
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

A proposal for A requirements engineering method dealing with organisational, non-
functional and functional requirements

Bissener, Michel

Award date:
1997

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 20. Apr. 2024

https://researchportal.unamur.be/en/studentTheses/f419f136-8203-48a1-9c28-d7132c93cf22

FACULTÉS UNIVERSITAIRES NOTRE-DAME.DE LA PAIX, NAMUR
INSTITUT D'INFORMATIQUE

RUE GRANDGAGNAGE, 21, B-5000 NAMUR (BELGIUM)

A Proposal For A Requirements Engineering
Method Dealing With Organisational,

Non-Functional And Functional Requirements

Michel B issener

Supervisor : Professor Eric Dubois

Thesis submitted in conf 01mity
with the requirements for the degree of

'Licencié et Maître en Informatique'

August 1997

Abstract
Methods are often required for the development of software. Besicles these software
engineering methods, the requirements engineering activities should also be supported
by a method.

Furthermore, in addition to the functional requirements which have for a long time been
the focus of scientific research, organisational and non-functional requirements have
become increasingly important. Requirements documents should not only limit their
scope to the specification of the functionality that a system should provide. Non
functional requirements of a system just as the organisational environrnent (the place
and time) a system is introduced should be modelled.

The thesis proposes a methodology that deals with organisational, non-functional and
functional requirements. On the one hand, the functional requirements are specified in
the agent-oriented specification language ALBERT. On the other hand, we use the i*
framework to deal with organisational issues and non-functional requirements. These
non-functional requirements, after they have been explored more in detail, are partially
or completely composed of definable requirements. In addition, the methodology is
illustrated and validated by a case study: the Mail Order problem.

Des méthodes sont souvent ex1gees pour le développement de logiciels. Le
développement des besoins des utilisateurs devrait aussi être supportée par une
méthode.

De plus, à côté des exigences fonctionnelles , qui furent longtemps la cible de la
recherche scientifique, les exigences organisationnelles et non fonctionnelles ont gagné
en importance. Ainsi, la documentation des besoins des utilisateurs ne devrait pas
seulement inclure les exigences fonctionnelles mais aussi les besoins non fonctionnelles
et organisationnelles.

L'objectif de ce travail de fin d'études est de proposer une méthode qui traite les
exigences fonctionnelles, non fonctionnelles et organisationnelles. De l'un côté, les
exigences fonctionnelles seront spécifiées dans le langage de spécification ALBERT. De
l'autre côté, les besoins non fonctionnels et les questions organisationnelles seront
modélisés en i*. La méthode sera ensuite illustrée et validée par une étude de cas.

Acknowledgements
I would like to thank ail the people that helped me in the writing of this thesis :

My supervisor, Professor Eric Dubois, for his advice and the many re-readings and
correc tions by which he helped me to realise the thesis .

Professor Eric Yu and Professor John Mylopoulos, from the University of Toronto
(Ontario Canada) for their advice and support during the stay in Toronto.

Michaël Petit for his important help when writing the specifications , for the constructive
comments and for being so busy in re-reading the thesis.

Finally, I would like to thank al! the people that showed interest in the thesis.

Contents

Chapter 1 Introduction 9

Chapter 2 The i* Frame"vork 15
1. Why i* 15
2. The Strategic Dependency Model 16

2.1 The Goal Dependency Relationship 17
2.2 The Task Dependency Relationship 17
2.3 The Resource Dependency Relationship 18
2.4 The Softgoal Dependency Relationship 18·
2.5 Dependency Strength 19
2.6 Actor Specialisation 20

3. The Strategic Rationale Madel 2 1
3.1 The Task Decomposition links 2 1
3.2 The Means-Ends links 22
3.3 Routines 23

4 . Knowledge Base Representation 23
5. Process M odelling 24
6 . Application Area: Requirements Engineering 24

Chapter 3 The Albert Framework 25
1. About ALBERT 25

1.1 Formality 26
1. 2 Expressi veness and N aturalness 26
1. 3 Application Domain 27
1.4 Model s of a Specification 27
1.5 State-based and Life-based Constraints 28

2. Specifying in ALBERT 29
2.1 Declaration of data types and the associated operations 29

2.1 .1 Predefined Data Types 30
2.1 .2 User-Defined Elementary Data Types 30
2.1.3 User-Defined Constructed Data Types 30
2.1.4 User-Defined Operations 30

2.2 Declarations of Societies 31
2.3 Declaration of Agents 31

2.3.1 Declaration of the state components 32
2.3.2 Declaration of the actions 33

2.4 Constraints 34
2.4.1 Basic Constraints 35
2.4. 2 Declarati ve Constraints 36
2.4.3 Operational Constraints 38
2.4.4 Cooperation Constraints 39

Chapter 4 The Methodology 41
1. P roblem Domain Madel and Objective 41

1.1 Preliminary: The Problem Domain 42
1. 2 Identification of the real world in i * 44

1.2. l Actors in i * 44

1.2.2 Dependencies in i* 46
1.2.3 The System Chain and the Model Boundary47
1.2.4 'Specialisation' of Actors 50

1.3 Identification of the ALBERT Model Boundary 52
1.3.1 Agents in ALBERT and i* 52
1.3 .2 Agents and Societies in i * and ALBERT 54

1.4 Identification of the behaviour 54
1.4.1 Elaboration of the Strategic Rationale Model... 55
1.4.2 Elaboration of the ALBERT Model 55

1.5 Definition of the Objective 58
2. System Requirements 58

2.1 The Omni-System 59
·2.2 Specifying the functionaliti es 62

2.2.1 Identification of the Omni-System 62
2.2.2 Identification of the System-Output 62
2.2.3 Identification of the System-Input. 63
2.2.4 Identification of the System's behaviour 63

2.3 Evaluation of the Alternatives 64
2.4 Identifying Softgoals Dependencies 64
2.5 Refinement of Softgoals 65

3. System Specification 67
3. 1 Sys tem and Subsystems 67
3.2 Subsystems and Processors 68

4. Summary of the Method 69

Chapter 5 Case Study: Mail Ortler Example 71
1. Problem Domain Model and Objective 72

1. 1 Identification of the real world in i* 72
1. 1. 1 Identification of the Actors and Dependencies (1 st iteration) 72
1.1.2 Identification of the Actors and Dependencies (2nd iteration) 74
1.1.3 'Specialisation' of the Actors 75

1.2 Identification of the ALBERT Model Boundary 77
1.3 Identification of the behaviour 77

1.3.1 Elaboration of the Strategic Rationale Mode!. 78
1.3.2 Elaboration of the ALBERT Model 79

1.4 Definition of the Objective 83
2. System Requirements 84

2.1 Identification of the System-Output 85
2. 1.1 Identification of the system-output in i* 85
2.1.2 Identification of the system-output in ALBERT 86

2.2 Identification of the System-Input... 87
2.2. 1 Identification of the system-input in i* 87
2.2.2 Identification of the system-input in ALBERT 88

2.3 Identification of the System's behaviour 88
2.3. 1 Identification of the behaviour in i* 88
2.3.2 Identification of the behaviour in ALBERT 89

2.4 Alternative System Modelling 90
2.5 Evaluation of the functional alternatives 9 1
2.6 Identification of Softgoals 92
2.7 Refinement of Softgoals 93

3. System Specification 94
3.1 System Analysis/Design 94

3.1.1 The Information System Solution 94
3.1.2 The Stock Clerk Solution 98

3.2 Revision of Softgoals 99
3.2.1 The IS Solution 100
3.2.2 The Stock Clerk Solution 101

Chapter 6 Conclusion 105

Bibliography .. 107

Appendix ... 109
1. Problem domain and Objective 109

1.1 The i* n1odel 109
1. 2 The ALBERT specification 1 J ü

2. System Requirement. 116
2. 1 The i* 1nodel 116
2.2 The ALBERT specification 116
2.3 System Requirement (alternative) 120

3. System Specification 124
3.1 The IS solution 124

3.1 .1 The i* model. 124
3.1.2 The ALBERT specification 124

3.2 The Stock Clerk Solution 128
3.2.1 The i* mode!. 129
3.2.2 The ALBERT specification 129

CHAP1ER1
lN1RODtJCTION

The development of an information system is generally divided into two phases as
depicted in figure 1: the Requirements Engineering phase and the Design Engineering
phase.

-- -_ •.1iiforrnal Sys temGoals , --
, - . -- - - -

Requiremen1s
Engineering

Figure 1: The IS development cycle

Design
Engineering

The Requirements Engineering (RE) phase starts with the informa! statements
representing goals, services, viewpoints of the clients. These statements should be put
into an organisational context, identifying their owners and their motivations. The
requirements document should define the system to be developed in a precise way. This
document includes specifications of expected human, hardware and software behaviours .

At the Design Engineering (DE) level, we start with the software specification (defined
in the requirements engineering phase). This latter is used for the development of a
logical architecture of the software which is later implemented by writing code.

- 9 -

Chapter 1: Introduction

RE: Definitions and characteristics

Requirements Engineering has for a long time been recognised as a, if not the, crucial
part of the system development process. Many definitions have been given for this first
phase in the life cycle of a software system (it should be noted that this is not an
exhaustive list):

• The discipline for developing a complete, consistent, unambiguous specification -which can
serve as a basis for common agreement among all parties concerned- describing what the
software product will do (but not how it will do it; this is to be clone in the design
specification). [Boehm,79]

• Specifying the requirements document of a software, it is to define in a complete and non-
- ambiguous way the externat characteristics of the software offered to its users and the way

according to which the software is integrated in the system. Meyer [MDL,97]

• During the requirements stage, it is necessary to analyse, and thus to understand the
problem to be solved. Problem analysis is the activity that encompasses understanding the
neecls of the users as well as all the constraints upon th e solution. Davis [MDL,97]

• (1)The Process of studying user neecls to arrive at a definition of system, hardware, or
software requirements. (2)The process of studying and refining system, hardware or
software requirements. [IEEE,91]

• The part of development in which people attempt to discover what is desired. [Gause et al ,89]

From the definitions above, we can deduce some characteristics. These define our view
of requirements engineering:

• Requirements Engineering is a process.

This is implicitly indicated in ail the defmitions and explicitly remarked by the IEEE. RE
is much more than simply stating requirements in a formal or informal notation. Just as
for the life-cycle for the design of a system, there exist different phases for Requirements
Engineering: elicitation, modelling, analysis and validation[Dubois et la, 95].

The division into steps indicates already that requirements engineering is not merely the
transcription of the user's statements. Furthermore, not only one solution has to be
considered. Ideally, an important set of possible solutions should be imaginable at the
system design stage.

In order that this process is not left to the analyst's discretion, a rational process should
be provided for elaborating the requirements . The aim of the thesis is to propose a
method for elaborating a requirements document.

• Requirements Engineering produces a document.

This is what most of the definitions have in common. Allnost any definition says that the
RE phase should fmish with a complete, consistent and unambiguous document,
specification or model defming what is desired or needed. One should note that we do
not say that RE takes requirements, that were already stated informally by the client, as
input. We rather believe that requirements should be collected in co-operation with the
client during the RE phase.

- 10 -

Chapter 1: Introduction

• Requirements Engineering relates worlds.

As already established above, RE brings together the client world and the
analyst/developer world. We made the assumption that the different customer and users
have the same goals and needs, which is often, or almost always, untrue for the real
world. This, of course, complicates the situation as customers and users might have
conflicting goals. Usually, each world is new to the domain of the other one's; which
considerably complicates the transition.

ldeally, customers, users and analysts should, together, find out what the users' and
customers' wishes are and refine them into a detailed description.

• Requirements Engineering is a means.

Consequently, requirements éngineering can be considered as a means for supporting the
interactive development. Analysts are forced to understand the problem domain and
customers are forced to describe rigorously their needs. This elaboration can also be of
profit for the analysis of organisational issues. In addition, one can say that analysts
should be supported by CASE tools in achieving this knowledge.

Methodology

The airn of the thesis is to describe the process of elaborating the requirements
document. When we focus more on the Requirements Engineering phase we can depict a
more detailed approach for specifying the information system. Figure 2 represents this
approach.

The Business Enterprise Model (problem domain) identifies the organisational settings
of the problem domain plus the additional goals/objectives to be delivered by the future
system.

From these global goals we specify a system which is first defined by the necessary
knowledge about the environment and the control upon the environment.

The system is then split into different concrete agents assuming each a different
responsibility for accomplishing the overall goals. Their internai structure and their
interaction with the system's environment is designed. These agents vary from software
units over hardware units to humans .

Businc!ss Entreprise
Mode ll ing

+ System Goa ls

L

Figure 2: The Development Approach

- 11 -

Chapter l: Introduction

Functional, Non-Functional and Organisational Requirements

The thesis also deals with functional and non-functional requirements. Even if there has
been a discussion about their differentiation (about the existence and about the meaning),
they are generally divided into these two classes. The difference, however, is often
influenced by the viewpoints of people and the membership to one class often depends
upon the language (and its expressiveness) one uses to denote the requirement. For
example, time constraints can be regarded as functional requirements in certain languages
whereas other classifications include them in the set of non-functional requirements. An
interesting and more detailed classification of non-functional requirements can be found
in [Pohl ,96] .

Functional Requirements

Most of the research and literature in the past focused on functional requirements, which
de.fine the functionality a system has to provide. This approach is deeply influenced by a
mathematical background: a fonction is a correspondence of a set S towards of a set T,
binding each element of S to one and only one element of T. "Given a set of numbers, the
user wants the system analyst/developer to give him a fonction that provides him with
this or that result." They are what could traditionally be defined as the 'what' of the
system. A functional requirement of a program could be: "Calculate the salary of an
employee".

Non-Functional Requirements

Gaining increasingly importance, the non-functional requirements aim basically at
constraining the choice of solution regarding a problem. Since then, non-functional
requirements tell us how a result should be produced. Typically, non-functional
requirements are requirements such as user interface constraints, operating constraints,
maintainability, security, portability, standards, ... Our example chosen previously can
clarify the already discussed problem about the difference of the two types of
requirements. Let "Calculate the salary of an employee in a seconds" be the requirement.
Is this requirement now a functional or non-functional requirement?

We relate the difference between functional and non functional more to the quantifiable
respective the qualitative aspects of the requirement. Quantifiable requirements can be
precisely defined. This definition does not necessarily suppose a formai language. Any
type of language (even natural language) may be well suited for the expression of the
condition. Quality requirements describe properties which can, a priori, not be defined.
In our example, if 'a' is a defined value, the requirement is functional. If the value is yet
unknown (e.g. 'a' means " as quickly as possible"), it is a non functional requirement.

According to this differentiation, non functional requirements, if they are explored more
in detail, often turn out to be partially or completely composed of functional
(quantifiable) ones.

The framework presented in this thesis deals with functional requirements, basically
addressed by the Albert language, and non-functional requirements, represented in the i*
model.

- 12 -

Chapter 1: Introduction

Organisational Requirements

The i* framework also supports the modelling of organisational issues. Information
systems are not intended to work individually. They are put into an environment where
they have to co-operate with other organisational actors. Information systems, however,
often fail because they neglect these organisational settings. Consequently, the
organisational requirements should be inspected as soon as possible.

Organisation of the thesis

Chapter 2 presents the first specification framework, i*, which is used to understand
organisational processes. The i* framework consists of two models: the Strategic
Dependency Madel and the Strategic Rationale Madel. We define the different concepts
used to built these models and ex plain them on an example ..

Chapter 3 introduces the second framework. We use the ALBERT language to specify
functional requirements. The concepts of agents , state components, actions and
information/perception will be described and explained on an example.

Chapter 4 introduces the methodology itself. The three main steps are defined and
related problems are discussed.

Chapter 5 explains the different concepts introduced by the methodology by the means of
a case study (a mail order example).

Chapter 6 draws conclusions of the thesis and identifies further work.

- 13 -

CHAP1ER2
THE i* FRAMEWORI<

In this chapter, we describe the first modelling language we intend to use for the
elaboration of our requirements specification: i* (read i-star), a framework for modelling
strategic relationship. i* has been first introduced in Eric Yu's Ph.D. thesis [Yu,95]. Yu
identifies four application domains for i* : Business Process Reengineering,
Organisational Impacts Analysis, Software Process Modelling and last but not least
Requirements Engineering. We will concentrate more on this latter.

1. Why i*

Human behaviour is generally described as a process, i.e. a series of actions that brings
about a result. These human processes have been mainly influenced by the industrial
revolution and now the computer revolution. In order to rationalise these processes it is
necessary to model the existing process.

A lot of the existing process modelling frameworks deal with the t1ow of actions and/or
entities that are necessary for the execution of the process. We can distinguish between
two basic components of such process models :

• the Object Flow

The Object Flow Model partially describes the behaviour of a process by showing how
these objects flow from one entity to another. Objects rnight be of an informational
nature as well as of a physical, concrete nature. A popular specialisation of such a model
is the Data Flow Model, where we represent a process by the information that flows
between entities. Most of the methods analysing processes use such a Data Flow
Diagram like in SA.DT, ... [DeMarco,79]

• the Action Structuring

- 15 -

Chapter 2: The i* Framework

The Action Structuring Madel could be defined as a set of concepts and rules that should
structure the process into a temporal sequence of actions . Actions can be atomic or not.
Non-atomic are further decomposed in a hierarchical way.

Most of the existing process models are combinations/specialisations of these two
generic models. A process is represented by a set of atomic and non-atomic actions and
for each of these actions some input and output abjects are associated. The output of an
action may become the input of the following action (and so on) or a final output of the
process. This description outlines the strong influence of the industrial and computer
science world in process modelling: indeed Scheer [Scheer93] identifies two paradigms
in modelling organisational processes. The classical, industrial approaches, influenced by
the manufacturing industry, highlighted the flow of material that circulated in the plant.
People were purely regarded as material processors and the challenge of process
modelling was seen in shortening the product development cycle or the production costs.
Then, with the massive introduction of the computer into our society processes,
organisational modelling concentrated on representing procedures and data. As Scheer
rightly remarks people appeared "as data records, input-output mechanisms, or
substitutes of programs".

The main problem with these models is that they do not represent the rationales of
different actors and their actions: why actions are performed or why abjects are
transformed.

This is the main motivation for the i* mode! that puts more emphasis on the intentional
aspects of the organisational mode!.

The i* framework consists of two models: the strategic dependency mode! "describing a
particular configuration of dependency relationships among organisational actors" and
the strategic rationale mode! "describing the rationales that actors have about adopting
one configuration or another." In the following, we briefly introduce these two models.
For a more detailed description, refer to Eric Yu's Thesis [Yu,95].

2. The Strategic Dependency Model

The Strategic Dependency Madel consists of a set of actors where each actor is related
to some other actors by a dependency link expressing a dependency relationship. An
actor is an active entity that, in order to meet some goals, carries out actions by
exercising its know-how.

The dependency relationship is called dependum, the depending actor is called depender
and the actor who is depended upon is the dependee. The dependency relationships can
be analysed in terms of ability and vulnerability. When an actor depends on another actor
he becomes at the same tirne able and vulnerable on this actor to achieve a certain goal:
he can achieve that goal by delegating it to another actor, but if this actor fails in
attempting this goal, the depender is negatively affected. Actually, organisations are
often based on delegating tasks and so organisational actors depend on other
organisational actors.

- 16 -

Chapter 2: The i* Framework

In the Strategic Dependency Model, we find four types of dependency links:

• goal dependencies

• task dependencies

• resource dependencies

• softgoals dependencies .

2.1 The Goal Dependency Relationship
We use this relationship when 'the depender depends upon the dependee to bring about a
certain state in the world.' It is not explicitly defü1ed what the dependee has to do to
achieve this goal, in contrast to the task dependency. The actor has the freedom to
choose a way to fulfil the condition. By expressing such a dependency, we say that the
depender assumes that the requirement or state of the world will hold but he becomes
vulnerable since the dependee may fail to bring about that condition.

The notions of goal, condition or state in the world we used above, are clear-cut, black
white notions of goal achievement. It is either achieved or not; there can only be a
positive of negative answer to the request if the condition is satisfied. To clarify the
concepts, we will illustrate it by an example. Let us take for instance a mail order
company: an Order Processing Clerk who is responsible for handling incoming orders
depends on the shipping clerk for that the desired item will be shipped to the customer.
The depender (the Order Processing clerk) is only interested in the fact that the item is
shipped and lets the shipping clerk the freedom to choose the appropriate way for
achieving the condition. Figure 3 represents this relationship.

Shipped
[Ite m]

Figure 3: A Goal Dependency

2.2 The Task Dependency Relationship
This relationship expresses the fact that the depender depends upon the dependee in
order to perform an activity that is specified by the depender. In other words, the
depender has given instructions how to perform the task and the depender may suffer
from the fact the task is not performed in the specified sense. Furthermore, by this
dependency the depender only represents the 'how' (i.e. the specification) and not the
'why' (i.e. the rationale) to the dependee. Although the concept of a task might seem
quite sirnilar to an action in traditional workflow models, there is an important semantic
difference between these two concepts. In opposition to a workflow model, where a task
is an activity that manipulates some data, the Strategic Dependency Model only
considers activities that have a strategic importance or are helpful in clarifying the

- 17 -

Chapter 2: The i* Framework

intentional behaviour of the actor. It is also important to note that the task specification
should be considered as a constraint on the actual task rather than a complete and
consistent description of the task to perform.

Again, let us show an example: if, for whatever reason, the Orcier Processing clerk would
insist that the shipping clerk should send the item using a particular delivery company the
depender may suffer if the task is not executed as specified. We would then represent this
dependency by a task dependency relationship (see figure 4) .

Shi pped
[Ite m]

Figure 4: A Task Dependency

2.3 The Resource Dependency Relationship
A resource dependency expresses the fact that an actor depends upon another actor to
provide him with a certain resource. This resource can be an informational or physical
entity of the real world. As for the task dependency relationship, the reso urce
relationship only expresses strategic aspects of the 'data' and thus cannot be compared to
the standard data flow model. A resource dependency is only modelled if the depender
becomes vulnerable, i.e. he would suffer, if the resource is unavailable. A striking
example may clarify the previous notion: a diabetic depends on the druggist for the
resource 'insulin' and would be in sincere danger whenever the druggis t would run out of
stock whereas a 'normal' person would not suffer if the druggist runs out of toothpaste.
Applied to the mail order example, the Order Processing clerk who has to receive
information about the customer's account balance would suffer because he could not
continue to process the mail orders (see figure 5).

Account
lnfo

Figure 5: A Resource Dependency

2.4 The Softgoal Dependency Relationship
The fi.rst of the dependencies we described were the goal dependencies. Goals were
described as clear-cut; they are achieved or not. But sometimes , the depender has only a
vague notion of the goal that has to be achieved or "the condition to be attained are
elaborated as the task is performed". Often, we cannot define the exact meaning ,
condition of a goal that has to be achieved. In addition, the goal and consequently its
achievements are left to interpretation. For this situation, we use softgoal dependencies.

If we take the resource 'Account Info' from the figure 5, the Orcier Processing Clerk
would also be negatively affected if the account information would not be accurate and

- 18 -

1

Chapter 2: The i* Framework

we don't yet know what an accurate information would look like. Consequently, we can
add the softgoal 'Accurate [Account lnfo]' (see figure 6).

Figure 6: A Softgoal Dependency

2.5 Dependency Strength
The model also provides a weighting of dependencies. The three degrees are Open,
Committed and Critical and are represented by an "O" for open, a "X" for critical. These
"marks" can be placed on both sides of the dependency. Committed dependencies are
unmarked.

Critical Dependencies denote dependencies where the depender is seriously affected "in
that all known course of action would fail". In this case, the depender is also "concerned
about the viability of the dependee's dependencies." (see figure 7)

Ins u lin

Figure 7: Critical Ressource Dependency

Committed Dependencies affect the depender significantly "in that some planned
course of action would fail". On the dependee side, the comrnitted dependency expresses
that the depender "will try its best to deliver the dependum" .(see figure 8)

Transferred
~~,~

[Money]

Figure 8: Committed Goal Dependency

Open Dependencies represent the fact that the depender is affected to some extend but
not seriously. For the dependee the open dependency is an assertion that he can deliver
the required goal, softgoal, resource or perform the specified task. (see figure 9)

Figure 9: An Open Softgoal Dependency

- 19 -

Chapter 2: The i* Framework

2.6 Actor Specialisation
The term Actor "refers generically to any unit to which intentional dependencies can be
ascribed" . To describe more precisely organisational issues, the i* framework
differentiates between roles, agents and positions. Since we will frequently use this type
of notation, we will give the definitions from Eric Yu's thesis.

• A rote is an abstract characterisation of the behaviour of a social actor within some
specialised context or domain of endeavour. Its characteristics are easily
transferable ta other social actors. Dependencies are associated with a role when
the.se dependencies apply regardless of who plays the role.

• An agent is an actai with concrete, physical manifestations, such as a human
individual. We use the tenn agent instead of persan for generality, sa that it can be
used ta refer ta human as well as artificial (hardware/software) agents. An agent has
dependencies that apply regardless of what roles he/she/it happens ta be playing.
These characteristics are typically not easily transferable ta other individuals, e.g.
its skills and experiences, and its physical limitations.

• A position is intermediate in abstraction between a role and an agent. lt is a set of
roles typically played by one agent (e.g., assigned jointly ta that one agent).

In figure 10, the 'Bank Clerk' is represented as an agent who plays two roles: 'Account
Information Provider' and 'Money Transfer Processor'. Another possibility is to represent
two physically different agents who play each one role: the 'Information Clerk' who has
to provide the customer with information about their accounts and the 'Operation Clerk'
who plays the role of transferring money.

