
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

An Experiment with Marvel, a Software Development Environment

Ernst, Christoph; Goetzinger, Serge

Award date:
1992

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 20. Apr. 2024

https://researchportal.unamur.be/en/studentTheses/ebaabf00-dbec-4a9d-a605-384d6942a263

FACULTES UNIVERSITAIRES
N.D. DE LA PAIX
NAMUR

INSTITUT D'INFORMATIQUE

An Experiment with Marvel,
a Software Development Environment

par Christoph ERNST
Serge GOETZINGER

Promoteur

Professeur Eric DUBOIS

Mémoire présenté pour 1' obtention du grade
de Licencié et Maître en Informatique

Année académique 1991 - 1992

rue Grandgagnage, 21 , B-5000 NAMUR (Belgium)

Abstract

In this MS thesis we first describe the main concepts that underly
"state of the art" software development environments. Then we give an
in-depth study of a specific software development environment called
Marvel. Finally, we use Marve! for developing an environment
supporting a transformational process covering the whole software
lifecycle and study the ability of Marvel for responding to this challenge.

Keywords: Software Development Environments, Software Process,
Object Oriented Database, Rule Based Production Systems.

Résumé

Dans ce mémoire nous décrivons d'abord les concepts principaux qui
sont à la base des ateliers logiciels. Ensuite, nous faisons une étude
approfondie d'un atelier logiciel spécifique, à savoir Marvel. Finalement,
nous utilisons Marvel pour générer un environnement supportant un
processus transformationnel et couvrant l'entièreté du cycle de vie d'un
logiciel afin d' étudier la capacité de Marvel de répondre à ce défi.

Mots-clé: Ateliers logiciels, Processus de développement, Base de données
orientée objet, Systèmes de règles de production.

Acknowledgements

We gratefully acknowledge our supervisor Professor Eric Dubois for his constant
support and faithful supervision throughout the development of this MS thesis.

A special thanks to the Marvel team of the Computer Science Department of
Columbia University, especially Professor Gail Kaiser, Israel Ben-Shaul and George
Heineman, for their advice and assistance during our stay in New York.

We wish to thank Philippe Du Bois of Namur University and Guy Vanden Bemden
of University of Louvain-la-Neuve for their technical advice and helpful discussions
during the elaboration of our environment.

We would also like to thank Pierre Flener for his careful reading and constructive
remarks which helped us to produce this manuscript.

We would like to acknowledge our parents for their continuous support throughout
our studies.

Christoph Ernst and Serge Goetzinger

TABLE OF CONTENTS

Table of Contents

INTRODUCTION 1

PARTI: SOFTWARE DEVELOPMENT ENVIRONMENTS 4

O. INTRODUCTION ... 5

1. SOFIW ARE DEVEWPMENT ENVIRONMENTS 7
1.1 The Goals of a SDE 7
1.2 A Framework for an Integrated SDE 9

1.2.1 Types of Tool Integration ... 9
1.2.2 CASE Tool Functionalities .. 11

2. ANALYSIS OF SDEs ... 14
2. 1 Analysis Criteria ... 14
2.2 Different SDEs ... 15

2.2.1 ALMA ... 15
2.2.2 ISTAR .. 16
2.2.3 Adèle 2 17
2.2.4 Marvel 3.0 ... 18

3. CONCLUSION .. 20

PART II : IN DEPfH STUDY OF THE MARVEL
SOFTWARE DEVELOPMENT ENVIRONMENT 21

O. INTRODUCTION ... 22

1. THE MARVEL KERNEL 25
1.1 The Client/Server Architecture in Marvel. : 25

1. 1. 1 The Client' s Components 25
1.1. 2 The Server' s Components ... 27

2. THE MARVEL STRATEGY LANGUAGE (MSL) 30
2.1 A Strategy in Marvel .. 30

2.1.1 Data Model .. 31
2. 1.1.1 An object orientecl approach 31
2.1.1. 2 Example: Data Model of a C Program 34

2.1. 2 Process Model .. 36
2.1.2.1 The Rule Concept ... 36
2.1.2.2 Assistance Model. ... 42
2.1.2.3 Example: Process Model of a C Program 48

2.1. 3 Merging of Strategies .. 51

3. SEL: A TOOL INTEGRATION LANGUAGE ... 53
3.1 The Black Box Policy ... 53
3.2 The Shell Envelope Language (SEL) ... 53

PART III : AN EXPERIMENT Wlffl mE MARVEL
SOFTWARE DEVELOPMENT ENVIRONEMENT 56

O. INTRODUCTION ... 57

1. SOFIW ARE DEVEWPMENT PROCESS 58
1.1 The Requirements '. 59
1.2 The Functional Specification Phase ... 59
1. 3 The Design Phase 60
1.4 Implementation and Maintenance .. 61

2. THE MARVEL ENVIRONMENT 62
2.1 A Methodology to build Marvel Environments 62
2.2 The Protagonists ... 63
2. 3 The Data Model. ... 63

2.3.1 The Superclasses .. 64
2.3.2 The Project 66
2.3.3 The Team Management. ... 73

2.4 The Process Model 76
2.4.1 About the Process .. 76
2.4.2 Specification of the Process 77

2.4. 2.1 Evolution of the Process 77
2.4.2.2 Specification of the Rules 82

A. Management Rules 82
B. Programming Rules 86

1. Edit Rules ... 86
2. Coding Rules 92

C. General Rules ... 95
D. Consistency rules ... 99

2.5 Initialization of the Objectbase ... 102

3. MARVEL EVALUATION 103
3. 1 Conceptual Problems 103
3. 2 Missing Features 104
3.3 About the Interface 105
3. 4 Programming errors 109

CONCLUSION 111

REFERENCES

APPENDIX

Appendix A : MSL Reference Manual
Appendix B : Data Model
Appendix C : Process Model
Appendix D : Envelopes

INTRODUCTION

1

INTRODUCTION

With the introduction of third generation computers at the end of the 60s, it became
possible to develop large software systems. However, such developments require:

1) the emergence of methods for specifying designing, coding and maintaining
software pieces;

2) the possibility of coordinating teams of analysts and programmers.

The term softwa.re engineering was introduced at the beginning of the 70s for covering
these aspects. Software engineering can be defined as "a disciplined utilization of a
systematic, coherent set of principles, tools and techniques within a planned organiz.ational
framework, the objective of which is to achieve the on-schedule, cost effective development
of quality software for a diverse range of non-trivial applications and environments "
[Rat87]p3.

Quality software includes the following characteristics :

- reliability of a software system is the probability that it exhibits failure-free
behavior over a specified time span.

- efficiency refers to the economical use of hardware resources .

- usability refers to the user friendliness of a software product.

- security refers to the ability of a software product to be safe against misuse.

- reconfigurability refers to the ability of software to be changed successfully in
any required way and for any reason with minimal cost and effort.

- reusability refers to the extent to which the software can be reused in as many
operational environments and applications as possible, within a given application area, with
minimal alteration or further development.

To improve the quality of a software and to achieve higher team productivity,
Software Development Environments have been proposed

In this MS thesis, we have specifically studied the Marve} Software Development
Environment.

Until now, Marvel has only be used for programming-in-the-large tasks (i.e. the
coding and maintenance phases) of large C applications (C/Marvel environment). Marvel
offers assistance to the user for the carrying out of these tasks. Thus it can be characterized
as active, as it may autonomously intervene during the coding and the maintenance phases,
and is not restricted the static description of the objectbase (passive environment).

- 2 -

We try to develop a Marvel environment that covers the whole software lifecycle.
This means that we investi.gate to what extent the Marvel kemel may be instantiated to
development-in-the-large tasks rather than to programming-in-the-large tasks. We especially
pay attention whether the dynamic features noticed in the programming-in-the-large
environment (e.g. C/Marvel) are still operational in the development-in-the large
environment.

In the first Part, we present the main goals of a Software Development Environment
and describe a framework for an integrated environment covering the whole lifecycle. An
analyze of four of them, namely ALMA, Adèle, 1ST AR and Marve!, emphasizing their
main features and deficiencies, is presented at the end of this part.

In the second part, we describe the architecture of the Marvel Kemel. The static part
of a Marve! environment is defined in terms of object oriented classes definitions whereas
the dynamic part is taken into account by prcxluction rules. Both definitions are written in a
Marve! specific programming language. Marve! makes use of extemal tools to perform the
activities encapsulated in a Marve! rule. These activities are defined in a specific
communication language presented at the end of this part.

In the third part, we describe a development process that we try to instantiate with the
Marve! kemel. We give a detailed description of the objectbase representing the main
concepts of the development process and explain how it has been elaborated. Moreover, we
analyze the process and decompose it into tasks that may be performed by Marve! rules. To
specify the rules, we <livide them into several categories. The result of our investigation of
the different Marve} features is given at the end of this part.

- 3 -

PARTI

SOFTWARE DEVELOPMENT
ENVIRONMENTS

O. INTRODUCTION

0.1 Historical Evolution

To face the software cri.sis [Som89], computer scientists or more precisely, software
engineers [Som89], have proposed new lifecycle-based methods for the development of
large and complex software systems. First methods were proposed in the seventies.

The use of these methods in the industry was however weak. This had one main
reason: they were executed manually (pencil and paper) and were thus very labor intensive.
Moreover, the execution of those methods needed also the recording of a lot of information
of different nature (text and graphies).

The only realistic solution to this problem was the automation of the different
activities and techniques required by the methods by using software development tools.
Editors, screen generators, data dictionaries and code generators are some examples of such
tools. This led to the notion of Software Development Environments (SDE).

First generation environments presented, however, some deficiencies. They were
isolated and only addressed specific phases of the software process, i.e. they only focused
on a limited aspect of the whole software development process. Moreover, those tools
enforced the user to adapt to the tool' s way of thinking. Finally they did not assist the user
of the environment actively [Vla82] in the software development process.

Second generation environments, from 1980 on, have partially remedied to first
generation environments deficiencies. They cover the whole lifecycle by integrating
complementary and compatible tools into a coherent set. This is implemented by articulating
the tools around a common information database, called a repository [How81], [Ste87].
These environments are also called Computer Aided Software Engineering (CASE)
environments as they enforce well-known software engineering methods. These CASE
environments also make use of graphie manipulation facilities.

Third generation environments, which have appeared in the late 80' s, mm at
providing more user guidance during the software development process. These
environments are active and process-driven. This means that they do not only have
knowledge about the static structure (objects and their relationships) of a software lifecycle
model, but they have also knowledge about the specific process (the lifecycle dynamics).

0.2 The Structure of this Part

This part is divided in two major sections. The first section (Section 1) gives a
detailed description of second generation Software Development Environments. We begin
by describing the goals of an SDE (Section 1. 1), namely lifecycle coverage, assistance in
the implementation of a method and automation in the software development.

In the next section (Section 1.2) we present a framework for an integrated SDE
inspired from [Was89].

- 5 -

Moreover, we explain in more detail the concept of integration (Section 1.2.1) and
describe the different types of integration that can be addressed. These a,re platform,
presentation, data, control and process integration. Besides the integration mechanism we
also present the vertical and horizontal software development tools that are presented in the
framework. Finally (Section 1. 2. 2) we present the concept of repository and describe the
different functionalities of CASE tools. These functionalities are grouped into creation and
manipulation, documentation, verification and validation as well as project management
functionalities.

In the second section (Section 2) we analyze four SDE, namely ALMA, 1ST AR,
Adèle2 and Marvel 3.0. The analysis consists in testing how far these SDEs verify the
criteria of tool integration, lifecycle coverage, customizability, active user guidance and
scale; First (Section 2.1) we give a detailed description of every criterion before analyzing
the different tools (Section 2.2). We will not try to classify the analyzed SDEs but we will
only try to show what are the main features and the main deficiencies of every environment.

- 6 -

1. SOFTWARE DEVELOPMENT ENVIRONMENTS

In this section we describe what a SDE is. This is done by presenting first the main
goals of an SDE, that explain why should such an environment be used. Tuen we present a
framework of an integrated SDE and explain the concepts of integration and CASE
functionality.

1.1 The Goals of a SDE

The different goals of an SDE that are mentioned in the literature are the lifecycle
coverage, the assistance in the implementation of a method and automation in the software
development [Ost81], [Ste87], [Rat87], [Som89].

1.1.1 Lifecycle Coverage

"Software engineering environments are designed to support ail stages of the software
process from initial feasibility studies to operation and maintenance" ([Som89]p.381).

Thus an SDE should propose tools that support the requirements definition, the
design, the implementation, the test and the maintenance phases. However, it is important
to notice that tools supporting the implementation and test phases have quite a long
tradition, whereas powerful tools that also support the requirements definition and the
design process have appeared only recently.

1.1.2 Assistance in the Implementation of a Method

We first define the concept of "method" and then summarize the different tasks that
can be assisted by the tools.

