
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Deriving run time properties of Logic Programs by means of Abstract Interpretation

An implementation

Rouard, Denis

Award date:
1993

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 18. Apr. 2024

https://researchportal.unamur.be/en/studentTheses/d1dfaed1-43b2-4ec9-91fc-65d7bd11c9d5

Facultés Universitaires Notre-Dame de la Paix
Institut d'Informatique
Rue Grandgagnage, 21

B-5000 NAMUR

Deriving run time properties
of Logic Programs by means

of Abstract lnterpretation:

An implementation

Denis Rouard

Mémoire présenté en vue d'obtenir le grade de
Licencié et Maître en Informatique

Promoteur : Baudouin Le Charlier

Année académique 1992 - 1993

Abstract

A lot of researchs are done at the present time to improve the Logic languages. Those
languages possess a lot of advantages, one of the most important is the multidirectionnality.
Multidirectionnality permit to write a program which can be used in several manners. The same
pro gram can do much more than it first utility. This could be an inconvenient,
multidirectionnality forces the compiler to explore a lot of unuseful possible solutions. This is
due to the fact that the computer can not differenciate a clever solution from a stupid one.
Furthermore, it can be observed that the multidirectionnality is often not really used in practice.
One of the main purposes of the abstract interpretation is to improve the "intelligence" of such
a compiler.

The static analysis of programs covers all the treatments that could be applied on a
program behalve of its execution. The airn of the abstract interpretation (which is a technique
of static analysis) is to compute some properties of the output of a program without executing
it. One of the basic principle of the abstract interpretation is to execute a program not on its
normal domain but on an abstraction of its normal domain (understand an abstraction of its
input). The airn of this work was to implement an abstract domain proposed by the Katholiek
Universiteit van Leuven. and to run it with an abstract interpreter developped in the Facultés
Universitaires Notre Dame de la Paix.

Resumé du mémoire

Beaucoup de recherches sont actuellement en cours dans le but d'améliorer les langages
logiques. Ils possèdent beaucoup d'avantages, parmi ceux-ci, un des plus impressionnants est la
multidirectionnalité. Une même procédure peut servir à plusieurs usages différents. La
multidirectionnalité n'a pas que des avantages, elle pose des problèmes d'efficacité. Elle force le
compilateur à explorer toutes les solutions possibles d'une même procédure ce qui ralentit très
fort l'exécution du programme. Ceci est du au fait que le compilateur est incapable de
différencier une solution intelligente d'une solution stupide à un problème posé. De plus, force
est de constater que la multidirectionnalité est peu utilisée en pratique. Le but de
l'interprétation abstraite est d'améliorer "l'intelligence" des compilateurs de langages logiques.

L'analyse statique des programmes couvre tous les traitements qui peuvent être
appliqués à un programme en dehors de son exécution. Le but de l'interprétation abstraite (qui
est une technique d'analyse statique) est de déterminer des propriétés des résultats d'un
programme sans exécuter celui-ci. Une des techniques fondamentales utilisée en interprétation
abstraite est d'exécuter un programme non pas sur son domaine réel mais sur une abstraction
de son domaine (comprenez sur une abstraction des données en entrée). Le but de ce travail
était d'implementer un domaine abstrait proposé par Gerda J anssens de l'Université Catholique
de Louvain dans un interpréteur abstrait développé aux Facultés Universitaires Notre Dame de
la Paix.

Contents

Contents 6
List of Figures ... 7
Preface 10
Acknowledgrnents 11
1. Introduction 13

1. 1. Static analysis and abstract interpretation 13
1.2. Usefulness of abstract interpretation 13
1.3. Mathematical Preliminaries: the fixpoint theory 14

1.3.1. Complete Partial Order 14
1.3.2. Lattice 14
1.3.3. Monotony 15
1.3.4. Continuity 15
1.3.5. Fixpoint and fixpoint theorem 15

1.4. Prolog 16
1.5. Concrete and abstract domain 17
1.6. Abstract interpreter 18

2. Intuitive overview of the abstract domain ... 19
2.1. Type-graph component ... 19
2.2. Same-value component ... 21
2.3. Summary 21

3. Rigid Types 22
3.1. Definition of normal type graphs 22

3.1.1. Graphs 22
3.1.2. Type graphs .. 23
3.1.3. Denotation of a type graph .. 25
3.1.4. Compact type graphs .. 26
3.1.5. Normal and restricted type graphs ... 28

3.2. Operations on normal type graphs 37
3.2.1. Containments 37
3.2.2. Equivalence 38
3.2.3. Intersection 39
3.2.4. Backward unification .. 40

3 .3 Expressive power of the type graphs .. 41
3.4. Summary .. 42

4. Abstract domain based upon rigid types ... 43
4.1. Definition of abstract substitutions 43
4.2. Denotation of an abstract substitution 45
4.3. Normal abstract substitutions 46
4.4. Operations on abstract substitutions in normal form 49

4.4.1. Containment 49
4.4.2. Equivalence 50
4.4.3. The upper bound operation 50
4.4.4 A fmite subdomain 51
4.4.5 Backward unification 52

4.5 Summary ... 53

5. Implementation of the type-graphs .. 54
5.1. Introduction .. 54
5.2. Representation of the type-graphs 54

5.2.1. Discussion on a data structure for the type-graphs 54
5.2.2. Formalization of the Context Free Grammar 56
5.2.3. Definition of the data structure chosen for the type-graphs 57

5.3. Compacted type-graphs 59
5.3.1. Implementation of non_empty_ID ... 60
5.3.2. Formalization of non_empty_lD 62
5 .3 .3. Completing the first pass 64
5.3.4. Focusing on the second pass ... 65

5.3.4.1. Rule 6 65
5.3.4.2. Rule 8 ... 65

5.4. Restricted type-graphs ... 66
5.5. Other Algorithms 67
5.6. Summacy ... 68

6. lmplementation of the same-value and of the abstract substitutions 70
6.1. Introduction 70
6.2. Representation of the same-value .. 70

6.2.1. Representation of the SV AL-constraint.. 71
6.2.2. Representation of the SV AL-component.. 76

6.3. Representation of the abstract substitutions 77
6.4. Normalization of an abstract substitution 80

6.4.1. Algorithm Normalize .. 80
6.4.1.1. Rule 1 ... 81
6.4.1.2. Rule 2 81
6.4.1.3. Rule 3 81
6.4.1.4. Rule 4 82
6.4.1.5. Rule 5 83

6.4.2. Informai algoritlun .. 83
6.4.3. Formalization of the algoritlun 85

6.4.3.1. Function detecting if SVAL(ô) is subsmed by

SV AL(~) : .. 85
6.4.3.2. Function detecting if SV AL(ô) subsme SV AL(~) : 86
6.4.3.3. Function removing the subsumed constraint: 86
6.4.3.4. Procedure adding a SV AL-constraint : 87
6.4.3.5. Procedure of standardization : 87

6.4.4. A new specification of the algorithm Normalize 88
6.5. Several algorithms on the abstract substitutions ... 89
6.6. Problems derived from the data structures ... 90

6.6.1. Copying an abstract substitution .. 90
6.6.2. Deletion of an abstract substitution 92

6.7. Summacy 93

7. Abstract interpretation ope rations .. 94
7 .1. Introduction 94
7 .2. Original abstract interpreter for that abstract domain 94

7.2.1. Procedure-entry 94
7 .2.2. Procedure-exit 95
7.2.3. Abstract-interpretation-built-in .. 97

7.2.3.1. Abstract interpretation of X= Y 98
7.2.3.2. Abstract interpretation of X= f(Yl, ... ,Yk) 98

7 .3. Abstract interpreter used ... 99
7.3.1. Unformal description ... 99
7.3.2. Adaptation on the defined domain ... 101

7.3 .2.1. bext = ExtC(bin, C) 101
7.3.2.2. baux= RestrG(bi,bext) ... 101
7.3.2.3. bint = Ai-Var(baux) .. 101
7.3.2.4. bint = Ai-Func(baux) 102
7.3.2.5. bext = ExtG(bi, bext, bint) 102
7.3.2.6. bout= RestrC(C,bext) 103
7.3.2.7. bout= Union(bout,bext) ... 103

7.4. Sumrnary ... 104
8. Interpretation of the results 105
9. Future optimization and conclusion ... 106

9 .1. Optimization by memoization techniques 106
9.1.1. Discussion on the proposed optimization 107

9.2. Conclusion 108
Appendix A ... 111

List of Figures

Figure 2.1: X1 = a
Figure 2.2 : X 1 = a or X 1 = b
Figure 2.3 : Type-graph representing a List of integers
Figure 2.4: Usefulness ot the same-value component

Figure 3.1 : The graphical representations of some type graphs
Figure 3.2 : Example of a compact type graph computed by algorithm 3 .1.
Figure 3.3 : Type graph T9
Figure 3.4: Step 1 of Algorithm 3.2.
Figure 3.5: Step 3 of Algorithm 3.2.
Figure 3.6: Step 4 of Algorithm 3.2.
Figure 3.7: Algorithm 3.2: restrict(T9)
Figure 3.8 : Algorithm 3.3: T10 ~ List succeeds
Figure 3.9: Algorithm 3.4.: T11 = T12 succeds
Figure 3.10: Example of backward unification: Tn = btunif(Ti, Tr)

Figure 4.1 : T new = replace(T, 1, nif)

Figure 5.1: Size of a type-graph
Figure 5.2: Example oftype-graph
Figure 5.3: The array TCor
Figure 5.4: Example of the chosen data structure
Figure 5.5: Utility of the field color
Figure 5.6: T0 := OR(T0Jnt,R.eal,a/0)
Figure 5.7: T := OR(... OR() ...)
Figure 5.8: ID(f/2) de pends of ID(g/2) and of ID(OR)
Figure 5.9: Reduction of an OR-node
Figure 5.10: Upgoing of .l
Figure 5.11 : Extension of Non Empty ID - -
Figure 5.12: Two consecutive OR-node
Figure 5.13: Achain of OR-node
Figure 5.14 : Implementation of the stack

Figure 6.1: Two same-value constraints
Figure 6.2: A new same-value constraint added by transitivity
Figure 6.3 : A merged same-value constraint
Figure 6.4: Representation of the Sval-constraint{X1fl X2le,X3/l}
Figure 6.5: Another representation of the Sval-constraint{X1/l .X.2/e,XJf l}
Figure 6.6 : Data structure chosen for representing the Sval-constraint{X J / 1 ,X 2/e,X 3/ 1}
Figure 6.7 : A simple Sval-constraint
Figure 6.8 : A more complex Sval-constraint added to a simple one
Figure 6.9: Correspondance between the Sval-constraint and the Type-graph
Figure 6.10: Complete representation of a substitution
Figure 6.11 : An example of subsumtion

Figure 6.12 : A looping Sval-constraint
Figure 6.13: ois subsumed by ~
Figure 6.14: ~ is subsumed by o
Figure 6.15 : An example of the effect of Restrict
Figure 6.16 : Example of copying a substitution
Figure 6.17: Example of deletion of a substitution

Figure 7.1 : Procedure-entry extends the abstract AND-OR graph
Figure 7.2 : Procedure-exit computes ~out
Figure 7.3 : Abstract interpretation of the built-in P
Figure 7.4 : Abstract interpretation operation for the interpreter used

Preface

The static analysis of computer programs is a wide domain of research in which we can
find a promising technique called Abstract Interpretation. This technique allows us to give
properties on the output of Logic Programs without executing it. A lot of universities and
teams of researchers are working on this subject ail over the world, e.g. the university of
Bordeaux, Brown, Leuven, Namur, Padova.

Sorne implementations have been performed in those places. In particular, Gerda
Janssens and Maurice Bruynooghe have developed, in Leuven, a framework for abstract
interpretation. This framework was implemented in Prolog and the aim of this work is to mqk
a new implementation, this one in the C language.

Firstly, we present the theoretical background underlying the abstract interpretation, as
few words of introduction are based in [1]. Tuen an introduction to the fixpoint theory is based
on [12]. And finally, the introduction to normalized Prolog programs have been written on the
basis of [14].

In the second chapter, we present in a very intuitive way, the aim of this work. It will
be interesting for readers which didn't know the framework developed by Gerda J anssens and
Maurice Bruynooghe.

The third and fourth chapters are excerpts from the PhD thesis of Gerda Janssens. Only
the proofs have been removed from this copy. They are included in order to make this work
reasonably "self-contained" and should be skipped by reader knowing the work of Gerda
Janssens.

The two next chapters present ail the data structures chosen to match those presented
in the thesis. They contain a brief description of the major difficulties encountered during the
implementation and an explanation of the solutions. Together, they form the main chapters on
this paper.

Chapter 7 describes the abstract operations interfacing with the existing frameworks. It
contains a description of those operations on two different frameworks. The first framework
was developed by the team of researchers of Maurice Bruynooghe and the others by Baudouin
Le Charlier and Pascal van Hentenryck. This work was to adapt the operations of the first
framework to fit on the operations required by the second one.

Chapter 8 gives the result of this implementation. The chapter 9 proposes an
optirnization and gives the conclusions of the work.

During this implementation, we u'sed as the basis of the work the two following articles,
the PhD thesis of Gerda Janssens "Deriving run-time properties of Logic prograrns by means of
abstract interpretation" ([7]) and the paper "Efficient and accurate algorithrns for the abstract
interpretation of Prolog programs" written by B. Le Charlier, K. Musumbu and P. van
Hentenryck ([9]).

Acknowledgments

First of ail, I would like to thank Gerda Janssens who invited me at the Katholiek
Universiteit van Leuven. I thank Baudouin Le Chartier and Vincent Englebert who supported
this project in important ways and gave me the opportunity to fulfill my job.

I also thank ail those who have contributed to this report, speciaily Maryse, Frounz and
Laurent.

Last but not least, I like to thank my parents, without whom these five years would not
have been possible.

Chapter 1
Introduction

1.1. Static analysis and abstract interpretation

The curent programmer's world is composed of several type of languages. Each people
which has notion of programming eared to object oriented languages, imperative languages
W e can distinct several generic types of languages among them we can found the Logical
Languages which are declarative in the sense that a predicate defines a relation between the
variables but gives no idea concerning the way to compute the "transformation" to apply on the
input to obtain the output.

1.2. U sefulness of abstract interpretation

A lot of researchs are done at the present time to improve the Logic languages. Those
languages possess a lot of advantages, one of the most important is the multidirectionnality but
this advantage is in the same time the most inconvenient. Multidirectionnality forces the
compiler to explore a lot of unuseful possibilities of solutions. This is due to the fact that the
computer can not differenciate a clever solution from a stupid one. Furthermore, it can be
observed that the multidirectionnality is not really often used in practice. One of the main
purposes of the abstract interpretation is to improve the "intelligence" of such a compiler. It
can be done with a detection in the program of the user data which will be really used and thus
permits to generate more efficient programs.

The static analysis of programs covers all the treatrnents that could be applied on a
program when not executing. The aim of the abstract interpretation (which is a technique of
static analysis) is to compute some properties of the output of a program without having to
execute it. One of the basic principle of the abstract interpretation is to execute a program not
on its normal domain but on an abstraction of its normal domain (understand an abstraction of
its input). This implies that the components of the abstract domain represents useful properties
of the normal domain. Furthermore, the abstract interpretation of a program must be
performed in a non-infinite time and must be as efficient as possible.

Introduction 16

1.3. Mathematical Preliminaries : the Jixpoint theory

Before begining the description of the abstract domain implemented in this paper, a
theoretical background is needed. We will define in this section the fixpoint theory's principles.

1.3.1. Complete Partial Order

Definition 1.1
Let S be a set. A relation R on Sis a subset of S x S.
We express the fact that (x,y) e R by x R y.

Definition 1.2
A partial order on a set S is a relation denoted by $ such that :

• x Sx 'vx e S

• X$ y /\ y $ X ⇒ X = y 'vx,y e s
• x $y/\ y$ z ⇒ x $ z 'vx,y,z e S

Definition 1.3
Let S be a set with a partial order relation $.
Tuen a e S is an upper bound of a subset X c S if x $ a 'v x e X. And b e S is a Lower bound

of X if b $ x 'v x e X.

Definition 1.4
Let S be a set with a partial order relation $.
Tuen a e S is the least upper bound (noted tub) of a subset X c S if a is an upper bound of X
and, for a11 upper bound a' e X we have a Sa'. Similarly, we can define the greatest lower
bound (noted glb). If they exist, tub and gtb are unique.

Definition 1.5

Achain of (S,$) is an increasing sequence (xi);:0 verifying Xi$ Xi+ 1 'v i ~ O.

Definition 1.6
We say that (S,$) is a complete partial order (cpo) if there is a least element called bottom

noted .l e S, and if all chains of S have a tub noted u:=o xn .

1.3.2. Lattice

Definition 1.7
A tattice is a partially ordered set (S ,$) in which any two elements s 1 and s2 and a lub and a
glb in S.

Definition 1.8
A lattice (L,S) is a complete lattice if tub(X) and a glb(X) exist for any subset X or L.
So, we have: lub(L) = T, glb(L) = .l.

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

Introduction 17

1.3.3. Monotony

Definition 1.9
Let L J .L2 be complete lattices and T: L J ➔ L2 be a mapping. We say that T is monotonie iff

x 5. y in L J ⇒ T(x) ~ T(y) in L2

1.3.4. Continuity

Definition 1.10
Let L be complete lattice and T : L ➔ L be a transfomation. We say that T is continuous if for

every chain (xn)n ~ o we have :

1.3.5. Fixpoint and fixpoint theorem

Definition 1.11
Let L be complete lattice and T: L ➔ L be a mapping. We say that a e Lis the least fixpoint
of Tif a is a fixpoint (i.e. T(a) = a) and for all fixpoint bof T, we have a ~ b.

Fixpoint theorem
If Dis a cpo and/: D ➔ Dis a continuous mapping, then/has a least fixpoint µ(/) e D.
Moreover, the least fixpoint µ(/) can be defined by :

µ(/) = u:=of"(..L)

where {fo(x) = x }
f n+l(X) = f (f n (X))

Continuity is the condition which garantees the existence of a fixpoint. The proof of
this theorem follows :
By induction and monotony off, ffl(l.)} is a chain, and by me ans of continuity, we deduce :

So, we have that u:=
0
/" (..1.) is a fixpoint off.

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

Introduction 18

1.4. Prolog

Among the Logical language, one is often employed Pro log. Originally, the abstract
domain presented here is defined to be used on Prolog programs, but because of its integration
into the algorithm developped in [8], the Prolog programs must be normalized. It causes no
difficulties to translate a Prolog program into its normalized version.

Let Fi a set of functors of arity i,
Pi the set of the predicate symbol of arity i.

• a term is:
- either a variable,
- or a construction of the form f(tl,···,ti) where f belongs to Fi and where t1,••·,ti are
terms.

• a normalized atom is
- either a built-in
- or a procedure call

• a built-in is
- either a construction of the form Xi = Xj (i -:;: j),

- or a construction of the form X1· = f(X . , ... , X .) where the variables
J1 Jn

X;, Xi, , ... , Xi. are distincts two by two and f e F n,

• a procedure call is a construction of the form p(X i, , ... , Xi.)

where p e Pn and the variables Xi,, ... , Xi. are distincts two by two.

• a normalized clause has the form p(X1 , ••• , Xn) ~ SB

where O ~ n, p e Pn, and SB is a sequence of normalized atoms which contains only
program variables. If m is the number of distinct variables appearing in a clause, those
variables are the m first: Xl,···,Xm.

p(Xi , ... , X)is the head of a clause and p its name.

SB is the body of the clause.
• A normalized procedure is a non empty sequence of normalized clauses with the same

functor: C1, ... ,Cm.
• A normalized program is a set of normalized procedures with distincts functor such as

each functor present in the body of a clause is the functor of a procedure.

Prolog code for append

append([],L,L).
append([HITi],L,[HIT2]) :

append(T1 ,L,T2).

Normalized version of append

append(X 1 ,X2,X3) :
X 1 = [],
X3 = X2.

append(X1,X2,X3) :-
X1 = [X4 I X5],
X3 = [~ 1 X6],
append(X5,X2,~).

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

Introduction 19

1.5. Concrete and abstract domain

As evoqued before, the abstract interpretation does not work on the real data domain
(which is called the concrete domain). It works on an abstract domain which is a simplified
image of the concrete domain. For example, the standard computation domain (e.g. the set of
integers) is approximated by an abstraction of this domain (e.g. the set of signs { +,-,0,?}
representing the set of strictly positive integers (+), the set of strictly negative integers (-), zero
(0) and the set of all the integers(?)). The abstract domain is commonly required to be a cpo.
The link between the concrete and the abstract semantics is usually given by a concretization
function from the abstract domain to the concrete domain. The concretization function
specifies which concrete object are represented by an abstract object. In the above example,
the concretization of + was the set of strictly positive integer and we denote this information
by

y(+) = { X Jx is an integer and X > 0 }

The operation which associates a set of concrete objects with an abstract object is
called abstraction. This function establishs the link between the abstract and the concrete
semantics. This operation is denoted by ex..

Those two functions verify the following conditions :

Ve e C:y(cx.(c)) cc

Va e A:cx.(y(a)) = a

Once the abstract domain is defined, we must introduce the operations on the abstract
domain. In order to deduce properties on the result of a program, we need to define the
abstract operations for each concrete operation. Each concrete operation which is an operation
on the concrete domain is associated with an abstract operation on the abstract object. Still by
means of the same example, the multiplication and the addition of integers can be abstracted.
We note ® the asbstract multiplication operation which is corresponding to the concrete
multiplication operation x. We note EB the asbstract addition operation which is corresponding
to the concrete addition operation +. Convertions array are proposed on both next arrays.

® 0 + - ? EB 0 + - ?

0 0 0 0 0 0 0 + - ?
+ 0 + - ? + + + ? ?
- 0 - + ? - - ? - ?
? 0 ? ? ? ? ? ? ? ?

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

Introduction 20

1.6. Abstract interpreter

As ail the other abstract domains, the abstact domain implemented here is not "stand
alone" in the sence that it will be integrated into an abstract interpreter. This abstract domain
was conceived to be used by the abstract interpreter presented by [2] and was made at the
Katholiek Universiteit van Leuven but will be implemented for the abstract interpreter from the
Facultés Universitaires Notre-Dame de la Paix.

Deriving Run Time Properties of Logic Programs by Means of Abstract lnterpretation : lmplementation

Chapter 2
Intuitive overview of the abstract domain

The aim of this chapter is to present unformally the abstract domain implemented in this
paper. It is proposed without any concem of rigour and formalism, it is an intutitive overview
of the abstract domain to show the usefulness of the domain. A reader used to the components
of this domain can pass directly to the next chapter.

An abstract domain is composed of different parts called here component, each
component bring out precision to the abstract domain in the sense that it permits to give a best
approximation of the concrete domain. The abstract domain proposed here is formed by two
linked component, the type-graph component and the same-value component.

2.1. Type-graph component

Normalized Prolog programs, like a1l Prolog programs, are using variables. The
type-graph component permits to express the different values a variable can have during the
concrete interpretation of the program. For example, suppose that we have the following
Prolog program :

p(X1) :- X1 = a.
p(X2) :- X2 = b.

We will sketch a very simplified abstract interpretation on this example. The abstract
interpreter parses the program and see that X 1 is unified with the value a, so it create a graph
to represent this unification, as it can be observed in the next figure.

X1

a

Figure 2.1: X] = a

After it meets the second unification X2 = b. We can remark that the head of the
second clause is the same than the head of the first clause. The variable concemed with the

Intuitive overview of the abstract domain 22

unification X2 =bis thus the same (up to renaming) than the variable concemed with the first
unification X 1 = b. The abstract interpretation creates thus the type-graph corresponding to the
next figure.

X1

a b

Figure2.2:X1 =aorX1 =b

The graph express the fact that X 1 can have either the value a or the value b.

This situation is very simple but the type-graph can be created to denote more complex
configurations. In the previous example, we consider that X 1 has no input value but it is not
always the case, the user can force a value to a variable. For example, if the user wants to
observe the transformation of a list, which is a typical data structure of Prolog, he can enter the
following type-graph as input.

X1

[1

lnt

Figure 2.3: Type-graph representing a List of integers

To understand well this type graph, the reader has to remember the notion of list. An
integer list is either an empty list [] or an integer followed by a list.

1 <List> ::= = [] 1 • (lnteger, <List>) 1

Those two examples suffice to have a short idea of the type-graph component used in
this abstract domain. As expressed before, the domain is composed of two components. The
reason of the existence of this second component is more difficult to explain.

