.oing ag-ain. 0f course, solutions to a
problem .are not unique, and different solutions provide different degrees of safety. Basically, potential
solutions mu!.t deal with the precursors of an accident, that is, the hazards:. It could be said that there is
no single "solution" to the problem, but- there arc haz.ards to be avoided. If you want more information
about a special item, move the mouse poînter to the help îcon 11) :1-,.,

Items marked with a - are required u

Type iiJ 1--
• Description ®

Safety degree 0 r♦

Priority descriptor ® r♦
Validation status Ï1) 1---

Justification ® 1---
Uncertainty ffi r.

r High r Medium

r High r Medium

.:.1
..:.l

r High r Medium

• Tested 0 ~ Yes r No

-..: 1 Record

Î Low

r LOW

r, LOW

Figure 11.13: LL submission (4).

117

118 Implementation results

11.4 Validation

The following screenshot on figure 11.14 is linked with the UC13 List
non verified LL and solutions that allows the expert to ask for non verified
new lessons and solutions related to his area of knowledge. He can see the
state ("needs modification by submitter" or "needs validation by expert ') of
each lesson and solution, i.e. if submitters have replied to his questions con
cerning a specific lesson or solution.

m
2. ,How tô avoid an

, aircra~ crash in
Egypt •.•

3 Howto reduce
terrorism in airaaft:'s
ïlight ..

List of Non Verified Ll and Solutions

Sol. Description Olli·MMl!ii@M'"a. . .
03/02/2004 NVE 2 Give more roffee to the

pilots to stay awake ...
andalive

03/02/2004 A 3 Don't let passengers pass

/
the security gates when
they aré breakdown ..•

!and improve the
·softwares ...

iiiiifüM
. NVE

A

4 Don't allow passengers to, NVE
take luggages and
h,m_!ll>aos in airplanes .••

(") NVE = Need Validation By Expert
NMU = Need Moiification By User
A= Accepted
R = Refused

Figure 11.14: Non verified LL and solution retrieval.

The three figures 11.15-11.16-11.17 below are related to UCJO Update
a LL, UC11 Validate a LL, and UC12 Validate a solution. After having
selected a new non verified LL or a new non verified solution on an existing
LL (see figure 11.14), the appropriate expert can update the LL/solution
and post some comments to ask the submitter more information by email.
He can add links to related existing LL. Consequently, a complete dialog by
mail and throughout the LL system happens between the expert and the
submitter. Once all is clear for each of them, the expert decides to accept
or reject the new LL/solution. If he rejects it, he should explain the reasons
that lead to this choice. The submitter is then notified of the expert decision.

11.4 Valida tion

Validation of LL named "How to avoid an airerait crash in EgypL .• " {ID: 2)

Warning : The verificâtion and --validat;ion of.. the ll and liis ~ution is divided in 6 panels : o.eneral information, accident,
a,~d.ent even,ts,seq~encesf solutiqn, retnted ll .. ~n~

1
Va_lidabtu:,. ~a~ plln;I contai~ a-.~Record" b_ùtton.1"!1if ~utt-àn. ~ltows_)'.QU t~

reoord the mod1ficat:1ons you have. b'rou?ht O_Ncvi, the panel1in wh1çh you are. wortdng~ Sb~ be.fore valitfahn.g '{our-work 1n the
last panel (b.y a~pt:ing/rejecting LL or natifying:_Poster of your modifications),, .be .sure to have _récord all your updates in each
panel !'t

•' '.ou ti?tve, also the •~ssibility to record ~orne aB'ditiona! cornment-s, 10 .each panels. lt can be any inform~tion you wan:t •• • for
,example, infor,TiatiOn or questions you wa'nt'to.ask to t:t,_é' pÔster of tt,e LlJ,SOfution. · ·li t ' r..-:.:"'

Note : if the ù ' is alread); Validated, only the soiution, ani validation panels can be Update. ·

+'Naine rfHow to avoid an aircraft crash in Egypt ...

Creaüon date 03/02/2004

• l(ldusr:ria/ sector(s) r,; Aerospace

, · Defense

r Transport

r: Biomedical industàes

r Nuclear

Ufè cyè/~,s~çe(s) C ,System 'requiremerits definition
' . , , t. '

r: Software requirem<snts definition

P' Human interface êlesign

r Modeling / Simufati~n

Î Deployment

P' Usage

C Syst~o:t ,c!~ign

r Software design

r Jmplementation

r :resting

P' ' Oecommisston

r -Maintenance

·; Cqnseq~ence'(s) r,; Deaths

P' Resource losses

r; Eiwirôrinienï:al damages

P' Risks to lives

Product(s).
1
Pl,ease/sep<1rate each product by ·à s~micq\on ;

(F1 ight Simulator 6.08 ; Pilot 2004

5ervlœ(s) Please, separate each,~ervice by a semicolon)

Attochment{s) r Manual 1 Upload .•• r Script

r ,,Report 1 Upload .• , 0 j r: Video

Proftciency /eve/ r Hioh r., Me:df\Jm r Low

' ~ , Comments on general mfort!latlon of the LL

Upload •••

Upload .• ,

C- None

_J j Delete j
_J

Previous·comments i [E!\<Pert)- Dont' you tl\ink
0

that,, thisÎLL is also related fo: tfi,e ' i(iclustà'al sector
, 'Transpoit~ ???
[J?heyman~J Yes o[,_course, you ~re absolutety ~ ht.

New comment 1
_J

Cll~k on the "Record" liÙtton below fo save all your modifications on GenéraU nformatÏon of the U

Figure 11.15: LL validation (1).

119

120

Accident 1i',

lmplem entation results

Accident detatls ,

" Name !c rash of a 747 Boeing on the ground

Date §J I @:Q t !2003 ! (dd/mm/yyyy)

• Description After launching, the a ircraft was going up ccrrectly _J
until an altitude of 896 meters. Suddenly, the
aircraft made a looping in the sky ar.d was go1r.g
down until it crashed on the floor ...

.J
Hazard The pilot was sleeping

_J

TriggetinQ conâltions Ounng h,s s leep, the head of the pilot h1ts the _J
automat1c pt lotage button. So the a ircraft passed

l from automl!!l tic pilctage to m Mual pilotage. Sut the
· pilot was always sleeping ...

, •, , , ', . Accidênt risk -~ • ' ·

• Rlsk posslbl/ity ~

• Risk consequence I Percept ible ::::1
• Risk j usti&ation ConseQuence is Catastrophic because there are a lot of deads and _J

ressource lcsses .. .
Possibility 1s Low ~u~ there 1s net a lot of pilots who sleep
duri ng the take-off of an aircraft:

: , Commënts ~n .. â cddent of the Ll: ' ,

Previous comments . [expert] Please try to give an accident events sequence below. Jt's
essential ta comp1etely understand the situation .

