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Abstract

Explaining nature’s biodiversity is a key challenge for science. To persist, populations

must be able to grow faster when rare, a feature called negative frequency dependence

and quantified as ‘niche differences’ (N ) in modern coexistence theory. Here, we first

show that available definitions of N differ in how N link to species interactions, are

difficult to interpret, and often apply to specific community types only. We then present

a new definition of N that is intuitive and applicable to a broader set of (modelled and

empirical) communities than is currently the case, filling a main gap in the literature.

GivenN , we also re-define fitness differences (F ) and illustrate howN and F determine

coexistence. Finally, we demonstrate how to apply our definitions to theoretical models

and experimental data, and provide ideas on how they can facilitate comparison and

synthesis in community ecology.
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Introduction

In order to persist through time, species must exhibit frequency dependence popu-

lation growth. Natural communities host a multitude of mechanisms that can lead

to frequency dependence. Well-known examples include resource partitioning (Adler

et al., 2007; Levine & HilleRisLambers, 2009), differential vulnerability to predators (Al-

lan et al., 2010; Carson & Root, 2000; Chesson & Kuang, 2008), differential associations

with mutualists (Johnson & Bronstein, 2019; Siefert et al., 2018), phenological separation

(Usinowicz et al., 2017), or occupation of distinct microhabitats (Silvertown, 2004). These

mechanisms have been collectively coined as stabilizing mechanisms that increase ’niche

differences’ (Chesson, 2000; HilleRisLambers et al., 2012; Letten et al., 2017).

In modern coexistence theory, one way of quantifying the strength of niche differ-

ences is to compare observed population growth with the population growth that is ex-

pected when niche differences would be absent (Adler et al., 2010, 2007; Chesson, 2000,

2003). Without niche differences, one of the species will eventually exclude all others,

where the rate of exclusion depends on the competitive advantage of the winner. This

competitive advantage is often called ’fitness difference’ (Barabás et al., 2018; Chesson,

2000, 2003; Hart et al., 2018). A key question is if niche differences in natural systems

are sufficiently strong to overcome fitness differences and save species from extinction

(Adler et al., 2018; Angert et al., 2009; Connolly et al., 2017; Harris et al., 2017; Hubell,

2001; Narwani et al., 2013; Usinowicz et al., 2017).

3



Niche and fitness differences formalise species persistence in a way that is phe-

nomenological. That is, one does not need to specify the details of the community or its

environment, but rather focuses on higher-level processes, i.e. how species grow under

different circumstances. This feature would in principle allow synthetic studies across

different community types and environmental conditions, with niche and fitness differ-

ences acting as common currency that represent the net outcome of detailed ecological

mechanisms. Such studies are important because they foster a unified understanding of

community composition (Adler et al., 2018) and facilitate studying how environmental

context and community characteristics jointly influence species persistence, which can

help understanding global change effects (Grainger et al., 2019).

At present, however, the application of niche and fitness differences is hampered

by a lack of consensus on their mathematical definition. Indeed, the operationalisation

of these concepts has been discussed for almost a century and new methods are being

constantly proposed (Bimler et al., 2018; Carroll et al., 2011; Chesson, 1990, 2000, 2003;

Hurlbert, 1978; Morisita, 1959; Renkonen, 1938), leading to a proliferation of mathemat-

ical definitions of niche and fitness differences. We identified 10 definitions available

in the literature (appendix A) and found that every single existing definition displays a

number of features that limit its applicability. For instance, most of the definitions only

apply to communities whose dynamics obey a specific mathematical model (Adler et al.,

2007; Bimler et al., 2018; Chesson, 1990; Chesson & Kuang, 2008; Godoy & Levine, 2014;

Saavedra et al., 2017). This means that the applicability of these definitions is limited
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to specific community types. In addition, several definitions cannot be computed for

communities with positive species interactions and/or more than two species. Also, not

all definitions allow inference of coexistence or exclusion, i.e. niche and fitness differ-

ences do not predict whether species will persist or not (Apendix A). Finally, different

definitions assume different ranges for niche and fitness differences, hence we cannot

readily compare results from different authors (Chu & Adler, 2015; Godoy & Levine,

2014; Grainger et al., 2019; Song et al., 2019) (Appendix A).

Here, we first show that available definitions of niche differences do not align with

biological intuition and present a new definition that does. We also derive the cor-

responding definition of fitness differences and coexistence conditions. An important

feature of these new definitions is that they apply to any mathematical model or empir-

ical system driven by any mechanism, with the sole critical requirement that invasion

analysis correctly predicts coexistence (for other requirements see below). The flexibil-

ity of the new definitions allows comparing different community types, containing an

arbitrary number of species and driven by a variety of species interactions, addressing

a key limitation in theoretical ecology. Finally, we illustrate theoretical and experimen-

tal applications of the new definitions. To this end, we apply the definitions to various

models representing a suite of interaction types. We also show how simple growth ex-

periments suffice to quantify niche and fitness differences, using an empirical dataset of

two picocyanobacteria competing for light.
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Theory

A diversity of definitions

To facilitate interpretation and broad application, the definitions for niche and fitness

differences should align with biological intuition. That is, intuition dictates that niche

differentiation facilitates persistence (N increases as species persist more easily). An

intuitive definition of N must satisfy five constraints. First, when intra- and interspe-

cific interactions are of equal size (α = −1 in Fig. 1), individuals of both species are

interchangeable: the effect an individual has on another individual does not depend on

species identity. Thus, N should equal 0 (black triangle in Fig. 1) (Chesson, 1990). Sec-

ond, when interspecific interactions are absent (α = 0 in Fig. 1), each species grows as if

other species are absent. Thus, N should be some predefined non-zero real number that

indicates complete niche differentiation, e.g. 1 (black dot in Fig. 1) (Godoy & Levine,