A method consists in (i) models for the specification of the different products of the
software development phases, (ii) a proc~ by which specifications are constructed and,
(iii) a set of tools to aid design. Thus a method can be represented as follows :

- The models describe the relevant software development objects and their
relationships. A model is a static entity.

- The software proc~ itself is a dynamic entity and can be described as being the
"set of activities carried out in order to effect the development or evolution of a software
product" [Ost87].

- Tools can be divided in two classes [Vla82] : a) active tools that assist the software
engineer directly in the application of a precise method, b) passive tools that diminish the
non creative and boring aspects of her/his task. It is important to notice that the tools are
inherent to the method that they help to implement.

The method itself tries to guarantee the accuracy, the feasibility, the return, the
reliability, the quality and the evolution of the target information system to be developed.
Thus the implementation of a method needs :

- the use of construction, transformation, norma.liz.ation, derivation and control rules;

- 7 -

[Dat89]
- a rigorous specification of the results of each phase of the software development

cycle;
- a consistency control between the different schemas;
- the support of different representations and different views according to the different
users; .
- a constant up-to date documentation base.

1.1.3 Automation in the Software Development

Automation can be applied at different levels in the software development process.
For instance, automation can be applied to tasks during the development process such as
schema transformation, code generation (e.g. a compiler) or error detection. Error detection
should, however, not only detect the error, but also provide help for error correction.

- 8 -

1.2 A Framework for an Integrated SDE

The important concept in CASE environments is tool integration. The tools address
different aspects of the development process and thus integration is intended to produce
complete environments that support the entire software development lifecycle. This is
implemented by integrating tools addressing different phases of the lifecycle and which
cooperate and interface each with each other consistently and reliably thanks to a common
database.

Figure 1.1 presents a framework for an integrated SDE which has been inspired from
Wasserman [Was89]. It is important to notice that the requirement tools figure in the
vertical tools class. The reason is that we consider that these tools have their proper formai
languages to specify the requirements.

Vertical
Tools

Ha'Ï2œ13l

Tools

◄

' Requiremenl
Tools

'-
/

'-

Common User Interface
(Presentation lntegration)

Analysis Design Coding Testing Simulatior Reverse
Tools Tools Tools Tools Tools Engineering

Tools

Configuration Management Tools

Project/Process Management Tools

Documentation Tools

Shared Repository
(Data lntegration)

Virtual Operating Environment
(Platfonn Integration)

Figure 1.1: Framework for an Integrated SDE

1.2.1 Types of Tool Integration

Control
Integration

There are five types of tool integration that must be addressed : platform integration,
presentation integration, data integration, control integration and process integration.

- 9 -

1.2.1.1 Platform Integration

The fundamental issue for an integration is that the various tools must be inter
operable. Distributed processing makes possible to use network-based file systems and
network communication to convert and transmit files from one execution environment to
another and avoids that all software tools have to run on the same machine with the same
operating system.

These distributed computing services give users a single consistent view of the
computing environment and one can think of tools residing on top of a virtual operating
environment which provides distributed services. A CASE environment can be seen as a
set of applications that use the virtual operating environment.

Thus platfonn integration can be described as the set of system services that provide
network and operating systems transparency to these applications. The advantage of this
virtual operating model is that it takes heterogeneous hardware and software configurations
into account [Was89].

1.2.1.2 Presentation lntegration

Tools should not only work in the same operating environment, but they should also
share a common look and feel [Cou91] from the user's perspective.

This common look and feel or common user interface should be designed to suit the
needs and abilities of the individual users, it should be tailored to the user' s means and not
force the latter to adapt to a particular interface [Ost81].

Another important principle of the interface should be its consistency
[Shn86],[Cou91]. This means that system commands and menus should have the same
format, parameters should be passed to all commands in the same way and punctuation
should be similar. Interface consistency across subsystems, which can be independently
activated, is equally important.

Finally the user interface should have built-in help facilities accessible from the user' s
terminal and should provide different levels of help and advice [Cou91].

In order to share such a Common User Interface among tools, presentation standards
based around a standard window manager and a set of "look and feel" guidelines are needed
(e.g. OSF/Motif).

1.2.1.3 Data Integration

Tool integration requires both sharing of data among tools and managing the
relationships among data objects produced by different tools. Traditionally, files and
interprocess communication have been used for this purpose (first generation SDE, e.g.
Unix). The current trend, however, is the use of a shared database (repository) that allows
the different tools to communicate. This repository consists of a database storing the needed
information (called objects) in a structured way. The tools present functionalities that allow
to insert, modify, validate and check data and access data produced by other tools. The
repository will further explained in Section 1.2.2.

- 10 -

1.2.1.4 Control lntegration

Tools must be able to notify one another of events, i.e. they must cooperate to
achieve a coordinated effect. As an example one can give an engineering design tool that is
being used to create a design together with a technical publishing tool that is being used to
print out the design document. Ideally, the document should be updated so that the designer
does not have to do so. Control lntegration refers to the ability of tools to perform such
notification, as well as the ability to activate the tools under environrnent control [Was89].

1.2.1.5 Process lntegration

Finally, the major benefits of CASE are achieved when it is used to support a well
defined software engineering process (Section 1.1.2). If the development process is well
understood, the use of tools will become important. The latter can help to "define and track
their software development activities so that they can manage the process more effectively
and continually improve it" [Ost87].

Such process management tools must be integrated with the software development
tools (Section 1.2.1.6) that are used at the different phases of software development. The
process management tools will have to use the same mechanisms for presentation
integration, data integration and control integration that are used by the other tools in the
environment [Was89].

1.2.1.6 Software Development Tools

One can identify two classes of software development tools outside the integration
mechanisms : vertical tools and horizontal tools.

Vertical tools are used for a specific phase of the software development process.
They include requirement tools, analysis tools, design tools, coding tools, testing tools,
simulation tools and reverse engineering tools.

Horizontal tools are used throughout the software development process and include
tools for documentation, configuration management and project/process management.

1.2.2 CASE Tool Functionalities

An important element for providing an integrated SDE is the repository. The different
development tools access the repository by providing different functionalities, namely
creation and manipulation, documentation, validation and verification, and project
management. The different functionalities are represented in Figure 1.2.

- 11 -

- Graphicalfîext Editor
- Query Language
- Elementary Transformations - Graphical/fextual Documents

CREATION

MANIPULATION DOCUMENTATION

VERIFICATION
VALIDATION
- Checking
- V alidity tests
- Simulation
- Prototyping

~
1 1

REPOSITORY

1 1
~

J' '
PROJECT MANAGEMENT

- Author
- Version Control
- Project structure

Figure 1.2: CASE Tool Functionalities

The Repository {How81], [Ste87]

During the development process of a software application, the software engineer has
to deal with a lot of different types of information. This information can be code modules,
test plans, design documents, requirement specification or any other software development
product.

The repository or software engineering database allows to store and retrieve ail these
lifecycle products, called objects, their properties and their relationships. The named objects
may be textual or internai representations of graphical objects.

The repository presents thus an integrated and unified medium for interfacing tools.
The latter obtain their information from the repository and retum their results to it without
having to interface directly with other tools.

This integrated tools system eliminates the need for multiple copies of the same
information. The Portable Common Tool Environment (PCTE) offers a concrete example
of a repository.

The Creation/Manipulation Functionality

The access to the repository is ideally supported through a graphical editor. The
specifications are entered in diagram form and their contents and forms are stored in the
database.

If the dictionary is a database managed by a DataBase Management System (DBMS)
package, the access is easy to implement. Sometimes the tool has a query language, like
SQL, that allows to query the repository. In other cases, it is limited to predefined queries
that can be accessed through a command menu.

- 12 -

'

Sorne transformations, lik:e the transformation of an Entity-Relationship scheme to a
collection of relation schemas or the normalization of the latter are performed by the tool.

The Documentation Functionality

The documentation function supports the integration of ail information relative to the
software project into the data dictionary. This means that the project documentation (from
requirements specification to the final acceptance test plan) can be developed and
maintained within the SDE. The project team has thus the possibility to access to a
consistent, coherent and up-to-date documentation. The latter consists in graphical and
textual descriptions such as diagrams or reports.

The Verification/Vatidation Functionality

The verification fonction analyzes if the specifications and programs stored in the
repository are correct, i.e. it checks the conformity, consistency and completeness of the
specification with respect to the conceptual mcx:lel defining the dictionary' s structure.

The validation fonction consists in the invocation of a help tool visualizing the
schema by using prototyping or simulation techniques

The Project Manaeement Functionality

The project management fonction should include version control and access control,
i.e. the access to certain information of the repository is limited to a small number of
persons (e.g. manager vs. programmer). Moreover, ail the other project management tools,
such as scheduling and planning tools, should have direct access to the repository.

- 13 -

2. ANAL YSIS OF SDEs

In this section we analyze four different Software Development Environment's namely
ALMA [Vla86], [Vla88], [Vla90], ISTAR [Ste86], [Dow87], Adèle2 [Be191], [Bel92],
and Marvel [Kai88a], [Kai88b], [Kai90].

As it is impossible to analyze ail of the existing SDEs, we just concentrate on those
four, which we think to be representative of the state of the art. Of course, we are aware of
the fact that no single environment can satisfy ail the different needs and levels of expertise
of the various users.

This section is organized as follows. First we present the different criteria that will be
used for the analysis and explain the meaning of each of them. In a second step we apply
these criteria on the mentioned SDEs to characterize their main features.

2.1 Analysis Criteria

The different criteria used to analyze the different environments are : tool integration,
lifecycle coverage, active user guidance, customizability and scale. The first four criteria
have been inspired by ([Vla90]pp.3-4) The last criterion, the criterion of scale, ailows to
distinguish an SDE that only supports programming tasks (in-the-large or in-the-in small)
from an SDE that supports development tasks (in-the large or in-the smail).

2.1.1 Tool Integration

In Section 1.2 we have presented a framework for an integrated SDE. The tool
integration criterion ailows to determine to what extent the analyzed SDE corresponds to
that framework. The possible questions are: "What type of tool integration does it include
?" and "Is it possible to integrate new extemal tools to the environment ?"

2.1.2 Lifecycle Coverage

This criterion determines to what extent the analyzed SDE covers the different phases
of the software development process. This means vertical coverage, from requirements
definition to maintenance, as well as horizontal coverage, from elaboration activities to
validation, documentation and project management activities.

2.1.3 Customizability

This criterion is used to find out if the environment is "frozen" to one particular
method or if the SDE can be adapted to many different software engineering
methodologies. Another question is to know if the SDE is organized around a kemel that
can be tailored to the specific object types, relationships, agents and processes found in the
user' s own method.

- 14 -

2.1.4 Active User Guidance

This criterion is used to verify if the environment only knows about the static
structure, i.e. objects and object relation ships, of the software lifecycle model or if it also
has knowledge about the dynamic features, i.e. the specific process to be followed for the
software development. If the environment has knowledge about the software process, does
it provide direct assistance, or guidance to the user in the different development tasks or
not.

2.1.5 Scale

The scale criterion allows to test if the SDE supports programming tasks or if it
supports development tasks. Programming environments only support the coding phase, that
means tasks such as editing or compiling. They are characterized as large when the software
application is a large one. Development SDE cover the whole lifecycle. Development-in-the
large SDEs include configuration management and programming-in-the-many tasks, in
other words project and team management.

2.2 DifTerent SDEs

For each environment we try to find out how far the criteria are verified. The goal is
not to set up a classification of the different SDEs, but to stress their main features and their
main deficiencies.

2.2.1 ALMA

ALMA (Atelier Logiciel sur Machine Abstraite) [Vla86],[Vla87] is a SDE that aims
at assisting in the development and maintenance of large software products.

Tool Intea=ration :

ALMA allows to integrate autonomous extemal tools. This is implemented by using a
common data structure, called the Project DataBase (PDB). The latter has an entity
relationship structure (conceptual model) that is built around three concepts :

- Software objects of different types. Examples are functions, modules, sources, test
data and programmers.

- Relations between these objects such as is "re.ined into", "is derived from" or "is a
version of'.

- Properties of objects or of relations. Examples are name, date or design decisions.

A very important characteristic of ALMA is that it allows the object properties to
have formai texts as values. Thus any formal text can be attached to any software object or
relation instance and will be manipulated with a knowledge of its syntax.

ALMA provides two kinds of tools. First, it provides high level tools for updating,
querying, reporting and maintaining software objects and relations consistently in the

- 15 -

database. Secondly, the environment provides syntax directed tools, i.e. structural editors,
for manipulating the formal texts attached to software objects and relations in the database.
These tools are referred to as generic as the former tools are parameterized on the software
lifecycle model, and the latter tools are parameterized on formalisms.