New comment

"" Descnption type I Natura l language narrative ..J
• Descnption

• Soun:e 1

'1

Accuracy 0 %
Dh;crepancies

_J

'' Click on the "Record" button befow to save all your modifications on
Accident Events Sequenœs of the LL

Figure 11.16: LL validation (2) .

11.4 Validation

Solution (ID : 2) f;;

' , . SOiution (ID , 2) ~ Submitted by ~ , '

·rVpe d Hazard elimination .i]
.. Description Give more coffee ta the pilots to stay awake ... and

alive

_J

Degree of safety . r. High r Medium r Low r None

Priority desqiJJrJ?[(.' Hïgh r ~l~d~'Jl r -Low r, None:

V~lldatihn ;tatus !Formai bJ
Justification I Proof 3
Uncertalnty r. High r Medium r Low r. None

tested r,- Yes r No

Prev/ous comments' [expert] 1s It poss1bli, to give more information about the solution
description?

New comment

Cli€k'on the "R!!cord" button below to save ail your modifications on SOiution of the'll

Accept the tesson and his solution : If you push on the "Acceple" button, the lesson .and his
solution l(vill be accepted. An automatically Eà,-mail will be sent to t:lie poster of the lesson. After
accèpting1 the lesson and hîs solution can't be updated. · ·

litt the resson amf 1\1s solution : If yoÛ push on the "ReJett'" ' button, the lesson and his
w(II be.. (eje<;ted. You, s]iall write an,è-mail to the posteh!i• ex\:>lain him !t\e rea.son~ of

9,h1s lesson, After rejectJ'),11,.the and his solution can't be updated.

Notify the ·poster : If you push on th; " • button, the less~n ~nd his soluâon will tie in a
waitiag state of validal;ion. An e-mail wiU be sent automatieally to the poster of the solution to
notify h,m all the modifications you have made by pushh;1g on the <flfferent "Record" buttonru

! Nottfd

Figure 11 .17: LL validation (3).

121

- •,

122 Implementation results

The last screenshot related to the validation process , represented on fi
gure 11.18, is connected with UC15 List my submitted LL and solutions and
UC14 Reply to LL expert's questions. The submitter asks to see all verified
or non verified LL and solutions he posted. He can see the state ("accepted ",
"refused", "needs modification by submitter", "needs validation by expert')
of each of them. If he clicks on one of his submitted LL or solutions, this
one is displayed and he can reply to the questions asked by the expert, if any.

List of the L<>Ssons Learned and Solutions vou have posted

Please, if you have time, see and reply to the LL that our experts have checked {status NVU : Need Modification by User).
These U and .solutions are in a waitin~ state and won't be accepted until you don•~~"';Swer-.

3 How to roeduœ terrorisrn ,n
•airctaft's flight,. .

i!i1MNID Mi1MM
A 3 Don't leè passengers pass the · A

&ecurity gates when they are ,
breakdown .. . and improve the
·softwares .. ~

2 '"How to avoid an àircr~-cra;;~ NvÈ:·- -,. 2 G1ve more'"'~otfee to the pilots NVE
in Egypt ... to stay awa~P-,. apd alive

(•) NVE - Need Validation By Expert
NMU = Need Mofification By User
A=AcŒpted

Figure 11.18: My LL and solutions.

11.5 Dissemination

11.5 Dissemination

Figures 11.19-11.20-11.21 are related to passive dissemination. The first
screenshot on figure 11.19 concerns UC17 Search by keywords, where users
can specify the scope of their search and use search operators between key
words.

LL Search By Keywords

You canuse operators && (and) and 11 (or) to perform a search.
, 'Use the rna1?k? to matcb with one character. - , , .•

s · Use the i;nask • to match with any sequences o_f characters ..

Figure 11 .19: LL search by keywords.

The second screenshot on figure 11.20 concerns UC16 Search by at
tributes, where users search for LL by giving values related to fixed LL
attributes. They can also specify their search with additional keywords and
precise the scope of their search. The scope of the "and/ or" list boxes con
cerns the matching of different values in a specific attribute. For example,
concerning the industrial sector attribute, users can make a search with
"Biomedical industries" and "Transport" attributes, by using the CTRL key.
The matching rules concern matching among several attributes and deter
mine if at least one attribute must match or all attributes must match.

123

124

Ufe éycle

Form

Risk possibifity

Risk :consequenœ

"'
Matching rules

LL Search By Attributes

l"'anual
Script
Report

catastrophic
Critica/

.Marginal

Implementation results

r. At least one attribute must match

î-' AU the attribuœs must match

Scope: r Ali

Jï None

n LL general information

Jï Acckfent

n Accident event sequences

Jï Solution

Figure 11.20: LL search by at t ributes.

11.5 Dissemination

Figure 11.21 shows the search results. For each result , the user can di
rectly download the PDF document corresponding to the LL. The icon next
to the PDF icon shows a more complete description (other attributes) of
the LL found. The user can also refine his search by performing a search by
keywords only in the LL found.

l..l Sellrch Results - Page 1/1

Industria/ secto, : Transport
LJfe cyde stage : System requirements defwition
Consequence : Deaths -

2 resuT~ " Search time: o. sec- 10 results by Pll08 -. ----~~-----...,-~--,--,-----,

·, ;.■JPiulMW·WMl:fl:iiM Acc,dent description

1 Ho;·r1 to a;rofd a Crash of a NASA 'After launching, at an altitude of 659 meters, there was an
rocket c,:ast, Rocket alter Taunching explosion insicfe the rocket ... Alter it, a second explosion
alter happened and the front of the rocket was on lire ... Then the
làunch!ng 7 rocket went down and fn 5 seconds, lt ,rashed on tlîe ground,

Ici/Jing al/ the astronauts and a farrryer who was ml/king his
cowsl

3 HON toreduce Total destruction of 2 civH alrplanes smashed agafnst the 2 towers .ofthe worfd 1 @~
terrorism ln the world trade center trade œnter ln New York. .. We know there was terrorists inside
alrcralfs fllçht •.. by 2 charte, alrp/anes the_ a/rcralts;,··

Figure 11 .21: Search results .

125

126 Implementation results

Figures 11.22-11.23-11.24-ll.25 concern the display of a LL, once the
user has performed a search (passive dissemination) and selected this LL (see
figures 11.19-11.20-11.21) . They relate to UC9. 1 LL selection and display.
The display of a LL contains various panels that the user can open or close:
general information about the LL (identification, relevant sources and statis
tics) , accident description and risk, accident event sequence(s), solution(s)
with eventual feedback(s) and evaluation(s), and related LL.

LL name : "How to avoîd a rocket crash after launching ?" (ID : l d)

Th~ display- of tlle LL and his solution is divided in S panels : general information, accident, accident events sequenc:es,
solutions 'and related links' to the œrrent LL ln the Mo acdder.it e1,1ents sequences panel and the solutions panel, you can
?e\#'elop ·epch accident·e.vents sequènce end each soluti'on Jo obtaîn more details- •

If you have found a new solution conceming the problem reported in this lesson, you can of--course send your own .solution
which will be validated later by an expert.