2014). The third point is the logical consequence of these first two points: intermediate

interspecific interaction strengths should result in N between 0 and 1 (or some other

pre-defined nonzero real number, solid rectangle in Fig. 1). Fourth, when interspecific

interactions are more negative than intraspecific interactions, persistence is ‘harder’ (N

should be smaller) than if species occupied exactly the same niche (N = 0). Conse-

quently, N should be negative (dashed rectangle in Fig. 1), as has been stated before (Ke

& Letten, 2018; Mordecai, 2011). Fifth, when interspecific interactions are positive, e.g.

because of facilitation, the presence of other species makes persistence ‘easier’ (N should
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be greater) than if these other species would have no effect on the focal species (i.e. in-

terspecific interactions are absent, in which case N = 1). Thus, N should inevitably be

greater than 1 (dotted rectangle in Fig. 1) when species interactions are positive.

We found that available definitions of N are unlikely to fulfil the five requirements

outlined here. To show this, we computed N for the annual plant model, a workhorse

of theoretical ecology (Adler et al., 2012, 2010, 2007; Angert et al., 2009; Germain et al.,

2016; Godoy et al., 2014; Levine & HilleRisLambers, 2009) (Fig. 1), using eight of the ten

definitions for niche and fitness differences. The two other definitions cannot be applied

to the annual plant model. All definitions return greater N as species interactions shift

from strongly negative, over weakly negative, to positive. However, different definitions

for niche difference imply a variety of niche difference responses to the strength and sign

of species interactions (Fig. 1). In addition, these definitions do not map these species

interactions to the intuitive niche difference values, as stated above (but see Chesson

(1990); Chesson & Kuang (2008); Godoy & Levine (2014)). We therefore introduce, in the

next section, a new definition that does align with biological intuition.

Defining niche differences based on biological intuition

Here, we first construct a general definition for N that fulfils the five requirements out-

lined in the previous section, and is therefore based on biological intuition. To construct
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a definition of N , we start by considering the per capita growth of a species i

1
Ni

dNi

dt
= fi(Ni, Nj) (1)

where Ni, Nj are the densities of species i and species j (i 6= j) with which i interacts.

fi can be essentially any function that describes the per-capita growth rate of species i.

A discrete system Ni(t + 1) = Ni(t) fi(Ni(t), Nj(t)) can be analysed as well, by taking

the natural logarithm i.e. f ′i (Ni, Nj) = log( fi(Ni(t), Nj(t)) (Chesson, 1994, 2003). As

done mostly in modern coexistence theory (but see Schreiber et al. (2019)), we do not

consider Allee effects (positive density dependence), such that we can assume fi(0, 0) >

fi(Ni, 0): a species grows faster when its density is lower. While this would be technically

possible with the definitions proposed here, interpretation of N will be challenging (see

below). Furthermore, we assume that each species has a stable monoculture equilibrium

denoted N∗i and that the invasion growth rate fi(0, N∗j ) correctly predicts coexistence.

That is, the two species i and j coexist if and only if both species have a positive ‘invasion

growth rate’ ( fi(0, N∗j ) > 0). The invasion growth rate is the growth rate of a species

when it is reduced to low density (≈ 0) and the other species is at its monoculture

equilibrium density. Examples where invasion analysis does not predict coexistence

are found in Barabás et al. (2018) and Schreiber et al. (2019). We only assume a fixed

point equilibrium for notational simplicity, the definitions also apply to a stationary

distribution equilibrium.

When N = 0, inter- and intraspecific interactions are equal. Thus, the identity of the
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individuals does not matter, such that, in eq. 1, fi(Ni, Nj) is equivalent to writing fi(Ni +

Nj, 0) . However, one cannot simply sum species densities. For example, a large tree and

a small forb may draw down the same resource. However, resource consumption of each

individual tree may be much greater than the resource consumption of each individual

forb. Therefore, we must introduce a conversion factor, cj, that translates the density

of a species into a density of the other species, that would consume the same amount

of resources (note that these are not the scaling factors known from modern coexistence

theory (Barabás et al., 2018; Chesson, 1994; Ellner et al., 2019)). However, no mechanistic

understanding of the species interactions is necessary to compute cj. The ecological

interpretation of c is discussed below (Applications).

Hence, the growth of species i can be written as:

N = 0⇒ fi(Ni, Nj) = fi(Ni + cjNj, 0) (2)

When N = 1, interspecific species interactions are absent. Thus, species j has no

effect on species i, and so species i grows as if species j were absent, i.e. we can put the

density of j to zero:

N = 1⇒ fi(Ni, Nj) = fi(Ni, 0) (3)

Equations 1-3 hold for all densities Ni, Nj. However, we will now apply it to obtain

species i’s invasion growth rate, which allows interference about coexistence. This cor-
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responds to choosing Ni ≈ 0 and Nj = N∗j , which is j’s monoculture equilibrium. In this

scenario, eqs. 2 and 3 becomeN = 0⇒ fi(0, N∗j ) = fi(cjN∗j , 0) andN = 1⇒ fi(0, N∗j ) =

fi(0, 0) . Here, fi(0, 0) is the intrinsic growth rate and fi(0, N∗j ) is the invasion growth

rate. For fi(cjN∗j , 0) , we introduce the term no-niche growth rate of species i. This is

the growth rate of species i if there was no niche differentiation, i.e. if N would be 0.

The no-niche growth rate of species i is the growth rate at the converted monoculture

density of its competitor (species j).