Lifetycle Covera&e :

ALMA may cover the whole software development lifecycle. This is possible as the
various software objects, relations and associated formal texts manipulated in the ALMA
kemel may refer to ail steps of a software lifecycle. (cf. the examples given above)

Customizability :

ALMA does also satisfy this criterion by providing a two level architecture. On a first
level, ALMA presents a meta-environment which is parameterized as well on the software
lifecycle models as on the languages in which formal texts associated with software objects
or relations are written. The meta-environment's information (objects and their
relationships) are stored in the Software Knowledge Base (SKB). On a second level, the
meta-environment may be instantiated to an instantiated environment which is tailored to
specific users and relies on a specific PDB schema.

Active User Guidance :

ALMA has, until now, not incorporated dynamic or behavioral aspects about a
lifecycle model. However, in [Vla90] some extensions (not yet implemented) to the ALMA
environment are proposed for the integration of lifecycle dynamics.

Scale:

As we have seen, ALMA may cover the whole software lifcycle and provides generic
tools for carrying out the various tasks of the software development. Thus this SDE can be
used for the development of large and complex software applications. However, the team
work, as well as the planning task are not considered.

2.2.2 ISTAR

ISTAR is a software development environment that has been designed to support the
contractual approach. The essence of the contractual approach is that every task in a
software project is viewed as having the nature of a con tract, i.e. a well defined package of
work that can be performed independently by a contractor for a client. The key point here
is that the contractor is free to fulfill the contract specification. In general, this freedom
includes the ability to let subcontractors perform a11 or part of the work, and so on
recursively. This will lead to the construction of a contract hierarchy (tree structure) that
will correspond to the organization of the project.

Tool Intemtion :

ISTAR includes a comprehensive, extensible tool set covering every aspect of system
development from requirements capture up to maintenance. Tools are grouped into
workbenches that are coordinated sets of tools. ISTAR' s tool development and integration
facilities allow to create new tools and workbenches and to extend the workbenches with

- 16 -

new tools. Normally, the tools that are integrated into an ISTAR workbench are the tools of
the underlying operating system.

Moreover, ISTAR does not have one large environment database but employs a large
number of small databases, one for each contract, called the contract database. The
workbenches used in a contract only operate on information of the corresponding contract
database. Different contract databases can, however, exchange information.

Lifeçycle Covera1e :

The ISTAR environment may support every aspect of the software lifecycle. This
results from the fact that 1ST AR supports the contractual approach. Assume that the
whole project is viewed as a contract between a client and a contractor. Theo the latter can
make subcontracts for each of the tasks that has to be carried out to develop the project. For
example, every subcontract could represent one of the phases of the development process,
namely the requirement, design, implementation or test phase and thereby cover the whole
lifecycle. And for every contract, ISTAR provides the needed workbenches to carry out the
contract specifications.

Customizability :

For different projects, the project organization is also different, and thus the contract
hierarchy will vary. In other words, the contractual approach supported by 1ST AR does not
prescribe a particular software process, but is able to provide effective support for a variety
of processes. Thus the ISTAR environment can be tailored to the needs of the concemed
organization.

Active User Guidance :

The ISTAR environment has no knowledge about the behavioral features of the
information stored in the local contract databases, but only knows their static structure.

~=
ISTAR is a fully integrated project support environment and seeks to provide an

environment for managing the cooperation of large groups of people producing large and
complex software systems. This means that ISTAR not only allows to support software
development tasks, but also project and configuration management tasks.

2.2.3 Adèle 2

Tool Intea:ation :

Adèle 2 verifies this criterion by having implemented a central repository called the
Adèle DataBase (Adèle-DB). The latter is multi-version and based on an extended entity
relationship model. However, extemal tools (compiler, linker) do not work directly on the
Adèle-DB objects, they only operate on fües. Thus tools are integrated in Working
Environments (WE) that fül the gap between the two needs (file view vs object view). A
WE is a sub-database (sub DB) with a set of objects (directories and files), a set of tools
and a set of methods and policies. The coordination between the WEs and the Adèle-DB is
implemented by the activity manager (AM).

- 17 -

Lifecycle Coveraa:e :

The Adèle SDE concentrates on the programrning and maintenance of large software
products.

Customizability :

The Adèle kemel is suitable for various projects and an adaptation can be
implemented for each of them. The Adèle-DB is used to manage the software product
whereas its development is supported by the WEs. Different projects will vary by the WE
that will be used and thus it is the WE that allows to tailor the kemel according to the user' s
needs (files, tools, policies).

Active User Guidance :

The Adèle SDE allows to define the static and dynamic aspects of the software project
under development. The static aspects are modeled by the extended Entity-Relationship
model. The dynamic aspects (the process modeling) of the project's objects are defined
using an Event-Condition-Action (ECA) formalism supported by a trigger mechanism.

Scale:

Adèle is a SDE that is used for the programming and the maintenance of large
software products in a multi-version and a multi-user context.

2.2.4 Marvel 3.0

Marve! 3.0 is a Rule-Based Software Development environment kemel that combines
object oriented techniques with techniques from rule based production systems.

Tool Intearation :

Tool integration is supported by the implementation of a shared objectbase, that
stores all the different components of the project under development, and by the use of
Marvel envelopes. The latter implement an interface mechanism between Marvel and the
extemal tools which allows to support these tools without modifying them or the Marvel
kemel. This interface mechanism is necessary as the tools, also called Commercial Off-The
Shelf tools (COTS), do not operate on the objectbase itself but on the file system outside
this objectbase. Thus, the main task of the Marvel envelopes is to mediate between the
Objectbase Management System (OMS) and the extemal tools.

Lifecycle Coveraa:e :

Marvel does not cover the whole software lifecycle, but is mainly restricted to the
coding and maintenance phases. This is due to the fact that Marve! only interfaces with non
interactive tools, the COTS tools, which are installed on the underlying operating system.
Examples are the compiler, the linker and the editor tools. The main reason is that the
envelopes which are used in the interface, are not general enough to integrate also
interactive tools. Thus requirement tools or design tools which are highly interactive are not
supported. This presents a severe restriction to the Marvel environment.

- 18 -

Customizability :

The customizability criterion is satisfied by the Marve! environment. Effectively,
Marve!' s lœrnel can be tailored to a particular project. This is supported in two phases.

First, a project adrninistrator, specifies the project's data in terms of object oriented
c~. S/he also specifies the model of the development process in terms of roles and
writes the envelopes that interface to the external COTS tools. These descriptions are then
loaded in the Marvel kernel, tailoring it as a Marvel environment. Secondly, an end-user
uses this tailored environment for her/his own developing purposes.

Active User Guidance :

As we have already seen in the previous paragraph, Marvel combines the features of
the object oriented paradigm with techniques form rule-based production systems (e.g.
OPS5, Prolog). The former allow to specify the structural (static) aspects of the project by
using object oriented class definitions. This specification is called the data model. The
rules allows to model the behavioral (dynamic) aspects of the project and represents the
process model which specifies the roles and the envelopes needed to carry out the software
process.

The rules are applied on the passive objects, and specify the precondition enacting an
activity and the multiple postconditions resulting from this activity. The Marvel
environment allows thus to support controlled automation by applying backward and
forward cbaining among rules.

Scale:

Marvel may be used for programming-in-the-large tasks as the environment has
problems to cover the whole software lifecycle. It should be used for compile/edit/link tasks
that support a user in the coding phase. Moreover, Marvel 3.0 does not fully acldress the
problem of team work and project management as it does not allow multiple concurrent
accesses to the objectbase. However, this extension is envisioned for a future version.

- 19 -

3. CONCLUSION

In this part we have given an overview of the main characteristics of the current
Software Development Environments. We presented a framework for an integrated SDE
covering all the phases of the software development process. Moreover, we gave some
concrete examples of current SDE by stressing their main features and deficiencies.

One of the most important features of SDEs like Marvel or Adèle are their facilities to
model the lifecycle dynamics, i.e. the software process. These SDEs allow to guide the
user, to a certain extend, actively through the software development process.

This aspect of active user guidance, which was the main deficiency of second
· generation environments, will be the key aspect of future SDEs.

- 20 -

PART II

IN DEPTH STUDY OF THE
MARVEL

SOFTWARE DEVELOPMENT
ENVIRONMENT

O. INTRODUCTION

0.1 History

The Marvel project started in 1986 as a joint effort between Professor Gail Kaiser and
Dr. Peter Feiler at Carnegie Mellon University. The prototype was built on top of a multi
user programming environment for C, called Smile and was completed in Fall 1986. In
1987, the project moved to Columbia University, where a first serious implementation work
began and resulted in version 1.0. This version was always based on Smile. The second
implementation (version 2.x) was already a completely standalone system with a persistent
object manager replacing Smile. A11 versions were single-user environments. Marvel 3.0
was released in October 1991 and constitutes the first multi-user version of the project
[Mar9la].

0.2 Goal of the Marvel Project

The long-term goal of the Marvel project is to develop a kemel for multi-user
development environments that allow teams of programmers to cooperate in the
development of a large-scale software project. The kemel provides concurrency control and
object management primitives that will enable project administrators to build an
environment that implements concurrent software process models describing a spectrum of
interactions, ranging from cooperation among members of the same development team to
isolation of teams who work on unrelated parts of the project.

0.3 Marvel 3.0

Marvel is a Rule-Based software Development Environment (RBDE) kemel that
provides assistance in carrying out the software development process. Marvel is built on top
of an object management system that abstracts the components of the project under
development as objects and stores them in an objectbase. The software development process
of the project is modeled in terms of rules, each of which encapsulates a development
activity.

The Marvel kemel (Section 1) implements a client/server model (Section 1. 1) that
supports multiple concurrent users of the same objectbase. The end-user applies commands
to access the objectbase. The latter is only accessible through the server' s primitives. The
server maintains a context for each client and performs the chaining resulting from each
client' s commands within that client' s context.

In this paragraph we describe the generation of a Marvel environment. Figure 2.1
shows the different steps carried out to generate the environment. A project administrator
writes a specification of the project data model and process model. Both specifications are
written in the Marvel Strategy Language (Section 2), where a strategy represents a unit of
modularity in Marvel (Section 2.2). The administrator loads these specifications into the
kemel, creating a Marvel environment that supports both the data management and the
process management requirements of the project.

- 22 -

Objectbase

Administrator □Data Model /

f----© ~ ile _sy_s~tem

Process
Model

Environment

W[:;;J~ 1 Client 1 Client 1 Client

SEL SEL SEL

C, ______ ,
0 Commercial Tools 0

Data flow

Figure 2.1: Generating a Marvel Environment [Mar9lb]

The data moclel (Section 2. 2.1) is specified in terms of classes each of which consists
of a set of typed attributes that can be inherited from multiple superclasses. Attribute types
include simple types, files, sets and directed links. Set attributes contain instances of other
classes as their values, thus implementing composite objects, and giving the Marvel Object

- 23 -

Management System (OMS) a hierarchical traversa! capability. Links are typed and point to
any instances in the objectbase thus giving the Marvel OMS arbitrary graph traversa!
capability.

The process model (Section 2.2.2) is described in terms of rules (Section 2.2.2.1) that
specify the behavior of the t.ailored Marvel environment in terms of what commands are
available and what kind of assistance is provided. Marvel supports several models of
assistance (Section 2.2.2.2), ranging from automation to consistency maintenance models.
The set of rules that are loaded into a Marvel environment form a network of possible
forward and backward chains (Section 2.1.2.2) . Marvel assists software developers by
applying forward and/or backward chaining among the rules, automatically invoking the
development activities modeled by these rules. Bach rule contains a precondition, an
activity and a list of mutually exclusive effects. The precondition must be satisfied to fire
the rule. The activity is a general mechanism to invoke arbitrary extemal tools. Finally, one
of the multiple effects is asserted to the Marvel objectbase according to the outcoming
results of a tool.

To integrate Commercial-Off-The-Shelf (COTS) tools into the environment, Marvel
uses an extended Unix shell language called SEL (Section 3). The tools need not to be
modified as the envelopes (Section 3.2) build an interface between the objectbased Marvel
system and the Unix file system.

An end-user loads a subset of the provided strategies (Section 2. 2) into Marvel and
creates by this way her/his persona! environment. This end-user is not aware of the
existence of rules, s/he only uses commands to execute her/his needs.

- 24 -

1. THE MARVEL KERNEL

Marvel is based on a client/server architecture. There is only one server for each
objectbase (environment), although as many clients as wanted may be connected to this
server [Dat90], [Tan89], [Mar92], [Mar91a], [Mar9lb].

1.1 The Client/Server Architecture in Marvel

In this section we give a detailed description of the Marvel client/server architecture.
First we present the components of the client and in a second step we describe the different
components of the server. Figure 2.2 illustrates the different layers of the Marvel
client/ server architecture.

1.1.1 The Client's Components

In Marvel, a client has a one-to-one correspondence with a "process" (in terms of the
Unix operating system). Every client executes a session running from its invocation toits
exit. The session provides various client-specific information such as the controlling user' s
environment variables. A Marvel end-user may have multiple clients for the same server
running under her/his user-id, either on the same or different machines.

