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Résumé 

Dans ce mémoire, nous définissons un langage de spécification formel pour systèmes 
coopératifs, dynamiques et distribués. Ce langage (PNRTL) est basé sur les réseaux de Petri, 
la logique temporelle temps-réel et la logique déontique . 
Une spécification dans notre langage est composée de trois objets. Un réseau représente les 
actions et aspects dynamiques du systèm(! modélisé. Un ensemble de formules de ia logique 
temporelle a pour but de restreindre les exécutions possibles du réseau à l'ensemble de ses 
exécutions désirées. Enfin, un système de poids est associé aux transitions du réseau pour 
modéliser des préférences entre les exécutions du système, cela permet de représenter la 
notion déontique de sub-idéalité. 
Une étude de cas met en évidence la capacité de notre langage à exprimer des contraintes 
opérationnelles, déclaratives, temps-réels, ... et des aspects déontiques. 
Nous proposons également deux approches pour réaliser des preuves formelles sur les 
spécifications PNRTL : la première est basée sur la théorie des automates de Büchi et la 
seconde sur les systèmes de preuves logiques. 

Abstract 

ln this master thesis, we define a format specification language for cooperative, dynamic and 
distributed systems. This language (PNRTL) is based on the formalisms of Petri nets, real­
time temporal logic and deontic logic. 
A specification in our language is composed of three abjects. A net represents the dynamic 
aspects of the modeled system. A set of temporal logic formulae prunes the set of possible 
executions of the net to the set of desired executions of the system. A weight system associated 
with the transitions of the net models a preferrence ordering on the behaviors of the system, 
this allows to represent the notion of deontic sub-ideality. 
A case study shows the ability of our language to express operational, declarative, real-time, 
... constraints and deontic aspects. 
We also propose two différent approaches to conduct formai proof of properties of the 
PNRTL specifications: the first one is based on the Büchi automata theory white the second 
one rests on logical proof systems . 
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Introduction 

Modeling distributed systems ... 

Distributed systems are becoming increasingly widespread. But methodologies for building 

distributed composite systems are lacking1
, specifications languages aimed at the modeling of 

such systems are seldom or have a weak expressiveness limiting their scope of application. 

There is a growing need for formai languages capable to manage the interactions between 

hetèrogeneous components (human, software, robot, ... ) within a system, and capable to 

express various kinds of constraints (e.g. synchronization, response times, obligations, ... ) . 

Furhtermore, those languages should offer analysis, validation and/or verification methods or 

tools . 

. .. with Petri nets and temporal logic 

Among the few candidates satisfying those requirements, two approaches are emerging. 

On the one hand, we have the Petri nets based languages for which numerous simulation and 

analysis methods have been developed. They provide an easy graphical representation of 

systems. On the other hand, temporal logic based languages probably offer a greater 

expressiveness, but they lack of "operational" tools. We think that it would be useful to 

1 The failure rate for buiding concurrent real-tim~ systems is still estimated at 75% ! 
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combine both approaches in order to take advantage at one and the same time of the great • 

expressiveness of the temporal logic, and also of the analysis power and simple principles of 

Petri nets. 

Overview 

Part one : formalisms 

The first part introduces the formalisms, the basic concepts and definitions that we will 

need ail along this work. In that sense; it can be considered as the theoritical framework. We 

first present the Petri net theory and make a brief survey of the existing extended models 

• 

• 

inspired from the original Petri net model (chapter 1). We will see successively the • 

predicate/transition nets, the colored Petrf nets, the timed Petri nets and the documentary Petri 

nets. The second chapter recalls the main principles of temporal and real-time temporal logic 

(chapter 2). An example of specification language (ALBERT) for distributed systems is then 

presented. Next (chapter 3), we compare these two ways of modelling by analysing their 

respective capabilities for expressing various mechanisms ( concurrency, synchronizatiori, ... ) 

that are inherent to such systems, and complex constraints like deontic aspects or real-time 

features. This will lead us to the definition of a semantics-preserving transformàtion of Petri 

nets into the ALBERT language. Finally, we introduce the formalism of a new branch of logic 

that deals with the modeling ofpermisssions, prohibitions, etc ... : the deontiè logic (chapter 4). 

Part two : a new integrated Ianguage 

In the second part, we propose a new integrated language (PNRTL) combining the 

different advantàges - or avoiding the disadvantages - of both approaches. Firstly ( chapter 5), 

we investigate the possible ways of modeling deontic aspects in Petri nets, especially the 

obligations and prohibitions, and suggest to distinguish amohg the executions of the net, the 

ones that are ideal and sub-ideal. This wµl allow us to obtain a preference order on the set of 

executions. The two next chapters ( chapters 6 and 7) really present the new specification 

language we propose. Roughly speaking, we attach to the Petri net model a set of temporal 

logic formulas (representing constraints) rhat restrict the set of allowable executions. It 

becomes now much easier to express, for instance, time or performance constraints. 

Page 0.2 
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Introduction 

Part three : application and tools 

The last part of this work - part we have wanted to be more practical - illustrates the 

different ideas and suggestions previoulsy exposed, by applicating them to a case study 

( chapter 8), namely a library network. Thereafter ( chapter 9), we present some techniques and 

tools to reduce the set of possible executions into the one of desired executions, that is to say 

the set whose all executions respect the additional constraints. Those techniques which are 

based on the automata and formal language theories, can also be used for the testing of 

invariants or properties but they only work for a specification without real-time features. 

Finally (chapter 10), we explain how proofs can be clone by translating a net and the 

constraints that accompany it, into an axiomatic system allowing us to derive - and so to proof 

- invariants . 

Page 0.3 
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Chapter 1 

The Petri net f ormalism 

1. 1 Introduction 

Petri nets [PETERSON81] are a popular graphical formalism for the study, modeling and 

analysis of discrete dynamic systems. These nets are particularly appropriate for modeling 

distributed systems, because they can be used to represent parallelism and synchronization. 

They have been. developped from the early work of Carl Adam Petri [PETRI62] who 

formulated the basis for a theory of communication between asynchronous components of a 

system in 1962. The use and study of Petri nets has spread widely in the last few years . 

A Petri net is a mathematical representation of a system. The usual approach considers 

Petri nets as an auxiliary tool ( see figure 1.1) : conventional design techniques are used to 

specify a system which is then modeled as a Petri net. This Petri net model can now be 

anàlyzed and leads to a better system (any problem encountered in the analysis forces to revize 

the system). This cycle is repeated until the analysis reveals no problem - or only acceptable 

ones. In the alternative - and more recent - approach, the entire dèsign and specification 

process is carried out in terms of Petri nets. Then the problem is to transform the Petri net 

representation into an actual working system. 

Many modeling tools or languages are inspired from the original Petri net theory. They add 

some extensions to the Petri nets in order to facilitate the modeling of concurrent and/or 

distributed systems. The best known extended Petri nets are the colored (section 1.3 and 1.4) 
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and the timed Petri nets (section 1.5). Finally, we will see a third extended mode! 

documentary Petri nets (section 1.6). 

System 
Mode! 

Ptoperties of 
the system 

Figure 1.1 (the use of Petri nets) 

1.2 Basic Petri nets 

Petri net 
mode! 

Analyze 

the 

A Petri net is composed of two types of objects : the places and the transitions. The set 

of places represents the state of the modeled system; the set of transitions represents events, 

actions or phenomena that alter the state of the system. The places may contain several tokens. 

The presence of tokens in a place can be interpreted as the presence of a resource of a certain 

kind, or as the satisfaction of certain preconditions. To fire a transition (that is to perform the 

corresponding action), some preconditions have to be satisfied, i.e. some places must contain a 

specified number of tokens. Those places are called the input places of the transition. The 

firing of a transition has the effect that the marking of the net, that is to say the token 

distribution, is modified : the specified number of tokens are removed from its input places 

and, at the same time, tokens are added to some places. These are the output places of the 

transition. So, transitions consume and produce tokens. The dynamic behavior of the system is 

represented by the flowing of the tokens through the net. 

Graphically, a Petri net is depicted as a directed graph (see figure 1.2) which consists of 

two disjunct sets of nodes : the places (represented as circles) and the transitions (represented 

as bars). Places and transitions are connected by arcs. It is not allowed to connect two places 

Page 1.2 
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Chapter 1 : the Petri net formalism 

or two transitions. The number of arcs between a transition and a place indicates how many 

tokens are requested or produced by the transition. A token is represented by a dot: 

p1 0 =place 

= transition 

t1 ~2 • =token 

p2 • p4 

t3 

p5 

Figure 1.2 ( example of a Petri net) 

A transition is enabled if all its input places contain the specified number of tokens (i.e. as 

many tokens as arcs from the place to the transition). A transition may fire whenever it is 

enabled. Note that we say "may", because when two transitions are enabled at the same 

marking, we have to choose - and this choice is undeterministic - to fire one of the two, and 

the second will not necessarily still be enabled in the marking which results from the fi.ring of 

the first transition. For instance, in the net of figure 1.2, t1 and t2 are both enabled, but the 

firing of one transition will disable the other one, since the token in the place p1 will be 

removed . 

p1 0 =place 

= transition 

t1 t2 • =token 

p2 • p4 

t3 

p5 

Figure 1.3 ( the state of the net after the fi.ring of t2) 

Page 1.3 
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1.2.1 A few definitions 

We now give the basic definitions of the Petri net formalism. See [BRAMS83a, 

. PETERSON81] for more details. 

Definition 1.1 (Petri net) 

A Petri net structure is afour-tuple N=(P, T, Pre, Post). 
where P = {p1,p2, ... , pn} is a fini te set of places {n~O) 

T = {t1,t2, ... ,tm} is afinite set of transitions (m~O), with P n T = 0 

Pre: Px T ➔ N is the input Junction, giving the number of tokens needed in a place to 

fire a transition 

Post: Px T ➔ N is the output Junction, giving the number of tokens produced in a 

place when firing a transition 

Very often, the functions Pre and Post are represented by a matrix n x m (see figure 1.4). 

Definition 1.2 (Marking) 
A marking M is an assignment of tokens to the places of a Petri net. A marking M is a 

function giving for each place the number of tokens it contains: 

M:P ➔ N:p ➔ M(p) 

Very often, this function is represented by a vector of n elements (see figure 1.4). 

We write (N, M) for a Petri net N with marking M. 

Definition 1.3 (Enabled transition) 
An enabled transition in a marking M is a transition whose ail input places contain at least 

the required number of tokens: 
te Tis enabled <=> \fp; e P:M(p;) ~ Pre(p;,t) 

Or in matrix notations : 
te Tis enabled <=> M ~ Pre(*,t) where Pre(*,t) is the column related to t, in the 

matrixPre. 

Definition 1.4 (Firing a transition). 
In a marking M, only enabled transitions can fire. Firing an enabled transition t results in a 

new marking M - which we write M ~ M - defined1 by : 

1 Firing a transition is thus deterministic. 
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Chapter 1 : the Petri net formalism 

\/p; e P:M(pi) = M(p;)-Pre(p;,t) + Post(p;,t) 

This means that the vector M resulting from the fi.ring of t, is defined by the matricial 

equation: 
M = M -Pre(*,t) + Post(*,t) 

where Pre(*, t) is the column related to the transition t in the matrix Pre . 

Post(*,t) is the column related to the transition tin the matrixPost. 

Definition 1.5 (Reachabilty set) 

The reachability set R of a marked Petri net (N, M) is the smallest set of markings defined by: 
1. MeR(N,M) 

2. M'eR(N,M)A:lte T:M'~M'' ⇒ M''eR(N,M) 

The execution of a Petri net from an initial marking is a sequence of transitions. This fi.ring 

sequence can be represented by the concatenation of symbols, each of them being a transition: 

Definition 1.6 (Execution/Sequence of transitions) 

Let' s consider Tas an alphabet composed of the symbols t. A sequence s of transitions is a 

wordofT*: 
s = hitii .. . fa ( (ij ET) 

Definition 1.7 (Firing a sequence of transitions) 

The firing of a sequence s of transition~ in the marked net (N, M) leads to the marking M -

which we will write M ~ M - if and only i/ : 
either s = Â. (empty sequence), thenM = M 

either s = s't (s'e T* ,te 1), then :lM':M ~M'AM'~M 

The set of possible executions can be defined in terms of fi.ring sequences: 

Definition 1.8 (Set of possible executions from a marking) 

The set E of possible executions of a marked Petri net (N, M) is defined as 

E(N,M)={seT*:M~M' AM'eR(N,M)} 

· 
2 A fireable sequence of transitions also represents a path that leads from the marking M to the marking in the 
reachability graph of the Petri net. 

Page 1.5 
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Definitiop 1.9 (Set of possible executions between two markings) 

The set E of possible executions of a marked Petri net '(N, M) leading to the marking M is 

defined as: 

E(N,M,M) ={se T*: M~M} 

Finally, we introduce the notion ofboundedness of Petri nets: 

Definition 1.10 (Bounded place) 

A place of a marked Petri net (N, M) is bounded if the number of tokens it contains is 

bounded: 

p e Pis k-bounded <=> VM'e R(N,M):M'(p) ~ k 

Definition 1.11 (Bounded Petri net) 

A Petri net (N, M) is bounded if and on/y iff ail the places are bounded: 
(N,M) is k-bounded <=> 'vp e P, VM'e R(N,M):M'(p) ~ k 

Example: 

p2 t2 
p4 

Pre tl t2 t3 Post tl t2 

pl 1 0 0 pl 0 0 

p2 1 1 0 p2 0 0 
M=(I 2 O 10) 

p3 0 0 1 p3 2 0 

p4 0 0 1 p4 0 1 

p5 0 0 0 p5 0 0 

Figure 1.4 ( another Petri net) 
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• • In this net, t 1 and t2 are enabled, because : 

• 

• 

M=(l 2 0 1 0) ~Pre(*,tl)=(l 100 0) 

M=(l 2 0 1 0) ~ Pre(* ,t2)=(0 1 0 0 0) 

• The firing of t 1 results in the marking M J 

whereMJ =M-Pre(*,tl) + Post(*,tl) 

= (1 2 0 1 0) - (1 1 0 0 0) + (0 0 2 0 0) 

= (0 121 0) 

• The firing oft2 results in the markingM2 

whereM2 =M-Pre.(*,t2) + Post(*,t2) 

= (1 2 0 1 0) - (0 1 0 0 0) + (0 0 0 1 0) 

e = (1102 0) 

• 

• 

• 

• 

• 

• 

• 

• The sequences s1=tlt2t3 and s2=t2tlt3 belong to E(N,M), but s3=t2t3tl does not . 

1.2.2 Verification of properties of Petri nets 

In order to ensure the correctness of the model (that is the Petri net) and maybe to revize 

it, we need to analyze this model and see if the wanted properties are satisfied ( cfr figure 1.1 ). 

There are mainly three different but complementary approaches to analyze Petri nets : 

• approach based on the coverability tree and graph 

• . approach based on the linear algebra 

• approach based on the graph theory 

Below, we give a brief survey of the first two approaches. See [FICHEFET88] for more 

about verification of properties. 

A. The coverability tree and graph 

Basically, the central idea of this technique is to build a tree of ail the markings that are 

reachable from the initial marking, and then to analyze it. The root of the tree is thus the initial 

marking, while the sons of a node M are the markings that can be obtained by firing any 
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enabled transition at marking M. In other words, such a tree indicates what are the reachable 

markings and what are the possible executions of a Petri net ( see figure 1. 5). 

(1 0 0 1) 

y 
Mo~. 

t2 ~ (2 0 1 0) t1 

-----. (101 1) t2 

. ~ 
(2 0 1 1) t1 

~ (1012) 

Figure 1.5 ( a coverability tree) 

The analysis of the coverability tree can provide some interesting indications, like the 

unboundedness of some places (if the marking of those places increases periodically) or the 

unboundedness of the net (ifthere is an infinite number of markings in the tree). To avoid the 

handling of infinite trees, one often prefers the coverability graph, in which the marking of 

some places is replaced by the symbol 'ro' which denotes an arbitrary large number.- For 

instance, the marking M=(2 0 1 ro) stands for (2 0 1 0), (2 0 1 1), (2 0 1 2), etc ... Since it is no 

more a tree, loops or cycles are now permitted in the graph (see figure 1.6). It is clear that a ro 

associated with a place means that this place; and thereby the net, is not bounded. 

(1 0 0 1) 

Mo 
y 

~ (201 ro) 11 

~1ro) 

t2 

Figure 1.6 (the corresponding coverability graph) 

Page 1.8 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 1 



• 

• 

• 

Chapter 1 : the Petri net formalism 

Even if the coverability tree/graph allows us to verify some properties, it must be pointed 

out that when dealing with very large Petri nets, it is sometimes impossible to determine 

structural properties by simply examining the Petri net. 

B. The linear algebra approach 

Consider a Petri net N=(P, T, Pre, Post) and a function /: A ➔ N: p ➔ f (p) 

• Let C be the difference between the output and input matrix of N : 

C =Post-Pre 

Here are three theorems to verify the boundedness of places and/or of the net. 

• 
Theorem 1.1 
A Petri net is bounded if there exists a positive function f such that f T. C ::;; 0, 

• where f T denotes the transposition off : 

Nis boudned ç:::> =If: (/ > 0 A JT.C::; 0) 

This theorems means that a possible way to verify the boundedness of a Petri net consists in 

• solving a particular inequations system, such as for instance : 

• 

• 

• 

• 

• 

(j(p,)f(p,) f(p,)). ( ;: 

f(p1)> 0 

ç:::> 

f(p2) > 0 

f(p3) > 0 

- f (p2) - f (p3) ::; 0 

f (p2) + f (p3)::;; 0 

o o] 
1 O ::; 0 with / > O 
1 -1 
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Theorem 1.2 
Let llfll={peA:f(p):;a!:0} ~d !).(t,f)=:fT.C(*,t). If E={teT:!).(t,f)>O}=0, 

then - ail places of llfll are bounded (whatever the marking) 

- Vp E llfll, VM E R(N,Mo): M(p)::; fT_Mo 

f(p) 

Theorem 1.3 

Let F = {f e ir: f T. C = 0}. If f e F then 

- all places of llfll are bounded (whatever the initial marking is) 

- if p e llfll, then the place pis k-bounded with k::; min (fT .Mo] 
feF f(p) 

Illustrations of th ose theorems will be given in the second part of this work. 

1.3 Predicateltransition nets 

Predicate/transition nets [GENRICH86] can be defined as «formai abjects that can be 

interpreted and manipulated in a mathematical way that is comparable to working with logic 

formula or algebraic expressions » (because their formalism is very close to the one of first­

order predicate logic ). Here, a dynamiç system is viewed as a set of individuals that is 

structured by functions and relations. This structure is partially static and partially dynamic. 

The static part is the support of the dynamic system. The annotations of the net are interpreted 

in terms of a given static relational structure : the support. Operations (functions symbols) and 

predicates (relation symbols) form the vocabulary of the language in which the properties and 

relations of individuals will be described. The language used by Genrich is that of first-order 

predicate logic plus a class of simple algebraic expressions. 

To illustrate this idea of simplifying the net representation of dynamic structures by 

merging conditions and events into transitions and places respectively, look at the following 

example (figure 1. 7). It shows how a basic Petri net can be summarized : 
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Chapter 1 : the Petri net formalism 

-A- -B-

t1 

Qa 

p 

Qc 

t2 

Pc 

-C- -D-

t1 

Po (x)+(b) ~ 

p a t1&2 

t2 

Figure 1.7 (from basic to predicate/transition nets) 

Let us look at another example : 

u 
(i,x) ~-) V <1> 

\---------- i=(i+ 1) mod 7 ° <2> 

k=(i-1) mod 7 _ ◄ (k) <5> 
Ü,X) 

Figure 1.8 ( another example) 

a 

(x) 

► Üa 

Color U = product l*C 
Color V = integer 
Color 1 = integer 
Color C = char 

var i, j, k: V 
varx: C 

The box in figure 1. 8 denotes a set of events. The substitutions generating those events are 

determined by the relation existing between the individuals U and V. Here, this ( static) relation 
-

is expressed by a first-order logical formula. For an event (a transition) to occur, the variables 
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x, i, j and k must be replaced by constants in such a wày that the formula at the transition 

holds, and tuples generated by the substitution can be removed from/put on the corresponding 

places. 

The notion of predicate/transition net will be explained in more depth in chapter 7. 

1.4 Colored Petri nets 

Colored Petri nets [ JENSEN86, JENSEN90] take the main idea of predicate/transition 

nets, but this new net class is aimed at improving the method of invariant analysis. The main 

reason for which colored Petri nets have been developped is that « they - without loosing the 

• 

• 

• 

• 

possibiHty of formai analysis - allow the mode/Ier to make much more succint and • 

manageable descriptions than can be produced by means of low level nets». This meàns that 

it facilitates the description of more complex systems. It is also possible to describe simple data 

manipulations. Such manipulations are implemented by expressions located on the arcs. In 

basic Petri nets, there is only one kind of token, and the state of a place can thus be 

represented by an integer3 denoting the marking of the place. In contrast, each token in a 

colored Petri net can carry complex information; each .token is associated to a data structure. 

The data value attached to a given token is referred to the token color. 

<q,12> 
<p,0> 

p2 [y>5] p4 

Figure 1.9 (a colored Petri net) 

Color A = product X*I 
Color B = integer 
Color X=with q I p 
Color 1 = integer 

varx: X 
vari, y: 1 

Let' s analyze the net in figure 1. 9. We can distinguish three different parts the net 

structure, the declarations and the net inscriptions : 

3 And even by a boolean in the case ofbinary (that is 1-bounded) places. 
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Chapter 1 : the Petri net formalism 

• The net structure is similar to-the one of a basic Petri net. It is thus a directed graph with 

two types of nodes (places and transitions) interconnected by arcs. 

• The declarations (in the right) tell us about the different color sets (A,B,X and I) and 

variables (x,i, and y). Bach place is attached to a color set, and a token in that place must be 

an element of this- set. These sets are defined in a particular syntax : ''producf' denotes the 

cartesian product of n sets, while "with" is the enumerated type constructor. 

• A net inscription can be attached to a place, transition or arc. Places have three kinds of 

inscriptions : names, colour sets and initialisation expressions. For instance, the place named 

p2 is of color Band is initialized with a token whose value is 8. Transitions have two kinds 

of inscriptions : names and guards. A guard is a boolean expression which must be fulfilled4 

for a transition to occur. For instance, the guard of the transition t2 is y> 5 _ Arcs have only 

one kind of inscriptions : the arc expressions. They may contain variables, constants, 

functions and operations (defined or implicit), and explain how the value of the output 

· token(s) is derived from the one of the input token(s) . 

We now give a formal definition of colored Petri net, which can be found in [JENSEN90]. 

Definition 1.12 (Colored Petri net) 

A colored Petri net is a tuple CPN=(L, P, T, A, N, C, G, E, I) 

where I: is a fini te set of types, called color sets 

P is a fini te set of places 

T is a fini te set of transitions, with P n T = 0 

A is a fini te set of arcs, with An T = An P = 0 
N is the node function mapping each arc into a pair (source-node, destination-node) : 

N: A ➔ (T x P) u (Px T) 

C is the colored function mapping each place into a color set : 

C:P ➔ I: 

G is the guard function mapping each transition into a predicate, with 
'ift e T:[Type(G(t)) = booleanA Type(Var(G(t))) c I:] 

E is the arc expression function mapping each arc into an expression such that : 
'ifa e A:[Type(E(a)) = C(p(a)) A Type(Var(E(a))) c I:] 

I is the initialisation function mapping each place into an expression such that : 
'ifp e P:[Type(l(p)) = C(p)AVar(l(p)) = 0)] 

4 By default, an empty guard is evaluated to true. 

Page 1.13 



• 
Chapter 1 : the Petri net formalism 

Notations : • 

Var(t) denotes the sèt of variables oft (teT). 

E(x1,x2) denotes the expressions on the arc linking x1 to x2 (x; E (Pu 1) 

Next; we define a binding. Intuitively, a binding is a substitution that replaces each variable of t • 

with a color. Each guard of t must be evaluated to true : 

Definition 1.13 (Binding of a transition) 

For ,a transition te T with variables Var(t)={v1, v2, ... , vn}, we define a binding type BT{t) as • 

follows: BT{t)=Type(v1) x Type{vJ) x ... X Type(v,J 

The set of ail bindings b of a transition t is defined as follows : 
B(t) = {(cI,C2, ... ,cn) E BT(t)IG(t) <VI= CI, V2 = C2, ... , Vn = Cn >= TRUE} 

Definition 1.14 (Binding distribution) 
A binding distribution is a .function Y, defined on T, such that : 

'ift ET: Y(t) E B(t) 

A step is a non-empty binding distribution. 

Definition 1.15 (Enabled transition) 
A step Y is enabled in a marking M if the following property is satisfied: 

'ifp E P: LE(p,t) < bt >~ M(p) 
(t,b)eY 

When (t,b)e Y, the transition t is enabled inMfor the binding b. 

For instance, in the net of figure 1.5, ti ·and ti are both enabled. But if the guard of ti was 

y> 10, then t2 would not be enabled. 

Definition 1.16 (Firing of a transition) 

When a transition is enabled by b in a marking M, it may fire, changing the mar'king M into 

another marking M defined by : 
'ifpeP:M(p)=M(p)- LE(p,t)<bt>+ LE(t,p)<bt> 

(t,b)eY (t,b)eY 

· where the first sum represents the removed tokens, whereas the second corresponds to the 

added tokens. 
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Chapter 1 : the Petri net formalism 

Example: 

In thè next figure, we show a possible state of the net5 after the fi.ring of the sequence of 

transitions s=t1tit3 (we use the token <p,O> in place pl) . 

p1 

p2 

Remark: 

if X=q 
then (x,i) 
else (x,i+ 1) P3 

A 

p4 

en x,y-1 
else (x,i+y) 

p,7> 

Figuré 1.10 (the state of the net after fi.ring of s) 

. 
,,' 

Color A = product X*I 
Color B = integer 
Color X=with q I p 
Color 1 = integer 

varx: X 
vari, y: 1 

If its number of colors is finite, a colored Petri net can be unfolded into a regular Petri net 

[MURA TA89] by unfolding each place p into a set of places - one for each col or of tokens 

that p may hold, and by unfolding each transition into a set of transitions - one for each way 

that it may fire. 

1.5 Timed Petri nets . 

Time is an important aspect vvhen modeling discrete dynamic systems. Time does not need 

to be quantified to reason about qualitative temporal properties (liveness, deadlock, faimess, 

... ) but it is then impossible to express quantitative temporal properties ( deadlines, durations, 

response times, delays, etc ... ). The original Petri net model is not capable of handling 

quantitative time. However, in a coloured Petri net, one can use a special place, representing a 

global dock, connected to every transition and containing an unique token whose value 

represents the current time . 

5 whose initial state is given in figure 1.9 
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The introduction of time has been proposed in several ways, depending on the location of 

the time delays and on the type oftime delays [AALST92] : 

• The location of the 'time delays. Sorne authors have attached a duration to each transition, 

i.e. the tokens are consumed and withheld for some time. In such models, the tiring is said 

to be a two-phase tiring. Other authors have proposed models in which each transition is 

associated with an enabling time : a transition must remain enabled for a specified time 

before it can tire. 

• The type of time delays. A delay can ~e fixed, stochastic or specified by an interval. Time 

can also be discrete or continous. Very often, fixed delays are inappropriate, simply because 

the duration of an activity depends on extemal factors. Stochastic delays are useful for the 

evaluation of performance, but their conditions of application are too restrictive : it is 

assumed that the delays of two activities are independent. Also delays should be allowed to 

depend on token values. Therefore, the solution of delays described by an upper and a lower 

bound seems to be the best and more realistic way to represent time delays. These bounds 

can be used to verify time constraints. 

In this section, we expose a recent timed Petri net model proposed by Van der Aalst 

[AALST92] : the ITCPN (Interval Timed Coloured Petri Net) model. The main difference 

between ITCPN and the other timed models is that time is associated to the tokens (instead of 

the transitions) : every token bears a timestamp. This timestamp indicates the time the token 

becomes available. Concretely, a token in the ITCPN model has four attributes : an identity (i), 

a position (p), a value (v) and a timestamp (x). It is thus a four-tuple <i,p,v,x>. As suggested 

by its name, a time interval is associated to each transition. For instance, the duration of tl in 

figure 1.11 vary from 1.5 to 3.0, whereas the one oft2 is fixed (2.0). 

Like in basic Petri nets, a transition is said to be enabled if there are "enough" tokens in 

each input place. An enabled transition can tire when all the input tokens are available; in 

other words it can tire at time x if all the tokens to be consumed have a timestamp greater than 

x. And so, the enabling time of a transition is the maximum timestamp of its input tokens. For 

instance, the enabling time of t 1 in figure 1. 9 is 3. 0. Transitions with the smallest enabling time 

will tire tirst, but when two transitions ( or more) have the same enabling time, any of them may 

tire tirst. Note that the tiring is still an atomic action. The difference between the firing time 

and the timestamp of the produced tokens is called the firing delay. So, the timestamp of an 

output token corresponds to the enabling time of the tired transition increased by a variable but 
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Chapter 1 : the Petri net formalism 

bounded delay. The effect of the fi.ring of tl is given in figure 1.12, assuming that the firing 

delay of tl is 2.0. 

<1,p1 ,"ca",2.5> <2,p2,"bd",3.0> 

p1 • • p2 

<3,p4,"ab",2.0> 

p4 

<i,p,V,X> 
i = identifier 
p = position 
V= value 
x = timestamp 

Figure 1.11 ( example of net in the ITCPN model) 

p1 

<4,p3,"cabd",5.0> 

p3 

p2 

<3,p4,"ab",2.0> 

Figure 1.12 (the effect of the fi.ring oft2) 
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Finally, we give the definition of a nèt in the ITCPN model : 

Definition 1.17 (ITCPNet). 

An ITCPN is a seven-tuple (P, T, V,I, 0, TS,F) 

where P is a fini te set of places 

T is a finite set of transitions 

Vis the value/color fonction : 

V:p ➔ VP (Vp being the value/color set ofp) 

I: T ➔ Bag(p) gives the input places of t 

0: T ➔ Bag(p) gives the output places of t 

TS is the time set 

/NT is the set of ail possible closed intervals : 
INT={[a,b]e TSxTS:a::;;bAb < 00} 

CT is the set of ail possible coloured tokens : 
CT={<p,v >:pe PA veVi,} 

F is the transition fonction such that : 

Chapter 1 : the Petri net formalism 

1. Vt E T:Dom(Ft) = {c E Bag(CT):Vp E P: Le(< p,v >) ~ L(p)} 
veVp 

2. V(< p, v >,x) e Ft(c):p e Ot Axe /NT 

1.6 Documentary Petri nets 

We saw in the introduction (see section 1. 1) that Petri nets are well-suited for the 

modeling of distributed systems because of their ability to represent concurrency and 

synchronization. As a consequence of the- growing developement of the Electronic Data 

Interchange (E.D.I.) and of the network infrastructure, more and more systems (e.g. electronic 

business and electronic contracting) include agents, components or entities that can be 
' . 

geographically very remote. This means that many distributed systems nowadays ensure the 

synchronization of their sub-processes by exchanging electronic documents or messages, 

Therefore, a new kind of Petri nets, the documentary Petri nets (DPN) have been recently 

proposed (see [BLWW95]), especially to support the design of trade procedures. CASE/EDI 
' ' 

is a tool based on the DPN formalism, • an4 has been applied to some international trade 

procedures such as exchange of bills of lading for letters of credit, custom clearances, etc ... 

(see [LEE91, LEE92]) 
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Chapter 1 : the Petri net formalism 

DPN' s introduce a new kind of place, called document place, which have a specific 

graphical representation (see figure 1.13). Each document place is attached to a document 

structure described in a pseudo-language. The link between a document place and its structure 

is ensured by its label which also includes the name of the receiver (to X) in the case of an 

output document place, or the name of the sender (Jrom X) in the case of an input document 

place. 

Every token contained in a document place represents an instance of,a document having a 

particular structure. Clearly, a DPN is a coloured Petri net where the color corresponds to the 

information that a document holds. But in contrast to colored Petri nets, a token can be used 

whatever it "contains" (that is whatever the value of the document components are) : there is 

no predicate to verify on the arcs, and no condition/guard associated to the transitions. Here, 

the fact that a message or document has the waqted structure is sufficient to use it, because 

CASE/EDI models bureaucratie procedures. 

Il [doc2]: 
L.,.--JtoY 

[doc1]: 
fromX 

doc1 = [name:STRING; ... ] 
doc2 = [number:INT; ... ] 

Figure 1.13 (two types of places) 

In CASE/EDI, we model trade scenarios involving business part1c1pants. Roles are 

specifications of their allowable behaviour and are modeled by DPN's (one per role). An 

example of scenario is given in: figure 1.14. Note that the notion of scenario denotes the 

instance of a ( commercial) transaction. 

The modeling of bureaucratie proèedures is quite different from the modeling of logistic 

processes (like in the ITCPN model), because in bureaucratie procedures, deontic aspects such 

as obligations, prohibitions and permissions. play an important role ( see chapter 3 for more 

about deontic aspects). Performative communication in DPN's alters the state of commitment 

between the parties (the documents in a DPN are viewed as speech acts inducing obligations, 

permissions, etc ... ). So, if you accept or send a document (i.e. by using the token in the 

corresponding document places of a transition), you are supposed to accept at the same time 
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the obligations that are implicitly attached to this document. For instance, in the scenario of 

figure 1.14, the sending to the seller of the acceptance induces the obligation to pay for the 

buyer. Similarly, the sending ofprice quotations'supposes that an acceptance from the buyer 

will result in the delivery of the goods by the seller. 

Role : seller Role: buyer 

[info_request]: 

p1 • from buyer. 

