
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Schema modification propagation for relational database applications

Wagner, Sandra; Schmit, Luc

Award date:
1995

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 18. Apr. 2024

https://researchportal.unamur.be/en/studentTheses/77e822c2-70dd-4826-bcc3-d28aa994e911

Facultés Universitaires Notre-Dame de la Paix
Institut d'Informatique
rue Grandgagnage, 21

5000 Namur

SCHEMA MODIFICATION
PROPAGATION FOR RELATIONAL

DATABASE APPLICATIONS

Wagner Sandra & Schmit Luc

Supervisor: J-L. Hainaut

Thesis presented in order to obtain the
degree of mas ter in computer science

Academic Year 1994-1995

Abstract

ABSTRACT

Database evolution is the ability of a database system to respond to changes
in the real world by allowing its schemas to evolve. Our thesis will use the
ER (Entity-Relationship) and the relational models for representing the data
structures at the different levels and it will give a typology of the
modificatiçms offered on the conceptual level. In order to analyse these
modifications, the thesis will follow a systematic and inductive approach.
Indeed, for each modification, a detailed study of its impact on the logical
level, the SQL description, the data and the application programs will be
presented. Moreover, these modifications will first be applied on a case
study and will only then be treated in general. Furthermore, some
indications are given on how to integrate the studied modifications into a
CASE tool offering database evolution facilities.

L'évolution des bases de données est la capacité d'un système de bases de
données de répondre aux changements du monde réel en permettant
l'évolution de ses schemas. Notre mémoire utilisera le modèle EA (Entité
Association) et le modèle relationnel pour représenter les structures des
données aux différents niveaux et donnera une typologie des modifications
offertes au niveau conceptuel. Afin d 'analyser ces modifications, le
mémoire adoptera une approche systématique et inductive. En effet, pour
chacune des modifications, une étude détaillée analysera les impacts au
niveau logique, sur la description SQL, les données et les programmes
d'applications. De plus, ces modifications seront d'abord étudiées sur une
étude de cas avant d'être traitées en toute généralité. En outre, le mémoire
contient quelques indications quant à l'intégration des modifications
étudiées dans un outil CASE offrant des fonctionnalités supportant
l'évolution des bases de données.

Acknowledgements

ACKNOWLEDGEMENTS

It is a great pleasure for us to acknowledge the assistance and contributions
of a large number of individuals. First, our supervisor J-L. Hainaut who
continuously encouraged and motivated us to complete our thesis. He
constantly reviewed portions of our thesis and suggested various
improvements.

We would also like to thank our supervisor J.F. Roddick from the
'University of South-Australia' who constantly helped us during our
practical training.

We would also like to underline our thanks to the DB-MAIN group (V.
Englebert, J. Henrard, J-M. Hick and D. Roland) who gave us hints where
to find the necessary bibliographies and who continuously supplied us with
new versions of the DB-MAIN software.

Finally we gratefully acknowledge the support, encouragement and patience
of our families and friends, especially M. Nosbusch.

Table of Contents

TABLE OF CONTENTS

Chapter 1 : Introduction

1. UFE CYCLE OF A DATABASE AND OF ITS APPLICATION PROGRAMS 1-1

1.1. Database System Life Cycle ____________________ l-2

1.2. The Database Design Phase 1-3

1.3. The Database Maintenance Phase 1-5
1.3.1. Forward Database Maintenance 1-7
1.3.2. Backward Database Maintenance 1-7
1.3.3. Anticipating Design 1-8

1.4. Context of our Thesis 1-8

2. STATE OF THE ART ___________________ 1-9

2.1. Database Evolution for Standard Data Structures _____________ 1-10

2.2. Database Evolution for Object Oriented Approaches 1-11
2.2.1. Object Oriented Concepts 1-11
2.2.2. Database Evolution 1-11

2.3. Historical Databases 1-13

Chapter 2 : Framework of our Thesis

1. BACKGROUND _____________________ 2-1

2. GENERAL METHODOLOGY 2-2

2.1. Impact of the Modifications of the Kernel onto the Basic Relational Model _____ 2-2

2.2. Impact of the Modifications of the Basic ER Model onto the Rich Relational Model 2-3

2.3. Mapping of the Modifications of the Rich ER Model down to the Basic ER Model 2-4

2.4. Summary of the Methodology 2-5

3. GRAPHICAL NOTATIONS 2-6

4. STRUCTURE OF THE PROJECT 2-9

Chapter 3 : Study of the Kernel

1. DESCRIPTION OF THE KERNEL _______________ 3-1

2. TYPOWGY OF THE MODIFICATIONS 3-4

Schema Modification Propagation for Relational Database Applications

Chapter 4 : Study of the Modifications: Case Study
Approach

1. INTRODUCTION _____________________ 4-1

2. DESCRIPTION OF THE CASE STUDY 4-3

2.1. Introduction ___________________________ 4-3

2.2. Conceptual Schema 4-3

2.3. Logical Schema 4-4

2.4. SQL Description 4-4

2.5. Data 4-5

2.6. Program Extracts _________________________ 4-7
2.6.1. Select 4-7
2.6.2. Project 4-8
2.6.3. Join 4-8
2.6.4. Union 4-8

3. STUDY OF THE MODIFICATIONS: CASE STUDY APPROACH _____ 4-9

3.1. Introduction. ___________________________ 4-9

3.2. Rename_entity-type 4-10
3 .2.1. Classification of the Modification 4-10
3 .2.2. Description of the Modification 4-10

3.2.2.1. Logical Schema 4-11
3.2.2.2. SQL Description & Data 4-12
3.2.2.3 . Program Extracts 4-13

3.3. Remove_0-1/0-l_rel-type 4-14
3 .3 .1. Classification of the Modification 4-14
3.3.2. Description of the Modification 4-14

3.3.2.1. WORK is implemented by a foreign key in ADDRESS 4-15
3.3.2.1.1 . Logical Schema 4-15
3.3.2.1.2. SQL Description & Data 4-15
3.3.2.1.3. Program Extracts 4-16

3.3.2.2. WORK is implemented by a foreign key in CUSTOMER 4-16
3.3.2.2.1. Logical Schema 4-16
3.3.2.2.2. SQL Description & Data 4-17
3.3.2.2.3. Program Extracts 4-17

3.4. Augment_max_card 4-18
3.4.1. Classification of the Modification 4-18
3.4.2. Description of the Modification 4-18

3.4.2.1. 1-1/0-1 ➔ 1-1/0-N 4-18
3.4.2.1.1. Logical Schema 4-19
3.4.2.1.2. SQL Description & Data 4-20
3.4.2.1.3. Program Extracts 4-20

3.4.2.2. 0-1/0-1 ➔ 0-1/0-N 4-21
3.4.2.2.1. WORK is implemented by a foreign key in relation ADDRESS 4-22

3.4.2.2.1.1. Logical Schema 4-22
3.4.2.2.2. WORK is implemented by a foreign key in relation CUSTOMER 4-23

3.4.2.2.2.1. Logical Schema 4-23
3.4.2.2.2.2. SQL Description & Data 4-23
3.4.2.2.2.3. Program Extracts 4-24

Table of Contents

3.5. Make_attr_mandatory ________________________ 4-25
3 .5 .1. Classification of the Modification 4-25
3.5.2. Description of the Modification 4-25

3.5.2.1. The attribute is nota unique key 4-25
3.5.2.1.1. Logical Schema 4-26
3.5.2.1.2. SQL Description & Data 4-26
3.5.2.1.3. Program Extracts 4-29

3.5.2.2. The attribute is a unique key 4-29
3.5.2.2.1. Logical Schema 4-30
3.5.2.2.2. SQL Description & Data 4-30
3.5.2.2.3. Program Extracts 4-30

3.6. Switch_PK_unique 4-31
3 .6.1. Classification of the Modification 4-31
3 .6.2. Description of the Modification 4-31

3.6.2.1. There is no unique key specified 4-32
3.6.2.1.1. WORK is implemented by a foreign key in ADDRESS 4-33

3.6.2.1.1.1. Logical Schema 4-33
3.6.2.1.1.2. SQL Description & Data 4-34
3.6.2.1.1.3 . Program Extracts 4-35

3.6.2.1.2. WORK is implemented by a foreign key in CUSTOMER 4-35
3.6.2.1.2.1. Logical Schema 4-35
3.6.2.1.2.2. SQL Description & Data 4-36
3.6.2.1.2.3. Program Extracts 4-37

3.6.2.2. The unique key is specified 4-38
3.6.2.2.1. The primary key is nota technical one 4-38

3.6.2.2.1.1. Logical Schema 4-39
3.6.2.2.1.2. SQL Description & Data 4-40
3.6.2.2.1.3. Program Extracts 4-41

3.6.2.2.2. The primary key is a technical one 4-42
3.6.2.2.2.1. Logical Schema 4-42
3.6.2.2.2.2. SQL Description & Data 4-43
3.6.2.2.2.3. Program Extracts 4-43

Chapter 5 : Study of the Modifications: General Approach

1. INTRODUCTION ____________________ 5-1

2. STUDY OF THE MODIFICATIONS: GENERALAPPROACH 5-4

2.1. Rename_entity-type 5-4
2.1 .1. Classification of the Modification 5-4
2.1.2. Description of the Modification 5-4

2.1.2.1. Logical Schema 5-5
2.1.2.2. SQL Description & Data 5-6
2.1.2.3. Program Extracts 5-8

2.2. Remove_0-1/0-l_rel-type 5-9
2.2.1. Classification of the Modification 5-9
2.2.2. Description of the Modification 5-9

2.2.2.1. Logical Schema 5-10
2.2.2.2. SQL Description & Data 5-11
2.2.2.3 . Program Extracts 5-12

2.3. Augment_max_card 5-12
2.3 .1. Classification of the Modification 5-12
2.3.2. Description of the Modification 5-12

2.3.2.1. Logical Schema 5-13
2.3.2.2. SQL Description & Data 5-14

Schema Modification Propagation for Relational Database Applications

2.3.2.3. Program Extracts _______________________ 5-15
2.3.2.3.1. The foreign key representing R was in El 5-15
2.3 .2.3 .2. The foreign key representing R was in E2 5-16

2.4. Make_attr_rnandatory 5-17
2.4.1. Classification of the Modification 5-17
2.4.2. Description of the Modification 5-18

2.4.2.1. Logical Schema 5-18
2.4.2.2. SQL Description & Data 5-18
2.4.2.3. Program Extracts 5-19

2.5. Switch_PK_unique 5-21
2.5.1. Classification of the Modification 5-21
2.5 .2. Description of the Modification 5-21

2.5.2.1. Logical Schema 5-22
2.5 .2.2. SQL Description & Data 5-22
2.5.2.3. Program Extracts 5-25

Chapter 6 : Introduction to the Modifications on the Basic
ERModel

1. INTRODUCTION ____________________ 6-1

2. DESCRIPTION OF THE BASIC ER MODEL 6-2

3. STUDY OF THE MODIFICATIONS ON THE BASIC ER MODEL 6-4

3.1. Introduction __________ _________________ 6-4

3.2. Extension of Existing Objects 6-4
3.2.1. Allowing the Minimum Cardinality 1 Everywhere 6-4

3.2.1 .1. Representation in SQL 6-4
3.2.1.2. Impacts on the Existing Modifications 6-6
3.2.1.3. New Modifications 6-12

3.2.2. Allowing Recursive Relationship-types 6-13
3.2.2.1 . Impacts on the Existing Modifications 6-13
3.2.2.2. New Modifications 6-13

3.2.3. Allowing Non Mono-Attribute Identifiers 6-13
3.2.3.1. Impacts on the Existing Modifications 6-13
3.2.3 .2. New Modifications 6-19

3.3. New Objects __________________________ 6-19

Chapter 7 : Introduction to the Modifications on the Rich
ERModel

1. INTRODUCTION ______________ _____ _ 7-1

2. MAPPING FROM THE RICH ER MODEL TO THE BASIC ER MODEL 7-2

2.1. Mapping of the New Concepts _____________ ________ 7-2
2.1.1. Compound Attributes 7-2
2.1.2. Pure Multi-valued Attributes 7-3
2.1.3 . Non Functional Relationship-types 7-4
2.1.4. Identifiers of Relationship-types 7-5
2.1.5. Functional Dependencies on Roles 7-6

Table of Contents

2.2. Mapping of the Modifications _________ ___::_ __________ 7-7
2.2.1. Making a Compound Attribute Mandatory 7-8

2.2.1.1. Decomposition of the Attribute 7-8
2.2.1.2. Extraction of the Attribute by Instance Representation 7-9
2.2.1.3. Extraction of the Attribute by Value Representation 7-9

2.2.2. Adding a First Attribute to a Functional Relationship-type 7-10

Chapter 8 : Integration into a CASE Tool

1. INTRODUCTION ____________________ 8-1

2. THE DB-MAIN TOOL 8-1

2.1. Objective 8-1

2.2. Components of the DB-Main Tool 8-1
2.2.1 . The DB-MAIN Specification Model and Repository 8-2
2.2.2. The Modification Toolkit 8-2
2.2.3. The User Interface 8-4
2.2.4. Text Analysis and Name Processing 8-6
2.2.5. The Assistants 8-7
2.2.6. Functional Extensibility 8-7
2.2.7. Methodological Control and Design Recovery 8-8

2.3. Architecture of the DB-MAIN Tool 8-9

Chapter 9 : Conclusion

Appendix 1 : Study of the Modifications: Case Study
Approach

1. INTRODUCTION ____________________ Al-1

2. MODIFICATIONS OF THE ENTITY-TYPES Al-4

2.1. Modifications which Augment the Semantics _______________ Al-4
2.1.1. Add_entity-type Al-4

2.2. Modifications which Decrease Semantics Al-6
2.2.1. Remove_entity-type Al-6

2.3. Modifications which Preserve the Semantics Al-8
2.3.1. Rename_entity-type Al-8

3. MODIFICATIONS OF THE RELATIONSHIP-TYPES Al-12

3.1. Modifications which Augment the Semantics ______________ Al-12
3.1.1. Add_l-1/0-l_rel-type Al-12
3.1.2. Add_0-1/0-l_rel-type Al-15
3.1.3. Add_l-1/0-N_rel-type Al-17
3.1.4. Add_0-1/0-N_rel-type Al-19

3.2. Modifications which Decrease the Semantics Al-21
3.2.1. Remove_l-1/0-l_rel-type Al-21
3.2.2. Remove_0-1/0-l_rel-type Al-24
3.2.3. Remove_l-1/0-N_rel-type Al-27

Schema Modification Propagation for Relational Database Applications

3.2.4. Remove_0-1/0-N_rel-type ______________________ Al-29

3.3. Modifications which Preserve the Semantics Al-32
3.3.1. Rename_l-1/0-l_rel-type Al-32
3.3.2. Rename_0-1/0-l_rel-type Al-35
3.3.3. Rename_l-1/0-N_rel-type Al-35
3.3.4. Rename_0-1/0-N_rel-type Al-38

4. MODIFICATIONS OF THE ROLES Al-39

4.1. Modifications which Augment the Semantics _______________ Al-39
4.1.1. Augment_max_card Al-39
4.1.2. Decrease_min_card Al-45

4.2. Modifications which Decrease the Semantics Al-48
4.2.1. Decrease_max_card Al-48
4.2.2. Augment_min_card Al-59

S. MODIFICATIONS OF THE ATTRIBUTES ____________ Al-67

5.1. Modifications which Augment the Semantics _______________ Al-67
5.1.1. Add_optional_attribute Al-67
5.1.2. Add_mandatory_attribute Al-69
5.1.3. Make_attr_optional Al-70
5 .1.4. Extend_domain_attribute A 1-71
5.1.5. Change_type_int_char Al-72
5.1.6. Change_type_float_char Al-74
5.1.7. Change_type_date_char Al-74
5.1.8. Change_type_date_int Al-74
5.1.9. Change_type_int_float Al-74
5.1 .10. Change_type_date_float Al-74

5.2. Modifications which Decrease the Semantics Al-75
5.2.1. Remove_optional_attribute Al-75
5.2.2. Remove_mandatory_attribute Al-76
5.2.3. Make_attr_mandatory Al-78
5.2.4. Restrict_domain_attribute Al-84
5.2.5. Change_type_char_int Al-85
5.2.6. Change_type_float_int Al-86
5.2.7. Change_type_char_float Al-86
5.2.8. Change_type_char_date Al-86
5.2.9. Change_type_int_date Al-86
5.2.10. Change_type_float_date Al-86

5.3. Modifications which Preserve the Semantics Al-86
5.3.1. Rename_optional_attribute Al-86
5.3.2. Rename_mandatory_attribute Al-88

6. MODIFICATIONS OF THE IDENTIFIER _________ ___ Al-91

6.1. Modifications which Augment the Semantics _______________ Al-91
6.1.1. Remove_unique_feature Al-91

6.2. Modifications which Decrease the Semantics Al-92
6.2.1. Add_unique_feature Al-92

6.3. Modifications which Preserve the Semantics Al-94
6.3.1. Switch_PK_unique Al-94

Appendix 2 : Study of the Modifications: General
Approach

Table of Contents

1. INTRODUCTION __________________ __ A2-1

2. STUDY OF THE MODIFICATIONS: GENERAL APPROACH A2-4

2.1. Modifications of the Entity-Types A2-4
2.1.1. Modifications which Augment the Semantics A2-4

2.1.1.1. Add_entity-type A2-4
2.1.2. Modifications which Decrease the Semantics A2-5

2.1.2.1. Remove_entity-type A2-5
2.1.3. Modifications which Preserve the Semantics A2-6

2.1.3.1. Rename_entity-type A2-6

2.2. Modifications of the relationship-types A2-11
2.2.1. Modifications which Augment the Semantics A2-11

2.2.1.1. Add_l-1/0-l_rel-type A2- l l
2.2.1.2. Add_0-1/0- l_rel-type A2-l 3
2.2.1.3. Add_l-1/0-N_rel-type A2-16
2.2.1.4. Add_0-1/0-N_rel-type A2-18

2.2.2. Modifications which Decrease the Semantics A2-19
2.2.2.1. Remove_l-1/0-l_rel-type A2-19
2.2.2.2. Remove_0-1/0-l_rel-type A2-21
2.2.2.3. Remove_l-1/0-N_rel-type A2-23
2.2.2.4. Remove_0-1/0-N_rel-type A2-24

2.2.3. Modifications which Preserve the Semantics A2-26
2.2.3.1. Rename_l-1/0-l_rel-type A2-26
2.2.3.2. Rename_0-1/0-l_rel-type A2-28
2.2.3.3. Rename_l-1/0-N_rel-type A2-30
2.2.3 .4. Rename_0-1/0-N_rel-type A2-31

2.3. Modifications of the Roles A2-34
2.3 .1. Modifications which Augment the Semantics A2-34

2.3.1.1. Augment_max_card A2-34
2.3 .1.2. Decrease_min_card A2-38

2.3.2. Modifications which Decrease the Semantics A2-41
2.3.2.1. Decrease_max_card A2-41
2.3.2.2. Augment_min_card A2-45

2.4. Modifications of the Attributes A2-50
2.4.1. Modifications which Augment the Semantics A2-50

2.4 .1.1. Add_optional_attribute A2-50
2.4 .1.2. Add_mandatory _attribute A2-51
2.4.1.3. Make_attr_optional A2-52
2.4.1.4. Extend_domain_attribute A2-53
2.4.1.5. Change_type_int_char A2-54
2.4.1.6. Change_type_float_char A2-56
2.4.1.7. Change_type_date_char A2-56
2.4.1.8. Change_type_date_int A2-56
2.4.1.9. Change_type_int_float A2-56
2.4.1.10. Change_type_date_float A2-56

2.4.2. Modifications which Decrease the Semantics A2-57
2.4.2.1 . Remove_optional_attribute A2-57
2.4.2.2. Remove_mandatory_attribute A2-58
2.4.2.3. Make_attr_mandatory A2-59
2.4.2.4. Restrict_domain_attribute A2-62
2.4.2.5. Change_type_char_int A2-63
2.4.2.6. Change_type_float_int A2-63

Schema Modification Propagation for Relational Database Applications

2.4.2.7. Change_type_char_float _____________________ A2-63
2.4.2.8. Change_type_char_date A2-64
2.4.2.9. Change_type_int_date A2-64
2.4.2.10. Change_type_float_date A2-64

2.4.3. Modifications which Preserve the Semantics A2-64
2.4.3.1. Rename_optional_attribute A2-64
2.4.3.2. Rename_mandatory_attribute A2-66

2.5. Modifications of the Identifier A2-69
2.5 .1. Modifications which Augment the Semantics A2-69

2.5 .1 .1. Remove_unique_feature A2-69
2.5.2. Modifications which Decrease the Semantics A2-70

2.5.2.1 . Add_unique_feature A2-70
2.5.3. Modifications which Preserve the Semantics A2-73

2.5.3.1. Switch_PK_unique A2-73

Table of Figures

TABLE OF FIGURES

Chapter 1 : Introduction

Figure 1 -1 : Database system life cycle ______________________ l-2
Figure 1 - 2 : Phases of database design 1-4
Figure 1 - 3 : Representation of the database evolution problem 1-6
Figure 1 - 4 : Symmetric schema modification 1-10
Figure 1 - 5: A TODM view of an airline'sfleet database 1-14
Figure 1 - 6 : A TODMITODD view ofan airline 'sjleetdatabase 1-15

Chapter 2 : Framework of our Thesis

Figure 2 - 1 : Relation between the Kemel and the Basic Relational Madel ___________ 2-3
Figure 2 - 2 : Relation between the Basic ER model and the Rich Relational Mode! 2-4
Figure 2 - 3: The hierarchy of the dijferent models 2-5
Figure 2 - 4: Graphical notations for the conceptual concepts 2-7
Figure 2 - 5 : Graphical notations for the logical concepts 2-8

Chapter 3 : Study of the Kernel

Figure 3 -1 : Relation between the Kernel and the Basic Relational Madel ___________ 3-1
Figure 3 - 2 : An example of an identifier which is not allowed in the Kernel 3-2
Figure 3 - 3 : Typology of the modifications 3-4

Chapter 4 : Study of the Modifications: Case Study
Approach

Figure 4 - 1 : Conceptual schema of the case study __________________ 4-3
Figure 4 - 2: Logical schema of the case study 4-4
Figure 4 - 3: Table CUSTOMER 4-5
Figure 4 - 4 : Table ORDER 4-5
Figure 4 - 5 : Table LINE 4-6
Figure 4 - 6: Table PRODUCT 4-6
Figure 4 - 7 : Representation of the database evolution problem 4-9
Fig ure 4 - 8 : Classification of rename _entity-type 4-10
Figure 4 - 9: Renaming an entity-type on the conceptual level 4-11
Figure 4 - 10 : Renaming an entity-type on the logical level 4-12
Figure 4 - 11 : Classification of remove_0-1/0-l_rel-type 4-14
Figure 4 - 12 : Removing a 0-1/0-1 relationship-type on the conceptual level 4-14
Figure 4 - 13 : Removing a 0-1/0-1 relationship-type on the fogical level 4-15
Figure 4 - 14 : Removing a 0-1/0-1 relationship-type on the logical level 4-17
Figure 4 - 15 : Classification of augment_max_card 4-18
Figure 4 - 16: Augmenting the maximum cardinality of arole to Nin an 1-1/0-1 relationship-type on the

conceptual leve/ _________________________ 4-19
Figure 4 - 17 : Augmenting the maximum cardinality of arole to Nin an 1-1/0-1 relationship-type on the

logical level __________________________ 4-20
Figure 4 - 18 : Augmenting the maximum cardinality of arole to Nin an 0-1/0-1 relationship-type on the

conceptual level _________________________ 4-22
Figure 4 -19: The initial logical schema 4-22

Schema Modification Propagation for Relational Database Applications

Figure 4 - 20 : Augmenting the maximum cardinality of a role to Nin an 0-1/0-1 relationship-type on the
logical level __________________________ 4-23

Figure 4 - 21 : Classification of make_attr _mandatory 4-25
Figure 4 - 22: Making a non-key attribute mandatory on the conceptual Level 4-26
Figure 4 - 23 : Table CUSTOMER when the null values of column date_birth are replaced by a default

value _____________________________ 4-26
Figure 4 - 24: Table ORDER when certain PI.ACE_ncust values are set to null 4-27
Figure 4 - 25: Table ORDER when certain rows are deleted 4-27
Figure 4 - 26: Table UNE where certain values for column COMPOSE_nord are set to null 4-28
Figure 4 - 27: Table LINE where certain rows are deleted 4-29
Figure 4 - 28: Making a (unique) key attribute mandatory on the conceptual Level 4-30
Figure 4 - 29: Classification of switch_PK_unique 4-31
Figure 4 - 30: Structure of the modification switch_PK_unique 4-32
Figure 4 - 31 : Transforming a primary key into a unique key when no unique key is specified, on the

conceptual level __________________________ 4-33
Figure 4 - 32 : Transforming a non referenced primary key into a unique key when no unique key is

specified, on the logical Level _____________________ 4-34
Figure 4 - 33 : Transforming a referenced primary key into a unique key when no unique key is specified,

on the logical level ________________________ 4-36
Figure 4 - 34: Replacing a non technical primary key by a unique key on the conceptual Level 4-39
Figure 4 - 35 : Replacing a non technical primary key by a unique key on the logical level 4-40
Figure 4 - 36 : Replacing a technical primary key by a unique key on the conceptual Level 4-42
Figure 4 - 37: Replacing a technical primary key by a unique key on the logical level 4-43

Chapter 5 : Study of the Modifications: General Approach

Figure 5 -1: Representation of the database evolutionproblem _______________ 5-l
Figure 5 - 2 : Classification of rename_entity-type 5-4
Figure 5 - 3: Renaming an entity-type on the conceptual level 5-5
Figure 5 - 4 : Renaming an entity-type on the logical Level 5-6
Figure 5 - 5: Classification of remove_0-1/0-l_rel-type 5-9
Figure 5 - 6: Removing a 0-1/0-1 relationship-type on the conceptual Level 5-10
Figure 5 - 7 : Removing a 0-1/0-1 relationship-type on the logical level 5-11
Figure 5 - 8 : Classification of augment_max_card 5-12
Figure 5 - 9: Augmenting the maximum cardinality of a rote to Non the conceptual Level 5-13
Figure 5 - 10: Augmenting the maximum cardinality of arole to Non the logical Level 5-14
Figure 5 - 11 : Classification of make_attr _mandatory 5-17
Figure 5 -12: Making an attribute mandatory on the conceptual level 5-18
Figure 5 - 13 : Classification of switch_PK_unique 5-21
Figure 5 - 14: Switching the primary key and the unique key on the conceptual level 5-22
Figure 5 - 15: General situation used in procedure Switch 5-23

Chapter 6 : Introduction to the Modifications on the Basic
ERModel

Figure 6 - 1 : Relation between the Basic ER mode! and the Rich Relational Model _________ 6-l
Figure 6 - 2: A 0-1/1-N relationship-type on the conceptual Level 6-5
Figure 6 - 3: An 0-1/1-N relationship-type on the logical Level 6-5
Figure 6 - 4: Augmenting the maximum cardinality of arole to Non the conceptual Level 6-7
Figure 6 - 5: Augmenting the maximum cardinality of arole to Non the logical Level 6-8
Figure 6 - 6 : Decreasing the maximum cardinality of a rote to 1 on the conceptual level 6-10
Figure 6 - 7 : Decreasing the maximum cardinality of a rote to 1 on the logical Level 6-11
Figure 6 - 8 : A simplified table LINE 6-11
Figure 6 - 9: A simplified table ORDER 6-12
Figure 6 - 10: Augmenting the maximum cardinality of arole to Non the conceptual Level 6-15
Figure 6 - 11 : Augmenting the maximum cardinality of a rote to Non the logical Level 6-16

Table of Figures

Figure 6 - 12: Example where aforeign key is part of the primary key ____________ 6-18

Chapter 7 : Introduction to the Modifications on the Rich
ERModel

Figure 7 - 1 : The hierarchy of the dijferent models ___________________ 7-1
Figure 7 - 2: Mapping a compound attribute of the Rich ER Mode! down to the Basic ER Model ____ 7-2
Figure 7 - 3: Mapping a multi-valued attribute of the Rich ER Madel down to the Basic ER Model ___ 7-3
Figure 7 - 4: Mapping a temary relationship-type of the Rich ER Madel into the Basic ER Madel ___ 7-4
Figure 7 - 5: Mapping an identifier of a ternary relationship-type of the Rich ER Mode! into the Basic ER

Madel ___________________________ 7-5

Figure 7 - 6: Mapping ajunctional dependency of a temary relationship-type of the Rich ER Mode! into
the Basic ER Mode!, afirst approach __________________ 7-6

Figure 7 - 7: Mapping ajunctional dependency of a temary relationship-type of the Rich ER Mode! into
the Basic ER Mode! ________________________ 7-7

Figure 7 - 8: Making a compound attribute mandatory in the Rich ER Madel __________ 7-8
Figure 7 - 9 : Making a compound attribute mandatory in the Basic ER Mode! where it is represented by

decomposition ___________________________ 7-8
Figure 7 - 10: Making a compound attribute mandatory in the Basic ER Madel where it is extracted by

instance representation ________________________ 7-9
Figure 7 - 11 : Making a compound attribute mandatory in the Basic ER Madel where it is extracted by

value representation _________________________ 7-10
Figure 7 - 12 : Adding afirst attribute to afunctional relationship-type in the Rich ER Model ____ 7-11
Figure 7 - 13: Adding afirst attribute to ajunctional relationship-type in the Basic ER Mode! ____ 7-11
Figure 7 - 14: Transforming a 0-1/0-N relationship-type into an entity-type on the conceptual Level __ 7-12
Figure 7 -15: Transforming a 0-1/0-N relationship-type into an entity-type on the logical Level ___ 7-13

Chapter 8 : Integration into a CASE Tool

Figure 8 - 1 : The dialog box 'Add Rel-type' _____________________ 8-5
Figure 8 - 2 : The DB-Main screen in the evolution mode 8-6
Figure 8 - 3 : The architecture of the DB-MAIN tool 8-9

Chapter 9 : Conclusion

Figure 9-1 : A multi-view system supporting database evolution _______________ 9-2

Chapter 1:

Introduction

Chapter 1 : Introduction

As schema modification is part of the life cycle of a database, we will first describe the life
cycle of a database and of its application programs. We will mainly consider the design and
maintenance phases as they seem important for our thesis.

In a second section, we will then discuss what has already been achieved in the domain of
database evolution. We will distinguish three different areas: database evolution for standard
data structures, database evolution for object oriented approaches and historical databases.

1. LIFE CYCLE OF A DATABASE AND
OF ITS APPLICATION PROGRAMS

In a large organization, the database system is typically part of a much larger information
system that is used to manage the information resources of the organization. An information
system includes ail resources within the organization that are involved in the collection,
management, use, and dissemination of information. In a computerized environment, these
resources include the data itself, the DBMS software, the computer system hardware and
storage media, the personnel who use and manage the data (database administrator, users, and
so on), the application software that accesses and updates the data, and the application
programmers who develop these applications. Hence, the database system is only part of a
much larger organizational information system.[ELM94, page 450] Every information system
bas a life cycle and as the database system is part of such a system, it has its own life cycle too.

In this section we will begin with a description of the life cycle of a database system. In further
subsections, we will analyse more in detail two of the phases of such a database life cycle: the
design and the maintenance phases. The design subsection is essentially based upon [ELM94],
whereas the maintenance subsection is largely inspired by [HAI94a].

Page 1-1

Schema Modification Propagation for Relational Database Applications

1.1. DATABASE SYSTEM LIFE CYCLE

The life cycle of a database system is represented in Figure 1-1.

System Definition

lmplementation

Loading or Data Conversion

Application Conversion

Testing and Validation

Maintenance

Figure 1 - 1 : Database system life cycle

We will now briefly explain each of the phases of the life cycle of a database system.

• System De.finition:
The scope of the database system, its users and its applications are defined.

• Design:
At the end of this phase, a complete conceptual, logical and physical design of the database
on the chosen DBMS is ready.

• Implementation:
Tiris comprises the process of writing the corresponding database definitions, creating
empty database files and implementing the software applications.

Page 1-2

Chapter 1 : Introduction

• Loading or Data Conversion:
The database is populated either by loading the data directly or by converting existing files
into the database system format.

• Application Conversion:
Any software applications from a previous system are converted to the new system.

Note that the conversion steps are not applicable when both the database and the applications
are new. When an organization moves from an old established system to a new one, these tend
to be the most timeconsuming and the effort to accomplish them is often underestimated.

• T esting and Validation:
The new system is tested and validated.

• Operation:
The database system and its applications are put into operation.

• Maintenance:
During the operational phase, the system is constantly maintained. Growth and expansion
can occur in both data content and software applications. Major modifications and
reorganisations may be needed from time to time. Those modifications involve retums to
the 'System Definition' and 'Design' phases, illustrated by the dotted arrows in Figure 1-1
(see page 1-2).

In the next subsections, we will analyse more in detail the 'Design' and 'Maintenance' phases
as they are important for the further developments of our thesis.

1.2. THE DATABASE DESIGN PHASE

We now focus on the second step of the database system life cycle, which we call database
design. The problem of database design can be stated as follows: Design the conceptual,
logical and physical structure of one or more databases to accomodate the information needs
of the users in an organization for a defined set of applications.

The goals of database design are multiple: to satisfy the information content requirements of
the specified users and applications; to provide a natural and easy-to-understand structuring of
the information; and to support processing requirements and any performance objectives such
as response time, processing time, and storage space. These goals are very hard to accomplish
and measure. The problem is aggravated because the database design process often begins with
very informa! and poorly defined requirements. By contrast, the result of the design activity is a
rigidly defined database schema that cannot easily be modified once the database is
implemented. We can identify six main phases of the database design process:

1. Requirements collection and analysis
2. Conceptual database design
3. Choice of a DBMS
4. Logical database design
5. Physical database design
6. Database system implementation

Page 1-3

Schema Modification Propagation for Relational Database Applications

The design process consists of two parallel activities, as illustrated by the two last columns in
Figure 1-2. The first activity involves the design of the data content and structure of the
database; the second relates to the design of database processing and software applications.
These two activities are closely intertwined. For example, we can identify data items that will
be stored in the database by analysing database applications. In addition, the physical database
design phase, during which we choose the storage structures and access paths of database files,
depends on the applications that will use these files. On the other hand, we usually specify the
design of database applications by referring to the database schema constructs, which are
specified during the data content and structure design. Clearly, these two activities strongly
influence one another.

: Data Content and Structure : Database Processing and
, Software Applications

- - - - - - - - - - - - - - - - - t - - - - - - - - - - - - - - - - - _, - - - - - - - - - - - - - - - - -

Phase 1: Requirements
Collection and Analysis

Phase 2 : Conceptual
Design

: Data Reqrernents

: Conceptual Schema Design
: (DBMS-independent)

'

: Processing Requirements

l
: Transaction Design
: (DBMS-independent)

Phase 3 : Choice of DBMS ,

Phase 4 : Logical Design

Phase 5 : Physical Design

: Logical s:~erna Design 1/
: (DBMS-dependent) Frequencies,
' 1 · / Performance
: + / Constraints
' '
: Physical Schema Design
, (DBMS-dependent)

-i
Phase 6 : lmplementation : Database Statements : Transaction lmplementation

Figure 1 - 2 : Phases of database design

The six phases mentioned above do not have to proceed strictly in sequence. In many cases we
may have to modify the design from an earlier phase during a later phase. These feedback
loops among phases -and also within phases- are common during database design. We do not
show feedback loops in Figure 1-2 to avoid complicating the diagram. Phase 1 in Figure 1-2
involves collection of information about the intended use of the database, whereas phase 6
concems database implementation. Phases 1 and 6 are sometimes considered not to be part of

Page 1-4

Chapter 1 : Introduction

database design per se, but part of the database system life cycle. The heart of the database
design process is composed by phases 2, 4 and 5, which we briefly summarize here:

• Conceptual database design (phase 2):
The goal of this phase is to produce a conceptual schema for the database that is
independent of a specific DBMS. We often use a high-level data model such as the ER
(Entity-Relationship), EER (Extended Entity_Relationship) or NIAM (Nijssen Information
Analysis Method) model during this phase. In addition, we specify as many of the known
database applications or transactions as possible, using a notation that is independent of any
specific DBMS.

• Logical database design (phase 4):
During this phase we map the conceptual schema from the high-level data model used in
phase 2 into the data model of the DBMS chosen in phase 3. We can start this phase after
choosing an implementation data model, rather than waiting for a specific DBMS to be
chosen -for example, if we decide to use some relational DBMS but we have not yet
decided on a particular one. We call the latter system-independent (but data model
dependent) logical design.

• Physical database design (phase 5):
Physical database design is the process of choosing specific storage structures and access
paths for the database files to achieve good performance for the various database
applications. Each DBMS offers a variety of options for file organization and access paths.
These usually include various types of indexing, clustering of related records on disk blocks,
linking related records via pointers, and various types of hashing. Once a specific DBMS is
chosen, the physical database design process is restricted to choosing the most appropriate
structures for the database files among the options offered by that DBMS. The following
criteria are often used to guide the choice of physical database design options:

1. Response Time:
This is the elapsed time between submitting a database transaction for execution and
receiving a response.

2. Space Utilization:
This is the amount of storage space used by the database files and their access path
structures.

3. Transaction Throughput:
This is the average number of transactions that can be processed per minute by the
database system.

1.3. THE DATABASE MAINTENANCE PHASE

Most database systems at some time or another require a change to their schema, due to either
changes in the real world, a change in the application requirements or mistakes during system
analysis or design [ROD94, page 1], regrouped by the term of 'changes in the requirements '.
In order to study the impact of the changes in the requirements we will consider the following
abstract framework.

Page 1-5

Schema Modification Propagation for Relational Database Applications

Let us consider a database that satisfies requirements RO. This database comprises schema SO
and, at a given instant, data DO. Schema SO is made of the physical schema PSO, the logical
schema LSO and the conceptual schema CSO. A set of database applications PO have been built
for the database; they all work on the data through schema PSO.

Let us consider that requirements RO have changed into Rl. In most cases, this change is
translated into modifications of schema SO (CSO, LSO and/or PSO) leading to the new schema
Sl (CSl, LSl, PSl). If one of the schemas (CSO, LSO or PSO) has been changed, the others
must be changed accordingly. Data DO is no longer valid, and has to be converted into data
Dl. Finally, the application programs PO must be partly rewritten in order to comply with the
new data structures described in PSl. This situation is depicted in Figure 1-3.

RO ----------R1

cso CS1

LSO
?

LS1

PSO
?

PS1

DO
?

01

PO
? P1

Figure 1 - 3: Representation of the database evolution problem

Three typical maintenance strategies, supporting the translation of the changes, can be
distinguished in order to respond to major practical problems that will occur:

• Forward Database Maintenance
• Backward Database Maintenance
• Anticipating Design

Page 1-6

Chapter 1 : Introduction

1.3.1. Forward Database Maintenance
The first strategy is situated in a somewhat idealistic context in which the schemas CSO, LSO
and PSO are available and correct1

• Let us suppose that the change in requirements RO has been
translated into a change in the conceptual schema CSO in such a way that CS 1 now satisfies Rl
(e.g. adding an attribute, changing the cardinality of a role and so on). The basic problem is
how this change could be (as far as possible automatically) propagated down to the logical and
physical schemas LSO and PSO, data DO and application programs PO to produce LS 1, PS 1,
Dl and Pl. This problem can be called the forward database maintenance problem, a reference
situation against which all the other problems will be analysed.

A schema modification occurs as a consequence of a change in the requirements of (the
database component of) the information system. First, the relevant schema must be retrieved. If
the requirements describe the user expectations (functional requirements), their change will be
converted into a change in the conceptual schema. On the contrary, if they specify technical
constraints or goals of the final system (non functional requirements), they will concem lower
level schemas, in which criteria such as performance and security are addressed.

Automatic or assisted update propagation requires the knowledge of the exact mapping
between the conceptual, logical and physical schemas. Indeed, this mapping allows to replay2

most processes that were carried out when building the old system. The designer is only
responsible for controlling the propagation of the new constructs. When the new schema has
been produced, it should be as close as possible to the old one, except for the structures that
have been concemed by the changes. Following this schema updating, the database contents
must be converted as well. According to the kind of change, some data will be discarded, some
will be converted, while some data structures will be left empty. Finally, the application
programs will be updated in order to let them operate on the new database.

1.3.2. Backward Database Maintenance
Let us suppose that the conceptual and logical schemas CSO and LSO are still available and
correct3. Very frequently, due to time constraints and current CASE tools weaknesses, the
change in requirements RO are directly translated into changes on the physical schema PSO in
such a way that PSl now satisfies Rl (e.g. adding a column to a table). The problem here is
how these changes in PSO could be propagated up to the conceptual and logical schemas CSO
and LSO, giving CS 1 and LS 1 that reflect the semantics of the new physical schema PS 1.

1 In many situations, particularly when so-called legacy-systems are considered, the only description available
is the source code of the file and database description and of the manipulation programs. Schema CSO, and
sometimes (for standard file applications for instance) schema LSO and PSO are missing. In order to make the
system evolve securely, we have first to recover schemas PSO, LSO and CSO before applying the forward
database maintenance strategy. This way of proceeding is called database reverse engineering.
2 The term of replay is used in software engineering to designate the reexecution of design activities that have
been carried out to produce the former version of a system.
3 In many situations, particularly when so-called legacy-systems are considered, the only description available
is the source code of the file and database description and of the manipulation programs. Schema CSO, and
sometimes (for standard file applications for instance) schema LSO and PSO are missing. In order to make the
system evolve securely, we have first to recover schemas PSO, LSO and CSO before applying the backward
database maintenance strategy. This way of proceeding is called database reverse engineering.

Page 1-7

Schema Modification Propagation for Relational Database Applications

The backward database maintenance problem consists thus in translating the evolution of the
database into changes in the physical file and database structures, then in propagating these
changes up to the logical and conceptual schemas. Backward maintenance is certainly not the
cleanest way to support database evolution. However it corresponds to common practice.

Though it seems linked to database reverse engineering, this problem is significantly different
in two aspects. On the one hand, the conceptual and logical schemas of the old version of the
database are available and correct. On the other hand, most variations between old and new
physical schema versions are minor: modify a column domain, add, remove or rename a
column and so on.

Knowing how each conceptual and logical construct has been translated into physical database
structures (forward mapping), one can deduce the backward mapping, i.e. from what
conceptual and logical constructs a given physical construct was derived. Modifying the
physical schema must trigger a modification of the old conceptual and logical schemas in such
a way that the new conceptual and logical schemas would lead to the new physical schema,
should the same translation rules as earlier be applied. The data conversion, as well as program
conversion, can be tackled through forward maintenance. Note however that these conversions
have often been immediately carried out .

1.3.3. Anticipating Design
It is widely accepted that some design and programming styles lead to better tolerance to
requirements evolution than others. Hence the following problem: what reasonings and design
techniques can be proposed to designers and programmers to build database structures (CS0,
LS0 and PS0) and applications (PO) that are more robust against changes of requirements?
This problem relates to database design methodologies in which the stability of the programs
w.r.t. changes in data structures is considered as a high priority criterion.

1.4. CONTEXT OF OUR THESIS

The topic of our thesis is 'Schema Modification in Relational Database Systems' and can be
situated in the maintenance phase of a database life cycle. Our thesis will be developed in the
idealistic context of the forward database maintenance strategy (see page 1-7) in which the
conceptual, logical and physical schemas are available and correct. We will thus only study
modifications on the conceptual schema and their impact. Before delimiting the framework of
our thesis in the second chapter, we will briefly analyse the state of the art of the database
maintenance domain.

Page 1-8

Chapter 1 : Introduction

2. STATE OF THE ART
As we already said in the previous part, most database systems at some time or another require
a change to their schema, due to either changes in the real world, a change in the application
requirements or mistakes during systems analysis or design. When these changes occur
database systems must provide schema manipulation tools with which the database
administrator can modify the database. In many systems available commercially however, the
database administrator must also make decisions on whether the data already held in the
database is valid given the new schema. In many cases, data is either deleted unnecessarily,
misleadingly left in the database or the schema is made unnecessarily complicated by the
retention of obsolete attributes.[R0D92, page 1]

To avoid these situations, research has started, over the last few years, to investigate how to
facilitate database maintenance. In order to keep an overview of the work that has been done
so far, we categorise it broadly into three areas:

• Database Evolution for Standard Data Structures
• Database Evolution for Object Oriented Approaches
• Historical Databases

Note that we do not pretend to be exhaustive, as database evolution has raised into a vast
domain during the last few years.

Before discussing these three areas in detail, we have to specify first a certain number of
concepts. [ROD93] tried to define schema modification, schema evolution and schema
versioning.

• Schema Modification:
Schema modification is accommodated when a database system allows changes to the
schema definition of a populated database.

• Schema Evolution:
Schema evolution is accommodated when a database system permits the modification of the
database schema without loss of the semantic content of existing data.

• Schema Versioning:
Schema versioning is accommodated when a database system allows the viewing of ail data,
both retrospectively and prospectively, through user definable version interfaces.

Note that if in future we will speak about database evolution, then we will not reference any of
the three terms specifically. Let us now discuss schema and data conversion mechanisms which
are used in schema versioning.

A number of suggestions have been proposed for the conversion of the schema at the physical
level. Firstly, the complete schema can be converted to a new version. This method, while
being conceptually simple, prohibits the parallel schema versions required in some application
environments. Secondly, database evolution is achieved through view creation. This second
approach allows multiple concurrent versions of the schema.

Page 1-9

Schema Modification Propagation for Relational Database Applications

The mechanisms whereby the data is physically converted to the new version have also been
investigated. The three options proposed are the strict conversion method in which a change to
the schema results in an immediate propagation of that change to the data, the lazy conversion
mechanism in which data are changed to the current format only when required, and the logical
conversion method in which the attribute is translated into the required format at access time.
No conversion is therefore required.[ROD93, page 3]

After having introduced some concepts, let us study in detail the three previously mentioned
areas which categorise the work that has been achieved so far.

2.1. DATABASE EVOLUTION FOR STANDARD DATA
STRUCTURES

In the area of database evolution for standard data structures, a lot of research has been done
so far, especially for the ER and NIAM high-level models. In [ROD93] we can find a
taxonomy for schema versioning based on the relational and ER models whereas in [EW A93]
we can find a procedural approach to schema evolution in the NIAM model.

[ROD93] proposes two taxonomies of modifications: one for the relational model and one for
the ER model. For each modification in the ER taxonomy the corresponding relational changes
are given. For example, the modification add an entity involves the operation create a relation
on the relational level.
[ROD93] has established the relational taxonomy in such a way that the schema modifications
are as symmetric and reversible as possible. A schema modification is said to be symmetric if
data DO, recorded under the schema S0, can be viewed through the new schema definition S 1
and if data Dl, recorded under schema Sl, can be viewed under the previous schema S0. This
is illustrated by the dotted arrows in Figure 1-4.

SO ► S1

L _----_- -- -- ----: : : : .1
DO D1

Figure 1 - 4 : Symmetric schema modification

Schema modifications should be reversible in order to allow erroneous changes to be removed.
This reversibility is for instance obtained by proposing deactivate modifications instead of
remove modifications. For example, a relation that is deactivated (and which is thus not
physically removed) can be recovered through the modification activate a relation.

[EW A93] however tackles the database evolution problem in the NIAM model. In this model,
failure to identify and remove derivable fact types could lead to unnormalized relations due to

Page 1-10

Chapter 1 : Introduction

hidden transitive dependencies. The conceptual schemas that will become incorrect because of
such failures will produce incorrect relational schemas. [EW A93] therefore proposes for
example procedures for safe adding and removing of fact types. lndeed, they check that, in
case of an addition, the new fact type does not conflict with existing constraints and does not
involve fact type redundancy. They therefore use , among other techniques, functional
dependency diagrams. Finally, note that besides ad hoc modifications, such as adding or
removing a fact type, [EW A93] considers schema integration as an evolution process too.
During the schema integration process, an integrated schema is constructed starting from one
or more source schemas. This integration is done by choosing one schema as the target
schema, and adding the others to it through a series of ad hoc modifications.

2.2. DATABASE EVOLUTION FOR ÜBJECT ÜRIENTED
APPROACHES

Before treating database evolution in an object oriented environment, it may be good to review
the principle concepts of the object oriented data models.

2.2.1. Object Oriented Concepts
The principle concepts of the object oriented data models are: object, class and inheritance.

Object (or Object Instance):
The concept object is akin to that of entity when it covers semantic aspects. An object is
defined through the set of attributes that characterise it and the operations it supports. An
object has an identity that is independent of its value.

Class:
The concept of class allows the grouping together of objects which have the same data
structure (attributes) and the same operations called methods. A class is generally described by
a name, its attributes and methods. Classes are organised in a hierarchy of inheritance.

Inheritance:
Inheritance is a mechanism that allows the factorization of the parts common to several classes.
Regarding modelling, the inheritance enables one to refine the definitions of classes by
introducing a specialization/generalization link. There are several types of inheritance, the best
known are: simple and multiple inheritance. The former corresponds to a class hierarchy: each
class that is at the ith level of the inheritance tree inherits the attributes and methods of the
parent-class at the (i-l)th level (called superclass). In the case of multiple inheritance, classes
are arranged in a graph (without cycle): a class can then inherit from several superclasses.
However, when the mechanism of multiple inheritance is applied, a conflict of inheritance may
arise when the involved superclasses contain attributes or methods that have the same name.
Severa! strategies to solve this kind of conflict can be found in the literature.[BEL93, page 41]

2.2.2. Database Evolution
We will now review some database evolution possibilities provided by some object oriented
database systems. We will not realise here a exhaustive study of existing research efforts but
only a limited survey of the ability of some OODBMS (GemStone, Orion, Encore, .. .) to
support the changes on schemas and their propagation on the objects. No system provides a

Pagel-11

Schema Modification Propagation for Relational Database Applications

full support for object evolution; most of them support changes in the class definitions.
However, few of them have the ability to propagate these changes to related objects.

Change operations have to ensure that a structurally-consistent schema is produced as a result
of the update operation.[BEL93, page 45] For example in GemStone, changing the name of an
attribute' in a class is propagated to its subclasses, provided they do not redefine it locally.
Adding a new attribute is allowed if it is not already defined in a subclass. Deleting an attribute
in a class definition is allowed if it is not inherited from a superclass. Further, the deletion is not
propagated to the subclasses. This must be explicitly performed on each subclass. In contrast
to Orion, a class may not be deleted in GemStone and Encore if there are any existing objects,
since no references to deleted classes and objects are allowed. Classes referencing deleted ones
are thus forced to refer to their immediate superclass.[NGU89, page 53]

Structural consistency is thus provided by using a set of 'invariants' that define the consistency
requirements of the class hierarchy. The main 'invariants' which stemmed from the Orion
database system and which are now used in most OODBMS, are:

• Class lattice invariant:
The subclass/superclass relationship forms a lattice having as root a predefined class
'Object'.

• Distinct name invariant:
Ail attributes or methods defined or inherited must have distinct names.

• Distinct identity (origin) invariant:
Ail attributes or methods defined or inherited must have a distinct identity.

• Full inheritance invariant:
A class inherits ail attributes or methods from each of its superclasses unless it defines an
attribute or method with the same name.

• The type compatibility invariant:
If an attribute A2 of a class C is inherited from an attribute Al of a superclass of C then the
type (or domain) of A2 is either the same as that of Al or a subclass of Al.

These invariants must be preserved by any change on the schema.

An update operation oa a schema is qualified as legal if and only if it ensures production of a
consistent schema. Update operations on a database schema can be classified in two
categories:

• Changes to class definitions including:
- add an attribute or method to a class
- delete an existing attribute or method
- change the name of an attribute or a method
- change the type of an attribute

• Modifying the graph of classes
- add a new class to the graph
- delete an existing class and its links
- change the name of a class
- moving a class in the graph

Page 1-12

Chapter 1 : Introduction

The problem of schema modification cannot be limited to a set of change operations on the
class definitions. The system must also provide capability to control update propagation on the
object instances.[BEL93, page 46] The spectrum lies between a fully automatic propagation of
the changes and a manual one. The first approach is used in GemStone and Orion, while the
second is that of Encore. An explicit convert operator has to be invoked by the user in order to
modify, in Encore, an object and conform it to a modified class definition. When propagation is
automatic, the delay of effective change propagation to the objects has to be defined.
Propagation can be immediate or defered. Immediate propagation is adopted in GemStone. It
is called conversion. The impact of schema modifications is immediately implemented on the
involved objects. Defered propagation is used in Orion. It is called screening. The side-effects
are propagated only when the objects are accessed. The first solution emphasizes consistency
and information preservation. It also sacrifices performance. [NGU89, page 54] The second
solution emphasizes performance and makes the modification effective at the next access to the
object.

Most of the OODBMS's provide schema modification facilities. But they seldom support
automatic propagation to the objects. Sorne work has however already been realised. [Bel93]
provides, for example, the means to model the schema legal update operations and their
propagation to the associated objects. So far there is however no agreement on how to cope
with structure update propagation toward the objects.

2.3. HISTORICAL DATABASES

Temporal and historical database systems possess the ability to maintain and manipulate
historical data. Since many database systems must not only deal with time-varying data but also
with time-varying data structure, support for schema evolution is here also required.[ROD93,
pagel] The conceptualisation and design of a Temporally Oriented Data Model (TODM)
should therefore address both the dynamics of data as well as the dynamics of the definition of
data. Such a comprehensive TODM (see Figure 1-5) should thus intemalise the handling of
schema evolution and support thereby a Temporally Oriented Data Definition (TODD) (see
the left handside of Figure 1-6). TODD is a view of a database structure that allows it to
evolve over time and maintain the correspondence between data definitions and the data they
govem. [ARI91, page 451] As we have seen in the previous sections, the database evolution
problem has already been studied for a lot of systems, but the classical database restructuring
does not necessarily preserve historical information in its contemporary context, and in some
cases may imply outright loss of data- both contradict the very premise of historical databases.

A TODM must thus represent the data and the way it progresses with the time. A three
dimepsional spac~ can therefore be used, as shown in Figure 1-5, where time, object instances
and attributes are the primary dimensions of stored data.

Page 1-13

Schema Modification Propagation for Relational Database Applications

Data Cubes (TODM)

Time

6-89-----'-------'

Two DC10s were
removedand two

8727s were added

make quantity

2-89----'------__J

A 8747 was sold

9-881'----'-------'
quantity make

Figure 1 - 5: A TODM view of an airline's fleet database

A TODM could be extended to capture schema evolution by recognizing two interrelated
categories of objects. These categories are:

• Data abjects (or data cubes) which correspond to entites and relationships meant to be
captured by the database, e.g. aircrafts and so on.

• Schema abjects (or schema cubes) which correspond to data constructs that exist in the
database, and which capture their definition.

Page 1-14

Chapter 1 : Introduction

Schema Cubes (TODD) Data Cubes (TODM)

Time

attr-name dom

make quantity

1-/~q~u_a_n_t_it_y-z~~~ln~t~+--z-_-r---_~----1-7---,,•
7

-
88

~/ __ ma_ke_/~_K_ey~/~_~/

attr-name dom

Figure 1 - 6 : A TODMITODD view of an airline 's fleet database

The database has to maintain multiple and tirne-ordered schemas, through which programs can
interpret the portion of data that has been recorded while the corresponding schema prevailed.
Operationally, this means that database operations have to refer to the appropriate data
definition (schema objects), and that the manipulation of data definitions also needs to be
anchored in a temporal context. The conceptual structure of a TODM database with TODD is
depicted in Figure 1-6, which augments the view in Figure 1-5 with a TODD.

Page 1-15

Chapter 2:

Framework of our Thesis

Chapter 2 : Framework of our Thesis

1. BACKGROUND
As we already said in the first chapter (see page 1-8), our thesis is situated in the maintenance
phase of a database life cycle. ln order to delimit it we have chosen the forward database
maintenance strategy among the three proposed maintenance strategies (see page 1-6).
Remember that this strategy uses an idealistic context in which the conceptual, logical and
physical schemas are always available and correct and that the forward database maintenance
strategy supports changes of functional and non functional requirements. We will however only
consider changes of functional ones and we therefore propose, in chapter 3, a typology of
modifications on the conceptual level. As we have seen in the state of the art, a lot of different
data structure models are possible: we have chosen, for our thesis, the ER model on the
conceptual level and the relational one for the levels below. For each modification proposed in
the typology, we will study its impact on the logical schema, on the SQL database structure, on
the data and on the application programs.

ln order to decompose the complex topic of schema modification into simpler problems, we
will use the methodology described in the next section. ln a further section, we will explain the
graphical notations used to represent the concepts of the ER model and of the relational one.
We will finally indicate the exàct structure of our thesis.

Page 2-1

Schema Modification Propagation for Relational Database Applications

2. GENERAL METHODOLOGY
As database evolution is a very complex topic, we will decompose it into simpler problems.
We therefore start by choosing a restricted relational model, the Basic Relational Model and
we try to build an ER model, the Kemel, whose concepts are entirely translatable into those of
the Basic Relational Model. Once these two models defined, we can study the modifications,
supporting database evolution, in a very restricted framework.

As the Kemel is however a very poor model, we will enrich it into what we call the Basic ER
Model. When mapping the concepts of the Basic ER Model down to the logical level, we
observe that the Basic Relational Model is here not sufficient anymore and we will thus use the
complete relational model, the Rich Relational Model, instead. The above mentioned
enrichment of the Kemel forces us to review the previously considered modifications.

Generally, database schemas can however not be expressed in the Basic ER Modelas it is still
too poor. We therefore have to introduce the Rich ER Model, which allows the most
commonly used concepts and we have to study how the modifications are mapped down to the
Basic ER Model.

We thus distinguish three stages:

• Impact of the Modifications of the Kemel onto the Basic Relational Model
• Impact of the Modifications of the Basic ER Model onto the Rich Relational Model
• Mapping of the Modifications of the Rich ER Model down to the Basic ER Model

2.1. IMPACT OF THE MODIFICATIONS OF THE
KERNEL ONTO THE BASIC RELATIONAL MODEL

We will first describe the relation between the Kemel and the Basic Relational Model and we
will then discuss the impact of the modifications of the Kemel.

The Basic Relational Model is in our case an SQL model limited to the simplest objects. It
allows the following concepts only:

- tables with a primary key
- columns which may be null or not
- foreign keys referencing primary keys only
- primary keys composed by one mandatory column only
- uniqueness constraints composed by one column only

This model does thus not include triggers and check clauses for example.

We will try to find a restricted ER model, the Kemel, which bas a one-to-one relation with the
Basic Relational Model. That means that each schema in the Kemel must have an equivalent
one in the Basic Relational Model and vice versa. In other words, each object in one of the two
models must have a counterpart in the other one. The relation between the Kemel and the

Page 2-2

Chapter 2 : Framework of our Thesis

Basic Relational Model is illustrated in Figure 2-1. Note that a precise definition of the Kemel
will be given in the first section of chapter 3 (see page 3-1).

KERNEL

BASIC REL.

