
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Modeling Distributed Systems with Petri Nets and Temporal Logic

Ligny, Bernard; Raskin, Jean-François

Award date:
1995

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 20. Apr. 2024

https://researchportal.unamur.be/en/studentTheses/74e2751b-fa84-4141-91cd-65f8b09e21e6

•

•

•

•

•

•

•

•

•

•

Facultés Universitaires Notre-Dame de la Paix
Institut d'informatique - Rue Grandgagnage, 21

5000NAMUR

Modeling Distributed Systems with
Petri Nets and Temporal Logic

Bernard Ligny et Jean-François Raskin

Troisième licence et maîtrise en informatique

Mémoire présenté le 28 juin 1995 en vue de l'obtention

du titre de licencié et maître en informatique

Promoteur : Mr Eric DUBOIS

• Co-promoteur: Mr Pierre-Yves SCHOBBENS

•

•

•

•

•

•

•

•

•

•

•

•

•

Remerciements

Nous tenons tout d'abord à exprimer nos plus vifs remerciements aux chercheurs et
membres du personnel du Département Euridis de l'Université de Rotterdam.
Durant notre stage, nous avons bénéficié d'une excellente ambiance propice au
travail. Nos remerciements vont plus particulièrement à Yao-Hua Tan et Leendert
van der Torre pour leurs conseils judicieux et l'attention qu'ils ont portée à nos
travaux et ainsi qu'à Marianne Oostdijk pour son dévouement et sa disponibilité.

Nous sommes également reconnaissants envers nos deux promoteurs, Eric Dubois
et Pierre-Yves Schobbens, pour le temps qu'ils ont consacré aux réunions et à la
lecture de notre mémoire. De plus, nous avons pu bénéficier, tout au long de notre
travail, de leur grande expertise dans le domaine des _langages de spécification
formels .

Enfin, nous tenons à remercier nos proches pour le soutien tant moral que matériel
qu'ils nous ont apporté et sans lequel rien n'aurait été pareil .

•

•

•

•

•

•

•

•

•

•

Résumé

Dans ce mémoire, nous définissons un langage de spécification formel pour systèmes
coopératifs, dynamiques et distribués. Ce langage (PNRTL) est basé sur les réseaux de Petri,
la logique temporelle temps-réel et la logique déontique .
Une spécification dans notre langage est composée de trois objets. Un réseau représente les
actions et aspects dynamiques du systèm(! modélisé. Un ensemble de formules de ia logique
temporelle a pour but de restreindre les exécutions possibles du réseau à l'ensemble de ses
exécutions désirées. Enfin, un système de poids est associé aux transitions du réseau pour
modéliser des préférences entre les exécutions du système, cela permet de représenter la
notion déontique de sub-idéalité.
Une étude de cas met en évidence la capacité de notre langage à exprimer des contraintes
opérationnelles, déclaratives, temps-réels, ... et des aspects déontiques.
Nous proposons également deux approches pour réaliser des preuves formelles sur les
spécifications PNRTL : la première est basée sur la théorie des automates de Büchi et la
seconde sur les systèmes de preuves logiques.

Abstract

ln this master thesis, we define a format specification language for cooperative, dynamic and
distributed systems. This language (PNRTL) is based on the formalisms of Petri nets, real
time temporal logic and deontic logic.
A specification in our language is composed of three abjects. A net represents the dynamic
aspects of the modeled system. A set of temporal logic formulae prunes the set of possible
executions of the net to the set of desired executions of the system. A weight system associated
with the transitions of the net models a preferrence ordering on the behaviors of the system,
this allows to represent the notion of deontic sub-ideality.
A case study shows the ability of our language to express operational, declarative, real-time,
... constraints and deontic aspects.
We also propose two différent approaches to conduct formai proof of properties of the
PNRTL specifications: the first one is based on the Büchi automata theory white the second
one rests on logical proof systems .

•

• Table of Contents

• INTRODUCTION .. 0.1

PART ONE: FORMALISMS

•
CHAPTER 1: THE PETRI NET FORMALISM ... 1.1

1.1 INTRODUCTION .. 1.1
1.2 BASIC PETRI NETS····································: ... l.2

1.2.1 Afew dejinitions ... 1.4

• 1. 2. 2 Verification of properties of Petri nets .. 1. 7
1.3 PREDICATE/TRANSITIONNETS ... -............................ 1.10
1.4 CoLOREDPETRINETs ... 1.12
1.5 TIMED PETRI NETS .. 1.15
1.6 DocUMENTARYPETRINETs .. 1.18

• CHAPTER 2 : THE TEMPORAL LOGIC FOR.Mi\LISM .. 2.1

2.1 INTRODUCTION .. 2.1

2.2 TEMPORALLOGIC ··2.1
2.2.l Modal Logic ... 2.1
2.2.2 Linear TemporalFrame .. 2.3

• 2.2.3 Temporal Logic in Computer Science ... 2.3

2.3 REAL-TIME TEMPORALLOGIC ··2.4
2.4 A TEMPORALLOGICBASEDLANGUAGE: ALBERT ... 2.5

2. 4.1 The ALBERT Language .. 2.5
2.4.2 Main concepts ... , ... 2.6
2. 4. 3 Agent declaration ... 2. 7
2.4.4 ALBERT phrases ... 2.8

• 2.4.5 Constraints ... 2.9

CHAPTER 3: TEMPORAL LOGIC VERSUS PETRI NETS ... 3.1

3.1 INTRODUCTION .. 3.1
3.2 COMPARISON OF BOTH APPROACHES .. 3.2

• 3.2.1 Concurrency, choice and synchronization ... 3.2
3.2.2 Causa/ity .. 3.5
3. 2. 3 Determinism and non-determinism 3. 7
3. 2. 4 Conclusion .. 3. 7

3.3 TRANSFORMATION OF PETRI NETS INTO ALBERT .. 3.8
3.3.1 The mapping of the places and tokens .. .-.... 3.8

• 3.3.2 The mapping of the transitions .. 3.9
3.3.3 Th,e mapping of the arcs•.. 3.9
3.3.4 The simultaneity .. 3.11
3. 3.5 Illustration of the transformation rule R .. 3.13
3. 3. 6 Summary and conclusion ... _ ... 3.15

•

•

•

CHAPTER 4 : DEONTIC LOGIC .. 4.1 •
4.1 INTRODUCTION .. 4.1
4.2 SDL: AMODALLOGICFORDEONTICREASONING ... 4.2
4.3 DEONTIC ASPECTS IN OUR WORK ... 4.4

•
PART TWO: A NEW INTEGRATED LANGUAGE

CHAPTER 5 : PETRI NETS AND DEONTIC ASPECTS ... 5.1 • 5 .1 INTRODUCTION .. 5 .1
5.2 STRICT ÜBLIGATIONS/PROHIBITIONS ... 5.1

5.2.1 Strict obligations .. 5.2
5.2.2 Strict prohibitions ... 5.6
5.2.3 Limitations of the approach .. 5.8

5.3 MODELING VARYING SUB-IDEALITY INPETRINETS ... 5.9 • 5. 3.1 Introduction ... ,. .. 5. 9
5. 3. 2 The extended Petri net formalism .. 5.11

5.4 CONCLUSION .. 5.15

CHAPTER 6: PETRI NETS AND TEMPORAL LOGIC ... 6.1 • 6.1 INTRODUCTION .. 6.1
6.2 ÜPERATIONALSEMANTICS OFPETRINETS .. 6.3
6.3 THE LOGIC FORMULAE OF THE LANGUAGE ... 6.6

6.3.1 Stateformulae ... 6.6
6.3.2 Temporalformulae ... 6.10_
6.3.3 The desired executions .. 6.12

6.4 A SPECIFICATIONINPNTL ... 6.13 •
6.4.1 A mode/ ofthis case in the commom Petri nets .. 6.13
6. 4. 2 The PNTL specification of the case ... 6.14
6.4.3 Evaluations ... 6.15

CHAPTER 7: THE PNRTL LANGUAGE ... 6.1 •
7.1 MOTIVATIONS .. 7.1
7.2 NEWCONCEPTS .. 7.2
7.3 REAL TIMEPR!fRNETS-... 7.5

7.3.1 Introduction : .. 7.5
7.3.2 Introduction ofReal-Time ... 7.5
7.3.3 Firing rule and operational semantics .. 7.9 •

7.4 LOGICALFORMULAEOFPNRTL .. 7.16
7.4.1 Stateformulae ... 7.16
7.4.2 Real Time Temporalformulae ... 7.18

7.5 MANY-SORTED STRUCTURES ... 7.23
7.6 A SPECIFICATION IN SEPARATE SUE-NETS ... 7.26

•

•

•

PART THREE : APPLICATIONS AND TOOLS

CHAPTER 8 : A CASE STUDY IN PNRTL ... 8.1

8.1 DESCRIPTION OF THE CASE .. 8.1
8.2 SPECIFICATION OF THE CASE ... 8.2
8.3 CONCLUSION .. 8.12

CHAPTER 9 : DESIRED EXECUTIONS OF A PNTL SPECIFICATION ... 9.1

9.1 INTRODUCTION ···9.l
9 .2 INFINITE EXECUTIONS ON BOUNDED PETRI NETS ... 9 .2
9. 3 ÜVERVIEW OF THE AUTOMATA THEORY ... 9 .2

9. 3.1 Finite automata on fini te words 9. 2
9.3.2 Finite automata on infinite words .. 9.3
9.3.3 Generalized Büchi automata .. 9.5
9. 3. 4 • Closure properties of ffi-regular languages .. 9. 6

.9 .4 BûCHI AUTOMATA AND BOUNDED PETRI NETS ... 9 .6
9.4.1 From Petri nets to automata .. 9.6
9.4.2 The set of possible executions .. 9.8
9.4.3 The libraryexample , .. 9.9
9.4.4 An algorithm .. 9.10
9.4.5 A more general algorithm ... 9.13
9.4. 6 Mapping Petri nets into Büchi automata 9. 14

9. 5 REDUCTION OF THE SET OF POSSIBLE EXECUTIONS .. 9 .16
9.5.1 Hypothesis .. 9.16
9. 5. 2 Constraints on states and constraints on words ; 9.17
9. 5. 3 Reduction when dealing with a constraint on words 9. 17
9.5.4 Reduction when dealing with a constraint on states ... 9.20
9.5.5 Calculating the intersection oftwo languages .. 9.22

9 .6 TESTING OF PROPERTIES ON THE SET OF DESIRED EXECUTIONS .. 9 .24
9. 7 E)ÇTENSION TO THE LINEAR TEMPORAL LOGIC .. 9 .26

9. 7.1 About the expressiveness of the linear temporal logic ... 9.26
9. 7.2 Extended temporal logic ... 9.27

CHAPTER 10 : LOGICAL PROOFS IN PNTL AND PNRTL .. 10.1

10.1 INTRODUCTION .. 10.1
10.2 LOGICALPROOFSINPNTL .. 10.l

10.2.l Part A: the pure logic part : .. 10.2
1 O. 2. 2 Part B : the domain part ... 1 O. 3
10.2.3 Part C: the net part .. 10.4
10.2.4 A proof example in PNTL. ... 10.5

10.3 A PROOF SYSTEM FORPNRTL ; ... 10.7
10.3.1 Formai characterization of the distance function d ... JO. 7
10.3.2 Axiomatization of the PNRTL nets ... 10.8
10.3.3 Axiomsfor real-time temporal operators ... 10.JO
10.3.4 Two proof examples in PNRTL .. 10.12

10.4 CONCLUSION : .. 10.13

CONCLUSION ... 11.1

BIBLIOGRAPIDCAL REFRENCES .. B.1

PART ONE

FORMALISMS

•

•

•

•

•

•

•

•

•

•

•

•

Introduction

Modeling distributed systems ...

Distributed systems are becoming increasingly widespread. But methodologies for building

distributed composite systems are lacking1
, specifications languages aimed at the modeling of

such systems are seldom or have a weak expressiveness limiting their scope of application.

There is a growing need for formai languages capable to manage the interactions between

hetèrogeneous components (human, software, robot, ...) within a system, and capable to

express various kinds of constraints (e.g. synchronization, response times, obligations, ...) .

Furhtermore, those languages should offer analysis, validation and/or verification methods or

tools .

. .. with Petri nets and temporal logic

Among the few candidates satisfying those requirements, two approaches are emerging.

On the one hand, we have the Petri nets based languages for which numerous simulation and

analysis methods have been developed. They provide an easy graphical representation of

systems. On the other hand, temporal logic based languages probably offer a greater

expressiveness, but they lack of "operational" tools. We think that it would be useful to

1 The failure rate for buiding concurrent real-tim~ systems is still estimated at 75% !

•
Introduction

combine both approaches in order to take advantage at one and the same time of the great •

expressiveness of the temporal logic, and also of the analysis power and simple principles of

Petri nets.

Overview

Part one : formalisms

The first part introduces the formalisms, the basic concepts and definitions that we will

need ail along this work. In that sense; it can be considered as the theoritical framework. We

first present the Petri net theory and make a brief survey of the existing extended models

•

•

inspired from the original Petri net model (chapter 1). We will see successively the •

predicate/transition nets, the colored Petrf nets, the timed Petri nets and the documentary Petri

nets. The second chapter recalls the main principles of temporal and real-time temporal logic

(chapter 2). An example of specification language (ALBERT) for distributed systems is then

presented. Next (chapter 3), we compare these two ways of modelling by analysing their

respective capabilities for expressing various mechanisms (concurrency, synchronizatiori, ...)

that are inherent to such systems, and complex constraints like deontic aspects or real-time

features. This will lead us to the definition of a semantics-preserving transformàtion of Petri

nets into the ALBERT language. Finally, we introduce the formalism of a new branch of logic

that deals with the modeling ofpermisssions, prohibitions, etc ... : the deontiè logic (chapter 4).

Part two : a new integrated Ianguage

In the second part, we propose a new integrated language (PNRTL) combining the

different advantàges - or avoiding the disadvantages - of both approaches. Firstly (chapter 5),

we investigate the possible ways of modeling deontic aspects in Petri nets, especially the

obligations and prohibitions, and suggest to distinguish amohg the executions of the net, the

ones that are ideal and sub-ideal. This wµl allow us to obtain a preference order on the set of

executions. The two next chapters (chapters 6 and 7) really present the new specification

language we propose. Roughly speaking, we attach to the Petri net model a set of temporal

logic formulas (representing constraints) rhat restrict the set of allowable executions. It

becomes now much easier to express, for instance, time or performance constraints.

Page 0.2

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Introduction

Part three : application and tools

The last part of this work - part we have wanted to be more practical - illustrates the

different ideas and suggestions previoulsy exposed, by applicating them to a case study

(chapter 8), namely a library network. Thereafter (chapter 9), we present some techniques and

tools to reduce the set of possible executions into the one of desired executions, that is to say

the set whose all executions respect the additional constraints. Those techniques which are

based on the automata and formal language theories, can also be used for the testing of

invariants or properties but they only work for a specification without real-time features.

Finally (chapter 10), we explain how proofs can be clone by translating a net and the

constraints that accompany it, into an axiomatic system allowing us to derive - and so to proof

- invariants .

Page 0.3

•

•

•

.,
•

•

•

•

•

•

•

Chapter 1

The Petri net f ormalism

1. 1 Introduction

Petri nets [PETERSON81] are a popular graphical formalism for the study, modeling and

analysis of discrete dynamic systems. These nets are particularly appropriate for modeling

distributed systems, because they can be used to represent parallelism and synchronization.

They have been. developped from the early work of Carl Adam Petri [PETRI62] who

formulated the basis for a theory of communication between asynchronous components of a

system in 1962. The use and study of Petri nets has spread widely in the last few years .

A Petri net is a mathematical representation of a system. The usual approach considers

Petri nets as an auxiliary tool (see figure 1.1) : conventional design techniques are used to

specify a system which is then modeled as a Petri net. This Petri net model can now be

anàlyzed and leads to a better system (any problem encountered in the analysis forces to revize

the system). This cycle is repeated until the analysis reveals no problem - or only acceptable

ones. In the alternative - and more recent - approach, the entire dèsign and specification

process is carried out in terms of Petri nets. Then the problem is to transform the Petri net

representation into an actual working system.

Many modeling tools or languages are inspired from the original Petri net theory. They add

some extensions to the Petri nets in order to facilitate the modeling of concurrent and/or

distributed systems. The best known extended Petri nets are the colored (section 1.3 and 1.4)

Chapter 1 : the Petri net formalism

and the timed Petri nets (section 1.5). Finally, we will see a third extended mode!

documentary Petri nets (section 1.6).

System
Mode!

Ptoperties of
the system

Figure 1.1 (the use of Petri nets)

1.2 Basic Petri nets

Petri net
mode!

Analyze

the

A Petri net is composed of two types of objects : the places and the transitions. The set

of places represents the state of the modeled system; the set of transitions represents events,

actions or phenomena that alter the state of the system. The places may contain several tokens.

The presence of tokens in a place can be interpreted as the presence of a resource of a certain

kind, or as the satisfaction of certain preconditions. To fire a transition (that is to perform the

corresponding action), some preconditions have to be satisfied, i.e. some places must contain a

specified number of tokens. Those places are called the input places of the transition. The

firing of a transition has the effect that the marking of the net, that is to say the token

distribution, is modified : the specified number of tokens are removed from its input places

and, at the same time, tokens are added to some places. These are the output places of the

transition. So, transitions consume and produce tokens. The dynamic behavior of the system is

represented by the flowing of the tokens through the net.

Graphically, a Petri net is depicted as a directed graph (see figure 1.2) which consists of

two disjunct sets of nodes : the places (represented as circles) and the transitions (represented

as bars). Places and transitions are connected by arcs. It is not allowed to connect two places

Page 1.2

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 1 : the Petri net formalism

or two transitions. The number of arcs between a transition and a place indicates how many

tokens are requested or produced by the transition. A token is represented by a dot:

p1 0 =place

= transition

t1 ~2 • =token

p2 • p4

t3

p5

Figure 1.2 (example of a Petri net)

A transition is enabled if all its input places contain the specified number of tokens (i.e. as

many tokens as arcs from the place to the transition). A transition may fire whenever it is

enabled. Note that we say "may", because when two transitions are enabled at the same

marking, we have to choose - and this choice is undeterministic - to fire one of the two, and

the second will not necessarily still be enabled in the marking which results from the fi.ring of

the first transition. For instance, in the net of figure 1.2, t1 and t2 are both enabled, but the

firing of one transition will disable the other one, since the token in the place p1 will be

removed .

p1 0 =place

= transition

t1 t2 • =token

p2 • p4

t3

p5

Figure 1.3 (the state of the net after the fi.ring of t2)

Page 1.3

Chapter 1 : the Petri net formalism

1.2.1 A few definitions

We now give the basic definitions of the Petri net formalism. See [BRAMS83a,

. PETERSON81] for more details.

Definition 1.1 (Petri net)

A Petri net structure is afour-tuple N=(P, T, Pre, Post).
where P = {p1,p2, ... , pn} is a fini te set of places {n~O)

T = {t1,t2, ... ,tm} is afinite set of transitions (m~O), with P n T = 0

Pre: Px T ➔ N is the input Junction, giving the number of tokens needed in a place to

fire a transition

Post: Px T ➔ N is the output Junction, giving the number of tokens produced in a

place when firing a transition

Very often, the functions Pre and Post are represented by a matrix n x m (see figure 1.4).

Definition 1.2 (Marking)
A marking M is an assignment of tokens to the places of a Petri net. A marking M is a

function giving for each place the number of tokens it contains:

M:P ➔ N:p ➔ M(p)

Very often, this function is represented by a vector of n elements (see figure 1.4).

We write (N, M) for a Petri net N with marking M.

Definition 1.3 (Enabled transition)
An enabled transition in a marking M is a transition whose ail input places contain at least

the required number of tokens:
te Tis enabled <=> \fp; e P:M(p;) ~ Pre(p;,t)

Or in matrix notations :
te Tis enabled <=> M ~ Pre(*,t) where Pre(*,t) is the column related to t, in the

matrixPre.

Definition 1.4 (Firing a transition).
In a marking M, only enabled transitions can fire. Firing an enabled transition t results in a

new marking M - which we write M ~ M - defined1 by :

1 Firing a transition is thus deterministic.

Page 1.4

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

Chapter 1 : the Petri net formalism

\/p; e P:M(pi) = M(p;)-Pre(p;,t) + Post(p;,t)

This means that the vector M resulting from the fi.ring of t, is defined by the matricial

equation:
M = M -Pre(*,t) + Post(*,t)

where Pre(*, t) is the column related to the transition t in the matrix Pre .

Post(*,t) is the column related to the transition tin the matrixPost.

Definition 1.5 (Reachabilty set)

The reachability set R of a marked Petri net (N, M) is the smallest set of markings defined by:
1. MeR(N,M)

2. M'eR(N,M)A:lte T:M'~M'' ⇒ M''eR(N,M)

The execution of a Petri net from an initial marking is a sequence of transitions. This fi.ring

sequence can be represented by the concatenation of symbols, each of them being a transition:

Definition 1.6 (Execution/Sequence of transitions)

Let' s consider Tas an alphabet composed of the symbols t. A sequence s of transitions is a

wordofT*:
s = hitii .. . fa ((ij ET)

Definition 1.7 (Firing a sequence of transitions)

The firing of a sequence s of transition~ in the marked net (N, M) leads to the marking M -

which we will write M ~ M - if and only i/ :
either s = Â. (empty sequence), thenM = M

either s = s't (s'e T* ,te 1), then :lM':M ~M'AM'~M

The set of possible executions can be defined in terms of fi.ring sequences:

Definition 1.8 (Set of possible executions from a marking)

The set E of possible executions of a marked Petri net (N, M) is defined as

E(N,M)={seT*:M~M' AM'eR(N,M)}

·
2 A fireable sequence of transitions also represents a path that leads from the marking M to the marking in the
reachability graph of the Petri net.

Page 1.5

Chapter 1 : the Petri net formalism

Definitiop 1.9 (Set of possible executions between two markings)

The set E of possible executions of a marked Petri net '(N, M) leading to the marking M is

defined as:

E(N,M,M) ={se T*: M~M}

Finally, we introduce the notion ofboundedness of Petri nets:

Definition 1.10 (Bounded place)

A place of a marked Petri net (N, M) is bounded if the number of tokens it contains is

bounded:

p e Pis k-bounded <=> VM'e R(N,M):M'(p) ~ k

Definition 1.11 (Bounded Petri net)

A Petri net (N, M) is bounded if and on/y iff ail the places are bounded:
(N,M) is k-bounded <=> 'vp e P, VM'e R(N,M):M'(p) ~ k

Example:

p2 t2
p4

Pre tl t2 t3 Post tl t2

pl 1 0 0 pl 0 0

p2 1 1 0 p2 0 0
M=(I 2 O 10)

p3 0 0 1 p3 2 0

p4 0 0 1 p4 0 1

p5 0 0 0 p5 0 0

Figure 1.4 (another Petri net)

Page 1.6

t3

0

0

0

0

1

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 1 : the Petri net formalism

• • In this net, t 1 and t2 are enabled, because :

•

•

M=(l 2 0 1 0) ~Pre(*,tl)=(l 100 0)

M=(l 2 0 1 0) ~ Pre(* ,t2)=(0 1 0 0 0)

• The firing of t 1 results in the marking M J

whereMJ =M-Pre(*,tl) + Post(*,tl)

= (1 2 0 1 0) - (1 1 0 0 0) + (0 0 2 0 0)

= (0 121 0)

• The firing oft2 results in the markingM2

whereM2 =M-Pre.(*,t2) + Post(*,t2)

= (1 2 0 1 0) - (0 1 0 0 0) + (0 0 0 1 0)

e = (1102 0)

•

•

•

•

•

•

•

• The sequences s1=tlt2t3 and s2=t2tlt3 belong to E(N,M), but s3=t2t3tl does not .

1.2.2 Verification of properties of Petri nets

In order to ensure the correctness of the model (that is the Petri net) and maybe to revize

it, we need to analyze this model and see if the wanted properties are satisfied (cfr figure 1.1).

There are mainly three different but complementary approaches to analyze Petri nets :

• approach based on the coverability tree and graph

• . approach based on the linear algebra

• approach based on the graph theory

Below, we give a brief survey of the first two approaches. See [FICHEFET88] for more

about verification of properties.

A. The coverability tree and graph

Basically, the central idea of this technique is to build a tree of ail the markings that are

reachable from the initial marking, and then to analyze it. The root of the tree is thus the initial

marking, while the sons of a node M are the markings that can be obtained by firing any

Page 1.7

Chapter 1 : the Petri net formalism

enabled transition at marking M. In other words, such a tree indicates what are the reachable

markings and what are the possible executions of a Petri net (see figure 1. 5).

(1 0 0 1)

y
Mo~.

t2 ~ (2 0 1 0) t1

-----. (101 1) t2

. ~
(2 0 1 1) t1

~ (1012)

Figure 1.5 (a coverability tree)

The analysis of the coverability tree can provide some interesting indications, like the

unboundedness of some places (if the marking of those places increases periodically) or the

unboundedness of the net (ifthere is an infinite number of markings in the tree). To avoid the

handling of infinite trees, one often prefers the coverability graph, in which the marking of

some places is replaced by the symbol 'ro' which denotes an arbitrary large number.- For

instance, the marking M=(2 0 1 ro) stands for (2 0 1 0), (2 0 1 1), (2 0 1 2), etc ... Since it is no

more a tree, loops or cycles are now permitted in the graph (see figure 1.6). It is clear that a ro

associated with a place means that this place; and thereby the net, is not bounded.

(1 0 0 1)

Mo
y

~ (201 ro) 11

~1ro)

t2

Figure 1.6 (the corresponding coverability graph)

Page 1.8

•

•

•

•

•

•

•

•

•

•

• 1

•

•

•

Chapter 1 : the Petri net formalism

Even if the coverability tree/graph allows us to verify some properties, it must be pointed

out that when dealing with very large Petri nets, it is sometimes impossible to determine

structural properties by simply examining the Petri net.

B. The linear algebra approach

Consider a Petri net N=(P, T, Pre, Post) and a function /: A ➔ N: p ➔ f (p)

• Let C be the difference between the output and input matrix of N :

C =Post-Pre

Here are three theorems to verify the boundedness of places and/or of the net.

•
Theorem 1.1
A Petri net is bounded if there exists a positive function f such that f T. C ::;; 0,

• where f T denotes the transposition off :

Nis boudned ç:::> =If: (/ > 0 A JT.C::; 0)

This theorems means that a possible way to verify the boundedness of a Petri net consists in

• solving a particular inequations system, such as for instance :

•

•

•

•

•

(j(p,)f(p,) f(p,)). (;:

f(p1)> 0

ç:::>

f(p2) > 0

f(p3) > 0

- f (p2) - f (p3) ::; 0

f (p2) + f (p3)::;; 0

o o]
1 O ::; 0 with / > O
1 -1

Page 1.9

Chapter 1 : the Petri net formalism

Theorem 1.2
Let llfll={peA:f(p):;a!:0} ~d !).(t,f)=:fT.C(*,t). If E={teT:!).(t,f)>O}=0,

then - ail places of llfll are bounded (whatever the marking)

- Vp E llfll, VM E R(N,Mo): M(p)::; fT_Mo

f(p)

Theorem 1.3

Let F = {f e ir: f T. C = 0}. If f e F then

- all places of llfll are bounded (whatever the initial marking is)

- if p e llfll, then the place pis k-bounded with k::; min (fT .Mo]
feF f(p)

Illustrations of th ose theorems will be given in the second part of this work.

1.3 Predicateltransition nets

Predicate/transition nets [GENRICH86] can be defined as «formai abjects that can be

interpreted and manipulated in a mathematical way that is comparable to working with logic

formula or algebraic expressions » (because their formalism is very close to the one of first

order predicate logic). Here, a dynamiç system is viewed as a set of individuals that is

structured by functions and relations. This structure is partially static and partially dynamic.

The static part is the support of the dynamic system. The annotations of the net are interpreted

in terms of a given static relational structure : the support. Operations (functions symbols) and

predicates (relation symbols) form the vocabulary of the language in which the properties and

relations of individuals will be described. The language used by Genrich is that of first-order

predicate logic plus a class of simple algebraic expressions.

To illustrate this idea of simplifying the net representation of dynamic structures by

merging conditions and events into transitions and places respectively, look at the following

example (figure 1. 7). It shows how a basic Petri net can be summarized :

Page 1.10

•

•

•

•

•

•

•

•

•

•

• 0

•

•

•

•

•

•

•

•

•

•

•

Chapter 1 : the Petri net formalism

-A- -B-

t1

Qa

p

Qc

t2

Pc

-C- -D-

t1

Po (x)+(b) ~

p a t1&2

t2

Figure 1.7 (from basic to predicate/transition nets)

Let us look at another example :

u
(i,x) ~-) V <1>

\---------- i=(i+ 1) mod 7 ° <2>

k=(i-1) mod 7 _ ◄ (k) <5>
Ü,X)

Figure 1.8 (another example)

a

(x)

► Üa

Color U = product l*C
Color V = integer
Color 1 = integer
Color C = char

var i, j, k: V
varx: C

The box in figure 1. 8 denotes a set of events. The substitutions generating those events are

determined by the relation existing between the individuals U and V. Here, this (static) relation
-

is expressed by a first-order logical formula. For an event (a transition) to occur, the variables

Page 1.11

Chapter 1 : the Petri net formalism

x, i, j and k must be replaced by constants in such a wày that the formula at the transition

holds, and tuples generated by the substitution can be removed from/put on the corresponding

places.

The notion of predicate/transition net will be explained in more depth in chapter 7.

1.4 Colored Petri nets

Colored Petri nets [JENSEN86, JENSEN90] take the main idea of predicate/transition

nets, but this new net class is aimed at improving the method of invariant analysis. The main

reason for which colored Petri nets have been developped is that « they - without loosing the

•

•

•

•

possibiHty of formai analysis - allow the mode/Ier to make much more succint and •

manageable descriptions than can be produced by means of low level nets». This meàns that

it facilitates the description of more complex systems. It is also possible to describe simple data

manipulations. Such manipulations are implemented by expressions located on the arcs. In

basic Petri nets, there is only one kind of token, and the state of a place can thus be

represented by an integer3 denoting the marking of the place. In contrast, each token in a

colored Petri net can carry complex information; each .token is associated to a data structure.

The data value attached to a given token is referred to the token color.

<q,12>
<p,0>

p2 [y>5] p4

Figure 1.9 (a colored Petri net)

Color A = product X*I
Color B = integer
Color X=with q I p
Color 1 = integer

varx: X
vari, y: 1

Let' s analyze the net in figure 1. 9. We can distinguish three different parts the net

structure, the declarations and the net inscriptions :

3 And even by a boolean in the case ofbinary (that is 1-bounded) places.

Page 1.12

•

•

•

•

•

•

·•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 1 : the Petri net formalism

• The net structure is similar to-the one of a basic Petri net. It is thus a directed graph with

two types of nodes (places and transitions) interconnected by arcs.

• The declarations (in the right) tell us about the different color sets (A,B,X and I) and

variables (x,i, and y). Bach place is attached to a color set, and a token in that place must be

an element of this- set. These sets are defined in a particular syntax : ''producf' denotes the

cartesian product of n sets, while "with" is the enumerated type constructor.

• A net inscription can be attached to a place, transition or arc. Places have three kinds of

inscriptions : names, colour sets and initialisation expressions. For instance, the place named

p2 is of color Band is initialized with a token whose value is 8. Transitions have two kinds

of inscriptions : names and guards. A guard is a boolean expression which must be fulfilled4

for a transition to occur. For instance, the guard of the transition t2 is y> 5 _ Arcs have only

one kind of inscriptions : the arc expressions. They may contain variables, constants,

functions and operations (defined or implicit), and explain how the value of the output

· token(s) is derived from the one of the input token(s) .

We now give a formal definition of colored Petri net, which can be found in [JENSEN90].

Definition 1.12 (Colored Petri net)

A colored Petri net is a tuple CPN=(L, P, T, A, N, C, G, E, I)

where I: is a fini te set of types, called color sets

P is a fini te set of places

T is a fini te set of transitions, with P n T = 0

A is a fini te set of arcs, with An T = An P = 0
N is the node function mapping each arc into a pair (source-node, destination-node) :

N: A ➔ (T x P) u (Px T)

C is the colored function mapping each place into a color set :

C:P ➔ I:

G is the guard function mapping each transition into a predicate, with
'ift e T:[Type(G(t)) = booleanA Type(Var(G(t))) c I:]

E is the arc expression function mapping each arc into an expression such that :
'ifa e A:[Type(E(a)) = C(p(a)) A Type(Var(E(a))) c I:]

I is the initialisation function mapping each place into an expression such that :
'ifp e P:[Type(l(p)) = C(p)AVar(l(p)) = 0)]

4 By default, an empty guard is evaluated to true.

Page 1.13

•
Chapter 1 : the Petri net formalism

Notations : •

Var(t) denotes the sèt of variables oft (teT).

E(x1,x2) denotes the expressions on the arc linking x1 to x2 (x; E (Pu 1)

Next; we define a binding. Intuitively, a binding is a substitution that replaces each variable of t •

with a color. Each guard of t must be evaluated to true :

Definition 1.13 (Binding of a transition)

For ,a transition te T with variables Var(t)={v1, v2, ... , vn}, we define a binding type BT{t) as •

follows: BT{t)=Type(v1) x Type{vJ) x ... X Type(v,J

The set of ail bindings b of a transition t is defined as follows :
B(t) = {(cI,C2, ... ,cn) E BT(t)IG(t) <VI= CI, V2 = C2, ... , Vn = Cn >= TRUE}

Definition 1.14 (Binding distribution)
A binding distribution is a .function Y, defined on T, such that :

'ift ET: Y(t) E B(t)

A step is a non-empty binding distribution.

Definition 1.15 (Enabled transition)
A step Y is enabled in a marking M if the following property is satisfied:

'ifp E P: LE(p,t) < bt >~ M(p)
(t,b)eY

When (t,b)e Y, the transition t is enabled inMfor the binding b.

For instance, in the net of figure 1.5, ti ·and ti are both enabled. But if the guard of ti was

y> 10, then t2 would not be enabled.

Definition 1.16 (Firing of a transition)

When a transition is enabled by b in a marking M, it may fire, changing the mar'king M into

another marking M defined by :
'ifpeP:M(p)=M(p)- LE(p,t)<bt>+ LE(t,p)<bt>

(t,b)eY (t,b)eY

· where the first sum represents the removed tokens, whereas the second corresponds to the

added tokens.

Page 1.14

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 1 : the Petri net formalism

Example:

In thè next figure, we show a possible state of the net5 after the fi.ring of the sequence of

transitions s=t1tit3 (we use the token <p,O> in place pl) .

p1

p2

Remark:

if X=q
then (x,i)
else (x,i+ 1) P3

A

p4

en x,y-1
else (x,i+y)

p,7>

Figuré 1.10 (the state of the net after fi.ring of s)

.
,,'

Color A = product X*I
Color B = integer
Color X=with q I p
Color 1 = integer

varx: X
vari, y: 1

If its number of colors is finite, a colored Petri net can be unfolded into a regular Petri net

[MURA TA89] by unfolding each place p into a set of places - one for each col or of tokens

that p may hold, and by unfolding each transition into a set of transitions - one for each way

that it may fire.

1.5 Timed Petri nets .

Time is an important aspect vvhen modeling discrete dynamic systems. Time does not need

to be quantified to reason about qualitative temporal properties (liveness, deadlock, faimess,

...) but it is then impossible to express quantitative temporal properties (deadlines, durations,

response times, delays, etc ...). The original Petri net model is not capable of handling

quantitative time. However, in a coloured Petri net, one can use a special place, representing a

global dock, connected to every transition and containing an unique token whose value

represents the current time .

5 whose initial state is given in figure 1.9

Page 1.15

Chapter 1 : the Petri net formalism

The introduction of time has been proposed in several ways, depending on the location of

the time delays and on the type oftime delays [AALST92] :

• The location of the 'time delays. Sorne authors have attached a duration to each transition,

i.e. the tokens are consumed and withheld for some time. In such models, the tiring is said

to be a two-phase tiring. Other authors have proposed models in which each transition is

associated with an enabling time : a transition must remain enabled for a specified time

before it can tire.