The main idea behind the new definitions is to let N fulfil the requirements listed in

the previous section. The simplest way to do so is by writing N as a linear function that

equates to 2 and 3 at the desired growth rates:

Ni =
fi(0, N∗j )− fi(cjN∗j , 0)

fi(0, 0)− fi(cjN∗j , 0)
(4)

This new definition by design fulfils the requirements listed before, which can be seen

when applying it to the annual plant model as done for the existing definitions (Fig. 1).

When species interact negatively and do so more within than between species, Ni is

bounded in [0, 1] (solid rectangle). When interspecific interactions are more negative

than intraspecific interactions, species grow slower when rare ( fi(0, N∗j ) < fi(cjN∗j , 0))

and Ni will be negative (dashed rectangle). When interspecific effects are positive

( fi(0, 0) < fi(0, N∗j )) Ni is larger than 1 (dotted rectangle).

This new definition should be interpreted as follows. The numerator of Ni compares

the growth of species i when only interspecific interactions are present ( fi(0, N∗j ) ) with
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its growth when only intraspecific interactions matter ( fi(cjN∗j , 0) ). Note that in this

last growth rate, cjN∗j denotes a density of species i. Both growth rates are evaluated at

the same total converted density, but at different frequencies of species i, being 0% in

fi(0, N∗j ) and 100% in fi(cjN∗j , 0) . The numerator of Ni therefore effectively measures

frequency dependence of species i’s (Adler et al., 2007; Levine & HilleRisLambers, 2009).

The denominator of Ni, which is always positive and thus does not influence the sign

of Ni, compares the growth of species i when its density is ≈ 0 with its growth when

its density is at the converted equilibrium density of j (cjN∗j ). Thus, the denominator of

Ni measures the strength of species i’s density dependence. Ni therefore measures the

strength of frequency dependence, relative to that of density dependence. According to

this new definition, and unlike almost all other definitions (but see Adler et al. (2007)),

Ni is species-specific and is therefore not a community characteristics. However, Ni does

depend on species j as well, as species j will influence species i’s invasion and no-niche

growth rates (eq. 4). In what follows, we use the subscript i (Ni) only to distinguish

between the niche differences of the species, and use N to refer to niche differences in

general.

Fitness differences and coexistence

The novel definition of N implies a new definition of the fitness difference F . Verbally,

F should represent the per-capita growth rate when both species occupy the same niche,
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i.e. when N = 0 (Adler et al., 2010; Barabás et al., 2018). Therefore

Fi =
fi(cjN∗j , 0)

fi(0, 0)
(5)

Fi ranges from −∞ to 1 (because we assume no Allee effects, i.e. fi(cjN∗j , 0) < fi(0, 0))

and measures how well species i grows in the absence of frequency dependence (no-

niche growth rate, numerator) (Adler et al., 2010, 2007), compared to its intrinsic growth

rate (denominator). When Fi is 0, species i is equally competitive as species j. Otherwise

exactly one species, the competitive dominant, has Fi > 0.

N and F both depend on the intrinsic and the no-niche growth rate. The no-niche

growth rate itself depends implicitly on the invasion growth rate as well (see below eq.

9). In general, changing any underlying parameter will affect both N and F , i.e. they

are interdependent (Song et al., 2019).

Now that we have defined both N and F , we can evaluate when species i can coexist

with species j. Interestingly, normalising the invasion growth rate by the intrinsic growth

rate yields
fi(0,N∗j )
fi(0,0) = Ni + Fi − Ni · Fi (Appendix B). Thus, i can persist within the

community when1:

−Fi <
Ni

1−Ni
(6)

This inequality formalizes the idea that species persist, whenN ”overcome” F . How-

1Assuming that Ni < 1
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ever, the inequality is only meaningful if invasion growth rate correctly predicts coexis-

tence. This inequality yields a number of important insights. First, as for N , also F is

species-specific. Taken together, this shows that the above inequality should therefore be

considered as the condition for species i to persist. Only if all species from a community

fulfil this inequality, species will coexist. Second, the minus sign on the left hand side

shows that a high Fi implies a competitive advantage for species i, which is consistent

with previous insights (Adler et al., 2007; Chesson, 2000, 2003). Third, completely differ-

ent niches are sufficient to overcome arbitrarily large Fi (i.e. N = 1⇒ −F < 1
1−1 = ∞).

Conversely, if species occupy the same niche (i.e. N = 0⇒ −F < 0
1−0 = 0), coexistence

is only possible under neutrality (i.e. Fi = Fj = 0). Fourth, species with negative N

cannot coexist, as species’ growth is positively frequency dependent: species grow faster

when abundant (Ke & Letten, 2018; Mordecai, 2011; Schreiber et al., 2019).

Extension beyond species pairs

The definitions for N and F naturally extend to communities composed of more than

two species, hereafter ‘multispecies communities’. To show this, we generalised the in-

vasion growth rate and the no-niche growth rate to the case of multispecies communities

(for technical details, see Appendix B):
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Ni =
fi(0, N−i,∗)− fi(∑j 6=i cijN

−i,∗
j , 0)

fi(0, 0)− fi(∑j 6=i cijN
−i,∗
j , 0)

(7)

Fi =
fi(∑j 6=i cijN

−i,∗
j , 0)

fi(0, 0)
(8)

Here N−i,∗ is the vector of equilibrium densities in the absence of species i, 0 denotes

the absence of all species other than i, and similar to the definition for species pairs

(eq. 4), cij converts densities of species j into i. These definitions measure the net effect

of species interactions on N and F , i.e. direct, indirect (Godoy et al., 2017) and higher

order effects (Grilli et al., 2017). Importantly, the interpretations given for the two-species

community still apply, i.e. a species can persist if −Fi <
Ni

1−Ni
and the multispecies case

full-fills the five constraints outlined above (Appendix B). These interpretations depend

on (i) invasion analysis is possible and (ii) correctly predicts coexistence (Chesson, 1994,

2000; Turelli, 1978). We acknowledge that, in two-species and especially in multispecies

communities, (i) and (ii) are sometimes not met (Barabás et al., 2018; Saavedra et al.,

2017).
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Applications

Application to community models

A first step in applying eqs. 4 and 5 to a model is the quantification of the factors ci and cj.