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

Intuitive overview of the abstract domain 23

2.2. Same-value component

Let us suppose that we must perform the abstract interpretation on the following
Prolog program and that the abstract domain contains only the type-graphs component.

Let us suppose that X2 denotes an integer. When the abstract interpreter parses this
program, it unifies X 1 to f(X2), after that it unifies X3 and X1. So, after this unification we can
say that X3 is equal to f(X2) and that X 1 is the same. At this moment, we know that X2 and
X3 have the same value. Afther we make the third goal, it unifies X3 to f(l). If there is not
same value component, we lose the information that X1 is equal to f(l) too.

Type-graph component
Type-graph component and

Same-value component

X1 X2 X3 X1 X2 X3

i i i i i i
f lnt f

~"
lnt

/~ i i
lnt 1

X1 = X3

Figure 2.4: Usefulness ot the same-value component

This is the reason of the existence of the same-value component. It allows to keep track
of all the unifications done during the abstract interpretation. The fact that X 1 and X 3 have the
same value implies that the same term should be used when considering the concrete variables
approximated by the abstract variables.

2.3. Summary

This short introduction to the domain presents the two components used in the abstract
domain described in the two next chapters. We underline the fact that this presentation is
incomplete in the sense that it can not be considered that a real abstract interpretation was
done on the previous examples. Furthermore this presentation was unformal in the sense that
none of the real abstract interpretation operations were presented here. The aim of this chapter
was to softly introduce the reader to the components of the domain before formalizing it.

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation: Implementation

Chapter3
Rigid Types

1bis chapter and the following one are excerpts of the chapter 4 and 5 of [7]. Only
the proofs have been removed form this copy. The aim of this work is to implement ail the
operations proposed in those two chapters.

The types are said to be rigid because usually their diversity and their expressive
power is of the right level of precision, but they are sometimes a too crude approximation.
1bis chapter defines the type graphs which we use to represent types. The Chapters 4
presents the abstract domain.

3.1. Definition of normal type graphs

3.1.1. Graphs

Types are represented by a special kind of directed graphs. First we introduce the
terminology that we adapt from the graph theory.

A directed graph G is a pair (N, A) where N is a fmite non-empty set, and Ais a
relation on N (Ais any subset of N x N). Each element in N is called anode, and each pair
in Ais called an arc. The arc (n, m) leaves the node n and enters the node m. We say that n
is a predecessor of m, and mis a successor of n. PRED(n) denotes the set of predecessors
of node n and SUCC(n) denotes the successors of node n. The indegree of a node n is
#PRED(n) and the outdegree of n is #SUCC(n), where #S denotes the cardinality of a set
S. The arcs entering a node n are called the incoming arcs of n, and the arcs leaving a node
n are called the outgoing arcs of n. A path is a fmite sequence of one or more nodes such
that, if the sequence contains two or more nodes and is denoted by (n 1, ... , nk) with k ~ 2
then (ni, ni+ 1) e A for 1 ::;; i::;; k - 1. A simple path is a path with distinct nodes. If k ~ 2,
then (n1, ... , nk) is a pathfrom n1 to nk with length k - 1, and nk is said to be accessible
from n1. As a special case, a single node denotes a path of length O from itself to itself. A
cycle is a path (n 1, ... , nk) where n 1 = nk- A simple cycle is an arc from a node to itself. A
path is acyclic or non-circular if it does not contain a cycle.

RigidTypes 25

A directed acyclic graph (acronym DAG) is a directed graph without any cycles. A
(rooted) tree is a DAG satisfying the following properties:

1. There is exactly one node, called the root, with indegree O.
2. Every node except the root has indegree 1.
3. There is a path from the root to each node.

If (u, v) is an arc in the tree, then u is called the parent of v and vis called a son of u. The
ancestor and descendant relations are the reflexive and transitive closures of the respective
parent and son relations. Node n is called a proper ancestor (descendant) of node m iff n is
ancestor (descendant) of m and n '# m. A leaf is anode n with outdegree O.

3.1.2. Type graphs

A type graph Tisa triple (n, Ap, AB) where Tr = (N, Ap) is a rooted tree whose
arcs in Ap are called forward arcs and AB is a restricted class of arcs, backward arcs,
superimposed on Tr. Tris called the underlying rooted tree of the type graph T. In a type
graph T, ANC* (n) (respectively ANC+(n)) is the set of ancestors (respectively proper
ancestors) of the node n in Tr. The bacward arcs (n, m) in AB have the property that me
ANC*(n). FDESC*(n) (respectively FDESC+(n)) is the set of descendants (respectively
proper descendants) of the node n in Tr. DESC*(n) (respectively DESC+(n)) is the set of
descendants (respectively proper descendants) of the node n in T.

Note that DESC*(n) = {n} u DESC+(n) (idem for FDESC and ANC). Note that
the set of forward descendants, FDESC, only takes into account the arcs Ap, whereas the
set of descendants, DESC, takes into account Ap u AB· A forward path is a path
composed from forward arcs.

Each node n of a type graph has a label, denoted by lb(n) indicating the kind of term
it describes and the nodes are divided into three classes:
- simple nodes have a label from the set {max, .l, Int, Real, ... } and their outdegree is O.
We give some of them a specific name: max-node, .l-node.
- functor nodes are labeled with a functor f/k and have outdegree k with k;;::: 0 (a constant
has arity 0).
- Or-nodes have the label OR and have outdegree k with k ;;::: O.

We use the convention that n/i denotes the ith son of node n and the set of sons of a
node n is then denoted as {n/1, .. . , n/k} with k = outdegree(n).

Definition 3.1.

A type graph T (N, Ap, AB) has the following characteristics:

Pi. There is exactly one node, called the root no, with no incoming forward arc.
Pz. All the nodes, except the root, have exactly one incoming forward arc.
P3. There is a unique path from the root to each node only taking into account the forward

arcs.
* P 4. For each backward arc (n, m) e AB, m e ANC (n).

P5. Simple nodes are leaves, functor nodes labeled f/k have outdegree k and the outdegree
of OR-nodes is ~ O.

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

RigidTypes 26

We aswne that type graphs have disjoint sets of nodes (node names are unique over ail the
type graphs).

The type graphs in Definition 3.1. are called rigid types.

The graphical representation of the type graphs is straightforward. The nodes of a
type graph are represented by their label, only the OR-node is encircled as we often drop its
label. The direction of the arc is indicated by its arrow: forward arcs are drawn downwards,
backward arcs upwards. The root of the type graph is the topmost node. Examples are
shown in Figure 3.1.

a/0 f/1 g/1 a/0 g/1 nil/0

i i
lnt lnt lnt

Type graph T3

a/0 b/0 a/0 b/0

Type graph T1 Type graph T2
fi~

Type graph T6

./2

/
lnt nil/0 nil/0 max

Type graph T7

nil/0 ln

Type graph T4 Type graph T5

Figure 3.1 : The graphical representations of some type graphs

The information described by a type graph can also be expressed by a context free
grammar with a set of nonterminal symbols {T, T 1, T 2, ... } called type names where T, the
name of the type to be defined is the start symbol and corresponds to the root of the type
graph.
For the type graphs T~, T3, T4 and T5 of Figure 3.1, we can write:

T2 := a I f(a I b I T2) 1 g(Int)
T3 := nil l .(Int, T3)
T 4 := .(Int, nil I T 4)
T5 := nil I t(T5, Int,T5)

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

RigidTypes 27

It is convenient to use more expressive type names such as List instead of T3,
ListOne instead of T4 and Tree instead of T5. It is rather straightforward to divise
algorithms to extract a context free grammar from a type graph and to construct a type
graph from a context free grammar. Context free grammars are used for the communication
of types as they are more compact than the graphical representation of the type graphs. See
also [Mis84a] for similar ideas. We prefer to use the type graphs in the following
definitions and algorithms because existing terminology (such as nodes, arcs, ancestors, ...)
can be used to refer to components of the rigid types.

3.1.3. Denotation of a type graph

Let Sy be a set of variables and Smax the set of ail the terms constructed with the
functors and the constants in the program together with the variables from Sy and the
terms in the primitive types (e.g. Int, Real, ...). We assume that each primitive type, P,
represents a set of ground terms with depth one, Sp, and that these sets are mutually
disjoint. The set of finite terms represented by anode n in the type graph T is said to be the
denotation of the node n, ID(n).

Definition 3.2.
The denotation of anode n in a type graph, ID(n):
if lb(n) = max then ID(n) = Smax
else if lb(n) = .l then ID(n) = 0
else if lb(n) is a primitive type P then ID(n) = Sp
else if (lb(n) = f/k and n/1, ... , n/k are its sons)
then ID(n) = { f(t 1, ... , tk) 1 ti is finite and ti e ID(n/i) for 1 ::; i ::; k}

*
else ID(n) = u ID(n/i) as lb(n) = OR and n/1, ... , n/k are its sons

i=l

Note that the order of the sons of a functor node is important because they
correspond to the arguments, whereas the order of the sons of an OR-node is irrelevant.
Observe that if the condition "ti is fmite" were dropped from the rules for lb(n) = f/k, then
infinite terms could be included in the set due to backward arcs. ID(n) can be 0 or a
(in)fmite set of finite terms. With no the root of type graph T, we use ID(T) as a synonym
for ID(no)-
The denotations of the examples in Fig.3 .1. are:

ID(Ti) = {a, f(a), f(b), g(l), g(2), ... }
ID(T2) = ID(T1 u {f(f(a)), f(f(b)), f(g(l)), f(g(2)), f(f(f(a))), ... }
ID(List) = ID(T3) is the set of all lists of integers.
ID(ListOne) = ID(T 4) is the set of all lists of integers that contain at least one

element.
ID(Tree) = ID(T 5) is the set of ail binary trees with integer elements.
ID(T6) = 0
ID(T7) = Smax

Proposition 3.1.: The denotation of a rigid type is closed under substitution.

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

Rigid Types 28

3.1.4. Compact type graphs

A same set of fmite PROLOG terms (even the empty set) can be represented by a
number of different type graphs. This makes the $;-operation (needed during abstract
interpretation) quite complex and inefficient. In order to reduce this variety of type graphs,
additional restrictions are imposed. In a first step, compact type graphs are defined. The
expressive power of type graphs is preserved under this restriction.

First we introduce the boolean function non-empty-ID. Its value non-empty-ID(n) is
true if ID(n) is a non-empty set of fmite terms. It can be recursively defined as follows:

Definition 3.3.
non-empty-ID(n) iff

if (lb(n) = f/k and k>0) then ',;/ i e [l, k]: non-empty-ID(n/i)

else iflb(n) = OR then 3 i: non-empty-ID(n/i)

else lb(n) =t:.l % n is a simple node or a 0-ary functor node % 1

The computation performed by the algorithm implementing Definition 3. 3., will be bottom
up, starting from the leaves in DESC(n).

Definition 3.4.
A compact type graph Tc (Ne, Apc), ABc) has the following properties:
C1. Tc is a type graph (with characteristics Pi, P2, P3, P 4, and P5).
C2. 't/ ne Ne : non-empty-ID(n) or n is the root.

C3. 't/ ne Ne: if lb(n) = OR
then outdegree(n) > 1 and not (3 i : lb(n/i) = max).

C4. 't/(n, m) e Apc: if lb(n) = lb(m) = OR then indegree(m) > 1.
C5. 't/(n, m) e ABc: n =t: m and the forward path (m, ... , n)

contains at least one functor node.

Algorithm 3.1.: T c=compact(T)

Perform one of the following transformation steps on T until no step is applicable:

1. If non-empty-ID(n) does not hold for a functor node n, then it is replaced by a .l-node

(This includes the case that a .l-node is the son of a functor node). The outgoing arcs of n,

ail nodes m e FDESC+(n) and the outgoing arcs of ail such m are removed.

2. If an OR-node has a .l-node as son, then that son and the arc toit are removed.

3. If n is a OR-node with an arc (n, n) , then the arc (n, n) is removed.

4. If an OR-node n has no sons, then n is replaced by a .l-node.

1 Note that a comment is added as text between the two %'s.

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

Rigid Types 29

5. If an OR-node n has a max-node as son, then it is replaced by a max-node. The outgoing
arcs of n, ail nodes m e FDESC+(n) and the outgoing arcs of ail such m are removed.

6. If a forward arc connects two OR-nodes (n, m) and indegree(m) = 1 , then ail arcs (m, k)
are replaced by arcs (n, k) and the arc (n, m) and the node m are removed.

7. If an OR-node m has only one son m, then ail the arcs (k, n) are replaced by arcs (k, m)
and the arc (n, m) and the node n are renioved.

8. If there is a backward arc (n, m) and the forward path m, k1, ... , kn with kn = n consists
of only OR-nodes then ail backward arcs (1, ki) are replaced by the backward arcs (1, m).
(So indegree (ki) becomes 1 and step 6 is applicable).

The termination of Algorithm compact is obvious as we never extend the type graph
but only remove nodes and arcs from it, or replace node labels by 1. or max.

Proposition 3.2.: If Tc is the compact type graph derived from the type graph T by
algorithm 3.1 ., then ID(Tc) =ID(T).

Proposition 3.3.: Each cycle in a compact type graph Tc contains at least one OR-node
and at least one functor node.

We give some examples of (the computation of) compact type graphs.
The type graphs T1, T2, T3, T4 and T5 of Fig.3 .1. are compact.

compact (T 6) results in a .l-node by application of step 1.

compact (T7) applies rule 5 and changes the type graph into a max-node.

Consider Tg represented in Figure 3.2.a. The node names are given by the
superscripts in italic added to the node labels in the type graphs. The backwards arc (n3,
n3) is removed by step 3 and then step 6 is applicable on arc (n 1, n3) has indegree(n3) has
become 1. The type graph at this stage is found in Figure 3.2.b. Tuen there is a backward
arc (n5, n1) and a forward path (n1, n5) consisting of only OR-nodes such that steps 8 and
6 are performed. Figure 3.2.c. gives the compacted type graph, compatc (Tg). Note that
the denotation of ail the type graphs in Figure 3.2. is the same.

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

RigidTypes

nt

n2 a/0

f/2 n6

nï d/0

3.2.a. T8

f/2 n6

\
d/0 n7

3.2.b. After step 3 and 6

3.2.c. compact(T8)

Figure 3.2 : Example of a compact type graph computed by algorithm 3 .1.

30

d/0 n7

Notice that compact type graphs are not the most economical representation. Nodes
in different branches can have the same denotation. In particular, different sons of an OR
node may have overlapping, even identical denotations . This makes testing whether a
particular term is in the denotation of a compact type graph and the comparison of the
denotations of two type graphs inefficient, so we impose further restrictions.

3.1.5. Normal and restricted type graphs

The restrictions introduced here limit the expressiveness of the type graphs but are
necessary to achieve efficient operations and to construct a finite abstract domain (see
Chapter4).

First we introduce the functions prnd and prlb. The function pmd(n) denotes the set
of principal nodes of anode n and prlb(n) its set of principal labels.

Definition 3.5.

k

prnd(n) = if lb(n) = OR then U pmd(n/i) with k = outdegree(n)
i=I

else {n}
pmd(n) = (lb(ni) 1 ni e pmd(n)}
The compactness of the type graph assures us that

if lb(n) -:t. max then max e prlb(n).

Two sets of principal labels are overlapping if their intersection is non-empty.

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

----- - ----- - ------- - - - -

RigidTypes 31

Definition 3.6.
The principal label restriction states that each pair of sons of an OR-node must have non
overlapping sets of principal labels.
Normal type graphs are compact type graphs satisfying the principal label restriction.

Definition 3.7.
The depth restriction states that the number of occurrences of the same functor on each
path of forward arcs in a type graph must be bounded by a constant. Restricted type graphs
are normal type graphs satisfying the depth restriction.

The compact type graph Ti, T2, T3, T4 and T5 in Fig.3.1. do not violate these
restrictions, neither does compact(Tg). Type graph T9 of Fig.3.3. violates the principal
functor restriction at OR-node no as it has two sons with ./2 as principal label, namely n2
and n3. If the allowed depth for ./2 is one, then also the depth restriction is violated at node
n7. The corresponding restricted type graph will be given in Fig.3.7.

Both restrictions limit the expressiveness of type graphs: type graphs violating these
restrictions sometimes have to be replaced by a type graph denoting a larger set of terms.
Note that both restrictions impose structural properties on the type graphs, which restrict
their shape. The same set of terms can be represented by different restricted type graphs as
we still allow two nodes in a type graph to represent the same set of terms. Sono canonical
form is defined for a type graph.

[]

X1

./2 ./2

A
lnt [] lnt

lnt

Figure 3.3 : Type graph T9

./2

[1

The algorithm that computes for a given type graph the corresponding restricted
type graph, is a special case of the more general algorithm in which, given an old type
graph T, a new type graph T' must be constructed which has some specific properties
concerning its denotation and also some structural properties. We first discuss the general
case. Our strategy to deal with this kind of problerns is to leave the old type graph
unchanged and to construct stepwise a new type graph (one could say node by node).

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

Rigul Types 32

The initialization creates the root mo of T' with the required denotation which is
defined in terms of nodes of T. At this point the root mois called an unexpanded leaf We
define a function fn which, at every step in the construction of T', associates a set of nodes
from the original type graph T to each node in T'. Associated to fn we define a second
function on the nodes of T', ID-fn, which specifies for each newly constructed node m of T'
the intended denotation for m. This intended denotation will be determined by the
denotation of the nodes infn(m).

Each step extends T' respecting the structural requirements and without decreasing
the denotation of its nodes. This is done by transforming one of the unexpanded leaves m
of T' into un usual node (after the transformation, m is called a safe node) and new
unexpanded leaves may be added as sons of m. The nodes of T', in each step of its
construction, either belong to sui which is the set of the unexpanded leaves or to ssn which
is the set of the safe nodes.

The case at hand is the Algorithm restrict(n) with na node (not necessarily the root)
in the given compact type graph. It computes the correponding restricted type graph, T',
which satisfies the principal functor restriction and the depth restriction, and whose
denotation is at least as large as the one of node n. W e use the convention that the names of
the nodes in T respectively T' are denoted by n respectively m with or without subscripts.

A violation of the principal label restriction at an OR-node n is removed by
rearranging its descendants in the new type graph T'. Only the sons involved in the violation
are affected. More precisely a node n/j with lb(n/j) = OR and overlapping with other sons
of n, is replaced by its sons. Repeating this yields a situation where two sons overlap only
when they have the same label and they are both simple nodes or functor nodes. Nodes
with the same label are then merged. Or-nodes n/j which did not overlap are preserved and
this minimizes the loss of precision.

A functor node violating the depth restriction is added as an alternative to one of its
ancestors having that functor as one of its principal labels. The choice of the ancestor
affects the loss of precision. There is not always a unique best choice.

The function defined on the nodes in T' for Algorithm restrict (the concrete
counterpart of the function/n) is nd. Its value nd(m) is a set of nodes from T such that we
can roughly say that m corresponds to the "union" of ail the nodes in nd(m). The intended
denotation of anode min T' is given by ID-nd(m).

Definition 3.8.

ID-nd(m) = U ID(n)
nend(m)

For the necessary bookkeeping, a second set nfr(m) is associated with each node m
in T' with nfr(m) c nd(m). The set nfr(m) is a front of nodes in the set nd(m). We call them
nominees and require that they satisfy the condition:

Deriving Run Time Properties of Logic Programs l,y Means of Abstract Interpretation : Implementation

RigidTypes 33

Proposition 3.4:

If lb(m) = OR then U ID(n) = U ID(n) else njr(m) = 0 .
nelld(m) nenfr(m)

The algorithm uses some additional functions and procedures such as the boolean
function involved-overlap(m, n) defined for OR-nodes m. It retums true if m has a nominee
n which is an OR-node and which overlaps with another nominee of m.

Definition 3.9.
involved-overlap(m, n) iff

ne nfr(m) and lb(n) = OR and prlb(n) n kenfr~\{n) prlb(k):;: 0

The boolean function safe-anc(m, fn, mg) is defined for an unexpanded leaf m, a problem
dependent function/n and a safe node fig· It returns true if fig is an ancestor of m, if both
nodes have the same /n-value and if not all the nodes on the path from fig to the parent of
m are OR-nodes.

Definition 3.10.
safe-anc(m, fn, mg) iff

fig e ANC+(m) and fn(mg) = fn(m) and
3 mf e FDESC*(mg) n ANC+(m) : lb(mf):;: OR

The procedure ul-barc(m, mg) is defined for an unexpanded leaf manda safe node fig· It
changes the forward arc tom into a backward arc to mg.

Definition 3.11.
ul-barc(m, mg) =

sul f- sul \ {m},
the forward arc (mp, m) is replaced by a backward arc (mp, mg)

Algorithm 3.2.: T' = restrict(n)

lnitialization
T' is intialized with a root named mo
lb(mo) t- lb(n), sul t- {mo}, ssn t- 0 ,
if lb(n) = OR then nfr(ffi()) t- { n/1, ... , n/k} with k = outdegree(n)

else nfr(mo) t- 0,
nd(mo) t- { n} u nfr(mo)

Repeat
Select a m from sul and
1. If 3 mg e ssn: safe-anc(m, nd, mg) then ul-barc(m, mg)

% see Fig.3.4 %
2. else if (m is a simple node or a functor node with label f/o)

then sul f- sul \ {m}, ssn f- ssn u {m}

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

RigidTypes

3. else if lb(m) = OR % see Fig.3.5 %
then while 3 n e nfr(m) : involved-overlap(m, n)

do nfr(m) ~ nfr(m)\{n} u ({n/1, ... , n/k} \nd(m))
with k = outdegree(n)

nd(m) ~ nd(m) u {n/1, ... , n/k}
od

3.a. if 3 mg e ssn: safe-anc(m, nd, mg) then ul-barc(m, mg)
3.b. else for each ne nfr(m) : lb(n) = OR

do add anode m/i with lb(m/i) = OR as son to m,
nfr(m/i) ~ {n/1, .. . , n/k},
nd(m/i) ~ nfr(m/i) u { n}

od
for each label 1: (3 np e nfr(m): lb(np) = 1 and 1 '# OR)

34

do construct the set {np, ... , nq} c nfr(m) of ail the nodes with the
label 1,

od

add a node m/i with lb(m/i) = 1 as son to m,
nd(m/i) ~ { llp, ... , nq} , nfr(m/i) ~0

sul ~ sul \ {m} u { ... , m/i, ... }, ssn ~ ssn u {m}

4. else % lb(m) = f/k with k > 0 %
if (adding a functor node for f/k to thet path in T' from the root to m, violates the depth
restriction for f/k)

4.a. then % add m as an alternative to one of its predecessors %
4.a.1. if 3 mg E ssn:

(mg e ANC+(m) and lb(mg) = f/k and n/d(m) cnd(mg))
then ul-barc(m, mg)

4.a.2. else select a mg e ssn:
(mg e ANC+(m) and f/k e prlb(mg) and
3 mf e FDESC*(mg) n ANC+(m) : lb(mf) '# OR)

% this existence condition guarantees that m itself is not the cause of f/k e prlb(mg), In this

case nd(m) c nf(mg) is not necessarily valid and we preferably select mg with nd(m) n
nd(mg) as large as possible.%

sul ~ (Slli\FDESC+(mg)) u { Illg},
ssn ~ ssn \ FDESC*(mg),
% the nodes of FDESC+(mg) and their arcs are removed %
iflb(mg) = OR
then nfr(mg) ~ nfr(mg) u nd(m),

nd(mg) ~ nd(mg) u nd(m)
else lb(mg) ~ OR, nfr(mg) ~ nd(mg) u nd(m),

nd(mg) ~ nfr(mg)
% see Fig.3.6.a %

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation: Implementation

Rigid Types 35

4.b. Else % functor node m can be safely extended. See Fig.4.6.b and Fig. 4.6.c %
4.b.l. if nd(m) = {n}

then for i e [l, k]
do create a new unexpanded leaf m/i as ith son of m,

lb(m/i) f- lb(n/i)
od
if lb(n/i) = OR
then nfr(m/i) f- { (n/i)/1, ... , (n/i)/p}
else nfr(m/i) f- 0
nd(m/i) f- {n/i} u nfr(m/i)

4.b.2. else % assume nd(m) = {n1, ... , np} %
for i e [l, k]
do create a new unexpanded leaf m/i for the ith son of m,

if (3 je [l, p]: lb(nfi) = max)
then lb(m/i) f- max, nd(m/i) f- {n1/i, ... , npli}
else lb(m/i) f- OR, nfr(m/i) f- {n1/i, ... , npli},

nd(m/i) f- nfr(m/i)
od

sul f- (Sul\ {m}) u {m/1, ... , m/k}, ssn f- ssn u {m}
Until sul = 0
T' = compact(T')

With no the root of type graph T, we use restrict(T) as a synonym for restrict(Il()).
Note that a violation of the depth restriction can cause the creation of a backward arc.
Consequently, the Algorithm 3.2. can introduce recursive types. The principal functor
restriction enforces that the toplevel functor (principal label) of a given type is sufficient to
determine to which son of an OR-node it belongs.

