
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

Schema Evolution in Hybrid Databases Systems

Gobert, Maxime

Published in:
[Provisoire] Proceedings of the 46th International Conference on Very Large Data Bases (VLDB 2020)

Publication date:
2020

Link to publication
Citation for pulished version (HARVARD):
Gobert, M 2020, Schema Evolution in Hybrid Databases Systems. in [Provisoire] Proceedings of the 46th
International Conference on Very Large Data Bases (VLDB 2020): PhD workshop track. ACM Press.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. Mar. 2024

https://researchportal.unamur.be/en/publications/b4447ac2-7322-401b-8b5b-2d42f385d416

Supporting Schema Evolution in Hybrid Database Systems

Maxime Gobert
University of Namur, Belgium

Supervised by Anthony Cleve

maxime.gobert@unamur.be

ABSTRACT
Relational database management systems (RDBMS) and
NoSQL database systems have been built in order to meet
different requirements. Organisations are therefore increas-
ingly using hybrid data persistence architectures, that we
call hybrid database systems or hybrid polystores. The evolu-
tion of such systems is more complex as NoSQL technologies
imply new challenges such as handling data heterogeneity.
Existing work on NoSQL database evolution exposes the
different problems regarding data heterogeneity and mainly
provide technology-specific solutions. In this PhD research
we propose to apply a schema engineering approach to han-
dle hybrid database system evolution at a conceptual level.
Our starting point is an existing unified conceptual data
model for hybrid databases. Our thesis objectives include
(1) to enrich this conceptual data model with generic schema
evolution operators, (2) to specify the semantics of those
operators depending on the underlying data models, (3) to
design a generic evolution framework and (4) to develop its
proof-of-concept implementation. Our approach will help to
propagate conceptual schema changes to all impacted soft-
ware artefacts, namely native data structures, database con-
tents, queries and programs.

PVLDB Reference Format:
Maxime Gobert. Schema Evolution in Hybrid Databases Sys-
tems. PVLDB, 12(xxx): xxxx-yyyy, 2020.
DOI: https://doi.org/10.14778/xxxxxxx.xxxxxxx

1. RESEARCH CONTEXT
Database evolution in a hybrid database system involves

the joint modification of multiple software artefacts and het-
erogeneous data models. It is therefore error prone and lead
to database inconsistencies or to failures in the application
programs relying on them. In such a context, there is a
significant gap between the ideal solution and the current
situation faced by database administrators and software de-
velopers. Below, we present the different challenges to ad-
dress nowadays when evolving a hybrid database system.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. xxx
ISSN 2150-8097.
DOI: https://doi.org/10.14778/xxxxxxx.xxxxxxx

In the current situation the developer is left alone in the
evolution process. Developers have first to identify which
system artefacts are impacted by the considered schema evo-
lution scenario, and how to propagate the schema evolution
operations in terms of data migration, native data structure
changes and query adaptations. Let us consider an indus-
trial hybrid data-intensive system made up of several ap-
plication programs that jointly access a document-oriented
database, a relational database and a key-value store. Let
us assume a simple schema evolution scenario: changing the
name of an attribute in an entity type called products. This
change would possibly require the adaptation of the native
database structures (if the products are stored in a rela-
tional database), of the database contents (if the products
are stored as a document database collection). It would also
involve the rewriting of all queries manipulating the prod-
ucts with an explicit reference to the renamed attribute.
Furthermore, some programs may also access the products
via mapped data access objects or have some programming
logic relying on the renamed attribute. The related code
fragments would therefore also require some adaptations.
The context of hybrid database system adds another layer of
difficulty, as in the above scenario we could imagine that the
products are stored both in the document-oriented database
and in a relational database, i.e., with some (partial) over-
lapping between both data stores.

We can see, already through a simple evolution scenario,
that schema evolution in a hybrid database system may
prove complex, time-consuming and error-prone for database
administrators and developers, as multiple and heteroge-
neous software artefacts have to be consistently modified.