On each posted solution, yàù can see, fêe~baCks and evaluations posted by other users. Yo~ h-;;\,e also the possibility to give·
Yôur ,own ., feedback ï f You hàve~'i:eused one of the solùtions, or some.. new '-e..valuetions (comments) about solutions ahd
fecdbacks. Fcèdbeck is ~ery important, It allows to see the precision and ihe pertinence of a solution. So if you reused one of
ihè solution, pleasê tilke the time....to report it in a feedback. It will be helpful for ttie hale community.

:•,";;-f LL ID :1- Subnllttedby s·no D f t , ' ,

LL name ~ Ho.w to avoid a rocketcra~h afterla~n~ing.?,.

Industna/ sectori's) @ 1 Aerospace

Ufe cyde stage(s) (I) Sottware design
Jmpl"fTlentation ,
Modelin"g / Simulation

Consequence(s) @ Deaths
~esourœ losse.s

,Risks to lives

Product(s) · ® 1 Rocket flight simulator
Service(s) 0 /

Attachme1,1t(s) 0 ;Report
Video·.

Fil" , !jacket crash BsPott.odf
File : ROckét a·ash ~

Article

People

, RocketLaunching
P,eyo ' '
Editions Ç;,sternian, 1978

Bill Gates
Ne\V York, USA
Expert in ·rockers launching

aU i bgates@microsoft.c~m

Creation date ® 03/02/-2004

Proficiency /evef 0 High
Stilbi/ity Jî) 0 ·

Reuse raœ ·® o
consµJfatioo L1Umber 0 13

- ~ .rch.nu;,.,'t:r, ,®

Figure 11.22: LL display (1) .

11.5 Dissemination

When the user consults a LL, he has different options. He can download
it in PDF format . He can posta new solution, or a new feedback/evaluation
on an existing solution. If the submitter has given his permission , the user
can directly contact him by e-mail to ask more information. He can also
contact the expert who checked the LL.

Name

Date

Description

Acadent deta,ls.

fi Crash of a NASA Rocket afr:er /aunchlng

Œl 02/04/2003

m Alter /aunchlng, at an altitude of 659 meters, there was an explosion
Jnslde the rocket .•. After Jt, a second explosion happened and the front 'M
of the rocket was on f/re... 1hen the rocket went down and ln 5 '
seconds, it crashed on the ground, kll/ing ail the astronauts and a
farrner who w~ mllklnlf h!s _!'}WS 1 _

Hazard Œ) 1here was some helium in the rocket cabin.

Œ) An astronaut lit a c}(/aret in the rocket cabln.

Risk possibilit:y fi Low

Risle consequence 0 Perceptible

Risk Justification 0 Consequence is catastrophic because there are men 's deaths and
enviromental damages. It's a/so a great loss of money and work.
Possibllit:y 1s medium because launchlnfl of rocket ls not comp/etefy
mastered.

Accident events sequence(s) ~

r. Sequence 1 Alter !dunching, at an altitude of 659 meters, there was iJf'l explosion insïde Mvrer.
the rocket. .. After ...

' ~ 1 ~ ~ ' Accident events sequence :/. Cl

Description t:ype Œl Natural /anguage r,arrative

Description ® After launching, at an altitude of 659 meters, there was an explosion
insirfe the rocket. .. After i t, a second explosion happened ;md the front
of the rocket was on f,re... 1hen the rocket we,,t down and in 5
seconds, it crashed on the ground, kllling ail the astronauts and a
farmer who was mi/king his cows !

Source (ï) Hartman David
Rocket Supervisor

Aauracy 0 80 ""'

Discrepandes ŒJ /

Figure 11.23: LL display (2).

127

128 Implementation results

Solutfoh(s) (,:,

Solution (ID: 1) - Submitted by

Hazard. deafinQ type 0 Hazard elimination . . , _ ..
Descript;tm 0 Build secured rockets ·witt, no helium lnside r

Don't smoke ln the rocket 1 · · '

. safety degree. ® , Mè<!Ium.

Prfority desaiptqr 0 High

Justification (Ï) Proof

Uncertail)ty

Tested

Va/Jdatlon statvs

Submltter
Examiner

'• 'Feedback 1

~ Feèdback,2

~ Evaluation 1

œ I
œ Yes

0
œ
ID

Post a new evaluat.Jcin on th1s solution [l;:J

Figure 11.24: LL display (3).

LL nan1e I Accident name Accident description I Sol#

3 Hoiv to redute terrorîsm O Total destruction of the 2 civil airplanes smashed

1
in aircraft's ffight... world trade center by , against the 2. towers of ...

2 •.•

Figure 11 .25: LL display (4).

11.5 Dissemination

The two next screenshots on figures 11.26-11 .27 are related to UC18
Macro download and UC19 Search with macro call, that allow users to make
external call and search for LL, through Microsoft Word or Excel applica
tions.

Click here):o downloed the macro for Midôsoft Excel
unzip the file macro_excel.zip
Open the file ll_system macro.xla
Then in Microsoft Excel, push on i;\lt+FB and enter in the input box
"Matro's name" : InstallComn,andBarsll
Server name : http://mustang/ll/code/

dick here to download the macro for Microsnft 'lord
Unzip the fjle macro_word.zip and install the macro

Figure 11.26: Macro download.

~ Microsoft Exc.el - Book2 ' :::;"' :\~1f1:!tï'

• ;!fil Eio ~t ':f!,,N 1/lSert f'll,mat !ools Qala l/!nlo-N [!e\:>

!· ·l .\(") ,~,"' · · ~>iti .Ariai .. 10 ... f s I u l~~ ,;m

ili!JE
• _ 6 X

(1 Li Search ol lho words of-lhis e,cpreosion a U. Search ot leo,t on "NO<d of lm expr..- (î:l Li S<0rch lm~ express,on 0 Romo,e lho Li's loobar .•

C D. f G

Figure 11.27: Macro call.

There is no screenshot that corresponds to UC20 Start active dissemi
nation, because each time a LL or solution is validated by expert, this is
automatically disseminated by email (newsletter) to users whose profiles
match.

129

11. 7 Administration

11.7 Administration

The screenshot on figure 11.29 corresponds to UC21 Manage experts
where the administrator gives/removes rights to a normal user/expert to
become an expert/normal user.

Manage Expert List

You can allow or disallow to the users the privilege.s of an expert (e.g. validation of Ll and solutions,
decision about active dissemination of the LL to the users, management of the expert list .•.) . -' ·

, 1- 1 t

Please, enter the login of the expert/user you want to search.

'
•' ~ Login' : "-!P_h_ey,_m_a_n_s ___ ____. i Search i

., ,,
' '

"' Login / ,,: , • First name Last name Type

pheymans Patrick User Make Expert

Figure 11 .29: Expert management.