MODEL

Figure 2 - 1 : Relation between the Kernel and the Basic Relational Mode[

Due to the one-to-one relation between the two models, the modifications made on the
schemas of the Kernel are easily translatable on the schemas of the Basic Relational Model. In
order to study how the modifications of the Kemel are translated, we will analyse their impact
on the logical level, on the SQL database structure, on the data and on the application
programs.

2.2. IMPACT OF THE MODIFICATIONS OF THE BASIC
ER MODEL ONTO THE RICH RELATIONAL MODEL

We will then enrich progressively the Kemel in order to obtain an ER model, the Basic ER
Model, whose concepts are fully translatable into the Rich Relational Model. By Rich
Relational Model we mean a model including ail possible relational concepts:

- tables
- colurnns which may be null or not
- foreign keys
- primary keys
- uniqueness constraints
- check constraints
- v1ews
- indexes

A definition of the Basic ER Model can be found in chapter 6 (see page 6-2). The relation
between the different models seen so far is represented in Figure 2-2.

Page 2-3

Schema Modification Propagation for Relational Database Applications

RICH REL. MODEL

Figure 2 - 2 : Relation between the Basic ER

model and the Rich Relational Madel

This figure shows us that each schema expressed in the Basic ER Model is entirely translatable
into the Rich Relational Model, but that the contrary is not necessarily correct. For example,
certain check constraints have no equivalent in the ER models.

The previously mentioned enrichment of the Kemel forces us to review the mapping of the
modifications established for the Kemel on the one hand and involves new modifications on the
other hand. For example, allowing also non mono-attribute identifiers constraints us to review
the modification add_unique_feature among others. We have there to pay attention to the fact
that the primary key and thus the foreign keys can now be composed by several columns (see
page 6-18). In addition, allowing such identifiers involves new modifications such as adding or
removing an attribute to/from a unique key (see page 6-19).

2.3. MAPPING OF THE MODIFICATIONS OF THE RICH
ER MODEL DOWN TO THE BASIC ER MODEL

Generally, database schemas can however not be expressed in the Basic ER Modelas it is still
too poor. We therefore have to introduce the Rich ER Model, which allows the most
commonly used concepts (see page 7-1). Each schema expressed in this Rich ER Model must
be translatable into the Basic ER Model and each modification on a Rich ER schema must have
an equivalent on the Basic ER schema. This equivalent can be composed by either one or more
modifications of the Basic ER Model. For example, if we want to make a compound attribute
mandatory on the Rich ER Model, then on the Basic ER Model we have first to remove the
coexistence constraint from the decomposed attributes and then make each of them mandatory.

The hierarchy of the different models is shown in Figure 2-3.

Page 2-4

Chapter 2 : Framework of our Thesis

RICH ER

MODEL

BASIC ER

MODEL

RICH REL. MODEL

Figure 2 - 3 : The hierarchy of the different models

2.4. SUMMARY OF THE METHODOLOGY

To summarize the situation, we have established the way the modifications of the Rich ER
Model are mapped down to the Rich Relational Model. In fact, each modification of the Rich
ER Model is translated into one or several modification(s) of the Basic ER Model which in
their tum are mapped to the Rich Relational Model. Bach of the modifications of the Basic ER
Model has an impact on the logical level, on the SQL database structure, on the data and on
the application programs.

Page 2-5

Schema Modification Propagation for Relational Database Applications

3. GRAPHICAL NOTATIONS
We will give the graphical notations for the conceptual and logical concepts used in our thesis.
For most of the concepts of the conceptual level (see Figure 2-4), we will refer to [B0D89]
and we will use a similar notation for those of the logical level (see Figure 2-5).

Page 2-6

Chapter 2 : Framework of our Thesis

entity-type E

relationship-type R

functional dependency on
relationship-types

attribute a

attribute cardinalities1

minimum cardinality x
maximum cardinality y

coexistence constraint on
attributes

role r

role cardinalities
minimum cardinality x
maximum cardinality y

functional dependency on roles

equality constraint on roles

primarykey

unique key

El
Ê}-x-y-G:)-u-v-ÊJ

E
al [0-y]
a2[0-y]
a3
coex: al

a2

IEll.---•-~ @IJ-q-r
R2

Figure 2 - 4 : Graphical notations for the conceptual concepts

1 An attribute having the cardinalities [0-1] is optional
[1-1] is mandatory
[x-y] is multi-valued if y> 1

Page 2-7

Schema Modification Propagation for Relational Database Applications

relation E

El
column a

~
column features

~ mandatory column
optional column

1
]

foreign key feature2

El
all E2
a12 ill
a2Hx-1 l L-,.----<> id: a21
ref:a21 ace

ace

primary key feature
E

JÙ

ld:al
ace

unique key feature
E

al

id':al
ace

coexistence constraint
E

al[O-y]
a2[0-y]
a3
coex: al

a2

check constraint on foreign
El

column3
all E2
a12 ill
R_a21
~ id: a21

equ: R_a21 ace
ace

Figure 2 - 5: Graphical notations for the logical concepts

2 As we can see on the illustration, access keys (ace) will always be specified on the logical level when foreign,
primary and unique key features appear. We will however not consider them in the SQL descriptions as they
correspond to non-functional requirements which are not treated in our thesis.
3 Note that equ represents both the foreign key feature and the check constraint.

Page 2-8

Chapter 2 : Framework of our Thesis

4. STRUCTURE OF THE PROJECT
Our principle concern will be to analyze the 'Schema Modification in Relational Database
Systems' on a restricted model: the Kernel. We therefore give, in the third chapter, a precise
description of the Kernel and a typology of its modifications.

As our thesis is a very technical one, we have decided to adopt an inductive approach. We will
thus first develop a case study and then analyse the modifications and their impact on it (see
chapter 4). In a further step, we will study the modifications in general (see chapter 5).
Nevertheless, as the typology of the modifications is very large, we will treat only a few of
them in chapter 4 and 5 and we will discuss the totality of the modifications of the typology in
appendices 1 and 2.

In the six.th chapter, we will illustrate the problems that we can expect by enlarging the Kernel
to the Basic ER Model. In the seventh chapter, we will describe first the 1ink that exists
between the Rich and the Basic ER Models and then the mapping of the modifications from the
Rich ER Model down to the Basic ER Model.

Finally, in the eighth chapter, we will show how these modifications could be integrated into a
CASE tool. We will finish our thesis with a brief conclusion by indicating how our thesis could
be continued.

Page 2-9

Chapter 3:

Study of the Kernel

Chapter 3 : Study of the Kemel

1. DESCRIPTION OF THE KERNEL
As we already said, we will define a restricted ER model, the Kemel, which has a one-to-one
relation with the Basic Relational Model (for a definition see page 2-2). That means that each
schema in the Kemel must have an equivalent one in the Basic Relational Model and vice
versa. In other words, each object in one of the two models must have a counterpart in the
other one. The relation between the Kemel and the Basic Relational Model is illustrated in
Figure 3-1.

KERNEL

BASIC REL.
MODEL

Figure 3 - 1 : Relation between the Kernel and the Basic Relational Madel

We choose the Kemel as a simplified ER model which allows the following concepts only:

- entity-types having at least one attribute and a primary key
If we would allow entity-types without a primary key, certain relationship-types
connected to them could no't be directly expressed in the relational model. We would
have to add a technical identifier to the entity-types before translating these
relationship-types into the relational model.

- atomic and single-valued attributes, which can be optional or mandatory
This restriction is necessary as compound and/or multi-valued attributes must be
decomposed and/or extracted before being translated into the relational model.

- all the roles except those with cardinalities 1-N
The minimum cardinality 1 of a 1-N role could only be represented by a check
constraint in the relational model and as the Basic Relational Model does not support
check constraints, we have to prohibit these roles.
In order to keep the Kemel simple and as, most of the time, the roles can be identified
by their cardinalities, we do not consider names for them.

Page 3-1

Schema Modification Propagation for Relational Database Applications

Note:

- functionafl relationship-types which are non-recursive and have the following
cardinalities:

1-1/0-N
0-1/0-N
1-1/0-1
0-1/0-1

(0-N/1-1 is symmetrical)
(0-N/0-1 is symmetrical)
(0-1/1-1 is symmetrical)

We do not consider non functional relationship-types as they must be transformed into
entity-types before being translated into the relational model. In addition, as we do
not consider names for the roles, we cannot deal properly with recursive relationship
types.

- identifiers of entity-types composed by one attribute only
We only consider identifiers of entity-types as we do not need explicit identifiers for
functional relationship-types. Indeed for these relationship-types the identifer(s) is
(are) derivable from their maximum cardinalities. Note that the primary keys must be
composed by a mandatory attribute only.

For the moment, we only consider identifiers with one attribute as we can not express
coexistence constraints in the Basic Relational Model. The problem is illustrated by Figure 3-2.

CUSTOMER
name
firstname
date birthfû-11
id: name

firstnarne

CUSTOMER
narne
firstnarne
date_birth 0-1
id: narne

firstnarne
ace

-u -1---<< LIVE >--i0-1

ADDRESS
Street
number
zip
citv
id: street

number
zip

ADDRESS
LIVE_firstnarne[0-1]
LIVE_narne[0-1]
Street
number
zip
ci
id: street

number
zip
ace

id': LIVE_narne
LIVE_firstnarne
ref coex ace

Figure 3 - 2: An example of an identifier which is not allowed in the Kemel

1 A relationship-type is functional if it is binary, if it bas no attributes and if it is not N-N.

Page 3-2

Chapter 3 : Study of the Kemel

The coexistence constraint between LIVE_name and LIVE_firstname cannot be expressed in
the Basic Relational Model.

Page 3-3

Schema Modification Propagation for Relational Database Applications

2. TYPOLOGY OF THE
MODIFICATIONS

The typology of the modifications of the Kemel is established according to two criteria: the
change in semantics and the objects on which the modifications apply.

augmenting decreasing preserving

E_P
R_P

role Ro_P
attribute A_P
identifier ld_P

Figure 3 - 3: Typology of the modifications

The concept 'semantics' can be understood in two different ways:

1. A first approach assimilates 'semantics' to the number of constraints expressed in a schema.
For example, decreasing the maximum cardinality of a role from N to 1 would correspond
to an augmentation of the semantics as we add the constraint 'max card = 1 '.

2. The other approach links 'semantics' to the power of representing objects of the real world
and thus to the quantity of data that the schema allows to store. For example, decreasing the
maximum cardinality of a role from N to 1 would correspond in this approach to a decrease
of the semantics as we could represent less.

In our thesis we choose the second approach as it seems more natural to us.

For each group of the previous table, we will consider the following modifications:

group E_A: add_entity-type

group E_D: remove_entity-type

group E_P: rename_entity-type

group R_A: add_l-1/0-l_rel-type
add_0-1/0- l_rel-type
add_l-1/0-N_rel-type
add_0-1/0-N_rel-type

Page 3-4

group R_D: remove_l-1/0- l_rel-type
remove_0-1/0-l_rel-type
remove_l-1/0-N_rel-type
remove_0-1/0-N_rel-type

group R_P: rename_l-1/0-l_rel-type
rename_0-1/0-l_rel-type
rename_l-1/0-N_rel-type
rename_0-1/0-N_rel-type

group Ro_A: augment_max_card
decrease_min_card

group Ro_D: decrease_max_card
augment_min_card

group Ro_P: /

Note:

Chapter 3: Study of the Kernel

As we only consider binary, non-recursive relationship-types for the moment, adding or
removing a role does not make any sense. fu addition, we do not give a name to a role and we
thus do not consider the corresponding modifications: adding or removing a name to/frorn a
role or renaming it.

group A_A: add_optional_attribute
add_mandatory _attribute
make_attr_optional
extend_domain_attribute
change_type_int_char
change_type_float_char
change_type_date_char
change_type_date_int
change_type_int_float
change_type_date_float

group A_D: remove_optional_attribute
remove_rnandatory _attribute
rnake_attr_mandatory
restrict_domain_attribute
change_type_char_int
change_type_float_int
change_type_char_float
change_type_char_date
change_type_int_date
change_type_float_date

group A_P: rename_optional_attribute
rename _mandatory _attribu te

Page 3-5

Schema Modification Propagation for Relational Database Applications

Note:
The operation change_type_attribute, as a whole, cannot be classified along criterium 'change
in semantics' and must therefore be divided into more detailed modifications. In order to
reduce the number of modifications, we have only considered four basic data types: char,
integer, float and date.

group ld_A: remove_unique_feature

group ld_D: add_unique_feature

group ld_P: switch_PK_unique

Note that we do not consider semantics preserving modifications such as
'transform_l-1/0-N_rel-type➔entity-type' since they generate a Kemel incompatible schema
or they cannot be translated into the Basic Relational Model. We thus cannot consider such
modifications because of the limitations of the two models. As soon as the limitations of the
models allow it, we have however to study them too. An illustration of such a modification on
the Basic ER Model is given in chapter 7 (see page 7-12).

Page 3-6

Chapter 4:

Study of the Modifications:
Case Study Approach

Chapter 4: Study of the Modifications: Case Study Approach

1. INTRODUCTION
We have now described the Kemel and we have given the typology of the possible
modifications. Before studying in detail those modifications in general, we will use a case study
illustrating the problems which can occur. Thus we will first describe the case study and then
apply the modifications on it.

As we will not apply ail the modifications on it, we will give once again the typology of the
modifications, indicating this time in bold those that we will analyse in detail in this chapter.
The modifications that will not be treated here can be found in appendix 1.

Modifications of the entity-types:

Modifications of the relationship-types:

Modifications of the roles:

Modifications of the attributes:

add_entity-type
remove_entity-type
rename_ entity-type

add_ 1-1/0-l_rel-type
add_0-1/0-l_rel-type
add_l-1/0-N_rel-type
add_0-1/0-N_rel-type
remove_l-1/0-l_rel-type
remove_ 0-1/0-l_rel-type
remove_l-1/0-N_rel-type
remove_0-1/0-N_rel-type
rename_l-1/0-l_rel-type
rename_0-1/0-l_rel-type
rename_l-1/0-N_rel-type
rename_0-1/0-N_rel-type

augment_max_card
decrease_min_card
decrease_max_card
augment_min_card

add_ optional_attribute
add_mandatory _attribute
make_attr_optional
extend_domain_attribute
change_type_int_char
change_type_float_char
change_type_date_char
change_type_date_int
change _type _int_float
change _type _date _float
rem ove_ optional_attribute
remove_mandatory _attribute
make_attr _mandatory

Page 4-1

Schema Modification Propagation for Relational Database Applications

Modifications of the identifiers:

Page4-2

restrict_domain_attribute
change_type_char_int
change_type_float_int
change_type_char_float
change_type_char_date
change_type_int_date
change_type_float_date
rename_optional_attribute
rename_mandatory _attribute

remove_unique_feature
add_ unique _feature
switch_PK_unique

Chapter 4: Study of the Modifications: Case Study Approach

2. DESCRIPTION OF THE CASE
STUDY

2.1. INTRODUCTION

In order to study the impact of the modifications of the conceptual schema onto the logical
schema, onto the SQL database structure, onto the data and onto the application programs, we
have developed the case study described here below. 11ris case study deals with CUSTOMERs
who PLACE ORDERs which are COMPOSEd of LINEs SPECIFYing a PRODUCT.

We begin with a description of the conceptual and logical case study schemas. We then give
the corresponding SQL description and a possible population of the database. Finally, we have
chosen a set of pro gram extracts, which seem interesting to be studied in our thesis.

2.2. CONCEPTUAL SCHEMA

LINE
.nliru;
qty

id: nline

0-1

< CO+SE >
0-N

ORDER

.rum1
date
id: nord

SPECIFY 0-N

-0-1~0-N

PRODUCT

nl2[Qd
label
rice

id: nprod

CUSTOMER
IlQ.lfil

name
date_birth[0-1]
id: ncust
id': name

Figure 4 - 1 : Conceptual schema of the case study

Page 4-3

Schema Modification Propagation for Relational Database Applications

2.3. LOGICAL SCHEMA

CUSTOMER ORDER LINE PRODUCT

~ nord ~ Illl[Qd
name date qty label
date_birth[0-1] PLACE ncust[0-1] SPECIFY _nprod orice
id: ncust IL id: nord l<J COMPOSE nord[0-1] ,.c, id: nprod

ace ace id: nline ace
id': name ref: PLACE_ncust ace

ref: SPECIFY _nprod
~

ace ace
ace

~

ref: COMPOSE_nord
ace

Figure 4 - 2: Logical schema of the case study

2.4. SQL DESCRIPTION

As the syntax of the different SQL languages (DB2, RDB, ...) varies strongly with the
languages, we have chosen SQL-RDB as main SQL language for our thesis. We will however
sometimes indicate alternatives in other SQL languages.

create table CUSTOMER
(ncust char(4) not null

name char(12) not null
date_birth date,
primary key (ncust) constraint idCUSl,
unique (name) constraint idCUS2) ;

constraint C_ncust,
constraint C_name,

create table ORDER
(nord

date
PLACE_ncust
primary key
foreign key

char(4)
date
char (4),

not null
not null

constraint O_nord,
constraint O_date,

(nord) constraint idORDl,
(PLACE_ncust) references CUSTOMER constraint CUSl);

create table PRODUCT
(nprod

label
price
primary key

char(5) not null constraint P_nprod,
char(20) not null constraint P_label,
integer not null constraint P_price,

(nprod) constraint idPROl);

create table LINE

Page 4-4

(nline
COMPOSE_nord
SPECIFY_nprod
qty

char(6)
char (4),

not null

char(5) not null
integer not null

(nline) constraint idLINl,

constraint L_nline,

constraint L_SPECIFY_nprod,
constraint L_qty,

primary key
foreign key
foreign key

(COMPOSE_nord) references ORDER constraint ORDl,
(SPECIFY_nprod) references PRODUCT constraint PROl);

Chapter 4: Study of the Modifications: Case Study Approach

2.5. DATA

CUSTOMER
ncust name (date birth)
Alül Bootsma H. 12/07/1969
D308 Ford H. null
B234 PeifferM. 22/06/1917
A958 Huntin~ton G. 31/01/1969
D365 McGaw J. 29/02/1980
B472 Hasselhoff S. null
C385 Casci G. null
A590 NutbushM. 09/06/1969
B253 Whopper J. null
C395 Osborn M . 28/11/1972

Figure 4 - 3 : Table CUSTOMER

ORDER
nord (PLACE ncust) date
E386 A958 02/01/1995
F285 B472 12/03/1994
G274 null 15/07/1993
F842 C395 31/12/1994
E345 B234 05/01/1995
G222 A958 23/05/1994
F902 D365 16/09/1994
E583 B472 12/01/1995
F676 Alü l 26/02/1993
G809 null 23/05/1994

ORDER.PLACE_ncust in CUSTOMER.ncust

Figure 4 - 4 : Table ORDER

Page 4-5

Schema Modification Propagation for Relational Database Applications

n1ine
AB1234
GH2345
RT3456
ZU4567
ER5678
NM6789
OP7890
JK0987
TZ9876
KJ8765

WQ7654
XY6543
DS5432
BV1357
102468

Page4-6

LINE
(COMPOSE nord) qty SPECIFY nprod

E386 1000 AAll0
null 1518 CA510

F285 345 AAll0
G274 2536 BE072
null 4587 EG880

G274 5558 WN592
G274 5458 RK560
F842 5473 SW226
E386 623 LS906
null 4587 SG953

F902 6325 BY907
null 9658 BY907

E583 5698 EG880
F842 7458 AB099
G809 4125 AB099

LINE.COMPOSE_nord in ORDER.nord
LINE.SPECIFY _nprod in PRODUCT.nprod

Figure 4 - 5: Table LINE

PRODUCT
norod label price
AAll0 christrnas tree 35
CA510 glass 50
AB099 pencil 10
BE072 gearbox 1000
WN592 wheel 850
SW226 alarrn-clock 75
LS906 poster 60
SG953 toothbrush 13
EG880 postcard 9
EZ268 iumper 50
QA513 socks 23
PS375 trousers 46
RK560 rmrror 93
BY905 book 186
BY907 computer 2335

Figure 4 - 6 : Table PRODUCT

Chapter 4: Study of the Modifications: Case Study Approach

2.6. PROGRAM EXTRACTS

The program extracts which are the most concemed by the modifications are those treating
SQL queries. In order to obtain a significant set of these queries, we refer to the relational
algebra.

The relational algebra operations are usually divided into two groups. A first group includes
set operations from the mathematical set theory; these are applicable because each relation is
defined to be a set of tuples. Set operations include UNION, INTERSECTION,
DIFFERENCE and CARTESIAN PRODUCT. The other group consists of operations
developed specifically for relational databases; these include SELECT, PROJECT and JOIN,
among others.[ELM94, page 153] We will concentrate our efforts essentially on the second
kind of operations but we will also describe an example of the first group of operations.

We thus consider SQL queries for the following operations: SELECT, PROJECT, JOIN and
UNION.

Note:
We would have to consider the impact on other SQL commands such as 'insert into', 'update',
and so on, but we will concentrate our efforts on the queries only as they are more often used.

2.6.1. Select
We will illustrate the SELECT operations by two examples:

• select*
from CUSTOMER
where date_birth = 09/06/1969

This query selects the number, the name and the date of birth of the CUSTOMERs who are
bom on the 9th of June 1969 and its result applied on the case study database is:

ncust name (date_birth)
A590 Nutbush M. 09/06/1969

• select*
from CUSTOMER
where ncust in (select PLACE_ncust

from ORDER
where nord in (select COMPOSE_nord

from LINE
where SPECIFY_nprod = 'AA110'))

This query selects all the information of the CUSTOMERs who have ORDERed the
PRODUCT 'AAl 10' and it has as result:

ncust
A958
B472

name
Huntington G.
Hasselhoff S.

(date_birth)
31/01/1969
null

Page 4-7

Schema Modification Propagation for Relational Database Applications

2.6.2. Project

select nline, COMPOSE_nord
from LINE
where SPECIFY_nprod = WN592

This query selects ruine and COMPOSE_nord of the rows of table LINE, which reference
PRODUCT WN592 and it has as result:

ruine (COMPOSE nord)
NM6789 G274

2.6.3. Join

select name, nord
from CUSTOMER, ORDER
where (ncust = PLACE_ncust) and (date_birth < 01/01/1977)

This query selects the name of the CUSTOMERs and the order number of the ORDERs placed
by the CUSTOMERs who are born before the 1st of January 1977 and it has as result:

2.6.4. Union

name
Bootsma H.
Huntington G.
Peiffer M.
Huntington G.
Osborn M.

select SPECIFY_nprod
from LINE
where qty > 4000

UNION
select nprod

from PRODUCT
where price <= 50

nord
F676
G222
E345
E386
F842

This query selects the product number of the PRODUCTs which cost less than 50 or which
have been ordered more than 4000 times in a single LINE. The result of this query is:

Page 4-8

nprod
EG880
WN592
RK560
SW226
SG953
BY907
AB099
AAllO
CA510
EZ268
QA513
PS375

Chapter 4: Study of the Modifications: Case Study Approach

3. STUDY OF THE MODIFICATIONS:
CASE STUDY APPROACH

3.1. INTRODUCTION

In the remaining of this chapter, we have to study the modifications of the conceptual level and
their impact on the logical level, on the SQL database structure, on the data and on the
application programs. This impact is shown in Figure 4-7.

?

?

DO
?

D1

PO ?
P1

Figure 4 - 7 : Representation of the database evolution problem

If the conceptual schema CSO has been changed, the logical schema LSO and the SQL
description SQLO must be changed accordingly. Data DO is no longer valid and has to be
converted into data Dl. Finally, the application programs PO must be partly rewritten in order
to comply with the new data structures described in SQLl. [HAI94a] Note that they must be
manually changed as each application must be treated separately, according to its own logic.
The best help we can supply is to indicate the concemed program sections and to give hints on
what kind of changes to be performed.

As shown in the third chapter, the modifications are classified according to the objects on
which they apply on the one hand and, on the other hand, according to their nature:
augmeriting, decreasing or preserving semantics (see page 3-4).

For each object, we will analyse only one modification. The analysis will be decomposed into
two parts: its classification and its description. The description part is essentially divided into

Page 4-9

Schema Modification Propagation/or Relational Database Applications

three subparts: the impact of the modification on the Logical Schema, on the SQL Description
& Data and on the Program Extracts.

3.2. RENAME ENTITY-TYPE1

3.2.1. Classification of the Modification
As shown in Figure 4-8, rename_entity-type is a modification on entity-types which preserves
the semantics.

semantics ➔ augmenting decreasing preservmg
objects J,
entitv-tvoe X
rel-type
role
attribute
identifier

Figure 4 - 8: Classification of rename_entity-type

3.2.2. Description of the Modification
Let us suppose we want to change, in our case study, the entity-type CUSTOMER into
CLIENT.

1 Normally we would have to add the following precondition: 'The new name of the entity-type that should be
renamed must not yet exist.' As such preconditions are trivial, we will not indicate them anymore.

Page 4-10

Chapter 4: Study of the Modifications: Case Study Approach

LINE

.Il.li.ru.
qty
id: nline

0-1

< CO+SE >
0-N

ORDER
n.m:d
date
id: nord

LINE

1-1-~ SPECIFY ---1-N

0-1~0-N -

PRODUCT

.mml
label
rice

id: nprod

CUSTOMER

.lliJ.lfil
name
date_birth[0-1)
id: ncust
id': name

PRODUCT

.mml
.Il.li.ru. 1-1-- SPECIFY - label ,.....--
qty
id: nline

1
0-1

(co+sE)
0-N

ORDER
llillil
date
id: nord

-0-1~0-N

orice
id: nprod

CLIENT
.lliJlS.t.
name
date birth[0-1]
id: ncust
id': name

Figure 4 - 9 : Renaming an entity-type on the conceptual level

3.2.2.1. Logical Schema

In the logical schema, we have to change the name of the corresponding relation.

Page 4-11

Schema Modification Propagation for Relational Database Applications

CUSTOMER ORDER LINE PRODUCT

~ nm:d .11.liM !UliOO
name date qty label
date birth [0-1] PLACE_ncust[0-1] SPECIFY _nprod orice

id: ncust L id: nord <:J- COMPOSE nord[0-1] ri> id: nprod
ace ace id: nline ace

id': name ref: PLACE_ncust ace
ref: SPECIFY _nprod -ace ace

ace
- ref: COMPOSE_nord

ace

CLIENT ORDER LINE PRODUCT

~ llillil ~ mmi
name date qty label
date birth [0-1] PLACE_ncust[0-1] SPECIFY _nprod price

id: ncust L id: nord r<J COMPOSE nordr0-1 l rC> id: nprod
ace ace id: nline ace

id': narne ref: PLACE_ncust ace
ref: SPECIFY _nprod -ace ace

ace - ref: COMPOSE_nord
ace

Figure 4 - 10: Renaming an entity-type on the logical level

3.2.2.2. SQL Description & Data

In some SQL languages there may be a 'rename table' command. The modification would thus
become:

alter table CUSTOMER
rename table CLIENT on cascade;

In SQL-RDB however, no such command exists and we have therefore to create a new table
and to copy the data into it.

create table CLIENT
(ncust char(4)

name char(12)
date_birth date,

not null
not null

constraint C_ncust,
constraint C_name,

prirnary key (ncust) constraint idCLil,
unique (name) constraint idCLI2) ;

insert into CLIENT
select ncust, name, date_birth
frorn CUSTOMER;

alter table ORDER
drop constraint CUSl,
add constraint foreign key (PLACE_ncust) references CLIENT

constraint CLil;

Page 4-12

Chapter 4 : Study of the Modifications: Case Study Approach

(* For each view defined on table CUSTOMER, we have to redefine it on table
CLIENT. In future we will not consider views anymore as they do not
correspond to ER abjects. *)

drop table CUSTOMER cascade;

No datais lost as the datais just moved from one table into another.

Notes:
• This operation in SQL-RDB is often a very slow one as we have to copy a whole table.

We thus recommend to create a view CLIENT which includes only the table
CUSTOMER. This could be realised by the following command:

create view CLIENT
as select*

from CUSTOMER

• Other SQL languages, such as DB2, offer another possibility to implement the
modification: giving a synonym to the entity-type (that has to be renamed) instead of
renaming it properly. This alternative could be realised by the following SQL command:

create synonym CLIENT
for CUSTOMER;

Note that in both cases the original table is however not renamed.

3.2.2.3. Program Extracts

In ail the select queries referencing CUSTOMER, we have to rename it with CLIENT. For
example, the first select query of our case study (see page 4-7) would become:

select*
from CLIENT
where date_birth = 09/06/1969

In addition to the select queries, we have also to review the application programs in which they
appear. For instance, we must rename certain variables and/or some fields or headings in the
user interfaces. Finally, let us note that the documentation should also be updated.

Page 4-13

Schema Modification Propagation for Relational Database Applications

3.3. REMO VE_ 0-1/0- l_REL-TYPE

3.3.1. Classification of the Modification
As shown in Figure 4-11, remove_0-1/0-l_rel-type is a modification on relationship-types
which decreases the semantics.

semantics ➔ augmenting decreasing preserving
abjects J,
entity-type
rel-type X
role
attribute
identifier

Figure 4 - 11 : Classification of remove_0-1/0-l_rel-type

3.3.2. Description of the Modification
Let us suppose that we want to remove the 0-1/0-1 relationship-type WORK between
ADDRESS and CUSTOMER.

ADDRESS CUSTOMER
llildd
Street
nurnber -,

zip
city
id: nadd

0-1~0-1

00.lfil

- name
date birth [0-11
id: ncust
id': name

ADDRESS CUSTOMER

nadd 00.lfil

Street
number

name
date birth[0-1]

zip
City

id: ncust
id': name

id: nadd

Figure 4 - 12: Removing a 0-1/0-1 relationship-type on the conceptual Level

Page 4-14

Chapter 4 : Study of the Modifications: Case Study Approach

We have to consider two possible implementations for the relationship-type WORK:

• WORK is implemented by a foreign key in ADDRESS
• WORK is implemented by a foreign key in CUSTOMER

3.3.2.1. WORK is implemented,by a foreign key in ADDRESS

3.3.2.1.1. Logical Schema

We remove the column WORK_ncust from ADDRESS with its candidate and foreign key
features.

ADDRESS
WORK_ncust[0-1)
nadd
Street
number
zip
City
id: nadd
id': WORK_ncust

refacc

ADDRESS

nadd
Street
number
zip
City

id: nadd
ace

CUSTOMER

llQlfil
narne
date_birth 0-1
id: ncust

ace
id': narne

ace

CUSTOMER

llQlfil
narne
date birth f0-11
id: ncust

ace
id': narne

ace

Figure 4 - 13 : Removing a 0-1/0-1 relationship-type on the logical Level

3.3.2.1.2. SQL Description & Data

alter table ADDRESS
drop constraint idADD2,
drop constraint CUSl,
drop WORK_ncust;

(* we rernove the unique key feature *)
(* we rernove the foreign key feature *)

The link between a CUSTOMER and his/her ADDRESS is lost.

Page 4-15

Schema Modification Propagation for Relational Database Applications

3.3.2.1.3. Program Extracts

Ali the select queries which reference WORK_ncust in ADDRESS must be modified.
Depending on their context, the user has either to drop the select queries or to modify them for
example as follows:

select name, street, nwnber, zip, city
frorn ADDRESS, CUSTOMER
where (WORK_ncust = ncust) and

(ncust in (select PLACE_ncust
frorn ORDER
where nord in (select COMPOSE_nord

frorn LINE

select name
frorn CUSTOMER
where ncust in select PLACE_ncust

frorn ORDER

where SPECIFY_nprod = 'AA110')))

where nord in (select COMPOSE_nord
frorn LINE
where SPECIFY_nprod = 'AAllO'))

The application programs in which these queries appear must also be reviewed. We cannot
describe a general method how to deal with these application programs as each one of them
must be treated individually. Let us for example consider a screen which displays the
information about a CUSTOMER, including his/her working ADDRESS. As we have now lost
the link between a CUSTOMER and his/her working ADDRESS, the user has to decide what
should happen to the part of the screen allocated to the working ADDRESS. He can either
drop it and rearrange the screen or reuse it for another purpose (for example: for indicating the
living ADDRESS of the CUSTOMER). In addition, the user has to check whether the
variables are still ail needed and he has also to update the documentation.

3.3.2.2. WORK is implemented by a foreign key in CUSTOMER

3.3.2.2.1. Logical Schema

We remove the column WORK_nadd in CUSTOMER with its candidate and foreign key
features.

Page 4-16

Chapter 4: Study of the Modifications: Case Study Approach

CUSTOMER

ADDRESS WORK_nadd[0-1]

.!llidd .nrust

Street name

number date birth f 0-11
zip id: ncust
City ace

id: nadd
[_.- id':WORK_nadd

ace refacc
id': name

ace

ADDRESS CUSTOMER

.!llidd .nrust
Street name
number date birth f0-11
zip id: ncust
city ace
id: nadd id' : name

ace ace

Figure 4 - 14: Removing a 0-1/0-1 relationship-type on the logical Level

3.3.2.2.2. SQL Description & Data

alter table CUSTOMER
drop constraint idCUS2,
drop constraint ADDl,
drop WORK_nadd;

(* we remove the unique key feature *)
(* we remove the foreign key feature *)

The link between a CUSTOMER and his/her ADDRESS is lost.

3.3.2.2.3. Program Extracts

The impact on the program extracts are similar to those of the previous case (see page 4-16).

Page 4-17

Schema Modification Propagation for Relational Database Applications

3.4. AUGMENT MAX CARD - -

3.4.1. Classification of the Modification
As shown in Figure 4-15, augment_max_card is a modification on roles which augments the
semantics.

semantics ➔ augmenting decreasing preserving
objects J,.
entitv-type
rel-type
role X
attribute
identifier

Figure 4 - 15 : Classification of augment_max_card

3.4.2. Description of the Modification
Precondition:
Given the restrictions of the relationship-types in the Kernel (see page 3-2) the only
augmentations of the maximum cardinality of arole that we accept so far are:

• 1-1/0-1 ➔ 1-1/0-N
• 0-1/0-1 ➔ 0-1/0-N

We consider an example for each of the two cases.

3.4.2.1. 1-1/0-1 ➔ 1-1/0-N

Let us consider the example where a CUSTOMER LIVEs at an ADDRESS. We want to
augment to N the maximum cardinality of the 0-1 role of relationship-type LIVE.

Page 4-18

Chapter 4: Study of the Modifications: Case Study Approach

ADDRESS CUSTOMER
n.add ~
Street

-1-1~0-1-
name

number date birthr0-11
zip

id: ncust city
id': name

id: nadd

JJ,

ADDRESS CUSTOMER
n.add WJfil
Street

-1-1~0-N-
narne

number date birth [0-1]
zip

id: ncust City
id: nadd

id': name

Figure 4 - 16: Augmenting the maximum cardinality of arole to Nin an
1-1/0-1 relationship-type on the conceptual Level

3.4.2.1.1. Logical Schema

We have to remove the candidate key feature from the foreign key LIVE_ncust in relation
ADDRESS.

Page 4-19

Schema Modification Propagation for Relational Database Applications

ADDRESS
LIVE_ncust
llild.d
Street
number
zip
city
id: nadd

ace
id':LIVE_ncust

refacc

ADDRESS
LIVE_ncust
llildd
Street
number
zip
City
id: nadd

ace
ref: LIVE_ncust

ace

CUSTOMER

nrust
name
date_birth 0-1
id: ncust

ace
id': name

ace

CUSTOMER

.llia.l.Sl
name
date_birth[0-1]
id: ncust

ace
id': name

ace

Figure 4 - 17 : Augmenting the maximum cardinality of a rote to Nin an
1-1/0-1 relationship-type on the logical level

3.4.2.1.2. SQL Description & Data

alter table ADDRESS
drop constraint idADD2; (* we remove the unique key feature *)

No modifications are made on the data.

3.4.2.1.3. Program Extracts

Let us consider the following program extract:

var street: STRING[20);
number: INTEGER;
zip: INTEGER;
city: STRING[20);

exec SQL
select street, number, zip, city

into :street, :number, :zip, :city
from ADDRESS
where LIVE_ncust = 'A101'

end exec;
if SQLCODE = 0
then begin

Page4-20

(* if such a row has been found *)

Chapter 4 : Study of the Modifications: Case Study Approach

write(street);
write(number);
write (zip);
write(city);

end;

We have to adapt this extract, as shown here below, in order to allow a CUSTOMER to have
several ADDRESSes. Note that the simple treatment (if...then) has to be replaced by a loop
treatment (while ... do).

var street: STRING[20) ;
number: INTEGER;
zip: INTEGER;
city: STRING[20);

exec SQL
declare c cursor for

select street, number, zip, city
frorn ADDRESS
where LIVE_ncust = 'A101';

open c;
fetch c into :street , :number, :zip, :city;

end exec;
while SQLCODE = 0 (* the last i t em has not yet been treated *)

do begin
write (street);
write (number);
write (zip);
w:::-ite (city);
exec SQL

fetch c into :street, :number, :zip, :city;
end exec

end;
exec SQL

close c
end exec;

In addition, let us reconsider the screen which displays the information about a CUSTOMER,
including his/her working ADDRESS. As a CUSTOMER can now have several ADDRESSes,
the user has to rearrange the screen so that it can display several ADDRESSes . Finally, the
user has to replace certain variables by arrays and he has also to update the documentation.

3.4.2.2. 0-1/0-1 ➔ 0-1/0-N

We want to transform the role of the relationship-type WORK played by CUSTOMER into
0-N.

Page 4-21

Schema Modification Propagation for Relational Database Applications

ADDRESS

.nadd
Street
number
zip
city

id: nadd

ADDRESS

.nadd
Street
number
zip
ci

id: nadd

0-1~0-1 - , -

0-1~0-

CUSTOMER
.llid.lfil
name
date birth r 0-11
id: ncust
id': name

CUSTOMER
.llia.lfil
name
date_birth 0-1
id: ncust
id': name

Figure 4 - 18 : Augmenting the maximum cardinality of a role to Nin an
0-1/0-1 relationship-type on the conceptual level

There are two possible representations on the logical level:

• WORK is implemented by a foreign key in relation ADDRESS
• WORK is implemented by a foreign key in relation CUSTOMER

3.4.2.2.1. WORK is implemented by a foreign key in relation ADDRESS

3.4.2.2.1.1. Logical Schema

The initial logical schema is:

ADDRESS
WORK_ncust[0-1)
.nadd
Street
number
zip
City

id: nadd
ace

id' : WORK_ncust
ref ace

CUSTOMER

.llid.lfil
name
date_birth 0-1
id: ncust

ace
id': name

ace

Figure 4 - 19 : The initial logical schema

This case is identical to the case 3.4.2.1.1. (see page 4-19).

Page 4-22

Chapter 4 : Study of the Modifications: Case Study Approach

3.4.2.2.2. WORK is implemented by a foreign key in relation CUSTOMER

3.4.2.2.2.1. Logical Schema

On the logical level, the transformation is:

ADDRESS

nadd
Street
number
zip
city

id: nadd
ace

ADDRESS
WORK_ncust[0-1]
nadd
street
number
zip
city

id: nadd
ace

ref: WORK_ncust
ace

:..cc.

CUSTOMER
WORK_nadd[0-1]
~
name
date birth f 0-11
id: ncust

ace
id': WORK_nadd

refacc
id': name

ace

CUSTOMER

OOJfil
name
date_birth 0-1
id: ncust

ace
id': name

ace

Figure 4 - 20 : Augmenting the maximum cardinality of a rote to N in an
0-1/0-1 relationship-type on the logical level

3.4.2.2.2.2. SQL Description & Data
var cust: STRING[4];

add: INTEGER ;

exec SQL
(* we create the new foreign key colwnn *)
alter table ADDRESS

add WORK_ncust char(4);
(* we copy the data representing relationship-type WORK from table

CUSTOMER into table ADDRESS *)
declare c cursor for

select ncust, WORK_nadd
from CUSTOMER
where WORK_nadd is not null;

open c;
fetch c into :cust, :add;

end exec;

Page 4-23

Schema Modification Propagation for Relational Database Applications

while SQLCODE = 0
do begin

(* the last item has not yet been treated *)

exec SQL
update ADDRESS

set WORK_ncust = :cust
where nadd = :add;

fetch c into :cust, :add;
end exec;

end;
exec SQL

(* we add and remove the necessary constraints *)
alter table ADDRESS

add constraint foreign key (WORK_ncust) references

alter table CUSTOMER
drop constraint idCUS2,
drop constraint ADDl,
drop WORK_nadd;

close c;
end exec;

CUSTOMER constraint CUSl;

(* we remove the unique key feature *)
(* we remove the foreign key feature *)

Note that no datais lost as the data representing relationship-type WORK is moved from table
CUSTOMER into table ADDRESS.

3.4.2.2.2.3. Program Extracts

Application programs referencing the foreign key representing relationship-type WORK must
be reviewed. Two possible modifications are:

• var add: STRING[l2];

exec SQL
select WORK_nadd

into :add
from CUSTOMER
where name = 'Hasselhoff S.';

end exec;
if SQLCODE = 0
then write (add);

JJ,
var add: STRING[12];

exec SQL

(* if such a row has been found *)

declare c cursor for
select nadd

from ADDRESS
where WORK_ncust in (select ncust

from CUSTOMER
where name = 'Hasselhoff S.')

open c;
fetch c into :add;

end exec;
while SQLCODE = O (* the last item has not yet been treated *)
do begin

wri te (add) ;
exec SQL

fetch c into : add;
end exec;

end;
exec SQL

close c
end exec;

Page 4-24

Chapter 4: Study of the Modifications: Case Study Approach

• select street, city
from ADDRESS
where nadd in (select WORK_nadd

from CUSTOMER
where name like '%Dupont%')

select street, city
from ADDRESS
where WORK_ncust in (select ncust

from CUSTOMER
where name like ' %Dupont%').

Concerning the application programs, similar remarks as for the case 3.4.2.1.3. (see page 4-20)
can be formulted here.

3.5. MAKE ATTR MANDATORY

3.5.1. Classification of the Modification
As shown in Figure 4-21, make_attr_mandatory is a modification on attributes which decreases
the semantics.

semantics ➔ augmenting decreasing preserving

obiects .j,
entity-type
rel-type
role
attribute X
identifier

Figure 4 - 21 : Classification of make_attr _mandatory

3.5.2. Description of the Modification
We have to distinguish whether the attribute which we want to make mandatory is a unique
key or not. We will treat first the case in which the attribute is not a unique key.

3.5.2.1. The attribute is nota unique key

Let us suppose we want to make date_birth mandatory in CUSTOMER.

Page 4-25

Schema Modification Propagation for Relational Database Applications

CUSTOMER CUSTOMER
,lli;JJfil ,lli;JJfil

name name
date birth[0-1] ⇒ date birth
id: ncust id: ncust
id': name id': name

Figure 4 - 22 : Making a non-key attribute mandatory on the conceptual
level

3.5.2.1.1. Logical Schema

We make date_birth mandatory in relation CUSTOMER.

3.5.2.1.2. SQL Description & Data

update CUSTOMER
set date_birth = 00/00/0000
where date_birth is null;

alter table CUSTOMER
alter date_birth not null constraint c_date_birth;

This way of implementing the modification involves no loss of data as we replace the null
values by a default value:

CUSTOMER
ncust name (date birth)
AlOl Bootsma H. 12/07/1969
D308 Ford H. 00/00/0000
B234 PeifferM. 22/06/1917
A958 Huntington G. 31/01/1969
D365 McGaw J. 29/02/1980
B472 Hasselhoff S. 00/00/0000
C385 Casci G. 00/00/0000
A590 Nutbush M. 09/06/1969
B253 Whopper J. 00/00/0000
C395 Osborn M. 28/11/1972

Figure 4 - 23 : Table CUSTOMER when the nul/ values of
column date_birth are replaced by a default value

We thus have the choice whether to remove or not the rows of table CUSTOMER with the
default value in column date_birth. If we want to rem ove those rows, we can use the following
operation:

Page 4-26

Chapter 4 : Study of the Modifications: Case Study Approach

delete
from CUSTOMER
where date_birth = 00/00/0000

We then still have to decide what should happen to the OROERs PLACEcl by these
CUSTOMERs. Note that the only CUSTOMER who has PLACEcl OROERs is CUSTOMER
B472. We have two choices:

A. Set PLACE_ncust to null for the OROERs PLACEcl by the CUSTOMER B472:

OROER
nord (PLACE ncust) date
E386 A958 02/01/1995
F285 null 12/03/1994
0274 null 15/07/1993
F842 C395 31/12/1994
E345 B234 05/01/1995
0222 A958 23/05/1994
F902 D365 16/09/1994
E583 null 12/01/1995
F676 AlOl 26/02/1993
0809 null 23/05/1994

OROER.PLACE_ncust in CUSTOMER.ncust

Figure 4 - 24: Table ORDER when certain PLACE_ncust values
are set to null

B. Delete also the ORDERs PLACEd by the CUSTOMER B472:

OROER
nord (PLACE ncust) date
E386 A958 02/01/1995
0274 null 15/07/1993
F842 C395 31/12/1994
E345 B234 05/01/1995
0222 A958 23/05/1994
F902 D365 16/09/1994
F676 AlOl 26/02/1993
0809 null 23/05/1994

OROER.PLACE_ncust in CUSTOMER.ncust

Figure 4 - 25: Table ORDER when certain rows are deleted

Page 4-27

Schema Modification Propagation for Relational Database Applications

If we have decided to delete also the ORDERs, we have finally to decide what should happen
to the LINEs which COMPOSE the ORDERs E583 and F285. Here again we have the two
same choices:

B1 . Set COMPOSE_nord to null for the LINEs associated to the ORDERs that have
been removed:

nline
AB1234
OH2345
RT3456
ZU4567
ER5678
NM6789
OP7890
JK0987
TZ9876
KJ8765

WQ7654
XY6543
DS5432
BV1357
102468

LINE
(COMPOSE nord) qty SPECIFY nprod

E386 1000 AAllO
null 1518 CASIO
null 345 AAllO

0274 2536 BE072
null 4587 EO880

0274 5558 WN592
0274 5458 RK560
F842 5473 SW226
E386 623 LS906
null 4587 SO953

F902 6325 BY907
null 9658 BY907
null 5698 EO880
F842 7458 AB099
0809 4125 AB099

LINE.COMPOSE_nord in ORDER.nord
LINE.SPECIFY _nprod in PRODUCT.nprod

Figure 4 - 26: Table UNE where certain values for column COMPOSE_nord are set to null

B2. Delete also the LINEs associated to the ORDERs that have been removed:

Page 4-28

Chapter 4: Study of the Modifications: Case Study Approach

LINE
nline (COMPOSE nord) otv SPECIFY nprod

AB1234
OH2345
ZU4567
ER5678
NM6789
OP7890
JK0987
TZ9876
KJ8765

WQ7654
XY6543
BV1357
102468

E386 1000 AAllO
null 1518 CA510

0274 2536 BE072
null 4587 E0880

0274 5558 WN592
0274 5458 RK560
F842 5473 SW226
E386 623 LS906
null 4587 S0953

F902 6325 BY907
null 9658 BY907

F842 7458 AB099
0 809 4125 AB099

LINE.COMPOSE_nord in OROER.nord
LINE.SPECIFY _nprod in PRODUCT.nprod

Figure 4 - 27 : Table LINE where certain rows are deleted

3.5.2.1.3. Program Extracts

Select queries referencing the null value of column date_birth could be modified as follows:

select ncust
fr om CUSTOMER
where date_birth is null

select ncust
from CUSTOMER
where date_birth = 0 0 /0 0 / 00 0 0

in case we have not dropped the data and should be dropped else.
Note that all the application programs in which such queries appear must also be reviewed. For
example, the tests on the null value of date_birth must be changed either by testing the default
value or by simply removing them.

3.5.2.2. The attribute is a unique key

We want to mak:e the attribute label in entity-type FACTORY mandatory.

Page 4-29

Schema Modification Propagation for Relational Database Applications

FACTORY FACTORY
~ ~
city[0-1] city[0-1]
country ⇒ country
label[0-1] label
id: nfac id: nfac
id': label id': label

Figure 4 - 28: Making a (unique) key attribute mandatory on the
conceptual level

3.5.2.2.1. Logical Schema

We make the column label in relation FACTORY mandatory.

3.5.2.2.2. SQL Description & Data

(* we cannot use here a
column label*)

delete from FACTORY
where label is null;

alter table FACTORY

default value because of the unique key feature of

(* we can only alter a column on which no
constraints apply *)

drop constraint idFAC2, (* we remove the unique key constraint *)
alter label not null constraint F_label,
add constraint unique(label) constraint idFAC2;

All the rows which had a null value for column label in table FACTORY are lost.

3.5.2.2.3. Program Extracts

Ail the application programs containing queries referencing the null value of column label must
be reviewed in a similar way as in the previous case (see page 4-29).

Page 4-30

Chapter 4 : Study of the Modifications: Case Study Approach

3.6. SWITCH_PK_UNIQUE

3.6.1. Classification of the Modification
As shown in the Figure 4-29, switch_PK_unique is a modification on identifiers which
preserves the semantics.

semantics ➔ augmenting decreasing preserving
objects -1,.

entity-type
rel-type
role
attribute
identifier X

Figure 4 - 29 : Classification of switch_PK_unique

3.6.2. Description of the Modification
This modification is used to transform a primary key into a unique key and vice versa. The user
has the choice whether to specify a unique key or not. If he does not specify any unique key,
then a technical identifier is created as primary key.

Precondition:
If a unique key is specified, then it must not be optional. This is due to the fact that SQL-RDB
does not allow optional attributes as primary key.

The structure of the modification switch_PK_unique is represented in Figure 4-30.

Page 4-31

Schema Modification Propagation for Relational Database Applications

switch_PK_unique

no unique key is
specified

a unique key is
specified

the table on which we
execute the

modification is not
referenced by a

foreign key

the table on which we
execute the

modification is
referenced by a

foreign key

the primary key is not
a technical identifier

Figure 4 - 30: Structure of the nwdification switch_PK_unique

the primary key is a
technical identifier

For each one of the four basic cases we will reconsider Figure 4-30 indicating in bold the
current position.

3.6.2.1. There is no unique key specified

Let us suppose we have the entity-type ADDRESS and that we want to transform the primary
key nadd into a unique key.

Page4-32

Chapter 4 : Study of the Modifications: Case Study Approach

ADDRESS CUSTOMER
.ll.!ld.d .nrust.
Street
number ~

zip
0-1~0-l -

name
date birth[0-11

city
id:nadd

id: ncust
id' : name

ADDRESS
nadd CUSTOMER
ID AIUl .llia.lfil
Street
number f---

zip
0-1~0-l -

name
date_birth[0-1]

city
id: ncust
id': name

id:ID_ADD
id':nadd

Figure 4 - 31 : Transforming a primary key into a unique key when no unique
key is speciji,ed, on the conceptual level

Two different cases must be considered:

• WORK is implemented by a foreign key in ADDRESS
• WORK is implemented by a foreign key in CUSTOMER

3.6.2.1.1. WORK is implemented by a foreign key in ADDRESS

the tableonwhich Ile table on 'M'lich we
we execu'9 the

modificdon ie not
referenced by •

foreign lœy

3.6.2.1.1.1. Logical Schema

modification is
ref&renced by a

fOfeign key

tie primary key isnot lie primary keyisa
a Mchnical identifier tec:hnical identifier

We transform the primary key into a unique key, create a technical identifier and promote it to
a primary key:

Page 4-33

Schema Modification Propagation for Relational Database Applications

ADDRESS
nadd
Street
number
zip
City
WORK_ncust[0-1]
id:nadd

ace
id': WORK_ncust

ref ace

ADDRESS
nadd
IDADD
Street
number
zip
city
WORK_ncust 0-1
id:ID_ADD

ace
id':nadd

ace
id': WORK_ncust

ref ace

CUSTOMER

WJ.51
name
date_birth 0-1
id: ncust

ace
id': name

ace

CUSTOMER

~
name
date_birth (0-1]
id: ncust

ace
id': name

ace

Figure 4 - 32: Transforming a non referenced primary key into a
unique key when no unique key is specified, on the logical Level

3.6.2.1.1.2. SQL Description & Data
var i: INTEGER;

exec SQL
(* we create the technical identifier column *)
alter table ADDRESS

add ID_ADD smallint default O not null constraint A_ID_ADD;
(* we assign identifying values to that column *)
declare c cursor for

select ID_ADD
from ADDRESS

for update of ID_ADD in ADDRESS;
open c;
fetch c;

end exec;
i:= l;
while SQLCODE = 0
do begin

(* the last item has not yet been treated *)

exec SQL

Page 4-34

update ADDRESS
set ID_ADD = :i
where current of c;

fetch c;

Chapter 4: Study of the Modifications: Case Study Approach

end exec;
i:= i+l;

end;
exec SQL

close c;
(* we operate the 'real switch' *)
alter table ADDRESS

drop constraint idADDl (* we drop the old prirnary key
constraint *),

add constraint
add constraint

end exec;

prirnary key(ID_ADD) constraint idADDl,
unique(nadd) constraint idADD3;

No datais lost as we only manipulate identifying features and add a technical identifier.

3.6.2.1.1.3. Program Extracts

There is no impact on the application programs.

3.6.2.1.2. WORK is implemented by a foreign key in CUSTOMER

ewitch_PK_unlque

Ile table on 'M'lic:h we the table on which
exeooM fle

modiftcation is not
referenced by a

foreignkey

3.6.2.1.2.1. Logical Schema

we execulll the
modific11ion f•
referenoed by •

fOfeign key

h• primaty key 1s not Ile primary key ie a
a '9c:hnicaf identifier technteal identifter

We transform the primary key nadd into a unique key, create a technical identifier which we
promote to a primary key and change also the foreign key referencing table ADDRESS.

Page 4-35

Schema Modification Propagation for Relational Database Applications

ADDRESS

.nruM
Street
number
zip
city
id:nadd

ace

ADDRESS
nadd
ID ADD
Street
number
zip
ci
id:ID_ADD

ace
id':nadd

ace

-
~

CUSTOMER
WORK_nadd[0-1]
.llQJfil
name
date birth [0-1]
id: ncust

ace
id': WORK_nadd

refacc
id': name

ace

CUSTOMER

.llQJfil
name
date_birth[0-1]
WORK_ID_ADD 0-1
id: ncust

ace
id': name

ace
id':WORK_ID_ADD

refacc

Figure 4 - 33 : Transforming a referenced primary key into a unique
key when no unique key is specified, on the logical level

3.6.2.1.2.2. SQL Description & Data
var add, i, idADD: INTEGER;

exec SQL
(* we create the technical identifier column *)
alter table ADDRESS

add ID_ADD smallint default O not null constraint A_ID_ADD;
(* we assign identifying values to that column *)
declare cl cursor for

select ID_ADD
from ADDRESS

for update of ID_ADD in ADDRESS;
open cl;
fetch cl;

end exec;
i : = 1;
while SQLCODE = 0
d o begin

(* the last item has not yet been treated *)

exec SQL
update ADDRESS

set ID_ADD = : i
where current of cl;

fetch cl;
end exec;
i : = i+l;

end;

Page 4-36

Chapter 4 : Study of the Modifications: Case Study Approach

exec SQL
close cl;
(* we replace the foreign key column representing the

relationship-type WORK *)
alter table CUSTOMER

add WORK_ID_ADD srnall i nt ,
drop constraint ADDl;

declare c2 cursor f o r
select WORK_nadd

frorn CUSTOMER
where WORK_nadd is n o t null

f o r update o f WORK_ID_ADD;
open c2 ;
fetch c2 into :add

end exec;
while SQLCODE = 0 (* the last item has n o t yet been tre ated *)
d o begin

exec SQL
select ID_ADD

into : idADD
fr orn ADDRESS
where nadd = : add;

update CUSTOMER
set WORK_ID_ADD = :idADD
where current of c2;

fetch c2 into :add;
end exec;

end;
exec SQL

(* we operate the 'real switch' and adapt the f o reign
constraints *)

alter table ADDRESS

key

drop constraint idADDl, (* we drop the o ld prirnary key
c onstraint *)

add constraint prirnary key(ID_ADD)constraint idADDl,
add constraint unique(nadd) constraint idADD2;

alter table CUSTOMER
drop constraint idCUS3,
add constraint foreign key(WORK_ID_ ADD) references ADDRESS

add constraint unique(WORK_ID_ADD)
drop WORK_ nadd;

c onstraint ADDl,
constraint idCUS3,

cl o se c2;
end exec;

No datais lost as we only manipulate identifying features, add a technîcal identifier and 'copy'
the data representing relationship-type WORK from column WORK_nadd into column
WORK_ID_ADD.

3.6.2.1.2.3. Program Extracts

We have to review all the application programs referencing the foreign key representing
relationship-type WORK. For example:

• var narne : STRING[12);

exec SQL
select narne

into : narne
frorn CUSTOMER
where WORK_nadd = 102;

end exec;
if SQLCODE = 0
then write(narne);

Page 4-37

Schema Modification Propagation for Relational Database Applications

var name : STRING[l2];

exec SQL
select name

into :name
frorn CUSTOMER
where WORK_ID_ADD = 52;

(* Let us suppose ADDRESS has the value 52 f o r ID_ADD
if it had the value 102 for nadd *)

end exec;
if SQLCODE = 0
then write(name);

• select street, city
frorn ADDRESS
where nadd in (select WORK_nadd

frorn CUSTOMER
where name like '%Dupont%')

.(J,

select street, city
frorn ADDRESS
where ID_ADD in (select WORK_ID_ADD

frorn CUSTOMER
where name like '%Dupont%')

3.6.2.2. The unique key is specifled

We have here to distinguish again two cases:

• The primary key is not a technical one
• The primary key is a technical one

For each of these two cases we would have to distinguish again whether the table on which we
execute the modification is referenced by a foreign key or not. As these subcases would not
bring any new ideas, we will not distinguish them.

3.6.2.2.1. The primary key is nota technical one

Page 4-38

switch_PK_unique

tie table on Wlich we Ile table on 'Mlich we

exeo.J• Ile
modification is not

referenced by a
loreignkey

modificada'l is
referenced by a

foreig, key

the prinwy key ia
not • lechnical

identifier

Ile pm\ary key is a
tedmical identifier

Chapter 4: Study of the Modifications: Case Study Approach

Let us suppose we want to replace the primary key ncust of CUSTOMER by the unique key
name.

LINE

~
qty
id: nline

0-1

< CO+SE >
0-N

ORDER
OOid
date
id: nord

LINE

nline
qty

id: nline

0-1

< CO+SE >
0-N

id: nord

1-1-~ SPECIFY 0-N

-0-1~0-N

PRODUCT

nmm
label
rice

id: nprod

CUSTOMER
.ng!S1
name
date_birth[0-1]
id:ncust
id':name

PRODUCT

!lllill1
1-1---<- SPECIFY -~-o-N label

orice
id: nprod

CUSTOMER
ncust

0-1~0-N -
name
date birth [0-1]
id:name
id':ncust

Figure 4 - 34 : Replacing a non technical primary key by a unique key on the conceptual
Level

3.6.2.2.1.1. Logical Schema

We transform the primary key ncust into a unique key, make the unique key name a primary
key and change also the foreign key referencing table ORDER.