• The type of time delays. A delay can ~e fixed, stochastic or specified by an interval. Time

can also be discrete or continous. Very often, fixed delays are inappropriate, simply because

the duration of an activity depends on extemal factors. Stochastic delays are useful for the

evaluation of performance, but their conditions of application are too restrictive : it is

assumed that the delays of two activities are independent. Also delays should be allowed to

depend on token values. Therefore, the solution of delays described by an upper and a lower

bound seems to be the best and more realistic way to represent time delays. These bounds

can be used to verify time constraints.

In this section, we expose a recent timed Petri net model proposed by Van der Aalst

[AALST92] : the ITCPN (Interval Timed Coloured Petri Net) model. The main difference

between ITCPN and the other timed models is that time is associated to the tokens (instead of

the transitions) : every token bears a timestamp. This timestamp indicates the time the token

becomes available. Concretely, a token in the ITCPN model has four attributes : an identity (i),

a position (p), a value (v) and a timestamp (x). It is thus a four-tuple <i,p,v,x>. As suggested

by its name, a time interval is associated to each transition. For instance, the duration of tl in

figure 1.11 vary from 1.5 to 3.0, whereas the one oft2 is fixed (2.0).

Like in basic Petri nets, a transition is said to be enabled if there are "enough" tokens in

each input place. An enabled transition can tire when all the input tokens are available; in

other words it can tire at time x if all the tokens to be consumed have a timestamp greater than

x. And so, the enabling time of a transition is the maximum timestamp of its input tokens. For

instance, the enabling time of t 1 in figure 1. 9 is 3. 0. Transitions with the smallest enabling time

will tire tirst, but when two transitions (or more) have the same enabling time, any of them may

tire tirst. Note that the tiring is still an atomic action. The difference between the firing time

and the timestamp of the produced tokens is called the firing delay. So, the timestamp of an

output token corresponds to the enabling time of the tired transition increased by a variable but

. Page 1.16

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 1 : the Petri net formalism

bounded delay. The effect of the fi.ring of tl is given in figure 1.12, assuming that the firing

delay of tl is 2.0.

<1,p1 ,"ca",2.5> <2,p2,"bd",3.0>

p1 • • p2

<3,p4,"ab",2.0>

p4

<i,p,V,X>
i = identifier
p = position
V= value
x = timestamp

Figure 1.11 (example of net in the ITCPN model)

p1

<4,p3,"cabd",5.0>

p3

p2

<3,p4,"ab",2.0>

Figure 1.12 (the effect of the fi.ring oft2)

Page 1.17

<i,p,V,X>
i = identifier
p = postion
V= value

x = timestamp

Finally, we give the definition of a nèt in the ITCPN model :

Definition 1.17 (ITCPNet).

An ITCPN is a seven-tuple (P, T, V,I, 0, TS,F)

where P is a fini te set of places

T is a finite set of transitions

Vis the value/color fonction :

V:p ➔ VP (Vp being the value/color set ofp)

I: T ➔ Bag(p) gives the input places of t

0: T ➔ Bag(p) gives the output places of t

TS is the time set

/NT is the set of ail possible closed intervals :
INT={[a,b]e TSxTS:a::;;bAb < 00}

CT is the set of ail possible coloured tokens :
CT={<p,v >:pe PA veVi,}

F is the transition fonction such that :

Chapter 1 : the Petri net formalism

1. Vt E T:Dom(Ft) = {c E Bag(CT):Vp E P: Le(< p,v >) ~ L(p)}
veVp

2. V(< p, v >,x) e Ft(c):p e Ot Axe /NT

1.6 Documentary Petri nets

We saw in the introduction (see section 1. 1) that Petri nets are well-suited for the

modeling of distributed systems because of their ability to represent concurrency and

synchronization. As a consequence of the- growing developement of the Electronic Data

Interchange (E.D.I.) and of the network infrastructure, more and more systems (e.g. electronic

business and electronic contracting) include agents, components or entities that can be
' .

geographically very remote. This means that many distributed systems nowadays ensure the

synchronization of their sub-processes by exchanging electronic documents or messages,

Therefore, a new kind of Petri nets, the documentary Petri nets (DPN) have been recently

proposed (see [BLWW95]), especially to support the design of trade procedures. CASE/EDI
' '

is a tool based on the DPN formalism, • an4 has been applied to some international trade

procedures such as exchange of bills of lading for letters of credit, custom clearances, etc ...

(see [LEE91, LEE92])

Page 1.18

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 1 : the Petri net formalism

DPN' s introduce a new kind of place, called document place, which have a specific

graphical representation (see figure 1.13). Each document place is attached to a document

structure described in a pseudo-language. The link between a document place and its structure

is ensured by its label which also includes the name of the receiver (to X) in the case of an

output document place, or the name of the sender (Jrom X) in the case of an input document

place.

Every token contained in a document place represents an instance of,a document having a

particular structure. Clearly, a DPN is a coloured Petri net where the color corresponds to the

information that a document holds. But in contrast to colored Petri nets, a token can be used

whatever it "contains" (that is whatever the value of the document components are) : there is

no predicate to verify on the arcs, and no condition/guard associated to the transitions. Here,

the fact that a message or document has the waqted structure is sufficient to use it, because

CASE/EDI models bureaucratie procedures.

Il [doc2]:
L.,.--JtoY

[doc1]:
fromX

doc1 = [name:STRING; ...]
doc2 = [number:INT; ...]

Figure 1.13 (two types of places)

In CASE/EDI, we model trade scenarios involving business part1c1pants. Roles are

specifications of their allowable behaviour and are modeled by DPN's (one per role). An

example of scenario is given in: figure 1.14. Note that the notion of scenario denotes the

instance of a (commercial) transaction.

The modeling of bureaucratie proèedures is quite different from the modeling of logistic

processes (like in the ITCPN model), because in bureaucratie procedures, deontic aspects such

as obligations, prohibitions and permissions. play an important role (see chapter 3 for more

about deontic aspects). Performative communication in DPN's alters the state of commitment

between the parties (the documents in a DPN are viewed as speech acts inducing obligations,

permissions, etc ...). So, if you accept or send a document (i.e. by using the token in the

corresponding document places of a transition), you are supposed to accept at the same time

Page 1.19

Chapter 1 : the Petri net formalism

the obligations that are implicitly attached to this document. For instance, in the scenario of

figure 1.14, the sending to the seller of the acceptance induces the obligation to pay for the

buyer. Similarly, the sending ofprice quotations'supposes that an acceptance from the buyer

will result in the delivery of the goods by the seller.

Role : seller Role: buyer

[info_request]:

p1 • from buyer.

Send_request
Receive_request [price_quot]:

from seller
pnfo_request]:
to seller

Receive_price_quot

[accept.]:
Send_price_quot

from buyer
[price_quot]:
to buyer

Refuse

p40
[accept.]:

op4
to seller

Figure 1.14 (a scenario in CASE/EDI)

Let us npw (try to) give a formal definition of the concepts of CASE/EDI:

Definition 1.18 (Scenario)

A scenario is a 2-tuple (RS, RL)

where RS is a set of rote specifications (i.e. of marked DPN) :

RS = {(DPN1,M1),(DPN2,M2), ... ,(DPNk,Mk)}

RL is a set of role labels (e.g. seller, buyer, .. .) :

RL = {r1,rz, ... ,rk}

Page 1.20

•

•

•

•

•

•

•

•

•

•

•

•

•
i

i

i.

•

•

•

•

•

•

•

•

•

•

Chapter 1 : the Petri net formalism

Elements of RS are marked documentary Petri nets, which in fact constitute a particular form

of colored Petri nets :

Definition 1.19 (Role/DPN)

Arole (a documentary Petri net) DPNi is a 6-tuple (L,Pi,Ti,Prn,Posti,Si)

where L is a set of document types

A is a set of places

Pi= Au Pi (with Pi lî Pi= 0)

A is the sub-set of document places and Pi the one of ordinary places

Pre and Post are respective/y the input and output fonction

Si is a function mapping each document place into a document structure/type and a

label indicating the source or destination role :

S;: A ➔ LxRL

Definition 1.20 (Marked DPN)

A marked DPN is a DPN at marking M with an additionnai constraint : ail places of the ne~

are 2-bounded places .

Note that an input document place in arole i must correspond to a similar output place in the

role j G being the source role labelling the input place), and vice-versa :

\fp E Pi:(:3t E Ti:Prei(p,t) = 1) ç::> ((p E PJ)" (:3t E Jj:Pos(j(p,t) = 1))

Page 1.21

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 2

The Temporal Logic f ormalism

2.1 Introduction

In this chapter, we introduce the temporal logic formalism. Temporal logic allows to

reason over situations changing in time. Thus, this formalism is well suited for the description

of distributed system .

Section 2.2 introduces the basic definitions of temporal logic : its semantics and the

temporal operators. Section 2.3 briefly introduces the notion of real-time. Finally, section 2.4

presents a temporal based specification language: ALBERT [DDDP94a], [DDDP94b] .

2.2 Temporal Logic

2.2. 1 Modal Logic

Temporal logic is a special kind of modal logic. In this subsection, we introduce the basic

concepts of a propositional modal language .

Definition 2.1 (Propositional language [AHO&ULLMAN93])

A propositional language contains a set of propositional letters P (... ,p,p1,p2, ... ,q,q1,q2, ...),

two propositional constants T (true) and F (false), boolean connectives : ---, (not), /\ (and), v

(or), ➔ (if ... then ...), H (if and only if), I:P➔{True,False} an interpretationfunction that

Page 2.1

Chapter 2 : The Temporal Logic formalism

assigns to each propositional letter the boolean value 'True' or 'False'. As a basis for the

propositional language we take {-,, v,Falsejl:

• a v P is true if! a is true or P is true

• -,a is true if! a is false

other operators are defined as follows :

• True := -,False

• a A p :=-,(-,av -,p)

• a ➔ P-:=-,avp

• a H p :=-,(-,av -,p) v -,(av PJ

To the usual propositional language for modal logic [CHELLASSO], we add two unary

operators : L for necessarily and M for possibly. These two operators are dual :

L(cp) = -,M(-,cp)

The semantics of modal logic is based on frames and models. Let us define these two notions

formally:

Definition 2.2 (Modal frame).

·A modal frame is a 2-tuple (W,R) where W is a non-empty set of worlds and R a binary

relation defined on WxW: this relation is called the accessibility relation.

Definition 2.3 (Modal model).

A modal model is a 3-tuple (W,R, V) where (W,R) is a modal frame and Vis a,valuation on W,

V maps proposition symbols to subsets of W (giving the set of worlds where this proposition

holds).

Let us now define the truth value of a modal formula :

Definition 2.4 (Truth value of a modal formula).

The fact that a modal formula cp holds in a modal model Ü=(W,R, V) at world we W, noted

Q, w f cp, is defined by recursion on formulae :

1. Q,w fp iffwe V(p)

2. Q,w f-,p iffwè V(p)

3. Q,w f pvq iffwe V(p) or we V(q)

4. Q,w fL(cp) if!Vw'e W[wRw'➔ Q,w' fcp]

5. Q,w fM(cp) iff3w'e W[wRw'➔ Q,w' fcp]

1 In the following, a and ~ denotes propositional formula

Page 2.2

•

•

•

•

•

•

•

•

•

•

•

,.

•

•

•

•

•

•

•

•

•

Chapter 2: The Temporal Logicformalism

2.2.2 Linear Temporal Frame2

Temporal logic [MACARTHUR76] is a special k:ind of modal logic where some

restrictions on the 2-tuple (W,R) (the (rame), are respected.

Definition 2.5 (Temporal frame).

A temporal frame is a 2-tuple (~ 0, <) where ~ 0 is the set of positive integers and < is the

usual ordering relation over the positive integers. Each world, also. often called state in

temporal logic, is mapped to a positive integer number .

New modal operators, called temporal operators, are also introduced in temporal logic.

Those operators are :

• for the future : X (Tomorrow, Next state), F (Eventually), G (Henceforth) and a

binary operator U (Until)

• for the past: Y (Yesterday, previous state), P (Sometime in the past), H (Always

in the past) and a binary operator S (Since) .

We can give the semantics of these temporal operators :

1.0.,i/=X(p) iffO.,i+l /= p

2.0.,i /=F(c.p) iff3j (i~j ➔ O.,j /= cp)

3.0.,i /=G(c.p) iff"i/j (i~j ➔ 0.,j /=c.p)

4.0.,i /=(c.p)U(cf,) 'ijf3j (i~j ➔ O.,j /=cf> A "i/k (i~<j ➔ O.,k /=c.p)

5.if i=l then O.,i /=Y(c.p) is always true

6.if i>l then Q.,i fY(c.p) ijfü,i-1 f c.p

7.0.,i /=P(c.p) iff3j (j~i ➔ 0.,j /=c.p)

8.Q.,i /=H(c.p) iff"i/j (j~i ➔Ü,j /=c.p)

9.0.,i /=(c.p)S(cf,) iff3j (j~i ➔O.,j /=cf>/\ "i/k (j<~i➔O.,k /=c.p)

2.2.3 Temporal Logic in Computer Science

Since the seminal paper of Pnueli 'The temporal logic of programs' [PNU77] appeared in

1977, the use of temporal logic to reason over programs and computer systems has been

steadily increasing [KOYMANS92] .

2 The branching temporal logic will not be introduced here. For an introduction to branching linear logic, see
. [STI87].

Page 2.3

Chapter 2: The Tempora!Logicformalism

Temporal logic is well · suited for reasoning about situations changing in time. A

computation can be seen as a sequence of states where each transition from one state to the

next state can be thought as a tick of some computation clock. The behavior of a system can

be viewed as the set of its possible computations. Therefore temporal logic can be used to

describe the desired behavior of a system.

But concurrent systems, time-critical systems or distributed systems are also often

characterizec:l by quantitative timing properties. Therefore usual temporal logic is not sufficient

since only qualitative time constraints, i.e. constraints on the ordering of states, can be

specified. To overcome this drawback, the notion of distance intime between states must be

introduced. Introducing this notion, we obtain a formalism called real-time temporal logic.

2.3 Real-Time Temporal logic

In real-time temporal logic, the notion of sequence of states is preserved. Besides that,

each state is mapped to a point of the real-time. So it is now possible to compute a distance (in

time) between two states and to express assertions on the distances.

The temporal operators are adapted syntactically and semantically. The following assertion

p➔F 0m;n(q)

expresses that if p is true in the ·state where the assertion is evaluated, then there must exist in

the future a state distant of at most 5 minutes where q is true. In the sequel of this work, w.e

investigate more formally the notions attached to real-time (see chapter 7 and chapter 10).

As an illustration of the expressive power of real-time temporal logic, let us consider the

following constraints [KOYMANS92], which can be formulated in a distributed system

specification, and their expression in real-time temporal logic:

• Maximal distance between an event and its reaction, for example, every A 1s

followed by a B within 5 seconds (a typical promptness requirement):

A ➔ F0sec.(B)

• Exact distance between events, for example, every A is followed ,bY. a B in exactly 2

seconds (as with the setting of a timer and its time~out) :

A ➔ F=2sec.(B)

Page 2.4

•

•

•

•

•

•

•

•

•

•

•

•

•

•
1

•

•

•

•

•

•

------- ---------- --·-·· ----- ------

Chapter 2: The Temporal Logicformalism

• Minimal distance between events, for example, two consecutive A's are at least 3

seconds apart (assumption about the rate of input from the environment) :

A ➔ X(-,F9sec.(A))

• Periodicity, for example, event E occurs regularly with a period of 4 seconds :

E ➔ X(F=4sec .. (E)A G<4sec.(-,E))

• Bounded response time, for example, there is a maximal number of time units so

that each occurence of an event E is responded to, by B, within this bound :

3t(E ➔ FslB))3

Remark. In chapter 1, we have presented the Petri net formalism. The figure 1.1 (page 1.2)

shows that the Petri net formalism is used as a modeling language. On the other hand,

temporal logic is a specification language. The style of Petri nets is operative while the one of

temporal logic is declarative. Temporal logic based formalisms are usually used in an early

stage of software engineering : the definition of the requirements of the system .

2.4 A Temporal Logic based language : ALBERT

2.4.1 The ALBERT /anguage

ALBERT [DDDP94a], [DDDP94b] is a formal agent-oriented language for Requirements

Engineering (RE). It is aimed at the specification of requirements for composite real-time

systems. RE is the activity of obtaining from customers the initial requirements of a system to

be implemented. Agent-oriented means that the language meets the main 00 principles

(namely encapsulation of data structures and actions on them). The word agent denotes a

component or object having responsibilities and perceptions within the system. ALBERT is

formal : it has a formai semantics giving a precise meaning to all specifications written in this

language.

In the following subsections, we give an overview of this language .

3 The possibility of quantification over time is usually not permitted in real-time languages for purpose of
completness, but the formalism of Koymans [KOYMANS92] includes this possibility.

Page 2.5

Chapter 2: The Temporal Logicformalism

2.4.2 Main concepts

Systrm

A system is a certain part of the world which is relevant to the customers. The word "system"

is considered in a large sense, it can include software pieces, de vices, humans, .. . Goals are

attached to the system.

Society

SYSTEM

Figure 2.1 (An ALBERT system)

Agents

/ndividua/
agent _

The agents are the basic blocks of the language, the units of specification. They are entities of

different nature that have to communicate and cooperate together in order to achieve the

systems goals. Therefore, we associate to each of them, a set of possible lives. Compound

agents, called societies, are made of finer ones. The system is thus considered as an agent

society. Individual agents are agents whose behavior is formally defined. Bach agent has a

structure (made of state components and action) and can lead certain lifes represented as

sequences of states (bearing a timestamp) and changes :

10:00 10:05 10:16

Agent
structure .,_ __ _. structure structure

Changes Changes

Figure 2.2 (A ALBERT agent life is a sequence of states)

Specifications

Page 2.6

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 2 : The Temporal Logic formalism

The system specification is obtained by combining the different agent specifications and the

specification of the data and operations. In an individual agent. specification, two parts are to

be distinguished: (i) declarations describing its structure (that is its state components and its

actions) and (ii) the constraints identifying possible lifes and unwanted ones .

2.4.3 Agent declaration

State components

The state of an agent records its knowledge, each component is part of this knowledge and

represents an agent attribute or information it handles. Each ~omponent has a type

corresponding to the data type of its value. Those types can be predefined (like strin,gs,

integers, ...) or user-defined (like sets, sequences, tables, ...). State components declarations

express visibility properties about state components: components outside the parallelogram

belong to the state of other agents and are imported from them; inside the parallelogram,

component. with an outgoing arrow are exported to the indicated agent class; other

components are private .

Structure of Agent 1

J}ction1) 1

~

Data1:
STRING

Agent2 argument Agent2

Data2:
REAL /c;on2,z1
Agent3 Agent2 argument(s)

Figure 2.3 (An ALBERT agent structure)

Actions

Actions are phenomena or events which happen in the life of an agent and which change the

value of the state components. Actions can be decided by an agent but it can also undergo

actions. Actions may have arguments. The values of these arguments make intrinsically part of

the occurrence of an action. Like for the state components, actions inside the parallelogram are

under the control of the agent, while actions outside are performed by other agents. Arrows

indicate which agent is importing/exporting the action .

Page 2.7

Chapter 2 : The Temporal Logic formalism

The introduction of actions makes possible to overcome the well-know frame problem

[BMR92], a typical problem resulting from the use of declarative specification languages.

2.4.4 ALBERT phrases

This section describes the different kinds of phrases that compose the ALBERT constraints.

Terms

ALBERT terms refer to state components. A term can be:
• a constant symbol (ex: TRUE, UNDEF)
• a variable identifier (ex: X, C)

• astate component reference (ex: Seller.name)
• an operation àpplication (ex: remove(list, e))
• a term between brackets.

Logical expressions

Logical expressions (or formulae) are used to express assertions or conditions, like

"Card(stored-cars)<Capacity11 which means that the number of stored cars must always be

smaller than the capacity. Simple logical expressions (or atomic formulae) are terms that yield

a boolean value. Composed expressions use the logical connectives (like A, -,, v, ...) and

quantifiers (V, :3).

Temporal logical expressions

These are variants of logical expressions using special temporal connectives (to reason on the

agent life). It is possible to refer to durations. In classical temporal logic, we can refer to a

moment in the past; in ALBERT, we can also refer, for instance, to the three last hours which

have passed. For example, " ♦ <S' 8 11 holds if B was true (at least once) in the last five minutes.

Here are the main temporal connectives (that may be subscripted with a time period):

♦ : sometimes in the past (including the present), this operator is the equivalent of P in

usual temporal logic (see subsection 2.2.2).

■ : always in the past (including the present), equivalent of H operator.

◊ : sometimes in the future (including the present), equivalent of F operator.

□ : always in the future (including the present), equivalent of G operator.

Page 2.8

•

•

•

•

•

•

•

•

•

• (

•

•

•

•

•

•

••

•

•

•

•

Chapter 2 : The Temporal Logic formalism

2.4.5 Constraints

There are three kinds of constraints in ALBERT: basic constraints, local constraints and

cooperation constraints .

Basic constraints

. They are used to describe the initial state of an agent and to give derivation rules (when the

value of a component depends on other ones) .

Local constraints

They are related to the internai behavior of an agent.

State behavior

This kind of constraints must be satisfied by states. Static constraints are properties which

must be true in ail states, they are invariants with simple logical expressions. Dynamic

constraints govern the evolution of the state along the agent life. These constraints are

temporal logical expressions .

. Effect of action

Here, we define how state components values change according to the occurrence of (internai

or external) actions. The post-action state is specified by application of mathematical

functions on the initial state. The effects of actions are valuations and not logical expressions.

Capability

Capability constraints are used to describe the responsibility of an agent with respect to its

own actions, in terms of preventions (circumstances under which actions cannot occur) and

obligations (circumstances under which actions must occur). They are expressed with the help

of special connectives: F for forbidden, 0 for obligation and XO for exclusive obligation) .

Action composition

ALBERT provides a set of connectors to express action sequences (;), n occurences of a at

the same time {a } 11
, simultaneity (®), parallelism (Il), or alternatives (Ef>) .

Action duration

Under this heading, the specifier may put constraints. on the length of internai action

occurrences. The constraint may be an exact duration (l<action>I = <duration>), or, a lower

(l<action>I > <duration>) or upper bound (l<action>I < <duration>) for the duration .

Page 2.9

Chapter 2 : The Temporal Logic formalism

Cooperation constraints

In contrast with the local constraints (related to the internai behavior of an agent), cooperation

constraints govem the information exchanges between the agent and the oûtside.

Action perception

Here, we describe how the agent is sensitive to actions occurring outside. This is done in terms

of ignorance([) and knowledge (K) and exclusive knowledge (XK).

State perception

Under this heading, we define how agents see parts of the state of others agents belonging to

the same society. State perceptions are also specified using K, I and XK.

Action information

Information is the dual of perception and expresses how the agent let others about agents

know actions it performs. Again, the ignorance and knowledge connectives are used.

State information

Describe how an agent shows parts of its state to others agents belonging to the same society

(again with /, K and XK).

Futher readings. We refer the interested reader to [DUBOIS95a], . .[DUBOIS95b] and

[DDZ95].

Page 2.10

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter3

· Temporal logic versus Petri nets

3. 1 Introduction

In the last few years, many languages have been proposed for the purpose of specifying or

modeling distributed systems. We can divide such languages in two categories. On the one

hand, we have the mathematics based languages, like Petri net based languages. They have

progressively shifted from semi forma! notations (box and arrows) to more forma! notations

(predicates). They offer many formal and informai analysis methods (namely liveness,

boundedness, pattern recognition). On the other hand, some more recent languages are based

on temporal logical grounds. Their formai semantics associated to the existence of rigorous

rules of interpretation and of deductive inference provide to the analyst an interesting support

in his/her modeling task .

Before proposing (in chapter 6) a new language combining these two different ways of

modeling distributed systems, we first compare both approaches and outline some of their

respective features (section 3.2), and then show that it is possible to transforma ~asic Petri net

into a specification in ALBERT for the purpose of reverse engineering (section 3.3) .

Chapter 3 : temporal logic vs Petri nets

3.2 Comparison of both approaches

To perform this comparison, we are going to study two particular languages. The first

one, ALBERT (see section 2.3) is based on the temporal logic formalism, while the second,

CASE/EDI (see section 1.6) is a colored Petri net based language for the modeling of formal

commitment procedures. In this section, we are particularly intei-ested in what (i.e. which

constraints) we can and cannot express, _and in how it can be expressed.

3.2.1 Concurrency, choice and synchronization

As we study the modeling of distributed systems, we will emphasize on three fundamental

mechanisms that are inherent to such systems : the concurrency, the choice and the

synchronization .

. Concurrency

It means that simultaneous events can occur. The rule in CASE/EDI is that all the

transitions whose input places contain a token1 may tire. Thus, when we want to allow

transitions to occur simultaneously, we have to build a net, and thereafter to verify by a

mathematical analysis (e.g. coverability graph) that this simultaneity is possible. Although the

Petri nets are especially suitable for modeling concurrency, we must be careful about the

concurrency possibilities of a Petri net, because it is not straightforward when examining its

graphical representation, to see which actions will be allowed to occur at the same· time. Look

at figure 3 .1. In this net, it is not always possible to fire Action] and Action2 simultaneously (it

depends on the history of the :fired transitions).

In contrast, in ALBERT, the, concurrency is implicitly permitted in ALBERT : actions

may always occur at the same time except if it is explicitly forbidden (F) by a constraint (1), or

if they alter the same information (2) :

(1) F(MacroAction / TRUE) % capability constraint

MacroAction H (Action2 ® Actio,n3) % action composition ,

(2) Action]: n=n+ 1 % effects of action

Action2: n=n-2 % effects of action

1 Only binary places exist in CASE/EDI

Page 3.2

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 3 : temporal logic vs Petri nets

Further more, one can precise when this simultaneity is obligated (0) :

0(MacroAction / ~)

MacroAction f-+ (Action2 ® Action3)

% capabihty constraint

% action composition

0
0

Figure 3.1 (concurrency)

Decision points

These situations are met when actions can be executed individually but not simultaneously

or successively, oft:en because they need the same resources or simply because they are

antagonist. Concretely, in CASE/EDI, decision points are modeled by imposing a common

input place to the transitions in question (see figure 3.2) .

Action2 ---- Action3 ___,,,..._

Figure 3.2 (choice)

Page 3.3

Chapter 3 : temporal logic vs Petri nets

Such choice situations do not exist in ALBERT but can be modeled by capability and

causality constraints using temporal operators. Actually, these situations are rather forbidden

sub-sequences of concurrent actions. For instance, the net of figure 3.2 can be expressed by

the two following constraints :

(1) MacroAction H (Action2 ® Action3)

F(MacroAction / TRUE)

(2) Flag:=FALSE

Action]: (Flag:=TRUE)
(3) F(Action21-Flag)

F(Action3 / -.Flag)

% action composition

% capability constraint

% initial valuation

% effect of action
% capability constraint

% capability constraint

which state that (1) an Action2 and Action3 can never be performed simultaneously , and that

•

•

•

(3) the first action performed can only be Action]. •

Synchronization

Parallelism is useful only if the different processes (the agents in ALBERT, the roles in

CASE/EDI) can cooperate. Such cooperation requires the sharing of information and

resources. This sharing must be controlied via synchronization mechanisms, to ensure the

•

correct behavior of the whole system. Synchronization points are used to wait for the •

termination of a specified number of cooperating processes before continuing. They can be

easily implemented in a Petri net by linking, for each transition (Action] and Action2) to be

synchronized, at least one output place to the transition (Action3) that must follow their

termination (see figure 3.3).

Again, we do not find m ALBERT, the equivalent of synchronization points. The

correctness of the overall system is ensured by a combination of cooperation, action

composition and capability constraints (see below). This combination can be understood as

synchronization directives. The cooperation constraints are used to warn an agent about the

occurrence of an action "outside", the causality and capability constraints indicate the order of

the actions occurrences (i.e. the possible sequences of actions in the time) :

Agentl:

Agent2:
Agent3:

K(Actionl.Agent3 I TRUE)

K(Action2.Agent3 I TRUE)
MacroAction H (Agent 1. Actionl l!Agent2.Action2)

MacroAction: (Flag:=TRUE)
F(Action3 I -Flag)

Page 3.4

% cooperation

% cooperation
% action campos.

% effect of action
% capability

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 3 : temporal logic vs Petri nets

where K(action.Agentx / p) states that agent x knows (K.) under condition P when an action is

performed.

_ _ _ _ _ _ _ _ _ _ ~ge_n! 1 _ _ _ _ _ _ _ _ _ _ r _____ -~g~l)t_2 _ _______ _
'. __ Actions __ Actions

: Action4 __ __

'
_____________ ~ _ ~g~~t _3 __ ~ _______________ _

[doc2]

' - - - - - - - - - - - -
'

Figure 3.3 (synchronization)

3.2.2 Causality

Let us now examine how the causality is modeled in both languages. In temporal logic based

languages like ALBERT, we don't need to describe when an action can be performed. We

simply define the causality link between actions : instead of imposing the moment an acti'on has

to occur, we refef to the occurrence or distance of some other actions. The system is thus

expressed in terms '?f sequences of events or process (in the sense of process algebra) by

means of combinators in action composition constraints.

In the Petri net based languages such as CASE/EDI, actions are triggered through ECA

(Event-Condition-Action). Actions can occur when pre-conditions are met, that is when all

input places contain a token. The causality between two actions can be seen graphically by

examining the places that are at the same time input place for the first transition, and output

place for the other transition (see figure 3 .4).

Page 3.5

Chapter 3 : temporal logic vs Petri nets

ActionA1 ActionA2 ActionA3 ActionA4

T

Actions

Figure 3.4 (causality between actions)

Note that the situation here above can be translated in the following action composition

constraint in ALBERT:

ActionAIIIActionA2ll(ActionA3 EB ActionA4); ActionB

This would suggest that a Petri net can be converted into constraints describing the

causality relationships between the transitions of the net. However, the presence of self-loops,
as in the next example, can rise some problems. Indeed, the constraint (Action3;Action4)

does not hold here, since one cannot be sure that Action4 will fire one day, after the fi.ring of

Action3 (i.e. a possible firing sequence could be Action], Action3, Action2, · Action2,

Action2, ... , Action2, ...)

--Action1

Figure 3.5 (a net with a self-loop)

Page 3.6

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 3 : temporal logic vs Petri nets

3.2.3 Determinism and non-determinism

From the moment we want the specification language to also· modefhuman behaviors, like

in a business procedure, it is necessary to take into account the uncertainty of actions. We

have to distinguish deterministic events (things that must happen) and non-deterministic ones

(things that may happen). Now we are interested in how we can model obligations,

permissions and preventions in both languages.

ALBERT has a default rule: in the absence of constraints, all actions are permitted,

whatever the situation. An action may occur, except if this action is forbidden in the current

state of the system, or if an obligation is attached to it (in that case, it must occur). ALBERT

provides a set of special connectives (F for forbidden, 0 for obligation and XO for exclusive

obligation) in order to describe the responsibility of an agent with respect to its own actions .

Since in ALBERT and more generally in temporal logic based languages, the system is viewed

as a generator of possible lifes for each agent, deontic features can be modelled by defining the

semantics of such connectives on those lifes .

In contrast, due to the non-deterministic nature of the Petri nets (when several actions are

enabled, each of them may be the next tô fire), one cannot explicitly represent obligations in

CASE/EDI. A possible solution would be to map the obligations into a set of mathematical

properties that the net has to respect. But there exists no method to derive a Petri net from

such properties. These deontic aspects, especially the modeling of obligations and prohibitions

will be discussed in the next chapters (chapter 4 and 5) .

3.2.4 Conclusion

If we model with Petri nets, we can take advantage of the numero1;1s analysis methods and

simulation tools. Their graphical representation and their principles are very simple, even for a

non-specialist. But on the other hand, it is sometimes difficult to represent complex

preconditions or elaborated constraints (like performance constraints or permissions). Such

constraints are easier to model by using the temporal logic formalism. Hence have we thought

(in chapter 5) about a language based on mathematical and logical grounds. This will for

instance allow the analyst to refer to a particular state of the system in the past or in the future.

Such reference would have lead to the introduction of somewhat artificial places and

transitions in the Petri net description .

Page 3.7

•
Chapter, 3 : temporal logic vs Petri nets

3.3 Transformation of Petri nets into ALBERT

•
3.3.1 The mapping of the places and tokens

Remember that a basic Petri Net structure is characterized (see definition 1.1) by a set P of

places, and that (see definition 1.2) the marking M of the net gives the distribution of the •

tokens in these places.

We propose to map the set P of places into a table2 PL_ l\1K - for places and marking -

belonging to the agent structure and which coritains as many "records" (lines) as places of P.

The two following rules have to be respected:

(RI) Vp e P:p e Dom(PL_MK)

(R2) VpeDom(PL_MK):peP

For the mapping of the marking M, we canuse the same table (PL_l\1K). We propose to

replace the number of tokeris of a place p by an integer equal to M(p) that is to be inserted in

the second column of the table, at the line related to the place p:

p10

v
p3 0 '
P={p1 ,p,2,p3}
M=(201)'

p2

0 R

and the first two rules become :

PL MK

Place Markina.

p1 2
p2 0
p3 1

agent structure

(Rl)' Vp e P: (p e Dom(PL _ MK) A Marking(p] = M(p))

(R2)' V <p,i >e PL_MK:(pe PAi =M(p))

Place=CP[Char, lnteger]
Marking=I nteger

2 A table in ALBERT is a set of 2-tuples (ID, X), where ID is an identifier and X any information related to
ID.

Page 3.8

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 3 : temporal logic vs Petri nets

3.3.2 The mapping of the transitions

Another element of a Petri net structure is the set T of transitions (see definition 1. 1). We

can easily map the tt:ansitions of a Petn net into actions belonging to the agent structure of the

ALBERT specification:

t1

t2 R

t3 action-t1

T={t1 ,t2,t3}

That way, we obtain the next transformation rule .

(R3) 'ï/t E T:t~action t A 'ï/action t::3t ET

3.3.3 The mapping of the arcs

action-t2 .,
action-t3

agent structure

In a Petri net structure, the arcs are represented by two functions, Pre and Post, mapping

each transition into a bag ofinput/output places (see definition 1.1) .

Intuitively, we can consider the input arcs as preconditions that have to be satisfied to fire

a transition. For example, Pre(pI,t2)=2 means that the place pl must contain at least two

tokens to fire the transition t2. In other words, it is forbidden to fire the transition t2 if the

place pl contains less than two tokens. We saw (in chapter 2) that ALBERT provides a

special connective (F) to express preventions in capability constraints. So, we propose the

following mapping for the input arcs :

(R4) 'ï/t ET, 'ï/p E P:(z; = Pre(p,t) > 0 ~ F(action_t / Marking[p] < z;))

Page 3.9

•
Chapter 3 : temporal logic vs Petri nets

Thus, there are as many preventions as numbers, in the input matrix, greater than zero: •

Ca12ability: constraints:
Pre tl t2 F(action_tl/ Marking[pl]< 1)
pl 1 0

~ F(action_tl/ Marking[p3]< 1)
p2 0 2
p3 1 0 F(action _ t2 / Marking[p2] < 2)

Moreover, the input arcs also inform us about the number of tokens consumed by the •

firing of a transition. Since we mapped the places P and the marking M into an ALBERT table,

the input matrix Pre will be translated in "effects of actions" constraints that will change some

values in the column "Markirig" ofthis table :

(R5) t/t ET, t/p E P:(Zi = Pre(p,t) > O~action_t:Dec(Marking[p lzi))

where Dec(x,i) is a function decreasing x by i.

For instance,

Pre tl t2
pl 1 0
p2 0 2
p3 1 0

Effects of actions:

action_tl:Dec(Marking[pl],l)
~ action_tl:Dec(Marking[p3ll)

action_ t2:Dec(Marking[p2],2)

On the other hand, the output arcs in a Petri net describe the effect of the firing of a

transition on the token distribution. For example, Post(p2,t2)=1 means that the firing of the

transition t2 adds one token to the place p2. Here again, the output matrix Post will be

translated in "effects of actions" constraints altering the table content :

(R6) t/t ET, t/p E P:(Zo = Post(p,t) > O~action_t:Jnc(Marking[p lzo))

where Inc(x,o) is a function increasing x by o.