The client's components are the User Interface Module, the Activity Manager and the
Command Pre-Processor.

1.1.1.1 The User Interface Module (UI)

There are two User Interface modules between the end user and the environment, the
Graphical User Interface (GUI) and the command Line User Interface (LUI). The latter is
mainly used for batch processing using the Marvel built-in execute command. The
important component of the GUI (an X windows system interface) is the display of the
objectbase and its composite hierarchy.

The UI module (either the GUI or the LUI) receive the commands requested by the
end-user and passes them to the command Pre-Processor interpreting (pre-processing) it.
When the response from the server returns, the Client passes it back to the corresponding
User Interface module.

1.1.1.2 The Activity Manager (AM)

The Activity Manager, called by the Inter Process Communication (IPC) module
(Section 1.1.2.5), provides the interface between the envelope that executes a tool, and
Marvel. It establishes all necessary communication between the tool, running as a child

process, and the client by passing the received information back to the UI.

- 25 -

Client

Built-Ins
(BI)

Server

► Data Flow

Graphical User
Interface (GUl)

Activity Manager
(AM)

pp .

Command Llne User
Jnterf1œ (LUI)

Pre-Procesoor
(PP)

Inter Proœss Commmication (IPC)

SF..s.sion Manager (SEM)

Client

Client

Quety Procesoor
(QP)

Rule Processor
(RP)

Transaction Manager
(TM)

Lock Manager
(LM)

Object Manager
(OM)

(DM)

Storage Manager
(SM)

File Manager
(FM)

Figure 2.2: The Marvel Client /Server Architecture

- 26 -

1.1.1.3 The Command Pre-Processor (PP)

The command Pre-Processor module does pre-processing of built-in commands and
other requests to the user before sending them to the server. The AM and the PP constitute
the Command Interpreter (CI). The client module receives from the user interface a request
and then pre-processes it. The CI determines whether the command can be executed locally,
partially pre-processed or passed as it is to the server for execution. When the response
from the server retums, the client passes the information back to the UI. If the response
needs to trigger an activity, the AM is invoked to handle the execution of an activity.

1.1.1.4 Inter Process Communication (IPC)

The Inter Process Communication is implemented both in the server and the client.
This layer provides the communication between the client application and the server. lt is
responsible for rece1vmg and sending messages. Like the Object Manager
(Section 1.1.2.1.A), the IPC must preserve the object abstraction when transferring objects
between the client and the server via a sequential medium.

1.1.2 The Server's Components

The server is the central component of Marvel and all interactions of an end-user with
Marvel through the client involve issuing requests to the server. lts main roles are:

1. Persistent objectbase management.

2. Rule and query processing.

3. Built-in command processing.

4. Transaction management and concurrency control.

The server's components are the Data Manager, the Transaction Manager, the Lock
Manager and the Command execution Layer.

1.1.2.1 The Data Manager (DM)

The data management part of Marvel consists of an Object Manager (OM), a Storage
Manager (SM) and a File Manager (FM). The DM module exchange information with the
Transaction Manager (TM) module (Section 1.1.2.2)

A. The Object Manager (OM)

The in-memory Object Manager implements the object oriented database, called the
Marvel objectbase. The OM handles all requests for creating, deleting and modifying
objects. This module has however the possibility to call the Storage Manager (see below)
for storing or fetching an object. Thanks to the OM module all the upper layer modules
have only to deal with the object abstraction.

- 27 -

The objectbase is the repository or the dictionary of the Marvel system. It keeps track
of ail the software components and their properties, of ail the useful project information. In
the Marvel objectbase, each important project concept is represented as an object in the
sense of object oriented languages [Kho90]. We have already seen that it is the server's
object manager who implements and manages this object oriented database. An important
characteristic of Marvel's objectbase is that it is active in the sense that updating data may
trigger certain actions.

B. The Storage Manager (SM)

The Storage Manager module is responsible for managing objects on disk. It provides
persistent storage and controls the flow of data from main to secondary storage. This
module has no knowledge of the data model and therefore can be easily replaced. As said
above, the SM provides services for, and communicates with, the OM. It is built on top of
a General DataBase Management (GDBM) package, which is a package for efficient
storage and retrieval of byte streams on disk. As this GDBM reorganizes the layout of disk
storage periodically, objects are not stored continuously on disk. Object management in
Marvel is divided into an in-memory manager and a Storage Manager. The objects seen as a
whole form the project' s objectbase.

C. The File Manager (FM)

The File Manager provides the interface between the OM and the hidden file system
by providing system calls to access files on the file system. The underlying file system is
the Unix file system which provides ail of the data storage facilities for project information,
i.e. objects. The file system is called hidden, in the sense that given the existence of the
OM, the end-user may simply refer to environment objects such as modules, functions and
design documents using some local name and s/he does not have to preoccupy with the
problem of mapping that name to a database identifier. The mapping onto the Unix file
system is explained in Section 2.2.1.1.E.

1.1.2.2 The Transaction Manager (TM)

The execution of a command in Marvel, either a built-in command or a rule, is
modeled in terms of database operations. From the database point of view, the execution of
a user command in Marvel consists of a set of database access units, each of which consists
of a set of read and write operations. Database operations that must be executed together
(atomically) as a unit are grouped into access units. The execution of an access unit is called
a transaction. Transactions are created, managed and terminated by the Transaction
Manager (TM) in order to encapsulate the execution of all the database operations involved
in the command. This module also controls the concurrent access to the data and maintains
its consistency by communicating with the Lock Manager (see below). The TM layer is
called from the Rule Processor and the Query Processor modules (see below).

1.1.2.3 The Lock Manager (LM)

The Lock Manager module is a conflict-detection module and serves as a mediator
between the TM and OM. The LM provides the handles for the Transaction Manager to
enforce its policy. It provides also a concurrent access to the objects by using a Iock

- 28 -

mechanism. When a transaction is working on an object, the LM loclcs it by denying the
access to any other concurrent transaction. The Iock is an access privilege to a single object
that the Iock manager can grant or withhold from a transaction. In Marvel, the LM reads a
file, called the compatibility matrix, that specifies the Iock modes and their compatibility.

1.1.2.4 The Command Execution Layer

The command execution layer consists of three parts: the Built-In commands module,
the Query Processor module and the Rule Processor module.

A. The Built-Ins (BI)

The Built-In commands are a set of fonctions implemented in the kemel that provide a
variety of services.

Built-in commands for the server can be divided in three categories:

1. Object manipulation commands (add, delete, move, copy ...)
2. General services (change, print, screen refresh ...)
3. Administrator commands (load, reset, . . .)

The administrator commands, however, are only available if the user is a recognized
administrator.

B. The Query Processor (QP)

The Query Processor module translates the queries expressed in a query language into
calls to the TM. The QP module is accessible only through the Rule Processor module (see
below).

C. The Rule Processor (RP)

This module manages ail requests (through the Session Manager module) from users
to invoke rules and implements the ch~ing engine to enact a specific process. It assumes
that the set of rules was loaded into Marvel using the Joad command. This invokes a
separate program, called the loader, which translates the Marvel Strategy Language
specifications into an intermediate representation and it is this intermediate representation
that is loaded to the server.

D. The SEssion Manager (SEM)

The client executes a session running from its invocation to its exit. The SEM module
of the server keeps a context for each session. This module either calls the Rule Processor
for performing rule chaining with respect to the session or communicates with the Built-In
command module to execute a built-in command.

1.1.2.5 Inter Process Communication (IPC)

This module has already been explained in Section 1. 1. 1. 4.

- 29 -

2. THE MARVEL STRATEGY LANGUAGE (MSL)

The Marve! Strategy Language is a rule based processing language that provides
means for defining objects, rules and tools [Mar9la].

To understand and illustrate the main concepts of the MSL language, we use a simple
example for C programming. The small Marvel environment which will build in the
following sections, should assist a C programmer in writing a C program. lt should also
allow her/him to run the program at the end of the work.

Remember that a C file may have some include files which it needs to compile. In our
example, we add the module concept. A module is a component of a larger program, but
constitutes already an executable unit. A module may contain other modules, as well as C
files and include (header) files.

The important concept used in the MSL language is the one of strategy and will be
explained in more details in the following sections.

2.1 A Strategy in Marvel

The complete process model for a software project is captured in a collection of
interacting units in a way similar to the introduction of modules in a conventional
programming language. The unit of modularity of MSL is called a strategy [Kai88a],
[Bar88], [Kai90]. Objects, tools and rules for the same engineering project are combined in
one or more MSL strategies. A particular strategy might provide only a partial view of the
project which could be appropriate for a particular category of users or a particular phase of
the project. The complete description is thus captured in a collection of strategies that
cooperate together. As different programmers can develop modules to be combined in a
coherent system, different administrators can develop strategies to be applied to the same
project. Unlike modules, however, you do not need to merge (Section 2.3.3) the entire set
of strategies to run the process. Y ou may choose a subset of the provided strategies to tailor
your own environment. This is useful to respond to a particular role such as programmer or
manager for example, or to a particular phase of the software life cycle such as integration
testing and maintenance.

- 30 -

The syntax of a generic strategy is illustrated in the following pattern:

strategy < name > ;
imports < list of imported strategies > ;
exports < list of exported classes, tools and rules > ;

objectbase

classes .. .
tools .. .

end_ objectbase

rules ...

As it can be seen in this pattern, each strategy has a name and consists of three parts.

1. An interface part to export/import strategies.
2. A specification part for class and tool definition.
3. A specification part for rule definition.

2.1.1 Data Model

The Marvel Data Model, i.e. the static features, is defined by using the object
oriented approach. In this section we briefly define the concept of object and class as they
are used in MSL and describe the different MSL attribute types.

2.1.1.1 An object oriented approach

Marvel integrates structural aspects of data modeling with behavioral aspects of the
rule-based specification process.

A. Objects

An object is the basic component in the data model. It is a sequence of bytes in
memory that has a defined class (or data type) and a set of attributes. Every object has a
name, a unique object identifier, and astate, denoted by the values of its attributes.

The Object Management System (OMS) component in Marvel handles the persistency
of objects, i.e. it retains its state across invocations of the environment.

B. Classes

A class is a purely starie description of a set of possible objects, and specifies the
attributes that each object has.

- 31 -

C. Attribute Types

In Marvel we distinguish four types of attributes: small, medium, large and link.

1. Small Attributes

Small attributes define the state of an object and can be chosen from a set of
predefined types.

They consist of integer, real, boolean, string, enumerated and three special types:
user, clientid and time. The different predefined typed are listed in the box below.

integer:
real:
string:
boolean:

-109 .•• 109

-1()31 ... 1037

An empty or not empty sequence of characters
FALSE,TRUE

time: timestamp
user: A string which represents a User
enumerated: A finite domain of possible values
clientid: An integer (login number)

The user type corresponds to a Unix userid. MSL offers special operators to control
this type, namely CurrentUser which returns the user-id of the owner of the client process
that is currently served by the Marvel server, and ResetUser, which resets the user attribute
to the default value.

The clientid type corresponds to the unique client identifier given by the system at
login time. Its use is to provide access control to objects at the client level. The clientid can
be accessed only by the CurrentClient and ResetClient operators, with an analogous
semantics to the user operators described above.

The time type corresponds to an internai representation of the time. lt can be
controlled only by the CurrentTime operator which retums the system rime.

2. Medium Attributes

Medium attributes map to files in the hidden file system. In order to provide
blackbox integration (Section 3.1) of tools, Marvel provides an interface from the object
based OMS to the file-based tools. The OMS itself maps the request for files needed by the
tool into corresponding file attributes. There are two kinds of file attributes: text and
binary. Text files correspond to the source code (e. g. C source file) whereas the binary files
correspond to the intemal machine representation of the file (e.g. compiled C program).
The two kinds of file attributes are shown in the box below.

text : A mapping to a source file on the file system
bina : A ma in to an ob · ect file on the file s stem

- 32 -

3. Large Attributes

The large attributes represent a relationship among objects, thus creating the
composite-object hierarchy (a parent-child relationship). The composition hierarchy is an
important concept in Marve! since it allows to abstract the project' s components via
composition. When the administrator is specifying the project <lat.a model, s/he has to
identify how to di vide the project into sub components that can be handled independently.
Two types of large attributes exist: single and set_ of. The former allows a child of that type
to be created, while the latter allows an arbitrary number (i.e. a population) of objects to be
created as children. The large attribute are illustrated in the box below.

INSTANCE (CLASS)
set of INSTANCE

4. Link Attributes

Link attributes allow the <lat.a model to maintain arbitrary semantic relationship
between two objects in the objectbase. One has to notice that there is a major difference
between large attributes and link attributes. An object connected via a large attribute to its
parent is considered to be part of it. Thus when deleting the parent object all its children
will be deleted too. For linlc objects however, each object exists independently and the
deletion of one does not affect the other but only removes the semantic relationship (linlcs)
between them.