Page 4-39

Schema Modification Propagation for Relational Database Applications

CUSTOMER ORDER LJNE PRODUCT
ncust llillii ~ .ll1lli2d
name date qty label
date birth (0-1] PLACE ncust[0-1) SPECIFY _nprod orice
id: ncust L id: nord r<l COMPOSE nord[0-1] r!> id: nprod

ace ace id: nline ace
id':name ref: PLA CE_ncust ace

ref: SPECIFY _nprod -ace ace
ace - ref: COMPOSE_nord
ace

JJ,

CUSTOMER ORDER UNE PRODUCT
ncust n.oid ~ lUlI:.00
~ date qty label
date birthf0-11 PLACE_name[0-1] SPECIFY _nprod price
id:name rt id: nord <J- COMPOSE nord[0-1) rC> id: nprod

ace ace id: nline ace
id':ncust ref: PLACE_name ace

ace ace ref: SPECIFY _nprod f---

ace - ref: COMPOSE_nord
ace

Figure 4 - 35: Replacing a non technical primary key by a unique key on the logical Level

3.6.2.2.1.2. SQL Description & Data
var cust: STRING[4);

name: STRING[l2);

exec SQL
(* we replace the foreign key column representing the

relationship-type PLACE*)
alter table ORDER

add PLACE_name char(12),
drop constraint CUSl;

declare c cursor for
select PLACE_ncust

from ORDER
where PLACE_ncust is not null

for update of PLACE_name;
open c;
fetch c into:cust

end exec;
while SQLCODE = 0 (* the last item has not yet been treated *)
do begin

exec SQL

Page 4-40

select name
into :name
from CUSTOMER
where ncust = :cust;

update ORDER
set PLACE_name = :name

Chapter 4: Study of the Modifications: Case Study Approach

where current of c;
fetch c into :cust;

end exec;
end;

exec SQL
(* we operate the 'real switch' and adapt the foreign key

constraints *)
alter table CUSTOMER

drop constraint idCUSl ,

drop c onstraint idCUS2,

(* we drop the old primary key
constraint *)

(* we drop the o ld unique key
constraint *)

add constraint primary key(name) c onstraint idCUSl ,
add constraint unique(ncust) c onstraint idCUS2;

alter table ORDER
add constraint foreign key(PLACE_name) references CUSTOMER

constraint CUSl,
drop PLACE_ncust;

close c;
end exec;

No data is lost as we only manipulate identifying features and 'copy' the data representing
relationship-type PLACE from column PLACE_ncust into column PLACE_name.

3.6.2.2.1.3. Program Extracts

The second SELECT query of our case study (see page 4-7) must be modified as follows:

select*
from CUSTOMER
where name in (select PLACE_name

from ORDER
where nord in (select COMPOSE_nord

from LINE
where SPECIFY_nprod = 'AAll0'))

The JOIN query (see page 4-8) becomes:

select name, nord
from CUSTOMER, ORDER
where (name = PLACE_name) and (date_bi rth < 01/01/1977) .

In fact, every program extract referencing PLACE_ncust must be reviewed. For example, let
us suppose that the user must give the number of a CUSTOMER (ncust) in order to get his
ORDERs. As relationship-type PLACE is now represented by the foreign key PLACE_name,
either the user has to indicate the name of the CUSTOMER or we have to insert the following
query before executing the remaining of the program:

select name
fr om CUSTOMER
where ncust = <the number given by the user>

Page 4-41

Schema Modification Propagation for Relational Database Applications

3.6.2.2.2. The primary key is a technical one

switc:h_PK_unique

t,e table on v.tiic:h we Ile table on Wlich we
exea.Jle tu,

modifteation is not

referenced by a
fore9) key

exeOJ'9 fle
modifiçation ls

referenced by a

for&tgl key

Ile primary key ls not the primery key ia •
a lechnical identifier technical identifier

Let us suppose we have the entity-type ADDRESS where the primary key is a technical
identifier and nadd is a unique key. We want now to make nadd a primary key and drop the
technical identifier ID_ADD.

ADDRESS
nadd CUSTOMER
ID ADU .llid.l.S.t
Street

-0-1~0-1-
name

number date_birth[0-1]
zip id: ncust
City id': name
id:ID_ADD
id':nadd

JJ,

ADDRESS CUSTOMER
nadd .llid.l.S.t
Street

-0-1 ~0-1- name
number date birthf0-1 l
zip

id: ncust city
id:nadd

id': name

Figure 4 - 36 : Replacing a technical primary key by a unique key on the
conceptual level

3.6.2.2.2.1. Logical Schema

In order to simplify, we only consider the case where the relationship-type WORK has been
implemented by the foreign key in relation ADDRESS. We have to make nadd a primary key
and drop ID_ADD.

Page 4-42

Chapter 4: Study of the Modifications: Case Study Approach

ADDRESS
nadd
ID ADD
Street
number
zip
city
WORK_ncust[0-1]
id:ID_ADD

ace
id':nadd

ace
id': WORK_ncust

ref ace

ADDRESS
nadd
Street
number
zip
City
WORK_ncust[0-1]
id:nadd

ace
id': WORK_ncust

ref ace

CUSTOMER

.llia.lfil
name
date_birth[0-1]
id: ncust

ace
id' : name

ace

CUSTOMER

.llia.lfil
name
date_birth 0-1
id: ncust

ace
id': name

ace

Figure 4 - 37 : Replacing a technical primary key by a unique
key on the logical Level

3.6.2.2.2.2. SQL Description & Data
alter table ADDRESS

drop constraint idADDl, (* we drop the old primary key
constraint *)

drop constraint idADD2, (* we drop the old unique key
constraint *)

drop constraint A_ID_ADD, (* we remove the mandatory feature from
column ID_ADD *)

add constraint primary key(nadd) constraint idADDl,
drop ID_ADD;

No data is lost as we do not consider the infonnation included m column ID_ADD as
semantical data.

3.6.2.2.2.3. Program Extracts

There is no impact on the application programs as ID_ADD is a technical construct and is thus
not referenced by any query.

Page 4-43

Chapter 5:

Study of the Modifications:
General Approach

Chapter 5: Study of the Modifications: General Approach

1. INTRODUCTION
After having studied some modifications on a case study, we will analyse the same
modifications in general. As this chapter is a very technical one and is also partly redundant
with the previous one, it can be skipped in a first reading of our thesis.

Let us repeat that we have here again to study the modifications of the conceptual level and
their impact on the logical level, on the SQL database structure, on the data and on the
application programs. This is illustrated by Figure 5-1.

?

?

DO
?

D1

PO ?
P1

Figure 5 - 1 : Representation of the database evolution problem

If the conceptual schema CSO has been changed, the logical schema LSO and the SQL
description SQLO must be changed accordingly. Data DO is no longer valid and has to be
converted into data D 1. Finally the applications PO must be partly rewritten in order to comply
with the new data structures described in SQL1.[HAI94a]

As shown in the third chapter, the modifications are classified according to the objects on
which they apply on one band and, on the other band, according to their nature: augmenting,
decreasing or preserving semantics (see page 3-4).

As we will not describe ail the modifications, we will give once more the typology of the
modifications, indicating in bold those that we will analyse in detail in this chapter. The
modifications that will not be treated here can be found in appendix 2.

Page 5-1

Schema Modification Propagation/or Relational Database Applications

Modifications of the entity-types:

Modifications of the relationship-types:

Modifications of the rotes:

Modifications of the attributes:

Modifications of the identifiers:

Page 5-2

add_entity-type
remove_entity-type
rename_entity-type

add_l-1/0-l_rel-type
add_0-1/0-l_rel-type
add_l-1/0-N_rel-type
add_0-1/0-N_rel-type
remove_l-1/0-l_rel-type
remove_0-1/0-l_rel-type
remove_l-1/0-N_rel-type
remove_0-1/0-N_rel-type
rename_l-1/0- l_rel-type
rename_0-1/0-l_rel-type
rename_l-1/0-N_rel-type
rename_0-1/0-N_rel-type

augment_max_card
decrease_min_card
decrease_max_card
augment_min_card

add_optional_attribute
add_mandatory _attribute
make _attr_ optional
extend_domain_attribute
change _type _int_ char
change_type_float_char
change_type_date_char
change_type_date_int
change_type_int_float
change_type_date_float
remove_optional_attribute
remove_mandatory _attribute
make_attr _mandatory
restrict_domain_attribute
change_type_char_int
change_type_float_int
change_type_char_float
change_type_char_date
change_type_int_date
change _type _float_ date
renam e _ optional_attribute
rename_mandatory _attribute

remove_unique_feature
add_unique_feature
switch_PK_unique

Chapter 5 : Study of the Modifications: General Approach

For each object, we will study the same modifications as those described in chapter 4, here
however in general. Each modification is here also decomposed into two parts: its classification
and its description. The description is again decomposed into three subparts: the impact of the
modification on the Logical Schema, on the SQL Description & Data and on the Program
Ex tracts.

Page 5-3

Schema Modification Propagation for Relational Database Applications

2. STUDY OF THE MODIFICATIONS:
GENERAL APPROACH

2.1. RENAME ENTITY-TYPE1

2.1.1. Classification of the Modification
As shown in Figure 5-2, renarne_entity-type is a modification on entity-types which preserves
the semantics.

semantics ➔ augrnenting decreasing preserving
objects -l,
entity-type X
rel-type
role
attribute
identifier

Figure 5 - 2 : Classification of rename_entity-type

2.1.2. Description of the Modification
Let us suppose we want to rename the entity-type E into El.

1 Normally we would bave to add bere the following precondition: 'The new name of the entity-type that sbould
be renamed must not yet exist.' As sucb preconditions are trivial, we will not indicate them anymore.

Page 5-4

Chapter 5: Study of the Modifications: General Approach

E E2
.ail ill
a12[0-1] a22[0-1]
a13
a14 ~

a15[0-1]
x-y~u-v

a23
- a24

a25[0-1]
id: al 1 id: a21
id': a14 id': a24
id': a15 id' : a25

El E2
.ail â2l
a12[0-1] a22[0-1]
a13
a14 -
a15[0-1]

x-y~u-v
a23

- a24
a25f0-1 l

id: al 1 id: a21
id' : a14 id': a24
id': a15 id' : a25

Figure 5 - 3: Renaming an entity-type on the conceptual Level

2.1.2.1. Logical Schema

In the logical schema, we have to change the name of the corresponding relation. Due to the
parametrical cardinalities, different cases are possible. In Figure 5-4 however (and only there),
we will only illustrate the two basic ones:

• R is represented by a foreign key in E
• R is represented by a foreign key in E2

For each of these two cases, we will only consider the situation where relationship-type R has
one 0-N role. The other cases would be similar, except that we would have to express
identifying features .

Page 5-5

Schema Modification Propagation for Relational Database Applications

E E2 E2
.ail .a2l
al2[0-l] a22[0-l] E

.all
a22[0-l]

al3 a23 .ail a23
al4 a24 al2[0-l] a24
al5[0-l] a25[0-l l al3 a25[0-l]
R_a2l[x-l] {> id: a21 al4 R all[u-1]
id: al 1 ace

ace id': a24
al5[0-l] id: a21
id: al 1 ~ ace

id': al4 ace ace id': a24
ace id': a25 id': al4 ace

id': al 5 ace ace id': a25
ace id': al5 ace - -ref: R_a21 ace ref: R_all
ace ace

_lJ, or

El E2 E2
.ail .a2l
al2[0-l] a22[0-l] El

.a2l
a22[0-l]

al3 a23 .a.il a23
al4 a24 al2[0-l] a24
al5[0-l] a25[0-l] al3 a25[0-l]
R_a2l[x-l] rC> id: a21 al4 R all[u-1]
id: al 1 ace

ace id': a24
al5rü-l l id: a21
id: al 1 ~ ace

id': al4 ace ace id': a24
ace id': a25 id': al4 ace

id' : al5 ace ace id': a25
ace id': al5 ace - -

ref: R_a21 ace ref: R_all
ace ace

Figure 5 - 4: Renaming an entity-type on the logical Level

2.1.2.2. SQL Description & Data

In some SQL languages there may be a 'rename table' command. The modification would then
become:

alter table E
rename table El on cascade;

In SQL-RDB however, no such command exists and we have therefore to create a new table
and to copy the data into it.

exec SQL
(* we create table El*)
create table El

(all <type> not null constraint El_all,

Page 5-6

end exec;

Chapter 5: Study of the Modifications: General Approach

al2 <type>,
al3 <type> not null constraint El_al3,
al4 <type> not null constraint El_al4,
al5 <type>,
primary key (all) constraint idE1_# 2 ,
unique (al4) constraint idEl_#,
unique (al5) constraint idEl_#)

(* we create the foreign keys in El*)
for each of the relationship-types R connected to E
do if Ris represented by a foreign key in E

then begin

exec SQL

if X= 0
then exec SQL

alter table El

end exec
else exec SQL

add R_a21 <type>;

alter table El
add R_a21 <type>

end exec;
if V= 1
then exec SQL

alter table El

default <value> not null
constraint El_R_a21;

add constraint unique (R_a21) constraint idEl_#;
end exec;

exec SQL
alter table El

add constraint foreign key (R_a21) references E2
constraint E2_#;

end exec;
end;

(* we insert the data of E into El*)
insert into El

select*
from E

end exec;
(* we redirect to El the f oreign keys referencing E *)
for each of the relationship-types R connected t o E
do if Ris represented by a foreign key in E2

then exec SQL
alter table E2

drop constraint E_#; (* we remove the old foreign key
feature *)

add constraint foreign key (R_all) references El
constraint El_#,

end exec;

(* For each view defined on table E, we have to redefine it on El. In
future we will not consider views anymore as they do not correspond to ER
abjects. *)

drop table E cascade;

No datais lost as the datais just moved from one table into another.

Notes:
• This operation in SQL-RDB is often a very slow one as we have to copy a whole table.

We thus recommend to create a view El which includes only the table E. This could be
realized by the following command:

2 As it is difficult to indicate the proper number for each constraint, we will use the symbol #.

Page 5-7

Schema Modification Propagation for Relational Database Applications

create view El
as select*

from E

• Other SQL languages, such as DB2, offer another possibility to implement the
modification: giving a synonym to the entity-type (that has to be renamed) instead of
renaming it properly. This alternative could be realised by the following SQL command:

create synonym El
f o r E

Note that in both cases the original table is however not renamed.

2.1.2.3. Program Extracts

• In ail the select queries referencing E, we have to rename it with El.
For example:

select . ..
from E
where .. .

select .. .
from El
where .. .

• In the following example, we have to rename E not only in the 'from' clause, but also in the
'where' clause:

select ...
from E, E2
where E.a = E2.a

select .. .
from El, E2
where El.a= E2.a

• In addition to the select queries, we have also to review the application programs in which
they appear. For instance, we must rename certain variables and/or some fields or headings
in the user interfaces. Finally, let us note that the documentation should also be updated.

Page 5-8

Chapter 5 : Study of the Modifications: General Approach

2.2. REMO VE_ 0-1/0- l_REL-TYPE

2.2.1. Classification of the Modification
As shown in Figure 5-5, remove_0-1/0-l_rel-type is a modification on relationship-types which
decreases the semantics.

semantics ➔ augmenting decreasing preserving

obiects J,
entity-type
rel-type X
role
attribute
identifier

Figure 5 - 5: Classification of remove_0-1/0-l_rel-type

2.2.2. Description of the Modification
Let us suppose that we want to remove the 0-1/0-1 relationship-type R between the entity
types El and E2.

Page 5-9

Schema Modification Propagation for Relational Database Applications

El E2
.ail .a2.l
al2[0-l]
al3
al4 -
al5[0-l]

O-l~0-1

a22[0-l]
a23

- a24
a25[0-l]

id: al 1 id: a21
id' : al4 id': a24
id': al5 id': a25

El E2

ill .a2.l
al2[0-l] a22[0-l]
al3 a23
al4 a24
al5[0-l] a25[0-l]
id: al 1 id: a21
id': al4 id': a24
id': al5 id': a25

Figure 5 - 6: Removing a 0-1/0-1 relationship-type on the
conceptual Level

2.2.2.1. Logical Schema

Depending on the way R has been implemented, we remove either column R_a21 from El or
column R_al 1 from E2 with its candidate and foreign key features.

Page 5-10

Chapter 5: Study of the Modifications: General Approach

El E2 E2
R_a21[0-1] a2l .a2.l
.ail a22[0-l] El a22[0-l]
al2[0-l] a23 .ail a23
a13 a24 al2[0-l] a24
al4 a25[0- l] al3 a25[0-l]
al5[0-l] rD id: a21 al4 R all[0-1]
id: al 1 ace or al5[0-l] id: a21

ace id': a24 id: al l ~ ace
id' : al4 ace ace id' : a24

ace id' : a25 id': al4 ace
id' : al5 ace ace id': a25

ace id': al5 ace
id':R_a21

1--

refacc
ace - id':R_all

ref ace

El E2

.ail a2.l
al2[0-l] a22[0-l]
al3 a23
al4 a24
a15[0-1] a25f0-ll
id: al 1 id: a21

ace ace
id' : a14 id': a24

ace ace
id': a15 id': a25

ace ace

Figure 5 - 7: Removing a 0-1/0-1 relationship-type on the logical level

2.2.2.2. SQL Description & Data

if Ris implemented by a foreign key in El
then exec SQL

end

alter table El

exec

drop constraint idEl_#,

drop constraint E2_#,

drop R_a21;

(* we remove the
feature *)

(* we remove the
feature *)

else (* R is implemented by a f oreign key in E2 *)
exec SQL

alter table E2
drop c onstraint idE2 _# , (* we remove the

feature *)
drop constraint El_# , (* we remove the

feature *)
drop R_all;

end exec;

unique key

foreign key

unique k ey

foreign k ey

Page 5-11

Schema Modification Propagation for Relational Database Applications

The lin.le, representing R, between tables E 1 and E2 is lost.

2.2.2.3. Program Extracts

Application programs in which select queries referencing R_a21 in El (or R_al 1 in E2) appear
must be reviewed. We cannot describe a general method how to deal with these application
programs as each one of them must be treated individually, depending on its context. A CASE
tool offering this modification should indicate the concemed program extracts and should
sometimes give hints about the way how to change them. The user has then to check whether
the variables are still ail needed and he has also to update the documentation. Finally, he must
change certain user interfaces (for an example see page 4-16).

2.3. AUGMENT_MAX_CARD

2.3.1. Classification of the Modification
As shown in Figure 5-8, augment_max_card is a modification on roles which augments the
semantics.

semantics ➔ augmenting decreasing preserving
obiects-!-
entity-type
rel-type
role X
attribute
identifier

Figure 5 - 8 : Classification of augment_max_card

2.3.2. Description of the Modification

Precondition:
Given the restrictions of the relationship-types in the Kemel (see page 3-2), the only
augmentations of the maximum cardinality of a role that we accept so far are:

• 1-1/0-1 ➔ 1-1/0-N
• 0-1/0-1 ➔ 0-1/0-N

We want to augment to N the maximum cardinality of the 0-1 role of relationship-type R.

Page 5-12

Chapter 5: Study of the Modifications: General Approach

El E2

.ail .a2.l
al2[0-l] a22[0-l]
al3

-x-l-<D--0-1-
a23

al4 a24
al5[0-l l a25[0-l]

id: al l id: a21
id': al4 id': a24
id': al5 id': a25

JJ
El E2

.ail .a2.l
al2[0-l] a22[0-l]
a13

-x-l-<D--0-~~
a23

al4 a24
al5rü-ll a25[0-l]

id: al l id: a21
id': al4 id': a24
id': al5 id': a25

Figure 5 - 9: Augmenting the maximum cardinality of a role to Non the
conceptual Level

2.3.2.1. Logical Schema

We have either to remove the candidate key from R_a21 in El or to replace the foreign key
R_all in E2 by a (non unique) foreign key R_a21 in El.

Page 5-13

Scherna Modification Propagation for Relational Database Applications

El E2 E2
R_a2l[x-l] .a2l El R_all[0-1]
ill a22[0-l] ill .all
al2[0-l] a23 al2[0-l] a22[0-l]
al3 a24 al3 a23
al4 a25[0-l] al4 a24
al5[0-l] -c:, id: a21 al5[0-l] a25[0-l]
id: al 1 ace id: al 1 ~ id: a21

ace id': a24 ace ace
id': al4 ace id': al4 id': a24

ace id': a25 ace ace
id': al5 ace id': al5 id': a25

ace ace ace
id':R_a21 id':R_all - -

refacc refacc

or

El E2 El E2

R_a2l[x-l] .a2l R_a21[0-1] .a2l
ill a22[0-l] .ail a22[0-l]
al2[0-l] a23 al2[0-l] a23
al3 a24 al3 a24
al4 a25[0-l] al4 a25[0-l]
al5[0-l] -c:, id: a21 al5[0-l] -c:, id: a21
id: al 1 ace id: al 1 ace

ace id': a24 ace id': a24
id': al4 ace id': al4 ace

ace id': a25 ace id': a25
id': al5 ace id': al5 ace

ace ace
ref:R_a21 - ref:R_a21 -

ace ace

Figure 5 - 10: Augmenting the maximum cardinality of a role to Non the logical
Level

2.3.2.2. SQL Description & Data

var a21: <type>;
all : <type>;

if the foreign key representing Ris in El
then exec SQL

alter table El
drop constraint idEl_#;

end exec
else (* the foreign key representing Ris in E2 *)

begin

Page 5-14

exec SQL
(* we create the new foreign key column *)
alter table El

add R_a21 <type>;

Chapter 5: Study of the Modifications: General Approach

(* we copy the data representing the relationship-type R from
table E2 into table El*)

declare c cursor for
select a21, R_all

from E2
where R_all is not null ;

open c;
fetch c into :a21, :all;

end exec;
while SQLCODE = 0 (* the last item has not yet been treated *)
do begin

exec SQL
update El

set R_a21 = :a21
where all = :all ;

fetch c into :a21, :all;
end exec;

end;
exec SQL

(* we add and remove the necessary constraints *)
alter table El

add constraint foreign key (R_a21) references E2
constraint E2_#;

alter table E2
drop constraint idE2_#,
drop constraint El_#,
drop R_all;

close c;
end exec;

end;

Note that no data is lost as either no changes are applied on the data or the data is only
'copied' from relation E2 into relation El.

2.3.2.3. Program Extracts

Before considering the select queries, let us note that the user has to replace certain variables
by arrays, that he has to review certain user interfaces and that he has also to update the
documentation. In order to study the impact of the modification on the select queries, we must
distinguish whether the foreign key representing R was in El or E2.

2.3.2.3.1. The foreign key representing R was in El

As the foreign key R_a21 is not identifier of El anymore, several rows can now have the same
value for column R_a21. We thus have to define a cursor for 'select .. .into .. .' queries
referencing 'R_a2 l = ' in their 'where' clause.

var

exec SQL
select

into
from El
where R_a21 =

end exec;
if SQLCODE = 0
then

(* if such a row has been found *)

Page 5-15

Schema Modification Propagation for Relational Database Applications

var ...

exec SQL
declare c cursor

select . ..
from El

for

where R_a21 =
open c;
fetch c into

end exec;
while SQLCODE = 0

d o begin

exec SQL
fetch c into

end exec
end;

exec SQL
close c

end exec;

(* the last item has not yet been treated *)

2.3.2.3.2. The foreign key representing R was in E2

• A similar problem conceming the 'select .. .into .. .' queries occurs in this case. The select
query must here however also be modified.

var all: <type>;

exec SQL
select R_all

into :all
from E2
where a24 =

end exec;
if SQLCODE = 0
then

var all: <type>;

exec SQL

• • • I

declare c cursor for
select all

from El
where R_a21 in (select a21

from E2
where a24 = •••);

open c;
fetch c into :all;

end exec;
while SQLCODE = 0
do begin

exec SQL

(* the last item has not yet been treated *)

fetch c into :all;
end exec;

end;
exec SQL

close c

Page 5-16

Chapter 5 : Study of the Modifications: General Approach

end exec;

• As Ris now represented by a foreign key in El , the select queries referencing R_all must
be reviewed.

- se l e ct . ..
fr om El
whe r e a11 in

select ...
fr om El

se l e ct R_ a11
fr om E2
where . . .

where R_a21 in select a21
fr om E2
where ...

- select . ..
fr om E2
where R_a11

select . . .
from E2
where a21 in (select R_a21

from El
where a11 •.. }

2.4. MAKE_ATTR MANDATORY

2.4.1. Classification of the Modification
As shown in Figure 5-11, make_attr_mandatory is a modification on attributes which decreases
the semantics.

semantics ➔ augmenting decreasing preservmg
objects .J,
entity-type
rel-type
role
attribute X
identifier

Figure 5 - 11 : Classification of make_attr _mandatory

Page 5-17

Schema Modification Propagation for Relational Database Applications

2.4.2. Description of the Modification
We have to distinguish whether the attribute which we want to mak:e mandatory is a unique
key or not. Let us suppose we want to mak:e attribute al2 in entity-type El mandatory.

El
El .ail

.ail a12[0-1]
a12[0-1] al3
al3 al4
al4 a1sro-11
al5rü-l l id: al 1
id: al 1 id' : al4
id': al4 id': al5
id': al5 id' : al2

or

El
El .ail

.ail a12
a12 al3
al3 al4
al4 al5f0-ll
al5rü-ll id: al 1
id: al 1 id' : al4
id': al4 id' : al5
id': al5 id': al2

Figure 5 - 12 : Making an attribute mandatory on the conceptual
Level

2.4.2.1. Logical Schema

We mak:e the column al2 in relation El mandatory.

2.4.2.2. SQL Description & Data

procedure Delete_on_cascade(r, E) ;

(* Before deleting a r ow r in table E , we mus t delete the rows rl
'referencing r' or set to null in table El the f o reign key column o f the
rows rl 'referencing r'. If the r ows rl are deleted, the problem must be
treated recursively. *)

begin
for each table El
do f or each foreign key referencing table E

do for e ach of the r ows rl having as f o reign column value the value of
the primary key column o f r ow r

Page 5-18

do if the user wants to avoid the loss o f data
then if the f o reign key column (FK) is optional

Chapter 5: Study of the Modifications: Gene rai Approach

then exec SQL
update El

set FK = null
end exec

else call Delete_on_cascade(rl, El)
else call Delete_on_cascade(rl , El);

exec SQL (* delete r frorn E *)
delete

frorn E
where id = r. id

end exec;
end;

if al2 is nota unique key
then begin

if the user wants to avoid the loss of data wherever it is possible
then exec SQL

update El
set al2 = <value>
where al2 is null

end exec
else for all the rows r of El having a null value for colurnn al2

do call Delete_on_cascade(r, El);
exec SQL

alter table El
alter al2 not null constraint El_a12;

end exec;
end

else begin
(* we cannot use here a default value because of the unique key

feature of colurnn al2 *)
for all the rows r of El having a null value for colurnn al2
do call Delete_on_cascade(r, El) ;
exec SQL

alter table El (* we can only
constraints

rnodify a colurnn on which no
apply *)

drop constraint idEl_#, (* we rernove the old unique
feature *)

alter al2 not null constraint El_al2,
add constraint unique (al2) constraint idEl_#;

end exec;
end;

key

It depends on the choice of the user and on the uniqueness feature of the column a12 whether
we loose data or not.

2.4.2.3. Program Extracts

Select queries testing the null value of the attribute that has to be made mandatory must be
modified or deleted depending on the case.

select ...

select
frorn El
where al2 is null

from El Or
where al2 = <value>

Page 5-19

Schema Modification Propagation/or Relational Database Applications

(* The user did not want to loose data
and a12 is not a unique key *)

(* The user accepted to loose data or
al2 is a unique key *)

It is often not sufficient to change or delete the select queries only, we must also review the
program extracts in which they appear. For example: in certain cases we do not need the null
indicator anymore and certain tests, checking the null value of column a12, must either be
changed or dropped.

var al2: <type>;

null_indicator: INTEGER;

exec SQL
select al2

into :a12:null_indicator,
from El
wbere all = . . .

end exec;
if SQLCODE = 0 (* if sucb a row bas been found *}
tben if null indicator = O

then

JJ,
var al2: <type>;

exec SQL
select a12

into :a12,
from El
wbere all =

end exec;
if SQLCODE = 0
tben ...

Page 5-20

(* if sucb a row bas been found *}

Chapter 5 : Study of the Modifications: General Approach

2.5. SWITCH_PK_UNIQUE

2.5.1. Classification of the Modification
As shown in Figure 5-13, switch_PK_unique is a modification on identifiers which preserves
the semantics.

semantics ➔ augmenting decreasing preserving
objects ,J,
entity-type
rel-type
role
attribute
identifier X

Figure 5 - 13 : Classification of switch_P K_unique

2.5.2. Description of the Modification
We want to transform the existing prirnary key into a unique key in entity-type El and vice
versa. The user has the choice whether to specify a unique key or not. If he does not specify
any unique key, then a technical identifier is created as primary key.

Precondition:
If a unique key is specified then it must not be optional as SQL-RDB does not allow optional
attributes as primary key.

Page 5-21

Schema Modification Propagation for Relational Database Applications

El

El El IILE1
all
al2[0-l]
al3
al4

all
a12[0-l]
al3
a14

all
al2[0-l]
al3
a14

al5f0-1]
id:all

al5f0-ll
id:all

a15f0-ll
id:ID_El

id': a14
id': a15

id':a14.
id' : a15

id': al 1
id':a14
id': al5

or or

El El El

IILE1 all all
all a12[0-1] a12[0-l]
al2[0-l] al3 al3
al3 a14 a14
al4 al5[0-l] a15f0-ll
al5f0-ll id:a14 id:a14
id:ID_El id':all id': al 1
id':all id': al5 id': al5
id': al4
id': al5

Figure 5 - 14: Switching the primary key and the unique key on the
conceptual level

2.5.2.1. Logical Schema

We transform the existing primary key into a unique key in relation El, drop it if it was a
technical one, create a technical primary key if no unique key was specified and replace the
foreign keys referencing relation El accordingly.

2.5.2.2. SQL Description & Data

var i : INTEGER;
id.ADD: INTEGER;

procedure Switch(El, old_prim, new_prim)

(* This procedure transforms the existing primary key old_prim into a
unique key in table El and the unique key new_prim into the new primary
key o f table El . *)

Page 5-22

Chapter 5 : Study of the Modifications: General Approach

El
Qld 12rim
a12
a13
new_prim

f--

a15[0-1]
id: old_prim
id': new_prim
id': a15
id': a12

E2

.a2.l
a22[0-1]
a23

- a24
a25f0-l]
id: a21
id': a24
id': a25

Figure 5 - 15: General situation used in procedure Switch

var old_pr irn : <type>;
new_prirn: <type>;

begin
for each foreign key in table E referencing table El

and representing relationship-type R
do begin

(* we create the new foreign key colwnr1, we rernove the old
foreign key constraint and we copy the data representing
relationship-typ R *)

if u = 0
then exec SQL

alter table E
add R_new_prirn <type>,
drop constraint El_#;

declare c cursor for
select R_old_prirn

frorn E

end exec

where R_old_prirn is not null
for update of R_new_prirn;

else (* u = 1 *)
exec SQL

alter table E
add R_new_prirn <type> default <value> not null

constraint E_R_new_prirn,
drop constraint El_#;

declare c cursor for
select R_old_prirn

frorn E
for update of R_new_prirn;

end exec;
exec SQL

open c;
fetch c into :o ld_prirn ;

end exec;
while SQLCODE = 0 (* the last item has not yet been treated *)
do exec SQL

select new_prirn
into :new_prirn
frorn El
where old_prirn = :old_prirn;

update E
set R_new_prirn = :new_prirn
where current of c;

fetch c into :old_prirn;
end exec;

exec SQL
close c

Page 5-23

Schema Modification Propagation for Relational Database Applications

end exec;
end;

if old_prim in
then exec SQL

Elis a technical identifier

(* we drop the old primary key with its constraints and
we add the primary key feature to column new_prim *)

alter table El

end exec

drop constraint idEl_#,

drop
drop
drop

add

(* primary key feature of old_prim *)
constraint El_ID_El,
ID_El,
constraint idEl_#,

(* uniqueness feature of new_prim *)
constraint primary key (new_prim)

constraint idEl_#;

else (* old_prim in Elis nota technical identifier*)
exec SQL

(* We switch the identifying features between new_prim
and old_prim *)

alter table El
drop constraint idEl_#,

(* primary key feature of old_prim *)
add constraint unique (old_prim) constraint idEl_#,
drop constraint idEl_#,

(* uniqueness feature of new_prim *)
add constraint primary key (new_prim)

constraint idEl_#;
end exec;

for each foreign key in table E referencing table El
and representing relationship-type R

do begin
if u = 1 (* the old foreign key column R_old_prim was

mandatory *)
then exec SQL

alter table E
drop constraint E_R_old_prim;

end exec;
if y= 1 (* the old foreign key column R_old_prim was a unique

key *)
then exec SQL

alter table E
drop constraint idE_#
add constraint unique (R_new_prim)

constraint idE_#;
end exec;

exec SQL
(* we add the new foreign key constraint and remove the

old foreign key column *)
alter table E

add constraint foreign key (R_new_prim) references El
constraint El_#,

drop R_old_prim;
end exec;

end;
end; (* end of procedure *)

Page 5-24

Chapter 5: Study of the Modifications: General Approach

(* the program allows us to call the procedure 'Switch' with the correct
arguments *)

if no unique key is specified
then begin

exec SQL
(* we create a technical identifier*)
alter table El

add ID_El srnallint default O not null constraint El_ID_El;
(* we assign identifying values to that colurnn *)
declare c cursor for

select ID_El
frorn El

for update of ID_El in El;
open c;
fetch c;

end exec;
i:= 1;
while SQLCODE = 0 (* the last item has not yet been treated *)
do begin

exec SQL
update El

set ID_El = :i
where current of c;

fetch c;
end exec;
i : = i+l;

end;
exec SQL

close c;
(* we add the unique key feature to ID_El *)
alter table El

add constraint unique (ID_El) constraint idEl_#,
end exec;

(* we operate the real switch *)
call Switch(El, all, ID_El);

end
else (* a unique key is specified *)

if the prirnary key of Elis nota technical one
then call Switch(El, all, a14)
else call Switch(El, ID_El, a14);

No data is lost as we do not consider the information included in the technical identifier
column ID_El as semantical data.

2.5.2.3. Program Extracts

Let us suppose we have switched primary key al 1 with unique key a14.

Every select query which uses a foreign key referencing table E 1 must be modified: we have to
replace the foreign key.

- select ...
frorn E
where R_all = c

se lect
frorn E
where R_a14 = d

Page 5-25

Schema Modification Propagation for Relational Database Applications

- select ...
from El
where a11 in(select R_a11

from E
where ...)

selec t
from El
where a14 in(select R_a14

from E
where .. .)

A concrete example can be found in the modification switch_PK_unique in chapter 4 (see page
4-37). As we already said, it is not sufficient to change only the select queries. We must also
review the application programs (for an example see page 4-41).

Page 5-26

Chapter 6:

Introduction to the
Modifications on the Basic ER

Model

Chapter 6: Introduction to the Modifications on the Basic ER Mode[

1. INTRODUCTION
In the previous chapters, we have seen the modifications of the Kemel. However, as the Kemel
only allows restricted concepts, we have to enlarge it to what we call the Basic ER Model.
This enlargement is illustrated in Figure 6-1.

BASIC ER

~

BASIC REL.

MODEL

RICH REL. MODEL

Figure 6 - 1 : Relation between the Basic ER mode[

and the Rich Relational Madel

Studying in detail the modifications on this model would be beyond the scope of our thesis and
we will therefore only give some reflex.ions about them. In this chapter, we thus begin with a
description of the Basic ER Model and we then briefly study the modifications on it. In this
study, we consider the extension of existing objects, on the one hand, and the introduction of
new objects, on the other hand. For both categories, we will consider new modifications and
impacts on the existing ones.

Page 6-1

Schema Modification Propagation for Relational Database Applications

2. DESCRIPTION OF THE BASIC ER
MODEL

The Basic ER Model must be conceived in such a way that we are able to translate ail its
concepts into the Rich Relational Model. The latter groups ail possible relational objects
(tables, columns, foreign keys, primary keys, unique keys, check constraints, ...). Note that it
should always be possible to translate any schema expressed in the Basic ER Model into the
Rich Relational Model, but that the inverse translation may not always be possible.

We thus allow the following concepts for the Basic ER Model:

- entity-types having at least one attribute and a primary key
If we would allow entity-types without a primary key, certain relationship-types
connected to them could not be directly expressed in the relational model. We would
have to add a technical identifier to the entity-types before translating these
relationship-types into the relational model.

- atomic and single-valued attributes, which can be optional or mandatory
This restriction is necessary as compound and/or multi-valued attributes must be
decomposed and/or extracted before being translated into the relational model.

- ail the roles

Page 6-2

Normaily we would have to accept not only the cardinalities 0, 1, N, but ail possible
cardinalities. We will however not speak about them as they do not bring any new
ideas and involve moreover unnecessary complications.

Chapter 6: Introduction to the Modifications on the Basic ER Mode/

- all functional1 relationship-types
In addition to the relationship-types allowed in the Kemel (see page 3-2), we here
also accept:

- 1-1/1-N relationship-types (l-N/1-1 is symmetrical)
- 0-1/1-N relationship-types (1-N/0-1 is symmetrical)
- 1-1/1-1 relationship-types
- recursive relationship-types

We do not consider non functional relationship-types as they must be transformed into
entity-types before being translated into the relational model.

- identifiers of entity-types (the primary keys must be composed by mandatory
attributes and/ or roles with minimum cardinality 1)
We only consider identifiers of entity-types as we do not need explicit identifiers for
functional relationship-types. Indeed for these relationship-types the identifer(s) is
(are) derivable from their maximum cardinalities.

- constraints on roles: exclusion, inclusion, equality
on relationship-types: exclusion, inclusion, equality, functional

dependency (FD)
on attributes: coexistence, functional dependency (FD)

1 A relationship-type is functional if it is binary, if it bas no attributes and if it is not N-N.

Page 6-3

Schema Modification Propagation/or Relational Database Applications

3. STUDY OF THE MODIFICATIONS
ON THE BASIC ER MODEL

3.1. INTRODUCTION

When comparing the description of the Basic ER Model (see page 6-2) to that one of the
Kemel (see page 3-1), we can observe either an extension of the concepts of the Kemel or a
creation of new objects. In both cases, new modifications and impacts on existing ones must be
analysed. As we have already said, a detailed study of the modifications of the Basic ER model
would be beyond the scope of our thesis. What is more, we will not try to aggregate the
impacts of the different extensions of the existing objects and those of the new objects. Indeed,
such an integration would be very difficult as one extension of an object will involve effects on
the other extensions or on the new objects. We are here notable to study these mutual effects
as we will not have made a detailed study.

To summarize, we will start with the extension of existing objects, then go over to the new
objects.

3.2. EXTENSION OF EXISTING ÜBJECTS

Three major extensions can be observed in the Basic ER Model:

- allowing the minimum cardinality 1 everywhere and thus allowing
1-1/1-N relationship-types (1-N/1-1 is symmetrical)
0-1/1-N relationship-types (1-N/0-1 is symmetrical)
1-1/1-1 relationship-types

- recursive relationship-types
- non mono-attribute identifiers

For each of these extensions, we will study the impacts on the existing modifications and
analyse the new modifications.

3.2.1. Allowing the Minimum Cardinality 1 Everywhere
Before studying the impacts on the existing modifications, we will discuss how the minimum
cardinality 1 is represented in SQL.

3.2.1.1. Representation in SQL

The minimum cardinality 1 of a 1-N role is represented in SQL by a check constraint. For
example, let us consider the following relationship-type:

Page 6-4

Chapter 6: Introduction to the Modifications on the Basic ER Mode[

LINE ORDER
.nlin.e _,
qty 0-1~1-N - llill:d

date
id: nline id: nord

Figure 6 - 2: A 0-111-N relationship-type on the conceptual Level

In the relational model it is represented by:

UNE
.nlin.e
qty ORDER
COMPOSE nord[0-1 J llill:d
id: nline date

ace _f id: nord
equ:COMPOSE_nord ace

ace

Figure 6 - 3: An 0-1/1-N relationship-type on

the logical level

In SQL-RDB the definition of the two tables would be:

create table ORDER
(nord char(4) not null constraint O_nord,

constraint O_date, date date not null
primary key (nord) constraint idORDl) ;

create table LINE
(nline

COMPOSE_nord
qty
primary key
foreign key

alter table OROER

char(6) not null constraint L_nline,
char (4),
integer not null constraint L_qty,

(nline) constraint idLINl,
(COMPOSE_nord) references OROER constraint OROl);

add constraint check (nord in (select COMPOSE_nord from LINE))
constraint ch_nordl;

Note that we also need such a check constraint for the 1-1/1-1 relationship-types.

Page 6-5

Schema Modification Propagation for Relational Database Applications

3.2.1.2. Impacts on the Existing Modifications

Allowing those minimum cardinalities has an impact on all2 the modifications which handle
either the foreign key representing the relationship-type, the minimum cardinality belongs to, or
the primary key referenced by that foreign key. That is the case for the following
modifications:

- modifications of the entity-types: - rename_entity-type

- modifications of the roles: - augment_max_card
- decrease_min_card
- decrease_max_card
- augment_min_card

- modifications of the attributes: - make_attr_mandatory

- modifications of the identifiers: - switch_PK_unique

As we have already said, analysing in detail those impacts would be beyond the scope of our
thesis. We therefore only study one modification in detail (augment_max_card) and give some
indications for the others.

• In the modification rename_entity-type (see page 4- 10), we have now also to replace the
check constraints referencing the entity-type that has to be renamed.

• Let us consider in detail augment_max_card (page 4-18):
The precondition can be relaxed as we can now also accept the 1-1/1-1 ➔ 1-1/1-N and the
0-1/1-1 ➔ 0-1/1-N transformations.

We will only examine the case 0-1/1-1 ➔ 0-1/1 -N. The other transformation is pretty
similar.

On the conceptual level the transformation is:

2 W e will not only consider the modifications described in Cbapter 4, but also tbose included in Appendix 1.

Page 6-6

Chapter 6: Introduction to the Modifications on the Basic ER Model

ADDRESS CUSTOMER
nadd .lliJ.lSl
Street

.__0-1~1-1- name
number date birth f 0-11
zip

id: ncust city
id': name

id: nadd

Jj,

ADDRESS CUSTOMER
nadd lliJlfil
Street

-0-1~1-N- name
number date birth f0-11
zip

id: ncust city
id': name

id: nadd

Figure 6 - 4 : Augmenting the maximum cardinality of a rote to Non the

conceptual level

On the logical level the transformation is:

Page 6-7

Schema Modification Propagation for Relational Database Applications

ADDRESS

nadd
street
number
zip
City
id: nadd

ace

ADDRESS
WORK_ncust[0-1]
nadd
Street
number
zip
city
id: nadd

ace
equ: WORK_ncus

ace

L.,,--

CUSTOMER
WORK_nadd
.lliJ.lfil
name
date birth f 0-11
id: ncust

ace
id':WORK_ nadd

ref acc
id': name

ace

CUSTOMER

.lliJ.lfil
name
date_birth 0-1
id: ncust

ace
id': name

ace

Figure 6 - 5: Augmenting the maximum cardinality of a role to Non the

logical Level

The SQL description of the modification would become:

(* we will put in bold the additional operation *}
var cust: STRING[4);

add: INTEGER;

exec SQL
(* we create the new foreign key column *}
alter table ADDRESS

add WORK_ncust char(4);
(* we copy the data representing relationship-type WORK from

table CUSTOMER into table ADDRESS *}
declare c cursor for

select ncust, WORK_nadd
from CUSTOMER;

open c;
fetch c into :cust, :add;

end exec;
while SQLCODE = 0
do begin

(* the last item has not yet been treated *}

Page 6-8

exec SQL
update ADDRESS

set WORK_ncust = :cust
where nadd = :add;

fetch c into :cust, :add;
end exec;

end;

Chapter 6: Introduction to the Modifications on the Basic ER Madel

exec SQL
close c;
(* we add and remove the necessary constraints *)
alter table ADDRESS

add constraint foreign key (WORK_ncust) references CUSTOMER
constraint CUSl;

alter table CUSTOMER
drop constraint idCUS2, (* we remove the old unique key

feature *)
drop constraint ADDl, (* we remove the o ld foreign key

feature *)
drop constraint C_WORK_nadd, (* we remove the mandatory

feature from column
WORK_nadd *)

drop WORK_nadd,
add constraint check (ncust in (select WORK ncust

from ADDRESS))
constraint ch_ncust1;

end exec;

Note that no data is lost as the data representing relationship-type WORK is only copied
from table CUSTOMER into table ADDRESS.

Concerning the program extracts, the same remarks can be formulated as for the case
0-1/0-1 ➔ 0-1/0-N where WORK is implemented by a foreign key in relation CUSTOMER
(see page 4- 24).

• For the modification decrease_min_card (see page Al- 45), we have also to distinguish
two new cases where we have to remove the check constraint representing the newly
introduced minimum cardinality.

• Decreasing the maximum cardinality of arole to 1 (see page Al- 48) means adding the
candidate key feature to the foreign key on the logical level. We have thus to remove rows
with duplicate values for the foreign key which in its tum induces losses of values for a
second foreign key of the entity-type the first foreign key belongs to. If there is a check
constraint on the primary key referenced by the second foreign key then problems may
occur! For example, let us suppose that we want to decrease the maximum cardinality of
the 0-N role of relationship-type SPECIFY as indicated in Figure 6-6.

Page 6-9

Schema Modification Propagation for Relational Database Applications

PRODUCT
UNE ORDER .!.lllliill

llilid ,_l-N~0-1-~ -1-1~0-N- label
date qty price
id: nord id: nline id: nprod

.li,

PRODUCT
ORDER LINE .nm:oo
Il.Qr.d -1-N~O-l-

nliill; -1-1~0-1- label
date atv price
id: nord id: nline id: nprod

Figure 6 - 6 : Decreasing the maximum cardinality of a rote to 1 on the conceptual Level

On the logical level, this modification means adding the uniqueness feature to the foreign
key SPECIFY _nprod, as depicted in Figure 6-7.

Page 6-10

Chapter 6: Introduction to the Modifications on the Basic ER Madel

LINE

~
qty PRODUCT

OROER SPECIFY _nprod .IUlliK1
llilli1 COMPOSE nordf0-11 label
date id: nline price

id: nord _
ace ~ id: nprod

ace ref: SPECIFY _nprod ace
ace

equ: COMPOSE_nord
ace

LINE

~
qty PRODUCT

OROER SPECIFY _nprod !l1llild
nm:d COMPOSE nordf0-11 label
date id: nline price

id: nord _
ace ~ id: nprod

ace id': SPECIFY_nprod ace
refacc

equ: COMPOSE_nord
ace

Figure 6 - 7: Decreasing the maximum cardinality of a rote to 1 on the

logical Level

Let us suppose that we consider only the population of table LINE shown in Figure 6-8.
As SPECIFY _nprod is now a unique key, we have to rem ove one of its two rows.

nline
AB1234
GH2345

LINE
(COMPOSE nord) qty SPECIFY nprod

E386 1000 AAllO
F285 1518 AAll0

LINE.COMPOSE_nord in OROER.nord
LINE.SPECIFY _nprod in PRODUCT.nprod

Figure 6 - 8 : A simplified table LINE

Let us suppose we remove the second row of table LINE. As we have a check
constraint defined in table OROER (see Figure 6-9), we have here also to drop the second
row!

Page 6-11

Schema Modification Propagation/or Relational Database Applications

ORDER
nord date
E386 02/01/1995
F285 12/03/1994

ORDER.nord in LINE.COMPOSE_nord

Figure 6 - 9: A simplified table ORDER

Note that this problem could occur again, if there were another table on which a check
constraint applies on table ORDER.

• In the modification augment_min_card (see page Al-59), we have to distinguish three
supplementary cases (1-1/0-1 ➔ 1-1/1-1; 1-1/0-N ➔ 1-1/1-N; 0-1/0-N ➔ 0-1/1-N) where
we have to express check constraints. In the existing cases, we are confronted to a similar
problem as for the modification decrease_max_card. Here however, the problem occurs as
we make a foreign key mandatory and thus remove the rows with a null value for that
foreign key.

• In the modification make_attr _mandatory (see page 4-25), we are confronted to a similar
problem as for the modification decrease_max_card, in case we remove the rows with a
null value for the column which should be made mandatory. Here however, the problem
occurs as we may loose values for foreign keys, if any, of the table the column belongs to.

• In the modification switch_PK_unique (see page 4-31), we have to adapt the check
constraint to the new primary key.

3.2.1.3. New Modifications

Allowing minimum cardinality 1 everywhere induces new modifications:

those augmenting the semantics: - add_l-1/1-N_rel-type
- add_0-1/1-N_rel-type
- add_l-1/1-l_rel-type

those decreasing the semantics: - remove_l-1/1-N_rel-type
- remove_0-1/1-N_rel-type
- remove_l-1/1-l_rel-type

those preserving the semantics: - rename_l-1/1-N_rel-type
- rename_0-1/1-N_rel-type
- rename_l-1/1- l_rel-type

These modifications are pretty similar to those allowed in the Kernel (see page Al-12), except
that we also have to express check constraints.

Page 6-12

Chapter 6: Introduction to the Modifications on the Basic ER Madel

3.2.2. Allowing Recursive Relationship-types

3.2.2.1. Impacts on the Existing Modifications

For the recursive relationship-types, essentiaily for those with cardinalities 0-1/0-1 or 1-1/1-1,
at least one of their roles must have a name in order to be able to distinguish the roles from
each other. This name3 has to be used in the prefix of the foreign keys representing such
recursive relationship-types and we have therefore to review ail the modifications dealing with
relationship-types.

3.2.2.2. New Modifications

In order to have a good administration of the recursive relationship-types, we would propose
the following role modifications which preserve the semantics:

- add_role_name
- remove_role_name
- rename_role

• Add_role_name: This modification must add the name as a part of the prefix to the foreign
key implementing the relationship-type, the role belongs to, and must rename the foreign
key in all the constraints where it occurs.

• Remove_role_name: This modification must remove the name from the prefix of the
foreign key implementing the relationship-type, the role belongs to, and must rename the
foreign key in the constraints where it occurs. However, this modification should not be
ailowed for the recursive relationship-types where we cannot distinguish their roles by the
cardinalities. It is the case of the 0-1/0-1 and the 1-1/1-1 recursive relationship-types.

• Rename_role: If the role is used in a prefix of a foreign key then it must be renamed in the
foreign key and in the constraints where the foreign key occurs.

3.2.3. Allowing Non Mono-Attribute Identifiers

3.2.3.1. Impacts on the Existing Modifications

Allowing non mono-attribute identifiers has an impact on almost ail modifications:

- modifications of the entity-types: - rename_entity-type

- modifications of the relationship-types: - add_x-1/0-v_rel-type
- remove_x-1/0-v _rel-type
- rename_x-1/0-v_rel-type

3 If both roles have a name, only one of them is used in the prefix of the foreign key and we would thus loose
the other one. In order to support a complete translation of such a recursive relationship-type into the Rich
Relational Model, we would have to store the role name (which is not used in the prefix) in a semantic
description provided by a CASE tool.

Page 6-13

Schema Modification Propagation for Relational Database Applications

- modifications of the roles: - augment_max_card
- decrease_min_card
- decrease_max_card
- augment_min_card

- modifications of the attributes: - make_attr_optional
- remove_optional_attribute
- remove_mandatory _attribute
- make_attr_mandatory
- ail modifications changing the domain or

the type of the attribute
- rename_optional_attribute
- rename_mandatory _attribute

- modifications of the identifiers: - add_unique_feature
- switch_PK_unique

Here too, we will only study one modification in detail (augment_max_card) and we will give
some indications for the others.

• In the modification rename_entity-type (see page 4-10), we have to pay attention to the fact
that the foreign key can be composed by several columns when adding the foreign keys to
the new entity-type (in case we had no rename entity-type command).

• A similar remark can be formulated for ail the modifications on the relationship-types (see
page Al-12).

• Let us reconsider in detail augment_max_card (see page 4-18). We have to add a constraint
to the precondition. We can only augment the maximum cardinality of a role (ro), if the
other role of the relationship-type, ro belongs to, is not part of the primary key of the entity
type, connected to ro.

We will only examine the case 0-1/0-1 ➔ 0-1/0-N where WORK is implemented by a
foreign key in relation CUSTOMER. (see case 3.4.2.2.2. page 4-23). On the conceptual
level, the transformation is represented in Figure 6-10.

Page 6-14

Chapter 6: Introduction to the Modifications on the Basic ER Madel

ADDRESS

Street
CUSTOMER

number name

zip -O-l~0-1- firstname

City date birth

id: street id: name

zip firstname

JJ,

ADDRESS

Street
CUSTOMER

number name

zip -0-1~0-N-- firstname

citv date birth

id: Street id: name

zip firstname

Figure 6 - 10 : Augmenting the maximum cardinality of a role to Non the

conceptual level

On the logical level, the transformation is:

Page 6-15

Schema Modification Propagation for Relational Database Applications

Note:

ADDRESS
Street
number
zip
ci
id: street

zip
ace

ADDRESS
Street
number
zip
City
WORK_name[0-1)
WORK_firstname[0-1]
id: street

zip
ace

ref: WORK_name
WORK_firstname
coex ace

CUSTOMER
WORK_zip[0-1)
WORK_street[0-1)
name
firstname
date_birth
id: name

firstname
ace

id':WORK_street
WORK_zip
refcoex ace

CUSTOMER
name
firstname
date_birth
id: name

firstname
ace

Figure 6 - 11 : Augmenting the ma.ximum cardinality of a role to Non the

logical Level

As illustrated in Figure 6-11, there is a coexistence constraint between WORK_street and
WORK_zip on the initial schema and between WORK_name and WORK_firstname on the
final schema. However, as we have not yet treated the constraints (see New Objects page 6-
19), we will not speak about these coexistence constraints until introducing the constraints.

The SQL description of the modification would become:

var name: STRING[l2];
firstname: STRING[20];
street: STRING[20];
z ip: INTEGER;

exec SQL

Page 6-16

(* we create the new foreign key colurnn *)
alter table ADDRESS

add WORK_name char(12),
add WORK_firstname char(20) ;

(* we copy the data representing the relationship-type WORK
from table CUSTOMER into table ADDRESS *)

declare c cursor for

Chapter 6 : Introduction to the Modifications on the Basic ER Madel

select narne, firstnarne, WORK_street, WORK_zip
from CUSTOMER
where (WORK_street is not null) and (WORK_zip is not null);

open c;
fetch c into :narne, :firstnarne, :street, :zip;

end exec;
while SQLCODE = 0 (* the last item has not yet been treated*)
do begin

exec SQL
update ADDRESS

set WORK_narne = : narne,
WORK_firstnarne = : firstnarne

where street = : street and zip = :zip;
fetch c into :narne, :firstnarne, : street, :zip;

end exec;
end;

exec SQL
(* we add and remove the necessary constraints *)
alter table ADDRESS

add constraint foreign key(WORK_narne, WORK_firstnarne)
references CUSTOMER constraint CUSl;

alter table CUSTOMER
drop constraint idCUS2,

drop constraint ADDl,

drop WORK_street,
drop WORK_zip;

close c;
end exec;

(* we remove the old unique key
feature *)

(* we remove the old foreign key
feature *)

Note that no data is lost as the data representing relationship-type WORK is only copied
from table CUSTOMER into table ADDRESS.

Concerning the program extracts, the same remarks can be formulated as for the case
0-1/0-1 ➔ 0-1/0-N where WORK is implemented by a foreign key in relation CUSTOMER
(see page 4-24) .

• Decreasing the minimum cardinality (see page Al-45) of a role means removmg the
mandatory constraint from the column~ of the foreign key.

• In the modification decrease_max_card (see page Al-48), we have to pay attention to the
fact that the primary key and thus the foreign keys can be composed by several columns.

• A similar remark can be formulated for the modification augment_min_card (see page Al-
59).

• The precondition of make_attr _optional (see page Al-70) must be transformed into: "The
attribute that should be made optional must not be part of a primary key. "

• As we do not want to manage here the fact to remove an element from an identifier and the
loss of data it involves, we have to add to the precondition of the modification
remove_optional_attribute (see page Al-75): "The attribute that should be removed,
should not be part of a unique key."

• For similar reasons, the precondition of remove_mandatory_attribute (see page Al-76)
must be reviewed as follows: "The attribute which should be removed, must not be part of
an identifier and must not be the last attribute of the entity-type."

Page 6-17

Schema Modification Propagation for Relational Database Applications

• In the modification make_attr _mandatory (see page 4-25), we have to pay attention to the
fact that the primary key and thus the foreign keys can be composed by several columns.

• For all the modifications changing the domain or the type of an attribute (see page Al-71),
the precondition must be reviewed as follows: "The attribute whose domain or type should
be modified must not be part of an identifier."

• The operation rename_optional_attribute (see page Al-86) must distinguish two cases: the
attribute is part of a unique key or not.

• The same remark as in the previous case can be formulated for the modification
rename_mandatory_attribute (see page Al-88). As we do not want to rename the attribute
in the foreign keys and in cascade (if the foreign key were part of the primary key of an
entity-type), the precondition must be modified as follows: "The attribute which should be
renamed must not be part of a primary key."

• In the modification add_uniqueJeature (see page Al-92), we have to pay attention to the
fact that the primary key and thus the foreign keys can be composed by several columns. In
addition, we have to check that the identifier that we want to add is not included in an
already existing identifier. For example, the identifier 'name, firstname' should be refused if
the identifier 'name, firstname, address' already exists.

• The precondition of switch_PK_unique (see page 4-31) must be modified as follows: ''If a
unique key is specified then none of its components must be optional." As for most of the
other modifications, we must pay here also attention to the fact that the primary key and
thus the foreign keys can be composed by several columns.

Furthermore, allowing roles in the primary key involves the following problem:

UNE

.nl.i.fil< ORDER CUSTOMER
qty PLACE_ncust

llQJfil
COMPOSE_nord[0-1] nord name
COMPOSE PLACE ncustf0-1 l date ,.;;.. u id: ncust
id: nline id: nord ace

ace PLACE_ncust id': name
ref: COMPOSE_nord ace ace

COMPOSE_PLACE_ncust ref: PLACE_ncust -
ace ace

Figure 6 - 12: Example where aforeign key is part of the primary key

If we want to switch the primary key ncust with the unique key name in CUSTOMER, we
must not only replace the foreign key PLACE_ncust in ORDER by PLACE_name, but, as
PLACE_ncust is part of the primary key of ORDER, we must also replace the foreign key
column COMPOSE_PLACE_ncust in LINE by COMPOSE_PLACE_name. This problem

Page 6-18

Chapter 6: Introduction to the Modifications on the Basic ER Madel

could occur recursively, for example, if COMPOSE_PLACE_ncust were part of the
primary key of LINE.

3.2.3.2. New Modifications

As an identifier can now be composed by several attributes, adding and removing a component
to/from an identifier are necessary operations. In order to avoid the above mentioned problem
(see Figure 6-12), we would propose the operations only on unique keys:

modifications augmenting the semantics: - add_attr_unique
- add_role_unique

modifications decreasing the semantics: - remove_attr_unique
- remove_role_unique

• Add_attr _unique: This modification replaces the old unique key with a new one, the new
key being the old one + the attribute that should be added.