131

130 lmplementation results

11.6 Reuse

The screenshot represented on figure 11.28 is related to UC9 Feedback
selection and display and UCB Submit an evaluation, where the user submits
a comment on a feedback that has been posted on a solution. The functio
ning of UC7 Submit a feedback and UC9 Evaluation selection and display is
the same.

Feedback about solution 3 ol LL How to reduœ terrorism in aircratt·s fllght...

Bac!t to lesson !eamed Vie""; next feedback

Submitter Feedbàck

Pierre-YYes Sçhobbens Posted :

Submitter

Simon Derat

Subject : Your solution is very impressive J

Place: Charles de Gaulle Airport - Paris

lime: Since 19/03/2002

I reused your solution and there is nothing more to say, except it's a very powerful solution

Evnluntion

Posted: Ellli.œo!I!
Subject: Re : Your solution is very impressive !

Yes of course. l've reused the proposed solution in the same conditions and the problem was
immediately solved.

Post a new evaluat1on CJ

Items marked with a • are required unless stated otherwise.

• Subject IRe : Re : Your solution is very 1mpressive 1

_J

Figure 11.28: Feedback selection and evaluation submission.

132 lmplem e ntation results

Figure 11 .30 is linked with UC22 Manage database where the adminis
trator adds or removes new values related to fixed attributes in the database,
as industrial sector or life cycle stage values.

Lesson l.earned system - Admlnistrator section

Industriaf Sector Management

Name Oescnpt.ion
1 '"l.oe-,-.--- œ---- ----- --,11:4---.,..- ,,.- ce- · -°"-=- .-~--on--- - - ------ -~11 Modlfy 1
2 jBJomedic.al industries f ~,8:::,o:::m:::«J=:,,2::/=;n::d::u:::slri:::.::,.:::_:::O.=scnp==,=on=========~,, Hodify 1

3 IDefen~ l l0eFens e - Dfic.ription 11 #:Jodily 1
4 JNuded'r j JNuclear - Description JI ~fy 1
5 lrransport f Jrransport - Description 11 Modify 1
+ .__ ____________ _..._ ___________________ Gm

, Ufe Cyde Stage Management •

Name IJescrtptJon.
f'"s-yst- em_ req_ u_ic-em_ en_ ts_ d_,e...,fi,-n/tio-. . -n-----,1 !system reouirements dcffn;t;on - D.!safption 11 ModJf), J

2 f systerr. design J Jsystem design - ~ saiption 11 ModJ{y 1
3 ISo!twa..-e requirement5 definlti0t1 1 !software requi."ements deflnitlon - Description 11 Modi(y 1
4)Sohw.,re design 1 !Soft-.vare design - Descrlptk,n 11 Modîfy 1

S JHIJ016n interlace dt!Slgn 1)Human kl terftJœ dttSign • Description 11 Modif,; 1
6)Implemen~b'on f J1mplementdtion - ~script/on JI Modtfy 1
7 IModeling / Simulation I IModelJno / SJmuJa& n • D~ptlon 11 Modify 1

8 !Te,tJng 1 !r~r.o · Description U 'fod;fy !
9 !o.,p1oym..,,, ! !aep1oym•nt - Descripâon ! 1 Modlfy !
l O l0ecommission I loecomm1sS10n • ~ption 11 Modlfv 1
11 lusapi, 1 lu~oe • Description Il' Modify 1
12 IMeintenanu I IH6ir.tenonce • Description 11 Modify 1

+ '--------------''--------------------'~

1
, , CDnsequcnce Management

Name Description

1 '"lv.-.,;,.,..------------,ll~~;;rh;•;;-Oescrl;;;;µ,;;·;o";;;;;;;;;;;;;;;;;;;;;;;;;;;~u -,,ry 1
2 IEmrlron'";:ntal domages I IEnvfronmental <klrnlJ!}es • Descrfptlon 11 Modify 1
3 IResour-ce loss.fi I IResourctt los.ses • Oescrfptton 11 Mod1fy 1

4 !R<sks /o lives ::=::::::::::::::::::::::::::::::::::::=:::::::===========:::::" Modlfy !
+~------------~~-------------------~Gm

Figure 11 .30: Database management.

Part III

Creation of an environment
for lessons learned through

knowledge management

133

Chapter 12

Organizational culture and
cultural barriers

This chapter and the following ones in this part are based on [GAO, 2002]
and [Rus & al., 2002] . They suggest solutions to organizational and hu
man problems caused after the development and setting up of LL systems
and, more generally, KM systems.

Despite the procedures and the processes established to capture and
share LL, it is not certain that lessons are being reused and applied in the
future. A lot of organizations, as the NASA for example, have noted that
LL are not routinely identified, captured and reused by projects managers
and programmers or, more generally, employees.

The first main reason is that there exist cultural barriers and re
sistance to the sharing of LL. The second reason is that a LL system is
important but should not be the only mechanism to share knowledge.

12.1 Individualism

Although new technology can be very helpful in sharing knowledge, or
ganizational culture might not support it. Sorne cultures promote individua
lism and ban cooperative work. It is very frequent that workers do not want
to give away their knowledge, or reuse someone else's knowledge. Sorne think
that software engineers are indisposed to reuse solutions found by other em
ployees. If organizations do not encourage a knowledge-sharing culture,
employees might feel possessive about their knowledge and will not share it.

Lack of a knowledge culture is the main reason why KM strategies
failed. It was proved that a large number of organizations failed because

135

136 Organizational culture and cultural barriers

they did not establish their goals and strategy before implementing LL sys
tems. Employees should be convinced of the system utility and importance.

However, the obstacles might not be as big when it cornes to safety
critical systems since "There is a tendency within any industrial sector to
collaborate in relation to safety issues, as negative incidents can affect the
whole sector" [Leveson, 1995].

12.2 Lack of trust

A big problem is that a large number of employees are not persuaded of
the effectiveness of LL systems. They think that no benefit can be drawn
from LL.

This type of behavior and individualism can cause the ruin of a LL or
other types of KM systems. Employees are conscious that organizations ap
preciate them for their own personal and specific knowledge; they might be
afraid that they will be judged as superfluous or useless once organizations
have caught their knowledge.

12.3 Intolerance for mistakes

Employees might not be willing to share negative experiences and LL
based on failures because of their negative connotation. They have a
perception of intolerance for mistakes. Consequently, although the main
goal is to prevent the same errors, employees might fear that such informa
tion could be used against them.

12.4 Lack of time to share knowledge

Another problem is that employees do not often have time to input or
search for knowledge. They should be stimulated to take time to compose
and submit their LL in the repository. This constraint is often hard to ac
complish.

Although adaptation is difficult, such behaviors should be reviewed and
replaced by a constructive approach that promotes and rewards sharing.