One should, however, note that agents only do not necessarily refer to individuals .

Figure J 0: Two possible actor- 'specialisations'

The following graph summarises the different concepts and the graphical notations:

- 20 -

Chapter 2: The i* Framework

8

Figure Il: Actor, Agent, Role and Position

3. The Strategic Rationale Model

While the Strategic Dependency Model 'only' describes the external relationships
between the actors of an organisation, the Strategic Rationale Model goes more into
detail with the description of a process. The Strategic Rationale Model extends the
Strategic Dependency Model by describing 'the intentional relationships that are internai
to actors'.
This is mainly done by means of two classes of relationships that are internai to one
actor:
• task decomposition, where a particular task is decomposed into a fmer set of concepts

and
• means-ends links, where the relationship between an end - which can be a goal, a

resource, a task or a softgoal- and a means for achieving the end.

3.1 The Task Decomposition links
In an actor's context one can describe the tasks that he has to perform in order to meet a
dependency relationship. These tasks can be structured by the means of task
decomposition links. By this mechanism, a task can be divided into sub-tasks, sub
resources, sub-goals and sub-softgoals. Each sub-component has the same definition as
for the Strategic Dependency model.

A task can be decomposed into:

• A task, expressing "a particular way of doing something" and thus constraining the
high-level task. A practical example (see figure 12) of a task that is decomposed into a
sub-task, would be to constrain the "Process Order" task, performed by the Order
Processing Clerk, by a task "Veri.fy Order". This would mean that the Order
Processing Clerk has to verify the order in a particular way.

- 21 -

Chapter 2: The i* Framework

• A resource, that can be a physical or informational entity considered as important (i.e.
the availability is not certain). In Figure 12, the verification by the Order Processing
Clerk of the order requires the list of actually sold items.

• A goal, that has to be achieved in order to perform the high-level task. The defintion
of goal is still the same as indicated in the Strategic Dependency section, i.e. a
condition or state of affairs in the world. Contrary to the task-task decomposition, the
way of doing things in order to achieve the goal is not specified. The goal
decomposition is often used to indicate that there may be different alternatives for
achieving the condition. Thus different alternatives can subsequently be explored. For
our example, the processing of the order could also depend upon the fact that the
Order Processing Clerk could also require that the account of the customer is above
1000$.

• And finally a softgoal, where the condition that should be brought upon is not yet
explicitly defined. Softgoals are used to express quality goals for that task and can
then be used for the evaluation of alternatives. In our example, one could indicate that
there should be a fast turnaround for the task and thus also for the sub-task and sub
goals are influenced by this softgoal..

Sold
Items Li s t

Fas t
Turnaround

Figure 12: A Task Decomposition

3.2 The Means-Ends links
Different alternatives can be represented in the Strategic Rationale Model by Means
Ends links, where "the end can be a resource, a task, a goal or a softgoal, whereas the
means usually is a task." There exist 5 types of means-end relationships:

• Goal-Task means-ends relationships have as a means a task and as an end a goal. In
figure 14, the Order Processing Clerk has different possibilities in obtaining the goal
"Account Verified": füstly, he can look by himself if the account is ail right and
secondly, he can ask a bank clerk whether the account is in order.

• The Resource-Task link identifies a resource as an end that has to obtained and a
task as a means by which the resource can be produced. (see Figure 13)

Sold
It e ms Li s t

Produce
Lis t

Figure 13: A Resource-Task Link

- 22 -

Chapter 2: The i* Framework

• A Task-Task linlc has a task as a means and as an end. Unlike the decomposition of
tasks, where the higher level task can be defined as an aggregate of its sub-tasks, there
exist many ways (alternatives) of constraining a task furthermore. This is possible
since the description of a task can be incomplete, and thus maki11g it possible to
choose between alternatives.

• A particular configuration is the Softgoal-Task Link, where the means is a task and
the end a softgoal. These links identify contributions (negatively, positively, enough
or not enough) to softgoals, that can then be evaluated for the decision process.

• Softgoals also can be decomposed into sub-softgoals by Softgoal-Softgoal links until
they can be addressed by some tasks (shown by a contribution link in figure 14).

3.3 Routines

So ld
It e ms List

Ve rify
Orde r

Figure 14: A Means-Ends Link

The Means-Ends Links described above identified different alternatives for achieving one
end. Once an alternative is chosen, it can be developed furthermore by the routine
representation, which is a sub-graph with only one Means-Ends Link. This link then
refers to the representation of one possible solution for achieving the end.

4. I<nowledge Base Representation

Both the Strategic Dependency Model and the Strategic Rationale Model have been
embedded into the conceptual knowledge representation language Telos. Consequently,
it benefits from the conceptual structuring mechanisms such as generalisation,
aggregation and classification and linguistic extensions through the definition of meta
attributes.

- 23 -

Chapter 2: The i* Framework

S. Process Modelling

After having defined the vocabulary of i*, let us highlight two main characteristics:

• Contrary to other process models, i* captures besides the 'how' also the 'why' of the
process. By offering the means-ends mechanism which is goal oriented, i* provides
the analyst with the representation of rationales. If we take for example figure 14, we
can know how the goal "Account = Verified" is achieved. Secondly, i* provides the
explicit representation of alternatives and the reason for the choice of one of them.
This means-ends mechanism also offers the opportunity to explore and analyse in
depth different alternatives.

• Contrary to other process models , where only the decomposition of tasks is taken into
account, i* enlarges this by letting the analyst choose between different types of
decompositions. Thus, a task can be decomposed into a sub-task, a sub-resource, a
sub-goal or a sub-softgoal. This decomposition, in addition, concentrates on strategic
importance, and so the decomposition does not necessarily have to be complete.

6. Application Area: Requirements Engineering

On reviewing the suitability of i* in the Requirements Engineering domain, Yu
concentrates on the 'Early Requirements' phase, where the requirements document is
elaborated. Indeed, most formal specification languages assume that there exist already
requirements statements in an informal manner or natural language. But this statements
do not express how and why these goals should meet some organisational goals. Yu
identifies fo ur major concems that should be met by the early requirements:

• Develop a deep understanding about a domain. i* could help here by showing the
rationales that are behind processes and does not only concentrate on entities and
activities as most other modelling languages do . In addition, the representation of
rationales and motivations may also lead to a better description of the process itself.

• Help in coming up with initial requirements. The exploratory way in which
requirements are elaborated and analysed, the analysis of opportunities, vulnerabilities
and strategic concems helps in finding out the 'real problems'.

• Trace the changes of the requirements back to the organisational changes. This
exploratory way also helps in tracing back to the original goals.

• Share knowledge about domains. As we already saw in the previous section, i* is
implemented in Telos, a conceptual knowledge representation language. The use of a
knowledge-based approach facilitates the collection, organisation, use and reuse of
domain knowledge across cases and across domains.

- 24 -

CHAPTER3
THE ALBERT F'RAMEWORI<

This chapter presents the second language used in our methodology. ALBERT (an
acronym for Agent-oriented Language for Building and Eliciting Real-Tune
requirements) was developed within the Esprit ICARUS project by Eric Dubois and his
team at the University of Namur. Several aspects can be used to describe their
motivations:

• the introduction of agents together with their properties (internal states, responsibility
for actions, perceptions of the environment). Furthermore, agents can be grouped into
classes or societies. This "object-oriented" approach can also help in struc turing large
specifications.

• the introduction of actions to overcome the well-known frame problem [Borgida et
al,92],

• the identification of typical patterns of constraints which support the analyst in writing
complex and consistent formulas. Especially the cooperation constraints are of great
importance since several agents have to internet in order to fulfil the overall goal.

In 1995, Philippe Du Bois presented in his thesis the second version of the language. At
the present time the revision and extension of the language is still going on. We will
present the latest version: ALBERT II(version 2.0). For a more detailed description, one
can look at [DuBois,95], [DuBois ,97].

1. About ALBERT

The ALBERT language has been elaborated with respect to the following characteristics
[DuBois,95), [Dubois et al, 95):

• degree of formality,

- 25 -

Chapter 3: The ALBERT Framework

• expressiveness and naturalness,

• intended application domain.

1.1 Formality
The first Requirements Engineering specification languages like SADT, ... were sem1-
formal languages that integrated two kinds of descriptions:

• a structured description expressed in terms of the language. Likewise the SADT
model differentiates between data and transformation. Although these concepts were
related to a formal language, these forma! languages consisted mainly in a concret~,
forma! syntax of the concepts: only the representation of the concepts and the possible
combinations between the concepts were defined. The major drawback with these
languages is that the concepts do not always have a precise semantics. Consequently,
the interpretation of such descriptions is often left to the analysts.

• an unstructured, textual description. These languages have a restricted set of concepts
and relationships between these concepts and they cannot express every property. As
a result the analyst has to use informa! (even not syntactically formal) descriptions in
natural language to express these properties.

Furthermore, in order to built more efficient CASE tools, which have more sophisticated
checks and assistance, it is necessary to provide modelling languages with formal
semantics. Having a formal language, one can look for inconsistencies or validate
through animation, for instance.

ALBERT is fully fonnal as its semantic relies on a variant of temporal logic.

1.2 Expressiveness and Naturalness
ALBERT was designed considering the fact that a Requirements Engineering language
should be expressive, i.e. have a ri.ch "ontology of concepts by which the requirements
can be expressed". This ontology is always influenced by the domain in which the
modelling takes place. This environmental issue has as a consequence that not only
software artefacts should be modelled during the RE phase but also the environment of a
system. Users of the system, devices of the system and other hardware components are
just as important as the pure specification of the software for the requirements
documentation and are modelled as agents in the ALBERT specification.

Furthermore, the concept of naturalness is highlighted in ALBERT. In order to restrict
over-specification, the mapping between the users requirements and the specification
statements should be natural, i.e. the language should offer possibilities to map
straightforwardly the informa! statements provided by customers, onto formal statements
expressed in the RE language.

- 26 -

Chapter 3: The ALBERT Framework

1.3 Application Domain
Like in the acronyrn indicated, ALBERT is primarily proposed for rnodelling real-time
distributed systems. Like other languages , ALBERT enables the modelling of composite
and distributed systems where ac tivities "run m parallel with possible
communication/interaction".

1.4 Models1 of a Specification
The purpose of ALBERT is to describe admissible behaviours of a composite sys tem. This
description, called specification of the system, must abstract irrelevant details. If the
specification describes faithfully the system, admissible behaviours of the system will be
models of the specification. The model does not refer to the whole specification but to a
mathematical interpretation structure associated with a logical theory.

The semantics of ALBERT are defmed as a set of rules that define the set of admissible
lives from a given specification. The precise rules can be fo und in [DuBois,95].

A mode! of an agent specification refers to one of its possible lives and consis ts in an
alternate sequence of changes (represented by ovals in figure 15) and states (represented
by ovals in figure 15).

Each change is tagged with a real-time value which increases throughout the sequence.
The time stam,ps of changes are not necessarily equidistant. Ti.me starnps reflect a point
of time where something happen in the system. They are represented by circles in figure
15.

A state is structured according to the info_rmation handled in the considered application
in terrns of state components. The value of state components stays unchanged between
two adjacent changes.

A change is composed of simultaneous events . An event corresponds to:

• either the occurrence of an instantaneous action (in figure 15: '<Add(a)>')

• either the beginning of the occurrence of an action (in figure 15: '<Remove(a)')

• or the end of the occurrence of an ac tion (in fig ure 15 : 'Remove(a)>').

Only the occurrence of an action may induce a change of a state. The value of a state at a
given rime in a certain life can therefo re always be determinis tically derived from the
changes occurred so far and the initial state.

Figure 15 shows a portion of a possible life having as state components a stock and an
'on hold ' stock that have to be rnanipulated. Two actions rnay change the value of the
state components 'Stock' and 'OnHold ': 'Add(x)' and 'Remove(x)'. For this exarnple,
'Add(x)' is an instantaneous action and only has a post-effect. 'Remove(x) can last over a

1 The word Mode! is used here in a different sense as we use it in the rest of the work when we talk
about the mode!, i.e. the specification itself or the i* mode!. . In Albert, we use the word Mode! in !lie
sense of a mat11ematical interpretation s tructure associatcd with a logical t11eory.

- 27 -

Chapter 3: The ALBERT Framework

period of tirne and has a pre- and post-effect. The 'Effect of Actions' constraints look like
this:

EFFECT OF ACTION

Add(x):

Remove(x):

[}

Stock : = Add(Stock, x)

Stock:= Remove(Stock,x)

[}

OnHold := Add(OnHold,x)

Time Stamp State

Stock: ... a,b

State Component

Stock: ... a,b

Change
Action

Occurence

Stock: ... a,b
OnHold: ... ,a

Event

Figure 15: A possible life of an agent

15

1.5 State-based and Life-based Constraints
Many of the existing software design languages only support state-based constraints.
State-based constraints express a relation either between two consecutive states, or
between a state and the change happening in that state, or between a change and the
resulting state. So , describing constraints only consists in describing properties of
transitions . This is found to be inappropriate for specifying requirements because this
induces the 'over-specification' problem and complicates the traceability between the
specification and the informal statements. Consequently, ALBERT was designed to offer
both operational and declarative (life-based) styles of specification. Life-based
constraints relate changes or states spread all over an agent life.

In comparison with the previous version of ALBERT, where already state-based and life
based constraints were well supported, the differentiation between the two styles of
specification has been emphasised in the new version where the so-called "Local

- 28 -

Chapter 3: The ALBERT Framework

Constraints" group of headings has been split into the "Declarative Constraints"(for life
based constraints) and the "Operational Constraints"(for state-based constraints) families.

2. Specifying in ALBERT

An ALBERT specification is made of the definition of data types and associated
operations, the definition of societies, the definition of the agents with their properties
(state components, actions and constraints). For the description of the language, we
consider the following strncture:

• declaring the data types and their operations,

• declaring societies,

• declaring the structure of agents (states and actions),

• constraining the agents.

Running Example. In the following, we introduce to the different concepts. To clarify
the different concepts, we use the specification of a Stock Clerk as a running example:
On receiving an order from the Office Clerk (represented in our example by an '0') to
ship items, the Stock Clerk removes the item from the stock and ships it to a customer
(via a mail company 'Mail').

2.1 Declaration of data types and the associated
operat1ons

ALBERT is a typed language relying upon the use of abstract data types for structuring
information (state components & action arguments). Furthermore, operations on these
data types can be defined. These operations should be understood as mathematical
fonctions rather than "ALBERT-actions". There are several fonns of data types; namely
predefined data types and data types defined by the user. These latter can be elementary
or constructed.

BASIC TYPES

ITEM

ITEMTYPE

CONSTRUCTED TYPES

INVOICE = CP[Orderld: INTEGER, Person: STRING, Item: ITEMTYPE, Swn: INTECERJ

Figure 16: Declaration of Data T_1,pes

- 29 -

Chapter 3: The ALBERT Framework

2.1.1 Predefined Data Types

Predefined basic Data Types are:

BOOLEAN
INTEGER

CHAR
RATIONAL

STRING
DURATION

These data types are fitted out with their usual operators like, (not), (8) (and), EB (or) for
the Boolean operators or + (plus), - (minus) or mod (rest by the division) for the integer.
For an exhaustive list refer to the reference manual [DuBois,97].

2.1.2 User-Defined Elementary Data Types

Since a requirements specification language should be expressive , one cannot be satisfied
with the predefined data types . The user of ALBERT is given the opportunity to defme
himself basic data types which, by default, only have the two equality operators (= and 'i'
) as predefmed operators. It is also important to note that basic type names are ail
uppercase and that they should be unique for the whole specification. From a practical
point of view, basic types are declared by writing them down under the BASIC TYPES
heading (see our example in figure 16).

2.1.3 User-Defined Constructed Data Types

ALBERT also offers the facility to construct more complex data types upon the predefined
and user-defined elementary data types. This construction can be built by using a set of
predefined type constructors:

• CP for the declaration of a Cartesian Product,

• SET for the declaration of a set (unorder),

• BAG for the declaration of a bag or multiset,

• TABLE for the declaration of a table (indexed bag),

• UNION for the declaration of a union (merging of items) and

• ENUM for the declaration of an enumeration of values.

Using these constructors, one can declare new types under the C0NSTRUCTED TYPES
heading. Just as for elementary data types, constructed type names are ail uppercase and
the y should be unique for the whole specification. In Figure 16, we represented such a
constructed data type: 'Invoice' that is a cartesian product with 4 fields.

2.1.4 User-Defined Operations

Because the newly declared types are only, by default, provided with the '=' and the '*'
operator, there is a mechanism for providing the specification with operations associated
to the user defmed types. "They are mathematical fonctions returning a result from zero
or more arguments" and they can be constrained by the use of first order logic formulas.
User defined operations appear under the OPERATIONS heading and are defmed for the
whole specification.

- 30 -

Chapter 3: The ALBERT Framework

2.2 Declarations of Societies
As already mentioned, ALBERT is a language for speciJying composite systems and thus it
is vèry logical that the language offers a way to define hierarchies of agents that
differentiate between:

• individuals or classes of agents ,

• societies.

An individual agent represents one and only one instance in the mode! whereas classes
have at least one instance of the agent in the mode!. Classes of agents can be understood
as a set of individual agents having _the same behavioural properties although each agent
of a class can be identilied. By the means of these components , one can construct a
hiera.rchy of agents, where the terminal leaves are individual agents or classes of agents .
These leaves can then be regro uped into societies. Thus, societies form aggregates of
di.fferent agents (individuals, classes and societies). In an ALBERT specilication every
agent or society must be part of one and only one society (with the exception of the root
agent/ society).

Agents , classes and societies have a graphical representation and a textual syntax has
been defmed. In our example (figure 17), the society 'Co mpany' is made of a stock clerk,
an office clerk and a mail agent.

Company

Stoc k C le rk

S1ock

Ship
Tabl, [ITEM TY Pe

·> SET[ITEM I l (INVO I CE,I TE M)
·> M ail

(I NVO I CE)
() <· 0 ffi ceC k rk

AddT oS lock

(ITE MTY PE. IT EM)

./

Figure 17: Partial Declaration of a Society

2.3 Declaration of Agents
ALBERT is an 'abject oriented' approach in the sense that state components and actions
are encapsulated in one unit (agent). Although, there is a big difference with abject
oriented programming languages like C++ or Pascal 5.5: mechanisms as heritage,
specialisation, hierarchy of types and polymorphism are not provided. Furth rmore, an

- 31 -

Chapter 3: The ALBERT Framework

operational specification and a declarative specification style is supported by ALBERT.

The word 'agent' has been preferred since the entities of a system have respo nsibilities
and perceptions.

The declaration of an agen t consists in two things:

• declaring their state components and

• declaring their actions.

This can be done textually (figure 18) and graphically (figure 19).

STOCKCLERK
DECLARA TI ONS

ST ATE COMPONENTS

Stock table-of SET[ITEMJ indexed-bv ITEMTYPE

ACTIONS

ProcessOrderShipment

RemoveFromStock(ITEMTYPE,ITEM)

AddToStock(ITEMTYPE,ITEM)

Ship (INVOICE,ITEM) ➔ Mail

Figure 18: A Textual Agent Declaration

Stock

Table[IT EMTY PE
-> SET[IT EM JJ

RemoveFromStock

(ITEMTYPE ,ITEM)

Ship

(INVOICE,ITEM)
-> Mail

AddToStock

(ITEMTYPE,ITEMS)

rocessOrderS hipment

()

Figure 19: A Graphical Agent Declaration

2.3.1 Declaration of the state components

Orci er

(INVOICE)
<- 0 fficeCl erk

By the means of state components, we describe the knowledge the agent has abo ut
himself and its environment. A state of an agent is structured by state components. An
agent can have zero or more state components which can be individuals or populations .
A population can be a set, a sequence or a table.

- 32 -

Chapter 3: The ALBERT Framework

State components can be declared textually:

Textual representation

Individual Name instance-of TYPE

Set N anie set-of TYPE
Sequence Name seguence-of TYPE

Table Name table-of TYPE2
indexed-b)'. TYPEI

Components are time varying by default but can be declared to be constant. Constant
components are graphically displayed by bold line boxes and textually by prefixing the
component with a star(*).

In order to simphly the description of expressions, one can use derived components.
These derived components must be declared by relating the component to its 'causes' .
ALBERT does not accept any recursive declaration of derived components. Again, there
exists a textual notation (StockEmpty derived-from Stock) and a graphical one which is
represented by an arrow from the depending state components towards the derived
component.

By default, agents do not perceive state components belonging to other agents. Another
fact that has to be explicitly declared is the static importation/exportation mechanism ;
(i.e. whether components may be made visible to other agents). When state components
are declared to be exported to another agent, the latter may perceive this state
components. If a state component is made visible for a society, it is visible for ail the
agents and societies within the society. A component of a class of agents can also be
exported to the members of this class .

The textual declaration under the heading STATE COMPONENTS describes the agents to
whom the state components are shown. Graphically, the exportation/importation
mechanism is shown by an arrow to the inside/outside of the agent parallelogram.

Note that the declaration of an exported/imported state component does not necessarily
imply that the state components are shown/perceived by other agents since this
perception/information may vary over time (depending on the state of agents). The
dynarnic counterpart of the Importation/Exportation properties is the
Perception/Information mechanism, which is expressed in the co-operation co nstraints:
STATE PERCEPTION and STATElNFORMATION.

2.3.2 Declaration of the actions

State components cannot change by themselves and one has to introduce actions that can
change them. This should, however, not lead to the conclusion that agents must have
actions. Just as for the state components , agents may be declared without having any
actions. Actions are declared graphically by a rounded-corner box, within which the
types (as a sequence) of the eventual arg uments are also declared. Textually, actions arc
declared by writing them under the ACTIONS heading.

Actions can be instantaneous or last over a period of time. Actions have a duratio n hy
default and instantaneous actions are represented in the declaration with a preceding star

- 33 -

Chapter 3: The ALBERT Framework

(*). Actions can be elementary or decomposed into more elementary actions. This
decomposition fact is not represented in the declaration part.

Actions can also be declared as being exported to other agents. If an action is made
visible for a society, it is visible for ail the agents and societies within the society. An
action of a class of agents can also be exported to the members of this class. Graphically,
actions that are exported towards other agents are declared with an arrow that is drawn
to the outside of the agent box. In the textual form, the respective action is followed by
an arrow •~• and the importing agents and societies.

In our exarnple (see figure 18 and 19) the 'Ship'-action is exported to the Mail-Company.

2.4 Coristraints
"Constraints are used for pruning the infinite set of possible lives of an agent." They are
classified into 14 headings and regrouped into 4 families:

• basic constraints,

• declarative constraints, which adopta life-based point of view,

• operational constraints, which adopta state-based point of view,

• co-operation constraints, that describe the interface with the agent's environrnent.

STOCK-CLERK

DECLARA TI ONS

ST ATE COMPONENTS
Stock table-of SET[ITEMJ iudexed-by ITEMTYPE

ACTIONS

ProcessOrderShipment

Ship (INVOICE,ITEM) ➔ Mail

RemoveFromStock(ITEMTYPE,ITEM)

AddToStock(ITEMTYP E, ITEM)

BASIC CONSTRAINTS

INITIAL VALUATION

Stock[_]= (}

DECLARATIVE CONSTRAINTS

ACTION COMPOSIDON

{ O. OrderShipment, RemoveFromStock, Ship)

ProcessOrderShipment H O. OrderShipment(inv) < > (

(RemoveFromStock(ltem(ùz v), il)<> Ship(inv, it))

$ DAC)

OPERATIONAL CONSTRAINTS

PRECONDITION

- 34 -

Chapter 3: The ALBERT Framework

RemoveFromStock(i,_): Card (Stock[i]) > 0

EFFECTS OF ACTIONS

AddToStock(i,it): [] Stock[i] := (it uStock[i])

RemoveFromStock(i,it) : [} Stock[i] : = (it \ Stock[i])

COOPERATION CONSTRAINTS

ACTION PERCEPTION

K (O.OrderShipment(_) /TRUE)

ACTION INFORMATION

K (Ship(_,_).Mail / TRUE)

Figure 20: ALBERT Constrainls

2.4.1 Basic Constraints

Under this header we describe the initial values for state components and the derivation
rules for derived components. We adopt thus the fo llowing categories:

• Initial Valuation

The constraints written under the INITIAL VALUATION header indicate the value of
state components in the füst state of the trace. These constra.iJ.1ts are optional so that
there can exist state components for which no initial valuation is given. But for every
state cornponent that is initialised there can only be one initialisation and a derived
component cannot be initialised.

In our example (see figure 20) the constraint expresses that at the beginning of a
possible life of an agent, the stock is empty.

• Derived Cornponents

A derived component is a facility by which we can express complex mathematical
relationships between state cornponents of the same agent. It is prirnarily a rnechanisrn
to sirnplify expressions. This derivation rule is obligatory for every state component
declared as a derived component and the cornponents used for describing the rule do
also have to be indicated in the declaration of the derived cornponent. A constant
component can only be derived from constant components.

It is important to note that components can only be derived frorn .iJ.1temal state
components and hence no imported state components can appear on the right-handed
side of the derivation rules. Neither can derived state components appear on the right
handed side of the rule.

This type of constraint is not used by our running exarnple but we might introduce for
example a derived state component that is true if and only if the stock is empty:
'StockEm pty'.

