
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

File Migration in a Distributed Environment

Bah, Souleymane

Award date:
1996

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 17. Apr. 2024

https://researchportal.unamur.be/en/studentTheses/85943e0d-cd01-4c51-9051-560b9289b5da

Facultés Universitaires Notre-Dame de la Paix, Namur
Institut d'Informatique

Année Académique 1995-1996

File Migration
in a Distributed

Environ ment

Souleymane BAH

Promotor : Jean RAMAEKERS

This master thesis is presented in order to obtain the title of Licencié et
Maître en Informatique

Abstract

In this master thesis, we tackle the problem of the Hierarchical Storage Management (HSM)
and we show how a proposed HSM solution can be integrated in the HSM-CL product.

HSMS-CL is a software product running on Unix systems. It allows to backup and archive
Unix files through another product called HSMS running on BS2000 system.

HSM allows to migrate transparently an automatically less frequently used files from
expensive and faster disks such as hard disks to less expensive slower with a huge amount of space
such as optical disks, magnetic tapes, etc. After migration, files are still available online or nearline
for applications or users.

We present two HSM products which are DataMgr and EpochMigration about their
migration mechanisms.

After studying how a proposed HSM solution can be integrated in the HSMS-CL product,
we present a prototype under a Sinix system (Sinix-L) which implements some migration
operations and a way allowing to distinct migrated files, but also a way to intercept files access
requests.

Résumé

Dans ce mémoire, nous abordons le problème de la gestion de mémoires hiérarchiques
(HSM) et nous montrons comment le concept HSM peut être intégré dans le produit HSMS-CL.

HSMS-CL est un produit tournant sur des systèmes Unix. Il permet de sauvegarder et
d'archiver des fichiers Unix grâce à un autre produit appelé HSMS tournant sur un système
BS2000.

HSM permet de migrer de façon transparente et automatique les fichiers les moins
fréquemment utilisés à partir de disques rapides chers tels que les disques durs vers des disques
capacitaires, lents et moins chers tels que les disques optiques, les bandes magnétiques, etc. Après
la migration, les fichiers sont encore disponibles online ou nearline pour les applications et
utilisateurs.

Nous présentons deux produits HSM qui sont DataMgr et EpochMigration au sujet de leurs
mécanismes de migration.

Après avoir étudié comment une solution HSM proposée peut être intégrée dans le produit
HSMS-CL, nous présentons un proptotype sous un système Sinix (Sinix-L) qui implémente
quelques opérations de migration et un moyen permettant de distinguer les fichiers migrés et les
fichiers non migrés, mais aussi un moyen pour intercepter des requêtes d'accès aux fichiers.

2

Acknowledgements

This work has been done during my stay at SIEMENS-NIXDORF company at Rhines in
Namur (BELGIUM).

It is with a great pleasure that I acknowledge ail the persons who have allowed me to realize
this work:

- Mr. Jean Ramaekers, computer science professer at Facultés Universitaires Notre-Dame de
la Paix in Namur (BELGIUM), for accepting to direct this master thesis and for his helpful advice.

- The following members of SIEMENS-NIXDORF company for giving me the right
environment and for their helpful suggestions : Mr. Nicos Piperakis, Mr. Benoit Hucq, Mr.
Georges Rossigon and the members of their teams (RD34, RD35).

I dedicate this study to my parents.

3

Contents

INTRODUCTION ... 7

CHAPTER 1 PRESENTATION OF HSMS .. 9

INTRODUCTION .. 9
1.1. CONCEPTS 9

1.1.1. Hierarchical Storage ... 9
1.1.2. HSMS Archive concepts 10

1.1.1.1. Archive definition .. 11
1.1.1.2. Archive repository 12
1.1.1.3. Save file 12
1.1.1.4. Save version .. 12

1.2. INTERNAL STRUCTURE 13
1.2.1. Task Concept ... 13

1.2.1.1. Subtask/ARCHIVE-Main-task. 13
1.2.1.2. HSMS-Server-task 13
1.2.1.3. HSMS-Main-task 13

1.2.2. HSMS Files .. 14
1.2.2.1. Control File ... 14
1.2.2.2. Request File .. 14
1.2.2.3. Archive Repository .. 14
1.2.2.4. ARCHIVE Result File ... 14
1.2.2.5. Report File .. 14
1.2.2.6. Print File ... 14

1.3. HSMS BASIC FUNCTIONS ... 15
1.3.1. Migration 15
1.3.2. Backup 15
1.3.3. Long-term archival ... 16
1.3.4. Copying save files .. 17

1.4. HSMS-CLIENT .. 17

CHAPTER 2 HIERARCHICAL STORAGE MANAGEMENT .. 18

INTRODUCTION .. 18
2.1. FILE MIGRATION: WHAT ? 18
2.2. REQUIREMENTS ... 19
2.3. FILE STATES··· ························· 20
2.4. TYPES OF MIGRATION AND RECALL ... 21
2.5. MIGRATION POLICIES 23
2.6. HSM STORAGE HIERARCHY ······ ···· ········ ········ ········· ····· ················· ······· ································ 25
2.7. HSM LEVELS 28

4

2.8. INTEGRATING BACKUP AND ARCHIV AL 29
2.9. IEEE MASS STORAGE REFERENCE MODEL 30

CHAPTER 3 PRODUCT ANAL YSIS ... 32

INTRODUCTION 32
3.1. ÜVERVIEW OF DATAMGR AND EPOCHMIGRATION PRODUCTS 32

3.1.1. DataMgr 32
3 .1.1.1. Migration Operations 34
3.1.1.2. Recall Operations 36

3.1.2. EpochMigration 38
3.1.2.1. Migration Operations 39
3.1.2.2. Recall Operation 41

3.2. COMPARISON OF THE TWO PRODUCTS 42

CHAPTER 4 FEASIBILITY ANAL YSIS ... 44

INTRODUCTION 44
4.1. GENERAL ASPECTS OF UFS 44

4.1.1. The Virtual File System (VFS) 44
4.1.2. The Virtual File System Switch Table (vfssw) 45
4.1.3. The Virtual Node (vnode) 47

4.2. FEASIBILITY ANAL YSIS ... ······················· ·· ······· ·· ······ ··· ·· ····· ········· 48
4.2.1. Modify the Kernel Source Code 48
4.2.2. Replace all ufs-related Addresses 48
4.2.3. Add a Wrapper Layer Between vfs and ufs 49
4.2.4. Add a New File System Type 50

CHAPTER 5 INTEGRATION OF MIGRA TION/RECALL INTO HSMS/HSMS-CL 51

INTRODUCTION 51
5.1. AoMINISTRATOR'S VIEW 51

5.1.1. Administration on Client Side 51
5.1. 1. 1. Migration Policy File 51
5 .1.1.2. Inhibited Migration File 51

5.1.2. Administration on Server Side 52
5.1.2.1 Optimizing Media 52
5.1.2.2. Migration on Storage Levels 53
5.1.2.3. Accounting for Workstation Files 53

5.2. USER'S VIEW 56
5.2.1. Command Line Interface 56
5.2.2. Graphical User Interface 58
5.2.3. Application Programmer Interface 60

5.3. ARCHITECTURE SUPPORTING MIGRATION FuNCTIONALITY 61
5.3.1. Explicit Migration Tasking 61
5.3.2. Demand Migration Tasking 63
5.3.3. Periodic Migration Tasking 64

5.4. ARCHITECTURE SUPPORTING RECALL FuNCTIONALITY 65
5.4.1. Implicit Recall Tasking 65
5.4.2. Explicit Recall Tasking 67

5

CHAPTER 6 PROTOTYPING .. 68

INTRODUCTION 68
6.1. BLSCOMMAND 68
6.2. MIGRATION FlJNCTIONALITY 69
6.3. RECALLF'uNCTIONALITY ... 71
6.4. lNTERCEPTING FILEACCESS REQUEST 72

CONCLUSION .. 74

GLOSSARY ... 75

BIBLIOGRAPHY .. 78

APPENDIX .. 80

Al. SPECIFICATION·· 80
A2. lMPLEMENT ATION 82

6

Introduction

Hard disks are central components to the functioning and performance of any computer.
Ideally, users could add the fastest and largest disks available to their systems.

Unfortunately, hard disks are expensive. But even if hard disks are cheaper, they are still
susceptible to head crashes and other casualties for data and they need continuous backup.

W orkstations and file servers running complex applications, such as those evolving digital
imaging, video-on-demand, multimedia, etc. require huge amount of space. One page of text
requiring four kilobytes of storage may grow to two megabytes with the addition of a single
picture. A short multimedia presentation may need a gigabyte of storage while a small library of
full motion videos could require one terabyte or more.

Although the price of disk storage is decreasing, continuously adding more disk storages to
avoid out of disk space situations is not a cost effective solution. There are many hidden costs
associated with disk storage that are not often initially considered. The storage administrators
tasks which consist among others to install and configure disk drives, identify inactive files and
move them to other storage media are a labour intensive storage management tasks. This implies a
lost productivity of users being unable to use the system during hardware upgrades.

In most cases, users do not work with ail the files and data to their hard disks at one time. In
fact, many of the files are not used or infrequently used. So, it would be very interesting to
monitor the "fill level" of storage.

Today ' s distributed environments require sophisticated storage management software that
utilizes Hierarchical Storage Management (HSM) concepts. A software based on HSM concept
move automatically and transparently infrequently used files from expensive and faster disk drives
such as hard disks to less expensive and slower with huge amount of space storage such as optical
disks, cartridges, tape libraries etc ..

The purpose of this work is to show how HSM concepts can be integrated to an existing
product called HSMS-CL. This product, running on a UNIX system, provides backup and archival
files through another product called HSMS running on a BS2000 system.

This work is divided in six chapters.

Chapter 1 is a brief presentation of HSMS and HSMS-CL. In this one, we describe the main
concepts used in chapter 5.

Chapter 2 is a detailed description of Hierarchical Storage Management (HSM) concepts.

7

Chapter 3 presents two existing HSM products regarding to their architecture and their
migration mechanisms.

Chapter 4 starts by a brief description of UNIX filesystem (ufs) abjects used in this chapter
and the followings. Then, in this one, we will analyze different solutions of file migration.

Chapter 5 shows how HSM concepts can be integrated to the HSMS/HSMS-CL products.

Chapter 6 presents a file migration prototype proposa!.

8

Chapter 1 Presentation of HSMS

Introduction

The Hierarchical Storage Management System (HSMS) is a BS2000 software product
which supports data management on external storage devices in a BS2000 system [HSMS95]. It
provides several useful fonctions as backup, archiva! and migration of BS2000 files.

To cope with the increasing part of the UNIX systems in the organization and to complete
the offered services, a complementary software called HSMS-CLIENT [HSCL95] has been
developed. This new product allows the UNIX administrators and users to backup and archive
their files via HSMS.

HSMS uses the ARCHIVE product for the transfer of the manipulated files to or from the
storage levels.

1.1. Concepts

As HSMS uses several concepts that don't exist in another products, a brief description of
these ones is necessary for a good understanding of the following chapters. However, only the
most important concepts will be explained in full details as they appear in the next chapters.

1.1.1. Hierarchical Storage

As HSMS is a hierarchical storage system, the storage space, so-called in the Hierarchical
Storage Management (HSM) terminology the storage hierarchy, is organized in several levels.
These levels have various characteristics regarding storage costs and access time behaviour.

In HSMS [HSMS94], the storage space is divided in three distinct levels :

1. Storage Level SO

The storage level S0 is the normal processing level. It is the one the users can access
online. This level is managed directly by the fùe system Data Management System (DMS), for the
BS2000 system and UNIX File System (UFS), for the UNIX system.

9

As it is the online level, it is the fastest and aiso the most expensive one. It is thus composed by
magnetic disks with fast access time.

2. Storage Level S1

The storage level S 1 is the nearline background level. The data stored on this level are
managed by the HSMS program. It is composed by disks that are generally slower and larger than
those ones used at the level S0. This storage level is reserved for saving BS2000 files.

3. Storage Level S2

The storage level S2 is the off-line background level. It consists of magnetic tapes or
magnetic tapes cartridges. It is thus the slower and less expensive storage level of HSMS.

Ali the data at this level are managed by HSMS.

Storage level User access Media Access Access time

so processing direct disks online very short
level

Sl background viaHSMS disks nearline short
level

opticai disk nearline
S2 background viaHSMS magnetic tape or off-line long
level cartridge

Figure 1.1 Storage Hierarchy in HSMS/BS2000.

1. 1.2. HSMS Archive concepts

The archive is the basic HSMS management unit. HSMS [HSMS95] stores and manages ail
data saved by either backup, archivai or migration in archives. HSMS distinguishes five types of
archives, one archive for each of the basics fonctions it offers : backup, archivai and migration in
BS2000 system, and backup and archivai in UNIX system. Ail the basic HSMS fonctions cannot
be executed until the appropriate archive has been created.

10

Each HSMS archive consists to :

• the archive definition containing the archive's attributes,
• the associated archive repository,
• the save files containing the saved data.

Save file
Save file entries ___ _,

Volume pool

Control file

Archive definition 1

Archive definition 2 muse

available

Figure 1.2 Structure of an HSMS archive.

1.1.1.1. Archive definition

The archive definition contains the following information :

• the type of the archive,
• the owner of the archive,
• the attributes of the archive (as the name of the associated repository and the

accessible rules).

It is stored in the HSMS control file.

11

1.1.1.2. Archive repository

The archive repository contains the information about the saved data managed in the
archive. These information are :

• the file names and properties,
• the save files attributes,
• the save versions attributes,
• the occupied and free save volumes.

The repository is managed by the ARCHIVE product.

1.1.1.3. Save file

The save fùe is a catalogued BS2000 disk or tape fùe. A save fùe on tape consists to a
number of volumes having the same owner and the same Save File Identifier (SFID). A save fùe
can contain one or more save versions.

1.1.1.4. Save version

A save version contains ail fùes saved by a request plus the needed metadata to allow a
restore or a recall of the files. A save version is identified by its Save Version Identifier (SVID). A
file can be saved only once in a save version.

HEADER

SA VE VERSION 1

DATA+
METADATA
FOR FILE A

SA VE VERSION 2

DATA+
METADATA
FOR FILE A

Figure 1.3 Sructure of a save file with several save versions.

12

A file can appear many times in a save file but only if different save versions are written in
the save file.