Page 3.10

•

•

•

•

•
.,

1

•

•

•

•

•

•

•

•

•

•

•

Chapter 3 : temporal logic vs Petri nets

For instance,

Effects of actions:
Post tl t2

action_ t 1: Inc(Marking[p2],2)
pl 0 0

~ action_ t2:lnc(Marking[p2],1)
p2 2 1

action_ t2:lnc(Marking[p3 ll)
p3 0 1

3.3.4 The simultaneity

In a Petri net, when several transitions are enabled (see definition 1. 3), we have to choose

which one we want to fire first. It is not possible to fire two transitions at the same time3,

because the firing of the first one might disable the second one, as in the following example:

p1

Figure 3.6 (two enabled transitions)

In contrast, in ALBERT, it is always permitted to· execute several actions simultaneously

except if it is forbidden in a constraint, or if their occurrence alter the same state

component(s). We have thus to care for that our mapping does not allow sequences of actions

that are not possible in the corresponding Petri net. Let us see if this mapping selves the

problem of simultaneity. The preventions and the PL_MK table derived from the previous net

(figure 3.6) would be:

3 Actually, if the successive fi.ring oftwo transitions is possible, it is asifthey fire simultaneously, since the
fi.ring is an instantaneous event taking zero-time.

Page 3.11

PL_MK

Place Marking

p1 1
p2 1
p3 1

Capability constraints :

F(action_tl/ Marking[pl]< 1)

F(action_tl/ Màrking[p2]< 1)

F(action_t2/ Marking[p2]< 1)

F(action_t2/ Marking[p3]< 1)

Chapter 3 : temporal logic vs Petri nets

Effects of actions :

action_tl: Dec(Marking[pl],1)

action_tl: Dec(Marking[p2],1)

action_ t2: Dec(Marking[p2],1)

action_t2: Dec(Marking[p3],1)

Figure 3.7 (the corresponding ALBERT constraints)

The four capability constraints (figure 3.7) allow us to execute the sequence (action_tl ®

action _t2) - where the symbol (8) denotes the simultaneity - which is not permitted in the Petri

Net. But since these two actions alter the same "line" of the table (i.e. the one related to p2) in

their effects of actions constraints, it is not permitted to execute them simultaneously. More

generally, the mapping R ensures that two transitions having at least one (input or output)

place in common, cannot be performed at the same time in ALBERT; in all other cases, they

can (because the two actions modify different "-lines" of the table). However, if we want a

semantics-preserving transformation, both systems must have the same sequences of states.

For instance, the ALBERT sequence of states s0------~_!-Hl 12
®

13 > s2 14 s3 is mapped into

the Petri net sequence Mo~ M1 12 > M 2 ~ M 3
14 M 4 which includes one more

intermediary state. Therefore, we introduce in the ALBERT specification a dummy state

component (dum _st) and a dummy effect (fd) for every action, in order to forbid any

simultaneity of actions in ALBERT :

(R7) \ft ET ~action_t: dum_st = fa(dum_st)

That way, all the actions do modify the component dum _st and thus, two actions cannot be

executed at the same time since they alter the same component.

Page 3.12

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 3 : temporal logic vs Petri nets

3.3.5 Illustration of the transformation rule R

Let's consider the following net. It models a critical section (CS) :.

p1 : A wants to enter CS
p2 : B wants to enter CS.
p3: Ais in CS
p4: Bis in CS
p5 : someone is already in CS

t1 : A enters CS
t2 : B enters CS
t3 : A leaves CS
t4 : B leaves CS

Figure 3.8 (the graphical description of a Petri net)

which can be formalized by the following structure (P,T,Pre,Post) and the marking M:

Pre tl t2 t3 t4 Post tl t2 t3 t4
P = {pl,p2,p3,p4,p5} pl 1 0 0 0 pl 0 0 1 0

T = {tl,t2,t3,t4}
p2 0 1 0 0 p2 0 0 0 1
p3 0 0 1 0 p3 1 0 0 0

M= (11 O O 1) p4 0 0 0 1 p4 0 1 0 0
p5 1 1 0 0 p5 0 0 1 1

Figure 3.9 (the formai description of the same net)

and translated in an equivalent ALBERT specification:

Page 3.13

Place Marking

p1 1

p2 1
p3 0

p4 0

p5 1

action-t1

etJWAD

Effects of actions:

Action_ t 1 : Inc(Marking[p3], 1)

Action_t2: Inc(Marking[p4],l)

Action_t3: Inc(Marking[pl],1)

Action_ t3: Inè(Marking[p5], 1)

Chapter 3 : temporal logic vs Petri nets

Agent structure

Place=CP[Char, lnteger]
Marking=lnteger

action-t2 action-t3 ... ~

r------
1 dum_st: :
: TYPE_X :

action-t4

Action_ t 1 : Dec(Marking[p 1], 1)

Action_tl: Dec(Marking[p5], 1)

Action_ t2: Dec(Marking[p2], 1)

Action_t2: Dec(Marking[p5],1)

Action_ t4: Inc(Marking[p2], 1) Action_ t3 : Dec(Marking[p3], 1)

Action_t4: Inc(Marking[p5],1) Action_t4: Dec(Marking[p4], 1)

Action_ t 1, t2, t3, t4: dum _st=fd(dum _ st)

Capability constraints:

F(action_tl / Marking[pl]<l)

F(action_tl / Marking[p5]<1)

F(action_t2 / Marking[p2]<1)

F(action_t2 / Marking[p5]<1)

F(action_t3 / Marking[p3]<1)

F(action_t4 / Marking[p4]<1)

Figure 3.10 (the derived ALBERT specification)

Page 3.14

•

•

•

•

•

•

•

•

••

•

•
1

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 3 : temporal logic vs Petri nets

3.3.6 Summary and conclusion

We have formally defined a semantics-preserving transformation rule translating Petri nets

into the ALBERT language. The purpose· of this section was to show that it is possible to

translate an operationàl specification (a Petri net) into another declarative and more readable

language (ALBERT). This can be very interesting in. a perspective of retro-engineering. Since

Petri nets (colored or not) and ALBERT are located at different levels in the specification

phase, it can sometimes be useful to "go up" by one level, namely in order to check the

correctness of the developement process. However, it must be stressed that this transformation

does not induce an equivalence between those two languages. Indeed, a lot of constraints in

ALBERT are not "translatable4" in Petri nets (even extended Petri nets) .

- 4 Sorne ofthose constraints may be translated, but very often, it results in a too complicated (and thus
· unreadble) Petri net.

Page 3.15

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

4. 1 Introduction

Chapter 4

Deontic Logic

The word 'deontic' is derived from the Greek word '8Eov1:m;' which may be translated as

'as it should be' [IDLPINEN71]. Deontic logic is thus characterized by the distinction

between the actual and the ideal. Deontics deals also with normative use of language such as

permission, obligation and prohibition.

Deontic aspects are met in many areas : contracts, human behavior, laws [TT95], ...

[MEYER 91]. A lot of research is made in logic to capture deontic aspects, to obtain a logical

system which permits to reason about deontic facts [DIG94], [TORRE94] These logical

systems permit to specify, for example, the behavior of persons involved in contracting. We

can specify the ideal behavior of these persons. For example, when the seller accepts the terms

of a contract, he has the obligation to deliver the goods before a certain date. But we can also

be interested in expressing the consequences of a violated obligation. If the seller doesn't

deliver the goods before the specified date, he has to paya fine. It's the same with prohibition,

one may be interested in consequences which follow a violated prohibition.

In this chapter, we briefly present in section 4.2 the SDL deontic system and its limita!ions .

In section 4.3, we underline the concepts of interest in deontic for the specification of

distributed systems .

Page4.1

Chapter 4 : Deontic Logic

4.2 SOL : a ma.da/ logic for deontic reasoning

SDL, Standard Deontic Logic, is the more familiar deontic system. This logic system is

based on the works of G. H. von Wright [WRIGHT51]. Von Wright's approach to deontic

logic is based upon the observation that there exists a significant analogy between the deontic

notions obligation and permission and the modal notions necessity and possibility. In fact, a

proposition p is necessary if and only if its negation -,p is not possible, this expresses the

definition L(p) = -,M(-,p) (see sub-section 2.2.1). Similarily, an act or a factp is obligatory if

and only if its negation -,p is not permitted. The notion of permission is the primitive of the

von Wright's system. P(p), where P is a modal operator, expresses that p is permitted. The

notion of obligation is defined in terms of permission by : (def) O(p) = --,P(--,p), where O(p)

must be read : 'p is obligated'.

Standard deontic logic (SDL) respects the definition (def) and two other axioms (KD):

(K) O(p➔q) ➔ (O(p)➔O(q)) which states that modus ponens holds within the

scope of the modal operator O.

(D)--,(O(p)AO(-,p)) which states that something cannot be obliged to be the case

and obliged not to be the case at the same time.

Another operator is also often defined : F(p) = --,P(p) which states that something

is forbidden if and only if it is not permitted.

Until now we have considered the axiomatic definition of SDL, we give here the definition

of a model for a deontic theory in SDL.

Definition 4.1 (World model of a deontic theory in SOL)

A possible world (Kripke) model for a deontic theory in SDL is a 4-tuple M=(wM, W,R, V)

where WM is the actual world WME W, W is a non-empty set of worlds, R is an accessibility

relation between worlds, V is a valuation function that assigns in each world wE W a truth

value to atomic propositions.

A formula O(p) is true in a world w in a model M, written M,w fsDL O(p), iff for ail world w'

with wRw' : M, w' fsDL p. A formula p is true in a model M, written M fsDL p iff M, WM fsDL p.

A formula p entails q, written p fsDL q, iff M ~soL p then M fsDL q.

The obligations O(p) that can be derived from a SDL theory T can be classified in:

• fulfilled obligations if p is entailed by the theory T.

• violated obligations if -,p is entailed by the theory T.

• moral eue if neither p nor --,p is entailed by the theory T.

Page 4.2

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 4 : Deontic Logic

·-·:.:· ~,:·<

The violated obligations are an answer to the question 'what has been done wrong?'

(what is the case but should not be the case) and moral eue are answers to the question 'what

should be done now ? ' (what is not yet the case or not the case but should be done), [TT94a].

More formally :

Definition 4.2 (Fulfilled, violated obligation, moral eue)

Let T be a theory of SDL, O(p) is a fulfilled, obligation of the theory T iff T fsvLO(p) and

T fsvLP- O(p) is a violated obligation of the theory T iff M fsvLO(p) and M fsvL---,P- O(p) is a

moral eue of the theory T iff M fsvLO(p), M /-:t=smP and M /t:-svL---,P-

Unfortunately, SDL is plagued by a large number of paradoxes. For instance the formula

O(p)➔O(pvq) is a theorem of SDL. This theorem says that if a certain state of affairs p ought

to be the case then pvq ought to be the case. We can interpret this formula as follows

[IDLPINEN71] : 'If I ought to mail a letter, I also ought to mail or burn it. But if I in fact

ought to mail a letter, then surely it is awkward to say that I ought to mail it or burn it'. Other

notorious paradoxes are Forester and Chisholm paradoxes. Those paradoxes are consequences

of an impossibility to model correctly contrary-to-duty (CTD) obligations in SDL.

Definition 4.3 (Contrary-to-duty obligation)

A contrary-to-duty obligation is an obligation conditional to a violation describing sub-ideal

behavior. The conditional obligation a➔O(P) is a CTD obligation of the (primary

obligation) O(ô) when a and ô are contradictory .

An example of CTD obligation (2) of a primary obligation (1) :

(1) O(p)

(2) -.p➔O(q)

For Tan and Torre (see [TT94a, TT94b]), the fundamental problem underlying these

paradoxes is that the type of possible world semantics of SDL is not flexible enough. In these

semantics only two types of worlds are distinguished in a model; actual and ideal ones. The

ideal worlds have to satisfy ail obligations in a deontic theory T. Clearly, if these obligations

contradict each other, then a problem arises. (...) in order to model these paradoxes properly,

we need a notion of sub-ideal worlds, in which some but not ail obligations are satisfied .

A futher development would go beyond the scope of this work. Nevertheless, the idea of

sub-ideal worlds will be adapted in chapter 5 for representing varying sub-ideality in Petri nets .

Page4.3

Chapter 4 : Deontic Logic

4.3 Deontic aspects in our work

In this work we use deontiès because deontic aspects often play an important role in the

specification of distributed systems [DUBOIS91].

In distributed systems, components interact to achieve a common goal. In such systems, a

component may send a service request to another component of the system. If a component

receives a service request, it has the obligation to execute the asked service. We can say that

there exists a kind of contract between the components of a distributed system. At this point,

we may partition the deontic aspects in two categories : the strict obligations/prohibitions and

the obligations/prohibitions which can be violated.

A strict obligation/prohibition is always respected. The situations where a strict obligation

is. violated are not considered. It must be noted that this notion of strict obligation, which can

not be violated, is quite different from the deontic notion of obligation. In fact, a strict

obligation is rather an usual constraint which must be respected by the system to be

implemented. In the following chapter, we investigate how this kind of constraint can be

modeled in Petri nets. We have to study such constraints because they are often expressed in

declarative style and it may be problematic to represent them in an operative style.

Another important aspect in distributed systems, especially when human components play

arole, is the obligations/prohibitions that can be violated. When specify~ng a human behavior,

but sometimes also a hardware component, we may consider sub-ideal situations, situations

resulting of the violation of an obligation/prohibition or of the execution of an action judged

sub-ideal. In those cases, it should be possible to reflect in a formai way which behaviors are

sub-ideal. We will investigate this problem in the Petri nets approach in section 5.2.

Remark. It should be noted that the operators F, 0 and XO introduced in ALBERT (see

subsection 2.4.5 p. 2.9) support only strict obligations/prohibitions. The notion of sub-ideality

is not covered by the ALBERT language ..

Page4.4

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

PARTTWO
• A NEW INTEGRATED LANGUAGE

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
1

1 1.

•

Chapter 5

Petri Nets and Deontic aspects

5.1 Introduction

In this chapter we see how deontic aspects can be represented in the Petri net formalism.

In the introductive chapter to deontic logic, we have classified deontic aspects in two

categories : strict deontic aspects and the deontic distinction between ideal and sub-ideal

behavior. We keep here this latter approach. So, we see in a first section how strict deontic

aspects can be represented in the original Petri net formalism. In a second section, we propose

an extension of the Petri net formalism in order to make possible the formalization of ideal and

varying sub-ideal behaviors .

5.2 Strict Obligations/Prohibitions ·

Recall that when modeling a system, one must limit the part of the system which is

modeled. The model represents always a part of the reality. For example, if a contract is

represented in a Petri net, the net should represent that if goods have been delivered by the

seller, then subsequently the buyer is obliged to pay the bill for the goods. Also the net should

be able of representing that if the buyer does not pay, the buyer is obliged to return the goods.

But the modeler may make the hypothesis that the second obligation (returning the goods in

situation of no pàyment) can not be violated and thus is always respected. Due to this

hypothesis, the model does not represent the juridical procedures that can follow from a refusai

of returning the goods. This kind of obligation, which can not be violated, is called in our

Page 5.1

Chapter 5 : Petri Nets and Deontic aspects

terminology a strict obligation. Strict obligations can be opposed to obligations which can

be violated. In this section, we see how to represent strict obligations/prohibitions in the

original Petri net formalism. More precisely, we give conditions that a net must satisfy to

represent strict obligations/prohibitions. We also underline the limitations of the approach of

keeping the original Petri net formalism for the representation of strict deontic aspects.

5.2. 1 Stricts obligations

In this sub-section, we define conditions that a Petri net must satisfy to model a strict

obligation. A strict obligation is anything which ought to be done (like returning the goods in

case of no payment). If t1 is the transition that models, in a Petri net, a strict obligated action in

astate D, t1 must be fired in the markings representing state D.

Recall that when two transitions t1, t2 are enabled in a marking M of a net N, the firing rule

of the Petri net formalism says that either t1 or t2 fires in marking M. Thus if a transition ought

to fire in a marking M, it has to be the only one enabled in M. We can write this condition in a

more formai style.

Condition 5.1 (Strict obligation in a Petri net).
Let a denote an action of the system S, Sa. the set of states of the system S where the action a
ought to be done (strict obligation), MSa. the set of markings that model Sa., ta. the transition

that models the action a, then :
VM E MSa.:

(J)Vp E P: M(p) ~ Pre(p,ta_)

(2)Vt ET/ {ta,}: :lp E P: M(p) < Pre(p,t)

(1) guarantees that ta. is enabled in all markings M which be long to MSa..

(2) guarantees that ta. is the only enabled transition in all markings which belong to MSa..

To illustrate the condition 5.1, let us continue with the following example and see how the

condition 5.1 can be applied.

Example 5.1 (Modeling a strict obligation).

In library rules, we may read that a borrower must have returned a book within a month and

if it's not the case, he ought to pay a fine to be authorized to borrow again or to do anything

else in the library. In this example, we can distinguish two kinds of obligation: the first one,

returning the book within a defined period which can be violated, the second one, the

Page 5.2

•

•

•

•

•

1 •

•

•

•

•

•

•

•

•

•
1

•

•

•

•

,.
•

•

•

•

Chapter 5 : Petri Nets and Deontic aspects

• obligation to pay the fine, which can not be violated. The payment of the fine is thus, in our

terminology, a strict obligation. ·

t3

p1 : Book_Free; ti : Borrow_Book; p2 : Borrowed_Book; t2 : Retum_in_time; p3 :

Permission_to_borrow;t3 : Retum_Late; p4: Violation_State; l4: Pay_Fine; ps: Fines_Paid.

Figure 5.1 (Petri net model of the library example)

If we apply the condition 5.1 to our library example, we have :

• a : Pay a fine.
• Sa. : the set of states reached when the borrower retums a book too late.

• MSa. : the set of markings where m(p4)=1 .

• ta. : t4 (Pay_Fine).

To be sure that the net of figure 5.1 respects the condition 5.1, we must prove that when the

place p4 is marked with one token (marking where the payment of the fine is strictly obligated),

the only enabled and thus obliged transition is t4 (Pay _Fine).

Proof 5.11 (The model of Figure 5.1 respects the condition 5.1).
Here, the matrix representation of the library example in terms of Pre, Post, C and Mo:

tl t2 t3 t4 tl t2 t3 t4

pl 1 0 0 0 pl 0 1 1 0

p2 0 1 1 0 p2 1 0 0 0
Pre: ,Post:

p3 1 1 1 0 p3 1- 1 0 1

p4 0 0 0 j p4 0 0 1 0

p5 0 0 0 0 p5 0 0 0 1

1 We use here the algebraic invariant method, other analysis techniques such as reachability analysis are
available (see chapter I, The Petri net formalism) .

. Page 5.3

Chapter 5: Petri Nets and Deontic aspects

tl t2 t3 t4

pl -1 1 1 o·
p2 1 -1 -1 0

C:
p3 0 0 -1 1
p4 0 0 1 -1
p5 0 0 0 1

3

0

Mo: 1
0

0

With the linear fundamental equation for the analysis of Petri nets M-M = Cx s

M ~ M and C xw = 0, we obtain the following system :

-w(pl) + w(p2) = 0

w(pl)-w(p2) = 0

w(pl)- w(p2)- w(p3) + w(p4) = 0

w(p3) - w(p4) + w(p5) = 0

1 0

1 0

which has two non negative integer linearly independent solutions: 0 , l

0 1

0 0

These two solutions give two independent invariants :

1

1

0 ⇒ M(pl)+ M(p2) = Const.(1)

0

0

0

0

1 ⇒ M('p3) + M(p4) = Const.(2)

1

0

Page 5.4

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1 •

Chapter 5 : Petri Nets and Deontic aspects

From (1) and the initial marking M0 we conclude that the sum oftokens in place pl and p2 is

always equal to 3. Which is obvious since the number of books must stay constant in our

system (a book is free or borrowed).

From (2) and the initial marking M0 we conclude that the sum of tokens in place p3 and

place p4 is always equal to 1 in ail reachable markings. So we can say that if p3 is marked

then p4 is not and that one of the two is marked in each reachable marking. This allows us to

say that when we are in the violation state, p3 is not marked since p4 is marked and the only

fireable transition is thus t4 (Pay_Fine) .

Condition 5.1 is often too strict. If we consider an agent/object oriented approach, one

models a system into a number of separated sub-nets and then merges them into a single net.

An obligation, but also a prohibition, is often related to an agent/object or to an agent/object

class. Thus an obligation for an agent A must normally have no direct influence on the behavior

of another agent B.

Let us give a new condition for a net to represent strict obligation, in an agent/object oriented

approach:

if ta represents a "strictly" obligated action for an agent/abject A whose behavior is modeled

by a sub-net NA in a marking M then the next transition of the sub-net NA to fire is ta .

Condition S.2 (Strict obligation in an agent/object approach).

Let S denote the modeled system, A an agent/abject that is part of the system S, N the

aggregated net that models S, NA the sub-net that models the agent/abject A, a, an action of

A, ta the transition that models a, MS a ihe set of markings that models the states of S where

A has the strict obligation to do a,, TA the set of transitions that belongs to net NA, E(N,M) the

set of fireable sequences of transitions in marking M of the net N, Pref(l,t) the longest prefix

of the sequence l of transitions that does not contain the transition t .
VM E MSa,Vl E E(N,M):TA nPref(l,tJ = 0.

This condition garantees that when the transition ta is strict obligated for an agent/abject A

modeled by NA, ta is the first transition oj NA to fire .

Page 5.5

Chapter 5 : Petri Nets and Deontic aspects

5.2.2 Strict prohibitions

Throughout the previous sub-section we were concemed about the modeling of strict

obligations. The present sub-section deals with strict prohibitions. Recall that a strict

prohibition is anything which is not permittèd. In a Petri net, if t1 is a transition that models a

prohibited action in astate D, t1 may not be fired in the mar~ngs representing D.

Again notice that in the Petri net formalism, when a transition is enabled, it may fire. Thus

if a transition is strictly prohibited (may not fire) in a marking M, it may not be enabled. Let us

write this condition in a more formal manner.

Condition 5.3 (Strict prohibition in a Petri net).
Let a denote an action of the system S, Sa the set of states of the system S where a is strictly

prohibited, MSa. the set of markings that model the states of Sa., ta. the transition that models

the action a :
VM E MSa.:3p E P: M(p) < Pre(p,ta_)

This condition guarantees that ta. is never enabled in markings of MSa..

This condition can, like condition 5.1, be extended for an agent/object oriented approach.

As pointed out in part one, Pétri nets are often used for their neat graphical representation.

But by applying condition 5.3, the resulting net could be complicated and not very readable.

To permit a direct graphical representation of strict prohibition, we can easily extend the Petri

net formalism by adding inhibitor arcs.

This is the graphical representation of an inhibitor arc :

Figure 5.2 (An inhibitor arc)

To give the semantics of an inhibitor arc, we have to specify a new firing rule, different

from the one of the original Petri net model.

Page 5.6

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• i-

l

1

•

•

•

Chapter 5 : Petri Nets and Deontic aspects

Definition 5.1 (Firing rule of Petri nets with inhibitor arcs) .

A transition is enabled in a Petri net with inhibitor arcs when tokens are in all of its (normal)

input places and zero tokens are in all of its inhibitor input places. The transition fires by

removing tokens from its (normal) input places. A place is an inhibitor input place for a

transition if this transition is linked to the place with a inhibitor arc .

Thanks to inhibitor arcs, a strict prohibition can be modeled in a more suitabfe way. To

illustrate the ability of inhibitor arcs to model strict prohibitions, let us continue with the

following example :

Example 5.2 (Critical section example).

Two processes pr1 and pr2 have a critical section, when one process executes its critical

section the other one is not permitted to execute its one. Let' s explicitly represent the strict

prohibition to execute the critical section by inhibitor arcs .

pl : Processus_prl_normal_processing.
p2 : Processus_pr2_normal_processing.
p3 : Processus_prl_critial_processing.
p4 : Processus_pr2_critial_processing.

Figure 5.3 (Critical sections net)

It should however be noted that Petri nets with inhibitor arcs have not the same analytical

possibilities as the original Petri nets. It can be shown (see [BRAMS 83b]) that Petri nets with

inhibitor arcs have the modeling power of Turing Machines. For instance, boundedness is

undecidable in Petri nets with inhibitor arcs. Fortunately, some Petri nets2 with inhibitor arcs

can be transformed, for analysis purposes, in an equivalent net without inhibitor arcs. The

transformation consists in adding for each place linked with a inhibitor arc, a complementary

2 Petri nets whose inhibitor places are bounded.

Page 5.7

Chapter 5: Petri Nets and Deontic aspects

place and in linking this place with the transitions linked with the first place. This is precisily

the kind of place we use in the library example (p3 and p4).

Definition 5.2 (Complementary place).

In a marked Petri net (N ,M), two places P; ,pj E P are complementary places, iff,

VM ':M 'eR(N ,M),M '(p;)+M '{pj) =a, where ais a constant. In other words, P;,Pj EP

are complementary places in a marked net if in all reachable markings the sum of tokens

contained in p; and Pi is constant.

If we apply the transformation introduced above on the net of figure 5.3, we obtain :

pl : Processus_prl_nonnal_processing.
p2 : Processus_pr2_nonnal_processing.
p3 : Processus_prl_critial_processing.
p4 : Processus_pr2_critial_processing.

cp_p5 : Pennission_processus_prl_critial_processing.
cp_p6 : Pennission_processus_pr2_critial_processing.

Figure 5.4 (Critical sections net with complementary places)

The place cp_p5 is a complementary place of p4, and cp_p6 is a complementary place of p3.

Note that the transformation is only possible if the inhibitor place is bounded, see

[BRAMS83b] p. 47.

5.2.3 Limitations of the approach

In the sub-sections 5.2.1 and 5.2.2, we have only defined conditions that must be fulfiled

for a correct modeling of strict deontic aspects in Petri nets. The modeler must find solutions

Page5.8

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 5 : Petri Nets and Deontic aspects

to represent strict obligations/prohibitions. These solutions must often be checked by analysis

methods .

These difficulties are due to the over operational style of Petri nets. In fact, the Petri net

formalism is a modeling language and not a specification language (see chapter 6). This

characteristic (the operational style) may represent a serious hindrance for the use of Petri nets

to model a system with a lot of strict deontic aspects. We think that the Petri net formalism

should be extended. So we extend in the following chapter Petri nets with temporal logic. The

main purpose of this extension is to make possible a declarative specification of non

operational constraints. In the end of the chapter 6, we show how easily strict deontic aspects

can then be specified with temporal logic formulae.

The end of this chapter is concemed with another extension of the Petri net formalism

expressing the deontic distinction between ideal and sub-ideal behaviors .

5.3 Modeling varying sub-ideality in Petri nets

5.3. 1 Introduction

Recall our ·contract example described in the previous section. If a contract is represented

by a Petri net, the net should represent that if goods have been delivered by the seller, then

subsequently the buyer must pay the bill for the goods. Also, the net should be capable of

representing that if the buyer does not pay, then the buyer is obliged to retum the goods. This

second obligation, to retum the goods, is conditional to the violation of the first to pay the

delivered goods. Such an obligation, which is evoked when another obligation is violated, is

called a contrary-to-duty (CTD) obligation (see definition 4.3). CTD obligations tell you.,what

you should do, given that you already have violated an obligation. We say that a behavior by

which no obligations are violated is ideal, and when there are obligations violated, the behavior

is said sub-ideal. Clearly, CTD obligations apply to sub-ideal behavior only .

1t should- be possible to reflect, in a formal manner, that violating the first obligation (to

pay the delivered goods) is not desired. In other _words we should be able to reflect preferences

between different possible scenarios. Scenarios where the goods are paid are preferred to

scenarios where the goods are not paid and retumed.

In this section we show how to represent the deontic notions of ideal and sub-ideal

behavior in Petri nets. We extend standard Petri nets with a preference relation. This

Page5,9

Chapter 5: Petri Nets and Deontic aspects

preference ordering has common features3 with preference ordering that was introduced in

DIODE [TT94a] and [TT94b]. It may be helpful to fix the notion of sub-ideality in Petri nets

with an illustrative example before giving the formai definition of our preference ordering. To

illustrate the distinction between ideal versus sub-ideal behavior, consider the following Petri

net:

p1: borrowed book; p2: damaged book; p3: returned book; t1: To damage the book;
t2: To repair the book; t3: 1 week too late; ti: 1 week too late; t5: To retum the book;

ti;: To return the book;

Figure 5.5 (Book borrowing model)

Figure 5.5 models the possible behaviors of a borrower. A marking for this net is denoted

by a tuple (lli,n2 ,~) where n; indicates the number of tokens at place p;. In the initial marking

(1,0,0) displayed in the figure 5.5, there is only a token at place p1 , which represents that the

borrower has a book. At this marking he has the choice between retuming the book, retuming

it too late, or damaging the book. If he decides to be too late, he has again the same choices. If

he damages the book he can choose to repair it before retuming it, or to retum it damaged, he

may also be even later. In the rest of this section, we consider the executions of this Petri net

which starts in marking (1,0,0) and ends in marking (0,0,1), which represents that the book is

retumed. When executing this Petri net, there is a choice between performing ideal behaviors

or sub-ideal behaviors. For example, if the borrower retums the book in time and undamaged,

we can say that he performs the ideal behavior. On the other hand, if he retums the book one

week too late, he does not perform the ideal behavior. The distinction between ideal and sub

ideal cannot be represented in standard Petri nets as Figure 5.5. One can model the choice, but

nothing in the Petri net formalism indicates that one execution is better than another one. In

this section we show how the standard Petri net formalism can be extended with a preference

relation such that it can represent this distinction. In the set of all possible executions of a

3 In the two approaches the possible models are ordered by order of sub-ideality. Nevertheless our ordering is
linear when the ordering of DIODE is not.

Page 5.10

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1.

•

•

•

•

•

•

•

•

•

Chapter 5 : Petri Nets and Deontic aspects

system, intuitively, the preferred ones are those which contain a minimum of sub-ideal

behaviors .

5.3.2 The extended Petri net formalism

In order to represent the distinction between ideal and sub-ideal states in a Petri net, we

can partition the set of transitions of a Petri net into two subsets, that represent ideal and sub

ideal transitions respectively. Given this partition, we can define a preference ordering on

executions of a net that compares the sub-ideal transitions of the executions. For example, we

can define that an execution s is preferred to another execution s' iff s contains less sub-ideal

transitions than s'.4 This preference ordering is denoted by the symbol ~n. As an example,

consider the set S = {tl't3 ,t4 } that represents the sub-ideal transitions of our example in figure

5.5. Between marking M 1 =(1,0,0) and marking M 2 =(0,0,1), we have (t3 ,t5)>n (tpt4 ,t6)

because the first execution contains less sub-ideal behaviors than the second one. This is

intuitively correct, we prefer an execution in which one retums a book too late but undamaged

to an execution in which one retums the book too late and damaged .

However, the execution (t3 ,t5) and (ti,t6) .are equivalent for ~n. This is unintuitive,

because one prefers a book retumed late to a damaged book retumed in time. The order

relation ~n takes only into account the number of sub-ideal behaviors. However, the violations

do not have the same seriousness. As a solution, the transitions can be partitioned in more than

two subsets, which express the deontic notion of ideal and varying sub-ideal, see [TT94a],

[TT94b]. This can be modeled by assigning a weight to each transition. This weight can, for

example, be an integer which is large if the violation corresponding to the sub-ideal behavior is

serious. Given this partition, in ideal and varying sub-ideal transitions, the new problem is how

to compare executions. A simple solution is to say that a sequence of transitions s is preferred

to a second sequence of transitions s' iff the sum of weights of the transitions of s is less than

that of the transitions of s'. This preference relation is noted ~P. Intuitively, the weights

represent fines for the violations and the preference relation prefers a minimal total sum of

fines. For example, the weight fonction of our example can be given by

(w (t1) = 10,w (t3) = 1,w (t4) = 1) which states that damaging a book is ten times worse than

retuming a book one week too late. We have (t3 ,t5) >P (ti,t6), which is intuitively correct.

However, even with this definition some problems subsist. For example, the two

executions (ti,t2 ,t5),(ti,t6) are equivalent for ~P. This is not intuitively correct, because, we

want to prefer executions where one repairs a damaged book to executions where one does

4 Another often used solution is to define a subset ordering on the sub-ideal transition, see [TT94a].

Page 5.11

Chapter 5 : Petri Nets and Deontic aspects

not repair it. These preferences are related to deontic notion of Contrary-To-Duty (CTD)

obligations (see chapter 4, definition 4.3). To deal with this kind of transitions, which we call

repairing transitions of sub-ideal behavior, we define another subset of transitions, that

contains the repairing transitions of sub-ideal behaviors and negative weights are assigned to

the transitions of this set. Intuitively, the negative fines can be considered as rewards for good

behavior. This preference ordering is presented formally in the following section.

The extended fine system

An extended Petri net is a Petri net with varying sub-ideal and repairing transitions.

Definition 5.3 (Extended Petri net).
Let N = (P ,T ,Pre,Post) be a Petri net and Z the set of integers. An extended Petri net

EN = (P ,T ,S ,R ,w ,Pre, Post) is the extension of N with two disjoint sets S cT and R cT

that represent sub-ideal and repairing behavior respectively, and the fine function w:T ➔ Z,

defined as f ollows :

{

tETl{SuR}:w(t)=O
t E S:w(t) > 0
t E R:w(t) < 0

A repairing transition is a transition that has a negative weight in order to recover from a sub

ideal situation that was brought by sub-ideal behavior. We can now give a formal definition of

the extended relation on executions.

' -

Definition 5.4 (Preference ordering on executions).
Let EN = (P ,T ,S ,R ,w ,Pre, Post) be an extended Petri net, and M "M 2 two markings,

'2/E(EN ,Mi,M2)xE(EN ,Mi,M 2) a preference relation defined on the set

E (EN ,M 1 , M 2) of the possible executions of EN from the marking M 1 to the marking M 2,

s"s2 EE(EN ,Mi,MJ two executions and the function lg(s) the length of the tuple

s = (s1 , ... ,sm) (here equal tom). s1 is preferred to si, written s1 '2P s2, iff:

lg(s 1) () lg(s 2) () Lw s1; ~ Lw s2j
i=I j=I

Definition 5.5 (Equivalent executions for the ordering).
Let EN = (P ,T ,S ,R ,w ,Pre, Post) be an extended Petri net, and M "M 2 two markings, two

executions t"t2 EE(EN ,Mi,MJ are equivalentfor the relation '2P, iff(t1 '2P t2)A(t2 '2P tJ

The preference ordering gives preferred executions.

Page 5.12

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 5 : Petri Nets and Deontic aspects

Definition 5.6 (Preferred execution) .
Let EN = (P ,T ,S ,R ,w ,Pre, Post) be an extended Petri net, and M 1,M 2 two markings,

s E E (EN , M 1 ,M 2) an execution from the marking M I to the marking M 2 • The execution s is

a preferred executionfrom M I to M 2 if!: Vs'E E(EN ,fV[i,M 2):s ~P s'

In the following example, we use some new graphical notations in addition to the usual

notations of the Petri net formalism.

A place is represented in the usual way by : 0 p;

If t; ET / { S u R}, t; is represented in the usual way by : -' --' t;

(the weight is not represented, because it is always equal to zero).

w(tj)
If t j ES, t j corresponds to a sub-ideal behavior and is represented by : 1Niiiv&1 ti
with w (tj) ~ O.

W(tk)

If t k ER, t k corresponds to a repairing transition and is represented by : :::::::::::::: tk

with w (t k) ~ O.

As a illustration of extended Petri nets, consider the extension of the example in figure 5.5 :
t1

with S = {t, ,t3 ,tJ,R = {t2}, and the definition of the fine system w:

(w (tJ = 10,w (tJ = -5,w (tJ = l,w (t4) = 1)
p1: borrowed book; p2: damaged book; p3: retumed book; t1: To damage the book;

tz: To repair the book; t3: 1 week too Iate; L4: 1 week too Iate; ts: To retum the book;
t6: To retum the book;

Figure 5.6 (Extended book borrowing model)

With our extended fine system w, we obtain the intuitive result : (ti,t2 ,t5) >P (ti,t6).