The c convert species i to j and vice-versa, and so logically cj · ci = 1. For example, if one

tree influences resource levels ten times more than a forb (ctree = 10), the forb influences

resource levels ten times less than the tree (c f orb = 1/10). After conversion, both species

thus have the same total influence on the environment. In Fig. 2A, we provide an

example of two species consuming common resources. We converted their consumption

rates such that total consumption is the same for both species (Panel B): the white and

the grey area are equal. This example shows that both species now also happen to have

the same proportion of shared limiting factors (1−Ni = light grey region = 1−Nj). We

can therefore find c by solving the equations

1−Ni = 1−Nj (9)

ci · cj = 1 (10)

In Box 1, we illustrate this first step, and the calculation of N and F , for a MacArthur

consumer-resource model. We then convert this model into the well-known Lotka-

Volterra model to express N and F using interaction coefficients. This exercise highlight

the following results. First, while N and F are species-specific, they can be identical be-
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tween species in species pairs competing for shared resources. Indeed, changing i for j

in eq. 19 shows that Ni = Nj. However, they cease to be identical when including more

than two species, as can be seen from Fig. 2C. Indeed, niche overlap, and therefore N , is

species-specific in that case. Second, the new definitions of N and F , when applied to

the Lotka-Volterra model, collapse to the same definitions forN and F previously found

for the same model (Chesson, 1990). This shows that these new definitions, which apply

to any model (for which invasion analysis is possible and useful) still agree with the

definitions found for this particular model. Third, ci carries a biological interpretation:

in the MacArthur model, ci indeed increases with the total influence on limiting factors

(see Fig. 4C,D). Importantly, the conversion factors ci carry different meaning than the

scaling factors known from modern coexistence theory (Barabás et al., 2018; Chesson,

1994; Ellner et al., 2019) (Appendix C).

This last feature is independent of the specific model formulation, i.e. it extends be-

yond the McArthur resource model to any model in which two species interact through

resource consumption, resource consumption stimulates growth, and species consume

higher amounts of resource when resource availability is higher. In appendix D, we

show a mathematical proof that in such a model, increasing the resource consumption

of species i will increase ci, i.e. c is linked to the total resource consumption of a species.

Finding the c when species have positive effects on each other (for example by generat-

ing resources or by limiting the efficacy of a predator) requires additional considerations,

which are discussed in appendix B and D.
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Finally, we apply equations 4 and 5 to examine how the various growth rates under-

lying N and F , as well as N and F itself, change across community types (Fig. 3) mod-

elled using Lotka-Volterra equations (Appendix D). Priority effects occur when interspe-

cific interactions are stronger than intraspecific interactions, i.e. ( fi(0, N∗j ) < fi(cjN∗j )).

Neutrality occurs when N = F = 0 (Adler et al., 2007). Competitive exclusion repre-

sents the well-known case where N are not large enough to compensate for F : only the

competitive dominant persists (Chesson, 2013; Ke & Letten, 2018). For the case of par-

asitism and mutualism, one or both species have an invasion growth rate that is higher

than their intrinsic growth rate, respectively: these species profit from other species and

thus grow better together than alone. Therefore, these species have N > 1. In these

cases, F matter less for persistence (they only indicate the winner when N = 0) because

the coexistence region increases rapidly with N .

Application to experiments

The applicability of the new N and F definitions extends beyond models and can be

used to analyse coexistence empirically. In these experiments, one needs to measure the

various growth rates present in equations 4 and 5 to quantify N and F (Fig. 4). These

experiments also allow estimating the factors ci and cj, giving insight in the species’ total

influence on limiting factors. Importantly, the definitions can be computed directly from

the measured growth rates, without any assumption on the species’ ecology or the need

to fit a model, contrary to many other definitions N and F . This is particularly useful
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since natural communities are typically governed by a multitude of species interactions,

many of which will be unknown (Carrara et al., 2015; Montoya et al., 2006).

To illustrate the application to experimental data, we performed an experiment in

which we measured growth of two picocyanobacteria species competing for light (Fig. 4).

Detailed experimental methods can be found in the appendix E. The two picocyanobac-

teria species contain different pigments (phycocyanobilin and phycoerithrobilin), which

allow them to absorb different wavelengths of light (Fig. 4 C). Because light colour us-

ages of these two species partly overlap, exactly as did resource usage in the MacArthur

model (Fig. 2), we expected that 0 < N < 1 (i.e. species compete). Experiments and

field data have shown that pigmentation differences among picocyanobacteria lead to a

resource (light) partitioning that is sufficiently strong to allow coexistence (Stomp et al.,

2004, 2007a,b). We therefore also expected that −F < N
1−N (i.e. coexistence).

Three growth curves per species suffice to quantify N and F for a two-species com-

munity (Fig. 4). First (Fig. 4A and B, triangles), we grew both species in a monoculture,

starting from low density to obtain the intrinsic growth rate. Second (Fig. 4A and B,

circles), we grew both species in a monoculture starting from a density higher than their

equilibrium density to obtain the no-niche growth rate. In this experiment, the growth

rate at which the density of the focal species reaches that of the converted equilibrium

density of its competitor (cjN∗j ), is the no-niche growth rate. Unfortunately, no-niche

growth rates are very small and not well visible in the experiment. A better represen-

tation of the no-niche growth rates can be found in figure 5. Third (Fig. 4A and B,
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squares), we introduced each of both species into a monoculture at equilibrium of its

competitor to obtain the invasion growth rates. More precisely, we introduced 5% of

the invading species’ equilibrium density (Gallego et al., 2019; Narwani et al., 2013). We

estimated all these growth rates as fi(Ni(t), 0) ≈ log
(

Ni(t+∆t)
Ni(t)

)
/∆t with ∆t = 84 hours.