• Add_role_unique: As a unique key of any relation E can only be composed by its own
columns, we can add to the unique key only those roles, which are implemented by a foreign
key in relation E.

• Remove_attr _unique: We have to check that the new identifier is not included in an already
existing identifier. For example, if we have the identifiers 'name, firstname, address' and
'name, firstname, telephone' then it should be forbidden to remove either address or
telephone of one of the two identifiers.

Moreover, the fact to remove an attribute from an identifier involves not only loss of data in
that relation, but can also involve loss of data in cascade. For an example of loss of data in
cascade (though in a different context), the reader can refer to page Al-56.

• Remove_role_unique: The same remarks as in the modification remove_attr_unique can
here be formulated.

3.3. NEW ÜBJECTS

The new objects are the constraints which can apply on three existing objects: the roles, the
relationship-types and the attributes. We will briefly discuss their impacts on the existing
modifications and speak about new modifications induced by the new objects.

Normally, modifications are only possible on objects on which no constraints apply. Thus, we
have first to remove the constraints from the objects, then to execute the modifications on
them and finally to restore the constraints on them. People who analyse in detail the impacts on
modifications have the choice whether to require the non-existence of any constraints as a
precondition or to take care of the constraints within the modifications.

The new objects do not only have an impact on existing modifications, but also induce new
modifications. As it is not permitted to alter a constraint in SQL, we will only allow two basic
operations for each constraint type: adding and removing a constraint. Adding a constraint
decreases the semantics whereas removing a constraint augments it.

Page 6-19

Schema Modification Propagation for Relational Database Applications

We will now briefly speak about the precondition of each of these operations. Note that the
preconditions are written in such a way that there is no redundancy among the constraints.

• Add_role_inclusion: Both roles, the including and the included ones, must be connected to
the same entity-type. If the including role has O as minimum cardinality then the included
role must not have 1 as minimum cardinality. In addition, there must not be any exclusion
constraint on these roles nor an inclusion constraint between their relationship-types.

• Add_role_equality: We will only note that an equality constraint is an inclusion constraint in
both directions.

• Add_role_exclusion: The constraint must apply on two roles with minimum cardinalities 0
and these roles must be connected to the same entity-type. There must not be any inclusion
constraint between these roles nor an inclusion or an exclusion between their relationship
types.

• Add_rel_inclusion: The constraint must apply on two relationship-types between the same
entity-types and if any of the minimum cardinalities of the including relationship-type is 0
then the corresponding minimum cardinality of the included relationship-type must not be 1.
In addition, there must not be any exclusion constraint on these relationship-types nor on
their roles. Finally, there must not be any inclusion constraint among their roles.

• Add_rel_equality: We will only note that an equality constraint is an inclusion constraint in
both directions.

• Add_rel_exclusion: The constraint must apply on two relationship-types between the same
entity-types and there must not be any inclusion constraint between these relationship-types
nor any exclusion on their roles.

• Add_rel_FD: The relationship-types on which the constraint applies must be connected to
a same entity-type. There can only be one determined relationship-type and at least one of
the determining relationship-types must have a role which has as minimum cardinality 1 and
which is connected to the common entity-type. Finally, there must not be any exclusion
constraint among the roles connected to the common entity-type.

• Add_attr _coexist: The attributes on which the constraint applies must be optional and must
belong to the same entity-type.

• Add_attr _FD: The attributes on which the constraint applies must belong to the same
entity-type. There can only be one determined attribute and at least one of the determining
attributes must be mandatory. Note that adding a functional dependency (FD) having as
determining attribute(s) an identifier would be redundant with the concept of identifier.

There are no preconditions on the remove_ .. . operations.

In order to implement ail these modifications, we have to add or remove check constraints in
SQL.

Page 6-20

Chapter 7:

Introduction to the
Modifications on the Rich ER

Model

Chapter 7: Introduction to the Modifications on the Rich ER Madel

1. INTRODUCTION
In the previous chapter, we have given a description of the Basic ER Model (see page 6-2) and
some indications about the modifications on it. Generally, database schemas can however not
be expressed in the Basic ER Modelas it is too poor. We therefore have to introduce the Rich
ER Model, which allows the most commonly used objects. In addition to the concepts already
accepted in the Basic ER Model, we accept here:

- ail entity-types
- compound attributes
- pure1 multi-valued attributes
- non functional relationship-types:

- n-ary relationship-types
- N-N relationship-types
- relationship-types with attributes

- identifiers of relationship-types
- functional dependencies on roles

Each schema expressed in this Rich ER Model must be translated into the Basic ER Model and
each modification on a Rich ER schema (for a list of the modifications proposed on the Rich
ER Model, see chapter 8 page 8-3) has an equivalent on the Basic ER schema. This equivalent
can be composed by either one or more modifications of the Basic ER Model which is (are)
then translated into the Rich Relational Model. The hierarchy of the different models is shown
in Figure 7-1.

RICH ER
MODEL

BASIC ER
MODEL

RICH REL. MODEL

Figure 7 - I : The hierarchy of the different models

1 A multi-valued attribute is said pure if its values for one instance of an entity-type are distinct.

Page 7-1

Schema Modification Propagation for Relational Database Applications

2. MAPPING FROM THE RICH ER
MODEL TO THE BASIC ER MODEL
In a first step, we will illustrate by examples how the new concepts used in schemas of the Rich
E/R Model are mapped down to schemas in the Basic ER Model. In a further step, we will
study on examples some modifications on the new concepts.

2.1. MAPPING OF THE NEW CONCEPTS

For each of the new objects, we will describe its mapping down to the Basic E/R Model.

2.1.1. Compound Attributes
There are three frequent techniques to represent compound attributes: decomposing them and
extracting them either by instance or by value representation.

CUSTOMER
.llQ.lfil
name
address

Street
number
zip
City

id: ncust

-lJ,

CUSTOMER
.llQ.lfil
name
id: ncust

CUSTOMER)

.llQ.lfil
name
address_street
address_number
address_zip

1-1

or
cp

address citv 1-1
id: ncust

1

ADDRESS
Street
number
zip
City

or

CUSTOMER

.llQ.lfil
name
id: ncust

1

1-1

0µ
1-N

1

ADDRESS
street
number
zip
city
id: street

number
zip
City

Figure 7 - 2: Mapping a compound attribute of the Rich ER Madel down to the Basic ER Madel

Page 7-2

Chapter 7: Introduction ta the Modifications on the Rich ER Model

2.1.2. Pure Multi-valued Attributes
The same three techniques can also be used to represent multi-valued attributes: decomposing
the attributes and extracting them either by instance or by value representation.

CUSTOMER

.lliJ.lfil.
name
telephone[l-3]
id: ncust

-lJ,

CUSTOMER CUSTOMER
Il9ll .nru.s.t
name name

CUSTOMER
id: ncust

id: ncust
1

l1Q.lfil

name
telephone_l
telephone_2[0-l]
telephone 3[0-1]

1-3 I

Gµ 1-3

or or qD
1-1

1 1-N
id: ncust TELEPHONE 1

number IBLEPHONE
id: number number

CT.CUSTOMER id: number

Figure 7 - 3: Mapping a multi-valued attribute of the Rich ER Model down to the Basic ER
Madel

Page 7-3

Schema Modification Propagation for Relational Database Applications

2.1.3. Non Functional Relationship-types
Generally, n-ary relationship-types must be transformed into entity-types. We will illustrate
such a transformation by a temary relationship-type with attributes.

CUSTOMER
lliJill
name
id: ncust

,-...

CUSTOMER = O-N-Œ)-1-1
>----------<

id: ncust

0-N
1

PRODUCT
.nl2[Qil
label
orice
id: nprod

ORDER
date
atv
id: OP.PRODUCT

OS.SUPPLIER

SUPPLIER

.Il.S..UP.
address

0-N id: nsup

SUPPLIER

1-1~-N !l.S.lU1
~v address

1---------j

id: nsup

OC.CUSTOMER

1-1

~
0-N

PRODUCT
npmd
label
price
id: nprod

Figure 7 - 4: Mapping a ternary relationship-type of the Rich ER Mode! into the Basic ER Madel

The N-N relationship-types and the relationship-types with attributes are transformed in a
similar way.

Page 7-4

Chapter 7: Introduction to the Modifications on the Rich ER Madel

2.1.4. Identifiers of Relationship-types
As we now consider non functional relationship-types, we have also to consider identifiers of
relationship-types. Let us reexamine the example of Figure 7-4, this time introducing however
an explicit identifier

CUSTOMER
.IlQllfil
name
id: ncust

CUSTOMER

0-N

= O-N~l-1
1--------t

id: ncust

ORDER
date
qty

id: CUSTOMER
SUPPLIER
date

0-N

PRODUCT
Ill2!:Qd
label
price
id: nprod

ORDER
date
qty
id: OC.CUSTOMER

OS.SUPPLIER
date

1-1

~
0-N

PRODUCT

mn:oo
label
price
id: nprod

SUPPLIER

.IlfillU
~ address

0-N id: nsup

SUPPLIER

1-1 ~0-N .IlfillU
~ address

1-------f

id: nsup

Figure 7 - 5: Mapping an identifier of a ternary relationship-type of the Rich ER Madel into the Basic
ER Madel

Page 7-5

Schema Modification Propagation for Relational Database Applications

2.1.5. Functional Dependencies on Roles
A first idea to map into the Basic ER Model a ternary relationship-type on which a functional
dependency applies would be to decompose it along the functional dependency.

CUSTOMER

~
name

id: ncust

PRODUCT
.lll2[Qd

0-N
1

PRODUCT

.!1lllild
label
orice
id: nprod

SUPPLIER

.llfil.l12
address
id: nsup

label ~---"
orice ~0-1~-N
id: nprod

1 =
0-N

SUPPLIER

.llfil.l12
address
id: nsup

et>
0-N

1

CUSTOMER

.llia.lfil
name
id: ncust

Figure 7 - 6: Mapping afunctional dependency of a ternary relationship
type of the Rich ER Madel into the Basic ER Madel, afirst approach

This way of mapping does however not work very well in ail the cases. Indeed, let us consider
the non functional relationship-type ORDER which has been transformed as indicated in Figure
7-4 (see page 7-4). If we would add a functional dependency between the roles played by
PRODUCT and SUPPLIER, then mapping the transformation, as indicated in Figure 7-6,
would require a.o. the creation of a new table and the 'copy' of the data representing
relationship-type ORDER into it. This copy operation is very time-consuming (especially if

Page 7-6

Chapter 7: Introduction to the Modifications on the Rich ER Model

table OROER is large). We thus recommend, as illustrated in Figure 7-7, to keep the temary
relationship-type ORDER as an entity-type and to map the functional dependency on roles into
a functional dependency on relationship-types. Note however that this alternative induces an
unnormalised conceptual and thus relational schema.

CUSTOMER

lliJ.ISt
name
id: ncust

....._

CUSTOMER = O-N~l-1
1---------i

id: ncust

N'
0-N ,--~a-~-E~-R-.. 0-t

qty ~
0-N

1

PRODUCT

.lllllild
label
orice
id: nprod

ORDER
date
atv
id: OP.PRODUCT

OS.SUPPLIER
OC.CUSTOMER

1-1

OP

0-N

PRODUCT

mn:lli1
label
price
id: nprod

SUPPLIER

.ll.filJl}.
address
ici: nsup

1-1 os
SUPPLIER

O-N =ess

id: nsup

Figure 7 - 7: Mapping afunctional dependency of a ternary relationship-type of the Rich ER Mode!
into the Basic ER Mode!

2.2. MAPPING OF THE MODIFICATIONS

We will here only study briefly two examples of how to map a modification on a schema of the
Rich ER Model onto the corresponding schema of the Basic ER Model. We will first show
how to make a compound attribute mandatory. In a further step, we will add a first attribute to
a functional relationship-type.

Page 7-7

Schema Modification Propagation for Relational Database Applications

2.2.1. Making a Compound Attribute Mandatory
Let us illustrate the modification by Figure 7-8.

CUSTOMER CUSTOMER

.lliJJ.fil fil.llfil
name name
address[0-1] address

Street ⇒ street
number number
zip zip
City city

id: ncust id: ncust

Figure 7 - 8: Making a compound attribute mandatory in
the Rich ER Madel

In order to study the mapping of the modification, we have to know how the compound
attribute has been represented in the Basic ER Model. As we have seen in Figure 7-2 (see page
7-2), we have to distinguish three cases:

- decomposition of the attribute
- extraction of the attribute by instance representation
- extraction of the attribute by value representation

2.2.1.1. Decomposition of the Attribute

As shown in Figure 7-9, we have first to remove the coexistence constraint from the
decomposed attributes and then make each of them mandatory.

Page 7-8

CUSTOMER

.lliJJ.fil
name CUSTOMER

address_street[0-1] llQlfil

address_number[0-1] name
address_zip[0-1]
address city[0-1] ⇒

address_street
address_number

id: ncust address_zip

coex: address_street address city

address_number id: ncust
address_zip
address_city

Figure 7 - 9: Making a compound attribute mandatory in the
Basic ER Madel where it is represented by decomposition

Chapter 7 : Introduction ta the Modifications on the Rich ER Madel

2.2.1.2. Extraction of the Attribute by Instance Representation

As shown in Figure 7-10, we have in this case only to increase to 1 the minimum cardinality of
the 0-1 role of relationship-type CA.

CUSTOMER

OOJ.Sl
narne
id: ncust

CUSTOMER

OOJ.Sl
name
id: ncust

ADDRESS

>--
~ Street

0-1~1-l- number

>--

zip
City

ADDRESS
~ Street

1-1~1-l- number
zip
city

Figure 7 - JO: Making a compound attribute mandatory in the Basic
ER Madel where it is extracted by instance representation

2.2.1.3. Extraction of the Attribute by Value Representation

The mapping is exactly the same as in the previous case. The modification in the Basic ER
Model is represented in Figure 7-11 .

Page 7-9

Schema Modification Propagation for Relational Database Applications

ADDRESS
Street

CUSTOMER number

~ .__

narne 0-1~ 1-N
zip ,_
citv

id: ncust id: street
number
zip
city

ADDRESS
Street

CUSTOMER number

oo.ist .__
narne 1-1~1-N

zip
- citv

id: ncust id: street
number
zip
city

Figure 7 - 11 : Making a compound attribute mandatory in the
Basic ER Mode[where it is extracted by value representation

2.2.2. Adding a
Relationship-type

First Attribute to a Functional

Let us consider the modification where we want to add a first attribute qty to the functional
relationship-type MANUFACTURE. This situation is depicted in Figure 7-12.

Page 7-10

Chapter 7: Introduction to the Modifications on the Rich ER Madel

SUPPLIER

llfillll
name
id: nsup

SUPPLIER

IlfillP.
name
id: nsup

f-0-1 MANUFACTURE

PRODUCT

.!.W!:00
-N- label

price

id: nprod

PRODUCT

- 0-l~ MANUFACTURE 1- md 0-N- label
qty .
~-----~ ,_P~r_ic_e __ _,

id: nprod

Figure 7 - 12 : Adding ajirst attribute to afunctional relationship-type in
the Rich ER Madel

In order to map the modification down to the Basic ER Model (see Figure 7-13), a first idea
would be to remove the relationship-type MANUFACTURE, then to add an entity-type
MANUFACTURE with the attribute qty and finally to add two relationship-types MS and MP.

SUPPLIER PRODUCT

llfillll f-

name
id: nsup

0-l~O-N-~
price

id: nprod

SUPPLIER PRODUCT

name .----------+-1-1 MP 0-N label IlfillP. 0-l~S 1-l MANUFACTURE ~ .!.W!:00
f------1 qty

id: nsup ~-----~ 1-'p~ir_ic_e __ -t

id: nprod

Figure 7 - 13: Adding afirst attribute to afunctional relationship-type in the Basic ER Madel

This way of proceeding does however not work if we consider populated databases. Indeed,
none of the modifications in the Basic ER Model allows us to copy the data representing
relationship-type MANUFACTURE into the entity-type MANUFACTURE and we would thus
loose ail this data. We are confronted here to the problem that mapping modifications of the
Rich ER Model down to the Basic ER Model requires supplementary modifcations on the
Basic ER Model. In our example, we would need the modification 'transform_rel-type➔entity

type '. The mapping of the modification 'add an attribute' (of the Rich ER Model) would now

Page 7-II

Schema Modification Propagation for Relational Database Applications

consist in executing first the 'transform_rel-type➔entity-type' and then the
'add_mandatory _attribute' operations.

Before concluding this chapter, we will study the modification 'transform_0-1/0-N_rel-type➔
entity-type' that we have to add to the Basic ER Model.

On the conceptual level, the modification is illustrated in Figure 7-142.

SUPPLIER PRODUCT

!lfil.Il2 >-
name
id: nsup

0-l~O-N-=
price
id: nprod

SUPPLIER PRODUCT =e 0-l~t-17 MANUFACTURErl-1~-N r~~<f
t-i-d:-n-su-p--1 µn:=r=ic-=-e __ -1

id: nprod

Figure 7 - 14 : Transforming a 0-1/0-N relationship-type into an entity-type on the conceptual level

On the logical level, we have to rernove the foreign key representing relationship-type
MANUFACTURE frorn relation SUPPLIER, to add relation MANUFACTURE, to add the
foreign keys representing relationship-types MS and MP and to add the primary key feature to
the foreign key colurnn MS_nsup in relation MANUFACTURE.

2 It can be observed that the entity-type MANUFACTURE has no attributes which is contrary to the description
of the Basic ER Model. We will however tolerate this situation as the modification 'transform_0-1/0-N_rel
type➔entity-type' is always followed by a modification which adds an attribute to the concemed entity-type.

Page 7-12

Chapter 7: Introduction to the Modifications on the Rich ER Madel

SUPPLIER

.llfil.ll2 PRODUCT
name IlPllil
MANUF ACTURE_nprod[0-1] label
id: nsup orice

ace L----"D id: nprod
ref:MANUFACTURE_nprod ace

ace

Jj,

MANUFACTURE PRODUCT
SUPPLIER MS nsup mmx1
.llfil.ll2 MP_nprod label
name id:MS_nsup price -id: nsup - refacc ~ id: nprod

ace ref: MP _nprod ace
ace

Figure 7 - 15: Transforming a 0-1/0-N relationship-type into an entity
type on the logical level

The SQL description of the modification would be:

var sup, prod: char(5);

exec SQL
(* we drop the foreign key constraint *)
alter table SUPPLIER

drop constraint PROl;
(* we create the new table with the necessary foreign keys *)
create table MANUFACTURE

(MS_nsup char(5) not null constraint M_MS_nsup,
MP_nprod char(5) not null constraint M_MP_nprod,
primary key (MS_nsup) constraint id.MANl,
foreign key (MS_nsup) references SUPPLIER constraint SUPl,
foreign key (MP_nprod) references PRODUCT constraint PROl);

(* we copy the data representing relationship-type MANUFACTURE from
table SUPPLIER into table MANUFACTURE*)

declare c cursor for
select nsup, MANUFACTURE_nprod

from SUPPLIER
where MANUFACTURE_nprod is not null;

open c;
fetch c into :sup, :prod;

end exec;
while SQLCODE = 0 (* the last item has not yet been treated *)
do begin

exec SQL
insert into MANUFACTURE

values :sup, :prod;
fetch c into :sup, :prod;

end exec;
end;

exec SQL
close c;
(* we remove the old foreign key column *)

Page 7-13

Schema Modification Propagation for Relational Database Applications

alter table SUPPLIER
drop MANUFACTURE_nprod;

end exec;

Note that no datais lost as the data representing relationship-type MANUFACTURE is copied
from table SUPPLIER into table MANUFACTURE.

The program extracts referencing the foreign key representing the relationship-type
MANUFACTURE must be reviewed. A possible modification for the select queries would be:

select narne
from SUPPLIER
where MANUFACTURE_ nprod in select nprod

from PRODUCT

select narne
from SUPPLIER
where nsup in

Page 7-14

where label= 'christmas tree')

select MS_sup
from MANUFACTURE
where MP_nprod in (select nprod

from PRODUCT
where label = 'christmas tree')).

Chapter 8:

Integration into a CASE Tool

Chapter 8: Integration into a Case Tool

1. INTRODUCTION
As we have underlined in chapter 1, database evolution has become more and more important
during the last few years. Economically seen, database evolution induces enormous costs and
the demand for CASE tools offering evolution facilities increases steadily.

In order to integrate into the DB-MAIN1 CASE tool the previously studied modifications, we
will first describe the objective of the DB-MAIN tool and then indicate its main aspects and
components supporting database evolution.

2. THE DB-MAIN TOOL

2.1. OBJECTIVE

DB-MAIN is a generic CASE tool dedicated to database application engineering and in
particular to database design, reverse engineering and maintenance. The objective is to study in
a uniform framework the problems which arise when the requirements of database applications
evolve. The CASE tool is a preliminary version of the future Database Applications
Maintenance Assistant which is the ultimate goal of the development activity [HAI94b page 2].

As we can see, the objective of our thesis matches well with the one of the DB-MAIN tool.
We will now analyse how the different components of the DB-MAIN tool can be used for the
integration of our modifications. We will therefore essentially refer to [HAI95a].

2.2. C0MP0NENTS OF THE DB-MAIN T00L

As a large-scope CASE tool, DB-MAIN includes the usual functions needed in database
analysis and design, e.g. entry, browsing, management and modifications of specifications, as
well as code and report generation. However, the following sections will concentrate on the
main aspects and components of the tool which are directly related to database evolution
activities, namely:

- the data structure representation model, and the repository
- the modification toolboxes
- the user interface
- text analyser and name processor
- the specialized assistants
- functional extensibility
- methodological control and guidance

1 Standing for DataBase MAINtenance.

Page 8-1

Schema Modification Propagation for Relational Database Applications

2.2.1. The DB-MAIN Specification Model and Repository
The repository collects ail the information related to a project and comprises thus three classes
of information:

- a structured collection of specifications, i.e. schemas and texts
- the specification of the methodology followed to conduct the project
- the history (or trace) of the project

A schema is a description of the data structures to be processed, while a text is any textual
material generated or analysed during the project (e.g. a program or an SQL script). A project
usuaily comprises many schemas and the schemas of a project are linked through specific
relationships: the hierarchical links on the one hand and the historical ones on the other hand.
By hierarchical links we mean the kind of link that exists between a conceptual schema and the
corresponding logical one, whereas the historical ones stand for the successive versions of the
conceptual schemas. Note that we only regard historical relationships among conceptual
schemas as, for the moment, we only consider modifications on the conceptual level.

In order to represent those concepts, the repository uses a unique model for representing the
schemas of a database, model which is based upon the ER model. We have thus to distinguish
three types of constructs:

- conceptual constructs such as entity-types, attributes and identifiers
- logical constructs such as referential constraints
- physical constructs such as access keys

2.2.2. The Modification Toolkit
DB-MAIN proposes a three-level modification toolset that can be used freely, according to the
skill of the user and the complexity of the problem to be solved. We thus distinguish:

- elementary modifications:
One modification is applied to one object; with these tools, the user keeps full
control on the schema modification since similar problems can be solved by
different modifications; e.g. an entity-type can be transformed in differents ways.

- global modifications:
One modification is applied to ail the relevant objects of a schema. This toolset is
controlled by the Modification Assistant (see 2.2.4. page 8-6). Example: replace ail
multi-valued attributes by entity-types + many-to-one relationship-types.

- model-driven modifications:
All the constructs of a schema that do not comply with a given rnodel (e.g. a
specific normalised model) are modified; these modifications require little control
from the user. Note that the analyst can build its own model driven modifications
through scripting facilities of the Modification Assistant.

We will now give the most important modifications for database evolution that we would
propose to the DB-MAIN users. Remember that these modifications apply on the abjects of
the Rich ER Model only.

Page 8-2

Modifications on:
Entity-type

Add
Remove
Rename
Transform

➔ Relationship-type
➔ Attribute

Relationship-type
Add
Remove
Rename
Transform

Role

➔ Entity-type

Add
Remove
Rename
Change cardinality

Max card
Min card

Attribute
Add
Remove
Rename
Change domain

Extend
Restrict

Change type
Character
Aoat
Integer
Date

Change property
Make optional
Make mandatory
Make single-valued
Make multi-valued
Compose
Decompose

Transform
➔ Entity-type

Identifier
Add unique
Remove unique
Switch PK H unique

Chapter 8 : lntegration into a Case Tool

Page 8-3

Schema Modification Propagation for Relational Database Applications

Change unique
Add attribute
Remove attribute
Add role
Remove role

2.2.3. The User Interface

r

The user interaction operates through a fairly standard GUI. However, interacting with the
specifications exhibits some original options which deserve being discussed.

Browsing through, processing and analysing large schemas and texts require an adequate
presentation. It quickly appears that more than one way of viewing them is necessary. For
instance, a graphical representation of a schema allows an easy detection of certain structural
patterns. DB-MAIN offers six ways of presenting a schema:

Text-based views:
- compact: sorted list of the narnes of the entity-types and relationship-types
- standard: simple structured list of the entity-types (narne + attributes + constraints) and

relationship-types (name + roles + attributes + constraints)
- extended: cfr standard with more details (data types, short names and so on
- sorted: the name of all the abjects are presented in a sorted list

Graphical views:
- compact: only entity-types, relationship-types and roles are shown
- standard: same contents as text-based standard view

Switching from one view to another one is immediate, and any abject selected in a view is still
current when another view is chosen. Any relevant modification can be applied on an abject,
whatever the view through which it is presented. In addition, the text-based views allows
navigating from entity-types to relationship-types and conversely through hypertext links.

As the modifications have an impact on the logical level, on the SQL description , on the data
and on the applications programs, the user must be able to view these different components.
We thus propose the following perceptions:

Rich ER Schema
Logical Schema
SQL Description
Data
Application Programs

Note however that the modifications can only be applied on the Rich ER Model. Let us recall
here that for each modification we treat the impact on the data individually. An optimisation
would be to allow to handle the impact on the data for a whole group of modifications
applying on the same abject. For instance, if the user wants to remove two attributes from an
entity-type, then we would access twice the table representing the concemed entity-type. It
would however be better (in terms of time and ressources) to treat these modifications in a
single process.

Page 8-4

Chapter 8 : lntegration into a Case Tool

Let us consider the operations a user has to execute in order to add a 1-1/0-1 relationship-type
between two existing entity-types:

• choose menu 'Modification' from the action bar
• choose 'Rel-type' from that pull-down menu
• choose 'Add' in that cascading menu

The following dialog box appears then:

Add Rel-type

Figure 8 - 1 : The dialog box 'Add Rel-type'

• fill in the name
• activate twice the push button 'New role' in order to create the necessary roles
• validate the dialog box by pushing the 'OK' button

The modification add_rel-type is now executed and it is mapped to the logical level
and to the SQL description. In addition, it has an impact on the data and on the
program extracts.

Note:
- The push button 'New rel.' has the same effect as the 'OK' button, but regenerates

in addition the dialog box 'Add Rel-type'.
- The output field 'n-ary' indicates the number of roles of the relationship-type.

As we already said, DB-MAIN is conceived to support the conception, the reverse-engineering
and the evolution of a database. Sometimes the proposed modifications for the conception and
for the evolution may have the same name, but do not have the same effects. In the
evolutionary approach, a modification operates not only on the conceptual schema (as in the
conception approach), but also on the logical one and on the SQL description. Moreover, it
has to take into account the concemed data and program extracts. For example, removing an
attribute when conceiving a database is much simpler then removing one on a populated
database. In addition to the data problem, populated databases often have application programs
referencing it, whereas databases in the conceptual phase do not. Moreover in the evolutionary
approach the modifications are only allowed on the conceptual level whereas during the
conception the modifications are also possible on the other levels (e.g. on the logical one).

Page 8-5

Schema Modification Propagation for Relational Database Applications

In order to avoid this problem and that one of the possible mix-up of the modifications, we
would propose to distinguish three different working modes: the conception, the reverse
engineering and the evolution. Each mode will, of course, include only its own modifications.
The user can switch between the three modes by pushing on the buttons situated on the bottom
of the screen: the 'C' button stands for conception, the 'R' button for reverse-engineering and
the 'E' button for evolution. In the evolution mode, the DB-Main screen would look as in
Figure 8-2.

~: %(i?':'??!'?'t'?W'?TF?=m:,!t'fl??Œ:!Ff:'!'''???'!'!'!'!''???!??Pf!UJIMWJN???W??I?'?i???=W!?I=t!?tt?t::œtr!t??H~dji
.Eile f. dit Modification eerception Y:iew Window .t!.elp

Figure 8 - 2 : The DB-Main screen in the evolution mode

2.2.4. Text Analysis and Name Processing
To address the requirements of the application program analysis, DB-MAIN includes an
interactive pattem-matching engine which can search large text files for defined patterns or
clichés expressed in PDL, a Pattern Definition Language, which is close to the BNF notation.
This engine can be used in our modifications to detect the concemed programs extracts. In
order to get an optimal detection the set of patterns can be split into two parts: the generic
pattern and the specific one. The generic patterns define, for example, the skeleton of an SQL
query in general whereas the specific patterns complete this skeleton by defining it for a precise
environment, i.e. a specific database system and host language. If a matching program extract
has been found, it can be changed automatically or manually, depending on the modification
and/or on the user.

Page 8-6

Chapter 8 : Integration into a Case Tool

DB-MAIN also includes a name processor with which selected names in a schema or text can
be modified according to substitution patterns. This processor is very useful, especially for our
rename modifications. Sorne examples of such substitution patterns are:

- « "C- » ➔ « CUST- »
- « DATE» ➔ « TIME »

replaces each prefix « C- » by the prefix « CUST- »
replaces each substring «DATE», whatever its position,
by the substring « TIME »

In addition, the name processor allows case transformations: lower-to-upper, upper-to-lower,
capitalise and remove accents. These parameters can be saved as a name processing script and
reused later.

2.2.5. The Assistants
An assistant is a higher-level tool dedicated to solving a special kind of problems , or
conducting specific activities. It gives access to the basic toolboxes of DB-MAIN, but in a
controlled and intelligent way.

DB-MAIN currently includes two assistants supporting database evolution: the Modification
Assistant and the Analysis Assistant.

The Modification Assistant
It allows applying one or several modifications to selected objects. The assistant allows the
user to build a script comprising a list of modifications, execute it, save and load it. Predefined
scripts are available to modify any schema according to specific ER models. Note that DB
MAIN permits the user to define customized modifications (see part 2.2.6. page 8-7).

The Analysis Assistant
This tool is dedicated to the analysis of schemas. The first step consists in defining a submodel
as a restriction of the generic specification model. This restriction appears as a boolean
expression of elementary predicates stating which specification patterns are valid (for example:
a relationship-type has exactly two roles). A submodel appears as a script which can be saved
and loaded. Predefined submodels are available: normalised ER, binary ER and so on.
Customized predicates can here also be added. The second step consists then in evaluating the
current schema against a specific submodel. This provides a list which describes the detected
violations.

2.2.6. Functional Extensibility
No CASE tool can satisfy the needs of all users in any possible situation. DB-MAIN provides a
set of built-in standard tools. These tools are sufficient to satisfy most basic needs in database
engineering. However, specialised operators may be needed to deal with unforeseen or
marginal situations. In addition, analysing and generating texts in any language, or importing
and exchanging specifications with any CASE tool is practically impossible, even with highly
parametric import/export processors. To cope with such problems, DB-MAIN provides the
VOYAGER-2 (V2) development environment allowing users to build their own fonctions,
whatever their complexity. V2 offers a powerful language in which specific DB-MAIN tools
can be developed.

Page 8-7

Schema Modification Propagation for Relational Database Applications

2.2. 7. Methodological Control and Design Recovery
In the context of database application evolution, understanding how the engineering processes
have been carried out when legacy systems have been developed, and guiding today analysts in
conducting application development, maintenance and reengineering, are major fonctions that
should be offered by the CASE tools. In DB-MAIN, the design includes thus not only the
specifications, but also the reasonings, the modifications, the hypotheses, the decisions which
the development process was made of.

Page 8-8

Chapter 8 : Integration into a Case Tool

2.3. ARCHITECTURE OF THE DB-MAIN TOOL

After having seen the different components of the DB-MAIN tool, we will show how they
interact with each other. The architecture of the tool is depicted in Figure 8-3.

GRAPHICAL USER INTERFACE (GUI)

Design Mode Evolution Mode RE Mode

METHODOLOGICAL ENGINE

ASSISTANTS

Modification Analysis

VOYAGER

SCRIPTS

._. CUSTOMIZED

FUNCTIONS

..._ ________ B_A_s_1c_T_o_o_L_s ________ 14◄-------<{'.:~ P,ITTER~

Access

TEXTS

Modifications

REPOSITORY

Project

Historical
Method

----► Control Flow

---►• Data Flow

Figure 8 - 3 : The architecture of the DB-MAIN tool

Page 8-9

Chapter 9:

Conclusion

Chapter 9 : Conclusion

ln our thesis, we have tried to tackle the database evolution problem by studying schema
modifications and their impacts. As we have said in chapter 1, we have situated our thesis in
the idealistic context of the forward database maintenance strategy. We have therefore only
considered schema modifications on the conceptual level and studied their impacts onto the
logical level, the SQL description, the data and the application programs. On the conceptual
level, we have chosen the ER model as it is a widely spread model. However, due to the
richness of this model, studying the modifications on it would have been very complex and, in a
first approach, we have had to simplify it.

We have therefore started by choosing a restricted relational model, the Basic Relational
Model and we have tried to build an ER model, the Kernel, whose concepts are entirely
translatable into those of the Basic Relational Model. Once these two models were defined, we
have started studying the modifications in a very restricted framework. For this study, we have
chosen an inductive approach: we have first studied the different modifications on a case study
before treating them in general.

As the Kernel is however a very poor ER model, we have enriched it into what we called the
Basic ER Model. When mapping the concepts of the Basic ER Model down to the logical
level, we have observed that the Basic Relational Model was not sufficient anymore and we
have thus used the Rich Relational Model instead. This enrichment forced us not only to
review the previously considered modifications, but also to introduce new modifications. Due
to time constraints however, we could only give indications about them by illustrating them on
examples.

We have then underlined that the Basic ER Model is not powerful enough to represent the
whole ER model. We have therefore had to introduce the Rich ER Model, which allows the
most commonly used concepts and we have had to study how the modifications are mapped
down to the Basic ER Model. As these modifications strongly interfere with those of the Basic
ER Model and as we have had no time to study the latter ones, we have been unable to study
them in detail.

Since our thesis is only useful in the context of a CASE tool supporting database evolution, we
have briefly discussed how to integrate our work into a specific CASE tool, namely the DB
MAIN tool.

Due to the complexity of the schema modifications of the ER model, we have not been able to
tackle the whole problem. lndeed, we have only studied the modifications on a restricted
model and we would therefore propose a second thesis which should try to analyse them on
the complete ER model. This extension should be based upon the work that we have realised.
Note that a lot of work has still to be done and that the result is far from being evident as some
modifications will require contradictory constraints or limitations. Once the complete study
accomplished, the work could be integrated into a CASE tool.

Our thesis together with the proposed extension can also be seen as a contribution to a multi
view system supporting database evolution. We studied such a multi-view system during our
practical training in Australia. It is an environment which allows a user to switch between
several views of a database schema: on the conceptual level, the NIAM and the ER/EER views
and on the logical level, the relational one. Such a system is represented in Figure 9-1.

Page 9-1

Schema Modification Propagation for Relational Database Applications

USER

Figure 9 - 1 : A multi-view system supporting database evolution

In this system, any modification made on a schema in one view must directly be propagated, by
one or several modifications, to the corresponding schema in the other views. Note that the
schemas represented in the different views must therefore be semantically equivalent. Our
thesis together with its extension would only have solved the problem of the mapping of the
modifications of the ER model down to the relational one. Further developments would then
have to tackle the remaining mapping problems among which the mapping of the modifications
of the relational model up to the ER model. Note however that there is still a long way to go in
order to obtain such a multi-view system.

Page 9-2

Bibliography

[ARI91]

[B0089]

[BEL93]

[CAS93]

[DAT89]

[DAT95]

[DAT86]

[DBM94]

[0B289]

Bibliography

Temporally oriented data de.finitions: Managing schema evolution in
temporally oriented DB
G. Ariav
Data & Knowledge Engineering 6 (1991) -- pages 451-467

Conception assisté des systèmes d 'information - Méthode/Modèles/Outils -
ième edition
F. Bodart and Y. Pigneur
Masson (1989)

An Active Meta-modelfor Knowledge Evolution in an Object-oriented
Database 1993
Z. Bellahsene
in Proceedings of CAiSE'93, Springer Verlag (1993) -- pages 39-53

On the design and maintenance of optimized relational representations of
entity-relationship schemas
M.A. Casanova, L. Tucherman and A.H.F. Laender
Data & Knowledge Engineering 11 (1993) --pages 1-20

A Guide to The SQL Standard - Second Edition
C.J. Date
Addison-Wesley Publishing Company (1989)

An Introduction to Database Systems Sixth Edition
C.J. Date
Addison-Wesley Publishing Company (1995)

Relational Database - Selected Writings
C.J. Date
Addison-Wesley Publishing Company (1986)

DB-MAIN Tutorial
Version 2 - November 1994

IBM Database 2 Version 2 - SQL Reference
Release 2
IBM (September 1989)

Page B-1

Schema Modification Propagation for Relational Database Applications

[ELM94]

[EWA93]

[HAI88]

[HAI92]

[HAI94a]

[HAI94b]

[HAI95a]

[HAI95b]

[LIU94]

[NGU89]

Page B-2

Fundamentals Of Database Systems - Second Edition
R. Elmasri and S.B. N avathe
The Benjamin/Cummings Publishing Company, Inc. (1994)

A Procedural Approach to Schema Evolution
C.A. Ewald and M.E. Orlowska
in Proceedings of CAiSE'93, Springer Verlag (1993) -- pages 22-38

Introduction à la théorie relationnelle des bases de données
J-L. Hainaut
FUNDP (mars 1988)

Introduction à SQL, un système de gestion de bases de données relationnelles
J.-L. Hainaut
Quatrième version, FUNDP (4 novembre 1992)

Database Evolution: the DB-MAIN Approach
J-L. Hainaut, V. Englebert, J. Henrard, J-M. Hick, D. Roland
FUNDP (1994)

The DB-MAIN Database Engineering CASE tool - Functions Overview
J-L. Hainaut, V. Englebert, J. Henrard, J-M. Hick, D. Roland
FUNDP (July 1994)

Requirements for Information System Reverse Engineering Support
J-L. Hainaut, V. Englebert, J. Henrard, J-M. Hick, D. Roland
FUNDP (24/01/1995)

DB-MAIN: un atelier d 'ingénierie de bases de données
J-L. Hainaut, V. Englebert, J. Henrard, J-M. Hick, D. Roland
FUNDP (1995)

Database Schema Evolution using EVER Diagrams
C-T. Liu, S-K. Chang and P.K. Chrysanthis
Proc. ofWorkshop on AVI'94 (1994) -- pages 122-132

Schema evolution in object-oriented database sytems
G.T. Nguyen and D. Rieu
Data & Knowledge Engineering 4 (1989) --pages 43-67

[PR094]

[PR095]

[RDB91]

[ROD92]

[ROD93]

[R0D94]

[TSU91]

[VAN89]

Bibliography

EVORM: A conceptual rrwdelling technique for evolving application domains
H.A. Proper and T.P. van der Weide
Data & Knowledge Engineering 12 (1994) --pages 313-359

Information disclosure in evolving information systems: taking a shot at a
rrwving target
H.A. Proper and T.P. van der Weide
Data & Knowledge Engineering 15 (1995) --pages 135-168

VAX Rdb/VMS Version 4.1 . - SQL Reference Manual
Digital (December 1991)

Schema Evolution in Database Systems - An Annotated Bibliography
J.F. Roddick
SIGMOND RECORD, Vol 21, No 4 (December 1992) -- pages 35-40

A Taxonomy for Schema Versioning Based on the Relational and Entity
Relationship Models
J.F. Roddick, N.G. Craske and T.J. Richards
Proc. of the 12th Int. Conf. on Er Approach, Arlington Dallas, ER Institute
(1993)

Schema Evolution in Database Systems - An Updated Bibliography
John F. Roddick
University of South Australia (1994)

MORE: An Object-Oriented Data Madel with a Facility for Changing Object
Structures
K. Tsuda, K. Yamamoto, M. Hirak:awa, M . Tanaka and T. Ichikawa
IEEE Transactions on Knowledge anri Data Engineering, Vol 3, No 4,
(December 1991) -- pages 444-460

Introduction to SQL - Second Edition
Rick F. van der Lans
Addison-Wesley Publishing Company (1989)

Page B-3

Appendix 1:

Study of the Modifications:
Case Study Approach

Appendix 1 : Table of Contents

TABLE OF CONTENTS

Appendix 1 :Study of the Modifications: General
Approach

1. INTRODUCTION ___________________ Al-1

2. MODIFICATIONS OF THE ENTITY-TYPES Al-4

2.1. Modifications which Augment the Semantics _______________ Al-4
2.1.1. Add_entity-type Al-4

2.1.1.1. Logical Schema Al-5
2.1.1.2. SQL Description & Data Al-5
2.1.1.3. Program Extracts Al-6

2.2. Modifications which Decrease Semantics Al-6
2.2.1. Remove_entity-type Al-6

2.2.1.1. Logical Schema Al-7
2.2.1.2. SQL Description & Data Al-7
2.2.1.3. Program Extracts Al-8

2.3. Modifications which Preserve the Semantics Al-8
2.3.1. Rename_entity-type Al-8

2.3 .1.1. Logical Schema Al-9
2.3.1.2. SQL Description & Data Al-10
2.3 .1.3. Program Extracts Al-11

3. MODIFICATIONS OF THE RELATIONSHIP-TYPES Al-12

3.1. Modifications which Augment the Semantics _______________ Al-12
3.1.1. Add_l-1/0-l_rel-type Al-12

3.1.1.1. Logical Schema Al-12
3.1.1.2. SQL Description & Data Al-13
3.1.1.3. Program Extracts Al-13

3.1.2. Add_0-1/0-l_rel-type Al-15
3.1.2.1. WORK is implemented by a foreign key in ADDRESS Al-16

3.1.2.1.1. Logical Schema Al-16
3.1.2.1.2. SQL Description & Data Al-16
3.1.2.1.3. Program Extracts Al-16

3.1.2.2. WORK is implemented by a foreign key in CUSTOMER Al-17
3.1.3. Add_l-1/0-N_rel-type Al-17

3.1.3.1. Logical Schema Al-17
3.1.3.2. SQL Description & Data Al-18
3.1.3.3. Program Extracts Al-18

3.1.4. Add_0-1/0-N_rel-type Al-19
3.1.4.1. Logical Schema Al-19
3.1.4.2. SQL Description & Data Al-20
3.1.4.3. Program Extracts Al-21

3.2. Modifications which Decrease the Semantics Al-21
3.2.1. Remove_l-1/0-l_rel-type Al-21

3.2.1.1. Logical Schema Al-22
3.2.1.2. SQL Description & Data Al-23
3.2.1.3. Program Extracts Al-23

3.2.2. Remove_0-1/0-l_rel-type Al-24
3.2.2.1. WORK is implemented by a foreign key in ADDRESS Al-25

Schema Modification Propagation for Relational Database Applications

3.2.2.1.1 . Logical Scbema ______________________ Al-25
3.2.2.1.2. SQL Description & Data Al-25
3.2.2.1.3. Program Extracts Al-26

3.2.2.2. WORK is implemented by a foreign key in CUSTOMER Al-26
3.2.2.2.1. Logical Scbema Al-26
3.2.2.2.2. SQL Description & Data Al-26
3.2.2.2.3 . Program Extracts Al-27

3.2.3. Remove_l-1/0-N_rel-type Al-27
3.2.3.1. Logical Scbema Al-28
3.2.3.2. SQL Description & Data Al-28
3.2.3 .3. Program Extracts Al-29

3.2.4. Remove_0-1/0-N_rel-type Al-29
3.2.4.1. Logical Scbema Al-30
3.2.4.2. SQL Description & Data Al-31
3.2.4.3. Program Extracts Al-32

3.3. Modifications which Preserve the Semantics Al-32
3.3.1. Rename_l-1/0-l_rel-type Al-32

3.3.1.1. Logical Scbema Al-33
3.3.1.2. SQL Description & Data Al-34
3.3.1.3. Program Extracts Al-35

3.3.2. Rename_0-1/0-l_rel-type Al-35
3.3.3. Rename_l-1/0-N_rel-type Al-35

3.3.3.1. Logical Scbema Al-36
3.3.3.2. SQL Description & Data Al-37
3.3.3.3. Program Extracts Al-37

3.3.4. Rename_0-1/0-N_rel-type Al-38

4. MODIFICATIONS OF THE ROLES Al-39

4.1. Modifications which Augment the Semantics ___________ ____ Al-39
4.1.1. Augment_max_card Al-39

4.1.1.1. 1-1/0-1 ➔ 1-1/0-N Al-39
4 .1.1.1.1. Logical S cbema A 1-40
4.1.1.1 .2. SQL Description & Data Al-40
4.1.1.1.3. Program Extracts Al-40

4.1.1.2. 0-1/0-1 ➔ 0-1/0-N Al-41
4.1.1.2.1. WORK is implemented by a foreign key in relation ADDRESS Al-42

4.1.1.2.1.1 . Logical Scbema Al-42
4.1.1.2.2. WORK is implemented by a foreign key in relation CUSTOMER Al-43

4.1.1.2.2.1. Logical Scbema Al-43
4.1.1.2.2.2. SQL Description & Data Al-43
4.1.1.2.2.3. Program Extracts Al-44

4.1.2. Decrease_min_card Al-45
4.1.2.1. 1-1/0-1 ➔ 0-1/0-1 Al-45

4.1.2.1.1. Logical Scbema Al-46
4.1.2.1.2. SQL Description & Data Al-47
4.1.2.1.3. ProgramExtracts Al-47

4.1.2.2. 1-1/0-N ➔ 0-1/0-N Al-48

4.2. Modifications which Decrease the Semantics _ ______________ Al-48
4.2.1. Decrease_max_card Al-48

4.2.1.1. 1-1/0-N ➔ 1-1/0-1 Al-48
4.2.1.1.1. Logical Scbema Al-49
4.2.1.1.2. SQL Description & Data Al-50
4.2.1.1.3. Program Extracts Al-53

4.2.1.2. 0-1/0-N ➔ 0-1/0-1 Al-53
4.2.1.2.1. Logical Scbema Al-54
4.2.1.2.2. SQL Description & Data Al-55

4.2.1.2.2.1. Deleting duplicate values of PLACE_ncust Al-55
4.2.1.2.2.2. Setting duplicate values of column PLACE_ncust to null Al-57

Appendix 1 : Table of Contents

4.2.1.2.3. Program Extracts _____________________ Al-59
4.2.2. Augment_min_card Al-59

4.2.2.1. 0-1/0-1 ➔ 1-1/0-1 Al-59
4.2.2.1.1. WORK is implemented by a foreign key in ADDRESS Al-60

4.2.2.1.1.1. Logical Schema Al-60
4.2.2.1.1.2. SQL Description & Data Al-61
4.2.2.1.1.3. Program Extracts Al-61

4.2.2.1.2. WORK is implemented by a foreign key in CUSTOMER Al-62
4.2.2.1.2.1. Logical Schema Al -62
4.2.2.1.2.2. SQL Description & Data Al-63
4.2.2.1.2.3 . Program Extracts Al-64

4.2.2.2. 0-1/0-N ➔ 1-1/0-N Al-64
4.2.2.2.1. Logical Scbema Al-65
4.2.2.2.2. SQL Description & Data Al-66
4.2.2.2.3 . Program Extracts Al-66

5. MODIFICATIONS OF THE ATTRIBUTES Al-67

5.1. Modifications which Augment the Semantics _______________ Al-67
5.1 .1. Add_optional_attribute Al-67

5.1.1.1. Logical Schema Al -67
5.1.1 .2. SQL Description & Data Al-67
5.1.1.3. Program Extracts Al-68

5.1.2. Add_mandatory_attribute Al-69
5 .1.2.1. Logical Schema A 1-69
5.1.2.2. SQL Description & Data Al-69
5.1.2.3. Program Extracts Al-70

5.1.3 . Make_attr_optional Al-70
5.1.3.1. Logical Schema Al-70
5.1.3.2. SQL Description & Data Al-70
5.1.3 .3. Program Extracts Al-71

5.1.4. Extend_domain_attribute Al-71
5.1.4.1. Logical Scbema Al-71
5.1.4.2. SQL Description & Data Al-72
5.1.4.3. ProgramExtracts Al-72

5.1.5. Change_type_int_cbar Al-72
5.1.5.1. Logical Schema Al-73
5.1.5.2. SQL Description & Data Al-73
5.1.5.3. Program Extracts Al-73

5.1.6. Change_type_float_char Al-74
5.1.7. Change_type_date_cbar Al-74
5.1.8. Change_type_date_int Al-74
5.1.9. Change_type_int_float Al -74
5.1.10. Change_type_date_float Al-74

5.2. Modifications which Decrease the Semantics Al-75
5.2.1. Remove_optional_attribute Al-75

5.2.1.1. Logical Scbema Al-75
5.2.1.2. SQL Description & Data Al-75
5.2.1.3. Program Extracts Al-76

5.2.2. Remove_mandatory_attribute Al-76
5.2.2.1. Logical Scbema Al-77
5.2.2.2. SQL Description & Data Al-78
5.2.2.3. Program Extracts Al-78

5.2.3. Make_attr_mandatory Al-78
5.2.3.1. The attribute is nota unique key Al-78

5.2.3.1.1. Logical Scbema Al-79
5.2.3.1.2. SQL Description & Data Al-79
5.2.3.1.3. Program Extracts Al-83

5.2.3.2. The attribute is a unique key Al-83
5.2.3 .2.1. Logical Schema Al-84

Schema Modification Propagation for Relational Database Applications

5.2.3 .2.2. SQL Description & Data ____________________ Al-84
5.2.3.2.3. Program Extracts Al-84

5.2.4. Restrict_domain_attribute Al-84
5.2.4.1. Logical Schema Al-84
5.2.4.2. SQL Description & Data Al-85
5.2.4.3. Program Extracts Al-85

5.2.5. Change_type_char_int Al-85
5.2.6. Change_type_float_int Al-86
5.2.7. Change_type_char_float Al-86
5.2.8. Change_type_char_date Al-86
5.2.9. Change_type_int_date Al-86
5.2.10. Change_type_float_date Al-86

5.3. Modifications which Preserve the Semantics Al-86
5.3.1. Rename_optional_attribute Al-86

5.3.1.1. The attribute is nota unique key Al-86
5.3.1.1.1 . Logical Schema Al-87
5.3 .1.1.2. SQL Description & Data Al-87
5.3.1.1.3. Program Extracts Al-87

5.3.1 .2. The attribute is a unique key Al-88
5.3 .1.2.1. Logical Schema Al-88
5.3 .1.2.2. SQL Description & Data Al -88
5.3.1.2.3. Program Extracts Al-88

5.3.2. Rename_mandatory_attribute Al-88
5.3.2.1. The attribute is nota unique key Al-89

5.3.2.1.1. Logical Schema Al-89
5.3.2.1.2. SQL Description & Data Al-89
5.3.2.1.3. Program Extracts Al-89

5.3.2.2. The attribute is a unique key Al-89
5.3.2.2.1. Logical Schema Al-90
5.3 .2.2.2. SQL Description & Data Al-90
5.3.2.2.3. Program Extracts Al-90

6. MODIFICATIONS OF THE IDENTIFIER ____________ Al-91

6.1. Modifications which Augment the Semantics _______________ Al-91
6.1.1 . Remove_unique_feature Al-91

6.1.1.1. Logical Schema Al-91
6.1.1.2. SQL Description & Data Al-91
6.1.1.3. Program Extracts Al-91

6.2. Modifications which Decrease the Semantics Al-92
6.2.1 . Add_unique_feature A 1-92

6.2.1.1. Logical Schema Al-92
6.2.1.2. SQL Description & Data Al-93
6.2.1.3. Program Extracts Al-93

6.3. Modifications which Preserve the Semantics Al-94
6.3.1. Switch_PK_unique Al-94

6.3.1.1 . There is no unique key specified Al-94
6.3 .1.1 .1. WORK is implemented by a foreign key in ADDRESS Al-95

6.3 .1.1.1.1 . Logical Schema Al-95
6.3.1 .1.1.2. SQL Description & Data Al-96
6.3 .1.1.1.3. Program Extracts Al-97

6.3.1.1.2. WORK is implemented by a foreign key in CUSTOMER Al-97
6.3.1.1.2.1. Logical Schema Al-97
6.3 .1.1.2.2. SQL Description & Data Al-98
6.3 .1.1.2.3. Program Extracts Al-99

6.3.1.2. The unique key is specified Al-100
6.3.1.2.1. The primary key is nota technical one Al-100

6.3.1.2.1.1 . Logical Schema Al-101
6.3.1.2.1.2. SQL Description & Data Al -102

Appendix 1 : Table of Contents

6.3.1.2.1.3. Program Extracts ___________________ Al-103
6.3.1 .2.2. The primary key is a technical one Al-104

6.3.1.2.2.1. Logical Schema Al-104
6.3 .1.2.2.2. SQL Description & Data Al-105
6.3 .1.2.2.3. Program Extracts Al-105

Appendix 1 : Table of Figures

TABLE OF FIGURES

Appendix 1 :Study of the Modifications: General
Approach

Figure Al - 1: Representation of the database evolution problem _____________ ~Al-1
Figure Al - 2 : Adding an entity-type on the conceptual Level Al-5
Figure Al - 3 : Removing an entity-type on the conceptual Level Al -7
Figure Al - 4 : Renaming an entity-type on the conceptual Level Al -9
Figure Al - 5: Renaming an entity-type on the logical Level Al-10
Figure Al - 6: Adding a 1-1/0-1 relationship-type on the conceptual Level Al-12
Figure Al - 7: Adding a 1-1/0-1 relationship-type on the logical Level Al-13
Figure Al - 8: Adding a 0-1/0-1 relationship~type on the conceptual Level Al-15
Figure Al - 9: Adding a 0-1/0-1 relationship-type on the logical Level Al-16
Figure Al -10: Adding a 1-1/0-N relationship-type on the conceptual Level Al-17
Figure Al -11: Adding a 1-1/0-N relationship-type on the logical Level Al-18
Figure Al -12: Adding a 0-1/0-N relationship-type on the conceptual Level Al-19
Figure Al -13: Adding a 0-1/0-N relationship-type on the logical Level Al-20
Figure Al -14: The resulting table PRODUCT Al-21
Figure Al - 15: Removing a 1-110-1 relationship-type on the conceptual level Al-22
Figure Al -16: Removing a 1-1/0-1 relationship-type on the logical level Al-23
Figure Al -17: Removing a 0-1/0-1 relationship-type on the conceptual Level Al-24
Figure Al - 18: Removing a 0-1/0-1 relationship-type on the logical Level when it is implemented by a

foreign key in table ADDRESS __________________ __,Al-25
Figure Al - 19: Removing a 0-110-1 relationship-type on the logical Level Al-26
Figure Al - 20: Removing a 1-1/0-N relationship-type on the conceptual Level Al-27
Figure Al - 21 : Removing a 1-110-N relationship-type on the logical Level Al-28
Figure Al - 22: Table UNE when the link ta table PRODUCT is Lost Al-29
Figure Al - 23: Removing a 0-1/0-N relationship-type on the conceptual level Al-30
Figure Al - 24: Removing a 0-1/0-N relationship-type on the logical Level Al-31
Figure Al - 25: Table ORDER when the link with table CUSTOMER is lost Al-32
Figure Al - 26: Renaming a 1-1/0-1 relationship-type on the conceptual level Al-33
Figure Al - 27: Renaming a 1-1/0-1 relationship-type on the logical level Al-34
Figure Al - 28: Renaming a 1-1/0-N relationship-type on the conceptual Level Al-36
Figure Al - 29: Renaming a 1-1/0-N relationship-type on the logical Level Al-37
Figure Al - 30: Augmenting the maximum cardinality of arole ta Nin an 1-1/0-1 relationship-type on

the conceptual Level _______________________ Al_39
Figure Al - 31 : Augmenting the maximum cardinality of arole ta Nin an 1-1/0-1 relationship-type on

the logical level _________________________ Al-40
Figure Al - 32 : Augmenting the maximum cardinality of arole ta Nin an 0-1/0-1 relationship-type on

the conceptual Level _______________________ Al-42
Figure Al - 33 : The initial logical schema Al-42
Figure Al - 34: Augmenting the maximum cardinality of a raie to Nin an 0-1/0-1 relationship-type on

the logical level ________________________ ~Al-43
Figure Al - 35 : Decreasing the minimum cardinality of arole ta Oin an 1-1/0-1 relationship-type on

the conceptual Level ______________________ ____,Al-46
Figure Al - 36 : Decreasing the minimum cardinality of arole to Oin an 1-1/0-1 relationship-type on

the logical level _______________________ ~Al-47
Figure Al - 37: Decreasing the maximum cardinality of arole in an 1-1/0-N relationship-type on the

conceptual Level ________________________ _,Al-49
Figure Al - 38 : Decreasing the maximum cardinality of a role in an 1-1/0-N relationship-type on the

logical Level -------------------------~Al-50
Figure Al - 39: The modification decrease_max_card applied on column SPECIFY_nprod of table

LINE ________________________ -----'Al-52

Schema Modification Propagation for Relational Database Applications

Figure Al - 40: Decreasing the maximum cardinality of arole in an 0-1/0-N relationship-type on the
conceptual Level _______________________ ______,Al-54

Figure Al - 41 : Decreasing the maximum cardinality of arole in an 0-1/0-N relationship-type on the
logical level _________________________ ~Al-55

Figure Al - 42: The table ORDER after having removed duplicate values for PLACE_ncust Al-57
Figure Al - 43: Table ORDER after having set duplicate values of PLACE_ncust to null Al-59
Figure Al - 44: Augmenting the minimum cardinality of arole to 1 in an 0-1/0-1 relationship-type on

the conceptual level ______________________ ~Al-60
Figure Al - 45: Augmenting the minimum cardinality of arole to 1 in an 0-1/0-1 relationship-type on

the logical Level ----------------------------'Al-61
Figure Al - 46: Augmenting the minimum cardinality of a rote to 1 in an 0-1/0-1 relationship-type on

the logical level ________________________ _,Al-63
Figure Al - 47: Augmenting the minimum cardinality of a rote to 1 in an 0-1/0-N relationship-type on

the conceptual Level ________________________ AJ-65
Figure Al - 48: Augmenting the minimum cardinality of arole to 1 in an 0-1/0-N relationship-type on

the logical level ______________________ ~Al-66
Figure Al - 49: Adding an optional attribute on the conceptual Level Al-67
Figure Al - 50: Table CUSTOMER after having added columnfirstname Al-68
Figure Al - 51: Adding a mandatory attribute on the conceptual Level Al-69
Figure Al - 52: Table CUSTOMER after having added column telephone too Al-70
Figure Al - 53: Making an attribute optional on the conceptual level Al-70
Figure Al - 54: Removing an optional attribute on the conceptual level Al-75
Figure Al - 55 : Table CUSTOMER when column date_birth is removed Al-76
Figure Al - 56: Removing a mandatory attribute on the conceptual level Al-77
Figure Al - 57: Removing a mandatory attribute on the logical Level Al-77
Figure Al - 58 : Table ORDER when column date is removed Al -78
Figure Al - 59: Making a non-key attribute mandatory on the conceptual level Al-79
Figure Al - 60 : Table CUSTOMER when the null values of column date_birth are replaced by a

default value _________________________ _,Al-79
Figure Al - 61 : Table ORDER when certain PLACE_ncust values are set to null Al-80
Figure Al - 62: Table ORDER when certain rows are deleted Al-81
Figure Al - 63: Table UNE where certain values for column COMPOSE_nord are set to null Al-82
Figure Al - 64 : Table UNE where certain rows are deleted Al-83
Figure Al - 65 : Making an attribute which is a unique key mandatory on the conceptual Level Al-84
Figure Al - 66 : Renaming an optional attribute on the conceptual Level Al-87
Figure Al - 67 : Renaming an optional attribute on the conceptual level Al-88
Figure Al - 68: Renaming a mandatory attribute on the conceptual Level Al-89
Figure Al - 69: Renaming a mandatory attribute on the conceptual Level Al-90
Figure Al - 70: Removing a unique key feature on the conceptual Level Al-91
Figure Al - 71 : Adding a unique key feature on the conceptual Level Al-92
Figure Al - 72: Structure of the modification switch_PK_unique Al-94
Figure Al - 73 : Transforming a primary key into a unique key when no unique key is specified, on the

conceptual level _________________________ AJ-95
Figure Al - 74: Transforming a non referenced primary key into a unique key when no unique key is

specified, on the logical level ___________________ ~Al-96
Figure Al - 75 : Transforming a referenced primary key into a unique key when no unique key is

specified, on the logical level ___________________ ~Al-98
Figure Al - 76 : Replacing a non technical primary key by a unique key on the conceptual level ___ Al -101
Figure Al - 77: Replacing a non technical primary key by a unique key on the logical Level ---~Al-102
Figure Al - 78: Replacing a technical primary key by a unique key on the conceptual level ___ ~Al-104
Figure Al - 79 : Replacing a technical primary key by a unique key on the logical Level _______ Al -105

Appendix 1 : Study of the Modifications: Case Study Approach

1. INTRODUCTION
We have to study in this appendix all the modifications of the conceptual level and their impact
on the logical level, on the SQL database structure, on the data and on the application
programs.

cso CS1

LSO
?