Send_request 
Receive_request [price_quot]: 

from seller 
pnfo_request]: 
to seller 

Receive_price_quot 

[accept.]: 
Send_price_quot 

from buyer 
[price_quot]: 
to buyer 

Refuse 

p40 
[accept.]: 

op4 
to seller 

Figure 1.14 (a scenario in CASE/EDI) 

Let us npw (try to) give a formal definition of the concepts of CASE/EDI: 

Definition 1.18 (Scenario) 

A scenario is a 2-tuple (RS, RL) 

where RS is a set of rote specifications (i.e. of marked DPN) : 

RS = {(DPN1,M1),(DPN2,M2), ... ,(DPNk,Mk)} 

RL is a set of role labels (e.g. seller, buyer, .. .) : 

RL = {r1,rz, ... ,rk} 
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Elements of RS are marked documentary Petri nets, which in fact constitute a particular form 

of colored Petri nets : 

Definition 1.19 (Role/DPN) 

Arole (a documentary Petri net) DPNi is a 6-tuple (L,Pi,Ti,Prn,Posti,Si) 

where L is a set of document types 

A is a set of places 

Pi= Au Pi (with Pi lî Pi= 0) 

A is the sub-set of document places and Pi the one of ordinary places 

Pre and Post are respective/y the input and output fonction 

Si is a function mapping each document place into a document structure/type and a 

label indicating the source or destination role : 

S;: A ➔ LxRL 

Definition 1.20 (Marked DPN) 

A marked DPN is a DPN at marking M with an additionnai constraint : ail places of the ne~ 

are 2-bounded places . 

Note that an input document place in arole i must correspond to a similar output place in the 

role j G being the source role labelling the input place), and vice-versa : 

\fp E Pi:(:3t E Ti:Prei(p,t) = 1) ç::> ((p E PJ)" (:3t E Jj:Pos(j(p,t) = 1)) 
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Chapter 2 

The Temporal Logic f ormalism 

2.1 Introduction 

In this chapter, we introduce the temporal logic formalism. Temporal logic allows to 

reason over situations changing in time. Thus, this formalism is well suited for the description 

of distributed system . 

Section 2.2 introduces the basic definitions of temporal logic : its semantics and the 

temporal operators. Section 2.3 briefly introduces the notion of real-time. Finally, section 2.4 

presents a temporal based specification language: ALBERT [DDDP94a], [DDDP94b] . 

2.2 Temporal Logic 

2.2. 1 Modal Logic 

Temporal logic is a special kind of modal logic. In this subsection, we introduce the basic 

concepts of a propositional modal language . 

Definition 2.1 (Propositional language [AHO&ULLMAN93]) 

A propositional language contains a set of propositional letters P ( ... ,p,p1,p2, ... ,q,q1,q2, ... ), 

two propositional constants T (true) and F (false), boolean connectives : ---, (not), /\ (and), v 

(or), ➔ (if ... then ... ), H (if and only if), I:P➔{True,False} an interpretationfunction that 
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assigns to each propositional letter the boolean value 'True' or 'False'. As a basis for the 

propositional language we take {-,, v,Falsejl: 

• a v P is true if! a is true or P is true 

• -,a is true if! a is false 

other operators are defined as follows : 

• True := -,False 

• a A p :=-,(-,av -,p) 

• a ➔ P-:=-,avp 

• a H p :=-,(-,av -,p) v -,(av PJ 

To the usual propositional language for modal logic [CHELLASSO], we add two unary 

operators : L for necessarily and M for possibly. These two operators are dual : 

L(cp) = -,M(-,cp) 

The semantics of modal logic is based on frames and models. Let us define these two notions 

formally: 

Definition 2.2 (Modal frame). 

·A modal frame is a 2-tuple (W,R) where W is a non-empty set of worlds and R a binary 

relation defined on WxW: this relation is called the accessibility relation. 

Definition 2.3 (Modal model). 

A modal model is a 3-tuple (W,R, V) where (W,R) is a modal frame and Vis a,valuation on W, 

V maps proposition symbols to subsets of W ( giving the set of worlds where this proposition 

holds). 

Let us now define the truth value of a modal formula : 

Definition 2.4 (Truth value of a modal formula). 

The fact that a modal formula cp holds in a modal model Ü=(W,R, V) at world we W, noted 

Q, w f cp, is defined by recursion on formulae : 

1. Q,w fp iffwe V(p) 

2. Q,w f-,p iffwè V(p) 

3. Q,w f pvq iffwe V(p) or we V(q) 

4. Q,w fL(cp) if!Vw'e W[wRw'➔ Q,w' fcp] 

5. Q,w fM(cp) iff3w'e W[wRw'➔ Q,w' fcp] 

1 In the following, a and ~ denotes propositional formula 
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2.2.2 Linear Temporal Frame2 

Temporal logic [MACARTHUR76] is a special k:ind of modal logic where some 

restrictions on the 2-tuple (W,R) (the (rame), are respected. 

Definition 2.5 (Temporal frame). 

A temporal frame is a 2-tuple ( ~ 0, <) where ~ 0 is the set of positive integers and < is the 

usual ordering relation over the positive integers. Each world, also. often called state in 

temporal logic, is mapped to a positive integer number . 

New modal operators, called temporal operators, are also introduced in temporal logic. 

Those operators are : 

• for the future : X (Tomorrow, Next state), F (Eventually), G (Henceforth) and a 

binary operator U (Until) 

• for the past: Y (Yesterday, previous state), P (Sometime in the past), H (Always 

in the past) and a binary operator S (Since) . 

We can give the semantics of these temporal operators : 

1.0.,i/=X(p) iffO.,i+l /= p 

2.0.,i /=F(c.p) iff3j ( i~j ➔ O.,j /= cp) 

3.0.,i /=G(c.p) iff"i/j ( i~j ➔ 0.,j /=c.p) 

4.0.,i /=(c.p)U(cf,) 'ijf3j ( i~j ➔ O.,j /=cf> A "i/k (i~<j ➔ O.,k /=c.p) 

5.if i=l then O.,i /=Y(c.p) is always true 

6.if i>l then Q.,i fY(c.p) ijfü,i-1 f c.p 

7.0.,i /=P(c.p) iff3j ( j~i ➔ 0.,j /=c.p) 

8.Q.,i /=H(c.p) iff"i/j ( j~i ➔Ü,j /=c.p) 

9.0.,i /=(c.p)S(cf,) iff3j ( j~i ➔O.,j /=cf>/\ "i/k (j<~i➔O.,k /=c.p) 

2.2.3 Temporal Logic in Computer Science 

Since the seminal paper of Pnueli 'The temporal logic of programs' [PNU77] appeared in 

1977, the use of temporal logic to reason over programs and computer systems has been 

steadily increasing [KOYMANS92] . 

2 The branching temporal logic will not be introduced here. For an introduction to branching linear logic, see 
. [STI87]. 
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Temporal logic is well · suited for reasoning about situations changing in time. A 

computation can be seen as a sequence of states where each transition from one state to the 

next state can be thought as a tick of some computation clock. The behavior of a system can 

be viewed as the set of its possible computations. Therefore temporal logic can be used to 

describe the desired behavior of a system. 

But concurrent systems, time-critical systems or distributed systems are also often 

characterizec:l by quantitative timing properties. Therefore usual temporal logic is not sufficient 

since only qualitative time constraints, i.e. constraints on the ordering of states, can be 

specified. To overcome this drawback, the notion of distance intime between states must be 

introduced. Introducing this notion, we obtain a formalism called real-time temporal logic. 

2.3 Real-Time Temporal logic 

In real-time temporal logic, the notion of sequence of states is preserved. Besides that, 

each state is mapped to a point of the real-time. So it is now possible to compute a distance (in 

time) between two states and to express assertions on the distances. 

The temporal operators are adapted syntactically and semantically. The following assertion 

p➔F 0m;n( q) 

expresses that if p is true in the ·state where the assertion is evaluated, then there must exist in 

the future a state distant of at most 5 minutes where q is true. In the sequel of this work, w.e 

investigate more formally the notions attached to real-time (see chapter 7 and chapter 10). 

As an illustration of the expressive power of real-time temporal logic, let us consider the 

following constraints [KOYMANS92], which can be formulated in a distributed system 

specification, and their expression in real-time temporal logic: 

• Maximal distance between an event and its reaction, for example, every A 1s 

followed by a B within 5 seconds (a typical promptness requirement): 

A ➔ F0sec.(B) 

• Exact distance between events, for example, every A is followed ,bY. a B in exactly 2 

seconds (as with the setting of a timer and its time~out) : 

A ➔ F=2sec.(B) 
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• Minimal distance between events, for example, two consecutive A's are at least 3 

seconds apart (assumption about the rate of input from the environment) : 

A ➔ X(-,F9sec.(A)) 

• Periodicity, for example, event E occurs regularly with a period of 4 seconds : 

E ➔ X(F=4sec .. (E)A G<4sec.(-,E)) 

• Bounded response time, for example, there is a maximal number of time units so 

that each occurence of an event E is responded to, by B, within this bound : 

3t(E ➔ FslB))3 

Remark. In chapter 1, we have presented the Petri net formalism. The figure 1.1 (page 1.2) 

shows that the Petri net formalism is used as a modeling language. On the other hand, 

temporal logic is a specification language. The style of Petri nets is operative while the one of 

temporal logic is declarative. Temporal logic based formalisms are usually used in an early 

stage of software engineering : the definition of the requirements of the system . 

2.4 A Temporal Logic based language : ALBERT 

2.4.1 The ALBERT /anguage 

ALBERT [DDDP94a], [DDDP94b] is a formal agent-oriented language for Requirements 

Engineering (RE). It is aimed at the specification of requirements for composite real-time 

systems. RE is the activity of obtaining from customers the initial requirements of a system to 

be implemented. Agent-oriented means that the language meets the main 00 principles 

(namely encapsulation of data structures and actions on them). The word agent denotes a 

component or object having responsibilities and perceptions within the system. ALBERT is 

formal : it has a formai semantics giving a precise meaning to all specifications written in this 

language. 

In the following subsections, we give an overview of this language . 

3 The possibility of quantification over time is usually not permitted in real-time languages for purpose of 
completness, but the formalism of Koymans [KOYMANS92] includes this possibility. 
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2.4.2 Main concepts 

Systrm 

A system is a certain part of the world which is relevant to the customers. The word "system" 

is considered in a large sense, it can include software pieces, de vices, humans, .. . Goals are 

attached to the system. 

Society 

SYSTEM 

Figure 2.1 (An ALBERT system) 

Agents 

/ndividua/ 
agent _ 

The agents are the basic blocks of the language, the units of specification. They are entities of 

different nature that have to communicate and cooperate together in order to achieve the 

systems goals. Therefore, we associate to each of them, a set of possible lives. Compound 

agents, called societies, are made of finer ones. The system is thus considered as an agent 

society. Individual agents are agents whose behavior is formally defined. Bach agent has a 

structure (made of state components and action) and can lead certain lifes represented as 

sequences of states (bearing a timestamp) and changes : 

10:00 10:05 10:16 

Agent 
structure .,_ __ _. structure structure 

Changes Changes 

Figure 2.2 (A ALBERT agent life is a sequence of states) 

Specifications 
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Chapter 2 : The Temporal Logic formalism 

The system specification is obtained by combining the different agent specifications and the 

specification of the data and operations. In an individual agent. specification, two parts are to 

be distinguished: (i) declarations describing its structure (that is its state components and its 

actions) and (ii) the constraints identifying possible lifes and unwanted ones . 

2.4.3 Agent declaration 

State components 

The state of an agent records its knowledge, each component is part of this knowledge and 

represents an agent attribute or information it handles. Each ~omponent has a type 

corresponding to the data type of its value. Those types can be predefined (like strin,gs, 

integers, ... ) or user-defined (like sets, sequences, tables, ... ). State components declarations 

express visibility properties about state components: components outside the parallelogram 

belong to the state of other agents and are imported from them; inside the parallelogram, 

component. with an outgoing arrow are exported to the indicated agent class; other 

components are private . 

Structure of Agent 1 

J}ction1 ) 1 

~ 

Data1: 
STRING 

Agent2 argument Agent2 

Data2: 
REAL /c;on2,z1 
Agent3 Agent2 argument(s) 

Figure 2.3 (An ALBERT agent structure) 

Actions 

Actions are phenomena or events which happen in the life of an agent and which change the 

value of the state components. Actions can be decided by an agent but it can also undergo 

actions. Actions may have arguments. The values of these arguments make intrinsically part of 

the occurrence of an action. Like for the state components, actions inside the parallelogram are 

under the control of the agent, while actions outside are performed by other agents. Arrows 

indicate which agent is importing/exporting the action . 
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The introduction of actions makes possible to overcome the well-know frame problem 

[BMR92], a typical problem resulting from the use of declarative specification languages. 

2.4.4 ALBERT phrases 

This section describes the different kinds of phrases that compose the ALBERT constraints. 

Terms 

ALBERT terms refer to state components. A term can be: 
• a constant symbol ( ex: TRUE, UNDEF) 
• a variable identifier ( ex: X, C) 

• astate component reference (ex: Seller.name) 
• an operation àpplication ( ex: remove(list, e)) 
• a term between brackets. 

Logical expressions 

Logical expressions ( or formulae) are used to express assertions or conditions, like 

"Card(stored-cars)<Capacity11 which means that the number of stored cars must always be 

smaller than the capacity. Simple logical expressions ( or atomic formulae) are terms that yield 

a boolean value. Composed expressions use the logical connectives (like A, -,, v, ... ) and 

quantifiers (V, :3). 

Temporal logical expressions 

These are variants of logical expressions using special temporal connectives (to reason on the 

agent life). It is possible to refer to durations. In classical temporal logic, we can refer to a 

moment in the past; in ALBERT, we can also refer, for instance, to the three last hours which 

have passed. For example, " ♦ <S' 8 11 holds if B was true (at least once) in the last five minutes. 

Here are the main temporal connectives (that may be subscripted with a time period): 

♦ : sometimes in the past (including the present ), this operator is the equivalent of P in 

usual temporal logic (see subsection 2.2.2). 

■ : always in the past (including the present), equivalent of H operator. 

◊ : sometimes in the future (including the present), equivalent of F operator. 

□ : always in the future (including the present), equivalent of G operator. 
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Chapter 2 : The Temporal Logic formalism 

2.4.5 Constraints 

There are three kinds of constraints in ALBERT: basic constraints, local constraints and 

cooperation constraints . 

Basic constraints 

. They are used to describe the initial state of an agent and to give derivation rules (when the 

value of a component depends on other ones) . 

Local constraints 

They are related to the internai behavior of an agent. 

State behavior 

This kind of constraints must be satisfied by states. Static constraints are properties which 

must be true in ail states, they are invariants with simple logical expressions. Dynamic 

constraints govern the evolution of the state along the agent life. These constraints are 

temporal logical expressions . 

. Effect of action 

Here, we define how state components values change according to the occurrence of (internai 

or external) actions. The post-action state is specified by application of mathematical 

functions on the initial state. The effects of actions are valuations and not logical expressions. 

Capability 

Capability constraints are used to describe the responsibility of an agent with respect to its 

own actions, in terms of preventions (circumstances under which actions cannot occur) and 

obligations (circumstances under which actions must occur). They are expressed with the help 

of special connectives: F for forbidden, 0 for obligation and XO for exclusive obligation) . 

Action composition 

ALBERT provides a set of connectors to express action sequences (;), n occurences of a at 

the same time {a } 11
, simultaneity (®), parallelism (Il), or alternatives (Ef>) . 

Action duration 

Under this heading, the specifier may put constraints. on the length of internai action 

occurrences. The constraint may be an exact duration (l<action>I = <duration>), or, a lower 

(l<action>I > <duration>) or upper bound (l<action>I < <duration>) for the duration . 

Page 2.9 



Chapter 2 : The Temporal Logic formalism 

Cooperation constraints 

In contrast with the local constraints (related to the internai behavior of an agent), cooperation 

constraints govem the information exchanges between the agent and the oûtside. 

Action perception 

Here, we describe how the agent is sensitive to actions occurring outside. This is done in terms 

of ignorance([) and knowledge (K) and exclusive knowledge (XK). 

State perception 

Under this heading, we define how agents see parts of the state of others agents belonging to 

the same society. State perceptions are also specified using K, I and XK. 

Action information 

Information is the dual of perception and expresses how the agent let others about agents 

know actions it performs. Again, the ignorance and knowledge connectives are used. 

State information 

Describe how an agent shows parts of its state to others agents belonging to the same society 

(again with /, K and XK). 

Futher readings. We refer the interested reader to [DUBOIS95a], . .[DUBOIS95b] and 

[DDZ95]. 
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Chapter3 

· Temporal logic versus Petri nets 

3. 1 Introduction 

In the last few years, many languages have been proposed for the purpose of specifying or 

modeling distributed systems. We can divide such languages in two categories. On the one 

hand, we have the mathematics based languages, like Petri net based languages. They have 

progressively shifted from semi forma! notations (box and arrows) to more forma! notations 

(predicates). They offer many formal and informai analysis methods (namely liveness, 

boundedness, pattern recognition). On the other hand, some more recent languages are based 

on temporal logical grounds. Their formai semantics associated to the existence of rigorous 

rules of interpretation and of deductive inference provide to the analyst an interesting support 

in his/her modeling task . 

Before proposing (in chapter 6) a new language combining these two different ways of 

modeling distributed systems, we first compare both approaches and outline some of their 

respective features (section 3.2), and then show that it is possible to transforma ~asic Petri net 

into a specification in ALBERT for the purpose of reverse engineering (section 3.3) . 
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3.2 Comparison of both approaches 

To perform this comparison, we are going to study two particular languages. The first 

one, ALBERT (see section 2.3) is based on the temporal logic formalism, while the second, 

CASE/EDI (see section 1.6) is a colored Petri net based language for the modeling of formal 

commitment procedures. In this section, we are particularly intei-ested in what (i.e. which 

constraints) we can and cannot express, _and in how it can be expressed. 

3.2.1 Concurrency, choice and synchronization 

As we study the modeling of distributed systems, we will emphasize on three fundamental 

mechanisms that are inherent to such systems : the concurrency, the choice and the 

synchronization . 

. Concurrency 

It means that simultaneous events can occur. The rule in CASE/EDI is that all the 

transitions whose input places contain a token1 may tire. Thus, when we want to allow 

transitions to occur simultaneously, we have to build a net, and thereafter to verify by a 

mathematical analysis ( e.g. coverability graph) that this simultaneity is possible. Although the 

Petri nets are especially suitable for modeling concurrency, we must be careful about the 

concurrency possibilities of a Petri net, because it is not straightforward when examining its 

graphical representation, to see which actions will be allowed to occur at the same· time. Look 

at figure 3 .1. In this net, it is not always possible to fire Action] and Action2 simultaneously (it 

depends on the history of the :fired transitions). 

In contrast, in ALBERT, the, concurrency is implicitly permitted in ALBERT : actions 

may always occur at the same time except if it is explicitly forbidden (F) by a constraint (1), or 

if they alter the same information (2) : 

(1) F(MacroAction / TRUE) % capability constraint 

MacroAction H (Action2 ® Actio,n3) % action composition , 

(2) Action]: n=n+ 1 % effects of action 

Action2: n=n-2 % effects of action 

1 Only binary places exist in CASE/EDI 
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Further more, one can precise when this simultaneity is obligated (0) : 

0( MacroAction / ~) 

MacroAction f-+ (Action2 ® Action3) 

% capabihty constraint 

% action composition 

0 
0 

Figure 3.1 ( concurrency) 

Decision points 

These situations are met when actions can be executed individually but not simultaneously 

or successively, oft:en because they need the same resources or simply because they are 

antagonist. Concretely, in CASE/EDI, decision points are modeled by imposing a common 

input place to the transitions in question (see figure 3.2) . 

Action2 ---- Action3 ___,,,..._ 

Figure 3.2 ( choice) 
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Such choice situations do not exist in ALBERT but can be modeled by capability and 

causality constraints using temporal operators. Actually, these situations are rather forbidden 

sub-sequences of concurrent actions. For instance, the net of figure 3.2 can be expressed by 

the two following constraints : 

(1) MacroAction H (Action2 ® Action3) 

F(MacroAction / TRUE) 

(2) Flag:=FALSE 

Action]: (Flag:=TRUE) 
(3) F(Action21-Flag) 

F(Action3 / -.Flag) 

% action composition 

% capability constraint 

% initial valuation 

% effect of action 
% capability constraint 

% capability constraint 

which state that ( 1) an Action2 and Action3 can never be performed simultaneously , and that 

• 

• 

• 

(3) the first action performed can only be Action]. • 

Synchronization 

Parallelism is useful only if the different processes (the agents in ALBERT, the roles in 

CASE/EDI) can cooperate. Such cooperation requires the sharing of information and 

resources. This sharing must be controlied via synchronization mechanisms, to ensure the 

• 

correct behavior of the whole system. Synchronization points are used to wait for the • 

termination of a specified number of cooperating processes before continuing. They can be 

easily implemented in a Petri net by linking, for each transition (Action] and Action2) to be 

synchronized, at least one output place to the transition (Action3) that must follow their 

termination (see figure 3.3). 

Again, we do not find m ALBERT, the equivalent of synchronization points. The 

correctness of the overall system is ensured by a combination of cooperation, action 

composition and capability constraints (see below). This combination can be understood as 

synchronization directives. The cooperation constraints are used to warn an agent about the 

occurrence of an action "outside", the causality and capability constraints indicate the order of 

the actions occurrences (i.e. the possible sequences of actions in the time) : 

Agentl: 

Agent2: 
Agent3: 

K( Actionl.Agent3 I TRUE) 

K( Action2.Agent3 I TRUE) 
MacroAction H (Agent 1. Actionl l!Agent2.Action2) 

MacroAction: (Flag:=TRUE) 
F(Action3 I -Flag) 
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where K(action.Agentx / p) states that agent x knows (K.) under condition P when an action is 

performed. 

_ _ _ _ _ _ _ _ _ _ ~ge_n! 1 _ _ _ _ _ _ _ _ _ _ r _____ -~g~l)t_2 _ _______ _ 
'. __ Actions __ Actions 

: Action4 __ __ 

' 
_____________ ~ _ ~g~~t _3 __ ~ _______________ _ 

[doc2] 

' - - - - - - - - - - - -
' 

Figure 3.3 (synchronization) 

3.2.2 Causality 

Let us now examine how the causality is modeled in both languages. In temporal logic based 

languages like ALBERT, we don't need to describe when an action can be performed. We 

simply define the causality link between actions : instead of imposing the moment an acti'on has 

to occur, we refef to the occurrence or distance of some other actions. The system is thus 

expressed in terms '?f sequences of events or process (in the sense of process algebra) by 

means of combinators in action composition constraints. 

In the Petri net based languages such as CASE/EDI, actions are triggered through ECA 

(Event-Condition-Action). Actions can occur when pre-conditions are met, that is when all 

input places contain a token. The causality between two actions can be seen graphically by 

examining the places that are at the same time input place for the first transition, and output 

place for the other transition (see figure 3 .4). 
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ActionA1 ActionA2 ActionA3 ActionA4 

T 

Actions 

Figure 3.4 ( causality between actions) 

Note that the situation here above can be translated in the following action composition 

constraint in ALBERT: 

ActionAIIIActionA2ll(ActionA3 EB ActionA4); ActionB 

This would suggest that a Petri net can be converted into constraints describing the 

causality relationships between the transitions of the net. However, the presence of self-loops, 
as in the next example, can rise some problems. Indeed, the constraint (Action3;Action4) 

does not hold here, since one cannot be sure that Action4 will fire one day, after the fi.ring of 

Action3 (i.e. a possible firing sequence could be Action], Action3, Action2, · Action2, 

Action2, ... , Action2, ... ) 

--Action1 

Figure 3.5 (a net with a self-loop) 
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3.2.3 Determinism and non-determinism 

From the moment we want the specification language to also· modefhuman behaviors, like 

in a business procedure, it is necessary to take into account the uncertainty of actions. We 

have to distinguish deterministic events (things that must happen) and non-deterministic ones 

(things that may happen). Now we are interested in how we can model obligations, 

permissions and preventions in both languages. 

ALBERT has a default rule: in the absence of constraints, all actions are permitted, 

whatever the situation. An action may occur, except if this action is forbidden in the current 

state of the system, or if an obligation is attached to it (in that case, it must occur). ALBERT 

provides a set of special connectives (F for forbidden, 0 for obligation and XO for exclusive 

obligation) in order to describe the responsibility of an agent with respect to its own actions . 

Since in ALBERT and more generally in temporal logic based languages, the system is viewed 

as a generator of possible lifes for each agent, deontic features can be modelled by defining the 

semantics of such connectives on those lifes . 

In contrast, due to the non-deterministic nature of the Petri nets (when several actions are 

enabled, each of them may be the next tô fire ), one cannot explicitly represent obligations in 

CASE/EDI. A possible solution would be to map the obligations into a set of mathematical 

properties that the net has to respect. But there exists no method to derive a Petri net from 

such properties. These deontic aspects, especially the modeling of obligations and prohibitions 

will be discussed in the next chapters ( chapter 4 and 5) . 

3.2.4 Conclusion 

If we model with Petri nets, we can take advantage of the numero1;1s analysis methods and 

simulation tools. Their graphical representation and their principles are very simple, even for a 

non-specialist. But on the other hand, it is sometimes difficult to represent complex 

preconditions or elaborated constraints (like performance constraints or permissions). Such 

constraints are easier to model by using the temporal logic formalism. Hence have we thought 

(in chapter 5) about a language based on mathematical and logical grounds. This will for 

instance allow the analyst to refer to a particular state of the system in the past or in the future. 

Such reference would have lead to the introduction of somewhat artificial places and 

transitions in the Petri net description . 
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3.3 Transformation of Petri nets into ALBERT 

• 
3.3.1 The mapping of the places and tokens 

Remember that a basic Petri Net structure is characterized (see definition 1.1) by a set P of 

places, and that (see definition 1.2) the marking M of the net gives the distribution of the • 

tokens in these places. 

We propose to map the set P of places into a table2 PL_ l\1K - for places and marking -

belonging to the agent structure and which coritains as many "records" (lines) as places of P. 

The two following rules have to be respected: 

(RI) Vp e P:p e Dom(PL_MK) 

(R2) VpeDom(PL_MK):peP 

For the mapping of the marking M, we canuse the same table (PL_l\1K). We propose to 

replace the number of tokeris of a place p by an integer equal to M(p) that is to be inserted in 

the second column of the table, at the line related to the place p: 

p10 

v 
p3 0 ' 
P={p1 ,p,2,p3} 
M=(201)' 

p2 

0 R 

and the first two rules become : 

PL MK 

Place Markina. 

p1 2 
p2 0 
p3 1 

agent structure 

(Rl )' Vp e P: (p e Dom(PL _ MK) A Marking(p] = M(p) ) 

(R2)' V <p,i >e PL_MK:(pe PAi =M(p)) 

Place=CP[Char, lnteger] 
Marking=I nteger 

2 A table in ALBERT is a set of 2-tuples (ID, X), where ID is an identifier and X any information related to 
ID. 
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Chapter 3 : temporal logic vs Petri nets 

3.3.2 The mapping of the transitions 

Another element of a Petri net structure is the set T of transitions (see definition 1. 1). We 

can easily map the tt:ansitions of a Petn net into actions belonging to the agent structure of the 

ALBERT specification: 

t1 

t2 R 

t3 action-t1 

T={t1 ,t2,t3} 

That way, we obtain the next transformation rule . 

(R3) 'ï/t E T:t~action t A 'ï/action t::3t ET 

3.3.3 The mapping of the arcs 

action-t2 ., 
action-t3 

agent structure 

In a Petri net structure, the arcs are represented by two functions, Pre and Post, mapping 

each transition into a bag ofinput/output places (see definition 1.1) . 

Intuitively, we can consider the input arcs as preconditions that have to be satisfied to fire 

a transition. For example, Pre(pI,t2)=2 means that the place pl must contain at least two 

tokens to fire the transition t2. In other words, it is forbidden to fire the transition t2 if the 

place pl contains less than two tokens. We saw (in chapter 2) that ALBERT provides a 

special connective (F) to express preventions in capability constraints. So, we propose the 

following mapping for the input arcs : 

(R4) 'ï/t ET, 'ï/p E P:( z; = Pre(p,t) > 0 ~ F(action_t / Marking[p] < z;) ) 
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Thus, there are as many preventions as numbers, in the input matrix, greater than zero: • 

Ca12ability: constraints: 
Pre tl t2 F(action_tl/ Marking[pl]< 1) 
pl 1 0 

~ F(action_tl/ Marking[p3]< 1) 
p2 0 2 
p3 1 0 F(action _ t2 / Marking[p2] < 2) 

Moreover, the input arcs also inform us about the number of tokens consumed by the • 

firing of a transition. Since we mapped the places P and the marking M into an ALBERT table, 

the input matrix Pre will be translated in "effects of actions" constraints that will change some 

values in the column "Markirig" ofthis table : 

(R5) t/t ET, t/p E P:( Zi = Pre(p,t) > O~action_t:Dec(Marking[p lzi)) 

where Dec(x,i) is a function decreasing x by i. 

For instance, 

Pre tl t2 
pl 1 0 
p2 0 2 
p3 1 0 

Effects of actions: 

action_tl:Dec(Marking[pl],l) 
~ action_tl:Dec(Marking[p3ll) 

action_ t2:Dec(Marking[p2 ],2) 

On the other hand, the output arcs in a Petri net describe the effect of the firing of a 

transition on the token distribution. For example, Post(p2,t2)=1 means that the firing of the 

transition t2 adds one token to the place p2. Here again, the output matrix Post will be 

translated in "effects of actions" constraints altering the table content : 

(R6) t/t ET, t/p E P:( Zo = Post(p,t) > O~action_t:Jnc(Marking[p lzo)) 

where Inc(x,o) is a function increasing x by o. 
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Chapter 3 : temporal logic vs Petri nets 

For instance, 

Effects of actions: 
Post tl t2 

action_ t 1: Inc( Marking[p2 ],2) 
pl 0 0 

~ action_ t2:lnc( Marking[p2 ],1) 
p2 2 1 

action_ t2:lnc( Marking[p3 ll) 
p3 0 1 

3.3.4 The simultaneity 

In a Petri net, when several transitions are enabled ( see definition 1. 3 ), we have to choose 

which one we want to fire first. It is not possible to fire two transitions at the same time3, 

because the firing of the first one might disable the second one, as in the following example: 

p1 

Figure 3.6 (two enabled transitions) 

In contrast, in ALBERT, it is always permitted to· execute several actions simultaneously 

except if it is forbidden in a constraint, or if their occurrence alter the same state 

component(s). We have thus to care for that our mapping does not allow sequences of actions 

that are not possible in the corresponding Petri net. Let us see if this mapping selves the 

problem of simultaneity. The preventions and the PL_MK table derived from the previous net 

(figure 3.6) would be: 

3 Actually, if the successive fi.ring oftwo transitions is possible, it is asifthey fire simultaneously, since the 
fi.ring is an instantaneous event taking zero-time. 
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PL_MK 

Place Marking 

p1 1 
p2 1 
p3 1 

Capability constraints : 

F(action_tl/ Marking[pl]< 1) 

F(action_tl/ Màrking[p2]< 1) 

F(action_t2/ Marking[p2]< 1) 

F(action_t2/ Marking[p3]< 1) 

Chapter 3 : temporal logic vs Petri nets 

Effects of actions : 

action_tl: Dec(Marking[pl],1) 

action_tl: Dec(Marking[p2],1) 

action_ t2: Dec(Marking[p2 ],1) 

action_t2: Dec(Marking[p3],1) 

Figure 3.7 (the corresponding ALBERT constraints) 

The four capability constraints (figure 3.7) allow us to execute the sequence (action_tl ® 

action _t2) - where the symbol (8) denotes the simultaneity - which is not permitted in the Petri 

Net. But since these two actions alter the same "line" of the table (i.e. the one related to p2) in 

their effects of actions constraints, it is not permitted to execute them simultaneously. More 

generally, the mapping R ensures that two transitions having at least one (input or output) 

place in common, cannot be performed at the same time in ALBERT; in all other cases, they 

can (because the two actions modify different "-lines" of the table). However, if we want a 

semantics-preserving transformation, both systems must have the same sequences of states. 

For instance, the ALBERT sequence of states s0------~_!-Hl 12
®

13 > s2 14 s3 is mapped into 

the Petri net sequence Mo~ M1 12 > M 2 ~ M 3 
14 M 4 which includes one more 

intermediary state. Therefore, we introduce in the ALBERT specification a dummy state 

component (dum _st) and a dummy effect (fd) for every action, in order to forbid any 

simultaneity of actions in ALBERT : 

(R7) \ft ET ~action_t: dum_st = fa(dum_st) 

That way, all the actions do modify the component dum _st and thus, two actions cannot be­

executed at the same time since they alter the same component. 