The following figures visualize the non trivial steps of Algorithm 3.2. Note that we
still use the convention that node names starting with a n(m) refer to nodes in T(T'). If the
labels of the nodes are not relevant only the node names appear in the figures.

m
9 nd(m)=a

' g

m
9 nd(m)•a

' g
'

' T
-Step 1 ... ' T

m m
p p

l
m

nd(m)=a

Figure 3.4: Step 1 of Algorithm 3.2 .

In Fig.3.4 the forward arc to the unexpanded leaf mis changed into a backward arc
to mg if it does not create a cycle consisting of only OR-nodes.

Deriving Run Time Properties of Logic Programs l:,y Means of Abstract Interpretation : Jmplementation

Rigid Types 36

At the left-hand side in Fig.3.5 we represent a part of the original type graph,
narnely node n and some of its descendants. When the unexpanded leaf m is selected, nd(m)
and nfr(m) are known. As involved-overlap(n, n3) succeds, nd(m) and nfr(m) become

respectively {n, n1, n2, n3, n31, n32} and {n1, n2, n31, n32}. Step 3.b adds sons tom for
the labels a/0, b/0 and f/1 if there does not exist an ancestor mg of m such that safe-anc(m,
nd, mg) is true.

nt

a/0 b/0

n31 n32

a/0 f/1

m

m1 m2
a/0

nd(m)={n,n1 ,n2,n3}

nfr(m)={n1 ,n2,n3}

l Step 3

nd(m)={n,n1 ,n2,n3,n31,n32}

m3
b/0 f/1

nd(m 1)={n 1, n31} nd(m2)={n2} nd(m3)={n32}

Figure 3.5: Step 3 of Algorithm 3.2.

Suppose that the functor node min Fig.3.6.a violates the depth restriction for f/k.
Step 3.a.2 selects a ancestor mg that has f/k as a principal label and the path from mg to the
parent of m does not consist of only OR-nodes. Ail the forward descendants of mg and
their arcs are removed. Finally mg becomes an OR-node if it was not already one.
Fig.3.6.b and Fig.3.6.c illustrate step 4.b.l respectively 4.b.2. The functor node m becomes
a safe node as it can be extended without violation of the depth restriction for the functor
f/k. Whether nd(m) contains one or more nodes, gives rise to different situations.

The computation of the restricted type graph corresponding to T9 of Fig.3.3 is
illustrated by Fig.3.7. The type graph is initialized with the node mo- Step 3 adds m1 and
m2 and step 2 makes a safe node of m 1 · The node m2 does not violate the principal functor
restriction, so step 4.b.2 adds m3 and ffi4· Tuen step 3 adds two nodes m5 and ffi6· Now
the depth restriction is violated by ffi6, so we apply step 4.a.2 with m2 as ancestor mg. At
this point ssn = {mo, mi} and sul = {mû, so m2 is selected. The rest of the computation
is straightforward. Note that when dealing with node m9 step 3 adds a node m12 with
lb(m12) = ./2 and nd(m12) = {n7}. Now, the violation of the depth restriction is resolved
by step 4.a.1 and a backward arc (m9, m7) is added as nd(m12) c nd(m7) .

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

Rigid Types

n f/2

n2

m

m
p

l
m nd(m)=a
' g g

• f/k nd(m)=~

-Step4.a~

37

nd(m)=av~
g

3.6.a. Step 4.a.2: m is added as an alternative to one of its predecessors.

n f/2

n2 n1

3.6.b. Step 4.b.1: nd(m) contains one functor node which can safely be added.

n f/2 m f/2 nd(m)={n1 ,n2}

n1 n2 n1
i Step4.b.2

m
f/2

~
m1 m2

nd(m1)={n11,n21} nd(m2)={n12,n22}

3.6.c. Step 4.b.2: nd(m) contains two functor nodes which can safely be added.

Figure 3.6: Step 4 of Algorithm 3.2.

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

RigùlTypes 38

mO OR nd(m0)={n0,n1 ,n2,n3} mo OR nd(m0)={n0,n1 ,n2,n3}

m1 nil/0 m2 ./2 nd(m2)={n2,n3} m1 nil/0

nd(m4)={n5,n7} m7 ./2 nd(m7)={n2,n3,n7}

ms nil/0 m6 ./2 nd(m6)={n7}

4.7.a. m6 violates the depth restriction

m10 lnt m11 nil/0

4.7.b. restrict(T9).

Figure 3.7: Algorithm 3.2: restrict(T9)

Next, we prove the correctness and the termination of algorithm 3.2. With respect
to the correctness, we will show that ID(T') :::> ID(n), but first we prove the following
proposition.

Proposition 3.5.:

"i/ m E ssn :
if lb(m) = OR then "i/ te ID-nd(m) 3 i : te ID-nd(mli) (1)
else if(lb(m) =f/kand k > 0)
then "i/ /(tJ, ... , tk) e ID-nd(m) : ("i/ i e[l, k]: ti e ID-nd(mli)) (2)
else ID(m) = ID-nd(m) % simple nodes and 0-ary functor nodes %
(3)

Proposition 3.6.: The Algorithm 3.2. constructs the restricted type graph T' such that
ID(T') :::> ID-nd(mo) => ID(n).

Proposition 3.7.: The Algorithm restrict terminates.

Definition 3.12.
A partially-ordered set (F, <) is said to be well-founded if there is no infinite increasing
sequence of elements f 1 < f 2 < ... from the set F.

Theorem 3.1.: The Algorithm 3.2 terminates if there exists a well-founded set (F, <) and
a function 't : S-r ➔ F (called the termination function) such that if T'i+l is the

intermediate state that follows immediately on T'i then 't (T'i) < 't (T'i+[) ·

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

RigidTypes 39

3.2. Operations on normal type graphs

The normal type graphs will be used as a component of the abstract domains
defined in Chapter 4. The framework imposes an algebraic structure on the abstract
domain. In this section, some of those requirements are shown to be satisfied by the normal
type graphs. From now on, we assume the type graphs to be normal.

3.2.1. Containments

We want to compare the denotation of two nodes in the same or two different type
graphs. The call $ (n, m, 0) of Algorithm 3.3. compares ID(n) with ID(m) and returns truc
iff ID(n) c ID(m).

Algorithm 3.3 : $ (n, m, SC)

1. if (n, rn) e se then truc
2. else if lb(rn) = max then truc
3. else if (lb(n) = lb(rn) = f/k and k > 0)

then 'r;/ i e [l, k]: $ (n/i, m/i, se u {(n, m)})
4. else if (lb(n) = lb(rn) = OR with k = outdegree(n))

then 'r;/ i E [l, k]: $ (n/i, rn, se u {(n, rn)})

5. else if (lb(rn) = OR and 3 ffid e prnd(rn) : lb(rnd) = lb(n))
then $ (n, md, se u { (n, rn)})

6. else lb(n) = lb(m)

An example is found in Fig.3.8.

nil/0 ./2 nil/0

lnt

Type graph List

lnt

Type graph T1 O

Figure 3.8: Algorithm 3.3: T10 $ List succeeds

./2

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

Rigid Types 40

Proposition 3.9: If a cal/$ (ni, mj, 0) returns true and initiated a cal/$ (np, mq, SJ)
which returns true due to step 1 of the algorithm, then it also initiated a cal/$ (np, mq,

So) with Soc (S J \ { (np, mq)}).

Proposition 3.10: $ (n , m, 0) if! ID(n) c ID(m) (Correctness of$).

Proposition 3.11: Tm := maxis the maximal type graph.

3.2.2. Equivalence

The equality of the denotations of the nodes n and m is eomputed by the eall = (n,

m, 0) whieh returns true iff ID(n) = ID(m).

Algorithm 3.4: = (n, m, SC)

1. if (n, m) e se then true
2. else if (lb(n) = lb(m) = f/k and k > 0)

then "i/ i e D, k]: = (n/i, m/i, se u {(n, m)})
3. else if (lb(n) = lb(m) = OR)

then if prnd(n) = prnd(m)
then "i/ nie pmd(n) "i/ mj e pmd(m) : if lb(ni) = lb(mj)

then = (ni, mj, se u { (n, m)})
else false

4. else lb(n) = lb(nm)

Figure 3.9 gives an example.

f/1

l

Type graph T11

f/1

l

a/0 b/0 f/1

Type graph T12

Figure 3.9: Algorithm 3.4.: TJJ = T12 succeds

Proposition 3.12: If a cal/= (ni, mj, 0) returns true and intitiated a call = (np, mq, S J)

which returns true due to step 1 of the algorithm, then it also initiated a cal/ = (np, mq,

So) with Soc (S J \ { (np, mq)}).

Propostion 3.13: (Correctness of=) = (n, m, 0) if! ID(n) = ID(m).

Deriving Run Time Properties of Logic Programs b-y Means of Abstract Interpretation : Implementation

RigidTypes 41

3.2.3. Intersection

This operation computes a type graph T 12 which is the intersection of the type
graphs with roots n1 and n2, in the sense that its denotation contains only those terms
which belong to ID(ni) and to ID(n2). Note that n1 and n2 rnay actually belong to the
same type graph. The structure of the Algorithm 3.5 is similar to Algorithm 3.2. The given
graph(s) is(are) left unchanged and the nodes of the type graph T12 under construction are
either safe nodes (e ssn) or unexpanded leaves (e sul). Anode 1 of T12 has an associated

function is. Its value, is(I), is a subset of DESC*(ni) u DESC\n2). In fact, is(l) always
contains one or two nodes.

Definition 3.14.

ID-is(l) = Î'I ID(n)
neis(I)

Proposition 3.14:
ID-is(l) =

if(\::/ ne is(l): lb(n) = max) then Smax

else n ID(n) with ris(!)= {n In e is(l) and lb(n) '#max}
neris(/)

Algorithm 3.5: T12 = intersection(Ti, Tz)

Let no and mo be the roots of respectively Ti and T2.

Initialization
T 12 is initialized with a root node Io.
is(lo) ~ {no, mo}, ssn ~ 0, sul ~ {lo}

repeat
Select a 1 from sul and let ris(/) be the set {n In e is(l) and lb(n) '# max}
1. if 3 lg e ssn : safe-anc(l, is, lg) then ul-barc(l, lg)
2. else if ris(l) = 0 % is(l) contains only max-nodes %

then lb(l) ~ max, sul ~ sul \ {l}, ssn ~ ssn u {l}

3. else if 't/ ne ris(l) : lb(n) = OR
then lb(l) ~ OR, sul ~ sul \ {l}, ssn ~ ssn u {l},

% suppose m e ris(l) %

for i e [l, k] with k = outdegree(m)
do create an unexpanded leaf 1/i for the ith son of 1,

is(l/i) ~ {rn/i} u (ris(l) \ {m})
od
sul ~ sul u {I/1, ... , I/k}

4. else % 3 n e ris(l) : lb(n) = f/k or lb(n) = Int, Real, ... %
if 't/ me ris(l) \ {n} : (3 md e pmd(m): lb(md) = lb(n))
then lb(l) ~ lb(n), sul ~ sul \ {1}, ssn ~ ssn u {l},

Deriving Run Time Properties of Logic Programs by Means of Abstract lnterpretation : Implementation

RigidTypes

if (lb(n) = f/k and k > 0)
then Smd f- {ma I me ris(l) \ {n} and

ma e pmd(m) and lb(ffid) = lb(n)}
for i e [l, k]
do create an unexpanded leaf 1/i for the ith son of 1,

is(l/i) f- { n/i} u { m/i I m e Smd}
od
sui f- sui u {l/1, ... , 1/k}

else lb(l) f- ..L, sul f- sul \ {l}, ssn f- ssn u{l}

until sul = 0
T12 = compact (T12)
% T 12 is normal as the principal functor restriction cannot be violated. %

Example
T 4 = intersection (T 3, T 4)
T10 = intersection (T10, T3)

42

Next, we give the correctness and the termination proof for Algorithrn 3.5, which
are very similar to the proofs for Algorithm 3 .2.

Proposition 3.15:
V m E ssn;

if(lb(m) = OR) then V te lD-is(m) 3 i: te lD-is(mli) (1)
else if(lb(m) =f/kand k > 0)
then V f(tJ, ... , tk) e lD-is(m) : (Vie [l, k] : ti e lD-is(mli)) (2)
else lD(m) = lD-is(m) % simple nodes and 0-ary functor nodes % (3)

Proposition 3.16:
IJT12 = intersection (n1 , n2) then (te lD(T12) iff te lD(n1) and te ID(n2)).

Proposition 3.17:
The Algorithm intersection terminates.

Lemma 3.4: (F, <) is a wellfounded set.

3.2.4. Backward unification

During abstract interpretation it is possible that the denotation of the abstract
success-substitution ~r of a call contains elements that are not instances of elements in the

denotation of the abstract call-substitution ~i- The cause of this can be the use of Algorithm
3.2 for the computation of restricted types or the occurrence of a recursive call whose
success-substitution is an upper bourid. Sorne of these superfluous elements can be
eliminated from ~r by bacward unification between ~r and ~i-
The core of the operation is the backward unification between the normal type T r of a
variable in ~r and its normal type Ti in ~f T n = btunif (Ti, T r) such that ID(T n) = { tr e
ID(Tr) 1 3 ti e ID(Ti) 3 cr: ti cr= tr}.

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

Rigid Types 43

Proposition 3.18: {tr e ID(Tr) 1 3 ti e ID(Tj) 3 CJ : ti a = tr} = {t e ID(Tr) 1 t e
ID(Ti)J

Note that the latter set in Proposition 3.18 is just the denotation computed by intersection
(Ti, Tr).

Algorithm 3.6: T n = btunif(Ti, T r) = intersection (Ti, T r)

Proposition 3.19: Every determinate selector s in Ti either exists in btunif(Ti, Tr) or
btunif(Ti, Tr) = ..L.

Fig.3.10 shows an example ofbackward unification. The nodes in Tn are adomed with their
is-values. Step 1 of Algorithm intersection only creates a backward arc if there exists a safe
ancestor with the same is-value as the unexpanded leaf at hand. But nodes with different is
values might have the same denotation. In this example we see that this is true for the
nodes with is-values {1, 4} and {6}, and with is-values {3, 4} and {4}.

lnt

12 1

max

Type graph Tl

5
niVO

7
lnt

Type graph Tr

12 {1,4}

lnt {2,7}

niVO {5}

niVO {5}

Type graph Tn

Figure 3.10: Example of backward unification: Tn = btunif(Tï, Tr)

3.3 Expressive power of the type graphs

A rigid type is defined by a type graph describing a set of values. Due to the
imposed restrictions (the principal label restriction and the depth restriction) it is not always
possible to construct for a given set of values S, a type graph that has exactly S as its
denotation: a type graph has to be used whose denotation is an overestimation of S.

The principal label restriction does not allow alternatives at an OR-node with the
same principal label and roughly said, it forces those alternatives to be assembled in one
son:
e.g. T = normalize(f(a, b) 1 f(c, d)) with T := f(a I c, b Id).

Deriving Run Time Properties of Logic Programs by Means of Abstract lnterpretation : Implementation

RigidTypes 44

The loss of precision is acceptable as we still have information about the functor f/2
and its arguments. We do not longer have the information that if the first argument is a "a",
then the second one is known to be a "c". This could be used during code generation to
avoid unification at run rime.

For the finiteness of the domain we have to impose the depth restriction on the type
graphs. The choice of the depth constant for f/k is based on FDepth(f/k, t) with t the terms
in the source text. This choice can be done for the whole program (taking into account the
minimal value that differs from zero) or for each predicate separately which allows finer
granularity. At the one hand, the expressiveness of the type graphs is limited: e.g. if the
depth constant for functor ./2 is one, then Listone = restrict(OddList) with OddList := .(lnt,
nil 1 .(Int, OddList)) and ID(Listüne) :::> ID(OddList). We encourage the reader to work out
the computation of restrict(OddList).
At the other hand, the depth restriction introduces recursive types without any interaction
with the user. The recursive types are indispensable for the detection of identical call-and
success-substitutions.

3.4. Summary

In this chapter type graphs are introduced in order to describe sets of terms. From
syntactic point of vue, type graphs are a special kind of graphs. They are rooted trees to
which a special kind of arcs (backward arcs) is added in order to deal with recursive types.
Furthermore, a label is associated with each node in the type graph. The structure of the
type graph T together with the labels of its nodes determine the denotation of a node n in
T, ID(n), which specifies the set of terms represented by n in T. The denotation defines the
semantics of the type graphs. The rigid types, a synonym for the type graphs in this chapter,
have the appropriate expressive power to be included in an abstract domain aimed at
describing sets of values of variables. As the framework requires the abstract domain to
have a certain algebraic structure and as the type graphs are intended to become a
component of it, structural restrictions are imposed on the type graphs, thereby increasing
the efficiency of operations on the type graphs, such as Ti s; T2 and Ti = T2. The
operations are defined because they are needed to show that the abstract domain has the
required properties.

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

Chapter4
Abstract domain based upon rigid types

4.1. Definition of abstract substitutions

The aim of abstract interpretation is to compute for each program point an abstract
substitution that is a correct approximation of the concrete substitution occurring at run
time. A straightforward approach is to let an abstract substitution associate with each
variable the set of values to which the variable possibly gets bound during the execution of
the program. This is similar to the association of a single value to each variable in the
concrete substitutions. The type graphs defined in the previous chapter are used to
describe such sets of possible bindings. The main difference with the abstract domain based
upon integrated types lays in the treatment of program variables that are still free or bound
to partially instantiated values. In this version we approximate all the free values by the set
of all possible terms (Smax). This approach justifies the term rigid introduced in Chapter 3.

The concrete substitutions also contains information about dependencies between
values of program variables. If the abstract substitution would not include any information
about such dependencies, the result of the abstract interpretation would still be valid but it
would be a very imprecise approximation. Consider the case where X and Y are two
variables whose possible bindings are given by the respective type graphs T x and T y· After
the unification of X and Y, we know that X and Y have the same value. The abstract
interpretation computes a set of possible bindings for the values of X and Y after
unification. This set is given by the "unifying" type graph Tu which is associated with X and
Y. The fact that X and Y have the same value implies that the same term should be selected
for X and Y from ID(T u) when considering the concrete substitutions approximated by the
abstract substitution. Therefore we explicitly keep track in our abstract substitutions for
which terms or subterms of the variables are identical in the concrete substitutions. This
additional information substantially improves the precision of the abstract interpretation.
The information is also useful for dealing with the explicit unifications in our normalized
program (the arguments of the heads and the calls have to be variables). These explicit
unifications create in fact the same kind of dependencies between values. In this case, the
repeat previous call strategy [2] and [15] is an alternative solution to improve the precision.

Before formally defining abstract substitutions, we introduce some additional
notational conventions.

Abstract domain based upon rigid types 46

In the concrete substitution {X f- t, Y f- Y, ... }, we call t the value of X and Y f
y represents the unbound variable Y. A substitution 0 over some domain D is a
substitution with dom(S) = D.

We introduce a notation to select nodes in a type graph.

Definition 4.1.
Let n be a node in the type graph.
n/e selects the node n itself.

n/(f 1 / k1, i 1). · · · .(fp _ 1 / kp _ 1, ip _ i).(fplkp, ip)
"hl<" <k 1<· <k Wlt _ 11 _ 1, · · · , - lp - p

selects the i; son of the principal node with label f plkp of the node

n/(f1/k1, ii). ··· .(fp-lfkp-1, ip_i).

We call e and (f1/k1, i1). · · · .(fp-lfkp-1, Îp-1).(fplkp, ip) selectors. If there are no

OR-nodes on the path between n and the selected node, the selector (f1/k1, i1). · · · .(fp-

1/kp-l, ip_i).(fplkp, ip) can be abbreviated by i1 ... · .ip. The selector is said to be
determinate. If there are OR-nodes on the path, the selector is said to be non-determinate
and the full selector is required. To select a subterrn in a specific terrn t the abbreviated
selector is sufficient, e.g. with t the terrn f(g(a, b)), t/1.2 selects b. We only use selectors
that are well defined for each step in the selection: there always exists an appropriate
principal node or terrn to be selected. Selectors are denoted by the letters s and p possibly
with a superscript or a subscript.

Definition 4.2.

t/ s1, s2 two selectors: s1 . s2 is the concatenation of the selectors s1 and s2

s 1 and s2 overlap iff s 1 extends s2 or s2 extends s 1

Example

According to Definition 4.2, the selector (f/2,2) . (g/3, 1) . (h/1,1) extends the selector
(f/2,2) with s3 = (g/3,1). (h/1,1). Similarly, (f/2,1) extends e with s3 = (f/2,1). The overlap
property is a generalization of extend in the sense that it is no longer important which of the
selectors extends the other: (f/2,1) and e overlap, and also (f/2,2) and (f/2,2) . (g/3,1) .
(h/1,1) overlap.

We also introduce some notation conceming the substitutions. T x denotes the type

graph associated with X by an abstract substitution. We use the symbol n~ for the root of a

type graph T x· ID(T x) is a synonym of ID(n~). In a concrete substitution, terrns are
associated with variables belonging to its domain. X/s denotes the subterrn t of the value of

X such that te ID(n~ /s). Note that in the latter case, s might need to be a non-determinate

Deriving Run Time Properties of Logic Programs l7y Means of Abstract Interpretation : Implementation

Abstract domain based upon rigid types 47

selector. If confusion is possible between types of X at different prograrn points, we use

T~ and n~Jll with 13 the abstract substitution at the prograrn point. Similarly X0/s explicitly

refers to the subterm of the value of X in the concrete substitution 0.

Definition 4.3.
An abstract substitution 13 over a domain D = {X, Y, ... } is either .l or a pair (type, sval).

The TYPE-component, type, associates a normal rigid type graph with each variables in the
domain D and is selected by TYPE(l3).
TYPE(l3) ={X~ Tx IXe D and Tx is a non-empty normal rigid type graph}

The SV AL-component, sval, is a set of SV AL-constraints and is selected by SV AL(l3).
SV AL is an acronym of Sarne V ALue. A SV AL-constraint has the form {X/sx, Y /sy} with

sx and sy determinate selectors in respectively T~ and T~ and it expresses the fact that

X0/sx = Y0/sy must hold in any concrete substitution 0 represented by l3. {Xis 1, X/s2} is
possible but then s1 -:/:- s2.

By convention an abstract substitution 13 is denoted by .l, if at least one of the types T~ is a

.l-node.

Definition 4.4.
AD is the set of all abstract substitutions over domain D.

Definition 4.5.
{X/sx, Y/sy} is less restrictive than {X/Px, Yipy} iff

3 s : sx = Px·S and sy = Py·s and s -:t- e

4.2. Denotation of an abstract substitution

The denotation of the abstract substitution 13 is defined by the concretization
function 'Y which maps 13 into a set 0 of concrete substitutions in which each variable is
bound to a value belonging to the denotation of its associated type graph and in which the
dependencies between the values specified by the SV AL-component are satisfied.

Definition 4.6.
't/ 13 e Ao : -y(l3) = if 13 = .l then 0

else { {X ~ tx} 1 X e D} 1

tx e ID(T~) and

if {X/sx, Y/sy} e SVAL(l3) then X0/sx = Y0/sy}

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Jmplementation

Abstract domain based upon rigid types 48

4.3. Normal abstract substitutions

There are many SV AL-components that yield the same y(l3). One of the reasons is
that equality is a transitive relation, so, if for example {X/sx, Y/sy} and {Y/sy, Z/sz} belong

to SV AL(f3), then X0/sx = Z0/sz with 0 e y(f3). Adding {X/sx, Z/sz} to SV AL(f3) will not

modify y(f3). Also, X/sx, Y/sy implies that X/sx . s = Y/sy .s. It is desirable to have the
SV AL-component in a form where constraints between any pair of variables are at the
same time explicit and minimal, and to have the TYPE component in a form that is
compatible with the SV AL-component, in the sense that

if {X/sx, Y/sy} e SV AL(l3) then n;~ /sx = n~~ /sy.