DERIVED COMPONENTS

StockEmpty[i] g Empty(Stock[ij)

- 35 -

Chapter 3: The ALBERT Framework

2.4.2 Declarative Constraints

To stress the fact that ALBERT deals both with constraints that are valid for the whole
agent file and constraints on possible transition of states in an actors file-cyc le, the
previous "Local Constraints" group was split into declarative and operational constraints.
Declarative constraints relate distant states / actions of the whole life of an agent.

• State Behaviour

A füst type of declarative constraints is used for expressing the 'behaviour' (i.e. the
possible evolution) of a state component during the whole file-cycle of the agent.
These constraints are expressed using real time temporal logics . Temporal logic~ use
the usual first order logic connectives (see figure 21) and additional real time temporal
connectives like those introduced in the TRIO language.(see figure 22).

And ® if and only if <=>
or EB for al! 'rj

implies ⇒ there exists 3

Figure 21: First Order Logic Connectives

<p always true Alw <p <p true for one Som <p
moment

<p always true in the AlwF <p <p true for one SomF <p
future moment in the future

<p always true in the AlwP <p <p true for one SomP <p
past moment in the past

<p true until \j/ becomes <p Until \j/ <p true until \j/ <p Until! \j/

true becomes true and <p
becomes false at that
moment

<j> true since was true <j> Since \j/ <j> true since \j/ was <j> Since! \j/

true and <p was false at
that moment

Figure 22: Real-Time Connectives

Using these connectives, one can build different constraints on state components and
thus restrict the set of possible lives. One can also specify that a constraint applies
only during the occurrence of an action which appears between brackets "[]" in front
of the formula. If no action appears between brackets, the constraint has to be true at
any tirne.

In our exarnple (figure 20), the number of items never can be negative and during the
action 'RemoveFromStock' (i.e. for ail state between the beginning and the end of the
occurrence of the action) the stock should not be negative or equal to zero.

- 36 -

Chapter 3: The ALBERT Framework

• Action Composition
The relationship between occurrences of actions is described under this header.
Action composition constraints allow the analyst to express processes by
decomposing 'complex' actions into more 'elementary' actions. Elementary actions are
called elementary when they cannot be decomposed furthermore .

The decomposition of an action expresses the possible temporal ordering of sub
actions by using the following connectives:

Types Notation

Sequential Composition a H a1 < d > a2 where dis a duration

Repetitive ComposiLion a H { a1 } k
where k is the number of repetition

Parallel Corn position a H a1 1 1 a2
Simultaneous Composition a H a 1 l<=}I a2

Costarting Composition a H a1 ~ a2

Cofinishing Composition a H a1 ~ a2
Alternative Composition a H a1 EB a2

On the left-hand side of these constraints can only appear internal actions whereas on
the right-hand side both interna] and external actions can appear. Consequently,
processes may be spanned over several agents by the export/import mechanism of
actions.

The "wi th" clause allows to specify constraints about the arguments of the actions.

Actions can also be restricted to appear only within a composed action; this is
expressed by listing theses actions at the top of the Action Composition template
between brackets " { } ".

It is also important to note chat action compositions cannot represent cycles. A special
action identifier DAC may also be used in alternative compositions as dummy action
which then represents 'nothing'.

In our example (see figure 20) the action 'ProcessOrderShipment' is decomposed into
an 'OrderShipment', 'RemoveFromStock' and 'Ship' action. The process begins by a
request action from the 'Office Clerk', that is followed by the removal of the
respective item and the shipping action. Ail the actions listed above can only occur
inside their respective composed action.

• Action Duration

Constraints about the duration of internai action occurrences rnay be expressed into
this template. Several operators can be used: "= " (equal), ":;t:" (different), "~" (less),
"<" (strictly less),"~" (greater),">" (strictly greater). In addition, the "wi th" clause

can be used.

The following expression states that the 'RemoveFromStock' action lasts longer than
1 minute.

- 37 -

Chapter 3: The ALBERT Framework

ACTION D URA TION

IRemoveFromStock(_) I > 1 '

2.4.3 Operational Constraints

This family regroups the headings that are evaluated in an historical way; the evaluation
of the formula does not consider the whole life-cycle but only the past.

• Preconditions

This heading regroups formulas expressing conditions that have to be verified for an
occurrence of an action. The scope of the condition can be restricted using a "wi th"
clause.

In our example (see figure 20), the 'RemoveFromStock'-action can only occur when
the stock for the respective item is not empty.

• Effect of Actions

Because state components cannot change by themselves , this heading is extremely
important since the constraints appearing under this heading do express the effect of
action occurrences upon interna! state components. Actions, that can have an effect
upon state components, can be interna! or imported: also other agents may change
components of one agent.

The general notation is as follows:

Action-Nanie: Pre-Valuation [Formula] Post-Valuation

The constraint is divided into pre-effects and post-effects.

Usually, post-effects are used for describing the effect of an action and thus the effect
generally appears at the end of an occurrence of an action. If the formula is verified
just before the end of the actio n, the state components just after the end of the action
takes the value as expressed in the post-valuation. The post-valuation is evaluated
with the values of cornponents as they were just before the beginning of the
occurrence of the action. If the formula is false, then the state components are left
unchanged.

It is also possible to express pre-effects: pre-effects describe the change of a state
component just after the beginning of the action occurrence and they are evaluated
with respect to the value of the state components just before the occurrence of the
action. Pre-effects are ternporary: they are undone when the actio n ends unless the
post-effects state otherwise.

In figure 20, we only use the pos t-effec t as a means for expressing the change by the
actions 'AddToStock' and 'RemoveFromStock' upon the state component 'Stock'.

- 38 -

Chapter 3: The ALBERT Framework

• Triggerings

This heading is used to express obligations of the occurrence of an actio n; i.e. a
condition under which an action has to occur and which has to hold for a defined
period of time. We did no t define any triggering in the figure 20. An example might be
to trigger an alarm for the supplier of the stock if the stock has been empty for one
day.

TRIGGERINGS

StockEmpty / 1 day ~ Alarm. Supplier

2.4.4 Cooperation Constraints

In the declaration part, we already talked about importation and exportation. These were
static properties. Their dynamic counterpart can be found under the cooperation
cons traints header, which is used to express how agents internet with their environment
in a time varying manner. Not only state components may be made visible towards other
agents and be perceived by other agents but also other agents can be informed of the
occurrence of internai actions and external actions can be perceived.

Three connectives are offered for the expression of cooperation constraints:

• X· the knowledge pattern, which defines the condition for the
perception/information of a state component/action. If the condition is true
then the state component/action is perceived; if the condition is false, the state
component/action is perceived or not.

• I the ignorance pattern, which expresses the condition for which external
state components/actions are not perceived.

• XX· the exclusive obligation pattern, expresses the condition under which
and only under which the state components/actions are perceived.

The conditions are expressed using temporal formulas which rnay refer to state
cornponents.

The following table summarises the different concepts:

X J XX

<!> Transfer ! No transf er ! Transfer !

-, <!> Transfer or not ? Transfer or not ? No transfer !

When no information/perception constraints are expressed, the exported actions/state
components may or may not be visible or perceived.

• State Perception

Here we express under which conditions state components belonging to o ther agents
are perceived.

- 39 -

Chapter 3: The ALBERT Framework

In figure 20, no state components are made visible towards the stock clerk: he has no
knowledge about extemal state components .

The "wi th" clause can also be used to limit the scope of the constraint.

• State Information

Under this heading we define when state components are made visible fo r other
agents .

In figure 20, no state components are made visible towards the other agents. Hence,
the state component 'Stock' and their value stays private to the Stock Clerk.

The "wi th" clause can also be used to limit the scope of the constraint.

• Action Perception

Actions belonging to other agents can also be perceived. Depending upon the
evaluation of the fo rmula and upon the type of cooperation connective, the ac tions
are perceived or not.

In our example (see figure 20), the 'OrderShipment'-ac tion is always perceived. This is
represented by an 'X' and the constant 'TRUE' in the form ula.

The "wi th" clause can also be used to limit the scope of the constraint.

• Action Information

The counterpart of the Action Perception constraints are the Action Info rmation
constraints.

In figure 20, the stock clerk inforrns the mail agent about the occurrence of the 'ship '
action.

In practice, the action perception and information mechanism can be used to define
processes that span different agents.

The "wi th" clause can also be used to limit the scope of the constraint.

- 40 -

CHAPIBR4
THE METHODOLOGY

The two previous chapters presented the two specification languages the thesis is based
upon. The first, ALBERT II, ai.ms at highlighting the 'what', the functional requirements of
the system and the second, i*, concentrates on the modelling of the 'why', the
organisational issues and the non-functional requirements. Although, the languages are
the basic tools for writing a requirements specification, their use does not necessarily
lead to a 'good' requirements specification; especially when the analysts are inexperienced
with the language or in developing user-oriented specifications. In addition, the
elaboration of requirements specification is a particular critical task because two worlds
are confronted: the user/customer world and the analyst (engineer) world. Furthermore,
the analyst is often responsible for resolving conflicting situations between diverging
viewpoints of the customers and direct users. In this chapter, we are going to describe
certain basic steps a requirements document should go through before we can finally talk
about a specification. We divide our system development method into three main stages:
first the problem domain modelling stage, where the model of interest is represented
(section 1), then the system requirement stage where the functional and non functional
requirements of the system are stated (section 2) and finally the system specification
stage where we map the model back to the real world and specify the system internals.
(section 3)

1. Problem Domain Model and Objective

The goal of this stage is to produce the definition of the problem domain. This problem
domain should supply us with the basic elements, vocabulary which will serve for a first
definition of the problem and the objective.

In section 1. 1, we will talk about some general aspects of the problem do main. Section
1.2 will describe the approach we choose in i* for modelling the real world. Section 1.3

- 41 -

Chapter 4: The Methodology

and 1.4 are going to deal with respectively the identification and the description of the
behaviour of the ALBERT agents. Section 1.5 finally will show the introduction of the
objectives of the system using the elements of the problem environment.

1.1 Preliminary: The Problem Domain
The necessity for defining the Problem Domain has been well recognised for a long time
(see e.g. [Jackson,83]). This is different from an approach like, e.g. SART, which
focuses on the modelling of the system internals. Jackson describes several advantages
about the early modelling of the real world .

To start with the fonctional specification of the system internals is_necessarily ambiguous
because many undefined terms are used. The early modelling of the real world introduces
a set of words whose meaning is related to the real world entities and is thereby less
ambiguous. This argument will also lead us to the conclusion that every noun introduced
from the real world should be completed by an infonnal definition.

Furthermore, when analysts get knowledge about the environment, their communication
with the user is irnproved. Indeed, a lack of knowledge or a misunderstanding of the
domain is often the root for dissatisfaction on the client's side. In addition, considering
that analysts are most often 'reconfigured' programrners , they often deliver technical
specifications which will be of no help for users. However, the requirements specification
should be regarded as the contract that circulates between the client world and the
analyst world and be understandable for each side. The introduction of the real world
modelling only considers aspects of the client's world.

A principal motivation for Jackson is that the model of the real world is more stable than
the fonctional specification. The fonctions, an Information System should support,
change rapidly, but the model will not change so often because the fonctions can be
based upon the model. Jackson makes here the comparison with a road map and
journeys. The road map can be matched with the model of the real world and journeys
with fonctions of an Information System. A change of the map will affect the search for
journeys, contrary to a change in a journey which will have no affect on the map. Just as
for the map, the building of the model of the real world is concerned with elaborating the
basic elements with which a future fonction can be 'calculated'. Consequently, model and
fonction are inevitably interconnected. The functional approach only treats the model
implicitly although it should be treated explicitly.

In addition, this approach also goes along with the traditional Mintzberg-approach
[Mintzberg et al,91] for decision ma.king. Indeed, the elaboration of requirements
document can be compared with a decision ma.king process: 'for a given problem define
what to do to solve the problem'. This decision process starts with the perception of
organisational issues, problems or crises. After this accumulation of stimuli, a diagnostic
routine is initialised. Existing information is gathered and new information is created.
Then only, the development phase is started by the search routine and the design routine.

Although Jackson's argumentation is valid, it might also be reviewed; we believe that
more is needed.

- 42 -

Chapter 4: The Methodology

The modelling of the processes that the future system should support might increase the
knowledge about the process itself, but one can seriously doubt whether this modelling,
prior to the software engineering phase leads to an important increase of understanding
abo ut the domain. Does the partial knowledge of a program's functions necessarily irnply
the understanding of the program? Is it not also important to describe the rationales,
motivations and intentions that are behind a behaviour? Rationales of a process should
also be considered and explicitly stated. Otherwise the interpretation of the intention of a
process will lead to ambiguities. However, these rationales are often not restricted to the
entity responsible for a behaviour.

We furthermore believe that the requirements specification should not only represent the
environrnent communicating with the future system. The system might not only have
respo nsibilities or non-functional requirements towards the entities2 that dircctly internet
with the system. Dependencies may also exist without existing communication. Besides
this, dependencies might also be of interest which are beyond the direct requirements.
These can then be used to explau1 the 'why' of the req uirernents of the system. Indeed,
the requirements that a user has upon a system are often not based upon simply Îl1ternal
motivations. External motivations, responsibilities towards other agents, might influence
these internal intentions.

Altho ugh a detailed (formal) description of entities in organisations might be 'nice', it
often results in a model that is too cumbersome. We will use here the properties of i*.
Indeed, i* does not have to be complete and lirnits its scope to strategic aspects Îl1side an
organisation unlike data flow charts, for instance, that are too detailed. However, for the
irnmediately interacting actors of the real world , we consider a more detailed approach
because their behaviour may be changed. Interacting actors are the ones that will
communicate with the future system. The modelling of their behaviour will be the role of
ALBERT.

We also believe that the client3 side of an information project is not always consistent
abo ut what is desired. Customers, assignu1g the project, might have other, confüctu1g,
requirements than the users , who will Îl1teract later on with the system. We believe that
multiple viewpoints have to be considered. These could be represented by possibly
conflicting dependencies towards the new system.

With respect to the discussion above, we divide the purpose of this first step Îl1to two
goals to achieve:

• a model of the organisational issues that goes beyond the pure mode®1g of system
interacting entities of the real world, modelled by the i* framework and

• a model of the interaction issues, modelled by the ALBERT framework.

2 In general, we use the term entity when we do not want to refer to an i*-actor or an ALBERT-agent. In
this context, entities refer to U1e real world.

3 We identi fy U1e client side by U1c customers, assigning U1e in formation project, ami ù1e users,
interacting direcUy with the future system .

- 43 -

Chapter 4: The Methodology

1.2 Identification of the real world in i*
As said above, i* and particularly the Strategic Dependency model is specialised in
modelling the strategic relationships in organisations. We will not only concentrate on
the actors that might directly internet with the future system. This first step has more to
do with organisational modelling than anything else. Defining business objectives and
their decompositions in organisatio nal responsibilities and dependencies is important
because:

• information projects should fit with existing business strategy,

• information projects should provide a competitive advantage,

• information projects should try to exclude organisational risks.

The modelling of these actors will provide us with the 'indirect' objectives and the non
functional requirements that did not actually lead to the desire to produce a solution to a
problem but that provide the objectives that a future solution has to satisfy.

The first step is also characterised by the first contact with the organisation. The analyst
is potentially new to the domain. This implies a lack of knowledge and understanding
about the problem domain and hence about the possible solution that should satisfy the
client.

The typical i* approach (from the Strategic Dependency Model to the Strategic
Rationale Model) can be characterised as 'outside-inside': first, the actors with their
relationship are identified and only then the internal behaviour of the actors is described.
On the one hand this has the advantage that the analyst does not have first to restructure
the 'internal mess' of the actor's behaviour. On the other hand, the internal analysis often
reveals further dependencies. Indeed, how can we say that we depend upon sorneone if
we do not know what for? An actor can have an important number of dependencies but
we are only interested in certain relationships, related to some specific processes.

1.2.1 Actors in i*

As we noticed already in the introduction of i*, the Strategic Dependency model consists
of a set of actors inter-linked by dependency relationships.

Intentional Actors. Typically, i* identifies intentional actors in organisations.
Consequently, this step should not be too difficult: actors are tangible entities or groups
of such entities. Actors can be individuals, such as the bank clerk 'John', classes (set of
actors having more or less the same properties), the class of bank clerks for instance, or
aggregates , such as the 'Bank Company'. At this early stage, we do not differentiate
between agents , position or roles. Actors may hence assume several responsibilities; each
represented by an 'incoming' dependency link.

Non-intentional Actors. (like existing information systems, sensors, software, .. .)
Although i*-actors are characterised by intentions and motivations, we believe that non
intentional entities should be included in the model of the real world. Indeed, with the
increasing introduction of technology in any area of life, the human being has become
more and more dependent upon these technologies. It is hence not erroneous to talk

- 44 -

Chapter 4: The Methodology

about dependencies upon technical systems. Furthermore, these non-intentional actors
can also, by delegation of responsibilities, depend upon intentional and non-intentional
ac tors.

Properties of Actors. Regardless of intentional or non-intentional actors, one can
establish certain general properties:

• Actors are identifiable

This notion is represented in nearly every object identification methodology, such as
Booch [Booch,86) or JSD [Jackson,83). We mean by this, that every actor is capable of
receiving a globally unique identifier. The concept of identifier is important because
actors are not clearly separated by their properties (components and actions): actors can
be different alfhough they share the same properties. Besides, properties can change in
the course of time which would imply that actors change in time.
This does, however, not necessarily mean that actors have to be a single component. Sets
of people such as a developer team or the bank clerks of a fmancial ù1stitute can also
receive an identifier.
• Actors have states

The current state do paitially determine an actors' future behaviour.

• Actors have a behaviour

We understand by behaviour of an actor the fact that the actor suffers and/or performs
a set of actions. This does not necessarily mean that his behaviour also has to be
modelled in the i* mode!.

• Actors have responsibilities and dependencies

Along with the concept of behaviour goes the concept of responsibility. It is perhaps
the most important criteria for identifying actors in the real world. We mean by
responsibility the internai or extemal motivations/intentions that are behù1d a behaviour

4
.

In addition, responsibilities can be a means for regrouping explicitly modelled
behaviours. There can be actors for which no internal responsibility exists; which have no
idea why they have a certain behaviour. But they often have responsibilities towards
another actor (although they might not know it). When a responsibility is external we
talk about a dependency: the actor A1 has a responsibility towards another actor A2, who
on the other hand becomes dependent upon the other actor A1. We see here that both
concepts 'actor', 'responsibility' and 'dependency' are strongly related.

Gathering actors. One cannot limit the analysis of the actors to those identified within
the requirements document eventually elaborated by the client. Because this latter is
often restricted to the actors that will internet with the future system, one has to analyse
a broader range of documents.

Typical approaches for gathering infonnation about actors ai·e:

• interviews with personnel,

• analysis of organisational charts,

4 One should however not conclude that the explicit modelling of the behaviour of an agent
aulomalically leads lo an explicit represenlalion of Lhe responsibilily and vice versa.

- 45 -

Chapter 4: The Methodology

• analysis of flow charts,

• analysis of existing processes, ...

1.2.2 Dependencies in i*

Dependencies are the other model components in the Strategic Dependency Model. In
the previous paragraph, we considered already the strong relation between actors and
dependencies . The identification of the actors and dependencies will in practice run much
more in parallel than in the sequence showed here. Sorne dependencies might be defined
even before the totality of the existing actors are identified.

We have to consider that there exists a multiplicity of dependencies between actors
because of the following reasons:

• We did not specialise actors into agents, positions or roles .

• Actors can regroup societies or sets of smaller identical, with respect to their type,
real world entities (classes).

Gathering Dependencies. A first step to find out dependencies might be to

• ask actors upon their responsibilities,

• analyse interactions between actors,

• analyse existing flow charts, ...

The i* chapter identified four types of dependencies:

• the goal dependency,

• the resource dependency,

• the task dependency and

• the softgoal dependency.

To differentiate between these different types of relationships and the 'direction' of the
relationship, one should consider:

• Who is responsible if there are problems, who receives ability and who becomes
vulnerable upon the dependency. These points should help in finding out which actor
is the depender and which actor is the dependee of the relationship. The actor who is
responsible is generally the depender and the dependee basically achieves ability but
also becomes vulnerable upon the dependum. The notion of r~sponsibility is also
important because of the existence of delegation of tasks. If something (a task to
perform, a goal to achieve or a resource to produce) is delegated to another actor,
two situations are possible: (1) the delegating actor keeps the responsibility and (2)
with the delegation of the task, goal, softgoal or resource the responsibility is partially
or totally delegated. For instance, if a marketing manager who was previously
responsible for the editing and the typing of an invitation letter, receives a typist to

- 46 -

Chapter 4: The Methodology

assist him, the manager is still responsible for the editing of the letters, the typist
however may also assume some responsibility for spelling mistakes or typing errors.

• Whether the depender gives instructions for achieving something. If this is the case,
the probability is important that there exists a task dependency. We talk about task
dependencies when the goal has to be achieved in a particular way. This
differenliation is also important if we talk about computer systems. These latter are
often supplied by the user with some 'input-data'. If this data has to be provided in a
specific way as through a user interface or under a certain format, we will link the
actors by a task dependency and nota resource dependency as one might first think.

• If the condition and its achievement can be clearly identified. Goals are defined as
clear eut, black or white notions whereas softgoals are characterised by the di±ficulty
of assessing the satisfaction of the condition to be attained.

• Whether the depender shows a particular interest in the process of meeting the
dependency. This is another hint to differentiate between a task dependency or a
goal/resource dependency. If he is interested, we often talk of task dependencies.

Documentation in i*.

Although, we gave here some hints to model actors and dependencies, the choice of the
actors and dependency will most often rely on the analyst. Furthermore, the list of
questions to ask are by no means complete. It should be understood as a first impulse of
possible reasoning. The differences between the different concepts might also sometimes
seem unclear and left to interpretation. Therefore, for every actor, a precise description
of the actor itself and its responsibilities should be added to the Strategic Dependency
model. Furthermore, each dependency link should be accompanied by a description and
an argumentation validating the chosen type of link.

1.2.3 The System Chain and the Model Boundary

At the beginning of this section, we stated that the i* model cannot be restricted to the
modelling of the interacting environment. The problem that arises then is to define
boundaries. How far do we trace back the motivations? Jackson [Jackson et al,96] notes
that 'alrnost every goal is a subgoal with some higher purpose' and compares engineering
with religion since both are about goal satisfaction. He concludes that a subject matter,
i.e. an area where the alternative goal-satisfaction can take place, must be defined. We
agree with this concept but we note that this can seriously restrict the choice for
alternatives. Consequently, we have to deal very carefully with the selection of actors .
Especially when we are searching for a solution for a problem and assist the client in
elaborating and selecting alternatives for his problem, a restrictive view of the problem
domain might be too deterministic for the evaluation of alternatives. Sometimes, clients
have already a speci±ïc idea about a solution when they charge a company with an
information project although a better solution could also be explored.

In accordance with Jackson, we do not believe religious or psychological aspects are of
concern here. Although sometimes useful for elaborating client's needs , it is hard to deal
with thern because they are difficult to elicit, document and analyse. In contrast with

- 47 -

Chapter 4: The Methodology

these individual goals stand the business goals5 which should be defined long before an
information project is initiated. They should also appear in the Requirements Document
inasmuch as the specification can be understood as the contract that exists between two
parties.

Porter [Porter et al,85] uses the value chain as a means for analysing the role of
information technology in enterprises. The value chain can be defined as a set of
activities (value activities) that the organisation performs to do its business. Each activity
increases the value of a product/service and the final value is measured by the amount the
client is ready to pay. An organisation can create competitive advantage by reducing cost
or by differentiating its products. Porter extends the notion of value chain that is interna!
to one organisation to a chain of activities that spans both the supplier and the customer
side of the organisation: the value system. We will use this value chain as a boundary to
identify actors and motivations within an organisation if the system is intend to support
value acti vities within the organisation.

A gene1ic model might be represented as in figure 23.

Input Ou tput

Figure 23: A 'generic' Dependency Model

In general, every organisational actor has somewhere a supplier and a customer side.
Input and Output can both represent a resource or a service to provide.

Furthermore, information systems are more and more developed to support inter
organisational relationships such as Electronic Data Interchange (EDI) or Efficient
Customer Response (ECR) and influence thus activities that span over several
organisations. The motivations of indirect actors just as the directly interacting actors
hence span different organisations. The Porter model will help us with the identification
of potential actors of the future system that will support the system chain. The model can
also help for the identification and evaluation of alternatives.

For a private company, one could use this value system and extend it with the
shareholders and trade unions . The strategy, an organisation chooses for surviving, can
be defined by ma.king use of the four following competitive forces:

• The suppliers, which provide the organisation with input (products or services).

• The customers, that are provided with the organisation's output (products or
services).

• The shareholders, represented by the board of directors, which are interested in the
possibly greatest difference between the input value and the output value. They define
also the policy of the company.

5 These business goals should not be restricted to goals with respect to t11e achievement of profit.
Business strategies should also be included.

- 48 -

Chapter 4: The Methodology

• The tracte union, representing the workers . Workers could also be put in the class of
suppliers (of work) but because there exists a contractual difference be tween them,
we treat them differently. The workers/employees are interested also in getting a part
of the difference between the organisation input value and the organisation output
value. Contrary to the shareholders, whose part of the input/output margin is variable,
the part that goes to the workers is fixed.