Chapter 13

Recommendations to incite
sharing knowledge and using
lessons learned systems

13.1 Reward systems and performance evaluation

A good idea to incite workers to share their knowledge by submitting LL
or to search and reuse existing LL, is to settle a reward system. Such a sys
tem was set up by Xerox. It was suggested to establish a "hall of fame" for
employees whose contributions would solve real business problems. Xerox
LL contains also the identity of the submitter, that could reveal his repu
tation among the company. Consequently, it is an important incentive to
bring his involvement by using the LL system.

[Powers, 1999) says that Xerox created an authentic knowledge-sharing
culture through its knowledge repository, called Eureka, which is used by
more than 25,000 employees worldwide. Xerox's Eureka LL system is po
werful because it is totally filled by its own users; no specific employee is in
charge of creating and submitting LL. Eureka allows Xerox to save between
five and ten percent on work costs . Knowledge sharing is part of the em
ployees' daily work.

Scientists at NASA's Langley Research Center are monetarily re
warded if knowledge they capture and share is reused.

Ford recompenses workers who send LL used within the organization.
Managers are also motivated to share because they are evaluated annual
ly on the basis of knowledge sharing. Similarly, employees' performance of
the World Bank is estimated in the same way.

137

138 Recommendations to incite sharing knowledge and using LL systems

Other examples of reward systems can be mentioned. Bruce Karney,
evangelist of a Hewlett-Packard KM initiative, gave out free Lotus Notes
licenses and free airline miles to prospective users . Infosys rewards em
ployee contribution and use of knowledge with knowledge currency units ,
which they can convert into cash. The online expertise provider Expert Ex
change rewards experts with points for answering questions and recognizes
those with the most points on the front page of their web site.

13.2 Additional mechanisms for lesson learning

Programmers and project managers are directed to review and apply LL,
but a LL system alone is not suffi.cient in an organization. In section 2.4,
we explained that there were two forms of knowledge: tacit or explicit. LL
system insures that it can collect explicit as well as tacit knowledge, but ac
tually, tacit knowledge can not always be gathered in such a system. Hence,
there should be additional mechanisms that promote a deep KM culture
throughout the organizations.

13.2.1 Mentoring

Ericsson creates a new concept to exchange tacit knowledge, instead
of storing it in a repository. Two roles have been defined to spread tacit
knowledge to a larger number of employees:

1. The experience communicator is an employee who is specialist in
a particular field.

2. The experience broker links the experience communicator with the
employee who faces a problem.

The communicator should not solve the problem himself but instead
coach and instruct the employee on how to solve it.

13.2.2 Storytelling

Another example is storytelling. The NASA encourages senior pro
grammers to tell personal experiences and to disseminate their knowledge
through a series of short stories available on their web site. Each story
deals with a topic that will help other programmers to succeed. They can
also provide with online training resources, such as project management
tools, that can be reused and help others.

13.3 Strategic plan for KM and knowledge manager

13.2.3 Other means

Supporting lesson learning can also be clone by designing training pro
grams, pair programming, job rotation, technical reviews, or after
action reviews as in the US Army. All these activities allow experts and
employees to exchange part of their knowledge.

Communities of practice established by Ford or the World Bank
is another example of such means. They consist of groups of employees who
are bound together by shared expertise and a common passion for joint en
terprise [Wenger & al., 2000].

13.3 Strategic plan for KM and knowledge mana
ger

In larger organizations, creating a team and designating a knowledge
manager to coordinate KM activities is essential. It is recommended topo
sition the interaction between lesson learning and KM through a strategic
deployment plan for KM. This concerns translating the fuzzy notion of
KM into a concrete and collective vision in the long term, with fixed objec
tives for sharing KM within the organization.

Nominating a LL manager is necessary to accomplish, organize and co
ordinate all lesson learning activities. This manager is also responsible to
ensure that the LL repository is maintained and accessible. In large orga
nizations, this task is crucial because lesson learning activities are scattered
around various companies.

For example, at Ford Motor Company, the chief executive officer
plays an important role for knowledge sharing, personally writing emails
every week to employees with comments on past week's experiences. If
employees see that using the LL system is important for their boss, it could
become important for them.

13.4 Filling up the LL repository

A problem with LL systems is that it might take time before measurable
benefits appear. It usually lasts a long time before knowledge bases contain
a critical mass of knowledge.

139

140 Recommendations to incite sharing knowledge and using LL systems

In the last part about future works, a possible solution to fill a LL repos
itory, in order to reach a sufficient base of LL, is proposed. It shows that
interaction and knowledge exchange between different KM systems (as inter
action with comp.risks or distribution and interaction throughout brokers)
could help to gather a critical mass of LL.

13.5 Performance measurement

It is important to track and report on the efficiency of LL systems and
all KM activities, by using objective performance metrics for example.

13.6 Investing in know ledge sharing

Implementing all these recommendations costs a lot and needs invest
ments. Several LL system initiatives fail because financial investments in
KM were insufficient. It is observed that successful LL systems are those in
which companies spend significant investments, as in the World Bank or
Ford Motor Company.

Part IV

Ethical questions

141

Chapter 14

Ethical questions

According to [Dumas & al., 2003], LL systems based on KM consist of
a series of procedures based on information manipulation, which include in
formation gathering, structuring, analysis, evaluation, recording, retrieval ,
and accessibility. AU these steps imply the notion of qualitative rather than
quantitative evaluation and subsequently are liable of ethical consideration.
In t his chapter, we introduce a short reflection about the responsibility, the
privacy statement and the usage of such systems.

14.1 Responsibility and usage problems

LL systems raise the problem of the information responsibility and usa
ge, especially in the field of safety-critical software. If something wrong
happens as a consequence of the usage of a LL, who is responsible? ls the
responsibility shared among experts, users and LL submitter? Is the expert
responsible or only the submitter of the LL? Each answer depends on the
legislation of the country where the system is hosted . In order to promote
usage of the LL system and to gain the confidence of users and organiza
tions, a charter can be written. As a result , it can really prevent malicious
users whose aim is to introduce wrong information in the system in order to
cause disasters or damage to other organizations.

14.2 Quality of information and confidence 1n the
system

LL systems cannot be separated from the quality of information and the
trust that can be attached to any piece of information, particularly about
software-oriented accidents . In order to ensure the best quality of informa
tion and to gain the user's confidence, the system can adhere to a privacy

143

144 Ethical questions

seal program, such as TRUSTe organization1 for example. This is an inde
pendent and non profit privacy organization whose mission is to build user's
trust on the Internet . It is also preferable fort users' and experts' identities
to be certified by an independent organization.

14.3 IEEE and ACM code of ethics

A LL system with an active dissemination mechanism based on moni
toring, bringing the information automatically to the user , can raise some
questions about the respect of his privacy and the intrusion of the system.

However, the first article of the IEEE2 code of ethics and the point 1.1
of the ACM code of ethics and professional conduct3 says that "all
computing prof essionals must accept the responsibility in making engineering
decisions consistent with the safety, health and welfare of the public, and to
disclose promptly factors that might endanger the public or the environment".
This code favors one ethic because it is aimed at making safer systems.