We then fitted a univariate spline to estimate these growth rates at the various densities.

Finally, we were able to use all these growth rates to solve the equation 9 and thus obtain

ci and cj, as well as N and F . Importantly, the converted equilibrium density at which

the no-niche growth rate is measured is part of the solution to these equations.

The results of the experiment confirmed our expectations: species compete for light

(0 < N < 1 for both species) and coexist (see triangle in Fig. 3). The estimated growth

rates show that both species can grow independently of each other (positive intrinsic

growth rate), and can invade each other’s monoculture (positive invasion growth rate).

Their no-niche growth rate is much smaller than their corresponding intrinsic growth

rates, and slightly negative for species 1 but positive for species 2. This shows that

removing all niche differentiation would lead to the exclusion of species 1, as is also

seen from these species’ fitness differences F (Fig. 3). Finally, we found the conversion

factors ci and cj to match the relative total resource consumption (absorption) of the two

species (figure 4 D). This finding aligns with the theoretical result that the conversion

factors link to the total influence on limiting factors (available resources) and confirms

that these species compete for light. While this experimental procedure is applied to fast

growing communities, this design can be applied to communities with slow growing
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species as well. Any method that allows estimating per-capita growth is sufficient, but

obviously these methods will vary with the considered community. E.g. for annual

plants, one may sow different quantities of seeds, ranging from low to above equilibrium

density, in plots, and measure their growth.

Discussion

In this article, we propose new definitions for N and F that are biologically intuitive

by design. The approach is similar to Carroll et al. (2011) in that it allows computing

N and F from simulations or experimental data, without the knowledge of the under-

lying mechanisms. When applied to the Lotka-Volterra model for competing species,

the definitions collapse to the same mathematical expressions of N and F found before

(Chesson, 1990, 2013), while still being applicable to a large body of community models.

This indicates that there is a potential for these new definitions to unify existing defi-

nitions (Barabás et al., 2018; Carroll et al., 2011; Chesson, 2000; Godoy & Levine, 2014),

while enforcing the connection between theory and biological intuition (Adler et al., 2010,

2007; HilleRisLambers et al., 2012).

Specificities and limitations

N and F , as defined in this paper, differ from other definitions of niche and fitness

differences. Most notably, the proposed definitions are not based on specific mathemat-

ical models, apply to communities with positive species interactions and/or more than
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two species, and allow inference of coexistence or exclusion. Thus, the new definitions

notably extend modern coexistence theory based on invasion analyses. The structural

approach of Saavedra et al. (2017) is the only definition for niche and fitness differences

which can analyse communities that are outside of the scope of this new definition, as it

does not depend on invasion analysis. They define N and F for a community in which

the equilibrium point of the community can be described as r = αN∗, where α is a n

by n matrix containing the species interactions and r is a vector containing the intrinsic

growth rates (or equivalent), which may be subject to additional constraints (Song et al.,

2018). Finally, there are still communities that are beyond the reach of all definitions

for N and F , including the newly proposed definitions: multispecies communities with

non-linear interspecific species interactions (therefore excluding the approach of Saave-

dra et al. (2017), but see (Cenci & Saavedra, 2018), and not allowing invasion analysis

(therefore excluding the approaches of Carmel et al. (2017); Carroll et al. (2011); Chesson

(2003) and the definitions proposed here).

The reliance on invasion analysis is a first limitation of the proposed definitions,

as it is for many other definitions (Carmel et al., 2017; Carroll et al., 2011; Chesson,

2003; Zhao et al., 2016). This reliance means that one should be able to compute the

invasion growth rate for each species and that the invasion growth rates correctly predict

coexistence. This can limit the applicability of the definitions in two ways. First, there

will be communities in which invasion analysis does not correctly predict coexistence

(Barabás et al., 2018). An example is the annual plant model combined with positive
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frequency dependency proposed by Schreiber et al. (2019). Species in this community

never have a positive invasion growth rate, but there may be a feasible and stable two-

species equilibrium point (Schreiber et al., 2019). Second, invasion analysis requires that

all species within each S-1 subcommunity (the community without the invading species)

stably co-exist. A well-known counter example is the rock-paper-scissors community, in

which the whole community can coexist, while each two-species subcommunity is not

stable (Grilli et al., 2017). While these two assumptions will be met for most two-species

communities, we expect they will be increasingly violated as communities contain more

species (Saavedra et al., 2017).

A second limitation of the new definitions is the difficulty of interpretation that arises

in communities with Allee effects. The proof that the ci have a unique solution demands

Allee effects to be absent (see Appendix B). Consequently, Allee effects imply that species

may have multipleN and F . This highlights the meaning of Allee effects: species change

their dependence on limiting factors with their density. While the new definitions do

allow computing these multiple N and F , it is at present not clear how to interpret

them.