Futhermore, we have that (t5) > P (ti,t2 ,i5). This states that we prefer a borrower not to

damage the book even if he repairs it.

Page 5.13

Chapter 5 : Petri Nets and Deontic aspects

The fine function given in definition 5.3 is rather basic, we could impose extra constraints

on it in order to get certain desirable properties. For example, we could argue that the fine

function should reflect the property that it is better not to do a sub-ideal behavior than doing it

first and repairing it afterwards. A simple way to obtain this property is to impose on the fine

function the following constraint : if transition t 1 represents a sub-ideal behavior and transition

t 2 repairs the sub-ideal behavior t1, then -w (tJ <w (t1).

Preferred reachable states

The preferences on transitions model what ought to be done. Besides these ought-to-do

obligations also ought-to-be obligations can be defined, which are preferences on the markings

(the states). Preferences on markings can be derived from preferences on transitions, or vice

versa. In this section we show how preferences on markings can be derived in.our extended

Petri nets. We have decided to define the preference relation on the transitions because it is

more expressive : two transitions between the same place can have different preferences. The

preference relation on markings is defined on all reachable markings.

Definition 5.7 (Reachable markings).

Let EN = (P ,T ,S ,R ,w ,Pre, Post) be an extended Petri net with marking M, and T* the set

of all sequences that can be composed of transitions of T. The set of reachable markings of

the marked net (EN ,M) is R(EN, M) = { M::3s Er*, M ~ M}.

A reachable marking M 1 is preferred to a second reachable marking M 2 , iff a preferred

execution, which leads from M to M 1, has a weight less than the weight of a preferred

execution which leads from M to M 2 (where Mis the initial marking).

Definition 5.8 (Preference ordering markings).
Let EN = (P ,T ,S ,R ,w ,Pre, Post) be ·. an extended Petri net with marking M,

si,s2 EE(EN,Mi,M2) two executions, '?.M: R(EN,M)xR(EN,M) apreference relation

defined on the set R(EN,M) of the reachable markings of EN, M l'M 2 ER (EN ,M) two

markings and lg(s) the length of the tuple s. M 1 is preferred to M 2, written M 1 '?.M M 2 , iff:
lg(s 1) lg(s2)

I,w (s1J ~ Lw (s2,J
i=l j=I

Where s1 is a preferred execution of (EN ,M) to (EN ,M 1) and

s2 is a preferred execution of (EN ,M) to (EN ,M z)

Page 5.14

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 5 : Petri Nets and Deontic aspects

5.4 Conclusion

In this chapter, we have defined in section 5.2. conditions that a Petri net must fulfil to

model strict obligations and prohibitions. In this approach, the modeler must find a solution to

respect those conditions. The limitations of this approach have been underlined and a better

solution is proposed in chapter 6. In section 5.3., we have extended the Petri net formalism

with a relation of preference on the possible executions of a net. This relation of preference and

the definition of a fine system make possible the formalization of the distinction between ideal

and varying sub-ideal behaviors .

Page 5.15

•

•

•

•

•

•

•

•

•

•

1

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 6

Petri Nets and Temporal Logic

6.1 Introduction

The extension of the Petri net formalism we propose to define here, is based on the

following observation : it' s easy to represent the arguments of a transition in the Petri net

formalism, on the other hand, it is not easy to construct a Petri net that respects complex

(temporal) non-operational constraints.

The idea to avoid this difficulty, is to give the possibility to the analyst to add temporal

formulae to its Petri net models in order to limit their possible executions. As an illustration of

this concept, consider the following example :

Example 6.1 : (Modeling a simple producer - consumer system with one buffer) .

t1 p1 t2

t1: the producer; ti: the consumer; p1: the buffer .

Figure 6.1 (a simple producer-buffer-consumer model)

These are some possible executions of this model:

(e1) t1t1t1t2t1t2t2

Page 6.1

Chapter 6: Petri Nets and Temporal Logic

Now if we add as constraint that the buffer can only contain one token, the execution (e1)

1s no longer valid. To model this constraint in the Petri net formalism, we may add a

complementary place to place p1• Then we obtain the following model :

t1 p1 t2

t1: the producer; ti: the consumer; p1: the buffer;
p2 : complementary1 place of P1.

Figure 6.2 (a simple producer-binary buffer-consumer model)

Note that the set of possible executions of the Petri net of figure 6.2 is only the execution

t1t2t1t2t1t2t1ht1t2 Execution which verifies the additional constraint. But the place p2 is f!

artificial element (over specification), a construction that implements the supplementary

constraint. It does not represent a specification of the constraint ! It' s a reason why we think

that the original Petri net formalism is not a good specification formalism due to its over

operational style [PETERSON81]. So, if we want to keep Petri nets as a specification

language, because, for instance, some constraints are easily expressed in operational style, we

have to extend the net formalism in order to make possible declarative specifications of non

operational constraints. Our solution is to associate Petri nets and temporal logic formulae.

The logic formulae will be used to express constraints which can not be easily expressed in an

operational style. Our choice is motivated by the great expressiveness of temporal logic and the

easy link that can be made between the operational semantics of Petri nets expressed as infinite

sequences of states (see definition 6.8) and the semantics of temporal logic specifications also

expressed as infinite sequences of states (see definition 2.5).

This is the equivalent specification2 of the model of figure 6.2, expressed in our language :

1 Complementary because p2 is marked when p1 is not and inversely.
2 We now use the term specification because we do not give a solution for the implementation of the
supplementary constraint.

Page 6.2

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 6 : Petri Nets and Temporal Logic

tf t2

t 1: the producer; t2: the consumer; p1: the buffer.

Figure 6.3 (a simple producer-binary buffer-consumer specification)

The formula m(p1) ~ 1 restricts the set of possible executions of the ·net to executions in

which the marking of place p1 is one or zero.

As we can see in this trivial example, the semantics of the formulae can easily be given as

the reduction of the set of possible executions of the net. To define in a formai manner the

additional language, we first give the operational (behavioral) semantics of the original Petri

net model.

6.2 Operational semantics of the Petri nets

In the litterature three styles of semantics are distinguished : (1) operational semantics, (2)

axiomatic semantics and (3) denotational semantics. Since the Petri net formalism is operative,

the most natural way to define its semantics is to use operational semantics. The operational

semantics of the Petri net model is given by means of a transition system. In the sequel we use

usual definitions and notations of the Petri net formalism. These notions and definitions have

been introduced in part one of this document.

Definition 6.1 (Transition system).

A transition system is a pair (S, R), where S is a set, called the state space and R c S x S is a

relation called the transition relation.

A Petri net can be considered as a transition system where S, the state space, is the set of

reachable markings R(N,M) (see definition 1.5) and the transition relation is the following set:

{(M,M):M E R(N,M)AM E R(N,M)A=ltE T:M~M }.
·~ ',

The process of a transition system starting at an initial state s (the initial marking for a

Petri net) is described by the set of ail execution paths starting at s. These execution paths

Page 6.3

Chapter 6: Petri Nets and Temporal Logic

represent ail possible "behaviors" of the transition system. An execution path is a maxima13

sequence of states (see definition 6.8) such that for any successive pair, their markings belong

to the transition relation. An execution path starting in a marking M can also be seen as a

sequence of transitions since the sequence of states can be computed from the sequence of

transitions as firing a transition, in the Petri net formalism, is deterministic.

To formalize the operational semantics of a marked Petri net in terms of its possible

executions (beha~iors), we recall here some important definitions of the Petri net formalism4

and introduce some new definitions :

Definition 6.2 (Sequence of transitions).

Let us consider Tas an alphabet composed of the symbols t of the transitions of Petri net N.

We will write î the set ofwords that can beformed by concatenation of symbols of T. In that

way, every sequence of transitions of the net N can be represented by a word of î.

Definition 6.3 (Firing a sequence of transitions).

A sequence of transitions s of î is fireable in the marked net (N,M) which will be written

M ~ and the firing of the sequence s leads the net N to the marking M', which will be

written M ~ M , if and only if:

1. either s = À (the empty sequence), then M = M'.

2. ors=s't, with s'E T= et t ET, then: =IM':M~M' AM'' ~M.

The set of possible executions of a marked Petri net (its process) can thus be defined in terms

of fireable sequences of transitions.

Definition 6.4 (The process of a Petri net).
The set of possible executions ,of a Petri net N = (P,T,Pre,Post) from a marking M is

defined by the set: E(N,M) = {s E T=:M ~}

Definition 6.5 (Operational semantics of marked Petri net).

The semantics of a marked Petri net (N, M) is the set of all its possible executions E(N,M).

As we mentioned in the introductive section, our idea is to use temporal logic formulae in

order to reduce the set E(N,M), representing the possible executions of the net, to a set of

desired executions. In the next sectio~, we define a language for the expression of properties

1Becaûse when there is at least an enabled transition in a state, the transition must fire. Thus an execution is
either infinite or finite and its last state is a terminal state (astate with a terminal marking see definition 6.7)
4 Sorne 9f these definitions have already been introduced in part one but, for reasons of readability, we rewrite
them here.

Page 6.4

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 6: Petri Nets and Temporal Logic

that desired executions must fulfill. For reasons of convenience5
, we consider, in the following,

an execution of a Petri net as an infinite sequence of states as in [MP92]. Bach state is

composed of a marking and an exiting transition.

Definition 6.6 (Execution State) .

An execution state is a 2-tuple (m,e) where m(S) is the marking of the state S, m(S,p)

represents the marking of the place p in state Sand e(S) is the transition which is fired in

state S, it is the exiting event of the state S .

In the original Petri net model, executions are not necessarily infinite, some reachable

markings may be terminal markings, i.e., have no enabled transition.

Definition 6.7 (Terminal marking) .

A marking M is called a terminal marking for the Petri net N = (P,T,Pre,Post) if!
---,:lt ET:Vp EP,m(p)'è.Pre(p,t). There is thus no enabled transition in a terminal

marking .

To keep our definition of state (with an exiting transition), we introduce a new transition,

the null transition. This null transition can only and must be fired in terminal states. The

firing of the null transition leads in a state with the same marking and thus with the null

transition as exiting transition ... Let us give a more formai definition of the set of possible

behaviors as a set of infinite sequences of states :

Definition 6.8 (lnfinite sequences of states).

The set of possible executions of a marked Petri net (N,M) where N = (P, T, Pre, Post) is the

set ofinfinite sequences of states E111JN,M) such that: VsEE111JN,M):

• s E (R(N,M), Tu{ null})=. In other words, each sequence s of E111JN,M) is an infinite

sequence of execution states.

• :la E E(N,M): Vi: 1 ~ i ~ lg(a)

e((s,i))=(a,i)6. In other words,for each infinite sequence s there exists afiring

sequence a and the exit event of an execution state is the transition that is fired

in this state.

If ais not infinite (end in-a terminal state) then Vi: i > lg(a) : e((s,i))=null .

The sequence is artificially made infinite by the firing of the null transition.

• m((s, 1))=M. The initial marking of each sequence s is the initial marking of the net .

5 In order to keep the semantics of the temporal operators introduced in chapter 2.
6 (s,i) denotes the ith state of the sequence s.

Page 6.5

Chapter 6 : Petri Nets and Temporal Logic

\Ji: 1 < i:

if e((s, i - 1)) = t /\ t -::/:- null
then V p: m((s, i), p) = m((s, i - 1), p) - Pre(p, t) + Post(p, t)

else {e((s, i-1)) = null} Vp: m((s, i), p) = m((s, i-1), p)

ln other words, the marking between two succ,essive states is changed by firing

a transition of the net or stay the same if the null transition is fired.

This representation of the possible behaviors of a Petri net is kept in the sequel of this

document.

6.3 The /agie formulae of the /anguage

As mentioned in the introduction of this chapter, the Petri net formalism is more a

modeling language than a specification7 language. To represent some (temporal) constraints,

· we have to find a solution, an implementation of them in the Petri net formalism. The Petri net

language style is operative and not declarative. So, to use the Petri net formalism as a basis of

a specification language, we have to introduce the possibility to add temporal formulae to a net

in order to specify, in a declarative style, the (temporal) constraints that can not be specified

easily in the net formalism. The semantics of the logic formulae that will accompany the nets,

will be given as a reduction of the possible executions of the nets.

Considering a Petri net as a generator of a set of possible executions, we expect that the

temporal logic formulae should provide an alternative characterization, more descriptive and

less operational, of the desired set of executions of the net. The temporal logic formulae will

express predicates over infinite sequences of states. Thus, each formula of temporal logic is

satisfied by some sequences and falsified by some other sequences. We will restrict the

executions of a net with temporal formulae to the executions of the net that satisfy. all the

temporal formulae. In the sequel we will first define the syntax and the semantics of logic

formulae that do not contain temporal operators. Those formulae are interpreted in a state. The

logic formulae that contain temporal operators and that will be introduced after, are interpreted

in a particular state of a sequence.

6.3. 1 State formulae

A state formula is evaluated at a certain position in a sequence and the formula expresses

properties of the state occurring at this position. We will thus introduce a state language that

7 By specification we mean the description of the desired behavior of the system, while avoiding references to
the method or details of its implementation. ·

Page 6.6

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 6 : Pétri Nets and Temporal Logic

permits us to express properties of Petri net states. As we have shown in the previous section,

an execution of a Petri net can be represented by a sequence of states, composed of a marking

and an exiting transition. Thus, we must be able to speak' about the number of tokens in a place

(the marking of the place) and over the transition which is fired in the state (the exiting

transition). It can also be interesting to declare sub-sets of the set of transitions T. It can be

convenient to declare a set which contains ail the transitions of a part of the modeled system

and to express properties over the transitions of this set. So we will give the possibility of such

declarations and also the possibility of quantification on these sets. We will first give the syntax

of the state language and thereafter its semantics .

Syntax of the state formulae

SYMBOLS:

The characters A,B, ... ,Z and symbols°={,}, for the declaration of sub-sets of the set T of the

transitions8
•

The function m : this function m: P ➔ ~ is defined on the set of places of the Petri net and

returns a natural number. m(p;) gives the number of tokens contained in the place p;.

The predicate "Fired": this predicate is defined on the set T of the transitions of the Petri net.

Fired(t;) expresses the fact that the transition t; is the exiting transition of the state under

consideration. As two transitions can not fire in the same state, we have the following axiom :

Vt1 ,t2:Fired(ti} AFired(t2) ⇒ t1 = t2

The predicate "Enabled" : this predicate is defined on the set T of the transitions of the Petri

net. Enabled(t;) expresses the fact that the transition t; is enabled in the state under

consideration. As in the Petri net formalism a transition must be enabled to fire, we have the

following axiom :

V t: Fired (t) ⇒ Enabled (t)

The usual boolean connectors: A, v,-,,➔,H.

The predicate symbols over positive integer numbers: =,<,~,~,>,'# .

The usual addition operator over positive integer numbers : +

8 The declaration of the subsets of the set T are not formulae. The utility of such subset declarations is
illustrated at the end of this chapter in the case study.

Page 6.7

Chapter 6: Petri Nets and Temporal Logic

The usual quantifications symbols V,:3 for quantification on the set T of transitions and

declared sub-sets of T.

Two punctuation symbols : (,).

FORMATIONRULESOFTHEFORMULAE:

(constant_place)::= (p1, Pv-··• Pn)
(constant_ transition)::= (t1, tv ... , tm, null)

9

(variable_place): := (Pa, Pb•···, Pz)
(variable_transition): := (ta, th, ... , tz)
(variable)::= (variable_ place) 1 (variable_ transition)

(Subset _of _transitions):== (A .. z)
(Subset _declaration):: =

(Subset _of _transitions)'='({(Constant _transition),*})

(integer _ term): : ==

(positive integer)

1 (m((variable_ place)))

1 (m((constant_ place)))

1 (term)' +' (term)

(atomic formula)::=

(Fired((variable_ transition)))

(Fired((constant_ transition)))

(Enabled((constant_ transition)))

(Enabled((variable_ transition)))

(term)'=, <, :::;, ~. >, *'(term)

9 The constants are thus the symbols that represent the name of the places and the transitions of the net.

Page 6.8

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

(stateformula)::=

1 (atomicformulâ)

1 (state formula)'/\, v ,-,, ➔, H' (state formula)

l 'C(logicformula)')'

Chapter 6: Petri Nets and Temporal Logic

l 'V,"=:/(variable list)'e'(Subset _of _transitions! T)':'(logicformf!,la)

Semantics of states formulae

Next, we consider the semantics of the different constructions, showing how to evaluate

them over states. We will note [q> ls=(M,r) the truth value of the state formula q> in the state

S = (M,t) where Mis the marking of the state Sand t the exiting transition of this state. We

will note I(t) the interpretation of the term t by the interpretation function I. We first define an

interpretation fonction for our logic formulae.

Definition 6.9 (The interpretation function l).

• I assigns a value in the set T of transitions to all constant_transitions and all free

variable_transitions. We restrict here to interpretation functions that map the

constant_transitions in thefollowing way: I(tï)=ti.

• I assigns a value in the set P of places to all constant_places and all free

variable_places. We restrict ourselves here to interpretation that maps the

constant_places in the following way: I(pï)=p;.

• I maps the functor m to the application M that represents the marking function .

Interpretation of a term :

• I(n)=n where n is a positive integer number.

• l(m(p))=M(I(p)) where pis a variable_place .

• I(m(p))=M(p) where pis a constant_place.

• I(t1+t2)=l(t1)+I(t2) where t1 and t2 are terms.

Semantics of the predicates over terms :

• [t1 = t2l,=(M.r).1 is true iff I(tJ = I(tJ (Where t1 and t2 are terms).

• [t1 ~ t2]s=(M.,).1 is true iff I(t1) ~ I(t2) (Where t1 and t2 are terms).

• [t1 > t2]s=(M.r).1 is true iff I(t1) > I(t2) ~Where t1 and t2 are terms) .

Page 6.9

Chapter 6 : Petri Nets and Temporal Logic

• [t1 < t2]s=(M.,).1 is true iff I(t1) < I(ti} (Where t1 and t2 are terms).

• [t1 ~ t2]s=(M,r).1 is true iff I(tJ ~ I(t2) (Where t1 and t2 are terms).

• [t1 i:- t2]s=(M,r).1 is true iff I(tJ i:- I(t2) (Where t1 and t2 are terms).

Semantics of the predicates "Fired" and "Enabled" :

• [Fired(a)]s=(M,r).1 is true iff I(a) = t.
• [Enabled(a)]s=(M,,).1 is true iff Vp E P: Pre(p,I(a J) ~ M(p).

Semantics of the usual boolean connectors :

• ['Ô1 v 1'}2]s=(M,,),1 is true iff [1'}1]s=(M,,),1 is true or [1'}2]s=(M,r).1 is true.

• [---,1'}]s=(M,r),1 is true iff [l'} Js={M,r),1 is false.

• The semantics of the other boolean connectors is deduced in the usual way, see

definition 2.1.

Semantics of the quantifiers :

• [3xeZ:1'}]s=(M,r).I is_true iff :3t;EZ:['Ô:t;]s=(M,,),1 is true where 'Ô:t; is the formula

obtained by replacing the occurrences of variable x by the value t; and Z is a declared

subset of the set T of transitions or the set T.

• [Vx e Z:l'}]s=(M.r).1 is true iff Vt; e Z:['Ô:t;]s=(M,,),i is true where 'Ô:t; is the formula

obtained by replacing the occurrences of variable x by the value t; and Z is a declared

subset of the set T of transitions or the set T.

6.3.2 Temporal formulae

A temporal formula is constructed from state formulae · to which we apply temporal

operators and boolean connectives. We will use and adapt the syntax and the semantics of

future and past operators of common linear temporal logic. These operators are very similar to

those used in ALBERT [DDDP94b] and in OBLOG [SCS92],[SGS92]. As for the state

formulae, we will first define the syntax of the temporal formulae and then their semantics.

Syntax of temporal formula

As usual in temporal logic, in the sequel, Xis the "next" operator, Fis the "eventually"10

operator, G is the "henceforth" 11 operator and U is the "until" operator. These operators

10 Also ~ften called the "sometimes" operator.

Page 6.10

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 6: Petri Nets and Temporal Logic

represent the future operators of our language. The past operators are: Y the "previous state"

operator, P the "sometimes in the past" operator, H the "always in the past" operator and S the

"since" operator.

Syntaxical formation rule :

(Temporal_formula): :=

(State _formula)

'X'(Temporal_formula)

I' F'(Temporal_formula)

l'G'(Temporal_formula)

l(Temporal_formula)'U'(Temporal_formula)

l'Y'(Temporal_formula)

'P'(Temporal_formula)

'H'(Temporal_formula)

(Temporal_ formula)' S' (Temporal_formula)

'-,' (Temporal_ formula)

(Temporal_formula)' A, v,~, H'(Temporal_formula)

'V, :3 ' (variable_ transition)' E ' (Set_ of_ transitions)': ' (Temporal_ formula)

Semantics of temporal formulae

As the truth value of a state formula is evaluated in a state, the truth value of a

temporal formula is evaluated in a state which belongs to a sequence of states (see section 2.1.

Temporal logic). Let us first define some notations:

Notations (The truth value of a temporal formula) .

A temporal formula is evaluated at a position i of an infinite sequence of states (like those of

set E;,ij(N,M)), we will note the state of position i in the infinite sequence sas (s,i). The future

of the state (s, i) is the suffix of sequence s that starts in position i (thus including the present),

we will note it (s,i .. +00) • Symetrically, the past of the state i is constituted of the prefixe of

the sequence s that ends in state i (thus including the present), we will note it (s,1..i).
The truth value of temporal formula i} in_position (s,i) will be noted: [i} t,;).

Let' s now give the semantics of the temporal formulae .

11 Also often called the "always" operator.

Page 6.11

Chapter 6: Petri Nets and Temporal Logic

The future operators

X next operator: [X 'Ô t_i) is true ijf ['Ô l,,i+I) is true.

F eventually operator: [F-ô](·) is true ijf 3j:(i ~ j),['Ô](·) is true.
~ ~

Ghenceforthoperator: [œ](·)istrueijfVj:(i~j),[-ô](·) istrue.
S,I S,J

U until operator: [-ôU<j> ls,;) is true ijf

The past operators

{

3j:i ~ j:(Vk :i ~ k < j:[-ô ls.k) is true)

A([<j> ls,j) is true)

Y previous state operator: [Y-ô l,.;) is true for i> 1 iff ['Ô l,.i-1) is true; [Y-ô lt.,1) is always true.

Fp sometimes in the past operator: [FP-ô ls,;) is true ijf :lj:(1 ~ j ~ i),['Ô ls,j) is true.

· Gp always in the past operator: [G P 'Ô ti) is true ijf Vj :(1 ~ j ~ i), ['Ô tj) is true.

S since operator: [-ôS<j> l,,;) is true iff

{

3j:l~j ~i:(Vk:~ <k ~i: [-ôls,k))

A([<j> lt..j) is true)

With this semantic of Y operator, we can define a new predicate: init which is only true in the

initial state of the sequence, its formal definition : init = [Y 1-] . This new predicate allows to

write logic formulae which express prope:t:ties over the initial marking of the Petri net.

6.3.3 The desired executions

We have defined the syntax and the semantics of the logic formulae that will accompagy

the Petri nets in our specification language. Let us now give a formal definition of the set of

•

•

•

•

•

•

•

executions obtained by the conjunction of the Petri net and the logic formulae in a e
specification.

Definition 6.10 (Desired executions).

The desired executions of a marked Petri net (N, M) accompanied by a set of logic formulae

'P is the set of possible executions of (N, M) that safisty eachformula of the set 'P. We will

note this set Er(N,M, 'P):

Page 6.12

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 6 : Petri Nets and Temporal Logic

-{s: se E(N, M): V-ô ~ 'P, 't::/i e N:}
Er(N, M, 'P)- r~\\] .

Lu (s,i) lS true .

Definition 6.11 (Semantics of a PNTL specification).

The semantics of a PNTL specification constituted of a marked Petri net (N,M) and a set of

logic fomulae 'P, is the restricted executions that belongs to the set Er(N,M, 'P).

Thanks to the new predicate init, it is possible to define properties that an initial .marking

must fulfil. So we can define the possible behaviors of a class of marked Petri nets whose initial

marking fulfil initialisation properties. Let' s note I; the set of formulae of the form (!nit ➔ 'Ô)
that define the properties of the accepted initial markings (1; c 'P). Below we define the

possible behaviors of the Petri net N with initial marking that fulfil ~ .

Er(N,I;, 'P)= r s, .1

{
VM: r1;](i)=(M) is true,}

seEr(N,M,Y)

Futher in this chapter we give some examples of specifications in PNTL. We will also show

how logic formulae can be used to specify strict deontic aspects.

6.4 A specification in PNTL

Let us consider a small library that contains three books. We are here interested in the

behavior oftwo borrowers b1 and b2. Each ofthem may borrow books from the library but has

to return the books intime or has to paya fine before doing anything else in the library(cl) .

6.4. 1. A mode/ of this case in the common Petri nets

Page 6.13

Chapter 6 ! Petri Nets and Temporal Logic

Legend: pl: Books free; p2: Books borrowed by bl; p3: Fines to pay; p4: implementation of
constraint (cl); tl: bl borrows a book; t2: bl returns a book intime; t3: bl returns a book to

late; t4: bl paya fine; p5: Books borrowed by b2; p6: Fines to pay; p7: implementation of
constraint (cl); t5: b2 borrows a book; t6: b2 returns a book intime; t7: b2 returns a book to

late; t8: b2 pays a fine;

Figure 6.4 (a model of the library example)

The figure 6.4 and its legend is a model of our library case. It' s not a specification

because the place p4 and p7 are solutions (over specifications) for the realisation of the

constraint c 1. A proof of validity of the solution for the implementation of constraint c 1. is

given in chapter 5.

6.4.2 The PNTL specification of the case

pl

The logic formulae- li' of the PNTL specification:
Fired(t3) ➔ (Vt E {t1't2 ,tJ:-,Fired(t))u(Fired(t4)) (1)

Fired(t7) ➔ (Vt E {t5 ,t6 ,t7 }:-,Fired(t))U(Fired(t8)) (2)

Legend: pl: Books free; p2: Books borrowed by bl; p3: Fines to pay; tl: bl borrows a book;
t2: bl returns a book intime; t3: bl returns a book to late; t4: bl paya fine; p4: Books

borrowed by b2; p5: Fines to pay; t5: b2 borrows a book; t6: b2 returns a book in time; t7: b2
· returns a book to late; t8: b2 pays a fine;

Figure 6.5 (a specification of the library example)

The first formula (1) says that the borrower b 1 must pay a fine after returning a book late

if be wants to do anything else afterwards, (2) says the same for b2. The formulae (1) and (2)

are specifications of the constraint c 1, they do not represent a solution in terms of places and

transitions for the implementation of the constraint. Those constraints represent strict deontic

aspects : the strict obligation to pay the fine in order to borrow again.

With the logic formulae, we can easily specify a large set of constraints. For example, the

fact that a borrower can continue to return bis books even if he bas to pay a fine. In other

. Page 6.14

•

•

•

•

•

•

•

•

•

•

•

•

• Chapter 6: Petri Nets and Temporal Logic

' words, when. he has to pay a fine, the only action he cannot undertake is borrowing a new

• book. This can be expressed by the following formula:

•

•

•

•

•

•

•

•

•

•

6.4.3 Evaluations

m(p3) > 0 ➔ -,Fired(t1) (3)

m(p5) > 0 ➔ -,Fired(t5) (4)

As we can see in the illustrative example, the addition of logic formulae to a Petri net

model, allows to obtain :

• more readable specifications (compare figure 6.4 and figure 6.5)

• less operational specifications .

Futhermore, the strict obligations/prohibitions can now easily be specified, see assertion

(1)-(4). Nevertheless, PNTL is rather basic:

• the tokens have no values

• the quantitative time properties cannot be expressed (real time) .. · .

Soin the following chapter we extend PNTL by defining a new formalism PNRTL. This

new formalism will be-based on real-time Predicate/Transition nets .

Page 6.15

•

•

•

•

•

•

•

•

•:
i

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 7

The PNRTL language

7.1 Motivations

In the previous chapter, we have defined a language based on the formalisms of Petri nets

and temporal logic.
1

This language (PNTL) allows to specify in a declarative and also in an

operational style. But its expressiveness should be extended. Recall that the nets used in PNTL

are basic Petri nets, the tokens which appear in the nets have no value (no color). Again recall

that the temporal operators used in the logic formulae are usual temporal operators, real-time
'

aspects cannot be expressed.

Since our objective is to define an expressive language for the specification of distributed

systems with real-time and deontic features, we extend here PNTL in four directions. First, we

introduce a net formalism that allows valued tokens. Our formalism is based on

Predicate/Transition nets [GENRICH86], see also section 1.4. Our choice is motivated by the

close relation which exists between Pr/Tr nets and first order logic. With these Pr/Tr nets the

link between the net concepts and the logic concepts can easily be defined. Secondly, we

introduce the results of cnapter 5 in our net definitions to allow the specification of the deontic

distinction between ideal and sub-ideal behavior. Thirdly, we augment PNTL with real-time

features. Finally, to allow more structured specifications, we introduce types and the

possibility to specify a system in separate sub-nets.

To present these extensions of PNTL in a clear way, we structure this chapter in five other

sections. Section 7 .2 introduces new notions that are related to the notion of dynamic first

Page 7.1

Chapter 7: The PNRTL language

order structure. Section 7 .3 introduces the new net formalism of the specification language

including its operational semantics. This semantics is still expressed in terms of possible

sequences of states and reflects now real-time features. Section 7.4 introduces the new logical

constructs of the language. Section 7 .5 presents how types are introduced in the language.

Finally, section 7 .6 shows how a specification can be structured in sub-nets.

7.2 New concepts

As pointed out in section 7.1, we want to extend the PNTL formalism to allow the

association of values to tokens and in general to introduce the notion of individuals in our

formalism. The work we accomplish here is very similar to the work necessary for going from

propositional logic to first-order predicate logic.

Let us first introduce the notion of relational structure.

Definition 7.1 (Relational structure).

A relational structure is a tuple of abjects S = (D;fp---.fk ;Rp••·,Rn) where Dis a non-empty

set of individuals called the domain of S, the f; are functions in D and the R; are relations in

D.

A relational structure can describe situations where properties of individuals and relations

between individuals are static. But we are interested in describing dynamic systems. In such

systems, properties of individuals and relations between individuals may vary during the

execution of the system. So we are interested in dynamic relational structure.

Definition 7 .2 (Dynarnic relational structure).

A dynamic structure will be characterised by the fact that some relations are variable in the

sense that their extensions may vary from state ta state due ta the occurrence of processes

(actions) in the modeled system.

We have chosen structured sets of individuals to support the modeling of dynamic systems.

Operators (function symbols) and predi~ates (relation symbols) form the vocabulary of the

language in which we will talk formally about structu~es, i.e. about properties and relations of

individuals. The language we use is that of first order predicate logic :

Definition 7.3 (A language for structure).

Let for each n ~ 0, Q(n) be a set of n-ary operators and IT(n) a set of n-ary predicates. These

operators and predicates form the vocabulary of the first order language L that consists of

two kind of expressions, terms and formulae. ,ln addition , there is a set of symbols, V, disjoint

Page 7.2

•

•

•

•

•

•

•

•

•

•

•

i.
•

•

•

•

•

•

•

•

•

•

Chapter 7: The PNRTL language

from Q (the set of operators) and from II (the set of predicates), whose elements serve as

(individual) variables. Tenns andfonnulae are built in thefollowing way:

1. Tenns

• A variable is a tenn.

• If f (n) is a n-ary operator E g(n) and v 1 , ... ,v n are terms then f (v
1

, ••• ,v n) is

a tenn. (Note that 0-ary operators are tenns; they are used as proper names

of distinct individuals).

• No other expressions is a tenn.

2. Fonnulae:

• If v 1 ,v 2 are tenns then v 1 ~ v 2, is an atomic formula .

• If p(n) is a n-ary predicate E II(n) and v i,···,v n are tenns then P(v p••·,v J
is an atomic fonnula.

• If p 1, p2 are formulae then ---,p1 and (p 1 v pz) are fonnulae.

• lf xis a variable and p afonnula then (=lx)p is afonnula .

• No other expression is a fonnula

Remark: The connectors A,➔,H and V are derivedfrom --,,v and:3 in the

usual way, see section 2.2 .

We must still define some common notions of first order logic, those notions are constantly

used in the sequel of this chapter.

Definition 7.4 (Free occurrence of a variable) .

An occurrence of a variable x in a formula E is called free occurrence if it is not in the range
of a (=lx) or (Vx). The occurrences of variables in a single term arefree.

Definition 7.5 (Index of an expression) .

The set of variables that occur freely in an expression (term or formula) is called thè index of

that expression.

Definition 7.6 (Closed expression).

An expression v is closed if its index is empty.

We canuse a first-order language L for talking of a relational structure S if we associate with

each operator and each predicate in the vocabulary of La fonction respectively a relation of S .

Definition 7.7 (L-Structure).

Given a first-order language L, we call a structure S a structure for L, or L-structure, if every

operator f (m) of L denotes a m-ary function of S designated by fs and every predicate p(n) of

Page 7.3

Chapter 7: The PNRTL language

L denotes a n-ary relation of S designated by Rs. To ensure that each individual in the domain

of S can be named in a sentence, we now add to the vocabulary of L a new set, Us, of

constants denoting the individuals of S in a one-to-one fashion 1
• The individual denoted by a

constant d is designated by ds.

The structure S assigns to each closed term, v, of Ls an individual of S, designated by S(v), and

to each closed formula (proposition), p, of Ls, the truth value true or false, designated by S(p).

Definition 7.8 (Substitution).

Let E be an expression (term or formula), Xi, .. ,,xn be variables, t1 , ... ,tn be terms. Then

'Y= {x1 ~ t1, ... ,xn ~ tJ is called a substitution, and E:y = E:{x1 ~ t1 , ... ,xn ~ tJ

designates the result of substituting t; for each free occurrence of x;, for 1 ::;; i ::;; n. E: y is

called the 'Y - instance of E.

Definition 7.9 (Valuation).
A valuation a is a special kind of substitution {x1 ~ t1 , ... ,xn ~ tJ where ail t; (1::;;i::;;n) are

constants E Us.

Definition 7.10 (lnterpretation.function for a structure).

Let v be a. closed term and p a closed formula of the language Ls. The S(v) and S(p) are

defined recursively on their respective syntactic structure.

1. S(v)

2. S(p)

• Ifv is a constant d, S(v) is the individual denoted by d, ds.
• Ijv is f (n)(vz, ... ,vJ then S(v) =fs(S(v 1), ... ,S(v,J).

• If p is v1 =v2 then S(p)=true iff S(v1) and S(v2) are the same individual.
• If p is p(n)(v I'"' ,v J then S(p)=true iJf (s (v 1), ... ,S (v J) E P5 •

• If p is (p 1 v p2) then S(p)=true iJf S(p 1)=true or S(p2) is true.

• If p is -,q then S(p)=true iJf S(q)=false.

• If p is (3x)q then S(p)=true iJf there is a constant d such that

S (q:{x ~d }) = true.

Remark: The semantics of the connectors A,➔,H and\/ are derived from

the semantics of-,, v and 3 in the usual way, see section 2.1.

Recall that in an ordinary first-order structure S, all fonctions and relations are static, as

opposed to dynamic structure where some relations are variable. The presentation of dynamic

structures requires that we distinguish between predicates denoting static relations and

1 This is possible because we have decided that the domains of interpretation are fixed domains, see section 7 .5.

Page 7.4

•

•

•

•

•

•

•

•

•

•

•

•

•

·•

•

•

•

•

•

•

•

•

Chapter 7: The PNRTL language

predicates denoting variable relations. Hence we di vide the set of predicates, Il, into a set of

static predicates Ils , and a set of dynamic predicates that will be designated by ~ .

Definition 7.11 (Static formula).

A logic formula is a static formula ijf it does not contain dynamic predicates .

In our specification language, we separate the static and the dynamic part from each other.

The static part remains an ordinary relational structure. lt is often called the support of the

system. The dynamics are presented as an annotated net and a set of real-time temporal

formulae. The variable relations (dynamic predicates) appear as the places of the net. (see

chapter 1, section 1.4).