Page 3.12 

• 

• 

• 

• 

• 

• 

• 

• 



• 

• 

• 

• 

• 

• 

• 

• 

• 

Chapter 3 : temporal logic vs Petri nets 

3.3.5 Illustration of the transformation rule R 

Let's consider the following net. It models a critical section (CS) :. 

p1 : A wants to enter CS 
p2 : B wants to enter CS. 
p3: Ais in CS 
p4: Bis in CS 
p5 : someone is already in CS 

t1 : A enters CS 
t2 : B enters CS 
t3 : A leaves CS 
t4 : B leaves CS 

Figure 3.8 (the graphical description of a Petri net) 

which can be formalized by the following structure (P,T,Pre,Post) and the marking M: 

Pre tl t2 t3 t4 Post tl t2 t3 t4 
P = {pl,p2,p3,p4,p5} pl 1 0 0 0 pl 0 0 1 0 

T = {tl,t2,t3,t4} 
p2 0 1 0 0 p2 0 0 0 1 
p3 0 0 1 0 p3 1 0 0 0 

M= (11 O O 1) p4 0 0 0 1 p4 0 1 0 0 
p5 1 1 0 0 p5 0 0 1 1 

Figure 3.9 (the formai description of the same net) 

and translated in an equivalent ALBERT specification: 
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Place Marking 

p1 1 

p2 1 
p3 0 

p4 0 

p5 1 

action-t1 

etJWAD 

Effects of actions: 

Action_ t 1 : Inc(Marking[p3], 1) 

Action_t2: Inc(Marking[p4],l) 

Action_t3: Inc(Marking[pl],1) 

Action_ t3: Inè(Marking[p5], 1) 

Chapter 3 : temporal logic vs Petri nets 

Agent structure 

Place=CP[Char, lnteger] 
Marking=lnteger 

action-t2 action-t3 ... ~ 

r------
1 dum_st: : 
: TYPE_X : 

action-t4 

Action_ t 1 : Dec(Marking[p 1], 1) 

Action_tl: Dec(Marking[p5], 1) 

Action_ t2: Dec(Marking[p2], 1) 

Action_t2: Dec(Marking[p5],1) 

Action_ t4: Inc(Marking[p2], 1) Action_ t3 : Dec(Marking[p3], 1) 

Action_t4: Inc(Marking[p5],1) Action_t4: Dec(Marking[p4], 1) 

Action_ t 1, t2, t3, t4: dum _st=fd( dum _ st) 

Capability constraints: 

F(action_tl / Marking[pl]<l) 

F(action_tl / Marking[p5]<1) 

F(action_t2 / Marking[p2]<1) 

F(action_t2 / Marking[p5]<1) 

F(action_t3 / Marking[p3]<1) 

F(action_t4 / Marking[p4]<1) 

Figure 3.10 (the derived ALBERT specification) 
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Chapter 3 : temporal logic vs Petri nets 

3.3.6 Summary and conclusion 

We have formally defined a semantics-preserving transformation rule translating Petri nets 

into the ALBERT language. The purpose· of this section was to show that it is possible to 

translate an operationàl specification (a Petri net) into another declarative and more readable 

language (ALBERT). This can be very interesting in. a perspective of retro-engineering. Since 

Petri nets ( colored or not) and ALBERT are located at different levels in the specification 

phase, it can sometimes be useful to "go up" by one level, namely in order to check the 

correctness of the developement process. However, it must be stressed that this transformation 

does not induce an equivalence between those two languages. Indeed, a lot of constraints in 

ALBERT are not "translatable4" in Petri nets (even extended Petri nets) . 

- 4 Sorne ofthose constraints may be translated, but very often, it results in a too complicated (and thus 
· unreadble) Petri net. 
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4. 1 Introduction 

Chapter 4 

Deontic Logic 

The word 'deontic' is derived from the Greek word '8Eov1:m;' which may be translated as 

'as it should be' [IDLPINEN71]. Deontic logic is thus characterized by the distinction 

between the actual and the ideal. Deontics deals also with normative use of language such as 

permission, obligation and prohibition. 

Deontic aspects are met in many areas : contracts, human behavior, laws [TT95], ... 

[MEYER 91]. A lot of research is made in logic to capture deontic aspects, to obtain a logical 

system which permits to reason about deontic facts [DIG94], [TORRE94] .... These logical 

systems permit to specify, for example, the behavior of persons involved in contracting. We 

can specify the ideal behavior of these persons. For example, when the seller accepts the terms 

of a contract, he has the obligation to deliver the goods before a certain date. But we can also 

be interested in expressing the consequences of a violated obligation. If the seller doesn't 

deliver the goods before the specified date, he has to paya fine. It's the same with prohibition, 

one may be interested in consequences which follow a violated prohibition. 

In this chapter, we briefly present in section 4.2 the SDL deontic system and its limita!ions . 

In section 4.3, we underline the concepts of interest in deontic for the specification of 

distributed systems . 
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Chapter 4 : Deontic Logic 

4.2 SOL : a ma.da/ logic for deontic reasoning 

SDL, Standard Deontic Logic, is the more familiar deontic system. This logic system is 

based on the works of G. H. von Wright [WRIGHT51]. Von Wright's approach to deontic 

logic is based upon the observation that there exists a significant analogy between the deontic 

notions obligation and permission and the modal notions necessity and possibility. In fact, a 

proposition p is necessary if and only if its negation -,p is not possible, this expresses the 

definition L(p) = -,M(-,p) (see sub-section 2.2.1). Similarily, an act or a factp is obligatory if 

and only if its negation -,p is not permitted. The notion of permission is the primitive of the 

von Wright's system. P(p), where P is a modal operator, expresses that p is permitted. The 

notion of obligation is defined in terms of permission by : ( def) O(p) = --,P(--,p ), where O(p) 

must be read : 'p is obligated'. 

Standard deontic logic (SDL) respects the definition (def) and two other axioms (KD): 

(K) O(p➔q) ➔ (O(p)➔O(q)) which states that modus ponens holds within the 

scope of the modal operator O. 

(D)--,(O(p)AO(-,p)) which states that something cannot be obliged to be the case 

and obliged not to be the case at the same time. 

Another operator is also often defined : F(p) = --,P(p) which states that something 

is forbidden if and only if it is not permitted. 

Until now we have considered the axiomatic definition of SDL, we give here the definition 

of a model for a deontic theory in SDL. 

Definition 4.1 (World model of a deontic theory in SOL) 

A possible world (Kripke) model for a deontic theory in SDL is a 4-tuple M=(wM, W,R, V) 

where WM is the actual world WME W, W is a non-empty set of worlds, R is an accessibility 

relation between worlds, V is a valuation function that assigns in each world wE W a truth 

value to atomic propositions. 

A formula O(p) is true in a world w in a model M, written M,w fsDL O(p), iff for ail world w' 

with wRw' : M, w' fsDL p. A formula p is true in a model M, written M fsDL p iff M, WM fsDL p. 

A formula p entails q, written p fsDL q, iff M ~soL p then M fsDL q. 

The obligations O(p) that can be derived from a SDL theory T can be classified in: 

• fulfilled obligations if p is entailed by the theory T. 

• violated obligations if -,p is entailed by the theory T. 

• moral eue if neither p nor --,p is entailed by the theory T. 
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Chapter 4 : Deontic Logic 

·-·:.:· ~,:·< 

The violated obligations are an answer to the question 'what has been done wrong?' 

(what is the case but should not be the case) and moral eue are answers to the question 'what 

should be done now ? ' (what is not yet the case or not the case but should be done ), [TT94a]. 

More formally : 

Definition 4.2 (Fulfilled, violated obligation, moral eue) 

Let T be a theory of SDL, O(p) is a fulfilled, obligation of the theory T iff T fsvLO(p) and 

T fsvLP- O(p) is a violated obligation of the theory T iff M fsvLO(p) and M fsvL---,P- O(p) is a 

moral eue of the theory T iff M fsvLO(p ), M /-:t=smP and M /t:-svL---,P-

Unfortunately, SDL is plagued by a large number of paradoxes. For instance the formula 

O(p)➔O(pvq) is a theorem of SDL. This theorem says that if a certain state of affairs p ought 

to be the case then pvq ought to be the case. We can interpret this formula as follows 

[IDLPINEN71] : 'If I ought to mail a letter, I also ought to mail or burn it. But if I in fact 

ought to mail a letter, then surely it is awkward to say that I ought to mail it or burn it'. Other 

notorious paradoxes are Forester and Chisholm paradoxes. Those paradoxes are consequences 

of an impossibility to model correctly contrary-to-duty (CTD) obligations in SDL. 

Definition 4.3 (Contrary-to-duty obligation) 

A contrary-to-duty obligation is an obligation conditional to a violation describing sub-ideal 

behavior. The conditional obligation a➔O(P) is a CTD obligation of the (primary 

obligation) O(ô) when a and ô are contradictory . 

An example of CTD obligation (2) of a primary obligation (1) : 

(1) O(p) 

(2) -.p➔O(q) 

For Tan and Torre (see [TT94a, TT94b]), the fundamental problem underlying these 

paradoxes is that the type of possible world semantics of SDL is not flexible enough. In these 

semantics only two types of worlds are distinguished in a model; actual and ideal ones. The 

ideal worlds have to satisfy ail obligations in a deontic theory T. Clearly, if these obligations 

contradict each other, then a problem arises. ( ... ) in order to model these paradoxes properly, 

we need a notion of sub-ideal worlds, in which some but not ail obligations are satisfied . 

A futher development would go beyond the scope of this work. Nevertheless, the idea of 

sub-ideal worlds will be adapted in chapter 5 for representing varying sub-ideality in Petri nets . 
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4.3 Deontic aspects in our work 

In this work we use deontiès because deontic aspects often play an important role in the 

specification of distributed systems [DUBOIS91]. 

In distributed systems, components interact to achieve a common goal. In such systems, a 

component may send a service request to another component of the system. If a component 

receives a service request, it has the obligation to execute the asked service. We can say that 

there exists a kind of contract between the components of a distributed system. At this point, 

we may partition the deontic aspects in two categories : the strict obligations/prohibitions and 

the obligations/prohibitions which can be violated. 

A strict obligation/prohibition is always respected. The situations where a strict obligation 

is. violated are not considered. It must be noted that this notion of strict obligation, which can 

not be violated, is quite different from the deontic notion of obligation. In fact, a strict 

obligation is rather an usual constraint which must be respected by the system to be 

implemented. In the following chapter, we investigate how this kind of constraint can be 

modeled in Petri nets. We have to study such constraints because they are often expressed in 

declarative style and it may be problematic to represent them in an operative style. 

Another important aspect in distributed systems, especially when human components play 

arole, is the obligations/prohibitions that can be violated. When specify~ng a human behavior, 

but sometimes also a hardware component, we may consider sub-ideal situations, situations 

resulting of the violation of an obligation/prohibition or of the execution of an action judged 

sub-ideal. In those cases, it should be possible to reflect in a formai way which behaviors are 

sub-ideal. We will investigate this problem in the Petri nets approach in section 5.2. 

Remark. It should be noted that the operators F, 0 and XO introduced in ALBERT (see 

subsection 2.4.5 p. 2.9) support only strict obligations/prohibitions. The notion of sub-ideality 

is not covered by the ALBERT language .. 
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Chapter 5 

Petri Nets and Deontic aspects 

5.1 Introduction 

In this chapter we see how deontic aspects can be represented in the Petri net formalism. 

In the introductive chapter to deontic logic, we have classified deontic aspects in two 

categories : strict deontic aspects and the deontic distinction between ideal and sub-ideal 

behavior. We keep here this latter approach. So, we see in a first section how strict deontic 

aspects can be represented in the original Petri net formalism. In a second section, we propose 

an extension of the Petri net formalism in order to make possible the formalization of ideal and 

varying sub-ideal behaviors . 

5.2 Strict Obligations/Prohibitions · 

Recall that when modeling a system, one must limit the part of the system which is 

modeled. The model represents always a part of the reality. For example, if a contract is 

represented in a Petri net, the net should represent that if goods have been delivered by the 

seller, then subsequently the buyer is obliged to pay the bill for the goods. Also the net should 

be able of representing that if the buyer does not pay, the buyer is obliged to return the goods. 

But the modeler may make the hypothesis that the second obligation (returning the goods in 

situation of no pàyment) can not be violated and thus is always respected. Due to this 

hypothesis, the model does not represent the juridical procedures that can follow from a refusai 

of returning the goods. This kind of obligation, which can not be violated, is called in our 
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terminology a strict obligation. Strict obligations can be opposed to obligations which can 

be violated. In this section, we see how to represent strict obligations/prohibitions in the 

original Petri net formalism. More precisely, we give conditions that a net must satisfy to 

represent strict obligations/prohibitions. We also underline the limitations of the approach of 

keeping the original Petri net formalism for the representation of strict deontic aspects. 

5.2. 1 Stricts obligations 

In this sub-section, we define conditions that a Petri net must satisfy to model a strict 

obligation. A strict obligation is anything which ought to be done (like returning the goods in 

case of no payment). If t1 is the transition that models, in a Petri net, a strict obligated action in 

astate D, t1 must be fired in the markings representing state D. 

Recall that when two transitions t1, t2 are enabled in a marking M of a net N, the firing rule 

of the Petri net formalism says that either t1 or t2 fires in marking M. Thus if a transition ought 

to fire in a marking M, it has to be the only one enabled in M. We can write this condition in a 

more formai style. 

Condition 5.1 (Strict obligation in a Petri net). 
Let a denote an action of the system S, Sa. the set of states of the system S where the action a 
ought to be done ( strict obligation), MSa. the set of markings that model Sa., ta. the transition 

that models the action a, then : 
VM E MSa.: 

(J)Vp E P: M(p) ~ Pre(p,ta_) 

(2)Vt ET/ {ta,}: :lp E P: M(p) < Pre(p,t) 

( 1) guarantees that ta. is enabled in all markings M which be long to MSa.. 

(2) guarantees that ta. is the only enabled transition in all markings which belong to MSa.. 

To illustrate the condition 5.1, let us continue with the following example and see how the 

condition 5.1 can be applied. 

Example 5.1 (Modeling a strict obligation). 

In library rules, we may read that a borrower must have returned a book within a month and 

if it's not the case, he ought to pay a fine to be authorized to borrow again or to do anything 

else in the library. In this example, we can distinguish two kinds of obligation: the first one, 

returning the book within a defined period which can be violated, the second one, the 
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• obligation to pay the fine, which can not be violated. The payment of the fine is thus, in our 

terminology, a strict obligation. · 

t3 

p1 : Book_Free; ti : Borrow_Book; p2 : Borrowed_Book; t2 : Retum_in_time; p3 : 

Permission_to_borrow;t3 : Retum_Late; p4: Violation_State; l4: Pay_Fine; ps: Fines_Paid. 

Figure 5.1 (Petri net model of the library example) 

If we apply the condition 5.1 to our library example, we have : 

• a : Pay a fine. 
• Sa. : the set of states reached when the borrower retums a book too late. 

• MSa. : the set of markings where m(p4)=1 . 

• ta. : t4 (Pay_Fine). 

To be sure that the net of figure 5.1 respects the condition 5.1, we must prove that when the 

place p4 is marked with one token (marking where the payment of the fine is strictly obligated), 

the only enabled and thus obliged transition is t4 (Pay _Fine). 

Proof 5.11 (The model of Figure 5.1 respects the condition 5.1). 
Here, the matrix representation of the library example in terms of Pre, Post, C and Mo: 

tl t2 t3 t4 tl t2 t3 t4 

pl 1 0 0 0 pl 0 1 1 0 

p2 0 1 1 0 p2 1 0 0 0 
Pre: ,Post: 

p3 1 1 1 0 p3 1- 1 0 1 

p4 0 0 0 j p4 0 0 1 0 

p5 0 0 0 0 p5 0 0 0 1 

1 We use here the algebraic invariant method, other analysis techniques such as reachability analysis are 
available (see chapter I, The Petri net formalism) . 
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tl t2 t3 t4 

pl -1 1 1 o· 
p2 1 -1 -1 0 

C: 
p3 0 0 -1 1 
p4 0 0 1 -1 
p5 0 0 0 1 

3 

0 

Mo: 1 
0 

0 

With the linear fundamental equation for the analysis of Petri nets M-M = Cx s 

M ~ M and C xw = 0, we obtain the following system : 

-w(pl) + w(p2) = 0 

w(pl)-w(p2) = 0 

w(pl)- w(p2)- w(p3) + w(p4) = 0 

w(p3) - w(p4) + w(p5) = 0 

1 0 

1 0 

which has two non negative integer linearly independent solutions: 0 , l 

0 1 

0 0 

These two solutions give two independent invariants : 

1 

1 

0 ⇒ M( pl)+ M( p2) = Const.( 1) 

0 

0 

0 

0 

1 ⇒ M('p3) + M(p4) = Const.(2) 

1 

0 
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From ( 1) and the initial marking M0 we conclude that the sum oftokens in place pl and p2 is 

always equal to 3. Which is obvious since the number of books must stay constant in our 

system ( a book is free or borrowed). 

From (2) and the initial marking M0 we conclude that the sum of tokens in place p3 and 

place p4 is always equal to 1 in ail reachable markings. So we can say that if p3 is marked 

then p4 is not and that one of the two is marked in each reachable marking. This allows us to 

say that when we are in the violation state, p3 is not marked since p4 is marked and the only 

fireable transition is thus t4 (Pay_Fine) . 

Condition 5.1 is often too strict. If we consider an agent/object oriented approach, one 

models a system into a number of separated sub-nets and then merges them into a single net. 

An obligation, but also a prohibition, is often related to an agent/object or to an agent/object 

class. Thus an obligation for an agent A must normally have no direct influence on the behavior 

of another agent B. 

Let us give a new condition for a net to represent strict obligation, in an agent/object oriented 

approach: 

if ta represents a "strictly" obligated action for an agent/abject A whose behavior is modeled 

by a sub-net NA in a marking M then the next transition of the sub-net NA to fire is ta . 

Condition S.2 (Strict obligation in an agent/object approach). 

Let S denote the modeled system, A an agent/abject that is part of the system S, N the 

aggregated net that models S, NA the sub-net that models the agent/abject A, a, an action of 

A, ta the transition that models a, MS a ihe set of markings that models the states of S where 

A has the strict obligation to do a,, TA the set of transitions that belongs to net NA, E(N,M) the 

set of fireable sequences of transitions in marking M of the net N, Pref(l,t) the longest prefix 

of the sequence l of transitions that does not contain the transition t . 
VM E MSa,Vl E E(N,M):TA nPref(l,tJ = 0. 

This condition garantees that when the transition ta is strict obligated for an agent/abject A 

modeled by NA, ta is the first transition oj NA to fire . 
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5.2.2 Strict prohibitions 

Throughout the previous sub-section we were concemed about the modeling of strict 

obligations. The present sub-section deals with strict prohibitions. Recall that a strict 

prohibition is anything which is not permittèd. In a Petri net, if t1 is a transition that models a 

prohibited action in astate D, t1 may not be fired in the mar~ngs representing D. 

Again notice that in the Petri net formalism, when a transition is enabled, it may fire. Thus 

if a transition is strictly prohibited (may not fire) in a marking M, it may not be enabled. Let us 

write this condition in a more formal manner. 

Condition 5.3 (Strict prohibition in a Petri net). 
Let a denote an action of the system S, Sa the set of states of the system S where a is strictly 

prohibited, MSa. the set of markings that model the states of Sa., ta. the transition that models 

the action a : 
VM E MSa.:3p E P: M(p) < Pre(p,ta_) 

This condition guarantees that ta. is never enabled in markings of MSa.. 

This condition can, like condition 5.1, be extended for an agent/object oriented approach. 

As pointed out in part one, Pétri nets are often used for their neat graphical representation. 

But by applying condition 5.3, the resulting net could be complicated and not very readable. 

To permit a direct graphical representation of strict prohibition, we can easily extend the Petri 

net formalism by adding inhibitor arcs. 

This is the graphical representation of an inhibitor arc : 

Figure 5.2 (An inhibitor arc) 

To give the semantics of an inhibitor arc, we have to specify a new firing rule, different 

from the one of the original Petri net model. 
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Definition 5.1 (Firing rule of Petri nets with inhibitor arcs) . 

A transition is enabled in a Petri net with inhibitor arcs when tokens are in all of its (normal) 

input places and zero tokens are in all of its inhibitor input places. The transition fires by 

removing tokens from its (normal) input places. A place is an inhibitor input place for a 

transition if this transition is linked to the place with a inhibitor arc . 

Thanks to inhibitor arcs, a strict prohibition can be modeled in a more suitabfe way. To 

illustrate the ability of inhibitor arcs to model strict prohibitions, let us continue with the 

following example : 

Example 5.2 (Critical section example). 

Two processes pr1 and pr2 have a critical section, when one process executes its critical 

section the other one is not permitted to execute its one. Let' s explicitly represent the strict 

prohibition to execute the critical section by inhibitor arcs . 

pl : Processus_prl_normal_processing. 
p2 : Processus_pr2_normal_processing. 
p3 : Processus_prl_critial_processing. 
p4 : Processus_pr2_critial_processing. 

Figure 5.3 (Critical sections net) 

It should however be noted that Petri nets with inhibitor arcs have not the same analytical 

possibilities as the original Petri nets. It can be shown (see [BRAMS 83b]) that Petri nets with 

inhibitor arcs have the modeling power of Turing Machines. For instance, boundedness is 

undecidable in Petri nets with inhibitor arcs. Fortunately, some Petri nets2 with inhibitor arcs 

can be transformed, for analysis purposes, in an equivalent net without inhibitor arcs. The 

transformation consists in adding for each place linked with a inhibitor arc, a complementary 

2 Petri nets whose inhibitor places are bounded. 
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place and in linking this place with the transitions linked with the first place. This is precisily 

the kind of place we use in the library example (p3 and p4). 

Definition 5.2 (Complementary place). 

In a marked Petri net (N ,M ), two places P; ,pj E P are complementary places, iff, 

VM ':M 'eR(N ,M ),M '(p;)+M '{pj) =a, where ais a constant. In other words, P;,Pj EP 

are complementary places in a marked net if in all reachable markings the sum of tokens 

contained in p; and Pi is constant. 

If we apply the transformation introduced above on the net of figure 5.3, we obtain : 

pl : Processus_prl_nonnal_processing. 
p2 : Processus_pr2_nonnal_processing. 
p3 : Processus_prl_critial_processing. 
p4 : Processus_pr2_critial_processing. 

cp_p5 : Pennission_processus_prl_critial_processing. 
cp_p6 : Pennission_processus_pr2_critial_processing. 

Figure 5.4 (Critical sections net with complementary places) 

The place cp_p5 is a complementary place of p4, and cp_p6 is a complementary place of p3. 

Note that the transformation is only possible if the inhibitor place is bounded, see 

[BRAMS83b] p. 47. 

5.2.3 Limitations of the approach 

In the sub-sections 5.2.1 and 5.2.2, we have only defined conditions that must be fulfiled 

for a correct modeling of strict deontic aspects in Petri nets. The modeler must find solutions 
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to represent strict obligations/prohibitions. These solutions must often be checked by analysis 

methods . 

These difficulties are due to the over operational style of Petri nets. In fact, the Petri net 

formalism is a modeling language and not a specification language (see chapter 6). This 

characteristic (the operational style) may represent a serious hindrance for the use of Petri nets 

to model a system with a lot of strict deontic aspects. We think that the Petri net formalism 

should be extended. So we extend in the following chapter Petri nets with temporal logic. The 

main purpose of this extension is to make possible a declarative specification of non­

operational constraints. In the end of the chapter 6, we show how easily strict deontic aspects 

can then be specified with temporal logic formulae. 

The end of this chapter is concemed with another extension of the Petri net formalism 

expressing the deontic distinction between ideal and sub-ideal behaviors . 

5.3 Modeling varying sub-ideality in Petri nets 

5.3. 1 Introduction 

Recall our ·contract example described in the previous section. If a contract is represented 

by a Petri net, the net should represent that if goods have been delivered by the seller, then 

subsequently the buyer must pay the bill for the goods. Also, the net should be capable of 

representing that if the buyer does not pay, then the buyer is obliged to retum the goods. This 

second obligation, to retum the goods, is conditional to the violation of the first to pay the 

delivered goods. Such an obligation, which is evoked when another obligation is violated, is 

called a contrary-to-duty (CTD) obligation (see definition 4.3). CTD obligations tell you.,what 

you should do, given that you already have violated an obligation. We say that a behavior by 

which no obligations are violated is ideal, and when there are obligations violated, the behavior 

is said sub-ideal. Clearly, CTD obligations apply to sub-ideal behavior only . 

1t should- be possible to reflect, in a formal manner, that violating the first obligation (to 

pay the delivered goods) is not desired. In other _words we should be able to reflect preferences 

between different possible scenarios. Scenarios where the goods are paid are preferred to 

scenarios where the goods are not paid and retumed. 

In this section we show how to represent the deontic notions of ideal and sub-ideal 

behavior in Petri nets. We extend standard Petri nets with a preference relation. This 
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preference ordering has common features3 with preference ordering that was introduced in 

DIODE [TT94a] and [TT94b]. It may be helpful to fix the notion of sub-ideality in Petri nets 

with an illustrative example before giving the formai definition of our preference ordering. To 

illustrate the distinction between ideal versus sub-ideal behavior, consider the following Petri 

net: 

p1: borrowed book; p2: damaged book; p3: returned book; t1: To damage the book; 
t2: To repair the book; t3: 1 week too late; ti: 1 week too late; t5: To retum the book; 

ti;: To return the book; 

Figure 5.5 (Book borrowing model) 

Figure 5.5 models the possible behaviors of a borrower. A marking for this net is denoted 

by a tuple (lli,n2 ,~) where n; indicates the number of tokens at place p;. In the initial marking 

(1,0,0) displayed in the figure 5.5, there is only a token at place p1 , which represents that the 

borrower has a book. At this marking he has the choice between retuming the book, retuming 

it too late, or damaging the book. If he decides to be too late, he has again the same choices. If 

he damages the book he can choose to repair it before retuming it, or to retum it damaged, he 

may also be even later. In the rest of this section, we consider the executions of this Petri net 

which starts in marking (1,0,0) and ends in marking (0,0,1), which represents that the book is 

retumed. When executing this Petri net, there is a choice between performing ideal behaviors 

or sub-ideal behaviors. For example, if the borrower retums the book in time and undamaged, 

we can say that he performs the ideal behavior. On the other hand, if he retums the book one 

week too late, he does not perform the ideal behavior. The distinction between ideal and sub­

ideal cannot be represented in standard Petri nets as Figure 5.5. One can model the choice, but 

nothing in the Petri net formalism indicates that one execution is better than another one. In 

this section we show how the standard Petri net formalism can be extended with a preference 

relation such that it can represent this distinction. In the set of all possible executions of a 

3 In the two approaches the possible models are ordered by order of sub-ideality. Nevertheless our ordering is 
linear when the ordering of DIODE is not. 
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Chapter 5 : Petri Nets and Deontic aspects 

system, intuitively, the preferred ones are those which contain a minimum of sub-ideal 

behaviors . 

5.3.2 The extended Petri net formalism 

In order to represent the distinction between ideal and sub-ideal states in a Petri net, we 

can partition the set of transitions of a Petri net into two subsets, that represent ideal and sub­

ideal transitions respectively. Given this partition, we can define a preference ordering on 

executions of a net that compares the sub-ideal transitions of the executions. For example, we 

can define that an execution s is preferred to another execution s' iff s contains less sub-ideal 

transitions than s'.4 This preference ordering is denoted by the symbol ~n. As an example, 

consider the set S = {tl't3 ,t4 } that represents the sub-ideal transitions of our example in figure 

5.5. Between marking M 1 =(1,0,0) and marking M 2 =(0,0,1), we have (t3 ,t5 )>n (tpt4 ,t6 ) 

because the first execution contains less sub-ideal behaviors than the second one. This is 

intuitively correct, we prefer an execution in which one retums a book too late but undamaged 

to an execution in which one retums the book too late and damaged . 

However, the execution (t3 ,t5) and (ti,t6 ) .are equivalent for ~n. This is unintuitive, 

because one prefers a book retumed late to a damaged book retumed in time. The order 

relation ~n takes only into account the number of sub-ideal behaviors. However, the violations 

do not have the same seriousness. As a solution, the transitions can be partitioned in more than 

two subsets, which express the deontic notion of ideal and varying sub-ideal, see [TT94a], 

[TT94b]. This can be modeled by assigning a weight to each transition. This weight can, for 

example, be an integer which is large if the violation corresponding to the sub-ideal behavior is 

serious. Given this partition, in ideal and varying sub-ideal transitions, the new problem is how 

to compare executions. A simple solution is to say that a sequence of transitions s is preferred 

to a second sequence of transitions s' iff the sum of weights of the transitions of s is less than 

that of the transitions of s'. This preference relation is noted ~P. Intuitively, the weights 

represent fines for the violations and the preference relation prefers a minimal total sum of 

fines. For example, the weight fonction of our example can be given by 

(w (t1) = 10,w (t3 ) = 1,w (t4 ) = 1) which states that damaging a book is ten times worse than 

retuming a book one week too late. We have (t3 ,t5) >P (ti,t6 ), which is intuitively correct. 

However, even with this definition some problems subsist. For example, the two 

executions (ti,t2 ,t5),(ti,t6 ) are equivalent for ~P. This is not intuitively correct, because, we 

want to prefer executions where one repairs a damaged book to executions where one does 

4 Another often used solution is to define a subset ordering on the sub-ideal transition, see [TT94a]. 
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not repair it. These preferences are related to deontic notion of Contrary-To-Duty (CTD) 

obligations (see chapter 4, definition 4.3). To deal with this kind of transitions, which we call 

repairing transitions of sub-ideal behavior, we define another subset of transitions, that 

contains the repairing transitions of sub-ideal behaviors and negative weights are assigned to 

the transitions of this set. Intuitively, the negative fines can be considered as rewards for good 

behavior. This preference ordering is presented formally in the following section. 

The extended fine system 

An extended Petri net is a Petri net with varying sub-ideal and repairing transitions. 

Definition 5.3 (Extended Petri net). 
Let N = (P ,T ,Pre,Post) be a Petri net and Z the set of integers. An extended Petri net 

EN = (P ,T ,S ,R ,w ,Pre, Post) is the extension of N with two disjoint sets S cT and R cT 

that represent sub-ideal and repairing behavior respectively, and the fine function w:T ➔ Z, 

defined as f ollows : 

{

tETl{SuR}:w(t)=O 
t E S:w(t) > 0 
t E R:w(t) < 0 

A repairing transition is a transition that has a negative weight in order to recover from a sub­

ideal situation that was brought by sub-ideal behavior. We can now give a formal definition of 

the extended relation on executions. 

' -

Definition 5.4 (Preference ordering on executions). 
Let EN = (P ,T ,S ,R ,w ,Pre, Post) be an extended Petri net, and M "M 2 two markings, 

'2/E(EN ,Mi,M2 )xE(EN ,Mi,M 2 ) a preference relation defined on the set 

E (EN ,M 1 , M 2 ) of the possible executions of EN from the marking M 1 to the marking M 2, 

s"s2 EE(EN ,Mi,MJ two executions and the function lg(s) the length of the tuple 

s = (s1 , ... ,sm) (here equal tom). s1 is preferred to si, written s1 '2P s2, iff: 

lg(s 1) ( ) lg(s 2 ) ( ) Lw s1; ~ Lw s2j 
i=I j=I 

Definition 5.5 (Equivalent executions for the ordering). 
Let EN = (P ,T ,S ,R ,w ,Pre, Post) be an extended Petri net, and M "M 2 two markings, two 

executions t"t2 EE(EN ,Mi,MJ are equivalentfor the relation '2P, iff(t1 '2P t2)A(t2 '2P tJ 

The preference ordering gives preferred executions. 
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Definition 5.6 (Preferred execution) . 
Let EN = (P ,T ,S ,R ,w ,Pre, Post) be an extended Petri net, and M 1,M 2 two markings, 

s E E (EN , M 1 ,M 2 ) an execution from the marking M I to the marking M 2 • The execution s is 

a preferred executionfrom M I to M 2 if!: Vs'E E(EN ,fV[ i,M 2):s ~P s' 

In the following example, we use some new graphical notations in addition to the usual 

notations of the Petri net formalism. 

A place is represented in the usual way by : 0 p; 

If t; ET / { S u R}, t; is represented in the usual way by : -' --' t; 

(the weight is not represented, because it is always equal to zero). 

w(tj) 
If t j ES, t j corresponds to a sub-ideal behavior and is represented by : 1Niiiv&1 ti 
with w (tj) ~ O. 

W(tk) 

If t k ER, t k corresponds to a repairing transition and is represented by : :::::::::::::: tk 

with w (t k) ~ O. 

As a illustration of extended Petri nets, consider the extension of the example in figure 5.5 : 
t1 

with S = {t, ,t3 ,tJ,R = {t2}, and the definition of the fine system w: 

(w (tJ = 10,w (tJ = -5,w (tJ = l,w (t4 ) = 1) 
p1: borrowed book; p2: damaged book; p3: retumed book; t1: To damage the book; 

tz: To repair the book; t3: 1 week too Iate; L4: 1 week too Iate; ts: To retum the book; 
t6: To retum the book; 

Figure 5.6 (Extended book borrowing model) 

With our extended fine system w, we obtain the intuitive result : (ti,t2 ,t5 ) >P (ti,t6 ). 

Futhermore, we have that (t5) > P (ti,t2 ,i5). This states that we prefer a borrower not to 

damage the book even if he repairs it. 
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The fine function given in definition 5.3 is rather basic, we could impose extra constraints 

on it in order to get certain desirable properties. For example, we could argue that the fine 

function should reflect the property that it is better not to do a sub-ideal behavior than doing it 

first and repairing it afterwards. A simple way to obtain this property is to impose on the fine 

function the following constraint : if transition t 1 represents a sub-ideal behavior and transition 

t 2 repairs the sub-ideal behavior t1, then -w (tJ <w (t1). 

Preferred reachable states 

The preferences on transitions model what ought to be done. Besides these ought-to-do 

obligations also ought-to-be obligations can be defined, which are preferences on the markings 

(the states). Preferences on markings can be derived from preferences on transitions, or vice 

versa. In this section we show how preferences on markings can be derived in.our extended 

Petri nets. We have decided to define the preference relation on the transitions because it is 

more expressive : two transitions between the same place can have different preferences. The 

preference relation on markings is defined on all reachable markings. 

Definition 5.7 (Reachable markings). 

Let EN = (P ,T ,S ,R ,w ,Pre, Post) be an extended Petri net with marking M, and T* the set 

of all sequences that can be composed of transitions of T. The set of reachable markings of 

the marked net (EN ,M) is R(EN, M) = { M::3s Er*, M ~ M}. 

A reachable marking M 1 is preferred to a second reachable marking M 2 , iff a preferred 

execution, which leads from M to M 1, has a weight less than the weight of a preferred 

execution which leads from M to M 2 (where Mis the initial marking). 