A possible6 model of a simple business company might look like the representation in
fig ure 24:

Figure 24: A Business Dependency Madel

The need for this broad gathe1ing of intentions and motivations is discussed below:

'Higher level' goals that would usually be represented as internai goals of actors are often
'substituted dependencies'. If we take, for example, a worker who performs a task inside
a company. This task should contribute to a goal or softgoal 'High Profit' that is typically
depicted as internai to the worker's context. The truth, although, is that this goal is in
fact not internai. Both, the company and the clerk, have concluded a contract where it is
stated that the clerk should perform the task in order to provide the company with profit.
This fact should then rather be modelled by a dependency link between the 'Company'
and the 'Clerk'. We can define the real ac tors that are related to a desire.

Organisational and strategic business goals are the objectives an information project has
to respect. In comparison with business objectives, individual goals are often of minimal
importance. If a specified functionai requirement cannot be achieved according to some
organisational and business goals, the future exis tence of the requirement can be
thoughtfully questioned.

Consequently, we have to express goals that are internai to organisations. These
combinations of these goals give the ultimate motivation for every business's objective.

6 This mode! should not be regarded as a gcneric mode! for represenLing every business company. It is
only intended to give an idea about the broad range of dependencies that might be con idered.

- 49 -

Chapter 4: The Methodology

The value cha..in identifying the interna! actors define our i* Model Boundary if the
problem is inside an organisation and the value system identifies the actors if the problem
is spanning different organisations.

1.2.4 'Specialisation' of Actors

The 'Actor' notion, that i* offers for modelling organisational issues, is a very generic
tenn. It can be used to refer to many kinds of real world entities: the bank clerk 'Mr
Simpson', the bank clerks, a di.rector of the bank, a software product, a financial
company, etc. This 'Actor' concept can be divided into agents, positions and roles. The
structuring of the different concepts is hierarchical: an agent is described as a set of
agents, positions or roles; a position as a set of positions and ro les and role is the basic
unit for describing a behaviour. Furthermore agents, roles and positions can have
instances and subparts. It should be noted that actors are intentional by themselves and
the set of intentions of their subparts do not define their whole intentions.

' , INSTANCE

8

Figure 25: Actor Specialisation

The different relationships between these three concepts are:

• INSTANCE: an actor (Agent, Position or Role) can be an instance of another actor
(Agent, Position or Role). This relationship is typically used for the representation of
classes and its instances. The use of this relationship, however, will be restricted
because classes in ALBERT refer to sets of entities having exactly the same properties
which is not necessarily the case in i* where instances of actors can assume
responsibilities that are different from its classes dependencies. Thus, if we want to
map an i*-class to an ALBERT class, we have to be very careful that an instance of a
class in i* may specify more than its class.

• PART: an actor (Agent, Position or Role) can also be a part of another actor (Agent,
Position or Role) . ALBERT identifies the concept of society. By the means of the
'P ART'-mechanism, we can define in i* aggregates of different entities. Usually, we
define in i* these aggregates by agents or positions chat are decomposed. This point
like the previous point is only 'briet1y' considered in chapter 2 and we will detail it a

- 50 -

Chapter 4: The Methodology

little bit more because we think that it can be a useful mechanism for understanding
how organisations are structured and influenced by Information Systems. An example
of an organisational representation is given in Figure 26.

Figure 26: A possible Decomposition of a Company

In this example, a Software Company is divided into commercial, analysis/ programming,
test and maintenance departments. One should note that with respect to the
incompleteness property of i*, one does not have to represent ail the subparts of the
company and that the intentions/behaviour of the company rnight not be completely
described by its subparts. With respect to the same property, we can also stay at the
'Software Company' stage and leave the intemal structure open. The model would hence
be less expressive but more readable. Consequently, we can say that it always depends
upon the analyst's need how far he wants to develop the organisational mode] into
agents, positions and roles.

• OCCUPIES : an agent occupies zero or more positions.

• PLA YS: an agent plays zero or more roles.

• COVERS: a position covers zero or more roles.

Restructuring Dependencies. This remodelling of the Strategic Dependency Model will
have an influence on the network of dependencies. Every dependum has to be rethought
since the incoming dependencies have to be linked to one of the possible decompositions.
In addition, new dependencies might be created between the 'decomposed' actors.

We connect dependencies with a Role node when these dependencies do not suppose a
special social actor to play the role. The dependency could be accomplished by any actor
and it does not presuppose special skills or experiences. This goes in opposition with the
dependencies that will be connected to an Agent node. These dependencies rel.y on a
special actor who should accomplish the dependency. His skills and experiences are of
importance. Positions are usually decornposed into its typically assigned roles.

- 51 -

Chapter 4: The Methodology

Roles typically assume only one or a set of more or less related incoming dependencies
whereas actors, agents and positions can deal with more different types of incoming
dependencies.

1.3 Identification of the .ALBERT Nlodel
Boundary

The elaboration of the ALBERT agent begins with the identification of the actors in the i*
model that are potentially influenced by the introduction of the new system. This phase is
strongly related with the identification of the problem itself. We cannot yet define
precisely the problem because we do not have the necessary vocabulary and it is difficult
to identify the actors that are influenced by the (until now not defined) problem. We
assume here that already a vague notion of the problem and eventually an idea of a
possible system (solution) exists. The i* model has to be focused onto the potentially
interacting actors and the decomposition of the actor node into agents, position or roles
should be explored7

. We continue this process by the following assertion:

An i* Actor, Agent or Position 'interacting with the s_vstem' corresponds to an
ALBERT Agent/Society.

1.3.1 Agents in ALBERT and i*

Agents in i* represent actors that have special characteristics and skills and can have
several responsibilities towards other actors. The ALBERT concept 'Agent' restructures
large specifications into fmer pieces defming together the whole behaviour. ALBERT is
elaborated for specifying composite systems. Furthermore, agents are characterised by
their behaviour and the communication between agents. This behaviour may be due to
several responsibilities .

The statement above is of importance. It has a huge influence on our modelling of the
real world. One should first note that when we talk of a mapping between the i* actors
to ALBERT agents, we only consider actors that will interact with the future system. The
i* model will deal with a much greater variety of actors, agents, positions or roles .
Consequently, the mapping is by no means complete. In addition, the mapping will
always depend upon the analysts/developers and a general deduction rule is impossible to
precise. Hence, the statement should not be understood as a rule for directly mapping i*
agents to ALBERT agents. It should rather be interpreted as an advice not to map ALBERT

agents to i* roles. i* roles are then mapped to some statements inside of an agent (at
least for the real world modelling).

We decided to bind the i* actor, agent or position concept to the ALBERT agents when
we talk about decomposed actors because of the following reasons:

7 One should note that this last step is not absolutely necessary. The analyst can also proceed with the
identification of ALBERT agents without having decomposed the i* Actors. The ALBERT Agents can
then be bound to the generic i* Actors .

- 52 -

Chapter 4: The Methodology

• Because we are dealing with the modelling of real world entities, we believe that the
binding between ALBERT agents (or actors or positions) and i* agents is more intuitive
in opposition to the binding between ALBERT agents and i* roles. ALBERT agents can
assume several responsibilities and behaviours which seems to be much more related
to the concepts of agent or position in i* . Ideally, we say in i* that one role responds
to one responsibility; one type of dependency link. But positions or agents can cover
or play several roles .

• Another, more practical reason is that when we will later define ALBERT agents'
behaviours (see section 1.4), if we would model each ALBERT agent as an i* ro le, we
wo uld have to introduce explicit communication to co-ordinate the two behaviours.
This will lead to the introduction of statements that are of no importance for the
understanding of the process and can lead to an over-specification; a property that is
not desired in the Requirements Specification. In addition, another type of over
specification is the introduction of state components that are shared between the two
ALBERT-agents. Because a state component can only be assigned to one agent, we
would have to introduce supplementary staternents that express a relation between the
two different state components iJ1 the ALBERT specification which actually refer to one
real world entity. The following exarnple might help in understanding our viewpoint:
assume that an Actor 'StockClerk' in our i* model has a resource 'Stock' and his role
is to ship sold items and update a mirror of the stock. This actor is then modelled by
an i*-Agent 'StockClerk' who has two resources 'Stock' and 'Mirror' and who now
plays two ro les: 'Shipitems' and 'UpdateMirror'. The first ro le corresponds to the
behaviour of shipping a specified item and the second describes the updating of a
mirror of the real stock to reduce the inconsistency between the reality and its mirror.
Mapping the two roles to two ALBERT agents would yield the fo llowing specification:

lsHIPITEMS

ACTION COMPOSITION

ShippingProcess(item) H Remove(item)<> SignalRenioval(item,)

ACTION INFORMATION

X(SignalRemoval(_). UpdateStock: TRUE)

1 UPDA TEMIRROR

ACTION COMPOSITION

UpdateProcess(item) HShipltems.Signa!Removal(item,)<>MinusMirror(Item.)

ACTION PERCEPTION

X(UpdateStock.SignalRemoval(_): TRUE)

- 53 -

Chapter 4: The Methodology

This communication and shared state components problem might be pretty misleading
and the analyst might conclude that the real world consists of two actors. If we now
consider that i*-Agents or Positions are connected to ALBERT-Agents, a possible
specification would be:

1 STOCKCLERK

ACTION COMPOSITION

ShippingProcess(item) H Remove(iteni)<> MinusMirror(item)

-
We imrnediately see that this representation leads to an increasing dependency towards
the i* model. We now need the i* model to describe the roles that an agent plays. The
ALBERT specification does not reflect any differentiation between the agent's roles . Inside
the specification of an agent, statements or parts of statements have to be assigned toi*
roles.

The reader should bear in mind that one can always refer to the node 'Actor' as a generic
entity if one has doubts whether to model the node as an position, agent or role or if the
specialisation of an actor is not important.

1.3.2 Agents and Societies in i* and ALBERT

ALBERT has an explicit representation for modelling societ1es, aggregates that are
composed of several different components. i* does not deal with thern explicitly (it has
no explicit representation) but we might use the INSTANCE and PART mechanisrn that
is connected to Agents and Positions in i*. We have to pay attention, however, on the
following precision regarding the meaning of an aggregate in the two models. i* deals
with intentions of an aggregate and ALBERT describes the behaviour of a society. Unlike
ALBERT, where the behaviour of the society is completely described by the set of its
components, an i*-aggregate is taken to be intentional. It is not necessarily defined by its
subparts with respect toits motivations.

We should also precise that when we define in ALBERT a class, ail its corresponding
instances have the same behaviour. This is not necessarily the case for i*, where we can
depict a special agent out of its class.

1.4 Identification of the behaviour
Until now, we only considered the actors, with their respective actor-decompositions,
the dependencies that exist between them in the i* model and the declaration of the
ALBERT-Agents. The next step will lead to the complete description of the environment.
This means , for i*, that a 'complete' Strategic Rationale Model has to be elaborated and
for ALBERT that the behaviour of the agents, representing the real world, has to be
described.

- 54 -

Chapter 4: The Methodology

1.4.1 Elaboration of the Strategic Rationale Model

The Strategic Dependency Madel provided us with an initial understanding of the
intentional relationships of the organisational environment. We will now try to get a
deeper understanding of the processes and of the interna! motivations that are behind the
dependencies.

We will not simply elaborate a list of ail the actions an entity performs as Jackson does.
The Strategic Dependency Madel already identifies the actors and their dependencies and
responsibilities. As a result, a good starting point are the incorning and outgoing
dependencies. Indeed, one cannot leave a dependency 'unanswered'. Someone depends
(becomes able and at the same time becomes vulnerable) upon the actor for the
achievement of a condition, the performance of a task or the deliverance of a resource.
Theoreticaily, dependencies will be re-linked to some tasks , goals, softgoals or
reso urces. If the dependency could not be linked to a task, goal, softgoal or resource,
one has to pay attention if one is not in presence of an ability problern for the
achievement of the dependency. The most common modelling step is however to connec t
the incoming dependency or the set of related dependencies to a task or a goal on the
dependee's side. A task decomposition or a means-ends decomposition can then be
developed in order to clarify furthermore the influences and impacts of the dependency.
On the depender's side, one cannot say that there is an often reappearing 'configuration'.
AU the possibilities are imaginable.

Documentation in i*.

As for the Strategic Dependency Model, one should also join to the Strategic Rationale
Model a detailed description for every Actors, their possible decomposition, the
dependencies between actors and interna! to actors and the internai behaviour of actors.

1.4.2 Elaboration of the ALBERT Model

A first idea to mode! the behavio ur of ALBERT-agents might be to start by the
dependency links and the interna! behaviour represented in the previous Strategic
Rationale Model and then to describe the details in the ALBERT part. We do not
automatically adopt the first approach for the following reasons:

• in the Strategic Rationale Model only strategic important relationships are represented
and

• the interna! (to actors) representation of behaviour is by no means complete and the
representation in the Strategic Rationale Model can not conclude to a corresponding
representation in the ALBERT Model. For instance, a resource does not necessarily
lead to a state component in ALBERT.

Inasmuch as we cannot generalise the assertion that ail dependencies induce a
communication and vice versa, which could be represented in ALBERT as
information/perception constraints, we will propose a different approach which firs t
describes the interna! behaviour of the agents and then only analyses the communication

- SS -

Chapter 4: The Methodology

constraints between the agents. The relation between the i* concepts and ALBERT

statements is only examined afterwards.

A imaginable 'meta-algorithm' or process for elaborating the ALBERT document might be:

• Define State Components and Data Types

• Define Initial Valuation and Derived State Components

• Define State Behaviour

• Define actions

• Define Effect of Actions on State Components

• Define co-ordination

State Components.

• Internal: Action Composition, Action Dura.lion, Precondition, Triggerings,
(State Behaviour)

• Extemal: Action Perception/Information

A possible life of an agent in ALBERT is described by a sequence of states. These states
are structured by state components. They represent the intemal knowledge of the agent
about his environment. The chapter about ALBERT described already the possible types
of state components. We will not reintroduce the different possibilities here but we want
to say few words about some pragmatic aspect of state components .

State components, just as attributes for other object-oriented approaches, reflect a
property, a feature an agent in the real world has. The most common state components
for people are (for example): name, date of birth, eye colour, ... Although the creation
and the destruction of real world entities' attributes are hard to define, ALBERT state
components are restricted to the lifetime of an agent. Their creation and destruction
takes place with the creation and destruction of their respective agents' life. In general, a
real world entity has an infinite set of properties or features but we have to select the
features that are important for our understanding of the entities of the real world. If we
take, for example, a persan that gets married. He/She always had the state component
'Date-Of-Marriage' although he/she only thinks of it now that he/she starts playing the
new role of husband/wife. If we are now only interested in the persan as a pupil we can
leave out this state component. A priest, however, who wants to keep a data base of the
couples married by him, might be more interested in such astate component.

With respect to the last consideration about the importance of the domain, we can also
say that the distinction whether a real world entity is an agent by itself or an attribute of
an agent relies upon the part of the real world we want to model. A engine can be an
attribute of a car for an insurance company and at the same time be an abject/agent for
the constructor of the car.

This difficulty of identifying state components and agents leads to the following
approach:

1. Identify agents and do not yet bother about agents and state components. At first,
every real world entity can be modelled as an agent.

2. Reject agents which are not necessary for our purpose, are in fact attributes/state
components or are redondant with other agents.

- 56 -

Chapter 4: The Methodology

3. Select and regroup state components .

The discussion above indicated the difficulty for giving hints for eliciting and modelling
state cornponents. One can refer to the same kind of documents to achieve knowledge
abo ut the state components that are important for the knowledge of the problem domain.
Every noun that appears in these documents might be a possible agent or a state
compo nent of an agent. We will restrict ourselves by saying that, whatever state
components one chooses, it is always helpful to add a detailed description, which can
also be informal, to the declaration of the state components. This is helpful because
during the modelling stage we necessarily choose words to represent the real world
entities . These words may, however, have a different meaning for different people. It
might be very useful to give an informa! definition besides the usual declaration . This is
also true for the declaration of data types.

Usually, state components can be constrained. The 'templates' ALBERT offers, can help a
lot for eliciting constraints about the state components:

• The initial valuation of a state component, which defines the value of the state
cornponent at the first state of a possible life.

• The derived state components. These are 'artificially' created state compo nents rn

order to improve the readability and the use of the specifications.

• The behaviour of states for the whole life-cycle.

• The relation of state components with actions: preconditions (necessary condition for
the occurrence of an action) and triggerings (obligation for an action to occur)

Actions.

Since state components cannot change by themselves , ALBERT introduces actions to
change these state components. In opposition to JSD [Jackson, 83], actions are not
necessarily instantaneous. They can last over a period of time and are decomposable.
What is common between the action notion in JSD and action notion in ALBERT is that
actions are always performed by an agent and that the change of the state components by
an action is instantaneous (event) . We see rneanwhile that the ALBERT solution is nearer
to the real world concept of an action because it has a duration and it can be
decomposed.

Besides the alteration of state components, actions have also another role in an ALBERT

specification: the co-ordination of interna! and external processes. This is partly indicated
in the action composition template.

Just like for the state components, the ALBERT headings generate a set of possible
cons traints abo ut actions:

• As already said the triggerings and the preconditions.

• The Action Composition establishes relationships between the occurrences of actions.

• The Action Duration template defines the exact duration, an upper lirnit or a lower
limit.

- 57 -

Chapter 4: The Methodology

• And finally the Effects of Action template that describes the modification of state
components by actions.

Communication.

Agents can also communicate with each other agents by the means of state
information/perception and action information/perception mechanisms. An agent can
learn about the value of another actor's state component or the occurrence an external
action and tell other actors about the occurrence of an internal action or the value of a
state component.

1.5 Definition of the Objective
Until now, we have described an abstract model of the real world. This model is
characterised by a problem; a situation that is not desired as it is at this moment. A
problem might be a lack of control on a process existing in the real world or a new
requirement needed by the real world. We now have to introduce goals or requirements
that have to be met by the future system.

In the i* model, we introduce a new role that assumes new supplementary objectives.
This role is often based upon an existing role with additional conditions that consider the
objective.

In ALBERT, we use the vocabulary introduced by the modelling of the real world entities
to add constraints on top of the whole specification that will ensure that the problem will
be resolved. These constraints are not assigned to a specific ALBERT-agent and we
cannot speak of a 'real' ALBERT specification. These constraints usually consist in
controlling the occurrence of actions, the state of agents or in the introduction of new
processes.

These are typical functional requirements: the processes that exist in the real world have
to be corrected in order to exclude the problem or new processes have to be added.

2. System Requirements

The previous step identified:

1. A problem domain or problem environment as some part of the real world . The
problem domain was described by the ALBERT document for clarifying the behaviour
of the different agents and by the i* model to show the rationales that are behind this
behaviour. This problem domain is however unsatisfactory (lack of information or
lack of control) for the client.

2. A set of objectives/requirements which should be respected by a new environment, i.e.
the solution environment.

- 58 -

Chapter 4: The Methodology

These requirements are now assigned to a system that assumes the responsibility for
'solving the problem'. The system, in order to achieve the requirements, has to bring
about some output which is additional to the behaviour of the environment. Output can
be information necessary for the environment or control upon the environment. In
addition, the system also has to be connected to the real world: this connection provides
the system with the necessary input.

We basically deal in this step with functional requirements and the role played by i* may
seem lessened but we consider that the i* model can support us in searchi11g for
functional alternatives and specifying the qualitative requirements.

2.1 The Omni-System
The Omni-System8 is characterised by two properties which give it an overall power: the
omniscience property and the omnipotence property.

• Omniscience. By the omniscience property, we mean the capability of the
system to be aware of ail the important i11formation about the environrnent.
Important information is information which should have an impact on the
behaviour on the system and thus information that should influence the
behaviour of the yet still unsatisfactory environment. This information can be
the occurrence of a particular behaviour of an environmental agent or a
particular state in the environment, for instance. If the system cannot find the
information in the modelled environment, two alternatives are possible: (1) the
i11formation has be deduced/derived from the existing information or (2) we
forgot to model some important part about the domain and we will have to go
back to the first step.

• Omnipotence. The omnipotence property gives the system the power to have a
direct influence on the behaviour of the problem environrnent. This influence is
generally executed by the means of actions or information towards the
environment.

Omni-System: enlarged, interacting and reduced.

The enlarged Omni-System is characterised by the actor 'Omni-System', the modified
actors of the problem environment and their incoming and outgoing dependencies. The
interacting Omni-System is defined by the intersection of the Problem Environment and
the Enlarged Omni-System: the changed actors that still belong to the environment. We
have to consider this interacting Omni-System because it is impossible to clearly separate
the Problem Environment and the System. The reduced Omni-System is restricted to the
actor 'Omni-System'; the exclusion of the Interacting Omni-System from the enlarged
Omni-System.

8 For this second step, we use the notions 'Omni-System' and 'System' indistinguishably.

- 59 -

Chapter 4: The Methodology

larged
mni - Sys te m

Figure 27: The Omni-System

We introduce this Omni-System to distinguish between the indicative and optative mood
as Jackson and Zave [Jackson et al,96] characterise the difference between the
statements describing the environment without the machine and the statements describing
the desired environment. The introduction 'resolves' two problems:

• The implementation bias, which is the consequence of the use of states in specification
languages. The internal behaviour of a system is often specified in terms of its interna!
states which leads to the implementation bias. Because the system is now
characterised by the omniscience property, it does not have to maintain interna! states
about the environment.

• The necessary distinction between the indicative mood and the optative mood. Unlike
the A-7 method [Jackson et al,96], ALBERT statements do not clearly distinct between
the constraints identifying the system and the constraints identifying the problem
environment. Consequently, we make the distinction by the expressive introduction of
the Omni-System as a separated actor and its dependencies .

This introduction of the system, leads to the specification of:

• states/actions shared by the environment with the system

• conditions under which the system is altered

• states/actions controlled by the system and communicated to the environment

• restrictions under which the behaviour of the environment is altered.

Omni-System: An ALBERT-Agent?

For the i* model, the situation is clear: we introduce a special actor 'System' that
assumes the new responsibilities identified by the new objectives. Each objective imposed
by the environment will lead to a dependency link between an environmental actor and
the new system.

For the ALBERT specification, however, the situation is less obvious. Two situations are
imaginable:

- 60 -

Chapter 4: The Methodology

(alt 1) Explicit representation. We introduce a special agent (or society) in the ALBERT
specification which is a correspondent to the i* actor 'System'. In ALBERT, we
identify then the problem environment agents and the 'System' agent which
together compose the solution environment. The methodology would sti.11 be
appropriate separately. Sorne agents describe the problem envi.ronment and some
the system. This solution seems to be more structured and intuitive.

(alt 2) Implicit representation. We introduce no explicit system agent in ALBERT. The
solution envi.ronment is then identified by the changed problem envi.ronment. It is
the i* model's role to differentiate between indicative and optative properties. The
i* actor 'System' would identify the constraints which had been added to or
changed in the ancient problem envi.ronment. This alternative increases the
dependency between the two models and especially the dependency of the ALBERT
specification on the i* model. Furthermore, the classical concept of an ALBERT
agent would have to be revised. In the previous step, we considered ALBERT
agents as concrete resources having responsibilities for actions happening in the
envi.ronment and communicating with other agents. Contrary to the preceding
alternative, the agents would describe the problem envi.ronment and, at the sarne
time, the system.

Decomposition.

One should however not conclude that the Omni-System has to be one single actor in i*
and one agent in ALBERT. It can also be an aggregate of different actors where each
actor would be responsible for a smaller part of the overall fonction to provide. This is
very useful for important functional requirements. This composition should although not
be regarded as an obligatory implementation composition (which actually can be
completely different). Furthermore, the constraints belonging to the enlarged Omni
System can include actors that belong to the problem environment.

For systems that offer a larger range of functional services, we adopt a 'decomposition'
approach. First, we identify one system that meets ail the imposed requirements. This
system is then divided into subsystem, where each assumes an identified responsibility .

i*-ALBERT Mapping.

In accordance with the two alternatives, we presented previously, the mapping between
the i* entities and the ALBERT entities changes for this stage.

Firstly, if we represent the system explicitly in ALBERT, this system is a theoretical or
'virtual' system which has yet no counterpart in the real world. Consequently, the
important argument that the mapping between the two models and the real world should
be intuitive and natural does not exist for the system. We believe that it might be useful
to relate every i*-role to one ALBERT-agent. As a result , every ALBERT-agent reflects the
behaviour of one role.

When our Omni-System is defined as a set of agents , we necessarily have to deal with the
co-ordination between these agents. This can be done by constraints on top of the
agents. These constraints have to be clearly stated and will be identified in the i* model.

- 61 -

Chapter 4: The Methodology

Secondly, if the system only represents the 'changed' environment, i* actors, agents,
positions or roles would identify some constraints in the environment.

2.2 Specifying the functionalities
In the following , we describe a possible approach for the elaboration of the system:

• we introduce the system,

• we identify the means by which the system has an impact upon the environment,

• we identify the necessary resources of the environment,

• we specify the relation between the outputs and the inputs .

This approach seems to be more adequate for the first alternative (the explicit
representation) we gave. However this approach can also be used for the second
alternative (the implicit representation) although we will not introduce the system.

2.2.1 Identification of the Omni-System

We connect the system to the environment and the system controls or adds new
functionality to the environment. These functionalities are now introduced in the i* and
the ALBERT mode!.

In i*, this leads to the creation of the actor system.

In ALBERT, we create an agent (or society) who assumes the responsibility for solving
the problem. For the second alternative (alt 2) , nothing has to be done since we do not
represent the System explicitly.