The need for new definitions

With already ten definitions at hand, one may ask why we need new definitions for

niche and fitness differences. We identify at least two reasons. A first reason deals with

the complexity of many community models. Many approaches to compute niche and
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fitness differences first fit a community model to empirical data and then perform maths

to link the model to N and F (Bimler et al., 2018; Chesson, 1990; Godoy & Levine, 2014;

Saavedra et al., 2017). One challenge is that these maths are often non-trivial (e.g. Carmel

et al. (2017); Godoy & Levine (2014); Saavedra et al. (2017)) and one needs to resort into

simplifying the community model (Godoy & Levine, 2014; Letten et al., 2017). This may

lead to the omission of mechanisms contributing toN (Chu & Adler, 2015). For example,

niche partitioning could arise at different life stages of a species (Moll & Brown, 2008),

or through its interactions with resources (Chesson, 1990), predators (Chesson & Kuang,

2008) or mutualists (Johnson & Bronstein, 2019) and will be affected by environmental

change (Rey et al., 2017; Wainwright et al., 2018). An important advantage of the defi-

nitions is that they do not require analytical solutions of a community model or even a

community model at all: one can simply simulate or perform the experiments described

in the section ”Application to experiments” and measure the resulting growth rates to

compute N and F . Thus, the model or experimental community can be used in its full

complexity, capturing all mechanisms potentially contributing to N and F .

A second reason is that the analysis of communities with non-competitive interac-

tions (e.g. mutualistic and parasitism, Fig. 1) and multiple species (eq. 7) is urgently

needed. Indeed, such communities have often been analysed in a suboptimal way. For

example Narwani et al. (2017) tested whether closely related fresh water green algae are

more likely to coexist due to higher niche differentiation. However, N could not be

computed when species interactions were positive. Similarly, in a meta-analysis on ter-
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restrial plants, Adler et al. (2018) were not able to compute N for one third of the data,

as they contained positive interactions. Chu & Adler (2015) measured N and F in an

age structured model for perennial plants fitted to long-term demographic data, Petry

et al. (2018) measured the effects of ant consumption on N and F and Veresoglou et al.

(2018) reanalysed data from the ”BIODEPTH” grassland biodiversity experiment. While

these studies do report computed N and F for multispecies communities, the interpre-

tation of these variables is difficult, as they do not predict coexistence in multispecies

communities.

New insights and outstanding questions

Historically, N measured the proportion of resources not shared by two species (Hurl-

bert, 1978). Being a proportion, N was bound between 0 and 1 (Godoy & Levine, 2014).

Linking a mechanistic (resource uptake) model to the Lotka-Volterra model (Chesson,

1990; MacArthur, 1970) was a key step in exploring N beyond the traditional range

[0, 1]. Recent research interpreted negative N as a sign that interspecific interactions are

stronger than intraspecific interactions, leading to priority effects (Grainger et al., 2019;

Ke & Letten, 2018). The interpretation that N greater than 1 imply positive interspecific

interactions is a logical next step. Our results show that this interpretation is correct

when both species have symmetric positive effects on each other, but also that species

benefiting from other species (e.g. parasitism in Fig. 3) would have N > 1.

The results suggest that N and F are species-specific properties. While this idea has
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already been introduced by Adler et al. (2007), virtually all other definitions consider N

a community property. This likely stems from the fact that most definitions focus on

two species communities with competitive interactions, in which case niche differences

are the proportion of shared resources, which is the same for both species (see Fig. 2

A, light grey area). Therefore, in this particular case, the two species have the same N ,

leading to the impression that N is a community property.

The results spur three outstanding questions on species coexistence. A first question

deals with the variable c, that we found increases with the total influence on limiting

factors, both for a class of resource competition models and empirically. However, our

mechanistic understanding of these factors is absent for models beyond the ones consid-

ered here, notably in systems not driven by resource competition. Most notably, we do

not know how the c relate to the presence of limiting factors that have negative effects

on per-capita growth. A second outstanding question deals with the location of species

from complex communities on the N and F plane from Fig. 3. While these positions

may be trivial in some two-species communities, they will not be in large complex net-

works with a high number of indirect effects, possibly leading to surprising conclusions

regarding the contribution of stabilizing and equalizing forces to persistence. A third

question deals with the extended applicability the new definitions offer to modern co-

existence theory (as long as invasion analysis is possible and useful). This applicability

would allow asking how N or F compare across community types, mechanisms, and

environments. Thus, the new definitions enable cross-community comparisons in a way
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that at present is not possible. One could, for example, examine how species from dif-

ferent community types position in Fig.3, to ask if community types that are thought

to harbour a more diverse set of mechanisms fostering coexistence (e.g. annual plants)

distinguish from community types that appear to have little possibilities for niche differ-

entiation (e.g. phytoplankton (Hutchinson, 1959)).

Within a community type (e.g. phytoplankton), one could compare the stabilizing

effect of various mechanisms. For example, we found N and F to indicate coexistence

in a classic example of a community driven by partitioning of the light spectrum through

phenotypic differences (i.e. pigmentation, see Fig. 3) (Stomp et al., 2004). How does the

stabilizing strength of these phenotypic differences (driving N ) compare to the strength

of other relevant mechanisms (e.g. competition for mineral nutrients, allelopathy)? One

could also examine how environmental changes that alter the sign of species interactions

(Olsen et al., 2016) impact the persistence, since the proposed definitions accommodate

various interaction types.

Such comparisons are useful only if comparing invasion growth rates between com-

munities is meaningful. Recently Grainger et al. (2019) proposed the invasion growth

rates has a common currency for ecological research, Schreiber et al. (2018) confirm this

idea with simulations. On the other hand Pande et al. (2019) have shown that two com-

munities with identical invasion growth rates do not have the same probability of in-

vasion. Rather they proposed to compare the invasion growth rates scaled with the

strength of stochastic fluctuations g. Similarly we propose to compare the invasion
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growth rates scaled with the monoculture growth rates (eq. 6), future work will show

which metric serves best as a common currency.

In conclusion, our results offer a new perspective on two concepts that underpin

biodiversity science, and foster an intuitive biological interpretation of how similarities

and differences among species map to the persistence of species (Fig. 1). The developed

theory is applicable to a variety of ecological communities, regardless of community

complexity, and without the need of mathematical skills (Ellner et al., 2019), for any sys-

tem in which invasion analysis is possible and correctly determines coexistence. The fact

that all these communities can be analysed with one approach is a major step forward.