Definition 5.8 (Preference ordering markings). 
Let EN = (P ,T ,S ,R ,w ,Pre, Post) be ·. an extended Petri net with marking M, 

si,s2 EE(EN,Mi,M2) two executions, '?.M: R(EN,M)xR(EN,M) apreference relation 

defined on the set R(EN,M) of the reachable markings of EN, M l'M 2 ER (EN ,M) two 

markings and lg( s) the length of the tuple s. M 1 is preferred to M 2, written M 1 '?.M M 2 , iff: 
lg(s 1) lg(s2 ) 

I,w (s1J ~ Lw (s2,J 
i=l j=I 

Where s1 is a preferred execution of (EN ,M) to (EN ,M 1) and 

s2 is a preferred execution of (EN ,M) to (EN ,M z) 
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Chapter 5 : Petri Nets and Deontic aspects 

5.4 Conclusion 

In this chapter, we have defined in section 5.2. conditions that a Petri net must fulfil to 

model strict obligations and prohibitions. In this approach, the modeler must find a solution to 

respect those conditions. The limitations of this approach have been underlined and a better 

solution is proposed in chapter 6. In section 5.3., we have extended the Petri net formalism 

with a relation of preference on the possible executions of a net. This relation of preference and 

the definition of a fine system make possible the formalization of the distinction between ideal 

and varying sub-ideal behaviors . 
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Chapter 6 

Petri Nets and Temporal Logic 

6.1 Introduction 

The extension of the Petri net formalism we propose to define here, is based on the 

following observation : it' s easy to represent the arguments of a transition in the Petri net 

formalism, on the other hand, it is not easy to construct a Petri net that respects complex 

(temporal) non-operational constraints. 

The idea to avoid this difficulty, is to give the possibility to the analyst to add temporal 

formulae to its Petri net models in order to limit their possible executions. As an illustration of 

this concept, consider the following example : 

Example 6.1 : (Modeling a simple producer - consumer system with one buffer ) . 

t1 p1 t2 

t1: the producer; ti: the consumer; p1: the buffer . 

Figure 6.1 (a simple producer-buffer-consumer model) 

These are some possible executions of this model: 

(e1) t1t1t1t2t1t2t2 .... 
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Now if we add as constraint that the buffer can only contain one token, the execution (e1) 

1s no longer valid. To model this constraint in the Petri net formalism, we may add a 

complementary place to place p1• Then we obtain the following model : 

t1 p1 t2 

t1: the producer; ti: the consumer; p1: the buffer; 
p2 : complementary1 place of P1. 

Figure 6.2 (a simple producer-binary buffer-consumer model) 

Note that the set of possible executions of the Petri net of figure 6.2 is only the execution 

t1t2t1t2t1t2t1ht1t2 .... Execution which verifies the additional constraint. But the place p2 is f! 

artificial element (over specification), a construction that implements the supplementary 

constraint. It does not represent a specification of the constraint ! It' s a reason why we think 

that the original Petri net formalism is not a good specification formalism due to its over 

operational style [PETERSON81]. So, if we want to keep Petri nets as a specification 

language, because, for instance, some constraints are easily expressed in operational style, we 

have to extend the net formalism in order to make possible declarative specifications of non­

operational constraints. Our solution is to associate Petri nets and temporal logic formulae. 

The logic formulae will be used to express constraints which can not be easily expressed in an 

operational style. Our choice is motivated by the great expressiveness of temporal logic and the 

easy link that can be made between the operational semantics of Petri nets expressed as infinite 

sequences of states (see definition 6.8) and the semantics of temporal logic specifications also 

expressed as infinite sequences of states (see definition 2.5). 

This is the equivalent specification2 of the model of figure 6.2, expressed in our language : 

1 Complementary because p2 is marked when p1 is not and inversely. 
2 We now use the term specification because we do not give a solution for the implementation of the 
supplementary constraint. 
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tf t2 

t 1: the producer; t2: the consumer; p1: the buffer. 

Figure 6.3 (a simple producer-binary buffer-consumer specification) 

The formula m(p1 ) ~ 1 restricts the set of possible executions of the ·net to executions in 

which the marking of place p1 is one or zero. 

As we can see in this trivial example, the semantics of the formulae can easily be given as 

the reduction of the set of possible executions of the net. To define in a formai manner the 

additional language, we first give the operational (behavioral) semantics of the original Petri 

net model. 

6.2 Operational semantics of the Petri nets 

In the litterature three styles of semantics are distinguished : (1) operational semantics, (2) 

axiomatic semantics and (3) denotational semantics. Since the Petri net formalism is operative, 

the most natural way to define its semantics is to use operational semantics. The operational 

semantics of the Petri net model is given by means of a transition system. In the sequel we use 

usual definitions and notations of the Petri net formalism. These notions and definitions have 

been introduced in part one of this document. 

Definition 6.1 (Transition system). 

A transition system is a pair ( S, R), where S is a set, called the state space and R c S x S is a 

relation called the transition relation. 

A Petri net can be considered as a transition system where S, the state space, is the set of 

reachable markings R(N,M) (see definition 1.5) and the transition relation is the following set: 

{(M,M):M E R(N,M)AM E R(N,M)A=ltE T:M~M }. 
·~ ', 

The process of a transition system starting at an initial state s (the initial marking for a 

Petri net) is described by the set of ail execution paths starting at s. These execution paths 
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represent ail possible "behaviors" of the transition system. An execution path is a maxima13 

sequence of states (see definition 6.8) such that for any successive pair, their markings belong 

to the transition relation. An execution path starting in a marking M can also be seen as a 

sequence of transitions since the sequence of states can be computed from the sequence of 

transitions as firing a transition, in the Petri net formalism, is deterministic. 

To formalize the operational semantics of a marked Petri net in terms of its possible 

executions (beha~iors), we recall here some important definitions of the Petri net formalism4 

and introduce some new definitions : 

Definition 6.2 (Sequence of transitions). 

Let us consider Tas an alphabet composed of the symbols t of the transitions of Petri net N. 

We will write î the set ofwords that can beformed by concatenation of symbols of T. In that 

way, every sequence of transitions of the net N can be represented by a word of î. 

Definition 6.3 (Firing a sequence of transitions). 

A sequence of transitions s of î is fireable in the marked net (N,M) which will be written 

M ~ and the firing of the sequence s leads the net N to the marking M', which will be 

written M ~ M , if and only if: 

1. either s = À (the empty sequence), then M = M'. 

2. ors=s't, with s'E T= et t ET, then: =IM':M~M' AM'' ~M. 

The set of possible executions of a marked Petri net (its process) can thus be defined in terms 

of fireable sequences of transitions. 

Definition 6.4 (The process of a Petri net). 
The set of possible executions ,of a Petri net N = (P,T,Pre,Post) from a marking M is 

defined by the set: E(N,M) = {s E T=:M ~} 

Definition 6.5 (Operational semantics of marked Petri net). 

The semantics of a marked Petri net (N, M) is the set of all its possible executions E(N,M). 

As we mentioned in the introductive section, our idea is to use temporal logic formulae in 

order to reduce the set E(N,M), representing the possible executions of the net, to a set of 

desired executions. In the next sectio~, we define a language for the expression of properties 

1Becaûse when there is at least an enabled transition in a state, the transition must fire. Thus an execution is 
either infinite or finite and its last state is a terminal state (astate with a terminal marking see definition 6.7) 
4 Sorne 9f these definitions have already been introduced in part one but, for reasons of readability, we rewrite 
them here. 
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Chapter 6: Petri Nets and Temporal Logic 

that desired executions must fulfill. For reasons of convenience5 
, we consider, in the following, 

an execution of a Petri net as an infinite sequence of states as in [MP92]. Bach state is 

composed of a marking and an exiting transition. 

Definition 6.6 (Execution State ) . 

An execution state is a 2-tuple (m,e) where m(S) is the marking of the state S, m(S,p) 

represents the marking of the place p in state Sand e(S) is the transition which is fired in 

state S, it is the exiting event of the state S . 

In the original Petri net model, executions are not necessarily infinite, some reachable 

markings may be terminal markings, i.e., have no enabled transition. 

Definition 6.7 (Terminal marking) . 

A marking M is called a terminal marking for the Petri net N = (P,T,Pre,Post) if! 
---,:lt ET:Vp EP,m(p)'è.Pre(p,t). There is thus no enabled transition in a terminal 

marking . 

To keep our definition of state (with an exiting transition), we introduce a new transition, 

the null transition. This null transition can only and must be fired in terminal states. The 

firing of the null transition leads in a state with the same marking and thus with the null 

transition as exiting transition ... Let us give a more formai definition of the set of possible 

behaviors as a set of infinite sequences of states : 

Definition 6.8 (lnfinite sequences of states). 

The set of possible executions of a marked Petri net (N,M) where N = ( P, T, Pre, Post) is the 

set ofinfinite sequences of states E111JN,M) such that: VsEE111JN,M): 

• s E (R( N,M), Tu{ null} )=. In other words, each sequence s of E111JN,M) is an infinite 

sequence of execution states. 

• :la E E(N,M): Vi: 1 ~ i ~ lg(a) 

e((s,i))=(a,i)6. In other words,for each infinite sequence s there exists afiring 

sequence a and the exit event of an execution state is the transition that is fired 

in this state. 

If ais not infinite (end in-a terminal state) then Vi: i > lg(a) : e((s,i))=null . 

The sequence is artificially made infinite by the firing of the null transition. 

• m( ( s, 1) )=M. The initial marking of each sequence s is the initial marking of the net . 

5 In order to keep the semantics of the temporal operators introduced in chapter 2. 
6 (s,i) denotes the ith state of the sequence s. 
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\Ji: 1 < i: 

if e( ( s, i - 1)) = t /\ t -::/:- null 
then V p: m( ( s, i ), p) = m( ( s, i - 1 ), p) - Pre( p, t) + Post( p, t) 

else {e(( s, i-1)) = null} Vp: m(( s, i), p) = m(( s, i-1), p) 

ln other words, the marking between two succ,essive states is changed by firing 

a transition of the net or stay the same if the null transition is fired. 

This representation of the possible behaviors of a Petri net is kept in the sequel of this 

document. 

6.3 The /agie formulae of the /anguage 

As mentioned in the introduction of this chapter, the Petri net formalism is more a 

modeling language than a specification7 language. To represent some (temporal) constraints, 

· we have to find a solution, an implementation of them in the Petri net formalism. The Petri net 

language style is operative and not declarative. So, to use the Petri net formalism as a basis of 

a specification language, we have to introduce the possibility to add temporal formulae to a net 

in order to specify, in a declarative style, the (temporal) constraints that can not be specified 

easily in the net formalism. The semantics of the logic formulae that will accompany the nets, 

will be given as a reduction of the possible executions of the nets. 

Considering a Petri net as a generator of a set of possible executions, we expect that the 

temporal logic formulae should provide an alternative characterization, more descriptive and 

less operational, of the desired set of executions of the net. The temporal logic formulae will 

express predicates over infinite sequences of states. Thus, each formula of temporal logic is 

satisfied by some sequences and falsified by some other sequences. We will restrict the 

executions of a net with temporal formulae to the executions of the net that satisfy. all the 

temporal formulae. In the sequel we will first define the syntax and the semantics of logic 

formulae that do not contain temporal operators. Those formulae are interpreted in a state. The 

logic formulae that contain temporal operators and that will be introduced after, are interpreted 

in a particular state of a sequence. 

6.3. 1 State formulae 

A state formula is evaluated at a certain position in a sequence and the formula expresses 

properties of the state occurring at this position. We will thus introduce a state language that 

7 By specification we mean the description of the desired behavior of the system, while avoiding references to 
the method or details of its implementation. · 
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Chapter 6 : Pétri Nets and Temporal Logic 

permits us to express properties of Petri net states. As we have shown in the previous section, 

an execution of a Petri net can be represented by a sequence of states, composed of a marking 

and an exiting transition. Thus, we must be able to speak' about the number of tokens in a place 

(the marking of the place) and over the transition which is fired in the state (the exiting 

transition). It can also be interesting to declare sub-sets of the set of transitions T. It can be 

convenient to declare a set which contains ail the transitions of a part of the modeled system 

and to express properties over the transitions of this set. So we will give the possibility of such 

declarations and also the possibility of quantification on these sets. We will first give the syntax 

of the state language and thereafter its semantics . 

Syntax of the state formulae 

SYMBOLS: 

The characters A,B, ... ,Z and symbols°={,}, for the declaration of sub-sets of the set T of the 

transitions8 
• 

The function m : this function m: P ➔ ~ is defined on the set of places of the Petri net and 

returns a natural number. m(p;) gives the number of tokens contained in the place p;. 

The predicate "Fired": this predicate is defined on the set T of the transitions of the Petri net. 

Fired(t;) expresses the fact that the transition t; is the exiting transition of the state under 

consideration. As two transitions can not fire in the same state, we have the following axiom : 

Vt1 ,t2:Fired(ti} AFired(t2 ) ⇒ t1 = t2 

The predicate "Enabled" : this predicate is defined on the set T of the transitions of the Petri 

net. Enabled(t;) expresses the fact that the transition t; is enabled in the state under 

consideration. As in the Petri net formalism a transition must be enabled to fire, we have the 

following axiom : 

V t: Fired (t) ⇒ Enabled (t) 

The usual boolean connectors: A, v,-,,➔,H. 

The predicate symbols over positive integer numbers: =,<,~,~,>,'# . 

The usual addition operator over positive integer numbers : + 

8 The declaration of the subsets of the set T are not formulae. The utility of such subset declarations is 
illustrated at the end of this chapter in the case study. 
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The usual quantifications symbols V,:3 for quantification on the set T of transitions and 

declared sub-sets of T. 

Two punctuation symbols : (,). 

FORMATIONRULESOFTHEFORMULAE: 

(constant_place)::= (p1, Pv-··• Pn) 
( constant_ transition)::= (t1, tv ... , tm, null) 

9 

(variable_place): := (Pa, Pb•···, Pz) 
( variable_transition ): := (ta, th, ... , tz) 
(variable)::= (variable_ place) 1 (variable_ transition) 

(Subset _of _transitions):== (A .. z) 
(Subset _declaration):: = 

(Subset _of _transitions)'='( {(Constant _transition),*}) 

( integer _ term ): : == 

(positive integer) 

1 ( m( (variable_ place))) 

1 ( m( (constant_ place))) 

1 (term)' +' (term) 

( atomic formula)::= 

( Fired( (variable_ transition))) 

( Fired( (constant_ transition))) 

(Enabled( (constant_ transition))) 

( Enabled( (variable_ transition))) 

(term)'=, <, :::;, ~. >, *'(term) 

9 The constants are thus the symbols that represent the name of the places and the transitions of the net. 
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1 (atomicformulâ) 

1 (state formula)'/\, v ,-,, ➔, H' (state formula) 

l 'C(logicformula)')' 

Chapter 6: Petri Nets and Temporal Logic 

l 'V,"=:/(variable list)'e'(Subset _of _transitions! T)':'(logicformf!,la) 

Semantics of states formulae 

Next, we consider the semantics of the different constructions, showing how to evaluate 

them over states. We will note [ q> ls=(M,r) the truth value of the state formula q> in the state 

S = (M,t) where Mis the marking of the state Sand t the exiting transition of this state. We 

will note I( t) the interpretation of the term t by the interpretation function I. We first define an 

interpretation fonction for our logic formulae. 

Definition 6.9 (The interpretation function l). 

• I assigns a value in the set T of transitions to all constant_transitions and all free 

variable_transitions. We restrict here to interpretation functions that map the 

constant_transitions in thefollowing way: I(tï)=ti. 

• I assigns a value in the set P of places to all constant_places and all free 

variable_places. We restrict ourselves here to interpretation that maps the 

constant_places in the following way: I(pï)=p;. 

• I maps the functor m to the application M that represents the marking function . 

Interpretation of a term : 

• I(n)=n where n is a positive integer number. 

• l(m(p))=M(I(p)) where pis a variable_place . 

• I(m(p))=M(p) where pis a constant_place. 

• I(t1+t2)=l(t1)+I(t2) where t1 and t2 are terms. 

Semantics of the predicates over terms : 

• [t1 = t2l,=(M.r).1 is true iff I(tJ = I(tJ (Where t1 and t2 are terms). 

• [t1 ~ t2]s=(M.,).1 is true iff I(t1) ~ I(t2) (Where t1 and t2 are terms). 

• [t1 > t2]s=(M.r).1 is true iff I(t1) > I(t2) ~Where t1 and t2 are terms) . 
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• [t1 < t2 ]s=(M.,).1 is true iff I(t1 ) < I(ti} (Where t1 and t2 are terms). 

• [t1 ~ t2 ]s=(M,r).1 is true iff I(tJ ~ I(t2 ) (Where t1 and t2 are terms). 

• [t1 i:- t2 ]s=(M,r).1 is true iff I(tJ i:- I(t2 ) (Where t1 and t2 are terms). 

Semantics of the predicates "Fired" and "Enabled" : 

• [ Fired( a )]s=(M,r).1 is true iff I(a) = t. 
• [ Enabled( a )]s=(M,,).1 is true iff Vp E P: Pre(p,I( a J) ~ M(p ). 

Semantics of the usual boolean connectors : 

• [ 'Ô1 v 1'}2 ]s=(M,,),1 is true iff [ 1'}1 ]s=(M,,),1 is true or [ 1'}2 ]s=(M,r).1 is true. 

• [---,1'} ]s=(M,r),1 is true iff [ l'} Js={M,r),1 is false. 

• The semantics of the other boolean connectors is deduced in the usual way, see 

definition 2.1. 

Semantics of the quantifiers : 

• [3xeZ:1'}]s=(M,r).I is_true iff :3t;EZ:['Ô:t;]s=(M,,),1 is true where 'Ô:t; is the formula 

obtained by replacing the occurrences of variable x by the value t; and Z is a declared 

subset of the set T of transitions or the set T. 

• [Vx e Z:l'}]s=(M.r).1 is true iff Vt; e Z:[ 'Ô:t;]s=(M,,),i is true where 'Ô:t; is the formula 

obtained by replacing the occurrences of variable x by the value t; and Z is a declared 

subset of the set T of transitions or the set T. 

6.3.2 Temporal formulae 

A temporal formula is constructed from state formulae · to which we apply temporal 

operators and boolean connectives. We will use and adapt the syntax and the semantics of 

future and past operators of common linear temporal logic. These operators are very similar to 

those used in ALBERT [DDDP94b] and in OBLOG [SCS92],[SGS92]. As for the state 

formulae, we will first define the syntax of the temporal formulae and then their semantics. 

Syntax of temporal formula 

As usual in temporal logic, in the sequel, Xis the "next" operator, Fis the "eventually"10 

operator, G is the "henceforth" 11 operator and U is the "until" operator. These operators 

10 Also ~ften called the "sometimes" operator. 
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Chapter 6: Petri Nets and Temporal Logic 

represent the future operators of our language. The past operators are: Y the "previous state" 

operator, P the "sometimes in the past" operator, H the "always in the past" operator and S the 

"since" operator. 

Syntaxical formation rule : 

(Temporal_formula): := 

( State _formula) 

'X'(Temporal_formula) 

I' F'(Temporal_formula) 

l'G'(Temporal_formula) 

l(Temporal_formula)'U'(Temporal_formula) 

l'Y'(Temporal_formula) 

'P'(Temporal_formula) 

'H'(Temporal_formula) 

(Temporal_ formula)' S' ( Temporal_formula) 

'-,' (Temporal_ formula) 

(Temporal_formula)' A, v,~, H'(Temporal_formula) 

'V, :3 ' (variable_ transition)' E ' (Set_ of_ transitions)': ' (Temporal_ formula) 

Semantics of temporal formulae 

As the truth value of a state formula is evaluated in a state, the truth value of a 

temporal formula is evaluated in a state which belongs to a sequence of states ( see section 2.1. 

Temporal logic). Let us first define some notations: 

Notations (The truth value of a temporal formula) . 

A temporal formula is evaluated at a position i of an infinite sequence of states (like those of 

set E;,ij(N,M)), we will note the state of position i in the infinite sequence sas (s,i). The future 

of the state ( s, i) is the suffix of sequence s that starts in position i (thus including the present), 

we will note it (s,i .. +00 ) • Symetrically, the past of the state i is constituted of the prefixe of 

the sequence s that ends in state i (thus including the present), we will note it (s,1..i). 
The truth value of temporal formula i} in_position (s,i) will be noted: [ i} t,;). 

Let' s now give the semantics of the temporal formulae . 

11 Also often called the "always" operator. 
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The future operators 

X next operator: [ X 'Ô t_i) is true ijf [ 'Ô l,,i+I) is true. 

F eventually operator: [ F-ô ]( ·) is true ijf 3j:( i ~ j ),[ 'Ô ]( ·) is true. 
~ ~ 

Ghenceforthoperator: [œ]( ·)istrueijfVj:(i~j),[-ô]( ·) istrue. 
S,I S,J 

U until operator: [ -ôU<j> ls,;) is true ijf 

The past operators 

{

3j:i ~ j:( Vk :i ~ k < j:[-ô ls.k) is true) 

A([ <j> ls,j) is true ) 

Y previous state operator: [Y-ô l,.;) is true for i> 1 iff [ 'Ô l,.i-1) is true; [Y-ô lt.,1) is always true. 

Fp sometimes in the past operator: [ FP-ô ls,;) is true ijf :lj:( 1 ~ j ~ i ),[ 'Ô ls,j) is true. 

· Gp always in the past operator: [ G P 'Ô ti) is true ijf Vj :( 1 ~ j ~ i ), [ 'Ô tj) is true. 

S since operator: [ -ôS<j> l,,;) is true iff 

{

3j:l~j ~i:(Vk:~ <k ~i: [-ôls,k)) 

A([<j> lt..j) is true) 

With this semantic of Y operator, we can define a new predicate: init which is only true in the 

initial state of the sequence, its formal definition : init = [Y 1-] . This new predicate allows to 

write logic formulae which express prope:t:ties over the initial marking of the Petri net. 

6.3.3 The desired executions 

We have defined the syntax and the semantics of the logic formulae that will accompagy 

the Petri nets in our specification language. Let us now give a formal definition of the set of 

• 

• 

• 

• 

• 

• 

• 

executions obtained by the conjunction of the Petri net and the logic formulae in a e 
specification. 

Definition 6.10 (Desired executions). 

The desired executions of a marked Petri net (N, M) accompanied by a set of logic formulae 

'P is the set of possible executions of (N, M) that safisty eachformula of the set 'P. We will 

note this set Er(N,M, 'P ): 
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-{s: se E(N, M): V-ô ~ 'P, 't::/i e N:} 
Er(N, M, 'P)- r~\\] . 

Lu (s,i) lS true . 

Definition 6.11 (Semantics of a PNTL specification). 

The semantics of a PNTL specification constituted of a marked Petri net (N,M) and a set of 

logic fomulae 'P, is the restricted executions that belongs to the set Er(N,M, 'P ). 

Thanks to the new predicate init, it is possible to define properties that an initial .marking 

must fulfil. So we can define the possible behaviors of a class of marked Petri nets whose initial 

marking fulfil initialisation properties. Let' s note I; the set of formulae of the form (!nit ➔ 'Ô) 
that define the properties of the accepted initial markings (1; c 'P). Below we define the 

possible behaviors of the Petri net N with initial marking that fulfil ~ . 

Er(N,I;, 'P)= r s, .1 

{
VM: r1;]( i)=(M ) is true,} 

seEr(N,M,Y) 

Futher in this chapter we give some examples of specifications in PNTL. We will also show 

how logic formulae can be used to specify strict deontic aspects. 

6.4 A specification in PNTL 

Let us consider a small library that contains three books. We are here interested in the 

behavior oftwo borrowers b1 and b2. Each ofthem may borrow books from the library but has 

to return the books intime or has to paya fine before doing anything else in the library(cl) . 

6.4. 1. A mode/ of this case in the common Petri nets 
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Legend: pl: Books free; p2: Books borrowed by bl; p3: Fines to pay; p4: implementation of 
constraint (cl); tl: bl borrows a book; t2: bl returns a book intime; t3: bl returns a book to 

late; t4: bl paya fine; p5: Books borrowed by b2; p6: Fines to pay; p7: implementation of 
constraint (cl); t5: b2 borrows a book; t6: b2 returns a book intime; t7: b2 returns a book to 

late; t8: b2 pays a fine; 

Figure 6.4 ( a model of the library example) 

The figure 6.4 and its legend is a model of our library case. It' s not a specification 

because the place p4 and p7 are solutions (over specifications) for the realisation of the 

constraint c 1. A proof of validity of the solution for the implementation of constraint c 1. is 

given in chapter 5. 

6.4.2 The PNTL specification of the case 

pl 

The logic formulae- li' of the PNTL specification: 
Fired(t3 ) ➔ (Vt E {t1't2 ,tJ:-,Fired(t))u(Fired(t4 )) (1) 

Fired(t7 ) ➔ (Vt E {t5 ,t6 ,t7 }:-,Fired(t ))U(Fired(t8 )) (2) 

Legend: pl: Books free; p2: Books borrowed by bl; p3: Fines to pay; tl: bl borrows a book; 
t2: bl returns a book intime; t3: bl returns a book to late; t4: bl paya fine; p4: Books 

borrowed by b2; p5: Fines to pay; t5: b2 borrows a book; t6: b2 returns a book in time; t7: b2 
· returns a book to late; t8: b2 pays a fine; 

Figure 6.5 ( a specification of the library example) 

The first formula ( 1) says that the borrower b 1 must pay a fine after returning a book late 

if be wants to do anything else afterwards, (2) says the same for b2. The formulae (1) and (2) 

are specifications of the constraint c 1, they do not represent a solution in terms of places and 

transitions for the implementation of the constraint. Those constraints represent strict deontic 

aspects : the strict obligation to pay the fine in order to borrow again. 

With the logic formulae, we can easily specify a large set of constraints. For example, the 

fact that a borrower can continue to return bis books even if he bas to pay a fine. In other 
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' words, when. he has to pay a fine, the only action he cannot undertake is borrowing a new 

• book. This can be expressed by the following formula: 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

6.4.3 Evaluations 

m(p3 ) > 0 ➔ -,Fired(t1) (3) 

m(p5 ) > 0 ➔ -,Fired(t5 ) (4) 

As we can see in the illustrative example, the addition of logic formulae to a Petri net 

model, allows to obtain : 

• more readable specifications (compare figure 6.4 and figure 6.5) 

• less operational specifications . 

Futhermore, the strict obligations/prohibitions can now easily be specified, see assertion 

(1)-(4). Nevertheless, PNTL is rather basic: 

• the tokens have no values 

• the quantitative time properties cannot be expressed (real time) .. · . 

Soin the following chapter we extend PNTL by defining a new formalism PNRTL. This 

new formalism will be-based on real-time Predicate/Transition nets . 
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Chapter 7 

The PNRTL language 

7.1 Motivations 

In the previous chapter, we have defined a language based on the formalisms of Petri nets 

and temporal logic.
1 

This language (PNTL) allows to specify in a declarative and also in an 

operational style. But its expressiveness should be extended. Recall that the nets used in PNTL 

are basic Petri nets, the tokens which appear in the nets have no value (no color). Again recall 

that the temporal operators used in the logic formulae are usual temporal operators, real-time 
' 

aspects cannot be expressed. 

Since our objective is to define an expressive language for the specification of distributed 

systems with real-time and deontic features, we extend here PNTL in four directions. First, we 

introduce a net formalism that allows valued tokens. Our formalism is based on 

Predicate/Transition nets [GENRICH86], see also section 1.4. Our choice is motivated by the 

close relation which exists between Pr/Tr nets and first order logic. With these Pr/Tr nets the 

link between the net concepts and the logic concepts can easily be defined. Secondly, we 

introduce the results of cnapter 5 in our net definitions to allow the specification of the deontic 

distinction between ideal and sub-ideal behavior. Thirdly, we augment PNTL with real-time 

features. Finally, to allow more structured specifications, we introduce types and the 

possibility to specify a system in separate sub-nets. 

To present these extensions of PNTL in a clear way, we structure this chapter in five other 

sections. Section 7 .2 introduces new notions that are related to the notion of dynamic first 
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order structure. Section 7 .3 introduces the new net formalism of the specification language 

including its operational semantics. This semantics is still expressed in terms of possible 

sequences of states and reflects now real-time features. Section 7.4 introduces the new logical 

constructs of the language. Section 7 .5 presents how types are introduced in the language. 

Finally, section 7 .6 shows how a specification can be structured in sub-nets. 

7.2 New concepts 

As pointed out in section 7.1, we want to extend the PNTL formalism to allow the 

association of values to tokens and in general to introduce the notion of individuals in our 

formalism. The work we accomplish here is very similar to the work necessary for going from 

propositional logic to first-order predicate logic. 

Let us first introduce the notion of relational structure. 

Definition 7.1 (Relational structure). 

A relational structure is a tuple of abjects S = (D;fp---.fk ;Rp••·,Rn) where Dis a non-empty 

set of individuals called the domain of S, the f; are functions in D and the R; are relations in 

D. 

A relational structure can describe situations where properties of individuals and relations 

between individuals are static. But we are interested in describing dynamic systems. In such 

systems, properties of individuals and relations between individuals may vary during the 

execution of the system. So we are interested in dynamic relational structure. 

Definition 7 .2 (Dynarnic relational structure). 

A dynamic structure will be characterised by the fact that some relations are variable in the 

sense that their extensions may vary from state ta state due ta the occurrence of processes 

(actions) in the modeled system. 

We have chosen structured sets of individuals to support the modeling of dynamic systems. 

Operators (function symbols) and predi~ates (relation symbols) form the vocabulary of the 

language in which we will talk formally about structu~es, i.e. about properties and relations of 

individuals. The language we use is that of first order predicate logic : 

Definition 7.3 (A language for structure). 

Let for each n ~ 0, Q(n) be a set of n-ary operators and IT(n) a set of n-ary predicates. These 

operators and predicates form the vocabulary of the first order language L that consists of 

two kind of expressions, terms and formulae. ,ln addition , there is a set of symbols, V, disjoint 
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Chapter 7: The PNRTL language 

from Q (the set of operators) and from II (the set of predicates), whose elements serve as 

(individual) variables. Tenns andfonnulae are built in thefollowing way: 

1. Tenns 

• A variable is a tenn. 

• If f (n) is a n-ary operator E g(n) and v 1 , ... ,v n are terms then f (v 
1

, ••• ,v n) is 

a tenn. (Note that 0-ary operators are tenns; they are used as proper names 

of distinct individuals). 

• No other expressions is a tenn. 

2. Fonnulae: 

• If v 1 ,v 2 are tenns then v 1 ~ v 2, is an atomic formula . 

• If p(n) is a n-ary predicate E II(n) and v i,···,v n are tenns then P(v p••·,v J 
is an atomic fonnula. 

• If p 1, p2 are formulae then ---,p1 and (p 1 v pz) are fonnulae. 

• lf xis a variable and p afonnula then (=lx )p is afonnula . 

• No other expression is a fonnula 

Remark: The connectors A,➔,H and V are derivedfrom --,,v and:3 in the 

usual way, see section 2.2 . 

We must still define some common notions of first order logic, those notions are constantly 

used in the sequel of this chapter. 

Definition 7.4 (Free occurrence of a variable) . 

An occurrence of a variable x in a formula E is called free occurrence if it is not in the range 
of a (=lx) or (Vx). The occurrences of variables in a single term arefree. 

Definition 7.5 (Index of an expression) . 

The set of variables that occur freely in an expression (term or formula) is called thè index of 

that expression. 

Definition 7.6 (Closed expression). 

An expression v is closed if its index is empty. 

We canuse a first-order language L for talking of a relational structure S if we associate with 

each operator and each predicate in the vocabulary of La fonction respectively a relation of S . 

Definition 7.7 (L-Structure). 

Given a first-order language L, we call a structure S a structure for L, or L-structure, if every 

operator f (m) of L denotes a m-ary function of S designated by fs and every predicate p(n) of 
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L denotes a n-ary relation of S designated by Rs. To ensure that each individual in the domain 

of S can be named in a sentence, we now add to the vocabulary of L a new set, Us, of 

constants denoting the individuals of S in a one-to-one fashion 1 
• The individual denoted by a 

constant d is designated by ds. 

The structure S assigns to each closed term, v, of Ls an individual of S, designated by S(v), and 

to each closed formula (proposition), p, of Ls, the truth value true or false, designated by S(p). 

Definition 7.8 (Substitution). 

Let E be an expression (term or formula), Xi, .. ,,xn be variables, t1 , ... ,tn be terms. Then 

'Y= {x1 ~ t1, ... ,xn ~ tJ is called a substitution, and E:y = E:{x1 ~ t1 , ... ,xn ~ tJ 

designates the result of substituting t; for each free occurrence of x;, for 1 ::;; i ::;; n. E: y is 

called the 'Y - instance of E. 

Definition 7.9 (Valuation). 
A valuation a is a special kind of substitution {x1 ~ t1 , ... ,xn ~ tJ where ail t; (1::;;i::;;n) are 

constants E Us. 

Definition 7.10 (lnterpretation.function for a structure). 

Let v be a. closed term and p a closed formula of the language Ls. The S(v) and S(p) are 

defined recursively on their respective syntactic structure. 

1. S(v) 

2. S(p) 

• Ifv is a constant d, S(v) is the individual denoted by d, ds. 
• Ijv is f (n)(vz, ... ,vJ then S(v) =fs(S(v 1), ... ,S(v,J). 

• If p is v1 =v2 then S(p )=true iff S(v1) and S(v2) are the same individual. 
• If p is p(n)(v I'"' ,v J then S(p)=true iJf (s (v 1), ... ,S (v J) E P5 • 

• If p is (p 1 v p2 ) then S(p )=true iJf S(p 1)=true or S(p2) is true. 

• If p is -,q then S(p )=true iJf S( q)=false. 

• If p is (3x )q then S(p )=true iJf there is a constant d such that 

S (q:{x ~d }) = true. 

Remark: The semantics of the connectors A,➔,H and\/ are derived from 

the semantics of-,, v and 3 in the usual way, see section 2.1. 

Recall that in an ordinary first-order structure S, all fonctions and relations are static, as 

opposed to dynamic structure where some relations are variable. The presentation of dynamic 

structures requires that we distinguish between predicates denoting static relations and 

1 This is possible because we have decided that the domains of interpretation are fixed domains, see section 7 .5. 
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predicates denoting variable relations. Hence we di vide the set of predicates, Il, into a set of 

static predicates Ils , and a set of dynamic predicates that will be designated by ~ . 

Definition 7.11 (Static formula). 