1.2. Internai Structure

HSMS has access to user fües only via the ARCHIVE product. It provides a number of
server tasks for asychronous and parallel requests processing. The HSMS administrator defines
this number of server tasks.

1.2.1. Task Concept

Server task/Main-task/subtask

HSMS and ARCHIVE use the task concept to process requests between their components.

1.2.1.1. Subtask/ARCHIVE-Main-task

The subtask concept has been introduced in order to achieve the parallelism of the data
transport of the saved abjects into the save files. The volumes containing the save files (to be
continued or created) can be distributed among several devices. For each device, a subtask is
created. One subtask is only dedicated to the data transfer between the saved abjects and the
saved files (in the two directions). The subtaks run independently from one another.

This mechanism is to shorten the saving and the reconstitution time by a parallel processing
of tapes and/or disks during the archiving and reconstitution activities.

The subtasks are created by the ARCHIVE user task named ARCHIVE-Main-task or
HSMS-Server-task. The ARCHIVE-Main-task <livides the global processing in partial requests,
so-called paquets, and transmit them to the subtasks for their processing.

1.2.1.2. HSMS-Server-task

The HSMS-Server-tasks are permanent system tasks that are created or deleted by the
HSMS-Main-task. They process the user requests written in the request file. An HSMS-Server
task calls ARCHIVE and becomes an ARCHIVE-Main-task.

1.2.1.3. HSMS-Main-task

The HSMS-Main-task is a permanent system task. It realize the control of HSMS
(initialization, creation or destruction of server-tasks, supervision and run of time-dependent
request).

13

1.2.2. HSMS Files

HSMS uses the following files for synchronization and data transfer between tasks.

1.2.2.1. Contrai File

The control file contains the HSMS control parameters (number of server tasks to be
created, device type for S 1 level, definition of the archive, etc.). If the control file is inexistent at
the start of HSMS, HSMS creates it with coded default values.

1.2.2.2. Request File

The request file contains the description of the requests to be processed by the server tasks.
The request file is also used for the restart processing of interrupted requests. The request file is
automatically created at start of HSMS if it was inexistent.

1.2.2.3. Archive Repository

A directory is defined by archive. It contains all needed info1mation about files, tapes used
and save versions or save files already created.

This file is maintained by the ARCHIVE product and HSMS has a read access toit.

In order to irnprove the access time to get information from the archive repository, a study
has been done about this [DDK96].

1.2.2.4. ARCHIVE Result File

This file contains the report written by ARCHIVE. It is used by HSMS to produce its
report. The result file is also needed for the restait processing.

1.2.2.5. Report File

A report file is used for all request that will produce a report. It contains the request
protocol in interna! form.

1.2.2.6. Print File

A print file is written and automatically printed/deleted for all report that must be sent to the
printer. lt contains the request protocol in printable form .

14

1.3. HSMS basic functions

In this section we present the basic fonctions of HSMS. These are :

• Migration,
• Backup,
• Long-term archiva!,
• Copying save files.

1.3.1. Migration

This fonction makes it possible to migrate user files from the processing level SO to S 1 or
to S2 as well to recall these migrated files to SO level for processing. This effectively reduces the
danger of saturation of disk storage. If the disk saturation limit or the user allocations are
exceeded, the migration fonction can be started and the inactive data migrated. The number of
days since the last access, the minimum file size and the file fragmentation can be specified as
criteria for selecting files to be migrated.

Files are automatically recalled before processing during file opening or reservation.
Migration and recall can also be executed via instructions. The normal user has access to these
statements.

Sorne files are normally excepted from migration (e.g. open files, temporary files or files
that need to be repaired, HSMS files, etc.). The user can also set a migration Iock.

When a file is migrated, the original catalogue entry remains on SO and is given a
'migrated' symbol.

1.3.2. Backup

The concept of backup as a system service must be separated from the concept of long-term
archivai. The files on the processing level SO and the migration levels S 1 and S2 can be saved.

The system backup is carried out by the system or the HSMS administrator. HSMS manages
backup data resources automatically and safely using system backup archives. For special
applications, an application administrator can carry out the backup runs (for their own files) in
their own backup archives.

Two backup facilities are offered : complete backup and differential saving (incremental
backup). The principle of differential saving is to compare the catalogue entry information and the
repository information and to save only files which have been changed since the last saving. Run
time and memory space are then economized. Despite of that differential saving the possibility to
reconstruct the complete data state as existing at the last saving always exists.

15

The backup fonction permits backup in S 1 and S2 levels, either on disk, tape or cartridge.
If operation is sometimes unmanned, the backup data can be temporarily stored on disk so that it
can be transferred to tape at a later point in time. It is even possible to mix storage forms, i.e. to
store the differential backup on disk and to store the complete backup on tape but this implies a
new save file each time that we change the media.

Through the archive repositories, there are many options for selecting files for the purpose
of saving back or reconstruction.

Via HSMS, it is also possible to make a complete backup by executing only an incremental
backup (full from incremental). This fonction consists to run a incremental backup, then with the
last differentials savings and the last full backup, to reconstruct a full backup on tape without
needing to access to the abjects.

1.3.3. Long-term archivai

The HSMS archiving fonction, as an end user fonction, should first and foremost provides
optimum support for long-term archivai. It should also, as a basic fonction, implement
management of a11 data on the archiving level. The HSMS archiving fonction provides the
following additional services :

• Archive tapes are updated for independent archiving jobs (save versions) as standard. This
means that tapes can be used in a more productive manner.

• A logical expiration date (specific to the job) can be allocated for archived files, independent of
the tape's physical retention period. When changing archive tapes, those tapes that have not yet
reached their expiration date can be specifically taken over.

• Archiving and reactivation job are collected in a job file. Tapes can be accessed at times
specified by the system administrator. This enables the computer center to plan tape processing
times better.

The data can be compressed when being transferred to the HSMS archive level and are
automatically decompressed when accessed.

HSMS offers the option of adding extra user information with archiving jobs
(names/descriptors and text for backup versions), in addition to improved archive information
fonctions. Another option with HSMS is defining archives and setting characteristics such as
maximum archiving period and default values for decompression, device types, etc.

16

1.3.4. Copying save files

HSMS allows backup files and the backup versions they contain to be copied within an
archive or from one archive to another.
Copying can be used to :

• Swap backup files from S 1 to S2,
• Copy backup files as a precaution against data loss,
• Change data volumes within long-term archives (recycle volumes),
• Reorganize a migration archive.

1.4. HSMS-Client

HSMS-Client is a software running on UNIX systems. lt allows to backup and to archive
UNIX files through HSMS on the BS2000 system. In order to do such operations, it requires the
presence of Network File System (NFS) in server mode on the workstations and in client mode on
the BS2000 system.

Moreover, the workstations file system must be mounted in the HSMS directory on the
BS2000-UFS.

With this requirements fulfùled, and with the presence of the HSMS server software on the
BS2000, it is possible to backup and archive the workstations files (node files) onto the BS2000
system.

The HSMS-Client software cornes under three distinct forms : a Graphical User Interface
(GUI), a Command Line Interface (CLI) and an Application Programmer Interface (API).

17

Chapter 2 Hierarchical Storage Management

Introduction

In this chapter, we will see the basic concepts of Hierarchical Storage Management (HSM).
These concepts will allow us to understand in details HSM.

2.1 . File Migration : What ?

File migration is concemed with the movement of less active files (i.e. files that are not regularly
used) to slower, less expensive storage and leaving more active files on faster storage devices
[HEU93] . But the file descriptor is retained on local disk to give transparent access to files. This
file descriptor, often called stub file is used as a place holder.

File migration runs under a technology concept called HSM.

2.1.2. Hierarchical Storage Management Concept

The concept behind HSM is simple. Infrequently accessed data are automatically and
transparently moved from more expensive, higher performance storage devices (hard disk drives)
to less expensive, slower storage devices (tape drives and libraries, optical libraries).

When data is accessed it is automatically and transparently retrieved. HSM creates the
illusion of infinite disk storage while maintaining high data availability. In theory, users never run
out of disk space and have constant access to their data regardless of where they are stored.

HSM gives possible benefits including :

• Automated data management,
• Saturation avoidance,
• Decreased physical storage costs,
• Reduced storage management costs,
• Increased end user productivity,
• Optimal usage of storage devices.

18

2.2. Requirements

To be efficient, a file migration solution must satisfy the following requirements :

- Automatization File migration solution must reduce the costs of manually managing local
and distributed storage.

- Transparency End users must not be exposed to the fact of their files are migrated
physically on the storage server. In other words migration must allow
migrated files to be accessed as if they were still on the client file system.

- Reliability The migrated data residing on the storage server must be protected against
lost and/or corruption.

- Portability A file migration solution must be portable to a heterogeneous set of
platforms. Example of platforms : SINIX, SVR4, Solaris 2.x, HP-UX.

- Security Confidential files through the network must be protected. Important files
(e.g. bootstrap file) and HSM files must be excluded for migration.

- Efficiency Efficiency of a migration and recall mechanisms is the ratio of achieved
performance (e.g. number of bytes migrated per seconds). Performance of
migration and recall depends on several factors including the type of
network, the size of files and the location of migrated files (e.g. it takes
longer to recall a file from tape than optical disk). Migration and recall
mechanisms must neither degrade the performance of the network nor the
performance of the server and the workstation being managed.

- Flexibility A file migration solution must allow users to have various interna! migration
policies to determine which files get migrated when and where.

- Standard A file migration solution must be designed for open systems and industry
standards. So , it must be related to the IEEE Mass Storage Reference
Model. This model is presented in section 2.9.

19

2.3. File States

There are three types of file states : resident, non-resident and shadowed files.

Resident

Non-resident

Shadowed

A resident file is a file that have not been migrated, both its attributes and
its contents are located on the processing level (local disk). When first
created, all files are resident files.

~
~

This file is in a resident state

One copy stored on local disk ------
Local Disk

Figure 2.1 A file in a resident state.

Storage Server

A non-resident file is a file that has been migrated. Ali the contents of a
non-resident file are on storage server. A non-resident file is also called a
stub file.

This file is in a non-resident state

One copy stored on storage server

Local Disk Storage Server

Figure 2.2 A file in a non-resident state.

A shadowed file is a resident file for which a copy also exists on the storage
server. A file becomes shadowed if and only if it is recalled or prestaged. If
a shadowed file is modified, it enters in a resident state.
Prestaging is the copying of a file to the storage server without making it
non-resident. The purpose of prestaging is to make subsequent migration
faster.

20

~
~

This file is in a shadowed state

One copy stored on local disk -------
One copy stored on storage server

Local Disk

Figure 2.3 A file in a shadowed state.

2.4. Types of Migration and Recall

Migration

Storage Server

There are three types of migration : Explicit, Periodic, or Demand.

Explicit

Explicit migration is initiated by user request via a command.

Periodic

Periodic migration is initiated by an administrator job, usually via a cron, during non-peak
times to bring file system utilization percentage down to a predefined threshold.

Demand

Demand migration is initiated by a daemon during normal operation, to make more space
available on the file system when utilization reaches a predefined threshold. Thus, when this
happens, user application merely pause until space is available instead of aborting with a "disk full"
message.

21

Recall

There are two types of recall : Explicit, or Implicit.

Explicit

Explicit recall is initiated by a user request via a command.

lmplicit

lmplicit recall is concemed with the retrieval of migrated files. When a non-resident file is
accessed (e.g. read), data are automatically transferred from the storage server to local disk.

For the explicit or implicit recall operation, a non-resident file is reloaded once to the local
disk.

22

2.5. Migration Policies

Migration policies are concemed with the Which, the Where and the When. Ail the factors
related to the migration policy are specified in a configuration file by the system administrator.

The Which

The Which is the answer to the question : which files are the best candidates for migration ?
More often, these files are the least frequently used. The factors related to the which are described
below.

• Minimum age,
• Minimum size,
• Files to be excluded from migration.

Minimum age

Minimum age specifies a threshold at or below which files are not be migrated.
The minimum age is the minimum number of days since the file was last referenced.

Minimum size

Minimum size is the minimum number of lK blocks.

Files to be excluded from migration

Files to be excluded from migration are individual files and/or directories and/or particular files
(e.g. bootstrap file, confidential files) that should be excluded from migration.

The Where

The Where is the answer to question : where a kind of files (e.g. big size files, old files, etc.)
are migrated ? On tape or on optical disk, etc. The factor related to the where is :

• Storage level.

23

The When

The When is the answer to the question : when to start or to activate automatic migration
processing. The when is related more often to the file system utilization percentage (watermark)
and/or during non-peak times in order to increase free space on local disk. The factors related to
the when are described below.

• Watermarks (high, low, prestaged).

Watermark is a filesystem's preconfigured capacity threshold. We have three types of watermark

• Low Watermark (L WM) specifies the file system utilization percentage at which
automatic (periodic or demand) migration will stop migrating files. If prestaging is in
effect, L WM specifies when prestaging files.

• High Watermark (HWM) specifies the file system utilization percentage that the file
system is allowed before starting the demand migration to make more space available.

• Prestage Watermark (PWM) specifies the file system utilization percentage at which
periodic migration will stop prestaging files.
Prestage watermark is always less than low watermark.

Example:

file system
utilization
percentage

HWM

LWM

PWM

demand migration periodic migration

/

'

prestaging / '' • _

In this example, after periodic migration at time t1 and assuming prestaging is in effect, prestaging
can start from the L WM. At time t2 the real fùe system utilization percentage is the low
watermark.

24

2.6. HSM Storage Hierarchy

Storage Hierarchy

Storage Hierarchy is an assignment of storage units to different storage levels, depending on
their availability, access time, and storage costs.

Cost increases and access time decreases going up the « storage pyramid » (see figure 2.4)
while capacity memory increases toward the bottom of the pyramid [MIL91].

The bottom of the pyramid which usually consists of tape and optical disk have slow access
time, on the order of seconds or minutes, and very lower costs. CPU cache or perhaps even CPU
registers are on the top of the pyramid. They are more expensive, the smallest, the fastest in the
hierarchy.

Higher Faster

î î
cost/MB cache access time

j
Main Memory

Magnetic Disk j
Lower Optical Disks, Tapes, Cartridges Slower

A vailable Capacity

Figure 2.4 Storage hierarchy in Large Systems.