Taken together, the novel definitions of N and F we present here promote conceptual

unification and facilitate empirical research in community ecology and biodiversity sci-

ence.

Supplementary Information

An automated code that will computeN and F for any given ecological model or experi-

mental data is available. The code is available in Python and in R on https://github.com/juergspaak/NFD definitions.
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Käferwelt der finnischen Bruchmoore. Societas zoologica-botanica Fennica Vanamo.

Rey, P.J., Manzaneda, A.J. & Alc, J.M. (2017). The interplay between aridity and com-

petition determines colonization ability , exclusion and ecological segregation in the

heteroploid Brachypodium distachyon species complex. pp. 85–96.

Saavedra, S., Rohr, R.P., Bascompte, J., Godoy, O., Kraft, N.J. & Levine, J.M. (2017). A

structural approach for understanding multispecies coexistence. Ecological Monographs,

87, 470–486.

Schreiber, S., Levine, J.M., Godoy, O., Kraft, N. & Hart, S. (2018). Does deterministic

coexistence theory matter in a finite world? Insights from serpentine annual plants.

bioRxiv, p. 290882.

34



Schreiber, S.J., Yamamichi, M. & Strauss, S.Y. (2019). When rarity has costs : coexistence

under positive frequency-dependence and environmental stochasticity. Ecology, 100,

1–28.

Siefert, A., Zillig, K.W., Friesen, M.L. & Strauss, S.Y. (2018). Mutualists Stabilize the

Coexistence of Congeneric Legumes. The American Naturalist, 193, 200–212.

Silvertown, J. (2004). Plant coexistence and the niche. Trends in Ecology and Evolution, 19,

605–611.

Song, C., Barabás, G. & Saavedra, S. (2019). On the consequences of the interdependence

of stabilizing and equalizing mechanisms. The American Naturalist, pp. 000–000.

Song, C., Rohr, R.P. & Saavedra, S. (2018). A guideline to study the feasibility domain of

multi-trophic and changing ecological communities. Journal of Theoretical Biology, 450,

30–36.

Stomp, M., Huisman, J., De Jongh, F., Veraart, A.J., Gerla, D., Rijkeboer, M., Ibelings,

B.W., Wollenzien, U.I. & Stal, L.J. (2004). Adaptive divergence in pigment composition

promotes phytoplankton biodiversity. Nature, 432, 104–107.

Stomp, M., Huisman, J., Stal, L.J. & Matthijs, H.C. (2007a). Colorful niches of pho-

totrophic microorganisms shaped by vibrations of the water molecule. ISME Journal,

1, 271–282.

Stomp, M., Huisman, J., Vörös, L., Pick, F.R., Laamanen, M., Haverkamp, T. & Stal, L.J.

35



(2007b). Colourful coexistence of red and green picocyanobacteria in lakes and seas.

Ecology Letters, 10, 290–298.

Turelli, M. (1978). Does environmental variability limit niche overlap? Proceedings of the

National Academy of Sciences of the United States of America, 75, 5085–9.

Usinowicz, J., Chang-Yang, C.H., Chen, Y.Y., Clark, J.S., Fletcher, C., Garwood, N.C., Hao,

Z., Johnstone, J., Lin, Y., Metz, M.R., Masaki, T., Nakashizuka, T., Sun, I.F., Valencia,

R., Wang, Y., Zimmerman, J.K., Ives, A.R. & Wright, S.J. (2017). Temporal coexistence

mechanisms contribute to the latitudinal gradient in forest diversity. Nature, 550, 105–

108.

Veresoglou, S.D., Rillig, M.C. & Johnson, D. (2018). Responsiveness of plants to mycor-

rhiza regulates coexistence. Journal of Ecology, 106, 1864–1875.

Wainwright, C.E., HilleRisLambers, J., Lai, H.R., Loy, X. & Mayfield, M.M. (2018). Dis-

tinct responses of niche and fitness differences to water availability underlie variable

coexistence outcomes in semi-arid annual plant communities. Journal of Ecology, pp.

1–14.

Zhao, L., Zhang, Q.G. & Zhang, D.Y. (2016). Evolution alters ecological mechanisms of

coexistence in experimental microcosms. Functional Ecology, 30, 1440–1446.

36



�,�
�#(�&'%��������#(�&��(�$#��α�

�

�

�
��
��
��
���
�&
�#
��
�(

)

%$'�(�)�
#���(�)��

*�� �&�(��#
�#(&�'%������

#���(�)��
'(&$#��&�(��#
�#(&�'%������

���''$#�����	�
��&&$!!��(��!��������
���$��(��!��������
�$�$+�����)�#������
�
���)��&���(��!��������
��!�&��(��!��������
��&"�!��(��!��������
��"!�&��(��!������
�
�%�� ���������#��&

Figure 1: The modelled response of niche differences (N ) to the interspecific interaction

strength α between two annual plants differs among available definitions. The black

triangle indicates where inter- and intraspecific interactions are equal (α = −1), and so

species occupy the same niche, meaning that N should be 0. Communities with stronger

interspecific interactions must have N < 0 (dashed rectangle). The black dot indicates

where species do not interact (α = 0), and so species have completely different niches,

meaning N should be 1. Consequently, communities in which interspecific interactions

are positive (α > 0) should have N larger than 1 (dotted rectangle). Finally, for all

communities where −1 ≤ α ≤ 0, N must have intermediate values (0 ≤ N ≤ 1, solid

rectangle). The new definition proposed here (red), which is applicable to a wide variety

of models and experimental data (i.e. not only the annual plant model), complies with

this biological intuition. Parameter values, a plot for the corresponding fitness differ-

ences (F ), and mathematical expressions of the N and F definitions are in the appendix
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Figure 2: Influence on limiting factors (here, resources) for a two (A, B) and a three (C)

species community. In the two-species community (A) the two species do not have the

same total influence on the limiting factors, therefore the amount of shared resources

is different (1 − Ni =
light grey area

white area 6= light grey area
grey area = 1 − Nj). The conversion factors

ci = white area
grey area are chosen such that the two species have the same converted effect on

limiting factors (B). The two species then also have the same amount of shared resources.