The Algorithm 4.2 establishes this, but first we give the Algorithm replace(T, Sn, T')
that leaves the terms t in the denotation of the type graph T unchanged, except for the
subterms t/sn which are replaced by a term from ID(T'). Let no be the root of T and let sn
and Sm be non-overlapping selectors. The existence of backward arcs makes it possible that
ID(no;sm) depends on ID(no/sn). As only the subterms t/sn are allowed to be changed,
precautions have to be taken to preserve ID(no/sm).

Algorithm 4.1: T new = replace(T, sn, T') with sn a determinate selector

Let no be the root of the type graph T, n be the node no/sn and mo be the root of T'.
The type graphs T and T' are assumed to be normal.

if sn = e then Tnew = T'
else

1.

2.

3.
4.

for each p e ANC+(n)

do if 3 backward arc (k, p) and k e: FDESC+(n)
then T" = construct(p) and the backward arc (k, p) is changed

into (k, nT) with nT the root of T"
od
V p e FDESC*(n)
do remove node p and ail the arcs (k, p) and (p, 1)
od
(np, n) is replaced by (np, mo)
T new = compact(T)

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

Abstract domain based upon rigid types 49

t/3

nil/0

nil/0 nil/0 nil/0

Type graph T

lnt

Type graph Tnew

Figure 4.1: T new = replace(T, 1, nif)

Example
Tnew = replace(T, 1, nil) with the type graphs given by Fig.4.1. Note that the depth
restriction might be violated by T new·

Proposition 4.1: The Algorithm replace(T, Sn, T') constructs a normal type graph T new

such that for each term te ID(T), there exists a term t' e ID(T new) that is identical to t,
exceptfor the subterm tlsn which is replaced by a termfrom ID(T').

Algorithm 4.2: ~n = normalize(~)

Initially ~n equals ~-
Perform one of the following transformation steps on ~n until no step is applicable:

Rl if({X/sx, Y/sy}, {X/sx. s, Z/sz} e SVAL(~n) and

nt /sx = nt fsy and n~ /sx. s = n~ /sz and
not (3{Y /J>y, Z/pz} e SV AL(~n) 3 p : Py . p = Sy . s, Pz . p = Sz))

then {Y /sy . s, Z/sz} is added to SV AL(~n)

R2 if (lb(n~ /sx) = lb(nt /sy) = f/k and

t/ i e [l, k]: {X/sx. i, Y/sy. i} e SV AL(~n) and n~ /sx . i = nt fsy. i)

then {X/sx, Y /sy} is added to SV AL(~n)

R3 if ({X/sx, Y /sy} , {X/sx . s, Y /sy . s} e SV AL(~n) and s -:t: e)
then the latter element is removed from SV ALB(~n)

R4 if ({X/sx, X/sx . s} e SV AL(~n) and s -:t- e) then ~n becomes .l

R5 if ({X/sx, Y /sy} e SV AL(~n) and

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

Abstract domain based upon rigid types

(if X = Y then sx and sy do not overlap) and not (n~ /sx = n t /sy))

then T = intersection(n~ /sx, nt /sy) and

T~" = replace(T~" s T) and T~" = replace(T~" s T)
X X ' X• y y ' y,

and if (lb(T!") = ..L or lb(T~") = ..L) then 13n becomes ..L

50

Observe that R5 establishes the compatibility between the SV AL- and the TYPE
component, whereas rules Rl and R2 only make implicit SV AL-constraints explicit if the
existing SV AL-constraints are compatible with the TYPE-component.

Example
TYPE(~)= {X f-Tx, Y f-Ty} with Tx := f(alb,alc) and Ty := g(alb, Int)
SVAL(~) = {{X/1, Y/1} , {X/1, X/2}}
Initially, ~n is equal to ~-

First {X/1, X/2} causes the application of R5 as n~ /1 = n~ /2 does not hold in ~n· The

result of intersection(n~ /1, n~ /2) is the type graph T:=a. After the calls to replace, T!" :=
f(a, a).

Now also {X/1, Y/1} activates R5 as n~ /1 = nt /1 does not hold in ~n- The intersection is

the type graph T:= a and T~" becomes g(a, Int).

Finally Rl detects that also its type conditions are fulfilled and {X/2, Y /1} is added to
SV AL(~0). Thus, ~n = normalize(~) is given by:
TYPE(~0) = {X f- T'x, Y f- T'y} with T'x := f(a, a) and T'y := g(a, Int)
SV AL(~n) = { {X/1 , Y /1}, {X/1, X/2}, {X/2, Y /1}}

The implementation of Algorithm normalize is organized as follows. We first check
whether no explicit circularities exist, if so ~n becomes ..L. Tuen, we force compatibility
between the types and the SV AL-constraints in ~ by R5 . From now on, we only have to
take into account Rl to R4 without the conditions imposed on the types, because the
compatibility exists not only for the explicit SV AL-constraints (in SV AL(~)), but also for
the implicit ones (still to be added), due to the transitivity of the equality relation. We work
with two sets of SV AL-constraints: svnew, initially equal to SVAL(~), and safe, initially
the empty set. We move constraints from svnew to safe while we preserve for safe the
invariant that R3 nor R4 are applicable on constraints in safe and that the application or Rl
or R2 on constraints in safe does not change safe u svnew. Note that removing a constraint
from safe does not violate the invariant. So, eventually, ~n becomes ..L, or svnew becomes
empty and safe is the set of of SV AL-constraints in its explicit and minimal form
compatible with the types.

Applying rules Rl, R2, R3, R4 and R5 yields the normal form for the abstract
substitution. However, it is not a unique form: type graphs do not have a unique form,
moreover abstract substitutions that differ only in SV AL(~), can have the same 'Y(~).

Consider for example a type T with #1D(T) = 1 and TYPE(~)= {X f- T, Y f- T} . The
presence of {X/e, Y/e} in SV AL(~) does not affect 'Y(~). From now on we assume that
abstract substitutions are in normal form.

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

Abstract domain based upon rigid types

We give some examples of abstract substitutions over the domain {X, Y}.

1. TYPE(l31) ={X~ Tx, Y~ Ty} with Tx := f(alb, ale) and Ty := g(alb, lnt)

SV AL(l31) = 0

51

Although the SV AL-component enforces no dependencies between the values of X
and Y, X and Y may have identical subterrns:
81 ={X~ f(a, a), Y~ g(b, 3)} e "((131)

82 ={X~ f(a, a), Y~ g(a, 3 } e "((131)

83 ={X~ f(a, c), Y~ g(a, 3 } e -y(131)

2. TYPE(i32) = TYPE(l3i) and SV AL(i32) = { {X/1, Y /1}}
The SV AL-component enforces the first arguments of the values of X and Y to be
identical, thus -y(l32) c ')'(l3i).

82 and 83 e ')'(132), but 81 E ')'(132) .

3. TYPE(l33) = TYPE(l31) and SV AL(l33) = { {X/1 , Y/1}, {X/1, X/2}}

13'3 = normalize l33 as is computed in the previous example.
TYPE(j3'3) ={X~ T'x, Y~ T'y} with T'x := f(a, a) and T'y:= g(a, lnt)

SVAL(j3'3) = {{X/1, Y/1}, {X/1, X/2}, {X/2, Y/1}}

Now 82 e -y(l33) = -y(j3'3), but 83 e -y(j3'3).
We can avoid to introduce type name for non recursive types that occur only once such as
T x, T y, T'x and T'y in the examples above by replacing the type names in the abstract
substitution by the right-hand side of their context free grammar.
For example, TYPE(j3'3) = {X~ f(a, a), Y ~ g(a, lnt)}.

4.4. Ope rations on abstract substitutions in normal form.

In this section we define and verify the algebraic structure imposed by the
framework, for the abstract domain of normal abstract substitutions.

Definition 4.7.
AN= {13 1 P e Ao and 13 is in normal forrn}

4.4.1. Containment

We need an order relation :s; between abstract substitutions over the same domain D

with the following property: if P :s; 8 then -y(l3) c -y(8).

Deriving Run Time Properties of Logic Programs by M eans of Abstract I nterpretation : Implementation

Abstract domain based upon rigid types

Definition 4.8.
'v 13, o e AN:

13~oiff

P = .l or

'v Xe D:

T~ ~T 6 and
)C)C

'v {X/sx, Y/sy} e SVAL(o) 3 {X/Px, Y/py} e SVAL(P) 3 s:

Sx = Px . s and sy = Py . s

Proposition 4.3: 'v 13, o e AN: 13 ~ o ⇒ -y(l3) c -y(o).

Proposition 4.4.: Pmax = ({X~ max IXe D}, 0) is the maximal element of AN.

4.4.2. Equivalence

Definition 4.9.
'v 13, o e AN: 13 = o iff 13 ~ o and o ~ 13

Proposition 4.5: 'v 13, o e AN: P = o ⇒ -y(l3) = -y(o) .

52

Notice that the equivalence classes defined by = are not singletons because the equivalence

classes over the types are not ~ is a partial order over the equivalence classes defined by =·

4.4.3. The upper bound operation

Definition 4.10.
'v 131, 132 e AN:

upp(P 1, 132) =

TYPE(o) =

if 131 = .l then 132
else if 132 = .l then 131
else o with

{X ~ normalize(nx) 1 X e D and
nx is an OR-node with two outgoing forward arcs:

one of the root ofT!1 and one to the root of T!2
}

SV AL(o) = { {X/sx, Y/sy} 1

Pp, 13s e {131 , 132} and Pp~ 13s and
3 {X/sx, Y /sy} e SV AL(Ps) 3 {X/px, Y f Py} e SV AL(Pp) 3 s :

Sx = Px . s and sy = Py . s and

sx respectively sy are determinate selectors in T~ respectively T~}

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

Abstract domain based upon rigid types 53

y(ô) includes ail concrete substitutions of P1 and P2- ID(T~) is a superset of the union of

ID(T!1
) and ID(T!2

). Consequently, the selectors appearing in SV AL(P1) ans SVAL(P2)

are still defined in ô, although they might be non-determinate. The restrictions conceming
identical (sub)terms are imposed by the SV AL-constraints and still hold in ô if they exist in

P1 and in P2- If P1 (P2) contains a less restrictive constraint than P2(Pi), then the one in the
former occurs in ô too. Furthermore, the SV AL-constraint must have determinate selectors

in T~ and in Tt by Definition 4.3.

Proposition 4.6:
V P1, P2 e AN: 3 upp(P1 , P2) e AN ⇒ upp(P1, P2) ~ P1 and upp(P1, P2) ~ P2-

Proposition 4.7:
V P 1, P2 e AN: P 1, P2 are in normal form, ⇒ ô = upp(P 1, P2) is also in normal form.

4.4.4 A finite subdomain

We have an infinite number of normal types, so obviously, we also have an infinite
number of different abstract substitutions over the same domain. To obtain a finite
subdomain, we impose the depth restriction on the functors. R is the operation
transforming an abstract substitution to a depth restricted abstract substitution. ô = R(P) is
defined as follows:

Definition 4.11.
V P e AN: R(P) = if P = .l then .l

else ô with

TYPE(ô) = {X~ restrict(T!) 1 X e D}

SVAL(ô) = {{X/sx, Y/sy} 1

{X/sx, Y/sy} e SVAL(P) and

sx and sy are determinate select ors in respectively T ~ and Tt

and n xli /s = n yli /s }
0 x- 0 y

Note that SV AL-constraints are certainly removed when sx or sy violates the depth bound

for a functor because the path is now circular in ô and contains at least one OR-node
(Proposition 3.3). Note that R5 of Algorithm 4.2 cannot be used to force compatibility
between the types and the SV AL-constraint in ô as is illustrated by the first example
bellow.

Proposition 4.8: V P e AN: P ~ R(P) ⇒ R(P) is in normal form.

Proposition 4.9: The number of = equivalence classes of depth restricted abstract
substitutions over a finite domain D for a fmite set of functors is finite .

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

Abstract domain based upon rigid types

Examples
1. TYPE(P) ={X~ .(To,. (T1, nil)), Y ~ To}

SV AL(P) = { {X /(./2, 1), Y/ e}}

54

With T o and T 1 rigid types with non-overlapping sets of principal functors and with

1 as depth bound of ./2, the computation of R(P) first calls restrict(T~) which
results in T3 := . (to I T1, nil I T3). The SVAL-constraint is dropped because
T3/(./2, 1) = To / e does not hold. Thus 8 = R(P) is given by:
TYPE(<>) = {X~ T 3, Y P To} and SVAL(ô) = 0
If we would retain {X /(../2, 1), Y/ e} in SV AL(ô), then R5 in <>n = normalize(ô)
could force compatibility between the SV AL-constraint and the types. However,

this operation is not valid as T~ := .(To, nil I T3). T~ again violates the depth

restriction for ./2 and T3 = restrict(T~).
2. Let List and ListOne be the types defined in section 3.1.2 and consider the abstract

substitution p, defined as follows:
TYPE(P) ={X~ . (Int, ni11 .(Int, nil)), Y~ List, Z ~ LisOne}
SVAL(P) = { {X/(./2, 1), Z/(./2, 1)}}
ô = R(P) with 1 for the depth bound of ./2
TYPE(<>)= {X~ ListOne, Y~ List, Z ~ ListOne}
SV AL(ô) = {{X/(./2, 1), Z/(./2, 1)}}

4.4.5 Backward unification

Backward unification between Pi and Pr enables us to eliminate some of the
superfluous concrete substitutions from y(Pr) with Pi the abstract call-substitution and Pr
the abstract success substitution.

Definition 4.12.

t/ Pi, Pr E AN:
bunif(Pi, Pr)= if <Pi= .l or Pr= .l) then .l

else normalize(Pn) with

TYPE(Pn) ={X~ btunif(T~;, T ~r) 1 XE D}

SV AL(Pn) = SV AL(Pr) u SV AL(Pi)

Proposition 4.10:
If 3 Sr e y(Pr) 3 Sie y(Pi) 3 cr : Si cr= Sr then Sr e y(bunif(Pi, Pr)).

Examples

1. Given ~in and ~r :

TYPE(Pin) = {X~ T~ } with T ~ := f(max) and SVAL(Pin) = 0

TYPE(Pr) ={X~ T: } with T : := a I f(T :) and SVAL(Pr) = 0

Pn = bunif(Pin, Pr) with

TYPE Pn = {X~ T: } with T ! := f(a I T !) and SV AL(Pin) = 0

Deriving Run Time Properties of Logic Programs t,y Means of Abstract Interpretation : Implementation

Abstract domain based upon rigid types

2. Given ~in and ~r :
TYPE(~in) = {X f-- List, Y f--Ty, Z f-- max} with Ty := .(Int, .(Int, nil))
and SV AL(~in) = 0
TYPE(~r) = {X f-- List, Y f-- Listüne, Z f-- Listüne} and SV AL(~r) = 0

~n = bunif(~in, ~r) with
TYPE(~n) = {X f-- List, Y f-- T y, Z f-- Listüne} and SV AL(~n) = 0

4.5 Summary

55

An abstract substitution ~ describes a set of concrete substitutions 8. The first
component of the abstract substitutioris defined in this chapter is called the TYPE
component and associates with each program variable a rigid type, whose denotation is a
set of terms. Furthermore, dependencies between values of program variables in the
concrete substitutions are encoded by the second component of the abstract substitutions:
SV AL-constraints (SV AL is an acronym of Same V ALue) specify which (sub)terms in the
values of the variables must be identical. Consider, for instance, the unification 'Z = X.Y'.
After a successful unification the values of Z all have toplevel functor ./2 whose first
(second) argument has the same value as program variable X(Y). This kind of dependencies
is expressed by the SV AL-component. The normal form of an abstract substitution forces
the SV AL-constraints to be explicit and minimal and forces compatibility between types
and SV AL-constraints. This form is useful when specifying the domain dependent
operations for the abstract interpretation. The abstract domain consisting of normal abstract
substitutions is shown to have the required algebraic structure.

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

Chapter5
Implementation of the type-graphs

5.1. Introduction

In the first section of this chapter, we will discuss the data structures chosen for the
representation of the type-graphs. They are two types of algorithms in the thesis2, the first
group is declarative oriented in its specification in the sense that it is a list of rules which
describe the algorithm. The second group is more classical in its specification, they are written
in a pseudo-mathematical notation which can reserve some smprise during the implementation.

The second section proposes a new version of the algorithm Compact. This part begins
by the formalization of the procedure non_empty _ID and of all the tools which allow us to
construct our version of Compact.

The section 5.3 contains the motivations to keep the algorithm Restrict as presented in
the thesis, and it is followed (in section 5.4) by a description of the main principles used for the
implementation of the other algorithms proposed.

5.2. Representation of the type-graphs

5.2.1. Discussion on a data structure for the type-graphs

Type-graphs as described in the thesis can be represented in several manners. We could
use a representation by means of static arrays, trees ... The first decision is to choose a
representation which is able to meet all the possible configurations of the type-graphs. Because
of the unpredictable character of the size of a type-graph, the idea to employ static memory
representation was aborted. As matter of fact, a type-graphs can have n sons attached to its
root and another can have a depth of m, as expressed by the next figure.

2 By tbesis, we always reference [7].

Implementation of the type-graphs 57

#sons(n)

r---,~
r
t depht l

► ◄

r
n/1 n/k

t
r

depht m i
l

Figure 5.1 : Size of a type-graph

The most powerful representation was to use a n-tree (tree were each node can have
n-sons) to represent the type-graphs. The tree's structure is ideal for this kind of representation
because the tree can be extended almost until infinite, we can add that the n-tree was
mandatory because it was not possible to determine the number of branchs the tree should
have.

Once the type of the data structure is chosen, we had to construct the data structure
itself. Observing the type-graphs and its definition presented in the previous chapter, we can
point out the following particularities :

• there exists three groups of nodes. The first one is composed of the nodes which have
got any son (constant-node or functor with arity null), the next one is the functor-node
(or functor with arity different of null) and finally we have the OR-node (or functor
with arity different of null, in which the order of the son has no importance).

• those nodes can generate two types of arcs. We can differ the backward arcs which are
always pointing to a functor-node or to an OR-node from the forward arcs which can
point to any kind of node.

• the simple-node group can be divided in two parts. The first one is composed by the
fundamental types (Int, Real, Max, Bottom, []) and the other one is composed by the
other types (a/0,b/0 for example).

Regarding those considerations, we can observe that there are two principal kinds of
component, those representing functors and those presenting arcs. We can point out that :
• it is not necessary to distinct functors with a zero arity (constants and fundamental types)

from functors with a non-zero arity, the only difference between both is that the first kind
of functor does not generate arcs. Furthermore, there is no reason to separate the
OR-nodes from the other functor-node , the only change between both is that the order of
the sons has importance for the functor-nodes.

• as for the functor-node it is not manclatory to create a specific data structure for each kind
of arc. This is due to their resemblance, indeed, both point to a functor-node . An Arc is
thus a specific kind of cell which contains a reference to a functor-node and a direction

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

Implementation of the type-g raphs 58

(Backward or Forward). To differenciate the nodes denoting a functor from the cell
denoting arcs, we will call the first one the functor-node ans the second one the sons.

So, the type-graphs could be represented by only 2 types of cells, those denoting
functors in general, and those denoting the sons of the functor.

Before discussing the organisation of the trees, we will define a notation for the
type-graph. Manipulating the type-graph by means of their graphical representation is certainly
more easy to understand but will be too embarrassing. Furthermore, the implementation of a
graphical representation was not the purpose of this work.

5.2.2. Formalization of the Context Free Grammar

As expressed in the chapter 4, the information described by a type-graph can be
expressed by a context free grammar. The following B.N.F. notation formalizes the notation
employed in the rest of this paper.

Example:

<Result> ::= {<Affect>}
<Affect>::= <Name> := <Tree>
<Tree> ::= <Constant-Node> 1

<Fundamental-Node> 1
<Functor-Node> <N ame11 > .. . <N ame1">

Let X be a type-graph associated with the variable represented by the following figure.

X

a/0 f/1 g/1

l
lnt

a/0 b/0

Figure 5.2 : Example of type-graph

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

Implementation of the type-g raphs

This can be expressed in our notation by the next expression.

T0 := OR(a, Ti,g(lnt))

T;:= f(OR(a,Ti,b))

59

It could be remarked that the notation proposed in the thesis has been a little changed.
We prefer the prefixed notation to the infixed notation for the OR-node. They are two reasons
for this, the first one is derived from the chosen data structure, our decision to consider the
OR-node as a functor node induct the same representation, so there is no need to choose an
other notation specially for the OR-node. The second reason is less acadernic, we found the
prefixed notation slightly more readable than the infixed.

5.2.3. Definition of the data structure chosen for the type-graphs

Ali the functor-nodes are bearing a name, the size of the name varies from a functor to
another. So, it could be more clever to store all the functors names into an array and to
memorize the entry of the array as the name of the functor. An example can be found in the
next figure3•

0
1

2

3

4

5
6

7

TCor

MAX
INT

REAL

BOTTOM

[]
OR

f{2. 2
g/2

Figure 5.3: The array TCor

This permits to store the name of the functor-node only once and it allows to replace
the comparaison of two string by the comparaison of two integer which is more faster.

It follows a complete description of the data structure chosen to represent the type
graphs.

3 Notation : [] denotes an empty list.

Deriving Run Time Properties of Logic Programs l7y Means of Abstract Interpretation : Implementation

Implementation of the type-g raphs 60

Cell representing afunctor-node

ld_Name Color Son

where:
Id Name is an integer used to represent the entry corresponding to the name of the
functor in array TC or.
Co/or is an integer which will be used to sort the tree (see later).
Son is a pointer to the list of the sons attached to the functor-node (the pointer is set to
Null if the functor-node has no sons).

Cell representing the sons of afunctor-node

Type Node NextSon

where:
Type is a flag indicating the direction of the arc, so it may contain two different values : 'F'
for the forward arc, and 'B' for the backward arc.
Node is a pointer to a functor-node.
NextSon is a pointer to the next son of the list.

Example:
Let X, be a variable to which is associated the type-graph Tx:= F(Int,G(Real, Tx)).

0
1

2

3
4

5

6

7

MAX
INT

REAL

BOTTOM

Il
OR

f/2
ef2

TCor

X

(1) 0. ~

~)
(2) Int (3) ef2

(4) Real ----►•

Functor-Node

Figure 5.4 : Example of the chosen data structure

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

Implementation of the type-graphs 61

This figure requires some comments, as explained before, functor-nodes are composed
of three fields, the first and the third one do not need more explanations. The second one
permits the coloration of the tree, it is numbered starting form the root to each leaf by a depth
first search procedure. The root is labelled to one, the other node by an incrementation by one.
This method permits to have an approximation of the location of a node in the tree compared
to another. It is only an approximation because this artifice can just permit to know if anode
has been visited before another in a depth first search, as expressed by the following figure.

Vj :Colorü)<Color(i) => Node j already visited

Vj : Color(j)> Color(i) => Node j to be visited

0

6
,

·• .

.
: i+1 '
\ ,

: Node already or
curently visited

: Node to be vi sited

Figure 5.5 _; Utility of the field color

5.3. Compacted type-graphs

The aim of this algorithm (Algorithm 3 .1) is to modify the tree so that it satisfies the
eight rules presented in the thesis. Starting form a tree Tsource we have to build the
compacted tree T <lest .. The algorithm can be inefficient for an implementation in C if translated
as proposed because of the loop "Perform one of the following transformation steps on
T source until no step is applicable" .

We meet here the main problem of the adaptation of some of the proposed algorithms
into an imperative language. The algorithms were conceived to be implemented in Prolog
which is a declarative language. However, it has to be possible to translate an algorithm
conceived for Prolog into an Imperative Language but it will be as hard as inefficient.

Our algorithm is constructed on two passes. The first pass deals with the rules 1 to 5
and with the rule 7. This pass treats all the fondamental nodes and all the OR-nodes which
aren't in a path of OR-node. The second pass deals with those chains and with the backward
arcs. Before a detailed description of the algorithm, we will focus the implementation of the
function non_empty _ID. The resulting fonction will facilitate the construction of Compact.