A logic formula is a static formula ijf it does not contain dynamic predicates . 

In our specification language, we separate the static and the dynamic part from each other. 

The static part remains an ordinary relational structure. lt is often called the support of the 

system. The dynamics are presented as an annotated net and a set of real-time temporal 

formulae. The variable relations (dynamic predicates) appear as the places of the net. (see 

chapter 1, section 1.4). 

7.3 Real Time Prnr Nets 

7.3. 1 Introduction 

In this section we introduce the net formalism of our language. The net formalism is used 

to represent the operative constraints of the dynamic part of the system to be specified. As in 

Pr/Tr nets (see, section 1.4), the places are annotated by dynamic predicates and the tokens 

present in a place represent the current extension of the predicate that annotates the place. The 

transitions of the net model actions of the ~ystem. 

The remainder of this section is organized in two sub-sections. Sub-section 7.3.2 considers 

the introduction of real-time features and the sub-section 7.3.3 formalizes the notion of 

PNRTL net and gives its firing rule and operational semantics. 

7.3.2. Introduction of Real-Time 

In this paragraph the main distinctions between Pr/Tr nets and real-time Pr/Tr nets are 

briefly pointed out : 

• In usual Petri nets, a net execution can be seen as a sequenc~ of states (see 

Definition 6.8, p 6.5 ). In real-time Pr/Tr nets, and this is new, every net state is 

mapped to two real instants of time : the time at which the net enters the state and 

the time the net quits the state. 

• In usual Pr/Tr nets, firing a transition is atomic, i.e. ail actions (represented by 

transitions) are instantaneous. In reality actions are either instantaneous or have a 
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duration of tîme. To model this property of actions, we consider that firing a 

transition is either instantaneous or has a duration. In the first case, firing remain an 

atomic action, in the second case, firing a transition is decomposed in two atomic 

events : the be~inning and the end of the firing. Between those two events, the firing 

is said in progress. 

• In real-time Pr/Tr nets, it seems necessary to refine the notion of transition (action). 

There is a differentiation between transitions and transition instances. The notion of 

transition instance can be used to express that a transition fires n times within a 

certain interval. As firing is no longer necessarily atomic and can have duration, 

many occurrences of a same transition may be in progress during the same period 

(this property is often called autoconcurrency). 

Due to the introduction of real-time, it' s necessary to give a new definition of a net state. 

This is a definition which supports the introduction of the real-time features : 

Definition 7.12 (PNRTL state) 

In order to include the real time features, a PNRTL state S will be composed of: 

• An entering time : InTime(S). It represents the moment at which the system enfers 

in state S. 

• An exiting time: OutTime(S). It represents the moment at which the system exits 

the state S. Let us note that the relation InTime(S)<_::;_OutTime(S) is always verified. 

• A marking : M(S) which represents the extension of each dynamic predicate that 

annotates the places of the net. 

• A set of occurrences of actions : H(S) which are in progress during state S. 

• An exiting event : Exit(S) is the event which makes change the state of the system. 

This event is either the beginning of an action (the firing of a transition)or the 

termination of an action. 

The fact that firing a transition is no longer necessarily atomic, causes a new problem. Let us 

consider the following part of a net as an illustration : 

t1 

Figure 7.1 (A part of a Pr/Tr net) 
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Chapter 7: The PNRTL language 

The fi.ring of t1 in an usual Pr/Tr net has no influence on the extension of P. In fact, the 

extension of the dynamic predicate P is not changed since the token <1> stays in P in the 

reached state since <1> is added by the output arc and fi.ring is atomic. The construct of figure 

7.1 (arc (1) and arc (2)) is often used to represent a precondition for the fi.ring of a transition 

and this precondition is not modified by fi.ring the transition. Unfortunately, this construct is no 

longer valid if the fi.ring of t1 has a duration. In fact if we consider that when one fires a 

transition, at the beginning event tokens are removed from the input places and at the end 

event tokens are added to the output places, the fi.ring of an occurrence of t1 must be ended 

before another occurrence may fire (if we make the supplementary assumption that tokens are 

only added to place P by t1). 

For that reason, we will introduce new types of arcs . 

New types of arcs 

The semantics of the new arcs is presented here in an informai way. A more formal 

presentation of their semantics (in terms of elements of a PNRTL state) is given in definitions 

7.21, 7.23 and 7.24, commented examples of the use of the different arcs are given in chapter 8 

(case study in PNRTL). 

Input arcs: 

Typei 

0 Tu(a) 

Figure 7.2 (Graphical representation of a type i arc) 

This arc is enabled for an a - instance of t (where a is a valuation) if for all tuples of Tu( a;2, 

the a - instance of the tuple belongs to the extension of the dynamic predicate P. These 

a- instances of the tuples are removed from P at the beginning of action t-a. This type of arc 

can be used to represent a positive precondition (ex: P(x) must be true) for the beginning of an 

action and the precondition becomes false directly after the beginning of the action . 

2 Tu( a) de notes the set of tuples which annotate the arc a. 
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Type i 

Tu(a) 

Figure 7.3 (Graphical representation of a type i arc). 

This arc is enabled for an a - instance of t (where a is a valuation) if for all tuples of Tu( a), 

the a- instance of the tuple does not belong to the dynamic predicate P. These a - instances 

• 

el 
1 

• 

of the tuples are added to P at the beginning of action t-a. This type of arc can be used to • 

represent a negative precondition (ex: P(x) must be false) for the beginning of an action and 

the negative precondition becomes false, i.e. P(x) is true, directly after the beginning of the 

action. 

Typep 

Op it Tu(a) 
----------- . 

Figure 7.4 (Graphical representation of a type parc) 

This arc is enabled for an a - instance of t (where a is a valuation) if for all tuples of Tu( a)', 

the a - instance of the tuple belongs to the dynamic predicate P. These a - instance of the 

tuples are not removed from P at the beginning of action t-a. Here, the positive precondition 

is not modified at the beginning of the action. 

Type p 

Op it Tu(a) 
----------

Figure 7.5 (Graphical representation of a type p arc) 

This arc is enabled for an a - instance of t (where a is a valuation) if for all tuples of Tu( a), 

the a- instance of the tuple dcies not belong to the dynamic predicate P. These a-instances 

of tuples are not added to Pat the beginning of action t-a. Here, the negative precondition is 

not modified at the beginning of the action. 
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Chapter 7: The PNRTL language 

Output arcs : 

Typeo 

p 

Tu(a) 

Figure 7.6 (Graphical representation of a type o arc) 

At the termination of the firing of an a- instance of t (where a is a valuation) the 

a - instances of the tuples of Tu( a) are added to the extension of the predicate P. This type of 

arc can be used to represent the fact that at the end of action t(x), P(x) becomes true. 

-
Type o 

p 

Tu(a) 

Figure 7.7 (Graphical representation of a type o arc) 

At the termination of the firing of an a- instance of t (where a is a valuation) the 

a - instances of the tuples of Tu( a) are removed from the extension of the predicate P. This 

type of arc can be used to represent the fact that at the end of action t(x), P(x) becomes false. 

With these new arcs we can now easily model the kind of constraint of figure 6.1 : 

pQ ~t1 ... 
- - <X> -

<1 > - - - -

Figure 7.8 (Constraint of figure 7.1 in a PNRTL net) 

7.3.3. Firing rule and operational semantics 

So far we have only presented PNRTL nets in an informa! manner. In this sub-section, we 

present formal definitions and formal semantics of a PNRTL net. The definitions of a PNRTL 

net include a fine function w. This function allows to specify the deontic distinction between 

ideal and sub-ideal behavior as defined in sub-section 5.2.2. We only give in definition 7.26 the 
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way to calculate the weight of a PNRTL execution, the reader can easy generalize the other 

definitions given in chapter 5, for the PNRTL nets. 

Elements of a PNRTL net 

Definition 7.13 (PNRTL net) 

A PNRTL net N is a five-tuple N = (P,T,A,L, w) where P is a finite set of places which 

represent dynamic predicates, T is a set of transitions, A is a finite set of arcs which link 

places to transitions and vice versa, L is a language for structure which is used to annotate 

the net, w is a fine function defined on the set T that allows the deontic distinction between 

ideal, sub-ideal and repairing transitions. 

Let us now detail the elements. of a PNRTL net. 

Definition 7.14 (PNRTL transition) 

A PNRTL transition, in a net N = (P,T,A,L, w), is a five-tuple t = (s,IA,OA, w,i) where 

t ET, s(t) denotes a staticformula called the selector of the transition, IA(t) and OA(t) denote 

respectively the set of input arcs and the set of output arcs of the transition, w( t) is the weight 

of the transition t in the fine system, i( t) is true if the transition is instantaneous3
, false 

otherwise. 

Definition 7.15 (PNRTL place) 
A PNRTL place, in a net N = (P,T,A,L, w), is a couple p = (Pr,Ext) where p E P, Pr(p) 

denotes the dynamic predicate that annotates the place p, Ext(p) is a set of tuples that be long 

top and represent the extension of the predicate of place p (Pr(p)). 

Definition 7.16 (PNRTL input arc) 
A PNRTL input arc, in a net N = (P,T,A,L, w), is a four-tuple a= (IP,Tr,Tu,Ty) where 

a E A, IP(a) E P denotes the input place of a, Tr(a) ET the transition linked to a, Tu(a) the 

set of tuples, written in language L, that annotate the arc, Ty(a) E {i,i,p,p} the type of arc a. 

Definition 7.17 (PNRTL output arc) 
A PNRTL output arc, in a net N=(P,T,A,L,w), is afour-tuple a =(OP,Tr,Tu,Ty) where 

a E A, OP(a) E P denotes the output place of a, Tr(a) ET the transition linked to a, Tu( a) 

the set op tuples, written in language L, that annotate the arc, Ty( a) E { o,;;} the type of arc a. 

3 We consider that a transition can be classified as instantaneous or not instantaneous. We consider that this 
characteristic is fixed regarding the action that the transition models and does not change during the process of 
the system. An instantaneous transition will be represented by a white rectangle and a non instantaneous by a 
black rectangle. 
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Definition 7.18 (Marking of a PNRTL net) 
The marking M of a PNRTL net N = (P,T,A,L, w) where P = {p1 ,p2' ... ,pJ, is a function 

returning the extension of the dynamic predicate that annotates the place given as argument : 

M(pJ = Ext(p;),(1 <;:;. i <;:;. n), P; E P 

Definition 7.19 (Index of a transition t) 

The index of a transition t is the set of variables that appear freely in s( t) the selector of the 

transition and in the tuples e of each arc connected to the transition : 

Index(t) = LJ{ vars(e):e E Tu(a)A (a E IA(t) va E OA(t))}Uvars(s(t )) 

Graphical conventions. An instantaneous transition will be represented as a white rectangle 

and a non-instantaneous transition as a black rectangle . 

Firing rule 

To express the firing rule of the PNRTL nets, we define when a transition is enabled and also 

the effects of firing a transition instance. In the sequel, we constantly use the notion of PNRTL 

state. This notion has been introduced in the definition 7.12. Let us precise this definition : 

Definition 7.20 (Elements of a PNRTL state) . 

A PNRTL state is afive tuple S=(lnTime,OutTime,M,H,Exit) where: 

• InTime(S) and OutTime(S) are state functions which return a positive real number. 

lnTime(S) returns the time at which the system has entered the state S, OutTime 

returns the time at which the system has quit the state S . 

• M(S) is a vector that gives the extension of each dynamic predicate of the system in 

the state S. The extension of the dynamic predicate which annotates place p in a 

state S will be noted ExtM(slP ). 

• H(S) is astate function that returns a set of 2-tuples of the form (tma) where t11 is a 

transition occurrence and a a valuation for the index of t. H(S) represents the set of 

transition occurrences, with their valuation, which are in progress during state S. 

• Exit(S) is a state function which returns a 3-tuple (BE, t11,a) where BE is either 

'Begin', either 'End', or 'BeginEnd' if the exit event of the state is the beginning, 

respectively the end of the firing of the transition occurrence · t11, respectively the 

instantaneous firing of the transition occurrence t11 with a valuation a. This 3-tuple 

represents the event which makes quit the state S . 
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Definition 7.21 (Enabled a-instance transition) 
A transition t ET is enabled for a valuation a in a marked net (N, M) which dynamizes a 

relational structure S ijf: 

l)a is a valuation for the variables of the index of t. 

2) s(s(t ):a)= true, in other words the interpretation of the a instance of the formula 

s( t) is true in the structure S. 

3) \f a:a E IA(t) /\ (Ty(a) = iv Ty(a) = p): 

\f e E Tu(a):(e:a) E ExtM(IP(a)) 

In other words, an arc a of type i or p is enabled for a valuation a if for all tuples of 

the arc, each a-instance of the· tuples belongs to the extension of the dynamic 

predicate of the place IP( a). 

4) \f a:a E IA(t) A (Ty(a) = iv Ty(a) = p ): 

\f e E Tu(a):(e:a) Ê ExtM(IP(a)) 

In other words, an arc a of type i or p is enabled for a valuation a if for all tuples of 

the arc, each a-instance of the tuples does not belong to the extension of the dynamic 

predicate of the place IP( a). 

5) ---,:3( e1 :a),( e2 : a): 
e1 E Tu(a) /\ a E OA(t) /\ Ty(a) = o /\ OP(a) = p 

Ae2 E Tu(b) /\ b E OA(t)ATy(b) = ~/\ OP(a) = p 

A ( e1:a) = ( e2 :a) 
In other words, if a transition t is fireable for a valuation a then it does not exist two 

tuples whose a-instances are equal and must, at the terminaison of t, be added in and 

removed from the same place. 

We have defined when a transition is enabled in a PNRTL net, let us now describe the 

effects of firing a transition. We describe those effects on the sequence of states (see definition 

7.23) which represents an execution of a PNRTL net. In the sequel, Si denotes the i1" state of 

the sequence S. 

Definition 7.22 (Timing of the firing of a non-instantaneous transition). 

The firing of a non-instantaneous transition occurrence is characterized by two events : its 

beginning and its end. Begin_Time(t,i), End_Time(t11) denotes the time at which the nth 

occurrence of the transition t begins, respectively ends to be fired. The difference 
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End_Time(tn)-Begin_Time(tn) represents the duration of the fi.ring of tn, let us note it 

Duration( tn) . 

Definition 7.23 (Firing rule of PNRTL) 

A transition t is fireable for a valuation a whenever it is enabled for that valuation. We 

distinct here two cases : 

A) Firing of a non-instantaneous transition : 

The action of firing the nth occurrence of transition t with a valuation a in a state S; at time 

T for a duration d has two effects : one at the beginning of the fi.ring and one at the end of the 

fi.ring. Let us formally discribe those two effects : 

at the Beginning of fi ring ( t: a) in state Si : 
• Exit(S;) = (begin,tn,a), the exiting event of state S; is the beginning of the a-

instance of nth occurrence of t. 
Exit(S;) S h h d S • S;----'-'-'-➔ i+l' t e reac e state is i+J• 

• InTime(Si+J) = T, the time when the state S;+1 is reached is the time of the beginning 

of ( tn: a), OutTime( Si)= T =lnTime( Si+ 1 ). 

• The extensions of the dynamic predicates are changed in the following way : 

l)Vp E {pl:(IP(a) = pl Aa E IA(t))} 

ExtM(s;+)p) ~ ExtM(s)P) 

1{(e:a):3a ~ IA(t) A Ty(a) = i A e E Tu(a) A IP(a) = p} 
. u{(e:a):3aEIA(t)ATy(a)=i AeETu(a)AIP(a)=p} 

2) Vp E P and ~ tpl:(IP(a) = pl A a E IA(t))} 

ExtM(s;+)p) ~ ExtM(s}P) 

• The nth occurrence of t is added to the set of transitions in progress in the reached 

state: 

H(S;+J = H(S;) u(tn,a) 
at the End of fi ring ( t: a) occuring in state Sj : 

• Exit(sJ = (end,tn,a), the exiting event of state Sj is the end of a-instance of nth 

occurrence of t . 
Exi1(sJ 

• Sj--~--+Sj+l' the reached state is Sj+J• 

• InTime(Sj+J) = T +d, the time when the state Sj+J is reached is the time of the end of 

(t11:a) (T=Begin_time (t11), d=duration(t11)), OutTime(Sj)=lnTime(Sj+J) . 

• The extensions of the dynamic predicates are changed in the following way : 

1) Vp E {pl:( OP(a) = pl A a E OA(t))} 
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ExtM(sj+i)(p) ~ ExtM(s)P) 

U{(e:a)::3a E OA(t) A Ty(a) = o A e E Tu(a) A OP(a) = p} 
!{(e:a)::3a ~ OA(t) A Ty(a) =;; A e E Tu(a) A OP(a) = p} 

2) VpePand (lê{pt:(OP(a)=plAaEOA(t))} 

ExtM(sj+i)(p) ~ ExtM(s)P) 

• The nth occurrence of t is removed from the set of transitions in progress in the 

reached state: 

H(Sj+i) = H(sJ I (tn,a) 
B) Fi ring of a instantaneous transition : 

The action of firing instantaneously the nth occurrence of transition t with a valuation a in 

state Si at time T has the following effects : 

• Exit(SJ = (begin_end,tn,a). 

S Exit(S;) ) S. 
• j 1+] 

• InTime(S;+1J=OutTime(S;)=T. 

• To describe the extension of the dynamic predicates in S;+1, we decompose the 

instantaneous firing in two successive phases, the first one describes the effects of 

the input arcs and is followed by the second one which describes the effects of the 

output arcs. For a precise description of these two phases, we use a intermediary 

marking which we note M(J,,tJ• 

• Description of M(1111J : 

1)\/p E {pt:(IP(a) = pl A a E IA(t))} 

ExtM(Int)(p) ~ ExtM(s)P) 

/ {(e:a):=la E IA(t) ATy(a) = i A e E Tu(a) A IP(a) = p} 
u{(e:a)::3a E IA(t) A Ty(a) == i A e E Tu(a) A IP(a) = p} 

2) Vp E P and (lê {pt:(IP(a) = pl A a E IA(t))} 

ExtM(Inr)(p) ~ ExtM(s}P) 

• Description o/ M(S;+1J: 

1) 'v'p E lPl:( OP(a) = pl A a E OA(t))} 

ExtM(s1+1)(p) ~ ExtM(In,i(P) 

U{(e:.a)::3a E OA(t) A Ty(a) = o A e E Tu(a) A OP(a) = p} 
;{(e:a)::3a E OA(t) A Ty(a) =;; A e E Tu(a) A OP(a) = p} 

2) Vp E P and (lê {pt:( OP(a) = pl Aa E OA(t))} 

ExtM(sj+i)(P) ~ ExtM(Int)(P) 

• H(S;+1J=H(S;). 
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Definition 7.24 (Execution of a PNRTL net) 

An execution sequence is a sequence of states obtained by applying the firing rule and that 

respects a couple of supplementary restrictions : 

• if Exit(S;) = (begin,tn,a) then 3j:(j > i) A Exit(sJ = (end,tn,a). ln other words, if 

a non-instantaneous action instance begins then it ends eventually. Thus we do not 

allow actions that fast forever. 

• if Exit(S;) = (end,tn,a) then 3j:(i ~ j < i) A Exit(sJ = (begin,tn,a). Analogously, 

the occurrence of the end of a non-instantaneous action instance implies that that 

action has begun at an earlier state. 
• if Exit(S;) = (begin or begin_end,tn1,a), Exit(sJ = (begin or begin_end,tn2 ,~) 

and i -:f::- j then ni -:f::- n2. ln other words, if an action instance happens at some state, 

it may not happen again even with a different valuation . 
• if Exit(SJ = (begin or begin_end, tn1, a) and i ~ n2 < ni 

then 3j:i~j<i:Exit(SJ=(beginorbegin_end,tn2 ,a). ln other words, the 

numbering of the action instances is continuous. 
• H(SJ = 0. The set of transition instances in progress in the initial state S1 is 

empty. 

• The null transition, as in definition 6. 8, must and can only be fired in terminal 

states. The firing of the null transition is always instantaneous. If there is no 
enabled transition in S; : Exit(S;) = (Begin_end,null,-), Si nuu Si+] and 

M(S;+1J=M(S;). 

• lnTime(S;)~OutTime(S;). The time_ at which a state is quit is always superior or 

equal to the time at which the state is reached. 

• lnTime(S;+1J=OutTime(S;) and lnTime(S0)=0. The lnTime of astate is equal to the 

OutTime of the previous state and the lnTime of the first state is O. 

Definition 7.25 (Semantics of a marked PNRTL net) 
The operational semantics of a marked PNRTL (N, M0 ) is the set of all possible sequences of 

states S whose first state Sa has the marking Mo and other states are obtained by applying the 

firing rule defined in definitions 7.2i, 7.23 and 7.24. The set of possible executions of a 
marked PNRTL net (N, M0 ) is noted E(N,M0) . 

We must still define how the deontic weight of an execution between, two states can be 

computed in the PNRTL formalism. Recall that the weight of an execution between two 

markings in an extended Petri net (see section 5.2.2) is the sum of the weights of the fired 

transitions of the execution. In a PNRTL execution, the firing of a non-instantaneous transition 
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generates two events : a begin and an end event. So the weight of an execution can be defined 

as the sum of the weights of the transitions that begin during the ~xecution. 

Definition 7 .26 (Deontic weight of PNRTL execution). 

The deontic weight (DW) of an execution S between state S; and state Sj of a PNRTL net 

• 

• 

N = (P,T,A,L, w) is calculated asfollows: • 

nw(s;,sJ = :±( w(Exit(sk)) x 8k) 
k=i 

Where w(Exit(Sk)) is the weight of the transition involved in the exiting event of state Sk and 

<\ is equal to 1 if Exit(Sk) is the begin event of a transitionfiring or the begin_end event of an • 

instantaneous firing and is equal to O if Exit( Sk) is the end event of a transition firing. 

7.4 Logica/ formulae of PNRTL 

As we see a PNRTL net as a generator of a set of possible executions E(N,M), we expect 

that the temporal formulae should provide an alternative characterization, more descriptive and 

• 

less operational of the desired set of executions of the PNRTL net. • 

7.4. 1 State formulae 

In the section 7.2, we have partitioned the set of predicates in a static part and in a 

dynamic part. The predicates of the static part can be used to speak about individuals 

properties which do not depend on the state of evaluation. The syntax and the semantics of a 

formula which contains just static predicates is given in definitions 7.3 and 7 .1 O. In this sub­

section, we will only be interested in the logic constructions in relation with the notion of 

PNRTL state. 

Recall that a PNRTL state is composed of five elements: a marking (the extension of each 

dynamic predicate of the system), an entering time (InTime), an exiting time (OutTime), an 

exiting event (the begin, the end or the begin_end of a transition firing), a set of firings that are 

in progress. So in the sequel we will define the syntax and the semantic of predicates and 

fonctions in order to speak about these five elements. 

Syntax 

New symbols : 

Page 7.16 

• 

• 

• 

• 

• 

• 

' 



• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

Chapter 7: The PNRTL language 

The set of dynamic predicates which annotate the places of the PNRTL net of the specification 
is defined as follows : {pr: pr = Pr(p) A p E P}. Those predicates allow us to speak about 

their extension in a state . 

The predicate lnProgress whose arguments are a transition occurrence and a n-tuple of values 

or variables where n is the arity of the index of t. lnProgress(t11,(x,a,b)) expresses the fact that 

the nth occurrence of the transition t which was fired with a valuation a which assigns the 

value of the variable x to the first element of the index of t, the value a to its second element, 

the value b to its last element, is in progress in the state under consideration. 

The state function lnTime : ➔ Real which retums the intput time of the state. Assertions about 

this function will be constructed with usual predicate symbols over real numbers : 

The state function OutTime : ➔ Real which retums the output time of the state. Assertions 

about this function will be constructed with common predicate symbols over real numbers : 

The three predicates Begin, BeginEnd and End whose arguments are a transition occurrence 

and a n-tuple of value or variables. Begin(t11,(x,a,b)) expresses the fact that the begin of nth 

occurrence of the transition t with a valuation a which assigns the value of the variable x to 

the first element of the index of t, the value a to its second element, the value b to its last 

element, is the exiting event of the state un der consideration. End( t11, a) expresses the same 

but for the end of a firing, Begin_End( tn, a) for the instantaneous firing of t11 . 

Semantics 

We will give here the truth value of the constructs previously introduced. Those truth values 

are evaluated in a state. For the other expressions that can be constructed from the structure 

language L, we refer the reader to Definition 7.4, page 7 .1 O. 

Let [8]
5 

denote the truth value of the logic formula 8 in the State S whose entering time is 

lnTime, exiting time is OutTime, marking is M, set of progressing transitions occurrences is H 

and whose exiting event is Exit . 
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[ InProgress(tn,a)]s is true iff (tn,a) E H(S). Note that we can consider a generalization on 

the occurrence number : [ InProgress(t,a)]s is true iff there exists a occurrence number, n, 

such that (tn,a) E H(S). 

[ Begin(tn,a)Js is true iff Exit(S) = (begin,tn,a). Here we can also consider a generalization on 

the occurrence number : [ Begin(t,a)]s is true iff there exists an occurrence number, n, such 

that Exit(S) = (begin,tn,a). 

[ End(tn,a)]s is true iff Exit(S) = (end,tn,a). Here we can also consider a generalization on 

the occurrence number: [End(t,a)Js is true iff there exists an occurrence number, n, such that 

E~it(S) = (end,tn,a). 

[ BeginEnd(tn,a)Js is true iff Exit(S) = (begin_end,tn,a). Here we can also consider a 

generalization on the occurrence number : [ BeginEnd(t,a)]s is true iff there exists an 

occurrence number, n, such that Exit(S) = (begin_end,tn,a). 

For the predicates constructed over real time, we define the interpretation of the two time state 

function: ls(lnTime)=lnTime(S) and ls(OutTime)=OutTime(S). 

[P(x)]s, where Pis a dynamic predicate, is true iff the value of x E ExtM1s/P) where Pr(p)=P. 

In other words, P(x) is true in astate S if the value of x belongs to the tuples contained in the 

place annotated by the dynamic predicate P. 

7.4.2. Real Time Temporal formulae 

A PNRTL net execution can be viewed as a sequence of states as defined in definition 

7.25. Bach state in an execution has two time stamps, the first one InTime represents the (real) 

time at which the net has entered in that state, and the second one OutTime represents the 

(real) time at which the net has exited that state. In the section 6.3.2 we have introduced 

temporal operators to . express properties on the order of states in a sequence. In this sub­

section we will extend to real time the syntax and the semantics of those operators. 

The temporal assertions constructed with the temporal operator of section 6.3.2 may 

constraint the order of possible states but those assertions cannot express constraints about the 

distance in time between states. However, this temporal information, of quantitative nature, is 

often very important (see chapter 2). 
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In the sequel, we will adapt the syntax and the semantics of real time temporal operator 

introduced by Koymans [KOYMANS89], [KOYMANS92]. Variants of those operators are 

also used in many other works: ALBERT [DDDP94b], ERAE [DLT91], RTOSL [SK93], ... 

Example 7.1 (A real-time temporal assertion) . 
G:s:,sec<l> is true if <j> is verified in all future states within t sec2• 

Recall that in our language, a net execution is a sequence of states where each state is 

formed of, among others, a marking and an exiting event. The following figure represents a 

part of a possible PNRTL net execution : 

ln Ti me((S,2)) 

OutTime((S, 1)) 

ln Ti me((S,3)) 

ln Ti me((S,i+ 1)) 

OutTime((S,i)) 

ln Ti me((S, 1 ))=0 OutTime((S,2)) OutTime((S,3)) lnTime((S,i)) 

~ ~ ~ ~ 
State1 Statei 
(S, 1) 

State2 State3 
(S,i) 

(S,2) (S,3) 

OutTime((S,i+ 1 )) 

~ 
State i+1 
(S,i+1) 

Exit((S,i+1)) Exit( (S,2)) Exit((S,3)) Exit( (S,i )) 
Exit((S, 1 )) 

"exit event of state 1" 

Figure 7.9 (A possible execution sequence) 

If we want to give a precise semantics to the formula G:s:,sec<I>, we have to decide which 

timestamp of a state (InTime or OutTime) is taken into account to compute the distance 

between two states . 

t1 t2 t3 t4 

--------L State i ---~· J _ ------_L State j _j -------
Figure 7.10 (The distance between two states) 

In fact (t3 ~ti} may be different of (t4 -tJ. Constraints on the duration between two 

events will easily be defined by measuring. the distance between two OutTime state points. For 

instance, if we consider the following constraint : "Bach firing of t take exactly 5 seconds". We 

would like to write : 
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Exit((S,i))=Begin(t1 .~) Exit((S,j))=End(t1 .~) 

_f~_ State i --+-------- - - - - - - _j_ State j Î' ► 

V..,-c:------- 5 sec. -------4►~V 

State j is distant of 5 seconds from the State i if we consider the two 

OutTime time stamples 

Figure 7.11 (Distance Out-Out between two states) 

Now if we want to express "P(a) may never stand 4 seconds continously", we cannot write 
: P( a) ⇒ F,;,4. (-iP( a)) ( 7 .1). In fact, con si der the following figure : 

Time=0.1 Time=1 Time=2.1 Time=4.4 Time=4.9 

_i_ State i f State i+1---'f'-----State i+2'------Lf ___ State i+3-----1. 

V 'fJ V '1 
P(a) Stands P(a) Stands P(a) Stands P(a) does not stand 

Figure 7.12 (A possible execution sequence) 

If we interpret the formula (7.1) in state i with the semantics of intervals computed on 

OutTime, its truth value is true which is counter-intuitive ! In fact, P( a) stands from time 

t=0. ls to time t=4.4s, i.e., continously during 4.3 s which is not allowed by our constraint. So, 

to solve this problem, we propose to add an exposant to the real-time temporal operators. This 

exposant will allow to determine how to compute the interval (from InTime to OutTime, from 
OutTime to InTime ... ). This exposant is a 2-tuple which elements belongs to the set {i ,o}. 

P(a) ⇒ F;,~'.l(-,P(a)) (7. 2) 

The formula (7.2) expresses the desired constraint since the meaning of the exposant (i,i) 

is : "the interval containts all states that are at InTime within 4 seconds from the InTime of the 

state where the formulais evaluated". Besides, the truth value of the formula (7.2) in state i of 

the figure 7.12 is false which is intuitive! 

In the sequel, we will give a more formal syntactic and semantic definition of our real-time 

temporal operators. 

Page 7.20 

• 
, 1 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 



• 

• 

• 

• 
1 

• 

• 

• 

• 

• 

• 

• 

• 

Chapter 7 : The PNRTL language 

Syntax 

We will use the temporal operators : F (eventually), G (henceforth) and U (untill) for the 

future and P (Sometimes in the past), H (always in the past) and S (since) for the past. As we 

already said, the syntax of those operators will be extended in two ways : a subscribe will allow 

to restrict the meaning of the formula to a set of states which constitute an interval and an 

exposant to specify the precise way to compute intervals of states. 

Let here extend the syntax of the temporal formulae given in section 5.3 : 

(Temporal_formula)::= 

( State _formula) 

Ir X' (Temporal_formula) 

Ir F,(Bound'J r ((Temporal fionnula)) 
(lnterval) -

Ir o(Bound'J r ((Temporal fionnula)) 
(Interval) -

1( (Temporal_ f annula))' U(~;::% r ( (Temporal_ f annula)) 

jr Y' (Temporal_fonnula) 

Ir p(Bound) 
r ((Temporal fionnula)) 

(lnterval) -

I' H(~;;:~◊•((Temporal_fonnula)) 

1( (Temporal_fonnula))r S(~;;:~◊r( (Temporal_fonnula)) 

I' -,r (Temporal_fonnula) 

l(Temporal_formula)r A, v,⇒,~r(Temporal_fonnula) 

(Bound)::= E 

l{(i,i)) j{(i,a)) j{(o,o)) j{(a,i)) 

{lnterval): := E 

J= (Duration symbol) 

J< { Duration symbol) 

j:s; {Duration symbol) 

j2::: {Duration symbol) 

J> {Duration symbol) 
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Additional rule : if Interval is equal to E (the empty interval) then Bound must also be 

equal to E. 

Semantics 

• 

• 

As we already said the intervals are interpreted as sets of states. Let us first give a formai • 

definitions of these sets. 

To alleviate the definition of the interpretation of interval, we introduce a meta-function which 

retums either the function InTime or the function OutTime. 

Notation 7.1 (Meta time function) 

The meta-function mt is defined as follows : mt(i)="lnTime", mt(o)="OutTime" and 

mt(E)="OutTime". The expression mt(i)(s,j) is equivalent to InTime(s,j). 

The truth value of a real-time temporal formula is evaluated with regard to an interval of 

states. In the following definition, we will show how to compute intervals. 
I 

Notation 7.2 (lnterval interpretation function). 

The interpretation of the scope of a real-time formula is a set of states. Let l;m denote the 

interval interpretationfunction. The arguments of thisfunction are: 

1. for p for interval in the futur or in the past. 

2. a sequence and astate position, ex (S,i), where the formulais evaluated. 
3. i!:;~~i) are the subscribe and the exposant of the real-time temporal operator to 

evaluate. 

Intervals in the future : 

I,n
1
(f ,(S,i),/~;~2

)) = {(S, j) E (S ,i .. +00):mt( 82)(S, j)- mt( 81)(S,i) = t} 
I,n

1
(f ,(S,i),/~;,î2)) = {(S, j) E (S ,i .. +00):mt(82 )(S, j)- mt(81)(S,i) < t} 

I,nr(f ,(S,i),/~;.j2
)) = {(S, j) E (S ,i .. +00):mt(82)(S, j)- mt(81)(S,i) ~ t} 

l1n
1
(f ,(S,i),~~;,j2

)) = {(S, j) E (S ,i .. +00):mt( 82)(S, j)- mt(81)(S,i) > t} 
I,n

1
(f ,(S,i),/~;,j2

)) = {(S, j) E (S,i .. +00):mt(82)(S,j)- mt(81)(S,i) ~ t} 

Intervals in the past : 
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Ilnt(P,(S,i),~~;~2
)) = {(s ,j) E (S,1 . .i)'.:mt(ôi)(s,·i)- mt(82)(s.,'j)< t} 

I1n1
(p,(S,i),~~;~2

)) = {(S, j) e (S ,1 .. i):mt(ôi)(S,i)- mt(B~)(S, j)::; t} 
I1n1(p,(S, i),~~;~2

)) = {(S, j) e (S ,1 . .i):mt( ôi)(S, i)- mt(B;)(S, j) > t} 
11nr(p,(S ,i),~~;~2

)) = {(S, j) e (S ,1..i):mt( ôi)(S, i)- mt(82 )(S, j) ~ t} 

Semantics of the operators : 

[ ~!,( -ô)Js.;) is true iff ::l(S,j) E I(J,(S,i),~J:[-üJs.j; is true. 