We argue that this evolution process would be easier to
handle by means of an integrated evolution framework, that
would define generic hybrid schema evolution operations.
Those evolution operations should be expressed on top of a
unified, conceptual data model, covering multiple heteroge-
neous data modeling paradigms. Then the propagation op-
erations, to be applied on the underlying native database(s)
and to the related software artefacts (data, queries, pro-
grams) would be automatically supported, when needed and
possible, by the framework.

We identify the following research questions that we will
try to answer during this PhD research:
RQ 1. How can we specify generic schema evolution
operators for hybrid database systems?
In this question we try to identify which conceptual schema
evolution operators are needed to evolve a hybrid database
system.

1

RQ 2. How can we design an evolution framework
propagating such evolution operations to all impacted
software artefacts? An evolution operator may have mul-
tiple impacts on several artefacts of the system. This ques-
tion will establish a generic impact matrix that specifies
atomic, paradigm-specific propagating changes to apply de-
pending on the mapping between the conceptual data model
and the native backends.
RQ 3. To what extent can this framework actually
help users in evolving hybrid database systems? We
plan to develop a proof-of concept implementation of our
framework and to evaluate, in realistic conditions, its us-
ability, completeness, correctness, and fitness-for-use.

2. STATE OF THE ART

NoSQL data models and design
NoSQL systems can be grouped into four main different data
models, each having its specific requirements and advan-
tages. We can cite key value stores, document databases,
column databases or graph databases and reference Hecht
and Jablonski [6] for further details on their data models.

NoSQL data models are mostly considered as schema-less
models as they are oriented towards flexibility. However
Sadalage et al. [12] argue that there is always a schema that
consists of the assumptions made on the data in the applica-
tion code. Therefore poor design decisions may significantly
affect scalability, performance and data consistency.

Several authors have proposed a generic model combin-
ing heterogeneous NoSQL data models. Atzeni et al. [2]
introduced NoAM (NoSQL Abstract Model), an abstract
data model for NoSQL databases, which exploits the com-
monalities of various NoSQL data models. Database design
is based on aggregate identification and partitioning, en-
tity per aggregate object, entity per atomic value and entry
per top level field are identified as specific modeling strate-
gies that can apply to heterogeneous data models. Another
proposal by Abdelhedi et al. [1] relies on a model-driven ap-
proach, where transformation rules expressed on a concep-
tual database schema are used create NoSQL (specifically a
column-oriented) logical and physical schemas.

Our work relies on a unified modeling language for hybrid
polystores called TyphonML [21]. TyphonML combines re-
lational model and NoSQL data models. It allows users to
define the conceptual entities that the hybrid polystore has
to manage, and to specify how those entities have to be
actually stored in terms of native databases. This model
constitutes the starting point of our evolution framework as
we extend it with evolution operators.

Database evolution & migration
Curino et al. [4] developed an automatically-supported ap-
proach to relational database schema evolution, called the
PRISM framework. They specified Schema Modification
Operators representing atomic schema changes, and they
link each of these operators with native modification func-
tions for both data and queries. Our work aims at develop-
ing a similar evolution framework, but designed for hybrid
database systems, relying on several different relational and
NoSQL technologies.

Database evolution according to Cleve et al.[3] is clas-
sified according to three dimensions: The structural, the

semantic and the language/platform dimension. The plat-
form dimension characterises intra-paradigm database evo-
lution and inter-paradigm database evolution. This reflects
the fact that the evolution scenario may involve, or not, the
migration of the data towards another data model. Inter-
paradigm database evolution, a.k.a. database migration,
has been widely studied. Some approaches [9, 23, 22] rely
an intermediary model to migrate data from relational to
NoSQL data models, while other ones [8, 11, 18] follow di-
rect one-to-one mapping migration strategies. Our approach
will reuse some of those migration techniques in order to al-
low users to easily migrate from one platform to another.