7.3 Real Time Prnr Nets

7.3. 1 Introduction

In this section we introduce the net formalism of our language. The net formalism is used

to represent the operative constraints of the dynamic part of the system to be specified. As in

Pr/Tr nets (see, section 1.4), the places are annotated by dynamic predicates and the tokens

present in a place represent the current extension of the predicate that annotates the place. The

transitions of the net model actions of the ~ystem.

The remainder of this section is organized in two sub-sections. Sub-section 7.3.2 considers

the introduction of real-time features and the sub-section 7.3.3 formalizes the notion of

PNRTL net and gives its firing rule and operational semantics.

7.3.2. Introduction of Real-Time

In this paragraph the main distinctions between Pr/Tr nets and real-time Pr/Tr nets are

briefly pointed out :

• In usual Petri nets, a net execution can be seen as a sequenc~ of states (see

Definition 6.8, p 6.5). In real-time Pr/Tr nets, and this is new, every net state is

mapped to two real instants of time : the time at which the net enters the state and

the time the net quits the state.

• In usual Pr/Tr nets, firing a transition is atomic, i.e. ail actions (represented by

transitions) are instantaneous. In reality actions are either instantaneous or have a

Page 7.5

Chapter 7: The PNRTL language

duration of tîme. To model this property of actions, we consider that firing a

transition is either instantaneous or has a duration. In the first case, firing remain an

atomic action, in the second case, firing a transition is decomposed in two atomic

events : the be~inning and the end of the firing. Between those two events, the firing

is said in progress.

• In real-time Pr/Tr nets, it seems necessary to refine the notion of transition (action).

There is a differentiation between transitions and transition instances. The notion of

transition instance can be used to express that a transition fires n times within a

certain interval. As firing is no longer necessarily atomic and can have duration,

many occurrences of a same transition may be in progress during the same period

(this property is often called autoconcurrency).

Due to the introduction of real-time, it' s necessary to give a new definition of a net state.

This is a definition which supports the introduction of the real-time features :

Definition 7.12 (PNRTL state)

In order to include the real time features, a PNRTL state S will be composed of:

• An entering time : InTime(S). It represents the moment at which the system enfers

in state S.

• An exiting time: OutTime(S). It represents the moment at which the system exits

the state S. Let us note that the relation InTime(S)<_::;_OutTime(S) is always verified.

• A marking : M(S) which represents the extension of each dynamic predicate that

annotates the places of the net.

• A set of occurrences of actions : H(S) which are in progress during state S.

• An exiting event : Exit(S) is the event which makes change the state of the system.

This event is either the beginning of an action (the firing of a transition)or the

termination of an action.

The fact that firing a transition is no longer necessarily atomic, causes a new problem. Let us

consider the following part of a net as an illustration :

t1

Figure 7.1 (A part of a Pr/Tr net)

Page 7.6

•

•

•I

•

•

•

•

•

•

•

•

•

1

1

•

•

•

•

•

•

•

•

•

•

•

Chapter 7: The PNRTL language

The fi.ring of t1 in an usual Pr/Tr net has no influence on the extension of P. In fact, the

extension of the dynamic predicate P is not changed since the token <1> stays in P in the

reached state since <1> is added by the output arc and fi.ring is atomic. The construct of figure

7.1 (arc (1) and arc (2)) is often used to represent a precondition for the fi.ring of a transition

and this precondition is not modified by fi.ring the transition. Unfortunately, this construct is no

longer valid if the fi.ring of t1 has a duration. In fact if we consider that when one fires a

transition, at the beginning event tokens are removed from the input places and at the end

event tokens are added to the output places, the fi.ring of an occurrence of t1 must be ended

before another occurrence may fire (if we make the supplementary assumption that tokens are

only added to place P by t1).

For that reason, we will introduce new types of arcs .

New types of arcs

The semantics of the new arcs is presented here in an informai way. A more formal

presentation of their semantics (in terms of elements of a PNRTL state) is given in definitions

7.21, 7.23 and 7.24, commented examples of the use of the different arcs are given in chapter 8

(case study in PNRTL).

Input arcs:

Typei

0 Tu(a)

Figure 7.2 (Graphical representation of a type i arc)

This arc is enabled for an a - instance of t (where a is a valuation) if for all tuples of Tu(a;2,

the a - instance of the tuple belongs to the extension of the dynamic predicate P. These

a- instances of the tuples are removed from P at the beginning of action t-a. This type of arc

can be used to represent a positive precondition (ex: P(x) must be true) for the beginning of an

action and the precondition becomes false directly after the beginning of the action .

2 Tu(a) de notes the set of tuples which annotate the arc a.

Page 7.7

Chapter 7: The PNRTL language

Type i

Tu(a)

Figure 7.3 (Graphical representation of a type i arc).

This arc is enabled for an a - instance of t (where a is a valuation) if for all tuples of Tu(a),

the a- instance of the tuple does not belong to the dynamic predicate P. These a - instances

•

el
1

•

of the tuples are added to P at the beginning of action t-a. This type of arc can be used to •

represent a negative precondition (ex: P(x) must be false) for the beginning of an action and

the negative precondition becomes false, i.e. P(x) is true, directly after the beginning of the

action.

Typep

Op it Tu(a)
----------- .

Figure 7.4 (Graphical representation of a type parc)

This arc is enabled for an a - instance of t (where a is a valuation) if for all tuples of Tu(a)',

the a - instance of the tuple belongs to the dynamic predicate P. These a - instance of the

tuples are not removed from P at the beginning of action t-a. Here, the positive precondition

is not modified at the beginning of the action.

Type p

Op it Tu(a)

Figure 7.5 (Graphical representation of a type p arc)

This arc is enabled for an a - instance of t (where a is a valuation) if for all tuples of Tu(a),

the a- instance of the tuple dcies not belong to the dynamic predicate P. These a-instances

of tuples are not added to Pat the beginning of action t-a. Here, the negative precondition is

not modified at the beginning of the action.

Page 7.8

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 7: The PNRTL language

Output arcs :

Typeo

p

Tu(a)

Figure 7.6 (Graphical representation of a type o arc)

At the termination of the firing of an a- instance of t (where a is a valuation) the

a - instances of the tuples of Tu(a) are added to the extension of the predicate P. This type of

arc can be used to represent the fact that at the end of action t(x), P(x) becomes true.

-
Type o

p

Tu(a)

Figure 7.7 (Graphical representation of a type o arc)

At the termination of the firing of an a- instance of t (where a is a valuation) the

a - instances of the tuples of Tu(a) are removed from the extension of the predicate P. This

type of arc can be used to represent the fact that at the end of action t(x), P(x) becomes false.

With these new arcs we can now easily model the kind of constraint of figure 6.1 :

pQ ~t1 ...
- - <X> -

<1 > - - - -

Figure 7.8 (Constraint of figure 7.1 in a PNRTL net)

7.3.3. Firing rule and operational semantics

So far we have only presented PNRTL nets in an informa! manner. In this sub-section, we

present formal definitions and formal semantics of a PNRTL net. The definitions of a PNRTL

net include a fine function w. This function allows to specify the deontic distinction between

ideal and sub-ideal behavior as defined in sub-section 5.2.2. We only give in definition 7.26 the

, Page 7.9

Chapter 7: The PNRTL language

way to calculate the weight of a PNRTL execution, the reader can easy generalize the other

definitions given in chapter 5, for the PNRTL nets.

Elements of a PNRTL net

Definition 7.13 (PNRTL net)

A PNRTL net N is a five-tuple N = (P,T,A,L, w) where P is a finite set of places which

represent dynamic predicates, T is a set of transitions, A is a finite set of arcs which link

places to transitions and vice versa, L is a language for structure which is used to annotate

the net, w is a fine function defined on the set T that allows the deontic distinction between

ideal, sub-ideal and repairing transitions.

Let us now detail the elements. of a PNRTL net.

Definition 7.14 (PNRTL transition)

A PNRTL transition, in a net N = (P,T,A,L, w), is a five-tuple t = (s,IA,OA, w,i) where

t ET, s(t) denotes a staticformula called the selector of the transition, IA(t) and OA(t) denote

respectively the set of input arcs and the set of output arcs of the transition, w(t) is the weight

of the transition t in the fine system, i(t) is true if the transition is instantaneous3
, false

otherwise.

Definition 7.15 (PNRTL place)
A PNRTL place, in a net N = (P,T,A,L, w), is a couple p = (Pr,Ext) where p E P, Pr(p)

denotes the dynamic predicate that annotates the place p, Ext(p) is a set of tuples that be long

top and represent the extension of the predicate of place p (Pr(p)).

Definition 7.16 (PNRTL input arc)
A PNRTL input arc, in a net N = (P,T,A,L, w), is a four-tuple a= (IP,Tr,Tu,Ty) where

a E A, IP(a) E P denotes the input place of a, Tr(a) ET the transition linked to a, Tu(a) the

set of tuples, written in language L, that annotate the arc, Ty(a) E {i,i,p,p} the type of arc a.

Definition 7.17 (PNRTL output arc)
A PNRTL output arc, in a net N=(P,T,A,L,w), is afour-tuple a =(OP,Tr,Tu,Ty) where

a E A, OP(a) E P denotes the output place of a, Tr(a) ET the transition linked to a, Tu(a)

the set op tuples, written in language L, that annotate the arc, Ty(a) E { o,;;} the type of arc a.

3 We consider that a transition can be classified as instantaneous or not instantaneous. We consider that this
characteristic is fixed regarding the action that the transition models and does not change during the process of
the system. An instantaneous transition will be represented by a white rectangle and a non instantaneous by a
black rectangle.

Page 7.10

1 .1
1

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 7 : The PNRTL language

Definition 7.18 (Marking of a PNRTL net)
The marking M of a PNRTL net N = (P,T,A,L, w) where P = {p1 ,p2' ... ,pJ, is a function

returning the extension of the dynamic predicate that annotates the place given as argument :

M(pJ = Ext(p;),(1 <;:;. i <;:;. n), P; E P

Definition 7.19 (Index of a transition t)

The index of a transition t is the set of variables that appear freely in s(t) the selector of the

transition and in the tuples e of each arc connected to the transition :

Index(t) = LJ{ vars(e):e E Tu(a)A (a E IA(t) va E OA(t))}Uvars(s(t))

Graphical conventions. An instantaneous transition will be represented as a white rectangle

and a non-instantaneous transition as a black rectangle .

Firing rule

To express the firing rule of the PNRTL nets, we define when a transition is enabled and also

the effects of firing a transition instance. In the sequel, we constantly use the notion of PNRTL

state. This notion has been introduced in the definition 7.12. Let us precise this definition :

Definition 7.20 (Elements of a PNRTL state) .

A PNRTL state is afive tuple S=(lnTime,OutTime,M,H,Exit) where:

• InTime(S) and OutTime(S) are state functions which return a positive real number.

lnTime(S) returns the time at which the system has entered the state S, OutTime

returns the time at which the system has quit the state S .

• M(S) is a vector that gives the extension of each dynamic predicate of the system in

the state S. The extension of the dynamic predicate which annotates place p in a

state S will be noted ExtM(slP).

• H(S) is astate function that returns a set of 2-tuples of the form (tma) where t11 is a

transition occurrence and a a valuation for the index of t. H(S) represents the set of

transition occurrences, with their valuation, which are in progress during state S.

• Exit(S) is a state function which returns a 3-tuple (BE, t11,a) where BE is either

'Begin', either 'End', or 'BeginEnd' if the exit event of the state is the beginning,

respectively the end of the firing of the transition occurrence · t11, respectively the

instantaneous firing of the transition occurrence t11 with a valuation a. This 3-tuple

represents the event which makes quit the state S .

Page 7.11

Chapter 7: The PNRTL language

Definition 7.21 (Enabled a-instance transition)
A transition t ET is enabled for a valuation a in a marked net (N, M) which dynamizes a

relational structure S ijf:

l)a is a valuation for the variables of the index of t.

2) s(s(t):a)= true, in other words the interpretation of the a instance of the formula

s(t) is true in the structure S.

3) \f a:a E IA(t) /\ (Ty(a) = iv Ty(a) = p):

\f e E Tu(a):(e:a) E ExtM(IP(a))

In other words, an arc a of type i or p is enabled for a valuation a if for all tuples of

the arc, each a-instance of the· tuples belongs to the extension of the dynamic

predicate of the place IP(a).

4) \f a:a E IA(t) A (Ty(a) = iv Ty(a) = p):

\f e E Tu(a):(e:a) Ê ExtM(IP(a))

In other words, an arc a of type i or p is enabled for a valuation a if for all tuples of

the arc, each a-instance of the tuples does not belong to the extension of the dynamic

predicate of the place IP(a).

5) ---,:3(e1 :a),(e2 : a):
e1 E Tu(a) /\ a E OA(t) /\ Ty(a) = o /\ OP(a) = p

Ae2 E Tu(b) /\ b E OA(t)ATy(b) = ~/\ OP(a) = p

A (e1:a) = (e2 :a)
In other words, if a transition t is fireable for a valuation a then it does not exist two

tuples whose a-instances are equal and must, at the terminaison of t, be added in and

removed from the same place.

We have defined when a transition is enabled in a PNRTL net, let us now describe the

effects of firing a transition. We describe those effects on the sequence of states (see definition

7.23) which represents an execution of a PNRTL net. In the sequel, Si denotes the i1" state of

the sequence S.

Definition 7.22 (Timing of the firing of a non-instantaneous transition).

The firing of a non-instantaneous transition occurrence is characterized by two events : its

beginning and its end. Begin_Time(t,i), End_Time(t11) denotes the time at which the nth

occurrence of the transition t begins, respectively ends to be fired. The difference

Page 7.12

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 7: The PNRTL language

End_Time(tn)-Begin_Time(tn) represents the duration of the fi.ring of tn, let us note it

Duration(tn) .

Definition 7.23 (Firing rule of PNRTL)

A transition t is fireable for a valuation a whenever it is enabled for that valuation. We

distinct here two cases :

A) Firing of a non-instantaneous transition :

The action of firing the nth occurrence of transition t with a valuation a in a state S; at time

T for a duration d has two effects : one at the beginning of the fi.ring and one at the end of the

fi.ring. Let us formally discribe those two effects :

at the Beginning of fi ring (t: a) in state Si :
• Exit(S;) = (begin,tn,a), the exiting event of state S; is the beginning of the a-

instance of nth occurrence of t.
Exit(S;) S h h d S • S;----'-'-'-➔ i+l' t e reac e state is i+J•

• InTime(Si+J) = T, the time when the state S;+1 is reached is the time of the beginning

of (tn: a), OutTime(Si)= T =lnTime(Si+ 1).

• The extensions of the dynamic predicates are changed in the following way :

l)Vp E {pl:(IP(a) = pl Aa E IA(t))}

ExtM(s;+)p) ~ ExtM(s)P)

1{(e:a):3a ~ IA(t) A Ty(a) = i A e E Tu(a) A IP(a) = p}
. u{(e:a):3aEIA(t)ATy(a)=i AeETu(a)AIP(a)=p}

2) Vp E P and ~ tpl:(IP(a) = pl A a E IA(t))}

ExtM(s;+)p) ~ ExtM(s}P)

• The nth occurrence of t is added to the set of transitions in progress in the reached

state:

H(S;+J = H(S;) u(tn,a)
at the End of fi ring (t: a) occuring in state Sj :

• Exit(sJ = (end,tn,a), the exiting event of state Sj is the end of a-instance of nth

occurrence of t .
Exi1(sJ

• Sj--~--+Sj+l' the reached state is Sj+J•

• InTime(Sj+J) = T +d, the time when the state Sj+J is reached is the time of the end of

(t11:a) (T=Begin_time (t11), d=duration(t11)), OutTime(Sj)=lnTime(Sj+J) .

• The extensions of the dynamic predicates are changed in the following way :

1) Vp E {pl:(OP(a) = pl A a E OA(t))}

Page 7.13

Chapter 7: The PNRTL language

ExtM(sj+i)(p) ~ ExtM(s)P)

U{(e:a)::3a E OA(t) A Ty(a) = o A e E Tu(a) A OP(a) = p}
!{(e:a)::3a ~ OA(t) A Ty(a) =;; A e E Tu(a) A OP(a) = p}

2) VpePand (lê{pt:(OP(a)=plAaEOA(t))}

ExtM(sj+i)(p) ~ ExtM(s)P)

• The nth occurrence of t is removed from the set of transitions in progress in the

reached state:

H(Sj+i) = H(sJ I (tn,a)
B) Fi ring of a instantaneous transition :

The action of firing instantaneously the nth occurrence of transition t with a valuation a in

state Si at time T has the following effects :

• Exit(SJ = (begin_end,tn,a).

S Exit(S;)) S.
• j 1+]

• InTime(S;+1J=OutTime(S;)=T.

• To describe the extension of the dynamic predicates in S;+1, we decompose the

instantaneous firing in two successive phases, the first one describes the effects of

the input arcs and is followed by the second one which describes the effects of the

output arcs. For a precise description of these two phases, we use a intermediary

marking which we note M(J,,tJ•

• Description of M(1111J :

1)\/p E {pt:(IP(a) = pl A a E IA(t))}

ExtM(Int)(p) ~ ExtM(s)P)

/ {(e:a):=la E IA(t) ATy(a) = i A e E Tu(a) A IP(a) = p}
u{(e:a)::3a E IA(t) A Ty(a) == i A e E Tu(a) A IP(a) = p}

2) Vp E P and (lê {pt:(IP(a) = pl A a E IA(t))}

ExtM(Inr)(p) ~ ExtM(s}P)

• Description o/ M(S;+1J:

1) 'v'p E lPl:(OP(a) = pl A a E OA(t))}

ExtM(s1+1)(p) ~ ExtM(In,i(P)

U{(e:.a)::3a E OA(t) A Ty(a) = o A e E Tu(a) A OP(a) = p}
;{(e:a)::3a E OA(t) A Ty(a) =;; A e E Tu(a) A OP(a) = p}

2) Vp E P and (lê {pt:(OP(a) = pl Aa E OA(t))}

ExtM(sj+i)(P) ~ ExtM(Int)(P)

• H(S;+1J=H(S;).

· Page 7.14

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

Chapter 7: The PNRTL language-

Definition 7.24 (Execution of a PNRTL net)

An execution sequence is a sequence of states obtained by applying the firing rule and that

respects a couple of supplementary restrictions :

• if Exit(S;) = (begin,tn,a) then 3j:(j > i) A Exit(sJ = (end,tn,a). ln other words, if

a non-instantaneous action instance begins then it ends eventually. Thus we do not

allow actions that fast forever.

• if Exit(S;) = (end,tn,a) then 3j:(i ~ j < i) A Exit(sJ = (begin,tn,a). Analogously,

the occurrence of the end of a non-instantaneous action instance implies that that

action has begun at an earlier state.
• if Exit(S;) = (begin or begin_end,tn1,a), Exit(sJ = (begin or begin_end,tn2 ,~)

and i -:f::- j then ni -:f::- n2. ln other words, if an action instance happens at some state,

it may not happen again even with a different valuation .
• if Exit(SJ = (begin or begin_end, tn1, a) and i ~ n2 < ni

then 3j:i~j<i:Exit(SJ=(beginorbegin_end,tn2 ,a). ln other words, the

numbering of the action instances is continuous.
• H(SJ = 0. The set of transition instances in progress in the initial state S1 is

empty.

• The null transition, as in definition 6. 8, must and can only be fired in terminal

states. The firing of the null transition is always instantaneous. If there is no
enabled transition in S; : Exit(S;) = (Begin_end,null,-), Si nuu Si+] and

M(S;+1J=M(S;).

• lnTime(S;)~OutTime(S;). The time_ at which a state is quit is always superior or

equal to the time at which the state is reached.

• lnTime(S;+1J=OutTime(S;) and lnTime(S0)=0. The lnTime of astate is equal to the

OutTime of the previous state and the lnTime of the first state is O.

Definition 7.25 (Semantics of a marked PNRTL net)
The operational semantics of a marked PNRTL (N, M0) is the set of all possible sequences of

states S whose first state Sa has the marking Mo and other states are obtained by applying the

firing rule defined in definitions 7.2i, 7.23 and 7.24. The set of possible executions of a
marked PNRTL net (N, M0) is noted E(N,M0) .

We must still define how the deontic weight of an execution between, two states can be

computed in the PNRTL formalism. Recall that the weight of an execution between two

markings in an extended Petri net (see section 5.2.2) is the sum of the weights of the fired

transitions of the execution. In a PNRTL execution, the firing of a non-instantaneous transition

Page 7.15

---,

Chapter 7: The PNRTL language

generates two events : a begin and an end event. So the weight of an execution can be defined

as the sum of the weights of the transitions that begin during the ~xecution.

Definition 7 .26 (Deontic weight of PNRTL execution).

The deontic weight (DW) of an execution S between state S; and state Sj of a PNRTL net

•

•

N = (P,T,A,L, w) is calculated asfollows: •

nw(s;,sJ = :±(w(Exit(sk)) x 8k)
k=i

Where w(Exit(Sk)) is the weight of the transition involved in the exiting event of state Sk and

<\ is equal to 1 if Exit(Sk) is the begin event of a transitionfiring or the begin_end event of an •

instantaneous firing and is equal to O if Exit(Sk) is the end event of a transition firing.

7.4 Logica/ formulae of PNRTL

As we see a PNRTL net as a generator of a set of possible executions E(N,M), we expect

that the temporal formulae should provide an alternative characterization, more descriptive and

•

less operational of the desired set of executions of the PNRTL net. •

7.4. 1 State formulae

In the section 7.2, we have partitioned the set of predicates in a static part and in a

dynamic part. The predicates of the static part can be used to speak about individuals

properties which do not depend on the state of evaluation. The syntax and the semantics of a

formula which contains just static predicates is given in definitions 7.3 and 7 .1 O. In this sub

section, we will only be interested in the logic constructions in relation with the notion of

PNRTL state.

Recall that a PNRTL state is composed of five elements: a marking (the extension of each

dynamic predicate of the system), an entering time (InTime), an exiting time (OutTime), an

exiting event (the begin, the end or the begin_end of a transition firing), a set of firings that are

in progress. So in the sequel we will define the syntax and the semantic of predicates and

fonctions in order to speak about these five elements.

Syntax

New symbols :

Page 7.16

•

•

•

•

•

•

'

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 7: The PNRTL language

The set of dynamic predicates which annotate the places of the PNRTL net of the specification
is defined as follows : {pr: pr = Pr(p) A p E P}. Those predicates allow us to speak about

their extension in a state .

The predicate lnProgress whose arguments are a transition occurrence and a n-tuple of values

or variables where n is the arity of the index of t. lnProgress(t11,(x,a,b)) expresses the fact that

the nth occurrence of the transition t which was fired with a valuation a which assigns the

value of the variable x to the first element of the index of t, the value a to its second element,

the value b to its last element, is in progress in the state under consideration.

The state function lnTime : ➔ Real which retums the intput time of the state. Assertions about

this function will be constructed with usual predicate symbols over real numbers :

The state function OutTime : ➔ Real which retums the output time of the state. Assertions

about this function will be constructed with common predicate symbols over real numbers :

The three predicates Begin, BeginEnd and End whose arguments are a transition occurrence

and a n-tuple of value or variables. Begin(t11,(x,a,b)) expresses the fact that the begin of nth

occurrence of the transition t with a valuation a which assigns the value of the variable x to

the first element of the index of t, the value a to its second element, the value b to its last

element, is the exiting event of the state un der consideration. End(t11, a) expresses the same

but for the end of a firing, Begin_End(tn, a) for the instantaneous firing of t11 .

Semantics

We will give here the truth value of the constructs previously introduced. Those truth values

are evaluated in a state. For the other expressions that can be constructed from the structure

language L, we refer the reader to Definition 7.4, page 7 .1 O.

Let [8]
5

denote the truth value of the logic formula 8 in the State S whose entering time is

lnTime, exiting time is OutTime, marking is M, set of progressing transitions occurrences is H

and whose exiting event is Exit .

Page 7.17

Chapter 7: The PNRTL language

[InProgress(tn,a)]s is true iff (tn,a) E H(S). Note that we can consider a generalization on

the occurrence number : [InProgress(t,a)]s is true iff there exists a occurrence number, n,

such that (tn,a) E H(S).

[Begin(tn,a)Js is true iff Exit(S) = (begin,tn,a). Here we can also consider a generalization on

the occurrence number : [Begin(t,a)]s is true iff there exists an occurrence number, n, such

that Exit(S) = (begin,tn,a).

[End(tn,a)]s is true iff Exit(S) = (end,tn,a). Here we can also consider a generalization on

the occurrence number: [End(t,a)Js is true iff there exists an occurrence number, n, such that

E~it(S) = (end,tn,a).

[BeginEnd(tn,a)Js is true iff Exit(S) = (begin_end,tn,a). Here we can also consider a

generalization on the occurrence number : [BeginEnd(t,a)]s is true iff there exists an

occurrence number, n, such that Exit(S) = (begin_end,tn,a).

For the predicates constructed over real time, we define the interpretation of the two time state

function: ls(lnTime)=lnTime(S) and ls(OutTime)=OutTime(S).

[P(x)]s, where Pis a dynamic predicate, is true iff the value of x E ExtM1s/P) where Pr(p)=P.

In other words, P(x) is true in astate S if the value of x belongs to the tuples contained in the

place annotated by the dynamic predicate P.

7.4.2. Real Time Temporal formulae

A PNRTL net execution can be viewed as a sequence of states as defined in definition

7.25. Bach state in an execution has two time stamps, the first one InTime represents the (real)

time at which the net has entered in that state, and the second one OutTime represents the

(real) time at which the net has exited that state. In the section 6.3.2 we have introduced

temporal operators to . express properties on the order of states in a sequence. In this sub

section we will extend to real time the syntax and the semantics of those operators.

The temporal assertions constructed with the temporal operator of section 6.3.2 may

constraint the order of possible states but those assertions cannot express constraints about the

distance in time between states. However, this temporal information, of quantitative nature, is

often very important (see chapter 2).

Page 7.18

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 7: The PNRTL language

In the sequel, we will adapt the syntax and the semantics of real time temporal operator

introduced by Koymans [KOYMANS89], [KOYMANS92]. Variants of those operators are

also used in many other works: ALBERT [DDDP94b], ERAE [DLT91], RTOSL [SK93], ...

Example 7.1 (A real-time temporal assertion) .
G:s:,sec<l> is true if <j> is verified in all future states within t sec2•

Recall that in our language, a net execution is a sequence of states where each state is

formed of, among others, a marking and an exiting event. The following figure represents a

part of a possible PNRTL net execution :

ln Ti me((S,2))

OutTime((S, 1))

ln Ti me((S,3))

ln Ti me((S,i+ 1))

OutTime((S,i))

ln Ti me((S, 1))=0 OutTime((S,2)) OutTime((S,3)) lnTime((S,i))

~ ~ ~ ~
State1 Statei
(S, 1)

State2 State3
(S,i)

(S,2) (S,3)

OutTime((S,i+ 1))

~
State i+1
(S,i+1)

Exit((S,i+1)) Exit((S,2)) Exit((S,3)) Exit((S,i))
Exit((S, 1))

"exit event of state 1"

Figure 7.9 (A possible execution sequence)

If we want to give a precise semantics to the formula G:s:,sec<I>, we have to decide which

timestamp of a state (InTime or OutTime) is taken into account to compute the distance

between two states .

t1 t2 t3 t4

--------L State i ---~· J _ ------_L State j _j -------
Figure 7.10 (The distance between two states)

In fact (t3 ~ti} may be different of (t4 -tJ. Constraints on the duration between two

events will easily be defined by measuring. the distance between two OutTime state points. For

instance, if we consider the following constraint : "Bach firing of t take exactly 5 seconds". We

would like to write :

Page 7.19

Chapter 7: The PNRTL language

Exit((S,i))=Begin(t1 .~) Exit((S,j))=End(t1 .~)

f~ State i --+-------- - - - - - - _j_ State j Î' ►

V..,-c:------- 5 sec. -------4►~V

State j is distant of 5 seconds from the State i if we consider the two

OutTime time stamples

Figure 7.11 (Distance Out-Out between two states)

Now if we want to express "P(a) may never stand 4 seconds continously", we cannot write
: P(a) ⇒ F,;,4. (-iP(a)) (7 .1). In fact, con si der the following figure :

Time=0.1 Time=1 Time=2.1 Time=4.4 Time=4.9

i State i f State i+1---'f'-----State i+2'------Lf ___ State i+3-----1.

V 'fJ V '1
P(a) Stands P(a) Stands P(a) Stands P(a) does not stand

Figure 7.12 (A possible execution sequence)

If we interpret the formula (7.1) in state i with the semantics of intervals computed on

OutTime, its truth value is true which is counter-intuitive ! In fact, P(a) stands from time

t=0. ls to time t=4.4s, i.e., continously during 4.3 s which is not allowed by our constraint. So,

to solve this problem, we propose to add an exposant to the real-time temporal operators. This

exposant will allow to determine how to compute the interval (from InTime to OutTime, from
OutTime to InTime ...). This exposant is a 2-tuple which elements belongs to the set {i ,o}.

P(a) ⇒ F;,~'.l(-,P(a)) (7. 2)

The formula (7.2) expresses the desired constraint since the meaning of the exposant (i,i)

is : "the interval containts all states that are at InTime within 4 seconds from the InTime of the

state where the formulais evaluated". Besides, the truth value of the formula (7.2) in state i of

the figure 7.12 is false which is intuitive!

In the sequel, we will give a more formal syntactic and semantic definition of our real-time

temporal operators.

Page 7.20

•
, 1

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
1

•

•

•

•

•

•

•

•

Chapter 7 : The PNRTL language

Syntax

We will use the temporal operators : F (eventually), G (henceforth) and U (untill) for the

future and P (Sometimes in the past), H (always in the past) and S (since) for the past. As we

already said, the syntax of those operators will be extended in two ways : a subscribe will allow

to restrict the meaning of the formula to a set of states which constitute an interval and an

exposant to specify the precise way to compute intervals of states.

Let here extend the syntax of the temporal formulae given in section 5.3 :

(Temporal_formula)::=

(State _formula)

Ir X' (Temporal_formula)

Ir F,(Bound'J r ((Temporal fionnula))
(lnterval) -

Ir o(Bound'J r ((Temporal fionnula))
(Interval) -

1((Temporal_ f annula))' U(~;::% r ((Temporal_ f annula))

jr Y' (Temporal_fonnula)

Ir p(Bound)
r ((Temporal fionnula))

(lnterval) -

I' H(~;;:~◊•((Temporal_fonnula))

1((Temporal_fonnula))r S(~;;:~◊r((Temporal_fonnula))

I' -,r (Temporal_fonnula)

l(Temporal_formula)r A, v,⇒,~r(Temporal_fonnula)

(Bound)::= E

l{(i,i)) j{(i,a)) j{(o,o)) j{(a,i))

{lnterval): := E

J= (Duration symbol)

J< { Duration symbol)

j:s; {Duration symbol)

j2::: {Duration symbol)

J> {Duration symbol)

Page 7.21

Chapter 7 : The PNRTL language

Additional rule : if Interval is equal to E (the empty interval) then Bound must also be

equal to E.

Semantics

•

•

As we already said the intervals are interpreted as sets of states. Let us first give a formai •

definitions of these sets.

To alleviate the definition of the interpretation of interval, we introduce a meta-function which

retums either the function InTime or the function OutTime.

Notation 7.1 (Meta time function)

The meta-function mt is defined as follows : mt(i)="lnTime", mt(o)="OutTime" and

mt(E)="OutTime". The expression mt(i)(s,j) is equivalent to InTime(s,j).

The truth value of a real-time temporal formula is evaluated with regard to an interval of

states. In the following definition, we will show how to compute intervals.
I

Notation 7.2 (lnterval interpretation function).

The interpretation of the scope of a real-time formula is a set of states. Let l;m denote the

interval interpretationfunction. The arguments of thisfunction are:

1. for p for interval in the futur or in the past.

2. a sequence and astate position, ex (S,i), where the formulais evaluated.
3. i!:;~~i) are the subscribe and the exposant of the real-time temporal operator to

evaluate.

Intervals in the future :

I,n
1
(f ,(S,i),/~;~2

)) = {(S, j) E (S ,i .. +00):mt(82)(S, j)- mt(81)(S,i) = t}
I,n

1
(f ,(S,i),/~;,î2)) = {(S, j) E (S ,i .. +00):mt(82)(S, j)- mt(81)(S,i) < t}

I,nr(f ,(S,i),/~;.j2
)) = {(S, j) E (S ,i .. +00):mt(82)(S, j)- mt(81)(S,i) ~ t}

l1n
1
(f ,(S,i),~~;,j2

)) = {(S, j) E (S ,i .. +00):mt(82)(S, j)- mt(81)(S,i) > t}
I,n

1
(f ,(S,i),/~;,j2

)) = {(S, j) E (S,i .. +00):mt(82)(S,j)- mt(81)(S,i) ~ t}

Intervals in the past :

Page 7.22

•

•

•

•

•

•

.1

•

•

•

•

•

•

•

•

•

Chapter 7: The PNRTL language

Ilnt(P,(S,i),~~;~2
)) = {(s ,j) E (S,1 . .i)'.:mt(ôi)(s,·i)- mt(82)(s.,'j)< t}

I1n1
(p,(S,i),~~;~2

)) = {(S, j) e (S ,1 .. i):mt(ôi)(S,i)- mt(B~)(S, j)::; t}
I1n1(p,(S, i),~~;~2

)) = {(S, j) e (S ,1 . .i):mt(ôi)(S, i)- mt(B;)(S, j) > t}
11nr(p,(S ,i),~~;~2

)) = {(S, j) e (S ,1..i):mt(ôi)(S, i)- mt(82)(S, j) ~ t}

Semantics of the operators :

[~!,(-ô)Js.;) is true iff ::l(S,j) E I(J,(S,i),~J:[-üJs.j; is true.

[o;n,(-ô)Js.;) is true iff V(S,j) e I(J ,(S,i),~J:[-üJs.j) is true .

[(<1>)u;n, (-ô ns.i) is true ift :

::l(S, j) e 11jf ,(S,i),~J:[-ô ls.j) is true and

\/k: i::; k < j:[<1> t.k) is true .

[~!1(-ô) ls.j) is true iff ::i(s, j-) e I(p,(S ,i),~J:[-ô ls.j) is true.

[n;j-ü)Js.;) is true iff V(S,j) e I(p,(S,i),_~J:[-üls.j) is true .

[(<1>)s;nt('Ô) ls.i) is true iff:

::i(s, j) E Ilnt(p,(S ,i),~J:[-ô ls;j) is true and

\/k: j < k ::; i:[<1> ls.k) is true .

7.5 Many-sorted structures

The use of many-sorted structures is often very benefical. It allows to identify categories of

objects and to structure a specification in declarations which identify objects and assertions

which express properties [DTL91].

• If we distinguish for a structure different sorts of individuals, the signature has to assign as

indices not just numbers but strings of sort symbols to predicates and strings paired with a

single sort symbol to operators indicating the distribution of domains. If A,B, C,D are sort
symbols, then p(A,B,DJ denotes a relation in (A xB)xD and pA,c:BJ denotes a function from

• A xC intoB.

•

•

In PNRTL we provide a set of predefined data types : Boolean, Integer, Real, Char and
String, these types are interpreted over fixed domains. We also give the possibility to the user

4 The chosen interpretation imposes that the state where 'Ô is true belongs to the specified interval.

Page 7.23

Chapter 7: The PNRTL language

to construct new data types. Structured data types are built by the analyst using the following

constructors5
:

• a Cartesian product groups in a same structure values of possible different types, the

constructor of this type is : CP.

• A Set groups dinstinct values of a same type, the constructor is : SET.

• A Bag is a set where the multiple membership is allowed, the constructor for the bag

is: BAG.

• A Sequence is a bag where elements are ranked, constructor: SEQ.

• An Union of several types include data of all types member of the union, constructor

: UNION.

• An Enumeration is a static structure enumarating some particular value, constructor

:ENUM.

A set,of predefined operators to work on the structures which can be constructed, is also

provided to the analyst. For instance, the operators Card applied to a set retums its

cardinality. The complete list of operators is given in the [DDDP94b].

Let now define the syntax of declarations and types constructions.