Storage Level

Storage Level is related to a type of storage (e.g. tape, optical, disk) in the hierarchy where
migrated files reside. A storage level depends on time access needed for the recall processing.

25

Storage Pool Manager

Storage Pool

LevelO

Level 1
'--+-----'

• ···- ~

i migration operation

• recall operation

Figure 2.5 HSM Storage Levels.

Let N to be the number of storage levels, and Mi/fi) the fonction which migrates the file fi
from the storage level i to the storage level j conforms to the HSM concept and Rij(fj) recalls the
file fj from the storage level j to storage level i conforms the HSM concept.

Migration on Storage Levels 'ef i, 0 $ i < N-1, 'ef j, 0 <j $ N-1, 'ef fi a candidate file on
storage level i for migration, if i < j then Mij(fJ

Recall on Storage levels 'ef j, 0 <j $ N-1, fj a migrated file and is a candidate for the recall
from storage level j , R0j(fj).

26

Example : Storage Hierarchy in HSMS/8S2000

In HSMS, the storage hierarchy (see figure 2.6) is divided in three levels : SO, S 1 and S2.

Storage level SO

The storage level SO is the normal processing level. It contains all resident files.

St orage level S 1

The storage level S 1 is a background level implemented by disk storage at lower cost. This
storage level is reserved to the saving of HSMS files.

Storage level S2

The background level S2 consists on archived, backed up and migrated files on optical disk,
magnetic tape or magnetic tape cartridge.

Higher Faster

cost/MB access time

Lower Slower

t migration

Figure 2.6 Storage Hierarchy in HSMS/BS2000.

27

2.7. HSM Levels

As in most product categories, comparing HSM systems, HSM vendors offer different array
of features. Therefore it is useful to classify the various HSM systems into "HSM levels"
according to their features [LIN94] , [STE95].

Do not confuse storage Level and HSM level. A storage level is related to a storage where a
type of files (e.g. non-resident) resides, whereas HSM level is a category of HSM systems which
have the same characteristics.

There are 5 HSM levels that are widely accepted as guidelines by the HSM industry.

Level 1 is a simple automatic file migration with transparent retrieval. By definition, ail HSM
products must meet level 1 requirement.
Example of level 1 HSM vendors:
• Advanced Software Concepts (Netarchive).
• Nestor Inc. (Nestor HSM).

Level 2 improves on level 1 by providing multiple watermarks or predefined thresholds, allowing
administrators to tune an HSM system to meet particular needs of an organisation. Level 2 can
manage two or more layers (levels) of nearline storage (e.g. optical jukebox, magnetic tape
library). Level 2 products are for companies that have applications whose disk requirements vary
greatly.
Example of level 2 vendors :
• Computer Associates International Inc. (Unicenter).
• Digital Equipement Corp. (Polycenter).

Level 3 provides transparent of three or more layers (levels) of storage hierarchy. Product of this
category perfmm volume management, media management, media optimization, and job
queuing. Level 3 product are for companies that have multiple layers of hierarchical storage (hard
disks, optical jukebox, magnetic tape library).
Example of level 3 HSM vendors :
• Corner Storage System Group (Corner HSM).
• Lachrnan Technology Inc. (Open Storage Manager-Naperville, III).

Level 4 provides classification of files for migration. Migration is based on type and other criteria
through the use of policies. For example, an administrator can classify each file according to type,
size, location, or ownership. Next, the administrator can set different migration policies for each
classification. A large number of HSM systems, especially those for UNIX, offer level 4.
Example of level 4 HSM vendors :
• Open Vision Technologies Inc. (HSM Extention).
• Alphatronix (Emissary/HSM).

Level 5 HSM level 5 adds abject management. Objects are treated as structured or non
structured records, or as nonfile structures. Level 5 identifies products that can work with
database manager software such as Oracle, NT server, OB2/2, to migrate a segment of a database
(rather than the entire file) to and from secondary storage.

28

2.8. lntegrating backup and archivai

Migration is not the replacement of data backup and archivai. The purpose of backup and
archivai is to enable recovery of lost or inaccessible data and retrieval of point-in-time stored data.
Whereas the purpose of HSM is to free space on higher performance, higher cost storage.

A storage management solution should have the ability, if desired by the end user, to verify
that backup copies of data exist before data can be migrated. In addition, it should manage the
integrity of data stored on the storage server.

In generai, there are advantages to integration. Administrators can be assumed that the
migration library is backed up; they can work with a single interface for both HSM, backup and
archivai and they can share devices for the three fonctions.

29

2.9. IEEE Mass Storage Reference Model

In this section we present a summary of the IEEE Mass Storage Reference Model version 4
[IEEE90].

The IEEE Mass Storage Reference Model was developed by the IEEE Technical Committee
on Mass Storage System and Technology. This model defines how Mass Storage Systems should
be implemented to response the need for standardised method of constructing memory storage
systems.

The purpose of this model is to encourage the vendors to develop interoperable components
that can be combined to form integrated storage systems and services.

In the same way as ISO seven-layered communication model, the IEEE Mass Reference
Model provides a consistent set of concepts and terminology.

This model sets the foundation for the development of standard mass storage architectures
and interfaces.

Bitfile Bitfile Storage
Client 14----+ Server 14----+ Server

Physical
Volume

------1 Repository .__ __ __,

Name
Server

Ail Modules
Site Site

Contrai ,.......... _ __.__, Monitor
Site

Manager

1,,,1
1,,,1

Media Volumes

Figure 2.7 IEEE Mass Storage Reference Model.

30

The reference model partitions a mass storage environment into a set of related logical storage
services (see figure 2.8).

Bitfile : is the content (uninterpreted data) of a non-resident file on the storage server. A bitfile
has a unique identifier called bitfile ID.

The Bitfile Client presents an application-oriented storage abstraction.
The Bitfile Client defines concepts such as files, tables, blobs (Binary Large OBjectS), directory,
file attributes, and access control.

The Bitfile Server provides the logical storage needed to implement the Bitfile Client.
The Bitfile Server manages the bitfiles.

The Name Server provides the mapping between the application oriented attributes
(such as file names) and the IDs of bitfiles used to hold the file's data.

The Storage Server provides a set of logical volumes, which are the storage containers used by the
Bitfile Server to hold bitfiles. These logical volumes may be associated properties such as size and
location.

The Physical Volume Repository manages the real physical media used to implement the logical
volumes. Its tasks include physical volume identification, access control, library unit control, and
physical device access.

The Site Manager provides tools for monitoring and controlling the actions of the other services.

31

Chapter 3 Product Analysis

Introduction

In the previous chapter, we have seen the basic concepts of HSM. In this one, we will see
how migration and recall operations are realized through two products which are DataMgr and
EpochMigration. Why these products ? Mainly because migration and recall operations are based
on different architectures but also because these two products are well documented.

3.1. Overview of DataMgr and EpochMigration Products

In this section, we present the DataMgr and EpochMigration products. We will see in
addition, in one hand, the migration and recall functionality and in another hand, the migration
policies provided by each product. But first, we will see the basic requirements satisfied by the two
products.

3.1.1. DataMgr

DataMgr (read Data Manager) is one of the components of the AMASS Storage
Management System (AMASS SMS) product family [DTM95]. This software product (DataMgr)
in conjunction with an AMASS server provides a file migration service in distributed
environments.

AMASS (Archival Management and Storage Server) is a file system type which integrates
removable media devices (cartridge, tape, etc.), autochanger (robot), and non autochanger
configurations. AMASS provides full file, volume, drive and jukebox drive management and the
system administration tools needed to control, configure and monitor the jukebox subsystem
[AMS94]. Note that to add a new file system at the virtual file system layer does not irnply the
modification of the host operating system.

In figure 3.1, we can see AMASS file system added to the virtualfile system (vfs). Vfs is the
file system independent in the UNIX kemel on which other file systems (e.g. UNIX file system
(ufs), network file system (nfs), remote file system(rfs), etc.) are attached.

32

VFS

NFS RFS S5

Device Driver Device Driver

Figure 3.1 AMASS Architecture.

Requirements fulfilled

DataMgr solution satisfies the following requirements :

Automatization:

Transparency :

Security:

Reliability :

Portability :

Standard:

With DataMgr files are automatically migrated from a client site periodically
or on demand to maintain available file system space on local disk.

DataMgr allows users to be not exposed to the fact of their files are
migrated. Users can access to their migrated files as if they were on local
disk.

DataMgr preserves security aspects of some files. It creates a Locklist file
which is a list of fùes or pathnames that should be excluded from migration.
And also, an other important security aspect provided by DataMgr is the
quick restoration at the tirne of a system crash, in the migration or recall
process.

DataMgr provides several ways to safeguard migrated fùes against lost or
corruption.

DataMgr is portable on SUN, IBM RS/6000, HP9000/700 and 800 Series,
SVR4, AUSPEX.

AMASS-DataMgr architecture conforms to the IEEE Mass Storage
Reference Model.

33

HSM level

DatatMgr belongs to level 4 in HSM systems classification.

3.1.1.1. Migration Operations

DataMgr is installed on a file system called migrating file system.

Migrating file system is a local file system that has been initialized and enabled for migration and
additional functionality supplied by DataMgr.

DataMgr migrates ordinary files and all files within a specified directory, but does not
descend into subdirectories. Pipes, special files, symbolic links, sockets are not concemed with
migration [DTM94].

Explicit Migration Explicit migration is initiated by the dmout command.
Example: dmout toto. Where toto is the file to be migrated.

Periodic Migration Periodic Migration is initiated by an administrator job via a cron.

Demand Migration

RPC Library

Daemon

System Calls 3

VFS

AMASS-MFS 2 .. Devi ce Driver

Figure 3.2 Demand Migration Operation.

FMS (File Management Server).
MFS (Migrating File System).

34

1. An application issues a file system request that requires additional space to be allocated.

2. The DataMgr daemon within the MFS-AMASS (Migrating File System-AMASS) initiates
the demand migration operation via the device driver.

3. The daemon within the device driver reads the "no space fault" request.

4. The daemon within the device driver generates a list of all the candidate files that are
eligible for migration on the MFS along with their migration attributes (minimum age and
size, migration path, etc.).

5. From this candidate files list, the daemon selects a sufficient number of files to be migrated
in order to bring the file system utilization percentage down to the selected watermark.

6. For each selected file from the candidates list, the contents are copied to the storage
server (File Management Server (FMS)).

7. Once the storage server copy is achieved, the original file on the migrating file system
(MFS) is replaced by a stub file (stub file: see below). Files that were migrated are
removed from the candidates list.

8. When enough space is available, the original operation proceeds.

A stub file is what remains of a füe on a migrating file system after it has been migrated. A stub file
contains the following information :

• The file leader is the file containing the first 512 bytes of the migrated file.
• The .file 's bitfile id which is a unique identifier of the migrated file on the storage server.

This is a parameter used for the recall operation.
• The file 's logical size which the size of the file before migrated.

35

3.1.1.2. Recall Operations

Explicit recall

Implicit recall

Explicit recall is initiated by the command dmin.
Example: dmin toto, Where toto is the file to be recalled.

Implicit recall is triggered by a daemon if any of the following
cases occurs :

a. Data beyond the file leader (the first 512 bytes) is read.
b. Datais written anywhere within the file.
c. The size of the file is changed (except to truncate to zero length).

RPCLibrary

Daemon

System Calls 3

VFS

AMASS-MFS 2 .. Device Driver

Figure 3.3 Implicit Recall Operation.

1. An application issues an access request to a non-resident file on a migrating file system.

2. The recall daemon is initiated via the device driver.

3. The device driver posts a recall request which is read by the recall daemon.

4. The recall daemon reads the recall request and gets ail necessary information (one of them
for example is the bitfile ID) from the stub file to retrieve the non-resident file.

36

5. From the bitfile ID, the recall daemon makes one or more RPC requests to read the
associated bitfile and responds within the data.
In any cases (a, b, c, see privious page), the previously non-resident file becomes a
shadowed file. And particularly, in case (b), after the bitfile data are reloaded to the local
disk, the connection to the old bitfile is broken. A new bitfile ID and a new bitfile will be
generated when the modified file is next prestaged or migrated.

6. The recall daemon replaces the non-resident file by a file with the same name containing
the recalled data and then deletes the stub file.

7. The original operation can now proceed.

3.1.1.3. Migration Policies

In DataMgr, there are three types of migration : Explicit, Periodic and Demand.
DataMgr performs a migration based on a flexible management policy by which it selects files to
migrate and decides when and where to migrate them to. Management Policy includes several
factors which are specified by the system administrators. These factors are outlined below.

• Watermarks (high, low).
• File names to be migrated.
• Minimum age.
• Minimum size.
• Factor to weight the age of file to be migrated.
• Factor to weight the size of file to be migrated.
• File management server.
• Migration path.
• Retention time.
• File to be excluded from migration.

Retention time is the length of time a bitfile should be retained on a storage server after its stub file
or shadowed file on the storage server has been removed from the client migrating file system.

37

3.1.2. EpochMigration

EpochMigration is one of the components of Epoch's Data Management solution. In
conjunction with Epoch Data Server, EpochMigration provides a füe migration solution in
distributed environments [EPM92]. ·

Requirements fulfilled

EpochMigration satisfies the following requirements :

Automatization :

Transparency :

Portability :

Reliability :

Standard:

HSM level

EpochMigration moves automatically its files (inactive files) to Epoch Data
Server. So, time consuming and errors by manually intervention (e.g.
identifying files to move) are minimized.

EpochMigration allows users to access their "migrated" files as if they were
still on local disk.

EpochMigration is portable on SunOS.

With EpochMigration, data on Epoch Data Server are protected.

EpochMigration solution conforms to the IEEE Mass Storage Reference
Model.

EpochMigration belongs to level 4 in HSM systems classification.

38

3.1.2.1. Migration Operations

EpochMigration uses a protocol to perform migration and recall operations. This protocol
designed to provide a bitfile service, is a remote procedure.

To manage its data and to avoid to modify the kernel, EpochMigration adds a thin layer
between the Virtual File System (vfs) and the UNIX File System (ufs). This layer which consists in
a set of modules called wrappers, does not replace the existing modules in the operating system.
W rappers intercept file access request and perf onn two main fonctions :

1. They determine if the current file accessed is a migrated file, if so manage the
recall operation.

2. They allow EpochMigration to intercept the application requiring disk space
and, to make more disk space, manage the migration operation.