There are two types of link attributes: single and set_ of with analogous semantics as
for the large attribute type, as can be seen in the box below.

link INSTANCE
set of link INSTANCE

D. Meta Classes

Marvel provides two met.aclass types that are implemented in the MSL language. The
first is the ENTITY class type. Every <lat.a class in Marvel is defined to be a subclass of the
ENTITY superclass.

The second met.aclass type is the TOOL type which allows the definition of extemal
activities that can be used by the rules. These classes, however, are only used for class
definition.

E. Mapping of the Objectbase to the File System

Every MSL entity type is mapped to a Unix directory. Entity attributes are mapped
according to their category. Attributes of large types are mapped to subdirectories of their
corresponding entities, medium attributes are mapped to files, and all attributes of small
types are stored in one file, called attributes.

- 33 -

F. Inheritance

Marvel provides an inheritance mechanism supporting the definition of a
subclass/ superclass relationship among classes. A subclass denotes specialization property,
i.e. a subclass has additional properties besides the properties inherited from its superclass.

A multiple-inheritance mechanism is also provided in Marvel. Thus a class can inherit
attributes from a set of classes. In the case where a class inherits an attribute that is defined
in multiple superclasses, the first superclass (as defined in the list of superclasses) has the
highest priority during merging (Section 2.3.3).

The inheritance mechanism does not work for tool classes that are defined as
subclasses of the TOOL class.

G. Initialization

When defining classes, each attribute can be defined with a default value that wil1 be
assigned to objects at instantiation time. If no default value is provided by the administrator,
the system provides its own default values. The only exception are enumerated types where
the default value is designated by the administrator from the enumerated type set.

2.1.1.2 Example: Data Model of a C Program

In the following example, we have specified a data model for our C programming
problem. It is important to notice that this model is only one possible one among others.

The root class in our data model is the PROGRAM. The program has a set of
MODULEs, its proper source and object code, as well as a status. The status is an
enumerated type which gives the situations of a program. The default value (e.g.
status: (lnit, Exec,Error)=Init) is the value asserted at the creation of each instantiation of
this class.

FILE is a superclass and is not instantiated. It only inherits its attributes to the
subclasses, i.e. CFILE and HFILE. Note that the contents and object_code attributes of the
latter are specified with a ".c" and ".o" expression respectively. This provokes that each
file gets such an extension. This extensions are required by a C compiler.

strategy data_ model

Interface with other strategies. This is the basic data model that ail other strategies import
imports none;
exports ail;

Class definitions
objectbase

PROGRAM : : supercla~ ENTITY;

source_ code : text;
includes : set of MODULE;

- 34 -

end

status : (Init, Exec, Error) = Init;
execute : binary;

FILE : : superc~ ENTITY;

name: string;
timestamp : time;
status : (lnit, NotCompiled, Compiled, Error) = Init;
analyze_status: (NotAnalyzed, Analyzed) = NotAnalyzed;

end

CFILE :: supercl~ FILE;

end

source_code: text =" .c";
object_code: binary =" .o";
inc : set_ of link HFILES;

HFILE : : supercl~ FILE;

end

source_code: text = ".h";
object_code: binary ".o";

MODULE : : superclass ENTITY;

modules: set_of MODULE;
source_ code : set_ of CFILE;
includes : set_ of HFILE;
obj_code: binary;
status : (lnit, NotBuilt, Built) = Init;

end
end objectbase

- 35 -

2.1.2 Process Model

The proc~ model is the second key component of MSL. It consists of a selection
of rules that an administrator defines to describe the behavior prescribed in a development
process. Bach rule is defined in a strategy. The process model consists of one or several
strategies that allows different views on the data model.

The process model covers two main aspects: the rule concept and the assistance to the
user [Mar9la], [Kai90], [Kai88b].

2.1.2.1 The Rule Concept

A. Expert Systems Rules of Inference

Definition

A rule of inference consists of

1. a set of sentence patterns called conditions and
2. another set of sentence patterns called conclusions.

"Whenever we have sentences that match the conditions of the rule, then it is
acceptable to infer sentences matching the conclusions" [Nil87].

B. Rule and Object Oriented Programming

The process model is seen as a set of rules to apply to the objects of the data mooel.
Severa! approaches even allow multimethoos, which means that the methoos can be applied
to the instances of the class as well as to instances of its subclasses. Thus, a rule is
identified by a unique combination of its name and the types, order and number of its
parameters. Extending the 00 paradigm to the rule system means the possibility to add
inheritance, dynamic binding and polymorphism to its behavior [Ben90].

- inheritance

Rules can be applied on the objects of the formai parameter class or any
instantiation of its subclasses.

- dynamic binding

The dynamic (late) binding of parameters allows the chaining mechanism in Marve!
(see Section 2.1.2.2.G).

- polymorphism

In Object Oriented Programming, polymorphism refers to the ability of an entity to
refer at run-time to instances of various classes [Mey88]. In Marve!, rules may have
the same name but different formai parameters. The overloading mechanism searches
for the rule with the closest match with respect to the type of the actual parameter the
rule was invoked with. (see rule overloading pp.42)

- 36 -

C. MSL Syntax of a Rule

1. Identifier

Rule [parameters]:
characteristic function:
property list
{ activity}
etTectl;
etTect2;

Figure 2.3: MSL Syntax of a Rule

A rule is identified by its narne and the list of its formai parameters.

The narne is interpreted by the Loader as a new user-level command and figures in
the command list.

The formai parameters to a rule are specified by a list of VARIABLE: CJ.A5S
pairs. In Marvel, a variable is represented by a ? followed by an identifier.

For exarnple, Compile { ?c: CF/LE} would compile the C file to which 1s
instantiated the ?c variable.

2. Precondition

The precondition is a logical expression consisting of multiple clauses. Whenever it
is satisfied, the adherent activity is initiated. The precondition is equivalent to the
condition of an expert system rule. Zero or one precondition clause is allowed. A
rule may be fired without precondition. However, in this case, the rule cannot be
invoked during chaining (Section 2.2.2.2). For efficiency reasons, the precondition is
implemented through the combination of the characteristic function and the
property list.

a) Characteristic Fonction

The characteristic function binds a number of objects depending on the given
expressions. These objects, also called derived parameters or bound variables, are
used for the evaluation of the property list and for the correct execution of the
activity. The general structure of the characteristic function is represented below.

1 (QUANTIF'IER CLASS VARIABLE suchthat (EXPRESSION))

Ouantifiers
Two quantifiers, EXISTS and FORALL, allow to define the scope of the bound

variable.

- 37 -

Even if the quantifiers figure in the characteristic function, they are mainly
evaluated in the property list. The only exception is when the binding retums an
empty list and the variable has been existentially quantified. In this case, the
property list is not evaluated an the precondition is not satisfied.

C~ Variable

The class is any class defined in the data model. The variable is a unique
identifier used to name the set of objects that satisfy the given expression.

EXl)l'.fflÏon

A query may be made in a navigational or an associative manner. The
navigational manner uses large and linlc attributes to make the bindings, while the
associative manner filters ail the objects of the given class by evaluating a logical
expression based upon small attribute values.

Naviptional

(ANCESTOR [VAR VAR])
(MEMBER [BV AR V AR])
(LINKTO [BV AR V AR])

~iative

(BV AR operator BV AR)
(BV AR operator OP)

N.B. V AR specifies the whole object while BVAR specifies a special attribute
of the object.

- Navigational Binding

Three types of operators are available for navigational bindings. Each of these
operators can be inverted if the bound variable is used as the second argument in
the expression.

CFILE HFILE MODULE

~

~
AA

Cl H1 C2~

C3 V

Figure 2.4: Composite Hierarchy

In the following examples, the expression between single quotes ' ' represents
the actual parameter of an imaginary rule for which the results of its property list
are evaluated. The example is based on the composite hierarchy shown in
Figure 2.4.

- 38 -

1) Ancestor

The ancestor operator allows the rule to bind a variable to an object in the
composite hierarchy that is an ancestor/descendant of the given object.

The following example will bind all ancestors of type MODULE from the
CFILE 'C4' to the bound variable ?m.

1 (EXISTS MODULE ?m suchthat (ancestor [?m ?c]))

The result for the given composite-hierarchy (Figure 2. 4) would be:

?m = {M3, Ml}
On the other hand, to find all the descendants of 'Pl' that are of class HFILE

and bind them into ?h, one may use

(FORALL HFILE ?h suchthat (ancestor [?p ?h]))

where the result for the given composite-hierarchy would be:

?h = {ffi, 112}

Note that the bound variable ? h was used as second argument in the binding
expression.

2) Member

The member operator is a more restricted version of the ancestor operator in
that it binds objects based upon direct parent-child relationships.

For example, suppose you want to bind all parents of type MODULE from the
CFILE 'C4' and bind them into ?m.

1 (EXISTS MODULE ?m suchthat (member [?m.source code ?c]))

As visible in Figure 2.4, 'C4' has one parent object 'M3', so ?h = {M3}.

To bind to ?ha child of module 'M2' that is of type HFILE, one may use

1 (EXISTS HFILE ?h suchthat (member [?m.hfiles ?h])) 1

where the result is an empty list : ? h = {}

3) Linkto

Linkto is similar to member since it only probes one level deep: but it works
on link attributes.

For example, suppose one would like to test if all the header files that a C file
includes are analyzed. He/ she can use the following binding expression to get the
list of HFILEs into ?h.

- 39 -

(FORALL HFILE ?h suchthat (linkto [?c.incs ?h]))

If ?c would have been the CFILE ' C4' of the composite-hierarchy (see
Figure 2.4) , the result would have been ?h = {112}.

- ~ative Binding

The associative operator allows the rule to choose objects from a specific class
based upon a logical expression evaluated for each object. It ignores the composite
object hierarchy and traverses ail the objects of the given class and ail its
subclasses.

For example, you may want to bind ?c to ail CFILEs already compiled:

(FORALL CFILE ?c suchthat (?c.status = Compiled))

b) Property List

The property list of a rule specifies the logical state of the objectbase that must be
true to fire the rule on the given arguments. The property list evaluates the
precondition on the bound variables, i.e. it compares each predicate with the set of
objects collected in the· bound variables. The output of a property list is either false or
true.

In the following example, we show the difference between the characteristic
fonction and the property list.

build_l [?m: MODULE]:
(And (forall CFILE ?c suchthat (member [?m.source_code ?c])

(forall HFILE ?h suchthat (and (member [?m. includes ?h])
(?h. status = Compiled)))

(?c. status = Compiled);

build_2 [?m: MODULE]:
(And (forall CFILE ?c suchthat (member [?m.source_code ?c])

(forall HFILE ?h suchthat (member [?m.includes ?h]))

(And (?c. status = Compiled)
(?h. status = Compiled));

Figure 2.5: Difference between the Characteristic Function and the Property List

- 40 -

In Figure 2.5, we find two rules which, at the first view, are identical as they both
build an executable module if all CFILEs and all HFILEs are compiled.

Assume that there are several HFILEs where the condition is false (i.e.
?h.status =NotCompiled), but for all CFILEs the condition is true
(?c.status= Compile<!). The property list of rule build_l will return true as there are
only objects into ?h whose status is compiled. But for rule build_2, the property list
retums false as all HFILEs are bound to ?h, even those whose status is not compiled.
The result is that the first rule is fired while the second is not.

3. Activity

An activity represents an integral software development task. In MSL, an activity
is represented as follows:

{ tool_ name tool_ method input_ arguments RETURN output_ arguments }

An activity sends a message to a tool to execute one of its operations (methods).
The distinction between tool name and method becomes necessary as one tool may
have more than one operation. One has to note that an activity cannot invoke a Marve!
built-in command.

Input arguments can be small attributes, literais, or medium attributes. Output
arguments are either literais or medium attributes. Medium attributes are in fact
Marvel' s interface to the hidden file system, and they enable to pass files to the tool.
If there are only medium attributes in the output section, the retum keyword is
optional.

Since Marvel is object-based and Unix tools are file-based, an interface mechanism
is needed to communicate. This mechanism is called an envelope (Section 3).

The following example invokes a compiler of the source code ?c.source_code. The
resulting binary file is stored into ?c.object_code.

1 { COMPILER compile ?c.source code ?c.object code}

4. Postcondition

The postcondition consists of one or a list of mutually exclusive expressions, called
effects. Once the activity is completed, one of those effects is asserted, depending on
an integer value, retumed by the envelope, which is taken as an index, which means
that (return_code = 0) provokes the assertion of the first effect, (retum_code = 1)
provokes the assertion of the second effect, and so on ...

If the retumed value is out of the scope of the effects list, an error message is
produced in the user' s screen and nothing is asserted.