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation: Implementation

Implementation of the type-graphs 62

5.3.1. Implementation of non_ empty _ ID

In [7], as an introduction to the algorithm Compact, the author presents a boolean
function called non_empty _ID. Non_empty _ID(n) is true if ID(n) is a non-empty set of finite
terms. She proposes the following recursive definition.

non_empty _1D(n) iff

if (lb(n) = f / k and k > 0)

then V i e [1,k]: non_empty _1D(n/i)

else iflb (n) = OR

then3 i: non_empty _1D(n/i)

else lb(n) -:;: .l

The problem, as implicitly suggested in the thesis, is that the implementation of this
definition can create easily an infinite loop as expressed by the following figure. Suppose that
we apply the definition in the order of the sons of the root, doing like this generates an infinite
loop situation because we always choose the backward arc.

lnt Real a/0

Figure 5.6: T0 := OR(T0Jnt,R.eal,a/0)

To avoid this situation, the author proposed a bottom-up approach which permits to
solve the previous problem. But this approach can not always be performed as it can be shown
in the next figure.

Figure 5.7: T := OR(. .. OR() ...)

Thus, we have to construct a radically different algorithm than the one suggested by the
previous definition. We will, by means of the example beneath, draw some establishment which
will later be used in our implementation. It represents the type-graph associated with the
variable X. Suppose that we have to determine if its denotation is a non-empty set of finite
terms. To do this, we have to know the denotation of each son of the root.

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation: Implementation

Implementation of the type-graphs 63

X

l
f/2

g/2

l
lnt J_

Figure 5.8: ID(f/2) depends on ID(g/2) and on ID(OR)

When evaluating the functor "g" of the type-graph associated with the variable X, we
could not compute its denotation because of its backward arc. We could only say that, from
now on, we are not able to approximate the denotation of the functor "g" because one of its
sons (which is the functor "f'). This is due to the property that ail the sons of a functor are
mandatory to evaluate its denotation.

It will be possible to give an approximation of the denotation of the functor "g" once
we will know the denotation of the second son of the functor "f'. That is made in the next
paragraph.

As it can be shown in the following figure, we can immediately suppress the backward
arc of the OR-node (1) because it adds no information to the denotation. By means of this
deletion, the OR-node has become superfluous too because it rests only one alternative. This
node could be suppressed too (2).

···~

-1)Il -2-lllli)II..- J_

J_ J_

Figure 5.9: Reduction of an OR-node

At this point, we can make two findings (illustrated by the next figure):
• as the denotation of the second son of the root is .l and as the root is a functor, we can

infer that the overall denotation will be .l. If the root was not a functor node but a

Deriving Run Time Properties of Logic Programs by Means of Abstract Jn.terpretation : Implementation

lmplementation of the type-graphs 64

OR-node, the situation changes, indeed, ail the sons has to be ..L to propagate this
denotation at the upper level.

• as we knows the denotation of the second son of the root, we knows that the
denotation of the first node is ..L too. As we already knows that the second son of the
functor "f' is ..L, this information is not necessary.

X X

l l
f/2 --------►•.1

..L

Figure 5.10: Upgoing of ..L

As shown in the previous example, the problems arise when we have to treat a node n
which possess a descendant from which start backward arcs (p,q) such as Color(q) < Color(n).

q

p

This situation does not cause mandatory an unpredictable situation, it
depends of the type of the node n.

If lb(n) = OR, it suffi.ces to find a descendant of the node p which
possess a n-node different of ..L, to be sure to have a fmite term.

If lb(n) = F/k, it suffices to have a backward arc higher than n to be in a
unpredictable situation and this despite the denotation of the other sons
(behalf ..Lof course).

5.3.2. Formalization of non_ empty _ ID

Before specifying non_empty_ID, we need a boolean function Higher_Than_Backward
which receives anode n as entry and which returns True, if n is higher that ail the backward
arc generated by its descendant.

Leri, ing Run Time P,oper•es of Logic Pmgroms by Means of Absi,act Intnp,eia•on : Jmp/ementation

Implementation of the type-g raphs

Function Higher _ Than _ Backward(n)

PreCondition: <None>

PostCondition :

• This function retums True~ 1l m e Desc+(n):Color(m) < Color(n)

Function Non_ Empty _ lD(node);

This function retums no more a boolean but can have three different values.

PreCondition : <None>

PostCondition :

• Non_empty _ID(n) is true if ID(n) is a non-empty set of finite terms.

Structure of the algorithm :

Base:
iflb(n) = 1-

then 1-
else -,l_

Step:

Case of the OR-node :

Suppose n to be a OR-Node, suppose k to be the number of its sons,

Non_Empty _ID(n) retums :

l_ ~ 'v'i (lik): Non_Empty_lD(n/i) = 1-

65

n/1 n/i n/k
? ~ 'v' i (1ik): Higher_ Than_Backward(n/i) = False

v Non_Empty _1D(n/i) = ?

-, 1- ~ 3 i (1 $ i $ k) : Non_Empty _1D(n/i) '# l_

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

Implementation of the type-graphs 66

Case of the Functor-node :

Suppose n to be a functor-node, suppose k to be the number of its sons,

n/1 n/i n/k

Non_Empty _ID(n) returns :

.l ç:=> 3 i (1::;; i::;; k) : Non_ Empty _ID(n/ i) = .l

? ç:=> 3 i (1::;; i::;; k): Higher_ Than_Backward(n/i) = False

v Non_Empty _ID(n/i) = ?

-, .l ç:=> V i (1::;; i::;; k) : Non_Empty _ID(n/ i) ::!:- .l

/\ Higher _ Than_Backward(n/ i) = Tli

5.3.3. Completing the first pass

From this point, al1 the problems involved by the procedure non_empty _ID are
resolved. We point out that this procedure had to make a travel through al1 the branches of the
tree to up load the information. So, we will serve of this travel to bring up more information.
We change a little bit Non_Empy_ID(n) so that it can retums the following values:

Max-Node,

\ Max

End-Node t
lnt

Real
Constant

AloneOR t
8

n/1 =OR/\ n/1* J.

Figure 5.11 : Extension of Non Empty ID - -

From now on we have al1 the tools permitting to detect which rule to apply from 1, 2,
3, 4, 5 and 7. The implementation of the effect of th ose rules is not described here because it is
nearly straightforward.

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

Implementation of the type-graphs 67

5.3.4. Focusing on the second pass

This pass has to realize only two rules.

5.3.4.1. Rule 6

If a forward arc connects two OR-nodes (n,m) and indegree(m) = 1, then
ail arcs(m,k) are replaced by arcs (n,k) and the arcs (n,m) and the node m
are removed.

This rule is straightf orward to implement, it suffices to check when we visit an
OR-node if one of its sons is an OR-node too and to kill this second OR-node if it has only one

..

n / 1 n /i n/k

t"' +
n/1 ... n/i n/k

son.
Figure 5.12: Two consecutive OR-node

The only trick is to re-target the eventual backward arcs which were pointing to the
suppressed node as expressed by the previous example. This can be easily made by means of
our data structure, it suffices to found in ail descendants of the second OR-node which have
the same field Info that the suppressed OR-node and replace the reference to it by a reference
to the first OR-node.

5.3.4.2. Rule 8

If there is a backward arc (n,m) and the forward path m, k1, ... , kn
with kn = n constits of OR-nodes then ail backward arcs (1,ki) are
replaced by the backwards arcs (1, m).

This rule causes no particular difficulties. It suffices to create a stack which allows to
memorize the path taken to reach anode. During the visit of a OR-node, when a backward

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Jmplementation

Jmplementation of the type-graphs 68

node is found, it suffices to consult in the stack to know if a chain of OR-node link the target
of the backward arc to it destination, as it can be shown in the next figure.

Queue

OR

OR

OR

n / 1
...

n / i
...

n/k
...
p

n / 1 n / i n / k

Figure 5.13 : Achain of OR-node

If it is the case, an the sons on the path OR-node are attached on the first node off the
path and an the other are removed. The problem of re-targeting the eventual backward arcs
which were pointing to the suppressed node arises again, the same solution as for the previous
rule can be employed.

5.4. Restricted type-graphs

As it can be observed when looking at the algorithm Restrict, the proposed
specification is very complete and impressive. So, we decide to implement this algorithm like
proposed in the thesis.

The first task was to conceive an the procedures appearing in this algorithm. The
second task was to found the data structure which can map as perfectly as possible to functions
(nd and nfr) used in the algorithm, it was done by means of single chained list. Ail the
information needed by this algorithm is stored in a stack which is principany used by the
function Safe_Anc.

Explaining more this algorithm is redundant with the explanation given in the thesis, so
we decide to stop this section here.

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

lmplementation of the type-g raphs 69

S.S. Other Algorithms

Those algorithms are clivided in two groups. The first group returns a boolean which is
the result of the test constituting the algorithm. The second group receives one or two type
graphs as input and returns a new type-graph which is the result on an operation defined by the
algorithm.

The first group is composed of the two following algorithms :
- Equivalence(nl,n2) returns True if ID(nl) =ID(n2) otherwise False,
- Smaller_Or_Equal(nl ,n2) returns True if ID(nl) c ID(n2) otherwise False.

Both algorithms of this group presented in the thesis have nearly the same structure,
and use at any rate the same technique. They use a set to memorize the path taken to corne
down a node. For example, the first line of both algorithms presented are "if (n,m) e se
then ... ". We have to build a data structure corresponding to this set, we choose a stack to do
this. This stack will be used only to store the pairs of nodes by which the algorithm pass. This
stack always grows, no elements are removed from it because the set se never shrinks.

Stack

F/k F/k

lnt lnt

OR OR

? ?
? ?
? ?

Already visited nodes

Figure 5.14: Implementation of the stack

\~
H0:,1i

The implementation of the set se was the main difficulty for the algorithms of this
group, the stack presented here permits to sketch it perfectly. The other problems encountered
during the implementation of those algorithms are traclitional in the sense that they presents any
specific clifficulties, so we will pass directly to the other group.

The second group is composed of the following algorithms :
- Tc = Compact(T c) which retums a compacted type-graph,
- T r = Restrict(T r) which returns a restricted type-graph,
-T12 = Intersection(T1,T2) which returns the intersection on both type-graph,
- T12 = Bunif(T1,T2) which retums the backward unification on both type-graph (its exactly
the same operation than intersection).

Two of the algorithm of this group were cliscussed above, so we will just evoke the
algorithm Intersection here. This algorithm is clirectly derived from Restrict and we adopt the
same manner to solve it. First, we have conceived ail the procedures appearing in this
algorithm. Afterwards , we have chosen the data structure which can map as perfectly as

Deriving Run Time Properties of Logic Programs by Means of Abstract lnterpretation : Implementation

Implementation of the type-graphs 70

possible functions (is and ris) used in the algorithm, it was done like in Restrict, by means of
single chained list. Ali the informations needed by this algorithm are stored in a stack which is
principally used by the function Safe_Anc.

Once the algorithm implemented, we have tested this algorithm with a lot of examples.
In general, this algorithm gave the intended result, but sometimes, it returns us a bad response.
This was due to our bad understanding of the point 4 (illustrated next) of the algorithm.

else % 3n e ris(l):lb(n) = f /k or lb(n) = Int,Real %

if v'm e ris(l)\{n}:(3md e pmd(m):lb(md) = lb(n))

thenlb(l)~lb(n), sui ~su1 \ {l},ssn ~s..,LJ{1},

{·. ·}
elselb(l)~..L, Sut ~Su1\{l},S"" ~s..,LJ{l}

Our algorithm was, as declared above, an exact translation of the proposed one. It
contains the same functions (ris, is) under form of chain list. We can found in the thesis, that a
node 1 of T12 has an associated function is. Its value, is(l), is a subset of DESC*(nl) u
DESC*(n2). In fact, is(l) always contains one or two nodes. The bug in our program corne
from the use of this function.

Suppose that ID(is(l)) = {Int,Max}, in this case, ID(ris(l)) = {Int} because ris(l) is the
set {n In e is(l) and lb(n) ct:- Max}. And finally, suppose that we must perform the point 4 of
the previous algorithm.

Following the algorithm, it exists an element in ris(l) such as its label can be (f/k, Int,
Real). In the previous example, lb(n) = {Int}, this is the only possibility because ris(/) contains
only one element.

Once n chosen, we have to evaluate the following condition :

v'm e ris(l)\{n}:(3md epmd(m):lb(md)=lb(n))

In this case, ris(l)\{ n} = 0 then the condition is always satisfied. So, the second part of
the condition must not be evaluated. During the implementation, this case must be take into
account. Because if it was not, the algorithm does not respect its specification.

This situation shown the weakness of a programming language comparing to
mathematical notation. Because, of this, the implementation must be very pragmatic.

5.6. Summary

In this chapter, we have presented all the data structures chosen to represent the type
graphs. It follows a new version of the algorithm Compact which is a radically different
algorithm than the one proposed in the thesis.

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

Jmplementation of the type-graphs 71

The section 5 .4 describes the implementation of Restrict and is prolonged by an
overwiew of the main problems appeared during the implementation of the algorithm
Equivalence, Smaller_ Or_Equal and Intersection.

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

Chapter6
Implementation of the same-value and of the
abstract substitutions

6.1. Introduction

We will begin section 6.2 by a description of the data structures used to irnplement the
same-value component belonging to the abstract domain. The previous data structure irnplies
some fondamental changes in the representation of this SV AL-component. The motivation
which conducted to those major changes are also presented in the same section.

The section 6.3 contains a complete description of the data structure created to denotes
the substitutions.

The next section contains a specification of the algorithm which construct the
SV AL-component corresponding to the chosen data structure.

The section 6.5, is an overview of differents algorithm's working on the substitutions.
It contains a short descrition of the tricks irnposed by their structure and an overlook at the
solutions proposed.

Finally the section 6.6 contain an overview of coarse problems derived form the data
structure as of the solutions.

6.2. Representation of the same-value

Definition 6.1.
Let n be a node in the type-graph. n/'è selects the node n itself.

n/(f1/k1,ii).·· ·.(fp-lfkp-l,ip_i).(fplkp,ip) with lSitgci, ... ,lSipSkp selects the ipth son of the
principal node with label fplkp of the node n/(f 1/k 1 ,ii). · · · .(fp-tfkp-t .ip-1).(fplkp.ip).

We called 'è and n/(f1/k1,ii).··· .(fp-lfkp-l,ip-l).(fplkp,ip) selectors. Selectors are
denoted by the letters s and p possibly with a superscript or a subscript.

SV AL-constraints are defined as couples of selectors on two variables. An SV AL

constraint has the form { X/sx, Y /sy} with sx and sy deterrninate selectors in respectively T~

and T~ , where T~ is the type-graph associated with the variable X in the abstract substitution

1 ~ and where Tt, is the type-graph associated with the variable Y in the same abstract

1

Implementation of the same-value and of the abstract substitutions 73

substitution. This constraint expresses the fact that X0/sx = Y0/sy must hold in any concrete

substitution e represented by f3 .
The representation of the same-value presented in the thesis induces a couple structure

representation, this couldn't be the best way in the perspective of an implementation, as we wi11
show it after. So, we decide to extend the couple representation {X/sx, Y/sy} to a n-tupple

representation. A SVAL-constraint on variables {XI ,··· • Xn} of an abstract substitution f3 wi11

be expressed lik:e a set of variables associated with a select or { X1 / sx, , .. . , Xn / sxn } . This

modification will not distress so much the proof presented in the thesis because it suffice not to
consider a SV AL-constraint lik:e a set of couple of variables but lik:e a set of variables. In the
place the authors where using a set of couple on variables, we use only a set of variables.

6.2.1. Representation of the SVAL-constraint

Definition 6.2.

An SVAL-constraint has the form {x1/sx, , ... ,XnlsxJ with sx,, .. ,sx. are determinate

selectors in respectively Tt, --,Tt, where Tt is the type-graph associated with the variable

X 1 in the abstract substitution f3 , .. . , and where Tt is the type-graph associated with the

variable Xn in the same abstract substitution. This constraint expresses the fact that X01 / sx
1

= ... = X0n / sx must hold in any concrete substitution 0 represented by f3. Severa! reasons
n

motive those changes, we will show it by means of the example above.

Example

Let Xi, X2, X3 be three variables on the abstract substitution f3 , and suppose that

there is a same-value between the root of X 1 and X 2 { X 1 / Ex, , X 2 / Ex J and that there is a

same-value between the root of x2 and x3 {x 2 /Ex,, X 3 / ExJ.

X1 X2 X3

l l l
lnt .;;.::r •······ ····- ~:~:• lnt -::=:))· ;::r:: lnt

Figure 6.1: Two same-value constraints

With the representation proposed in the thesis, this SV AL-constraint must be

completed by a new couple { X 1 / Ex, , X 3 / Ex J . This operation of extension is not realised at

the time the second constraint was added but during an operation of extension performed by
the algorithm Normalize.

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

1

1

1

1

Implementation of the same-value and of the abstract substitutions 74

X1 X2 X3

l l l
lnt --i.f- · ·· · · ;-;;,,. lnt Af ············· · · ······· ·•-f;v lnt

• --·--·----·-----. -----·--- ----·--·-·-·--------·-··.,.

Figure 6.2: A new same-value constraint added by transitivity

This representation suffers of a big inconvenient, each selector has to be represented
more than once when there is a SV AL-constraint added because of the transitivity of relation
"same-value". In the simple example above, each selector is represented twice and adding a
same value on one of those tree variables with a fourth one creates two new constraints by
transitivity for a total of six.

{
{X 1 / Ex, ,X 2/ ExJ, {X 2/ Ex 2 ,X 3/ ExJ, {X if Ex, ,X 3/ ExJ,}

{X 1 / Ex, ,X 4/ ExJ, {X 2/ Ex2 ,X4 / ExJ, {X 3/ Ex1 ,X 4/ ExJ

It is easy to see that when the number of SV AL-constraints grows up, this
representation is not viable so, we decide to adopt the n-tupple representation which is more
concise and less memory consuming than the other one. Adapted on the previous example, the
n-tupple repr~sentation will give :

Y ou can remark that ail the selectors are represented once and that there is no longer
redundancies in the notation. It is straightforward to see that ail the operations that could be
done on a couple can be done on the n-tupple too. This is due to the fact that the principal
property of the pairs i.e. containing only two elements, is never used.

Shortening the notation and minimizing the memory space was not the alone pwpose of
this representation, an overlook to the algorithm Normalize on abstract substitutions teach us
that the normalization can be very time-consuming. The authors propose the algorithm like an
operation which receive an abstract substitution as input and which return as output an abstract
substitution respecting the clauses defined by the algorithm. Due to the prolog-like
specification of this algorithm and to the chosen representation, the transformation of the
abstract substitution doesn't seem to be very hard to do. But with a imperative language like C,
the transformation will be intricate, so we decide to abandon the normalize operation defined in
the thesis and to choose another way to proceed. Our aim is to always have a normalized
abstract substitution and thus avoid the Normalize operation. This can be done by means of a
powerful procedure which detects during the addition of a new SV AL-constraint any infraction
to the rules presented in the thesis and which can react to this infraction. This algorithm is
presented later but now, we have to create the data structures corresponding to the new
representation of the SV AL-constraint proposed above.

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

1

'

Implementation of the same-value and of the abstract substitutions 75

The problem is to indicate how much variables are bound together and to represent the
selector itself. The general thought is to implement the selector like a tree starting from the
root of the type-graph of a variable and stopping at the place where the SV AL-constraint
stands. The second idea was to merge the "end-node" of each selector in an unique node and
to create a reference to the path leading to this merged node. A representation of SV AL
constraint if shown in the next figure.

X1 X2 X3

f
Merged node

····· ·········· ······· ···· Jt."

Backward Reference
(ref. to the father(s) of the node)

►
Forward Reference

(ref. to the son of the node)

Figure 6.3: A merged same-value constraint

We have 3 generic types of node :
1. the node denoting a functor,
2. the node denoting father of the functor node,
3. the node denoting sons of the functor node.

Cell representing anode denoting functor

ColorSelect Nbsharing ListFather SonSelect

where:
ColorSelect is an integer which will be used for "colouring" the node. This technique
permit, as in the type-graph, to memorise if we already have visited a node during the
ttaversal of the SV AL-constraint.
NbSharing is an integer used to indicate how much time the functor node is referenced.
This information will be used at the desallocation time to know if we can destroy a node
or not (see later for more).
ListF ather is a pointer to a single link:ed chain of node representing the father of the
functor node.
SonSelect is a pointer to a single link:ed chain of node representing the sons of the functor
node.

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

Implementation of the same-va/ue and of the abstract substitutions 76

Cell representing a node denoting the father of a functor node

NoVar FatherSelect NextFather

where:
NoVar is an integer which reference a number of variable. This variable <NoVar> has a
same-value constraint which lead to the functor node from which start the list of father
containing this cell.
FatherSelect is a pointer to the functor node father of the node from which start the list of
father containing this cell.
NextFather is a pointer to the next father of the list.

Cell representing anode denoting the sons of afunctor node

NoSon NodeSelect NextSelect

where:
NoSon is an integer which references son's number. Contrary to the type-graphs, the list of
sons contains not all the sons of the functor node but just the sons which lead to a
descendant on which there is a same value.
NodeSelect is a pointer to a functor node which leads to (or which is) a SV AL node4•

NextSelect is a pointer to the next son of the list.

Example:

Let X 1, Xz, X3 be three variables on an abstract substitution ~. We want to indicate
that there is a same value constraint on those three variables with respectively the selector

{x 1 /1,X 2 / E,X 3 /1}. This configuration can be represented by those figures below.

X1 X2 X3

l l l
./2 lnt

/\
lnt Max lnt

SVAL-constraint

[l
Figure 6.4: Representation of the Sval-constraint{X.1/l)(.2/E)(.3/l}

4 Notation: we called an SV AL-node the "end-node" of a selector.

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Jmplementation

r

1

1

1

1

Implementation of the same-value and of the abstract substitutions

X1 X2

<::"~
··, ..

î
Merged node

X3 ►
Reference to the SVAL-constraint

of the variable

Backward Reference
(ref. to the father(s) of the node)

►
Forward Reference

(ref. to the son of the node)

Figure 6.5: Another representation of the Sval-constraint{X.1l l X2IE)(3ll}

77

Our data structure pennits to have ail the selectors associated with the corresponding
variables in one shot because of the list of fatl).er's attached to each functor node. 1bis SV AL
constraint can be denoted by our data structure like in the next figure, the list of son has been
removed for reasons of readability.

X1 X2

................ 1
__ l __ , l_~ _l

(1)-+-----=
0

i 3 : ' .. ;., --"7L_ ______ __
•....... ~~---··•·' ! ________ [_______ f ______ i Father Cell

t L l

-r-~ • ••••• •• • • ••• • • • •• J ••••••••• =

Node Cell

(2)

Figure 6.6 : Data structure chosenfor representing the Sval-constraint{X.1l l X2IE)(3/ 1)

It can be observed that the data structure can become very intricate when the number
of variables affected by an SV AL-constraint grows. In the previous figure , we can point out
some particularities :

• The three variables share a same functor node (1) but at different depth. This node is
the son of the root of the variable X 1, is in the same time the root of the variable X2,
and finally this node is the son of the root of the variable X 3. 1bis is why the fields
NbSharing is set to the value three. We can easily reconstruct the selector leading to
the merged node. It suffi.ce to start from the root of a variable, travelling through the
tree by the sons of the functor node till reaching the SV AL-node.

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

lmplementation of the same-value and of the abstract substitutions 78

• The father node (2) has no father, this means that the functor node from which starts
the list of father containing this father node is a root.

• The variable's number is always presents in the list of father, this is permit to know
when we are on a SV AL-node which are the variables involved by this
SV AL-constraint.

• The field ColorSelect does not serve in this example so, it is set to a null value.

We have defined how to represent a SV AL-constraint on a set of variables but
practically, we can have several SV AL-constraints on the same variable. We show in the next
section how to use our data structure to face this situation.

6.2.2. Representation of the SV AL-component

To represent a SV AL-component on a variable, we can keep the same data structure.
The only change is that a SV AL-node is not always an "end-node" , it can lead to reach an
other SV AL-node.

Example:
Let Xi, Xz, X3 be three variables on an abstract substitution~. Suppose that there is a

SVAL-constraintonX1,X2: {X,/l,X2/l}.

X1 X2 X3
0

. -f:::•,·

Backward Reference
(ref. to the father(s) of the node)

Merged node

►
Forward Reference

(ref. to the son of the node)

Figure 6.7 : A simple Sval-constraint

And now, suppose that there is a SVAL-constraint on Xi, X3 {x 1 / (1,1),X 3 / (1,1)}.

X1 X2 X3

~> .. ·-w
Merged nodes -.::.::._ ._ ----..... .

......... -t::: ..