In addition to these wrappers , EpochMigration uses a pseudo device driver to communicate with
migration tasks (workers) , the recall daemon and to reallocate space.

Explicit Migration Explicit migration is initiated by a dedicated command command.

Periodic Migration Periodic migration is initiated by an administrator job, via a cron.

Demand Migration

System Calls

VFS
Wrapper Routines

UFS

2 _.

RPCLibrary

W orkerl . . . 1 W orker
MASTER

3

Pseudo Device Driver

Figure 3.4 Demand Migration Operation.

39

1. An application issues a file system request that requires additional space to be allocated.

2. The the wrapper routine gets the lower space condition and calls a routine in the pseudo
device driver to report it. So, if there is no space available in the file system, the wrapper
blacks the operation until space is available; if there is some space available, the operation
proceeds immediately, in parallel with the following steps.

3. In either event, the pseudo device driver sends a "no space" fault to the Master. The
Mas ter calls the W orker related to that file system.

4. This worker reads inodes to select the best candidates from a policy for migration.

5. The worker reads each file to be migrated.

6. The worker issues one "create bitfile" and one or more "write bitfile" protocol requests
for each migrated file.

7. The worker records that this file is migrated to this bitfile id.

8. When enough space available, the original operation proceeds.

40

3.1.2.2. Recall Operations

Explicit recall

Implicit recall

Explicit recall is initiated a dedicated command command.

RPCLibrary

Recall Deamon

System Calls 3

VFS
Wrapper routines

UFS

~
2

• I Pseudo Device Driver

Figure 3.5 Implicit Recall Operation.

1. An application issues a read request to a file.

2. The wrapper intercepts the request, detects if the current file is a migrated file or not. If so,
calls a routine in the pseudo device driver and blacks the operation until the entire file is
available.

3. The pseudo device driver posts a recall request which is read by the Recall Daemon.

4. The Recall Daemon gets the associated bitfile id in the directory containing the migrated
file information. It makes one or more RPC requests to the server to read the associated
bitfile from the bitfile id and respond with the bitfile data.

5. The Recall Daemon creates a temporary file containing the recall data and notifies the
pseudo device driver the completion of the operation.

6. The pseudo device driver switches the black maps, so the temporary file is now the real
file ' s target.

7. The original operation can now proceed.

41

3.2. Comparison of the two Products

Basically, there are three differences between the two products.

The first one is related to the architecture. In EpochMigration solution, we have a pseudo
device driver which plays a role of interface between workers, recall daemon and wrapper
routines. Whereas DataMgr is based on a new file system type added below the vfs layer.

The second one is related to when the recall operation is triggered. In EpochMigration
solution when a migrated file is accessed (e.g. read), the entire file is reloaded.
In DataMgr, on the contrary, the recall of the entire file is triggered when only in any of the three
following cases occurs :

1. Data beyond the file leader (the first 512 bytes) is read.
2. Data is written anywhere within the file.
3. The size of the file is changed (except to truncate to zero length).

The third difference is related to the requirements fulfilled by each product. A comparative
table of requirements fulfilled by each product is shown in figure 3.7.

Requirements DataMgr EpochMigration

Automatization ++ ++

Transparency - +

Reliability ? ?

Portability
- Unix ++ -
-Win NT - - +

Security - Secure Transfert ? ?

- File to be excluded from mig. ++ ?

Efficiency ? ?

Flexibility - Migration Policy ++ ++
- Volume Management ++ - -

Standard IEEE Mass Storage Ref. Model ++ ++

- Administration Low High
Costs

- Realization High Low

Figure 3.6 Comparative table from requirements and costs of the two products.

42

The realization costs of DataMgr solution are higher than EpochMigration's one, developing a
new filesystem type requires, for instance, much more person-year than developing a wrapper
layer between vfs and ufs.

43

Chapter 4 Feasibility Analysis

Introduction

Tlùs chapter is divided in two parts. In the first one, we will explain some basic aspects of
ufs wlùch will allow us to understand the second part of this chapter. In the second part, we will
see different solutions to realize implicit recall operation.

4.1. General Aspects of UFS

In this section we describe the basic objects used in this chapter and the followings.

4.1.1. The Virtual File System (VFS)

The kemel's generic abstraction of file system is the file system type independent vfs
structure. The vfs structure contains generic information wlùch the kemel uses to manipulate a file
system in a file system type independent way. For each active (mounted) file system maintained by
the system, an associated vfs structure is allocated and held on a link list. Tlùs list is called the vfs
mount-list (previously known as the mount-table). The first file system on the vfs-mount-list is
always a vfs structure named root which, in tum, is referenced by a pointer called rootvfs. The vfs
mount-list is used by the kemel to administer any file system that are mounted. A file system that
is not mounted is not known by the operating system, even if that file system coexists on the same
physical device as those file systems that are mounted.

The rootvfs contains the information about the root file system that is mounted
automatically by the kemel at boot time. Once mounted, the root file system cannot be unmounted
unless the system is being shut down. Sorne fields of the vfs structure are described in figure 4.1.

44

4.1.2. The Virtual File System Switch Table (vfssw)

To configure a file system type into the operating system, it must have an entry into the
Virtual File System Switch table (vfssw).

The vfssw [] table is an array of vfssw structures (see below) each representing a particular
file system types . The fields of vfssw are shown at figure 4.1 and an example of a vfssw table is
shown at figure 4.2

*vfs - next L-----7 (*vf s_rnoun t) ()
*vfs _ op - (*vf s_unrnount) ()

*vfs - nodecovered (*vf s _ root) ()

vfs _flag (*vfs_statvf s) ()

vfs _bsize . . .
vfs _fstype

VFS Operations
vfs fsid -

vfs data -
vfs dev *vfs - narne

-

vfs _bcount * (vsw_init) ()

vfs _nsubrnounts *vsw_vfsops

... *vsw_flag

VFS structure VFS Switch stru cture

Figure 4.1 vfs and vfsw structures.

45

vfs _name vsw_ init {) vsw_vfsops vsw_flag

0 0 0 0 defaul t valu e s

"spec " specinit &spec_vfsops 0 SPEC

"vxfs " vx - init &vx_ v f sops 0 Veritas

"ufs " ufsin it &ufs_ v f sops 0 UFS

"nfs" nfsinit &nfs _vfsops 0 NFS

Il fd " fdinit &fdfvf sops 0 FD

Il f i fo " fifoi n it &fifovf sops 0 FI FO

"namefs " nameinit &nmvfsops 0 NAMEF S

"proc " prinit &prvfsops 0 PROC

Il sS " sSini &sS_vfsops 0 SS

"rfs" rf - init &rf _vfsops 0 RFS

"xnam" xnaminit &xnam_ vfsops 0 Xenix

"dos" dosin it &do s _ vfsops 0 MS-DOS

Figure 4.2 Example of a virtual file system switch table.

46

4.1.3. The Virtual Node (vnode)

The file system independent/dependent split was done just above the UNIX kemel inode
layer. This was an obvious choice, as inode was the main object for manipulation of files. By this
way, a well defined interface between the two parts can be provided. So, the file system
independent inode was named vnode (virtual node) [KLEI86]. While an inode is used to map
processes to unix files, a vnode can map a process to an object in any file system type [GRA95].

The vnode was developed in 1984 to abstract the entire file operations in order to support
multiple file systems implementation [ROS90]. Vnode is, in fact, a pointer to a file system type
specific data structure and fonctions. Vnodes exist only on memory (not on disk). The fields of a
vnode structure is shown at figure 4.3.

v_flag

v_count

~
(*vop_open) ()

*v_ vfsrnountedhere (*vop_close) ()

*v op /"' (*vop read) ()

*v_vfsp (*vop_wr i te) ()

*v strearn ...
*v_page vnode operations
v_type

V rdev -
v_data

V filocks -
...

vnode structure

Figure 4.3 Vnode Structure.

47

4.2. Feasibility Analysis

One of the main problems on which we are faced to build an HSM is related to the implicit
recall operation. To realize this type of operation, we need to intercept file access requests . That's
why, in this section, we focus to analyse how to intercept file access requests. Since without
intercepting file access requests, a read request, for instance, to a migrated file imply an error
message because data are no longer on local disk.

There are four ways to intercept file access requests.

The first one is to modify the kemel.

The second one is to replace ail ufs routines addresses with our own routine addresses
which will allow to intercept file access requests and perform migration and recall functionality.

The third one is to add a thin layer (wrapper layer) between vfs and ufs without modifying
the kemel source code.

The fourth one is to add a new file system type into the kernel.

4.2.1. Modify the Kernel Source Code

This is the worst solution for two main reasons. First, it supposes to have the kemel source
code and the second one, it is, speciaily, a non portable solution. This solution is therefore not
considered.

4.2.2. Replace all ufs-related Addresses

In this case there are two methods.

1. The first one depends upon the version of UNIX. lt consists to look into where the vfssw
(Virtual File System SWitch) table is generated and replace the entries there. So, this method is
not portable.

2. The second one supposes at first to have the kemel source code. It consists to manipulate
the routine addresses in the global data structure « struct vnodeops ufs_vnodeops » (see figure
4.4) declared in the ufs_vnops.c fùe by replacing ail ufs-related addresses with our own routine
addresses.

The global data « struct vnodeops ufs_vnodeops » contains ail addresses of ufs specific
routines used by VOP _ * macro declared in vnode.h. And these routines are activated by the vnode
layer.

48

/* ufs_ vnodeops.c */

struct vnodeops
ufs_open,
ufs_read,
ufs_write,
ufs_close,

ufs_vnodeops = {
/*open*/
/* read */
/* write * /
/ *close* /

} ;

Figure 4.4 Global data structure for ufs in ufs_ vnodeops.c.

4.2.3. Add a Wrapper Layer Between vfs and ufs

To add a wrapper layer between vfs and ufs can be achieved by generating a new "pseudo"
file system type; this pseudo file system type offers an initialization routine which manipulates the
ufs_ vnodeops-addresses within the ufs-inodes (these are assigned by ufsinit() during startup). The
file system-initialization routines are called in alphabetical order, the wrapper initialization must be
activated after ufsinit(), so we have to choose a name for the pseudo file system type that
guarantees that the appropriate initialization routine is called after ufsinit() (for example "zfs").

After the pseudo file system is configured and linked to the UNIX kemel, the zfs_ *()
routines (wrapper routines) are now called by the vfs layer; the wrapper routine have to call the
appropriate ufs_ *() routines, example (see figure 4.5).

Note that this way does not imply the modification of the kernel source code.

Example

zfs_read(vp,uiop ,ioflag , cr)
struct vnode *vp;
st ruct uio *uiop;
int ioflag;
struct cred *cr;

{ int error ;

/ * our own code*/
/ * examp le */
printf (" we are in read access ! ! ! \n ") ;

error=ufs_read(vp , uiop,ioflag,cr);

Figure 4.5 Example of a read wrapper routine.

49

4.2.4. Add a New File System Type

The third way is to add a new file system type into the kernel. With this way we extend the
native operating system. This solution is portable in ail Unix platforms.

When the new file system is created, then it can be mounted via the "mount - F <type>"
option or by specifying the proper option in the /etc/vfstab file (an example is shown at figure 4.6).

special fsckdev mountp fstype ckpass automnt mntflags

/dev/dsk/cüdüsl /dev/root /

/dev/dsk/cüddüs2 /dev/rdsk/cüddüss5 /user

/proc /proc

ufs

s5

proc

Figure 4.6 Example of vfstab.

1 yes

no rw

no

The two best solutions seem to be the two last ones. The solution which consists to add a
wrapper layer between vfs and ufs will be used in the following chapters .

50

Chapter 5 lntegration of Migration/Recall
into HSMS/HSMS-CL

Introduction

In the previous chapters, we have seen the general aspects of HSM. We have also analysed
different solutions about file migration. In this one, we will see how to integrate these concepts,
particularly the fùe migration and the recall functionality in HSMS/HSMS-CL product. Since the
integration of a migration and recall depends closely on the chosen solution, we have proposed the
one which add a thin layer between vfs and ufs. Why this solution ? It is mainly for costs
realization reason and for this work, it is the easiest one for the prototype design described in the
following chapter.

5.1. Administrator's View

In this section we will see the administrator' s view at client side and server side. On client
side we will describe only the administration for active clients.

5.1.1. Administration on Client Side

5.1.1.1. Migration Policy File

The administrator of the workstation on which HSMS-CL is installed has to initiali:ze the
migration policy file specifying the migration policy attributes. After initialization, the
administrator is the only one who can modify the migration policy file (e.g. modification of
watermarks).

5.1.1.2. lnhibited Migration File

Inhibited migration file is a file which contains pathnames of files that should be excluded
from migration.

Here, we separate the files that should be excluded from migration in two categories.

51

In the first, we have the files that should be excluded from migration in any circumstances.
These files are concemed with the bootstrap file, configuration files, etc.
Pathnames of these files are inserted in what we call the static inhibited migration file.

The second category is concemed with the user's inhibited migration files (i.e. to allow a
user the possibility to exclude some of his own files from migration). These files are inserted, by
giving the pathnames, in what we call the dynamic inhibited migration file.

So, a particular user can add an entry or delete his entry (i.e. an entry added by him) to/from
the dynamic inhibited migration file. The administrator of the workstation has to define for each
user a quota in term of number of bytes of files data for the dynamic inhibited migrated file.

Example : Let's assume for a user toto who has a quota of X MB for the dynamic inhibited
migration file. The number of bytes of all the toto's files which have an entry in the dynamic
inhibited migration file is always less or equal than X MB.

Note : The entries in the dynamic inhibited migration file will not be migrated during
periodic or demand migration runs, but can still be migrated explicitly by user request via a
dedicated command (see bsmig). In this later case, after explicit migration, the related entry is
deleted from the dynamic inhibited migration file.

5.1.2. Administration on Server Side

5.1.2.1 Optimizing Media

As successive recalls and deletes occur, progressively more and more of the tape will
contain wasted space. So, it is necessary to reorganize media or to optimize it.

Media reorganization is a three step process that reclaim wasted space on the medium to
optimize the media space available to user, but also to improve access time for retrieval migrated
files. We describe below the following steps to reorganize media.

step 1 ldentify only the migrated files from the file system.

step 2 Copy only the migrated files to another medium.

step 3 When the copy is stable, the original medium, if empty, is labelled blank for a next usage.