14.4 Bowie and Duska's four questions

While the law is not yet established, deontological principles may be in
conflict. In this case, we can adopt an explicit ethics of data usage and
transparency, more or less linked to Scip4 .

Generally, for all aforementioned ethical considerations, we can apply
Bowie and Duska's [Bowie & al., 1990] four questions, which are:

• Is the action good for the user of the LL system?

• Is the action good for the company or the organization?

• Is the action good for everyone affected by it?

• Is the action fair and just?

According to [Bowie & al. , 1990], answering "yes" to all four questions
leads to an ethical action.

1http://www.truste.org
2 http://www.ieee.org/about/whatis/code.html
3 http://www.acm.org/constitution/code.html
4 http://www.scip.org/ci/ethics.asp

14.4 Bowie and Duska's four questions

Regarding this chapter, developers and users of LL systems should take
ethical dimension into account when they develop or use such systems. We
cannot ignore it.

145

Part V

Future works

147

Chapter 15

Interaction between LL
systems

This chapter and the following ones explain the different ways and per
spectives of research that could have been explored if we had more time to
develop a LL system oriented towards safety-critical software. We remind
the reader that the main goal of our work is to develop a first exploratory
prototype giving an overview of a LL system oriented towards safety-critical
software. We describe in these chapters what could be clone or changed to
improve the tool or build a new one.

Before explaining what the possible interaction between LL systems is,
the following table shows the modifications affecting the characteristics of
our LL system (described in section 4.3) if all changes described in this
part about future works were added to the current features of our prototype.

Collection & dissemination Knowledge attic & publisher

Content Hybrid

Nature Technical lessons

Orientation Croup of organizations and community

Duration Permanent

Architecture Standalone

Integrated (Reactive and proactive dissemination)

Attributes & format Textual and non-textual attributes

Confidentiality Classified and restricted - U nclassified

Size Huge

Table 15.1: Classification of our LL system with additional features.

149

150 Interaction between LL systems

15.1 Broker architecture

A problem with LL systems is that it might take time before significant
profits become visible. Indeed, it usually lasts a long time before a LL re
pository contains a critical and suffi.dent mass of knowledge.

In the case of our prototype, it was impossible to reach this critical mass
of knowledge in a such period of time (i .e. four months). Because of this
constraint, it is very difficult to say whether our prototype is usable.

A possible solution could be based on interaction and knowledge ex
change between different KM systems, as interaction with comp.risks or
distribution and interaction throughout brokers and distributed databases .

On the other hand, a possible drawback could be the lack of confidence
and the competitiveness between the various systems connected through the
broker architecture.

15.1.1 Interaction with comp.risks forum

For example, in the case of interaction with a system like comp.risks
forum , it should be interesting to gather and transfer new topics submitted
in the forum to the LL system. And, the other way around, it could be
interesting to gather and transfer new LL submitted in the LL system to
the comp.risks forum. This type of process could be viewed and achieved as
in the active collection (described in section 3.4). Therefore, extractions
and transfers from comp.risks can be difficult , because of the non correspon
dence between the lack of structure of knowledge stored in comp.risks and
the typology used in our LL system oriented towards safety-critical software.

This implies that our LL system is complementary with comp.risks but
does not completely replace it . For example, it could be interesting to dis
cuss a problem in comp.risks before to submit it in the LL system. It could
allow to warn interested people earlier, while information is not yet complete
and structured.

It is important to note that the current architecture of our LL system
is not convenient for the additional purposes presented in this section. For
example, in the case of distributed systems with brokers, technologies such
as JAVA and CORBA would be more efficient , powerful and adapted.

15.2 Generic LL systems and specific format

15.1.2 Peer-to-peer knowledge management

Another possibility of interaction between different systems is the Peer
to-peer knowledge management1, which is more able to fit with the
emerging distributed organization of knowledge and lessons. It could be an
interesting way to deploy distributed LL solutions.

15.2 Generic LL systems and specific format

15.2.1 Specific format

If interaction takes place among several LL systems, it is important for
the LL exchanged to be understandable by all the different users. A user,
who is used to work with such a LL system, should understand LL coming
from other systems. Otherwise, he will be disappointed and reluctant to use
the system.

This problem could probably be solved by defining a specific format
to exchange data between different LL systems. The different organizations
should therefore agree on this format and adapt their existing KM systems.
It could be interesting to define a common ontology to exchange data bet
ween LL systems.

15.2.2 Generic LL systems

The LL system presented in this master thesis is suitable for software ac
cidents related to the software community. However, the typology of these
LL and related accidents (industrial sectors, consequences, life cycles, re
levant sources, products/services, accident event sequence ...) is currently
fixed. It would be more useful if the prototype could be adaptable and
flexible to any kind of organizations.

The LL system could be more generic and allow tuning to a specific
organization, in such a way that a typical organization could define its
own LL and accident typology. It could be a kind of meta-model or evol
vable ontology. Once an organization installs the LL system, the system
would ask to define the wished typology and the values of each attribute,
as presented in figure 11.30 of section 11.7. Once the LL system installed,
administrators could manage it as they want.

1 http://www.p2pkm.org

151

Chapter 16

Positive as well as negative
• exper1ences

Several authors, such as [Weber & al. , 2001] and [Silva & al. , 2002], dis
agree with the fact of mixing different kinds of knowledge artifacts (described
in subsection 3.2.2) in the same KM system. However, recent experiments
[GAO, 2002] with LL systems show that mixing positive and negative expe
riences could promote reuse , or increase effectiveness and retrieval of relevant
lessons.

LL can be built on positive or negative experiences. Nevertheless,
if an organization concentrates only on failures, the general efficiency of its
LL system could be decreased and it could miss opportunities to enhance
all its processes, because users can be interested in positive as well as neg
ative experiences. Sometimes, positive LL can even be more helpful than
the negative ones, because users could try to imitate successes . NASA has
noted it through his LL system [GAO, 2002].

Consequently, we think that, if we had to make the prototype again, we
would include positive (best practices) as well as negative experiences. It
is important not to focus only on accidents and problems. We also think
that we would maybe remove the limitation that consists of allowing users to
submit only lessons for which they have a solution (incident reports) . In
case of urgency, it could also be very useful to submit alerts. These obser
vations justify the type of our prototype which is th.rowaway and exploratory.

In subsection 3.2.2, we noted that alerts, best practices and incident
reports are not considered as LL. In order to confirm or invalidate the afore
mentioned observations, a case study could be helpful and would certainly
reveal others needs of extension or modification.

153

Chapter 17

Monitored distribution

In order to be more efficient, LL systems should be incorporated into
the processes they intend to support [Weber & al. , 2001]. In this chapter,
advantages of integrating LL systems in decision support systems are dis
cussed.