Backward Reference
(ref. to the father(s) of the node)

►
Forward Reference

(ref. to the son of the node)

Figure 6.8 : A more complex Sval-constraint added to a simple one

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

1

l

1

'

1

1

Implementation of the same-value and of the abstract substitutions 79

As shown in the previous figures, we use the path to the first merged node to create the
path leading to the second one. Obviously, this can be done only if the paths have an identical
portion in common as it is the case here (the second selector extends the first one). If it is not
the case, it suffi.ces to add the selector to the root as if there was no same-value (creating a
new son to the root).

From now on, we have defined the representation of the SV AL-constraints, in the next
section, we present the data structures chosen to represent an abstract substitution.

6.3. Representation of the abstract substitutions

Before introducing the data structures chosen to represent the abstract substitutions,
we shall make some general considerations on the same-value like proposed in [7]. In this
work, the SV AL-component refers always to a corresponding type-graph. It can be easily seen
by means of the notation { X/sx, Y /sy}. The selector sx define a path which must maps the
type-graph. They use always type-graph that are well defined for each step of the selection in
the sense that there always exists an appropriate principal node or term to be selected, as
expressed in the next figure.

X1 (Type-Graph) l x1 (Sa me-Value)

+ ./2 i) ',
\

lnt t:\,
>--- ··

/
/

I
/

/

□ ,--~
\..)

Figure 6.9: Correspondance between the Sval-constraint and the Type-graph

Meanwhile, the same-value composent can be expressed without the help of the
type-graphs. A lot of the abstract domain defined in the litterature possess a same-value
component without type-graph. In this case, an other technique replace the mechanism of
selection used here.

Because of the close relation getween the type-graphs and the SV AL-component in this
domain, an abstract substitution is defined as follow (this definition is expressed in our
formalism).

Definition 6.3 :
An abstract substitution~ over a domain D = {X1,••·,Xi,···Xn} is either .l or a pair (type,sval).

Implementation of the same-value and of the abstract substitutions 80

The TYPE-component, type, associates a normal rigid type-graph with each variable in the
domain D and its selected by TYPE(~).
TYPE(~) = { X~ T x I X e D and T x is a non-empty normal rigid type-graph}.

The SV AL-component, sval, is a set of SV AL-constraints and is selected by SV AL(~). A

SV AL-constraint has the form { X1 / sx , ... , Xn / sx } with sx sx are determinate select ors in
l n 1 ,. ·, n

respectively T~,,--,T~ .• where Tt is the type-graph associated with the variable Xi in the

abstract substitution~, ... , and where Tt is the type-graph associated with the variable Xn in

the same abstract substitution. This constraint expresses the fact that X01 / sx
1

X0n / sx. must hold in any concrete substitution 0 represented by ~.

By convention an abstract substitution ~ is denoted by .l, if at leads one of the types

Tt is a .l-node. This abstract substitution will be called later minimal abstract substitution. In

the same way, an abstract substitution ~ is denoted by Top, if ail of the types T~; are a Max

node. This abstract substitution will be called later maximal abstract substitution.

Construct a data structure permitting to maps the previous definition of the abstract
substitution is quite easy because an abstract substitution is just composed of a list of variables

{X1,••·,Xi,···Xn} containing references to the type-graph (Tt,--,T~) and same-value

{ { X11 / Sx11 , ... , Xn, / sxn, } , ... , { Xi. / Sx1• , ... , Xn. / sxn. } } associated to each variable belonging to

the abstract substitution. The next figure give an example of abstract substitution as defined
above. This example is the graphical representation of the following abstract substitution.

~ = {X1,X2, X3}
where TYPE(~)= {X1~ f(Real,g(lnt)), X2~ k(g(Int)), X3~Int}

SVAL(~) = { {X1/2, X2fl},{X1/(2,1), X2f(l,1), X3/O}}

Deriving Run Time Properties of Logic Programs l7y Means of Abstract Interpretation: Implementation

Implementation of the same-value and of the abstract substitutions 81

X3 } X2 '
J3 { x,, ' • \ • \ \

♦ '-- \ lnt \

Â T /J \ >- TYPE(~) / 1 g / 1

Re~ gl l , /
lnt lnt / /

/ 1 SV AL(J3)

Figure 6.10: Complete representation of a substitution

We shall no define more formally the data structure chose to represent the abstract
substitution. The traditional single linked chain suits perfectly the list of variables.

Cell representing a variable in the domain

No Variable TypeGraph SameVal SValOnRoot NextVar

where :
No Variable is the reference number of the variable in the abstract substitution.
TypeGraph is pointer to the type-graph associated to variable <No Variable>.
SameVal is pointer to the SV AL-constraints which implies variable <No Variable>.
SvalOnRoot is a flag indicating if there is a SV AL-constraint on the root of the
same-value associated to variable <NoVariable>.
N extVar is a pointer to the next variable of the list.

We choose a more developed structure to represent the abstract substitution than only
the single linked chain. We have creates a record structure containing four fields as described
below.

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

Implementation of the same-value and of the abstract substitutions 82

Cell representing an abstract substitution

NbVariable

TopSubst

BottomSubst

ListVar

where:
Nb Variable is the number of variables present in the abstract substitution.
TopSubst is flag indicating if the abstract substitution is the maximal abstract substitution.
BottomSubst is flag indicating if the abstract substitution is the minimal abstract

substitution.
SonSelect is a pointer to the single link:ed chain of variables.

From now on, we know how to represent the SV AL-constraints composing the
SV AL-component, we know how to represent the abstract substitution, we must now create
the operations using those data structures, and particularly, we are focusing on the Normalize
operation.

6.4. Normalization of an abstract substitution

As explained before, the aim of our representation of the SV AL-component is to avoid
the operation of normalization as presented in the thesis. We decide to always have normalized
abstract substitutions, so we must tak:e care when adding component to keep a normalized
representation.

Now, we shall focus on the algorithm Normalize as described in the thesis, and examine
it rule by rule to state on the changes brought out by our representation of the data structure.

6.4.1. Algorithm Normalize

This algorithm is based on the following considerations which can be found in [7]. The

type being the same, there are many SV AL-component that yield the same y(~). One of the

reasons is that equality is a transitive relation. If, for example, { X/sx,Y /sy} and { Y /sy,Z/sz.S}

belong to SVAL(~), then X0/sx = Z0/sz.S for ail 0 E y(~). So, adding {X/sx.Z/sz.S} to

SV AL(~) does not change the denotation. However, its presence is desirable to express the
dependencies between X and Z. On the other hand, X/sx = Y /sy implies also X/sx.s = Y /sy.s·
Presence of the latter is undesirable because it only enlarges the SV AL-component. It is
preferable to have the SV AL-component in a form where constrains between any pair of
variables are at the same time explicit and minimal, and to have the TYPE component in a form

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : lmplementation

Implementation of the same-value and of the abstract substitutions 83

that is compatible with the SVAL-component, in the sense that if {X/sx,Y/sy} e SVAL(f3)

then n;r> / sx = ~r, / Sr·

6.4.1.1. Rule 1

if ({ X/sx,Y /sy}, { X/sx.s,Z/s2 } e SV AL(f3n) and

n; / sx = ,l, / Sr and n; / sx .s = ,J / sz and
not (3 { Y /py,Z/p2 .s} e SV AL(f3n) 3 p : Py·P = Sy.s, Pz·P = Sz))

then {Y/sv.s,Z/s2 .s} is added to SVAL(f3n)

This rule has been created to take into account transitivity of the SV AL-constraint. It
only adds a new SV AL-constraint if the existing constraints are compatible with the types and
if the new constraint is not less restrictive than the existing one. So, due to the existing
constraints and due to the conditions imposed on the types, the new SV AL-constraint does not

affect y(f3). By means of our representation of the SV AL-constraint, this first rule is no

more useful. Our representation contains automatically ail the constraints added by transitivity
and the less restricitive constraint are removed before the addition of a new one (see later for
more).

6.4.1.2. Rule 2

if (lb(n{ / sx) = lb(n~ /Sr)= f/k and

Vie [1,k]: {X/sx.i,Y/sy.i} e SVAL(f3n) and n; / sx.i = n~I sr-i)

then { X/sx,Y /sv} is added to SV AL(f3n)

This rule makes an SV AL-constraint explicit that exists implicitly. Hence, y(f3) the

concretization of f3 is not changed.
This rule has to be implemented if we consider that the SV AL-component must be

minimal. But it is not a mandatory for the correctness of abstract interpretation.

6.4.1.3. Rule 3

if ({X/sx,Y/sy},{X/sx.s,Y/sy.s} e SV AL(f3n) and s :t; E)

then the latter element is removed from e SV AL(f3n)

This rule has been created to remove a SV AL-constraint which can be subsumed by
another SV AL-constraint. By subsumtion, we means that the selector of an SV AL-constraint
(X/sx, Y /sy} is longer than the selector representing another SV AL-constraint (X/px, Y /py}.

This does not affect y(f3}.

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

lmplementation of the same-value and of the abstract substitutions 84

ls_Subsumed_by

.Subsumes

Figure 6.11 : An example of subsumtion

This rule can be avoided easily, it suffi.ces to check the presence of such subswntion
before the addition of a new SV AL-constraint on an existing abstract substitution. If the new
SV AL-constraint is subswned by an existing one in the abstract substitution, we decide to not
insert it in the abstract substitution because it is redundant. In the same way, if an existing
SV AL-constraint is subswned by the new SV AL-constraint, we decide to remove it from the
existing abstract substitution.

6.4.1.4. Rule 4

if ({X/sx,Ylsv} e SVAL(~n) and s * E) then ~ becomes J_

We asswne here that we use a Prolog Compiler with occur check. The functionality of
this rule is to check the presence of a loop in the same-value. If a loop is found this means that
the denotation of a type-graph contains the type-graph itself. A term and one of its subterm has

an identical value. As both selector are determinate, we know that all the terms in T~ have this
circularities, and thus all are infinite terms. This situation can appear when a Prolog program
can not terminate. For example, the following Prolog program always returns a failed answer
(if the occur check is implemented in the compiler).

y

t
-:::~ •···· ··· ···· -----}::·

Existing SVAL-constraint
(given by x1 =f(x2))

◄········· · ······ ····►

New SVAL-constraint
(given by x1 =X2)

◄ ►
New SVAL-constraint,
added by transitivity
(given by x1 =X2 too)

Figure 6.12 : A looping Sval-constraint

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : lmplementation

Implementation of the same-value and of the abstract substitutions 85

1bis situation can be expressed by our data structure, but as for the detection of the
subset, we decide to check if the introduction of a new SV AL-constraint will generate this
looping situation and to react by setting the abstract substitution to Bottom if it is necessary. In

fact, y(l3} = 0 = y(-1).

6.4.1.S. Rule S

if ({X/sx,Yfsy} eSVAL(~) and

(if X= Y then Sx and sy do not overlap) and not(n; / sx = n:: /Sr)

then T = intersection(nt / s x , n~ / Sr) and

rx = replace(rx' Sx, T) and T~· = replace(T~·' Sy, T)

and if (lb('.f'\x) = -1 or lb(T~·) = -1) then ~ becomes -1

In this rule, the SV AL-constraint { X/sx, Y fsy} implies that in each concrete

substitution 0 e y(l3}, X8
/ sx must be identical to Y8

/ sY. Thus, only terms that are in

ID(n; / s x) and in ID(nt / s x) are appropriate, all other terms can never occur in any 0 . We
can as well remove those superfluous' terms by replacing the sub-graphs by

T = intersection(nt / sx ,n~ /Sr). We see that it does not change y(l3}. If T~ or Tt is a

1- - node, then can 13 be changed into -1 as y(l3} = 0 = y(-1).

6.4.2. Informai algorithm

Because of all those changes, the implementation of our normalization algorithm is
quite different of those proposed in the thesis. The major work is done when a new
SV AL-constraint is added to the abstract substitution. 1bis is due to the fact that we are
always consider normalized abstract substitutions and that we keep always the abstract
substitution in the same state. This implies a to perform a lot of test on the existing substitution
and on the new SV AL-constraint to be added.

Before explaining informally our algorithm, we will describe how the new
SV AL-constraint is stored before being integrated into the abstract substitution 13 . 1bis new
constraint result of the unification of two variables in the Prolog program. For example, the
build-in "Xi= Xi'' add a new SVAL-constraint {X1/E, X2fE} between the variables Xi and
X2.

1bis constraint is like any other SV AL-constraint and thus can be represented on an
abstract substitution o, it has its proper TYPE-component and SV AL-component. The
type-component is nearly the same than those presents in TYPE(l3). The only change is on the
nodes where the selectors of SV AL(8) lead. As 8 contains only one SV AL-constraint as
SV AL-component, it suffices that it respect the rules 3 and 5 to be normalized. The application
of thoses rules to the abstract normalized substitution 8 does not cause problem as it exists no
other SV AL-contraint on SV AL(ô).

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

1

Implementation of the same-value and of the abstract substitutions 86

Adding the abstract substitution ô to the abstract substitution P is like doing the

unification of both substitutions. So, instead of an unique parameter P as the algorithm

presented in the thesis, our algorithm nonnalize has two parameter P;,. and ô where P;,. is an

abstract nonnalized substitution and 8 an abstract substitution containing an unique
SV AL-constraint.

Thls algorithm is presented informally here, a complete specification follows. Thls
algorithm permit to add the SV AL-constraint defined on ô onto the abstract substitution p.
This algorithm will be called for each SV AL-constraints which has to be added.

Add_ Constraint(8,P)

J,,

if (ls_Subsumed_By(8,p) == TRUE)

if (Subswne(ô,13) == TRUE)

then

else N othing

{Kill _Subswned(8,l3);}

P = Add_ Constraint_ On_ Existing _Subst(8,P);

13 = StandardizeSubst(l3);

It is very easy to detect if a SV AL-constraint is subswned by another with our data

structure. It suffice to corne down in the tree representing the SV AL-component in 13 by the

path defined in the SV AL-constraint of SV AL(ô). If we detect anode in SV AL(l3) (before the

end of the selector defined in SV AL(ô)) with a list of father which contains at least the same
list of variables than those present at the SV AL-node of SV AL(8), we can be sure that this

SV AL-constraint is subswned by the one already present in SV AL(l3).
In the example explicated by the following figure, we can see that adding the new

SV AL-constraint contain in SV AL(ô) will introduce a redundancy. The TYPE-component of

the abstract substitution P is not present for reasons of readability.

~ { X1 X2 X3

~ !
ô
o. 0

{X1 ,sx , X2/sx , X3/sx }
1 2 3

} Ô { X1

!
0
ô

X2 }

!
0

0 ,.:.
----- -- ---- r,--o

{X1 ,sx1 , X2/sx 2 }

Figure 6.13: 8 is subsumed by P

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

1

Implementation of the same-value and of the abstract substitutions 87

A similar technique is used to found the presence of a subsurned cornponent, we had to
corne down the tree representing the SV AL-cornponent by the path defined in the new
SV AL-constraint. We stop the descend at the node corresponding to the SV AL-node of
SV AL(ô) (if it is possible to reach it, because if it isn't, there is in no possibility of a subsurned

cornponent). Frorn this node, we continue the descend in the SV AL-constraint of SV AL(J3) ti11
the end. If we detect a node with a list of father which contains a subset of the variables frorn
those present at the SV AL-node of SV AL(ô), we can be sure that this node is a subsurned
cornponent. 1bis situation is illustrated by the next figure, where we can see that the path used

the reach the SV AL-node in SV AL(ô) can be used to corne down in SV AL(J3). As in the

previous figure, the TYPE-cornponent of the abstract substitution J3 is not present for reasons
of readability.

~ { X1 X2 X3 } 8 { X1 X2 X3 }

6 6 6 6 6 6
ô

:-4-:

0 0 0 0
~-t:- ~x-:-·

-!:~

1:f 0
-+--o:::k --

{X1 ,sx , X2/sx , X3/sx }
1 2 3

{X1 ,sx , X2/sx , X3/sx }
1 2 3

Figure 6.14: J3 is subsumed by ô

Once the subsurned cornponent detected, if suffi.ce to destroy the branch of the tree
which lead to this rnerged node to rernove it.

After the addition of the new SVAL-constraint by Add_Constraint_On_Existing_Subst,
the abstract substitution could be not normalized because the later procedure doesn't rnodify
the type-graph and thus it could be a problern of cornpatibility between the type and the
same-value. So we have to re-force this cornpatibility , this is the job of the procedure
StandardizeSubst.

6.4.3. Formalization of the algorithm

6.4.3.1. Function detecting if SV AL(ô) is subsmed by SV AL(J3) :

1bis function receive two abstract substitutions ô and J3 and retums TRUE if the

abstract substitution J3 contains a SV AL-constraint which subsume the SV AL-constraint in
SV AL(ô). W e express the fact that :

• the SV AL-constraint in SV AL(ô) would be placed deeper in the tree representing the

SV AL-cornponent in J3 than an corresponding SV AL-constraint of J3 ,
• all the variables involved in ô are involved by the existing SV AL-constraint of

SV AL(J3) too.

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

Jmplementation of the same-value and of the abstract substitutions 88

So, the introduction of the SV AL-constraint of SV AL(o) will be redundant with the
existing one, so it is not necessary to include it in the SV AL-component, and we decide to
throw it away.

More formally, we can write :

Is_Subsumed_By(o,13): this function return TRUE<=>

6.4.3.2. Function detecting if SVAL(o) subsme SVAL(l3) :

This function receive two abstract substitutions o and f3 and returns TRUE if the

abstract substitution 13 contains a SV AL-constraint which is subsumed by the SV AL-constraint

in SV AL(o). We express the fact that :
• the SV AL-constraint in SV AL(8) would be placed higher in the tree representing the

SV AL-component than an corresponding SV AL-constraint of 13 ,

• ail the variables involved in the existing SV AL-constraint of 13 are involved by

SVAL(o).

So, the SV AL-constraint (subsumed by the new one) which is already present in the

abstract substitution 13 must be removed from the abstract substitution because it will be

redundant after the addition of the new constraint expressed in SV AL(o).

More formally, we can write :

Subsume(o,13): this function retum TRUE<=>

6.4.3.3. Function removing the subsumed constraint :

This function remove ail the SV AL-constraints on the abstract substitution which
realise the following condition :

Deriving Run Time Properties of Logic Programs by Means of Abstract lnterpretation: Jmplementation

Implementation of the same-value and of the abstract substitutions 89

6.4.3.4. Procedure adding a SV AL-constraint :

This procedure pennit to add a new SV AL-constraint on an abstract substitution ~
without any concern about the compatibility between the type-graph and the new
SV AL-constraint. So after the execution of this procedure, the abstract substitution could be
non normalized.

~out= Add_Constraint_On_Existing_Subst(o,~in);

PreCondition :

•
•

~ in is a normalized abstract substitution, y(~,.J is the concretization of ~in

(o) is a SV AL-constraint which is not subsumed by a SV AL-constraints already

presents in SV AL(~).

PostCondition :

• ~ in and thus y(~J have not changed

• ~ out is a normalized abstract substitution

• y(~
0
J the concretization of ~ out is the same y(~,.J except that there is a new

SV AL-constraint on SV AL(~out) which was present in SV AL(o).

6.4.3.5. Procedure of standardization :

This procedure pennit to enforce the compatibility between the type-graph and the
same-value in the sense that when a set of variables is concern with a SV AL-constraint that
means that they have the same subtype's denotation.

~ out= StandardizeSubst(~iJ;

PreCondition :

• ~ in is any abstract substitution.

PostCondition:

• ~ 0 tissuchthat: v{x1ls ,···,Xnls }eSVAL (~0 u,): nt'ls = .. . =nl·ls u X , X . X , X,

As the reader can observe, the algorithm of normalization implemented in this work is
far from those proposed in the thesis.

Deriving Run Time Properties of Logic Programs l:,y Means of Abstract Interpretation : Implementation

Implementation of the same-value and of the abstract substitutions 90

6.4.4. A new specification of the algorithm Normalize

~out = Normalize(~in ,8) ;

PreCondition :

• ~in is a normalized abstract substitution
• is an abstract substitution representing an unique SV AL-constraint of the form

{x1/ Sxl , ... ,Xnl SXn} which must be added on the abstract substitution ~in.

PostCondition:

v'0: 0 e y(sval(~)Usval(ô)) ~ 0 e (~oJ

~ out is a normalized ~

% it exists no loop in SV AL(~out) %

v'{X1/ Sx, , ... ,Xn l sxJ e SVAL (~0J :(XJ Sx, ,X,./ Sx, · .s e SVAL (~ 0 u,) ⇒ Sx/:. Sx,· .s v's

% type graphs and same value are compatible %

v-{x1/ s , ... ,Xnl s }eSVAL (~0J: nl'/ s = ... =nt·! s X, X. X, X.

% it exists no top-down subsumption %

v' S = { X r / S X, , • • • , X,/ S X J E SV AL (~ 0 J !l T = { X p / S X P , • • • , X q / S x) E SV AL (~out) :

such as {xp,•··,xJc {x,, ... ,x.} and 3 s: v' xi e T, 3 xj e S so that xi= xj .s
% it exists no bottom-up subsumption %

Deriving Run Time Properties of Logic Programs uy Means of Abstract Interpretation : Implementation

I _ ____ _

Imp/ementation of the same-value and of the abstract substitutions 91

6.5. Severa[algorithms on the abstract substitutions

In this section, we shall make an overview on the main difficulties appearing in the
definition inspiring algorithms which manipulate the abstract substitutions.

The problerns of transforming the definition proposed into algorithm is always the
same, a lot of difficulties are hidden behind the formalism used and reveal there presence at the
implementation rime. An example of this situation is expressed by the following definition
which inspired of the definition created to compute the upper bound of two abstract
substitutions.

V Ptt P2 e AN: upp(pl' P2) =

Type(6) = { X, <-restric~nx,)
XeDand l
is an OR - node with two outgoing forward arcs:

one to the root of T~, and on to the root of 'If,

Pp,P, e {PttP2} and PP#- P. and

3{X1 / Sx1 , .. ,,Xo / SxJ E SVAL(P5)3{X1 / Px1 , .. ,,Xo/ Px.} E SVAL(P5)

3 s:Sx, = Px, ,S, .. ,,Sx. = Px •. S and

S x,, ... , S x. are determinate selector in rt,, ... , rt.

This definition implies several problems. Once the SV AL-node of an abstract
substitution is localised, we must found the corresponding one into the other abstract
substitution. To realise this operation, we proceed like ,in the detection of the subset i.e. we
corne down by the selector associated with a variable of the first abstract substitution into the
type-graph associated with the second abstract substitution. Once both SV AL-node are found,
we must add the higher node of the tree (and thus the shortest selector) into the new abstract
substitution.

This operation is delicate because the computation of the type-graph resulting of those
presents in can done a completely different type-graph. The following example illustrate this
situation.

X1 X2

X2=RestriA

Il ./2 ·12 X1 X1

A ~ Il

lnt Il lnt ./2 lnt

~
lnt Il Il

Figure 6.15 : An example of the effect of Restrict

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

Implementation of the same-value and of the abstract substitutions 92

As explained by the previous figure, the type-graph resulting of the restrict operation
could be very different than the type-graph which served to its creation. So we had to
construct an operation which add the SV AL-constraint only where they are valid.

The same problem arise when we must add ail the SV AL-constraints present in twice
abstract substitution on a new one. This situation can be found during the operation called
BackW ard Unification.

'If~; '~r e AN: bunif (~; '~r) = if(~; = .l or ~r = .l) then .l

else normaliz~~,.) with

Type(~,.) = { xj ~ btunif <1t' T~,) 1 Xe D }

SVAL (~,.) = SVAL (~r)LJSVAL (~)

Hopefully, we have already build the algorithm will resolve those problems, it is
Add_constraint. An interested reader can verify that the specification of this later algorithm
meet perfectly the requirement of the question raised above.

6.6. Problems derived Jrom the data structures

The data structures presented before has many advantages but they suffer from some
inconvenient too.

• The first major problem is to copy an abstract substitution, indeed, when we copy a
SV AL-constraint, we had to build the list of father but it could happen that the father
has not been created yet.

• The principle of merging the tree forming the SV AL-component imposes to be very
prudent when desallocating a node. For example, if we decide to destroy a node which
was still used by a SV AL-constraint, the allocation error is certain for the next acces on
the abstract substitution containing the later SV AL-constraint.

Now that we have make an overview of the principal problerns derived from the data
structures we have to examine solutions founded to resolve it. This can be founded in the next
section.