Media reorganization can be made periodically via a cron or by the administrator command
COPY-NODE-SAVE-FILE.

52

5.1.2.2. Migration on Storage Levels

As excepted the first storage level, ail others are on the storage server, and to conform to
HSM concept, the system administrator must have the possibility to migrate files explicitly and
periodically from a storage level i to a storage level j such i<j.

Since we suppose that space is always available on the storage server, explicit and periodic
migration are sufficient.

5.1.2.3. Accounting for Workstation Files

Accounting is a processing that generates a bill that contains the quantity of resources and
services used by an end user.

Since there are different types of file on the server (migrated files, backed up files, etc.), it is
interesting to create an accounting for each type of file. But here, we will focus only to the
accounting for migrated files.

In the storage server, there is two ways to process accounting :

1. Periodic Accounting : account records are written when requested (by an administrator
command or a permanent recurring task) and then evaluated afterwards with user program. 1bis
accounting can only concem "static" resources like media space.

2. Permanent Accounting : account records are written while a task uses resources. These
account records must be evaluated afterwards by a user program. The main disadvantage is that
additions must be done on several account records to obtain the final result. That' s why in general
the customer requests only the periodic accounting.

What kind of resources must be accounted during the server run ?

1. CPU usage : Due to the high usage of the network, the CPU utilization is high during
migration/recall runs.

2. TAPE/CAR1RIDGE space: This is a main resource used by the server to store
migrated/backed up/archived files.

3. DISK space : Due to the great number of files that are processed by the server, the
migrated/backed up files and the repository use a huge amount of space in S 1
level.

53

Who must pay for resources consumption ?

Since migration services can be offered in the network to ail users who have HSMS-CL, it is
normal that the end user pays for this service. Thus, the possibility to send a bill to the end user
must be offered to the system administrator.

Periodic Accounting

To perform a periodic accounting on S 1 level, we need : Per workstation/user : the total
number of migrated files' bytes on the tapes. As this kind of information is recorded into the
REPOSITORY files, a scan of ail 'REPOSITORY migrated files' is sufficient.

To perform a periodic accounting on DISK space used by rnigrated files and the
REPOSITORY, it is also sufficient toscan ail REPOSITORY migrated files of a workstation and
to compute the number of bytes used.

This accounting type can be triggered either by an HSMS administrator command or by a
permanent recurring task dedicated for this purpose.

Permanent Accounting

Due to the task structure of HSMS/ ARCHIVE (HSMS communication task, HSMS server
task, ARCHNE-main-task, ARCHIVE-subtask, HSMS-answer-task), to realize a permanent
accounting (of CPU and DISK space resources), it is necessary to implement hooks in the code of
HSMS/ ARCHIVE.

Per workstation/user these hooks must be able to :

1. Add CPU consumption to a previous value.

2. Add DISK space usage to a previous value.

3. W1ite accounting records when the processing is finished or when it is no more possible to
maintain information into a buffer.

Where to implement these hooks ?

These hooks must be irnplemented at the following places :

1. In the HSMS communication task to account the CPU time consumption
of an incoming request.

2. In the HSMS server task to account DISK space used by the HSMS rep01ting
processmg.

54

3. In the ARCHIVE-main-task to account the CPU time consumption of the
« parsing process » phase and the DISK space used by the reporting.

4. In the HSMS-answer-task to account the CPU time and DISK space used
by the processing that send report to the workstation.

lt is proposed to activate this accounting type only if it is requested by the HSMS
administrator. Main reasons are :

1. The periodic accounting type is sufficient if the values of CPU time used
for reporting are not requested.

2. The path length of the whole processing is increased.

3. The increase of the accounting records.

One of the big advantages of the accounting is that it allows to the administrator of a
workstation to have a way (analysing accounting) to reorganize his migration policy.

55

5.2. User's View

In this section, we will describe user's view for only active clients (i.e. clients which have the
HSMS-CL product).

We have three type of interface:

• Command Line Interface (CLI).
• Graphical User Interface (GUI).
• Application Programmer Interface (API).

5.2.1. Command Line Interface

This part is concemed with the addition of two new commands into the existing HSMS-CL
product. The migration command and the recall command.

Migration Command

NAME

bsmig - migra te files-.

SYNOPSIS
bsmig

[-(i I include) <path> ...]
[-(x I exclude) <path> ...]
[-(nr I noreport)]
[-(r I report)]
[-(help)]

DESCRIPTION

-i, -include

This option allows non-privileged users and privileged users (super user) to migrate
files.

You must be a super user or the file owner. You can only migrate regular files
(directories, FIFOs, special files, symbolic links are not concemed with migration).

Y ou cannot migrate files with an atime less than the minimum age defined in the
migration policy file. Y ou cannot migrate file smaller than the minimum size defined in the
migration policy file.

56

Example

report.

-x, -exclude
This option allows specification of a path or a set of paths for the workstation' s
files not to be migrated.

-r, -report
With this option, a full report of what has been actually migrated is generated.

-nr, -noreport
no report is generated.

-help
This option forces only the help page to be displayed.

bsmig -i /home34/toto/* -x teste -r
migrate ail files within the /home34/toto excepted the file test.c and retum a full

Recall Command

NAME

bsrec - recall files-.

SYNOPSIS
bsrec

[-(i I include) <path> ...]
[-(x I exclude) <path> ...]
[-(nr I noreport)]
[-(r I report)]
[-(help)]

DESCRIPTION

-i, -include

This option allows non-privileged users and privileged users (super user)
to recall files .

You must be a super user or the file owner to make a recall.

-x, -exclude
This option allows specification of a path or a set of paths for the
workstation ' s files not to be recalled.

-r, -report
With this option, a full report of what has been actually recalled is generated.

57

-nr, -noreport
no report is generated.

-help
This option forces only the help page to be displayed.

Example bsrec -i /home34/toto/example -nr
recall the file /home34/example without generating a report.

5.2.2. Graphical User Interface

Local File System

Rejected RNP01342
Rejected RNP01342

Backup operation
Archival operation

Figure 5.1 HSMS-CL main screen.

58

Backup operation .
Archival

1 home3/ • .. ca.jch
1 home31/ • .Abfallkorb/
1 home32/ * .TMP
1 home33/ * .TRASH/
1 home34/ • .Kauthority
1 home34a/ . . bash_history

0 1 home35/ • .bash_history . bak
1 1 adr/ • .bashrc
1 1 jac/ • . ec1

MlilliFFFFCP • .ek1
1 jjj/ • .el!
1 lost+found/ • .elm/
1 rd34/ • . emds. lconnect
1 rew/ • . emds . schalter
1 sed/ . .es!
1 tof/ • .hsmsclrc
1 vvs/ • .inputrc
1 xbm/ • .interact.cfg
home4/ • .maxedtmp/
lost+found/ • .profile
mnt/ • .rhosts
mnt2/ • . sh_history

HSMS-CL ready

Figure 5.2 Existing backup and archiva! interface.

Migration or Recall operation

Rejected RNF01342
Rejected RNF01342

Figure 5.3 HSMS-CL main screen interface proposa!.

59

Migration operation Recall operation
1

1 home3/ • .. Ca. jch
1 home31/ • .Abfallkorb/
1 home32/ • .TMP
1 home33/ • .TRASH/
1 home34/ • .Xauthority
1 home34a/ • .bash_history

0 1 home35/ • .bash_history.bak
1 1 adr/ • .bashrc
1 1 jac/ • .ecl

• . ekl
1 jjj/ • .ell
1 lost+found/ • .elm/
1 rd34/ • .emds.lconnect
1 rew/ • . emds.schalter
1 sed/ • .asl
1 tof/ • .hsmsclrc
1 vvs/ • . inputrc
1 xbm/ • .interact.cfg
homa4/ • .maxedtmp/
lost+found/ • .profile
mnt/ • .rhosts
mnt2/ • .sh_history

HSMS-CI. ready

Figure 5.4 The two new functionality interface proposa!.

5.2.3. Application Programmer Interface

The HSMS-CL Application Programmer Interface (API) allows programmers to access the
features of HSMS-CL with a C programming language.

Working with HSMS-CL API requires knowledge of the HSMS-CL functionality and the
C programming language of the UNIX operating system.

In the existing HSMS-CL API, we propose to add two following fonctions :

HSMSCL_mig (for the migration) and HSMSCL_rec (for the recall).

60

5.3. Architecture supporting Migration Functionality

In this section, we describe the three migration taskings that we propose in this work which
are:

• Explicit migration tasking,
• Demand migration tasking,
• Periodic migration tasking.

5.3.1. Explicit Migration Tasking

r -...

' --administrator request Repository
task _j ' \

3 r ~

request request • ~ 15
8 inodes an ..

B - inode list - fùe - server task - ARCHIVE s ,--- - ..
2 - - subtask -ARCHIVE -
0 request maintask completion 9
0 2 report ,a

d data

0
j. ~

10 16
'I

9 l conurtiinication l
7

1
answer

1 task task inode list
data

' 1 transfered

17
4 via NFS

NETWORK
2 report 11 initialization

request report
w 1' 1 f 1' 14 ~-0 --R MMI - r DAEMON 1 fork_ PARSING - UFS

1
4 process report [

-
K 1 5 - process 6 ~-s CLI, API, GUI 18
T j.

A MIGRATION
T . process 13 I -

1 1
12

0 HSMS-CL product fork
N ARCIDVFJHSMS product

Figure 5.5 Explicit Migration Tasking.

61

1. A user or a system administrator issues a request to migrate one or many files via a
dedicated command.

2. The migration request passes through the COMMUNICATION TASK which sends it to
the REQUEST FILE.

3. A request is sent to a HSMS-Server-Task. The first free Server Task gets the request.

4. The ARCHIVE MAIN TASK issues an initialization request to the DAEMON.

5. The DAEMON creates a PARSING process.

6. The P ARSING process gets the related inodes from the UFS.

7. The PARSING process sends the inode list to ARCHIVE MAIN TASK.

8. ARCHIVE MAIN TASK creates one or many subtasks.

9. ARCHIVE SUBTASK processes the transfer of the data on a save file (e.g. on tapes).

10. ARCHIVE SUBTASK advises the ARCHIVE MAIN TASK (that is the SERVER TASK)
when the process is completed and returns a bitfile ID for each migrated file.

11. ARCHIVE MAIN TASK sends an initialization request to, the DAEMON giving the inode
list.

12. The DAEMON creates a MIGRATION process.

13. The MIGRATION process deletes data related to inodes from the inode list.

14. The Migration process sends a report to the ARCHIVE MAIN TASK.

15. The SERVER TASK updates the REPOSITORY recording ail necessary information
(Volume Serial number, Block Number, Sequence/Block Number, Block ID) to retrieve
migrated files.

16. The report is transmitted to the ANSWER TASK by the SERVER TASK.

17. The report is transmitted by the ANSWER TASK to the DAEMON.

18. The DAEMON sends the report to the MMI (Man Machine Interface) process and signals
that the migration has succeeded or not.

62

5.3.2. Demand Migration Tasking

B
s
2

0
0
0

adrrùnistrator requcst

task

request

3
report

17

answer
task

ARCI-IlVE
maintask

5

9
inode list

completion_ __ ..

11

8
inode list

data
initialization transfered

NETWORK

w
0
R
K
s
T
A
T
I
0
N

request
2

API

DAEMON

18
12

report

1 HWM
fork

LWM

report
15

fork

6

via NFS

PARSlNG
proces.5

HSMS-CL product

ARCHIVF/HSMS product

Figure 5.6 Demand Migration.

10

1. When the HWM (High Watermark) is reached, the DAEMON gets the low space
condition (L WM).

2. The DAEMON calls a routine in the Aplication Programmer Interface (API) that issues a
request to the COMMUNICATION TASK.

3. The migration request passes through the COMMUNICATION TASK which sends it to
the REQUEST FILE.

4. If a server task for a migration archive is available, the request is sent. If not this request
waits and the others in the request file are handled.

5. The ARCHIVE MAIN TASK issues an initialization request to the DAEMON.

63

6. The DAEMON creates a P ARSING process.

7. The PARSING process gets the related inodes of canditate files for migration from the
UFS.

8. The P ARSING process sends the inode list to ARCHIVE MAIN TASK.

9. ARCHIVE MAIN T ASK creates one or man y subtasks.

10. ARCHIVE SUBTASK processes the transfer of the data on a save file (e.g. on tapes).

11. ARCHIVE SUBTASK advises the ARCHIVE MAIN TASK (that is the SERVER TASK)
when the process is completed and returns a bitfile ID for each migrated file.

12. ARCHIVE MAIN TASK sends an initialization request to, the DAEMON giving the inode
list.

13. The DAEMON creates a MIGRATION process.

14. The MIGRATION process deletes data related to inodes from the inode list.

15. The Migration process sends a report to the ARCHIVE MAIN TASK.

16. The SERVER TASK updates the REPOSITORY recording all necessary information
(Volume Serial number, Block Number, Sequence/Block Number, Block ID) to retrieve
migrated files.

17. The report is transmitted to the ANSWER TASK by the SERVER TASK.

18. The report is transmitted by the ANSWER TASK to the DAEMON.

19. The DAEMON sends the report to demand migration DAEMON and signals that the
demand migration has succeeded or not.

5.3.3. Periodic Migration Tasking

Periodic migration tasking is the same as the demand migration tasking excepted that is
initiated by an administrator job (e.g. via a cron).

64

5.4. Architecture Supporting Recall Functionality

In this section, we describe the two recall taskings that we propose in this work which are :

• Implicit recall tasking,
• Explicit recall tasking.

5.4.1. lmplicit Recall Tasking

administrator request

task

3

equest

server task

10

completion inodes and data
B
s
2
0
0
0

2 r--:AR~CH:;;IV;:;;;::E------~~
request 11 maintask bitfile ID -----•

NETWORK

w
0
R
K
s
T
A
T
I
0
N

1 request

API

wrapper

1 user process ._._. __ ,,,

completion 8

·' answer
task 7

bitfile ID

12
completion initialization

4

13
DAEMON

completion ,_ _____ 5

of the recall

HSMS-CL product

ARCHIVF/HSMS product

RECALL
process

Figure 5.7 Implicit Recall.