LS1

?
SOLO SQL1

DO
?

01

PO ?
P1

Figure Al - 1 : Representation of the database evo/ution prob/em

If the conceptual schema CSO has been changed, the logical schema LSO and the SQL
description SQLO must be changed accordingly. Data DO is no longer valid and has to be
converted into data D 1. Finally the applications PO must be partly rewritten in order to comply
with the new data structures described in SQLl .[HAI94a]

As shown in the third chapter, the modifications are classified according to the objects on
which they apply on one hand and, on the other hand, according to their nature: augmenting,
decreasing or preserving semantics (see page 3-4). In order not to loose the overview of this
appendix, we will give once more the typology of the modifications. We will indicate in bold
those modifications which are redundant with those detailed in chapter 4.

Page A l-1

Schema Modification Propagation for Relational Database Applications

Modifications of the entity-types which:

augment the semantics:

decrease the semantics:

preserve the semantics:

add _ entity-type

remove _ entity-type

rename _ entity-type

Modifications of the relationship-types which:

augment the semantics:

decrease the semantics:

preserve the semantics:

Modifications of the roles which:

augment the semantics:

decrease the semantics:

add _ 1-1/0-1 _rel-type
add _ 0-1/0-1 _rel-type
add_ 1-1/0-N_rel-type
add _ 0-1/0-N _rel-type

remove _ 1-1/0-1 _rel-type
rem ove_ 0-1/0-1 _ rel-type
remove _ 1-1/0-N_rel-type
rem ove_ 0-1 /0-N _rel-type

rename _ 1-1/0-1 _rel-type
rename _ 0-1/0-1 _rel-type
rename _ 1-1 /0-N _rel-type
rename_0-1 /0-N_rel-type

augment_max_card
decrease min card

decrease max card
augment_ min_ card

Modifications of the attributes which:

augment the semantics:

Page A l-2

add _ optional_ attribute
add _ mandatory _ attribute
make _ attr _ optional
extend domain attribute - -
change_ type_ int _ char
change_ type_ float _ char
change_ type_ date_ char
change _type_ date _int
change_ type _int _ float
change_ type_ date_ float

decrease the semantics:

preserve the semantics:

Appendix 1 : Study of the Modifications: Case Study Approach

remove _ optional _ attribute
remove _ mandatory _ attribute
make _ attr _ manda tory
restrict domain attribute - -
change _type_ char _int
change _type_ float_int
change _type_ char_ float
change_ type_ char_ date
change_ type _int _ date
change_ type_ float _ date

rename _ optional_ attribute
rename _ mandatory _ attribute

Modifications of the identifiers which:

augment the semantics:

decrease the semantics:

preserve the semantics:

remove _ unique _feature

add _unique_ feature

switch _PK_ unique

For each object, we will thus distinguish three types of modifications: those augmenting,
decreasing and preserving the semantics. Within each of these three parts, we will develop for
each modification its impact on the Logical Schema, on the SQL Description & Data and on
the Program Extracts.

Page A l -3

Schema Modification Propagation for Relational Database Applications

2. MODIFICATIONS OF THE ENTITY
TYPES

2.1. MODIFICATIONS WHICH AUGMENT THE
SEMANTICS

2.1.1. Add _ entity-type1

Note:
Bach entity-type must have at least one attribute and must have a primary key.

Let us suppose we want to add entity-type FACTOR Y to our case study example:

1 Normally we would have to add the following precondition: 'The name of the entity-type that should be added
must not yet exist'. As such preconditions are trivial, we will not indicate them anymore.

Page A J-4

Appendix 1: Study of the Modifications: Case StudyApproach

LINE
nlifil.
qty
id: nline

0-1

< CO+SE >
0-N

OROER
nord
date
id: nord

1-1--..... SPECIFY 0-1

-0-1~-N

PRODUCT

Ill2[Q.d
label
price
id: nprod

CUSTOMER

~
name
date birth[0-1]
id: ncust
id': name

PRODUCT FACTORY
Ill2(0d LINE

nl.im:
qty

1-1---<.. SPECIFY -~-o-N label

id: nline

0-1

$
0-N

OROER

nm:d
date
id: nord

0-1~-

price
id: nprod

CUSTOMER

ncust
.... name
1,

date birth[0-1]
id: ncust
id': name

Figure Al - 2: Adding an entity-type on the conceptual leve/

2.1.1.1. Logical Schema

On the logical level, we have to add the corresponding relation to the schema.

2.1.1.2. SQL Description & Data

llŒ
city(0-1]
country
labeH0-11
id: nfac
id':label

create table FACTORY
(nfac srnallint not null

char (20) ,
constraint F_nfac,

city

PageAJ-5

Schema Modification Propagation for Relational Database Applications

country char(30) not null constraint F_country,
label char(20),
primary key (nfac) constraint idFACl,
unique (label) constraint idFAC2)

There is no effect on the existing data as we only add a new table.

2.1.1.3. Program Extracts

There is no change on the existing application programs. The documentation must however be
updated. As the changes of the documentation are necessary for all the modifications, we will
not indicate them anymore in this appendix.

2.2. MODIFICATIONS WHICH DECREASE SEMANTICS

2.2.1. Remove _ entity-type

Precondition:
The entity-type that has to be removed must not be connected to any relationship-type.

Let us suppose we want to remove the entity-type FACTOR Y.

PageAJ-6

Appendix 1 : Study of the Modifications: Case Study Approach

LINE

nlifil: - 1-1----.. SPECIFY
qty

id: ruine

1
0-1

$
0-N

1

ORDER
IlQrQ _,

date 0-1~-

id: nord

LINE

nliru. -qty
1-1---<- SPECIFY

id: ruine

1
0-1

< CO+SE >
0-N

1

ORDER

PRODUCT FACTORY

lllll:00 DŒ
-0-N label city[0-1)

,.
1'

price country
id: nprod label[0-11

id: nfac
id':label

CUSTOMER

oo.!fil
name
date birth[0-1]
id: ncust
id': name

PRODUCT
n12[Qd
label

rice
id: nprod

CUSTOMER

IlQYfil
llillil -û
date -1~0-N -

name
date birth[0-1]

id: nord id: ncust
id' : name

Figure Al - 3: Removing an entity-type on the conceptua/ leve/

2.2.1.1. Logical Schema

In the logical schema we remove the relation FACTOR Y.

2.2.1.2. SQL Description & Data

drop table FACTORY cascade;

PageAJ-7

Schema Modification Propagation for Relational Database Applications

Note that ail the data included in table FACTORY will be lost.

2.2.1.3. Program Extracts

The select queries which reference table FACTOR Y are invalid. The application programs in
which they appear must thus be reviewed. We cannot describe a general method how to deal
with these application programs as each one of them must be treated individually, depending
on its context. A CASE tool offering this modification should only indicate th~ concerned
program extracts and give hints about possible changes or removals.

2.3. MODIFICATIONS WHICH PRESERVE THE
SEMANTICS

2.3.1. Rename _ entity-type
Let us suppose we want to change in our case study the entity-type CUSTO:MER into
CLIENT.

PageAJ-8

Appendix 1 : Study of the Modifications: Case Study Approach

UNE

nlim.
qty

id: nline

0-1

< C◊+SE >
0-N

ORDER
nm:d
date
id: nord

UNE

nlim.
qty
id: nline

0-1

< C◊+SE >
0-N

ORDER
nm:d
date
id: nord

">. T . 1-1----- SPECIFY ~-,o-

-0-1~0-N

1-J---<. SPECIFY r---11-N

0-1~0-N -

PRODUCT

Ill2md
label
price
id: nprod

CUSTOMER

W!fil
na.me
date birth[0-1]
id: ncust
id' : na.me

PRODUCT
lU2I:QQ
label

rice
id: nprod

CLIENT
ncust
na.me
date birth[0-1]
id: ncust
id': na.me

Figure Al - 4 : Renaming an entity-type on the conceptua/ Level

2.3.1.1. Logical Schema

In the logical schema, we have to change the name of the corresponding relation.

PageAJ-9

Schema Modification Propagation for Re/ationa/ Database Applications

CUSTOMER ORDER UNE PRODUCT

IlQllli llilrd ~ n12[Qd
name date qty label
date birth[0-1] PLACE ncust(0-1] SPECIFY _ nprod price

id: ncust ,_ id: nord f<} COMPOSE nordrD-11 rC> id: nprod
ace ace id: nline ace

id' : name ref: PLACE ncust ace
ref: SPECIFY _ nprod -ace ace

ace
- ref: COMPOSE nord

ace

Jj,

CLIENT ORDER UNE PRODUCT

IlQllli llilrd nliill; nprod
name date qty label
date birth[0-1] PLACE ncust(0-1) SPECIFY _ nprod price

id: ncust L id: nord i<} COMPOSE nord rD-11 rt> id: nprod
ace ace id: nline ace

id': name ref: PLACE ncust ace
ref: SPECIFY _nprod -ace ace

ace
- ref: COMPOSE nord

ace

Figure A 1 - 5 : Renaming an entity-type on the logica/ leve/

2.3.1.2. SQL Description & Data

In some SQL languages there may be a 'rename table' command. The modification would thus
become:

alter table CUSTOMER
rename table CLIENT on cascade;

In SQL-RDB however, no such command exists and we have therefore to create a new table
and to copy the data into it.

create table CLIENT
(ncust char(4)

name char(12)
date_birth date,

not null
not null

prirnary key (ncust) constraint idCLil,

constraint C_ncust,
constraint C_name,

unique (name) constraint idCLI2) ;
insert into CLIENT

select ncust, name, date_birth
frorn CUSTOMER;

alter table ORDER
drop constraint CUSl,
add constraint foreign key (PLACE_ncust) references CLIENT

constraint CLil;

Page Al-JO

Appendix 1 : Study of the Modifications: Case Study Approach

(* For each view defined on table CUSTOMER , we have t o r edefine it on table
CLIENT. In future we will n o t consider views anymore as they do n o t
correspond t o ER objects. *)

drop table CUSTOMER cascade;

No data is lost as the data is just moved from one table into another.

Notes:
• This operation in SQL-RDB is often a very slow one as we have to copy a whole table.

We thus recommend to create a view CLIENT which includes only the table
CUSTOMER. This could be realised by the following command:

create view CLIENT
as select *

fr om CUSTOMER

• Other SQL languages, such as DB2, offer another possibility to implement the
modification: giving a synonym to the entity-type (that has to be renamed) instead of
renarning it properly. This alternative could be realised by the following SQL command:

c reate synonym CLIENT
for CUSTOMER;

Note that in both cases the original table is however not renamed.

2.3.1.3. Program Extracts

In all the select queries referencing CUSTOMER, we have to rename it with CLIENT. For
example, the first select query of our case study (see page 4-7) would become:

s elect*
fr om CLIENT
where date_birth = 09 / 06 / 1969

In addition to the select queries, we have also to review the application programs in which they
appear. For instance, we must rename certain variables and/ or some fields or headings in the
user interfaces. Finally, let us note that the documentation should also be updated.

PageA J-11

Schema Modification Propagation for Relational Database Applications

3. MODIFICATIONS OF THE
RELATIONSHIP-TYPES

3.1. MODIFICATIONS WHICH AUGMENT THE
SEMANTICS

3.1.1. Add_l-1/0-l_rel-type
Let us suppose we have an entity-type ADDRESS having as attributes nadd, street, number,
zip and city, and having as primary key nadd. We want now to link ADDRESS to the entity
type CUSTOMER of our case study by a 1-1/0-1 relationship-type LIVE.

ADDRESS CUSTOMER

nadd ncust

street
number

name
date birth[0-1]

zip
city

id: ncust
id': name

id: nadd

Jj,

ADDRESS CUSTOMER
nfilld
street
number -

zip
city
id: nadd

1-1~0-1

IlÇ1!fil

- name
date birthf 0-11
id: ncust
id': name

Figure Al - 6: Adding a 1-1/ 0-1 relationship-type on the conceptua/ level

3.1.1.1. Logical Schema

In the logical schema we add the primary key ncust of CUSTOMER to ADDRESS as a
foreign and a candidate key.

PageA J-1 2

Appendix 1 : Study of the Modifications: Case StudyApproach

ADDRESS
LIVE ocust
ru!dd
street
number
zip
city
id: nadd

ace

ADDRESS

Ilfilkl
street
number
zip
city
id: nadd

ace

id':LIVE ocust
ref ace

JJ,

CUSTOMER
DÇyfil

name
date birthr0-1 l
id: ncust

ace
id': name

ace

CUSTOMER

ncust
name
date birth 0-1
id: ncust

ace
id' : name

ace

Figure Al - 7 : Adding a 1-1/0-1 relationship-type on the logica/ /evel

3.1.1.2. SQL Description & Data

alter table ADDRESS
add LIVE_ncust char(4) default '0000' n o t null constraint A_ LIVE_ncust;

(* The user has to introduce the data into column LIVE_ncust representing
the relationship-type LIVE . He must be aware that the r ows o f ADDRESS
which have n o data specified for c o lumn LIVE_ncust will be deleted. *)

delete from ADDRESS
where LIVE_ncust = '0000' ;

alter table ADDRESS
add constraint unique (LIVE_ncust) c onstraint idADD2,
add constraint foreign key (LIVE_ncust) references CUSTOMER

c onstraint CUSl;

3.1.1.3. Program Extracts

Note:
Sometimes select queries taken out of their program environment are not sufficient to
study completely the impact on the application programs, as they do not show, for
instance, the changes that must be made on the variables. We therefore consider in
some cases embedded queries.

PageAJ-13

Schema Modification Propagation for Relational Database Applications

Let us consider the following program extract:

var nadd:
street:
number:
zip:
city:

exec SQL

INTEGER;
STRING[20];
INTEGER;
INTEGER;
STRING[20];

declare c cursor for
select*

from ADDRESS
where city = 'Adelaide ' ;

open c;
fetch c into :nadd, :street, :number, :zip, :city;

end exec;
while SQLCODE = 0 (* the last item has not yet been treated *)

do begin
wri te (nadd) ;
write (street);
write (number);
write (zip);
write (city);
exec SQL

fetch c into :nadd, :street, :number, :zip, :city;
end exec

end;
exec SQL

close c
end exec;

To adapt this part of program to the changes made on table ADDRESS, we propose two
potential modifications:

• We modify the embedded SQL to :

declare c cursor for
select nadd, street, number, zip, city

from ADDRESS

• We add a variable customer corresponding to the new column LIVE_ncust:

var customer: STRING[4];
nadd:

exec SQL
declare c cursor for

select*
from ADDRESS
where city = 'Adelaide' ;

open c;
fetch c into :nadd, :street, :number, :zip, :city, :customer;

end exec;
while SQLCODE = O (* the last item has not yet been treated *)

do begin
write (nadd);
write (street);

Page Al-14

Appendix 1 : Study of the Modifications: Case StudyApproach

write (number);
write (zip);
write (city);
write (customer);
exec SQL

fetch c into :nadd, :street, :number, : zip, :city,
: customer;

end exec
end ;

exec SQL
cl ose c

end exec ;

The user interfaces may also be changed: for example, a CUSTOMER is now displayed with
its living ADDRESS.

3.1.2. Add_0-1/0-l_rel-type
Let us suppose we have an entity-type ADDRESS having as attributes nadd, street, number,
zip and city and having as primary key nadd. We want now to link ADDRESS to the entity
type CUSTOMER of our case study by a 0-1/0-1 relationship-type WORK.

ADDRESS CUSTOMER

nadd lliillfil

street
number

name
date birth[0-1]

zip
city

id: ncust
id': name

id: nadd

ADDRESS CUSTOMER
lli!dd
street
number

.....__

zip
city

0-1~0-1

lliillfil
- name

date birthf0-1 l
id: ncust
id': name

id: nadd

Figure Al - 8 : Adding a 0-1/0-1 relationship-type on the conceptual level

There are two possible representations on the logical level for the relationship-type WORK:

• WORK is implemented by a foreign key in ADDRESS
• WORK is implemented by a foreign key in CUSTOMER

Page AJ-15

Schema Modification Propagation for Relational Database Applications

3.1.2.1. WORK is implemented by a foreign key in ADDRESS

3.1.2.1.1. Logical Schema

In the logical schema, we add the primary key ncust of CUSTOMER to ADDRESS as an
optional foreign and candidate key.

ADDRESS

nadd
street
number
zip
city
id: nadd

ace

ADDRESS
WORK_ncust[0-1)
nllild
street
number
zip
city
id: nadd
id':WORK_ncust

ref ace

CUSTOMER
ncust
name
date birthr0-11
id: ncust

ace
id' : name

ace

CUSTOMER

lliillfil
name
date birth 0-1
id: ncust

ace
id': name

ace

Figure Al - 9: Adding a 0-110-1 relationship-type on the /ogica/

/eve/

3.1.2.1.2. SQL Description & Data

alter table ADDRESS
add WORK_ncust char(4),
add c onstraint unique (WORK_ncust) constraint idADD2 ,
add constraint foreign key (WORK_ncust) references CUSTOMER

constraint CUSl;

Note that all the rows of ADDRESS have a null value for column WORK_ncust.

3.1.2.1.3. Program Extracts

We are confronted with the same problem as in the case add_l-1/0-l_rel-type (see page Al-
13).

Page A J-16

Appendix 1 : Study of the Modifications: Case Study Approach

3.1.2.2. WORK is implemented by a foreign key in CUSTOMER

This case is symmetrical to the previous one (see page Al-16).

3.1.3. Add_l-1/0-N_rel-type
Let us suppose that we have an entity-type FACTOR Y having as primary key nfac and the
entity-type PRODUCT of our case study. So far there is no relationship-type between
PRODUCT and FACTORY. We want now to add a 1-1/0-N relationship-type
MANUFACTURE between these two entity-types.

PRODUCT
llprQQ
label ~

price
id: nprod

PRODUCT
nprod
label

rice
id: nprod

FACTORY

~
city[0-1]
country
label[0-1)
id: nfac
id' : label

1-1 MANUFACTURE 0-N

FACTORY
nfac
city[0-1]

- country
label[0-1)
id: nfac
id' : label

Figure Al - JO : Adding a 1-1/ 0-N relationship-type on the conceptua/ /eve/

3.1.3.1. Logical Schema

We add the primary key nfac ofFACTORY to PRODUCT as a mandatory foreign key.

PageAJ-17

Schema Modification Propagation for Relationa/ Database Applications

nvrod
label
price

PRODUCT

PRODUCT
Dl2I:QQ
label
price
id: nprod

ace

MANUFACTURE nfac
id: nprod

ace
ref:MANUFACTURE nfac

ace

FACTORY
~
city[0-1]
country
labelf0-11
id: nfac

ace
id': label

ace

FACTORY
Illfil<
city[0-1]
country
label
id: nfac

ace
id': label

ace

Figure Al - 11 : Adding a l-110-N relationship-type on the logical /eve/

3.1.3.2. SQL Description & Data

alter table PRODUCT
add MANUFACTURE_nfac smallint default O not null

constraint P_MANUFACTURE_nfac ;

(* The user has to introduce the data into column MANUFACTURE_nfac
representing the reiationship-type MANUFACTURE. He must be aware that the
rows of PRODUCT which have no data specified for column MANUFACTURE_nfac
will be deleted because of the f oreign key constraint. *)

delete from PRODUCT
where MANUFACTURE_nfac = O;

alter table PRODUCT
add constraint foreign key (MANUFACTURE_nfac) references FACTORY

constraint FACl;

3.1.3.3. Program Extracts

The modifications on the application programs are similar to those of the case
add_l-1/0-l_rel-type (see page Al-13).

Page Al-18

Appendix 1 : Study of the Modifications: Case Study Approach

3.1.4. Add_0-1/0-N_rel-type
Let us suppose that we have again the entity-type FACTORY having as primary key nfac and
the entity-type PRODUCT of our case study. So far there is no relationship-type between
these entity-types. We want this time to add a 0-1/0-N relationship-type MANUFACTURE
between them.

PRODUCT

immd
label ,-

orice
id: nprod

PRODUCT
nproo
label

rice
id: nprod

FACTORY
nfuQ
city[0-1]
country
label[0-1]
id: nfac
id': label

0-1 MANUFACTURE -0-N

FACTORY
nfuQ
city[0-1]
country
label[0-1]
id: nfac
id' : label

Figure Al - 12: Adding a 0-1/0-N relationship-type on the conceptual level

3.1.4.1. Logical Schema

We add the primary key nfac ofFACTORY to PRODUCT as an optional foreign key.

PageAJ-19

Schema Modification Propagation for Relationa/ Database Applications

nprod
label
price

PRODUCT

PRODUCT

lll2I:Qd
label
price
id: nprod

ace

MANUFACTURE _nfac[0-1]
id: nprod

ace
ref: MANUFACTURE_nfac

ace

FACTORY
nfru,
city[0-1]
COWltry

labeH0-1 l
id: nfac

ace
id': label

ace

FACTORY

.nffil;
city[0-1]
COWltry

label
id: nfac

ace
id' : label

ace

Figure A l - 13 : Adding a 0-110-N relationship-type on the /ogica/ /eve/

3.1.4.2. SQL Description & Data

alter table PRODUCT
add MANUFACTURE_nfac smallint,
add constraint foreign key (MANUFACTURE_nfac) references FACTORY

constraint FACl;

Note that ail the rows of table PRODUCT have a null value for column
MANUFACTURE_ nfac, as shown in Figure A 1-14.

PageAJ-20

Appendix 1 : Study of the Modifications: Case Study Approach

PRODUCT
norod label price (MANUFACTURE nfac)
AAII0 christmas tree 35 null
CASIO glass 50 null
AB099 pencil 10 nuH
BE072 gearbox 1000 null
WN592 wheel 850 null
SW226 alarm-clock 75 null
LS906 poster 60 null
SG953 toothbrush 13 null

. . . : . . .
PRODUCT.MANUFACTURE nfac in FACTORY. nfac

Figure A 1 - 14 : The resulting table PRODUCT

3.1.4.3. Program Extracts

The modifications on the application programs are similar to those of the case
add_l-1/0- l_rel-type (see page Al-13).

3.2. MODIFICATIONS WHICH DECREASE THE
SEMANTICS

3.2.1. Remove_l-1/0-l_rel-type
Let us suppose that we want to remove the 1-1/0-1 relationship-type LIVE.

PageA l -21

Schema Modification Propagation for Relational Database Applications

ADDRESS CUSTOMER
lliilld
street
number f--

zip
city
id: nadd

1-1~0-l

~

- name
date birthfü-1 l
id: ncust
id': name

ADDRESS CUSTOMER

llllikl D.Ç1!fil

street
number

name
date birth[0-1]

zip
city

id: ncust
id' : name

id: nadd

Figure A 1 - 15 : Removing a 1-1/0-1 relationship-type on the conceptual

level

3.2.1.1. Logical Schema

We remove the column LIVE_ncust in ADDRESS with its candidate and foreign key features .

PageAl-22

Appendix 1 : Study of the Modifications: Case Study Approach

ADDRESS
LIVE ncust
nadd
street
nurnber
zip
city
id: nadd

ace
id':LIVE ncust

ref ace

ADDRESS
nadd
street
nurnber
zip
city
id: nadd

ace

CUSTOMER
ncust
name

CUSTOMER
ncust
name
date birth 0-1
id: ncust

ace
id' : name

ace

date birthro-11
id: ncust

ace
id' : name

ace

Figure Al - 16: Removing a 1-1/0-1 re/ationship-type on the logica/ /eve/

3.2.1.2. SQL Description & Data
alter table ADDRESS

drop constraint idADD2, (* we remove the unique key feature *}
drop constraint CUSl, (* we remove the foreign key feature *)
drop constraint A_LIVE_ncust , (* we remove the mandatory feature fr om

column LIVE_ncust *}
drop LIVE_ncust;

The link between a CUSTOMER and his/her ADDRESS where he/she lives is lost.

3.2.1.3. Program Extracts

All the select queries which reference LIVE ncust m ADDRESS must be modified. For
example:

select name, street, number, zip, city
from ADDRESS, CUSTOMER
where (LIVE_ncust = ncust} and

(ncust in (select PLACE_ncust
from ORDER
where nord in (select COMPOSE_nord

from LINE
where SPECIFY_nprod = 'AA110'}}}

Page Al-23

Schema Modification Propagation for Re/ationa/ Database Applications

selec t narne
from CUSTOMER
where ncust in select PLACE_ncust

from ORDER
where nord in (select COMPOSE_nord

from LINE
where SPECIFY_npro d = 'AAll0 '))

The application programs in which these queries appear must also be reviewed. We cannot
describe a general method how to deal with these application programs as each one of them
must be treated individually. Let us for example consider a screen which displays the
information about a CUSTOMER, including his/her living ADDRESS. As we have now lost
the link between a CUSTOMER and his/her living ADDRESS, the user has to decide what
should happen to the part of the screen allocated to the living ADDRESS. He can either drop it
and rearrange the screen or reuse it for another purpose (for example: for indicating the
working ADDRESS of the CUSTOMER). In addition, the user has to check whether the
variables are still all needed.

3.2.2. Rem ove_ 0-1/0-1 _ rel-type
Let us suppose that we want to remove the 0-1/0-1 relationship-type WORK between
ADDRESS and CUSTOMER.

Page A l-24

ADDRESS CUSTOMER
ill!dd
street
number - ,

zip
city
id: nadd

0-1~0-1

ncust

- name
date birthr0-1 l
id: ncust
id' : name

ADDRESS CUSTOMER

Ilfil1Q IlCl!fil

street
number

name
date birth[0-1]

zip
city

id: ncust
id' : name

id: nadd

Figure Al -1 7: Removinga 0-110-1 re/ationship-type on the conceptua/

/eve/

Appendix 1 : Study of the Modifications: Case Study Approach

We have to reconsider the two possible implementations for the relationship-type WORK:

• WORK is implemented by a foreign key in ADDRESS
• WORK is implemented by a foreign key in CUSTOMER

3.2.2.1. WORK is implemented by a foreign key in ADDRESS

3.2.2.1.1. Logical Schema

We remove the column WORK_ncust from ADDRbSS with its candidate and foreign key
features.

ADDRESS
WORK_ncust[0-1]
nadd
street
number
zip
city
id: nadd
id':WORK ncust

ref ace

ADDRESS

illldd
street
number
zip
city
id: nadd

ace

CUSTO.MER
ncust
name
date birth 0-1
id: ncust

ace
id' : name

ace

CUSTO.MER

lliillfil
name
date birthro-1 l
id: ncust

ace
id' : name

ace

Figure A 1 - 18 : Removing a 0-1/0-1 relationship-type on the

logica/ level when it is implemented by aforeign key in table

ADDRESS

3.2.2.1.2 . . SQL Description & Data

alter table ADDRESS
drop constraint idADD2,
drop constraint CUSl,
drop WORK_ncust;

(* we remove the unique key feature *)
(* we remove the foreign key feature *)

The link between a CUSTOMER and his/her ADDRESS is lost.

PageAJ-25

Schema Modification Propagation for Relational Database Applications

3.2.2.1.3. Program Extracts

The impacts on the application programs are similar to those of the case remove_l-1/0-l_rel
type (see page Al-23).

3.2.2.2. WORK is implemented by a foreign key in CUSTOMER

3.2.2.2.1. Logical Schema

We remove the column WORK nadd in CUSTOMER with its candidate and foreign key
features.

CUSTOMER

ADDRESS WORK_nadd[0-1)

nadd lliillfil
street name

number date birthf 0-1 l
zip id: ncust
city ace

id: nadd
i_..... id':WORK nadd

ace ref ace
id': name

ace

ADDRESS CUSTOMER

ill!.d.d lliillfil
street name
number date birthf 0-1 l
zip id: ncust
city ace
id: nadd id': name

ace ace

Figure Al - 19: Removing a 0-1/0-1 re/ationship-type on the

logica/ level

3.2.2.2.2. SQL Description & Data

alter table CUSTOMER
drop c onstraint idCUS2,
drop constraint ADDl,
drop WORK_nadd;

(* we remove the unique key feature *)
(* we remove the foreign key feature *)

The link between a CUSTOMER and his/her ADDRESS is lost.

Page Al-26

Appendix 1 : Study of the Modifications: Case Study Approach

3.2.2.2.3. Program Extracts

The impacts on the application programs are similar to those of the modification
remove_l-1 /0-l_rel-type (see page Al-23).

3.2.3. Remove_l-1/0-N_rel-type
Let us remove the 1-1/0-N relationship-type SPECIFY between LINE and PRODUCT from
our case study example.

PRODUCT
UNE Il12ill.d
~ 1--1-1 SPECIFY 0-N- label
qty orice
id: nline id: nprod

1

0-1

< CO+SE >
0-N

1 CUSTOMER
ORDER ncust
nord -0-1~-N-

name
date date birth[0-1]
id: nord id: ncust

id': name

-lJ,

UNE
PRODUCT

nline
qty nprod

id: nline
label
price

1 id: nprod
0-1

$
0-N

1 CUSTOMER
ORDER ncust
nord ~o-J~O-N-

name
date date birth[0-1]
id: nord id: ncust

id': name

Figure A l - 20 : Removing a 1-1/0-N relationship-type on the conceptua/ level

PageA J-27

Schema Modification Propagation for Relational Database Applications

3.2.3.1. Logical Schema

We remove the column SPECIFY _ nprod in LINE with its foreign key feature.

CUSTOMER ORDER LINE PRODUCT

ncust D.QIQ nlifil; npmd
name date qty label
date birth[0-1] PLACE ncust[0-1] SPECIFY _ nprod price

id: ncust L id: nord r:=:l CO"MPOSE nordro- Il rC> id: nprod
ace ace id: nline ace

id': name ref: PLACE ncust ace - -ace ace ref:SPECIFY_nprod
ace

- ref: CO"MPOSE nord
ace

CUSTOMER ORDER PRODUCT

ncust nord LINE
name date nlinS< date birth[0-1] PLACE ncust[0-1]

id: ncust L id: nord <]
qty
CO"MPOSE nordr0-1 l

ace ace
id: nline

id': name ref: PLACE ncust

m;lrQ.d
label
price
id: nprod

ace

ace
ace ace - ref: CO"MPOSE nord

ace

Figure Al - 21 : Removing a 1-1/0-N relationship-type on the logical Level

3.2.3.2. SQL Description & Data

alter table LINE
drop constraint PROl, (* we remove the foreign key feature *)
drop constraint L_SPECIFY_nprod, (* we remove the mandatory feature from

column SPECIFY_nprod *)
drop SPECIFY_nprod;

The link between a LINE and the PRODUCT it specifies is lost as shown in Figure Al-22.

PageAJ-28

Appendix 1 : Study of the Modifications: Case Study Approach

LINE
nline (COMPOSE nord) atv
AB1234 E386 1000
GH2345 null 1518
RT3456 F285 345
ZU4567 G274 2536
ER5678 null 4587
NM6789 G274 5558 . : : .

LINE.COMPOSE nord in ORDER.nord

Figure Al - 22 : Table LINE when the link to table PRODUCT is los!

3.2.3.3. Program Extracts

The second SELECT and the PROJECT queries of our case study (see page 4-7) must be
dropped as they do not make sense anymore. Moreover, the UNION query (see page 4-8) may
be modified as follows:

select nprod
frorn PRODUCT
where price < = 50.

Note that the application programs must be reviewed m a sirnilar way as for the case
remove_l-1/0-l_rel-type (see page Al-23).

3.2.4. Remove_0-1/0-N_rel-type
Let us remove the 0-1/0-N relationship-type PLACE between ORDER and CUSTOMER from
our case study example.

PageAJ-29

Schema Modification Propagation for Relational Database Applications

UNE

nliilll
qty

id: nline

1
0-1

-1-1-~

< CO+SE >
0-N

1

SPECIFY

PRODUCT

Illllild
~-,o-N- label

price
id: nprod

CUSTOMER
ORDER ~

~ >-------0-l~O-N- ~:e birth[0-1]

id: nord id: ncust
id': name

UNE PRODUCT

~;e -1-l~O-N-~
~i~d~: nl-in-e-t ,.....P_n_c_e __ _,

1
0-1

< CO+SE >
0-N

1

ORDER

fillrd
date
id: nord

id: nprod

CUSTOMER

nçyfil

name
date birth[0-1]
id: ncust
id' : name

Figure A 1 - 23 : Removing a 0-110-N relationship-type on the conceptua/ level

3.2.4.1. Logical Schema

We remove the column PLACE_ncust in ORDER with its foreign key feature.

PageAJ-30

Appendix 1: Study of the Modifications: Case StudyApproach

CUSTOMER ORDER LINE PRODUCT

IlQY.fil llilil! ~ npmd
name date qty label
date birth[0-1] PLACE ncust[0-1) SPECIFY _ nprod price

id: ncust L id: nord ~ COMPOSE nordf0-11 rC> id: nprod
ace ace id: nline ace

id' : name ref:PLACE ncust ace
ref: SPECIFY _ nprod -ace ace

ace
~

ref: COMPOSE nord
ace

JJ,

CUSTOMER LINE PRODUCT

IlQY.fil
name
date birth[0-1]
id: ncust

ace
id': name

ace

ORDER ~ ~
qty label

llQm SPECIFY _ nprod price
date COMPOSE nordfü-1 l ,-{> id: nprod
id: nord

_ id: nline ace
ace ace

ref: SPECIFY _ nprod -
ace

ref: COMPOSE nord
ace

Figure Al - 24 : Removing a 0-110-N relationship-type on the /ogical /evel

3.2.4.2. SQL Description & Data

alter table OROER
drop constraint CUSl, (* we rernove the f o reign key feature *)
drop PLACE_ncust;

The link between an OROER and its CUSTOMER is lost as shown in Figure Al-25 .

Page Al-31

Schema Modification Propagation for Relational Database Applications

ORDER
nord date
E386 02/01/1995
F285 12/03/1994
G274 15/07/1993
F842 31/12/1994
E345 05/01/1995

Figure Al - 25 : Table ORDER when the

/ink with table CUSTOMER is lost

3.2.4.3. Program Extracts

The second SELECT query of our case study (see page 4-7) must be dropped. Moreover, the
JOIN query (see page 4-8) may be modified as follows :

select name
from CUSTOMER
where date_birth < 01/01/1977.

Concerning the application programs, a similar remark as for the case remove _ 1-1/0-1 _rel-type
(see page Al-23) can be formulated.

3.3. MODIFICATIONS WHICH PRESERVE THE
SEMANTICS

3.3.1. Rename_l-1/0-l_rel-type
Let us suppose we want to rename the relationship-type LIVE into HOME.

PageAJ-32

Appendix 1 : Study of the Modifications: Case Study Approach

ADDRESS CUSTOMER
Ilfilki
street
nwnber -

zip
city
id: nadd

1-1~-l

1lli!fil

- name
date birthf 0-1 l
id: ncust
id': name

ADDRESS CUSTOMER
nadd
street
nwnber -
zip
city
id: nadd

1-1~0-l

JlÇl!fil

- name
date birthrü-11
id: ncust
id': name

Figure A l - 26: Renaming a 1-1/0-1 relationship-type on the conceptual

/evel

3.3.1.1. Logical Schema

On the logical level, we have to rename the foreign key column LIVE_ ncust and its foreign
and candidate key features .

Page Al-33

Schema Modification Propagation for Relational Database Applications

ADDRESS
LIVE ncust
llfilki
street
number
zip
city
id: nadd

ace
id':LIVE_ncust

ref ace

ADDRESS
HOME ncust
llfilki
street
number
zip
city
id: nadd

ace
id':HOME ncust

ref ace

CUSTOMER

~
name
date birth 0-1
id: ncust

ace
id': name

ace

CUSTOMER
llÇ1!fil
name
date birth 0-1
id: ncust

ace
id': name

ace

Figure Al - 27 : Renaming a 1-1/0-1 relationship-type on the logical level

3.3.1.2. SQL Description & Data

alter table ADDRESS
add HOME_ncust char(4) default '0000' n o t null constraint A_HOME_ncust;

update ADDRESS
set HOME_ncust = LIVE_ncust;

alter table ADDRESS
drop constraint CUSl, (* we remove the old foreign key feature *)
drop constraint idADD2, (* we remove the old unique key feature *)
drop constraint A_LIVE_ncust, (* we remove the mandatory feature fr om

column LIVE_ncust *)
add constraint unique (HOME_ncust) constraint idADD2,
add constraint foreign key (HOME_ncust) references CUSTOMER

constraint CUSl,
drop LIVE_ncust;

This operation does not involve loss of data as the values of column LIVE_ ncust are copied
into column HOME ncust.

PageAl-34

Appendix 1 : Study of the Modifications: Case Study Approach

3.3.1.3. Program Extracts

We have to rename LIVE_ncust in all the select queries referencing it. In addition to the select
queries, we have also to review the application programs in which they appear. For instance,
we must rename certain variables and/or some fields or headings in the user interfaces.

3.3.2. Rename _ 0-1/0-1 _rel-type
This case is similar to the case rename_l-1/0-l_rel-type (see page Al-32).

3.3.3. Rename_l-1/0-N_rel-type
Let us rename the 1-1/0-N relationship-type SPECIFY between LINE and PRODUCT into
REFERENCE.

PageAJ-35

Schema Modification Propagation for Relationa/ Database Applications

PRODUCT
nprQd

LINE

~
qty

1-I----<- SPECIFY ,_ 0-N label

id: nline

0-1

$
0-N

1

ORDER
nord
~ ,_

0-1~0-N date
id: nord

LINE

~
qty
id: nline

0-1

< CO+SE >
0-N

ORDER
IlQl:Q
date
id: nord

1-1 REFERENCE 0-N

-0-1~0-N

orice
id: nprod

CUSTOMER

ncust
name
date birth[0-1]
id: ncust
id' : name

PRODUCT
nprod
label

rice
id: nprod

CLIENT

ncust
name
date birth[0-1]
id: ncust
id': name

Figure Al - 28: Renaming a 1-110-N relationship-type on the conceptual level

3.3.3.1. Logical Schema

In the logical schema, the foreign key column SPECIFY _ nprod and its feature must be
renamed.

Page A J-36

Appendix 1 : Study of the Modifications: Case Study Approach

CUSTOMER ORDER UNE PRODUCT

~ llQIQ ~ ll12I:QQ
name date qty label
date birth[0-1] PLACE ncust[0-1] SPECIFY _ nprod price

id: ncust rt id: nord <J COMPOSE nordf0-1] rC> id: nprod
ace ace id: nline ace

id' : name ref: PLACE ncust ace -
ref: SPECIFY _ nprod r-ace ace

ace
- ref: COMPOSE nord

ace

CUSTOMER ORDER UNE PRODUCT
illllifil llQIQ ~ npmd
name date qty label
date birth[0-1] PLACE ncust[0-1] REFERENCE_nprod price
id: ncust rt id: nord t<J COMPOSE nordf0-1] rD id: nprod

ace ace id: nline ace
id' : name ref: PLACE ncust ace

ace ace ref:REFERENCE_nprod t---

ace - ref: COMPOSE nord
ace

Figure Al - 29: Renaming a 1-1/0-N relationship-type on the logical level

3.3.3.2. SQL Description & Data

alter table LINE
add REFERENCE_nprod char(5) defau lt '00000' not null

constraint L_REFERENCE_nprod;
update LINE

set REFERENCE_nprod = SPECIFY_nprod;
alter table LINE

drop constraint PROl, (* we remove the old foreign key feature *)
drop constraint L_SPECIFY_nprod, (* we remove the mandatory feature fr om

column SPECIFY_nprod *)
add constraint foreign key (REFERENCE_nprod) references PRODUCT

constraint PROl,
drop SPECIFY_nprod;

This operation does not involve loss of data as the values of column SPECIFY _nprod are
copied into column REFERENCE_ nprod.

3.3.3.3. Program Extracts

In all the select queries referencing SPECIFY _ nprod we have to rename it. Concerning the
application programs, a similar remark as for the case rename _ 1-1/0-1 _rel-type can be
formulated (see page Al-35).

PageAJ-37

Schema Modification Propagation for Relational Database Applications

3.3.4. Rename _ 0-1/0-N _ rel-type
This case is similar to the case rename_l-1/0-N_rel_type (see page Al-35).

PageAJ-38

Appendix 1 : Study of the Modifications: Case Study Approach

4. MODIFICATIONS OF THE ROLES

4.1. MODIFICATIONS WHICH AUGMENT THE
SEMANTICS

4.1.1. Augment_max_card

Precondition:
Given the restrictions of the relationship-types in the Kemel (see page 3-2) the only
augmentations of the maximum cardinality of a role that we accept so far are:

• 1-1/0-1 ➔ 1-1/0-N
• 0-1/0-1 ➔ 0-1/0-N

We consider an example for each of the two cases.

4.1.1.1. 1-1/0-1 ➔ 1-1/0-N

Let us reconsider the example where a CUSTOMER LIVEs at an ADDRESS. We want to
augment the maximum cardinality of the 0-1 role to N.

ADDRESS

ill!llil
street
number ~

zip
city
id: nadd

ADDRESS
nadd
street
number -

zip
city
id: nadd

1-1~0-l -

1-1~0-

CUSTOMER
ncust
name
date birthfü-1 l
id: ncust
id': name

CUSTOMER
ng!fil

name
date birth 0-1
id: ncust
id': name

Figure A l - 30: Augmenting the maximum cardinality of a rote to Nin an

1-110-1 relationship-type on the conceptual level

PageAl-39

Schema Modification Propagation for Relational Database Applications

4.1.1.1.1. Logical Schema

We have to remove the candidate key feature from the foreign key LIVE_ ncust in relation
ADDRESS.

ADDRESS
LIVE ncust
nadd
street
number
zip
city
id: nadd

ace
id':LIVE ncust

ref ace

ADDRESS
LIVE ncust
nadd
street
number
zip
city
id: nadd

ace
ref: LIVE ncust

ace

CUSTOMER
ncust
name
date birth 0-1
id: ncust

ace
id' : name

ace

CUSTOMER

ncust
name
date birth 0-1
id: ncust

ace
id' : name

ace

Figure Al - 31 : Augmenting the maximum cardinality of arole to Nin an

1-1/0-1 relationship-type on the logica/ /evel

4.1.1.1.2. SQL Description & Data

alter table ADDRESS
drop constraint idADD2;

No modification is made on the data as we only remove a unique key constraint.

4.1.1.1.3. Program Extracts

Let us consider the following program extract:

var street : STRING[20];
number : INTEGER;
z ip : INTEGER;
city: STRING[20];

PageAJ-40

Appendix 1 : Study of the Modifications: Case StudyApproach

exec SQL
select street, nwnber, zip, city

into :street, :number, :zip, :city
from ADDRESS
where LIVE_ncust = 'A101'

end exec;
if SQLCODE = 0 (* if such a row has been found *)
then begin

write(street);
write(nwnber);
write(zip);
write(city);

end;

We have to adapt this extract, as shown here below, in order to allow a CUSTOMER to have
several ADDRESSes. Note that the simple treatment (if...then) has to be replaced by a loop
treatment (while ... do).

var street: STRING[20];
nwnber: INTEGER;
zip: INTEGER;
city: STRING[20);

exec SQL
declare c cursor for

select street, nwnber, zip, city
from ADDRESS
where LIVE_ncust = 'Al0l';

open c;
fetch c into :street, : nwnber, :zip, : city;

end exec;
while SQLCODE = 0 (* the last item has not yet been treated *)
do begin

write (street);
write (nwnber);
wri te (zip);
write (city);
exec SQL

fetch c into :street, :nwnber, :zip, :city;
end exec

end;
exec SQL

close c
end exec;

In addition, let us reconsider the screen which displays the information about a CUSTOMER,
including his/her working ADDRESS. As a CUSTOMER can now have several ADDRESSes,
the user has to rearrange the screen so that it can display several ADDRESSes. Finally, the
user has to replace certain variables by arrays.

4.1.1.2. 0-1/0-1 ➔ 0-1/0-N

We want to transform the role of the relationship-type WORK played by CUSTOMER into
0-N.

Page Al-41

Schema Modification Propagation for Relational Database Applications

ADDRESS
ill!QQ
street
number
zip
city
id: nadd

ADDRESS
nadd
street
number
zip
ci
id: nadd

- 0-1 ~0-1 -

0-1~0-

CUSTOMER
nçyfil

name
date birthf 0-1 l
id: ncust
id' : name

CUSTOMER
nçyfil

name
date birth 0-1
id: ncust
id': name

Figure Al - 32 : Augmenting the maximum cardinality of arole to Nin an

0-110-1 re/ationship-type on the conceptua/ level

There are two possible representations on the logical level:

• WORK is implemented by a foreign key in relation ADDRESS
• WORK is implemented by a foreign key in relation CUSTOMER

4.1.1.2.1. WORK is implemented by a foreign key in relation ADDRESS

4.1.1.2.1.1. Logical Schema

The initial logical schema is:

ADDRESS
WORK _ ncust[0-1]
nadd
street
number
zip
city
id: nadd

ace
id' : WORK ncust

ref ace

CUSTOMER
nçyfil

name
date birth 0-1
id: ncust

ace
id' : name

ace

Figure Al - 33 : The initial logical schema

Page A J-42

Appendix 1 : Study of the Modifications: Case Study Approach

This case is identical to the case 4.1.1.1. (see page Al-39).

4.1.1.2.2. WORK is implemented by a foreign key in relation CUSTOMER

4.1.1.2.2.1. Logical Schema

On the logical level, the transformation is:

ADDRESS

nfilld
street
number
zip
city

id: nadd
ace

ADDRESS
WORK_ncust(0-1)
nadd
street
number
zip
city
id: nadd

ace
ref:WORK ncust

ace

~ -

CUSTOMER
WORK_nadd(0-1)
lliillfil
name
date birthfü-1 l
id: ncust

ace
id':WORK_nadd

refacc
id' : name

ace

CUSTOMER
ncust
name
date birth 0-1
id: ncust

ace
id': name

ace

Figure Al - 34: Augmenting the maximum cardina/ity of a ro/e to N in an

0-110-1 re/ationship-type on the logica/ /eve/

4.1.1.2.2.2. SQL Description & Data
var cust: STRING[4);

add: INTEGER;

exec SQL
{* we create the new f oreign key colwnr1 *)
alter table ADDRESS

add WORK_ncust char{4) ;
{* we copy the data representing relationship-type WORK from table

CUSTOMER into table ADDRESS *)
declare c c urso r for

select ncust, WORK_nadd
from CUSTOMER
where WORK_nadd is n ot null;

PageAJ-43

Schema Modification Propagation for Relationa/ Database Applications

open c;
fetch c into :cust, :add;

end exec;
while SQLCODE = 0 (* the last item bas not yet been treated *)
do begin

exec SQL
update ADDRESS

set WORK_ncust = :cust
where nadd = :add;

fetch c into :cust, :add;
end exec;

end;
exec SQL

(* we add and remove the necessary constraints *)
alter table ADDRESS

add constraint foreign key (WORK_ncust) references
CUSTOMER constraint CUSl;

alter table CUSTOMER
drop constraint idCUS2,
drop constraint ADDl,
drop WORK_nadd;

(* we remove the old unique key feature *)
(* we remove the old foreign key feature *)

close c;
end exec;

Note that no data is lost as the data representing relationship-type WORK is 'copied' from
table CUSTOMER into table ADDRESS.

4.1.1.2.2.3. Program Extracts

Application programs referencing the foreign key representing relationship-type WORK must
be reviewed. Two possible modifications are:

• var add: STRING[l2);

exec SQL
select WORK_nadd

into :add
from CUSTOMER
where name = 'Hasselhoff S.';

end exec;
if SQLCODE = 0
then write (add);

var add : STRING[12);

exec SQL

(* if such a row bas been found *)

declare c cursor for
select nadd

from ADDRESS
where WORK_ncust in (select ncust

from CUSTOMER
where name = '·Hasselhoff s. ')

open c;
fetch c into :add;

end exec;
while SQLCODE = 0 (* the last item bas not yet been treated *)
do begin

write (add);
exec SQL

fetch c into :add;
end exec;

end;
exec SQL

Page Al-44

Appendix 1 : Study of the Modifications: Case Study Approach

close c
end exec;

• select street, city
from ADDRESS
where nadd in (select WORK_nadd

fr om CUSTOMER
where na.me like '%Dupont%')

select street, city
from ADDRESS
where WORK_ ncust in (select ncust

from CUSTOMER
where na.me like '%Dupont%').

Concerning the application programs, similar remarks as for the case 4.1.1.1.3. (see page Al-
40) can be formulted here.

4.1.2. Decrease min card

Precondition:
Given the restrictions of the relationship-types in the Kemel (see page 3-2) the only decreases
of the minimum cardinality of arole that we accept so far are:

• 1-1/0-1 ➔ 0-1/0-1
• 1-1/0-N ➔ 0-1/0-N

4.1.2.1. 1-1/0-1 ➔ 0-1/0-1

Let us reconsider the example where a CUSTOMER LIVEs at an ADDRESS . We want to
decrease the minimum cardinality of the 1-1 role to O.

PageA J-45

Schema Modification Propagation for Re/ationa/ Database Applications

ADDRESS CUSTOMER
n&kl
street
number >--

zip
city
id: nadd

1-1~0-l

lliillfil
- name

date birthr0-1 l
id: ncust
id' : name

ADDRESS CUSTOMER
ill!dd
street
number -
zip
city
id: nadd

I!ÇYfil

- name
date birthro-1 l
id: ncust
id': name

Figure A 1 - 35 : Decreasing the minimum cardina/ity of a ro/e to Oin an

1-1/0-1 relationship-type on the conceptua/ /eve/

4.1.2.1.1. Logical Schema

We have to make the foreign key LIVE_ncust in ADDRESS optional.

PageA1-46

Appendix 1 : Study of the Modifications: Case Study Approach

ADDRESS
LIVE ncust
ill!dd
street
number
zip
city
id: nadd

ace
id': LIVE ncust

ref ace

ADDRESS
LIVE_ncust[0-1)
n.add
street
number
zip
city
id: nadd

ace
id' : LIVE ncust

ref ace

CUSTOMER
llÇ]!fil

name
date birth 0-1
id: ncust

ace
id' : name

ace

CUSTOMER
ncust
name
date birth 0-1
id: ncust

ace
id': name

ace

Figure Al - 36 : Decreasing the minimum cardinality of arole to Oin an

1-1/0-J relationship-type on the logical level

4.1.2.1.2. SQL Description & Data

alter table ADDRESS
drop constraint A_LIVE_ncust;

Note that no data is lost as the foreign key column is only made optional.

4.1.2.1.3. Program Extracts

Program extracts referencing the foreign key representing relationship-type LIVE must be
reviewed. A possible modification would be:

var ncust: STRING[4);
add: INTEGER;

exec SQL
select LIVE_ncust, nadd

into :ncust, :add
from ADDRESS
where nadd = 110;

end exec;

PageAJ-47

Schema Modification Propagation for Re/ational Database Applications

if SQLCODE = 0 (* if such a row has been found *)
then write ('The customer living at address', add, 'is:', ncust)
else write ('The address', add, 'does not exist. ');

var ncust: STRING [4];
null_indicator: INTEGER;
add: INTEGER;

exec SQL
select LIVE_ncust, nadd

into :ncust:null_indicator, :add
from ADDRESS
where nadd = 110;

end exec;
if SQLCODE = 0 (* if such a row has been found *)
then if null_indicator = 0 (* if the CUSTOMER is known *)

then write ('The customer living at address', add, 'is: ', ncust)
else write (' No customer living at that address has been found. ')

else write ('The address', add, 'does not exist. ');

As we can see in the previous program extracts, tests (if - then clauses) checking the nul! value
of column LIVE ncust must sometimes be introduced.

4.1.2.2. 1-1/0-N ➔ 0-1/0-N

The case where we transform 1-1/0-N into 0-1/0-N is similar to the previous one (see page
Al-45).

4.2. MODIFICATIONS WHICH DECREASE THE
SEMANTICS

4.2.1. Decrease max card

Precondition:
Given the restrictions of the relationship-types in the Kemel (see page 3-2), the only decreases
of the maximum cardinality of a role that we accept so far are:

• 1-1/0-N ➔ 1-1/0-1
• 0-1/0-N ➔ 0-1/0-1

We consider an example for each of the two cases:

4.2.1.1. 1-1/0-N ➔ 1-1/0-1

Let us suppose that we want to decrease to 1 the maximum cardinality of the 0-N role of the
relationship-type SPECIFY of our case study example.

PageAJ-48

Appendix 1 : Study of the Modifications: Case Study Approach

PRODUCT
npI.QQ LINE

ru.i.M -1-1~0-N label

id: nline

0-1

< CO+SE >
0-N

ORDER
!l.Qrd
date
id: nord

LINE

nl.iru.

id: nline

0-1

< CO+SE >
0-N

ORDER
llillii
date
id: nord

0-1~0-N -

1-1~0-l

0-1~0-N -

price
id: nprod

CUSTOMER
fil]lli

name
date birth(0- 1]
id: ncust
id': name

PRODUCT
Jll2IQrl
label
nce

id: nprod

CUSTOMER
ncust
name
date birth(0 -1]
id: ncust
id': name

Figure Al - 37: Decreasing the maximum cardina/ity of a ro/e in an 1-1/0-N

re/ationship-type on the conceptua/ /evel

4.2.1.1.1. Logical Schema

On the logical level, we have to add the candidate key feature to column SPECIFY _ nprod in
relation LINE.

PageAJ-49

Schema Modification Propagation for Relational Database Applications

CUSTOMER ORDER LINE PRODUCT
ncust llQffi nliM llllli29
name date qty label
date birth[0-1] PLACE ncust[0-1] SPECIFY_nprod price
id: ncust L id: nord f<} COMPOSE nordr0-1 l rC> id: nprod

ace ace id: n1ine ace
id': name ref: PLACE ncust ace -

ace ace ref: SPECIFY _nprod -
ace - ref: COMPOSE nord
ace

CUSTOMER ORDER LINE PRODUCT
DÇYfil IlQI:d ~ nprod
name date qty label
date birth[0-1] PLACE ncust[0-1] SPECIFY _ nprod orice
id: ncust L id: nord <J COMPOSE nordr0-1 l -e,, id: nprod

ace ace id: n1ine ace
id' : name ref: PLACE ncust ace

ace ace id':SPECIFY _nprod
ref ace

f---

~

ref: COMPOSE nord
ace

Figure A 1 - 38 : Decreasing the maximum cardinality of a role in an 1-110-N relationship-type on

the logical /evel

4.2.1.1.2. SQL Description & Data

var prodl: STRING[5];
prod2: STRING[5];
line: STRING [6];
count : INTEGER;

exec SQL
(* we have to delete all the rows except one of table LINE among

tho se having the same value for SPECIFY_nprod *)
declare cl cursor for

select SPECIFY_nprod, count(*)
from LINE
group by SPECIFY_nprod
having count(*) > 1
order by SPECIFY_nprod ASC;

declare c2 cursor for
select SPECIFY_nprod, nline

from LINE
group by SPECIFY_nprod, nline
order by SPECIFY_nprod ASC, nline ASC;

open cl ;
open c2;
fetch c2 into :prod2, :line ;
fetch cl into :prodl, : c ount;

Page A l-50

Appendix 1: Study of the Modifications: Case StudyApproach

end exec;
while SQLCODE = 0 (* the last item has not yet been treated *)
do begin

while prodl <> prod2
do exec SQL

fetch c2 into :prod2, :line
end exec;

exec SQL
fetch c2 into :prod2, :line

end exec;
while (prodl = prod2) and (SQLCODE = 0)
do begin

exec SQL
delete from LINE

where nline = . line;
fetch c2 into :prod2, :line;

end exec;
end;

exec SQL
fetch cl into :prodl, :count

end exec;
end;

exec SQL
close cl;
close c2;
(* we add the unique key feature to column SPECIFY_nprod *)
alter table LINE

add constraint unique (SPECIFY_nprod) constraint idLIN2;
end exec;

Each value in column SPECIFY _ nprod in relation LINE must be unique. We can for example
keep only one of the two following rows:

nline
ER5678
DS5432

(COMPOSE nord)
null

E583

gty
4587
5698

SPECIFY nprod
EG880
EG880

The way in which the modification is implemented would result in the loss of the first row. The
modification for the whole table LINE is depicted in Figure Al-39.