[ o;n,( -ô )Js.;) is true iff V(S,j) e I(J ,(S,i),~J:[-üJs.j) is true . 

[ ( <1> )u;n, (-ô ns.i) is true ift : 

::l(S, j) e 11jf ,(S,i),~J:[-ô ls.j) is true and 

\/k: i::; k < j:[ <1> t.k) is true . 

[ ~!1(-ô) ls.j) is true iff ::i(s, j-) e I(p,(S ,i),~J:[-ô ls.j) is true. 

[ n;j-ü)Js.;) is true iff V(S,j) e I(p,(S,i),_~J:[-üls.j) is true . 

[ ( <1> )s;nt( 'Ô) ls.i) is true iff: 

::i(s, j) E Ilnt(p,(S ,i),~J:[-ô ls;j) is true and 

\/k: j < k ::; i:[ <1> ls.k) is true . 

7.5 Many-sorted structures 

The use of many-sorted structures is often very benefical. It allows to identify categories of 

objects and to structure a specification in declarations which identify objects and assertions 

which express properties [DTL91]. 

• If we distinguish for a structure different sorts of individuals, the signature has to assign as 

indices not just numbers but strings of sort symbols to predicates and strings paired with a 

single sort symbol to operators indicating the distribution of domains. If A,B, C,D are sort 
symbols, then p(A,B,DJ denotes a relation in (A xB )xD and pA,c:BJ denotes a function from 

• A xC intoB. 

• 

• 

In PNRTL we provide a set of predefined data types : Boolean, Integer, Real, Char and 
String, these types are interpreted over fixed domains. We also give the possibility to the user 

4 The chosen interpretation imposes that the state where 'Ô is true belongs to the specified interval. 
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to construct new data types. Structured data types are built by the analyst using the following 

constructors5 
: 

• a Cartesian product groups in a same structure values of possible different types, the 

constructor of this type is : CP. 

• A Set groups dinstinct values of a same type, the constructor is : SET. 

• A Bag is a set where the multiple membership is allowed, the constructor for the bag 

is: BAG. 

• A Sequence is a bag where elements are ranked, constructor: SEQ. 

• An Union of several types include data of all types member of the union, constructor 

: UNION. 

• An Enumeration is a static structure enumarating some particular value, constructor 

:ENUM. 

A set,of predefined operators to work on the structures which can be constructed, is also 

provided to the analyst. For instance, the operators Card applied to a set retums its 

cardinality. The complete list of operators is given in the [DDDP94b]. 

Let now define the syntax of declarations and types constructions. 

(Type_ Construction)::= 

Sort ( Constructed_ Type_ Name) : (Type_ Name) 

I' CP[' (Type_Name)(,(Type_Name))* ']' 

,, SET[' (Type_Name)']' 

I' SEQ['(Type_Name)']' 

I' BAG[î(Type_Name)']' 

,, U~IoN[' (Type_ Name)(, (Type_ Name) )* ']' 

I' ENUM[' (Constant_ Symbol)(, ( Constant_ Symbol)) * ']' 

(Type_ Name ): : = ( Predefined _Type_ Naine) 1 ( Constructed _Type_ Name) 

(Predefined_Type_Name)::= Real I Boolean I Integer I Char I String 

(Constant_ Declaration) 

: : = Const (Constant)(, (Constant))*:( Type_ Name )( x( Type_ Name) )* 

5 These constructors are taken from the formal language ALBERT. 
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. ( Static _ Predicate _ Decl) 

: : = St_ Pred ( Predicate )(;'( Predicate) )*: (Type_ Name )( x(Type _ Name) )* 

( Dynamic _ Predicate _ Decl) 

: : = Dyn _ Pred ( Predicate )(, ( Predicate) )*: (Type_ Name )( x( Type_ Name) )* 

(Transitiim_Declaration) 
6 

:: =Trans(Transition)(, (Transition))*: (Type _Name )(x(Type _Name ))* 

( Function _ Declaration) 

: : = Funct( Function )(, ( Function) )*: (Type_ Name )( x( Type_ Name) )* 

(Variable_ declaration) 

: := Var(Variable )(,(Variable))* :(Type_Name)(x(Type_Name) )* 

The introduction of types in PNRTL imposes some additional constraints which must be 

fulfilled by a well-formed specification. Moreover the semantics of the language is affected by 

the introduction of types . 

Definition 7.27 (Type well-formed specification) 

A specification is said type well-formed if it respects the following rules : 

• The constructions of types respect the BNF rule given above. 

• Ali variables, constants7
, predicates, functions and transitions which appear in a 

specification must be declared. · 
• For al! function applications f (ti,t2 , ••• ,tJ for which the function declaration is 

Funct f·'t 1X't2X .. X'tn➔'t, the term ti must be declared of type 't;, the result of the 

function fis of type 't. 
• For all predicate application P (t 1,t 2 , ••• ,t n) whose predicate declaration is St_Pred, 

Dyn_Pred P:'t1X't2X .. X'tn, the term ti must be declared of type 't;. 

• For all equalities t; = tj, the type of ti must be equal to the type of tj . 

6 This declaration schema allows to declare the types of the variables appearing in the index of the transition. 
7 Sorne constants don't need to be declared, it is the case for the constant representing elements of the 
predefined types. 
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The semantic of the language is also affected · by the introduction of types : the types 

introduced must be interpreted and the semantics of the quantifier is modified. The 

interpretation of the predefined types is done on fixed domain : 

• /J('Integer')8 is the set of integer nu~bers. 

• /J('Real') is the set of real numbers. 
• /J('Boolean') is the set {True ,False} of boolean values. , 

• JJ'Ch ') . th t {' ' 'b' 'A' 'B' ' ' '·' } f h t J\ ar 1s e se a , , ... , , , ... , , , , , .. o c arac ers. 

• /J('String') is the set of words which can be constructed by concatenation of 

elements of the set of characters. 

The semantics of the quantified assertions is modified in the following way : 
• [\fxP]s is true iff for all values d E Type(x):[ P:{x ~ d}Js is true. 

• [::lxP]s is true iff there exists a value d E Type(x):[ P:{x ~ d}Js is true. 

The fonction Type retums the set of values of the same type as that of the term given as 

argument. 

7.6. A specification in separate sub-nets 

In the previous specification examples, a single net was used to represent the dynamic part 

of the modeled system. This was possible because the modeled systems were very simple. But 

if one specified a complex system with a single net, the result could be unreadable. So to allow 

more readable specifications, we allow the analyst to split his specification in separate sub-nets. 

This possibility is only a graphical and syntaxical facility, the semantics of a specification is 

evaluated in aggregating sub-nets specifications. 

In the sequel of this section, we will introduce the new concepts with an illustrative example. 

Example 7.2 (An other producer - consumer system) 

Let consider a system made_ of two sets of components. The first set contains 4 producer 

machines and the second 4 consumer machines. A consumer machine may send a request for 

a piece of 2 différent types to the set of producer machines. Each of those requests must be 

served within 5 seconds and in order of arrivai (FIFO ). As supplementary constraints, we 

impose that a cçmsumer machine may not order a piece if it waits for a previous one or if it 
works on a piece, a piece ready to be' consumed must be handled within 1 second, the final 

work on this piece lasts exactly 1 second. 

8 h('Type_Name) denotes the type interpretation fonction applied to 'Type_Name'. · 
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An intuitive way to separate the net into two sub-nets in this case is to model the set of 

producer machines in one net and the set of consumer machines in one other. But if we model 

this problem into two separate sub-nets, we must find communication means to allow an 

interaction between the two sets of compc_ments. The communication can be realized by shared 

places, i.e., places which belong to both sub-nets or shared transitions . 

A place which belongs to many separate sub-nets is annotated by the same dynamic 

predicate in each sub-net. Futhermore, for reasons of readability, it will be represented by a 

grayed circle . 

p 

Figure 7.13 (A shared place representation) 

Likewise a transition that belongs to many separate sub-nets is annotated by the same name, 

selector and have the same set of arcs . 

Let us specify our illustrative example : 

Sm:t ProdMachine=ENUM[pl,p2,p3,p4] 
% Identifier of the 4 produçer machines 

ConsMachine=ENUM[ c 1,c2,c3,c4] 
% Identifier of the 4 consumer machines 

TypeintPiece=ENUM[tl ,t2] 
% The two types of intermediary pieces 

TypeProdPiece=ENUM[ppl,pp2] 
% The two types of final pieces 

St Pred CanProduce : ProdMachine X TypePiece 
% The static predicate CanProduce(m,t) states that the machines 

m can produce a piece of type p . 

Dyo Pred Free_To_Demand: ConsMachine 
Free_To_Produce : ProdMachine 
Piece_Asked, Piece_To_Consume: ConsMachine X TypeintPiece X Integer 
Produced_Piece : TypeProdPiece X Integer 

Trans Demand : ConsMachine X TypeintPiece X Integer 
· Produce : ProdMachine X ConsMachine X TypeintPiece X Integer 

Consume : ConsMachine X TypeintPiece X Integer 

Function Manuf : TypeintPiece ➔ TypeProdPiece 
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Ym: md, md 1 : ConsMachine 
m : ProdMachine 
t, t1 : TypelntPiece 
n, n1 : Integer 
tf : TypeProdPiece 

Static Part 

(al) Vm: CanProduce(m,tl) 

Chapter 7: The PNRTL language 

% All producer machines can produce the type t1 piece. 
(a2) CanProduce(pl,t2) A CanProduce(p2,t2) 

A -, CanProduce(p3,t2) A -, CanProduce(p4,t2) 
% Only the producer machines p 1 and p2 can produce the 

intermediary piece of type t2 
(a3) Manuf(tl)=ppl A Manuf(t2)=pp2 

% Definition of the Manuf function 

Dynamic part 

Piece_ To_Consume Consume(md,t,n) Produced_Piece 

<md,t,n> <Manuf(f),n> 

• 

• 

• 

• 

• 

Demanct{Hrcf.tn) 
<md,t,n> • 

Figure 7.14 (The consumer machines) 

(a4) Begin(Demand,(md,t,n))➔X(G(-,BeginEnd(Demand,(md,t,n)))) 
% Uniqueness of a demand 

(a5) Piece_To_Consume(md,t,n) ➔ Fj:~~(Begin(Consume,(md,t,n)) 
% A piece to consume does not stay more than one second before being 
handled 

(a6) Begin(Consume,(md,t,n)) ➔ Kisec(End(Consume,(md,t,n)) 
% The action Consume takes exactly 1 second 

(a7) Init ➔ V md : Free_To_Demand(md) 
Init ➔ V tf,n: -,Produced_Piece(tf,n) 
Init ➔ V md,t,n : -,Piece_To_Consume(md,t,n) 
Init ➔ V md,t,n: -,Piece_Asked(md,t,n) 

% Initializations 
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Chapter 7: The PNRTL language 

Piece_ To_Consume <md,t,n-.e 
roduce(m,md,t,n) 

Selector : CanProduce(m,t) ---
<md,t,n> 

Piece_Asked 

Free_ To_Produce • Il 
Figure 7 .15 (The producer machines) 

(a8) Piece_Asked(md,t,n) A 
F(---,Piece_Asked(mdl ,tl ,nl)AX(Piece_Asked(mdl ,tl ,nl))) 

➔ F ( Begin(Produce,(md,t,n)) A F(Begin(Produce,(mdl,tl,nl))) 
%FIFO 

(a9) Piece_Asked(md,t,n) ➔ Fji~c (Piece_To_Consume(md,t,n)) 
% An required piece in produced within 5 seconds 

(alO) Init➔ V m: Free_To_Produce(m) 
% Initially, all machines are free to produce 
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Chapter 8 

A case study in PNRTL 

8.1 Description of the case 

Three libraries decide to cooperate in order to offer their customers a maximum choice of 

readings. They intend to build a net which will allow someone to borrow or consult as well 

local books as books belonging to other libraries. The transfer of books between the different 

libraries is ensured by a van. Here are the rules that the borrowers and the libraries undertake 

to respect: 

• A book belongs to a single library, but can also be ordered by people of other libraries . 

• People are only allowed to go in the library in which they are registered. 

• When an ordered book is arrived, it r~mains 48 hours in (for the one who has ordered the 

book to corne and take it). Over this period, it is resent to the owner-library. If the user 

who has ordered the book does not corne, he receives a fine (this behavior is clearly 

subideal). 

• . A library can send a book to another library by the intermediary of the van system. The van · 

service en sures that a book is transfered within 1 day. 

• People can borrow maximum 3 books at the same time except for the students who are 

entitled to keep 4 readings. 

• The duration of a borrowihg is 30 days for a book of a local library and 15 days for a book 

of another library . 
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• Every reading that is retumed late gives rise to a fine (retuming a book too late is clearly a 

subideal behavior). 

• A fine must be paid before any new borrowing and within 30 days (from the moment it 

was administered). 

• Damaging a book is a very subideal behavior. l.Jnfortunately, a control can not be made at 

the library and thus damaging a book does not give rise to a fine. 

• When an user makes a demand, the library must reply to its demand within 2 minutes. 

• When a library li receives a demand for a book from another library h, the library h must 

reply within 2 seconds. 

In the following we present the specification of the case. The specification is commented. 

8.2 Specification of the case 

We have divided the specification of the system in three main components : the users, the 

libraries and the van system. The dynamic behavior of the users and the van system is 

presented by a single net. The behavior of the libraries is too complex to be presented in a 

single net. So we have divided the specification of their behavior in four subnets which 

represent 'macro' -actions of a library. These four views are : 

Sort 

• Library-User-Demand : this subnet specifies how a library must handel an user's 

demand for a book. 

• Library-User-Retum: this view shows what a library must do when an user retum a 

book. 

• Library-Demand-Inter-Libraries : this subnet specifies how a library must reply to a 

demand of another library for a book. 

• Library-Van : this subnet defines the behavior of a library when it receives books of 

the van system. 

TLib = ENUM[Library _l, Library _2, Library _3] 
% There are three libraries in the system. 

TBook = CP[Id:Integer, Title:String, Author:String, Owner:TLib] 
% A book is identified by Id, has a Title, an Author and an Owner library. 

TUser = CP[Id:Integer, Naine:String, Lib:TLib, Student:Boolean] 
% An user is identified by Id, has a Name, is member of a library Lib and is a student 
or not. ' 

TReply = ENUM[OK,KO] 
% OK is a positive reply white KO is a negative one. 

TDate = Real; 
% A date is represented by a real number. 

Page 8.2 

• 

• 

• 

• 

• 

• 

• 

• 

•• 

• 

• 

• 



• 

• Dyn_Pred 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

Chapter 8 : Case Study in PNRTL 

Returned_Book: TBook x TLib x TUser x Iri:t~ger x TDate 
% Returned_Book(b,l,u,n,d) means that the book b has been returned to the library I 
by the user u, d is the date b was borrowed and n serves in an identification 
mechanism 

Book_To_Take: TBook x TLib x TUser x Integer x TDate 
% Book_To_Take(b,l,u,n,d) means t/:iat the user u can take the book b in the library 
I, d represents the moment from which the book is available, n serves in an 
identification mechanism. 

Demand: TBook x TLib x TUser x Integer 
% Demand(b,l,u,n) means that the user u wants to borrow the book b, the demand is 
issued to the library I, the 2-tuple (u,n) is an identifier for a user's demand. 

Reply: TReply x TBook x TLib x TUser x Integer 
% Reply(r,b,l,u,n) means that the library I has send the reply r (OK or KO) to the 
demand (u,n) of an user ufora book b. 

Fine: Integer x TUser x Integer 
% Fine(m,u,n) means that the user u must paya fine of amount m, n serves in an 
identification mecanism. 

Borrowed_Book : TBook x TLib x TUser x Integer x TDate 
% Borrowed_Book(b,l,u,n,d) means that the book bis borrowed by user u since d and 
has been borrowed at the library I, n serves in an identifier mechanism . 

Credit: TUserx Integer 
% Credit(u,n) means that the credit of user u is n. 

Demand_Cr_OK : TBook x TLib x TUser x Integer 
% Demand(b,l,u,n) contains demands (u,n) whose user u has a sujficient credit 

Demand_Int_Lib: TLib x TBook x TLib x TUser x Integer 
% Demand_lnt_Lib(l2,b,li,u,n) means that the library 12 has received a demandfor 
a book b by the intermediary of the library li for an user u, n serves in an identifier 
mechanism. 

Reply_Int_Lib: TLib x TReply x TBook x TLib x TUser x Integer 
% Reply_lnt_Lib(l2,r,b,li,u,n) means that the library 12 has sent a reply r to the 
library li for a book b asked by user u . 

Book_In_Shelf: TBook x TLib 
% Book_ln_Shelf(b,I) means that the book b is in the shelves of the library l. 

Book_To_Put_Away: TBook x TLib 
· %Book_To_Put_Away(b,I) means that the book b must be put away in the shelves of 
the library l. 

Book_To_Send : TB09k x TLib x TLib x TUser x Integer 
% Book_To_Exp(b,li,12,u,n). If owner(b)=l2 then it means that the library li wants 
to return the book b to its library 12. If owner(b):f:.12 then it means that the library li 
send the book b to the library [2 because the user u has asked to borrow the book b, 
n serves in an identifier mechanism . 

Book_Arrived: TBook x TLib x TUser x Integer 
% Book_Arrived(b,l,u,n) means that a book b has been brought in library l by the 
van. If owner(b)=I then the book can be put away in the shelf. If owner(b):f:.l then the 
book has been ordered by the user u (demand identified by (u,n)) . 
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% Actions of the USERS 

Retum, Take, Damage: TBook x TLib x TUser x Integer x TDate 
% Return : an user returns a book. Take : an user takes a book that he has 
demanded. Damage is a sub-ideal behavior. 

Ask: TBook x TLib X TUser x Integer 
% Ask(b,l,u,n) means that an user u makes a demandfor the borrowing of a book bat 
its library l. (u,n) identifies an user's demand. 

Read: TReply x TBook x TLib x TUser x Integer 
% Read(r,b,l,u,n) : means that the user u reads the reply r of the library l for the 
book b, the replyfollows the demand (u,n). 

Pay _Fine : Integer x TUser x Integer 
% Pay_Fine(a,u,n) means that the user u pays a fine of amount a, n serves in an 
identification mechanism. 

% Actions of the LIBRARIES 

VerifCl : TBook x TLib X TUser x Integer X Integer 
% Verif.Cl(b,l,u,n,c) makesfollow a demand of an user u (which has a credit c>O)for 
a book b. 

VerifC2: TReply x TBook x TLib x TUser X Integer x Integer 
% VerifC2(r,b,l,u,n,c) sends a negative reply (KO) to an user u which wants to 
borrow a book b but has no more credit (c=O). 

Replyl: TReply x TBook x TLib x TUser x Integer X Integer 
% Replyl(r,b,l,u,n,d) :- if the book b asked by user u is present in the shelves of 
library l then reply r=OK and the library l transfers the book from the shelf to the 
user. 

Reply2 : TReply x TBook x TLib x TUser x Integer X Integer 
% Reply2(r,b,l,u,n) : if an asked book in not in the shelves reply r=KO to the user 
which wants the book. 

Decrease_Cr: TUser x Integer 
% Decreases the credit of an user when the library gives him a book. 

Ask_Int_Lib: TLib x TBook x TLib x,TUser x Integer 
% Transfers a request to another library. 

Give_Fine : Integer x TUser x Integer 
% Give_Fine( a,u,n) : Gives a fine of amount a to the user u, n serves as identifier 
mechanism. 

Take_RB 1 : TBook x TLib x TLib x TUser x Integer x Integer x TDate 

x Integer 
% Takes a returned book of another library and put it in the books to send. 

Take_RB2: TBook x TLib x TUser x Integer x Integer x TDate x Integer 
% Takes a book of the library returned by an user. 

Put_Away_Too_Late: TBook x TLib x TLib x TUser x Integer x Integer 

x TDate 
% Puts in the books to resend an ordered book whose user is not corne over 48 hours. 

Put_Away _Shelf : TBook x TLib 
% Put a book of the library lin its shelf. 

Reply_Intl: TReply x TLib X TBook x TLib x TUser x Integer 
% Positive reply (OK) to a demand of another library and sending the asked book 
via the Book_To_Exp place. 
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Reply_Intl: TReply x TLib X TBook X TLib x TUser x Integer 
% Negative reply (KO) to the demand of another library. 

Sortl, Sort2 : TBook x TLib x TUser x Integer 
% Sorting of the books arrived by the van. 

%Action of the VAN 

Transfer: TLib x TBook X-TLib x TUser x Integer 
% Transfer(ll,b,12,u,n): transfer of the book b from library Il to 12. 

Static part 

Var bl,b2: TBook 

ul,u2: TUser 

(s1) -,:3bl,b2 ( blt=b2 A Id(bl)=Id(b2)) 
% Id is an identifier for a book 

(s2) -,:3ul,u2 ( ult:u2 A Id(ul)=Id(u2)) 

Dynamic part 

Var b: TBook; 

u: TUser; 

1: TLib 

n: Integer 

d: TDate 

% Id is an identifier for an user 

Init ➔ V b (In_Shelf(b,owner(b)) 

% Initializations 

% At the initialization, ail books are in the shelves of their library. 

Init ➔ Vu ( Student(u) ➔ Credit (u,4)) 

Init ➔ Vu (-,Student(u) ➔ Credit (u,3) ). 
% At the initialization, the credit of an user which is student is 4, and 3 for a non 
student. 

Init ➔ V(b,1,u,n,d)(-,Retumed_Book(b,1,u,n,d)) A V(b,1,u,n,d)( -,Book_To_Take(b,l,u,n,d)) 

A ... A V(b,l,u,n) (-,Book_Arrived(b,1,u,n)) 

Var b,bl : TBook 

1,11: TLib 

u: TUser 

% At the initialization, apart Credit and In_Shelf, the extention of ail dynamic 
predicates is empty. 

% User behavior 

. n,n 1,n2,a : Integer 
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d: TDate 

Demand Reply 

Retumed_Book Book_To_Take • 

• <b,1,",~ • IR~ 
Fine 

• <b,l,u,n,d> 

Return 

d> '•"•" d> As~llb(") 

•~T~ 

<b,l,u,n,d> 

<b,l,u,n,d> 

DW:1~,n,d> 

Dama~l,u,n,d> 

% Supplementary constraints 

(ul) BeginEnd(Ask,(b,l,u,n)) ➔ X(G(--,BeginEnd(Ask,(bl,11,u,n)))) 
% the 2-tuple (u,n) is identifier for a demand of an user. 

(u2) Book_To_Take(b,l,u,n,d) A Owner(b)=l 

➔ F=i-:2 (BeginEnd(Take_Book, (b,1,u,n,d)) 
% When an user may borrow (his request has been accepted) a book of its library, he 
takes it immediately. 

(u3) Reply(r,b,l,u,n) ➔ F=~·:.:C (BeginEnd(Read, (r,b,l,u,n)) -
% An user reads immediately a reply sent to him by its library. 

(u4) Begin(Ask,(b,l,u,n)) ➔ X(--,BeginEnd(Ask,(bl,11,u,nl))U(Reply(r,b,l,u,n))) 
% An user cannot do a demand if the previous one has not yet been replied. 

(u5) Fine(a,u,n) ➔ F~~tJ. (BeginEnd(Pay_Fine,(a,u,n))) 
% A fine must always be paid within 30 days (strict obligation). 

(u6) Fine(a,u,nl) ➔ --,BeginEnd(Ask,(b,l,u,n2)) 
% An user which must paya fine cannot demand to borrow a new book. 

% General comments. The grayed places represent communications means between 
an user and its library. The transitions Pay_Fine and Damage have a positive 
deontic weight: 1 and JO. lnfact, Pay_Fine is strict/y obligatedfor an user that has 
received a fine. Thus preferred eiecutions of an user are executions where he does 
not receive fines : executions where he does not retum a book too Late and where he 
always cornes take an ordered book (these two actions are thus modeled as subideal). 
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Var b: TBook 

1,12: TLib 

u: TUser 

n,c : Integer 

d: TDate 

Chapter 8 : Case Study in PNRTL 

% Library behavior 

% View: Library-User-Demand 

Demand 

Demand_Cr_O 

<OK,b,l,u,n> 

<b,l,u,n,d> 

Book_To_Take 

<r,b,l,u,n> 

Owner(b)=I ===-:_===Make_Follow_Resp 

Reply1 

<b,l,u,n> 

,---L, I2=0wner(b) 
~ "not(l=Owner(b)) 

<I2,r,b,l,u,n> 

<12,b,I,~ 

Demand_lnt_Lib 
eply_lnt_Lib 

% Supplementary constraints 

(10) Begin(Replyl ,(r,l,b,u,n,d)) v BeginEnd(Make_Follow _Reply ,(11,0K,b,12,u,n)) 

~ X(BeginEnd(Decrease_ Cr,( u,c)) 
% The credit of an user is decreased when he receives a positive reply to a demand 
of borrowing and only in this situation. 

(Il) Demand(b,l,u,n) A Y(---,Demand(b,l,u,n)) ➔ F!,~·2n (Reply(r,b,1,u,n)) 
% A library must always reply to a demand of one of its us ers within 2 minutes . 

% General comments. To simplify the subnet we have added the transition 
Decrease_Cr. In fact, this transition replaces arcs from transition Reply/ and a 
subdivision of Make_Follow_Reply in two transitions with one (for a positive reply) 
linked to the place credit. The firing of this transition is defined by the constraint 
(LO) . 
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1,11,12 : TLib 

u: TUser 

n,c : Integer 

d: TDate 

Chapter 8 : Case Study in PNRTL 

The two transitions Verifl and Vèrij2 are connected to place Credit by an arc to type 
p ( see chapter7 for a formai definition), this also simplifies the net. · 
Constraint (Il) is a typical declarative constraint that is inexpressible in usual Petri 
net based languages. 

% View: Library-User-Return 

Retumed_Book 
Book_To_Take 

<b,l,u,n,d> 

<b,l,u,n,d> 
<b,l,u,n,d> 

not(owner(b))=;....I _ _,___T~ake_RB1 

Put_Away _ Too_Late 

<b,l,Owner(b),u,n> 
Give_Fine Owner(b)=I -~-~ 

Take_RB2 

<b,I> 

Book_To_P<rt_Away 6 <U,C> 

<b,I> .--4-PUI_Away_Shelf 

<b,I> 6 Boof<.Jo_Shelf 

Credit 

(12) P'?:~s~! (Book_To_Take(b,1,u,n,d)) A Book_To_Take(b,l,u,n,d) 

Book_ To_Send 

% Supplementary constraints 

H BeginEnd(Put_Away_Too_Late,(b,1,u,n,d)) 
% Over 48 hours, an ordered book when user is not came, is returned to its own 
library. 

(13) BeginEnd(Put_Away _ Too_Late,(b,l,u,n,d)) ➔ F(BeginEnd(Give_Fine,( 100,u,n))) 
% If an user does not came and take the book he has ordered, the library 
administrates him a fine of 100. 

Page 8.8 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 



• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

Chapter 8 : Case Study in PNRTL 

(14) BeginEnd(Take_RBl,(b,1,u,n,d)) A OutTime = x A ( x-d > 15 d) 

➔ F =Osec(BeginEnd(Give_Fine,(200,u,n)) 
% If a borrower returns a book of another library too late ( over I 5 days ), the library 
immediately administrates him a fine of 200. 

(15) BeginEnd(Take_RB2,(b,l,u,n,d)) A OutTime = x A ( x-d > 30 d) 

➔ F=osec(BeginEnd(Give_Fine,(200,u,n)) 
% If a borrower retums a book of the library too late (over 30 days), the library 
immediately gives him a fine of 200. 

(16) Begin(Put_Away _Shelf 0 ,(b,l)) ➔ F 0m;,i(End(Put_Away _Shelf n,(b,l)) 
% The action of putting away a book in its shelf lasts at most 5 minutes. 

(17) Y(-,Book_To_Put_Away,(b,l)) A Book_To_Put_Away,(b,1) 

➔ F}!:) (Begin(Put_Away _Shelf,(b,l)) 
% A book stays at most one day before being put away. 

(18) Y(-,Returned_Book(b,l,u,n,d)) A Returned_Book(b,1,u,n,d) 

➔ Fs:~:Jn (BeginEnd(Take_RBl,(b,l,u,n,d)) v BeginEnd(Take_RB2,(b,l,u,n,d))) 
% A returned book is treated within I minute . 

(19) BeginEnd(Give_Fine(a,u,n)) 

➔ P ( (BeginEnd(Take_RBl,(b,11,12,u,n,d)) A (OutTime-d>15d)) 

v (BeginEnd(Take_RB2,(b,ll,12,u,n,d)) A (OutTime-d>30d)) 

v (BeginEnd(Put_Away_Too_Late,(b,ll,12,u,n,d))) ) 

Var b: TBook 

11,12: TLib 

u: TUser 

n: Integer 

r: TReply 

% If a library gives a fine to an user u then u has returned a book too late or has not 
corne to take the book he had ordered. 

% General comments. In this subnet, we have taken the opposite approach for the 
increasing of the user credit to compare with the approach taken for the decreasing 
of the credit (previous subnet). This underlines a particular feature of our language: 
a lot of constraints can either be expressed by logic fonnulae or by graphical 
constructions. 

% View : Library-Demand-Inter-library 
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Demand_lnt_Lib 

<I1,b,I2,u,n> 
<I1,b,12,u,n> 

<b,I1> 
Reply_lnl1 

-~~~ Reply_lnl2 

Book_ To_Send 
<11, ,U,n> 

Book_ln_Shelf 

<K0,I1,b,I2,u,n> 
<OK,I1,b,I2, u,n> 

Reply _1 nl_Lib 

% Supplementary constraints 

(110) Demand_lnt_Lib(l l ,b,12,u,n) A Y(-,Demand_Int_Lib(l l ,b,12,u,n)) 

Var b: TBook 

1: TLib 

u: TUser 

n: Integer 

d: TDate 

~ F~~·~c (Reply_lnt_Lib(r,11,b,12,u,n)) 
% An inter-library demand is always replied within two seconds (reponse time). 

% General comments. · The use of the arc of type p ( see chapter 7 for a formai 

definition) is very benefical. Without this type of arc we should add a complementary 
place to place Book_ln_Shelf. 

% View : Library - Van 
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Book_To_Take 

~ <b,l,u,n,dl> Sort2 

not(Owner(b }=I} 

<b,l,u,n> 

Owner(b)=I 

vl,u,n> 

CY.,nrSort, 
Book_ To_Put_Away 

(111) Book_Arrived(b,l,u,n) A Y(---,Book_Arrived(b,l,u,n)) 

Chapter 8 : Case Study in PNRTL 

Book_Arrived 

% Supplementary constraints 

➔ F~~:) (BeginEnd(Sort 1,(b,l,u,n)) v BeginEnd(Sort2,(b,1,u,n,d))) 
% The books brought by the van are sorted within an hour. 

(112) BeginEnd(Sort2,(b,l,u,n,d)) ➔ ( d=OutTime) 

% Van Behavior 

% The borrowing time of an ordered book is the time when it becomes available for 
the user . 

Book_Arrived 

<b,I2,u,n> 

Transfert 

<I1,b,I2,u,n> 

Book_To_Send 
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% Supplementary constraints 

(vl) Book_To_Exp(ll,b,12,u,n) A Y(-,Book_To_Exp(ll,b,12,u,n)) 

➔ F~~i(Book_Arrived(b,12,u,n)) 
% A book is always transfered within a day. 

8.3 Conclusion 

• 

• 

• 

• This case study has demonstrated the ability of .the PNRTL language for specifying composite 

concurrent systems. The main advantage of the language is the possibility given to the analyst 

to specify operational constraints in an operational style (net) and declarative constraints in a 

declarative style (logical formulae). The utility of the different types of arcs and of the real-time • 

temporal operators has been underlined throughout the comments in the specification. Strict 

deontic aspects can easily be expressed by logic formulae and sub-ideal behaviors by deontic 

weights. 

• 

• 

• 

• 

• 
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Chapter 9 

Desired executions of a PNTL specification 

9. 1 Introduction 

In the previous chapters, we explained that the modeling of complex constraints with Petri 

nets often results in a too operational specification making the net too complicated and thus 

hardly readable. Therefore, we proposed to attach to each Petri net a set of logic temporal 

formulae expressing such constraints. The semantics of those formulae was given as the 

reduction of the set of possible executions and of the possible markings of the Petri net. In­

other words, among the markings belongihg to the reachability set of a Petri net, only some of 

them are accepted. But also the set of execution paths must be reduced into a subset which 
\ 

verify all the logic formulae which accompany the net . 

Here, we present some techniques to reduce the set (finite or not) of possible executions 

paths into the set of the 'desired executions paths (these are the ones respecting ail the logic · 

formulae) for a specification in PNTL. Tho se techniques are based on the finite automata 

[TRAK&BARZ73] and the formal languag(, [SALO MAA 73] theory. Then, we expose other 

techniques for the testing of temporal properties on sets of infinite executions paths. And 

finally, we explain how we can extend the linear temporal logic by means of automata . 