Assertions can only be made on small and link attributes.

example: (?c.status = Compiled)

- 41 -

No assertions may be made on bound variables, except for link/unlink assertions.
The main reason is that it is not yet possible to allow chaining (Section 2.2.2.2) on
the bound variables.

S. Rule overloading

Due to polymorphism, several rules may be invoked on one object. To find the
most appropriate one, Marvel performs a Breadth-First Search [BFS].

" For each rule, a vector of BFS numbers that correspond to the number of
parameters is generated. The vector represents, for each object, the distance, in BFS
order (left to right at the same level), between the type (class) of the actual object
parameter and the type of the corresponding formal parameter of the rule. If there is
no ancestral relationship between a formal type and an actual type, or if the number of
parameters is different, then the rule is disregarded." [Ben90]

c~ Inheritance Scheme Rule Set

FILE

1. Compile [?f : CFILE]

CFILE HFILE 2. Compile [?f : FILE]

Figure 2. 6: Rule Overloading Example

If the Compile rule is invoked with an object Oc of class CFILE, then the first rule
will be selected. The BFS vectors would be [O] and [l] respectively. If, however, the
compile rule is invoked with an object Oh of class HFILE, the second rule is selected
since HFILE is a subclass of FILE and the second rule operates on objects of class
FILE. The first rule is disregarded because there is no ancestral relationship between
HFILE and CFILE (see Figure 2.6).

2.1.2.2 Assistance Model

"The assistance model is intended to perform two main tasks: to enact the process by
means of automatic invocation of activities and to maintain the consistency of the objectbase
by means of propagation " ([Mar9la] p.34). These tasks are carried out by chaining.

A. Definition of a Chain

"A chain in Marvel is a logical connection between two rules, specified by a match of
a predicate in the effect(s) of one rule with the property list of another." [Mar91a]

- 42 -

B. Chaining Tables

When the strategies are loaded into the Marve! kemel, the latter creates two tables
which contain the chaining possibilities between the rules. While running the process, the
Marvel system may quickly scan these tables to provide the possible chainings in response
to a user command.

ACTIVITY

EDIT

ANALYZE

COMPILE

BUILD

PRECONDmON POSTCONDmON

NotAnalyzed
Compiled

NotCompiled
NotAnalyzed

Analyzed
NotAnalyzed

+-----·-·-···············-·-·-·- ········-· ·-·-·-···············-·-·-···············-·-·-·-

Analyzed
NotCompiled

Compiled
Init
NotBuilt

Compiled
NotCompiled

Built
NotBuilt

RUN Built

CLEAN NotCompiled NotBuilt

Figure 2. 7: Activity Table

An activity table bas an entry for each rule keyed by activity. Bach entry of the
activity table contains pointers to the precondition and postconditions in the predicate table.
In Figure 2. 7, you see the layout of an activity table. The values correspond to the process
model of our example. This means for example that the EDIT rule bas no precondition to
be fired.

Predicate

NotAnalyzed

Analyzed

Backward
Pointer

ANALYZE

NotCompiled COMPILE

Compiled COMPILE

NotBuilt BUILD

Forward
Pointer

ANALYZE

COMPILE

COMPILE
CLEAN

BUILD

BUILD
····-·-·-···········-·-·-·-··•···•·-·····-·-+---·-·-············-·--·-···············-····-· ······-····-·-·--·-············-·-·-···· ·············-·-···

Built BUILD

Figure 2. 8: Predicate Table [Kai90]

- 43 -

The predicate table has an entry for each predicate or assertion that appears in a
precondition or a postcondition. Each entry of the predicate table stores a list of pointers to
all activities whose postconditions might satisfy it (backward chaining) and another list of
pointers to all rules whose preconditions might be satisfied if this predicate becomes true
(forward chaining) [Kai90].

Figure 2.8 shows the chaining possibilities of our process. For example, the
NotCompiled predicate has a possible forward chain into the COMPILE rule.

C. Backward Cbaining

Analyze [?c : CFILE]
< characteristic function >
(?c.analyze_status = NotAnalyzed)

< activity >
(?c.analyze_status = Analyzed);
(?c.analyze_status = NotAnalyzed);

Compile [?c : CFILE]
< characteristic fonction >
(?c.analyze_status = Analyzed)

< activity >
(?c. status = Compiled) ;
(?c.status = NotCompiled);

~ ~ng pos~ibilities 1

Figure 2.9: A Connection between Predicates [Mar9lb]

When a user invokes a command corresponding to a rule, the Marvel kemel invokes
the evaluator to check if the precondition is true (i.e. if the values of the predicate equal the
actual state of the objectbase).

If the evaluator answers that the precondition is satisfied, then the Marvel system
invokes a shell script to start the activity.

If the precondition is not satisfied, the evaluator retums a list of offending
predicate/object pairs (failed predicate).

The Marvel system now tries to satisfy the failed predicate(s) by perfonning backward
chaining. He follows the AND/OR tree mechanism of other backward chaining systems.
However, since Marvel rules may have multiple effects, the only way to detennine the rea1
one would be to simulate execution. This has been judged unrealistic and so the execution
of rules will have a permanent effect on the objectbase.

Backward chaining is recursive in that the system will try to satisfy a failed predicate
in a backward chained rule by backward chaining.

- 44 -

Note that the execution of a rule may produce a clifferent effect from the desired one
and the precondition is not verified.

Compile [C-4]

Evaluate Property List

failed_pred = (?f.analyze_status = TRUE)
failed _ obj = C-4

Backward Chain

Analyze [C-4]

Assert effect

(f.analyze_status = FALSE)

Property List satisfied Property List NOT satisfied

Compile [C-4] Compile [C-4] Not satisfied

• Compile [C-4] satified

Figure 2.10: Backward Chaining to Satisfy a Property List [Mar9la]

Assume that C4.analyze_status = NJtAnalyzed. If the Compile rule is invoked on ~,
the precondition is not satisfied. However, the rule network allows a possible backward
chaining to the Analyze rule (see Figure 10). So the system invokes the Analyze rule on
~ in order to satisfy the precondition of the compile rule. If the analyze activity decides
that it has been successfully analyzed, the first effect is asserted, i.e. ~.analyze_status =
TRUE. As this match the precondition of the initiating rule compile, the backward chain
succeeds. But as there are multiple effects in the analyze rule, the backward chain could
also fail (i.e. if the second effect was asserted) .

D. Forward Chaining

Forward chaining can be seen as an opportunistic approach, i.e. it performs the
automatic invocation of a rule whenever the opportunity occurs. Once the assertions done,
the Marvel system looks if there are rules whose precondition becomes satisfied. If so, he
automatically fires that rule. However, the whole precondition bas to be satisfied because
there are no backward chainings during a forward chain.

The basic difference to common forward chaining systems is that the Marvel system
fires ail rules whose precondition are satisfied rather than only one among them. Like
backward chaining, forward chaining is recursive in that a forward chained rule that was
fired triggers other rules and so on.

- 45 -

Forward Chain Charcteristic fonction Conditions
binding.s

Analyze [C4] ?h = {H2} H2.status = Compiled

C4.analyze_status = NotAnalyzed

Compile [C4]

Build [M3]

none

?c = {C3,C4}

?h = {H2}

C4.analyze_status = Analyzed

C3.status = Compiled

C4.status = Compiled

H2.status = Compiled

~rtions

C4.analyze_status = Analyzed

C4.status = Compiled

M3 .status = Built

Figure 2.11: A Forward Chaining Example

Remember the composite-hierarchy of Figure 2.4. Assume that the HFILE 'H2' and
CFILE 'C3' are compiled and that (C4.analyz.e_status = NotAnalyz.ed). Thus the
precondition for Analyz.e[CA] is satisfied. We invoke the analyze rule on 'C4'. As the
condition is satisfied, the change on the objectbase is asserted (c.4. analyz.e _ status =
Analyz.ed). This triggers a forward chain to Compile[CA]. Once again, the effect (CA.status
= Compiled) is asserted and triggers a forward chain to Build[Ml]. The characteristic
function is evaluated and the sets for the bound variables ?c and ?h are created. The
property list is evaluated to be true since (CA.status = Compiled) and (Hl.status =
Compiled). Therefore the build activity may be executed and an assertion may be done to
complete the chain.

E. Chain Cootrol

While loaded, Marvel creates an indirected graph representing the rule network.
Sometimes however, the process should/must not allow several chaining possibilities. To
control chaining, three keywords may be inserted in the property list or the effects (no
forward, no-backward, no-chain) [Mar~Ha].

Reserve [?f: FILE] :

pO (?f.reserve_status = FALSE)

< Activity >
pl (?f.reserve_status = TRUE);

p2 (?f.reserve_status = FALSE);

Deposit [?f: FILE] :

qO (?f.reserve_status = FALSE)

< Activity >
ql (?f.reserve_status = FALSE);

q2 (?f.reserve_status = TRUE);

~orward
~ - chain

~ckward

~ Chain

Figure 2.12: Default Rule Network Generation [Mar9la]

- 46 -

Without any constraints, these two rules wil1 generate two forward and two backward
chains, denoted by Fi and Bi respectively. For example, the Reserve rule has a forward
chain F1 (from predicate pl) to the Deposit rule (to predicate c/J). This means that Reserve
might forward chain to Deposit, meaning that it is not reserved anymore. This is clearly not
desired. Furthermore, this can easily lead to an infinite loop, if the same effects are asserted
over and over.

To avoid such a situation, the administrator disposes of the keywords mentioned
above to add some constraints to the chaining mechanism. The following figure shows one
possibility to modify the previous rules (Reserve and Deposit) in order to express what is
desired and to avoid a possible infinite loop.

Reserve [?f: FILE] :

pO (?f.reserve_status = FALSE)
< Activity >

pl no_fotward (?f.reserve_status = TRUE);
p2 (?f.reserve_status = FALSE);

Deposit [?f: FILE] :

0 no_backward (?f.reserve_status = FALSE)

< Activity >
ql (?f.reserve_status = FALSE);
q2 (?f.reserve_status = TRUE);

ruackward

~ cbain

Bi ~ otward

~ - cbain

Figure 2. 13: Control over Rule Network Generation [Mar9la]

Here, pl is augmented by the no_ forward directive, which prevents Marvel from
forward chaining from the Reserve rule to the Deposit rule. In addition, the cfJ predicate of
the Deposit rule is augmented with the no_ backward directive, which will prevent it from
backward chaining to Reserve. B2 and F2 are left, with the semantics that a file cannot be
reserved if it is already reserved without depositing it first, and one cannot deposit anything
unless it was reserved first.

F. Consistency Chain

Chaining may be used for maintaining consistency of the objectbase. The consistency
predicates are enclosed with square brackets. The main difference to an automation chain is
that automation chains are aborted if there are problems while consistency chains have to be
rolled back.

Several activities, however, cannot be undone (For instance, a mail which is sent or
any other interaction with the end-user). So Marve} distinguishes between activation and
inference rules, where the latter have no activity part. Inference ~es may be used in
consistency chains while activity rules may not.

- 47 -

As the objectbase is supposed to be in a coherent state before the firing of a rule,
consistency chaining is only possible by forward chaining. Furthermore, consistency
predicates are treated prior to automation predicates.

G. Binding of Parameters

During chaining, Marvel needs to bind actual parameters (objects) to the formai ones.
To do this, Marvel uses a set of heuristics to search near an object to determine the objects
to use during chaining. To this end, Marvel uses the composite-object hierarchy as well as
the link attributes.

During a forward chain to rule ri from a rule invoked with object 0, we search for the
object to bind to ri formai parameter in the following order:

1. the object O itself

2. O's parent object

3. 0' s immediate children

4. the objects associated (through links) with 0

5. 0' s proper ancestors

The heuristic cannot stop at the first candidate found, but must collect all the
candidates together since it is possible to have multiple instantiations of the same rule with
different objects as well as different rules with the same or different objects [Hei91.

2.1.2.3 Example: Process Model of a C Program

strategy process model

The following rules are applied to the objects of the C data model that has been specified
in Section 2.1.1. 2 To make the data model accessible, the imports clause has to be
added.

imports data_model;
exports all;

objectbase

The following classes are added to the data model (p. 34). They are ail of superclass
TOOL and represent external tools. The (string = ...) clause refers to the envelope name
on the Unix file system.