(Type_ Construction)::=

Sort (Constructed_ Type_ Name) : (Type_ Name)

I' CP[' (Type_Name)(,(Type_Name))* ']'

,, SET[' (Type_Name)']'

I' SEQ['(Type_Name)']'

I' BAG[î(Type_Name)']'

,, U~IoN[' (Type_ Name)(, (Type_ Name))* ']'

I' ENUM[' (Constant_ Symbol)(, (Constant_ Symbol)) * ']'

(Type_ Name): : = (Predefined _Type_ Naine) 1 (Constructed _Type_ Name)

(Predefined_Type_Name)::= Real I Boolean I Integer I Char I String

(Constant_ Declaration)

: : = Const (Constant)(, (Constant))*:(Type_ Name)(x(Type_ Name))*

5 These constructors are taken from the formal language ALBERT.

Page 7.24

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 7 : The PNRTL language

. (Static _ Predicate _ Decl)

: : = St_ Pred (Predicate)(;'(Predicate))*: (Type_ Name)(x(Type _ Name))*

(Dynamic _ Predicate _ Decl)

: : = Dyn _ Pred (Predicate)(, (Predicate))*: (Type_ Name)(x(Type_ Name))*

(Transitiim_Declaration)
6

:: =Trans(Transition)(, (Transition))*: (Type _Name)(x(Type _Name))*

(Function _ Declaration)

: : = Funct(Function)(, (Function))*: (Type_ Name)(x(Type_ Name))*

(Variable_ declaration)

: := Var(Variable)(,(Variable))* :(Type_Name)(x(Type_Name))*

The introduction of types in PNRTL imposes some additional constraints which must be

fulfilled by a well-formed specification. Moreover the semantics of the language is affected by

the introduction of types .

Definition 7.27 (Type well-formed specification)

A specification is said type well-formed if it respects the following rules :

• The constructions of types respect the BNF rule given above.

• Ali variables, constants7
, predicates, functions and transitions which appear in a

specification must be declared. ·
• For al! function applications f (ti,t2 , ••• ,tJ for which the function declaration is

Funct f·'t 1X't2X .. X'tn➔'t, the term ti must be declared of type 't;, the result of the

function fis of type 't.
• For all predicate application P (t 1,t 2 , ••• ,t n) whose predicate declaration is St_Pred,

Dyn_Pred P:'t1X't2X .. X'tn, the term ti must be declared of type 't;.

• For all equalities t; = tj, the type of ti must be equal to the type of tj .

6 This declaration schema allows to declare the types of the variables appearing in the index of the transition.
7 Sorne constants don't need to be declared, it is the case for the constant representing elements of the
predefined types.

Page 7.25

Chapter 7: The PNRTL la,nguage

The semantic of the language is also affected · by the introduction of types : the types

introduced must be interpreted and the semantics of the quantifier is modified. The

interpretation of the predefined types is done on fixed domain :

• /J('Integer')8 is the set of integer nu~bers.

• /J('Real') is the set of real numbers.
• /J('Boolean') is the set {True ,False} of boolean values. ,

• JJ'Ch ') . th t {' ' 'b' 'A' 'B' ' ' '·' } f h t J\ ar 1s e se a , , ... , , , ... , , , , , .. o c arac ers.

• /J('String') is the set of words which can be constructed by concatenation of

elements of the set of characters.

The semantics of the quantified assertions is modified in the following way :
• [\fxP]s is true iff for all values d E Type(x):[P:{x ~ d}Js is true.

• [::lxP]s is true iff there exists a value d E Type(x):[P:{x ~ d}Js is true.

The fonction Type retums the set of values of the same type as that of the term given as

argument.

7.6. A specification in separate sub-nets

In the previous specification examples, a single net was used to represent the dynamic part

of the modeled system. This was possible because the modeled systems were very simple. But

if one specified a complex system with a single net, the result could be unreadable. So to allow

more readable specifications, we allow the analyst to split his specification in separate sub-nets.

This possibility is only a graphical and syntaxical facility, the semantics of a specification is

evaluated in aggregating sub-nets specifications.

In the sequel of this section, we will introduce the new concepts with an illustrative example.

Example 7.2 (An other producer - consumer system)

Let consider a system made_ of two sets of components. The first set contains 4 producer

machines and the second 4 consumer machines. A consumer machine may send a request for

a piece of 2 différent types to the set of producer machines. Each of those requests must be

served within 5 seconds and in order of arrivai (FIFO). As supplementary constraints, we

impose that a cçmsumer machine may not order a piece if it waits for a previous one or if it
works on a piece, a piece ready to be' consumed must be handled within 1 second, the final

work on this piece lasts exactly 1 second.

8 h('Type_Name) denotes the type interpretation fonction applied to 'Type_Name'. ·

Pag~ 7.26

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 7: The PNRTL language

An intuitive way to separate the net into two sub-nets in this case is to model the set of

producer machines in one net and the set of consumer machines in one other. But if we model

this problem into two separate sub-nets, we must find communication means to allow an

interaction between the two sets of compc_ments. The communication can be realized by shared

places, i.e., places which belong to both sub-nets or shared transitions .

A place which belongs to many separate sub-nets is annotated by the same dynamic

predicate in each sub-net. Futhermore, for reasons of readability, it will be represented by a

grayed circle .

p

Figure 7.13 (A shared place representation)

Likewise a transition that belongs to many separate sub-nets is annotated by the same name,

selector and have the same set of arcs .

Let us specify our illustrative example :

Sm:t ProdMachine=ENUM[pl,p2,p3,p4]
% Identifier of the 4 produçer machines

ConsMachine=ENUM[c 1,c2,c3,c4]
% Identifier of the 4 consumer machines

TypeintPiece=ENUM[tl ,t2]
% The two types of intermediary pieces

TypeProdPiece=ENUM[ppl,pp2]
% The two types of final pieces

St Pred CanProduce : ProdMachine X TypePiece
% The static predicate CanProduce(m,t) states that the machines

m can produce a piece of type p .

Dyo Pred Free_To_Demand: ConsMachine
Free_To_Produce : ProdMachine
Piece_Asked, Piece_To_Consume: ConsMachine X TypeintPiece X Integer
Produced_Piece : TypeProdPiece X Integer

Trans Demand : ConsMachine X TypeintPiece X Integer
· Produce : ProdMachine X ConsMachine X TypeintPiece X Integer

Consume : ConsMachine X TypeintPiece X Integer

Function Manuf : TypeintPiece ➔ TypeProdPiece

Page 7.27

Ym: md, md 1 : ConsMachine
m : ProdMachine
t, t1 : TypelntPiece
n, n1 : Integer
tf : TypeProdPiece

Static Part

(al) Vm: CanProduce(m,tl)

Chapter 7: The PNRTL language

% All producer machines can produce the type t1 piece.
(a2) CanProduce(pl,t2) A CanProduce(p2,t2)

A -, CanProduce(p3,t2) A -, CanProduce(p4,t2)
% Only the producer machines p 1 and p2 can produce the

intermediary piece of type t2
(a3) Manuf(tl)=ppl A Manuf(t2)=pp2

% Definition of the Manuf function

Dynamic part

Piece_ To_Consume Consume(md,t,n) Produced_Piece

<md,t,n> <Manuf(f),n>

•

•

•

•

•

Demanct{Hrcf.tn)
<md,t,n> •

Figure 7.14 (The consumer machines)

(a4) Begin(Demand,(md,t,n))➔X(G(-,BeginEnd(Demand,(md,t,n))))
% Uniqueness of a demand

(a5) Piece_To_Consume(md,t,n) ➔ Fj:~~(Begin(Consume,(md,t,n))
% A piece to consume does not stay more than one second before being
handled

(a6) Begin(Consume,(md,t,n)) ➔ Kisec(End(Consume,(md,t,n))
% The action Consume takes exactly 1 second

(a7) Init ➔ V md : Free_To_Demand(md)
Init ➔ V tf,n: -,Produced_Piece(tf,n)
Init ➔ V md,t,n : -,Piece_To_Consume(md,t,n)
Init ➔ V md,t,n: -,Piece_Asked(md,t,n)

% Initializations

· Page 7.28

•

•

•

•

1

1

i

•

•

•

•

•

•

•

•

•

•

•

Chapter 7: The PNRTL language

Piece_ To_Consume <md,t,n-.e
roduce(m,md,t,n)

Selector : CanProduce(m,t) ---
<md,t,n>

Piece_Asked

Free_ To_Produce • Il
Figure 7 .15 (The producer machines)

(a8) Piece_Asked(md,t,n) A
F(---,Piece_Asked(mdl ,tl ,nl)AX(Piece_Asked(mdl ,tl ,nl)))

➔ F (Begin(Produce,(md,t,n)) A F(Begin(Produce,(mdl,tl,nl)))
%FIFO

(a9) Piece_Asked(md,t,n) ➔ Fji~c (Piece_To_Consume(md,t,n))
% An required piece in produced within 5 seconds

(alO) Init➔ V m: Free_To_Produce(m)
% Initially, all machines are free to produce

Page 7.29

•

•

•

•

•

•

•

•

•

•

•

•

---~--- -

•

•

•

•

•

•

•

•

•

•

•

•

PARTTHREE

APPLICATION AND TOOLS

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 8

A case study in PNRTL

8.1 Description of the case

Three libraries decide to cooperate in order to offer their customers a maximum choice of

readings. They intend to build a net which will allow someone to borrow or consult as well

local books as books belonging to other libraries. The transfer of books between the different

libraries is ensured by a van. Here are the rules that the borrowers and the libraries undertake

to respect:

• A book belongs to a single library, but can also be ordered by people of other libraries .

• People are only allowed to go in the library in which they are registered.

• When an ordered book is arrived, it r~mains 48 hours in (for the one who has ordered the

book to corne and take it). Over this period, it is resent to the owner-library. If the user

who has ordered the book does not corne, he receives a fine (this behavior is clearly

subideal).

• . A library can send a book to another library by the intermediary of the van system. The van ·

service en sures that a book is transfered within 1 day.

• People can borrow maximum 3 books at the same time except for the students who are

entitled to keep 4 readings.

• The duration of a borrowihg is 30 days for a book of a local library and 15 days for a book

of another library .

Page 8.1

Chapter 8 : Case Study in PNRTL

• Every reading that is retumed late gives rise to a fine (retuming a book too late is clearly a

subideal behavior).

• A fine must be paid before any new borrowing and within 30 days (from the moment it

was administered).

• Damaging a book is a very subideal behavior. l.Jnfortunately, a control can not be made at

the library and thus damaging a book does not give rise to a fine.

• When an user makes a demand, the library must reply to its demand within 2 minutes.

• When a library li receives a demand for a book from another library h, the library h must

reply within 2 seconds.

In the following we present the specification of the case. The specification is commented.

8.2 Specification of the case

We have divided the specification of the system in three main components : the users, the

libraries and the van system. The dynamic behavior of the users and the van system is

presented by a single net. The behavior of the libraries is too complex to be presented in a

single net. So we have divided the specification of their behavior in four subnets which

represent 'macro' -actions of a library. These four views are :

Sort

• Library-User-Demand : this subnet specifies how a library must handel an user's

demand for a book.

• Library-User-Retum: this view shows what a library must do when an user retum a

book.

• Library-Demand-Inter-Libraries : this subnet specifies how a library must reply to a

demand of another library for a book.

• Library-Van : this subnet defines the behavior of a library when it receives books of

the van system.

TLib = ENUM[Library _l, Library _2, Library _3]
% There are three libraries in the system.

TBook = CP[Id:Integer, Title:String, Author:String, Owner:TLib]
% A book is identified by Id, has a Title, an Author and an Owner library.

TUser = CP[Id:Integer, Naine:String, Lib:TLib, Student:Boolean]
% An user is identified by Id, has a Name, is member of a library Lib and is a student
or not. '

TReply = ENUM[OK,KO]
% OK is a positive reply white KO is a negative one.

TDate = Real;
% A date is represented by a real number.

Page 8.2

•

•

•

•

•

•

•

•

••

•

•

•

•

• Dyn_Pred

•

•

•

•

•

•

•

•

•

•

Chapter 8 : Case Study in PNRTL

Returned_Book: TBook x TLib x TUser x Iri:t~ger x TDate
% Returned_Book(b,l,u,n,d) means that the book b has been returned to the library I
by the user u, d is the date b was borrowed and n serves in an identification
mechanism

Book_To_Take: TBook x TLib x TUser x Integer x TDate
% Book_To_Take(b,l,u,n,d) means t/:iat the user u can take the book b in the library
I, d represents the moment from which the book is available, n serves in an
identification mechanism.

Demand: TBook x TLib x TUser x Integer
% Demand(b,l,u,n) means that the user u wants to borrow the book b, the demand is
issued to the library I, the 2-tuple (u,n) is an identifier for a user's demand.

Reply: TReply x TBook x TLib x TUser x Integer
% Reply(r,b,l,u,n) means that the library I has send the reply r (OK or KO) to the
demand (u,n) of an user ufora book b.

Fine: Integer x TUser x Integer
% Fine(m,u,n) means that the user u must paya fine of amount m, n serves in an
identification mecanism.

Borrowed_Book : TBook x TLib x TUser x Integer x TDate
% Borrowed_Book(b,l,u,n,d) means that the book bis borrowed by user u since d and
has been borrowed at the library I, n serves in an identifier mechanism .

Credit: TUserx Integer
% Credit(u,n) means that the credit of user u is n.

Demand_Cr_OK : TBook x TLib x TUser x Integer
% Demand(b,l,u,n) contains demands (u,n) whose user u has a sujficient credit

Demand_Int_Lib: TLib x TBook x TLib x TUser x Integer
% Demand_lnt_Lib(l2,b,li,u,n) means that the library 12 has received a demandfor
a book b by the intermediary of the library li for an user u, n serves in an identifier
mechanism.

Reply_Int_Lib: TLib x TReply x TBook x TLib x TUser x Integer
% Reply_lnt_Lib(l2,r,b,li,u,n) means that the library 12 has sent a reply r to the
library li for a book b asked by user u .

Book_In_Shelf: TBook x TLib
% Book_ln_Shelf(b,I) means that the book b is in the shelves of the library l.

Book_To_Put_Away: TBook x TLib
· %Book_To_Put_Away(b,I) means that the book b must be put away in the shelves of
the library l.

Book_To_Send : TB09k x TLib x TLib x TUser x Integer
% Book_To_Exp(b,li,12,u,n). If owner(b)=l2 then it means that the library li wants
to return the book b to its library 12. If owner(b):f:.12 then it means that the library li
send the book b to the library [2 because the user u has asked to borrow the book b,
n serves in an identifier mechanism .

Book_Arrived: TBook x TLib x TUser x Integer
% Book_Arrived(b,l,u,n) means that a book b has been brought in library l by the
van. If owner(b)=I then the book can be put away in the shelf. If owner(b):f:.l then the
book has been ordered by the user u (demand identified by (u,n)) .

Page 8.3

Trans

Chapter 8 : Case Study in PNRTL

% Actions of the USERS

Retum, Take, Damage: TBook x TLib x TUser x Integer x TDate
% Return : an user returns a book. Take : an user takes a book that he has
demanded. Damage is a sub-ideal behavior.

Ask: TBook x TLib X TUser x Integer
% Ask(b,l,u,n) means that an user u makes a demandfor the borrowing of a book bat
its library l. (u,n) identifies an user's demand.

Read: TReply x TBook x TLib x TUser x Integer
% Read(r,b,l,u,n) : means that the user u reads the reply r of the library l for the
book b, the replyfollows the demand (u,n).

Pay _Fine : Integer x TUser x Integer
% Pay_Fine(a,u,n) means that the user u pays a fine of amount a, n serves in an
identification mechanism.

% Actions of the LIBRARIES

VerifCl : TBook x TLib X TUser x Integer X Integer
% Verif.Cl(b,l,u,n,c) makesfollow a demand of an user u (which has a credit c>O)for
a book b.

VerifC2: TReply x TBook x TLib x TUser X Integer x Integer
% VerifC2(r,b,l,u,n,c) sends a negative reply (KO) to an user u which wants to
borrow a book b but has no more credit (c=O).

Replyl: TReply x TBook x TLib x TUser x Integer X Integer
% Replyl(r,b,l,u,n,d) :- if the book b asked by user u is present in the shelves of
library l then reply r=OK and the library l transfers the book from the shelf to the
user.

Reply2 : TReply x TBook x TLib x TUser x Integer X Integer
% Reply2(r,b,l,u,n) : if an asked book in not in the shelves reply r=KO to the user
which wants the book.

Decrease_Cr: TUser x Integer
% Decreases the credit of an user when the library gives him a book.

Ask_Int_Lib: TLib x TBook x TLib x,TUser x Integer
% Transfers a request to another library.

Give_Fine : Integer x TUser x Integer
% Give_Fine(a,u,n) : Gives a fine of amount a to the user u, n serves as identifier
mechanism.

Take_RB 1 : TBook x TLib x TLib x TUser x Integer x Integer x TDate

x Integer
% Takes a returned book of another library and put it in the books to send.

Take_RB2: TBook x TLib x TUser x Integer x Integer x TDate x Integer
% Takes a book of the library returned by an user.

Put_Away_Too_Late: TBook x TLib x TLib x TUser x Integer x Integer

x TDate
% Puts in the books to resend an ordered book whose user is not corne over 48 hours.

Put_Away _Shelf : TBook x TLib
% Put a book of the library lin its shelf.

Reply_Intl: TReply x TLib X TBook x TLib x TUser x Integer
% Positive reply (OK) to a demand of another library and sending the asked book
via the Book_To_Exp place.

Page 8.4

•

•

•

•

•

•

•

•

•

•

1

1

•

•

•

•

•

•

•

,.
!

•

•

Chapter 8 : Case Study in PNRTL

Reply_Intl: TReply x TLib X TBook X TLib x TUser x Integer
% Negative reply (KO) to the demand of another library.

Sortl, Sort2 : TBook x TLib x TUser x Integer
% Sorting of the books arrived by the van.

%Action of the VAN

Transfer: TLib x TBook X-TLib x TUser x Integer
% Transfer(ll,b,12,u,n): transfer of the book b from library Il to 12.

Static part

Var bl,b2: TBook

ul,u2: TUser

(s1) -,:3bl,b2 (blt=b2 A Id(bl)=Id(b2))
% Id is an identifier for a book

(s2) -,:3ul,u2 (ult:u2 A Id(ul)=Id(u2))

Dynamic part

Var b: TBook;

u: TUser;

1: TLib

n: Integer

d: TDate

% Id is an identifier for an user

Init ➔ V b (In_Shelf(b,owner(b))

% Initializations

% At the initialization, ail books are in the shelves of their library.

Init ➔ Vu (Student(u) ➔ Credit (u,4))

Init ➔ Vu (-,Student(u) ➔ Credit (u,3)).
% At the initialization, the credit of an user which is student is 4, and 3 for a non
student.

Init ➔ V(b,1,u,n,d)(-,Retumed_Book(b,1,u,n,d)) A V(b,1,u,n,d)(-,Book_To_Take(b,l,u,n,d))

A ... A V(b,l,u,n) (-,Book_Arrived(b,1,u,n))

Var b,bl : TBook

1,11: TLib

u: TUser

% At the initialization, apart Credit and In_Shelf, the extention of ail dynamic
predicates is empty.

% User behavior

. n,n 1,n2,a : Integer

Page 8.5

Chapter 8: Case Study in PNRTL

d: TDate

Demand Reply

Retumed_Book Book_To_Take •

• <b,1,",~ • IR~
Fine

• <b,l,u,n,d>

Return

d> '•"•" d> As~llb(")

•~T~

<b,l,u,n,d>

<b,l,u,n,d>

DW:1~,n,d>

Dama~l,u,n,d>

% Supplementary constraints

(ul) BeginEnd(Ask,(b,l,u,n)) ➔ X(G(--,BeginEnd(Ask,(bl,11,u,n))))
% the 2-tuple (u,n) is identifier for a demand of an user.

(u2) Book_To_Take(b,l,u,n,d) A Owner(b)=l

➔ F=i-:2 (BeginEnd(Take_Book, (b,1,u,n,d))
% When an user may borrow (his request has been accepted) a book of its library, he
takes it immediately.

(u3) Reply(r,b,l,u,n) ➔ F=~·:.:C (BeginEnd(Read, (r,b,l,u,n)) -
% An user reads immediately a reply sent to him by its library.

(u4) Begin(Ask,(b,l,u,n)) ➔ X(--,BeginEnd(Ask,(bl,11,u,nl))U(Reply(r,b,l,u,n)))
% An user cannot do a demand if the previous one has not yet been replied.

(u5) Fine(a,u,n) ➔ F~~tJ. (BeginEnd(Pay_Fine,(a,u,n)))
% A fine must always be paid within 30 days (strict obligation).

(u6) Fine(a,u,nl) ➔ --,BeginEnd(Ask,(b,l,u,n2))
% An user which must paya fine cannot demand to borrow a new book.

% General comments. The grayed places represent communications means between
an user and its library. The transitions Pay_Fine and Damage have a positive
deontic weight: 1 and JO. lnfact, Pay_Fine is strict/y obligatedfor an user that has
received a fine. Thus preferred eiecutions of an user are executions where he does
not receive fines : executions where he does not retum a book too Late and where he
always cornes take an ordered book (these two actions are thus modeled as subideal).

Page 8.6

•

•

•

•

•

•

•

•

•

•

•

•

•

•

i.
•

•

•

•

•

•

Var b: TBook

1,12: TLib

u: TUser

n,c : Integer

d: TDate

Chapter 8 : Case Study in PNRTL

% Library behavior

% View: Library-User-Demand

Demand

Demand_Cr_O

<OK,b,l,u,n>

<b,l,u,n,d>

Book_To_Take

<r,b,l,u,n>

Owner(b)=I ===-:_===Make_Follow_Resp

Reply1

<b,l,u,n>

,---L, I2=0wner(b)
~ "not(l=Owner(b))

<I2,r,b,l,u,n>

<12,b,I,~

Demand_lnt_Lib
eply_lnt_Lib

% Supplementary constraints

(10) Begin(Replyl ,(r,l,b,u,n,d)) v BeginEnd(Make_Follow _Reply ,(11,0K,b,12,u,n))

~ X(BeginEnd(Decrease_ Cr,(u,c))
% The credit of an user is decreased when he receives a positive reply to a demand
of borrowing and only in this situation.

(Il) Demand(b,l,u,n) A Y(---,Demand(b,l,u,n)) ➔ F!,~·2n (Reply(r,b,1,u,n))
% A library must always reply to a demand of one of its us ers within 2 minutes .

% General comments. To simplify the subnet we have added the transition
Decrease_Cr. In fact, this transition replaces arcs from transition Reply/ and a
subdivision of Make_Follow_Reply in two transitions with one (for a positive reply)
linked to the place credit. The firing of this transition is defined by the constraint
(LO) .

Page 8.7

Var b: TBook

1,11,12 : TLib

u: TUser

n,c : Integer

d: TDate

Chapter 8 : Case Study in PNRTL

The two transitions Verifl and Vèrij2 are connected to place Credit by an arc to type
p (see chapter7 for a formai definition), this also simplifies the net. ·
Constraint (Il) is a typical declarative constraint that is inexpressible in usual Petri
net based languages.

% View: Library-User-Return

Retumed_Book
Book_To_Take

<b,l,u,n,d>

<b,l,u,n,d>
<b,l,u,n,d>

not(owner(b))=;....I _ _,___T~ake_RB1

Put_Away _ Too_Late

<b,l,Owner(b),u,n>
Give_Fine Owner(b)=I -~-~

Take_RB2

<b,I>

Book_To_P<rt_Away 6 <U,C>

<b,I> .--4-PUI_Away_Shelf

<b,I> 6 Boof<.Jo_Shelf

Credit

(12) P'?:~s~! (Book_To_Take(b,1,u,n,d)) A Book_To_Take(b,l,u,n,d)

Book_ To_Send

% Supplementary constraints

H BeginEnd(Put_Away_Too_Late,(b,1,u,n,d))
% Over 48 hours, an ordered book when user is not came, is returned to its own
library.

(13) BeginEnd(Put_Away _ Too_Late,(b,l,u,n,d)) ➔ F(BeginEnd(Give_Fine,(100,u,n)))
% If an user does not came and take the book he has ordered, the library
administrates him a fine of 100.

Page 8.8

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 8 : Case Study in PNRTL

(14) BeginEnd(Take_RBl,(b,1,u,n,d)) A OutTime = x A (x-d > 15 d)

➔ F =Osec(BeginEnd(Give_Fine,(200,u,n))
% If a borrower returns a book of another library too late (over I 5 days), the library
immediately administrates him a fine of 200.

(15) BeginEnd(Take_RB2,(b,l,u,n,d)) A OutTime = x A (x-d > 30 d)

➔ F=osec(BeginEnd(Give_Fine,(200,u,n))
% If a borrower retums a book of the library too late (over 30 days), the library
immediately gives him a fine of 200.

(16) Begin(Put_Away _Shelf 0 ,(b,l)) ➔ F 0m;,i(End(Put_Away _Shelf n,(b,l))
% The action of putting away a book in its shelf lasts at most 5 minutes.

(17) Y(-,Book_To_Put_Away,(b,l)) A Book_To_Put_Away,(b,1)

➔ F}!:) (Begin(Put_Away _Shelf,(b,l))
% A book stays at most one day before being put away.

(18) Y(-,Returned_Book(b,l,u,n,d)) A Returned_Book(b,1,u,n,d)

➔ Fs:~:Jn (BeginEnd(Take_RBl,(b,l,u,n,d)) v BeginEnd(Take_RB2,(b,l,u,n,d)))
% A returned book is treated within I minute .

(19) BeginEnd(Give_Fine(a,u,n))

➔ P ((BeginEnd(Take_RBl,(b,11,12,u,n,d)) A (OutTime-d>15d))

v (BeginEnd(Take_RB2,(b,ll,12,u,n,d)) A (OutTime-d>30d))

v (BeginEnd(Put_Away_Too_Late,(b,ll,12,u,n,d))))

Var b: TBook

11,12: TLib

u: TUser

n: Integer

r: TReply

% If a library gives a fine to an user u then u has returned a book too late or has not
corne to take the book he had ordered.

% General comments. In this subnet, we have taken the opposite approach for the
increasing of the user credit to compare with the approach taken for the decreasing
of the credit (previous subnet). This underlines a particular feature of our language:
a lot of constraints can either be expressed by logic fonnulae or by graphical
constructions.

% View : Library-Demand-Inter-library

Page 8.9

Chapter 8 : Case Study in PNRTL

Demand_lnt_Lib

<I1,b,I2,u,n>
<I1,b,12,u,n>

<b,I1>
Reply_lnl1

-~~~ Reply_lnl2

Book_ To_Send
<11, ,U,n>

Book_ln_Shelf

<K0,I1,b,I2,u,n>
<OK,I1,b,I2, u,n>

Reply _1 nl_Lib

% Supplementary constraints

(110) Demand_lnt_Lib(l l ,b,12,u,n) A Y(-,Demand_Int_Lib(l l ,b,12,u,n))

Var b: TBook

1: TLib

u: TUser

n: Integer

d: TDate

~ F~~·~c (Reply_lnt_Lib(r,11,b,12,u,n))
% An inter-library demand is always replied within two seconds (reponse time).

% General comments. · The use of the arc of type p (see chapter 7 for a formai

definition) is very benefical. Without this type of arc we should add a complementary
place to place Book_ln_Shelf.

% View : Library - Van

Page 8.10

•

•

•

•

•

•

•

•

•

•

•

·•

•

•

•

•

•

•

•

•

•

•

•

•

Book_To_Take

~ <b,l,u,n,dl> Sort2

not(Owner(b }=I}

<b,l,u,n>

Owner(b)=I

vl,u,n>

CY.,nrSort,
Book_ To_Put_Away

(111) Book_Arrived(b,l,u,n) A Y(---,Book_Arrived(b,l,u,n))

Chapter 8 : Case Study in PNRTL

Book_Arrived

% Supplementary constraints

➔ F~~:) (BeginEnd(Sort 1,(b,l,u,n)) v BeginEnd(Sort2,(b,1,u,n,d)))
% The books brought by the van are sorted within an hour.

(112) BeginEnd(Sort2,(b,l,u,n,d)) ➔ (d=OutTime)

% Van Behavior

% The borrowing time of an ordered book is the time when it becomes available for
the user .

Book_Arrived

<b,I2,u,n>

Transfert

<I1,b,I2,u,n>

Book_To_Send

Page 8.11

Chapter 8 : Case Study in PNRTL

% Supplementary constraints

(vl) Book_To_Exp(ll,b,12,u,n) A Y(-,Book_To_Exp(ll,b,12,u,n))

➔ F~~i(Book_Arrived(b,12,u,n))
% A book is always transfered within a day.

8.3 Conclusion

•

•

•

• This case study has demonstrated the ability of .the PNRTL language for specifying composite

concurrent systems. The main advantage of the language is the possibility given to the analyst

to specify operational constraints in an operational style (net) and declarative constraints in a

declarative style (logical formulae). The utility of the different types of arcs and of the real-time •

temporal operators has been underlined throughout the comments in the specification. Strict

deontic aspects can easily be expressed by logic formulae and sub-ideal behaviors by deontic

weights.

•

•

•

•

•
Page 8.12

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 9

Desired executions of a PNTL specification

9. 1 Introduction

In the previous chapters, we explained that the modeling of complex constraints with Petri

nets often results in a too operational specification making the net too complicated and thus

hardly readable. Therefore, we proposed to attach to each Petri net a set of logic temporal

formulae expressing such constraints. The semantics of those formulae was given as the

reduction of the set of possible executions and of the possible markings of the Petri net. In

other words, among the markings belongihg to the reachability set of a Petri net, only some of

them are accepted. But also the set of execution paths must be reduced into a subset which
\

verify all the logic formulae which accompany the net .

Here, we present some techniques to reduce the set (finite or not) of possible executions

paths into the set of the 'desired executions paths (these are the ones respecting ail the logic ·

formulae) for a specification in PNTL. Tho se techniques are based on the finite automata

[TRAK&BARZ73] and the formal languag(, [SALO MAA 73] theory. Then, we expose other

techniques for the testing of temporal properties on sets of infinite executions paths. And

finally, we explain how we can extend the linear temporal logic by means of automata .

. Chapter 9 : desired executions of a PNTL specification

9.2 lnfinite executions on bounded Petri nets

In the sequel, we always assume that the Petri nets studied are bounded - this hypothesis

is necessary to use the automata theory. This means that the set of reachable markings is not

infinite (but the set of possible firing sequences may be infinite). Remember that an execution

of a Petri net is viewed as an infinite sequence of states. For Petri nets with terminal

marking(s), we introduced a nul/ transition that can and must oitly fire in terminal states and

whose firing results in the same marking. For instance, two possible infinite sequences of the

net in figure 9.1 are : s1=t1t1ti ... t1 ... and s2=t1t1 ... t1hht3 ... h The boundèdness of the net

guarantees that the mapping of a Petri net into an automaton is possible.

Initial marking = (1 1 0)

Figure 9.1 (a bounded Petri net)

9.3 Overview of the automata theory

9.3.1 Finite automata on finite words

A finite automaton [MAND&GHEZ87, EILENBERG74] is a machine that can reach a

limited number of states, and which manipulates symbols received as input. Every handling of

symbol affects the state of the auto maton.

Definition 9.1 (Finite automaton)
Afinite automaton is a 5-tuple A= (I,,Q,8,I,F)

where I, is an alphabet (that is afinite set of symbols).

Q is a fini te set of states.
ô: Q x I, ➔ Q* is the next state function (giving, for each state and each symbol, the

possible resulting states of the automaton)1.

1 If the automaton is deterministic, the next-state fonction is : ô: Q XI, ➔ Q

Page 9.2

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 9 : desired exécutions of a PNTL speci.fication

1 is afinite set of initial statès (I c Q).

Fis afinite set of terminal states (F c Q) .

An automaton A defines a set of words that are accepted by the automaton. This set of

words is defined from the notion of execution of an automaton on a word .

Definition 9.2 (Execution of an automaton on a finite word)

An execution2 of an automaton A on a finite word w = ao a1 . . . an -1 is a finite sequence of

states cr(w) = so s1 ... Sn such as:

- 'v'i e [O,n]:si e Q

- SO E /

- 'v'i e [1,n]:s; e 8(s; - 1,a; -1)

Definition 9.3 (Admitted execution on a finite word)

An execution on a finite word w is admitted if the last state resulting form it, belongs to the

setF:

cr(w) = Sa Si ... Sn is admitted <=> Sn E F

Definition 9.4 (Accepted word)

A word w is accepted if there exists on this word, an execution which is admitted:

w is accepted <=> 3cr e Q*: cr(w) is admitted

Definition 9.5 (Language of an automaton)

The language L(A) of an automaton A is the set of words accepted by A:

L(A) = {w e 1:*:w is accepted}

9.3.2 Finite automata on infinite words

The Büchi automata [THAYSE89, DA VIS&WEYUKER83] - or finite automata on

infinite words - are manipulating infinite sequences of symbols. They allow us to define in a

formal way a set of infinite words. As the executions are infinite, terminal states don't exist

anymore. They are replaced by accepting3 states, that is to say obligated states that must

appear infinitely often in any execution of the automaton.

2 It is not a function, except if the automaton is deterministic.
3 The word 'accepting' has been preferred to the one of 'final', although this last word can also be found in the
literature.

Page 9.3

Chapter 9 : desired executions of a PNTL specification

Definition 9.6 (Büchi automaton)
A Büchi automaton is a 5-tuple A = (1:, Q, 8, I, F)

where 1: is an alphabet.

Q is a fini te set of states.

8: Q x 1: ➔ Q* is the next state function.

I is afinite set of initial states (I c Q).

Fis afinite set of accepting states (F c Q).

Definition 9. 7 (Execution of an automaton on an infinite word)

An execution of an automaton A on an infinite word w = ao a1 a2 . . . is an infini te sequence of

states cr(w) = so s1 s2 ... such as:

- Vi~O:s;eQ

- So E /

- Vi>O:s;eô(s;-1,Œ-1)

Since an execution is infinite (thus without terminal state), we need to modify the notion of

admitted execution :

Definition 9.8 (Admitted execution on an infinite word)

An execution on an infini te word w is admitted if it contains an infinite number of occurrences

of the same accepting state:

cr(w) = sa s1 s2 ... is admitted <=> :lq1 e F,:l infinity of i e N:s; = q1

Notations and example:

0 ln itial state
q

e Accepting state
q

~ Initial and accepting state
q

p Other state

Figure 9.2 (notations)

a d

b b,c

qO q1 q2

Figure 9.3 (example of a Büchi automaton)

Page 9.4

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1

1

1

1

•

•

Chapter 9 : desired executions of a PNTL specification

Examples of words accepted by the automaton in figure 9. 3 are :

wl = aaabbddddd ...

w2 = bbcddddd .. .

w3 = abcddddd .. .

In practice, the language accepted by Büchi automata can always be defined by means of ffi

-regular expressions [AHO&ULLMAN93, GINZBURG68), using the symbol 'ffi' for infinite

repetition. Other usual conventions are '*' for the finite repetition, 'I' for th_e union and

juxtaposition for the concatenation. For instance, the language of the automaton of figure 9.3

1s: L(A) = {w = a•b(bjc)dro}

9.3.3 Generalized Büchi automata

Generalized Büchi automata [THA YSE89) have a more complex definition, but on the

other hand, it often allows an easier definition of certain languages .

Definition 9.9 (Generalized Büchi automaton - GBA)
A generalized Büchi automaton is a 5-tuple A = (L, Q, 8, I, F)

where the four first components are identical ta the ones of a Büchi automaton
Fis a set of sets of accepting states: F = {Fi,F2, ... ,Fk} with F; c Q

Definition 9.10 (Admitted execution on a GBA)

For this type of automata, an execution is admitted if it contains infinitely often astate of

each F;:

cr(w) = so s1 s2 . . . is admitted ç::} Vj E [1, k]: 3q1 E F;, 3 infinity of i E R s; = q1

A GBA can always be brought to the form of a (normal) Büchi automaton which accepts

the same language. The demonstration is given in [THA YSE89, pp. 192).