NoSQL database evolution
Existing research on NoSQL database evolution is more re-
cent, yet several related problems have already been ex-
plored. Some approaches are dedicated to how to specify
and formalize NoSQL database evolution, i.e, NotaQL [17].
Other authors focus on data heterogeneity problems, caused
by the co-existence of multiple data versions in the same sys-
tem [15]. Data migration research is targeted on how data
can be migrated to another representation, with a wide spec-
trum of solution such as lazy, eager or predictive data migra-
tion [20, 16, 7], intermediary tools [5, 13, 14], intermediary
language or even Object NoSQL mappers [19, 10].

3. EVOLUTION FRAMEWORK
The core expected contribution of our PhD thesis is a

generic framework for supporting schema evolution in hy-
brid database systems. We further describe this framework
below.
Inputs MSource, represents the hybrid database schema at
both conceptual and logical levels. {EO} is a set of schema
evolution operators to apply to MSource. {DBSource} is
the set of source native data structures and data instances.
{QSource} is the set of existing queries expressed on MSource.
Outputs MTarget is the source model adapted according to
the evolution operators in {EO}. {DBTarget} represents
the set of database structures and instances adapted ac-
cording to those operators. {QTarget} gives, when possible,
equivalent queries as {QSource}, but expressed on MTarget .
{DAO} is a set of basic database access classes on specific
drivers.

Figure 1 summarizes the different components of our frame-
work. The rest of this section will further detail each of those
components.

Figure 1: Evolution Framework

2

Unified Conceptual Model (1)
Our approach starts from a data model that allows one to
design hybrid polystore systems. The design principles de-
scribed in this section can be applied to any model and sev-
eral were listed above in Section 2. In our work we used the
Typhon Modeling Language (TyphonML) developed by one
of our research partners of the Typhon project (see Section
5). This model have to be further extended to allow users
to trigger the execution of evolution operations.

Evolution Operators (2)
The first step of our PhD thesis was to define and specify
the evolution operations that a user can apply to the hybrid
polystore data model. Those operations are the entry point
of the whole evolution process and help keeping the software
artefacts of the hybrid polystore consistent with each other.

An Evolution Operator (EO) is a combination of a do-
main model object and an evolution operation. The domain
model object can be either entity type, attribute, relation-
ship, or identifier. The available evolution operations span
from simple changes, manipulating a single domain object
add, remove, rename, modify to more complex ones such as
horizontal split, vertical split, merge, or migrate.

Figure 2 gives an example list of EOs, that can be ex-
pressed in our extended data model syntax.

evolutionOperators [
add attribute rating : int to Review ,
add relation responses to Review -> Comment [0..*] ,
merge entities User CreditCard as User

]

Figure 2: Example of evolution operators expressed
within the TyphonML unified model

Impact Matrix EO (3)
The impact matrix is the central point of our framework as
it defines the atomic operations that need be applied to ac-
tually propagate the polystore schema evolution operators
to related software artefacts. The rows of the matrix cor-
respond to the available Evolution Operators. The columns
of the matrix then characterize each of the operators ac-
cording to several dimensions; each influencing the propa-
gating operations that should be applied. The first dimen-
sion specifies the underlying data models of the object(s)
subject to evolution. The possible values of this dimension
include relational, document, key-value or graph databases.
The second dimension concerns the chosen modeling strat-
egy 1. The third dimension relates to the chosen data migra-
tion strategy 1. Each cell of the impact matrix specifies the
set of atomic, paradigm-specific operations to apply to the
polystore artefacts (native structures, data, queries, etc.),
in order to propagate the requested EOs according to the
dimensions’ values.

Atomic Evolution Operations (4)
The set of atomic operations will be an exhaustive list of
function specifications. Their goal is to enable the actual
transformation required to propagate the desired schema

1As explained in Section 2.

evolution. They are classified into four categories, depend-
ing on which software artefacts are involved.

Unified conceptual schema change
As we want to keep the polystore conceptual model and the
related polystore artefacts consistent with each other, each
evolution scenario has to be triggered by means of a list
of evolution operators expressed on top of the conceptual
polystore schema. Our framework first applies the changes
specified in the EOs to the source conceptual schema and
produces the target conceptual schema. The supported EOs
include the addition, deletion, and modification of entity
types, attributes, relationship types and conceptual-to-logical
mappings.