PageAJ-51

Schema Modification Propagation for Relational Database Applications

LINE
nline (COMPOSE nord) qty SPECIFY nprod
AB1234 E386 1000
GH2345 null 1518
RT3456 F285 345
ZU4567 G274 2536
ER5678 null 4587
NM6789 G274 5558
OP7890 G274 5458
JK.0987 F842 5473
TZ9876 E386 623
KJ8765 null 4587
WQ7654 F902 6325
XY6543 null 9658
DS5432 E583 5698
BV1357 F842 7458
102468 G809 4125

LINE.COMPOSE nord in OROER.nord
LINE.SPECIFY_nprod in PRODUCT.nprod

JJ,

LINE

AAll0
CA510
AAll0
BE072
EG880
WN592
RK560
SW226
LS906
SG953
BY907
BY907
EG880
AB099
AB099

nline (COMPOSE nord) qty SPECIFY nprod
AB1234 E386 1000
GH2345 null 1518
ZU4567 G274 2536
NM6789 G274 5558
OP7890 G274 5458
JK.0987 F842 5473
TZ9876 E386 623
KJ8765 null 4587
WQ7654 F902 6325
DS5432 E583 5698
BV1357 F842 7458

LINE.COMPOSE nord in OROER.nord
LINE. SPECIFY _ nprod in PRODUCT.nprod

AAll0
CASIO
BE072
WN592
RK560
SW226
LS906
SG953
BY907
EG880
AB099

Figure Al - 39 : The modification decrease_max_card applied on column SPECIFY_nprod of

table LINE

PageAJ-52

Appendix 1 : Study of the Modifications: Case Study Approach

4.2.1.1.3. Program Extracts

Note:
The modifications suggested here below are not absolutely necessary. They may be
seen as optimisations.

The optimisation would consist in replacing certain loops (for example while-loops) by simple
if-then tests.

var qty: INTEGER;

exec SQL
declare c cursor for

select qty
from LINE
where SPECIFY_nprod = 'AAllO';

open c;
fetch c into :qty;

end exec;
while SQLCODE = 0
do begin

write (qty);
exec SQL

fetch c into :qty
end exec;

end;
exec SQL

close c
end exec;

var qty : INTEGER;

exec SQL
select qty

into :qty
from LINE
where SPECIFY_nprod = 'AAllO';

end exec;
if SQLCODE = 0
then write(qty);

Note that the user interfaces must also be adapted.

4.2.1.2. 0-1/0-N ➔ 0-1/0-1

Let us suppose that we want to decrease to 1 the maximum cardinality of the 0-N role of the
relationship-type PLACE of our case study example.

PageAJ-53

Schema Modification Propagation for Relational Database Applications

PRODUCT
Jll2IQQ

-1-J~O-N label

id: nline

0-1

< CO+SE >
0-N

1

ORDER
IlQIQ

-u
date -1~0-N -

id: nord

UNE

~

id: nline

0-1

$>
0-N

1

ORDER
nord
date
id: nord

1-!~0-N

V -1~0-1 -

price
id: nprod

CUSTOMER
llQYfil

name
date birth[0-1]
id: ncust
id': name

PRODUCT

Illllilli
label
nce

id: nprod

CUSTOMER
llQYfil

name
date birth[0-1]

id: ncust
id': name

Figure Al - 40 : Decreasing the maximum cardinality of arole in an 0-1/0-N

relationship-type on the conceptual level

4.2.1.2.1. Logical Schema

On the logical level, we have to add the candidate key feature to colurnn PLACE_ ncust in
relation ORDER.

PageAJ-54

Appendix 1 : Study of the Modifications: Case Study Approach

CUSTOMER ORDER UNE PRODUCT
ng!fil nord ~ npmd
name date qty label
date birth[0-1] PLACE ncust[0-1] SPECIFY _ nprod price
id: ncust IL id: nord <} COMPOSE nordr0-1 l rt:, id: nprod

ace ace id: nline ace
id': name ref:PLACE ncust ace

ace ref: SPECIFY _nprod -ace
ace

- ref: COMPOSE nord
ace

CUSTOMER ORDER UNE PRODUCT
llÇ].!fil nord nJ.inS< nprod
name date qty label
date birth[0-1] PLACE ncust[0-1] SPECIFY _ nprod price
id: ncust <} id: nord ~ COMPOSE nordr0-1 l -l> id: nprod

ace ace id: nline ace
id' : name id':PLACE ncust ace

ace - ref ace ref: SPECIFY _ nprod -
ace

~

ref: COMPOSE nord
ace

Figure A l - 41: Decreasing the maximum cardinality of arole in an 0-110-N relationship-type on

the logical level

4.2.1.2.2. SQL Description & Data

We can proceed by two possible ways:

4.2.1.2.2.1. Deleting duplicate values of PLACE_ncust

We will proceed almost the same way as in the case 4.2.1.1.2. (see page Al-50). We will put
in bold the additional operations.

var custl : STRING[4];
cust2 : STRING[4];
nord: STRING[4];
c ount: INTEGER ;

exec SQL
(* we have t o delete all t he r ows exc ept one o f t able ORDER among

those having the same value f o r PLACE_ncust *)
declare cl curso r for

select PLACE_ncust, count(*)
from ORDER
group by PLACE_ncust
having count(*) > 1
order by PLACE_ncust ASC;

PageAJ-55

Schema Modification Propagation for Relational Database Applications

declare c2 cursor for
select PLACE_ncust, nord

from ORDER
group by PLACE_ncust, nord
order by PLACE_ncust ASC, nord ASC;

open cl;
open c2;
fetch c2 into :cust2 , :nord;
fetch cl into :custl, :count;

end exec;
while SQLCODE = 0 (* the last item bas not yet been treated *)
do begin

while custl <> cust2
do exec SQL

fetch c2 into :cust2, :nord
end exec;

exec SQL
fetch c2 into :cust2, :nord

end exec;
while (custl = cust2) and (SQLCODE = 0)
do begin

exec SQL
(*we have to remove first the rows of table LINE

referencing the rows of table ORDER that will be
deleted*)

delete from LINE
where COMPOSE_nord = :nord;

delete from ORDER
where nord= :nord;
fetch c2 into :cust2 , :nord;

end exec;
end;

exec SQL
fetch cl into : custl, : count

end exec;
end;

exec SQL
close cl;
close c2;
(* we add the unique key feature to column PLACE_ncust *)
alter table ORDER

add constraint unique (PLACE_ncust) constraint idORD2;
end exec;

In table ORDER, PLACE_ncust will become a unique key. The resulting table 1s shown m
Figure Al-42.

PageAJ-56

Appendix 1: Study of the Modifications: Case StudyApproach

OROER
nord (PLACE ncust) date
E386 A958 02/01/1995
G274 null 15/07/1993
F842 C395 31/12/1994
E345 B234 05/01/1995
F902 D365 16/09/1994
E583 B472 12/01/1995
F676 Al0l 26/02/1993
G809 null 23/05/1994

OROER.PLACE ncust in CUSTOMER.ncust

Figure Al - 42: The table ORDER after having removed duplicate values

for PLACE_ncust

This modification results in the loss of the two following rows of table OROER:

nord
F285
G222

(PLACE ncust) date
B472 12/03/1994
A958 23/05/1994

This loss of data has an immediate impact on table LINE. We loose the following row in table
LINE:

nline (COMPOSE nord) gty SPECIFY nprod
RT3456 F285 345 AAll0

4.2.1.2.2.2. Setting duplicate values of column PLACE_ncust to null

We proceed almost the same way as in case 4.2.1.1.2. (see page Al-50). We will put in bold
the operations that will change.

var custl: STRING[4];
cust2: STRING[4];
nord: STRING[4];
count: INTEGER;

exec SQL
(* we have to remove all the r ows except one of table OROER among

those having the same value f or PLACE_ncust *)
declare cl cursor for

select PLACE_ncust, count(*)
from OROER \
group by PLACE_ncust
having count(*) > 1
o rder by PLACE_ncust ASC;

declare c2 cursor for
select PLACE_ncust, nord

from OROER
group by PLACE_ncust, nord
order by PLACE_ncust ASC , n ord ASC;

PageAJ-57

Schema Modification Propagation for Re/ationa/ Database Applications

open cl;
open c2;
fetch c2 into :cust2, :nord;
fetch cl into :custl, :count;

end exec;
while SQLCODE = O (* the l a st i t em has not y et been treated *)
do begin

while custl <> cust2
do exec SQL

fetch c2 into :cu st2, :nord
end exec;

exec SQL
fetch c2 into :cust2, :nord

end exec;
while (custl = cust2) a n d (SQLCODE = 0)
do begin

exec SQL
update OROER

set PLACE_ncust = null
where nord= :nord;

fetch c2 into :cust2 , :nord;
end exec ;

end;
exec SQL

fetch cl into :custl, :count
end exec;

end;
exec SQL

close cl;
close c2;
(* we add t h e unique key featu re to column PLACE_ncust *)
alter table ORDER

add constraint unique(PLACE_ncust) constraint idORD2;
end exec;

Each value in column PLACE_ ncust in relation ORDER must be unique (except for the null
value). We can this time keep the two following rows:

nord
E386
G222

(PLACE ncust)
A958
A958

date
02/01/1995
23/05/1994

by setting the PLACE_ ncust value of the second row to null :

nord
E386
G222

(PLACE ncust)
A958
null

date
02/01/1995
23/05/1994

We put in bold the modifications on table ORDER.

PageAJ-58

Appendix 1 : Study of the Modifications: Case Study Approach

ORDER
nord (PLACE ncust) date
E386 A958 02/01/1995
F285 null 12/03/1994
G274 null 15/07/1993
F842 C395 31/12/1994
E345 B234 05/01/1995
G222 null 23/05/1994
F902 D365 16/09/1994
E583 B472 12/01/1995
F676 AlOl 26/02/1993
G809 null 23/05/1994

ORDER.PLACE ncust in CUSTOMER.ncust

Figure A 1 - 43 : Table ORDER after having set duplicate values of

PLACE ncust to nul/

4.2.1.2.3. Program Extracts

The same suggestions as in the case 4.2.1.1.3 (see page Al-53) can be made here.

4.2.2. Augment_min_card

Precondition:
Given the restrictions of the relationship-types in the Kemel (see page 3-2), the only
augmentations of the minimum cardinality of a role that we accept so far are:

• 0-1/0-1 ➔ 1-1/0-1
• 0-1/0-N ➔ 1-1/0-N

We consider an example for each of the two cases.

4.2.2.1. 0-1/0-1 ➔ 1-1/0-1

Let us reconsider the example where a CUSTOMER WORKs at an ADDRESS. We want to
augment the minimum cardinality of the role played by ADDRESS to 1.

PageAJ-59

Schema Modification Propagation for Relational Database Applications

ADDRESS CUSTOMER
lliilld
street
nurnber -
zip
city
id: nadd

0-1~-l

ncust

- name
date birthro- Il
id: ncust
id' : name

ADDRESS CUSTOMER
nadd
street
nurnber -
zip
city
id: nadd

1-1~0- l

ncust

- name
date birthr0-1 l
id: ncust
id': name

Figure Al - 44: Augmenting the minimum cardinality of a raie to 1 in

an 0-1/0-1 relationship-type on the conceptual level

Two different cases must be considered:

• WORK is implemented by a foreign key in ADDRESS
• WORK is implemented by a foreign key in CUSTOMER

4.2.2.1.1. WORK is implemented by a foreign key in ADDRESS

4.2.2.1.1.1. Logical Schema

We have to make the foreign key WORK_ncust in ADDRESS mandatory.

PageAJ-60

Appendix 1: Study of the Modifications: Case StudyApproach

ADDRESS
WORK_ncust[0-1)
Il.filk!
street
number
zip
city
id: nadd

ace
id' : WORK ncust

ref ace

ADDRESS
WORK ncust
Il.filk!
street
number
zip
city
id: nadd

ace
id' : WORK ncust

ref ace

CUSTOMER
fiÇJ.!fil

narne
date birth 0-1
id: ncust

ace
id' : narne

ace

CUSTOMER
fiÇJ.!fil

narne
date birth 0-1
id: ncust

ace
id': narne

ace

Figure Al - 45: Augmenting the minimum cardinality of a raie to 1 in an

0-1/0-1 relationship-type on the logica/ level

4.2.2.1.1.2. SQL Description & Data
delete from ADDRESS

where WORK_ncust is null;
alter table ADDRESS

alter WORK_ncust not null constraint A_WORK_ncust;

This way of implementing the modification involves loss of data, as we drop the rows having a
null value for colurnn WORK ncust.

4.2.2.1.1.3. Program Extracts

As we already said it is often not sufficient to delete or modify the select queries referencing
the null value of WORK _ ncust. The application programs in which they appear must also be
reviewed. A possible modification would be:

var ncust: STRING[4];
null_indicator: INTEGER;
add: INTEGER;

exec SQL
select WORK_ncust, nadd

PageAJ-61

Schema Modification Propagation for Relational Database Applications

into :ncust:null_indicator, : add
frorn ADDRESS
where nadd = 110;

end exec;
if SQLCODE = 0 (* if such a row has been found *)
then if null_indicator = 0 (*if the CUSTOMER is known*)

then write ('The custorner working at address', add, 'is: ', ncust)
else write (' No custorner working at that address has been found. ')

else write ('The address', add, 'does not exist. ');

var ncust: STRING[4);
add: INTEGER;

exec SQL
select WORK_ncust, nadd

into :ncust, :add
frorn ADDRESS
where nadd = 110;

end exec;
if SQLCODE = 0 (* if such a row bas been found *)
then write ('The custorner working at address', add, 'is: ', ncust)
else write ('The address', add, 'does not exist. ');

4.2.2.1.2. WORK is implemented by a foreign key in CUSTOMER

4.2.2.1.2.1. Logical Schema

On the logical level the transformation is :

PageAJ-62

ADDRESS

illldd
street
number
zip
city
id: nadd

ace

ADDRESS
WORK_ncust
n&ld
street
number
zip
city
id: nadd

ace
id':WORK ncust

ref ace

...,.,._
-

Appendix 1: Study of the Modifications: Case StudyApproach

CUSTOMER
WORK_nadd(0-1]
ngJfil

name
date birthf 0-1 l
id: ncust

ace
id':WORK nadd

ref ace
id' : name

ace

-

CUSTOMER
ngJfil

name
date birth 0-1
id: ncust

ace
id' : name

ace

Figure Al - 46 : Augmenting the minimum cardinality of a rote to 1 in an

0-110-1 relationship-type on the logical level

4.2.2.1.2.2. SQL Description & Data

var

exec

cust: STRING[4];
add: INTEGER;

SQL
(* we
alter

add

create the new foreign key c o lUIDil *)
table ADDRESS
WORK_ncust char(4) default '0000' n ot null

constraint A_WORK_ncust;
(* we copy the data representing relationship-type WORK fr om table

CUSTOMER into table ADDRESS *)
declare c cursor for

select ncust, WORK_nadd
from CUSTOMER
where WORK_nadd is n o t null ;

open c;
fetch c into :cust , : add ;

end exec;
while SQLCODE = 0
do begin

exec SQL

(* the last item bas not yet been treated *)

update ADDRESS
set WORK_ncust = :cust
where nadd = :add;

fetch c into :cust, : add;

PageAJ-63

Schema Modification Propagation for Relational Database Applications

end exec;
end;

exec SQL
close c;
(*we drop the rows from ADDRESS which are not linked to a CUSTOMER*)
delete from ADDRESS

where WORK_ncust = '0000';
(* we add and remove the necessary constraints *)
alter table ADDRESS

add constraint unique (WORK_ncust) constraint idADD2,
add constraint foreign key (WORK_ncust) references CUSTOMER

constraint CUSl;
alter table CUSTOMER

drop constraint idCUS3, (* we remove the old unique key feature *)
drop constraint ADDl, (* we remove the old f oreign key feature*)
drop WORK_nadd;

end exec

This way of implementing the modification involves loss of data, as we drop the rows from
ADDRESS which are not linked to a CUSTOMER.

4.2.2.1.2.3. Program Extracts

Application programs referencing the foreign key representing relationship-type WORK must
be reviewed. In some cases, we have to drop or change extracts in which select queries
reference the null value of WORK _nadd, in other cases we have to change the extracts or
queries referencing WORK_nadd in CUSTOMER. For example:

select name
from CUSTOMER
where WORK_nadd = 102;

select name
from CUSTOMER
where ncust in select WORK_ncust

from ADDRESS
where nadd = 102)

4.2.2.2. 0-1/0-N ➔ 1-1/0-N

Let us augment the minimum cardinality of the 0-1 role of relationship-type PLACE in our
case study.

PageAJ-64

Appendix 1 : Study of the Modifications: Case Study Approach

UNE

nliru.
qty

id: nline

0-1

< CO+SE >
0-N

ORDER
IlQrQ
date
id: nord

1-1--..... SPECIFY 0-N

-0-1~0-N

PRODUCT

lij2I:QQ
label

rice
id: nprod

CUSTOMER
ncust
name
date birth[0-1]
id: ncust
id': name

PRODUCT
mrrQd UNE

~
qty

1-1---<- SPECIFY -~-O-N label
price

id: nline id: nprod

0-1

< CO+SE >
0-N

1 CUSTOMER
ORDER llÇ1!fil

llillil -date 1-1~0-N -
name
date birth[0-1)

id: nord id: ncust
id' : name

Figure Al - 47 : Augmenting the minimum cardinality of a ro/e to 1 in an 0-1/0-N

relationship-type on the conceptual level

4.2.2.2.1. Logical Schema

We have to make the foreign key PLACE_ncust in ORDER mandatory.

PageAJ-65

Schema Modification Propagation for Relational Database Applications

CUSTOMER ORDER LINE PRODUCT
nçyfil nord ~ mrroo
narne date qty label
date birth[0-1] PLACE ncust[0-1] SPEClFY _ nprod price
id: ncust L id: nord I<} COMPOSE nord[0-1] -{> id: nprod

ace ace id: nline ace
id' : narne ref: PLACE ncust ace

ace ace ref: SPEClFY _ nprod ~

ace - ref: COMPOSE nord
ace

CUSTOMER ORDER LINE PRODUCT
00.!fil IlQIQ nl.inS< Ill2I:QQ
narne date qty label
date birth[0-1] PLACE ncust SPEClFY _nprod price
id: ncust L id: nord I<} COMPOSE nordr0-11 ,c:, id: nprod

ace ace id: nline ace
id': narne ref: PLACE ncust ace -

ace ace ref: SPEClFY _ nprod ~

ace - ref: COMPOSE nord
ace

Figure A 1 - 48 : Augmenting the minimum cardinality of a ro/e to 1 in an 0-110-N relationship

type on the /ogica/ /evel

4.2.2.2.2. SQL Description & Data

delete from ORDER
where PLACE_ncust is null

alter table ORDER
alter PLACE_ncust not null constraint O_PLACE_ncust;

We loose the rows of table ORDER for which no CUSTOMER was specified.

4.2.2.2.3. Program Extracts

Similar remarks as for the case 4.2.2.1.1.3. (see page Al-61) can be formulated here.

PageAJ-66

Appendix 1 : Study of the Modifications: Case Study Approach

5. MODIFICATIONS OF THE
ATTRIBUTES

5.1. MODIFICATIONS WHICH AUGMENT THE

SEMANTICS

5.1.1. Add _ optional_ attribute
Let us suppose we want to add an optional attribute firstname to CUSTOMER.

CUSTOMER CUSTOMER
ncust IlÇ].!fil

name name
date birth[0-1] ⇒ date_ birth[0-1]

id: ncust firstnamero-11
id' : name id: ncust

id': name

Figure Al - 49 : Adding an optional attribute on the conceptual

level

5.1.1.1. Logical Schema

We add an optional column firstname to the relation CUSTOMER.

5.1.1.2. SQL Description & Data

alter table CUSTOMER
add firstname char(15) ;

Note that all the rows of CUSTOMER have a null value for column firstname.

PageAJ-67

Schema Modification Propagation for Relationa/ Database Applications

CUSTOMER
ncust name (date birth) (firstname)
AlOl BootsmaH. 12/07/1969 null
D308 Ford H. null null
B234 Peiffer M. 22/06/1917 null
A958 Huntington G. 31/01/1969 null
D365 McGaw J. 29/02/1980 null . . : : . .

Figure Al - 50: Table CUSTOMER after having added columnfirstname

5.1.1.3. Program Extracts

Let us consider the following program extract:

type dat :

var cust : STRING[4];
name: STRING[l2];
date_birth : dat;

exec SQL
select*

into :cust, :name, :date_birth
from CUSTOMER
where ncust = 'Al01';

end exec

It can either be modified as follows:

type dat: . ..

var cust : STRING[4];
name : STRING[12];
date_ birth: dat;
firstname: STRING[lS];

exec SQL
select*

into : cust, :name, :date_birth, :firstname
from CUSTOMER
where ncust = 'A101';

end exec

or as follows :

type dat: .. .

var cust : STRING[4);
name: STRING[12);
date_birth : dat;

PageAJ-68

Appendix 1 : Study of the Modifications: Case Study Approach

exec SQL
select ncust, name, date_birth

into :cust, :name, :date_birth
from CUSTOMER
where ncust = 'Alül';

end exec

We have to change the application programs by adding variables (as illustrated here above) or
by assigning an output field for firstname in the user interfaces.

5.1.2. Add _ mandatory _attribute
Let us suppose we want to add as well a mandatory attribute telephone to CUSTOMER.

CUSTOMER CUSTOMER
ill,]Jfil IlÇYfil
name name
date_ birth[0-1] ⇒ date_ birth[0-1]
firstnamef 0-11 firstname[0-1]

id: ncust telephone
id' : name id: ncust

id': name

Figure A 1 - 51 : Adding a mandato,y attribute on the

conceptual level

5.1.2.1. Logical Schema

We add a column telephone to the relation CUSTOMER.

5.1.2.2. SQL Description & Data

alter table CUSTOMER
add telephone varchar(20) default '0' not null constraint C_telephone;

In order to keep all the data of CUSTOMER, we place the default value 'O' in column
telephone for each row of the table CUSTOMER:

PageAJ-69

Schema Modification Propagation for Relational Database Applications

CUSTOMER
ncust name (date birth) (firstname) teleohone
Al0l BootsmaH. 12/07/1969 null 0
D308 Ford H. null null 0
B234 Peiffer M. 22/06/1917 null 0
A958 Huntimrton G. 31/01/1969 null 0
D365 McGaw J. 29/02/1980 null 0

Figure A l - 52 : Table CUSTOMER after having added co/umn te/ephone too

5.1.2.3. Program Extracts

Similar remarks can be formulated as for the case add_optional_attribute (see page Al-68).

5.1.3. Make_attr_optional

Precondition:
As SQL-RDB does not allow optional attributes as primary key, the attribute that should be
made optional must not be a primary key.

As we do not always know the price of a PRODUCT, we want to make it optional.

PRODUCT
nproo
label

rice
id: nprod

⇒

PRODUCT
nproo
label
oricero-11
id: nprod

Figure A l - 53: Making an attribute optiona/ on the

conceptua/ /eve/

5.1.3.1. Logical Schema

We make column price optional in relation PRODUCT.

5.1.3.2. SQL Description & Data

alter table PRODUCT
drop constraint P_price;

PageA l -70

Appendix 1 : Study of the Modifications: Case Study Approach

Note that the data will not be changed as we only make the column price optional.

5.1.3.3. Program Extracts

Let us consider the following program extract:

var price: INTEGER;

exec SQL
select price

into :price
frorn PRODUCT
where nprod = 'AAll0'

end exec;
if SQLCODE = 0
then write (price);
else write ('The product ''AA110'' does not exist. ');

As PRODUCT 'AAI 1 O' has now not necessarily a price anymore, we have to change the
previous program extract as follows:

var price, null_indicator: INTEGER;

exec SQL
select price

into :price:null_indicator
frorn PRODUCT
where nprod = 'AAll0'

end exec;
if SQLCODE = O (* if such a row has been found *)
then if null_indicator = 0 (* if the price is known *)

then write (price)
else write ('The price of PRODUCT ''AAll0'' is unknown. ')

else write ('The product ''AAll0'' does not exist. ');

As we can see in the previous program extract, some variables and tests checking the null
value of column price must be added.

5.1.4. Extend domain attribute

Precondition:
The attribute whose domain should be modified must not be an identifier. This is due to SQL
RDB which allows modifications only on columns, on which no constraints (primary, unique
and foreign key) apply. In addition, the attribute cannot be of the type date.

Let us suppose we want to extend the domain of column label in entity-type PRODUCT from
char(20) to char(25).

5.1.4.1. Logical Schema

We extend the domain of column label in table PRODUCT from char(20) to char(25).

PageAJ-71

Schema Modification Propagation for Relational Database Applications

5.1.4.2. SQL Description & Data
alter table PRODUCT

drop constraint P_label,
alter label char(25) not null constraint P_label;

Note:
If label were optional, we would have to do the following operation:

alter table PRODUCT
alter label char(25);

No modifications are made on the data.

5.1.4.3. Program Extracts

In the application programs the variables, the procedure arguments and the user interface
output fields referencing column label of table PRODUCT must be adapted accordingly. For
example:

var label: STRING[20];

exec SQL
select label

into :label
from PRODUCT
where nprod = 'SW226'

end exec;

JJ,

var label: STRING[25];

exec SQL
select label

into : label
from PRODUCT
where nprod = 'SW226'

end exec;

5.1.5. Change_type_int_char

Precondition:
The attribute must not be an identifier (neither a primary nor a unique key). This is due to
SQL-RDB which allows modifications only on columns, on which no constraints (primary,
unique and foreign key) apply.

Let us suppose that we want to change the type of attribute price to char(l l) in entity-type
PRODUCT of our case study.

Page Al-72

Appendix 1: Study of the Modifications: Case StudyApproach

5.1.5.1. Logical Schema

We have to change the type of column price to char(11) in relation PRODUCT.

5.1.5.2. SQL Description & Data

var i : INTEGER;
s: STRING[ll];

exec SQL
(* an intermediate column is created *)
alter table PRODUCT

add p integer;
(* the data of column price is copied into that column *)
update PRODUCT

set p = price;
(* the old column price is replaced by the new one*)
alter table PRODUCT

drop constraint P_price, (* we remove the mandatory feature from
the old column price *)

drop price,
add price char(ll) default '0' not null constraint P_price;

(* the datais converted and copied into the new column price *)
declare c cursor for

select p
from PRODUCT

for update of price in PRODUCT;
open c;
fetch c into :i;

end exec;
while SQLCODE = 0 (* the last item has not yet been treated *)
do begin

s := f_int_char(i);
exec SQL

update PRODUCT
set price = :s
where current o f c;

fetch c into :i;
end exec;

end;
exec SQL

close c;
(* the intermediate column is dropped *)
alter table PRODUCT

drop p;
end exec;

f_int_ char:
This function converts an integer into a string.

No data is lost, but we have to note that the values of column price are converted.

5.1.5.3. Program Extracts

In the application programs the user interface output fields, the variables, the procedure
arguments and sometimes the constants referencing column price of PRODUCT must be
adapted accordingly. For example:

var price: IN'l'EGER;

exec SQL

PageAJ-73

Schema Modification Propagation for Re/ationa/ Database Applications

select price
into :price
from PRODUCT
where nprod = 'SW226'

end exec;

var price: STRING[ll];

exec SQL
select price

into :price
from PRODUCT
where nprod = ' SW226'

end exec;

5.1.6. Change_ type_ float_ char
This modification is similar to the previous one (see page Al-72), except that we use function
f_float_char instead off_int_char. Function f_float_char converts a float into a string.

5.1.7. Change_type_date_char
This modification is sirnilar to change_type_int_char (see page Al-72), except that we use
function f_date_char instead off_int_char. Function f_date_char converts a date into a string.

5.1.8. Change_type_date_int
This modification is sirnilar to change_type_int_char (see page Al-72), except that we use
function f_date_int instead of f_int_char. Function f_date_int converts a date into an integer.

5.1.9. Change_type_int_float
This modification is sirnilar to change _type _int_ char (see page Al-72), except that we use
function f_int_float instead off_int_char. Function f_int_float converts an integer into a float.

5.1.10. Change_type_date_float
This modification is sirnilar to change_type_int_char (see page Al-72), except that we use
function f date float instead off int char. Function f date float converts a date into a float. - - - -

Page Al-74

Appendix 1 : Study of the Modifications: Case Study Approach

5.2. MODIFICATIONS WHICH DECREASE THE

SEMANTICS

5.2.1. Remove_optional_attribute

Precondition:
The attribute that has to be removed must not be the last one of the entity-type.

Let us suppose that we want to remove the attribute date birth from the entity-type
CUSTOMER of our case study.

CUSTOMER

~
name
date birth[0-1]
id: ncust
id' : name

⇒

CUSTOMER

~
name

id: ncust
id': name

Figure A 1 - 54 : Removing an optiona/ attribute on the

conceptua/ Level

5.2.1.1. Logical Schema

We remove the column date birth from relation CUSTOMER.

5.2.1.2. SQL Description & Data

alter table CUSTOMER
drop date_birth ;

Note:
In case date_birth were a unique key, we would have to use the following operation:

alter table CUSTOMER
drop constraint idCUS3 ,

drop date_birth;

All the data of column date birth will be lost:

(* we remove the unique key
feature *)

Page A l-75

Schema Modification Propagation for Re/ationa/ Database Applications

CUSTOMER
ncust name
AlOl BootsmaH.
D308 FordH.
B234 PeifferM.
A958 Huntimrton G.
D365 McGaw J.

Figure Al - 55 : Table CUSTOMER

when column date birth is removed

5.2.1.3. Program Extracts

The first SELECT query of our case study (see page 4-7) does not make sense anymore and
must therefore be dropped. The JOIN query (see page 4-8) may be modified as follows:

select name, nord
from CUSTOMER, ORDER
where ncust = PLACE_ncust.

Note that this query gives now the following result :

name
Huntington G.
Hasselhoff S.
Osborn M.
Peiffer M.
Huntington G.
McGaw J.
Hasselhoff S.
Bootsma H.

nord
E386
F285
F842
E345
G222
F902
E583
F676

As we have already said, it is often not sufficient to delete or modify the select queries only.
The application programs in which they appear must also be reviewed: certain variables may be
dropped and certain user interfaces may be adapted.

5.2.2. Remove_mandatory _attribute

Precondition:
The attribute which should be removed must not be a primary key and must not be the last
attribute of the entity-type.

Let us imagine we want to remove attribute date from entity-type ORDER of our case study.

Page A J- 76

Appendix 1 : Study of the Modifications: Case Study Approach

CUSTOMER
ORDER ncust
nord -0-1~0-N-

name
date date birth[0-1]
id: nord id: ncust

id' : name

V,
CUSTOMER

ORDER ncust

llillii -0-1~0-N-
name

id: nord
date birth[0-1]
id: ncust
id' : name

Figure Al - 56: Removing a mandatory attribute on the conceptual level

5.2.2.1. Logical Schema

We remove the column date from relation ORDER of our case study.

llillii
date

ORDER

PLACE _ncust(0-1]
id: nord

ace
ref: PLACE ncust

ace

ORDER
nord
PLACE ncust(0-1]
id: nord

ace
ref: PLACE ncust

ace

CUSTOMER

~
name
date birth 0-1
id: ncust

ace
id': name

ace

CUSTOMER

lNYfil
name
date birth 0-1
id: ncust

ace
id': name

ace

Figure Al - 57 : Removing a mandatory attribute on the

logical level

PageAl-77

Schema Modification Propagation for Relational Database Applications

5.2.2.2. SQL Description & Data

alter table ORDER
drop constraint O_date, (* we remove the mandatory feature from

column date *)
drop date;

Note:
In case date were a unique key, we would have to use the following operation:

alter table ORDER
drop constraint idORD2,

drop constraint O_date,

drop date ;

All the data of column date will be lost:

ORDER

(* we remove the unique key
feature *)

(* we remove the mandatory
feature from column date*)

nord (PLACE ncust)
E386 A958
F285 B472
G274 null
F842 C395

: :

ORDER.PLACE ncust in CUSTOMER.ncust

Figure Al - 58: Table ORDER when column date is removed

5.2.2.3. Program Extracts

Every select query referencing date must either be dropped or modified in a sirnilar way as for
the case remove_optional_attribute (see page Al-76). The remark on the application programs
also applies here.

5.2.3. Make_attr_mandatory
W e have to distinguish whether the attribute which we want to make manda tory is a unique
key or not. We will treat first the case in which the attribute is nota unique key.

5.2.3.1. The attribute is not a unique key

Let us suppose we want to make date_birth mandatory in CUSTOMER.

PageAJ-78

Appendix 1 : Study of the Modifications: Case StudyApproach

CUSTOMER CUSTOMER
llÇ].lfil IlQYfil
name name
date blrtb[0-1] ⇒ date_birtb
id: ncust id: ncust
id': name id': name

Figure Al - 59 : Making a non-key attribute mandatory on the

conceptual level

5.2.3.1.1. Logical Schema

We make date_birth mandatory in relation CUSTOMER.

5.2.3.1.2. SQL Description & Data

update CUSTOMER
set date_birth = 00/00/0000
where date_birth is null;

alter table CUSTOMER
alter date_birth not null constraint C_date_birth;

This way of implementing the modification involves no loss of data as we replace the null
values of colurnn date_ birth by a default value:

CUSTOMER
ncust name date birth
Al0l Bootsma H. 12/07/1969
D308 Ford H. 00/00/0000
B234 Peiffer M. 22/06/1917
A958 Huntington G. 31/01/1969
D365 McGaw J. 29/02/1980
B472 Hasselhoff S. 00/00/0000
C385 Casci G. 00/00/0000
A590 NutbushM. 09/06/1969
B253 Whopper J. 00/00/0000
C395 Osborn M . 28/11/1972

Figure Al - 60 : Table CUSTOMER when the nul/ values of

column date_birth are replaced by a default value

PageAl-79

Schema Modification Propagation for Relational Database Applications

We thus have the choice whether to remove or not the rows of table CUSTOMER with the
default value in column date_ birth. If we want to remove those rows, we can use the following
operation:

delete
from CUSTOMER
where date_birth = 00/00/0000

We then still have to decide what should happen to the ORDERs PLACEd by the
CUSTOMER B472. Note that the only CUSTOMER who has PLACEd ORDERs is
CUSTOMER B472. We have two choices:

A . Set PLACE_ncust to null for the ORDERs PLACEd by the CUSTOMER B472.

ORDER
nord (PLACE ncust)
E386 A958
F285 null
G274 null
F842 C395
E345 B234
G222 A958
F902 D365
E583 null
F676 Al0l
G809 null

ORDER.PLACE ncust
CUSTOMER:ncust

date
02/01/1995
12/03/1994
15/07/1993
31/12/1994
05/01/1995
23/05/1994
16/09/1994
12/01/1995
26/02/1993
23/05/1994

m

Figure A l - 61 : Table ORDER when certain PLACE_ncust

values are set to null

B. Delete also the ORDERs PLACEd by the CUSTOMER B472.

PageAJ-80

Appendix 1 : Study of the Modifications: Case StudyApproach

ORDER
nord (PLACE ncust) date
E386 A958 02/01/1995
G274 null 15/07/1993
F842 C395 31/12/1994
E345 B234 05/01/1995
G222 A958 23/05/1994
F902 D365 16/09/1994
F676 Al0l 26/02/1993
G809 null 23/05/1994

ORDER.PLACE ncust in CUSTOMER:ncust

Figure A 1 - 62 : Table ORDER when certain rows are deleted

If we have decided to delete also the ORDERs, we have finally to decide what should happen
to the LINEs which COMPOSE the ORDERs E583 and F285 . Here again we have the two
same choices:

Bl . Set COMPOSE nord to null for the LINEs associated to the ORDERs that have
been removed:

PageA J-81

Schema Modification Propagation for Relationa/ Database Applications

nline
AB1234
GH2345
RT3456
ZU4567
ER5678
NM6789
OP7890
JK0987
TZ9876
KJ8765
WQ7654
XY6543
DS5432
BV1357
102468

LINE
(COMPOSE nord) qty SPECIFY nprod

E386 1000 AAll0
null 1518 CA510
null 345 AAllO

G274 2536 BE072
null 4587 EG880

G274 5558 WN592
V

G274 5458 RK560
F842 5473 SW226
E386 623 LS906
null 4587 SG953

F902 6325 BY907
null 9658 BY907
null 5698 EG880

F842 7458 AB099
G809 4125 AB099

LINE.COMPOSE nord in ORDER.nord
LINE. SPECIFY _ nprod in PRODUCT .nprod

Figure A l - 63: Table LINEwhere certain values for column COMPOSE_nord are set to

nul/

B2. Delete also the LINEs associated to the ORDERs that have been removed:

PageA J-82

nline
AB1234
GH2345
ZU4567
ER5678
NM6789
OP7890
JK0987
TZ9876
KJ8765
WQ7654
XY6543
BV1357
102468

Appendix 1 : Study of the Modifications: Case Study Approach

LINE
(COMPOSE nord) qty SPECIFY nprod

E386 1000 AAllO
null 1518 CASIO

G274 2536 BE072
null 4587 EG880

G274 5558 WN592
G274 5458 RK560
F842 5473 SW226
E386 623 LS906
null 4587 SG953

F902 6325 BY907
null 9658 BY907

F842 7458 AB099
G809 4125 AB099

LINE.COMPOSE nord in ORDER.nord
LINE. SPECIFY _ nprod in PRODUCT. nprod

Figure A 1 - 64 : Table LINE where certain rows are deleted

5.2.3.1.3. Program Extracts

Select queries referencing the null value of column date_ birth could be modified as follows :

select ncust
from CUSTOMER
where date_birth is null

select ncust
from CUSTOMER
where date_birth = 00/00 / 0000

in case we have not dropped the data and should be dropped else.
Note that all the application programs in which such queries appear must also be reviewed. For
example, the tests on the null value of date_ birth must be changed either by testing the default
value or by simply removing them.

5.2.3.2. The attribute is a unique key

We want to make mandatory the attribute label in entity-type FACTORY.

PageAJ-83

Schema Modification Propagation for Relational Database Applications

FACTORY FACTORY
nfu.ç D.fuè
city[0-1] city[0-1]
country ⇒ country
label[0-1) label
id: nfac id: nfac
id': label id': label

Figure Al - 65: Making an attribute which is a unique key

mandatory on the conceptual level

5.2.3.2.1. Logical Schema

We make the column label in relation FACTORY mandatory.

5.2.3.2.2. SQL Description & Data

(* we cannot use here a
c o lumn label*)

delete frorn FACTORY
where label is null;

alter table FACTORY

default value because of the unique key feature o f

(* we can only alter a c o lumn on which n o
constraints apply *)

drop constraint idFAC2, (* we rernove the unique key c onstraint *)
alter label not null c onstraint F_label,
add constraint unique(label) constraint idFAC2;

All the rows which had a null value for column label in table FACTORY are lost .

5.2.3.2.3. Program Extracts

All the application programs containing queries referencing the null value of column label must
be reviewed in a similar way as in the previous case (see page Al-83).

5.2.4. Restrict domain attribute

Precondition:
The attribute whose domain should be modified must not be an identifier. This is due to SQL
RDB which allows modifications only on columns, on which no constraints (primary, unique
and foreign key) apply. In addition, the attribute cannot be of the type date.

Let us suppose we want to restrict the domain of attribute label from char(20) to char(l5) in
entity-type PRODUCT.

5.2.4.1. Logical Schema

We restrict the domain of column label in table PRODUCT from char(20) to char(l 5).

Page A J-84

Appendix 1 : Study of the Modifications: Case Study Approach

5.2.4.2. SQL Description & Data

alter table PRODUCT
drop constraint P_label,
alter label char(15) not null constraint P_label ;

Note:
Iflabel were optional, we would have to do the following operation:

alter table PRODUCT
alter label char(15) ;

SQL-RDB truncates values already stored in the database that exceed the capacity of the new
data type, but only when it retieves those values. (The values are not truncated in the database,
however, until they are updated. If you only retrieve data, therefore, you can change the data
type back to the original, and SQL again retrieves the entire original value.) [RDB91, page 7-
48]

5.2.4.3. Program Extracts

In the application programs the variables, the procedure arguments and the user interface
output fields referencing column label of PRODUCT have to be adapted accordingly. For
example:

var label: STRING[20);

exec SQL
select label

into : label
from PRODUCT
where nprod = 'SW226'

end exec;

var label: STRING[lS);

exec SQL
select label

into :label
from PRODUCT
where nprod = 'SW226'

end exec;

5.2.5. Change_ type_ char _int
This modification is similar to change _type _int_ char (see page Al-72), except that we use
function f_char_int instead of f_int_char. Function f_char_int converts a string into an integer.
Depending on the implementation offunction f_char_int, we could loose data.

PageAJ-85

Schema Modification Propagation for Relational Database Applications

5.2.6. Change_type_float_int
This modification is similar to change_type_int_char (see page Al-72), except that we use
function f_ float_int instead of f_int_ char. Function f_ float_int converts a float into an integer.
Depending on the implementation offunction f_float_int, we could loose data.

5.2. 7. Change_ type_ char_ float
This modification is similar to change_type_int_char (see page Al-72), except that we use
function f_char_float instead of f_int_char. Function f_char_float converts a string into a float.
Depending on the implementation offunction f_char_float, we could loose data.

5.2.8. Change_ type_ char_ date
This modification is sirnilar to change_type_int_char (see page Al-72), except that we use
function f_char_date instead of f_int_char. Function f_char_date converts a string into a date.
Depending on the implementation offunction f_char_date, we could loose data.

5.2.9. Change_type_int_date
This modification is similar to change_type_int_char (see page Al-72), except that we use
function f int date instead off int char. Function f int date converts an integer into a date. - - - - - -
Depending on the implementation offunction f_int_date, we could loose data.

5.2.10. Change_type_float_date
This modification is similar to change_type_int_char (see page Al-72), except that we use
function f float date instead of f int char. Function f float date converts a float into a date. - - - - - -
Depending on the implementation offunction f_float_date, we could loose data.

5.3. MODIFICATIONS WHICH PRESERVE THE
SEMANTICS

5.3.1. Rename_optional_attribute
We have to distinguish whether the optional attribute is a unique key or not. We will first treat
the case where the attribute is nota unique key.

5.3.1.1. The attribute is nota unique key

We want to rename date birth into d birth in entity-type CUSTOMER. - -

PageAJ-86

Appendix 1 : Study of the Modifications: Case Study Approach

CUSTOMER CUSTOMER
ngJ.fil llÇ1!fil

narne narne
date_birtb[0-1) ⇒ d birtb[0-1)
id : ncust id: ncust
id' : narne id': narne

Figure A l - 66 : Renaming an optiona/ attribute on the conceptua/

Level

5.3.1.1.1. Logical Schema

We rename column date birth into d birth in relation CUSTOMER.

5.3.1.1.2. SQL Description & Data

alter table CUSTOMER
add d_birth date;

update CUSTOMER
set d_birth = date_birth;

alter table CUSTOMER
drop date_ birth;

Note:
In order to avoid copying a whole column, we can create a view. But as the view name must
be unique among all view and table names in the schema, we would have to change all the
select queries referencing that table. We thus prefer the first approach though it is rather slowly
to be executed.

No data is lost as the data is copied from one column into another.

5.3.1.1.3. Program Extracts

The first SELECT query of our case study (see page 4-7) must be modified as follows :

select*
fr om CUSTOMER
where d_birth = 09 / 06 / 1969.

The JOIN query (see page 4-8) must also be changed and becomes then:

select name, n ord
fr om CUSTOMER
whe r e (ncust = PLACE_ncust) and (d_b i rth < 01 / 01 / 1977).

In fact, in every query referencing date_ birth, it must be replaced by d _ birth. Sometimes it
might be good to rename also certain labels of the user interface output fields and certain
variables accordingly.

PageA J-87

Schema Modification Propagation for Relational Database Applications

5.3.1.2. The attribute is a unique key

Let us consider the entity-type FACTORY where we want to rename attribute label into name.

FACTORY FACTORY
nfac nfac
city[0-1] city[0-1]
country ⇒ country
label[0-1] name[0-1]
id: nfac id: nfac
id':label id':name

Figure Al - 67: Renaming an optional attribute on the

conceptual /evel

5.3.1.2.1. Logical Schema

We rename label into name in relation FAC TOR Y.

5.3.1.2.2. SQL Description & Data

alter table FACTORY
add name char(20);

update FACTORY
set name = label;

alter table FACTORY
drop constraint idFAC2, (* we rernove the old unique key feature *)
drop label,
add constraint unique(name) constraint idFAC2;

Note:
In order to avoid copying a whole column, we can create a view. But as the view name must
be unique among all view and table names in the schema, we would have to change all the
select queries referencing that table. We thus prefer the first approach though it is rather slowly
to be executed.

No data is lost as the data is only copied from one column into another.

5.3.1.2.3. Program Extracts

Similar remarks as in the previous case can be formulated (see page Al-87).

5.3.2. Rename _ mandatory _ attribute

Precondition:
In order to avoid having also to rename the foreign keys, we require that the attribute which
should be renamed must not be a primary key.

PageAJ-88

Appendix 1: Study of the Modifications: Case StudyApproach

W e distinguish whether the attribute is a unique key or not.

5.3.2.1. The attribute is not a unique key

Let us suppose that we want to change label into description in PRODUCT.

PRODUCT
nl2[Qd
label

rice
id: nprod

⇒

PRODUCT
Il{2md
description
rice

id: nprod

Figure Al - 68 : Renaming a mandatory attribute on the

conceptual /evel

5.3.2.1.1. Logical Schema

We rename the column label into description in relation PRODUCT.

5.3.2.1.2. SQL Description & Data

alter table PRODUCT
add description char(20) default 'X' not null constraint P_description;

update PRODUCT
set description= label;

alter table PRODUCT
drop constraint P_label, (* we remove the mandatory feature fr om

column l abel*)
drop label;

Note:
In order to avoid copying a whole column, we can create a view. But as the view name must
be unique among all view and table names in the schema, we would have to change all the
select queries referencing that table. We thus prefer the first approach though it is rather slowly
to be executed.

No data is lost as we only copy the data from one column into another.

5.3.2.1.3. Program Extracts

In every select query referencing column label of table PRODUCT, label must be replaced by
description. Sometimes it rnight be good to rename also certain labels of the user interface
output fields and certain variables accordingly.

5.3.2.2. The attribute is a unique key

Let us suppose we want to rename the attribute name in CUSTOMER into sumame.

PageAJ-89

Schema Modification Propagation for Relational Database Applications

CUSTOMER CUSTOMER
1lÇYfil llQYfil
name surname
date birth[0-1] ⇒ date birth[0-1]
id: ncust id: ncust
id':name id':surname

Figure A 1 - 69 : Renaming a mandatory attribute on the conceptual

level

5.3.2.2.1. Logical Schema

We have to rename column name into sumame in relation CUSTO:MER.

5.3.2.2.2. SQL Description & Data

alter table CUSTOMER
add surname char(12) default 'X' not null constraint C_surname;

update CUSTOMER
set surname = name;

alter table CUSTOMER
drop constraint idCUS2,
drop constraint C_name,

drop name,

(* we rernove the old unique key feature *)
(* we rernove the rnandatory feature frorn

colurnn name *)

add constraint unique(surname) constraint idCUS2;

Note:
In order to avoid copying a whole column, we can create a view. But as the view name must
be unique among ail view and table names in the schema, we would have to change all the
select queries referencing that table. We thus prefer the first approach though it is rather slowly
to be executed.

No datais lost as the datais only copied from one column into another.

5.3.2.2.3. Program Extracts

The JOIN query (see page 4-8) must be modified as follows :

select surname, nord
frorn CUSTOMER, ORDER
where (ncust = PLACE_ncust) and (date_birth < 01/01/1977)

In fact, in every select query referencing name of table CUSTOMER, it must be replaced by
sumame. Sometimes it rnight be good to rename also certain labels of the user interface output
fields and certain variables accordingly.

PageAJ-90

Appendix 1 : Study of the Modifications: Case Study Approach

6. MODIFICATIONS OF THE
IDENTIFIER

6.1. MODIFICATIONS WHICH AUGMENT THE

SEMANTICS

6.1.1. Remove_unique_feature
Let us suppose we want to remove the uniqueness constraint from attribute name in entity-type
CUSTOMER.

CUSTOMER
oo.!fil
name
date birth[0-1]
id: ncust
id':name

⇒

CUSTOMER

oo.!fil
name
date birthr0-11
id: ncust

Figure A 1 - 70 : Removing a unique key feature on the conceptua/ /evel

6.1.1.1. Logical Schema

We remove the uniqueness constraint from column name in relation CUSTOMER.

6.1.1.2. SQL Description & Data

alter table CUSTOMER
drop constraint idCUS2;

No changes are made on the data.

6.1.1.3. Program Extracts

Certain program extracts must be changed. For example:

var cust : STRING[4];

exec SQL
select ncust

into :cust
from CUSTOMER
where name = 'Nutbush M. '

end exec;

PageAJ-91

Schema Modification Propagation for Relational Database Applications

if SQLCODE = 0
then write(cust);

var cust: STRING[4];

exec SQL
declare c cursor for

select ncust
from CUSTOMER
where name = 'Nutbush M.';

open c;
fetch c into :cust;

end exec;
while SQLCODE = 0 (* the last item bas not yet been treated *)
do begin

write(cust);
exec SQL

fetch c into :cust
end exec;

end ;
exec SQL

close c;
end exec;

As we can see in the previous program extracts, simple test conditions must be transformed
into loops.

6.2. MODIFICATIONS WHICH DECREASE THE
SEMANTICS

6.2.1. Add_unique_feature
Let us suppose we want to make attribute label a unique key of PRODUCT.

~---
PRODUCT
nmQd
label

rice
id: nprod

⇒

PRODUCT

npmd
label
price
id: nprod
id':label

Figure A l - 71 : Adding a unique key feature on the conceptual

level

6.2.1.1. Logical Schema

We have to add the unique key feature to column label in relation PRODUCT.

Page AJ-92

Appendix 1 : Study of the Modifications: Case Study Approach

6.2.1.2. SQL Description & Data

(* we add the unique key feature to colurnn label*)
alter table PRODUCT

add constraint unique (label) constraint idPR02;

In our case study example, no data would have been lost, generally however this modification
involves loss of data.

6.2.1.3. Program Extracts

Certain program extracts can be simplified. For example:

var prod : STRING[S);

exec SQL
declare c cursor for

select nprod
from PRODUCT
where label= 'christmas tree ' ;

open c;
fetch c into :prod;

end exec;
while SQLCODE = 0 (* the last item bas not yet been treated *)
do begin

write(prod);
exec SQL

fetch c into :prod
end exec ;

end;
exec SQL

close c;
end exec;

var prod : STRING[S]

exec SQL
select nprod

into :prod
from PRODUCT
where label= 'chr i stmas tree';

end exec;
if SQLCODE = 0
then write(prod) ;

As we can see in the previous program extracts, loops may be transformed into simple test
conditions.

PageAJ-93

Schema Modification Propagation for Re/ationa/ Database Applications

6.3. MODIFICATIONS WHICH PRESERVE THE
SEMANTICS

6.3.1. Switch PK_unique
This modification is used to transform a primary key into a unique key and vice versa. The user
has the choice whether to specify a unique key or not. If he does not specify any unique key,
then a technical identifier is created as primary key.

Precondition:
If a unique key is specified, then it must not be optional, as SQL-RDB does not allow optional
attributes as primary key.

The structure of the modification switch_PK_unique is represented in Figure Al-72.

switch_PK_unique

no unique key is
specified

the table on which we
execute the

modification is not
referenced by a

foreign key

the table on which we
execute the

modification is
referenced by a

foreign key

a unique key is
specified

the primary key is not
a techn ical identifier

the primary key is a
technical identifier

Figure A l - 72 : Structure of the modification switch_PK_unique

For each one of the four basic cases we will reconsider Figure Al-72 indicating in bold the
current position.

6.3.1.1. There is no unique key specified

Let us suppose we have the entity-type ADDRESS and that we want to transform the primary
key nadd into a unique key.

PageA J-94

Appendix 1 : Study of the Modifications: Case Study Approach

ADDRESS CUSTOMER
B!likl ~
Street

-0-1~0-1-
name

number date birthf0-11
zip

id: ncust
city id': name
id:nadd

JJ,

ADDRESS
nadd CUSTOMER
ID Allll ~
Street

-0-1~0-1-
name

number date birth [0-1]
zip id: ncust
city id': name
id:ID_ADD
id':nadd

Figure Al - 73: Transforming a primary key into a unique key when no

unique key is specified, on the conceptual Level

Two different cases must be considered:

• WORK is implemented by a foreign key in ADDRESS
• WORK is implemented by a foreign key in CUSTOMER

6.3.1.1.1. WORK is implemented by a foreign key in ADDRESS

switch_PK_unique

the table on which tie table on v.tlich we
we execute the

modtficaton le not
referenced by a

foreign key

6.3.1.1.1.1. Logical Schema

exew'9 f'le
modification is

referenced by a
foroignkoy

Ile primary key is not tle pM\ary key is a
a '9dinical identifier technical identifier

We transform the primary key into a unique key, create a technical identifier and promote it to
a primary key:

Page Al-95

Schema Modification Propagation for Relational Database Applications

ADDRESS
nadd
Street
number
zip
city
WORK_ncust[0-1]
id:nadd

ace
id': WORK_ncust

ref ace

ADDRESS
nadd
IDADD
Street
number
zip
City
WORK_ncust 0-1
id:ID_ADD

ace
id':nadd

ace
id': WORK_ncust

ref ace

CUSTOMER

JlQlSl
name
date_birth 0-1
id: ncust

ace
id': name

ace

CUSTOMER

JlQlSl
name
date_birth[0-1 l
id: ncust

ace
id': name

ace

Figure Al - 74: Transforming a non referenced primary keyinto a

unique key when no unique key is specified, on the logical Level

6.3.1.1.1.2. SQL Description & Data
var i: INTEGER;

exec SQL
(* we create the technical identifier colurnn *)
alter table ADDRESS

add ID_ADD smallint default O not null constraint A_ID_ADD;
(* we assign identifying values to that colurnn *)
declare c cursor for

select ID_ADD
from ADDRESS

for update of ID_ADD in ADDRESS;
open c;
fetch c;

end exec;
i:= 1;
while SQLCODE = 0
do begin

(* the last item has not yet been treated *)

exec SQL

Page Al-96

update ADDRESS
set ID_ADD = :i
where current of c;

Appendix 1 : Study of the Modifications: Case Study Approach

fetch c;
end exec;
i:= i+l;

end;
exec SQL

close c;
(* we operate the 'real switch' *)
alter table ADDRESS

drop constraint idADD1 (* we drop the old prirnary key

add
add

end exec;

constraint
constraint prirnary key(ID_ADD) constraint idADD1,
constraint unique(nadd) constraint idADD3;

No data is lost as we only manipulate identifying features and add a technical identifier.

6.3.1.1.1.3. Program Extracts

There is no impact on the application programs.

6.3.1.1.2. WORK is implemented by a foreign key in CUSTOMER

tle table en Wlic:h we the table onwhtch

modification is not
referenced by a

lorelçn k911

6.3.1.1.2.1. Logical Schema

we executa the
modification 1 •
referenoed by •

foretgn key

f'le primarykey 1s not Ile primary keyis a
a IIK:hnlcal kienlifier tec:hnlcal identifier

*) f

We transform the primary key nadd into a unique key, create a technical identifier which we
promote to a primary key and change also the foreign key referencing table ADDRESS.

PageAJ-97

Schema Modification Propagation for Relational Database Applications

ADDRESS

wul!l
street
nurnber
zip
city
id: nadd

ace

ADDRESS
nadd
ID ADD
street
nurnber
zip
ci
id:ID ADD

ace
id':nadd

ace

--

CUSTOMER
WORK_nadd(0-1]
ncust
name
date birthrü-11
id: ncust

ace
id':WORK nadd

ref ace
id' : name

ace

CUSTOMER

illllifil
name
date_ birth[0-1)
WORK ID ADD 0-1
id: ncust

ace
id': name

ace
id':WORK ID ADD

ref ace

Figure Al - 75: Transforming a referenced primary key into a

unique key when no unique key is specified, on the logical level

6.3.1.1.2.2. SQL Description & Data
var add, i, idADD : INTEGER;

exec SQL
(* we create the technical identifier co lwnr1 *)
alter table ADDRESS

add ID_ADD smallint default O not null constraint A_ID_ADD;
(* we assign identifying values to that colwnr1 *)
declare cl cursor for

select ID_ADD
from ADDRESS

for update of ID_ADD in ADDRESS;
open cl;
fetch cl;

end exec;
i:= 1 ;
while SQLCODE = 0
d o begin

(* the last item has n o t yet been treated *)

exec SQL
update ADDRESS

set ID_ADD = : i
where current of cl;

fetch cl ;
end exec;
i := i+l ;

Page AJ-98

Appendix 1 : Study of the Modifications: Case Study Approach

end;
exec SQL

close cl;
(* we replace the foreign key colurnn representing the

relationship-type WORK *)
alter table CUSTOMER

add WORK_ID_ADD srnallint,
drop constraint ADDl;

declare c2 cursor for
select WORK_nadd

frorn CUSTOMER
where WORK_nadd is not null

for update of WORK_ID_ADD;
open c2;
fetch c2 into:add

end exec;
while SQLCODE = 0 (* the last item has not yet been treated *)
do begin

exec SQL
select ID_ADD

into :idADD
frorn ADDRESS
where nadd = :add;

update CUSTOMER
set WORK_ID_ADD = :idADD
where current of c2;

fetch c2 into :add;
end exec;

end;
exec SQL

(* we operate the 'real switch' and adapt the foreign
constraints *)

alter table ADDRESS

key

drop constraint idADDl, (* we drop the old prirnary key
constraint *)

add constraint prirnary key(ID_ADD)constraint idADDl,
add constraint unique(nadd) constraint idADD2;

alter table CUSTOMER
drop constraint idCUS3,
add constraint foreign key(WORK_ID_ADD) references ADDRESS

add constraint unique(WORK_ID_ADD)
drop WORK_nadd;

constraint ADDl,
constraint idCUS3,

close c2;
end exec;

No datais lost as we only manipulate identifying features, add a technical identifier and 'copy'
the data representing relationship-type WORK from colurnn WORK nadd into column
WORK ID ADD.

6.3.1.1.2.3. Program Extracts

We have to review all the application programs referencing the foreign key representing
relationship-type WORK. For example:

• var narne: STRING[12J ;

exec SQL
select narne

into :narne
frorn CUSTOMER
where WORK_nadd = 102;

end exec;
if SQLCODE = 0
then write(narne);

PageAJ-99

Schema Modification Propagation for Re/ational Database Applications

var narne: STRING[12];

exec SQL
select narne

into :narne
from CUSTOMER
where WORK_ ID_ADD = 52;

(* Let us suppose ADDRESS has the value 52 for ID_ADD
if it had the value 102 for nadd *)

end exec;
if SQLCODE = 0
then write(narne);

• select street, city
from ADDRESS
where nadd in (select WORK_nadd

from CUSTOMER
where narne like '%Dupont%')

select street, city
from ADDRESS
where ID_ADD in (select WORK_ID_ADD

from CUSTOMER
where narne like '%Dupont%')

6.3.1.2. The unique key is specified

We have here to distinguish again two cases:

• The primary key is not a technical one
• The primary key is a technical one

For each ofthese two cases we would have to distinguish again whether the table on which we
execute the modification is referenced by a foreign key or not. As these subcases would not
bring any new ideas, we will not distinguish them.

6.3.1.2.1. The primary key is not a technical one

PageAJ-100

switch_PK_unique

tle table on 'M'lk:h M l'le table on 'M'lk:h we

modifk:atkln is not

referenced by a
lorelgn key

execu'9 Ile
modifk:ation tS

referenced by a
foretgn key

the primo,y key le
not • lechnicll

identifier

tieprinarykey isa
technical tdentil'ier

Appendix 1 : Study of the Modifications: Case Study Approach

Let us suppose we want to replace the primary key ncust of CUSTOMER by the unique key
name.