EDITOR :: superclass TOOL;
edit: string = edit;

end

- 48 -

COMPILER:: superclass TOOL;
compile: string = compile;
build: string = build;

end

ANAL YZER:: superclass TOOL;
analyze: string = analyze;

end

RUNNER:: superclass TOOL;
run: string = run;

end

end_ objectbase

mies

edit [?c:CFILE]:

{ EDITOR edit ?c.contents}

(and [?c.status = NotCompiled]

performs a link of the object codes

performs a lexical analysis

(?c.analyze_status = NotAnalyzed));

analyze [?c:CFILE]:

(forall HFILE ?h suchthat (linkto [?c.inc ?h]))

(and (?h.status = Compiled)
no_backward (?c.status = NotAnalyzed))

{ ANALYZE analyze ?c.contents}

(?c.analyze_status = Analyzed);
(?c.analyze_status = NotAnalyzed);

compile [?c:CFILE]:

(and (?c. status = NotCompiled)
(?c.analyze_status = Analyzed))

{ COMPILER compile ?c.source_code ?c.object_code}

(?c.status = Compiled);
(?c. status = NotCompiled);

- 49 -

build [?mo:MODULE]:

(and (forall CFILE ?c suchthat (member [?mo.source ?c]))
(forall HFILE ?h suchthat (linkto [?c.inc ?c]))):

(and (?c.status = Compiled)
(?h. status = Compiled)
(or (?mo. status = Init)

(?mo.status = NotBuilt)))

{ COMPILER build ?c.object_code ?h.object_code ?mo.obj_code

no_forward (?mo.status = Built);
no_chain (?mo.status = NotBuilt);

run [?mo:MODULE]:

(?mo. status = Built)

{ RUNNER run ?mo.obj_code}

bide clean [?mo:MODULE]:

(exists CFILE ?c suchthat (member [?mo. source_ code ?c]))

[?c. status = NotCompiled]
{}
(?mo. status = NotBuilt);

In the example, we have defined six rules that allow the user to handle a C file. (A
complete environment contains more than this, but missing rules may be specified in a
similar way.) Once the user has completed the editing of a C file, Marvel performs a
forward chaining to the analyze rule. If ail include files (HFILE) are compiled, the C file is
analyzed. If the C file is successfully analyzed, then there is another forward chain to the
compile rule. Torun a test program, in our example a MODULE, the user has to build it
first. Note that the no_ .iJrward keyword (see built rule) avoids an automatic forward chain
to the run rule. In the same manner, the no_chain keyword in the build rule avoids an
infinite loop on this rule. There are also possible backward chains in this process (from
compile to analyze). On the other hand, we do not want to force the user to edit a file
(no_backward in the characteristic function of the analyze rule). The clean rule is an
inference rule for consistency maintenance (the precondition clause is in square brackets).
In fact, if the user edits a file, the status of the concemed module has to be changed to
NotBuilt. The hide keyword avoids that the rule figures in the menu provided to the user.

- 50 -

2.1.3 Merging of Strategies

We have already seen that the unit of modularity in MSL is called a strategy.
Strategies can be mixed and matched to provide behavior suitable for the various users of
the environment, thus providing only a limited access to the objectbase. This mixing is
called merging of Marvel strategies [Kai90]. As strategies combine classes, tools and rules,
merging of strategies implies merging of the latter. This is only possible if the different
strategies do not overlap, i.e. if they do not contain one of the following features:

. classes with the same name,

. tools with the same name,

. rules with the same name and the same activity.

When overlapping strategies are merged, the Marvel consistency checker verifies
that the conflicting items are unifiable. Different possibilities of unification of strategies
are:

1. Two classes can be unified if their attributes are disjoint or if attributes having the
same name also have the same type.

2. Tools can be unified if envelopes with the same signature - operation name and
types of formai parameters - have an identical body.

3. Rules with the same name are associated with different activities invoking different
tools. The MSL loader resolves a conflict by renaming one of the rules (with interactive
help from the user). Rules with the same activity but different names are taken to be
different rules that happen to invoke the same activity and are thus not merged. Rules with
the same name and the same activity are merged if they are consistent.

The checking of rule consistency is hard since one would like to combine only those
preconditions and postconditions if the resulting combination does not lead to a logical
contradiction. In practice, however, the checking is only done for obvious contradictions
such as P(a) and ,P(a).

If there are no obvious contradictions, then the precondition of the merged rule is the
logical conjunction of the merged preconditions and the set of postconditions is the logical
disjunction of al1 the postconditions of the merged rule.

- 51 -

Strategy A
Classes

X : : superclass ...

attl : Tl;
att2: T2;

end

Strategy B
Classes

X : : superclass ...

attl : Tl;
att3 : T3;

end

Strategy C
imports D
Classes

Y : : superclass ...

att: Ty ;
end

Strategy D
Classes

X : : superclass ...

att2: T4;
end

A merged with B

X : : superclass ..
attl : Tl;
att2 : T2;
att3 : T3;

end

C merged with D

X : : superclass ...
att2: T4;

end
Y : : superclass . . .

att: Ty;
end

....

Merging of strategies

Figure 2.14: Merging of Strategies [Bar88]

ERROR

Consider the four strategies A, B, C and D shown in Figure 14. The end-user loads
A, B, C in that order. A and B are overlapping, since both define class X. They both
define attribute attl but with the same type Tl, so class X is unified. If only A and B were
loaded, then every instance of X would have three attributes, attl, att2, att3. Since C
imports D, Marvel automatically loads D as well and merges them first, before merging
with the composite of A and B. There are no conflicts between C and D. When A-B (this
means that the strategy Ais merged with the strategy B) is merged with C-D, however, an
error is detected because att2 from A-B and att2 from C-D have different types, T2 and
T4.

- 52 -

3. SEL: A TOOL INTEGRATION LANGUAGE

The Shell Envelope Language (SEL) is an extended Unix shell script language to
write Marvel envelopes. This concept has first been introduced in 1ST AR [Ste86]. Since
tools are expensive to develop in terms of both time and cost, an envelope serves as an
interface between an existing external tool and the Marvel environment. In the next
paragraphs we explain the black box policy that is behind the envelope concept and we
give an overview of its implementation [Mar91], [Gis91].

3.1 The Black Box Policy

To support the integration of extemal tools or Commercial Off-The Shelf (COTS)
tools without modification, the Marvel kemel views each activity as a black box. This is
achieved by using envelopes that represent the activity' s implementation and abstract the
details of the interfaces of tools. The support of the black box abstraction requires a
decoupling of the envelopes and the Marvel kemel. This is implemented by:

1. allowing the administrator to declare the types of incoming and outgoing data of
the envelope in a clean controlled manner (explicitly). Thus starie type checking [Mey88]
can ensure that the activity's declared interface within a rule is consistent with that defined
within its envelope;

2. without having a knowledge about the implementation of Marvel' s objectbase and
of the working data model;

3. returning an arbitrary number of typed arguments;

All these requirements have been implemented in the Shell Envelope Language that
allows Marvel to provide a powerful black box interface.

3.2 The Shell Envelope Language (SEL)

It is in the Marvel shell envelope that the activity' s interface is declared.

The SEL framework of an envelope is represented in the following pattern:

[optional]
< mandatory >

ENVEWPE [name];

SHELL < shell that is used (ksh, sh or csh) >

INPUT

< list of the input parameters of the form: type : name; > OR < none ; >

OUTPUT

- 53 -

< list of the output parameters of the form: type : name; > OR < none; >

BEGIN

< shell script >

END

The framework begins with a line contaJ.mng the keyword ENVEWPE and an
optional name for the envelope. Next cornes a line specifying which shell is to be used to
run the script; the choices available are sh, ksh and csh.

After this preamble cornes the parameter specification. The input parameters corne
first, followed by the output parameters. Bach parameter declaration conta.ins the type and a
name of the parameter. Note that the parameter type is mentioned first, contrary to the way
that declarations are specified in MSL. Both the input and output sections are required, and
if one is to be empty the keyword none must be used.

After the output section follows the shell script between BEGIN ... END. The shell
script of an envelope has usually four conceptual parts:

1. The initializ.ation procedure on the passed objects.
2. The tool execution.
3. The "cleaning up" part.
4. The retum of the envelope outputs and the status code.

The status code retumed to Marvel is an integer value greater than 0, and must match
an effect in the effects section (postcondition) to be asserted in a rule.

The status code and all ouput parameters are retumed by using the RETURN
statement. The shell' s own exit command only allows to retum an integer value.

Here follows now a complete example of a compile envelope [Mar9la]
(see Box p.55).

The input parameters are the C source file (c.ile), the different header files (h.iles)
and the name (i.e. the location) of the resulting object code file (obj_.ile).

As the output section is empty, the keyword none has been used. The initialization
procedure of the shell script consists in the creation of an temporary directory ($tmp _ dir)
that conta.ins soft links to all of the included HFILEs that the C source file needs. Here
follows the invocation of the Unix C compiler (cc) with the given parameters. The third
part removes the temporary füe ($tmp_dir) after running the compiler tool. The fourth and
final part collects and retums the envelope outputs and status code. In this case only a status
code is being retumed (0 or 1). The envelope uses the RETURN statement and the retum
status must be written as a string, also called a literal, i.e. the double quotes are required.

- 54 -

ENVEWPE compile;
SHELL sh;
INPUT

text: cfile;
set of HFILE: hfiles
binary: obj_file;

OUTPUT none;

BEGIN

tmp _ dir= /tmp/compile$$
mkdir $tmp _ dir

include dir='"'""
if ["x$hfiles" ! = "x"]
then

ln -s $hfiles $tmp _ dir
include _ dir= "-l$tmp _ dir"

fi

cc -$CCFLAG -c $include_dir $cfile -o $obj_file -11 -le-lm -IXI 1
cc_status=$?

END

if["x$tmp_dir" ! = "x"]
then

rm -r $tmp_dir
fi

if [$cc_ status -eq O]
then

else

fi

echo compile successful
RETURN "O";

echo compile failed
RETURN "l"

- 55 -

PART III

AN EXPERIMENT WITH THE
MARVEL SOFTWARE

DEVELOPMENT ENVIRONMENT

O. INTRODUCTION

In this third part, we consider the instantiation of Marvel for software development
purposes. More specifically, we consider its use for the support of the software
development process proposed by Professor Dubois [Dub91].

This experiment allows us to investigate the Marvel features in depth and to examine
to what extend the environment can be adapted to our goals.

We first describe the software development method based on the transformational
approach. Next, we give a detailed description of our environment. At the end of this part,
we evaluate our work and see to what extent it is possible to implement the method with the
Marvel kemel. We also reveal some missing features of the current Marvel version.

- 57 -

1. SOFTWARE DEVELOPMENT PROCESS

In this section we will present the software development process presented in
[Dub91].

This software development process is based on a formai transfonnational approach
[Som89]. This involves developing a formai specification of the software and transforming
this specification using correctness-preserving transformations to a program (code).

Figure 3.1 (inspired from [Dub91]) shows the different transformations that are
required in the transformational approach.

Specification

Design

Control
Specification
(constraints)

Q object

D activity

-->- data flow

Figure 3.1: Transformational Approach

First, the functionalities sketched in the requirements definition are the basis of the
functional specification. Once this is finished, the software engineer can begin with the
design of the solution. Finally, the design is implemented and provides the final code.
Every transformation has to be consistent with the non functional requirements (e.g. space,
performance, security) defined in the requirements definition.

In the following sections we will present in more detail the different phases of the
transformational approach.

- 58 -

1.1 The Requirements

The requirements phase is not part of the transformational approach, i.e. the
requirements definition (services, constraints and goals) is the result of interviews with the
information system user. The requirements are expressed in a natural language
supplemented by diagrams (like an ERA model) and forms (decision tables) that are
understandable by the users and the development staff.

1.2 The Functional Specification Phase

In the functional specification phase the needed functionalities and data are specified
in a precise, complete and consistent manner with regards to the requirements definition.
This is achieved by using formai languages that have the following advantages:

"
- a concise description of the functionalities
- a non ambiguous understanding of the specifications
- a more rigorous development of the software product
- possible detection of contradictions " [Dub9l]p.II. 7

Furthermore, it is important that the functional specification focus only on a WHA T
description (functionalities and data) of the complete Information System (IS) and does not
include any HOW description (solution that describes how to build the IS). Thus every
functionality is described according to the schema of Figure 3.2.

Arguments ► 1 ~ _ F_UN __ cn_ o_N_AL_ I_TY-~ -----1►- Results

Updatet î Query

8
Persistent Information System

Figure 3.2: Specification of a Functionality

The arguments and the results describe the data manipulated by the functionality,
and forms the interface part of the functionality specification. The functionality is formally
specified by using a precondition clause and a postcondition clause, that form the definition
rules of the functionality. The former is an assertion that characterizes the properties that
must be satisfied by the arguments of the functionality, and the latter is an assertion that
makes explicit the properties of the results by specifying the relationship between the

- 59 -

arguments and the results. The functionality may access (query or up-date) the persistent
information system (the STATE). The STATE is expressed in terms of elementary
functions on a BRA schema formally described. Thus two kinds of functionalities can be
identified, those that have an effect on the ST A TE, and those that have no effect.

The formal language that is used to specify the definition rules is based on a first
order predicate logic extended with a certain number of higher level concepts.