2.2.2 Identification of the System-Output

Next, we introduce the means by which the Omni-System can add some functionality to
the environment: the System-Output. This influence on the environment's behaviour can
be basically achieved through the controlling actions or the supply of some information.

Identification of the system-output in i*.

This is usually modelled in i* by transforming the internal goals, resources or tasks to
some dependencies, where the depender is usually an actor of the environment and the
dependee is usually the system itself or arole played by the system.

We distinguish in the i* part especially between task and resource dependencies on the
Omni-System.

By a task dependency the depender wants the system to perform a special task. We use
task dependencies for specially constraining dependencies and to indicate a perceivable
shi.tt of responsibility towards the system. The decision making is concentrated on the
reduced Omni-System.

A resource dependency is not so constraining. The depender gains ability to use the
resource but it is left upon his appreciation what he does with the resource. Therefore, if

- 62 -

Chapter 4: The Methodology

the requirement is a control upon an existmg process, we cannot say whether the
objective is completely achieved by introducing the system: it may be that some
organisational restructuring is needed (see our example in chapter 5, section 2.3.2, where
the Efficient Order Processor receives a new precondition constraint). The decision
making process (structure) on the reduced Omni-System's side is also not as big as for
the task dependency.

Identification of the system-output in ALBERT.

The control of an existing process in the environrnent or the introduction of an additional
functionality in ALBERT is basically done by the introduction of co-operation constraints
in the system and environment specification. The system has first to be connected to the
environment before changing the behaviour of the environment. It might be that special
actions, state components or relating constraints have to be - introduced in - the
environment because the environrnent was not designed to react on the system.

2.2.3 Identification of the System-Input

The introduction of the Omni-System will fmally transform the problem environrnent into
the solution environment. The identified problem will no longer exist and the
environment will be satisfactory (with respect to that problem). But to be able to
influence the environment, the system has to be informed about the environment. We
have to identify this information.

Identification of the system-input in i*.

Typically, we connect the system with the env:ironment by some dependency links where
the system is the depender of the relationship. These latter express the necessary
resources, tasks or goals for the decision making process that takes place in the system.
Softgoals usually express properties that have to be achieved by the environment.

Identification of the environment-media in ALBERT.

In ALBERT, we identify the state components and action occurrences in the environment
that are necessary for the system. These components and actions are then made visible
for the system.

2.2.4 Identification of the System' s behaviour

Having now well defmed the information about the environment and the control upon the
environment, we can continue with describing the relation between the two components:
the system's input and the system's output. This relation defines the behaviour of the
enlarged Omni-Systern. We consider the enlarged Omni-System because we describe
properties that hold thanks to the system.

Identification of the behaviour in i*.

In i*, we generally search for several roles assuming each a different k:ind of
responsibility, i.e. a set of related incoming dependency links. These roles are then
characterised by a behaviour. We model this typically by a task although the other
concepts of i* are also possible. When we modelled the behaviour by a task, we can
continue by decomposing the task into tasks, goals, resources and softgoals. A goal lets

- 63 -

Chapter 4: The Methodology

us choose between different alternatives for achieving the condition stated by the
incoming dependencies.

Identification of the behaviour in ALBERT.

In ALBERT, we use the different headers for specifying the system's behaviour. To each
role we assign an agent. This leads to a better identification of the role played by each
agent but we might also have to express specifïc constraints about the co-ordination of
the different agents . These constraints can be expressed on top of the di±Ierent agents
belonging to the system and identified by the i* model.

2.3 Evaluation of the Alternatives
The problem that arose in the real world does not necessarily lead to one solution. Many
functional solutions are conceivable. Although, we introduce here the first evaluation, we
believe however that this evaluation, together with the elicitation of softgoals, is from
now on a process that will continue during the whole elaboration of the specification.
Especially with the 'implementation' of a concrete system-solution, new softgoals might
appear and older ones might be refined.

For a first evaluation, there are two possibilities:

• If possible, we make an evaluation of the difîerent alternatives and select one to
continue with the next step. This evaluation is based upon general requirements which
are not specifïc to one solution. Bence a first evaluation can be made from the
softgoals that have to be respected by every sub-element of the decomposed task.

• We continue the process with a number of solutions and we evaluate the different
functional alternatives after the solution has been designed. Indeed, the functionalities
identified in this step are quite abstract and we might wait for a more concrete
solution or implementation to have a better understanding of the alternatives and of
the goals and softgoals they have to accomplish.

When we have defined the qualitative requirements, that the system has to accomplish,
we have to get back to this step for the evaluation of these requirements and the
selection from their possible alternatives . Furthermore, the evaluation might generate a
better understanding about the requirements . Consequently the task of evaluating and
identifying requirements and alternatives are strongly intertwined.

2.4 Identifying Softgoals Dependencies
We have described the functionality the system has to produce! That is already a great
step towards the satisfaction of the client. But there is another factor that is, since the
80's-90's, becoming increasingly important: the non-functional requirements. This
progress in importance is so dramatic that often the acceptance of a project depends
upon these non-functional requirements. As a result, if a requirements engineering
method wants to be successful, it has to indude such constraints.

- 64 -

Chapter 4: The Methodology

The difference between functional and non-functional requirements is generally hard to
identify (see for instance the discussion in chapter 1) and often depends upon peoples'
point of view. To give an intuitive understanding of non-functional requirements, we list
some typical groups of non-functional requirements (properties that have to be respected
by the functionality) :

• Perfonnance • Backup/Recovery

• Cost Constraints • Security

• Maintainability • Reliability

• Accuracy

Besides the difference between these functional and non-functional requirements,
another criteria is also used to rnake the diJference between the type of requi.rements :
quantitative and qualitative goals. In this perspective functional requirements refer to
quantitative obligations and non-functional requirements to qualitative properties of the
system. We believe that this is a more fruitful notion because they are related to the
concept of goals and softgoals:

• goals which can be clearly defined,

• softgoals that are a priori not defined.

This distinction does not consider the type of language used for expressing the goals.
Consequently, a condition can also be clearly stated in a non-formal language.

2.5 Refinement of Softgoals
With respect to the discussion above, we believe that, at first, requirements like accuracy
or tirne constraints are modelled by softgoals. But these vague notions have to be
elaborated and specified more precisely since we deal with a document that plays the role
of a contract between two parties. When dealing with this precision, we identify two
operations:

• the refinement of the softgoals into more elementary goals. These often turn out to be
partially or totally composed of (hard-)goals. When the refmement fmishes with a set
of purely hardgoals the main softgoal can be transformed into a (hard-) goal that is
definable.

• the 'operationalisation' of the goals. The hard goals can be partially or completely
introduced as constraints in the ALBERT model.

Among these goals and softgoals, one can also identify goals/softgoals that are related to
the general settings of the system and goals/softgoals that relate to the software:

• On the one hand, the first ones are rneant for the requirements analyst who has to
develop a system. They should be fulfilled by every possible system-solution and
hence are identified for every system-solution. There are also goals/softgoals that are
specific to one solution. These are usually developed during the elaboration of the
system's 'implementation'.

- 65 -

Chapter 4: The Methodology

• On the other hand, there are also goals/softgoals that are meant for the designer of the
software. These are usually acquired during and after the implementation step and
when the concrete system agents (hence also the software agents) are identified. They
can also be derived from the user's requirements. Like for the previous group of goals,
one can also talle about hard-goals and softgoals. For example, 'Use a specified ODBC
driver' would be a hardgoal whether 'Use an intuitive User Interface' would be a
softgoal.

A possible approach for refining the softgoals might be:

• Describe the softgoals in detail using an ù1formal or a formal language. If theù·
definition is clear-cut, they will have be transformed into goals . If they can be
introduced in the ALBERT model they become delivrable/operational goals. Otherwise,
they stay at the qualitative level and will be reduced furthermore.

• Refine the softgoals and goals into their components. Softgoals have to be explored to
reduce the complexity of their meaning and to detail their impact on the specification.
Goals that are yet not detailed enough to be introduced in the ALBERT specification
have to be refined and operationalised.

• Introduce the deliverable goals in the ALBERT specification. The other goals and
softgoals are kept for latter stages.

We can ù1troduce the NFR framework proposed by L. Chung [Chung et al,94] that
introduces also good 'recipes' for decomposing softgoals as accuracy, security, etc.

Qualitative Goals
Softgoals

Quantitative Goals
Hard-Goals

Operational Goals
Delivrable Goals

Q Softgoals

Q Hardgoals

'----"AND

~OR

Figure 28: Refinement of Softgoals using the NFR Framework

- 66 -

Chapter 4: The Methodology

3. System Specification

The system, we have specified, should now have ail the necessary functional and non
functional requirements in order to elirninate the problem. But, there are two major
problems with the present situation:

• The model of the system, we described, most often only works in theory. We have
tried to solve a problem that occurred in the real world . Consequently, we made a
model abstracting from ail the irrelevant details of the real world. Now, we have to do
the inverse step: take the abstract model of the system (our Omni-System) and map
the (problem solving) functionality into concrete actors/agents. We consider this
greatly as the 'irnplementation' phase of the requirements engineering process. The
model has to be 'irnplemented' into the real world model. This leads usuaily for
information system projects to the introduction of hardware and software agents. We
can note that also purely human solutions can be considered. We will see this in the
case study in chapter 5.

• The softgoals we identified in the previous step have to be revised so that they can be
introduced in the requirernents specification and assigned to several agents.

As already said, this last step can be regarded as the 'irnplementation' step. By this, we do
not understand the design and coding of software but the elicitation and analysis of the
system components. Indeed, our rnethodology does not merely lirnit its scope on the
requu·ernents of software. Problerns arise u1 the real world includu1g people, rnachu1es
and software and the proposed solution has to Îl1teract with this problem environment.
Consequently, we have to introduce the concrete media by which the communication
between the system and the environment takes place.

In the foilowing, we will describe a typical approach for designing the system. The
system is altered from an abstract description of some functionalities into the
specification of concrete agents.

3.1 System and Subsystems
In most cases, systems provide complex functionalities so that these latter are regrouped
into subsystems. These subsystems can be Îlnplemented independently of other parts of
the system and are characterised by common properties. Usuaily, these common
properties are common responsibilities, functionalities, services or behaviours. For the
moment, we do not consider concrete real world aspects. This will be the purpose of a
latter stage.

In the 'System Requirements' step, we already introduced the notion of subsystems
playing each different roles. This decornposition can be used but does not necessarily
have to be coincident with the decomposition we elaborate here.

In i*, we identify different positions and/or roles that have certain responsibilities . The
positions and roles also have dependencies upon other position or roles.

- 67 -

Chapter 4: The Methodology

In ALBERT, we specify agents or societies upon the same criteria. Each actor has a
responsibility which leads to the specification of a behaviour. Furthermore, the agents are
communicating by tqe means of the perception/information mechanism.

We can identify several types of subsystems which are derived from the retraction of the
omniscience and omnipotence assumption and the functionalities described in the
previous step. This natural division can be used to organise the subsystems into:

• an Application level derived from the functionalities.

• an Interface level derived from the retraction of the omnipotence and ommsc1ence
assumptions . Indeed, special actors and agents might be responsible for getting input
information from the environment and others might be responsible for influencing the
behaviour of the environment.

• a Mirror Level where the real world entities are mirrored and simulated. In general, an
information system deals about entities of the real world. Hence, information has to be
maintained. In a library system, for instance, books are getting borrowed and
returned.

3.2 Subsystems and Processors
The agents and actors, representing the system's responsibilities, are now assigned to
concrete agents because we want to co-operate with the real world. We refer to
processors when we talk about the concrete entities that provide functional services like
terminais , user interfaces, peripherals, CPUs, other hardware components and software
components.

The processors are due to:

• the requirements expressed by the customers,

• the proposition of system components by the system developer.

The system has to communicate with the real world entities and we will retract the
omniscience and omnipotence assumption. This retraction leads to the introduction of
special agents (the processors) and to special statements refining the visibility and
information constraints. If the processors are derived from the customers' requirements
the system developer has to respect these constraints. If the customer has no predefined
needs about the implementation the system developer has more freedom in choosing the
necessary processors. He has, however, to respect the constraints (softgoals) expressed
by the customer. Requirements like performance needs or cost issues may restraint the
set of possible hardware and software components. In addition, they have to be included
into their respective specification.

In i*, the positions and roles are assigned to previously identified agents or new ones.
Each agent playing a set of roles. For instance, the 'input-agent', responsible for
processing the input of an information system, and the 'output-agent', responsible for
processing the output to the environment, are now regrouped to one agent 'Terminal'
who plays the two roles.

- 68 -

Chapter 4: The Methodology

In ALBERT, several agents describing different roles or responsibilities may be regrouped
in to one agent or one agent may be split over several concrete agents .

Furthermore, we have to rethink the coordination of multiple agents, the communication
between these agents and shared/unshared resources:

• Processes were spanned over several agents (ro les) or were restraint to one agent.
These processes have to be reconsidered because they are split over several agents or
merged into one agent.

• The coordination of agents uses necessarily the info rmation/perception mechanisrn.
Consequently, these constraints also have to be analysed and updated.

• Resources that were shared bet'w'.een several agents also have to be assigned to one
agent. Hence new constraints might also appear due to this need.

We deal here as in the first step, where we talk about the problem domain, with concrete
entities of the solution environment. Consequently, the mapping between the real world
entities, the i* actors, agents, position or ro les and ALBERT-agents should be intuitive.
An ALBERT agent can be mapped to one i*-agent (actor or position) and the i* roles
identify some constraints describing that role within several agents' 'template' .

Conceptual Modelling

The components also have to maintain information abo ut the environment since they
have no direct access to this informatio n. Consequently, the sys tem sirnulates sorne part
of the environment. We use the problem domain as a reference mode! which will guide us
through the elaboration of the conceptual rnodel.

The system developer will also have to decide under which form these conceptual models
are maintained. Performance and cost constraints can have also a serious influence upon
this decision. Upon these criteria he has to decide between a fùe storage system or a
relational database system, for instance.

4. Summary of the Method

To summarise this chapter, we can draw the following graph which sums up the differen t
tasks the system analysUdeveloper has to perform. These tasks are given in certaÎ11
sequence but we should however note that a lot of these tasks are executed iJ1 parallel
(the identrtïcation of the System's Input, Output and Behaviour fo r instance) . In addition,
some tasks are fated to backtrack. In this way, the evaluation of alternatives often has to
be revised after a concrete solution has been proposed.

- 69 -

Chapter 4: The Methodology

The Prob le m Dom an an d Objectiv e
- ld e ntif y th e rea l world ac tors a nd dep e nd e ncie s

Select Albe rt Boundary
!d e n tif y B e ha v io ur
ld e ntif y Problem
Defi ne Objec ti ve

Th e Sv s te m R e quirem en ts
ld e nti fy th e System 's Output

- ldentify th e Syste m 's Input
- ld e ntify th e Sy s te m 's Behaviour

Eva luat e Alternative s
ldentify & R e fine Softgoal s

T he System Specification

J

J
- Retract the omni -sc ie nc e and -po te nc e assump ti o n

Defi ne S ub sys te m s
- Assign Subsystems to Processors

- 70 -

CHAPTERS
CASE STIJDY:

MAIL ÜRDEREXAMPŒ

The previo us chapter explained theoretically the basic steps of the approach, we choose
for elaborating a requirements specification. This chapter now clarifies the di.fferent
concepts by illustrating them on a case study: the mail order example which derived from
a discussion with E.Yu.

The case study deals with the problem which could arise in every newly created mail
order company. To si.mplify the model, only fo ur major actors are considered: Customer,
Office Clerk, Stock Clerk and Bank Clerk.

In the example, the Office Clerk processes orders submitted by a Customer. We assume that all
transactions are paid for using credit cards. Thereby, in addition to the ordering of items to be
purchased, a customer also submits its credit card information such that the Office Clerk could
process ù1e payment of the purchased items.

After having analysed and verified ùrnt ù1 e order is error free, the Office Clerk proceeds to
process the payment. A debit request is submitted to ilie bank clerk for receiving ù1e agreemen t
from the bank clerk. The Office Clerk waits for ilie response from ù1e bank clerk, which
indicates eiilier a confirmation or rejection of ilie debit requested, before making ù1e invoice
and ordering ù1e transfer. Next, he transmits ù1e invoice to ù1 e Stock Clerk, who has to ship
the respective item. If the order is rejected, a corresponding procedure would be in voked
(alù10ugh we will not mode! it).

The Bank Clerk, upon receiving ù1e debit reques t by ù1 e Office Clerk, is expected to present a
response of confirmation or rejection for each transaction to ù1e Office Clerk. When U1e transfer
is ordered he has to perform ilie required transaction . The interaction between ù1e office clerk
and the bank clerk is more complicated and requires more time because ùie bank clerk belongs
to anoilier organisation.

This interaction between U1e bank clerk and ù1e office clerk occurs for each order. But
sometimes it tums out Uiat orders are not deliverable because of insufficient stock levels. This
costly interac tion should Urns be avoided in such situations .

- 71 -

Chapter 5: The Mail Order Example

As it results from the problem statement, the system to be instailed will have to avoid this
costly office clerk - bank clerk interaction when the stock is insufficient for handling the
shipment.

1. Problem Domain Model and Objective

The goal of this section is to describe the problem domain, i.e. the interesting part of the
real world, to identify the problems which lead to the conclusion that the real world is
unsatisfactory and to identify objectives/requirements that have to be met by the future
system so that the environment will become satisfactory .

At this stage, we clearly differentiate between the goal of the i* model and the goal of
the ALBERT specification.

• On the one hand, we are interested in a broader modeiling of organisational issues (i*
purpose).

• On the other hand we concentrate on the communication with the future sys tem and
we think abo ut the place and tirne where something has to be changed (ALBERT

purpose).

1.1 Identification of the real world in i*
Because we cannot seriously expect that the identification of the actors and dependencies
of the real world entities of interest will be developed in one step, we will describe the
exploratio n in two sub-steps. We choose a top down approach: from the identification of
a bigger aggregate to the decomposition into several smailer entities. In addition, the
identification of actors and dependencies is described in parailel and not in the exact
sequence as described in the previous chapter.

1.1.1 Identification of the Actors and Dependencies (l5c iteration)

For our example, we first identify the three main actors: the shareholders , the customer
and the Mail Order Company itself (see Figure 29). We also identify other actors such as:
the supplier for items for instance. We will however mark them as out of boundary.

The Customer depends upon the Mail Order Company to receive the desired item. This
is expressed by the resource dependency 'Item'. The Customer receives ability to use the
item and becomes at the same tirne vulnerable upon the 'Mail Order Company' if the
latter would run out of stock for instance.

Furthermore, he wishes that the incoming orders are processed efficiently in order to
receive the item in a short delay. This is represented by a softgoal dependency
'Efficient{ Processing}'. At this early stage, we ass ume that the customer has not made
up his mind about what he means under an 'efficient processing'.

- 72 -

Chapter 5: The Mail Order Example

The 'Confidential[Processing]' softgoal dependency expresses the desire that the orders
are processed confidentially with respect to privacy.

Figure 29: Ajïrst SD Madel

The Mail Order Company depends on receiving orders frorn the clients because it is a
private company and its profit can be defined by the margin between the price of the
ordered items and the final cost of production for the items. This is indicated by the
'Orders' resource dependency. The orders are the necessary input for the main activity of
the Mail Order Company.

In order to stay more or less efficient and cost effective, the Mail Order Company also
depends upon the fact that the orders are correctly fùled. We represent this fact by the
softgoal dependency 'Accurate[Orders}'. Although its achievement can be clearly
determined (either the order is correctly fùled in and the item listed in the order is sold by
the cornpany or the order is false, i.e. the item is not sold by the company) its
achievement also depends upon aspects that are more hard to define such as a clear
handwriting for example. We can also note that this is a typical committed dependency
because a control on the correctness has always to be done and the impact of false orders
is considerable but not fatale for the company.

We identify, furthermore, the actor 'Shareholders'. We choose this actor inasmuch as it is
him who defines the most important objective the company has to accomplish: yield a
maximum of profit. We model this dependency by a softgoal 'Max Profit' because it is
hard to define whether the condition is achieved or not. Although, we represent this
dependency by a softgoal, it is one of the hardest and not easily debatable 'goals' an
information project has to achieve. As our methodology is also thought to assist the
client in the elaboration of early requirements and help in the search and selection of
alternatives, we think that these goals are of importance as well. Every value activity can
be sooner or later related to such an objective. These kinds of objectives will also be the
ultimate boundary for the exploratory search for intentions and motivations. Everything
that goes beyond these objectives would deal with psychological or religious aspects.

In return, the Mail Order Company depends upon the shareholders to invest large
amount of money in the company.

- 73 -

· Chapter 5: The Mail Order Example

1.1.2 Identification of the Actors and Dependencies (2nd iteration)

We now go on by decomposing the Mail Order Company. On the one hand, the
customer is actually not interested in the individual who processes the orders. On the
other hand, with the large amount of activities companies have to deal with, activities are
often divided into sub-activities and these sub-tasks are then delegated to an agent or
class of agents responsible for accomplishing the task. The Mail Order Company can be
interpreted as an aggregate of different entities working together to accomplish a
cornm on goal. The discussion below refers to figure 30.

First, we identify the 'Office Clerk'. It is under his responsibility to process the orders so
that the resource dependency 'Item' is accornplished. His way of processing will also have
large influences on the softgoal 'Efficient Processing' although we will see that it is not
enough that only he fulfils the softgoal. The analysis of the dependencies, that the Office
Clerk has, reveals two more actors: the Stock Clerk and the Bank Clerk.

The role of the 'Stock Clerk' is to put the incorning items into the stock and to ship the
sold items to the customers. We see here a typical case of task delegation: the Office
Clerk could also carry out this task by himself but in order to rationalise the value
activities the task has been delegated to the stock clerk who now assumes ail
responsibilities for the stock. Consequently, the Office Clerk becomes dependent upon
the behaviour of the Stock Clerk and we model this by the goal dependency 'Ship
{Item]'. The Stock Clerk is still free to choose the adequate way for shipping the items.

A similar actor is the 'Bank Clerk', who belongs actually to another organism (we will
model this latter). The Office Clerk depends upon the Bank Clerk to provide him with
information about the Customer's account (modelled by a resource dependency 'Account
Information') and to transfer the money from the Customer's account to the Mail Order
Company's account (modelled by a goal dependency 'TransferMoney') . We add to the
resource dependency a softgoal dependency which qualifies the resource: 'Accurate
[Info]' .

Shipped
[It em]

Figure 30: Identification of the Ojjïce-Clerk, StockC!erk and Bank-Clerk

- 74 -

Chapter 5: The Mail Order Example

We now have already 'a lot of mess' between the different actors : some are internal and
some are extem al to the society; some are individual and some are classes or societies of
actors . It is time to clarify the differen t concepts .

1.1.3 'Specialisation' of the Actors

We will now introduce the differen t concepts i* offers for restructuring ac tors. In
addition, we will make the distinction between classes and instances.

First, in order to simplify the example and to foc us on the elaboration of the steps, we
assume that there are any number of customers, one Order Processi11g Clerk, one Bank
Clerk and one Stock Clerk. Consequently, customers are represented as a class and the
other ones as individuals. In i*, the difference can only be seen in the textual declaration
(in TELOS); there does not exist an explicit graphical representation of classes and
instances.

Figure 31 identifies the decomposition/specialisation of the aggregate 'Mail Order
Co mpany' into its components: Office Clerk and Stock Clerk. This decomposition does
not have to be complete; it only depicts the actors we are interested in. In our example,
the Office Clerk and the Stock Clerk play both one role: 'Order Processor' and 'Shipment
Processor'. This is a simple coincidence; it is completely possible that an agent plays a
multitude of roles. This would be the case if, for instance, the Office Clerk would play
the two roles: the one of receiving the orders and the one of shipping the items away.

We represented the Mail Order Company, the Office Clerk and the Stock Clerk as agents
because we wanted to insist on the identity of these actors. The Mail Order Company
was the company that ordered fo r the info rmation projec t and the Stock Clerk and the
Office Clerk are tangible, social actors; the ones that will be influenced by our new
system. However, one could also decide to represent them as positions. They would
hence have a more general meaning and refer more to abstract entities of the real world
than to special ac tors .

The 'Bank' is represented as a position because we do not refera specific bank organism.
Since then the Bank can be identified as any entity that offers a set of services.
Furthermore, our 'Bank Clerk' is only defined by a set of two roles (transferring rnoney
and informing about the credibility of accounts) . The position 'Bank Clerk' assumes ail
dependencies and we gain hereby the liberty not to go too much into detail about the
definition of roles, the Bank Clerk has to play.

- 75 -

Chapter 5: The Mail Order Example

PART

Figure 31: Agents, Positions and Rotes

Restructuring of Dependencies.

In our example, most dependencies are ascribable to the roles. They do not depend upon
the fact that a precise person or agent responds to the dependency and no important
skills are needed.

In the previous chapter, we said that ideally arole reacts towards one dependency. Thus,
one might think that we broke up with this 'rule'. But this is not the case. If we take, for
instance, the Office Clerk with his role 'Order Processor'. We see that the incoming
dependencies all deal with the activity of processing an order for an item and hence are
related. The role 'Order Processor' has to react towards the main (resource) dependency
'Item' with a certain behaviour. The softgoal dependencies 'Efficient[Processing]' and
'Confidential[Processing]' are qualitative requirements. They will both have influences at
the requirements engineering phase and the design phase. The other thing that they have
in comrnon is that they both are related to this behaviour that the role 'Order Processor'
has to react with: this behaviour has to be efficient and confidential.