This is, however, not the case in a multispecies community (C) (Adler et al., 2007), where

the amount of shared resources is smaller for the black species than for the white species,

even though they all consume the same total amount of resources. We therefore expect

Nblack 6= Nwhite.
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Figure 3: Example computation of N and F for common two-species communities. A

and B show the distribution of N and F for species i and species j respectively, where

color codes refer to different communities (see legend). 1-5 are communities simulated

with Lotka-Volterra models, while ‘experiment’ refers to the performed experiment (Fig.

4). Species in the grey area have a positive invasion growth rate, i.e. they persist. If both

species have positive invasion growth rates the species are assumed to coexist (Barabás

et al., 2018; Chesson, 2000). C and D compares the invasion and the no-niche growth

rate to the intrinsic growth rate (shown by the vertical full line). This comparison gives

qualitative insight (e.g. the sign) on N and F .
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Figure 4: We measured N and F for two marine cyanobacteria species from the genus

Synechococcus, sampled in the Baltic sea (Stomp et al., 2004). A and B: Population growth

in the different experiments with different starting conditions. Fitted lines are obtained

by interpolating growth rates, importantly to computeN and F one does not have to fit a

community model through the measured densities. The arrows indicate the growth rates

we measured to quantify N and F . Error bars (grey) show one standard deviation (3

replicates). C: The two species have different absorption spectra and therefore partition

light usage. A spectrum of the incoming light intensity can be found in Appendix E. D:

The experiment confirms that the species compete and coexist, as the invasion growth

rate is positive, but smaller than the intrinsic growth rate. The conversion factor c is very

similar to the relative total absorption of the two species, confirming the theory (see eq.

14). An automated code to compute N and F from such experimental data can be found

on https://github.com/juergspaak/NFD definitions.
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Figure 5: We simulated the experiments from figure 4 for community c from figure 3.

Figure 4 suggests that N∗i , N∗j , cjN∗j and ciN∗i are all close to each other, here they are

all distinct values. For exactly one species, the competitive inferior (here species 2), we

have cjN∗j > N∗i , for the other species (here species 1) we have ciN∗i < N∗j . For this

species the second experiment (dotted black line) is not necessary to compute N and

F , as the no-niche growth rate can be estimated from experiment one (dashed arrow,

dashed black line). However, in general one will not know in advance for which species

experiment two is unnecessary.
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Box 1: N and F for the MacArthur and Lotka-Volterra model

Consider a community of two species whose dynamics follow (MacArthur, 1970)

1
Ni

dNi

dt
=

m

∑
l=1

uilRl −mi (11)

1
Rl

dRl
dt

= Kl − Rl −
2

∑
i=1

uil Ni (12)

Where uil is the rate at which species i consumes resource l, Rl is the density of

resource l, mi is the loss rate and Kl is the resource’s carrying capacity. We assume

that the resource dynamics are faster than the dynamics of the consumers, such that

Rl is always at equilibrium. In that case, the model simplifies to (MacArthur, 1970):

1
Ni

dNi

dt
=

m

∑
l=1

uilKl −mi −
m

∑
l=1

uilujl Nj −
m

∑
l=1

u2
il Ni (13)

Solving equations 9 and 10 yields (appendix C)

ci =

√√√√∑m
l=1 u2

il

∑m
l=1 u2

jl
(14)

Thus, c indeed captures the species’ total influence on limiting factors (see Fig. 4
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C,D). Replacing c’s into the growth rates, one obtains (Appendix D):

N∗j =
∑m

l=1 ujlKl −mj

∑m
l=1 ujlujl

(15)

fi(0, 0) =
m

∑
l=1

uilKl −mi (16)

fi(0, N∗j ) =
m

∑
l=1

uilKl −mi −
m

∑
l=1

uilujl
∑m

l=1 ujlKl −mj

∑m
l=1 u2

jl
(17)

fi(cjN∗j , 0) =
m

∑
l=1

uilKl −mi −

√√√√∑m
l=1 u2

il

∑m
l=1 u2

jl

(
m

∑
l=1

ujlKl −mj

)
(18)

Finally, replacing these into eqs. 4 and 5, one obtains (Appendix D):

Ni = 1−
∑m

l=1 uilujl√
∑m

l=1 u2
il ∑m

l=1 u2
jl

(19)

Fi = 1−
∑m

l=1 ujlKl −mj

∑m
l=1 uilKl −mi

√√√√∑m
l=1 u2

il

∑m
l=1 u2

jl
(20)

We now note that eq. 13 is equivalent to the Lotka-Volterra model ( 1
Ni

dNi
dt =

µi − αiiNi − αijNj), where µi = ∑m
l=1 uilKl − mi, αii = ∑m

l=1 u2
il, and αij = ∑m

l=1 uilujl

are the intrinsic growth rate, the intraspecific interaction strength, and interspecific

interaction strength, respectively. Plugging these expressions in eqs. 4 and 5 recovers

the well known equations for N and F in the Lotka-Volterra model (Chesson, 1990,
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2000, 2013):

Ni = 1−
√

αijαji

αiiαjj
(21)

Fi = 1−
µj

µi

√
ajiaii

ajjaij
(22)

44