LINE

n.linS<
qty
id: n1ine

0-1

< CO+SE >
0-N

ORDER

rum1
date
id: nord

LINE

PRODUCT
npmd

1-I--..._ SPECIFY - label
price
id: nprod

CUSTOMER

Dilll
- name

date birth[0-1] 0-1~0-N

id: ncust
id':name

PRODUCT
npmd

-nlifill - 1-1---<- SPECIFY ~-·0-N label
qty

id: n1ine

1
0-1

< CO+SE >
0-N

ORDER
rum1
date
id: nord

price
id: nprod

CUSTOMER
ncust

0-1~0-N - D.iUW:
date birth[0-1]
id:name
id':ncust

Figure Al - 76: Replacing a non technica/ primary key by a unique key on the

conceptua/ /eve/

6.3.1.2.1.1. Logical Schema

We transform the primary key ncust into a unique key, make the unique key name a primary
key and change also the foreign key referencing table ORDER.

PageAJ-101

Schema Modification Propagation for Relationa/ Database Applications

CUSTOMER ORDER LINE PRODUCT

.wlll nill:d ~ nprQQ
name date qty label
date birth[0-1] PLACE ncust[o..:11 SPECIFY _ nprod price
id: ncust 1- id: nord f::} COMPOSE nordf0-1 l ri> id: nprod

ace ace id: nline ace
id':name ref:PLACE ncust ace

ace ref: SPECIFY _ nprod -ace
ace

- ref: COMPOSE nord
ace

CUSTOMER ORDER LINE PRODUCT
ncust llQffi ~ !ll2I:QQ
~ date qty label
date birthf0-11 PLACE name[0-1) SPECIFY _nprod price
id:name L id: nord r<J- COMPOSE nordf0-11 -{> id: nprod

ace ace id: nline ace
id':ncust ref:PLACE name ace

ace ace ref: SPECIFY _ nprod ~

ace
- ref: COMPOSE nord

ace

Figure A l - 77: Replacing a non technical primary key by a unique key on the /ogica/ /evel

6.3.1.2.1.2. SQL Description & Data
var cust: STRING[4];

name : STRING[12];

exec SQL
(* we replace the f oreign key co lumn representing the

relationship-type PLACE*)
alter table ORDER

add PLACE_name char(12),
drop c onstraint CUSl;

declare c cursor for
select PLACE_ncust

frorn ORDER
where PLACE_ncust is n ot null

f or update of PLACE_name;
open c;
fetch c into : cust

end exec;
while SQLCODE = 0 (* the last item has not yet been treated *)
do begin

exec SQL

Page A J-102

select name
into : name
frorn CUSTOMER
where ncust = : cust;

update ORDER

Appendix 1 : Study of the Modifications: Case Study Approach

set PLACE_name = :name
where current of c;

fetch c into :cust ;
end exec;

end;
exec SQL

(* we operate the 'real switch' and adapt the foreign key
constraints *)

alter table CUSTOMER
drop constraint idCUSl, (* we drop the old primary key

c onstraint *)
drop c onstraint idCUS2, (* we drop the o ld unique key

add
add

alter
add

c onstraint *)
constraint primary key(name) c onstraint idCUSl,
constraint unique(ncust) constraint idCUS2 ;
table ORDER
constraint foreign key(PLACE_name) references CUSTOMER

constraint CUSl,
drop PLACE_ncust;

close c;
end exec;

No data is lost as we only manipulate identifying features and 'copy' the data representing
relationship-type PLACE from column PLACE_ ncust into column PLACE_ name.

6.3.1.2.1.3. Program Extracts

The second SELECT query of our case study (see page 4-7) must be modified as follows :

select*
from CUSTOMER
where name in (select PLACE_name

from ORDER
where nord in (select COMPOSE nord

from LINE
where SPECIFY_nprod = 'AA110'))

The JOIN query (see page 4-8) becomes:

select name, nord
from CUSTOMER, ORDER
where (name = PLACE_name) and (date_birth < 01/01/1977).

In fact, every program extract referencing PLACE_ncust must be reviewed. For example, let
us suppose that the user must give the number of a CUSTOMER (ncust) in order to get his
ORDERs. As relationship-type PLACE is now represented by the foreign key PLACE_ name,
either the user has to indicate the name of the CUSTOMER or we have to insert the following
query before executing the remaining of the program:

select name
from CUSTOMER
where ncust = <the number given by the user>

PageAJ-103

Schema Modification Propagation for Relational Database Applications

6.3.1.2.2. The primary key is a technical one

switch_PK_unique

tle labte on Yftlich we lhe table on v.hich we
exewtetle

modificatioo is not
reter&need by a

fOfeign key

exeo.1'8 l'le

mcxtitication is
referenced by a

rcxeign key

lheprimarykeyisnot the primary key iaa

a ledmical identifier technic .. identifier

Let us suppose we have the entity-type ADDRESS where the primary key is a technical
identifier and nadd is a unique key. We want now to make nadd a primary key and drop the
technical identifier ID ADD.

ADDRESS
nadd CUSTOMER
m Airn ncust
street
number -
zip
city

0-1~0-l - name
date birth[0-1]
id: ncust
id': name

id:ID ADD
id':nadd

ADDRESS CUSTOMER
WlWl
street
number ~· 0-1~0-l

00.!fil

- name
date birthro-11

Zlp
city id: ncust

id' : name
id:nadd

Figure Al - 78 : Replacing a technical primary key by a unique key on the

conceptual Level

6.3.1.2.2.1. Logical Schema

ln order to simplify, we only consider the case where the relationship-type WORK has been
implemented by the foreign key in relation ADDRESS. We have to make nadd a primary key
and drop ID_ ADD.

PageAJ-104

Appendix 1 : Study of the Modifications: Case Study Approach

ADDRESS
nadd
ID ADD
street
number
zip
city
WOR.K ncust 0-1
id:ID ADD

ace
id':nadd

ace
id' : WORK ncust

ref ac -

ADDRESS

wul.d.
street
number
zip
city
WORK ncust 0-1
id: nadd

ace
id': WORK ncust

ref ace

CUSTOMER
1lQYfil

name
date birth 0-1
id: ncust

ace
id' : name

ace

CUSTOMER

Il0!fil
name
date birth 0-1
id: ncust

ace
id' : name

ace

Figure A l - 79 : Replacing a technical primary key by a unique

key on the logical level

6.3.1.2.2.2. SQL Description & Data
alter table ADDRESS

drop constraint idADDl,

drop constraint idADD2,

(* we drop the old primary key
constraint *)

(* we drop the old unique key
constraint *)

drop constraint A_ID_ADD, (* we remove t he mandato ry feature from
column ID_ADD *)

add constraint
drop ID_ADD;

primary key(nadd) constraint idADDl,

No data is lost as we do not consider the information included m colurnn ID ADD as
semantical data.

6.3.1.2.2.3. Program Extracts

There is no impact on the application programs as ID _ADD is a technical construct and is thus
not referenced by any query.

PageAl-105

Appendix 2:

Study of the Modifications:
General Approach

Appendix 2: Table of Contents

TABLE OF CONTENTS

Appendix 2 :Study of the Modifications: General
Approach

1. INTRODUCTION A2-1 ------------------------
2. STUDY OF THE MODIFICATIONS: GENERAL APPROACH A2-4

2.1. Modifications of the Entity-Types ___________________ A2-4
2.1.1. Modifications which Augment the Semantics A2-4

2.1.1.1. Add_entity-type A2-4
2.1.1.1.1 . Logical Schema A2-4
2.1.1 .1.2. SQL Description & Data A2-4
2.1.1.1.3. Program Extracts A2-5

2.1.2. Modifications which Decrease the Semantics A2-5
2.1.2.1. Remove_entity-type A2-5

2.1.2.1.1. Logical Schema A2-5
2.1.2.1.2. SQL Description & Data A2-5
2.1.2.1.3 . Program Extracts A2-6

2.1.3 . Modifications which Preserve the Semantics A2-6
2.1.3 .1. Rename_entity-type A2-6

2.1.3.1.1. Logical Schema A2-7
2.1.3 .1.2. SQL Description & Data A2-8
2.1.3 .1.3 . Program Extracts A2-10

2.2. Modifications of the relationship-types A2-11
2.2.1. Modifications which Augment the Semantics A2-ll

2.2.1.1. Add_l-1/0-l_rel-type A2-ll
2. 2 .1.1.1. Logical Schema A2-11
2.2.1.1.2. SQL Description & Data A2-12
2.2.1.1 .3. Program Extracts A2-12

2.2.1.2. Add_0-1/0-l_rel-type A2-13
2.2.1.2.1. Logical Schema A2-14
2.2.1.2.2. SQL Description & Data A2-15
2.2.1.2.3. Program Extracts A2-16

2.2.1.3. Add_ l-1/0-N_rel-type A2-16
2.2.1.3 .1. Logical Schema A2-16
2.2.1.3.2. SQL Description & Data A2-17
2.2.1.3.3. Program Extracts A2-17

2.2.1.4. Add_0-1/0-N_rel-type A2-18
2.2.1.4.1. Logical Schema A2-18
2.2.1.4.2. SQL Description & Data A2-19
2.2.1.4.3. Program Extracts A2-19

2.2.2. Modifications which Decrease the Semantics A2- l 9
2.2.2.1. Remove_l-1/0-l_rel-type A2-19

2.2.2.1.1. Logical Schema A2-20
2.2.2.1.2. SQL Description & Data A2-2 l
2.2.2.1.3. Program Extracts A2-21

2.2.2.2. Remove_0-1/0-l_rel-type A2-21
2.2.2.2.1. Logical Schema A2-22
2.2.2.2.2. SQL Description & Data A2-22
2.2.2.2.3. Program Extracts A2-23

2.2.2.3. Remove_l-1/0-N_rel-type A2-23

Schema Modification Propagation for Re/ationa/ Database Applications

2.2.2.3.1. Logical Schema _______________________ A2-23
2.2.2.3.2. SQL Description & Data A2-24
2.2.2.3 .3. Program Extracts A2-24

2.2.2.4. Remove_0-1/0-N_rel-type A2-24
2.2.2.4.1. Logical Schema A2-25
2.2.2.4.2. SQL Description & Data A2-26
2.2.2.4.3. Program Extracts A2-26

2.2.3. Modifications wlùch Preserve the Semantics A2-26
2.2.3 .1. Rename_l-1/0-l_rel-type A2-26

2.2.3.1.1. Logical Schema A2-27
2.2.3.1.2. SQL Description & Data A2-27
2.2.3.1.3. Program Extracts A2-27

2.2.3.2. Rename_0-1/0-l_rel-type A2-28
2.2.3 .2.1. Logical Schema A2-28
2.2.3.2.2. SQL Description & Data A2-29
2.2.3.2.3. Program Extracts A2-30

2.2.3.3. Rename_l-1/0-N_rel-type A2-30
2.2.3 .3.1. Logical Schema A2-31
2.2.3.3.2. SQL Description & Data A2-31
2.2.3.3.3. Program Extracts A2-31

2.2.3.4. Rename_0-1/0-N_rel-type A2-31
2.2.3.4.1. Logical Schema A2-32
2.2.3.4.2. SQL Description & Data A2-33
2.2.3 .4.3. Program Extracts A2-33

2.3. Modifications of the Roles A2-34
2.3.1. Modifications wlùch Augment the Semantics A2-34

2.3.1.1. Augment_max_card A2-34
2.3.1.1.1. Logical Schema A2-35
2.3.1.1.2. SQL Description & Data A2-35
2.3 .1.1.3 . Program Extracts A2-36

2.3.1.1.3 .1. The foreign key representing R was in El A2-36
2.3.1.1.3 .2. The foreign key representing R was in E2 A2-37

2.3 .1.2. Decrease_min_card A2-38
2.3.1.2.1. Logical Schema A2-39
2.3.1.2.2. SQL Description & Data A2-40
2.3 .1.2.3 . Program Extracts A2-40

2.3 .2. Modifications wlùch Decrease the Semantics A2-41
2.3.2.1. Decrease max card A2-4 l

2.3.2.1.1. Logical Schema A2-42
2.3.2.1.2. SQL Description & Data A2-43
2.3.2.1.3 . ProgramExtracts A2-44

2.3.2.2. Augment_min_card A2-45
2.3.2.2.1. Logical Schema A2-46
2.3.2.2.2. SQL Description & Data A2-47
2.3.2.2.3 . Program Extracts A2-49

2.4. Modifications of the Attributes A2-50
2.4.1. Modifications wlùch Augment the Semantics A2-50

2.4.1.1 . Add_optional_attribute A2-50
2.4.1.1.1. Logical Schema A2-50
2.4.1.1 .2. SQL Description & Data A2-50
2.4.1.1.3 . Program Extracts A2-50

2.4.1.2. Add_mandatory_attribute A2-51
2.4.1.2.1. Logical Schema A2-5 l
2.4.1.2.2. SQL Description & Data A2-51
2.4.1.2.3. Program Extracts A2-52

Appendix 2 : Table of Contents

2.4.1.3 . Make_attr_optional _______________________ A2-52
2.4.1.3.1. Logical Schema A2-52
2.4.1.3.2. SQL Description & Data: A2-52
2.4.1.3 .3. Program Extracts A2-52

2.4.1.4. Extend domain attribute A2-53 - -
2.4.1.4.1. Logical Schema A2-53
2.4.1.4.2. SQL Description & Data A2-53
2.4.1.4.3. Program Ex-tracts A2-54

2.4.1.5. Change_type_int_char A2-54
2.4.1.5.1. Logical Schema A2-54
2.4.1.5.2. SQL Description & Data A2-54
2.4.1.5.3 . Program Extracts A2-55

2.4.1.6. Change_type_float_char A2-56
2.4.1.7. Change_type_date_char A2-56
2.4.1.8. Change_type_date_int A2-56
2.4.1.9. Change_type_int_float A2-56
2.4.1.10. Change_type_date_float A2-56

2.4.2. Modifications which Decrease the Semantics A2-57
2.4.2.1. Remove _ optional _ attribute A2-57

2.4.2.1.1. Logical Schema A2-57
2.4.2.1.2. SQL Description & Data A2-57
2.4.2.1.3 . Program Extracts A2-58

2.4.2.2. Remove_mandatory_attribute A2-58
2.4.2.2.1. Logical Schema A2-58
2.4.2.2.2. SQL Description & Data A2-59
2.4.2.2.3. Program Extracts A2-59

2.4.2.3. Make_attr_mandatory A2-59
2.4.2.3 .1. Logical Schema A2-60
2.4.2.3 .2. SQL Description & Data A2-60
2.4.2.3.3. Program Extracts A2-61

2.4.2.4. Restrict domain attribute A2-62 - -
2.4.2.4.1. Logical Schema A2-62
2.4.2.4.2. SQL Description & Data A2-62
2.4.2.4.3. Program Extracts A2-63

2.4.2.5. Change_type_char_int A2-63
2.4.2.6. Change_type_float_int A2-63
2.4.2.7. Change_type_char_float A2-63
2.4.2.8. Change_type_char_date A2-64
2.4.2.9. Change_type_int_date A2-64
2.4.2.10. Change_type_float_date A2-64

2.4.3 . Modifications which Preserve the Semantics A2-64
2. 4. 3 .1. Rename _ optional _ attribute A2-64

2.4.3.1.1. Logical Schema A2-65
2.4.3.1.2. SQL Description & Data A2-65
2.4.3.1.3. Program Extracts A2-66

2.4.3.2. Rename_mandatory_attribute A2-66
2.4.3.2.1. Logical Schema A2-67
2.4.3.2.2. SQL Description & Data A2-67
2.4.3.2.3. Program Extracts: A2-68

2.5. Modifications of the Identifier A2-69
2.5.1. Modifications which Augment the Semantics A2-69

2.5.1.1. Remove_unique_feature A2-69
2.5 .1.1.1. Logical Schema A2-69
2.5.1.1.2. SQL Description & Data A2-69
2.5.1.1.3. Program Extracts A2-69

Schema Modification Propagation for Relational Database Applications

2.5.2. Modifications which Decrease the Semantics _________________ A2-70
2.5.2.1. Add_unique_feature A2-70

2.5.2.1.1. Logical Schema A2-71
2.5.2.1.2. SQLDescription&Data A2-71
2.5.2.1.3 . Program Extracts A2-72

2.5.3. Modifications which Preserve the Semantics A2-73
2.5.3.1. Switch_PK_unique A2-73

2.5.3.1.1 . Logical Schema A2-74
2.5.3.1.2. SQL Description & Data A2-74
2.5.3.1.3. Program Extracts A2-77

Appendix 2 : Table of Figures

TABLE OF FIGURES

Appendix 2 :Study of the Modifications: General
Approach

Figure A2 - 1 : Representation of the database evolution problem ______________ A2 1
Figure A2 - 2 : Adding an entity-type on the conceptua/ level A2 4
Figure A2 - 3 : Removing an entity-type on the conceptual level A2 5
Figure A2 - 4: Renaming an entity-type on the conceptual level A2 7
Figure A2 - 5 : Renaming an entity-type on the /ogica/ level A2 8
Figure A2 - 6: Adding a 1-1/0-1 relationship-type on the conceptual /evel A2 11
Figure A2 - 7 : Adding a 1-1/0-1 relationship-type on the /ogical Level A2 12
Figure A2 - 8 : Adding a 0-1/0-1 relationship-type on the conceptua/ /evel A2 14
Figure A2 - 9 : Adding a 0-1/0-1 relationship-type on the /ogica/ level A2 15
Figure A2 - JO: Adding a 1-110-N relationship-type on the conceptua/ /evel A2 16
Figure A2 - 11 : Adding a 1-110-N relationship-type on the logica/ /eve/ A2-17
Figure A2 - 12 : Adding a 0-110-N relationship-type on the conceptua/ Level A2-18
Figure A2 - 13 : Adding a 0-110-N relationship-type on the /ogica/ /evel A2-19
Figure A2 - 14 : Removing a 1-1/0-1 relationship-type on the conceptua/ level A2-20
Figure A2 - 15: Removing a 1-1/0-1 relationship-type on the logica/ /evel A2-20
Figure A2 - 16: Removing a 0-1/0-1 relationship-type on the conceptua/ /eve/ A2-21
Figure A2 - 17 : Removing a 0-110-1 re/ationship-type on the /ogical level A2-22
Figure A2 - 18: Removing a 1-1/0-N relationship-type on the conceptual /eve/ A2-23
Figure A2 - 19: Removing a 1-1/0-N relationship-type on the logical /evel A2-24
Figure A2 - 20 : Removing a 0-1/0-N relationship-type on the conceptual /eve/ A2-25
Figure A2 - 21 : Removing a 0-1/0-N relationship-type on the logica/ /evel A2-25
Figure A2 - 22: Renaming a 1-1/0-1 relationship-type on the conceptual leve/ A2-26
Figure A2 - 23 : Renaming a 1-1/0-1 re/ationship-type on the /ogical /eve/ A2-27
Figure A2 - 24 : Renaming a 0-1/0-1 re/ationship-type on the conceptua/ leve/ A2-28
Figure A2 - 25 : Renaming a 0-1/0-1 relationship-type on the /ogica/ level A2-29
Figure A2 - 26 : Renaming a 1-1/0-N re/ationship-type on the conceptua/ /evel A2-30
Figure A2 - 27: Renaming a 1-1/0-N re/ationship-type on the /ogica/ level A2-31
Figure A2 - 28 : Renaming a 0-1/0-N reLationship-type on the conceptual Level A2-32
Figure A2 - 29 : Renaming a 0-1/0-N relationship-type on the logical leve/ A2-32
Figure A2 - 30 : Augmenting the maximum cardina/ity of arole to Non the conceptua/ Level A2-34
Figure A2 - 31 : Augmenting the maximum cardina/ity of a rote to Non the logica/ /eveL A2-35
Figure A2 - 32 : Decreasing the minimum cardinality of arole to 0 on the conceptual /evel A2-39
Figure A2 - 33 : Decreasing the minimum cardina/ity of arole to 0 on the /ogica/ /evel A2-40
Figure A2 - 34 : Decreasing the maximum cardinality of a rote on the conceptua/ /eve/ A2-42
Figure A2 - 35 : Decreasing the maximum cardinality of a ro/e on the /ogical Level A2-42
Figure A2 - 36 : Augmenting the minimum cardinality of arole to 1 on the conceptual /evel A2-46
Figure A2 - 37 : Augmenting the minimum cardina/ity of arole to 1 on the logical level A2-47
Figure A2 - 38: Adding an optional attribute on the conceptua/ Level A2-50
Figure A2 - 39 : Adding a mandatory attribute on the conceptua/ /evel A2-51
Figure A2 - 40 : Making an attribute optional on the conceptua/ level A2-52
Figure A2 - 41 : Removing an optional attribute on the conceptua/ /evel A2-57
Figure A2 - 42 : Removing a mandatory attribute on the conceptual /evel A2-58
Figure A2 - 43 : Making an attribute mandatory on the conceptual leve/ A2-60
Figure A2 - 44 : Renaming an optional attribute on the conceptual /evel A2-65
Figure A2 - 45 : Renaming a mandatory attribute on the conceptual /evel A2-67
Figure A2 - 46 : Removing a unique key feature on the conceptual level A2-69
Figure A2 - 47 : Adding a unique key feature on the conceptua/ level A2-70
Figure A2 - 48: Switching the primary key and the unique key on the conceptual leve/ A2-74
Figure A2 - 49 : General situation used in procedure Switch A2-75

Appendix 2: Study of the Modifications: Genera/ Approach

1. INTRODUCTION
After having studied the modifications on a case study, we will analyse them in general. We
have here again to study the modifications of the conceptual level and their impacts on the
logical level, on the SQL database structure, on the data and on the application programs. This
is illustrated by Figure A2- l .

?

?

DO
?

D1

PO ?
P1

Figure A2 - 1 : Representation of the database evo/ution problem

If the conceptual schema CSO has been changed, the logical schema LSO and the SQL
description SQLO must be changed accordingly. Data DO is no longer valid and has to be
converted into data D 1. Finally, the applications PO must be partly rewritten in order to comply
with the new data structures described in SQL1 .[HAI94a]

As shown in the third chapter, the modifications are classified according to the objects on
which they apply on one hand and, on the other hand, according to their nature: augmenting,
decreasing or preserving semantics (see page 3-4).

In order not to loose the overview of this appendix, we will give once more the typology of the
modifications. We will indicate in bold those modifications which are redundant with those
detailed in chapter 5.

Modifications of the entity-types which:

augment the semantics:

decrease the semantics:

add _ entity-type

remove _ entity-type

PageA2-I

Schema Modification Propagation for Relational Database Applications

preserve the semantics: rename _ entity-type

Modifications of the relationship-types which:

augment the semantics:

decrease the semantics:

preserve the semantics:

Modifications of the raies which:

augment the semantics:

decrease the semantics:

add _ 1-1/0-1 _rel-type
add _ 0-1/0-1 _rel-type
add_l-1/0-N_rel-type
add _ 0-1/0-N _rel-type

remove _ 1-1/0-1 _rel-type
rem ove_ 0-1/0-1 _ rel-type
remove _ 1-1/0-N _rel-type
remove _ 0-1/0-N _rel-type

rename _ 1-1/0-1 _rel-type
rename _ 0-1/0-1 _rel-type
rename _ 1-1/0-N _rel-type
rename _ 0-1/0-N _rel-type

augment_max_card
decrease min card

decrease max card - -
augment_ min_ card

Modifications of the attributes which:

augment the semantics:

decrease the semantics:

Page A2-2

add _ optional_ attribute
add _ mandatory _ attribute
make _ attr _ optional
extend domain attribute
change_ type_ int _ char
change_ type_ float _ char
change_ type_ date_ char
change_ type_ date_ int
change_ type _int _ float
change_ type_ date_ float

remove _ optional_ attribute
remove _ mandatory _ attribute
make _ attr _ manda tory
restrict domain attribute - -
change_ type_ char_ int
change_ type_ float_int

preserve the semantics:

Appendix 2 : Study of the Modifications: General Approach

change_ type_ char_ float
change_ type_ char_ date
change_ type _int _ date
change_ type_ float _ date

rename _ optional _attribute
rename _ mandatory _ attribute

Modifications of the identi.fiers which:

augment the semantics:

decrease the semantics:

preserve the semantics:

rem ove_ unique_ feature

add _unique_ feature

switch_PK_unique

For each object, we thus distinguish three types of modifications: those augmenting, decreasing
and preserving the semantics. Within each of these three parts, we develop for each
modification its impact on the Logical Schema, on the SQL Description & Data and on the
Program Extracts.

PageA2-3

Schema Modification Propagation for Relational Database Applications

2. STUDY OF THE MODIFICATIONS:
GENERAL APPROACH

2.1. MODIFICATIONS OF THE ENTITY-TYPES

2.1.1. Modifications which Augment the Semantics

2.1.1.1. Add_entity-type1

Note:
Each entity-type must have at least one attribute and must have a primary key.

Let us suppose we want to add the following entity-type El :

El

.illl
al2[0-l]
alJ

⇒ al4
al5(0-l]
id: all
id':al4
id':al5

Figure A2 - 2 : Adding an entity-type on the
conceptua/ /eve/

2.1.1.1.1. Logical Schema

On the logical level, we have to add the corresponding relation.

2.1.1.1.2. SQL Description & Data

create table El
(all <type> not null c onstraint El_all,

a12 <type>,
a13 <type> not null constraint El_al3,
a14 <type> not null constraint El_a14,
a15 <type>,
primary key (all) constraint idEl #2

1Normally we would have to add here the following precondition: 'The name of the entity-type that should be
added must not yet exist.' As such preconditions are trivial, we will not indicate them anymore.

PageA2-4

Appendix 2 : Study of the Modifications: Gene rai Approach

unique (a14) constraint idEl_#,
unique (a15) constraint idEl #)

There is no effect on the existing data.

2.1.1.1.3. Program Extracts

There is no change on the existing application programs. The documentation must however be
updated. As the changes of the documentation are necessary for all the modifications, we will
not indicate them anymore in this appendix.

2.1.2. Modifications which Decrease the Semantics

2.1.2.1. Remove_entity-type

Precondition:
The entity-type that has to be removed must not be connected to any relationship-type.

Let us suppose we want to remove the entity-type E 1.

El

ill
a12[0-1]
a13
a14 ⇒
a15[0-1]
id: all
id':a14
id':a15

Figure A2 - 3 : Removing an entity-type
on the conceptua/ level

2.1.2.1.1. Logical Schema

In the logical schema we remove the relation E 1 with its columns and all their constraints.

2.1.2.1.2. SQL Description & Data

drop tabl e El cas c ade;

Note that all the data included in table El will be lost.

2 As it is difficult to indicate the proper number for each constraint, we will use the symbol #.

PageA2-5

Schema Modification Propagation for Relationa/ Database Applications

2.1.2.1.3. Program Extracts

Most of the select queries which reference table El are invalid. For example:

• select . . .
from El
where .. .

• select . . .
fr om E2
where a21 in select al3

from El
where . . .

• select .. .
from E2
where . ..

UNION
s elect . . .

from El
wh ere . . .

• s elect all, a21, a 31
from El, E2, E3
where (a22 = al2) and (a32 = 100*a22)

The way these queries are modified depends on each one individually. The application
programs in which they appear must also be reviewed. We cannot describe a general method
how to deal with these application programs as each one of them must be treated individually,
depending on their context. A CASE tool offering this modification should only indicate the
concerned pro gram extracts and give sometimes hints about the changes to be done. For
example, certain variables should be deleted and certain user interfaces should be reviewed.

2.1.3. Modifications which Preserve the Semantics

2.1.3.1. Rename_entity-type

Let us suppose we want to rename the entity-type E into El.

PageA2-6

Appendix 2 : Study of the Modifications: Genera/ Approach

E E2
.ail ill
al2[0-l) a22[0-l)
al3
al4 -

al5f0-ll
x-y~-v

a23
- a24

a25f0-ll
id: al 1 id: a21
id': al4 id': a24
id': al5 id': a25

El E2
.ail ill
al2[0-l) a22[0- l]
al3
al4 -
al5f0-ll

x-y~u-v
a23

- a24
a25f0-ll

id: al 1 id: a21
id' : al4 id' : a24
id': al5 id' : a25

Figure A2 - 4: Renaming an entity-type on the conceptua/ /eve/

2.1.3.1.1. Logical Schema

In the logical schema, we have to change the name of the corresponding -relation. Due to the
parametrical cardinalities, different cases are possible. In Figure A2-5 however (and only
there), we will only illustrate the two basic ones:

• R is represented by a foreign key in E
• R is represented by a foreign key in E2

For each of these two cases, we will only consider the situation where relationship-type R has
one 0-N role. The other cases would be similar, except that we would have to express
identifying features.

Page A2-7

Schema Modification Propagation for Relational Database Applications

E E2 E2
ill ill
al2[0-l] a22[0-l] E

fil
a22[0-l]

al3 a23 ill a23
al4 a24 al2 [0-l) a24
alS[0-1) a2sro-11 al3 a25[0-l]
R a2l[x-l] {> id: a21 al4 RalHu-11
id: al 1 ace al5 f0-ll id: a21

ace id' : a24 id: al 1 ~ ace
id': al4 ace ace id': a24

ace id' : a25 id': al4 ace
id' : al5 ace ace id' : a25

ace id': al5 ace
ref: R a21 - ace

~

ref: R al 1
ace ace

or

El E2 E2
ill fil
al2[0-l] a22[0- l] El

fil
a22[0-l]

al3 a23 ill a23
al4 a24 al2[0-l) a24
alS[0-1) a2sro-11 al3 a25[0-l]
R a2l[x-l] {> id: a21 al4 R al 1ru-ll
id: al 1 ace

ace id' : a24
al5 f0-ll id: a21
id: al 1 ~ ace

id': al4 ace ace id' : a24
ace id': a25 id': al4 ace

id' : al5 ace ace id': a25
ace id' : al5 ace

ref: R a21 - ace - ref: R al 1
ace ace

Figure A2 - 5 : Renaming an entity-type on the logical Level

2.1.3.1.2. SQL Description & Data

In some SQL languages there may be a 'rename table' command. The modification would then
become:

alter table E
rename table El on cascade;

ln SQL-RDB however, no such command exists and we have therefore to create a new table
and to copy the data into it.

exec SQL
(* we create table El*)
create table El

(all <type> not null constraint El_all,

PageA 2-8

Appendix 2 : Study of the Modifications: General Approach

end exec;

al2 <type>,
al3 <type> not null constraint El_al3,
al4 <type> not null constraint El_al4,
alS <type>,
primary key (all) constraint idE1_# 3 ,
unique (al4) constraint idEl_#,
unique (alS) constraint idEl_#)

(* we create the foreign keys in El*)
for each of the relationship-types R connected to E
do if Ris represented by a f ore ign key in E

then begin
if X = 0
then exec SQL

alter table El

end exec
else exec SQL

add R_a21 <type>;

alter table El
add R_a21 <type> default <value> not null

constraint El_R_a21;
end exec;

if V= 1
then exec SQL

alter table El
add constraint unique (R_a21) constraint idEl_#;

end exec;
exec SQL

alter table El
add constraint foreign key {R_a21) references E2

constraint E2_#;
end exec;

end;
exec SQL

(* we insert the data of E into El*)
insert into El

select*
from E

end exec;
(* we redirect to El the foreign keys referencing E *)
for each of the relationship-types R connected to E
do if Ris represented by a foreign key in E2

then exec SQL
alter table E2

drop constraint E_#; (* we remove the o ld foreign key
feature *)

add constraint foreign key (R_all) references El
constraint El_#,

end exec;

(* For each view defined on table E, we have to redefine it on El. In
future we will not consider views anymore as they do n o t correspond to ER
abjects. *)

drop table E cascade;

No data is lost as the data is just moved from one table into another.

Notes:
• This operation in SQL-RDB is often a very slow one as we have to copy a whole table.

We thus recommend to create a view E 1 which includes only the table E. This could be
realized by the following command:

3 As it is difficult to indicate the proper number for each constraint, we will use the symbol #.

PageA2-9

Schema Modification Propagation for Relational Database Applications

create view El
as select*

from E

• Other SQL languages, such as DB2, offer another possibility to implement the
modification: giving a synonym to the entity-type (that has to be renamed) instead of
renaming it properly. This alternative could be realised by the following SQL command:

create synonym El
for E

Note that in both cases the original table is however not renamed.

2.1.3.1.3. Program Extracts

• In ail the select queries referencing E, we have to rename it with E 1.
For example:

select . . .
from E
where ...

select ...
from El
where ...

• In the following example, we have to rename E not only in the 'from' clause, but also in the
'where' clause:

select .. .
from E, E2
where E .a = E2.a

select ...
from El , E2
where El . a= E2. a

• In addition to the select queries, we have also to review the application programs in which
they appear. For instance, we must rename certain variables and/or some fields or headings
in the user interfaces. Finally, let us note that the documentation should also be updated.

PageA2-JO

Appendix 2 : Study of the Modifications: General Approach

2.2. MODIFICATIONS OF THE RELATIONSHIP-TYPES

2.2.1. Modifications which Augment the Semantics

2.2.1.1. Add_l-1/0-l_rel-type

Let us suppose we want now to link entity-type E 1 to the entity-type E2 by a 1-1/0-1
relationship-type R.

El E2

ill fil
al2[0-l] a22[0-l]
al3 a23
al4 a24
a1sro-11 a2sro-11
id: al 1 id: a21
id': al4 id' : a24
id' : al5 id' : a25

-ll
El E2

ill fil
al2[0-l] a22[0-l]
al3

>-------1-1--CG--o-I-
a23

al4 a24
al5f0-ll a25rü-ll
id: all id: a21
id': al4 id': a24
id': al5 id' : a25

Figure A2 - 6: Adding a 1-1/0-1 relationship-type on the conceptua/
level

2.2.1.1.1. Logical Schema

In the logical schema we add the primary key a21 ofE2 to El as a foreign and a candidate key.

Page A2-ll

Schema Modification Propagation for Relational Database Applications

El E2
El E2 R_a21 .a2..l.

ill
al 2[0-1]
al3

ill
a22[0-l]
a23

ill a22[0-l]
al2[0-l] a23
al3 a24

al4 a24 al4 a25[0-l]
al5[0-l]
id: al 1

a2sro-11
id: a21 ⇒

al5[0-l] rD id: a21
id: al 1 ace

ace ace ace id': a24

id': al4 id': a24 id': al4 ace
ace ace ace id': a25

id' : al5 id': a25 id' : al5 ace

ace ace ace
id':R a21 -ref ace

Figure A2 - 7 : Adding a 1-1/0-1 relationship-type on the logical level

2.2.1.1.2. SQL Description & Data

alter table El
add R_a21 <type> default <value> not null constraint El_R_a21;

(* The user has to introduce the data into column R_a21 representing the
relationship-type R. He must be aware that the rows of El which have no
data specified for column R_a21 will be deleted. *)

delete from El
where R_a21 = <value>;

alter table El
add constraint unique (R_a21) constraint idEl_#,
add constraint foreign key (R_a21) references E2 constraint E2_#;

2.2.1.1.3. Program Extracts

Note:
Sometimes select queries taken out of their program environment are not sufficient to
study completely the impact on the application programs, as, for example, they do not
show the changes that must be made on the variables. We therefore consider in some
cases embedded queries.

Program extracts containing 'select *' must be modified. Let us consider the following program
extract:

var all :
a12 :
a13 :
a14:
a15 :

PageA2-12

<type>;
<type>;
<type>;
<type>;
<type>;

Appendix 2: Study of the Modifications: General Approach

exec SQL
select*
into :all, :al2, :al3, :al4, : al5
from E1
where al4 . ..

end exec

To adapt this part of program to the changes made on table El, we propose two potential
modifications:

• We explicit the 'select*':

var all:
al2:
a13:
al4 :
al5 :

exec SQL

<type>;
<type>;
<type>;
<type>;
<type>;

select all, a12, a13, a14, alS
into :all, :al2, :al3, :al4, :al5
from El
where al4 .. .

end exec

• We add a variable R_a21 corresponding to the new column R_a21:

var all :
al2:
al3 :
al4:
al5:
R_a21:

<type>;
<type>;
<type> ;
<type>;
<type>;
<type>;

exec SQL
select*
into :all, :al2, : al3 , :al4, :al5, :R_a21
from El
where al4 . . .

end exec

A similar modification is necessary if 'select *' apppears in a cursor declaration. An example
illustrating this can be found in appendix 1 (see page Al-14). Note that the operation
add_l-1/0-l_rel-type has a similar impact on the program extracts containing the 'insert into'
command. The user interfaces may also be changed: for example, an instance of E 1 may now
be displayed with the instance of E2 it is linked to.

2.2.1.2. Add_0-1/0-l_rel-type

Let us suppose we want now to link entity-type E 1 to entity-type E2 by a 0-1/0-1 relationship
type R.

Page A2-13

Schema Modification Propagation for Relational Database Applications

El E2

.ail .a2.l
al2[0-l] a22[0-l]
al3 a23
al4 a24
al5[0-l] a25[0-l]
id: al l id: a21
id': al4 id': a24
id': al5 id': a25

El E2
.ail .a2.l
al2[0-l] a22[0-l]
a13
al4 -,

al5[0-l]
0-1----CD--o-1

a23
- a24

a2sro-11
id: al l id: a21
id': al4 id': a24
id': al5 id': a25

Figure A2 - 8: Ad.ding a 0-1/0-1 relationship-type on the
conceptual Level

2.2.1.2.1. Logical Schema

There are two possible representations on the logical level for the relationship-type R:

• Ris implemented by a foreign key in El
• R is implemented by a foreign key in E2

The user can choose one of the two ways of implementing R.

In the logical schema, we add either the primary key a21 of E2 to El or the primary key al 1 of
El to E2 as an optional foreign and candidate key.

Page A2-14

Appendix 2: Study of the Modifications: General Approach

El E2

ill .a2.l
a12[0-1) a22[0-1)
a13 a23
a14 a24
a1 5[0-l) a25[0-l]
id: al 1 id: a21

ace ace
id': al4 id': a24

ace ace
id': al5 id' : a25

ace ace

El E2
R_a21[0-1) .a2l
.ail a22[0-l] El
al2[0-l] a23 .ail
al3 a24 al2[0-l]
a14 a25[0-1) a13
a15[0-1] rC> id: a21 a14
id: all ace or al5[0-l]

ace id': a24 id: al 1 ~
id': a14 ace ace

ace id': a25 id': a14
id': a15 ace ace

ace id': a15
id':R_a21 ace

~

refacc -

Figure A2 - 9: Adding a 0-1/0-1 relationship-type on the logical Level

2.2.1.2.2. SQL Description & Data

if the user wants to implement R by a foreign key in El
then exec SQL

alter table El
add R_a21 <type>,
add constraint unique (R_a21) constraint idEl_#,
add constraint foreign key (R_a21) references E2

E2

.a2.l
a22[0-l l
a23
a24
a25[0-l)
R all[0-1]
id: a21

ace
id': a24

ace
id': a25

ace
id':R_all

refacc

constraint E2_#;
end exec

else (* the user wants to implement R by a foreign key in E2 *)
exec SQL

alter table E2
add R_all <type>,
add constraint unique (R_all) constraint idE2_#,
add constraint foreign key (R_all) references El

constraint El_#;
end exec;

Note that either ail the rows of table El have a null value for column R_a21 or ail the rows of
table E2 have a null value for column R_al 1.

Page A2-15

Schema Modification Propagation for Relational Database Applications

2.2.1.2.3. Program Extracts

We are confronted with the same problem as in the case add_l-1/0-l_rel-type (see page A2-
12).

2.2.1.3. Add_l-1/0-N_rel-type

Let us suppose that we want to add a 1-1/0-N relationship-type R between entity-types El
and E2.

El E2

.ail .a21
al2[0-l] a22[0-l]
al3 a23
al4 a24
al5[0-l] a25[0-l]
id: al 1 id: a21
id': al4 id': a24
id': al5 id': a25

V,

El E2
ail .a21
al2[0-l] a22[0-l]
al3

-1-1~-N-
a23

al4 a24
al5[0-l] a25f0-l l
id: al 1 id: a21
id' : al4 id': a24
id': al5 id': a25

Figure A2 -10: Adding a 1-1/0-N relationship-type on the
conceptual Level

2.2.1.3.1. Logical Schema

We add the primary key a21 of E2 to El as a mandatory foreign key.

Page A2-16

Appendix 2: Study of the Modifications: General Approach

El E2

El E2 R_a21 .a2.l
.ail
al2[0-l]
al3
al4

ill
a22[0-l]
a23
a24

.ail a22[0-l]
al2[0-l] a23
al3 a24
al4 a25[0-l]

al5[0-l]
id: al 1

a25[0-ll
id: a21 ⇒

al5[0-l] -{> id: a21
id: al 1 ace

ace ace ace id': a24

id' : al4 id': a24 id': al4 ace
ace ace ace id' : a25

id': al5 id': a25 id': al5 ace

ace ace ace -ref:R_a21
ace

Figure A2 - 11 : Adding a 1-1/0-N relationship-type on the logical Level

2.2.1.3.2. SQL Description & Data

alter table El
add R_a21 <type> default <value> not null constraint El_R_a21;

(* The user has to introduce the data into colwnn R_a21 representing the
relationship-type R. He must be aware that the rows of El which have no
data specified for colwnn R_a21 will be deleted because o f the foreign
key constraint. *)

delete from El
where R_a21 = <value>;

alter table El
add constraint foreign key (R_a21) references E2 c onstraint E2_#;

2.2.1.3.3. Program Extracts

The modifications on the application programs are similar to those of the case
add_l-1/0-l_rel-type (see page A2-12).

Page A2-17

Schema Modification Propagation for Relational Database Applications

2.2.1.4. Add_0-1/0-N_rel-type

Let us suppose that we want this time to add a 0-1/0-N relationship-type R between the entity
types El and E2.

El E2

.a.il .a2.l
al2[0-l] a22[0-l]
al3 a23
a14 a24
al5[0-l] a25[0-l]
id: al 1 id: a21
id': al4 id': a24
id': a15 id': a25

-li,

El E2
.ail .a2.l
a12[0-l] a22[0-l]
a13

>--0-l~O-N--
a23

al4 a24
al5[0-l] a25[0-l]
id: al 1 id: a21
id': a14 id': a24
id': a15 id': a25

Figure A2 - 12: Adding a 0-110-N relationship-type on the
conceptual Level

2.2.1.4.1. Logical Schema

We add the primary key a21 of E2 to El as an optional foreign key.

Page A2-18

Appendix 2 : Study of the Modifications: General Approach

El E2

El E2 R_a21[0-1] a2l
ill
al2[0-l]
al3
al4

.a2.l
a22[0-l]
a23
a24

.all a22[0-l]
al2[0-l] a23
al3 a24
al4 a25[0-l]

al5[0-l] a25[0-l] al5[0-l] {> id: a21

id: al 1 id: a21 ⇒ id: al 1 ace

ace ace ace id' : a24

id': al4 id': a24 id' : al4 ace
ace ace ace id': a25

id': al5 id': a25 id' : al5 ace

ace ace ace -ref:R_a21
ace

Figure A2 - 13: Adding a 0-110-N relationship-type on the logical level

2.2.1.4.2. SQL Description & Data

alter table El
add R_a21 <type>,
add constraint foreign key (R_a21) references E2 constraint E2_#;

2.2.1.4.3. Program Extracts

The modifications on the application programs are similar to those of the case
add_l-1/0-l_rel-type (see page A2-12).

2.2.2. Modifications which Decrease the Semantics

2.2.2.1. Remove_l-1/0-l_rel-type

Let us suppose that we want to remove the 1-1/0-1 relationship-type R between the entity
types El and E2.

Page A2-19

Schema Modification Propagation for Relational Database Applications

El E2
.ail .a2l
al2[0-l] a22[0-l]
al3
al4 ~

al5[0-l]
1-l~0-1

a23
- a24

a25f0-l l
id: al 1 id: a21
id': al4 id': a24
id': al5 id': a25

El E2

.ail .a2l
al2[0-l] a22[0-l]
al3 a23
al4 a24
al5[0-l] a25[0-l]
id: al 1 id: a21
id': al4 id': a24
id': al5 id': a25

Figure A2 - 14: Removing a 1-1/0-1 relationship-type on the
conceptual level

2.2.2.1.1. Logical Schema

We remove column R_a21 from relation El with its candidate and foreign key features.

El E2
R_a21 .a21 El E2
.ail a22[0-l]
al2[0-l] a23
al3 a24

.ail
al2[0-l]
a13

.a2l
a22[0-l]
a23

al4 a25[0-l] a14 a24
al5[0-l] ri.? id: a21 al5[0-1] a25[0-1]
id: al 1 ace ⇒ id: al 1 id: a21

ace id': a24 ace ace
id': al4 ace id': a14 id': a24

ace id': a25 ace ace
id' : al5 ace id': al5 id': a25

ace ace ace
id':R_a21

refacc
,--

Figure A2 -15 : Removing a 1-1/0-1 relationship-type on the logical level

PageA2-20

Appendix 2 : Study of the Modifications: Gene ra/ Approach

2.2.2.1.2. SQL Description & Data

alter table El
drop constraint idEl_#,
drop constraint E2_#,
drop constraint El_R_a21,

(* we remove the unique key featur e *)
(* we remove the foreign key feature *)
(* we remove the mandatory feature of column

R_a21 *)
drop R_a2 1 ;

The data concerning the link between tables E 1 and E2 is lost.

2.2.2.1.3. Program Extracts

AH the select queries which reference R_a21 in El must be reviewed (for an example, see page
Al-23). Application programs in which select queries referencing R_a21 in El appear must
also be reviewed. We cannot describe a general method how to deal with these application
programs as each one of them must be treated individually, depending on its context. A CASE
tool offering this modification should indicate the concemed program extracts and should
sometimes give hints about the way how to change therri. The user has then to check whether
the variables are still ail needed. Finally, he must change certain user interfaces (for an example
see page Al-24).

2.2.2.2. Rem ove_ 0-1/0-1 _ rel-type

Let us suppose that we want to remove the 0-1/0-1 relationship-type R between the entity
types E 1 and E2.

El E2
ill ll2l
al 2[0-1]
al3
al4 ~

al5f0-ll
0-1~-1

a22[0-l]
a23

- a24
a25rü-l l

id: al 1 id: a21
id' : al4 id': a24
id': al5 id': a25

JJ,

E l E2

ill ill
al2[0-l] a22[0-l]
al3 a23
al4 a24
al sr0-11 a2sro-11
id: al l id: a21
id': al4 id' : a24
id' : al5 id' : a25

Figure A2 - 16 : Removing a 0-1/0-1 re/ationship-type on the
conceptua/ /eve/

PageA2-21

Schema Modification Propagation for Relational Database Applications

2.2.2.2.1. Logical Schema

Depending on the way R has been implemented, we rem ove either colurnn R _ a2 l from E 1 or
colurnn R_al 1 from E2 with its candidate and foreign key features.

El E2 E2
R_a21(0-1) .ill. ill
ill a22[0- l] El a22[0- l]
al2[0-l] a23 ill a23
al3 a24 al2[0-l] a24
al4 a25[0- l] al3 a25[0-l]
al5[0-l] "{;::, id: a21 al4 R alU0-11
id: al 1 ace or al 5[0-1] id: a2 l

ace id': a24 id: al 1 ~ ace
id': al4 ace ace id': a24

ace id' : a25 id': al4 ace
id' : al5 ace ace id': a25

ace id': al5 ace
id':R a21 ace

~
id':R_all -ref ace ref ace

El E2

ill .ill.
al2[0-l] a22[0-l]
al3 a23
al4 a24
al5[0-l] a2sro-11
id: a 11 id: a21

ace ace
id' : al4 id' : a24

ace ace
id' : al5 id': a25

ace ace

Figure A2 - 17: Removing a 0-110-1 relationship-type on the logical level

2.2.2.2.2. SQL Description & Data

if Ris implemented by a foreign key
then exec SQL

alter table El

end exec

drop constraint idEl_#,

drop constraint E2_#,

drop R_a21;

in El

(* we remove the
feature *}

(* we remove the
feature *}

else (*Ris implemented by a foreign key in E2 *}
exec SQL

alter table E2

unique key

foreign key

drop constraint idE2_#, (* we remove the unique key

Page A2-22

Appendix 2 : Study of the Modifications: General Approach

feature *)
drop constrai nt El_#,

drop R_all;

(* we rernove the foreign key
feature *)

end exec;

The link, representing R, between tables E 1 and E2 is lost.

2.2.2.2.3. Program Extracts

Application programs in which select queires referencing R _ a2 l in E 1 appear must be
reviewed in a similar way as in the modification remove_ l-1/0-l_rel-type (see page A2-21).

2.2.2.3. Remove _ 1-1/0-N _ rel-type

Let us remove the 1-1/0-N relationship-type R between El and E2.

El E2
.ail ill
al 2[0-1] a22[0-1]
a13

-1-l~O-N---
a23

a14 a24
alSf0-11 a2sro-11
id: al 1 id: a21
id' : a14 id' : a24
id' : alS id' : a25

Jj,

El E2

.ail ill
a12[0-l] a22 [0-l]
a13 a23
a14 a24
al sr0-11 a2sro-11
id: a 11 id: a21
id': al4 id': a24
id': a!S id' : a25

Figure A2 - 18 : Removing a 1-1/0-N relationship-type on the
conceptua/ /evel

2.2.2.3.1. Logical Schema

We remove the column R_a21 in El with its foreign key feature.

PageA2-23

Schema Modification Propagation for Relational Database Applications

El E2
R a21 .!!21 El E2
ill a22(0- l]
al2[0-l] a23
al3 a24

ill
al2(0-l]
al3

.a2.l
a22(0-l]
a23

al4 a25(0-l] al4 a24
a!S[0-1] -{> id: a21
id: al 1 ace ⇒

alS(0-1]
id: a 11

a2sro-11
id: a21

ace id' : a24 ace ace
id': al4 ace id': al4 id': a24

ace id': a25 ace ace
id' : al5 ace id': al5 id': a25

ace
ref:R_a21

,-- ace ace

ace

Figure A2 - 19 : Removing a 1-110-N relationship-type on the logical level

2.2.2.3.2. SQL Description & Data

alter table El
drop constraint E2_#,
drop constraint El_R_a21,

drop R_a21;

(* we remove the foreign key feature *)
(* we remove the mandatory feature from

column R_a21 *)

The data concerning the link, representing R, between the tables E 1 and E2 is lost.

2.2.2.3.3. Program Extracts

The impacts on the application programs are similar to those of the modification
remove_l-1/0-l_rel_type (see page A2-21).

2.2.2.4. Rem ove_ 0-1/0-N _rel-type

Let us remove the 0-1/0-N relationship-type R between El and E2.

PageA2-24

Appendix 2 : Study of the Modifications: General Approach

El E2
ill .a2.l
al2[0-I] a22[0-I]
al3

>--0-l~O-N---
a23

a14 a24
a1sro-11 a25fü-ll
id: al 1 id: a21
id': al4 id': a24
id': al5 id': a25

V,

El E2

.ail .a2.l
al2[0-l] a22[0-l]
al3 a23
al4 a24
al5f0-ll a25f0-I l
id: al 1 id: a2 l
id': al4 id': a24
id' : al5 id' : a25

Figure A2 - 20 : Removing a 0-110-N relationship-type on the
conceptual Level

2.2.2.4.1. Logical Schema

We remove the column R _ a21 in E 1 with its foreign key feature.

El E2
R_a21(0-l) .a2.l El
ill a22[0- l]
al2[0-l] a23
al3 a24

ill
al2[0-l]
al3

a14 a25 fü-ll al4
a15[0-l] {:> id: a21
id: al 1 ace ⇒

al 5[0- 1]
id: al 1

ace id' : a24 ace
id': al4 ace id': a14

ace id': a25 ace
id' : al5 ace id': a15

ace - ace
ref:R a21

ace

E2

ill
a22[0-l]
a23
a24
a25f0-1 l
id: a21

ace
id': a24

ace
id': a25

ace

Figure A2 - 21 : Removing a 0-1/ 0-N relationship-type on the logical Level

PageA2-25

Schema Modification Propagation for Relational Database Applications

2.2.2.4.2. SQL Description & Data

alter table El
drop constraint E2_#, (* we remove the foreign key feature *)
drop R_a21;

The data concerning the link, representing R, between the tables E 1 and E2 is lost.

2.2.2.4.3. Program Extracts

The impacts on the application programs are similar to those of the modification
remove _ 1-1/0-1 _rel_ type (see page A2-2 l) .

2.2.3. Modifications which Preserve the Semantics

2.2.3.1. Rename_l-1/0-l_rel-type

Let us suppose we want to rename into RI the relationship-type R between El and E2.

PageA2-26

El E2
ill ill
al2[0-l] a22[0-l]
al3

-1-1-----CG--o-1-
a23

al4 a24
al5[0-ll a25[0- l l
id: a 11 id: a2 l
id': al4 id': a24
id' : al5 id' : a25

Jj,

El E2
ill ill
al 2[0-1] a22[0-l]
al3

-1-1~0-1-
a23

al4 a24
a1sro-11 a25f0- l l
id: al 1 id: a2 l
id' : al4 id' : a24
id': al5 id' : a25

Figure A2 - 22 : Renaming a 1-1/0-1 re/ationship-type on the
conceptua/ /evel

Appendix 2: Study of the Modifications: Gene rai Approach

2.2.3.1.1. Logical Schema

On the logical level, we have to rename the foreign key column R _ a2 l and rename it also in
the foreign and candidate key constraints.

El E2 El E2
R a21 ill. Rl a21 ill
ill a22[0-l] ill a22[0-1]
a 12(0-1] a23 al2[0-l] a23
al3 a24 a13 a24
al4 a2sro-11 al4 a2sro-11
a15rü-ll rl> id: a2 l al5rü-l l rt> id: a21
id: a 11 ace ⇒ id: a 11 ace

ace id': a24 ace id' : a24
id' : a14 ace id' : a14 ace

ace id': a25 ace id': a25
id' : a15 ace id' : a15 ace

ace ace
id':R a21 id':Rl a21 -refacc ref ace

>--

Figure A2 - 23: Renaming a 1-1/0-1 relationship-type on the logica/ /evel

2.2.3.1.2. SQL Description & Data

alter table El
add R1_a21 <type> default <value>

update El
not null constraint E1_R1_a21;

set R1_a21 = R_a21;
alter table El

drop constraint E2_#,
drop constraint idEl_#,
drop constraint E1_R_a21,

(* we remove the old foreign key feature *)
(* we remove the old unique key feature *)
(* we remove the mandatory feature o f c o lwnn

R_a21 *)
add constraint
add constraint
drop R_a21;

unique (Rl_a21) constraint idEl_#,
foreign key (Rl_a21) references E2 constraint E2_ #,

This operation does not involve loss of data as the values of column R _ a2 l are copied into
column RI a21.

2.2.3.1.3. Program Extracts

• We have to rename R_a21 in all the select queries referencing it. For example:

- select R_a21
from El
where

PageA2-27

Schema Modification Propagation for Relational Database Applications

select R1_a21
from El
where . ..

• In addition to the select queries, we have also to review the application programs in which
they appear. For instance, we must rename certain variables and/or some fields or headings
in the user interfaces.

2.2.3.2. Rename _ 0-1/0-1 _ rel-type

Let us suppose that we want to rename into R 1 the 0-1/0-1 relationship-type R between the
entity-types El and E2 .

El
ill
al2[0-l]
al3
al4
al 5 0-1
id: al 1
id': al 4
id' : al5

El
ill
al2[0-l]
al3
al4
al5 0-1
id: al 1
id' : al4
id' : al5

0-1--cG-o-l -

0-1-----cD--o-l -

E2

ill
a22[0-l]
a23
a24 .
a2sro-11
id: a2 l
id' : a24
id' : a25

E2

ill
a22[0-l]
a23
a24
a2sro-11
id: a21
id': a24
id' : a25

Figure A2 - 24 : Renaming a 0-110-1 relationship-type on the
conceptua/ /evel

2.2.3.2.1. Logical Schema

Depending on the way R has been implemented, we rename either column R_a21 in El or
R_al 1 in E2 and in their respective candidate and foreign key constraints.

Page A2-28

Appendix 2 : Study of the Modifications: General Approach

El E2 E2
R_a21[0-1] fil ill
ill a22[0- l] El a22[0- l]
al2[0-l] a23 .ail a23
al3 a24 a12[0-1] a24
al4 a2sro-11 a13 a25[0-1]
a1sro-11 -c:, id: a2 l al4 R all[0-1]
id: al 1 ace al5[0-1) id: a21

ace id': a24 id: al 1 ~ ace
id' : a14 ace ace id': a24

ace id' : a25 id': a14 ace
id' : al5 ace ace id': a25

ace id' : a15 ace
id':R_a21

>--
ref ace

ace id':R all - ref ace

.lJ, or

El E2 E2
Rl_a21[0-1] .a2.l ill
.ail a22[0-l] El a22[0-1]
al2[0-1] a23 .ail a23
a13 a24 a12[0-1) a24
al4 a2sro-11 a13 a25[0-1]
a15f0-ll rD id: a21 a14 Rl allr0-11
id: al 1 ace al5[0-l) id: a21

ace id' : a24 id: al 1 ~ ace
id' : a14 ace ace id': a24

ace id' : a25 id': al4 ace
id': al 5 ace ace id' : a25

ace id': a15 ace
id':Rl_a21

~

refacc
ace - id':Rl_all

refacc

Figure A2 - 25 : Renaming a 0-1/0-1 re/ationship-type on the logical /evel

2.2.3.2.2. SQL Description & Data

if Ris implemented by a foreign key in El
then exec SQL

alter table El
add Rl_a21 <type> ;

update El
set Rl_a21 = R_a21;

alter table El
drop constraint E2_#, (* we remove the old foreign key

feature *)

end exec

drop constraint idEl_#, (* we remove the o ld unique key
feature *)

add constraint unique (Rl_a21) constraint idEl_#,
add constraint foreign key (Rl_a21) references E2

c onstraint E2_#,
drop R_a21;

PageA2-29

Schema Modification Propagation for Relational Database Applications

else (*Ris implemented by a foreign key in E2 *)
exec SQL

alter table E2
add Rl_all <type>;

update E2
set Rl_all = R_all;

alter table E2
drop constraint El_#, (* we remove the old foreign key

feature *)
drop constraint idE2_#, (* we remove the old unique key

feature *)
add constraint unique (Rl_all) constraint idE2_#,
add constraint foreign key (Rl_all) references El

constraint El_#,
drop R_all;

end exec;

This operation does not involve loss of data, as the values of column R_al 1 are copied into
column Rl al 1.

2.2.3.2.3. Program Extracts

The impacts on the application programs are similar to those of the modification
rename _ 1-1 /0-1 _rel-type (see page A2-2 7).

2.2.3.3. Rename _ 1-1/0-N _ rel-type

Let us rename the 1-1/0-N relationship-type R between El and E2 into Rl.