Propagation to native data structures
According to the underlying logical mappings some EOs re-
quire the adaptation of the native data structures that are
mapped with the conceptual schema objects subject to evo-
lution. This adaptation, in the case of a relational database,
translates as SQL DDL commands, for example create ta-
ble, alter table, create index, add constraint,. . . . Equivalent
structure manipulation for NoSQL data models include cre-
ate collection, create index for document data model, create
table, create column family for column databases. Key value
and graph data models are pure data and do not have equiv-
alent structure objects. Note that in our work we have not
planned to take into account the specific physical aspects of
NoSQL databases, meaning that we do not plan to handle
the physical storage of data and cloud computing aspects.

Propagation to data instances
The propagation of EOs to data instances aims at trans-
forming/migrating the data in order to make them comply
with the target polystore data model/paradigm. As an ex-
ample, a possible strategy (EAO 1) to represent a relation-
ship between two conceptual entities in a document-oriented
database is to use two specific collections, one for each entity
type. The source entity of the relationship will then have
a reference attribute referring to the identifier of the other
collection. In this case, renaming an attribute of the target
entity type would necessitate to rename the corresponding
attribute for each data object in the target collection. An-
other native representation strategy (ETF 1) of the same
conceptual model would consist in using a single document
collection, with each data object including the referenced
data object as a nested object. The same renaming oper-
ation would, instead, require the adaptation of the nested
objects.

Propagation to database queries and programs
EO operations may also require the adaptation of some
existing database queries, that would become invalid due
to the applied polystore schema changes. Depending on
the semantics-preserving nature of each EO involved in the
scenario, it will be possible or not to translate the source
database queries into equivalent queries expressed on the
target polystore schema, using rule based transformations.
Simple Data Access Object classes in programs can also be
generated or modified according the received EOs.

3

4. CURRENT RESULTS AND NEXT STEPS
The schema evolution framework presented in this paper

has been partially implemented in the context of the Ty-
phon EU H2020 research project. A total of 18 evolution
operators are now fully specified and implemented. At this
stage of our research, we only consider mappings to rela-
tional and document-oriented databases, and we follow an
eager data migration strategy. In the next coming months,
our framework implementation will be used by four indus-
trial partners, by considering realistic use-case scenarios.
Future work in this PhD thesis includes (1) the specifica-
tion of more complex and composite evolution operators,
(2) the implementation of other data migration strategies
(lazy, predictive or query based) in the impact matrix, and
(3) the extension of our framework to key-value and column-
oriented data models.

5. ACKNOWLEDGEMENTS
This research was partly carried out in the context of

the EU H2020 Typhon research project, the goal of which
is to provide an industry-validated methodology and inte-
grated technical offering for designing, developing, query-
ing, evolving, analyzing and monitoring scalable hybrid data
persistence architectures. This PhD thesis research is sup-
ported by the Excellence of Science project 30446992 SECO-
ASSIST, funded by the F.R.S.-FNRS and the FWO.

6. REFERENCES
[1] F. Abdelhedi, A. Ait Brahim, F. Atigui, and

G. Zurfluh. Processus de transformation mda d’un
schéma conceptuel de données en un schéma logique
nosql. In 34e Congrès Informatique des Organisations
et Systèmes d’Information et de Décision 2016.

[2] P. Atzeni. Data modelling in the nosql world: A
contradiction? In Proceedings of the 17th International
Conference on Computer Systems and Technologies
2016, CompSysTech ’16, pages 1–4. ACM.

[3] A. Cleve. Program analysis and transformation for
data-intensive systems evolution. PhD thesis,
University of Namur, 2009.

[4] C. A. Curino, H. J. Moon, A. Deutsch, and C. Zaniolo.
Automating the database schema evolution process.
The VLDB Journal, 22(1):73–98, Feb. 2013.