. Chapter 9 : desired executions of a PNTL specification 

9.2 lnfinite executions on bounded Petri nets 

In the sequel, we always assume that the Petri nets studied are bounded - this hypothesis 

is necessary to use the automata theory. This means that the set of reachable markings is not 

infinite (but the set of possible firing sequences may be infinite). Remember that an execution 

of a Petri net is viewed as an infinite sequence of states. For Petri nets with terminal 

marking( s ), we introduced a nul/ transition that can and must oitly fire in terminal states and 

whose firing results in the same marking. For instance, two possible infinite sequences of the 

net in figure 9.1 are : s1=t1t1ti ... t1 ... and s2=t1t1 ... t1hht3 ... h The boundèdness of the net 

guarantees that the mapping of a Petri net into an automaton is possible. 

Initial marking = (1 1 0) 

Figure 9.1 (a bounded Petri net) 

9.3 Overview of the automata theory 

9.3.1 Finite automata on finite words 

A finite automaton [MAND&GHEZ87, EILENBERG74] is a machine that can reach a 

limited number of states, and which manipulates symbols received as input. Every handling of 

symbol affects the state of the auto maton. 

Definition 9.1 (Finite automaton) 
Afinite automaton is a 5-tuple A= (I,,Q,8,I,F) 

where I, is an alphabet (that is afinite set of symbols). 

Q is a fini te set of states. 
ô: Q x I, ➔ Q* is the next state function (giving, for each state and each symbol, the 

possible resulting states of the automaton)1. 

1 If the automaton is deterministic, the next-state fonction is : ô: Q XI, ➔ Q 
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Chapter 9 : desired exécutions of a PNTL speci.fication 

1 is afinite set of initial statès (I c Q). 

Fis afinite set of terminal states (F c Q) . 

An automaton A defines a set of words that are accepted by the automaton. This set of 

words is defined from the notion of execution of an automaton on a word . 

Definition 9.2 (Execution of an automaton on a finite word) 

An execution2 of an automaton A on a finite word w = ao a1 . . . an -1 is a finite sequence of 

states cr( w) = so s1 ... Sn such as: 

- 'v'i e [O,n]:si e Q 

- SO E / 

- 'v'i e [1,n ]:s; e 8(s; - 1,a; -1) 

Definition 9.3 (Admitted execution on a finite word) 

An execution on a finite word w is admitted if the last state resulting form it, belongs to the 

setF: 

cr(w) = Sa Si ... Sn is admitted <=> Sn E F 

Definition 9.4 (Accepted word) 

A word w is accepted if there exists on this word, an execution which is admitted: 

w is accepted <=> 3cr e Q*: cr(w) is admitted 

Definition 9.5 (Language of an automaton) 

The language L(A) of an automaton A is the set of words accepted by A: 

L(A) = {w e 1:*:w is accepted} 

9.3.2 Finite automata on infinite words 

The Büchi automata [THAYSE89, DA VIS&WEYUKER83] - or finite automata on 

infinite words - are manipulating infinite sequences of symbols. They allow us to define in a 

formal way a set of infinite words. As the executions are infinite, terminal states don't exist 

anymore. They are replaced by accepting3 states, that is to say obligated states that must 

appear infinitely often in any execution of the automaton. 

2 It is not a function, except if the automaton is deterministic. 
3 The word 'accepting' has been preferred to the one of 'final', although this last word can also be found in the 
literature. 
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Definition 9.6 (Büchi automaton) 
A Büchi automaton is a 5-tuple A = (1:, Q, 8, I, F) 

where 1: is an alphabet. 

Q is a fini te set of states. 

8: Q x 1: ➔ Q* is the next state function. 

I is afinite set of initial states (I c Q). 

Fis afinite set of accepting states (F c Q). 

Definition 9. 7 (Execution of an automaton on an infinite word) 

An execution of an automaton A on an infinite word w = ao a1 a2 . . . is an infini te sequence of 

states cr(w) = so s1 s2 ... such as: 

- Vi~O:s;eQ 

- So E / 

- Vi>O:s;eô(s;-1,Œ-1) 

Since an execution is infinite (thus without terminal state), we need to modify the notion of 

admitted execution : 

Definition 9.8 (Admitted execution on an infinite word) 

An execution on an infini te word w is admitted if it contains an infinite number of occurrences 

of the same accepting state: 

cr(w) = sa s1 s2 ... is admitted <=> :lq1 e F,:l infinity of i e N:s; = q1 

Notations and example: 

0 ln itial state 
q 

e Accepting state 
q 

~ Initial and accepting state 
q 

p Other state 

Figure 9.2 (notations) 

a d 

b b,c 

qO q1 q2 

Figure 9.3 ( example of a Büchi automaton) 
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Chapter 9 : desired executions of a PNTL specification 

Examples of words accepted by the automaton in figure 9. 3 are : 

wl = aaabbddddd ... 

w2 = bbcddddd .. . 

w3 = abcddddd .. . 

In practice, the language accepted by Büchi automata can always be defined by means of ffi 

-regular expressions [AHO&ULLMAN93, GINZBURG68), using the symbol 'ffi' for infinite 

repetition. Other usual conventions are '*' for the finite repetition, 'I' for th_e union and 

juxtaposition for the concatenation. For instance, the language of the automaton of figure 9.3 

1s: L(A) = {w = a•b(bjc)dro} 

9.3.3 Generalized Büchi automata 

Generalized Büchi automata [THA YSE89) have a more complex definition, but on the 

other hand, it often allows an easier definition of certain languages . 

Definition 9.9 (Generalized Büchi automaton - GBA) 
A generalized Büchi automaton is a 5-tuple A = (L, Q, 8, I, F) 

where the four first components are identical ta the ones of a Büchi automaton 
Fis a set of sets of accepting states: F = {Fi,F2, ... ,Fk} with F; c Q 

Definition 9.10 (Admitted execution on a GBA) 

For this type of automata, an execution is admitted if it contains infinitely often astate of 

each F;: 

cr( w) = so s1 s2 . . . is admitted ç::} Vj E [ 1, k]: 3q1 E F;, 3 infinity of i E R s; = q1 

A GBA can always be brought to the form of a (normal) Büchi automaton which accepts 

the same language. The demonstration is given in [THA YSE89, pp. 192). 
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9.3.4 Closure properties of ro-regular languages 

The languages accepted by Büchi automata form the class of m-regular languages. This 

class of languages presènts some interesting properties [DA VIS&WEYUKER83] : it is 

closed with respect to the operators of union, intersection and complementation : 

If A 1 and A2 are two automata accepting respectively the language L(AJ) and L(Ai}, there 

always exists a Büchi automaton acceptine; 
- L(A1) u L(A2) (union) 

- L(A1)nL(A2) (intersection) 

( complementation) 

Such properties will be very useful for the reduction of the set of possible executions into 

the set of desired executions. 

9.4 Büchi automata and bounded Petri nets 

9.4. 1 From Petri nets to automata 

W e have just seen that the language accepted by a Büchi automaton A is the set of words 
it accepts. Consider now a Petri net to which we attach a labelling function .'1 associating a 

distinct symbol4 to each transition (.'1: Tu {nul!}➔ I: u {Â.} ). Such Petri nets are calledfree-

labeled Petri nets [PETERSON83]. So, any firing sequence s = tn ti2 tï3 ••. corresponds5 to a 
word w=.'1(s). It is always possible for a bounded Petri net to build a deterministic automaton 

whose language contain the .'1-projection of all firable sequences of the net. 

• 

• 

• 

• 

• 

• 

• 

Look at the net of figure 9.4. This Petri net can be formalized by a Büchi automaton A • 

(figure 9.5), considering that the initial state is also the accepting state : 

• 

4 The empty symbol À is always associated to the nul/ transition. • 
5 The function.'1: Tu {nul!}➔ I: is usually extended to.'1: (Tu {nul!})* ➔ I:'" 
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Initial marking = (1 0) 

Figure 9.4 (a Petri net) 

q0=(1 0) 
q1=(0 1) 

q1 

b,c 

L(A) = {w E 1:00
: w::= (a(bJc)t} 

Figure 9.5 (the corresponding automaton) 

As for the operational semantics of a Petri net ( see chapter 6), we can consider an 

automata as a transition system with states (qo and q1) and exiting transitions (the symbols on 

the arcs). 

Since we model bounded Petri nets, the reachability sets R(N,Mo) are f1nite (i.e. there is 

always a finite number of accessible markings from Mo). This means that every reachable 

marking is a possible state of the corresponding automaton, and that each arc t of the graph 
between two markings M1 and M2 is a transition of the automaton labeled with "1(t) and linking 

q1 and q2, where q1 and q2 are the states corresponding respectively to M1 and M2 : 

a 

d 

Figure 9.6 (an automaton modeling a Petri net) 
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• 
And so, we can say, given a Petri net N and an initial marking Mo, that: 

cr(w)=sos1s2 ... ⇒ 'ifi?.O, s;eQ={qo,q1, ... qn} (withQcR(N,Mo)) 

• 
9.4.2 The set of possible executions 

A classical problem is the definition of the set E(N,Mo) of possible executions of a Petri net 

starting with an initial marking Mo. We saw that the solution of this problem can be found by • 
1 

the definition of the language of an automaton modeling the Petri Net (see below in section 

9.4.4 for an algorithm). For the moment, we suppose there is only one accepting state (#F=l). 

Consider the graph of an automaton A modeling a bounded Petri net, like figure 9.6. An • 

infinite word w is accepted (see definition 9.7 and 9.8) if the execution of A on w contains 

infinitely often the accepting state. Thus every word of L(A) has two parts (w::= al3): the first 

part (a)6 is a finite word, while the second one (13) is an infinite word . The execution of a 

from the initial state ( q0) is a sequence whose last element and only last element is the • 

accepting state; the execution of 13 from the accepting state is a sequence containing infinitely 

often this state. Since we have a::= (aijazj ... jCXq) and l3::= (l31jl32j ... jl3p)"' - where <Xi and l3i are 

words on I:, the language can be defined as : 

• 

Example: 

• a C d 

o7q1 q3 

qO 
b • 

Figure 9.7 (a finite automaton) • 
Here, every accepted word w has the form w::= al3 where a::=ab*c and l3::= (deldfgy> 

• 
6 If the initial state is also the accepting state, the word ais empty. 
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As soon as we get the language of the automaton, we can then easily define the set of possible 

execution paths accepted by the Petri net N from the marking Mo, by using the inverse of the 
labelling function: E(N,Mo) = .ê1(L(A)) 

9.4.3 The library example 

Let us take a simplified example of the case study. Here, we model a single user that- can 

borrow maximum two books of a library which owns a stock of five books . 

p 1: books_ free tl: borrow _ book (b) 

p2: credit t2: return_book (r) 

p3: books_ borrowed t3: return_too_late (1) 

p4: fine to pay t4: pay_fine (p) 

Figure 9.8 (the Petri net of a library) 

b b 

qO 

p 

q5 

Figure 9.9 (the-corresponding automaton7) 

7 Suppose that Mo=(5 2 0 0) is also the accepting state. 
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The graph contains four finite cycles f3 from qO (to it-selt) whose execution 1s • 
cr(f3) = qo SI S2 ... Sn- 1 qo with \li E [1,n-1], S;-:t:- qo: 

f31 = b(br I bl(rb I lpb)* p)* r 

f32 = bl(br I blp)* p 

f33 = bblr(br I blp)* p 

f34 = bbllp(br I blp)"'" p 

The language of the automaton is thus: 

L(A)={wel:co: w::=( f31If321 f33 J f34 r} 

1 

And the set of possible executions of the Petri net is: 

E(N,Mo)=r1(L(A))={s::=(r1(f31) Jr1(f32) Jr1(f33) Jr1(f34) r} 
withr1(f31)=t1(tit21 t1t3(t2ti l t3f4t1)"'"t4)"t2 

f 1(f32) = fit3(fit2 1 t1t3t4)" (4 

E 1(f33) = t1t1(3t2(tit2 1 t1!3t4)" (4 

..e-1 (f34) = t1t1(3(3t 4(t1t2 1 t113t 4) * t 4 

9.4.4 An algorithm 

[AHO&ULLMAN93] propose an algorithm to catch the language of an automaton. The 

fact is that the language of the automata studied here can be formalized in a particular (much 

readable) form .. Therefore we exp Iain here another algorithm which gives the language L(A) of 

an auto maton A having an initial ( qo) and an accepting state ( qf) , such as this language can be 

defined as: 

This algorithm consists in five successive steps : 

Step 1: to identify, in the graph, the set C of elementary8 cycles which never pass 

throught qf 

8 A path (a cycle) is said elementary ifno node (ifno node except the last one) appear twice in the path (in the 
cycle). 
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• Step 2: to identify the set P of elementary paths from qo to qf 

Step 3: to identify the set R of elementary cycles from qf (to it-selt). 

• Step 4: to build (a.1la.2l ... l<Xq) by trying to insert the cycles ofC in the paths of P . 

Step 5: to build (f311f3zl ... lf3p) by trying to insert the cycles of C in the cycles ofR. 

• Example: 

b 

g 

a h 

qO 

• d 
q3 

Figure 9.10 (an automaton) 

• Step 1: The set C contains two elementary cycles : b (from q 1 to q 1) and acd (from qO to qO) 

Step 2: The set P contains two elementary paths : ae and acf 

• Step 3 : The set R contains two elementary cycles : gh and gij 

Step 4: - The path ae is combined with the two cycles of C : 

• 
ae ➔ ( acd)* ae ➔ (ab• cd)* ab .. e in order to form a 1 = (ab .. cd)* ab .. e 

- The path acf is also combined with the two cycles of C : 
acf ➔ (acd)* acf ➔ (ab*cd)*ab*cf in order to form a.2 = (ab*cd)* ab*cf 

• Step 5: No insertion of cycles of C is possible in the two cycles of R. 

Thus : (31 = gh and (32 = gij 

The language is so: L(A) = {w::= ((ab*cd)* ab"e 1 (ab"cd)* ab*cJXgh I gijr} 
• 
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Remark: It must be noticed that , when inserting cycles in a path, we have to do it in a precise • 

and intelligent order. Imagine that, in step 4, we would have first tried to insert the cycle b 

(instead ofbeginning with acd) in the path ae : 
ae ➔ ab* e ➔ ( acd)* ab* e which is different than a 1 ! 

Here is now the complete algorithm: 

{ Return the language L of an automaton A = (~, Q, ô, qo, q1) } 

Cf- Find_all_elementary_cycles {Step 1) 

Foran w E C do: if qre cr(w) then C ~ c / {w} 

P f- Find_elementary_paths (qo,qr) 

R ~ { w e C: First(cr(w)) = Last(cr(w)) = qr} 

a f- Insert _ cycles(P, C) 

13 f- Insert _ cycles(R, C) 
L f--- (a)(l3r 

Auxiliary procedures: 

{Step 2) 

{Step 3) 

{Step 4} 

{Step 5) 

- The procedures Find _ail_ elementary _ cycles and Find _ elementary _paths are classical 

• 

• 

• 

• 

problems in the graph theory and therefore not explained here (the interested reader can refer • 

to [GONDRAN&MINOUX:79] for mor.e about algorithms in graphs). The first procedure 

identifies all the elementary cycles of a graph; the second one retums a set of elementary paths 

between two nodes of a graph. 

• - The procedure lnsert _ cycles is defined as follows : 

Insert-cycles (W, C) ➔ "{ 

{ (Try to) insert cycles of C in a each path of the set W to form y} 

q f- 0 

For each w eW do: 

C' f- Sort(C, w) 

q f- q+l 

While Empty(C')=False do : , 

cf- First(C') 

if3q: qe cr(w) and qe cr(c) then wf-Merge(w,c) 

C' f- Sort(C'/ {c}, w) 

if q=l then y f- w else y f- y+ 'I' + w 
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and uses two procedures (Merge and Sort) : 

- The procedure Sort{C, w) consists in sorting a set C of elementary cycles in a precise manner 

(see remark p. 9.12) before trying to merge those cycles and the path w. The sorti!}g is based 

on the number of different nodes that the cycles and the path w have in common : 
c; -5. c1 (c;,CJ e C) <=> #{q e Q: q e cr(w) and q e cr(c;)} '?. #{q e Q: q e cr(w) and q e cr(c1)} 

- The procedure Merge is defined as follows : 

Mer2e (w, c) ➔ w' 

{ Merge a path w and an elementary cycle c into a new path w '} 
C = ai a2 . . . an 

O'(c) = SO Sl S2 ••• Sn 

Q+-{qeQ: qecr(w) andqecr(c)} 

For each q e Q 

do: 
i f- k E N: Sk = q 

Partl f- SubPath(w,First(cr(w)),q) 

Part2 +- SubPath(w,q,Last(cr(w))) 

w f- Partl +(aï+ ian a1 ... ai)*+ Part2 

w' f-W 

9.4.5 A more general algorithm 

The assumption of an unique accepting state is too restrictive and not realistic. Indeed, 

since we model Petri nets in which choices are possible (like in figure 9 .11 ), it is not always 

possible to identify a marking through which all executions are passing infinitely o:ften. 

p3 

Figure 9.11 (another Petri net) 
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a C 

d 
qO 

X 

q1 

· Figure 9.12 (its corresponding automaton) 

It is thus necessary to refine the algorithm to take account of this. Simply, we can re-use 

the previous algorithm (Build-Language) by calculating the language of the automaton 

succesively with the different accepting states : 

{ Return the language Lof an automaton A= (L,Q,8,qo,F)) 

Lf--0 

Foran qi E F do: 

Li f-- Build-Language (L,Q, 8, qo, qi) 

L f--L u Li 

This gives for the automaton of figure 9.12: 

L=L1uL2 

L1 = a(cd)* bx00 

Lz=a(cdt 

9.4.6 Mapping Petri nets into Büchi automata 

A difficult problem met when transforming a Petri net into a Büchi automaton is the choice 

of the accepting states : which markings are going to be considered as accepting states ? The 

easiest solution consists in considering each marking of the accessibility set as an accepting 
1 

state (that is to say Q=F); this means that every execution of a Petri net must pass infinitely 

often through (at least) one of those markings. Don't forget that we want the net to be as 

general as possible, and to express the additionna! constraints separately. 
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But the problem is that the execution time of the previously explained algorithm is 

proportional to the number of accepting states of the automaton. Therefore, we should try to 

restrict the set of accepting states (F) to its minimum, without reducing the set of possible 

executions (a wrong choice of the accepting states may, in some cases, have the same effect as 

a constraint). C_onsider the following automaton: 

a C d 

q1 q3 

qO 
b 

Figure 9 .13 ( considering all states as accepting states) 

It is not necessary to consider q3 and q4 as accepting states, smce considering q2 as 

accepting state forces the executions to pass infinitely often through one of these two states. It 

is also not usefull to include q0 in the set of accepting states, because it does not belong to a 

cycle. More generally, we can say that a state qi can be removed from the set of accepting 

states in two cases : 

1. if there is no self-loop on this state, and if ail elementary cycles from qi (to itself) are passing 

through another accepting state . 

ex: the state q3 

2. ifthere exists no cycle from qi (toit-self). 

ex: the state qo 
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9.5 Reduction of the set of possible executions 

Since we want to associate to each Petri net some constraints ( expressed by a set of 

temporal logic formulae ), it is necessary to reduce the set of possible executions into a set of 

desired executions respecting those formulae. Among the possible words accepted by the 

automaton, some of them have to be excluded, because their execution would result in a state 

forbidden by the temporal logic formulae. In this section, we won't study all kinds of 
constraints of PNTL; we only consider the constraints of the form "'Il ➔ [X, F, G ]cp" where X, 

F and Gare respectively the next, sometimes (eventually) and always (henceforth) operator. 

To simplify9, we assriine that 'If andcp are atomic formulae. 

9.5.1 Hypothesis 

1. (N, Mo) is a marked Petri net (with Mo ·as initial marking) and A is its corresponding 

automaton. 

2. In the following, we suppose that the language of A is the union of n languages : 
n 

L(A)=uL1 
j=I 

with L1 = {w E :Ero: w::= (a11la121 ... 1a1q)(Jl11f3121 ... lf31pr} 

( where Œji and f3ji are words on 1: ) 

and contains the set of possible executions of the Petri net : 
E(N,Mo) = Ê 1(L(A)) 

3. This means that the execution of any word w of L(A) belongs to 
n 

cr(A) =ucr1 
j=I 

where cro is a sequence of one element: the initial state ( qo), 
'<::/ i: 1 ::; i :<;; q, O'Ji = cr ( Œji) without its first element ( qo), 

'<::/i: q < i :<;; q + p, O'ji is the execution of f3ji without its first element, with 

accepting state as initial state of the automaton. 

9 But it can be·easily generalized for formulae. Indeed a formulae is a composition (conjunction, disjunction,.:.) 
of atomic formulae and we have seen that formal languages have closure properties (intersection, union, ... ) 
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Chapter 9 : desired executions of a PNTL specification 

4. The set C contains the constraints attached to the Petri net: 
C = {c1, C2, ... , Cr} 

We want to obtain a language L'(A) c L(A) such as Ea(N,Mo) = r1(L'(A)) contain 

ail the desired executions of the net . 

9.5.2 Constraints on states and constraints on words 

According to the predicate or function involved in the atomic formulae 'If and cp, the truth 

value of those formulae is going to be defined by reasoning on the language L(A) of the 

automaton, and/or on its possible sequences cr(w) of states. We have thus two kinds of 

formulae: formulae on words for which we will reason on the language, and formulae on states 

for which we will reason on the sequences of execution of the automaton. For instance, 
11Fired(tl) 11 deals with the words of the language, whereas "m(p~)>O" is a condition on the 

states of the auto maton . 

9.5.3 Reduction when dealing with a constraint on words 

To ensure the respect of this type of constraints, we are first going to define a language 

L(c) ( on the same alphabet as the language of A) whose all words are respecting the constraint 
C='lf ➔ [X,F,G]cp. Then, thanks to the closure properties of the ru-regular languages (see 

section 9.3.4), we can calculate the intersection between this language and the one of the 

automaton A : 

L'(A) = L(A) nL(c) 

The intersection10 of two languages L1 and L2 is defined as follows: 

LinL2={we(LnLr: (weLi) and (weL2)} 

In the following, we suppose that 'If= Fired(t;) and cp = Fired(·[j). Let us now see the 

form of the language L( c) according 'to the temporal operator of the right hand-side of the. 

constraint: 

10 See section 9.5.5 to see how we can calculate the intersection oftwo languages. 
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• c = Fired(ti) ➔ X(Fired(t1)) 

This means that each time the symbol L(tj) is met in a word, it must always be immediately 

followed by the symbol L(tj)- Thus the language of the constraint can be defined as: 

L(c) = {w e :E00
: w::= (ab 1 $r} 

where a= 4(tj) 

b =L(tj) 

$ = any symbol of:E except the symbol a. 
= (x1jx2i ... lxn) with XiE(:E!{a}) 

• c = Fired(ti) ➔ F(Fired(t1)) 

This means that each time the symbol 4(tj) is met in a word, the symbol 4(tj) must always 

be found 11further 11 in this word. Thus the language of the constraint can be_ defined as: 

L(c)={we:E00
: w::=(a$·b 1 $t} 

where a = 4( tj) 

b =L(tj) 

$ = any symbol of:E except the symbol a. 
= (x1jx2j ... lxn) with Xie(:E!{a}) 

• c = Fired(ti) ➔ G(Fired(~-)) 

This means that if the symbol 4(tj) is met in a word, ail the following symbols must be 

4(tj)- Thus the language of the constraint can be defined as: 

L(c) = {w e :E00
: w::= ($* ab00 

1 $
00

)} 

where a =4(ti) 

b =L(tj) 

$ = any symbol of:E except the symbol a. 

= (x1 1 x2 I ... 1 Xn) with Xi E (:E /{a}) 
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Chapter 9 : desired executions of a PNTL specification 

Examples: 

Let's take again the example of the small library (section 9.4.3). We saw thatthe language of 

its corresponding automaton was: 

with 

L(A) = {w ELm: w::= (P11 Pz I P3 I P4r} 
_p1 = b(br I bl(rb l lpb)* p)* r 

Pz= bl(br I blp)* p 

p3 = bblr(br I blp)* p 

p4 = bbllp(br I blp)* p 

1. Suppose that we have a constraint stating that if a book is returned late, the fine must always 

be paid: 

• Fired(t3) ➔ F(Fired(t4)) 

• 

• 

• 

• 

• 

• 

Since L(t3)=/ and L(t4)=p, we have : 

L(c) = {w e Lm: w::= ( l(blrlpf p 1 (blrlp) t} 

And it is easy to see that all the words of L(A) have the wanted form : 

L(A) = L(A)r.L(c) since L(A) c L(c) 

2. Suppose now that a constraint forces the borrowers to immediately pay the fine when a 

book is returned late : 

Fired(t3) ➔ X(Fired(t4)) 

Since L(t3)=/ and L(t4)=p, we have : 

L(c) = {w e Lm: w::= ( lp 1 (blrlp) t} 

This time, we obtain a sub-language of L(A) : 

L'(A) = L(A) r.L(c) = {w E Lm: w::= (b(brlblp)* (rllp) r} 
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9.5.4 Reduction when dealing with a constraint on states 

We saw that the execution of a Büchi automaton is an infinite sequence of states. We can 

consider such sequence as an infinite word on a particular alphabet Q. Since we know the form 

of every sequence of execution of A ( see hypothesis in section 9. 5 .1 ), we have already defined 

the language - that is o'(A) - which contains all this words. Thus, like for constraints on words, 

we can translate a constraint c = 'If ➔ [X, F, G]cp into a language cr( c ), and then calculate its 

intersection with the language cr(A) : 

cr'(A) = cr(A)ncr(c) 

When we get the set of desired executions11 of the automaton, it still must be translated in 

terms of words accepted by the automaton. In other words, knowing all the desired sequences 

of states of the automaton, we have to restore a set of desired and accepted words. This 

translation12 can be done thanks to the next-state function (6) of the automaton : two 

successive states ( qi,qj) can be mapped into a union of transitions linking the state qi to qj . 

The first step consists in determining the states which verify the left and right hand-side of 

the constraint : 
Q ={qEQ: '1f(q)=TRUE}={q1, ... ,qn} (n~O) 

Q={qEQ: <p(q)=TRUE}={q1, ... ,qm} (m~O) 

Sorne particular situations can already be identified : if Q = 0 or Q = Q, the constraint is . 

useless or redundant since it is always verified. 

In the following, we suppose that cr and & are respectively the union of states of Q , and 

the union of states of Q : 
cr = (q1 1 q2 1 ... l qn) 

a = ( q1 1 q2 1 . . . 1 qm) 

Let's now see the form of the language cr( c) according to the temporal operator of the 

right hand-side of the constraint : 

11 Do not confuse the set of executions of the Petri net (which corresponds to a set of words on L) and the set of 
executions of the automaton (which corresponds to a set ofwords on Q). 
12 The translation is valid here because we cannot have, in the automaton, astate having two output arcs with 
the same label (indeed, the firing of a transition in a Petri net always leads to a unique marking). 

Page 9.20 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 



• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

Chapter 9 : desired executions of a PNTL specification 

• C='lf ➔ X(<p) 

The language of the constraint can be defined as: 

cr(c) = {cr E Q00
: cr::= (cr<! j $r} 

where$=(x1jx2j ... jxr) with XiE(Q/Q) 

• C='lf ➔ F(<p) 

The language of the constraint can be defined as.: 

cr(c) = {cr E Q00
: cr::= (cr$* â j $t} 

where $ = (x1 1 x2 j ... 1 Xr) with Xi E (Q / Q) 

• C='lf ➔ G(<p) 

The language of the constraint can be defined as: 

cr(c) = {cr E Q00
: cr::=($* crâ 00 

j $00
)} 

where $ = (x11x21 ... 1 xr) with Xie (Q / Q) 

Example: 

We saw that any execution of the automaton modeling the small library belongs to the set: 

cr(A) = {cr E Q00
: cr::= cro(O"I I cr2 1cr31 cr4t} 

cro = qo 

cr1 = q1(q2q1Jq2q4(q3q4iqsq3q4)* q1)* qo 

with cr2 = q1q3(q4q3lq4qsq3)* qo 

cr3 = q1q2q4q3(q4q3jq4qsq3)* qo 

cr 4 = q1q2q4qsq3( q4q3lq4qsq3) • qo 

Suppose that as soon as a borrower has returned a book too late, he can borrow, :from this 

moment, only one book anymore (instead of two) : 

m(p4) = 1 ➔ G(m(p2) > 0) 
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Wehave: 

And 

Q = {q3,q4} and a= (q3 I q4) 

Q = {qo,q1,q3} and cr = (qo I q1 I q3) 

$ = ( qo I q1 1 q2 1 qs) 

And so: 
a'(A) =a(A)na(c) 

= {a'EQro: a'::=(0" 1110" 12)} · 

<!'1 = q~(q1(q2q1f qor 

a'2 = qo(q1(q2q1)* qo )* ((q1q3qoiq1qot I q1q2q4(q3qo I q1(qolq3qo))(q1qoiq1q3qot) 

Finally, this means that the desired language of the automaton is: 

L'(A)={wE:Ero: w::=(yil y2)} 

'YI =(b(br)*rr 

yz=(b(brfr)* ((blplbrt I bbl(rp lp(rllp))(brlbtpt) 

9.5.5 Calculating the intersection of two languages 

We said (in section 9.3.4) that the class of ro-regular languages was closed in respect with 

( among others) the operator of intersectio!l. To ensure the respect of a constraint associated to 

a Petri net, we have. proposed to calculate the intersection of the language of this constraint 

• 

• 

• 

• 

• 

• 

• 

• 

and the language of the automaton modeling the Petri net. Let's now proofthat the intersection • 

is always calculable and see how we can calculate it : 

Theorem. 
If A1=(:E,Q1,8i,J1,F1) and A2=(:E,Q2,8z,/z,F2) aretwoBüchiautomata, • 

then it is always possible to build a GBA= (:E,Q,o,J,.F) which accepts the language 

L(A1)nL(A2) 
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Chapter 9 : desired executions of a PNTL specification 

Proof . 

We build a GBA whose states are 2-tuples of states of the two automata, and whose 

transitions are the ones that are possible in both automata. The set F simply contains the two 

sets F1 and F2. More formally: 

Q=Q1XQ2 

l=lixh 

F ={F1xQ2, F2xQ1} 

q =<. u, v >e 8( < s,t >,q) if u e 81(s,a) and v e 82(t,a) 

Example: 

A1 

a b 

qO 

C 

1 

L(A1) = {w::= aca(daJbca)'"} 

a c,d b 

rO 

a 
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The intersection of the automata A1 and A2 is : 

a 

(qO,rO) C 

(q3,r2) 

F1 ={(q2,r1)} 
F2={(q2,r1 );(q1 ,r1)} 

(q2,r1) 

which accepts the language L(A1)riL(A2) = {w::=ac(ad)'°} 

9.6 Testing of properties on the set of desired executions 

As explained in [MANNA&PNUELI84], we can partition most of temporal properties of 

programs into two classes. These properties can be characterized by the form of the temporal 

formulas expressing them : 

• The class of invariance properties. These properties can be expressed by a formula of the 

form: 

( a) D'lf or (b) <p ::) D'lf 

The formula (a) says that the condition 'V is always true, while the other (b) states that 

whenever <p becomes true, 'V is immediately true and remains true in the future. 

• The class of liveness properties. These properties can be expressed by a formula of the 

form: 

In both cases, the formulas guarantee·the àccurence of a condition 'lf. The only difference 

is that the first one ( c) guarantees it unconditionally, whereas the second one ( d) is 

conditional on an earlier occurrence of event 'lf. 

_Page 9.24 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 



• 

• 

• 

• 

• 

• 

• 

• 

•• 

• 

• 

• 

Chapter 9 : desired executions of a PNTL specification 

Although we do not reason on programs but on sequences of symbols and on sequences of 

words, it is obvious that most of the properties of the specification we want to test (namely for 

reasons of completeness ), are also of this form - or can be brought to this form. But in order 

to test a property on the language of an automaton, we first have to transform it into a 

constraint whose syntax is the one of PNTL : 

- Considering that any Petri net contains at least one place and that the number of tokens is a 

positive integer, the formula (a) can be translated in an implication - whose left hand-side is 

always true: 

m(pl)~O ➔ G('!f) 

- For the same reason, the formula ( c) gives: 

m(pl)~O ➔ F('lf) 

- The formula (b) becomes : , 

cp ➔ G('lf) 

- The formula ( d) becomes : 

cp ➔ F('lf) 

We can take advantage of the algorithms that reduce the set of possible executions to the 

set of desired executions (see section 9.4). Indeed, there is an easy way to test a property. It 

simply consists in adding the property in tl_ie list of constraints attached to the net (we do asif it 

was a constraint ), then in recalculating the language of the auto maton to finally compare this 

language with the one obtained without the property. If they are equal13, we can say that the 

property is always verified ( see figure 9 .15). 

Example: 

Consider that the set C of constraints contains only one constraint : 

Fired(t3) ➔X(Fired(t4)) 

We saw ( see section 9. 5. 3) that the set of desired executions of the library was : 

L'(A) = {w e 1:ro: w::= (b(brJblp)* (rJ/p) r} 

13 It must be pointed out that a same language can be expressed by several different co-regular expressions. The 
question of knowing if two languages are equal is not as obvions as it seems to be ! ' 
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Supose we want to test the following property : p = D(m(p4)~ 1) 

Thus cr(p) = {cr e Q00
: cr::= (qo I q11q21 q3 J q4t} 

Since cr'(A)ncr(p) =cr'(A), the language L '(A) is unchanged. Therefore, the property p is 

verified. 

C : list of constraints 
p: property 

Set of allowed executions • Set of desired executions • Petri "1 description 

Automaton A ---► Lang'uage L(A) ~_c _ _____,~ 1 

Sub-Language L'(A) 

CU {p} 

Sub-Language L"(A) 

If L'(A)==L"(A) then p verified else p not verified 

Figure 9 .14 ( the testing of a property) 

9. 7 Extension to the linear temporal logic 

9.7.1 About the expressiveness of the linear temporal logic 

Consider the set of sequences for which the proposition pis true in all even states (nothing 

is said about the odd states). This set contains among others the two following sequences : 

cri = p -,p p -,p p -,p p -,p p -,p ... 