In i*, a position can be defined as a set of behaviours and we believe that this is the right
concept for modelling the 'Bank' and the 'Bank Clerk'. As a result, we can also assign
many dependencies towards this position.

- 76 -

Chapter 5: The Mail Order Example

1.2 Identification of the ALBERT Model
Boundary

We now identify the actors that we are going to introduce in the ALBERT specification.
This is already a step that has a big influence on our set of possible alternatives. The
actors we identify at this stage define the process that we assume to be unsatisfactory.
Hence if we find out, at the following steps, that the description of the process is not
broad or detailed enough, we have to go back to this step to add the necessary actors .

Although we have in the appendix, for the sake of completeness, described ail the agents
in ALBERT, this would not be necessary in reality. We identify the actors 'Customer',
'Bank ', 'Bank CLerk' as being out of the ALBERT model boundary. We are only interested
in their behaviour with respect to the office clerk's and stock clerk's interaction. Indeed,
the behaviour of the office clerk is initiated by the customer's request. Furthermore, the
bank clerk has influences on the possible behaviour of the office clerk. We will only
declare them with the actions or state componen ts that are shared between these actors.

This step will lead to the following ALBERT declaration of the four agents Customer,
Stock Clerk, Office Clerk and Bank Clerk:

1 CUSTO1\1ER 1 OFFICE CLERK

1 STOCK CLERK !BANK CLERK

The two actors 'Office Clerk' and 'Stock Clerk' could be regrouped into the society 'Mail
Order Company'. We obtain the following structure:

Environ me nt

Offi c.:C lerk

0
0 Stock

Cus tomer

BankCleo

Figure 32: The Environment

1.3 Identification of the behaviour
The next step describes the behaviour in the i* model and in the ALBERT model. When
we talk Îl1 i* abo ut behaviour, we mean the Îl1ternal, Î11tc:ntional behaviour that is behÏl1d

- 77 -

Chapter 5: The Mail Order Example

the Actors dependency links . The ALBERT model, on the other hand , tries to describe a
process, that is unsatisfac tory.

1.3.1 Elaboration of the Strategic Rationale Model

The 'Offïce Clerk' responds to the main inco ming dependency link 'Item' by a task. In
figure 33, we see that besides the dependencies be tween the 'Custorner' and the role
'Order Processor' the task has also to meet the condition to produce a maximum of
profit. This softgoal co rnes from the partially delegated Softgoal 'Make Maximum Profit'.
The task 'Process[Order]' has as a sub-task 'Verify[Orders]'. We decided to add this task
because it constraints our processing, i.e . the Order Processor has to process the orders
in certaù1 way, and we do not know ye t if this process also ha~ to be changed~ Before the
orders can be processed, one has first to verify whether the listed item is so ld . The
'Verify[Order]' task is connected to the 'Accurate[Orders]' dependency: the importance
and the difficulty of this task depends upon how the orders have been filled in .

We now also see that the processing of an order is constraù1ed by two conditions that
have to be fulfilled fo r a successful processing. The first condition is that the account of
the customer is in order, i.e. the acco unt does not have to be in the red (represented by
the task-goal decomposition 'Account OK. The verification of the condition depends
upon the information the Order Processor receives from the Bank Clerk. We added a
softgoal 'Accurate[lnfo}' because it is important to receive the information about the
respective customer's acco unt that is the most recent. Another reason to represent this as
a softgoal is because it will also have strong influences on design decisions: its
achievement cannot be full y stated as a functional property.

The second condition the process has to bring about is that the money is transferred on
the company's account: the goal 'Money Transferred'. The main ac tors that are interested
in this goal are of course the Mail Order Company and the Shareholders.

The two softgoals 'Less Errors' and 'Fast Turnaround' are derived from the ù1coming
dependency 'Efficient Processrng' and have to be achieved by each sub-element of the
decomposed task 'Processürder'.

We decided no t to represent the respondrng behaviour on the 'Bank's side because we are
not rnterested Î11 its detailed behaviour and we assume that this Bank has the necessary
processes to reply to the dependencies.

- 78 -

Chapter 5: The Mail Order Example

Figure 33: The SR Madel

1.3.2 Elaboration of the ALBERT Model

In order to give an idea of the elaboration of ALBERT specification, we describe it as a
sequential process, i.e. series of ordered actions that bring about a result (the
specification). The approach we use here is only one possible way to proceed but not the
only one. Furthermore, this is a very optimistic approach and we have to say that in ·
reality this process is often much more disordered.

First, we identify a list of state components and data types that we think are necessary to
describe the agents. We only concentrate on the two main agents the 'Stock Clerk' and
the 'Office Clerk'. The whole specification can be found in the appendix.

The declaration data types is self-explanatory:

BASIC TYPES

VISA
l the credit card informati on the customer adds to the order

ITEM

1 the

ITEMTYPE

delivered item

l the type of the ordered item

C ONSTRUCTED TYPES

ADDRESS = CP[Name:STRINC, Street:STRINC. Locality: STRING}
l the address o f the customer

- 79 -

Chapter 5: The Mail Order Example

ORDER = CP[Orderld:!NTEGER, Persan: ADDRESS,Itern: !TEMTYPEJ
l t he o rder o f the cus t ome r

INVOICE = CP[Orderld: /NTEGER, Persan: ADDRESS, Item: !TEMTYPE, Sum:
INTEGERJ

lthe invo ice that t he c u stome r r ece i ves and whi c h is p r oduced by t he
o ffi ce- c lerk

State Components. The Office Clerk has two state components: 'Busy' which describes
whether he is occupied with doing something or free to process an incoming order and
'SoldlternTypes' where all the items sold by the company are listed .

The Stock Clerk has as a state component the real stock: 'Stock' which is modelled by a
table of sets of items which are indexed by an item-type.

OFFICECLERK

DECLARA TI ONS

STATE COMPONENTS

Busy insrnnce-or BOO LEAN

SoldlternTypes W.:!!L ITEMTYPE

STOCKCLERK

DECLARA TI ONS

STA TE COMPONENTS

Stock lM101L SET[!TEM} ;ndmd-by ITEMTYPE

Initial valuation and Derived Components. The next step consists in defining the
initial valuation of the state components and the introduction of derived components.
One should however note that state components do not obligatory have to be initiated.
Also the use for derived components is only useful if it clarifies the structures of
constraints or it represent an entity of the real world. We define the initial value of the
Office Clerk's state component 'Busy' as being 'false' and the Stock Clerk's stock as being
empty.

OFFICECLERK

BASIC CONSTRAINTS

INITIAL VALUATION

Busy= FALSE

STOCKCLERK

BASIC CONSTRAINTS

I NITIAL VALUATION

Stock[_]={}

- 80 -

Chapter 5: The Mail Order Example

Effects of Actions. State components cannot change by themselves and we introduce the
actions of interest, which have an effect upon the state components.

For the Office Clerk, we assume that the change upon the 'SoldltemTypes' state
component is of no significant importance for our modelling ; we will not defme any
effect of action upon that state component. The state component 'Busy' is true duri11g the
processing of an order and fa lse after the processing of an order has been accomplished .

For the Stock Clerk, the 'Add'-action is not absolutely necessary for our purpose but fo r
the sake of completeness we introduce it. One can add or remove items from the Stock
Clerk's stock.

OFFICECLERK
OPERATIONAL CONSTRAINTS

E FFECTS OF A CTIONS

ContinueC~ _J : Busy := TRUE

[}

Busy := FALSE

STOCKCLERK
DECLARA TI ONS

A CTIONS

RemoveFromStock(ITEMTYPE,ITEM)

AddToStock(ITEMTYP E, ITEM)

OPERATIONAL CONSTRAINTS

E FFECTS O F A CTIONS

AddToStock(i,it) : [} Stock[i] := (it u Stock[i])

RemoveFromStock(i,it) : [} Stock[i] := (it \ Stock[i])

Action Structure. Until now, the occurrences of actions are unstructured: occurrences
can happen at every moment in time. The next step consists in structuring th e
occurrences of actions. This is done in our example mainly by the introduction of
processes in the 'Action Decomposition' template although other templates can also be
used9

• Of course, ail these actions have to be declared. Refer to the appendix for the
declaration part.

Two actions , i.e. 'ProcessPayment' and 'AlarmCustomer' , are constrained by a state
component: SoldltemTypes. Relating these preconditions to the action composition we
obtain an 'if-structure'. If the item is sold by the company the Office Clerk proceeds with
the process and does nothing otherwise.

One can also note the importance of the first line (under the Action Composition header)
which enumerates the actions that can only occur inside its respective composition.

The cancelling of a process due to a rejection of the bank clerk has not been modelled.

9 Action Duration, Preconùilion, Triggering and StaLe Behaviour

- 81 -

Chapter 5: The Mail Order Example

OFFICECLERK

DECLARATIVE CONSTRAINTS

A CTION C OMPOS ITION

(C. Order, Continue,AlarmCllstomer. ProcessPaymenr. DebitReq11 est,
BankClerk.AcceptOrder, TransferOrder, OrderShipmenr. BankClerk.RejectOrder)

ProcessOrder H C.Order(o,vi) <> Continue(o,1·i.C)

Continue(o, vi, C) H AlannC11s1omer(o , C) (:f) ProcessPayment(o, vi)

ProcessPayment(o, vi) H

DebitReqllest(am, vi) < > (

BankClerk.Rej ectOrder(am, vi) (:f)

(BankC!erk.AcceptOrder(am, vi) <> TransferOrder(am, vi,acco11nl) <>
OrderShipment(inv)))

OPERATIONAL CONSTRAINTS

P RECONDITIONS

Alan nCustomer(o,_J: ltem(o) fE Soldlte111 Types

ProcessPayment(o,_J: ltem(o) E So ldltemTypes

STOCKCLERK

DECLARATIVE CONSTRAINTS

A CTION C OMPOSITION

(OfjïceClerk. OrderShipment. RemoveFromStock, Ship)

ProcessOrderShipment H

Office Clerk.OrderShipment(inv) <> (

(RemoveFromStock(ltem(inv), il)<> Ship(inv, il/)

@DAC)

OPERA TIONAL CONSTRAINTS

PRECONDITION

RemoveFromStock(i, _J : Carel (Stock{i}) > 0

Cooperation Constraints. We already defined external actions into our structure of the
actions. In order to really perceive the occurrence of actions and the value of state
components, we have to define the information/perception 'templates '. Nearly ail action
occurrences are always perceived in our example, except the 'Order' action by the
customer which is only perceived by the Office Clerk when he is not occupied.

OFFICECLERK

COOPERATION CONSTRAINTS

A CTIO1 P ERCEPTION

K (C.OrderC_J / TRUE)

K (BankC!erk.AcceptOrderC_JI TRUE)

K (BankClerk.Rej ectOrderC_) / TR UE)

A CTION I NFORMATION

K (OrderShipment(_J. StockC!erk / TRUE)

K (DebitRequestC_J.BankC!erk / TR UE)

- 82 -

Chapter 5: The Mail Order Example

K (TransferOrder(.....,_,_J .BankClerk / TRUE)

XK (AlarmCllsto111er(.....,C1).C2
/ C1 = C2

)

STOCKCLERK

COOPERATION CONSTRAINTS

ACTION PERCEPTION

K (OJ]ïceClerk.OrderShipment(_J /TRUE)

ACTIO T INFORMATION

K (Ship(_,_J.Mail /TRUE)

1.4 Definition of the Objective
We now describe the problem informally in natural language: the order processi11g clerk
makes out the invoice and orders the shipment even if the items are not in the stock. For
the production of the invoice he has to internet with the Bank Clerk who belongs to
another organisation. This leads to a lot of inefficiency (paperwork for items that fmally
canno t be shipped) and annoyance on the customer's side. Therefore, we consider the
following objective:

Objective (in natural language):

The Order Processing Clerk can only check out the customer's account, make the
invoice, and order the shipment if the respective item is available (i.e.
Card(Stock(Item)) > 0)

This objective is reformulated as a first order form ula which stands above ail agents and
which has to be fulfilled by the set of agents we are going to introduce in the next step.

Formulation of the objective: (as an 'overall' precondition)

OfficeClerk.ProcessPaynient(o,_) : Card(StockClerk.Stock(ltem(o))) > 0

l~he o : der processing clerk can only proceed when the stock o f the requested
1.tem 1.s n o t empty

On the i* side, we introduce a new role, which belongs now to the system: the one of an
'Efficient Order Processor'(figure 34). This role is yet not assigned Lo a concrete agent.
In opposition to the old 'Order Processor', the behaviour has been changed to include the
new constraint, i.e. the objec tive above. The 'Efficient Order Processor' serves as an
intermediate actor: on the one hand he still belongs to the (old) problem envi.ronment and
on the other hand he also belongs to the (new) system.

This objective can be seen as a responsibility derived from the 'Ejficient[Processing]'
softgoal (with the customer as the depender) and the 'Max Profit' softgoal. We
represented this by the positive cont1ibution links in figure 34.

- 83 -

Chapter 5: The Mail Order Example

Figure 34: The new 'Objective-Rote'

2. System Requirements

We are now going to introduce our Omni-System that considers the objective; the
functional requirement specified by the client: orders can only be processed when the
desired item is in the stock.

Furthermore ail the non-functional requirements have to be expressed. The Strategic
Rationale Model is enriched by softgoal dependencies towards the system.

As already said in the previous chapter, the Omni-System10 is characterised by the two
following properties:

• omniscience: we introduce for the system a perfect perception of the environment: the
Stock Clerk and the Office Clerk.

• omnipotence: the system can have an impact on the behaviour of the problem
environment: the Stock Clerk and the Office Clerk.

We first choose the means by which the environment is controlled in order to certify the
satisfaction of its behaviour (System-Output) and then only we decide how the system
makes this decision and what are the necessary resources (System-Input).

First, we create an actor 'System' in our Strategic Rationale Model. We do not define it
as an agent, position or role because at this stage we do not have a precise idea about
what the system might look like. In addition, we link the objective to the system by a
goal dependency: the Efficient Order Processor becomes dependent upon the system to
achieve the goal. This sub-objective represents the information we need to constrain the
behaviour of the efficient order processor.

10 [n thi s section, we use the terms system and Omni-S ystem indistinguishably.

- 84 -

Chapter 5: The Mail Order Example

lnform
Stoc k

Figure 35: The introduction of the System into the SR Madel

2.1 Identification of the System-Output
We next introduce the different media by which the system can have the necessary
impact upon the problem environment.

2.1.1 Identification of the system-output in i*

There are some possibilities to represent the influence upon the 'Efficient Order
Processor's behaviour11

:

1. We could for example let the 'Efficient Order Processor' depend upon a resource
'Stock Info'. The 'Efficient Order Processor' gains hereby the ability to use the
resource 'Stock Info' but it is still able to decide itself what to do when the incomi.ng
information says that the stock is empty. Thus, we will have to constraint furthermore
the 'Efficient Order Processor' if we want the problem to be solved. We duly note that
although this might look like an ALBERT state perception, this does not have to be the
case (consider for instance arguments of imported action).

2. Another possibility is to represent the dependency as a task dependency. We mean by
this that the 'Efficient Order Processor' is interested in a particular way the goal of
receiving the information about the stock should be achieved. We understand by
'particular way', the acceptance or the rejection of the order. In opposition to the
previous solution, this dependency is more restricting because the 'System' gains
hereby a control over the behaviour of the 'Efficient Order Processor' who sirnply
does what the system commands. Further decomposed, this task dependency could
result in two task dependencies 'Accept' and 'Reject'. These tasks would then control
the behaviour of the Efficient Ortler Processor' .

11 Actually , these are two different functionalities needed from the 'reduced' system: (1) give an
information so that the office clerk can make the necessary decision and (2) control the behaviour of
the office clerk.

- 85 -

Chapter 5: The Mail Order Example

Shipped
[Ttem]

Figure 36:· Two alternatives of the system-media

2.1.2 Identification of the system-output in ALBERT

For the ALBERT part, we also consider the two possibilities. We should insist once more
that the link between the i* and the ALBERT part is not based upon the fact that we use a
state information/perception rnechanism in the first solution and an action mechanism in
the second possibility.

The difference is more characterised by the importance of the (reduced) Omni-System's
responsibility. The distinction is also made upon the place where the decision is made.

1. State Perception/Information (and Precondition later on)

The (reduced) Omni-System only provides the environment with some information
about the stock ('Jnv'). It is upon the environment to take the necessary measures to
enforce the objective. Sorne part of the decision ma.king process is put in the
interacting system (see section 2.3.2 of this chapter).

SYSTEM

STATE INFORMATION

K (ln v[_]. Efficient_Order_Processor /TRUE)

EFFICIENT OROER PROCESSOR

STATE PERCEPTION

K (System. ln v[_J /TRUE)

- 86 -

Chapter 5: The Mail Order Example

2. Action Perception/Information

For the second solution, we choose two actions which will have an influence on the
behaviour of the 'Efficient Order Processor' . These actions are made visible towards
the Efficient Order Processor.

SYSTEM

ACTION INFORMATION

K (AcceptOrder(_J .Ejficient_Order_Processor / TRUE)

K (RejectOrder(_J.Efficient_Order_Processor I TRUE J

EFFICIENT_ ORDER_PROCESSOR

A CTION PERCEPTION

K (System.AcceptOrder(_J / TRUE) -

K (System.RejecrOrder(_J / TRUE)

2.2 Identification of the System-Input
The Omni-System somehow has to make decisions which are based upon knowledge
about the environment. We are now going to introduce this necessary information to the
system.

2.2.1 Identification of the system-input in i*

The system has to provide the 'Efficient Order Processor' with information abo ut the real
stock. Consequently, the information needed from the environment is the Stock Clerk's
state component 'Stock'. In i*, we represent this by a resource dependency on the
shipment processor. We do not differentiate here between the two solutions: in both
cases the system has to hold that information. The solution with the controlling actions
needs one further information: the one about the moment at which the controlling actions
should occur: represented by 'Stock Request' in figure 37.

Shipped
[Item]

Shipped
[Item]

Figure 37: ldentifïcation of the Environment-Media

- 87 -

Chapter 5: The Mail Order Example

2.2.2 Identification of the system-input in ALBERT

1. State Perception/Information

The System needs the information abo ut the real stock. On the System's side, we have
to introduce a state perception constraint and on the Stock Clerk's side a state
information constraint. Because the System has the omniscience property, the
formulas in the information/perception statements are always true.

SYSTEM

STATE PERCEPTION

K (StockC!erk.Stock[_J /TRUE)

STOCKCLERK - -

STATE INFORMATION

K (Stock[_J.System/TRUE)

2. Action Perception/Information

Besides the information about the stock, we have to introduce the request by the
office clerk for the occurrence of the action. The Efficient Order Processor requests
the stock explicitly: Action Information K(StockRequestU.System I TRUE) and the System
al ways perceives the request: K (Ejficient_Order _Processor.StockRequest(_J /TRUE).

SYSTEM

ACTION PERCEPTION

K (Efficient_Order _Processor.StockRequest(_J /TRUE)

STATE PERCEPTION

K (Stock[_].Stock Cie rk /TRUE)

STOCKCLERK

STATE INFORMATION

K (System.Stock[_}/ TRUE)

EFFICIENT_ORDER_PROCESSOR

ACTION INFORMATION

K (StockRequest(_J.System /TRUE)

2.3 Identification of the System's behaviour
We understand by System's behaviour the behaviour that spans over the whole Omni
System. So also the interacting Omni-System has to be considered (see section 2.3.2) .

2.3.1 Identification of the behaviour in i*

In both solutions, we only introduce a task to which the respective dependencies will be
connected. We indicate by this representation that the system has a process for
accomplishing the goal, task or resource, i.e. ability.

- 88 -

Chapter 5: The Mail Order Example

For our example (see figure 38), we restraint ourselves to the mere representation of
this task 'Processlnfo'. A deeper understanding of the 'composition' of the process can be
found in the ALBERT part.

Figure 38: Identification of the behaviour

2.3.2 Identification of the behaviour in ALBERT

The system is now in the possession of the necessary output to control the environment
and the necessary knowledge about the environment. We now define how the system
uses the information to influence the behaviour of the environment.

1. State Perception/Information and Precondition

The first solution aimed more in giving a 'passive' role to the reduced system: it only
provides the Efficient Order Processor with some information about the stock. To
'resolve' the problem and hence to obtain the achievement of our objective (the
process only continues if the stock is not empty), we have to add a precondition
constraint upon the behaviour of the Efficient_Order_Processor:

ProcessPayment(o,_J: System.Inv[Item(o)} :;é {}.

This constraint forbids the Efficient_Order_Processor to continue the process if the
stock is empty.

The reduced Omni-System only has to derive the stock from the real stock. Because
ALBERT does not allow the use of external state components in the right-hand
expression of derivation rules, we need to introduce a state behaviour constraint and
an e.ffect of action, responsible for changing the value of the stock.

EFFICIENT_ORDER_PROCESSOR

PRECONDITIONS

ProcessPayment(o,_J: System.Inv[Item(o)} :;é [)

SYSTEM

STATE B EHAVIOUR

[J fnv[i}: = Card(StockC!erk.Stock[i/)

- 89 -

Chapter 5: The Mail Order Example

E FFECTS OF A CTIONS

Acr: [} lnv[i] = alpha

2. Action Perception/Information, Precondition and Action Composition

In this solution the responsibility of the (reduced) system is increased. Upon receiving
a request by the Efficient_Order _Processor (StockRequest(o)) , the system decides
whether the Efficient_Order_Processor continues the processing. The decision
whether to continue the process or not depends upon the state of the Stock Clerk's
stock. For the sake of convenience, we will not model the cancelling process that
follows a rejection by the system.

SYSTEM

A CTION C OMPOSITION

ProcessControl(o) H Efficient_Order _Processor.StockRequest(o) < >

(AcceptOrder(ltem(o)) fB RejecrOrder(ltem(o)))

PRECONDITION

AcceptOrder(i) : -, (Card(StockC!erk.Stock[i})::; 0))

Rej ectOrder(i): (Card(StockC!erk.Stock[i]) ~ 0))

EFFICIENT_ ORDER_PROCESS OR

A CTION C OMPOSITION

ProcessOrder H C. Orde r(o, vi) < > Continue(o, vi, C)

Continue(o, vi, C) H (AlarmCustomer(o,C) fB

(StockRequest{o) <> (

(System.AcceptOrder(o) <> ProcessPayment(o, vi))

fB System.RetectOrder(o))))

2.4 Alternative System Modelling
In this section we describe the alternative representation of the system in ALBERT. We do
not introduce a special 'System' agent but instead we change the problem environment to
'generate' the solution environment. The system is identified by the difference of the
solution environment and the problem environment.

The modelling of the system in i* does not change: we still identify an actor 'System'. In
the previous section, we identified two solutions: - the accept/order actions and - the
perception of information and the precondition. We saw that the latter solution led to
some awkward constraints. We will show that the alternative system approach can
introduce some specification facilities .

We adopt the same approach as for the previous system modelling:

1. We introduce the necessary information, i.e. the knowledge about the stock, by the
state perception constraint of the Office Clerk.

- 90 -

Chapter 5: The Mail Order Example

2. We identify the counterpart of this state perception constraint, i.e. the necessary state
information constraint in the Stock Clerk's template.

3. We introduce the structure or behavio ur of the system by the additional precondition
for the action 'ProcessPayment' .

OFFICECLERK

DECLARATIVE CONSTRAINTS

ACTION COMPOSITIO '

ProcessOrder H C.Order(o,vi) <> Continue{o, vi.Ci

Continlle(o. vi, C) H AlarmCustomer(o. C) (:f) ProcessPayment(o. vi)

OPERATIONAL CONSTRAINTS

PRECONDITIONS

AlarmCustomer{o,_) : ltem(o) JE SoldltemTypes

ProcessPayment{o,_J: ltem(o) E Soldlte111Types /1 StockClerk.lnv[Item(oll > 0

COOPERATION CONSTRAINTS

STATE PERCEPTION

K (StockClerk.Stock[l I TRUEl

STOCKCLERK

DECLARATIONS

STATECOMPONENTS

Stock ~ SET[ITEM} ;nd
md-by ITEMTYPE---) OfficeClerk

COOPERATION CONSTRAINTS

STATE INFORMATION

K (Stock[l.O(fi,ceClerkl TRUE)

Although we cannot generalise from this example, we already see that this alternative can
facilitate the specification of the solution environment.

This kind of system modelling in ALBERT increases the importance of the linkage to the
i* model. The actor 'System identifies now the additional and altered constraints
(represented by the 'bold' constraints).

2.5 Evaluation of the functional alternatives
Besides the functionalities the system has to provide, the client is interested in the non
fu nctional or qualitative requirements . Indeed, these can have an important influence on
the desired product.

First, we find softgoals underlying the processing of the orders12
: 'Less Errors' and 'Fast

Turnaround' . These softgoals are consequences of the softgoal dependency
'Efficient[Processing}' and have to be ideally fulfilled by every element the task
'Process[Order }' is composed of.

12 We note tlrnt thesc softgoals existed alrcady alt11ough wc did not represent them cxplicitly.

- 91 -

Chapter 5: The Mail Order Example

The different alternatives 'Stocklnfo' and 'ActionComposition' are compared considering
the two softgoals. This evaluation of alternatives is left to the judgement of the clients
and another evaluation might be possible. Especially with the development of a concrete
so lution, the clients and the analysts get a better understanding of the softgoals and the
evaluation might be revised.