9

inodes and data
transfered via NFS

1. When a user or an administrator of a workstation issues a request to access to a migrated
file, the appropriated wrapper routine intercepts the access and calls HSMS_CL API to
send the request to the COMMUNICATION TASK.

2. By the COMMUNICATION TASK, the request is sent to the REQUEST FILE

65

3. If a SERVER TASK is available, the request is sent toit.

4. The SERVER TASK, which is now the ARCHIVE MAIN TASK, issues an initialization
request the DAEMON.

5. The DAEMON creates a RECALL process.

6. The RECALL process gets the associated bitfile ID.

7. The RECALL process sends the bitfile ID to the ARCHIVE MAIN T ASK.

8. ARCHIVE MAIN TASK creates one or many subtasks and sends the bitfile ID.

9. The ARCHIVE SUBT ASK finds the bitfile, from the bitfile ID and other information, and
responds with the bitfile data via NFS.

10. When the transfer is completed, ARCHIVE SUBTASK terminates the SERVER TASK.

11. The SERVER TASK notifies the ANSWER TASK the completion of the recall.

12. The ANSWER TASK notifies the DAEMON the completion of the recall.

13. The DAEMON advices the wrapper routine the completion of the recall to signal if the
recall has succeeded or not.

14. The wrapper calls UFS.

66

5.4.2. Explicit Recall Tasking

B
s
2
0
0
0

administrator request

task

3

.------■-1 request request
file server task

2
request

communîcaûon

11
report

answer
task

ARCHIVE
maintask

7
bitfile ID

NETWORK

12
report 4

initialization

w
0
R
K
s
T
A
T
I
0
N

1 request

MMI
process

CLI, API,GUI

13
DAEMON .

report

HSMS-CL product

ARCHIVFJHSMS product

fork

5

10
completion

bitfile ID
8

RECALL
process

Figure 5.8 Explicit Recall Tasking.

ARCHIVE

subtask

inodes and data

9

inodes and data
transfered via NFS

The explicit recall steps are the same as the implicit recall steps excepted the step 1 and the
step 13. At the step 1 the explicit recall is initiated by the bsrec command. At the step 13 the
DAEMON sends in addition a report to the MMI process.

67

Chapter 6 Prototyping

Introduction

In this chapter, we present a prototype based on the study done at the previous chapters.
This prototype is divided in four parts.

1. bls command,
2. Migration functionality,
3. Recall functionality,
4. Intercepting file access request.

6.1. bis Command

This command allows to an user to distinguish the resident files and the non-resident files.
As here, a migrated file is replaced by an empty file but with a bittfileID in the /tmplmif/fileid
directory, it is necessary to do the difference between a migrated file and an empty file.

By bls command, we avoid to modify the ls command. With bls command, we can see, for
a migrated file, a m bit and the length of the file before migrated in order to do the difference
between resident and non-resident files (see figure 6.2). If there is no inigrated file, bis command
has the same effect as the ls command with the -l option(see figure 6.1).

68

sba->ls -1
total 576
-rwx------ 1 sba RD34 4925 Jan 3 10:07 -g
drwx------ 3 sba RD34 512 Sep 11 16:38 ICONS
drwx------ 2 sba RD34 512 Jan 22 13:52 Mail
-rwx------ 1 sba RD34 4085 Jan 4 11:20 a.out
-rwx------ 1 sba RD34 4585 Jan 24 14:50 ace
sba->bls
total 576
-rwx------ 1 sba RD34 4925 Jan 3 10:07 -g
drwx------ 3 sba RD34 512 Sep 11 16:38 ICONS
drwx------ 2 sba RD34 512 Jan 22 13:52 Mail
-rwx------ 1 sba RD34 4085 Jan 4 11:20 a.out
-rwx------ 1 sba RD34 4585 Jan 24 14:50 ace

Figure 6.1 ls and bsl commands.

6.2. Migration Functionality

In this part, we show a simple way to realize a migration functionality and particularly
some important aspects to take into account.

These aspects are related, for instance, to the fües to be excluded from migration, security
(e.g. a user can migrate only his own file), etc.

Only explicit migration operation is implemented here (demand and periodic migration are
not realized). The explicit migration operation is initiated via a command that we have called here
bsmig.

Migration Policy

The Which

- A user can migrate only his own files.
- An empty file is not migrated.
- Files to be excluded from migration have their pathname inserted in the directory

/home34/sbalexcluded.

69

The When

Since demand and/or periodic migration operations are not realized here, this policy is not
taken into account.

The Where

We have chosen the directory /tmplmig where migrated files reside.

bsmig command

bsmig filename.

Example:

bsmig /home34/sba/toto, migrates the file lhome34/sba/toto to /tmp/mig.

bsmig se*, migrates all files from the working directory whose file names start by se.

If the migration of a specified file has succeeded, the migration operation returns a
biifïle/D in the ltmplmig/fileid directory. This bitfileID contains the real pathname of the migrated
file (see figure 6.2). In UNIX, as the inode number and the device number of a file identify it
uniquely, we have chosen the biifïle/D as the concatenation of the inode number and the device
number. After migration, the original file is truncate to zero length i.e. replaced by an empty file
with the same name, but with a bitfile ID in /tmp/mig/fileid directory.

sba->bsmig ace
~ real pathname

/ home34 / sba/acc
bitfile ID = / tmp/mig / fileid/35134#1835010
sba-> ls -1
total 564
-rwx------ 1 sba RD34 4925 Jan 3 10:07 -g
drwx------ 3 sba RD34 512 Sep 11 16:38 ICONS
drwx------ 2 sba RD34 512 Jan 22 13: 52 Mail
-rwx------ 1 sba RD34 4085 Jan 4 11 : 20 a.out
-rwx------ 1 sba RD34 0 Jan 24 14:57 ace
sba->bls /

' total 564
-rwx------ 1 sba RD34 4925 Jan 3 10:07 -g
drwx------ 3 sba RD34 512 Sep 11 16:38 ICONS
drwx------ 2 sba RD34 512 Jan 22 13 : 52 Mail
-rwx------ 1 sba RD34 4085 Jan 4 11:20 a.out
mrwx------ 1 sba RD34 4585 Jan 24 14:57 ace

t /

'
Figure 6.2 bsmig command.

70

6.3. Recall Functionality

In this part, we show a way to perform explicit recall functionality. Only explicit recall
operation is implemented here.

bsrec command

bsrec filename.

Example:

bsrec /home34/sba/toto recalls the file lhome34/sba/toto from the bitfileID of
lhome34/sba/toto containing the real filename (i.e. /tmplmiglhome34/sba/toto) resides.

bsrec se* , recalls ail migrated files within the working directory whose file names start by
se.

sba->bsrec ace
Recalling / home34 /sba /acc Please wait ...
recall completed
sba->ls -1
total 576
-rwx------ 1 sba RD34 4925 Jan 3 10:07 -g
drwx------ 3 sba RD34 512 Sep 11 16:38 ICONS
drwx------ 2 sba RD34 512 Jan 22 13: 52 Mail
-rwx------ 1 sba RD34 4085 Jan 4 11:20 a.out
-rwx------ 1 sba RD34 4585 Jan 24 15:00 ace
sba- >bls \ total 576
-rwx------ 1 sba RD34 4925 Jan 3 10:07 -g
drwx------ 3 sba RD34 512 Sep 11 16:38 ICONS
drwx------ 2 sba RD34 512 Jan 22 13: 52 Mail
-rwx------ 1 sba RD34 4085 Jan 4 11 :20 a.out
-rwx------ 1 sba RD34 4585 Jan 24 15:00 ace

\

Figure 6.3 bsrec command.

71

6.4. lntercepting file access request

In this last part, we show a way to intercept a file access request without modifying the
kernel source code.

Here, we have chosen to intercept the open routine. As we have seen in chapter 4, a way
to achieve this, is to generate a pseudo file system type by implementing a pseudo device driver.

Once the pseudo device driver is implemented, and suppose the name of the pseudo file
system type is "zfs", the following steps to install it is described below.

1. A new file /etc/conf/mfssys.d/zfs that contains a line : zfs zfs_

2. A new file /etc/conf/sfsys.d/zfs that contains a line : zfs Y

3. Compile environment :

The compile environment can be found in /etc/conf/bin. A modified version of the script
/etc/conf/bin/idcc for our own purpose is outlined below :

#------------------start of script idcc----------------
#!/sbin/sh -

CC="/usr/bin/cc"
IDCC_FLAGS='cat /etc/conf/bin/IDCC_FLAGS'
exec ${CC:-cc} -o SP_Driver.o $IDCC_FLAGS -WM,-G${IŒRNEL_GNUM:-16} -

W0 -Dunix -D_pyrsoft -c "$@"
#------------------end of script idcc-----------------------

This script can be used to compile the zfs_driver.c and produce a SP _Driver.a. File
/etc/conf/bin/lDCC_FLAGS contains ail necessary compile-flags for the system's include files:

./idcc zfs_driver.c

4. Build-environment :

Copy the SP _Driver.a to /etc/conf/pack.d/zfs and rebuild a new Unix kemel with
/etc/conf/bin/idbuild -S. This command will then configurate the zfs file system type and link
zfs/SP _Driver.a to the Unix kemel. The new Unix will be located in /etc/conf/cf.d.

Y ou can verify that zfs is included in the new unix by typing :

72

cd /etc/conf/cf.d
nm unix I fgrep zfs

5. Reboot-procedure :

It is recommended to remove /etc/.new _unix after successfully calling idbuild (this is an
indication to the shutdown-scripts to install the new build unix instead of the original in the root
directory) and copy the new Unix from /etc/conf/cf.d/unix to /unix_zfs (or another name);

It is very important to have always access to the original /unix in order to reboot in case
the Unix will run into panic.

73

Conclusion

The main objective of this work was to study how a file migration solution or a HSM
solution can be integrated in HSMS/HSMS-CL product.

Our walk was, first, to try to understand the HSMS and HSMS-CL products. Secondly, we
tried to understand the HSM concepts. Thirdly, we are interested to know how these concepts are
applied in two existing HSM products which are DataMgr and EpochMigration. Tuen, we have
tackled the feasibility analysis of file migration solution in a UNIX environment. But here, we are
focused only on the HSM operations, particularly on implicit recall operation, because it is one of
the most difficult problems to realize a HSM solution.

At the end, we have proposed a prototype which shows a way to intercept file access
request in a SINIX system and to distinguish resident files from non-resident fùes. This prototype
implements also two commands, one, which realizes an explicit migration operation and the other,
which realizes an explicit recall operation.

lt is important to note that migration does not replace data backup and archival. The
purpose of migration is mainly to free space on higher performance, higher cost storage, whereas
the purpose of backup and archiva! is to enable recovery of lost or inaccessible data and retrieval
of point-in-time stored data. So a storage management solution should have the ability to backup
files before rnigrated and to ensure the integrity of data stored on the storage server.

It would be intersting in further studies to see how abjects (rather than only files) could be
migrated or managed with HSM concepts. This case could be well applied in database fields. As
databases are big size files, it would be interesting to be able migrate a segment (e.g. records) of a
database, along with criteria, rather than the entire file to and frorn the storage server.

74

Glossary

API

application
programmer
interface (API)

Archivai

ARCHIVE

archive

Backup

bitfile

bitfile ID

client

See application programmer interface.

A set of calling conventions that defines
how a service is invoked through
software package.

Long-term saving of files that are no longer required. The files are deleted
from the processing level once they have been backed up.

BS2000 software product which saves files and job variables logically.
ARCHIVE has an internai interface with HSMS and implements the HSMS
action statements.

Management unit for files under HSMS management, consistmg of the
archive definition and the associated repository. HSMS makes a distinction
between five archive types. There are archives concerning DMS files :
backup archives, long-term archives, migration archives. The other archives
are used to save workstation files (node-files), node backup archives, node
long-term archives. Furthermore, HSMS distinguishes between private
archives, which may be accessed by the archive owner only, and public
archives, which are available to all users.

The periodic creation of copies of the data inventory to permit the
restoration of data lost due to hardware errors or inadvertent deletion, etc.
Can also be used to reorganize disk storage.

The contents of a non-resident or shadowed file on a bitfile server. Bitfiles
are never modified; however, if a shadowed file is subsequently modified or
if a non-resident file is recalled and modified, then new bitfile and bitfile ID
are created when the file is prestaged or migrated.

Pointer to a particular bitfile on a bitfile server.

The system that establishes a network connection with another system
(typically called the server) and that requests and receives action from the
server.

75

DataMgr

daemon

demand migration

explicit migration

explicit recall

file migration

high watermark

HSM

HSMS

HSMS-CL

IEEE Mass Storage
System Reference
Model

implicit recall

logical size

low watermark

mass storage

One of the Advanced Archiva! Products, Inc. AMASS Storage management
System family of products. DataMgr provides transparent file migration
from magnetic disk to less costly storage, such as optical disk jukebox and
tape libraries.

A background process, often perpetual, that performs system wide public
fonction.

Migration that is initiated by a daemon when space is exhausted during
normal operation. See also file migration.

Migration that is initiated by a user request through a command. See also
file migration.

Recall operation initiated by a user command. See also recall.

Process of moving selected files from file systems to slower and cheaper
storage.

The file system utilization percentage at which automatic (demand or
periodic) migration starts.

Hierarchical Storage Management.

Hierarchical Storage Management System : BS2000 software product
offering such fonctions as migration, backup, archiva!, and data transfer,
implemented in a storage hierarchy and in archives.

Client version of the HSMS software, running on UNIX workstations.

A model that specifies the following fonctions :
(1) the bitfile client; (2) the bitfile server; (3) the storage server; the bitfile
mover; (5) the physical volume repository; and (6) the name server.

Automatic recall initiated by a daemon. See also recall.

The space that a resident file takes up, or that a non-resident would take up
if it were not migrated.

The file system utilization percentage at which automatic (demand or
periodic) migration will stop migrating files and, if prestaging is in effect,
when they will start prestaging files.

The resources of computer system or computer network (e.g.
magnetic/optical disks, magnetic tapes, magnetic cartridges) that provide
long term storage for massive amounts of data.

76

migrated file

migration

migration policy

Network File
System

NFS

non-resident file

See non-resident file.

See file migration.

A set of factors that are defined in configuration files to select which files
are to migrate and when and where they are to be migrated.

A network service developed by Sun Microsystems that lets a
(NFS)program that run on the same computer use data that is stored on a
different computer on the same network as if it were on its own disk.