[5] F. Haubold, J. Schildgen, S. Scherzinger, and
S. Deßloch. Controvol flex: Flexible schema evolution
for nosql application development. Datenbanksysteme
für Business, Technologie und Web (BTW 2017).

[6] R. Hecht and S. Jablonski. Nosql evaluation: A use
case oriented survey. In 2011 International Conference
on Cloud and Service Computing, pages 336–341.

[7] M. Klettke, U. Störl, M. Shenavai, and S. Scherzinger.
Nosql schema evolution and big data migration at
scale. In 2016 IEEE International Conference on Big
Data (Big Data), pages 2764–2774.

[8] C. Li. Transforming relational database into hbase: A
case study. In 2010 IEEE international conference on
software engineering and service sciences, pages
683–687.

[9] D. Liang, Y. Lin, and G. Ding. Mid-model design used
in model transition and data migration between
relational databases and nosql databases. In 2015

IEEE International Conference on Smart
City/SocialCom/SustainCom, pages 866–869.

[10] A. Ringlstetter, S. Scherzinger, and T. F. Bissyandé.
Data model evolution using object-nosql mappers:
Folklore or state-of-the-art? In proc. of the 2nd
International Workshop on BIG Data Software
Engineering, pages 33–36. ACM, 2016.

[11] L. Rocha, F. Vale, E. Cirilo, D. Barbosa, and
F. Mourão. A framework for migrating relational
datasets to nosql. Procedia Computer Science,
51:2593–2602, 2015.

[12] P. J. Sadalage and M. Fowler. NoSQL distilled: a brief
guide to the emerging world of polyglot persistence.
Pearson Education, 2013.

[13] K. Saur, T. Dumitraş, and M. Hicks. Evolving nosql
databases without downtime. In 2016 IEEE
International Conference on Software Maintenance
and Evolution (ICSME), pages 166–176. IEEE.

[14] S. Scherzinger, M. Klettke, and U. Störl. Cleager:
Eager schema evolution in nosql document stores.
Datenbanksysteme für Business, Technologie und Web
(BTW 2015).

[15] S. Scherzinger, M. Klettke, and U. Störl. Managing
schema evolution in nosql data stores. arXiv preprint
arXiv:1308.0514, 2013.

[16] S. Scherzinger, U. Störl, and M. Klettke. A
datalog-based protocol for lazy data migration in agile
nosql application development. In proc. of the 15th
Symposium on Database Programming Languages,
pages 41–44. ACM, 2015.

[17] J. Schildgen, T. Lottermann, and S. Deßloch.
Cross-system nosql data transformations with notaql.
In proc. of the 3rd ACM SIGMOD Workshop on
Algorithms and Systems for MapReduce and Beyond,
page 5. ACM, 2016.

[18] L. Stanescu, M. Brezovan, and D. D. Burdescu.
Automatic mapping of mysql databases to nosql
mongodb. In 2016 Federated Conference on Computer
Science and Information Systems (FedCSIS), pages
837–840. IEEE, 2016.

[19] U. Störl, T. Hauf, M. Klettke, and S. Scherzinger.
Schemaless nosql data stores-object-nosql mappers to
the rescue? Datenbanksysteme für Business,
Technologie und Web (BTW 2015).

[20] U. Störl, D. Müller, A. Tekleab, S. Tolale, J. Stenzel,
M. Klettke, and S. Scherzinger. Curating variational
data in application development. In 2018 IEEE 34th
International Conference on Data Engineering
(ICDE), pages 1605–1608.

[21] The University of L’Aquila. Deliverable D2.3 - Hybrid
Polystore Modeling Language (Final Version), 2018.

[22] J. Yoo, K.-H. Lee, and Y.-H. Jeon. Migration from
rdbms to nosql using column-level denormalization
and atomic aggregates. Journal of Information
Science & Engineering, 34(1), 2018.

[23] G. Zhao, Q. Lin, L. Li, and Z. Li. Schema conversion
model of sql database to nosql. In 2014 Ninth
International Conference on P2P, Parallel, Grid,
Cloud and Internet Computing, pages 355–362. IEEE.

4