Page 9.5

Chapter 9 : desired executions of a PNTL specification

9.3.4 Closure properties of ro-regular languages

The languages accepted by Büchi automata form the class of m-regular languages. This

class of languages presènts some interesting properties [DA VIS&WEYUKER83] : it is

closed with respect to the operators of union, intersection and complementation :

If A 1 and A2 are two automata accepting respectively the language L(AJ) and L(Ai}, there

always exists a Büchi automaton acceptine;
- L(A1) u L(A2) (union)

- L(A1)nL(A2) (intersection)

(complementation)

Such properties will be very useful for the reduction of the set of possible executions into

the set of desired executions.

9.4 Büchi automata and bounded Petri nets

9.4. 1 From Petri nets to automata

W e have just seen that the language accepted by a Büchi automaton A is the set of words
it accepts. Consider now a Petri net to which we attach a labelling function .'1 associating a

distinct symbol4 to each transition (.'1: Tu {nul!}➔ I: u {Â.}). Such Petri nets are calledfree-

labeled Petri nets [PETERSON83]. So, any firing sequence s = tn ti2 tï3 ••. corresponds5 to a
word w=.'1(s). It is always possible for a bounded Petri net to build a deterministic automaton

whose language contain the .'1-projection of all firable sequences of the net.

•

•

•

•

•

•

•

Look at the net of figure 9.4. This Petri net can be formalized by a Büchi automaton A •

(figure 9.5), considering that the initial state is also the accepting state :

•

4 The empty symbol À is always associated to the nul/ transition. •
5 The function.'1: Tu {nul!}➔ I: is usually extended to.'1: (Tu {nul!})* ➔ I:'"

Page 9.6

•

1

1

•

•

•

•

•

•

•

•

1 •

•

•

a

Chapter 9 : desired executions of a PNTL specification

Initial marking = (1 0)

Figure 9.4 (a Petri net)

q0=(1 0)
q1=(0 1)

q1

b,c

L(A) = {w E 1:00
: w::= (a(bJc)t}

Figure 9.5 (the corresponding automaton)

As for the operational semantics of a Petri net (see chapter 6), we can consider an

automata as a transition system with states (qo and q1) and exiting transitions (the symbols on

the arcs).

Since we model bounded Petri nets, the reachability sets R(N,Mo) are f1nite (i.e. there is

always a finite number of accessible markings from Mo). This means that every reachable

marking is a possible state of the corresponding automaton, and that each arc t of the graph
between two markings M1 and M2 is a transition of the automaton labeled with "1(t) and linking

q1 and q2, where q1 and q2 are the states corresponding respectively to M1 and M2 :

a

d

Figure 9.6 (an automaton modeling a Petri net)

Page 9.7

•
Chapter 9 : desired executions of a PNTL specification

•
And so, we can say, given a Petri net N and an initial marking Mo, that:

cr(w)=sos1s2 ... ⇒ 'ifi?.O, s;eQ={qo,q1, ... qn} (withQcR(N,Mo))

•
9.4.2 The set of possible executions

A classical problem is the definition of the set E(N,Mo) of possible executions of a Petri net

starting with an initial marking Mo. We saw that the solution of this problem can be found by •
1

the definition of the language of an automaton modeling the Petri Net (see below in section

9.4.4 for an algorithm). For the moment, we suppose there is only one accepting state (#F=l).

Consider the graph of an automaton A modeling a bounded Petri net, like figure 9.6. An •

infinite word w is accepted (see definition 9.7 and 9.8) if the execution of A on w contains

infinitely often the accepting state. Thus every word of L(A) has two parts (w::= al3): the first

part (a)6 is a finite word, while the second one (13) is an infinite word . The execution of a

from the initial state (q0) is a sequence whose last element and only last element is the •

accepting state; the execution of 13 from the accepting state is a sequence containing infinitely

often this state. Since we have a::= (aijazj ... jCXq) and l3::= (l31jl32j ... jl3p)"' - where <Xi and l3i are

words on I:, the language can be defined as :

•

Example:

• a C d

o7q1 q3

qO
b •

Figure 9.7 (a finite automaton) •
Here, every accepted word w has the form w::= al3 where a::=ab*c and l3::= (deldfgy>

•
6 If the initial state is also the accepting state, the word ais empty.

Page 9.8

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 9 : desired executions of a PNTL specification

As soon as we get the language of the automaton, we can then easily define the set of possible

execution paths accepted by the Petri net N from the marking Mo, by using the inverse of the
labelling function: E(N,Mo) = .ê1(L(A))

9.4.3 The library example

Let us take a simplified example of the case study. Here, we model a single user that- can

borrow maximum two books of a library which owns a stock of five books .

p 1: books_ free tl: borrow _ book (b)

p2: credit t2: return_book (r)

p3: books_ borrowed t3: return_too_late (1)

p4: fine to pay t4: pay_fine (p)

Figure 9.8 (the Petri net of a library)

b b

qO

p

q5

Figure 9.9 (the-corresponding automaton7)

7 Suppose that Mo=(5 2 0 0) is also the accepting state.

Page 9.9

q0=(5200}
q1~(4110)
q2=(3020)
q3=(5101)
q4=(4011)
q5=(5002}

•
Chapter 9 : desired executions of a PNTL specification

The graph contains four finite cycles f3 from qO (to it-selt) whose execution 1s •
cr(f3) = qo SI S2 ... Sn- 1 qo with \li E [1,n-1], S;-:t:- qo:

f31 = b(br I bl(rb I lpb)* p)* r

f32 = bl(br I blp)* p

f33 = bblr(br I blp)* p

f34 = bbllp(br I blp)"'" p

The language of the automaton is thus:

L(A)={wel:co: w::=(f31If321 f33 J f34 r}

1

And the set of possible executions of the Petri net is:

E(N,Mo)=r1(L(A))={s::=(r1(f31) Jr1(f32) Jr1(f33) Jr1(f34) r}
withr1(f31)=t1(tit21 t1t3(t2ti l t3f4t1)"'"t4)"t2

f 1(f32) = fit3(fit2 1 t1t3t4)" (4

E 1(f33) = t1t1(3t2(tit2 1 t1!3t4)" (4

..e-1 (f34) = t1t1(3(3t 4(t1t2 1 t113t 4) * t 4

9.4.4 An algorithm

[AHO&ULLMAN93] propose an algorithm to catch the language of an automaton. The

fact is that the language of the automata studied here can be formalized in a particular (much

readable) form .. Therefore we exp Iain here another algorithm which gives the language L(A) of

an auto maton A having an initial (qo) and an accepting state (qf) , such as this language can be

defined as:

This algorithm consists in five successive steps :

Step 1: to identify, in the graph, the set C of elementary8 cycles which never pass

throught qf

8 A path (a cycle) is said elementary ifno node (ifno node except the last one) appear twice in the path (in the
cycle).

Page 9.10

•

•

•

•

•

.,
•

·•

•

•

•
Chapter 9 : desired executions of a PNTL specijication

• Step 2: to identify the set P of elementary paths from qo to qf

Step 3: to identify the set R of elementary cycles from qf (to it-selt).

• Step 4: to build (a.1la.2l ... l<Xq) by trying to insert the cycles ofC in the paths of P .

Step 5: to build (f311f3zl ... lf3p) by trying to insert the cycles of C in the cycles ofR.

• Example:

b

g

a h

qO

• d
q3

Figure 9.10 (an automaton)

• Step 1: The set C contains two elementary cycles : b (from q 1 to q 1) and acd (from qO to qO)

Step 2: The set P contains two elementary paths : ae and acf

• Step 3 : The set R contains two elementary cycles : gh and gij

Step 4: - The path ae is combined with the two cycles of C :

•
ae ➔ (acd)* ae ➔ (ab• cd)* ab .. e in order to form a 1 = (ab .. cd)* ab .. e

- The path acf is also combined with the two cycles of C :
acf ➔ (acd)* acf ➔ (ab*cd)*ab*cf in order to form a.2 = (ab*cd)* ab*cf

• Step 5: No insertion of cycles of C is possible in the two cycles of R.

Thus : (31 = gh and (32 = gij

The language is so: L(A) = {w::= ((ab*cd)* ab"e 1 (ab"cd)* ab*cJXgh I gijr}
•

Page 9.11

•

•
Chapter 9 : desired executions of a PNTL specification

Remark: It must be noticed that , when inserting cycles in a path, we have to do it in a precise •

and intelligent order. Imagine that, in step 4, we would have first tried to insert the cycle b

(instead ofbeginning with acd) in the path ae :
ae ➔ ab* e ➔ (acd)* ab* e which is different than a 1 !

Here is now the complete algorithm:

{ Return the language L of an automaton A = (~, Q, ô, qo, q1) }

Cf- Find_all_elementary_cycles {Step 1)

Foran w E C do: if qre cr(w) then C ~ c / {w}

P f- Find_elementary_paths (qo,qr)

R ~ { w e C: First(cr(w)) = Last(cr(w)) = qr}

a f- Insert _ cycles(P, C)

13 f- Insert _ cycles(R, C)
L f--- (a)(l3r

Auxiliary procedures:

{Step 2)

{Step 3)

{Step 4}

{Step 5)

- The procedures Find _ail_ elementary _ cycles and Find _ elementary _paths are classical

•

•

•

•

problems in the graph theory and therefore not explained here (the interested reader can refer •

to [GONDRAN&MINOUX:79] for mor.e about algorithms in graphs). The first procedure

identifies all the elementary cycles of a graph; the second one retums a set of elementary paths

between two nodes of a graph.

• - The procedure lnsert _ cycles is defined as follows :

Insert-cycles (W, C) ➔ "{

{ (Try to) insert cycles of C in a each path of the set W to form y}

q f- 0

For each w eW do:

C' f- Sort(C, w)

q f- q+l

While Empty(C')=False do : ,

cf- First(C')

if3q: qe cr(w) and qe cr(c) then wf-Merge(w,c)

C' f- Sort(C'/ {c}, w)

if q=l then y f- w else y f- y+ 'I' + w

Page 9.12

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 9 : desired executions of a PNTL specification

and uses two procedures (Merge and Sort) :

- The procedure Sort{C, w) consists in sorting a set C of elementary cycles in a precise manner

(see remark p. 9.12) before trying to merge those cycles and the path w. The sorti!}g is based

on the number of different nodes that the cycles and the path w have in common :
c; -5. c1 (c;,CJ e C) <=> #{q e Q: q e cr(w) and q e cr(c;)} '?. #{q e Q: q e cr(w) and q e cr(c1)}

- The procedure Merge is defined as follows :

Mer2e (w, c) ➔ w'

{ Merge a path w and an elementary cycle c into a new path w '}
C = ai a2 . . . an

O'(c) = SO Sl S2 ••• Sn

Q+-{qeQ: qecr(w) andqecr(c)}

For each q e Q

do:
i f- k E N: Sk = q

Partl f- SubPath(w,First(cr(w)),q)

Part2 +- SubPath(w,q,Last(cr(w)))

w f- Partl +(aï+ ian a1 ... ai)*+ Part2

w' f-W

9.4.5 A more general algorithm

The assumption of an unique accepting state is too restrictive and not realistic. Indeed,

since we model Petri nets in which choices are possible (like in figure 9 .11), it is not always

possible to identify a marking through which all executions are passing infinitely o:ften.

p3

Figure 9.11 (another Petri net)

Pagç 9.13

1

Chapter 9 : desired executions of a PNTL specification

a C

d
qO

X

q1

· Figure 9.12 (its corresponding automaton)

It is thus necessary to refine the algorithm to take account of this. Simply, we can re-use

the previous algorithm (Build-Language) by calculating the language of the automaton

succesively with the different accepting states :

{ Return the language Lof an automaton A= (L,Q,8,qo,F))

Lf--0

Foran qi E F do:

Li f-- Build-Language (L,Q, 8, qo, qi)

L f--L u Li

This gives for the automaton of figure 9.12:

L=L1uL2

L1 = a(cd)* bx00

Lz=a(cdt

9.4.6 Mapping Petri nets into Büchi automata

A difficult problem met when transforming a Petri net into a Büchi automaton is the choice

of the accepting states : which markings are going to be considered as accepting states ? The

easiest solution consists in considering each marking of the accessibility set as an accepting
1

state (that is to say Q=F); this means that every execution of a Petri net must pass infinitely

often through (at least) one of those markings. Don't forget that we want the net to be as

general as possible, and to express the additionna! constraints separately.

Page 9.14

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
1

•

•

•

Chapter 9 : desired executions of a PNTL speci.fication

But the problem is that the execution time of the previously explained algorithm is

proportional to the number of accepting states of the automaton. Therefore, we should try to

restrict the set of accepting states (F) to its minimum, without reducing the set of possible

executions (a wrong choice of the accepting states may, in some cases, have the same effect as

a constraint). C_onsider the following automaton:

a C d

q1 q3

qO
b

Figure 9 .13 (considering all states as accepting states)

It is not necessary to consider q3 and q4 as accepting states, smce considering q2 as

accepting state forces the executions to pass infinitely often through one of these two states. It

is also not usefull to include q0 in the set of accepting states, because it does not belong to a

cycle. More generally, we can say that a state qi can be removed from the set of accepting

states in two cases :

1. if there is no self-loop on this state, and if ail elementary cycles from qi (to itself) are passing

through another accepting state .

ex: the state q3

2. ifthere exists no cycle from qi (toit-self).

ex: the state qo

Page 9.15

Chapter 9 : desired execu(f ons of a PNTL specification

9.5 Reduction of the set of possible executions

Since we want to associate to each Petri net some constraints (expressed by a set of

temporal logic formulae), it is necessary to reduce the set of possible executions into a set of

desired executions respecting those formulae. Among the possible words accepted by the

automaton, some of them have to be excluded, because their execution would result in a state

forbidden by the temporal logic formulae. In this section, we won't study all kinds of
constraints of PNTL; we only consider the constraints of the form "'Il ➔ [X, F, G]cp" where X,

F and Gare respectively the next, sometimes (eventually) and always (henceforth) operator.

To simplify9, we assriine that 'If andcp are atomic formulae.

9.5.1 Hypothesis

1. (N, Mo) is a marked Petri net (with Mo ·as initial marking) and A is its corresponding

automaton.

2. In the following, we suppose that the language of A is the union of n languages :
n

L(A)=uL1
j=I

with L1 = {w E :Ero: w::= (a11la121 ... 1a1q)(Jl11f3121 ... lf31pr}

(where Œji and f3ji are words on 1:)

and contains the set of possible executions of the Petri net :
E(N,Mo) = Ê 1(L(A))

3. This means that the execution of any word w of L(A) belongs to
n

cr(A) =ucr1
j=I

where cro is a sequence of one element: the initial state (qo),
'<::/ i: 1 ::; i :<;; q, O'Ji = cr (Œji) without its first element (qo),

'<::/i: q < i :<;; q + p, O'ji is the execution of f3ji without its first element, with

accepting state as initial state of the automaton.

9 But it can be·easily generalized for formulae. Indeed a formulae is a composition (conjunction, disjunction,.:.)
of atomic formulae and we have seen that formal languages have closure properties (intersection, union, ...)

Page 9.16

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 9 : desired executions of a PNTL specification

4. The set C contains the constraints attached to the Petri net:
C = {c1, C2, ... , Cr}

We want to obtain a language L'(A) c L(A) such as Ea(N,Mo) = r1(L'(A)) contain

ail the desired executions of the net .

9.5.2 Constraints on states and constraints on words

According to the predicate or function involved in the atomic formulae 'If and cp, the truth

value of those formulae is going to be defined by reasoning on the language L(A) of the

automaton, and/or on its possible sequences cr(w) of states. We have thus two kinds of

formulae: formulae on words for which we will reason on the language, and formulae on states

for which we will reason on the sequences of execution of the automaton. For instance,
11Fired(tl) 11 deals with the words of the language, whereas "m(p~)>O" is a condition on the

states of the auto maton .

9.5.3 Reduction when dealing with a constraint on words

To ensure the respect of this type of constraints, we are first going to define a language

L(c) (on the same alphabet as the language of A) whose all words are respecting the constraint
C='lf ➔ [X,F,G]cp. Then, thanks to the closure properties of the ru-regular languages (see

section 9.3.4), we can calculate the intersection between this language and the one of the

automaton A :

L'(A) = L(A) nL(c)

The intersection10 of two languages L1 and L2 is defined as follows:

LinL2={we(LnLr: (weLi) and (weL2)}

In the following, we suppose that 'If= Fired(t;) and cp = Fired(·[j). Let us now see the

form of the language L(c) according 'to the temporal operator of the right hand-side of the.

constraint:

10 See section 9.5.5 to see how we can calculate the intersection oftwo languages.

Page 9.17

---------,------------ --------------- --

Chapter 9 : desired executions of a PNTL specification

• c = Fired(ti) ➔ X(Fired(t1))

This means that each time the symbol L(tj) is met in a word, it must always be immediately

followed by the symbol L(tj)- Thus the language of the constraint can be defined as:

L(c) = {w e :E00
: w::= (ab 1 $r}

where a= 4(tj)

b =L(tj)

$ = any symbol of:E except the symbol a.
= (x1jx2i ... lxn) with XiE(:E!{a})

• c = Fired(ti) ➔ F(Fired(t1))

This means that each time the symbol 4(tj) is met in a word, the symbol 4(tj) must always

be found 11further 11 in this word. Thus the language of the constraint can be_ defined as:

L(c)={we:E00
: w::=(a$·b 1 $t}

where a = 4(tj)

b =L(tj)

$ = any symbol of:E except the symbol a.
= (x1jx2j ... lxn) with Xie(:E!{a})

• c = Fired(ti) ➔ G(Fired(~-))

This means that if the symbol 4(tj) is met in a word, ail the following symbols must be

4(tj)- Thus the language of the constraint can be defined as:

L(c) = {w e :E00
: w::= ($* ab00

1 $
00

)}

where a =4(ti)

b =L(tj)

$ = any symbol of:E except the symbol a.

= (x1 1 x2 I ... 1 Xn) with Xi E (:E /{a})

Page 9.18

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 9 : desired executions of a PNTL specification

Examples:

Let's take again the example of the small library (section 9.4.3). We saw thatthe language of

its corresponding automaton was:

with

L(A) = {w ELm: w::= (P11 Pz I P3 I P4r}
_p1 = b(br I bl(rb l lpb)* p)* r

Pz= bl(br I blp)* p

p3 = bblr(br I blp)* p

p4 = bbllp(br I blp)* p

1. Suppose that we have a constraint stating that if a book is returned late, the fine must always

be paid:

• Fired(t3) ➔ F(Fired(t4))

•

•

•

•

•

•

Since L(t3)=/ and L(t4)=p, we have :

L(c) = {w e Lm: w::= (l(blrlpf p 1 (blrlp) t}

And it is easy to see that all the words of L(A) have the wanted form :

L(A) = L(A)r.L(c) since L(A) c L(c)

2. Suppose now that a constraint forces the borrowers to immediately pay the fine when a

book is returned late :

Fired(t3) ➔ X(Fired(t4))

Since L(t3)=/ and L(t4)=p, we have :

L(c) = {w e Lm: w::= (lp 1 (blrlp) t}

This time, we obtain a sub-language of L(A) :

L'(A) = L(A) r.L(c) = {w E Lm: w::= (b(brlblp)* (rllp) r}

Page 9.19

Chapter 9 : desired executions of a PNTL specification

9.5.4 Reduction when dealing with a constraint on states

We saw that the execution of a Büchi automaton is an infinite sequence of states. We can

consider such sequence as an infinite word on a particular alphabet Q. Since we know the form

of every sequence of execution of A (see hypothesis in section 9. 5 .1), we have already defined

the language - that is o'(A) - which contains all this words. Thus, like for constraints on words,

we can translate a constraint c = 'If ➔ [X, F, G]cp into a language cr(c), and then calculate its

intersection with the language cr(A) :

cr'(A) = cr(A)ncr(c)

When we get the set of desired executions11 of the automaton, it still must be translated in

terms of words accepted by the automaton. In other words, knowing all the desired sequences

of states of the automaton, we have to restore a set of desired and accepted words. This

translation12 can be done thanks to the next-state function (6) of the automaton : two

successive states (qi,qj) can be mapped into a union of transitions linking the state qi to qj .

The first step consists in determining the states which verify the left and right hand-side of

the constraint :
Q ={qEQ: '1f(q)=TRUE}={q1, ... ,qn} (n~O)

Q={qEQ: <p(q)=TRUE}={q1, ... ,qm} (m~O)

Sorne particular situations can already be identified : if Q = 0 or Q = Q, the constraint is .

useless or redundant since it is always verified.

In the following, we suppose that cr and & are respectively the union of states of Q , and

the union of states of Q :
cr = (q1 1 q2 1 ... l qn)

a = (q1 1 q2 1 . . . 1 qm)

Let's now see the form of the language cr(c) according to the temporal operator of the

right hand-side of the constraint :

11 Do not confuse the set of executions of the Petri net (which corresponds to a set of words on L) and the set of
executions of the automaton (which corresponds to a set ofwords on Q).
12 The translation is valid here because we cannot have, in the automaton, astate having two output arcs with
the same label (indeed, the firing of a transition in a Petri net always leads to a unique marking).

Page 9.20

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 9 : desired executions of a PNTL specification

• C='lf ➔ X(<p)

The language of the constraint can be defined as:

cr(c) = {cr E Q00
: cr::= (cr<! j $r}

where$=(x1jx2j ... jxr) with XiE(Q/Q)

• C='lf ➔ F(<p)

The language of the constraint can be defined as.:

cr(c) = {cr E Q00
: cr::= (cr$* â j $t}

where $ = (x1 1 x2 j ... 1 Xr) with Xi E (Q / Q)

• C='lf ➔ G(<p)

The language of the constraint can be defined as:

cr(c) = {cr E Q00
: cr::=($* crâ 00

j $00
)}

where $ = (x11x21 ... 1 xr) with Xie (Q / Q)

Example:

We saw that any execution of the automaton modeling the small library belongs to the set:

cr(A) = {cr E Q00
: cr::= cro(O"I I cr2 1cr31 cr4t}

cro = qo

cr1 = q1(q2q1Jq2q4(q3q4iqsq3q4)* q1)* qo

with cr2 = q1q3(q4q3lq4qsq3)* qo

cr3 = q1q2q4q3(q4q3jq4qsq3)* qo

cr 4 = q1q2q4qsq3(q4q3lq4qsq3) • qo

Suppose that as soon as a borrower has returned a book too late, he can borrow, :from this

moment, only one book anymore (instead of two) :

m(p4) = 1 ➔ G(m(p2) > 0)

Page 9.21

Chapter 9 : desired executions of a PNTL speci.fication

Wehave:

And

Q = {q3,q4} and a= (q3 I q4)

Q = {qo,q1,q3} and cr = (qo I q1 I q3)

$ = (qo I q1 1 q2 1 qs)

And so:
a'(A) =a(A)na(c)

= {a'EQro: a'::=(0" 1110" 12)} ·

<!'1 = q~(q1(q2q1f qor

a'2 = qo(q1(q2q1)* qo)* ((q1q3qoiq1qot I q1q2q4(q3qo I q1(qolq3qo))(q1qoiq1q3qot)

Finally, this means that the desired language of the automaton is:

L'(A)={wE:Ero: w::=(yil y2)}

'YI =(b(br)*rr

yz=(b(brfr)* ((blplbrt I bbl(rp lp(rllp))(brlbtpt)

9.5.5 Calculating the intersection of two languages

We said (in section 9.3.4) that the class of ro-regular languages was closed in respect with

(among others) the operator of intersectio!l. To ensure the respect of a constraint associated to

a Petri net, we have. proposed to calculate the intersection of the language of this constraint

•

•

•

•

•

•

•

•

and the language of the automaton modeling the Petri net. Let's now proofthat the intersection •

is always calculable and see how we can calculate it :

Theorem.
If A1=(:E,Q1,8i,J1,F1) and A2=(:E,Q2,8z,/z,F2) aretwoBüchiautomata, •

then it is always possible to build a GBA= (:E,Q,o,J,.F) which accepts the language

L(A1)nL(A2)

Page 9.22

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 9 : desired executions of a PNTL specification

Proof .

We build a GBA whose states are 2-tuples of states of the two automata, and whose

transitions are the ones that are possible in both automata. The set F simply contains the two

sets F1 and F2. More formally:

Q=Q1XQ2

l=lixh

F ={F1xQ2, F2xQ1}

q =<. u, v >e 8(< s,t >,q) if u e 81(s,a) and v e 82(t,a)

Example:

A1

a b

qO

C

1

L(A1) = {w::= aca(daJbca)'"}

a c,d b

rO

a

Page 9.23

Chapter 9 : desired executions of a PNTL specification

The intersection of the automata A1 and A2 is :

a

(qO,rO) C

(q3,r2)

F1 ={(q2,r1)}
F2={(q2,r1);(q1 ,r1)}

(q2,r1)

which accepts the language L(A1)riL(A2) = {w::=ac(ad)'°}

9.6 Testing of properties on the set of desired executions

As explained in [MANNA&PNUELI84], we can partition most of temporal properties of

programs into two classes. These properties can be characterized by the form of the temporal

formulas expressing them :

• The class of invariance properties. These properties can be expressed by a formula of the

form:

(a) D'lf or (b) <p ::) D'lf

The formula (a) says that the condition 'V is always true, while the other (b) states that

whenever <p becomes true, 'V is immediately true and remains true in the future.

• The class of liveness properties. These properties can be expressed by a formula of the

form:

In both cases, the formulas guarantee·the àccurence of a condition 'lf. The only difference

is that the first one (c) guarantees it unconditionally, whereas the second one (d) is

conditional on an earlier occurrence of event 'lf.

_Page 9.24

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

Chapter 9 : desired executions of a PNTL specification

Although we do not reason on programs but on sequences of symbols and on sequences of

words, it is obvious that most of the properties of the specification we want to test (namely for

reasons of completeness), are also of this form - or can be brought to this form. But in order

to test a property on the language of an automaton, we first have to transform it into a

constraint whose syntax is the one of PNTL :

- Considering that any Petri net contains at least one place and that the number of tokens is a

positive integer, the formula (a) can be translated in an implication - whose left hand-side is

always true:

m(pl)~O ➔ G('!f)

- For the same reason, the formula (c) gives:

m(pl)~O ➔ F('lf)

- The formula (b) becomes : ,

cp ➔ G('lf)

- The formula (d) becomes :

cp ➔ F('lf)

We can take advantage of the algorithms that reduce the set of possible executions to the

set of desired executions (see section 9.4). Indeed, there is an easy way to test a property. It

simply consists in adding the property in tl_ie list of constraints attached to the net (we do asif it

was a constraint), then in recalculating the language of the auto maton to finally compare this

language with the one obtained without the property. If they are equal13, we can say that the

property is always verified (see figure 9 .15).

Example:

Consider that the set C of constraints contains only one constraint :

Fired(t3) ➔X(Fired(t4))

We saw (see section 9. 5. 3) that the set of desired executions of the library was :

L'(A) = {w e 1:ro: w::= (b(brJblp)* (rJ/p) r}

13 It must be pointed out that a same language can be expressed by several different co-regular expressions. The
question of knowing if two languages are equal is not as obvions as it seems to be ! '

Page 9.25

Chapter 9 : desired executions of a PNTL speci.fication

Supose we want to test the following property : p = D(m(p4)~ 1)

Thus cr(p) = {cr e Q00
: cr::= (qo I q11q21 q3 J q4t}

Since cr'(A)ncr(p) =cr'(A), the language L '(A) is unchanged. Therefore, the property p is

verified.

C : list of constraints
p: property

Set of allowed executions • Set of desired executions • Petri "1 description

Automaton A ---► Lang'uage L(A) ~_c _ _____,~ 1

Sub-Language L'(A)

CU {p}

Sub-Language L"(A)

If L'(A)==L"(A) then p verified else p not verified

Figure 9 .14 (the testing of a property)

9. 7 Extension to the linear temporal logic

9.7.1 About the expressiveness of the linear temporal logic

Consider the set of sequences for which the proposition pis true in all even states (nothing

is said about the odd states). This set contains among others the two following sequences :

cri = p -,p p -,p p -,p p -,p p -,p ...

CJ2=ppp-,pp-,pp-,pp-,p ...

Page 9.26

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 9 : desired executions of a PNTL specification

It seems quite surprising that the property which defines this set of sequences - and which

we will denote Even(p) - cannot be characterized by any formula of the temporal logic

[THA YSE89]. One could think that the two following formulae are appropriate :

f1 = p A □(p::::>0-,p) A 0(-,p::::>Op)

f2 = p A D(p::::>OOp)

But it is not the case, since they both are false for the sequence cr2. Note that this property

can be expressed in PNTL :

lnit ➔ Even

Even ➔ X(X(Even))

!nit ➔ X(-,Even)
. .

·-,Even ➔ X(X(-,Even))

Even ➔p

W e now give a more general way to express such properties in what is called extended

temporal logic .

9. 7.2 Extended temporal Jogic

It is possible to extend the expressiveness of the linear temporal logic in order to express

properties like Even(p). We can add to the temporal logic all the operators and properties that

are expressable by means of a finite automaton .

As in [THAYSE89], we will associate to each temporal operator a Büchi automaton.

Since an interpretation in linear temporal logic is an infinite sequence, we can check if this

sequence verify a property by answering the question " is the execution of this sequence an

admitted execution on the automaton associated to this property ? "

Page 9.27

•
Chapter 9 : desired executions of a PNTL specification

Let B = (z.,Q,8,1,F) be a Büchi automaton. To define an operator, we associate a •

formula to each element of L. Those formulae will be the arguments of the operator. Thus if
L = {a1,a2, ... ,an}, the operator will have n arguments. The application of the operator on the

formula /1,/2, ... ,/,, will be noted BU1,f 2, ... ,/,,). The semantics of B(/1,/2, ... ,/,,) is defined

in terms of accepted words of B. A sequence a verify BU 1, f 2, ... , /,,) if there exists a word •

accepted by B, such as if the symbol ai is met in position j, the the formula t;_ is true in this

position. More formally :

I l==cr B(f 1,f 2, ... ,/,,) if 3w = aï0,t1i1,aï2, ... accepted by B

such as Vj 2:: 0, I !==i (cr) fi

Let's see, for instance, how we can (re)define the temporal operator (X, F, G) and the

property Even(p) :

Always operator (G):

G(f)=B1(f)

B1 ~a1

s0

•

•

•

•

The words accepted by B1 are the ones which contain only the symbol a1. Thus the only •

accepted interpretations are the ones in which l(f) is always true.

N ext operator (X): •

B2
a1 a2 •

s0 s1 s2

•
Page 9.28

•

•

•

•

•

•

•

•

•

•

•

Chapter 9 : desired executions of a PNTL specification

The words accepted by B2 are the ones whose second syinbol is a2. Thus the only accepted

interpretations are the ones in which J(t)=TRUE in the next s~ate.

Sometimes operator (F):

F(t)=B3(T, f, T)

a1 a3
B3

s0 s1

The words accepted by B3 are the ones which contains at least once the symbol is a2. Thus

the only accepted interpretations are the ones in which J(t)=TRUE at least once.

Until operator (U):

s0 s1

The words accepted by B4 are either words that contains exclusively the symbol is a1, or

words in which a finitite repetition of a1 is immediately followed by a2. Thus the only

accepted interpretations are either the ones where J(f1) is always true, or the ones in which

f1 holds till the moment J(f2)=TRUE .

Page 9.29

Chapter 9 : desired execurions of a PNTL specification

Even(f):

Even(t)=Bs(f, T)

a1

a2

The words accepted by B5 are the infinite repetitions of the finite (sub)word a1a2. Thus the only

accepted interpretations are the ones in which J(f1)=TRUE in all even states, and J(T)=TRUE

in all odd states.

Page 9.30

•

•

•

•

•

•

•

•

•

•

•

•

•
1

•

•

•

•

•

•

•

•

Chapter 10

Logical Proofs in PNTL and PNRTL

I ,

10.1 Introduction

In chapter 9, we have seen how the theory of Büchi automata can be used to mak:e proofs

of properties of a PNTL specification. Th ose proofs were conducted by · verifying that the

formal language associated with the PNTL specification did or did not verify the properties.

Here, we de fine a logical framework to allow usual syntactic logical proof s in PNTL and

PNRTL. To mak:e possible those syntactic logical proofs, we must define a way to transform

the net information (its structure and the firing rule) into logical formulae and provide a proof

system. The logical formulae of a PNTI..: specification will be used as axioms in the logical

proof system. The same schemata will be conducted for the PNRTL language .

In this chapter, section 10.2 concentrates on the PNTL language while section 10.3

concentrates on the real-time features of the PNRTL language. Section 10.4 concludes the

chapter.

10.2 Logical proofs in PNTL

In this section we define a temporal proof system for our PNTL language. As suggested in

[MP81], [MP83a], [MP83b], we distinguish three parts in our proof system :

Page 10.1

• Chapter 10: Proofs in PNTLandPNRTL

• Part A (the uninterpreted logic part) : this part defines an axiomatic system for

linear temporal logic. Theorems proved by part A are valid for all interpretations •

· given to the predicate and fonction symbols appearing in the theorems.

• Part B (the domain part) : this part contains a set of axioms which depend on the

domain, here the Petri nets. In this part, we formalize the firing rule and give axioms

over the positive integer numbers since the fonction symbol m is interpreted as the •

marking fonction. Therefore, part B restricts the class of considered models to those

in which all predicate and fonction symbols have a fixed interpretation and . the

individual variables range over fixed domains.

• Part C (the net part)_: this partis constituted of a serie of axioms which translate •

the net structure in logic axioms. This part further reduces the class of models into

the ones which reflect the set of possible executions of some Petri net, the Petri net

of the PNTL specification on which we want to mak:e a proof.

Let us now define the content of each part :

10.2.1 Part A : the pure /agie part

This part contains :

• the axioms of propositional logic. In the proofs, references to those axioms will be denoted

by ProL [AHO&ULLMAN93].

• the axioms of first order predicate logic with equality. In the proofs, references to th ose

axioms are denoted by PreL. [AHO&ULLMAN93]

• the modus ponens inference rule MP : if A ➔ B and A then infer B.

• the axioms of temporal linear logic [MP83a] :

axioms for the futur operators
• TLLI.X(A ➔B) ➔ (X(A) ➔ X(B))

• TLL2. -.X(A) H X(--,A)
• TLL3. F(A) H -,G(--iA) ·

• TLL4.G(A ➔B) ➔ (G(A) ➔ G(B))

• TLL5. G(A) ➔ A
• TLL6. G(A) ➔ X(A)
• TLL7. G(A) ➔ X(G(A))
• TLL8. G(A ➔ X(A)) ➔ (A ➔ G(A))
• TLL9. (A)U(B) ➔ (B v(A AX((A)U(B))))

• TLLlO. (A)U(B) ➔ F(B)

• TLLI l. [C: AG(c ➔ (B v(A AX (c))))] ➔ (A)U(B)

Page 10.2

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 10: Proofs in PNTL and PNRTL

axioms for the past operators
• TLLl2.Y(A ➔B) ➔ (Y(A) ➔Y(B))
• TLL13. /nit HY. (.l)
• TLL14. (-,Jnit AY (-iA)) H -,Y (A)
• TLL 15. P(A) H -,H(--A)
• TLL 16. H(A ➔ B) ➔ (H(A) ➔ H(B))
• TLL 17. H(A) ➔ A

• TLL 18. H(A) ➔Y (A)

• TLL 19. H(A) ➔Y (H(A))

• TLL20. H(A ➔Y (A)) ➔ (A ➔ H(A))
relations over future and past operators

• TLL 21. X(Y(A)) HA
• TLL 22. A ➔ F(A)
• TLL 23. X(A) ➔ F(A)
• TLL 24. A ➔ P(A)
• TLL 25. -,JnitAY(A) ➔ P(A)
• TLL 26. (/nit ➔ A) ➔ (Y(X(A)) HA)

• The necessity rule NR : if A then infer G(A) and H(A).
• The invariance rule INV : if A ➔ X (A) then infer A ➔ G (A) .

• The past invariance rule INV-P: if A ➔ Y(A) then infer A ➔ H(A)
~ The initialized invariance rule 1-INV: if /nit ➔ A and A ➔ X (A) then infer G(A) .

10.2.2 Part B : the domain part

This part contains the translation of the firing rule and the axioms for(~,+,<)

• Translation of the firing rule :
• FR 1. Fired (t) ➔ Enabled (t). In other words, a transition is enabled when it fires.