PageA2-30

El
ill
al 2[0-1]
al3
al4
a 15 0-1
id: al 1
id' : al4
id' : al5

El
ill
al2[0-l]
al3
al4
a1sro-11
id: a 11
id': al4
id': al5

1-l~O-

- 1-1-----CD---o-

E2

ll2.l
a22[0-l]
a23
a24
a25 0-1
id: a21
id': a24
id' : a25

E2

ill
a22[0-l]
a23
a24
a25 0-1
id: a21
id' : a24
id' : a25

Figure A2 - 26: Renaming a 1-110-N relationship-type on the
conceptual ievel

Appendix 2 : Study of the Modifications: Genera/ Approach

2.2.3.3.1. Logical Schema

In the logical schema, the foreign key column R _ a21 must be renamed in E 1 and in its foreign
key constraint.

E l E2 El E2
R a21 ill Rl a21 ill
ill a22[0- l] ill a22[0-l]
al2[0-l] a23
al3 a24

al2[0-l] a23
a13 a24

al4 a2sro-11 al4 a2sro-11
a1sro-11 rl> id: a21 a1sro-11 rC> id: a2 l
id: al 1 ace ⇒ id: al 1 ace

ace id' : a24 ace id' : a24
id' : al4 ace id': al4 ace

ace id' : a25 ace id' : a25
id' : al 5 ace id' : al5 ace

ace ace
ref:R a21

>--
ref:Rl a21

~

ace ace

Figure A2 - 27: Renaming a 1-1/0-N re/ationship-type on the /ogica/ Level

2.2.3.3.2. SQL Description & Data

alter table El
add Rl_a21 <type> default <value> n o t null constraint El_Rl_a21;

update El
set Rl_a21 = R_a21;

alter table El
drop constraint E2_#, (* we remove the o ld foreign key feature *)
drop constraint El_R_a21, (* we remove the mandatory feature fr om

column R_a21 *)
add constraint f o reign key (Rl_a21) references E2 c onstraint E2_#,
drop R_a21;

This operation does not involve loss of data as the values of column R _ a21 are copied into
column RI a21.

2.2.3.3.3. Program Extracts

The impacts on the program extracts are similar to those of the modification
rename_l-1/0-l_rel-type (see page A2-27).

2.2.3.4. Rename _ 0-1/0-N _rel-type

Let us rename the 0-1/0-N relationship-type R between El and E2 into RI.

Page A2-31

Schema Modification Propagation for Relational Database Applications

El
ill
al2[0-l]
al3
al4
a1sro-11
id: al 1
id': al4
id' : al5

El
ill
al2[0-l]
al3
al4
a1sro-11
id: al 1
id': al4
id': al5

- 0-1--Œ>--o-

-, 0-l~O-

E2

.a2.l
a22[0-l]
a23
a24
a25 0-1
id: a21
id': a24
id': a25

E2

.a2.l
a22[0-l]
a23
a24
a25 0-1
id: a21
id': a24
id': a25

Figure A2 - 28: Renaming a 0-110-N relationship-type on the
conceptual level

2.2.3.4.1. Logical Schema

In the logical schema, the foreign key column R _ a2 l must be renamed in E 1 and in its foreign
key constraint.

El E2 El E2

R_a21[0-1) .a2.l.
ill a22[0-l]

Rl_a21[0-1) .a2.l.
ill a22[0-l]

al2[0-l] a23 al2[0-l] a23
al3 a24 al3 a24
al4 a25[0-l] al4 a25[0-l]

al sr0-11 rl> id: a2 l al5f0-ll -{> id: a2 l
id: al 1 ace ⇒ id: al 1 ace

ace id' : a24 ace id' : a24
id' : al4 ace id' : al4 ace

ace id' : a25 ace id': a25
id' : al5 ace id' : al5 ace

ace ace
ref:R a21

,---
ref:Rl a21 -

ace ace

Figure A2 - 29: Renaming a 0-1/0-N relationship-type on the /ogica/ /evel

Page A2-32

Appendix 2 : Study of the Modifications: Gene rai Approach

2.2.3.4.2. SQL Description & Data

alter table El
add R1_a21 <type>;

update El
set R1_a21 = R_a21;

alter table El
drop constraint E2_#, (* we rernove the o ld f oreign key feature *)
add constraint foreign key (R1_a21) references E2 constraint E2_# ,
drop R_a21 ;

This operation does not involve loss of data as the values of column R a21 are copied into
column RI a21.

2.2.3.4.3. Program Extracts

The impacts on the program extracts are similar to those of the modification
rename_l-1/0-l_rel-type (see page A2-27).

PageA2-33

Schema Modification Propagation for Relational Database Applications

2.3. MODIFICATIONS OF THE ROLES

2.3.1. Modifications which Augment the Semantics

2.3.1.1. Augment_max_card

Precondition:
Given the restrictions of the relationship-types in the Kemel (see page 3-2), the only
augmentations of the maximum cardinality of a role that we accept so far are:

• 1-1/0-1 ➔ 1-1/0-N
• 0-1/0-1 ➔ 0-1/0-N

We want to augment to N the maximum cardinality of the 0-1 role of relationship-type R.

PageA2-34

El E2

ill ll2l
a12[0-1] a22[0- l]
al3

-x-l~0-1-
a23

al4 a24
al sr0-11 a25[0-l]

id: al 1 id: a21
id': al4 id': a24
id' : al5 id' : a25

JJ,

El E2

ill ll2.l
al2[0-l] a22[0-l]
a13

-x-1 ~o-;",;
a23

a14 a24
al sr0-11 a25[0-1]

id: al 1 id: a21
id' : a14 id' : a24
id' : al5 id' : a25

Figure A2 - 30 : Augmenting the maximum cardinality of a raie to Non the
conceptual level

.J

Appendix 2 : Study of the Modifications: Gene rai Approach

2.3.1.1.1. Logical Schema

We have either to rem ove the candidate key from R _ a2 l in E 1 or to replace the foreign key
R_al 1 in E2 by a (non unique) foreign key R_a21 in El.

El E2 E2

R_a21[x-1] ill El R_all[0-1]
ill a22[0-l] .ail ill
al2[0-l] a23 al 2[0-1] a22[0- I]
a13 a24 al3 a23
a14 a2sro-11 al4 a24
a1sro-11 -{> id: a21 alS[0-1] a2sro-11
id: al 1 ace id: al I ~ id: a2 l

ace id': a24 ace ace
id': a14 ace id' : a14 id': a24

ace id': a25 ace ace
id': al 5 ace id' : al 5 id': a25

ace ace ace
id':R a21

refacc
~ - id':R_all

ref ace

or

El E2 El E2

R_a21[x-1] ~
ill a22[0-l]

R_a21[0-1] ill
.ail a22[0-l]

al2[0-l] a23 al2[0-1] a23
a13 a24 al3 a24
al4 a25[0-l] al4 a25[0-l]
a1sro-11 -{> id: a21 a1sro-11 rC> id: a21
id: al 1 ace id: al 1 ace

ace id': a24 ace id': a24
id': al4 ace id': al4 ace

ace id' : a25 ace id': a25
id': al 5 ace id': al5 ace

ace ace
ref:R a21

f--

ref:R a21
f--

ace ace

Figure A2 - 31 : Augmenting the maximum cardinality of a ro/e to Non the logical
/evel

2.3.1.1.2. SQL Description & Data

var a21: <type>;
all : <type>;

if the foreign key representing Ris in El
then exec SQL

alter table El
drop constraint idEl_#;

end exec

PageA2-35

Schema Modification Propagation for Relational Database Applications

else (* the foreign key representing Ris in E2 *)
begin

exec SQL
(* we create the new foreign key colwnn *)
alter table El

add R_a21 <type>;
(* we copy the data representing the relationship-type R from

table E2 into table El*)
declare c cursor for

select a21, R_all
from E2
where R_all is not null;

open c;
fetch c into : a21, :all;

end exec;
while SQLCODE = 0 (* the last item has not yet been treated *)
do begin

exec SQL
update El

set R_a21 = :a21
where all = :all;

fetch c into :a21, :all;
end exec;

end;
exec SQL

(* we add and remove the necessary constraints *)
alter table El

add constraint foreign key (R_a21) references E2
constraint E2_#;

alter table E2
drop constraint idE2_#,
drop constraint El_#,
drop R_all;

close c;
end exec;

end;

Note that no data is lost as either no changes are applied on the data or the data is only
'copied' from relation E2 into relation E 1.

2.3.1.1.3. Program Extracts

Before considering the select queries, let us note that the user has to replace certain variables
by arrays, that he has to review certain user interfaces and that he has also to update the
documentation. In order to study the impact of the modification on the select queries, we must
distinguish whether the foreign key representing R was in El or E2.

2.3.1.1.3.1. The foreign key representing R was in El

As the foreign key R _ a2 l is not identifier of E 1 anymore, several rows can now have the same
value for column R a21. We thus have to define a cursor for 'select .. .into .. . ' queries
referencing 'R _ a2 l = ' in their 'where' clause.

var

exec SQL
select

into
from El
where R_a21 =

end exec;

PageA2-36

Appendix 2 : Study of the Modifications: General Approach

if SQLCODE = 0
then

var .. .

exec SQL

(* if such a row has been found *)

declare c cursor for
select . . .

frorn El
where R_a21 =

open c;
fetch c into

end exec;
while SQLCODE = 0

do begin

exe c SQL
fetch c into

end exec
end;

exec SQL
close c

e n d exec;

(* the last item has not yet been treated *)

2.3.1.1.3.2. The foreign key representing R was in E2

• A similar problem concerning the 'select .. .into ... ' queries occurs in this case. The select
query must here however also be modified.

var all: <type>;

exec SQL
select R_a ll

into :a11
frorn E2
where a24

end exec;
if SQLCODE = 0
then

JJ,
var all: <type>;

exec SQL

= ,

declare c cursor for
select all

frorn El
where R_ a21 in (select a21

from E2
where a24 = •••);

open c;
fetch c into :all;

end exec;
while SQLCODE = 0
do begin

(* the last item has not yet been treated *)

PageA2-37

Schema Modification Propagation for Re/ationa/ Database Applications

exec SQL
fetch c into :all;

end exec;
end;

exec SQL
cl os e c

end exec;

• As Ris now represented by a foreign key in El, the select queries referencing R_all must
be reviewed.

- select . . .
from El
where all in

select ...
from El
where R_a21 in

- select .. .
from E2
where R_all

select . . .
from E2

_lJ,

select R_all
from E2
where .. .

select a21
from E2
where ...

where a21 in (select R_a21
from El
where all ...

2.3.1.2. Decrease min card

Precondition:
Given the restrictions of the relationship-types in the Kernel (see page 3-2), the only decreases
of the minimum cardinality of a role that we accept so far are:

• 1-1/0-1 ➔ 0-1/0-1
• 1-1/0-N ➔ 0-1/0-N

We want to decrease to 0 the minimum cardinality of the 1-1 role of relationship-type R.

PageA2-38

Appendix 2 : Study of the Modifications: Genera/ Approach

El E2

ill ill
al2[0-l) a22[0- l]
al3

~1-1~0-;
a23

al4 a24
al sr0-11 a25[0-1]

id: a 11 id: a21
id' : al4 id' : a24
id': a15 id' : a25

Jj,

El E2

ill .a2l
a12[0-1] a22[0-1]
a13

f--0-1~0-·.
a23

a14 a24
a15f0-1 l a25[0-I]

id: al 1 id: a21
id': a14 id' : a24
id': al 5 id': a25

Figure A2 - 32 : Decreasing the minimum cardinality of a ro/e to O on the
conceptual /eve/

2.3.1.2.1. Logical Schema

We have to make the foreign key R _ a2 l in E 1 optional.

PageA2-39

Schema Modification Propagation for Re/ationa/ Database Applications

El E2 El E2

R a21 .a2.l R a21 .ail
ill a22[0-1] ill a22[0-1]
a12[0-1] a23 a12(0-1] a23
al3 a24 a13 a24
a14 a2sro-11 a14 a25(0-1]
alSf0-ll rC> id: a21 al s r0-11 -{> id: a21
id: a 11 ace id: a 11 ace

ace id': a24 ace id': a24
id': a14 ace id' : a14 ace

ace id' : a25 ace id' : a25
id' : alS ace id': a!S ace

ace ace
id' : R a21 ref: R a21 --ref ace ace

or

El E2 El E2

R_a21[0-l] .a2.l
ill a22(0-l]

R_a21(0-l) .a2.l
ill a22(0-l]

a12(0-1] a23 a12(0-l] a23
a13 a24 al3 a24
al4 a2sro-11 al4 a25(0-l]
al Sf0-ll rC> id: a21 a1sro-11 -{> id: a2 l
id: a 11 ace id: al 1 ace

ace id': a24 ace id': a24
id' : al4 ace id' : al4 ace

ace id' : a25 ace id' : a25
id' : a!S ace id' : a!S ace

ace ace
id' : R a21 ref: R a21 -

-
ref ace ace

Figure A 2 - 33 : Decreasing the minimum cardina/ity of a rote to O on the /ogica/
/eve/

2.3.1.2.2. SQL Description & Data

alter table El
drop c onstraint El_R_a21;

Note that no datais lost as the foreign key is only made optional.

2.3.1.2.3. Program Extracts

The result of select queries must now be tested whether they have null values or not.

var a21 : <type>;

PageA2-40

Appendix 2 : Study of the Modifications: Gene rai Approach

exec SQL
select R_ a21, . . .

into :a21, . . .
from El
where all =

end exec;
if SQLCODE = 0
then

var a21 : <type> ;

(* if such a r ow has been f ound *)

null indicator: INTEGER;

exec SQL
select R_a21, . . .

into :a21:null_indicator,
from El
where all = . . . ;

end exec;
if SQLCODE = 0 (* if such a row has been f ound *)
then if null_indicator = 0

then . ..

As we can see in the previous program extracts, tests (if - then clauses) checking the null value
of column LIVE_ ncust must sometimes be introduced. A similar change can be performed for
'select R _ a2 l' queries which occur in cursor declarations.

2.3.2. Modifications which Decrease the Semantics

2.3.2.1. Decrease max card

Precondition:
Given the restrictions of the relationship-types in the Kemel (see page 3-2), the only decreases
of the maximum cardinality of a role that we accept so far are:

• 1-1/0-N ➔ 1-1/0-1
• 0-1/0-N ➔ 0-1/0-1

We want to decrease to 1 the maximum cardinality of the 0-N role of the relationship-type R.

PageA2-41

Schema Modification Propagation for Relationa/ Database Applications

El E2

ill .i!2l.
al2(0-l] a22[0-l]
al3
al4 ~

al5rü-ll
x-1------CD----o-

a23
-· a24 ·1'

a25(0- l]

id: al 1 id: a2 l
id': al4 id': a24
id' : al5 id' : a25

El E2

ill .i!2l.
al2(0-l] a22(0-l]
al3
al4 -
al5fü-ll

x-l ------CD------0-1 a23
- a24

a25(0-l]

id: al 1 id: a2 l
id' : al4 id': a24
id': al5 id': a25

Figure A2 - 34 : Decreasing the maximum cardinality of a rote on the
conceptual level

2.3.2.1.1. Logical Schema

On the logical level, we have to add the candidate key feature to column R _ a21 in relation E 1.

El E2 El E2

R_a21 [x-1] ill.
ill a22[0-l]

R_a2l[x-l] ill.
ill a22[0- l]

al 2(0-1] a23
al3 a24

a 12[0- l] a23
al3 a24

al4 a25(0-l] al4 a2sro-11
al5f0-ll ri> id: a21 al5f0-Il rC: id: a21
id: al 1 ace ⇒ id: al I ace

ace id' : a24 ace id' : a24
id' : al 4 ace id' : al4 ace

ace id' : a25 ace id' : a25
id': al 5 ace id' : al5 ace

ace ace
ref:R a21

~

id':R_a21
~

ace ref ace

Figure A2 - 35 : Decreasing the maximum cardinality of a rote on the logical level

PageA2-42

Appendix 2: Study of the Modifications: General Approach

2.3.2.1.2.

var a21_1:
a21_2:
all :
count:

SQL Description & Data

<type>;
<type>;
<type>;
INTEGER;

procedure Delete_on_cascade(r , E);

(* Before deleting a row r in table E, we must delete the r ows rl
'referencing r' or set to null in table El the foreign key colurnn o f the
rows rl 'referencing r ' . If the rows rl are deleted, the problem must be
treated recursively . *)

begin
for each table El
do for each foreign key referencing table E

do for each of the rows rl having as foreign colurnn value the value o f
the primary key colurnn of row r

do if the user wants to avoid the loss of data
then if the foreign key colurnn (FK) is optional

then exec SQL
update El

set FK = null
end exec

else cal l Delete_on_cascade(rl, El)
else call De l ete_on_cascade(rl, El);

exec SQL (* delete r from E *)
delete

from E
where id= r.id

end exec;
end;

exec SQL
(* We have to delete all the rows except one of table El arnong those

having the sarne value for R_a21. We have however first to 'remove on
cascade' the rows of table E2 referencing the rows of El that will
be deleted. *)

declare cl cursor for
select R_a21, count(*)

from El
group by R_a21
having count(*) > 1
order by R_a21 ASC;

declare c2 cursor f o r
select R_a21, all

from El
group by R_a21, all
order by R_a21 ASC, all ASC;

open cl;
open c2;
fetch c2 into : a21_2, :all;
fetch cl into : a21_1, :count ;

end exec;
while SQLCODE = 0 (* the last item has n o t yet been treated *)
do begin

while a21 1 <> a21 2
do exec SQL

fetch c2 into :a21_2, :all
end exec;

exec SQL
fetch c2 into :a21_2, :all

end exec;
while (a21_1 = a21_2) and (SQLCODE = 0)
do begin

Page A2-43

Schema Modification Propagation for Relationa/ Database Applications

if (x = 0) and the user wants to avoid the loss of data
wherever it is possible

then exec SQL
update El

set R_a21 = null
where all = :all;

end exec
else call Delete_on_cascade(row of current of c2, El);
exec SQL

fetch c2 into : a21_2, : all;
end exec;

end;
exec SQL

fetch cl into :a21_1, :count
end exec;

end;
exec SQL

close cl;
close c2;
(* we add the unique key feature to column R_a21 *)
alter table El

add constraint unique (R_a21) constraint idEl_#;
end exec;

As each value in column R _ a2 l in relation E 1 must be unique, we necessarily loose data when
duplicate values appear in that column.

2.3.2.1.3. Program Extracts

Note:
The modifications suggested here below are not absolutely necessary. They may be
seen as optimizations.

• As R_a21 is now a unique key, for some select queries, we do not need any cursor. In
addition, certain loops (for example while-loops) should be replaced by simple if-then tests.

var

exec SQL
declare c cursor

select ...
from El
where R_a21 =

open c;
fetch c into

end exec;
while SQLCODE = 0
do begin

exec SQL

for

fetch c into ...
end exec;
end;

exec SQL
close c

end exec;

PageA2-44

var . . .

exec SQL
select

into
from El
where R_a21 =

end exec;
if SQLCODE = 0
then

Appendix 2 : Study of the Modifications: Genera/Approach

• For the same reason , most of the functions (min, max, distinct, .. .) can be dropped. For
example:

select distinct
from El
where R_a21 =

select
from El
where R_a21 =

• Note that certain user interfaces and variables must also be adapted.

2.3.2.2. Augment_ min_ card

Precondition:
Given the restrictions of the relationship-types in the Kernel (see page 3-2), the only
augmentations of the minimum cardinality of a role that we accept so far are:

• 0-1/0-1 ➔ 1-1/0-1
• 0-1/0-N ➔ 1-1/0-N

We want to augment to 1 the minimum cardinality of the 0-1 role of R played by entity-type
El.

PageA2-45

Schema Modification Propagation for Relational Database Applications

El E2

ill ill
a12[0-1] a22[0-1]
a13

>---0-l~Ü-v
a23

a14 a24
a 15 ro-11 a25[0-1]

id: al 1 id: a21
id': al4 id' : a24
id' : al5 id': a25

V.
El E2

ill .a.ll
a12[0-1] a22[0-l]
a13

-1-1~-.
a23

a14 a24
al 5f0-ll a25[0-l]

id: al 1 id: a21
id': a14 id': a24
id': a15 id': a25

Figure A2 - 36: Augmenting the minimum cardinality of a ro/e to 1 on the
conceptual level

2.3.2.2.1. Logical Schema

We either make the foreign key R_a21 in El mandatory or we replace the foreign key R_all
in E2 by a mandatory foreign key R _a2 l in E 1.

PageA2-46

Appendix 2 : Study of the Modifications: General Approach

El E2 E2 El E2

R_a21(0-1] ill
ill a22[0-1)

ill
El a22[0-l)

R_a21(0-1) ill
ill a22[0-l)

al2[0-l) a23 ill a23 al2[0-l) a23
al3 a24 al2[0-l) a24 al3 a24
al4 a2sro-11 al3 a25[0-l) al4 a25[0-l]
a1sro-11 rl> id: a21 al4 R alll0-11 al510-l l rl> id: a2 1
id : al 1 ace al5[0-l) id: a2 l id : al 1 ace

ace id': a24 or id : al 1 f-E ace ace id': a24
id': al4 ace ace id': a24 id': al4 ace

ace id': a25 id': al4 ace ace id': a25
id': al5 ace ace id': a25 id': al5 ace

ace id': al5 ace ace
id': R a21 ace id':R all ref: R a2 l

-
- -

ref ace ref ace ace

or

El E2 El E2

R a21 ill R a21 ill
ill a22[0-l] ill a22[0-l)
al2[0-l) a23 al2[0- i) a23
al3 a24 al3 a24
al4 a2510-ll al4 a25[0-l)
a!5[0-ll -c, id: a21 al5f0-l l rl> id : a2 l
id: al 1 ace id : al 1 ace

ace id': a24 ace id': a24
id': al4 ace id': al4 ace

ace id': a25 ace id': a25
id': al5 ace id': al5 ace

ace ace
id' :R a21 ref: R a21

t--

t--
ref ace ace

Figure A2 - 37 : Augmenting the minimum cardinality of a rote to 1 on the logica/ /evel

2.3.2.2.2. SQL Description & Data

var a21 : <type>;
all: <type>;

procedure Delete_on_cascade(r, E);
(* Before deleting a row r in table E, we must delete the rows rl

'referencing r' or set to null in table El the foreign key colurnn of the
rows rl 'referencing r' . If the rows rl are deleted, the problem must be
treated recursively. *)

begin
for each table El
do for each foreign key referencing table E

do for each of the rows rl having as foreign colurnn value the value of
the primary key colurnn of row r

do if the user wants to avoid the loss of data
then if the foreign key colurnn (FK) is optional

then exec SQL
update El

set FK = null
end exec

else call Delete_on_cascade(rl, El)

PageA2-47

Schema Modification Propagation for Relational Database Applications

else call Delete_on_cascade(rl, El);
exec SQL (* delete r frorn E *)

delete
frorn E
where id= r.id

end exec;
end;

if Ris irnplernented by a foreign key in El
then begin

(* we 'rernove on cascade' all the rows which are not linked to E2 *)
for each row rl of El where R_a21 is null
do call Delete_on_cascade(rl, El);
exec SQL

alter table El
alter R_a21 not null constraint El_R_a21;

end exec;
end

else (*Ris irnplernented by a foreign key in E2 *)
begin

exec SQL
(* we
alter

add

create the new foreign key column *)
table El
R_a21 <type> default <value> not null

(* we copy the data representing
E2 into table El*)

constraint El_R_a21;
relationship-type R frorn table

declare c cursor for
select a21, R_all

frorn E2
where R_all is not null;

open c;
fetch c into :a21, :all;

end exec;
while SQLCODE = 0 (* the last item has not yet been treated *)
do begin

exec SQL
update El

set R_a21 = :a21
where all = :all;

fetch c into :a21 , :all;
end exec;

end;
(* we 'rernove on cascade ' all the rows of El which are not linked

to E2 *)
for each of the rows r of table El where R_a21 = <value>
do call Delete_on_cascade(r, El) ;
exec SQL

close c;
add and rernove the necessary constraints *) (* we

alter
add
add

table El
constraint
constraint

unique (R_a21) constraint idEl_#;
foreign key (R_a21) references E2

constraint E2_#;
alter table E2

drop constraint idE2_#,

drop constraint El_#,

drop R_all ;

(* we rernove the old unique key
feature *)

(* we rernove the old foreign key
feature *)

end exec;
end;

This mocjification involves loss of data, as we drop the rows from E 1 which have a null or a
default value for column R a21 .

Page A2-48

Appendix 2 : Study of the Modifications: Gene rai Approach

2.3.2.2.3. Program Extracts

In some cases select queries referencing the foreign key representing relationship-type R must
be deleted or modified. For example:

select . . .
frorn E2
where R_all =

select .. .
frorn E2
where a21 in (select R_a21

from El
where all = •••)

It is often however not sufficient to modify or delete the select queries only. The application
programs in which they appear should also be reviewed. Certain variables can be deleted and
tests on the null value of column R _a21 can be dropped.

var a21: <type>;
null_indicator: INTEGER;

exec SQL
select R_a21, ...

into :a21:null_indicator,
frorn El
where all = .. . ;

end exec;
if SQLCODE = 0 (* if such a row has been found *)
then if null_indicator = O

then . . .

var a21: <type>;

exec SQL
select R_a21, .. .

into :a21, .. .
frorn El
where all = ... ,

end exec;
if SQLCODE = 0
then . ..

(* if such a row has been found *)

PageA2-49

Schema Modification Propagation for Relational Database Applications

2.4. MODIFICATIONS OF THE ATTRIBUTES

2.4.1. Modifications which Augment the Semantics

2.4.1.1. Add_optional_attribute

Let us suppose we want to add an optional attribute al6 to El.

El El

ill ill
a12[0-1] a12[0-1]
a13 a13
a14 a14
a15rü-1l
id: al 1

⇒ a15[0-1]
al6[0-l]

id' : a14 id: a 11
id' : a15 id': a14

id': a15

Figure A2 - 38 : A dding an optiona/ attribute on the
conceptual Level

2.4.1.1.1. Logical Schema

We add an optional column al6 to the relation El.

2.4.1.1.2. SQL Description & Data

al ter table El
add al6 <type>;

Note that all the rows of El have a null value for column al 6.

2.4.1.1.3. Program Extracts

For some select queries, we have either to add a variable corresponding to column al6 or to
change the select clause.

Page A2-50

var all : <type> ;

al5 : <type>;

exec SQL
select*

into :all, ... , : al5
from El

Appendix 2 : Study of the Modifications: General Approach

var all : <type>;

alS: <type>;
a16: <type>;

exec SQL
select *

into :all,
from El
where all

end exec

.. . ' :alS,

= . .. ,

where all =
end exec

or

:a16

var all: <type>;

alS: <type>;

exec SQL
select all, ... ,
into :all, . . . '
from El
where all = • • • I

end exec

alS
:alS

A similar remark can be formulated for 'select * from E' queries which occur in cursor
declarations. Moreover, we have to change the application programs, for instance, by assigning
an output field for al6 in the user interfaces.

2.4.1.2. Add_mandatory _attribute

Let us suppose we want to add as well a mandatory attribute al 7 to El.

El El

ill ill
a12[0-1] a12[0-l]
a13 al3
a14 a14
a15 [0-l]
al6[0-l]

⇒ al 5[0-1]
al6[0-l]

id: a l 1 a17
id' : al4 id: al 1
id': a15 id': al4

id' : al5

Figure A2 - 39 : Adding a mandatory attribute on
the conceptua/ /evel

2.4.1.2.1. Logical Schema

We add a column a 17 to the relation E 1.

2.4.1.2.2. SQL Description & Data

alter table El
add a17 <type> default <value> not null constraint El_al7;

PageA2-51

Schema Modification Propagation for Relationa/ Database Applications

In order to keep all the data of E 1, we place the default value <value> in column a 17 for each
row of the table E 1.

2.4.1.2.3. Program Extracts

Similar remarks can be formulated as for the case add_optional_attribute (see page A2-50).

2.4.1.3. Make_attr_optional

Precondition:
The attribute that should be made optional must not be a primary key.

Let us suppose that we want to make al 7 in El optional.

El El

ill ill
al2[0-l] al2[0-l]
al3 al3
al4 al4
al5[0-l]
al6[0-l]

⇒ al 5[0-1]
al6[0- l]

a17 a17[0-1]
id: al 1 id: al 1
id': al4 id': al4
id': al5 id': al5

Figure A2 - 40 : Making an attribute optional on the
conceptual level

2.4.1.3.1. Logical Schema

We make column al 7 optional in relation El.

2.4.1.3.2. SQL Description & Data:

alter table El
drop constraint El_al7;

Note that the data will not be changed as we only make the column al 7 optional.

2.4.1.3.3. Program Extracts

In certain program extracts, we have now to test whether the result of a select query is null or
not.

Page A2-52

Appendix 2 : Study of the Modifications: Gene rai Approach

var al7: <type>;

exec SQL
select al7

into : al7
from El
where all

end exec;
if SQLCODE = 0
then ...

JJ,
var al7: <type> ;

null indicator: INTEGER;

exec SQL
select al7

into :al7:null_indicator
from El
where all = ...

end exec;
if SQLCODE = 0 (* if such a row has been found *)
then if null indicator = 0

then

2.4.1.4. Extend domain attribute

Precondition:
The attribute whose domain should be modified must not be an identifier. This is due to SQL
RDB which allows modifications only on columns, on which no constraints (primary, unique
and foreign key) apply. In addition, the attribute cannot be of the type date.

Let us suppose we want to extend the domain of column a13 in entity-type El from type(x) to
type(y) where y> x.

2.4.1.4.1. Logical Schema

We extend the domain of column a13 in table El from type(x) to type(y) where y > x.

2.4.1.4.2.

if al3 is
then exec

SQL Description & Data

manda tory
SQL

alter table El
drop constraint (* we remove the mandatory

feature from column al3 *)
alter al3 type(y) not null c onstraint El_a13;

El_al3,

end exec
else (* al3 is optional *)

exec SQL
alter table El

alter al3 type(y);
end exec;

PageA2-53

Schema Modification Propagation for Relational Database Applications

No modifications are made on the data.

2.4.1.4.3. Program Extracts

In the application programs the variables, the procedure arguments and the user interface
output fields referencing colurnn a13 of table El must be adapted accordingly. For example:

var a13: TYPE[x];

exec SQL
select a13

into :a13
from El
where all =

end exec;

var a13 : TYPE[y];

exec SQL
select a13

into : a13
from El
where all =

end exec;

2.4.1.5. Change_type_int_char

Precondition:
The attribute must not be an identifier (neither a primary nor a unique key). This is due to
SQL-RDB which allows modifications only on colurnns, on which no constraints (primary,
unique and foreign key) apply.

Let us suppose that we want to change the type integer of attribute al3 to char(ll) in entity
type El.

2.4.1.5.1. Logical Schema

We have to change the type integer of colurnn a 13 to char(l 1) in relation E 1.

2.4.1.5.2. SQL Description & Data

var i : INTEGER ;
s : STRING[ll];

exec SQL
(* we create an intermediate column *)
alter table El

PageA2-54

Appendix 2: Study of the Modifications: General Approach

add a integer;
(* we copy the data of colwnn a13 into that colwnn *}
update El

set a= a13;
end exec;
if a13 is rnandatory
then exec SQL

a13 is replaced by a new one*) (* the old colwnn
alter table El

drop constraint El_a13, (* we rernove the rnandatory
feature frorn colwnn a13 *}

drop a13,
add a13 char(ll} default '0' not null constraint El_a13 ;

declare c cursor for
select a

frorn El
for update of a13 in El;

end exec
else (* a13 is optional *}

exec SQL
(* the old colwnn a13 is replaced by a new one*}
alter table El

drop a13,
add a13 char(ll};

declare c cursor for
select a

frorn El
where ais not null

for update of a13 in El;
end exec;

exec SQL
open c;
fetch c into :i;

end exec;
while SQLCODE = 0 (* the last item has not yet been treated *)
do begin

(* the datais converted and copied into the new colwnn a13 *)
s := f_int_char(i};
exec SQL

update El
set a13 = :s
where current of c;

fetch c into :i;
end exec;

end;
exec SQL

close c;
(* the interrnediate colwnn is dropped *}
alter table El

drop a;
end exec;

f_ int_ char:
This function converts an integer into a string.

No datais lost, but we have to note that the values of column a13 are converted.

2.4.1.5.3. Program Extracts

In the application programs the user interface output fields, the variables, the procedure
arguments and sometimes the constants referencing column al3 of El must be adapted
accordingly. For example:

PageA2-55

Schema Modification Propagation for Relational Database Applications

var al3: INTEGER;

exec SQL
select a13

into : al3
fr om El
where all =

end exec;

.u.
var al3 : STRING[11];

exec SQL
select al3

into :a13
from El
where all

end exec;

2.4.1.6. Change_type_float_char

This modification is similar to the previous one (see page A2-54), except that we use function
f_float_char instead off_int_char. Function f_float_char converts a float into a string.

2.4.1. 7. Change_ type_ da te_ char

This modification is similar to change_type_int_char (see page A2-54), except that we use
function f_date_char instead off_int_char. Function f_date_char converts a date into a string.

2.4.1.8. Change_type_date_int

This modification is similar to change_type_int_char (see page A2-54), except that we use
function f_date_int instead off_int_char. Function f_date_int converts a date into an integer.

2.4.1.9. Change_type_int_float

This modification is similar to change_type_int_char (see page A2-54), except that we use
function f int float instead off int char. Function f int float converts an integer into a float. - - - - - -

2.4.1.10. Change_type_date_float

This modification is similar to change_type_int_char (see page A2-54), except that we use
function f date float instead off int char. Function f date float converts a date into a float . - - - -

Page A 2-56

Appendix 2 : Study of the Modifications: General Approach

2.4.2. Modifications which Decrease the Semantics

2.4.2.1. Remove_optional_attribute

Let us suppose that we want to remove the attribute a16 from the entity-type El.

El El

ill ill
a 12[0- l] al2[0-l]
al3 al3
al4 al4
al5[0-l] or a15[0-l]
a16[0-1] a16ro-11
id: al 1 id: al 1
id': al4 id' : a14
id' : a15 id' : a15

id':a16

El
ill
a12[0-1]
a13
a14
a15rü-ll
id: al 1
id' : a14
id' : a15

Figure A2 - 41 : Removing an optional attribute on the
conceptual level

2.4.2.1.1. Logical Schema

We remove the colurnn a16 from relation El.

2.4.2.1.2. SQL Description & Data

if al6 is nota unique key
then exec SQL

alter table El
drop al6;

end exec
else (* al6 is a unique key *)

exec SQL
alter table El

drop constraint idEl_#, (* we remove the unique key
feature *)

drop al6;

PageA2-57

Schema Modification Propagation for Relational Database Applications

end exec;

Ali the data of column a16 will be lost.

2.4.2.1.3. Program Extracts

It is often not sufficient to delete or modify the select queries referencing a16. The application
programs in which they appear must also be reviewed: certain variables may be dropped and
certain user interfaces may be adapted.

2.4.2.2. Remove_mandatory _attribute

Precondition:
The attribute which should be removed must not be a primary key and must not be the last
attribute of the entity-type.

Let us imagine we want to remove attribute a13 from entity-type El.

El El

ill ill
al2[0-l] al2[0-l]
alJ alJ
al4 al4
al5f0-ll or a1sro-11
id: al 1 id: al 1
id' : al 4 id' : al4
id':al5 id' : al5

id':alJ

JJ,

El

ill
al2[0-l]
al4
al5 f0-ll
id: al 1
id' : al4
id': al5

Figure A2 - 42 : Removing a mandatory attribute on the
conceptual Level

2.4.2.2.1. Logical Schema

We remove the column a13 from relation El.

PageA2-58

Appendix 2: Study of the Modifications: Genera/Approach

2.4.2.2.2. SQL Description & Data

if a13 is nota unique key
then exec SQL

alter table El
drop constraint El_a13,

drop a13;
end exec;

else (* a13 is a unique key *)
exec SQL

alter table El
drop constraint idEl_#,

drop constraint El_a13,

drop a13;

AU the data of column a13 will be lost:

2.4.2.2.3. Program Extracts

(* we rernove the rnandatory
feature frorn colurnn a13 *)

(* we rernove the unique key
feature *)

(* we rernove the rnandatory
feature frorn colurnn a13 *)

The remarks concerning the program extracts are similar to those of the modification
rem ove_ optional _ attribute (see page A2-5 8).

2.4.2.3. Make_attr_mandatory

We have to distinguish whether the attribute which we want to make mandatory is a unique
key or not. Let us suppose we want to make attribute al2 in entity-type El mandatory.

PageA2-59

Schema Modification Propagation for Relational Database Applications

El
El ill

ill a12[0-1]
a12[0-1] al3
al3 al4
al4 al5f0-ll
a1sro-11 id: al 1
id: al 1 id': al4
id': al4 id': al5
id': al 5 id': al2

or

El
El ill

ill a12
a12 al3
al3 al4
al4 al5f0-ll
al sro-11 id: al 1
id: al 1 id': al4
id': al4 id': al5
id': al5 id': al2

Figure A2 - 43 : Making an attribute mandatory on the
conceptual level

2.4.2.3.1. Logical Schema

We make the column a12 in relation El mandatory.

2.4.2.3.2. SQL Description & Data

procedure Delete_on_cascade(r, E) ;

(* Before deleting a row r in table E, we must delete the rows rl
'referencing r' or set to null in table El the foreign key column of the
rows rl 'referencing r'. If the rows rl are deleted, the problem must be
treated recursively . *)

begin
for each table El
do for each foreign key referencing table E

do for each of the rows rl having as foreign column value the value of
the primary key column of row r

do if the user wants to avoid the loss of data
then if the foreign key column (FK) is optional

then exec SQL
update El

set FK = null
end exec

else call Delete_on_cascade(rl, El)
else cal l Delete_on_cascade (rl, El);

exec SQL (* delete r from E *)

PageA2-60

delete
from E

Appendix 2: Study of the Modifications: General Approach

where id= r . id
end exec;

end;

if al2 is n ota unique key
then begin

else

if the user wants t o a vo id the l o s s o f data whe r e ver it i s p o s s i b le
then exec SQL

update El

end exec

set al 2 = <value>
where al 2 i s null

e lse f o r all the rows r o f El having a null value f o r co lumn al2
d o call Delete_on_cascade(r , El);

exec SQL
alter table El

alter a12 no t null constraint El_al2;
exec ; end

end
begin

(* we canno t use here a default value because o f the unique key
feature of column al2 *)

for all the r ows r of El having a null value f o r c olumn al2
do call Delete_on_cascade(r , El) ;
exec SQL

alter table El (* we can only
constraints

modify a co lumn on which n o
apply *}

drop constrai nt idEl_#, (* we remove the o ld unique
feature *}

alter al2 n o t null c onstraint El_al2,
add constraint unique (al2} constraint idEl_#;

end exec;
end;

key

It depends on the choice of the user and on the uniqueness feature of the column al2 whether
we loose data or not.

2.4.2.3.3. Program Extracts

Select queries testing the null value of the attribute that has to be made mandatory must be
modified or deleted depending on the case.

selec t
from El
whe r e a1 2 is null

select ...

from El
where al 2 = <value>

or

(* The user did not want to loose data
and al2 is nota unique key *)

(* The user accepted to loose data or
a12 is a unique key *)

It is often not sufficient to change or delete the select queries only, we must also review the
program extracts in which they appear. For example: in certain cases we do not need the null

Page A2-61

Schema Modification Propagation for Re/ational Database Applications

indicator anymore and certain tests, checking the null value of column a 12, must either be
changed or dropped.

var al2: <type>;

null_indicator: INTEGER;

exec SQL
select al2

into :a12:null_indicator,
from El
where all = ...

end exec;
if SQLCODE = O (* if such a row has been found *)
then if null_indicator = 0

then

var al2: <type>;

exec SQL
select al2

-into :al2,
from El
where all =

end exec;
if SQLCODE = 0
then ...

(* if such a row has been found *)

2.4.2.4. Restrict domain attribute

Precondition:
The attribute whose domain should be modified must not be an identifier. This is due to SQL
RDB which allows modifications only on columns, on which no constraints (primary, unique
and foreign key) apply. In addition, the attribute cannot be of the type date.

Let us suppose we want to restrict the demain of attribute a13 in entity-type El from type(x)
to type(y) where y <x.

2.4.2.4.1. Logical Schema

We restrict the domain of column al3 in table El from type(x) to type(y) where y< x.

2.4.2.4.2.

if al3 is
then exec

SQL Description & Data

manda tory
SQL

alter table El
drop constraint (* we remove the mandatory

feature from column al3 *)
alter al3 type(y} not null constraint El_al3;

El_a13,

end exec
else (* al3 is optional *)

exec SQL

PageA2-62

alter table El
alter al3 type(y);

Appendix 2: Study of the Modifications: Gene rai Approach

end exec;

SQL-RDB truncates values already stored in the database that exceed the capacity of the new
data type, but only when it retieves those values. (The values are not truncated in the database,
however, until they are updated. If you only retrieve data, therefore, you can change the data
type back to the original, and SQL again retrieves the entire original value.)[RDB91, page 7-
48]

2.4.2.4.3. Program Extracts

In the application programs the variables, the procedure arguments and the user interface
output fields referencing column a13 of El have to be adapted accordingly. For example:

var al3: TYPE[x] ;

exec SQL
select al3

into :al3
from El
where all =

end exec;

var al3: TYPE[y];

exec SQL
select al3

into :al3
from El
where all =

end exec;

2.4.2.5. Change_ type_ char_ int

This modification is similar to change_type_int_char (see page A2-54), except that we use
function f _ char _int instead off _int_ char. Function f _ char _int converts a string into an integer.
Depending on the implementation offunction f_char_int, we could loose data.

2.4.2.6. Change_type_float_int

This modification is similar to change_type_int_char (see page A2-54), except that we use
function f_ float_int instead off _int_ char. Function f_ float_int converts a float into an integer.
Depending on the implementation offunction f_float_int, we could loose data.

2.4.2.7. Change_type_char_float

This modification is similar to change_type_int_char (see page A2-54), except that we use
function f_char_float instead of f_int_char. Function f_char_float converts a string into a float.
Depending on the implementation offunction f_char_float, we could loose data.

PageA2-63

Schema Modification Propagation for Relationa/ Database Applications

2.4.2.8. Change_ type_ char_ date

This modification is similar to change_type_int_char (see page A2-54), except that we use
function f_char_date instead of f_int_char. Function f_char_date converts a string into a date.
Depending on the implementation offunction f_char_date, we could loose data.

2.4.2.9. Change_type_int_date

This modification is similar to change_type_int_char (see page A2-54), except that we use
function f_int_date instead of f_int_char. Function f_int_date converts an integer into a date.
Depending on the implementation offunction f_int_date, we could loose data.

2.4.2.10. Change_type_float_date

This modification is similar to change_type_int_char (see page A2-54), except that we use
function f float date instead off int char. Function f float date converts a float into a date. - - - - - -
Depending on the implementation offunction f_float_date, we could loose data.

2.4.3. Modifications which Preserve the Semantics

2.4.3.1. Rename_optional_attribute

Let us rename a12 into a16 in entity-type El. We have to distinguish whether the optional
attribute is a unique key or not.

PageA2-64

Appendix 2 : Study of the Modifications: Genera/ Approach

El
El ill

ill a12[0-1)
a12(0-1] a13
al3 al4
al4 alSf0-11
al5f0-ll id: al 1
id: al 1 id': al4
id': al4 id': alS
id' : al 5 id':a12

or

El
El ill

ill a16(0-1)
a16[0-1] al3
al3 al4
al4 alSf0-11
a1sro-11 id: al 1
id: al 1 id': al4
id': al4 id': al5
id': alS id':a16

Figure A2 - 44 : Renaming an optional attribute on the
conceptua/ /eve/

2.4.3.1.1. Logical Schema

W e rename a 12 into a 16 in relation E 1.

2.4.3.1.2. SQL Description & Data

exec SQL
alter table El

add al6 <type>;
update El

set al6 = al2;
end exec;
if al2 is nota unique key
then exec SQL

alter table El
drop al2;

end exec
else (* al2 is a unique key *)

exec SQL
alter table El

drop constraint idEl_#, (* we remove the unique key
feature *)

drop al2,
add constraint unique(al6) constraint idEl_#;

end exec;

PageA2-65

Schema Modification Propagation for Relational Database Applications

Note:
In order to avoid copying a whole column, we can create a view. But as the view name must
be unique among all view and table names in the schema, we would have to change all the
select queries referencing that table. We thus prefer the first approach though it is rather slowly
to be executed.

No data is lost as we only copy the data from one column into another.

2.4.3.1.3. Program Extracts

• In fact, in every query referencing al2, it must be replaced by al 6.

select .. .
from El
where a12

select
from El
where a16

• Sometimes it might be good to rename also certain labels of the user interface output fields
and certain variables accordingly.

var a12: <type>;

exec SQL
select a12

into :a12
from El
where all =

end exec

var a16: <type>;

exec SQL
select a16

into :a16
from El
where all

end exec

2.4.3.2. Rename_mandatory _attribute

Precondition:
In order to avoid having also to rename the foreign keys, the attribute which should be
renamed must not be a primary key.

PageA2-66

Appendix 2 : Study of the Modifications: General Approach

Let us rename a13 into al 7 in entity-type El. We distinguish whether the attribute is a unique
key or not.

El
El ill

ill al2[0-l]
al2[0-l] a13
a13 al4
al4 alSfü-11
al5f0-ll id: al 1
id: al 1 id': al4
id' : al4 id': al5
id': al5 id':a13

or

El
El ill

ill al2[0-l]
al2[0-l] a17
a17 a14
a14 al sro-11
a15f0-ll id: al 1
id: al 1 id': al4
id': al4 id': a15
id': a15 id':a17

Figure A2 - 45 : Renaming a mandatory attribute on the
con.ceptual Level

2.4.3.2.1. Logical Schema

We rename the column a 13 into a 17 in relation E 1.

2.4.3.2.2. SQL Description & Data

exec SQL
alter table El

add al7 <type> default <value> not null constraint El_al7;
update El

set al7 = al3;
end exec;
if al3 is nota unique key
then exec SQL

alter table El
drop constra i nt El_al3,

drop al3 ;
end exec

else (* al3 is a unique key *)
exec SQL

alter table El
drop constra i nt idEl_#,

(* we remove the mandatory
feature from co lumn al3 *)

(* we remove the o ld unique key
feature *)

PageA2-67

Schema Modification Propagation for Relational Database Applications

drop constraint El_al3,

drop a13,

(* we remove the mandatory
feature from column a13 *)

add constraint unique(a17) constraint idEl_#;
end exec;

Note:
In order to avoid copying a whole column, we can create a view. But as the view name must
be unique among ail view and table names in the schema, we would have to change ail the
select queries referencing that table. We thus prefer the first approach though it is rather slowly
to be executed.

No datais lost as we only copy the data from one column into another.

2.4.3.2.3. Program Extracts:

Similar remarks can be formulated as for the case rename_optional_attribute (see page A2-66).

PageA2-68

Appendix 2 : Study of the Modifications: Gene ra/ Approach

2.5. MODIFICATIONS OF THE IDENTIFIER

2.5.1. Modifications which Augment the Semantics

2.5.1.1. Remove_unique_feature

Let us suppose we want to remove the uniqueness constraint from a13 in entity-type El.

El El

ill ill
al2[0-l] al2[0-l]
a13[x-l] al3[x-l]
al4 al4
a1sro-11 ⇒ al s ro-11
id: al l id: al 1
id' : a14 id' : al4
id' : a15 id' : al5
id':a13

Figure A2 - 46 : Removing a unique key feature on
the conceptua/ /eve/

2.5.1.1.1. Logical Schema

We rem ove the uniqueness constraint from a 13 in relation E 1.

2.5.1.1.2. SQL Description & Data

alter table El
drop constraint idEl_#;

No changes are made on the data.

2.5.1.1.3. Program Extracts

As a13 has lost its uniqueness feature, in some cases, we have to define a cursor.

var all: <type>

exec SQL
select all

into :a11
from El
where a13 =

end exec;
if SQLCODE = 0

PageA2-69

Schema Modification Propagation for Relational Database Applications

then

var all: <type>;

e xec SQL
declare c cursor for

select all
frorn El
where a13 = ... ;

open c;
fetch c into : all;

end exec;
while SQLCODE = 0 (* the last item has not yet been treated *)
do begin

exec SQL
fetch c into :all

end exec;
end;

exec SQL
close c;

end exec;

As we can see in the previous program extracts, simple test conditions must be transformed
into loops. Note that certain user interfaces must also be adapted - for example by inserting list
boxes.

2.5.2. Modifications which Decrease the Semantics

2.5.2.1. Add_unique_feature

Let us suppose we want to make a13 a unique key of El.

El El

ill ill
al2[0-l] al2[0-l]
a13[x-l] a13[x-l]
al4 al4
al5fü-ll ⇒ al Sfû-11
id: all id: al l
id' : al4 id': al4
id' : al5 id': al5

id':a13

Figure A2 - 47 : Adding a unique key feature on the
conceptua/ /evel

Page A 2-70

Appendix 2 : Study of the Modifications: Gene rai Approach

2.5.2.1.1. Logical Schema

We have to add the unique key feature to column a 13 in relation E 1.

2.5.2.1.2. SQL Description & Data

var a13_1 : <type>;
a13_2 : <type>;
all : <type>;
count : INTEGER;

procedure Delete_on_cascade(r, E) ;

(* Before deleting a row r in table E, we must delete the r ows rl
'referencing r' or set to null in table El the foreign key column o f the
rows rl 'referencing r'. If the rows rl are deleted, the problem must be
treated recursively . *)

begin
for each table El
do for each foreign key referencing table E

do for each of the rows rl having as foreign column value the value of
the primary key column of row r

do if the user want s to avoid the loss of data
then if the foreign key column (FK) is optional

then exec SQL
update El

set FK = null
end exec

else call Delete_on_cascade(rl, El)
else call Delete_on_cascade(rl, El);

exec SQL (* delete r from E *)
delete

from E
where id= r.id

end exec;
end;

(* We have to delete or to set to null all the rows except one o f
among those having the same value for a13 . In case we want
those rows, we must first 'remove on cascade' the rows
referencing these rows. *)

if x = 1 (* a13 is mandatory *)
then exec SQL

declare cl cursor for
select a13, count(*)

from El
group by a13
having count(*) > 1
order by a13 ASC ;

end exec
else (* a13 is optional *)

exec SQL
declare cl cursor for

select a13, count(*)
from El
where a13 is not null
group by a13
having count(*) > 1
order by a13 ASC ;

end exec;
exec SQL

declare c2 cursor for
select a13, all

from El

table El
to delete

o f tables

PageA2-71

Schema Modification Propagation for Relational Database Applications

group by al3, all
order by al3 ASC, all ASC;

open cl;
open c2;
fetch c2 into :a13_2, :all;
fetch cl into : al3_1, : count;

end exec;
while SQLCODE = 0 (* the last item has not yet been treated *)
do begin

while al3 1 <> al3 2
do exec SQL

fetch c2 into :al3_2, :all;
end exec;

exec SQL
fetch c2 into : al3_2, : all;

end exec;
while (al3_1 = al3_2) and (SQLCODE = 0)
do begin

if (x = 0) and the user wants to avoid the loss of data
wherever it is possible

then exec SQL
update El

set al3 = null
where all = : all;

end exec
else call Delete_on_cascade(row of current of c2, El);
exec SQL

fetch c2 into :al3_2, :all;
end exec;

end;
exec SQL

fetch cl into : al3_1, : count;
end exec;

end;
exec SQL

close cl;
close c2;
(* we add the unique key feature to column al3 *)
alter table El

add constraint unique (al3) constraint idEl_#;
end exec

We loose either data in column al3 only (if we set certain values of column al3 to null), or
even whole rows where duplicate values for column al3 in relation El appear. In addition, if
there are tables referencing the deleted rows in table E 1, there could be even more loss of data.

2.5.2.1.3. Program Extracts

• As a13 becomes a unique key, in some cases, we do not need cursors anymore. As we can
see in the following program extracts, loops may be transformed into simple test
conditions.

var all : <type>;

exec SQL
declare c cursor for

select all
from El
where al3 = ... ;

open c;
fetch c into :all;

end exec;
while SQLCODE = O (* the last item has not yet been treated *)
do begin

PageA2-72

exec SQL
fetch c into :all

end exec ;
end;

exec SQL
close c;

end exec;

var all : <type>

exec SQL
select all

into :all
from El
where al3 =

end exec;
if SQLCODE = 0
then

Appendix 2 : Study of the Modifications: Gene rai Approach

• For the same reason, most of the functions (min, max, distinct, ...) can be dropped.

select distinct . ..
from El
where al3 = . . .

select
from El
where al3 =

• Note that certain user interfaces should also be adapted - for example by replacing list boxes
with simple display fields.

2.5.3. Modifications which Preserve the Semantics

2.5.3.1. Switch_PK_unique

We want to transform the existing primary key into a unique key in entity-type El and vice
versa. The user has the choice whether to specify a unique key or not. If he does not specify
any unique key, then a technical identifier is created as primary key.

Precondition:
If a unique key is specified then it must not be optional as SQL-RDB does not allow optional
attributes as primary key.

PageA2-73

Schema Modification Propagation for Relational Database Applications

El

El El llUl
.ill.l
al2[0-l)
al3

.ill.l
al2[0-l]
al3

all
al2[0-1]
a13

al4 a14 a14

a1sro-11 a1sro-11 a1sro-11

id: all id:all id: ID El

id' : al4 id':a14 id':all

id': alS id': a!S id':a14
id': a15

or or

El El El

llUl all all
all a12[0-1] a12[0-l]
a12[0-l] a13 a13
a13 Ali Ali
a14 alSrü-11 alSrü-11
a1sro-11 id: a14 id: a14
id:ID_El id':all id' : al 1
id':all id':alS id': alS
id': a14
id': alS

Figure A2 - 48: Switching the primary key and the unique key on the
conceptual level

2.5.3.1.1. Logical Schema

W e transform the existing primary key into a unique key in relation E 1, drop it if it was a
technical one, create a technical primary key if no unique key was speci:fied and replace the
foreign keys referencing relation El accordingly.

2.5.3.2. SQL Description & Data

var i : INTEGER;
idADD : INTEGER;

procedure Switch(El, old_prim, new_prim)

(* This procedure transforms the existing primary key old_prim into a
unique key in table El and the unique key new_prim into the new primary
key of table El. *)

PageA2-74

Appendix 2 : Study of the Modifications: Gene ra/ Approach

El
Qld 12rim
al2
àl3

E2

.a2.l
a22[0-l]

new_prim -
al sr0-1 l
id: old _prim
id': new_prim
id':al5

X-y ~-V

a23
- a24

a2sro-11
id: a21
id' : a24

id' : al2 id' : a25

Figure A2 - 49 : Genera/ situation used in procedure Switch

var old_prim: <type>;
new_prim: <type>;

begin
for each foreign key in table E referencing table El

and representing relationship-type R
do begin

(* we create the new foreign key
foreign key constraint and we
relation s h ip-typ R *)

column, we remove the old
copy the data representing

if u = 0
then exec SQL

alter table E
add R_new_prim <type>,
drop constraint El_#;

declare c cursor for
select R_o l d_prim

from E
where R_old_prim is not

for update of R_new_prim;
end exec

else (* u = 1 *)
exec SQL

alter table E

null

add R_new_prim <type> default <value> not null
constraint E_R_new_prim,

drop constraint El_#;
declare c cursor for

select R_old_prim
from E

for update of R_new_prim;
end exec;

exec SQL
open c;
fetch c into :old_prim;

end exec;
while SQLCODE = 0 (* the last item has not yet been treated *)
do exec SQL

select new_prim
into :new_prim
from El
where old_prim = : old_prim;

update E
set R_new_prim = :new_prim
where current of c;

fetch c into :old_prim;
end exec;

exec SQL
close c

PageA2-75

Schema Modification Propagation for Relational Database Applications

end exec;
end;

if old_prim in
then exec SQL

Elis a technical identifier

(* we drop the old primary key with its constraints and
we add the primary key feature to column new_prim *)

alter table El

end exec

drop constraint idEl_#,

drop
drop
drop

(* primary key feature of old_prim *)
constraint El_ID_El,
ID_El,
constraint idEl_#,

add constraint
(* uniqueness feature of new_prim *)

primary key (new_prim)
constraint idEl_#;

else (* old_prim in Elis nota technical identifier*)
exec SQL

(* We switch the identifying features between new_prim
and old_prim *)

alter table El
drop constraint idEl_#,

(* primary key feature of old_prim *)
add constraint unique (old_prim) constraint idEl_#,
drop constraint idEl_#,

(* uniqueness feature of new_prim *)
add constraint primary key (new_prim)

constraint idEl_#;
end exec;

for each foreign key in table E referencing table El
and representing relationship-type R

do begin
if u = 1 (* the old foreign key column R_old_prim was

manda tory *)
then exec SQL

alter table E
drop constraint E_R_old_prim;

end exec;
if y= 1 (* the old foreign key column R_old_prim was a unique

key *)
then exec SQL

alter table E
drop constraint idE_#
add constraint unique (R_new_prim)

constraint idE_# ;
end exec;

exec SQL
(* we add the new foreign key constraint and remove the

old foreign key column *)
alter table E

add constraint foreign key (R_new_prim) references El
constraint El_#,

drop R_old_prim;
end exec;

end;
end; (* end of procedure *)

(* the program allows us to call the procedure 'Switch' with the correct
arguments *)

if no unique key is specified
then begin

Page A2-76

exec SQL
(* we create a technical identifier*)
alter table El

add ID_El smallint default O not null constraint El_ID_El;
(* we assign identifying values to that column *)
declare c cursor for

Appendix 2 : Study of the Modifications: Gene ra/ Approach

select ID_El
from El

for update of ID_El in El;
open c;
fetch c;

end exec;
i:= 1;
while SQLCODE = 0 (* the last item has not yet been treated *)
do begin

exec SQL
update El

set ID_El = :i
where current of c;

fetch c;
end exec;
i:= i+l;

end;
exec SQL

close c;
(* we add the unique key feature to ID_El *)
alter table El

add constraint unique (ID_El) constraint idEl_#,
end exec;

(* we operate the real switch *)
call Switch(El, all, ID_El);

end
else (* a unique key is specified *)

if the primary key of Elis nota technical one
then call Switch(El, all, al4)
else call Switch(El, ID_El, al4);

No data is lost as we do not consider the information included m the technical identifier
colurnn ID E 1 as semantical data.

2.5.3.3. Program Extracts

Let us suppose we have switched primary key al 1 with unique key al 4.

Every select query which uses a foreign key referencing table El must be modified: we have to
replace the foreign key.

- select ...
from E
where R_all = c

select
from E
where R_ a14 = d

- select ...
from El
where all in(select R_all

from E
where . . .)

PageA2-77

Schema Modification Propagation for Relational Database Applications

select .. .
frorn El
where a14 in(select R_a14

frorn E
where . . .)

A concrete example can be found in the modification switch_PK_unique in appendix 1 (see
page Al-99). As we already said, it is not sufficient to change only the select queries. We must
also review the application programs (for an example see page Al-103).

PageA2-78