In Figure 39, we observe that the 'Control Action' alternative improves the fast
turnaround and lowers the rate of mistakes. We choose this latter so lution because it
con-esponds more to our requirements.

Figure 39: Evaluation of alternatives

2.6 Identification of Softgoals
We introduce the non-functional requirements or softgoals which are of importance for
the user. In Figure 40, we identify three softgoals that should be considered by the
system. For the moment, they remain softgoals because we do not yet want to explore
their detailed meaning. We are more interested in their elicitation.

The two softgoals 'FastProcessing' and 'Accurateinfo' partially derive from the
customer's 'EfficientProcessing'-softgoal. The softgoal 'LowCost' reflects the Company's
view (increase the profit).

Figure 40: In troduction of Softgoal-Dependencies

- 92 -

Chapter 5: The Mail Order Example

Because a detailed understanding is of importance for the system development and the
selection of the concrete implementation, we describe the softgoals more precisely in
natural language:

• FastProcessing: The time between the stock request and answer by the sys tem is less
than a yet undefined time period.

• LowCost: The cost of development and maintenance should be less than a unknown
amount.

• Accurateinfo: The information reflected by the acceptance or the rejection reply must
be accurate with the information about the stock.

2.7 Refinement of Softgoals
In order to achieve a better understanding of the softgoals, we refine the previously
identified softgoals. In Figure 41, we concentrate on the accuracy softgoal, which is
decomposed into:

• A transfer protocol softgoal. The finally implemented communication between the
different agents has to be errorless. This requirement remains a softgoal because we
do not yet know what kind of protocol we will use. It will guide the system developer
in choosing from several communication protocols.

• Knowing that the system cannot always request the availability of the items from the
Stock Clerk, in accordance with the fast processing softgoal, the system has to
rnaintain a rnirror of the real stock and this rnirror has to be updated as fast as possible
by the Stock Clerk. The goals 'Mirror' and 'Update Mirror' will lead to the
introduction of astate component 'Inv' and its modifying actions in ALBERT.

• The Office Clerk has to be informed by the system in a minimum of time. This leads to
a motivation for keeping track of the alteration of the real stock. In addition, we
describe a property which has to be fulfilled by the system:

• OjficeClerk.StockRequest(_} => WithinFr (System.AcceptOrder(_} v
System.RejectOrder(_})

'

i f the Office Clerk request the availability of an item, the
response has to occur within l''

- 93 -

Chapter 5: The Mail Order Example

Qu alitative Goals
Softgoals

Trans fer
Protocol

Quantitative Goals
Hard-Goals

Operational Goals
De li verable Goals

Mirror Update
Mirror

Figure 41: Refinement of Softgoals

3. System Specification

Defintion or
In terva l

In our example, the Ornni-System only played one role and we didn't represent this
explicitly. Consequently, we can directly transform the actor 'System' into a role 'Stock
Informant'. This role can now be played by a specific agent.

For the elaboration of the system specification, we consider two alternatives:

• In the first, we create an Information System, which has to control the behaviour of
the Office Clerk.

• In the second, we assign the functionality specified at the previous step to the Stock
Clerk, who now plays two roles: shipping the items away and replying to the stock
information requests.

3.1 System Analysis/Design

3.1.1 The Information System Solution

In this alternative, the role of replying to stock reques ts J.S played by an information
systemt 3

_ (see Figure 42)

13 We didn't introduce special agents responsible for the communication (like terminais, user
interfaces, ...) between the two entities because of the simplicity of the case study.

- 94 -

i* Modelling

Chapter 5: The Mail Order Example

Shipped
[Item]

ln v

· Process
Shipment

[Ite m]

Update
[lnv]

Figure 42: The IS Solutio,/1

In Figure 42, we first create an agent 'JS' who plays the role of providing the Office Clerk
with information about the stock (represented by the role 'Stock Infonnant') and
influencing by this means the behaviour of the office clerk. This is done by the previously
selected Accept-Reject mechanism modelled by the task dependency 'Contrai Action' .

The information system has now to maintain its own stock information because of the
'Fast Processing' softgoal. The task 'Process Stock Request' and consequently the
decision whether the item is available or not, now depends upon the information
maintained by the information system about the stock (i.e. 'Inv', themirror of the real
world stock). We introduced this concept also because of the retraction of the
omniscience assumption. The information system has no longer a perfect visibility upon
the real stock. Accordingly, we also have to think about the way the mirror of the stock
is maintained. We introduce the task dependency 'Update Stock' to refer to this need. The
modelling of the 'Update Stock' dependency as a task dependency indicates that, since
we deal with a concrete information system, the Stock Clerk has to operate in specified
way. Every tirne he adds items to the stock or removes items from the stock he has to
update the virtual stock.

The 'Update [Inv]' dependency will be linked to the newly created role 'Update
Processor' played by the Stock Clerk. We do not consider a more detailed description of
the 'Update Processor' and we refer to the ALBERT part to get a better knowledge about
his behaviour.

14 The softgoal 'group' Accurate stands for the three softgoals dependencies idenlified at the previous
step (slep2)

- 95 -

Chapter 5: The Mail Order Example

Within this update-solution for the retraction of the perfect visibility assumption, we
ignore possible unreliabilities in the communication between the Stock Clerk and the
Information System, for instance transmission problems, etc.

One may also notice that the previo usly resource dependency 'Action Occurrence'
changed to a task dependency 'Action Occurrence'. We interpret this as a more
constraining dependency: since we deal with a concrete info rmation system, the
informatio n has to be introduced in a special way, using a user interface for instance.

ALBERT Modelling

After we have introduced the system in the i* model we specify the information system
in ALBERT. In this case study we identify only the agent 'Information System' and ignore
agents like user interfaces, sensors, etc .

IS

DECLARATIVE CONSTRAINTS

ACT!ON COMPOSITION

(OfficeClerk.StockRequest, AcceptOrder, RejectOrder)

ProcessStockRequest(i) H OfficeClerk.StockRequest(i) <>

OPERATIONAL CONSTRAINTS

PRE CONDITIONS

AcceptOrder(i) / (/nv[il - 1) > 0

RejectOrder(i) / (/nv[il - 1) < 0

EFFECTS OF ACTIONS

AddToStock(i,) : []

lnv[i] := lnv[i] + 1

RemoveFromStock(i,) : []

lnv[i] := lnv[i] - 1

COOPERATION CONSTRAINTS

ACTION PERCEPTION

K (OfficeClerk.StockRequestL_J /TRUE)

K(StockClerk.RemoveFromStock(_,.JI TRUE)

K(StockClerk.AddToStock(_,.JI TRUE)

ACTION INFORMATION

K(AcceptOrder(_j.OfficeClerk I TRUE)

K(RejectOrder(_j.OfficeClerk I TRUE)

(AcceptOrde r(i) (f} Rej ectOrder(i))

OFFICECLERK

DECLARATIVE CONSTRAINTS

ACTION COMPOSITION

ProcessOrder H C.Order(o,vi) <> Continue(o,vi,C)

Continue(o, vi, C) H (Ala rmCustomer(o,C) (f} (

StockRequest(/tem(o)) <>

((IS.AcceptOrder(i) <> ProcessPayment(o,vi)) (f}

- 96 -

Chapter 5: The Mail Order Example

/S.ReiectOrder(i))))

COOPERATION CONSTRAINTS

ACTION PERCEPTION

K (IS.AcceptOrder() /TRUE)

K (IS. ReiectOrder() /TRUE)

ACTION INFORMA TJON

K (StockRe<lttest()./S / TRUE)

STOCKCLERK

DECLARATION

ACTION

RemoveFromStock(!TEMTYPE,ITEM) ~ IS

AddToStock(ITEMTYPE,ITEM) ~ IS

COOPERATION CONSTRAINTS

ACTION INFORMATION

K(RemoveFromStock(,)./S / TRUE)

K(AddToStock(,).IS / TRUE)

Figure 43: The ALBERT IS specification

Figure 43 shows some excerpts of the ALBERT specification. We first identify the agent
'/S' representing the information system. The state component 'Jnv' represents the mirror
of the real stock. It has the same specification as the real stock except that it doesn't deal
with the real items but with integers representing the cardinality of each stock. The
'decision' of the system, represented by the two preconditions and the action composition
in the IS-template, is now made upon the value of that virtual stock.

The Office Clerk after having verified the order now asks the information sys tem for the
availability of the item (see Action Decomposition and Action Information headings of
the Office Clerk in figure 43). The payment processing continues when the information
system has accepted the request.

The Stock Clerk now also updates the computerised stock when he adds or removes
items. We modelled this by a visibility of the 'RemoveFromStock' and 'AddToStock'
actions towards the information system and the effect of actions constraints modifying
the state of the virtual stock 'Inv'.

- 97 -

Chapter 5: The Mail Order Example

3.1.2 The Stock Clerk Solution

i* modelling

Figure 44: The Stock Clerk Solution

In the i* model the role of informing about the availability for the item is now played by
the agen t 'Stock Clerk' . We simply connect the previously identified role to this agent.
The Stock Clerk does not have to maintain a mirror of the real stock because he has
direct access on it. We modelled this by a resource dependency 'Stock' towards the Stock
Clerk.

ALBERT modelling

In the ALBERT specification, the agent stock clerk plays two roles previously identified
by the i* model. This is modelled by the additional composed action
'ProcessStockRequest': the Office Clerk now requests the Stock Clerk and he waits until
he receives a response from the Stock Clerk.

STOCKCLERK

BASIC CONSTRAINTS

INITIAL V ALUATION

Stock[_J = ()
DECLARATIVE CONSTRAINTS

A CTION COMPOSITION

ProcessStock.Request(i) H O(ficeClerk.StockRequest(i) <>
(Acce ptOrder(i) $ RâectOrder(i))

ProcessOrderShipment H

O.fjïceClerk. OrderShipment(inv) <>(

(RemoveFromOnHold(ltem(inv), it) <> Ship(inv, it))

$ DAC)

OPERATION AL CONSTRAINTS

- 98 -

Chapter 5: The Mail Orcier Example

PRECONDITION

AcceptOrder(i) : Card (Stock[i}) > 0

RejectOrder(i): Card (Stock[i}) ~ 0

RemoveFromStock(i,_) : Carel (Stock[i}) > 0

EFFECTS OF ACTIONS

AddToStock(i,it) :

RemoveFromStock(i, it) :

COOPERATION CONSTRAINTS

A CTION PERCEPTION

[} Stock[i} : = (it u Srock[i})

[} Stock[i} := (it \ Stock[i])

K (OfficeC!erk.OrderShipment{_) /TRUE)

K (OfficeC!erk.StockR f!_quest(_) /TRUE)

A CTION INFORMATION

K(AcceptOrder(_). OjficeClerk /TRUE)

K(RejectOrder(_) . OfficeClerk / TRUE)

3.2 Revision of Softgoals
When the present solution was shown to the mail order company, it turned out that the
accurate softgoal had been misunderstood. Indeed, the process we modelled did not
consider the fact that items that were still in the stock but that were already reserved for
another order cannot be counted as available items. The consequence is that there are
still a few undeliverable orders for which a payment processing occurs. This leads to a
revision of the 'Accurate Info' softgoal which is represented in figure 45 .

We added a new softgoal 'Keep track of OnHolds', which introduces the state
component 'OnHold' in the specification and its respective modification actions .

The meaning of the state component 'Inv' is redefined: it reflects now only the items that
are still in the stock and not reserved for a preceding order.

The state component reflects the items that are in the stock and reserved by a preceding
order request.

- 99 -

Chapter 5: The Mail Order Example

Qualitative Goals
Softgoals

Quantitative Goals
Hard-Goals

Operational Goals
Deliverable Goals

De fin tion of
In terval

Figure 45: Revis ion of the 'Accurate Info' Softgoal

3.2.1 The IS Solution

i* modelling

Additionally to the usual stock information the information system now also have to keep
track of the items that were reserved but not yet shipped. Note that we modelled this by
one resource 'Inv/OnHolds' for the sake of simplicity and the task 'ProcessStockRequest'
might be decomposed into two resources. In addition, modelling the updating of the
inventory and the 'OnHold' by two dependency links might be more adeq uate.

Figure 46: The improved IS Solution

- 100 -

Chapter 5: The Mail Order Example

ALBERT modelling.

In the ALBERT specification, we introduce a state component which reflects the history of
the stock, i.e. the items already reserved for orders and not yet shipped away: 'OnHold'.
When an order is accepted by the Information System the item is immediately put on
hold and consequently the items that are counted for the fo llowing request are the items
still available. The decision whether the request is accepted or rejected is made upon the
number of items in the stock and not reserved by another order, i.e. 'Inv' .

IS

DECLARA TI ONS

STATE COMPONENTS

!nv ~ INTEGER inrlexed-by !TEMTYPE

OnHo/d table-of INTEGER ind' xed-by ITEMTYPE

BASIC CONSTRAINTS

INITIAL VALUES

lnv[_J = 0

OnHoldf 1 = 0

DECLARATIVE CONSTRAINTS

ACTION C OMPOSITION

(OjficeClerk.StockRequest, AcceptOrder, RejectOrderj

ProcessStockRequest(i) H OfficeClerk.StockRequest(i) <>
(AcceptOrder(i) @

RejectOrde r(i))

OPERA TIONAL CONSTRAINTS

PRECONDITIONS

AcceptOrder(i) : (lnvfil -1) > 0

RejectOrder(i) : (lnv[il - 1) < 0

EFFECTS OF ACTIONS

AcceptOrder(i): [}

lnv[i} : = lnv[i] - 1

OnHold[i] := OnHold[i] + 1

3.2.2 The Stock Clerk Solution

The solution described previously was a typical 'computer' solution. This does not
necessarily have to be the case. The alternative we describe in this section presents a
manual solution for our specified problem. The Stock Clerk assumes the new role of
answering to the request.

- 101 -

Chapter 5: The Mail Order Example

i* Modelling

Figure 47: The Stock Clerk Solution

The stock informant now also has to maintain information about the items that are
reserved for other orders ('Stock/OnHold').

ALBERT Modelling

In the ALBERT specification, the office clerk requests the stock clerk for the availability
of the item that are not reserved. The Stock Clerk now puts the item in an intermediate
stock when a request is being accepted.

STOCKCLERK

BASIC CONSTRAINTS

INITIAL VALUATION

Stock[_J = {}
OnHold[_J = {}

DECLARATIVE CONSTRAINTS

A CTION COMPOSITION

ProcessStockRequest(i) H Offi,ceClerk.StockRequest(i) <>
(A cceptOrder(i) @ ReiectOrder(i))

ProcessOrderShipment H

OjficeClerk. OrderShipment(inv) <>(

(RemoveFromOnHold(Item(inv), it) <> Ship(inv, il))

@DA C)

OPERA TIONAL CONSTRAINTS

PRECONDITION

AcceptOrder(i) : Card (Stock[i}) > 0

RejectOrder(i) : Card (Stock[i}) ~ 0

RemoveFromStock(i,_J : Carel (Stock[i}) > 0

- 102 -

Chapter 5: The Mail Order Example

EFFECTS OF ACTIONS

AddToStock(i,it) :

RemoveFromStock(i,it):

AcceptOrder(i):

[} Stock[i} := (it uStock[i})

[} Stock[i] := (it \ Stock[i})

[} OnHold[iJ := (it uOnhold{i})

Stock[i} : = (il\ Stock/il)

COOPERATION CONSTRAINTS

ACTION PERCEPTION

K (OjficeClerk.OrderShipment(_J /TRUE)

K (OjjïceClerk.StockRequest(_! /TRUE)

ACTION INFORMATION

K(AcceptOrder(_).OfficeC/erkl TRUE)

K(RejectOrder(_). OfficeClerk / TR VE)

- 103 -

CHAPIBR6
CONCLUSION

The main objective of the thesis was to propose a methodology for the elaboration of a
requirements document. Although the word methodology in its first degree means the
study of methods, we use it here in the way it is generally used in Software Engineering:
'the way of performing a task'. We used the words 'method' and 'methodology' hence
indistinguishably. In general, every method/methodology is defined by a set of languages,
a sequence of deliverables, a sequence of tasks and heuristics.

The two languages the methodology is based upon are i* for representing the non
functional/organisational issues and ALBERT for the system specification.

We divided this process into three main steps:

• the description of the problem domain and the objectives, derived from the existing
problems,

• the introduction of a system that solves the problems,

• the specification of the system's internals.

The thesis also showed how the system analyst/developer can deal with - a priori - non
functional requirements and how they can be introduced during the requirements
engineering process. Goals increase in importance when we relate them to their
rationales and 'owners'. This was realised by elaborating the Strategic Dependency and
Strategic Rationale model.

Instead of giving a highly detailed description of the approach, we only described some
coarse-grained tasks that were loosely ordered. Indeed, we believe that it is more
important that the user of a method also knows why he performs the tasks than
performing them in an automatic way. Furthermore, too detailed methodologies often
influence the way of thinking in a 'negative' way because they restrict the set of solutions.
According to this view, we insisted more on the rationales of the different phases a
requirements specification should go through. We also noted existing problems about the
process (see for instance the interacting Omni-Systern).

- 105 -

Chapter 6: Conclusion

Likewise, we showed different alternatives for representing the system in ALBERT. The
i.mplicit representation of the system in ALBERT (Chapter 4, section 2.1: alt 2) seems to
be impossible if the method is applied only with the ALBERT framework. But the
introduction of the i* model inverses the situation. A detailed analysis of the two
representations, identifying their pros and cons , could be an interesting future work.

In our description of the process, we also made an important assumption: that we are not
in presence of an existing (legacy) system. In reality, although, this often appears to be
false. In our case study, a solution for the problem might already exist; the manual
solution for instance. Indeed, in everyday situations, systems often are created without an
explicit elaboration of alternatives or specifications. What now if we detect a legacy
system? Two alternatives might be imaginable: (1) we model the system as part of the
problem domain and add the system on top of this environment or (2) we first try to
retract the existing system that did not satisfy completely the environment and mode! the
problem environment without the legacy system. The first solution seems to be more
adequate from a conceptual point of view: the incompleteness of the system partially or
completely caused the problem to be solved. Consequently, it belongs to the problem
environment. The second solution, however, does not suppose the existing system as a
constraint and might result in a better solution. Again , these possibilities should be
analysed fmthermore.

In comparison to other methods that exist since the 80's (see JSD [Jackson, 83] for
instance), this methodology has not yet been certified by a lot of non-trivial case studies.
We hope, however, that, because of its profound relation to JSD, it inherits some
empirical aspects of the latter method.

Finally, in order to assist the system analyst/developer in their work a CASE tool should
be elaborated for the parallel use of i* and ALBERT. Severa! properties are concei vable:

• Tools are already in course of being elaborated for the individual use of the two
models. The parallel modelling in i* and in ALBERT can increase the complexity and
the workload significantly. The tool should try to reduce these two aspects.

• Correspondingly, the tool should keep trace of two types of evolutions:

• The 'space' evolution, that relates the i* concepts to their counterpart in the
ALBERT specification.

• The 'time' evolution, that relates the different models in time.

• The tool should moreover assist the analyst/developer by highlighting inconsistencies
or incompletenesses between the models or by proposing 'solutions' based upon
previously gained domain knowledge.

- 106 -

BIBLlOGRAPHY

[Boehm,79]: B. Boehm, Guide lin es for Verifiying and Validating Software
Requirenients and Design Specifications, Samet P.A.: IFIP 1979, North-Rolland,
Amsterdam. 711-719

[Booch,86]] G. Booch, Object-Oriented Development, IEEE Transactions on Software
Engineering, vol. SE-12, no 2, February 1986

[Borgida et al,92] A. Borgida, J. Mylopoulos and R. Reiter. ... and nothing else changes:
The frame problem in procedure specifications, Technical Report DCS-TR-281. Dept.
Of Computer Science, Rutgers University, 1992

[Chung et al,94]] L. Chung, B. Nixon and E. Yu, Using quality requirements to
systematically develop quality software, Fourth International Conference on Software
Quality, McLean. V A. USA, October 1994

[DuBois,95]] Ph. Du Bois, The ALBERT II Language - On the Design and the Use of a
Format Specification Language for requirements Analysis, PhD Thesis, Computer
Science Department, University of Namur, 1995

[Dubois et al,95]] E. Dubois, Ph. Du Bois, J-M Zeippen, A Formal Requirements
Engineering Method for Real-Time, Concurrent, and Distributed Systems, Computer
Science Department, University of Namur, January 1995

[DuBois,97]] Ph. Du Bois, The ALBERT II Reference Manual - Version 2.0, Computer
Science Department, University of Namur, March 1997

[Dardenne et al,93] A. Dardenne, A. van Lamsweerde, S. Fickas, Goal-Directed
Requirements Acquisition, Science of Computer Programming 20, 1993, pp3-50

[Gause et al, 89] D. Gause and G. Weinberg, Exploring Requirements: Quality Before
Design, Dorset House Publishing, New York, 1989

[IEEE,91] IEEE-610.12, IEEE Standard Glossary of Software Terminology, 1991

[Jackson,83] M. Jackson. System Development, Prentice-Hall, 1983

[Jackson et al,96] M. Jackson, Pamela Zave, Four Dark Corners of Requirem.ents
Engineering, February 1996

- 107 -

[MDL,97] E. Dubois, Méthodologie de développement de logiciels: ma tières
approfondies, Computer Science Department, Universi ty of Namur, 1997

[Mintzberg et al,91] H. Mintzberg, A Langley, P. Pitcher, E. Posada, J Saint-Macary
Opening Up Decision-Making: The View From The Black Stool, September 1991

[Porter et al,85] M.E. Porter, V.E. Millar. Ho w Information Cives You Competitive
Advantage. Harvard Business Review, Vol. 63, No 4, July-August 1985, pp.149-160

[Pohl,92] Pohl, K. The Three Dimensions of Requirements Engineering, NATURE
Report Se1ies , Informatik V, RWTH-Aachen, URL: ftp://ftp.infonnatik.rwth
aachen.de/pub/reports/index.html (1997)

[Pohl,96] Pohl, K. Requirements Engineering: An Overview. NATURE Report Series,
Informatik V, RWTH-Aachen, URL : ftp://ftp.informatik.rwth- -
aachen.de/pub/reports/index.html (1997)

[DeMarco,79] T. DeMarco, Structured Analysis and System Specification, Prentice
Hall:Englewood Cliffs, 1979

[Scheer,93] AL. Scheer. A New Approach to Business Processes, IBM Systems Journal.
vol 32. No 1. 1993

[Wieringa et al,97] R. Wieringa, Eric Dubois, Sander Huyts , Integrating Semi-Formai
and Forma! Requirements , in "CAISE'97", Barcelona (Spain), LNCS 1250, 1997

[Wieringa,97] R. Wieringa, Steps Towards a Methodfor the Forma! Modellin.g of
Dynaniic Objects, URL : http://www.cs.vu.nl/vakgroepen/infsys/roelw.publ.html
February 1997

[Wieringa,97b] R. Wieringa, Object-Oriented Analysis, Structured Analysis and
Jackson System Developmen.t, URL :
http :/ /www. cs. vu. nl/vakgroepen/infsys/roel w. pu bl. html, February 1997

[Yu, 95] E. Yu. Modelling Strategic Relationships For Process Reengineering. PhD
Thesis , Dept. Of Computer Science, University of Toronto, Ontario Canada,1995

- 108 -

APPENDIX

In the following , we show the different i* models and ALB ERT specificalions at the different main steps
of the methodology. For the sake of convenience, the state components and actions are not re-declared at
every step. On ly newly introduced state components and actions are declared. Furthermore we
concentrated on the process where the system is introduced.