• FR2. Fired(tJ A (t1 ;t: tJ ➔ -,Fired(t2). There is only one transition that fires in a

state.
• FR3. :3t E T : Fired (t) v Fired (null) . In each state, there is a transition which is

fired.
• FR4. Fired(null) H Vt ET :-,Enabled(t). The null transition is fired iff there is no

transition of T which is enabled.
• FR5. Enabled (t) H V p E P: m (p) ~ pre (p ,t). Definition of an enabled transition .

• FR6. Fired(t) ~ m(p;) = k; ➔ X (m(p;)+ pre(p; ,t) = k; + post(p; ,t)) . Where

pre,post and k; stay constant in the next state, only m(p;) is variable. We must also

consider the case of the nul! transition :
Fired(null) A m(p;) = k; ➔ X(m(p;) = kJ

Page 10.3

Chapter 10: Proofs in PNTL and PNRTL

• FR7. The frame axiom: .
Fired(t) Am (p;) = ki A (pre(pi't) = ÜA post(pi ,t) = o)
➔ X(m(pJ=k;)

It should be noted that FR7 is a logical consequence of FR6.

• The use of axioms over the addition in the positive integers :

• +COM. a+b=b+a. Commutativity of+.

• +ASS. (a+b)+c=a+(b+c). Associativity of+.

• +O. (a+O)=a. 0 neutral for+. _
• +<R. (b -::/:- 0) Ha <a+ b . Relation between + and < in the positive integers.

• +Def: other theorems of the addition over positive integer. ex :
a+b =l-➔ (a=lAb =0)v(a=0Ab =1).

• Axioms over < :

• <lRR. -,(a < a) . Irreflexibility of <.

• <TRANS. (a< b) A (b < c) ➔ (a < c). Transitivity of<.

• <CONN. (a <b) v (a =b)v (b < a). Connection of<.

• <MIN. (a=ü)y(O<a).Oisminimumfor<.

• Definition of~,-::/:-,>,~ with -,,=,< :
• RDEFl. (a ~b) H (a =b)v(a <b).

• RDEF2. (ai:-b)H-,(a=b).

• RDEF3. (a>b)H-,(a<b)A-,(a=b).

• RDEF4. (a ~b) H -,(a <b).

10.2.3 Part C : the net part

This part translates the net information of the particular specification for which we want to

make a proof. It consists in two types of axioms :

• If the net is marked: axjoms over the intial marking Mo:
INM. 'i;/p EP:Jnit ➔ m(p)=M0 (p)

• Translation of the net structure by the definition of the functions pre and post :
NS. Vp E P, Vt ET :pre(p,t) = Pre(p,t) A post(p ,t) = Post(p ,t).

Those axioms are given for a Petri net N = (P, T, Pre, Post).

Page 10.4

•

•

•

•

•

•

•

•

•

•

•

•

• Chapter JO : Proofs in PNTL and PNRTL

10.2.4 Two proof examples in PNTL

•
As an illustration of the use of the proof system, let us consider the following PNTL

specification :

•

•

•

t1

t2

m(p3) > 0 ➔ Fired(t4)

Figure 10.1 (A PNTL specification)

• Before proving two theorems of this specification, we will translate the net information (part C

of the proof system) of this PNTL specification :

(i) Initial marking :

• !nit ➔ (m(p1)=3Am(pJ=0Am(p3)=0)
(ii) Pre and Post fonctions :

pre(p1 ,t1) = 1 A pre(p1 ,tz) = Oi\ pre(p1 ,t3) = 0 A pre(p1 ,t4) = 0

pre(p2 ,tJ = ÜA pre(p2 ,t2) = lApre(Pi,t3) = 1 A pre(p2 ,t4) = 0

• pre(p3 ,ii) = ÜA pre(p3 ,tz) = ÜA pre(p3 ,tJ = ÜA pre(p3 ,t4) = l

post(pi,tJ = ÜA post(pi,t2) = l A post(pi,t3) = lA post(pi,t4) = 0

post(p2 ,t1) = l Apost(p2 ,tz) = 0Apost(p2 ,t3) = 0Apost(p2 ,t4) = 0

post (p3 ,t1) = 0 A post(p3 ,t2) = ÜA post(p3 ,t3) = l A post(p3 ,t4) = 0

•

•

•

•

Theorem 10.1: G(m(p1)+m(p2) = 3)
Proof 10.1 (Proof of the theorem 10.1)
(al) !nit ➔ (m (p1) = 3 A m(p2) = o)
(a2)

!nit ➔ (m(pi)+m(p 2) = 3)
(a3)

Page 10.5

(INM)

(+def)

Chapter 10: Proofs in PNTL and PNRTL

m(p1)+m(pJ = 3 H(m(p 1) =0Am(p2) = 3)

v(m(pi) = 1Am(p2) = 2)

v(m(pi) =2Am(p2) = 1)

v(m(pi) = 3Am(p2) = o)
(a4) Fired(ti) v Fired(t2) v Fired(t3) v Fired(t4) v Fired(null)

(a5)
(m(pJ = 3A m(p2) ~ o)
➔ Enabled(t1) A -,Enabled(tJ A -.Enabled(t3)

(a6) (m(pJ = 3A m(p2) = o) AFired(t1) ➔ X (m(p1) = 2A m(p2) = 1)

(a7) (m(p
1

) = 3 A m(p2) = o) AFired(t4) ➔ X (m(pi) = 3A m(p2) = o)
(a8) (m(pJ = 3 A m(p2) = o) ➔ X (m(pJ + m(p2) = 3)

(a9)
(m(pJ = 2Am(pJ = 1)
➔ Enabled(ti) AEnabled(t2) AEnabled(t3)

(+det)

(FR3)

(FR5)

(FR6)

(FR6)

(a3,a5,a6,a7)

(FR5,NS)

(FR6,NS)

(FR6,NS)

(FR6,NS)

(FR6,NS)

_ (alO) (m(pJ = 2 A m(p2) = 1) AFired(tJ ➔ X (m(pJ = 1 A m(p2) = 2)

(all) (m(pJ = 2 A m(p2) = l)AFired(tz) ➔ X (m(pi) = 3Am(p2) = o)
(al2) (m(pJ = 2Am(pJ = 1) AFired(t3) ➔ X (m(pi) = 3Am(pJ = o)
(al3) (m(pJ = 2 A m(Pz) = 1) A Fired(t4) ➔ X(m(p1) = 2 A m(Pz) = 1)

(al4) (m(pJ = 2Am(p2) = 1) ➔ X (m(pJ+m(p 2) = 3) (a3,a4,a9-13,ProL)

(al5)
(m(pJ = lA m(p2) = 2)

➔ Enabled(tJ AEnabled(t2) AEnabled(t3)

(FR5,NS)

(al6) (m(Pi) = lA m(pJ = 2) AFired(t1) ➔ X (m(p1) = ÜAm(pJ = 3) (FR6,NS)

(al7) (m(p1) = lA m(p2) = 2) AFired(tJ ➔ X (m(p 1) = 2A m{p2) = 1) (FR6,NS)

(al8) (m(Pi) = 1Am(p2) = 2) AFired(t3) ➔ X (m(pJ = 2A m(pi) = 1) (FR6,NS)

(al9) (m(p1) = 1 A m(pJ = 2) A Fired(t4) ➔ X(m(pJ = 1 A m(p2) = 2) · (FR6,NS)

(a20) (m(pi) = 1 A m(pJ = 2) ➔ X (m(pJ +m(p2) = 3) (a3,a4,a15-19,ProL)

(a21)
(m(pJ = 0Am(p2) = 3)
➔ -,Enabled(tJ A Enabled(ti) A Enabled(tJ

(FR5,NS)

(a22) (m(pJ = 0Am(p2) = 3) AFired(tJ·➔ X (m(p1) = lAm(pJ = 2) (FR6,NS)

(a23) (m(pJ = ÜA m(p2) = 3) AFired(t3) ➔ X (m(pJ = lA m(pJ = 2) (FR6,NS)

(a24) (m(pJ = 0 A m(p2) = 3) A Fired(t4) ➔ x(m(pJ = 0 A m(Pz) = 3) (FR6,NS)

(a25) (m(p1) = ÜA m(p2) = 3) ➔ X (m(pJ +m(pi) = 3) (a3,a4,a21-24,ProL)

(a26) m(pJ+m(pJ = 3 ➔ X (m(pJ+m(p 2) = 3) (a3,a8,a14,a20,a25,ProL)

(a27) G(m(p
1
)+m(p

2
) = 3) . (I-INV,a2,a26)

Page 10.6

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Theorem 10.2: (bO) G(Fired(tJ ➔ X(Fired(t4)))

Proof 10~2 (Proof of the theorem 10.2) .
(bl) m(A) > 0 ➔ Fired(t4)

(b2) Fired(t4) ➔ -,Fired(t3)

(b3) m(pJ > 0 ➔ -,Fired(t3)

(b4) Fired(t3) ➔ m(A) = 0

(b5) Fired(t3) A m(p3) = 0 ➔ x(m(A) = 1)

(b6) Fired(t3) ➔ x(m(p3) = 1)
(b7) Fired(t3) ➔ X(m(p3) > o)
(b8) Fired(t3) ➔ X(Fired(t4))

(b9) G(Fired(t3) ➔ X(Fired(tJ))

10.3 A proof system for PNRTL

Chapter JO : Proofs in PNTL and PNRTL

. (Spec)

(FR2)

(bl,b2,ProL)

(b3,ProL,RDEF)

(FR6,NS)

(b4,b5,ProL)

(b6,+<R)

(b7,Spec)

(b8,NR)

In this section, we present a logical proof . system for PNRTL. First, we formally

caracterize the distance function d which gives the distance in time between two states. Then

we present an axiomatization of the definitions 7 .21, 7 .23 and 7 .24 and axioms over the real

time temporal operators of PNRTL. Finally we illustrate the use of the logical system by

proving a theorem containing real-time aspects .

10.3. 1 Formai characterization of the distance function d

To handle quantitative temporal properties, we have added a distance fonction between states.

This function d has three arguments :

• a couple (81,82) which indicates which timestamps must be considered

(InTime/OutTime)

• a first and a second state

and retums a positive real number : the distance in real-time which separates the two states.

The function dis defined as follows :

. d((ôl, 82),(S,i),(S,j)) =
• if(i -5:j): mt(82)((S,j))-mt(ôl)((S,i)/

• if (i > j): mt(ôl)((S,i))-mt(B2)((S,j))
' '

The function d satisfies the two following properties :

1 mt(o) retums the fonction InTime if o=i, the fonction OutTime if o=o, see notation 7.1.

Page 10.7

------------- -----------

Chapter JO : Proofs in PNTL and PNRTL

(dl) d((fü,82),(s, i),(s, j)) = d((02,fü),(s, j),(s, i))

(d2) if (S,i) < (S,j) < (S,k) (i <j < k)
d((o1, 63),(s, i),(s, k)) = d((fü,02),(s, i),(s, j)) + d((02, 63),(s, j),(s, k))

These two properties of the function d are used in the following subsections to justify axioms

over the real-time temporal operators.

10.3.2 Axiomatization of the PNRTL nets

In this subsection, we define axiom shemata for·the translation of a PNRTL net into logical

formulae. These axioms schemata translate the definitions 7.21, 7.23 and 7.24.

(1) Axiomatization of an enabled transition tfor a valuation a.:

Enabled(t,a.) ~ (s :a.) A (Pi(v1).-a.)A ... A(J!ilvn1):a.)

(FRl). A ---,(Qi(W1):a.)A ... A-.(Qn1(Wn2):a.)
A (:~1:a.) =/= (y1:a.)A .. :A(in3."a.) =/= (Yn3:a.)

• S is the selector of the transition t.

• For each tuple e that annotates an input arc of type i or type p of transition t, there

exists f: 1 ~ f ~ ni, e= v f and P1 is the dynamic predicate of the input place of the

arc annotated bye.

• For each tuple e that annotates an input arc of type i or type p of transition t, there

exists f : 1 ~ f ~ n2, e= w J and Q1 is the dynamic predicate of the input place of the

arc annotated by e.

• For each tuples e1, e2 where e1 annotates an arc of type o of t and e2 an arc of type o

of t and the output place of the two arcs is the same place, then there exists/: 1 ~f

~ n3, Xf = e1 and y f = e2 •

(2) Effects of firing an instantaneous transition t with a valuation a. in time T :

Page 10.8

•

•

•I
1

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter JO : Proofs in PNTL and PNRTL

BeginEnd(tn, a) ➔ X(InTime = T

/\ (P, (u1): a)/\.;./\(P,,/un1): (X,)

(FR2) /\ ---,(Qi(v 1): (X,)/\.•• /\---,(Qn2 (vn2): a)
/\ (R1 (W 1): a)/\ ... /\(Rn3(Wn3): a)

/\ -.(sJx1): a)/\ ... /\---,(Sn4(xn4): a))
• For each tuple e that annotates a type o arc of t, there existsf: i ~f ~ni, e=ut and

Pt is the dynamic predicate of the output place of the arc annotated by e.
- -

• For each tuple e that annotates a type o arc of t, there existsf: i ~f ~ n2, e=v f and

Q1 is the dynamic predicate of the output place of the arc annotated by e.

• For all e1:
e1 E Tu(a1) /\ a1 E IA(t) /\ Type(aJ = i /\ IP(aJ = p

/\---,::le2 (e2 E Tu(a2) /\ a2 E OA(t) /\ Type(a2) = o /\ OP(a2) = p /\ (e1:a = e2:a))

there exists f : i ~ f ~ n3, Rt=Pr(p) and x f =e 1.

• For all e1:
e1 E Tu(aJ /\ a1 E iA(t) /\ Type(aJ = i /\ IP(aJ = p

/\---,::le2 (e2 E Tu(a2) /\ a2 E OA(t) /\ Type(a2) = o /\ OP(a2) = p /\ (e1:a = e2:a))
there existsf: i ~f~ n4, St=Pr(p) and y f=e1.

(3) Effect of firing an non-instantaneous transition t with a valuation a in time T with a

duration D:

Begin(tn, a) ➔ x(InTime = T /\ ---,(P, (u1): a)A ... A-,(P,,1 (un1): a)
(FR3)

/\ (QI (v 1): a)/\. .. /\(Qn2 (vn2): a)/\ InProgress(tn, a))
• For each tuple e that annotates a type i arc of transition t, there exists f : i ~ f ~ ni,

-
e=ut and P1 is the dynamic predicate of the intput place of the arc annotated by e.

• For each tuple e that annotates a type i arc of transition t, there exists f: J ~f ~ n2,
e=v J and Q1 is the dynamic predicate of the intput place of the arc annotated by e.

• InProgress(t11,a), in the reached state, the transition occurence t11 is in progress.

End(tn, a) ➔ x(InTime = T +DA (R1(x1): a)A ... A(R,.)x,.3): a)
(FR4)

• For each tuple e that annotates a type o arc of transition t, there exists f : J ~ f ~ n3,

e=x J and R1 is the dynamic predicate of the output place of the àrc annotated by e .

Page 10.9

•
Chapter JO: Proofs in PNTL and PNRTL

• For each tuple e that annotates a type o arc of transition t, there exists f: 1 ~f ~ n4,

e= y I and S1 is the dynamic predicate of the output place of the arc annotated by e. •

• -,lnProgress(t11,a), in the reached state, the transition occurence t11 is no more in

progress.

To complete the axiomatization of the firing rule, we must add that a transition that fires

must be enabled :
(FR5) BeginEnd(t,a) ➔ Enabled(t,a)

(FR6) Begin(t, P) ➔ Enabled(t, P)

and axiomatize the supplementary constraints (SC) of definition 7 .24 :

1. Begin(t11,a) ➔ X (F (End(t,i,a)))

2. End(t,1,a) ➔ Y (P (Begin(t111 a)))

3. Begin(t11,a) ➔ X (G (-,Begin(t11,P)))

4. BeginEnd(t11,a) ➔ X (G (-,BeginEnd(t11,P)))

5. Begin(t11,(!-)l\(1 ~ n2 ~ n) ➔ Y (P (Begin(t,12,P)))

6. BeginEnd(t11,a)l\(1 ~ n2 ~ n) ➔ Y (P (BeginEnd(t112,P)))

7. !nit ➔ Vt:-,lnProgress(t,a)

8. pl\BeginEnd(null,-) ➔ X(p)

9. Enable(null,-) ➔ Vt, Vp:-,Enabled(t,P)

1 0.InTime ~ OutTime

11. OutTime=x ➔ X(InTime=x)

12.Init ➔ InTime=0

10.3.3 Axioms for real-time temporal operators

In this subsection, we present axiom schemata for the real-time temporal operators of

PNRTL. In the following S, (ôl, 82) represents an interval, respectively a pair of bounds, as

defined in chapter 7.

De.finitions:

(RTl). G~o1,ozl(cp) H -,F~o1,02)(-,cp)

(RT2). H~o1,li2) (cp) H -,P~oi,02) (-,cp)

(RT3). Fdô1,ô2)(cp) ➔ F(cp)

(RT4). PJ°1
•
82 l(cp) ➔ P(cp)

(RT5). (cp)U~~1
•
02l(t}) H G~~1·82l(cp) /\ FJ~1

•
82l(t})

(RT6). (cp)S~~1,02)('Ô) H H~~1,02)(cp) /\ ~~1,02)(t})

Page JO.JO

el

•

•

•

•

•

•

•

•

•

1

1

• Chapter 10 : Proofs in PNTL and PNRTL

•

•

Distribution schema :

(RT7). G~li1,1>2l(p ➔ q) ➔ (G~61,1>2l(p) ➔-G~61,1>2l(q))

(RT8). H~li1,1>2l(p ➔ q) ➔ (Hàli1,1>2l(p) ➔ H~li1,1>2l(q))

Characterizations of the properties of the metric point structure :

a) d((fü,32),(s, i),(s, J)) = d((B2,fü),(s, J),(s, i))

e (RT9). (p" FJ61,1>2)(q)) ➔ FJ61·1>2l(q" Pt2,1>1)(p))

(RTlO). (p "pJ1>1.1>2)(q)) ➔ ~61.1>2)(q" FJ62,6i)(p))

b) if (S,i) < (S,j) < (S,k) (i <j < k)
e d((Bl,33),(s, i),(s ,k)) = d((ôi,32),(s, i),(s, J)) + d((B2, 33),(s, J),(s, k))

L t t bl e us cons1 er e o owmg a "d th t 11 e:

+ y~b v<b y=b v>b y~b

• x~a x+y~a+b x+y<a+b b~x+y~a+b x+y>b x+y~b

x<a x+y<a+b x+v<a+b b~x+y<a+b x+v>b x+v~b

x=a ~+y~a+b ~+y<a+b x+y=a+b x+y>a+b x+y~a+b

x>a x+v>a x+v>a x+v>a+b x+y>a+b x+v>a+b

• x~a x+y~a x+y~a x+y~a+b x+y>a+b x+y~a+b

Table 10.1 (Addition and order relations in the positive real numbers)

From the table 10.1, we can deduce, for example the following axioms :

p(61.1>2l(R(1>J.63l()) ➔ R(61.63)()
<a ?.b p ?.b p

•
p_(6J,62)(p_(62,63)()) ➔ p_(liJ,63)()

>a >b P >a+b P

References to this axiom shema is noted RTl 1.

• Axioms schemas relating to arithmetic over the metric operators :

•
Page 10.11

•

•
Chapter 10: Proofs in PNTL and PNRTL

•
Axioms over X and F :

(RT16). X(F;i.1l2)(p)) ➔ F;o,oz)(p)

(RT17).F;o1,ol(X(p)) ➔ F;o1,;l(p) •

These two axiom shemata are justified by : OutTime=x ➔ X(InTime=x) (SCll).

10.3.4 A proof example in PNRTL •

We present here the proof of a theorem of the example 7.2 of chapter 7 (page 7.26). Let

us first translate the net information of example 7 .2 into logical formulae :

(il) Enabled (Consume, (md,t,n)) H Piece_To_Consume(md,t,n)

(i2) Enabled (Demand, (md,t,n)) H Free_To_Demand(md)

(i3) Enabled (Produce, (m,md,t,n)) H CanProduce(m,t) /\ Piece_Asked(md,t,n)

/\ Free_To_Produce(m)

(i4) Begin (Consume, (md,t,n)) ➔ X (-,Piece_To_Consume(md,t,n))

(i5) End (Consume, (md,t,n)) ➔ X (Produced_Piece(Manuf(t),n)

/\ Free_To_Demand(md))

(i6) BeginEnd (Demand, (md,t,n)) ➔ X (-,Free_To_Demand(md)

/\ Piece_Asked(md,t,n))

(i7) Begin (Produce, (m,md,t,n)) ➔ X (-,Piece_Asked(md,t,n)

/\ -,Free_to_Produce(m))

(i8) End (Produce, (m,md,t,n)) ➔ X (Free_To_Produce(m)

(FRl)

(FR3)

(FR4)

(FR2)

(FR3)

/\ Piece_To_Consume(md,t,n)) (FR4)

References to axioms of the specification of example 7.2 will be noted al .. alO.

•

•

•

•

•
Theorem 10.3: BeginEnd(Demand,(md,t,n)) ➔ F.,,~JJProduced_Piece(Manuf(t),n))(cO) ·

(cl) BeginEnd(Demand,(md,t,n)) ➔ X(Piece_Asked(md,t,n)) (i6)
(c2) BeginEnd(Demand,(md,t,n)) ➔ X(~~·~c (Piece_To_Consume(md,t,n))) (cl,a9)

(c3) BeginEnd(Demand,(md,t,n)) ➔ ~;Jc((Piece_To_Consume(md,t,n))) (c2,RT16) •

(c4) BeginEnd(Demand,(md,t,n)) ➔ ~;JJ ~;:JJBegin(Consume,(md,t,n)))) (c3,a5)

(c5) BeginEnd(Demand,(md,t,n)) ➔ ~;-:)JBegin(Consume,(md,t,n))) (c4,RT11)

(c6) BeginEnd(Demand,(md,t,n)) ➔ ~;~~(F5,~;~(End(Consume,(md,t,n)))) (c5,a6)

(c7) BeginEnd(Demand,(md,t,n)) ➔ ~;~~(End(Consume,(md,t,n))) (c6,RT11) •

Page 10.12

•

•

•

•

•

•

•

•

•

•

•

•

Chapter JO : Proofs in PNTL and PNRTL

(c8) BeginEnd(Demand,(md,t,n)) ➔ F;.;~~(X(Produced_Piece(Manuf(t),n)))

(c9) BeginEnd(Demand,(md,t,n)) ➔ F;.;~JProduced_Piece(Manuf(t),n)))

10.4 Conclusion

(c7,i5)

(c8,RT17)

We have presented a way to translate the net information of a PNTL anc} a PNRTL

specification into logical formulae. We have also defined a logical proof system for the two

languages. Proof examples even if obvious, have demonstrated the power of the proof systems.

U sual syntactical proof can be conducted in a natural way .

Page 10.13

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Conclusion

Petri net and temporal logic

The combination of two different styles - declarative and operational - is to our

knowledge an unusual and rather original approach for modeling distributed systems. The

benefits of such combination are twofold. In relation to Petri nets, it becomes now possible to

express various kinds of constraints (e.g. deontic aspects, real-time features); also

specifications are easier to read. In relation to temporal logic, it allows us to include

constraints that are by nature operational (e.g. the presence of a certain resource). Another

original point is the introduction of a preference order on the set of executions. The case study

has illustrated the potentialities of this combination.

The PNRTL language

The language we have proposed in this work provides several advantages. First, the

integration of logical formulae allows to model declarative constraints. Next, we have

developed two proof techniques that ,can support the modeling of distributed systems with

PNTL and PNRTL. The first one maps the Petri net and the constraints that accompany it into

an automaton whose language can then be calculated and for which the testing of properties is

possible. The second one translates the' information held in a Petri net into an axiomatic

I~

'

Conclusion

systems. It is important to see that they both rest on well-known formalisms and are therefore

amenable to automation.

From specification to modeling

The addition of temporal logic formulae to colored Petri nets probably makes proof

possibilities more arduous, but it certainly provides the analyst with a more flexible method in

his/her modeling task. Indeed, if we start from the point of view that temporal logic is aimed

at specifying systems while Petri nets are rather operational and are therefore modeling tools,

it is important to see that the combination of both approaches eases the transition from

specification to modeling and reduces the gap between those two phases in the development

process.

When dealing with any constraint, the analyst often bas the choice to "translate" it either

into additional places and transitions, or into temporal formulae attached to the net. He/she

should first opt for the second possibilty, in order to keep the Petri nets as simple (i.e. easy to

read) as possible. Once the completeness of the specification bas been shown, one can then

progressively make it more operational by translating, one by one, the logic formulae into

semantically equivalent sub-nets. At last, one would obtain a pure Petri net model which

could be tested thanks to some of the numerous simulation tools. existing for Petri nets.

Perspectives

It would be particularily interesting to (semi-)automatize such transformations - or at least

some of them - to accelerate the development process and thereby to decrease its cost.

Furthermore, such (semi)automation would decrease the risk of errors when going from

specification to modeling. One can even think of a CASE tool aimed at helping the analyst in

making the specification operational, for instance by suggesting him/her to replace a. logical

formula by an addition of some places and/or transitions. We could also think of improving

the semantics of our language in order to avoid the - rather annoying - exponents decorating

the real-time operators.

11.2

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

,1,·.'.' ,·

Bibliographical Ref erences

[AALST92]
Van der Aalst W.M.P., "Timed coloured Petri nets and their application to logistic", chl-2,
PhD thesis, Eindhoven University ofTechnology, 1992.

[AHO& ULLMAN93]
Aho Alfred and Ullman Jeffrey, "Concepts fondamentaux de l'informatique", Dunod, Paris,
1993.

[BAC94]
Haféda Bachatène, Une approche Modulaire Intégrant les Réseaux de Petri Colorés pour la
Spécification de Systèmes Distribués, Thèse de doctorat, Université de Paris VI, Septembre
1994.

[BLWW94]
Roger W.H. Bons, Ronald M. Lee, René W. Wagenaar and Clive D. Wrigley, Computer
Aided Design of Inter-organizational Trade Scenarios: A CASE for Open-edi, Report No .
WP 94.03.01, Euridis, Eramus University Rotterdam, The Nederlands, 1994.

[BLWW95]
Bons, Lee, Wagenaar and Wrigley, "Modelling inter-organizational trade procedures using
documentary Petri nets", Proceedings of the Hawaii international conference on system
Scîence, Hawaii, 1995 .

[BMR92]
A Borgida, J. Mylopoulos, and R. Reiter, ... and nothing else changes : the frame problem
in procedure specification. Technical Report DCS-TR-281, Dept of Computer Science,
Rutgers University, 1992 .

[BRAMS83a]
G.W. Brams, "Réseaux de Petri théorie et pratique, tome 1 · théorie et analyse",
MASSON, 1993 .

Bibliographica/ references

[BRAMS83b]
G.W. Brams, "Réseaux de Petri : théorie et pratique, tome 2 : modélisation et application",
MASSON, 1993.

[CHELLAS80]
B.F. Chellas, "Modal logic: An Introduction". Cambridge University Press, 1980.

[DA VIS&WEYUKER83]
Davis Martin D. and Weyuker Elaine J., "Computability, complexity and languages",
chapter 6, Fundamental ofTheoritical Computer Science, New-York, 1983.

[DDDP94a]
Dubois, Du Bois, Dubru and Petit, "Agent-oriented requirements engineering :a case study
using the ALBERT language ", Proceedings of the fourth international working conference
on dynamic modelling and information systems - DYNMOD IV, Noordwijkerhoud, The
N etherlands, 1994.

[DDDP94b]
Dubois, Du Bois, Dubru and Petit, "The ALBERT course, vol 1 : the language", University
ofNamur (Belgium), 1994.

[DDP94c]
Eric Dubois, Philippe Du Bois and Michaël Petit. Albert: an Agent-oriented Language for
Building and Eliciting Requirements for real-Time systems. In Proc. of the 27th Hawaii
International Conference on System Sciences - HICSS-27, Maui (Hawaii), January 1994.
IEEE.

[DDZ95]
Eric Dubois, Philippe Du Bois, Jean-Marc Zeippen, A Formai Requirements Engineering
Method for Real-Time, Concu"ent, and Distributed Systems, in Proceedings of RTS'95,
Paris (France), January 11-13, 1995.

[DIG94]
Frank Dignum (Eindhoven University ofTechnology, Nederlands) and Hans Weigand (Tilburg
University, Nederlands), Communication and Deontic Logic, Report Paper, 01-08-1994.

[DLT91]
Ecrie Dubois, A van Lamsweerde, A Thayse, Approche logique de l'intelligence artificielle
4: De l'apprentissage artificiel aux frontières de l'IA. Dunod Paris, 1991.

[DUBOIS91]
Eric Dubois, Use of Deontic Logic in the Requirements Engineering of Composite Systems,
in ''Deontic Logic in Computer Science, Normative System Specification", John Wiley & Sons
Ltd, 1991.

[DUBOIS94]
Dubois Eric, "ALBERTat the age oftwo", University ofNamur (Belgium), 1994.

[DUBOIS95a]

B.2-

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Bibliographical references

Philippe Du Bois, Intuitive Definition of the Albert II language, Research Paper RP-95-007,
Computer Science Institute, Namur University, Belgium, 1995 .

[DUBOIS95b]
Philippe Du Bois, Semantic Definition of the Albert II Language, Research Paper RP-95-
008, Computer Science Institute, Namt1r University, Belgium, 1995.

(Eil,ENBERG7 4]
Eilenberg Samuel, "Languages and Machines", Volume A, Columbia University, New-York
1974.

[FICHEFET88]
Fichefet Jean, "Introduction aux réseaux de Petri", Notes de cours, University of Namur
(Belgium), 1988.

[GENRICH86]
Genrich H.J., "Predicate transition nets", Lectures notes in Computer Science, vol 254, pp
207-247, 1986. .

[GINZBURG68]
Ginzbuig Abraham, "Algebraic theory of automata", chapter 4, ACM Monograph Series,
Academic Press, New-Yo~k, 1969 .

[GONDRAN&MINOUX79]
Gondran M. and Minoux M. , 11 Graphes et algorithmes", Eyrolles, Paris, 1979.

[Hll.,PINEN71]
R. Hilpinen, Deontic Logic : lntroductory and Systematic Readings, Reidel Publishing
Compagny, 1971.

[JENSEN86]
Jensen K., "Coloured Petri nets", Lectures notes in Computer Science, vol 254, pp 248-300,
1986 .

[JENSEN90]
Jensen K., "Coloured Petri nets : a high level language for system design and analysis 11

,

Lectures notes in Computer Science, vol 486, pp 342-416, 1990.

[KOYMANS89]
R. Koymans, Specifying Message Passing and Time-Critical Systems with Temporal Logic,
Ph.D. Thesis, Eindhoven University ofTechnology, 1989.

[KOYMANS92]
R. Koymans, Specifying Message Passing and Time-Critical Systems, Springer Verlag
Berlin, 1992.

[LEE91]
Lee R.M., "CASE/ED/: ED/ modelling - User documentation", Technical report, Euridis,
University ofRotterdam, 1991.

B.3

Bibliographical references

[LEE92]
Lee R.M., "Dynamic modelling of documentary procedures: a case for EDI", Technical
report, Euridis, University ofRotterdam, 1992.

[MACARTHUR76]
R. MacArthur, "Tense Logic", D. Reidel Publishing Compagny. 1976.

[MAND&GHEZ87]
Mandrioli Dino and Ghezzi Carlo, "Theoritical f oundations of computer science", chapter 1,
John Wiley&Sons, New-York, 1987.

[MANNA&PNUELI84]
Manna Z. and Pnueli A., "Adequate proof principles for invariance and liveness properties
of concu"entprograms", Science ofComputerProgramming, vol 4, pp 257-289, 1984.

[MEYER91]
John-Jules Ch. Meyer and Roel J. Wieriga, "Deontic Logic in Computer Science, Normative
System Specification, part I: Tutorial introduction", John Wiley & Sons Ltd, 1991.

[MP81]
Zohar Manna and Amir Pnueli, Verification of concu"ent programs: the temporal
framework, in "The Correctness Problem in Computer Science", edited by Robert S Boyer
and J Strother Moore, Internaional Lecture Series in Computer Science, 1981.

[MP83a]
Zohar Manna and Amir Pnueli, How to Cook a Temporal Proof System four your Pet
Language, in Proceedings of the Tenth ACM symposium on the Princip/es of Programming
Langitages, pp. 141-154, 1983.

[MP83b]
Z. Manna, A. Pnueli. Verification of Concurrent Programs : A Temporal Proof System, pp.
163-255 in J. Bakker, J. Van Leeuwen (eds.) Foundations of Computer Science IV,
Mathematical center Tracts Vol 159, CWI, Amsterdam, 1983.

[MP92]
Zohar Manna and Amir Pnueli, "The Temporal Logic of Reactive and Concurrent Systems,
Specijication", Springer-Verlag, 1992.

[MURATA89]
Murata T., "Petri nets: properties, analysis and applications", Proceedings of the IEEE, vol
77, No 4, 1989.

[PETERSON81]
James L. Peterson, "Petri net theory and the modeling of systems", Prentice-Hall, 1981.

[PETRI62]

Petri C.A., "Kommunikation mit automaten", PhD dissertation, University of Bonn, West

Germany, 1962.

B.4

•

•

•I
1

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Bibliographica/ references

[PNU 77]
A. Pnueli. The Temporal Logic of Programs, in Proceedings of the Eighteenth Symposium on
the Foundations of Computer Science, pp. 46-57, 1977.

[SALO MAA 73]
Salomaa Arto, "Formai languages", ACM Monograph Series, Academic Press, New-York,
1973 .

[SCS92]
. Cristina Sernadas, José Félix Costa and Amilcar Sernadas, Object Specification Logic,
Departamento de Matematica, Instituto Superior Tecnico, INESC Lisbon Portugal, June 1992.

[SGS92]
Cristina Sernadas, Paula Gouveia and Amilcar Sernadas, OBLOG: Object-oriented, Logic
based Conceptual Modeling, Departamento de Matematica, Instituto Superior Tecnico,
INESC Lisbon Portugal, November 1992.

[SK93]
Amilcar Sernadas and Klemens Bohm, Real-Time Object Specification Logic, Departamento
de Matematica, Instituto Superior Tecnico, INESC Lisbon Portugal, 1993.

[THAYSE89]
Thayse A.&co-auteurs, "Approche logique de l'LA. - 2. De la logique modale à la logique
des bases de données", chapitre 4, Dunod Informatique, 1989.

[TORRE94]
Leendert WN van der Torre, Violated obligations in a defeasible deontic logic, Report paper
No RP 94.08.03, Euridis Erasmus University Rotterdam, 1994. ·

[TRAK&BARZ73]
Trakktenbrot B.H. and Barzdin Y.M., "Finite automata: behavior and synthesis",
Fundamental Studies in Computer Science, North Rolland, 1973.

[TT94a]
Yao-Hua Tan and Leendert W.N. van der Torre, DIODE: Deontic Logic Founded on
Diagnosis From First Principles. RP 94.08.04. Euridis, Erasmus University Rotterdam, 1994.

[TT94b]
Yao-Hua Tan and Leendert W.N. van der Torre. Representing Deontic Reasoning in a
Diagnostic Framework. RP 94.08.05. Euridis, Erasmus University Rotterdam, 1994.

[TT94c]
Yao-Hua Tan and Leendert W.N. van der Torre. Mufti Preference Semantics for a
Defeasible Deontic Logic, in Proceedings of the Seventh International Conference on Legal
Knowledge-Based Systems (JURIX'94). Amsterdam, the Netherlands, 1994.

[TT95]
Yao-Hua Tan and Leendert W.N. van der Torre, Representing Legal Knowlegde in a
Diagnostic Framework, Euridis Erasmus University Rotterdam, 1995 .

B.5

•
Bibliographical references

[WRIGHT51]
von Wright, Georg Henrik, 'Deontic Logic', Mind 60 (1951) 1-15. Reprinted in Logical •
Studies (by G. H. von Wright), Routledge and Kegan Paul, London, 1957, p. 58-74.

*

B.6

•

•

•

•

•

•

•

•

•

•