See Network File system.

A file that have been migrated. The file's contents have been moved to a
bitfile server.

periodic migration migration that is initiated by an administrative job during non-peak times to
bring space utilization down to a predifined level.

recall

wrappers

A process which retrieves a migrated file and copies it back to local disk.

A thin layer of code between the virtual filesystem and the unix filesystem at
kemel level of the system. Wrappers determine if the current file is being
accessed is a migrated file or not. If yes, manage the recall operation. In
addition, wrappers allow to intercept application requiring more disk space
available by migrating files.

77

Bibliography

[AMS94]
AMASS Archiva! Management Storage System, Reference Manual, Version 2.2, May 1994.

[AMS95]
AMASS Archivai Management Storage System, System Overview, Version 4.2 January

1995.

[DDK96]
Didier Derek, Decentralized Repository for Data Backup Management, Master Thesis,

Institute of Computer Science, Facultés Universitaires Notre-Dame de la Paix, Namur, June 1996.

[DTM94]
DataMgr, User's Guide, Version 2.2, December 1994.

[DTM95]
DataMgr, System Overview, Version 2.2, January 1995.

[EPM92]
An Epoch Systems, Technical Summary, April 1992.

[FTS93]
Siemens Nixdorf Informationssysteme AG, Programmer's Guide Writing File System

Types, December 1993.

[GRA95]
John R. Graham, Solaris 2.x Internals and Architectures, J. Ranade Workstation Series,

McGraw-Hill Inc., ISBN 0-07-911876-3. pp. 135-137, 1995.

[HEU93]
Gerald R. Heuring, Pragmatics of File Migration, Thesis, DCS, Urbana Champaign,

University of Illinois, Report N° UICSDCS-R-93-1827.

[HSCL95]
Siemens Nixdorf Informationssysteme AG, Externat Specification for HSMS-Cl, August

1995.

[HSMS 94]
Siemens Nixdorf Informationssysteme AG, BS2000 as Backup Server in Open Universe.

Company-wide Backup with HSMS V2.0. Brief Description. July 1994.

78

[HSMS95]
Siemens Nixdorf Informationssysteme AG, HSMSIHSMS-SV V2.0B. Hierarchical Storage

Management System. July 95.

[IEEE90]
Sam Coleman and Steve Miller, Mass Storage Reference Mode[, Version 4, IEEE Technical

Committee on Mass Storage Systems and Technology.

[KLEI86]
Steven R. Kleiman, Vnodes : An Architecture for Multiple File System Types, in Sun Unix

pp. 238-247, Proceedings of Summer Usenix Conference, Atlanta, GA, 1986.

[LIN94]
David S. Linthman, Playing the Storage Shell Game, Open Computing, August 1994.

[MIL91]
Ethan Miller, File Migration on the Cray Y-MP at National Center for Atmospheric

Research, CSD, University of California, Berkeley.

[ROS90]
David S. H. Rosenthal, Evolving The Vnode Interface, Sun Microsystems, 1990.

[STE95]
Larry Stevens, Hierarchical Storage Management, Open Computing, May 1995.

79

Appendix

A 1. Specification

Name : bsmig.c

Procedure f
purpose : create a bitfile
pre : sis pointer to a character
post : /

Procedure fattr
purpose : create a bitfile ID from a file name
pre : sis a pointer to a character
post : /

Procedure copier
purpose : copy a file in /tmp / mig directory
pre : sis a pointer to a character
post : /

Procedure : IsExcluded
purpose verify if a given file excluded from migration or not
pre : sis a pointer to a character
post if the file specified by s has an entry in
/ home34 / sba / excluded return 1, else return 0

Procedure : mig
purpose : migrate a g i ven non empty f ile to / t mp/mig directory
pre : fname is a pointer to a character
post : /

Name : bsrec.c

Procedure : copier
purpose : copy a giv en file into another
pre : sl, s2 are pointers to a character
post : /

Procedure : fattr
purpose : recall a given file from /tmp/mig directory
pre : sis pointer to a character

the

post : if the recall operation is succeeded then return 0, else return -1

80

file

Name zfs_driver.c

procedure : zfs_init
purpose : initialize the vfs structure
pre vswp is a pointer to
/ usr / include / sys/vfs.h file

- fstype is an integer
post : /

Procedure : zfs_sync

the vfssw structure declared in

purpose to show only that zfs is a "true" file system type that is
recongnize by the system.
pre vfsp is a pointer to the vfs structure declared in the
/ usr / include / sys / vfs . h file .

- flag is an int eger
cred i s pointer to the cred structure declared in the

/ usr / include / sys / cred.h file .
post : /

Procedure : zfs_durnrny
purpose : for unsupported operation s call
pre : /
post : /

81

A2. lmplementation

/ **!
/ *
/ *
/ *
/*
/ *

SNI, January 1996

Prototype which realizes migration functionality

by Souleymane BAH

*/
*/
*/
*/
* /

/** ************************ /

#include <unistd.h>
#include <sys/types . h>
#include <sys/mkdev .h>
#include <f t w.h>
#include <dirent . h>
#include <sys/stat.h>
#include <fcntl . h>
#include <libgen.h>
#include <st ring.h>
#include <stdio.h>
#include <errno .h>

#define TAILLE 512
#define DMIG " /tmp / mig "

const char *pattern;
int user_func (const char *,const struct stat * , int,struct FTW*);

void f (char *s)
{

int ret;
char *wp;
char dir[l024]="/tmp/mig";
wp=s+l ;
for (;;)
{

if ((wp=strchr(wp, ' / '))==NULL) break;
e lse {

(*wp) = ' \ 0 ' ;
strcat (dir , s);

/ * printf("%s\n", dir);*/
if ((ret=mkdir (dir,00700)) !=0) perror(" ");
strcpy (dir, "/tmp/mig");
(*wp) = , I ' ;

wp++;

void fattr(char *s)
{

FILE *fp ;
char dir[1024]="/tmp/mig/fileid / ";
char tab[l024], ti[l020], td[l024];
char dirl[l024]=DMIG ;
struct stat buffer;
int ret=-1;

82

ret = lstat(s,&buffer);
if (ret == 0) {

sprintf(ti,"%d\n ", buffer.st_ino);
sprintf(td," %d\n ", buffer.st_dev);

strcat(dirl , s) ;
strcat(tab, ti);
tab[strlen(tab)-1]='\0';
strcat(tab, "#");
strcat (tab, td);
strcat(dir, tab);
printf("bitfile ID= %s\n", dir);
fp=fopen(dir, "w");
fputs (dirl , fp);
fclose (fp) ;

void copier(char *s)
{

char tamp[TAILLE];
int lec, ecr, n;
char tab[1024]=DMIG;
struct stat buffer;

strcat(tab , s);
lstat(s,&buffer);
if(s) {lec=open(s, 0) ;
ecr=creat(tab, (buffer . st_mode&S_I AMB));
while ((n=read(lec, tamp, TAILLE)) > 0)

write(ecr, tamp, n);
}

void mig (char *fname)
{

char tab[1024]=DMIG;
struct stat buffer;
int fd;

l stat(fname , &buffer) ;
if ((getuid()==buffer . st_uid) Il (buffer . st_uid==0)) {
f (fname);
strcat(tab , fname);
if (access(tab, F_OK)==0) remove(tab);
cop i er(fname) ;
remove (fname) ;
fd=creat(fname, (buffer.st_mode&S_IAMB)) ;
close(fd);
fattr(fname);
}
else printf("you are not the file owner\n ");

83

main (int argc,char *argv[])

char *resolved_name[512);
int returned=-1;
char *rec, *mig;

rec=" / home34 / sba/bsrec";
mig=" / home34 / sba/bsmig";
if (argc!=2) {

printf("erreur sur le nombre d arguments ! !\n");
return 1;

pattern=argv[l) ;

if (*pattern!=' / ')
realpath(pattern, resolved_name);
strcpy(patt ern , resolved_name);

if (strcmp(pattern, mig)==O 11 strcmp(pattern, rec)==Ü)
{ printf("error ! ! This file is excluded from migration \ n");

return l;

returned = nftw (" / home34 / sba",user_func,FTW_PHYS);
return O;

int user_func (char *fn, struct stat *stat_ptr, int typ, struct FTW ftw_info)
{

/ *

if ((stat_ptr -> st_mode &S_IFMT)==S_IFREG)
if(gmatch(fn,pattern))

{

mig(fn);
printf("match : %s \ n",fn);* /

return O;

84

/ ***/
/*
/*
/ *
/*
/*

SNI , January 1996

Prototype which realizes recall functionality

by Souleyrnane BAH

*/
*/
*/
*/
*/

/ ***/

#include <unistd.h>
#include <sys/types.h>
#include <sys/ stat.h>
#include <fcntl.h>
#include <s tring.h>
#inclu de <stdio .h>
#include <errno.h>
#include <stdlib .h>
#include <sys/pararn.h>

#define TAILLE 512
#define DMIG " / trnp / rnig"

char *frec;

void copier(char *s1, char *s2)
{

char tarnp[TAILLE);
int lec, ecr , n;
struct stat buffer;

lstat(s1,&buffer);
if (s1) {lec=open(s1, 0);
ecr=creat(s2 , (buffer.st_rnode&S_IAMB));
while ((n=read(lec, tarnp, TAILLE)) > 0)

write(ecr, tarnp, n) ;}

int fattr(char *s)
{

FILE *fp;
char dir[512)= " / trnp / rnig / fileid / ";
char tab[1024], ti[1024], td[1024], tarnp1[1024];
struct stat buffer;
int rnaxl=1024;
int ret=-1;
printf("Please wait ... \n ");
ret = lstat(s,&buffer);
if (ret == 0) {

sprintf(ti,"%d\n ", buffer . st_ino);
sprintf(td,"%d\n", buffer.st_dev);

}

strcat(tab, ti);
tab[strlen(tab)-1]=' \0 ';

strcat(tab , "#");
strcat (tab , td);
strcat(dir, tab);
if (access(dir, F_OK)==O)

85

fp=fopen(dir, "r") ;
fgets(tampl, maxl, fp);
printf("%s \ n", s);
remove (s);
copier(tampl, s);
remove (dir) ;
return O;

else return -1;

main(int argc, char *argv[])
{ char *resolved_name[512];

if (argc!=2) {
printf("erreur sur le nombre d arguments ! ! \ n");
return l;

if (* argv [1] ! =' / ') {
realpath(argv[l], resolved_name);
strcpy(argv[l] , resolved_name);

if (fattr(argv[l])==Ü) printf("recall completed\ n");
else printf("error! ! !\n");

return O;

86

/ ***/
/ * SNI , January 1996 */
/ * */
/ * Prototype which allows to distinghish resident from */
/ * non-resident file by generating am bit for each migrated file */
/ * */
/ * by Souleymane BAH * /
/ **************************** ********** *******************************/

include <sys / types . h>
include <errno .h>
include <sys / stat . h>
#include <stdio .h>
#include <errno .h>
#include <unistd . h>

#define TLIGNE 512

#define DMIG " / tmp / mig"

main ()
{

struct stat buffer;
int ret=-1;
char tarnp[TLIGNE];
char tarnpl[TLIGNE] ;
char tarnpd[TLIGNE];
char dir[1024]=DMIG;
char dirl[TLIGNE] ;
int maxl=1024 ;
FILE *fp;
FILE *fdp, *fmp ;

char *c , cl;
int i,j,k,1;
char aux[512], aux1[512] ;
char aux2[512)= " /home34/sba/ ";

system ("ls -1 / home34 / sba >tit i");
fp=fopen (" / home3 4 / sba / titi ", "r") ;

c=fgets(tarnp , maxl, fp);
while (c!=NULL) {

for (j=39 ; tarnp[j]!='\0'; j--);
for (i=O ; tarnp[54+i] !=' \ 0' ; i++)

aux[i]=tarnp[54+i] ;
aux [i -1]= ' \ 0 ';

if (tarnp [o l == ' - ') {
system ("pwd > wd ") ;
fdp=fopen (" / home34 / sba/wd " , "r");
if (fgets(tarnpd, maxl,fdp) !=NULL)
fclose (fdp) ;
j=strlen(tarnpd)-1 ;
tarnpd [j l =' / ' ;
t arnpd [j + 1] = ' \ 0 ' ;
strcat(tarnpd , aux) ;

87

strcat(dir,tampd);
strcat(aux2,aux);

if (access(dir, F_OK)==0)
ret = lstat(aux2, &buffer);
if (ret == 0)
if ((buffer . st_size)==0)

tamp [0] = 'm' ;

s ys tem (" ls -1 / tmp / mig / home34 / sba > lili");
fmp=fopen (" / home3 4 / sba/ lili", "r") ;
cl=fgets(tampl, maxl , fmp);
while (cl!=NULL) {

if (t amp 1 [o l = = ' - ') {
f o r (i=0; tamp1[54+i) ! = ' \ 0'; i++)

auxl[i]=tamp1[54+i];
a uxl[i-1)=' \ 0';
if(strcmp(aux, auxl)== 0) {

for (i=32; i<40 ; i++) tamp[i] =tampl[i];
break;

}
c l=fgets(tampl, maxl, f mp);

el s e cl=fgets(tampl, maxl, fmp);

}

else {

aux2[0]=' \ 0';
printf ("%s" , tamp};
strcpy(dir,DMIG) ;
c=fgets(tamp, maxl, fp};

aux2[0]=' \ 0';
printf ("%s", tamp);
c=fgets(tamp , maxl, fp);

f c l ose(fp);

r e turn 0;

88

/ *** /
/ *
/ *
/ *
/ *
/*
/ *

January 1996

Prototype which allows to intercept file access request
(See zfs_open routine)

by Souleymane BAH

*/
*/
*/
*/
* /
*/

/ ***/

/ *------------------start of the file zfs_driver . c--------------*/
#include <stdio.h>

#include <sys/types .h>
#include <sys/param . h>
#include <sys/time.h>
#include <sys/systm.h>
#include <sys/sysmacros.h>
#include <sys/resource .h>
#include <sys/s ignal.h>
#include <sys/cred .h>
#include <sys/user .h>
#include <sys/buf .h>
#include <sys/vfs . h>
#include <sys/vnode .h>
#include <sys/proc . h>
#include <sys / disp.h>
#include <sys/file.h>
#include <sys/fcntl.h>
#inc lude <sys/f lock.h>
#include <sys/kmem.h>
#include <sys/u io.h>
#include <sys/conf . h>
#include <sys/mman.h>
#include <sys/pathname .h>
#include <sys/debug.h>
#include <sys/vmmeter.h>
#include <sys/cmn_err.h>