1. Problem domain and Objective

1.1 The i*model

- 109 -

Shipped
[Item]

Appendix

1.2 The ALBERT specification

BASIC TYPES

VISA

ITEM

ITEMTYPE

CONSTRUCTED TYPES

ADDRESS == CP[Name:STRING, Street:STRING, Locality: STRING}

ORDER == CP[Orderld:INTEGER, Persan: ADDRESS,Irem: ITEMTYPE)

INVOICE == CP[Invoiceid: INTEGER, Persan: ADDRESS, Item: ITEMTYPE, Sum:
INTEGER)

lcusTOMER

DECLARA TI ONS

S TATE COMPONENTS

Possessed wA ITEM

A CTIONS

Order(ORDER, VISA)~ OfficeClerk

OPERATIONAL CONSTRAINTS

EFFECTS ÜF ACTIONS

Mail.Delive rC it) : []

Possessed : == Possessed u it

COOPERATION CONSTRAINTS

A CTION INFORMATION

K (OrderC_J .OfficeClerk /TRUE)

ACTION PERCEPTION

K (Mail.DeliverC_J / TRUE)

1 OFFICECLERK

DECLARA TI ONS

STATE COMPONENTS

BttSV in.< tançe-o(BOO LEAN

- 110 -

Appendix

SoldltemTypes W:.2.L ITEMTYPE

A CTIONS

P rocessO rcler

ProcessPayment(ORDER, VISA)

DebitRequest(INTEGER, VISA)~ BankClerk

TransferO rder(INTEGER, VISA, VISA)~ Stoc/.:.Clerk

Makeinvoice(ORDER,INVOICE)

OrderSlûpment(INVOICE)~ StockClerk

AlarmCustomer(ORDER,CUSTOMER) ~ Customer

Contin11e(ORDER, VISA,CUSTOMER)

BASIC CONSTRAINTS

INITIAL VALUATION

Busy = FALSE

DECLARATIVE CONSTRAINTS

ACTION COMPOSITION

(Continue, C. Order, AlarmCustomer, ProcessPayment, DebitRequest,
BankClerk.AcceptOrder, TransferOrder, OrderShipment, BankClerk.RejectOrder}

ProcessOrder H C.Order(o,vi) <> Continue(o,vi,C)

Continue(o, vi, C) H AlarmCustomer(o, C) (f) ProcessPaymenr(o, vi)

ProcessPayment(o, vi) H

DebitRequest(am, vi) < > (

BankClerk.RejectOrder(am, vi) (f)

(BankClerk.AcceptOrder(am, vi) <> TransferOrder(am,vi,company_account) <>
OrderShipment(inv)))

OPERA TIONAL CONSTRAINTS

P RECONDITIONS

AlarmCustomer(o,_J: ltem(o) ~ SoldltemTypes

ProcessPayment(o,_J: Item(o) E SoldltemTypes

EFFECTS ÜF ACTIONS

Continue(_,_,_j : Busy: = TRUE

[}

- L L l -

Appendix

Busy := FALSE

COOPERATION CONSTRAINTS

ACTION PERCEPTION

K (C.OrderC_J / TRUE)

K (BankClerk.AcceptOrderC_J /TRUE)

K (BankClerk.RejectOrderC_J / TRUE)

ACTION INFORMATION

K (Orde rShipment(_).StockClerk/TRUE)

K (DebitRequestC_).BankC/erk / TRUE)

K (Transfe rOrder(_,_,_). BankClerk / TRUE)

XK (AlarmCustomer(_,C1).C2
/ C1 = C2

)

1 STOCKCLERK

DECLARA TI ONS

S T A TE COMPONENTS

Stock /.fJJJl=L SET[ITEM} ~ ITEMTYP E

A CTIONS

ProcessOrderShipment

Ship (INVOICE,ITEM) ~ Mail

RemoveFromStock(ITEMTYPE,ITEM)

AddToStock(ITEMTYP E,ITEM)

BASIC CONSTRAINTS

INITIAL V ALUA T!ON

Stock[_J = (}

DECLARATIVE CONSTRAINTS

A CTION C OMPOS ITION

(Offi.ceClerk. OrderShipment, RemoveFromStock, Ship)

ProcessOrderShipment H

OfficeClerk.OrderShipment(inv) <> (

(RemoveFromStock(Item(inv), il)<> Ship(inv, it))

$ DAC)

- 11 2 -

Appendix

OPERATIONAL CONSTRAINTS

PRECONDITION

RemoveFromStock(i,_J: Card (Stock[i}) > 0

EFFECTS ÜF ACTIONS

AddToStock(i,it):

RemoveFromStock(i, it) :

COOPERATION CONSTRAINTS

ACTION PERCEPTION

[} Stock[i} := (it u Stock[i})

[} Stock[i} := (it \ Stock[i})

K (O.fficeClerk.OrderShipment(.J /TRUE)

ACTION INFORMATION

K (ShipC.J.Mail /TRUE)

IBANKCLERK

DECLARA TI ONS

STATE COMPONENTS

Account ~ INTEGER i
nd

e.ud-by VISA

ACTIONS

ProcessDebitRequest

AcceptOrder(INTEGER, VISA)~ OfjiceClerk

RejectOrder(INTEGER, VISA)~ OfficeClerk

Transfer

Debit(INTEGER, VISA)

Credit(INTEGER, VISA)

BASIC CONSTRAINTS

INITIAL VALUES

Account[_] = 0

DECLARATIVE CONSTRAINTS

STA TE BEHA VIOR

Account[_} è -50.000

ACTION COMPOSITION

- 113 -

Appendix

{ OjjïceClerk.DebitRequest, AcceptOrder, RejectOrder, OfficeClerk. TransferOrder, Debit,
Creditj

ProcessDebitRequest H OfficeClerk.DebitReqtlest(am, vi) < >

(AcceptOrder(am, vi) <-13 RejectOrder(a m, vi))

Transfer H OjjïceClerk. TransferOrder(am, vi,company_accollnt) < > Debit(a 111 , vi) < >
Credit(am, company_accollnt)

OPERATIONAL CONSTRAINTS

PRECOND ITIONS

AcceptOrder(am, vi) : (Account[vil - am) > -50. 000

RejectOrder(am, vi): (Account[vi} - am) s -50.000

EFFECTS Ü F ACTIONS

Debit(am,ac):

[}

Account[ac} := Account[ac} - am

Credit(am,ac):

[}

Account[ac} : = Account[ac] + am

COOPERATION CONSTRAINTS

A CTIO1 PERCEPTION

K (Office Cie rk.DebitRequestC_J I TRUE)

K (Office Cie rk. Transfe rOrderC~-1 /TRUE)

ACTION INFORMATION

K (AcceptOrderC_J. OfficeClerk I TRUE)

K (RejectOrderC_J. OfficeClerk I TRUE)

!MAIL

DECLARA TI ONS

ACTIONS

Deliver(INVOICE,ITEM) -? Customer

TransportProcess

DECLARATIVE CONSTRAINTS

A CTION COMPOSITION

- 114 -

Appendix

TransportProcess H StockClerk.Ship(inv, it) <> Deliver(inv,it)

COOPERATION CONSTRAINTS

A CTION PERCEPTION

K (StockC!e1-k.Ship(_,_J.Mail /TRUE)

A CTION I NFORMATION

K (Delive r (~_J.C /TRUE)

Problem: t11e order processing clerk makes out t11e invoice and orders t11e shipment even if t11e items are
not in the stock. This leads to a lot of inefficiency (paperwork for items t11at finally cannot be shipped)
and annoyance on the customer's side. Therefore we consider tlle following objective ...

Objective (in 'natural' language):
The Order Processing Clerk can only check out t11e customer's account, make ilie invoice, and order the
shipment

if t11e respective item is available (i.e. Card(Stock(Item)) > 0)

Fonnulation of t11e objective:
F(ProcessPayment(o,_) / Card(StockClerk.Stock(Item(o))) > 0):
the order processing clerk canon/y proceed when the stock of the requested item is not empty
(othenvise the processing is cancelled)

- 11 5 -

Appendix

2. System Requirement

2.1 The i* model

Shipped
[Item]

2.2 The ALBERT specification

!SYSTEM

DECLARATIONS of the new states and actions ...

ACTIONS

P rocessStockRequest

AcceptOrder(ORDER) ~ Ejficient_Order _Processor

RejectOrder(ORDER) ~ Efficient_Order _Processor

A CTION COMPOSITION

Process
Shipment

[Item)

Stock
In fo

{ AcceptOrder, ReiectOrder, Efficient Order Processor.StockRequest}

- 116 -

Appendix

ProcessStockRequest H Efficient Order Processor.StockRequest(o) <>
(AcceptOrder(ltem(o)) (B Re;ectOrder(ltem(o)))

P RECONDITION

AcceptOrder(i): -, (Ca rd(StockClerk.Stock[i}) 50))

RejectOrder(i): (Card(StockClerk.Stock[i]) 5 0))

STATE PERCEPTI01

K (StockClerk.Stock[_J/ TRUE)

lthe system always knows the state o f the stock

A CTION PERCEPTION

K (Efficient_Order_Processor.StockRequest(_J I TRUE)

ACTION INFORMATION

K (AcceptOrder(_J.Ejjicient_Order_Processor /TRUE)

K (RejectOrder(_J.Efficient_Order_Processor I TRUE)

IEFFICIENT_ORDER_PROCESSOR

DECLARA TI ONS of the new states and actions ...

A CTIONS

StockRequest(ORDER) -+ System

BASIC CONSTRAINTS

I NITIAL VALUATION

Busy = FALSE

DECLARATIVE CONSTRAINTS

ACTION COMPOSITION

(C.Order, Continue, AlarmCustomer, ProcessPayment, DebitRequest,
BankClerk.AcceptOrcler, TransferOrder, OrderShipment.StockClerk, BankC/erk.RejectOrder,
Continue, StockRequest, System.AcceptOrder, System.Re;ectOrder)

Upon receiving an o rder from the customer, the Order Processing Clerk starts
wi th processing an order. i.e. he first analyses the o rder, requests the
availability of the item and then processes the payment or cancels the
process.

ProcessOrder H C.Order(o,vi) <> Continue(o,vi,Ç)

Continue(a, vi, C) H (AlarmCustomer(a, C) (B (StockRequest(o) < > (

- 117 -

Appendix

(System.AcceptOrder(o) < > ProcessPayment(o, vi))

Œ System.Re;ectOrder(o))))

ProcessPayment(o, vi) H

DebitRequest(am, vi) < >(

BankClerk.RejectOrder (am, vi)

Œ (BankC!erk.AcceptOrder (am, vi) < > TransferOrder(am, vi,company _accounl) < >
OrderShipmenr(in v)))

OPERATIONAL CONSTRAINTS

P RECONDITIONS

AlannCustomer(o,_J: Item(o) .E SoldltemTypes

StockRequesl (o): l tem(o) E SoldltemTypes

E FFECTS Ü F A CTIONS

ConrinueC~_J : Busy:= TRUE

[}

Busy := FALSE

COOPERATION CONSTRAINTS

ACTION PERCEPTION

K (C.OrderC_J /TRUE)

K (S ystem.AcceptOrder() / TRUE)

K (S ystem.Re;ectOrder() / TRUE)

K (Bank.Cie rk.AcceptOrderC_J / TRUE)

K (BankClerk.RejectOrderC_J ITRUE)

A CTION I NFORMATION

K (StockRequest().System/ TRUE)

K (DebitRequestC_J.BankClerk / TRUE)

K (TransferOrderC~_J. BankClerk / TR UE)

K (OrderShipment(_J.StockClerk / TRUE)

XK (AlarmCustomerCC1).c2 / C1 = C2
)

1 STOCKCLERK

DECLARA TI ONS

- I 18 -

Appendix

STA TE COMPONENTS

Stock~ SET[ITEMJ ~ ITEMTYPE-> System

A CTIONS

ProcessOrderShipment

RemoveFromStock(ITEMTYP E, ITEM)

AddToStock(ITEMTYP E, ITEM)

Ship (INVOICE,ITEM)-> Mail

BASIC CONSTRAINTS

INITIAL VALUATION

Stock[_] = (}

DECLARATIVE CONSTRAINTS

A CTION COMPOSITION

(Efficient_Order_Processor. OrderShipment, RemoveFromStock, Ship}

ProcessOrderShiprnent H

Efficient_Order_Processor.OrderShipment(inv) <> (
(RemoveFromStock(Item(inv), it) <> Ship(inv, it)) ff) DAC)

OPERATIONAL CONSTRAINTS

PRECO DITION

RemoveFromStock(i,_J: Card (Stock[i}) > 0

EFFECTS ÜF ACTIONS

AddToStock(i,it) :

RemoveFromStock(i,it) :

COOPERATION CONSTRAINTS

ACTION PERCEPTION

[} Stock[i] := (it u Stock[i])

[} Stock[i} : = (it \ Stock[i])

K (Efficient_Order _Processor. OrderShipment(_J / TRUE)

STATE PERCEPTIO1

K (Stock[[.System/ TRUE)

ACTION INFORMATION

K (Ship(~_J. Mail /TRUE)

lnANKCLERK

- 119 -

Appendix

nothing has changedfor this agent

IMAIL

nothing has changedfor this agent

lcusTOMER

nothing lzas changedfor this agent

2.3 System Requirement (resource solution)
The system only shows the interesting information about t11e stock and t11e Efficienl_Order_Processor
decides what to do when the stock runs out items. This is represented by the Precondition in t11e Office
Clerk's template.

lsYSTEM

DECLARATION

STATE COMPONENTS

Process
Shipment

[Item]

Stock
Info

lnv table-of INTEGER indexed-by ITEMTYPE ~ Ejficient_Order _Processor

ACTIONS

*Act

DECLARATIVE CONSTRAINTS

STATE BEHAVIOUR

[J lnv[i} = Card(StockClerk.Stock[i])

OPERATIONAL CONSTRAINTS

- 120 -

Appendix

E FFECTS OF A CTIONS

Act: [} lnv[i} := alpha

COOPERATION CONSTRAINTS

S TATE PERCEPTION

K (StockClerk.Stock[_JI TRUE)

S TATE INFORMATION

K (lnv[_}. Ejficient_Order _Processor / TRUE)

1 EFFICIENT_ ORDER_PROCESSOR

BASIC CONSTRAINTS

INITIAL VAL UATION

Busy = FALSE

DECLARATIVE CONSTRAINTS

ACTION COMPOSITION

{ C.Order,Continue, AlarmCustomer, ProcessPayment, DebitRequest,
BankClerk.AcceptOrder, OrderShipment, BankClerk.RejectOrder, TransferOrder)

ProcessOrder H C.Order(o, vi) <> Continue(o, vi,C)

Continue(o, vi, C) H AlarmCustomer(o, C) tB P rocessPayment(o, vi)

ProcessPayment(o, vi) H

DebitRequest(am, vi) < > (

BankClerk.Rej ectOrder (am, vi)

(J) (BankClerk.AcceptOrder (am, vi) < > TransferOrder(am, vi,company_account) <>
OrderShipment(inv)))

OPERATION AL CONSTRAINTS

PRECONDITIONS

AlarmCustomer(o,_J: ltem(o) rl SoldltemTypes

ProcessPayment(o,_J: Item(o) E SoldltemTypes A System.Jnv{ltem(o)[> 0

EFFECTS Ü F A CTIONS

ContinueC~_J : Busy:= TRUE

[}

Busy := FALSE

- 121 -

Appendix

COOPERATION CONSTRAINTS

ACTION P ERCEPTIO

K (C.OrderC_) /TRUE)

K (BankClerk.AcceptOrder(~_)/ TRUE)

K (Ban kC/erk.RejectOrder(~_) / TRUE)

S TATE PERCEPTION

K (System.lnv(li TRUE)

ACTION I NFORMATION

K (DebitRequestC_). BankClerk /TRUE)

K (TransferOrderC~ _). BankClerk / TRUE)

K (O rderShipment(_j.StockClerk/TRUE)

XK (A lam iCustomerCC1). C2
/ C1 = c2)

1 STOCKCLERK

DECLARA TI ONS

STATE COMPONENTS

Stock wble-o(SET[ITEM} in,lmd-by ITEMTYPE--) System

A CTIONS

ProcessOrderShipment

RemoveFromStock(ITEMTYPE, ITEM)

AddToStock(ITEMTYPE, ITEM)

Ship (INVOICE,ITEM) -)Mail

BASIC CONSTRAINTS

I NITIAL VALUATION

Stock[_}=()

DECLARATIVE CONSTRAINTS

A CTION C OMPOS ITION

{ Ejficient_Order_Processor.OrderShipment, RemoveFromStock, Ship)

ProcessOrderShipment H

Ejficient_Order_Processor. OrderShipment(inv) < >

- 122 -

Appendix

(RemoveFromStock(ltem(inv), il)<> Ship(in v, il))

$ DAC)

OPERA TIONAL CONSTRAINTS

P RECONDITION

RemoveFro111Stock(i,_) : Carei (Stock{i]) > 0

E FFECTS ÜF ACTIONS

AddToStock(i,it):

RemoveFrornStock(i,it):

{} Stock[i} := (it u Stock{i})

{} Stock{i} := (it \ Stock{i})

COOPERATION CONSTRAINTS

A CTION PERCEPTION

K (Efficient_Order_Processor.OrderShipment(_) /TRUE)

S TATE INFORMATION

K (Stock[[.System/ TRUE)

A CTION INFORMATION

K (Ship(_,_). Mail /TRUE)

IBANKCLERK

nothing has changedfor this agent

jMAIL

nothing has changedfor this agent

lcusTOMER

nothing has changedfor this agent

- 123 -

Appendix

3. System Specification

3.1 The IS solution

3.1.1 The i* model

3.1.2 The ALBERT specification

IS

DECLARA TI ONS

STATE COMPONENTS

Inv table-of INTEGER indmd-by ITEMTYPE

OnHold table-of INTEGER index,d-by ITEMTYPE

A CTIONS

ProcessStockRequest(ITEMTYP E)

AcceprOrder(ITEMTYPE) ➔ O.fficeClerk

RejectOrder(ITEMTYP E) ➔ OfficeClerk

BASIC CONSTRAINTS

- 124 -

I NITIAL VALUES

Inv[_J = 0

OnHoldf l = 0

DECLARATIVE CONSTRAINTS

A CTION C OMPOSITION

Appendix

(OfficeClerk.StockRequest, AcceptOrder, Rej ectOrder}

ProcessStockRequest(i) H Office Clerk.StockRequest(i) <>

RejectOrder(i))

OPERATIONAL CONSTRAINTS

P RECONDITIONS

AcceptOrder(i) : (lnv/il - 1) > 0

RejectOrder(i) : (/nv/il - 1) ~ 0

E FFECTS Ü F A CTIONS

AcceptOrder(i): [}

lnv[i} := Inv[i} - I

OnHold[i} := OnHold[i} + 1

Office Clerk.NotifyCancel(i): []

OnHold[i] := OnHold[i] - 1

Inv[i] : = Inv[i} + I

StockClerk.RemoveFromStock(i,_): [J

OnHold[i] := OnHold[i] - 1

StockClerk.AddToStock(i,_) : [}

Inv[i] := /nv[i] - 1

COOPERATION CONSTRAINTS

ACTION PERCEPTION

K (OfficeClerk. StockRequest(_,_} / TRUE)

K (OjficeClerk.NotifyCancel(_) / TRUE)

- 125 -

_ (AcceptOrder(i) 69

Appendix

K(StockClerk.RemoveFromStock(_,_JI TRUE)

K(StockClerk.AddToStockC_JI TRUE)

ACTION INFORMATION

K(AcceptOrder(_J. O/ficeClerk / TR VE)

K(RejectOrder(_J.OfjïceClerkl TRUE)

1 OFFICECLERK

DECLARA TI ONS of the new states and actions ...

ACTIONS

SrockRequest(ITEMTYPE) ~ IS

INo tifyCancel (i) .IS : the c anc elling o f a process f o r the ite m 'i' is not ifi e d
t owards the info rmatio n system ACCURACY INTEREST

NotifyCancel(ITEMTYPE) ~ IS

BASIC CONSTRAINTS

INITIAL VALUATION

Busy= FALSE

DECLARATIVE CONSTRAINTS

ACTION COMPOSITION

(C.Order, Continue, AlarmCustomer, StockRequest, IS.AcceptOrder, ProcessPayment,
IS.Re;ectOrder, DebitRequest, BankClerk.RejectOrder, Noti[yCancel,
BankClerk.AcceptOrder, TransferOrder, OrderShipment}

ProcessOrder H C.Order{o,vi) <> Continue(o,vi,C)

Continue{o,vi,C) H (AlarmCustomer{o,C) fB (StockRequest(ltem(o)) <> (

(IS.AcceptOrder(i) <> ProcessPayment(o, vi))

$ IS.Re;ectOrder(i)))

ProcessPayment(o, vi) H

DebitRequest(am,vi) <> (

(BankClerk.RejectOrder (am, vi) <> NotifyCancel{[tem(o))) $

(BankClerk.AcceptOrder (am, vi) <> TransferOrder(am, vi,company_account) <>
OrderShipment(inv)))

OPERATIONAL CONSTRAINTS

- 126 -

Appendix

P RECONDITIONS

AlarmCustomer(o,_): Item(o) ~ SoldltemTypes

StockRequest.Sys(o): ltem(o) E SoldltemTypes

EFFECTS ÜF ACTIONS

Continue(~~_) : Busy: = TRUE

[}

Busy := FALSE

COOPERATION CONSTRAINTS

ACTION PERCEPTION

K (C.OrderL_) /TRUE)

K (IS.AcceptOrder() /TRUE)

K (IS.Re;ectOrder() / TRUE)

K (BankCle rk.Acce ptO rderL_) /TRUE)

K (BankClerk.RejectOrderL_) /TRUE)

A CTION INFORMATION

K (StockRequest().IS / TRUE)

K (DebitRequest(~_). BankClerk / TRUE)

K (TransferOrderL~_J. BankClerk / TRUE)

K (OrderShipment(_).StockClerk / TRUE)

K (Noti{yCancel().IS /TRUE)

XK (A larmCustomerLC1).C2
/ C1 = C2

)

1 STOCK CLERK

DECLARATIONS NEW ...

ACTIONS

RemoveFromStock(ITEMTYPE,ITEM) ➔ IS

AddToStock(ITEMTYPE,ITEM) ➔ IS

BASIC CONSTRAINTS

INITIAL VALUATION

Stock[_J = {)

DECLARATIVE CONSTRAINTS

- l27 -

Appendix

A CTION COMPOSIT!ON

{OjficeClerk.OrderShipment. RemoveFrornStock. Ship)

ProcessOrderShiprnent H OjficeClerk.OrderShipment(inv) < > (

(RemoveFromStock(Item(inv), it) <> Ship(inv, it))

fE) DAC)

OPERATIONAL CONSTRAINTS

P RE CONDITION

RemoveFromStock(i,_) : Card (Stock[i}) > 0

E FFECTS Ü F A CTIONS

AddToStock(i,it):

RemoveFromStock(i,it):

[} Stock[i} := (it u Stock[i})

[} Stock[i} : = (it \ Stock[i})

COOPERATION CONSTRAINTS

A CTION P ERCEPTION

K (Ojjïce Clerk.OrderShipment(_) /TRUE)

A CTION I NFORMATION

K(RemoveFromStock(,).IS I TRUE)

K(AddToStock(,).IS I TRUE)

IBANKCLERK

nothing has changedfor this agent

IMAIL

nothing has changedfor this agent

lcusTOMER

nothing has changedfor this agent

3 .2 The Stock Clerk Solution
The Stock clerk assumes the role of informing the office clerk about the stock.

- 128 -

Appendix

3.2.1 The i* model

3.2.2 The ALBERT specification

1 STOCKCLERK

BASIC CONSTRAINTS

I NITIAL VALUATION

Stock[_J = {)

OnHold[_J ={}

DECLARATIVE CONSTRAINTS

A CTION COMPOSITION

(OfficeClerk.StockRequest, AcceptOrder, Re;ectOrder, OfficeClerk.OrderShipment,
RenwveFromOnHold, Ship]

ProcessStockRequest(i) H OfficeClerk.StockRequest(i) <>
(A cceptOrder(i) (B

ReiectOrder(i))

ProcessOrderShipment H

OjJïceClerk. OrderShipment(inv) < >(

(RemoveFromOnHold(ltem(inv), it) <> Ship(inv, il))

(B DAC)

OPERATIONAL CONSTRAINTS

P RECONDITION

AcceptOrder(i) : Carel (Stock[i]) > 0

RejectOreler(i): Ca rel (Stock[i]) ~ 0

- 129 -

Appendix

RemoveFromOnHold(i,_): Card (OnHold[i}) > 0

E FFECTS ÜF A CTIONS

AddToStock(i,it): [} Stock[i} := (it u Stock[i} i

RemoveFromOnHold (i,it):

AcceptOrder(i):

[} OnHold[i} := (it\ OnHold[i})

[} OnHold[i} := (it u Onhold[i}i

Stock/il:= (it \ Stock[i})

COOPERATION CONSTRAINTS

A CTION PERCEPTION

K (O/ficeClerk.OrderShipment(_) / TRUE)

K (OfficeClerk.StockRequest(_) /TRUE)

A CTION I NFORMATION

K(AcceptOrder(_). O/ficeClerk / TRUE)

K(RejectOrder(_). O/ficeClerk /TRUE)

j OFFICECLERK

BASIC CONSTRAINTS

INITIAL VALUATION

Busy = FALSE

DECLARATIVE CONSTRAINTS

A CTION COMPOSITION

{ .. . , StockRequest(ltem(o)). StockClerk.AcceptOrder(ltem(o)),
StockClerk.Re;ectOrder(l tem(o))}

ProcessOrder H C.Order(o,vi) <> Continue(o,vi,C)

Continue(o, vi, C) H (AlarmCustomer(o, C) !JJ (StockRequest{[tem(o)) < >

((StockClerk.AcceptOrder(Item(o)) <> ProcessPayment(o, vi))

!JJ StockClerk.Re;ectOrder(ltem(o)))))

ProcessPayment(o, vi) H

DebitRequest(am, vi) < >(

BankClerk.RejectOrder (am, vi) !JJ

(BankClerk.AcceptOrder (am, vi) <> TransferOrder(am, vi,company_account) <>
OrderShipment(inv)))

- 130 -

Appendix

OPERATIONAL CONSTRAINTS

PRECONDITIONS

AlarmCllstomer(o,_J: ltem(o) ~ SoldltemTypes

StockRequest (o): ltem(o) E Sold!temTypes

E FFECTS ÜF A CTIONS

ContinueC~_J : Busy: = TRUE

[}

Busy := FALSE

COOPERATION CONSTRAINTS

A CTION P ERCEPTION

K (C.O rderC_J I TRUE)

K (StockClerk.AcceptOrder() / TRUE)

K (StockClerk.Re;ectOrder() / TRUE)

K (BankClerk.AcceptOrderC_J /TRUE)

K (BankClerk.RejectOrder(~ _J /TRUE)

A CTION INFORMA TIO

K (StockRequest().StockClerk / TRUE)

K (DebitRequestC_J.BankClerk /TRUE)

K (TransferOrderC~_J. BankClerk/TRUE)

K (Orde rShip111ent(_J.StockClerk /TRUE)

- 13 l -