6.6.1. Copying an abstract substitution

As explained before, the main difficulties in copying an abstract substitution is that we
have to make reference to objects which have not been created yet. For example, let us

suppose that we are copying the first variable of the abstract substitution ~ , and let us suppose
that this variable is linked by an SV AL-constraint on the variable X2. By means of our data
structure, those two variables share a node called the SV AL-node from which starts a list of
father containing as many cells as the number of variables sharing the node. In those cells, we
can find a reference to the father of this node, and so to the variable X2, the problem is that the
father can't exist because we haven't copied the variable X2 yet, as shown in the next figure.

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation: Implementation

Implementation of the same-value and of the abstract substitutions 93

SVAL-Constralnt
Source

X1 X2

î
Merged node

SVAL-Constralnt
Destination

X1 X2

?

î
Merged node

Backward Reference

(ref. to the father(s) of the node)

►

Forward Reference
(ref. to the son of the node)

Figure 6.16 : Example of copying a substitution

The solution found to realize cleanly this operation is to create two recursive
procedures, the first one builds the SV AL-component in a top-down way whereas the other
ones builds the SV AL-component in a bottom-up way.

~dut . = CopySvalComponent(~sourcJ;

PreCondition :

• ~ source is normalized abstract substitution.
PostCondition :

• ~dut. is normalized abstract substitution copy of ~ source •

• ~ source is normalized abstract substitution.

Structure of the algorithm :

Copy_ Top_Down(node)

.),

nd_res = Copy _Node(node);

While (Exist_Son_ To_be_copied(node))

{ Copy _ Top_Down(node ➔ son.) }

While (Exist_Father_ To_ be_ Copied(node))

!if (Unknown_Reference(node ➔ father.))l

then Copy _ Bottom_ Up(node ➔ son,)

else Copy _ Father(node ➔ father,)

Attach_ List_ of _Father(nd_res);

Copy_Bottom_ Up(node)

.),

nd_res = Copy _Node(node);

While (Exist_Father_ To_be_copied(node))

lif (Unknown_Reference(node ➔ father;)) l
then Copy _Bottom_ Up(node ➔ Father,)

else Copy _Father(node ➔ father;)

While (Exist_Son_ To_be_Copied(node))

(

if (Son_Already _ Copied(node ➔ son;))

then Insert_Jn_List_Son(node ➔ son,)

else Copy _ Top_Down(node ➔ son)

Attach_List_ of _Son(nd_ res);

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation: Implementation

Implementation of the same-value and of the abstract substitutions 94

This algorithm needs following comments :
•

•

the left-hand part of this algorithm is the one which pennits to create all the sons of a
node and thus is dedicated to build the SV AL-constraint in a Top-Down way. When it
detects a reference to an object which has not been created yet, it calls the right-hand
part and it puts the result given by the call into the place where the unknown reference
was done.
The right-hand part of the algorithm allows to create an SV AL-constraint in an
Bottom-Up way, it is thus dedicated to create the list of fathers of a node as the
reference to the father it-self. Once it has build the upper part of the SV AL-constraint,
it calls the left-hand size part and it puts the result given by the call as the list of son of
the node he has created.

This algorithm is a bit complex but it must have good performance because it will be
called often, so the idea to copy an SV AL-component in one pass was necessary to speed up
this time-consuming operation.

6.6.2. Deletion of an abstract substitution

The major problem of this operation is to know when a node can be freed, this is not as
simple as it seems to be because a node can be shared by several others. The situation will be
more viable if we know before killing a node how much time it is referenced. This is the job of
the field NbSha.ring in the node denoting a functor. The algorithm of deletion becomes very
simple with a good utilisation of this information. We can see in the next figure, how to deal

when we wanted to delete the abstract substitution ~ composed by three variables on which
there is an unique SV AL-constraint forming the SV AL-component (the type-graph's are not
present in this figure for obvious reasons of readability) .

~(1) ___ ----4 ~(2)---t"9• ~t(3)
____ A ___ _

r "
r ___ A ___ ,

•:•:•. .;:;::

.:
:,:_=_,=::::~ :/•"

•.•.::;

X3

\;(:§:)

"î'
Merged node Merged node Merged node

Figure 6.17: Example of deletion of a substitution

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

Implementation of the same-value and of the abstract substitutions

Free _Sval_ Constraint(SV AL-node) ;

PreCondition :

•
•

(SVAL-node ➔ NbSharing0) >= 1
SV AL-node is a valid functor node

PostCondition:

• SV AL-node is still valid~ (SV AL-node ➔ NbSharing0) > 1

95

As valid, we means that the SVAL-node has not been desallocated of the memory.

6.7. Summary

In this chapter, we have presented the data structures chosen to represent the
SV AL-component as the abstract substitution (Section 6.2 and 6.3). After a discussion on the
changes bring out by the proposed representation, we were focusing the algorithm Normalize.
We have proposed a new version of this algorithm which performs the normalization of the
abstract substitution irnmediately during the addition of the SV AL-constraint.

A sparing description of the problems (as of the solutions used) posed by the algorithm
working on the abstract substitutions is done in the section 6.5.

The latest section is dedicated to the tricks bring out by the chosen data structure.

Deriving Run Time Properties of Logic Programs l7y Means of Abstract Interpretation : lmplementation

Chapter 7
Abstract interpretation operations

7.1. Introduction

AU the operations defined previously were designed to be integrated on the abstract
interpreter developped by [2]. The first section of this chapter describes the abstract operations
permitting to interface with this abstract interpreter. Th ose operations are proposed to the
attention of the reader to be complete, they were not implemented in this work because
another abstract interpreter was used.

Second section describes the operations which are necessary to the abstract interpreter
used and which was developped by [8]. This algorithm is not described here because it is not
the purpose of this work. We just describe informally all the operations which form the
interface between the domain and the abstract interpreter. An attentive reader can find in the
following papers a precise specification of the abstract operations in terms of the
concretization functions [8],[9],[10].

7.2. Original abstract interpreter for that abstract domain

By original, we means that this abstract domain was conceived for this abstract
interpreter and not for the abstract interpreter used. This section of the chapter is strongly
inspired by [7], the reader can refer to this work for more information.

7.2.1. Procedure-entry(P,~;")

Assume that {Y1, .. -,Yn,X1, ... ,Xp} is the domain of the call-substitution ~in and that

the call is P(Y1, .. -,Yn) for which a set of clauses P(Z/ , ... ,Zj)f---B/, .. . ,BJ. exitsts. Assume

that { z/ , ... ,Zj ,Z!+i , ... ,zj} are the variable of the jlh clause. Procedure entry has to compute

Abstract interpretation operations

H

r
j3aB 1 j3b j3in j3in P

H1 Hj

AND
in j

j3j 81
j

Bjn

Bn

Hm

Figure 7.1 : Procedure-entry extends the abstract AND-OR graph

Definition 7 .1 :

TYPE ((3;J = {w ~ r!~ lw e {y; , ,rJ}

SVAL ((3;n) = {{H-; / S1 ,W2 / S2} E SVAL ((3;n}l"Wi ,W2 E {y; , ,Y,,}}

(3;n = R((3;n)

'T'VPE (A;")- {zi L__ TP;. zi L__ Tp;;. zi L__ max zi L__ max}
l. l.' 1-' j - 1 -- y 1 • "' • n -- y. • n+I -- , ... • q --

97

Note that we do not deal explicitely with the trivial case (3;n of being .1 as the result of
any abstract operation on is .1 again .1.

7.2.2. Procedure-exit(P,(3,.",{ ... ,(3~"' , ... })

The same assumptions as Procedure-entry are made. Let (3~"' be the abstract sucess

substitution of (3~ .. Procedure-exit has to compute (3:u, and (3
0

" 1 (see figure 7.2). (3:u, over the

domain { Y 1, ... , Y n} is defined as follows :

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

Abstract interpretation operations

H

r r
paB1 Pb pinpin P poutpout

H1

in j
pj 81

Hj

AND

Bn

Hm

j r
Bjn pout

Figure 7.2 : Procedure-exit computes f3out

Definition 7 .2 :

SVAL(f3'j) = {{l~ / s1 ,Y, / s,}j{ Z1 / s1 ,z/ / s,} e SVAL(f3t) and k, 1 e [1,n]}

f3' = upp(f3'1 ,upp(... ,upp(f3'p-I ,f3'P) ...)) with p µie number of defining clauses.

98

Computing f3
0
u, from f3:u, and f3;n (the extansion operation) has to take into account the

dependencies between Xq and Y r· The possible values for such a variable Xq which did not
participate directly in the call can become more restricted due to an existing dependency with a
Yr.

Definition 7 .3 :

TYPE (f3 0 u,) ={ ... ,Yi~ Tt·' , .. . ,Xn ~ normalize(T~;), ... }

with T~; =

if 3 { X)si'YJsJ e SVAL (f3;n):

(not (3 {Xi/ s;, Yk / sk} E SV AL(f3;n) : si extends s; and s; -:/=si)

YW andnot(n:1
~'" /si =n0 i •• , /si))

replace (T~;. btunif (n x,~ .. / s. n YJ~;., / s.))
X; ' 0 , , 0 J

else T~"' X;

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

Abstract interpretation operations

SVAL (~OJ = SVAL (~JUSVAL (~:J
~ out = normalize(~out)

99

During the extension step we look for a subgraph Tx; / si that describes in ~ in terms that

have to be identical to subterms of a Yj, namely in the denotation of Txi / sr We do not have

to consider any subgraphs of such a Tx; /si, because the type-graphs in ~:ut are normalized and

thus compatibility between types and SV AL-constraints is assured.

For such a type graph we check whether the denotations are still identical after the call.

If not, we change the denotation of Tx; / si by btunif (n~•P1n / si , n?;., / s;) which retains only

th ose bindings that are possible instantiations of the terms in ID(n~•P1n / si) .

The values of Xi may become instantiated by the call due to sharing of a free variable
with a Yj. In this case, we know that the sharing occurs in a subterm ts such that ts and ts0
belong to the denotation of a max-node. So no special action must be performed during the

extension to deal with this sharing. The SV AL-constraints in ~ out have determinate selectors.

This is trivial for those in SV AL(~:ut). Those from SV AL(~in) are determinate due to
the proposition 3 .19 of btunif.

7.2.3. Abstract-interpretation-built-in(P,~in)

This operation is divided in three parts . The first part computes ~;; and corresponds to
the first part of Procedure-entry but we do not apply the opertor R. The last part computes

~out from ~in and ~:u, and corresponds to the last part (extension) of Procedure-entry. So we

only have to consider the rniddle step, computing ~:ut from ~;;.

H

81 J3inf3iha P f36utf3out Bn

Figure 7.3 : Abstract interpretation of the built-in P

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation: Implementation

Abstract interpretation operations

7.2.3.1. Abstract interpretation of X = Y

The intended denotation of the abstract success-substitution is the set

{rxcrl{ X~ tx,Y ~ ty} E y(~;:) and O" is a mgu of tx and t y }

This set is contained in the set

Proposition 7.1:

100

{ t x o-jt x e ID(Tx) and t Y e ID(TY) and cr is a mgu of t x and t Y } { I }
= t t e ID(Tx) and t e ID(TY)

Note that the latter set on Proposition 7 .1 is just the denotation computed by
intersection(Tx, Ty).

Definition 7.4 :

TYPE (~:u,) = { X ~ T,,, Y ~ T,,} with Tu = intersection (Tf , T/':)

SVAL (~:J = SVAL (~;,,)u{{x /E,Y /e}}

Theo rem 7 .3 : Abstract interpretation of X= Y is correct.

7.2.3.2. Abstract interpretation of X = f(Y 1, ... , Y k)

Definition 7 .5 :

TYPE (~:J = {X~ Tu,···,Y; ~ restrict(n:~:., /(f /k,i)), ... }

where T,, = intersection (Tf , Ty) and 1'y a type graph with lb (n~) = f / k and k sons such

that n~ / i = Tt: .

SVAL (~:J = SVAL (~;:)U{ ... , {X/ (f / k,i),Y; / E} , ... }

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

Abstract interpretation operations 101

Observe that for each Yi we construct a new type-graph whose denotation is the same
as the one of the ith son of the root of Tu which is a functor node with label f/k.

Theorem 7.4: Abstract interpretation of X= f(Y 1, ... ,Yk) is correct.

7.3. Abstract interpreter used

The operations presented below are conceived to deal with the various situations
encountered during the computation. Two operations deal with the unification. There is an
operation for each form the unification can have, either a unification of variables or the
unification of a variable and a functor. They are two operations dedicated to the procedure
clause. The first one is needed to extend the abstract substitution to the variables present in the
bodies of the clause, the other one is used at the end of the work on the clause to restrict the
number of variables at those presents in the head of the clause. The last pair of operations is
related to the handling of the procedure call. The first operation restricts the number of
variables at those present on the call. The second one realize the propagation of the result
inside the substitution.

After the presentation of the operation conceived to deal with the various situations
encountered during the computation, we describe an operation needed by the abstract
interpreter and which allows to computes the least upper bound of two abstract substitutions.

7.3.1. Unformal description

AI-VAR((3) where f3 is an abstract substitution on {X1,X2}: this operation retums the
abstract substitution obtained from 13 by unifying variables X 1,X 2. lt is used for goals of the
form Xi = Xj in normalized prograrns.

AI-FUNC(f3J) where 13 is an abstract substitution on {Xl,···,Xnl and/is a function symbol
of arity n-1: this operation returns the abstract substitution obtained from 13 by unifying X 1 and
/(X2, ... ,Xn)- It is used for goals of the form Xil = f<Xi2, ... ,Xin) in normalized prograrns.

EXTC(c,(3) where j3 is an abstract substitution on {X1,••· ,Xnl and c is a clause containing
variable {X1, ... ,Xml (m ~ n): this operation retums the abstract substitution obtained by
extending f3 to accomodate the new free variables of the clause. It is used at the entry of a
clause to include the variables in the body not present in the head. In logical terms, this
operation, together with the next operation, achieves the role of the exitential quantifier.

RESTRC(c,(3) where 13 is an abstract substitution on the clause variables {X1,••·,Xml and
{X l ,···,Xnl are the head variables of clause c (n ~ m) : this operation retums the ABS obtained
by projecting 13 on variables {X1, •• ·,Xnl- It is used at the exit of a clause to restrict the
substitution to the head variables only.

RESTRG(g,(3) where 13 is an abstract substitution on D = {Xl,···,Xn}, and gis a goal
p(Xi1 , ... ,Xim) (or Xil =Xi2 or Xil = /(Xi2, ... ,Xim)) : this operation returns the ABS obtained
by

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

Abstract interpretation operations 102

2. expressing Win terms of {X1,••·,Xm} by mapping Xik or Xk.
It is used before the execution of a goal in the body of a clause. The resulting substitution is

expressed in terms of {X1, .. ,,Xm}, i.e. in the same way as the input and output substitutions of
p in the abstract domain.

EXTG (g, 13, 13 ') where (3 is an abstract substitution on D = { X 1, .. . ,Xn}, the variables of the
clause where g appears, g is a goal p(Xil , ... ,Xim) (or Xil =Xi2 or Xil = /(Xi2, ... ,Xim)) with
(Xi1, ... ,Xim) c D and W is an ABS on {X1,••· ,Xm} representing the result of p(X1, .. ,,Xn)J3"
where (3" = RESTRG(g,(3): tlris operation returns the ABS obtained by extending (3 to take
into account the result (3' of the goal g. It is used after the execution of a goal to propagate the
results of the goal on the substitution for ail the variables of the clause.

UNION {131 , ... ,13n} where { J31 , ... ,J3n} are the abstract substitutions from the same
cpo : tlris operation returns an abstract substitution representing ail the substitutions satisfying
at least one J3i• It is used to compute the output of a procedure given the outputs for its
clauses.

Ail these definitions are extracted form [8] and can be illustrated by the following figure.

~aux = RestrG(bi,~ext)

~ext = ExtC(~in, C)

l
~in -. P(X1 , ,Xn) : - . bi

switch (bi) of

~ext = ExtG(bi, ~ext, ~int)

~out= RestrC(C, ~ext)

l

Xi= Xj -----► ~int = Ai-Var(~aux)

Xi= f(Xj, ... ,Xk) ----. ~int = Ai-Func(~aux)

Figure 7.4 : Abstract interpretation operation for the interpreter used

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

Abstract interpretation operations 103

7.3.2. Adaptation on the defined domain

7.3.2.1. f3ext = ExtC(J3in, C)

Let D = {Xi, ... ,X,.} be the domain of f3;,. and D' = {Xi, .. ,,x,.+.J be the set of variables

in the clause C. ExtC(f3 ;,. , C) produces an abstract substitution f3 ex, such that:

TYPE(f3e.J ={xi~ Tf , ... ,X,.~ r:·· ,X,.+I ~ max, ... ,X,.+.t ~ max}
1 •

It is a simple mapping from the variables of f3 ;,. to the variables of f3 ex,. The variables

added to the variables of f3 ;,. to satisfy the number of variables present in the clause C are

associated with a max-node as type-graph.

SVAL (f3u,) = SVAL (f3J

The same-value of (3;,. is just mapped on f3u,· There is no same-value component on the

new variables f3 ex,.

7.3.2.2. f3aux = RestrG(bï,f3ext)

Let D' = { X1 , ••• ,X,.+.t} be the domain of f3 ex, and D' '= {X;,, ... , X;.} be the set of variables in

the body of a goal bi (D"c D'). RestrG(b; ,f3exr) produces a subst f3exr obtained by:

TYPE (f3a,.J = { X1 ~ r:,- , ... , Xq ~ T;,"".} Vr,s:1::;; r ;t s::;; n+k

SV AL (J3 aux) = { {X,. / S,. , ... , X m / Sm} 1 {X; / S; , ... , X j / S j} E SV AL (J3 exr) } V n, m : 1 $ n ;é m $ q

We only take into account the variables of f3 ex, which are used in the goal b; and we

transfer the value of the variables from f3 exr to f3 aux .

7.3.2.3. J3int = Ai-Var(f3aux)

flint = Ai-V ar(f3aux) where f3 aux is an abstract subst. on { X 1 , X 2 }.

This operation reums the abstract subst. obtained from f3 aux by unifying variables X 1 , X 2 • It is

used for goals of the form X; =Xi in normalized programs.

TYPE (f3ïn1) = {X1 ~ T,,,X2 ~ T,,}

with T,. = intersection (Ttux , Ttux)

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

Abstract interpretation operations 104

Because of the implementation of Normalize, there is no need perform any operation of

normalization on f3in1 • As matter of fact, the input abstract substitution f3int is normalized
because we always keep the abstract substitution in a normalized form and the addition of

{ X 1 / E, X 2 / E} is done by means of the procedure Add_ constraint which keep the substitution
normalized.

7.3.2.4. J3int = Ai-Func(l3aux)

l3int = Ai-Func(l3aux) where 13au.x is an abstract substitution on {xi, ... ,xq} and/is a

functional symbol of arity q-1. This operation rehuns the abstract substitution obtained from

13 aux by unifying X 1 and f (X 2 ' ... 'X J. It is used for goals X;l = f(X;l ' ... 'xJ in normalized

programs.

where T,, = intersection (Tl; , Tx.) and Tx· a type graph with lb(n;') = f / k and k sons

such that n;' = T1· (v'i: 2 s; i s; q) .

As for Ai-Var, the same considerations can be done on the usefulness of performing
Normalize.

7.3.2.5. l3ext = ExtG(bi, l3ext, l3int)

Let D"={X1,· ·· ·xJ be the domain of f3int · Let D'={Xi,···,Xn+k} be the domain of

f3ex, (D"c D'). This operation returns the abstract substitution obtained by extending 13exr to

take into account the result l3in1 of the goal bi.

Letf-D"➔D' be a function, which from a variable Xi in input returns either Xj or 0.
• If (ouput = Xj) then it means that Xi in D" is the same variable than Xj up to renarning.
• If (ouput = 0) then it means that Xi has no corresponding variable in D'.

TYPE (f3exr)={ ... ,X; ~r!,, ... }
with Tt = if f (X;) = X j

then restrict(replace(T~- s. btunif (nx,~ ... / s. nx,~, .. / s.))) xi , 1' o 1' o 1

else Tx = T1'" v'j: 1 s; j s; q
' J

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

Abstract interpretation operations 105

Ail the operations performed during the extansion of Procedure-exit (Section 2) are
done to establish compatibility between type-graphs and SV AL-constraints. Ail those

operations are not neccessary here always for the same reason. We knows that Pe .. , is

normalized because we always keep the abstract substitution in a normalized form. So, as we

are using the procedure Add_constraint to add the ail the SV AL-constraints contained in Pmi,

we obtain as result a normalized abstract p ex,.

7.3.2.6. Pout = RestrC(C,Pext)

Let D = {Xi,···,xJ be the set of variables of Pout and D'= {xp- .. ,x,.+J be the set of

variables of P ex, which are present in the clause C. Tiris operation retums the abstract

substitution obtained by projecting P ex, on the variables { X 1 , ••• , X,.}.

7.3.2.7. f3out = Union(f3out,Pext)

The union of two abstract substitutions is the same operation than the upper-bound
operation.

V Pi, P2 e AN:

upp<P1, P2) =

TYPE(ô) =

if P1 = l. then P2
else if P2 = l. then P 1
else ô with

{X ~ normalize(nx) 1 X e D and
nx is an OR-node with two outgoing forward arcs:

one of the root ofT~1 and one to the root of T~2
}

SVAL(ô) = {{X/sx, Y/sy} 1

Pp, Ps e {P1, Pû and Pp -:t= Ps and
3 {X/sx, Y /sy} e SV AL(Ps) 3 {X/Px, Y f Py} e SV AL(Pp) 3 s :

Sx = Px . s and Sy = Py . s and

sx respectively Sy are determinate selectors in T~ respectively T~ }

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

Abstract interpretation operations 106

7.4. Summary

In this chapter, we present the operations interfacing the abstract interpreters. We
present in detail the operations implemented. We discuss the changes bring from the
implementation of Normalize on this operation.

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

Chapter8
Interpretation of the results

The first results given by the abstract interpreter on this abstract domain where
obtained in the same time than the redaction of this work. It was difficult for us to include
those results in this paper because of the deadline. Furthermore, there were still some bugs in
the program at this tirne, so, we have decided to add the results of the implementation in an
addendum.

Chapter9
Future optimization and conclusion

9.1. Optimization by memoization techniques

This technique is based on the following observation. A lot of operations on the
type-graph are performed more than once with the same input, and thus gives the same output.

Example:
Let append be a normalized Prolog program.

append(X 1,X2,X3) :
X 1 = [],
X3=X2.

append(X 1,X2,X3) :-
X 1 = [X4 I X5] ,
X3 = [~ 1 X6],
append(X5,X 2,X6).

Let be J3in the input of the program (there is no same value).

~in { X1

i
X2 X3

Max Max

[]

lnt

During the abstract interpretation of the Prolog Program with J3in the operation Compact is
done more than 30 times on variable unified to List (see Appendix A for more).

Future optimization and conclusion 109

A solution to avoid this situation is to create an array which memorizes for each
existing type of operation its input and its output. 1bis optimization, called caching, has
already been performed on another domain, the reader can found its results in [18]. Once an
operation is performed on the type of a variable, we parse the array to search if the willing
operation has been done previously, if it is the case, there is no need to perform this operation
because we already have its output, if it is not he case, we perform the operation and we store
the output into the array.

Operation Compact

Input Output
T0: :=or(nil,.(int,t0)) T0: :=or(nil,.(int,t0))

T0: :=or(int,bottom,t0) T0::=int
... ...

9.1.1. Discussion on the proposed optimization

The basic principle of this optimization is quiet simple but it is no certain that its
implementation will improve the abstract interpretation.

Advantages :

1bis optimization is very useful on large trees, as matter of fact, performing an
operation like Restrict on big trees is very time consuming. The computation time of the
operation Restrict is replaced by the time required to copy the restricted tree from output of
the array. It can be easily seen that copying a tree is faster than restricting a tree.

Drawnbacks :

Searching if an operation has already been performed implies to select the array
corresponding to the desired operation and to compare each input of the array with the input
of the current operation. It could tak.e a lot of time, specially when the searched tree is not
present in the array. In this case, the global computation time is very large because we must
add the time re:quired for the operation Restrict to the time of research.