Although there seems to be benefits of using active (e.g. by mail with
user profile subscription), reactive (e.g. by macro call in Word or Ex
cel), or proactive (developed in this chapter) dissemination, these tech
niques have been implemented and tested in a small number of organizations
[Weber & al., 2001]. It could be more useful to embed these LL systems and
dissemination processes in the decision support systems targeted by their LL,
as suggested in figure 17 .1 .

1 7 .1 Features of monitored d istribution

Active dissemination with monitored distribution is called proactive
dissemination. This new concept consists of providing LL only "when and
where" they are needed. In the monitoring, distribution is strongly inte
grated with the targeted organizational processes/applications. It
is hoped that monitored distribution could improve t he quality of the latter.

In order to give a simple example, the Microsoft Office Companion
could be viewed as a sort of monitored distribution.

[Weber & al., 2002] daims that monitored distribution yields the follo
wing advantages:

• Distribution is tightly integrated with the targeted organizational pro
cesses.

155

156

Repository of
Lessons L&arnéd

Monitored distribution

Qrganization•s
~Mèmbérs

Orga nizational
Processes

Figure 17 .1: The lesson distribution gap [Weber & al., 2002] .

• Users need not know or be reminded of the repository to use lessons ,
nor require lesson retrieval skills.

• Users do not need significant additional time to retrieve lessons.

• Because lessons are integrated with the targeted processes, interfaces
can be developed with the monitored distribution approach to allow
users to execute lesson suggestions.

In other words, LL systems with monitored distribution must play the
following roles to achieve these goals:

• Identifying the best moment to deliver lessons.

• Anticipating the user needs.

• Providing an API to embed monitored distribution in another system.

• Asking the user for the state of unknown variables. This could hap
pen, for example, if there is no suffi.cient conditions to justify lesson
applicability. It allows to assess the similarity between the current
conditions and a potentially applicable lesson.

Monitored distribution can use AI techniques like text indexing, such
as latent semant ic analysis1 (theory and method for extracting and rep
resenting the contextual-usage meaning of words by statistical computa
tions applied to a large corpus of text) . But AI techniques also have some

1http://LSA.colorado.edu/

17.2 Example of architecture for embedded LL systems

limitations. For example, understanding and correctly interpreting natural
language still remain challenging problems. Moreover , if the matching is
random and/or too much intrusive, such as the Microsoft Office Companion
for example, there is a risk for the tool to get deactivated by the user.

17.2 Example of architecture for embedded LL sys
tems

[Weber & al., 2002) gives an example of monitored distribution that con
sists of integrating a LL system, the Active Lesson Delivery System (ALDS) ,
as a module of a Decision Support System (DSS). The requirements for the
integration are that the DSS has a flexible architecture and that the deci
sion/task/process and state conditions that determine decision making are
explicitly represented (i.e. , in such a way that an applicability oriented re
trieval process can be used to distribute lessons).

Figure 17.2 shows the interaction between ALDS and DSS. The inputs
of the DSS concern what the user currently performs. ALDS keeps track of
the state conditions input by the user and uses them plus the current task
to assess and compare it with LL stored in the repository. If a lesson is
considered to be sufficiently similar to the current situation and applies to
the current task, then ALDS considers it to be applicable. It displays it to
the user, in such a way that he can take decisions from it.

However, DSS is particularly used in company management (US Army
for example). In the context of software engineering, case tools are more
useful. PRIME (PRocess-Integrated Modeling Environments) is a process
integrated environment (PIE) [Pohl & al., 1999). It consists of a workflow
system in which we can explicitly represent and execute the process. The
piece of process executed at a given time depends on the formalized context .
The process-integrated tools of PRIME adjust their behavior according to
the current process situation and the method definitions. In the case of a
LL system, a system like PRIME could allow to match the context with LL
applicability and the associated process with the solution of the LL.

157

158 Monitored distribution

similarity
assessment

DSS

ALDS

-- J.esson i
base

Figure 17.2: An architecture for integrating monitored distribution in a
decision support system [Weber & al., 2002].

Chapter 18

Other perspectives of
research

18.1 LL accessibility rights

In some cases, it could be interesting to define confidentiality with some
accessibility rights on LL. For example, a specific LL could be viewed by
all users, or only by a specific group of users (air force technicians, or nuclear
engineers for example). It could also be only edited by a specific user, the
submitter, or by a group of users/experts. Such right management will raise
confidence in the system.

18.2 Confrontation of experts' opinions

Concerning the level of validating a LL, it could be interesting to im
plement a system that allows different experts to discuss a specific LL and
exchange their opinion and advice. In the future, we can consider a system
which will allow many experts to validate a LL and his solution, in the aim
of strengthen it. The discussion between experts could be completed with a
vote system. Experts would be authorized to vote for such or such opinions.
It could allow to reduce conflicts between experts.

In order to designate experts of the LL system, it could also be useful to
imagine a vote system between existing experts.

159

Conclusion

In this master thesis , which cornes within the scope of the works of
[Silva & al. , 2002], we discussed the requirements of LL systems and built
an exploratory throwaway prototype to collect, validate, and disseminate
lessons related to accidents of safety-critical software products and devices.
This prototype allowed us to explore and understand the functioning of such
LL systems designed to be used by software engineers.

Because of the non existence of LL systems oriented towards safety
critical software, we decided to opt for a new and innovative approach based
on KM.

After having given some examples and discussed current problems of
software accident reporting, we illustrated how the use of KM brings inno
vation and allows improvements in the design of LL systems. We continued
by explaining the problems the setting up and the management of a LL sys
tem can face, and by giving some means and ideas to improve and guarantee
its success. Finally, we dealt with ethical questions concerning LL systems.

In the previous part about possible future works, we threw interesting
ideas , which should be taken into account , in order to improve the features
and the efficiency of LL systems. It concerns perspectives of research that
could have been considered if we had more time to develop a more complete
and powerful LL system.

We hope that this reading was interesting for you and that you have
learned some lesson ;-)

We thank you for the interest you have expressed by reading this master
thesis.

161

Bibliography

[Bartlett, 1999] Bartlett, J. (1999). Unpublished slides.

[Bickford, 2000] Bickford, J. (2000). Sharing lessons learned in the Depart
ment of Energy. In Aha, D. W ., Weber, R., Intelligent lessons leamed
systems: Papers from the AAAI Workshop (Technical Report WS-00-
03} , pp. 5-8. AAAI Press , Menlo Park, Canada.

[Bowie & al. , 1990] Bowie, N., Duska, R. (1990). Business Ethics, pp. 10-11.
Prentice Hall, Englewood Cliffs , New Jersey, USA.

[Cockburn, 2000] Cockburn, A. (2000). Writing Effective Use Cases .
Addison-Wesley, Boston, USA.

[DOE-STD-7501-99, 1999] DOE STANDARD (1999) . The DOE Corporate
lessons leamed program. Department of Energy, Washington, DC.
Available at http://www.tis.eh.doe.gov/11/docs.html (Date of access
02/05/2004).