#include <sys / fs/ufs_fs . h>
#include <sys/fs/ufs_inode.h>
#inc lude <sys/ fs/ufs_fsdir.h>
#ifdef QUOTA
#include <sys/ fs / ufs_quota.h>
#endif
#include <sys/dirent.h>
#include <sys/errno.h>
#include <sys/sysinfo.h>

#include <vm/ hat.h>
#include <vm/ page.h>
#include <vm/pvn.h>
#include <vm/ as.h>
#include <vm/seg .h>
#include <vm/ seg_map . h >
#include <vm/seg_vn.h>
#include <vm/rm.h>
#include <sys/swap.h>

#inc lude "fs/fs_subr .h"

/* must be AFTER <sys/fs/fsdir.h>! */

89

/ *#include <sys/fs/specfi fo.h>
* /
extern int fs_nosys();

/ *
* zfs vnode operations
*/

extern int zfs _open();
extern int zfs _close();
extern int zfs _read ();
extern int zfs_write ();
extern int zfs _ioctl ();
extern int zfs _getattr();
extern int zfs _setattr();
extern int zfs _access();
extern int zfs _lookup();
extern int zfs _create();
extern int zfs _remove ();
extern int zfs_link ();
extern int zfs_rename();
extern int zfs_mkdir();
extern int zfs_rmdir();
extern int zfs_readdir();
extern int zfs_symlink();
extern int zfs_readlink();
extern int zfs_fsync () ;
extern void zfs_inactive();
extern int zfs_fid () ;
extern vo id zfs_rwlock();
extern void zfs_rwunlock();
extern int zfs _seek();
extern int zfs _frlock ();
extern int zfs _space();
extern int zfs _getpage();
extern int zfs_putpage();
extern int zfs _map{);
extern int zfs _addmap();
extern int zfs _delmap ();
extern int zfs _allocstore();

/ *
* zfs vfs operations:
*/

extern int zfs_dummy ();
extern int zfs _sync ();

struct vfsops zfs_vfsops = {
zfs_dummy, / * mount * /
zfs_dummy, / * umount * /
zfs_dummy, / * root * /
zfs_dummy, / * statvfs */
zfs_sync, / * sync * /
zfs_dummy, / * vget * /
zfs_dummy, / * mountroot */
zfs_dummy, / * swapvp * /
fs_nosys,
fs_nosys,
fs_nosys,
fs_nosys,
fs_nosys,

/* this defines PIPE_BUF for ufs_getattr()

90

) i

/ *

fs_nosys,
fs_nosys,
f s _nosys ,

* zfs vnode operations
* /

struct v nodeops zfs_vnodeops =
zfs_open ,
zfs_close,
zfs_read ,
zfs_write,
zfs_ioctl,

fs_setf l,
zfs_getattr ,
zfs_setattr ,
zfs_access ,
zfs_lookup,
zfs_create ,
zfs_remove,
zfs_link,
zfs_rename ,
zfs_mkdir,
zfs_rmdir,
zfs_readdir ,
zfs_syml ink,
zfs_readlink,
zfs_fsync ,
zfs_inactive,
zfs_fid,
zfs_rwlock,
zfs_rwunlock,
zfs_seek,

fs_cmp,
zfs_fr l ock ,
zfs_space ,

fs_nosys, / * rea l vp */
zfs_getpage,
zfs_putpage ,
zfs_map,
zfs_addmap,
zfs_delmap,

f s_poll,
f s_nosys , / * dump * /
fs_pathconf,

zfs_allocstore,
fs_nosys, / * filler * /
fs_nosys,
fs_nosys,
fs_nosys,
f s_nosys ,
f s_nosys ,
fs_nosys,
fs_nosys,
fs_nosys,

91

} ;

fs_nosys,
fs_nosys,
fs_nosys,
fs_nosys,
fs_nosys,
fs_nosys,
fs_nosys,
fs_nosys,
fs_nosys ,
fs_nosys,
fs_nosys,
fs_nosys,
fs_nosys,
fs_nosys,
fs_nosys,
fs_nosys,
fs_nosys,
fs_nosys,
fs_nosys,
fs_nosys,
fs_nosys,
fs_nosys,

int zfsfstype;
int zfs_dbg = 0;

/ *
* Initialize the vfs structure
* /

void
zfs_init(vswp, fstype)

struct vfssw *vswp ;
int fstype;

struct inode *ip ;
inti;

extern struct inode *ufs_inode; / * begin of ufs-inode table*/
extern struct inode *inodeNINODE; / * end of ufs-inode table*/
extern int ufs_ninode; /* nurnber of configured ufs-inodes */

zfs_dbg = 0xdeadbeef;
/ *

/* to indicate: zfs_ init() has been activated */

* Associate vfs operations
* /

vswp- >vsw_vfsops = &zfs_vfsops ;
zfsfstype = fstype;
printf("=======> ZFS : hello world ; zfsfstype=%d\n", zfsfstype) ;

/ *
* manipulation of incore ufs-inodes here:
* /

ip = ufs_inode;

92

printf ("ZFS ==> Device number : %u\n", ip->i_dev);
printf ("ZFS ==> Inode Number : %u\n", ip->i_number) ;
printf("ZFS ==> ufs_ninodes: %d\n", ufs_ninode);

ip- >i_vnode.v_op = &zfs_vnodeops ;
for (i = ufs_ninode; -- i > O;) {

++ip ;
ip->i_vnode . v_op = &zfs_vnodeops; / *<--manipulation itself * /

return;

zfs_sync(vfsp , flag, cr)
struct vfs *vfsp;
int flag;
struct cred *cr;

/ *
*
*
*
*

this routine is only to show you that zfs is a "true" fs type
that is recognized by the system;
set zfs_dbg to 1 (with ikdb); after typing a sync-command the
following message appears on the console:

* /

if (zfs_dbg == 1)
printf("zfs : sync\n ") ;

int
zfs_dummy ()
{

printf("zfs: dummy, unsupported operation called\n");
return EINVAL;

int
zfs_open(vpp, mode, cr)

struct vnode **vpp;
int mode ;
struct cred *cr;

int error;
printf("===> Hello ZFS ! you are in open wrapper routine\n ");
error=ufs_open(vpp, mode, cr) ;
return (error);

int
zfs_c lose (vp , flag, cnt, off , cr)

struct vnode *vp;
int flag;
int cnt;
off_t off;
s truct cred *cr ;

int error ;

93

error=ufs_ close(vp, flag , cnt , off, cr);
return(error);

int
zfs_read(vp , u i op, i of l ag , cr)

struct vnode *vp ;
s t ruct uio *uiop ;
int ioflag ;
struct cred *cr ;

int error;

error = ufs_read(vp, uiop, ioflag , cr);
return(error) ;

int
zfs_write(vp , u iop, i of l ag , cr)

struct vnode *vp ;
struct uio *uiop;
i nt i oflag;
struct cred *cr ;

int error ;

error = ufs_write(vp , uiop , ioflag, cr) ;
return(error) ;

int
zfs_ioctl(vp , cmd , arg , f l ag, cr , rval p)

struct vnode *vp ;
int cmd;
int arg ;
int flag ;
struct cred *cr ;
int *rvalp;

int error;
error=ufs_ioctl(vp , cmd, arg , flag , cr , rva l p} ;
return(error);

int
zfs_getattr(vp, vap, flags, cr)

struct vnode *vp ;
struct vattr *vap ;
int flags;
struct cred *cr;

int error;
error=ufs_getattr(vp , vap , flags , cr) ;
return(error);

int
zfs_setattr(vp, vap, flags, cr)

struct vnode *vp;

94

int

struct vattr *vap;
int flags;
struct cred *cr;

int error;
error=ufs_setattr(vp, vap , flags, cr);
return(error);

zfs_access(vp , mode, flags, cr)
struct vnode *vp;

int

int mode;
int flags;
struct cred *cr;

int error;
error=ufs_access(vp , mode, flags, cr);
return(error);

zfs_lookup(dvp , nrn , vpp, pnp, flags, rdir, cr)
struct vnode *dvp;

int

char *nrn;
struct vnode **vpp;
struct pathnarne *pnp ;
int flags;
struct v node *rdir;
struct cred *cr;

int error ;
error=ufs_lookup{dvp, nrn, vpp, pnp, flags, rdir, cr);
return(error) ;

zfs_create(vp, nrn, vap, exc l, mode, vpp, cr)
struct vnode *vp;
char *nrn ;
struct vattr *vap;
enum vcexcl excl;
int mode;
struct vnode **vpp;
struct cred *cr;

int error;
error=ufs_create{vp, nrn, vap , excl, mode, vpp, cr);
return(error) ;

int
zfs_remove(vp, nrn, cr)

struct vnode *vp;
char *nrn ;

95

int

struct cred *cr;

int error;
error=ufs_remove(vp , nm, cr) ;
return(error);

zfs_link(tdvp , svp, tnm, cr)
struct vnode *tdvp;
struct vnode *svp;
char *tnm;
struct cred *cr;

int error ;
error=ufs_link(tdvp , svp, tnm, c r) ;
return(error);

int
zfs_rename(sdvp , snm, tdvp, tnm , cr)

struct vnode *sdvp ;

int

char *snm;
struct vnode *tdvp;
char *tnm;
struct cred *cr;

int error ;
error=ufs_rename(sdvp , snm , tdvp, tnm, cr);
return(error);

zfs_mkdir(dvp, dirname, vap, vpp, cr)
struct vnode *dvp ;

int

char *dirname;
struct vattr *vap ;
struct vnode **vpp;
struct cred *cr;

int error;
error=ufs_mkdir(dvp , dirname, vap, vpp, cr);
return(error);

zfs_rmdir(vp, nm, cdir , cr)
struct vnode *vp ;
char *nm ;
struct vnode *cdir ;
struct cred *cr ;

int error ;
error=ufs_rmdir(vp , nm, cdir, cr) ;
return(error);

96

int
zfs_readdir(vp, uiop, cr, eofp)

struct vnode *vp;
struct uio *uiop;
struct cred *cr;
int *eofp ;

int error;
error=ufs_readdir(vp, uiop, cr , eofp);
return(error) ;

int
zfs_symlink(dvp, linkname, vap, target, cr)

struct vnode *dvp;
char *linkname;
struct vattr *vap;
char *target;
struct cred *cr;

int error ;
error=ufs_symlink(dvp, linkname, vap, target, cr);
return(error);

int
zfs_readlink(vp, uiop, cr)

struct vnode *vp;
struct uio *uiop;
struct cred *cr;

int

int error;
error=ufs_readlink(vp , uiop , cr);
return(error);

zfs_fsync(vp, cr)
struct vnode *vp;
struct cred *cr;

void

int error ;
error=ufs_fsync{vp, cr);
return(error);

zfs_inactive(vp , cr)
struct vnode *vp;
struct cred *cr;

ufs_inactive(vp, cr);

97

int
zfs_fid(vp, fidpp)

struct vnode *vp;
struct fid **fidpp;

int error ;
error=ufs_fid(vp, fidpp);
return(error);

void
zfs_rwlock(vp)

struct vnode *vp;

ufs_rwlock(vp);

void
zfs_rwunlock(vp)

struct vnode *vp;

ufs_rwunlock(vp);

int
zfs_seek(vp, ooff, noffp)

struct vnode *vp;
off_t ooff;

int

off t *noffp;

int error;
error=ufs_seek(vp , ooff, noffp);
return(error);

zfs_frlock(vp, cmd, bfp , flag , offset, cr)
struct vnode *vp;

int

int cmd;
struct frlock *bfp;
int flag;
off_t offset;
struct cred *cr;

int error;
error=ufs_frlock(vp , cmd, bfp, flag, offset, cr);
return(error);

98

zfs_space(vp, cmd , bfp, flag , offset , cr)
struct vnode *vp;

int

int cmd ;
struct frlock *bfp;
int flag;
off_t offset ;
struct c red *cr;

int error;
error=ufs_space(vp , cmd, bfp, flag, offset , cr);
return(error) ;

zfs_getpage(vp, off, len , protp, pl , plsz, seg , addr, rw , cr)
struct vnode *vp;

int

u_int off;
u_int len;
u_int *protp;
struct page *pl[];
u_int plsz;
struct seg *seg;
addr_t addr;
enum seg_rw rw;
struct cred *cr;

int error;
error=ufs_getpage(vp, off, len , protp, pl, plsz, seg, addr, rw, cr);
return(error);

zfs_putpage(vp, off, len, flags, cr)
struct vnode *vp;

int

u_int off , len;
int flags;
struct cred *cr;

int error ;
error=ufs_putpage(vp , off, len, flags, cr);
return(error);

zfs_map(vp, off, as, addrp, len, prot, maxprot, flags, cr)
struct vnode *vp;
u_int off ;
struct as *as;
caddr_t *addrp;
u int len;
u int prot;
u_int maxprot;
u_int flags;

99

int

struct cred *cr;

int errer;
error=ufs_rnap(vp, off, as, addrp, len, prot, rnaxprot, flags, cr);
return(error);

zfs_addrnap(vp, off, as, addr, len, prot, rnaxprot, flags, cr)
struct vnode *vp;
u_int off;
struct as *as;
caddr_t addr;
u_int len;
u_int prot;
u_int rnaxprot;
u_int flags;
struct cred *cr;

int errer;
error=ufs_addrnap(vp, off, as, addr, len, prot, rnaxprot, flags, cr);
return(error);

int
zfs_delrnap(vp, off, as, addr, len , prot, rnaxp rot, flags, cr)

struct vnode *vp;
u_int off;
struct as *as;
caddr_t addr;
u_int len;
u_int prot;
u_int rnaxprot;
u_int flags;
struct cred *cr;

int errer;
error=ufs_delrnap(vp, off, as, addr, len , prot , rnaxprot, flags, cr);
return(error);

int
zfs_allocstore(vp, off, len, cr)

register struct vnode *vp;
u_int off, len;
struct cred *cr;

int errer;
error=ufs_allocstore (vp , off, len, cr);
return error;

/ *---------------end of file zfs_driver.c-------------------* /

100