CJ2=ppp-,pp-,pp-,pp-,p ... 
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It seems quite surprising that the property which defines this set of sequences - and which 

we will denote Even(p) - cannot be characterized by any formula of the temporal logic 

[THA YSE89]. One could think that the two following formulae are appropriate : 

f1 = p A □(p::::>0-,p) A 0(-,p::::>Op) 

f2 = p A D(p::::>OOp) 

But it is not the case, since they both are false for the sequence cr2. Note that this property 

can be expressed in PNTL : 

lnit ➔ Even 

Even ➔ X(X(Even)) 

!nit ➔ X(-,Even) 
. . 

·-,Even ➔ X(X(-,Even)) 

Even ➔p 

W e now give a more general way to express such properties in what is called extended 

temporal logic . 

9. 7.2 Extended temporal Jogic 

It is possible to extend the expressiveness of the linear temporal logic in order to express 

properties like Even(p). We can add to the temporal logic all the operators and properties that 

are expressable by means of a finite automaton . 

As in [THAYSE89], we will associate to each temporal operator a Büchi automaton. 

Since an interpretation in linear temporal logic is an infinite sequence, we can check if this 

sequence verify a property by answering the question " is the execution of this sequence an 

admitted execution on the automaton associated to this property ? " 
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Let B = (z.,Q,8,1,F) be a Büchi automaton. To define an operator, we associate a • 

formula to each element of L. Those formulae will be the arguments of the operator. Thus if 
L = {a1,a2, ... ,an}, the operator will have n arguments. The application of the operator on the 

formula /1,/2, ... ,/,, will be noted BU1,f 2, ... ,/,,). The semantics of B(/1,/2, ... ,/,,) is defined 

in terms of accepted words of B. A sequence a verify BU 1, f 2, ... , /,,) if there exists a word • 

accepted by B, such as if the symbol ai is met in position j, the the formula t;_ is true in this 

position. More formally : 

I l==cr B(f 1,f 2, ... ,/,,) if 3w = aï0,t1i1,aï2, ... accepted by B 

such as Vj 2:: 0, I !==i (cr) fi 

Let's see, for instance, how we can (re)define the temporal operator (X, F, G) and the 

property Even(p) : 

Always operator (G): 

G(f)=B1(f) 

B1 ~a1 

s0 

• 

• 

• 

• 

The words accepted by B1 are the ones which contain only the symbol a1. Thus the only • 

accepted interpretations are the ones in which l(f) is always true. 

N ext operator (X): • 

B2 
a1 a2 • 

s0 s1 s2 

• 
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The words accepted by B2 are the ones whose second syinbol is a2. Thus the only accepted 

interpretations are the ones in which J(t)=TRUE in the next s~ate. 

Sometimes operator (F): 

F(t)=B3(T, f, T) 

a1 a3 
B3 

s0 s1 

The words accepted by B3 are the ones which contains at least once the symbol is a2. Thus 

the only accepted interpretations are the ones in which J(t)=TRUE at least once. 

Until operator (U): 

s0 s1 

The words accepted by B4 are either words that contains exclusively the symbol is a1, or 

words in which a finitite repetition of a1 is immediately followed by a2. Thus the only 

accepted interpretations are either the ones where J(f1) is always true, or the ones in which 

f1 holds till the moment J(f2)=TRUE . 
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Even(f): 

Even(t)=Bs(f, T) 

a1 

a2 

The words accepted by B5 are the infinite repetitions of the finite (sub)word a1a2. Thus the only 

accepted interpretations are the ones in which J(f1)=TRUE in all even states, and J(T)=TRUE 

in all odd states. 

Page 9.30 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 



• 

• 

• 
1 

• 

• 

• 

• 

• 

• 

• 

• 

Chapter 10 

Logical Proofs in PNTL and PNRTL 

I , 

10.1 Introduction 

In chapter 9, we have seen how the theory of Büchi automata can be used to mak:e proofs 

of properties of a PNTL specification. Th ose proofs were conducted by · verifying that the 

formal language associated with the PNTL specification did or did not verify the properties. 

Here, we de fine a logical framework to allow usual syntactic logical proof s in PNTL and 

PNRTL. To mak:e possible those syntactic logical proofs, we must define a way to transform 

the net information (its structure and the firing rule) into logical formulae and provide a proof 

system. The logical formulae of a PNTI..: specification will be used as axioms in the logical 

proof system. The same schemata will be conducted for the PNRTL language . 

In this chapter, section 10.2 concentrates on the PNTL language while section 10.3 

concentrates on the real-time features of the PNRTL language. Section 10.4 concludes the 

chapter. 

10.2 Logical proofs in PNTL 

In this section we define a temporal proof system for our PNTL language. As suggested in 

[MP81], [MP83a], [MP83b], we distinguish three parts in our proof system : 
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• Part A (the uninterpreted logic part) : this part defines an axiomatic system for 

linear temporal logic. Theorems proved by part A are valid for all interpretations • 

· given to the predicate and fonction symbols appearing in the theorems. 

• Part B (the domain part) : this part contains a set of axioms which depend on the 

domain, here the Petri nets. In this part, we formalize the firing rule and give axioms 

over the positive integer numbers since the fonction symbol m is interpreted as the • 

marking fonction. Therefore, part B restricts the class of considered models to those 

in which all predicate and fonction symbols have a fixed interpretation and . the 

individual variables range over fixed domains. 

• Part C (the net part)_: this partis constituted of a serie of axioms which translate • 

the net structure in logic axioms. This part further reduces the class of models into 

the ones which reflect the set of possible executions of some Petri net, the Petri net 

of the PNTL specification on which we want to mak:e a proof. 

Let us now define the content of each part : 

10.2.1 Part A : the pure /agie part 

This part contains : 

• the axioms of propositional logic. In the proofs, references to those axioms will be denoted 

by ProL [AHO&ULLMAN93]. 

• the axioms of first order predicate logic with equality. In the proofs, references to th ose 

axioms are denoted by PreL. [AHO&ULLMAN93] 

• the modus ponens inference rule MP : if A ➔ B and A then infer B. 

• the axioms of temporal linear logic [MP83a] : 

axioms for the futur operators 
• TLLI.X(A ➔B) ➔ (X(A) ➔ X(B)) 

• TLL2. -.X(A) H X(--,A) 
• TLL3. F(A) H -,G(--iA) · 

• TLL4.G(A ➔B) ➔ (G(A) ➔ G(B)) 

• TLL5. G(A) ➔ A 
• TLL6. G(A) ➔ X(A) 
• TLL7. G(A) ➔ X(G(A)) 
• TLL8. G(A ➔ X(A)) ➔ (A ➔ G(A)) 
• TLL9. (A)U(B) ➔ (B v(A AX((A)U(B)))) 

• TLLlO. (A)U(B) ➔ F(B) 

• TLLI l. [C: AG(c ➔ (B v(A AX (c))))] ➔ (A )U(B) 
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axioms for the past operators 
• TLLl2.Y(A ➔B) ➔ (Y(A) ➔Y(B)) 
• TLL13. /nit HY. (.l) 
• TLL14. (-,Jnit AY (-iA )) H -,Y (A) 
• TLL 15. P(A) H -,H(--A) 
• TLL 16. H(A ➔ B) ➔ (H(A) ➔ H(B)) 
• TLL 17. H(A) ➔ A 

• TLL 18. H(A) ➔Y (A) 

• TLL 19. H(A) ➔Y (H(A)) 

• TLL20. H(A ➔Y (A)) ➔ (A ➔ H(A)) 
relations over future and past operators 

• TLL 21. X(Y(A)) HA 
• TLL 22. A ➔ F(A) 
• TLL 23. X(A) ➔ F(A) 
• TLL 24. A ➔ P(A) 
• TLL 25. -,JnitAY(A) ➔ P(A) 
• TLL 26. (/nit ➔ A) ➔ (Y(X(A)) HA ) 

• The necessity rule NR : if A then infer G(A) and H(A). 
• The invariance rule INV : if A ➔ X (A) then infer A ➔ G (A) . 

• The past invariance rule INV-P: if A ➔ Y(A) then infer A ➔ H(A) 
~ The initialized invariance rule 1-INV: if /nit ➔ A and A ➔ X (A) then infer G(A) . 

10.2.2 Part B : the domain part 

This part contains the translation of the firing rule and the axioms for(~,+,<) 

• Translation of the firing rule : 
• FR 1. Fired (t) ➔ Enabled (t). In other words, a transition is enabled when it fires. 

• FR2. Fired(tJ A (t1 ;t: tJ ➔ -,Fired(t2 ). There is only one transition that fires in a 

state. 
• FR3. :3t E T : Fired ( t ) v Fired ( null ) . In each state, there is a transition which is 

fired. 
• FR4. Fired(null) H Vt ET :-,Enabled(t ). The null transition is fired iff there is no 

transition of T which is enabled. 
• FR5. Enabled (t) H V p E P: m (p) ~ pre (p ,t). Definition of an enabled transition . 

• FR6. Fired(t) ~ m(p;) = k; ➔ X (m(p;)+ pre(p; ,t) = k; + post(p; ,t )) . Where 

pre,post and k; stay constant in the next state, only m(p;) is variable. We must also 

consider the case of the nul! transition : 
Fired(null) A m(p;) = k; ➔ X(m(p;) = kJ 
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• FR7. The frame axiom: . 
Fired(t) Am (p;) = ki A (pre(pi't) = ÜA post(pi ,t) = o) 
➔ X(m(pJ=k;) 

It should be noted that FR7 is a logical consequence of FR6. 

• The use of axioms over the addition in the positive integers : 

• +COM. a+b=b+a. Commutativity of+. 

• +ASS. (a+b)+c=a+(b+c). Associativity of+. 

• +O. (a+O)=a. 0 neutral for+. _ 
• +<R. (b -::/:- 0) Ha <a+ b . Relation between + and < in the positive integers. 

• +Def: other theorems of the addition over positive integer. ex : 
a+b =l-➔ (a=lAb =0)v(a=0Ab =1). 

• Axioms over < : 

• <lRR. -,( a < a) . Irreflexibility of <. 

• <TRANS. (a< b) A (b < c) ➔ (a < c). Transitivity of<. 

• <CONN. (a <b) v (a =b )v (b < a). Connection of<. 

• <MIN. (a=ü)y(O<a).Oisminimumfor<. 

• Definition of~,-::/:-,>,~ with -,,=,< : 
• RDEFl. (a ~b) H (a =b )v(a <b ). 

• RDEF2. (ai:-b)H-,(a=b). 

• RDEF3. (a>b)H-,(a<b)A-,(a=b). 

• RDEF4. (a ~b) H -,(a <b ). 

10.2.3 Part C : the net part 

This part translates the net information of the particular specification for which we want to 

make a proof. It consists in two types of axioms : 

• If the net is marked: axjoms over the intial marking Mo: 
INM. 'i;/p EP:Jnit ➔ m(p)=M0 (p) 

• Translation of the net structure by the definition of the functions pre and post : 
NS. Vp E P, Vt ET :pre(p,t) = Pre(p,t) A post(p ,t) = Post(p ,t ). 

Those axioms are given for a Petri net N = (P, T, Pre, Post). 
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10.2.4 Two proof examples in PNTL 

• 
As an illustration of the use of the proof system, let us consider the following PNTL 

specification : 

• 

• 

• 

t1 

t2 

m(p3 ) > 0 ➔ Fired(t4 ) 

Figure 10.1 (A PNTL specification) 

• Before proving two theorems of this specification, we will translate the net information (part C 

of the proof system) of this PNTL specification : 

(i) Initial marking : 

• !nit ➔ (m(p1 )=3Am(pJ=0Am(p3)=0) 
(ii) Pre and Post fonctions : 

pre(p1 ,t1) = 1 A pre(p1 ,tz) = Oi\ pre(p1 ,t3 ) = 0 A pre(p1 ,t4 ) = 0 

pre(p2 ,tJ = ÜA pre(p2 ,t2 ) = lApre(Pi,t3 ) = 1 A pre(p2 ,t4 ) = 0 

• pre(p3 ,ii) = ÜA pre(p3 ,tz) = ÜA pre(p3 ,tJ = ÜA pre(p3 ,t4 ) = l 

post(pi,tJ = ÜA post(pi,t2 ) = l A post(pi,t3 ) = lA post(pi,t4 ) = 0 

post(p2 ,t1) = l Apost(p2 ,tz) = 0Apost(p2 ,t3) = 0Apost(p2 ,t4 ) = 0 

post (p3 ,t1) = 0 A post(p3 ,t2 ) = ÜA post(p3 ,t3 ) = l A post(p3 ,t4 ) = 0 

• 

• 

• 

• 

Theorem 10.1: G(m(p1)+m(p2 ) = 3) 
Proof 10.1 (Proof of the theorem 10.1) 
(al) !nit ➔ (m (p1) = 3 A m(p2 ) = o) 
(a2) 

!nit ➔ (m(pi)+m(p 2 ) = 3) 
(a3) 
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m(p1)+m(pJ = 3 H(m(p 1) =0Am(p2 ) = 3) 

v(m(pi) = 1Am(p2 ) = 2) 

v(m(pi) =2Am(p2 ) = 1) 

v(m(pi) = 3Am(p2 ) = o) 
(a4) Fired(ti) v Fired(t2 ) v Fired(t3 ) v Fired(t4 ) v Fired(null) 

(a5) 
(m(pJ = 3A m(p2 ) ~ o) 
➔ Enabled(t1) A -,Enabled(tJ A -.Enabled(t3) 

(a6) (m(pJ = 3A m(p2 ) = o) AFired(t1) ➔ X (m(p1) = 2A m(p2 ) = 1) 

(a7) (m(p
1

) = 3 A m(p2 ) = o) AFired(t4 ) ➔ X (m(pi) = 3A m(p2 ) = o) 
(a8) (m(pJ = 3 A m(p2 ) = o) ➔ X (m(pJ + m(p2 ) = 3) 

(a9) 
(m(pJ = 2Am(pJ = 1) 
➔ Enabled(ti) AEnabled(t2 ) AEnabled(t3 ) 

(+det) 

(FR3) 

(FR5) 

(FR6) 

(FR6) 

(a3,a5,a6,a7) 

(FR5,NS) 

(FR6,NS) 

(FR6,NS) 

(FR6,NS) 

(FR6,NS) 

_ (alO) (m(pJ = 2 A m(p2 ) = 1) AFired(tJ ➔ X (m(pJ = 1 A m(p2 ) = 2) 

(all) (m(pJ = 2 A m(p2 ) = l)AFired(tz) ➔ X (m(pi) = 3Am(p2 ) = o) 
(al2) (m(pJ = 2Am(pJ = 1) AFired(t3) ➔ X (m(pi) = 3Am(pJ = o) 
(al3) (m(pJ = 2 A m(Pz) = 1) A Fired(t4 ) ➔ X(m(p1) = 2 A m(Pz) = 1) 

(al4) (m(pJ = 2Am(p2 ) = 1) ➔ X (m(pJ+m(p 2 ) = 3) (a3,a4,a9-13,ProL) 

(al5) 
(m(pJ = lA m(p2 ) = 2) 

➔ Enabled(tJ AEnabled(t2 ) AEnabled(t3 ) 

(FR5,NS) 

(al6) (m(Pi) = lA m(pJ = 2) AFired(t1) ➔ X (m(p1) = ÜAm(pJ = 3) (FR6,NS) 

(al7) (m(p1) = lA m(p2 ) = 2) AFired(tJ ➔ X (m(p 1) = 2A m{p2 ) = 1) (FR6,NS) 

(al8) (m(Pi) = 1Am(p2 ) = 2) AFired(t3 ) ➔ X (m(pJ = 2A m(pi) = 1) (FR6,NS) 

(al9) (m(p1) = 1 A m(pJ = 2) A Fired(t4 ) ➔ X(m(pJ = 1 A m(p2 ) = 2) · (FR6,NS) 

(a20) (m(pi) = 1 A m(pJ = 2) ➔ X (m(pJ +m(p2 ) = 3) (a3,a4,a15-19,ProL) 

(a21) 
(m(pJ = 0Am(p2 ) = 3) 
➔ -,Enabled(tJ A Enabled(ti) A Enabled(tJ 

(FR5,NS) 

(a22) (m(pJ = 0Am(p2 ) = 3) AFired(tJ·➔ X (m(p1) = lAm(pJ = 2) (FR6,NS) 

(a23) (m(pJ = ÜA m(p2 ) = 3) AFired(t3) ➔ X (m(pJ = lA m(pJ = 2) (FR6,NS) 

(a24) (m(pJ = 0 A m(p2 ) = 3) A Fired(t4 ) ➔ x(m(pJ = 0 A m(Pz) = 3) (FR6,NS) 

(a25) (m(p1) = ÜA m(p2 ) = 3) ➔ X (m(pJ +m(pi) = 3) (a3,a4,a21-24,ProL) 

(a26) m(pJ+m(pJ = 3 ➔ X (m(pJ+m(p 2 ) = 3) (a3,a8,a14,a20,a25,ProL) 

(a27) G(m(p
1
)+m(p

2
) = 3) . (I-INV,a2,a26) 
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Theorem 10.2: (bO) G(Fired(tJ ➔ X(Fired(t4 ))) 

Proof 10~2 (Proof of the theorem 10.2) . 
(bl) m(A) > 0 ➔ Fired(t4 ) 

(b2) Fired(t4 ) ➔ -,Fired(t3 ) 

(b3) m(pJ > 0 ➔ -,Fired(t3 ) 

(b4) Fired(t3 ) ➔ m(A) = 0 

(b5) Fired(t3 ) A m(p3 ) = 0 ➔ x(m(A) = 1) 

(b6) Fired(t3 ) ➔ x(m(p3 ) = 1) 
(b7) Fired(t3 ) ➔ X(m(p3) > o) 
(b8) Fired(t3 ) ➔ X(Fired(t4 )) 

(b9) G(Fired(t3 ) ➔ X(Fired(tJ)) 

10.3 A proof system for PNRTL 

Chapter JO : Proofs in PNTL and PNRTL 

. (Spec) 

(FR2) 

(bl,b2,ProL) 

(b3,ProL,RDEF) 

(FR6,NS) 

(b4,b5,ProL) 

(b6,+<R) 

(b7,Spec) 

(b8,NR) 

In this section, we present a logical proof . system for PNRTL. First, we formally 

caracterize the distance function d which gives the distance in time between two states. Then 

we present an axiomatization of the definitions 7 .21, 7 .23 and 7 .24 and axioms over the real­

time temporal operators of PNRTL. Finally we illustrate the use of the logical system by 

proving a theorem containing real-time aspects . 

10.3. 1 Formai characterization of the distance function d 

To handle quantitative temporal properties, we have added a distance fonction between states. 

This function d has three arguments : 

• a couple (81,82) which indicates which timestamps must be considered 

(InTime/OutTime) 

• a first and a second state 

and retums a positive real number : the distance in real-time which separates the two states. 

The function dis defined as follows : 

. d((ôl, 82),(S,i),(S,j)) = 
• if(i -5:j): mt(82)((S,j))-mt(ôl)((S,i)/ 

• if (i > j): mt(ôl)((S,i))-mt(B2)((S,j)) 
' ' 

The function d satisfies the two following properties : 

1 mt(o) retums the fonction InTime if o=i, the fonction OutTime if o=o, see notation 7.1. 
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(dl) d(( fü,82 ),(s, i),(s, j)) = d(( 02,fü),(s, j),(s, i)) 

(d2) if (S,i) < (S,j) < (S,k) ( i <j < k) 
d((o1, 63),(s, i),(s, k)) = d( ( fü,02),(s, i),(s, j)) + d(( 02, 63),(s, j),(s, k)) 

These two properties of the function d are used in the following subsections to justify axioms 

over the real-time temporal operators. 

10.3.2 Axiomatization of the PNRTL nets 

In this subsection, we define axiom shemata for·the translation of a PNRTL net into logical 

formulae. These axioms schemata translate the definitions 7.21, 7.23 and 7.24. 

(1) Axiomatization of an enabled transition tfor a valuation a.: 

Enabled( t,a.) ~ (s :a.) A ( Pi(v1 ).-a.)A ... A( J!ilvn1 ):a.) 

(FRl). A ---,(Qi( W1 ):a. )A ... A-.(Qn1( Wn2 ):a.) 
A (:~1:a.) =/= (y1:a.)A .. :A(in3."a.) =/= (Yn3:a.) 

• S is the selector of the transition t. 

• For each tuple e that annotates an input arc of type i or type p of transition t, there 

exists f: 1 ~ f ~ ni, e= v f and P1 is the dynamic predicate of the input place of the 

arc annotated bye. 

• For each tuple e that annotates an input arc of type i or type p of transition t, there 

exists f : 1 ~ f ~ n2, e= w J and Q1 is the dynamic predicate of the input place of the 

arc annotated by e. 

• For each tuples e1, e2 where e1 annotates an arc of type o of t and e2 an arc of type o 

of t and the output place of the two arcs is the same place, then there exists/: 1 ~f 

~ n3, Xf = e1 and y f = e2 • 

(2) Effects of firing an instantaneous transition t with a valuation a. in time T : 
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BeginEnd(tn, a) ➔ X(InTime = T 

/\ ( P, (u1 ): a)/\.;./\( P,,/un1 ): (X,) 

(FR2) /\ ---,(Qi(v 1 ): (X,)/\.•• /\---,(Qn2 (vn2 ): a) 
/\ (R1 ( W 1 ): a)/\ ... /\(Rn3( Wn3 ): a) 

/\ -.( sJx1 ): a)/\ ... /\---,( Sn4(xn4 ): a)) 
• For each tuple e that annotates a type o arc of t, there existsf: i ~f ~ni, e=ut and 

Pt is the dynamic predicate of the output place of the arc annotated by e. 
- -

• For each tuple e that annotates a type o arc of t, there existsf: i ~f ~ n2, e=v f and 

Q1 is the dynamic predicate of the output place of the arc annotated by e. 

• For all e1: 
e1 E Tu(a1) /\ a1 E IA(t) /\ Type(aJ = i /\ IP(aJ = p 

/\---,::le2 ( e2 E Tu(a2) /\ a2 E OA(t) /\ Type(a2) = o /\ OP(a2) = p /\ (e1:a = e2:a)) 

there exists f : i ~ f ~ n3, Rt=Pr(p) and x f =e 1. 

• For all e1: 
e1 E Tu(aJ /\ a1 E iA(t) /\ Type(aJ = i /\ IP(aJ = p 

/\---,::le2 ( e2 E Tu(a2) /\ a2 E OA(t) /\ Type(a2 ) = o /\ OP(a2) = p /\ (e1:a = e2:a)) 
there existsf: i ~f~ n4, St=Pr(p) and y f=e1. 

(3) Effect of firing an non-instantaneous transition t with a valuation a in time T with a 

duration D: 

Begin(tn, a) ➔ x( InTime = T /\ ---,( P, (u1 ): a)A ... A-,( P,,1 (un1 ): a) 
(FR3) 

/\ (QI (v 1 ): a)/\. .. /\(Qn2 (vn2 ): a)/\ InProgress(tn, a)) 
• For each tuple e that annotates a type i arc of transition t, there exists f : i ~ f ~ ni, 

-
e=ut and P1 is the dynamic predicate of the intput place of the arc annotated by e. 

• For each tuple e that annotates a type i arc of transition t, there exists f: J ~f ~ n2, 
e=v J and Q1 is the dynamic predicate of the intput place of the arc annotated by e. 

• InProgress(t11,a), in the reached state, the transition occurence t11 is in progress. 

End(tn, a) ➔ x(InTime = T +DA (R1(x1 ): a)A ... A(R,.)x,.3 ): a) 
(FR4) 

• For each tuple e that annotates a type o arc of transition t, there exists f : J ~ f ~ n3, 

e=x J and R1 is the dynamic predicate of the output place of the àrc annotated by e . 
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• For each tuple e that annotates a type o arc of transition t, there exists f: 1 ~f ~ n4, 

e= y I and S1 is the dynamic predicate of the output place of the arc annotated by e. • 

• -,lnProgress(t11,a), in the reached state, the transition occurence t11 is no more in 

progress. 

To complete the axiomatization of the firing rule, we must add that a transition that fires 

must be enabled : 
(FR5) BeginEnd(t,a) ➔ Enabled(t,a) 

(FR6) Begin(t, P) ➔ Enabled(t, P) 

and axiomatize the supplementary constraints (SC) of definition 7 .24 : 

1. Begin(t11,a) ➔ X ( F ( End(t,i,a))) 

2. End(t,1,a) ➔ Y ( P ( Begin(t111 a))) 

3. Begin(t11,a) ➔ X ( G ( -,Begin(t11,P))) 

4. BeginEnd(t11,a) ➔ X ( G ( -,BeginEnd(t11,P))) 

5. Begin(t11,(!-)l\(1 ~ n2 ~ n) ➔ Y ( P ( Begin(t,12,P))) 

6. BeginEnd(t11,a)l\(1 ~ n2 ~ n) ➔ Y ( P ( BeginEnd(t112,P))) 

7. !nit ➔ Vt:-,lnProgress(t,a) 

8. pl\BeginEnd(null,-) ➔ X(p) 

9. Enable(null,-) ➔ Vt, Vp:-,Enabled(t,P) 

1 0.InTime ~ OutTime 

11. OutTime=x ➔ X( InTime=x) 

12.Init ➔ InTime=0 

10.3.3 Axioms for real-time temporal operators 

In this subsection, we present axiom schemata for the real-time temporal operators of 

PNRTL. In the following S, (ôl, 82) represents an interval, respectively a pair of bounds, as 

defined in chapter 7. 

De.finitions: 

(RTl). G~o1,ozl(cp) H -,F~o1,02)(-,cp) 

(RT2). H~o1,li2) ( cp) H -,P~oi,02) (-,cp) 

(RT3). Fdô1,ô2)( cp) ➔ F( cp) 

(RT4). PJ°1
•
82 l(cp) ➔ P(cp) 

(RT5). ( cp )U~~1
•
02l( t}) H G~~1·82l( cp) /\ FJ~1

•
82l( t}) 

(RT6). ( cp)S~~1,02)( 'Ô) H H~~1,02)(cp) /\ ~~1,02)( t}) 
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Distribution schema : 

(RT7). G~li1,1>2l(p ➔ q) ➔ ( G~61,1>2l(p) ➔-G~61,1>2l(q)) 

(RT8). H~li1,1>2l(p ➔ q) ➔ (Hàli1,1>2l(p) ➔ H~li1,1>2l(q)) 

Characterizations of the properties of the metric point structure : 

a) d((fü,32),(s, i),(s, J)) = d((B2,fü),(s, J),(s, i)) 

e (RT9). (p" FJ61,1>2)(q)) ➔ FJ61·1>2l(q" Pt2,1>1)(p)) 

(RTlO). (p "pJ1>1.1>2)(q)) ➔ ~61.1>2)(q" FJ62,6i)(p )) 

b) if (S,i) < (S,j) < (S,k) ( i <j < k) 
e d((Bl,33),(s, i),(s ,k)) = d((ôi,32),(s, i),(s, J)) + d((B2, 33),(s, J),(s, k)) 

L t t bl e us cons1 er e o owmg a "d th t 11 e: 

+ y~b v<b y=b v>b y~b 

• x~a x+y~a+b x+y<a+b b~x+y~a+b x+y>b x+y~b 

x<a x+y<a+b x+v<a+b b~x+y<a+b x+v>b x+v~b 

x=a ~+y~a+b ~+y<a+b x+y=a+b x+y>a+b x+y~a+b 

x>a x+v>a x+v>a x+v>a+b x+y>a+b x+v>a+b 

• x~a x+y~a x+y~a x+y~a+b x+y>a+b x+y~a+b 

Table 10.1 (Addition and order relations in the positive real numbers) 

From the table 10.1, we can deduce, for example the following axioms : 

p(61.1>2l(R(1>J.63l( )) ➔ R(61.63)( ) 
<a ?.b p ?.b p 

• 
p_(6J,62)(p_(62,63)( )) ➔ p_(liJ,63)( ) 

>a >b P >a+b P 

References to this axiom shema is noted RTl 1. 

• Axioms schemas relating to arithmetic over the metric operators : 

• 
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• 
Axioms over X and F : 

(RT16). X(F;i.1l2)(p)) ➔ F;o,oz)(p) 

(RT17).F;o1,ol(X(p)) ➔ F;o1,;l(p) • 

These two axiom shemata are justified by : OutTime=x ➔ X(InTime=x) (SCll). 

10.3.4 A proof example in PNRTL • 

We present here the proof of a theorem of the example 7.2 of chapter 7 (page 7.26). Let 

us first translate the net information of example 7 .2 into logical formulae : 

(il) Enabled ( Consume, (md,t,n)) H Piece_To_Consume(md,t,n) 

(i2) Enabled ( Demand, (md,t,n)) H Free_To_Demand(md) 

(i3) Enabled ( Produce, (m,md,t,n)) H CanProduce(m,t) /\ Piece_Asked(md,t,n) 

/\ Free_To_Produce(m) 

(i4) Begin ( Consume, (md,t,n)) ➔ X ( -,Piece_To_Consume(md,t,n)) 

(i5) End ( Consume, (md,t,n)) ➔ X ( Produced_Piece(Manuf(t),n) 

/\ Free_To_Demand(md)) 

(i6) BeginEnd ( Demand, (md,t,n)) ➔ X ( -,Free_To_Demand(md) 

/\ Piece_Asked(md,t,n)) 

(i7) Begin ( Produce, (m,md,t,n)) ➔ X ( -,Piece_Asked(md,t,n) 

/\ -,Free_to_Produce(m) ) 

(i8) End ( Produce, (m,md,t,n)) ➔ X ( Free_To_Produce(m) 

(FRl) 

(FR3) 

(FR4) 

(FR2) 

(FR3) 

/\ Piece_To_Consume(md,t,n) ) (FR4) 

References to axioms of the specification of example 7.2 will be noted al .. alO. 

• 

• 

• 

• 

• 
Theorem 10.3: BeginEnd(Demand,(md,t,n)) ➔ F.,,~JJProduced_Piece(Manuf(t),n))(cO) · 

(cl) BeginEnd(Demand,(md,t,n)) ➔ X(Piece_Asked(md,t,n)) (i6) 
(c2) BeginEnd(Demand,(md,t,n)) ➔ X( ~~·~c (Piece_To_Consume(md,t,n))) (cl,a9) 

(c3) BeginEnd(Demand,(md,t,n)) ➔ ~;Jc((Piece_To_Consume(md,t,n))) (c2,RT16) • 

(c4) BeginEnd(Demand,(md,t,n)) ➔ ~;JJ ~;:JJBegin(Consume,(md,t,n)))) (c3,a5) 

(c5) BeginEnd(Demand,(md,t,n)) ➔ ~;-:)JBegin(Consume,(md,t,n))) (c4,RT11) 

(c6) BeginEnd(Demand,(md,t,n)) ➔ ~;~~( F5,~;~(End(Consume,(md,t,n)))) (c5,a6) 

(c7) BeginEnd(Demand,(md,t,n)) ➔ ~;~~(End(Consume,(md,t,n))) (c6,RT11) • 
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(c8) BeginEnd(Demand,(md,t,n)) ➔ F;.;~~(X(Produced_Piece(Manuf(t),n))) 

(c9) BeginEnd(Demand,(md,t,n)) ➔ F;.;~JProduced_Piece(Manuf(t),n))) 

10.4 Conclusion 

(c7,i5) 

(c8,RT17) 

We have presented a way to translate the net information of a PNTL anc} a PNRTL 

specification into logical formulae. We have also defined a logical proof system for the two 

languages. Proof examples even if obvious, have demonstrated the power of the proof systems. 

U sual syntactical proof can be conducted in a natural way . 
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Conclusion 

Petri net and temporal logic 

The combination of two different styles - declarative and operational - is to our 

knowledge an unusual and rather original approach for modeling distributed systems. The 

benefits of such combination are twofold. In relation to Petri nets, it becomes now possible to 

express various kinds of constraints (e.g. deontic aspects, real-time features); also 

specifications are easier to read. In relation to temporal logic, it allows us to include 

constraints that are by nature operational (e.g. the presence of a certain resource). Another 

original point is the introduction of a preference order on the set of executions. The case study 

has illustrated the potentialities of this combination. 

The PNRTL language 

The language we have proposed in this work provides several advantages. First, the 

integration of logical formulae allows to model declarative constraints. Next, we have 

developed two proof techniques that ,can support the modeling of distributed systems with 

PNTL and PNRTL. The first one maps the Petri net and the constraints that accompany it into 

an automaton whose language can then be calculated and for which the testing of properties is 

possible. The second one translates the' information held in a Petri net into an axiomatic 
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systems. It is important to see that they both rest on well-known formalisms and are therefore 

amenable to automation. 

From specification to modeling 

The addition of temporal logic formulae to colored Petri nets probably makes proof 

possibilities more arduous, but it certainly provides the analyst with a more flexible method in 

his/her modeling task. Indeed, if we start from the point of view that temporal logic is aimed 

at specifying systems while Petri nets are rather operational and are therefore modeling tools, 

it is important to see that the combination of both approaches eases the transition from 

specification to modeling and reduces the gap between those two phases in the development 

process. 

When dealing with any constraint, the analyst often bas the choice to "translate" it either 

into additional places and transitions, or into temporal formulae attached to the net. He/she 

should first opt for the second possibilty, in order to keep the Petri nets as simple (i.e. easy to 

read) as possible. Once the completeness of the specification bas been shown, one can then 

progressively make it more operational by translating, one by one, the logic formulae into 

semantically equivalent sub-nets. At last, one would obtain a pure Petri net model which 

could be tested thanks to some of the numerous simulation tools. existing for Petri nets. 

Perspectives 

It would be particularily interesting to (semi-)automatize such transformations - or at least 

some of them - to accelerate the development process and thereby to decrease its cost. 

Furthermore, such (semi)automation would decrease the risk of errors when going from 

specification to modeling. One can even think of a CASE tool aimed at helping the analyst in 

making the specification operational, for instance by suggesting him/her to replace a. logical 

formula by an addition of some places and/or transitions. We could also think of improving 

the semantics of our language in order to avoid the - rather annoying - exponents decorating 

the real-time operators. 
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