[Dumas & al. , 2003] Dumas, P ., Bulinge, F ., Boutin, E. (2003) . Ethical
dimebsions of KM in professional settings. Laboratoire LePont, Uni
versité de Toulon-Var, France.

[Fisher & al., 1998] Fisher, D. , Deshpande, S., & Livingston, J. (1998).
Modeling the lessons learned process (Research Report 123-11). Albu
querque, University of New Mexico, Department of Civil Engineering.

[GAO, 2002] United States General Accounting Office (2002). Re
port to the Subcommittee on Space and Aeronautics, Com
mittee on Science, House of Representatives. NASA: Better
Mechanisms Needed for Sharing Lessons Leamed. Available
at http://www.gao.gov/new.items/d02195.pdf (Date of access
02/05/2004).

[Jackson, 2001] Jackson, M. (2001). Problem Frames: Analyzing and struc
turing software development problems. Addison-Wesley/ ACM Press,
New York, USA.

163

164 BIBLIOGRAPHY

[Johnson & al., 2000] Johnson, C., Birnbaum, L. , Bareiss, R., & Hin
richs, T. (2000). War stories: harnessing organizational memories to
support task performance. Intelligence: New Visions of AI in Practice,
Volume 11 , Issue 1, pp. 17-31. Addison-Wesley/ACM Press, New York,
USA.

[Knight & al., 2001] Knight , J., Leveson, N., DeWalt, M., El
liot, L., Kaner, C., & Nissembaum, H. (2001). On Licens
ing Software Engineers Working on Safety-Critical Soft
ware. Association for Computing Machinery. A vailable at
http://www.acm.org/serving/se_policy /safety_critical.pdf (Date of
access 02/05/2004).

[Knight & al., 2000] Knight, C., & Aha, D. W. (2000). A common knowl
edge framework and lessons learned module. In Aha, D. W., & We
ber, R., Intelligent lessons learned systems: Papers from the AAAI
Workshop {Technical Report WS-00-03), pp. 25-28. AAAI Press, Menlo
Park, Canada.

[Leveson, 1995] Leveson, N. (1995). Safeware: System Safety and Comput
ers. Addison-Wesley/ ACM Press, New York, USA.

[Minsky, 1996] Minsky, M. (1996). Intelligent machines. In Brockman, J.,
The Third Culture: Beyond the Scientific Revolution. Touchstone
Books.

[Neumann, 1995] Neumann, P. G . (1995). Computer Related Risks.
Addison-Wesley/ACM Press, New York, USA.

[Peterson, 1996] Peterson, I. (1996). Fatal Defect: Chasing Killer Computer
Bugs. Vintage Books, New York, USA.

[Petroski, 1994] Petroski, H. (1994). Design Paradigms: Case Histories of
Error and Judgment in Engineering. Cambridge University Press, Cam
bridge, UK.

[Pohl & al., 1999] Pohl, K., Weidenhaupt, K. , Domges, R ., Haumer, P.,
Jark, M., Klamma, R. (1999). PRIME: Towards Process-Integrated En
vironments. ACM Transaction on Software Engineering and Methodol
ogy, Volume 8, Issue 4. Lehrstuhl Informatik V (Information Systems),
Aachen, Germany.

[Powers, 1999] Powers, V. J. (1999). Xerox creates a knowledge-sharing cul
ture through grassroots efforts. K nowledge management - In practice,
Issue 18. American Productivity and Quality Center, Houston, USA.
Available at http://www.askmecorp.com/pdf/Xerox.pdf (Date of ac
cess 02/05/2004).

BIBLIOGRAPHY

[Reimer, 1998] Reimer, U. (1998). Knowledge integration for build-
ing organizational memories. Swiss Life, Information Sys-
tems Research Group. Available at http://www.dfki.uni-
kl.de/ aabecker /Freiburg/Final/Reimer /ki97-ws/ki97-ws.html (Date
of access 02/05/2004).

[Rus & al. , 2002] Rus, I., & Lindval, M. (2002). Knowledge Management in
Software Engineering. IEEE Software, Volume 19, Issue 3, pp. 26-38.
Available at http://fc-md.umd.edu/mikli/RusLindvallKMSE.pdf (Date
of access 02/05/2004).

[Secchi & al., 1999] Secchi, P., Ciaschi, R., & Spence, D. (1999). A Concept
for an ESA lessons leamed system. In Secchi, P., Proceedings of Alerts
and LL: An Effective Way to Prevent Failures and Problems (Technical
Report WPP-167), pp. 57-61. ESTEC, Noordwijk, The Netherlands.

[Senge, 1994] Senge, P. M. (1994). The Fifth Discipline: The Art and
Practice of the Leaming Organization, pp. 139. Paperback, Cur
rency /Doubleday, New York, USA.

[Silva & al., 2002] Silva, A., Maté, J . L., & Pazos, J. (2002). Lessons leamed
systems for critical software: Introduction and perspectives. Unpub
lished article.

[Silva, 2003] Silva, A. (2003). Sistemas Software Crîticos. Unpublished les
son.

[Stewart, 1997] Stewart, T. A. (1997). Intellectual capital: the new wealth
of organizations. Paperback, Currency / Doubleday, New York, USA.

[Tah & al. , 2001] Tah, J.H. M., & Carr, V. (2001). Towards a framework for
project risk knowledge management in the construction supply chain.
Advances in Engineering Software , Volume 32, Issue 10-11, pp. 835-846.
Elsevier Science Ltd, Oxford, UK.

[Terry, 1991] Terry, G. J. (1991). Engineering System Safety. Mechanical
Engineering Publications Ltd., London, UK.

[van Heijst & al., 1997] van Heijst, G., van der Spek, R., &
Kruizinga, E. (1997). Corporate memories as a tool for knowl
edge management. Expert Systems with Applications, Volume 13, Issue
1, pp. 41-54. Elsevier Science Ltd, Oxford, UK.

[Weber & al., 2001] Weber, R., Aha, D. W., & Becerra-Femandez, I. (2001).
Intelligent lessons leamed systems. Expert Systems with Applications,
pp. 17-34. Elsevier Science Ltd, Oxford, UK.

165

166 BIBLIOGRAPHY

[Weber & al., 2002] Weber, R., & Aha, D. W. (2002). Intelligent de
livery of military lessons learned. Decision Support System,
pp. 287-304. Elsevier Science Ltd, Oxford, UK. Available at
http://www.aic.nrl.navy.mil/hicap/pubs-ills.html (Date of access
02/05/2004).

[Wenger & al., 2000] Wenger, E., & Snyder, W. M. (2000). Com
munities of Practice: The Organizational Frontier. Harvard
Business Review, pp. 139-145. Harvard, USA. Available at
http://www.lahvista.cz/ceconsortium.com/pdf/commprac.pdf (Date of
access 02/05/2004) .

[Wiener, 1993] Wiener , L. R. (1993). Digital Woes: Why we Should not
Depend on Software. Addison-Wesley/ ACM Press, New York, USA.