Feasibility :

As expiressed on Chapter 4, the algorithm Compact yields a normal form for the type
graphs. HoweYer, it is not an unique fonn. 1bis can cause problems, as matter of fact, we have
to parse the an ay to search, for an operation, about an input which is the same than the current
type-graph. As the representation is not unique, we must apply the algorithm Equal on ail the
input of the an:ay. Performing like this cost obviously a lot of time because of the application
of the algorithrn.

To have an efficient caching optimization, it is nessessary to possess a canonical form
for the type graph, but it is not very easy to define it, mainly because of the OR-node. As
matter of fact, the sons of the OR-node are not classified in a strict order, so to establish a
canonical fonn, we must create a lexico-graphical order on the sons of the OR-node of the

Deriving Run Time Properties of Logic Programs by Means of Abstract lnterpretation : lmplementation

Future optimization and conclusion 110

type. With the help of this order, we can obtain an unique representation of the type-graph. So,
we can colour each node of the type graph, and in swnming ail the coloration of the node, we
can obtain a number which identify univoquely the tree, so there is no more need to use the
operation Equal and the caching will begin to be efficient.

9.2. Conclusion

Abstract interpretation, as we already said, is an important tool to analyze statically
Prolog programs and to improve performances of compilers.

A lot of work has been perf ormed during this year to achieve the implementation of this
abstract domain. It was a long task and the program corresponding to the domain is impressive
(more that 12.000 lines of C only for the abstract domain). The first results were obtained at
the end of the academic year. The abstract interpretor contains some 6.000 lines of C in the
used version, which is the original version.

The first evaluation of the time requested by the abstract interpretation is quiet high,
this is due to the strong complexity of the domain. However, it is not possible at the time to
draw some conclusion about the efficiency of the implementation because of the reasons
explained in Chapter 8.

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

Bibliography

[1] S. Abramsk.y and C. Hankin, Abstract Interpretation of Declarative Languages, Ellis
Horkwood Limited, West Sussex, England, 1987.

[2] M. Bruynooghe, A practical framework for the Abstract Interpretation of Logic
Programs, Journal of Logic Progr~g, 10(2):91-124, February 1991.

[3] M. Bruynooghe, G. Janssens, A. Marien and A. Mulk:ers, The impact of abstract
Interpretation: an experiment in code generation.

[4] P. Cousot and R. Cousot, Abstract Interpretation: A Unified Lattice Mode! for Static
Analysis of Programs by Construction or Approximation of Fixpoints, in Conf. Records
ofFourth ACM Symposium on POPL, pp. 238-252, Los Angeles, CA, 1977.

[5] K. De Bosschere and L. Wulteputte, Prolog Implementation Methods, Technical report,
Laboratorium voor Elektronica en Meettetechniek, 1992.

[6] V. Englebert, D. Roland, Abstract Interpretation of Prolog Programs: Optimization of
an Impiementation, Institute of Computer Science,University of Namur, Belgium, 1992.

[7] G. Janssens, Deriving Run Time Properties of Logic Programs by Means of Abstract
Interpretation, PhD thesis, Katholiek Universiteit Leuven, Belgium, March 1990.

[8] B. Le Charlier and P. van Hentenryck, Experimental Evaluation of a Generic Abstract
Interpretation Algorithm for Prolog, Fourth IEEE International Conference on
Computer Languages (ICCL'92), San Francisco, CA, April 1992.

[9] B. Le Charlier, K. Musumbu and P. van Hentenryck, Efficient and Accurate Algorithms
for the Absract Interpretation of Prolog Programs, Technical report 37 /90, Institute of
Computer Science, University of Namur, Belgium, 1990.

[10] B. Le Charlier, K . Musumbu, and P. van Hentenryck, A Generic Abstract Interpretation
Algorithm and its Complexity Analysis, in K. Furukawa, editor, Proceedings of the
Eighth International Conference on Logic Programming (ICLP'91), Paris, France, June
1991. MIT Press.

[11] B. Le Charlier, L'Analyse Statique des Programmes par l1nterpretation Abstraite,
Institute of Computer Science, University of Namur, Belgium, 1992.

[12] B. Le Charlier, and P. van Hentenryck, Reexecution in Abstract Interpretation of
Prolog, Proceedings of the International Joint Conference and Symposium on Logic
Programming (IlCSLP-92), Washington, DC, November 1992.

[13] C. Livercy, Théorie des Programmes, pp. 18-23, Dunod, 1978.

Future optimization and conclusion 112

[14] J.W. Lloyd, Foundation of Logic Programming, Springer-Verlag, New-York, 1984.

[15] K. Musumbu, Interpretation Abstraite de Programmes Prolog, PhD thesis, Institute of
Computer Science, University of Namur, Belgium, September 1990.

[16] P.J. Planger, The Standard C Library, Prentice Hall, 1990.

[17] V. Englebert, B. Le Charlier, D. Roland, and and P. van Hentenryck, Generic Abstract
Interpretation Algorithm for Prolog : Two Optimization Techniques and their
Experimental Evaluation, Software Practice and Experience, 23(4), April 1993.

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

AppendixA
Note : this trace was obtained with the pre-version of the algorithm, it could be some bugs
again.

append(Xl , X2, X3) :- [0]
Xl = [],
X3 =X2.

append(Xl , X2, X3) :- [3]
Xl = [X4 1 X5] ,
X3 = [X4 1 X6] ,
append(X5, X2, X6).

AP- append(v,v,g)
OK?n
verbose (y/n)? y
functor : append
arity: 3
T0::= max
T 1 ::= end
T0::= max
T 1 ::= end
T 0 : := or([],.(int,t0))
T 1 ::= end

Entrez le nombre de composantes
formant cette partie de la same value <0,l=FIN> <2 .. 9>: 0

TRYCLAUSE 1
EXITEXTC

X 1 <-T0 ::= MAX
X2<-T0::=MAX
X 3 <-T 0 ::= OR([],.(INT,T0))
{ }

CALL UNIF-FUN
X 1 <-T0 ::=MAX
X2<-T0 ::=MAX
X 3 <-T 0 ::= OR([],.(INT,T0))
{ }

EXIT UNIF-FUN
X 1 <-T 0 ::= []
X2<-T0::=MAX
X 3 <-T 0 ::= OR([],.(INT,T0))
{ }

AppendixA

CALL UNIF-V AR
X 1 <-T 0 ::= □
X2<-T0 ::=MAX
X 3 <-T 0 ::= OR([],.(INT,T0))
{ }

EXIT UNIF-V AR
X 1 <-T O ::= []
X 2 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
X 3 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
{ { X2/(0)}, { X3/(0)} }

EXITRESTRC
X 1 <-T O ::= []
X 2 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
X 3 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
{ {X2/(0)},{X3/(0)} }

EXITLUB
X 1 <-T 0 ::= []
X 2 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
X 3 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
{ {X2/(0)} ,{X3/(0)} }

EXIT CLAUSE 1
TRYCLAUSE2

EXITEXTC
X 1 <-T0 ::=MAX
X2<-T0::=MAX
X 3 <-T 0 ::= OR([],.(INT,T0))
X4<-T0 ::=MAX
X5<-T0::=MAX
X6<-T0 ::=MAX
{ }

CALL UNIF-FUN
X 1 <-T0 ::=MAX
X2<-T0 ::=MAX
X 3 <-T 0 ::= OR([],.(INT,T0))
X4<-T0 ::=MAX
X5<-T0::=MAX
X6<-T0 ::=MAX
{ }

EXIT UNIF-FUN
X 1 <-T 0 : := .(MAX,MAX)
X2<-T0::=MAX
X 3 <-T 0 ::= OR([],.(INT,T0))
X4<-T0 ::=MAX

114

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

AppendixA

X5<-T0::=MAX
X6<-T0 ::=MAX
{ {Xl/(1)},{X4/(0)} {Xl/(2)},{X5/(0)}

CALL UNIF-FUN
X 1 <-T0 ::= .(MAX,MAX)
X2<-T0::=MAX
X 3 <-T 0 ::= OR([],.(INT,T0))
X4<-T0 ::=MAX
X5<-T0::=MAX
X6<-T0 ::=MAX
{ {Xl/(1)},{X4/(0)} {Xl/(2)},{X5/(0)}

EXIT UNIF-FUN
X 1 <-T 0 ::= .(INT,MAX)
X2<-T0 ::=MAX
X 3 <-T 0 ::= .(INT,OR(T0,[]))
X4<-T0 ::=INT
X5<-T0::=MAX
X 6 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
{ {Xl/(1)},{X3/(1)},{X4/(0)} {Xl/(2)},{X5/(0) } {X3/(2)},{X6/(0)} }

CALL PRO-GOAL append
X 1 <-T0 ::=MAX
X2<-T0 ::=MAX
X 3 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
{ }

skip (y/n): n
EXIT PRO-GOAL append

X 1 <-T 0 ::= BOTTOM
X 2 <-T 0 ::= BOTTOM
X 3 <-T 0 ::= BOTTOM
{ }

EXITEXTG
X 1 <-T 0 ::= BOTTOM
X 2 <-T 0 ::= BOTTOM
X 3 <-T 0 ::= BOTTOM
X4<-T0 ::=BOTTOM
X 5 <-T 0 ::= BOTTOM
X 6 <-T 0 ::= BOTTOM
{ }

EXITRESTRC
X 1 <-T0 ::=BOTTOM
X 2 <-T 0 ::= BOTTOM
X 3 <-T 0 ::= BOTTOM
{ }

115

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : lmplementation

AppendixA

EXITLUB
X 1 <-T 0 ::= []
X 2 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
X 3 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
{ {X2/(0)},{X3/(0)} }

EXIT CLAUSE 2

ADJUST

TRYCLAUSE 1
EXITEXTC

X 1 <-T0 ::=MAX
X2<-T0::=MAX
X 3 <-T 0 ::= OR([],.(INT,T0))
{ }

CALL UNIF-FUN
X 1 <-T0 ::=MAX
X2<-T0 ::=MAX
X 3 <-T 0 ::= OR([],.(INT,T0))
{ }

EXIT UNIF-FUN
X 1 <-T O ::= []
X2<-T0::=MAX
X 3 <-T 0 ::= OR([],.(INT,T0))
{ }

CALL UNIF-V AR
X 1 <-T O ::= []
X2<-T0::=MAX
X 3 <-T 0 ::= OR([],.(INT,T0))
{ }

EXIT UNIF-V AR
X 1 <-T O ::= []
X 2 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
X 3 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
{ { X2/(0)}, { X3/(0)} }

EXITRESTRC
X 1 <-T 0 ::= []
X 2 <-T 0 ::= OR([] ,Tl) T 1 ::= .(INT,OR([],Tl))
X 3 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
{ {X2/(0)},{X3/(0)})

EXITLUB

116

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

AppendixA

X 1 <-T 0 ::= []
X 2 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
X 3 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
{ { X2/(0)}, { X3/(0)} }

EXIT CLAUSE 1

TRYCLAUSE2
EXITEXTC

X 1 <-T0 ::= MAX
X2<-T0::=MAX
X 3 <-T 0 ::= OR([],.(INT,T0))
X4<-T0::=MAX
X5<-T0::=MAX
X6<-T0::=MAX
{ }

CALL UNIF-FUN
Xl<-T0::=MAX
X2<-T0 ::=MAX
X 3 <-T 0 ::= OR([],.(INT,T0))
X4<-T0 ::=MAX
X5<-T0::=MAX
X6<-T0 ::=MAX
{ }

EXIT UNIF-FUN
X 1 <-T 0 : := .(MAX,MAX)
X2<-T0: :=MAX
X 3 <-T 0 ::= OR([],.(INT,T0))
X4<-T0::=MAX
X5<-T0::=MAX
X6<-T0 ::=MAX
{ {Xl/(l)},{X4/(0)} {Xl/(2)},{X5/(0)} }

CALL UNIF-FUN
X 1 <-T 0 ::= .(MAX,MAX)
X2<-T0::=MAX
X 3 <-T 0 ::= OR([], .(INT,T0))
X4<-T0::=MAX
X5<-T0::=MAX
X6<-T0 ::=MAX
{ {Xl/(1)},{X4/(0)} {Xl/(2)},{X5/(0)} }

EXIT UNIF-FUN
X 1 <-T O ::= .(INT,MAX)
X2<-T0 ::=MAX
X 3 <-T 0 ::= .(INT,OR(T0,[]))
X4<-T0 ::=INT

117

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

AppendixA

X5<-T0::=MAX
X 6 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
((Xl/(1)}, (X3/(1)}, (X4/(0)} (Xl/(2)}, (X5/(0)} (X3/(2)}, (X6/(0)} }

CALL PRO-GOAL append
X 1 <-T0 ::=MAX
X2<-T0 ::=MAX
X 3 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
(}

skip (y/n): n
EXIT PRO-GOAL append

X 1 <-T O ::= []
X 2 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
X 3 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
{ { X2/(0)}, { X3/(0)} }

EXITEXTG
X 1 <-T 0 ::= .(INT,[])
X 2 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
X 3 <-T 0 ::= .(INT,OR(□ ,T0))

X4<-T0::=INT
X 5 <-T O ::= []
X 6 <-T 0 ::= OR(Tl,[]) T 1 ::= .(INT,OR([],Tl))

118

{ {Xl/(1)},(X3/(1)},(X4/(0)} (Xl/(2)},(X5/(0)} (X2/(0)},{X3/(2)},(X6/(0)} }

EXITRESTRC
X 1 <-T 0 ::= .(INT,[])
X 2 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
X 3 <-T 0 ::= .(INT,OR(□ ,T0))
{ {Xl/(1)},(X3/(1)} {X2/(0)},{X3/(2)}

EXITLUB
X 1 <-T 0 ::= OR(.(INT,[]),[])
X 2 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR(Tl,[]))
X 3 <-T 0 ::= OR(Tl,[]) T 1 ::= .(INT,OR(Tl,[]))
{ {X2/(0)},{X3/(0)} }

EXIT CLAUSE 2

ADJUST

TRYCLAUSE 1
EXITEXTC

X 1 <-T0 ::=MAX
X2<-T0 ::=MAX
X 3 <-T 0 ::= OR([],.(INT,T0))
{ }

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : lmp/ementation

AppendixA

CALL UNIF-FUN
X 1 <-T0 ::=MAX
X2<-T0::=MAX
X 3 <-T 0 ::= OR([],.(INT,T0))
{ }

EXIT UNIF-FUN
X 1 <-T O ::= []
X2<-T0::=MAX
X 3 <-T 0 ::= OR([],.(INT,T0))
{ }

CALL UNIF-V AR
X 1 <-T0 ::= []
X2<-T0 ::=MAX
X 3 <-T 0 ::= OR([],.(INT,T0))
{ }

EXIT UNIF-V AR
X 1 <-T O ::= []
X 2 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
X 3 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
{ { X2/(0)}, { X3/(0)} }

EXITRESTRC
X 1 <-T O ::= []
X 2 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
X 3 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
{ {X2/(0)}, {X3/(0)} }

EXITLUB
X 1 <-T 0 ::= []
X 2 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
X 3 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
{ {X2/(0)},{X3/(0)}}

EXIT CLAUSE 1

TRYCLAUSE2
EXITEXTC

X 1 <-T0 ::=MAX
X2<-T0 ::=MAX
X 3 <-T 0 ::= OR([],.(INT,T0))
X4<-T0 ::=MAX
X5<-T0::=MAX
X6<-T0 ::=MAX
(}

119

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

AppendixA

CALL UNIF-FUN
X 1 <-T0 ::=MAX
X2<-T0::=MAX
X 3 <-T 0 ::= OR([],.(INT,T0))
X4<-T0 ::=MAX
X5<-T0::=MAX
X6<-T0 ::=MAX
{ }

EXIT UNIF-FUN
X 1 <-T 0 : := .(MAX,MAX)
X2<-T0::=MAX
X 3 <-T 0 ::= OR([],.(INT,T0))
X4<-T0 ::=MAX
X5<-T0::=MAX
X6<-T0 ::=MAX
{ {Xl/(1)},{X4/(0)} {Xl/(2)},{X5/(0)}

CALL UNIF-FUN
X 1 <-T 0 ::= .(MAX,MAX)
X2<-T0 ::=MAX
X 3 <-T 0 ::= OR([],.(INT,T0))
X4<-T0 ::=MAX
X5<-T0::=MAX
X6<-T0::=MAX
{ {Xl/(l)},{X4/(0)} {Xl/(2)},{X5/(0)}

EXIT UNIF-FUN
X 1 <-T 0 ::= .(INT,MAX)
X2<-T0::=MAX
X 3 <-T 0 ::= .(INT,OR(T0,[]))
X4<-T0::=INT
X5<-T0::=MAX
X 6 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
{ {Xl/(l)},{X3/(1)},{X4/(0)} {Xl/(2)},{X5/(0)} {X3/(2)},{X6/(0)} }

CALL PRO-GOAL append
X 1 <-T0 ::=MAX
X2<-T0 ::=MAX
X 3 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
{ }

skip (y/n): n
EXIT PRO-GOAL append

X 1 <-T 0 ::= OR([],.(INT,[]))
X 2 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
X 3 <-T 0 ::= OR(Tl,[]) T 1 ::= .(INT,OR([],Tl))
{ {X2/(0)},{X3/(0)} }

120

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

AppendixA

EXITEXTG
X 1 <-T 0 ::= .(INT,OR(□ ,T0))

X 2 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
X 3 <-T 0 ::= .(INT,OR(□ ,T0))

X4<-T0 ::=INT
X 5 <-T 0 ::= OR([],.(INT,[]))
X 6 <-T 0 ::= OR(.(INT,[]),[])

121

{ {Xl/(1)},{X3/(1)},{X4/(0)} {Xl/(2)},{X5/(0)} {X2/(0)},{X3/(2)},{X6/(0)} }

EXITRESTRC
X 1 <-T 0 ::= .(INT,OR(□ ,T0))

X 2 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
X 3 <-T 0 ::= .(INT,OR(□ ,T0))

{ {Xl/(1)},{X3/(l)} {X2/(0)},{X3/(2)} }

EXITLUB
X 1 <-T 0 ::= OR(Tl,[]) T 1 ::= .(INT,OR([],Tl))
X 2 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR(Tl,[]))
X 3 <-T 0 ::= OR(Tl,[]) T 1 ::= .(INT,OR(Tl,[]))
{ { X2/(0)}, { X3/(0)} }

EXIT CLAUSE 2

ADJUST

TRYCLAUSE 1
EXITEXTC

X 1 <-T0 ::=MAX
X2<-T0 ::=MAX
X 3 <-T 0 ::= OR([],.(INT,T0))
{ }

CALL UNIF-FUN
X 1 <-T0 ::=MAX
X2<-T0 ::=MAX
X 3 <-T 0 ::= OR([],.(INT,T0))
{ }

EXIT UNIF-FUN
X 1 <-T 0 ::= []
X2<-T0 ::=MAX
X 3 <-T 0 ::= OR([],.(INT,T0))
{ }

CALL UNIF-V AR
X 1 <-T 0 ::= []
X2<-T0 ::=MAX
X 3 <-T 0 ::= OR([],.(INT,T0))
{ }

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

AppendixA

EXIT UNIF-V AR
X 1 <-T0 ::= []
X 2 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
X 3 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
{ (X2/(0)},{X3/(0)} }

EXITRESTRC
X 1 <-T0 ::= []
X 2 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
X 3 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
{ (X2/(0)},(X3/(0)} }

EXITLUB
X 1 <-T 0 ::= []
X 2 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
X 3 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
{ (X2/(0)},{X3/(0)} }

EXIT CLAUSE 1

TRYCLAUSE2
EXITEXTC

X 1 <-T0 ::=MAX
X2<-T0::=MAX
X 3 <-T 0 ::= OR([],.(INT,T0))
X4<-T0 ::=MAX
X5<-T0::=MAX
X6<-T0 ::=MAX
{ }

CALL UNIF-FUN
X 1 <-T0 ::=MAX
X2<-T0 ::=MAX
X 3 <-T 0 ::= OR([],.(INT,T0))
X4<-T0 ::=MAX
X5<-T0::=MAX
X6<-T0 ::=MAX
{ }

EXIT UNIF-FUN
X 1 <-T0 ::= .(MAX,MAX)
X2<-T0::=MAX
X 3 <-T 0 ::= OR([],.(INT,T0))
X4<-T0 ::=MAX
X5 <-T0 ::=MAX
X6<-T0 ::=MAX
{ {Xl/(1)},{X4/(0)} {Xl/(2)},{X5/(0)) }

122

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

AppendixA

CALL UNIF-FUN
X 1 <-T 0 : := .(MAX,MAX)
X2<-T0::=MAX
X 3 <-T 0 ::= OR([],.(INT,T0))
X4<-T0 ::=MAX
X5<-T0::=MAX
X6<-T0 ::=MAX
{ {Xl/(1)}, { X4/(0)} { Xl/(2)}, { X5/(0)}

EXIT UNIF-FUN
X 1 <-T 0 ::= .(INT,MAX)
X2<-T0::=MAX
X 3 <-T 0 ::= .(INT,OR(T0,[]))
X4<-T0::=INT
X5 <-T0 ::=MAX
X 6 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
{ {Xl/(1)},{X3/(1)},{X4/(0)} {Xl/(2)},{X5/(0)} {X3/(2)},{X6/(0)} }

CALL PRO-GOAL append
X 1 <-T0 ::=MAX
X2<-T0 ::=MAX
X 3 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
{ }

skip (y/n): n
EXIT PRO-GOAL append

X 1 <-T 0 ::= OR(Tl,[]) T 1 ::= .(INT,OR(Tl,[]))
X 2 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
X 3 <-T 0 ::= OR(Tl,[]) T 1 ::= .(INT,OR([],Tl))
{ { X2/(0)}, { X3/(0)} }

EXITEXTG
X 1 <-T 0 ::= .(INT,OR(□ ,T0))

X 2 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
X 3 <-T 0 ::= .(INT,OR(□ ,T0))

X4<-T0 ::=INT
X 5 <-T 0 ::= OR(Tl,[]) T 1 ::= .(INT,OR(Tl,[]))
X 6 <-T 0 ::= OR(.(INT,[]),[])

123

{ {Xl/(1)},{X3/(1)},{X4/(0)} {Xl/(2)},{X5/(0)} {X2/(0)},{X3/(2)},{X6/(0)} }

EXITRESTRC
X 1 <-T 0 ::= .(INT,OR(□ ,T0))

X 2 <-T 0 ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
X 3 <-T 0 ::= .(INT,OR(□ ,T0))

{ {Xl/(1)},{X3/(1)} {X2/(0)},{X3/(2)} }

EXITLUB
X 1 <-T 0 ::= OR(Tl,[]) T 1 ::= .(INT,OR([],Tl))

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : lmplementation

AppendixA

X 2 <-T O ::= OR([],Tl) T 1 ::= .(INT,OR(Tl,[]))
X 3 <-T O ::= OR(Tl,0) T 1 ::= .(INT,OR(Tl,[]))

EXIT CLAUSE 2

ADJUST
Abstract interpretation is finished

The result is: append
X 1 <-T O ::= OR(Tl,[]) T 1 ::= .(INT,OR(Tl,[]))
X 2 <-T O ::= OR([],Tl) T 1 ::= .(INT,OR([],Tl))
X 3 <-T O ::= OR(Tl,[]) T 1 ::= .(INT,OR([],Tl))

procedure used in program: 1
clauses used in program: 2
program points used in program: 7
Goals used in program: 1
size of the static call graph used in program: 1

tail-recursive procedure in program: 0
locally-recursive procedure in program: 0
Mutually-Recursive Procedures in Program: 0
non-recursive provedures in program: 1

tirne of computing : 5.51 sec

iterations (solve_goal) : 4

cptl = 8

recursive pairs: 0
substitution-preserving recursive pairs: 0
substitution-increasing recursive pairs: 0
substitution-decreasing recursive pairs: 0
non-comparable recursive pairs: 0

abstract domains: 1
elements explored in abstract domains: 1
elements stable in abstract domains: 1
elements in foundation: 0
maximal length of the lattices: 2
maximal size of the lattices: 1
average length of the lattice: 2.00
average size of the lattice: 1.00
updates in lattices: 3
average number of updates: 3.00
maximum number of updates: 3

124

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

AppendixA

dynamic size of lattices:
average dynamic size:
maximum dynamic sizes:

clauses actually visited:
clauses saved and not visited:

0
0.00

0
8

0

Do you want to see the elements not in foundation (y/n)? n
bo you want to see the partial orderings (y/n)? n

125

Deriving Run Time Properties of Logic Programs by Means of Abstract Interpretation : Implementation