1.3 The Design Phase

During the design phase the software engineers introduce the HOW details, i.e. the
description of the solution that defines how to build the target IS. The proposed solution has
to be correct with regards to the functional specification and bas to be consistent with the
"non-functional" requirements (e.g. performance, resources and security) informally
expressed in the requirements definition. The result of the design phase is a design
architecture that can be described as a set of modules that offer a certain number of
services. The design architecture is performed in two steps, i.e. first a global design is
established and then a detailed design.

1.3.1 The Global Design

In the global design a hierarchical logical architecture is established. This is a
solution that can be executed on an abstract machine [Som89] and the derived modules are
work units for the software engineer.

The set of modules is organized in different abstract levels. For every level, it is
possible to describe a module by making abstraction of the details introduced in the modules
of lower levels. A module offers a set of services to other modules and "uses" [Par72]
services offered. The "uses" relationship defines a Directed Acyclic Graph (DAG).

1 Level 6 j

Level 5 j

Level 4 j

Level 3 j

Level 2

Level 1

Modules derived from the functional specification

Modules of the functional kemel

Modules relative to the management of the 1/0s with
the environment (data check, screen entries)

Modules relative to the management of the internat 1/0s
(database management)

Modules relative to the used software tools (DBMS
and 1/0)
Modules relative to the operating system

Figure 3.3: Logical Architecture of an IS

The logical architecture (Figure 3.3) consists in a graph that represents the hierarchy
of the modules and their relationships. The hierarchy may be elaborated top-down or
bottom-up way [Som89]. Once the graph has been constructed, the modules of level 6 to 3

- 60 -

are specified in term of an "Abstract Data Type" fonnally described using an equational
logic dialect. Bach module is documented to keep trace of the design decisions underlying
its identification. The modules of level 1 and 2 are not specified in the global design. These
modules are predefined and may be used for the construction of the hierarchy.

1.3.2. Detailed Design

In this design step, the higher level modules (levels 6 to 3) are described by their
corresponding algorithms described in a pseudo-code language.

For the modules of level 5 and 6 an abstract description of the algorithm that
implements the services offered is conceived. Once these modules are defined, the
corresponding screen modules (level 4) are described. One module of level 3 is an abstract
definition of the STATE, called the Possible Access Schema (PAS). The PAS is a
representation that is correct and consistent with the ERA model. The other modules of
level 3 represents the accesses to the ST A TE and are defined in an algorithmic description
language. Once all access modules are defined, the Necessary Access Schema (NAS) is
derived. The NAS is a subpart of the PAS, and represents all the "necessary" (really used)
accesses to the STATE. For more details of the PAS and the NAS see [Hai86].

1.4 Implementation and Maintenance

During these phases a physical architecture is chosen. The physical architecture is a
solution that is correct, efficient and executable on a real machine. The derived modules are
work units for the implementation on the real machine.

Based on this architecture, an integration plan is conceived. Then, the physical
architecture is implemented as a set of programs or program units that are written in a
programming language. Once the module (unit) coding is finished, every unit is verified if
it meets its specification. If all the units meet their specification, they are integrated
according to the plans conceived before.

The maintenance refers to the change of the requirements and the tracebility of these
changes in the implementation.

- 61 -

2. THE MARVEL ENVIRONMENT

2.1 A Methodology to build Marvel Environments

The team of Professor Kaiser proposes the following methodology [Mar9la] to define
a process in MSL. We use this methodology for the definition of our environment.

1. Define the data model, with the process model in mind.

2. Define a set of rules with some chains in mind. In particular, design chains that
describe automation activities that you want to chain, and eliminate some other chains
using the predicate directives.

3. Define carefully consistency chains in order to make the required propagations.
This implies writing new rules and possibly modifying rules already defined in step 2.
Note that inference rules are usually used to propagate consistency. There is a
possibility to hide such rules to the user by using the bide keyword.

4. Load the set of rules into Marvel using the Joad command, and examine the rule
network using the chaining-graph utility.

5. Build a prototype to test your rules on the data and see if they perform properly.

6. If you have to change the rules but not the data model, simply change the rules
and goto step 4. If the data model needs to be changed, remove the prototype
objectbase, reload, and rebuild a new objectbase, and continue testing. Note that
currently there is no utility in Marvel to evolve the schema.

7. Once you are satisfied with the behavior, build the real objectbase and allow
clients to use the environment.

This methodology cornes out of their experience with the Marvel kemel. This means
that during the construction of the data model, the administrator should already think about
the corresponding process model s/he needs to execute. This is particularly important in
order to avoid big changes to the data model later. This request is illustrated in the
following example.

Assume that the administrator would like to separate the source file from its object
code, i.e. s/he wants to create two object instances of two different classes. La.ter on, if
s/he wants to compile this file, s/he realizes that it is not possible with the current
architecture, as it is not possible to have write privileges on bound variables. In fact, the
bound variable found in a query bas a read only access. So, the administrator has to change
his objects by putting the source and the object code in the same class. This is the main
reason to think already about the process while defining the classes. Furthermore, this
methodology should be applied as it is not possible to evolve the objectbase.

The chaining graph is useful to detect ail the undesirable, conflicting and missing
chainings. This may help the administrator to adapt the rules and if necessary add or change
attributes of the data model to remedy to the situation.

- 62 -

2.2 The Protagonists

Every large software development project is made of a team of software engineers.
Generally, one engineer is responsible for the coordination of the work. In our
environment, we call this person the manager. The remaining software engineers have no
special status. Note that the number of team members should not be too important (8 - 10 at
maximum). Otherwise, the Marvel system performance decreases rapidly.

a) The Manager

The manager' s task is to coordinate the teamwork. Without bis intervention, no
programmer may begin a development task in the environment. The manager is also in
charge to add and/or delete objects from the objectbase. We assume that s/he is the only
one to perform such activities as s/he bas a global overview of the whole objectbase. This
will help to guarantee consistency maintenance of the objectbase. Thus, if a programmer
needs to add an object to the objectbase, s/he bas to send a request to the manager.

The manager has the· same privileges as the programmer, i.e. s/he can carry out ail
the tasks that a programmer can do. However, the former cannot participate in the process
development. But if s/he wants to be part of the development team, the manager must
follow the same procedure as a programmer, i.e. s/he must assign himself to the
corresponding modules.

b) The Software Engineèrs

A software engineer implements the work assigned to him by the manager. He has no
access to the management commands (rules). An engineer performs two kinds of work. The
most important one is the conception work, i.e. creation (specification, coding ...) of the
different modules. On the other hand, s/he may also review the results of the other team
members.

2.3 The Data Model

In this section, we describe the construction of the data model. Figure 3.4 (see below)
presents the different classes needed for the construction of the Marvel objectbase. Two
types of classes can be identified: those belonging to the project under development and
those belonging to the team carrying out the development process. The project itself can
again be divided in three categories of classes: those needed for the class definition of the
formai specification phase, those needed for the class definition of the logical architecture
phase and those needed_ for the physical architecture phase. In our environment, we consider
that the logical architecture refers to the design phase, and the physical architecture refers to
the implementation and test phases. lt is important to notice that all the classes that are just
needed for inheritance purpose are not represented (see Section 2.3.1)

- 63 -

SPIC LOGARCH

TFAM

/ \
~EJ

EJ IREV_TASK 1

□
□

bas as supercl.ass MODULE

bas as superclass ENTITY

1-1 parent-child relatioœhip

-+- 1-N parent-cbild relatiooslùp

link

Figure 3.4: Composite Class Hierarchy of the Data Model

In the following sections, we explain the construction of the data model, i.e. the
composite-class hierarchy, in more detail. The actual programming code of the different
concepts is joined in boxes during the description.

2.3.1 The Superclasses

In every data model of a Marvel environment, there are some class definitions that are
not directly related to the project under investigation. They are either designated for
inheritance purpose or simply to organize the data model.

- 64 -

In our data model, we specify a top level class called TOP (see Box 1). Remember
that a data model needs one and only one class that represents the root of the composite
class hierarcby (see Figure 4).

TOP:: superclass ENTITY;
projects : PROJECT;
team: TEAM;

end

Box 1: TOP Class

We have introduced this special class to show that the software development process
is composed of two main concepts. First, there is a team of software engineers that
performs the different tasks of the software development. The complexity of tasks as well as
the coordination among the team make team management useful (Section 2.3.3). The
second aspect of the software development is the organiz.ational structure of the project
(Section 2.3.2). The two attributes of class TOP (see Box 1) figure out this duality.

Other classes have been added for inheritance purposes. This allows to benefit from
the MSL overloading mechanism, i.e. the administrator does not have to specify a rule for
each subclass but only one for the superclass. It also facilitates the coding work of the
administrator. One of these inheritance classes is MODULE (see Box 2). This class does
not figure in the composite-class hierarchy as no object is instantiated to this class.

MODULE : : superclass ENTITY;
name : string = "noname";
engineer : string = "none" ;
reviewer : string = "none";
pro_ eng : link T ASK;
rev _ eng : link REY_ T ASK;
feedback : text;
status : (Initialized,Assigned,Active,Done,Reviewd,Maint,Ready) =Initialized;

end

Box 2: MODULE Class

The MODULE superclass regroups ail the attributes that are related to the assignment
of a development task to a software engineer. The engineer and reviewer attributes get the
name from the engineer in charge with this object. Pro_ eng and rev_ eng establish temporal
links to the tasks of a software engineer. (The classes T ASK and REY_ T ASK are explained
in the team management Section 2.3.3). At the first view, the engineer and the pro_eng
attributes as well as the reviewer and the rev_eng attributes seem to be redundant. However,
we need link attributes and string attributes as the links are removed after the completion of
the task, while the string attributes are persistent. This allows later on to identify the
engineers who worked on that object.

- 65 -

The string attributes get default values (e.g. engineer = "none") as there are some
rules that may fail without the m. In fact, the Marvel system' s default of the string type is
not recognized by the shell envelopes and triggers a "mutation" (switching) among the
parameter' s values.

The fèedback attribute contains the comments that a software engineer may make
about a module.

Finally, the status attribute represents in a chronological order the different phases in
the life of a module. However, a MODULE object does not need to pass through every
state of the given enumerated type set. For instance, the module needs not to be maintained,
but it bas to pass to its final state (i.e. sœtus = Ready).

The other superclass of the data model is CONTENTS (see Box 3). This class has
only one attribute, namely contents of type text. The class is added to the data model to
simplify different rules (e.g. print_out rule, touch rule, ... see description below). The
contents attribute is not joined to the MODULE class as there are some classes (those
representing programming code) with no contents, but rather a source attribute. The latter
need special extensions according to the extemal tools and thus cannot inherit a general
attribute.

2.3.2 The Project

CONTENTS : : superclass ENTITY;
contents : text;

end

Box 3: CONTENTS Class

A project includes all specification and programming steps that are necessary to
transform the requirements analysis provided from outside into an executable software
piece. The intermediate steps are organized along the software development process
described in Section 1.

In that process, there are three phases that need to be modeled in the data model: the
formai specification of the requirements, the logical architecture and the physical
architecture including coding. In fact, the test and maintenance phase have no further
impact on the data model description.

The PROJECT class (see Box 4) encapsulates the whole work of the programming
team.

The speci.ication, log_ architecture and phys _ architecture attributes represent the three
different phases of the software development process. The types of those attributes are
declared in the correspondent sections below.

The sœtus attribute gives information about the status of the project. In fact, you may
have an object hierarchy without working on that project (for instance the prototype

- 66 -

objectbase shown in Section 2.5). A project cannot be activated unless the informa!
requirements were provided (and accepted), and thus the PROJECT status is set to Active.

PROJECT : : superclass ENTITY;
name : string;

end

status: (Active, NotActive) = NotActive;
specification: SPEC;
log_architecture: LOGARCH;
phys_architecture: PHYSARCH;
documentation : DOC;

Box 4: PROJECT Class

The DOC class (see Box 5), representing the documentation of the project, are joined
at this level of the composite-hierarchy to insist that documentation should be provided for
each development phase.

DOC : : superclass CONTENTS;
name : string;
module : string;
author : string;
docs: set_of DOC;

end;

Box 5: DOC Class

The DOC class is nota subclass of the MODULE class, and thus cannot be assigned
to a software engineer. In fact, every engineer may edit a document object at any time. A
document has a name, a module name for which it is made and the author of the
documentation. The docs attribute gives a recursive definition of this class. This allows the
team manager to construct a specific hierarchy of documents. (e.g. s/he may construct a
hierarchy where all children are sections of a chapter)

2.3.2.1. The Specification Phase

All the elements of the specification phase are regrouped in the SPEC class (see Box 6
below). The latter are added not only for structural purpose (readability), but it also helps
to drive the software process, i.e. the logical architecture phase cannot be started until the
functional specification phase is over.

- 67 -

SPEC : : superclass ENTITY;
spec _ name . : string;
status : (lnitialized, Active, Done) = Initialized;
functions : set_of FUNCTION;
db_primitives: STATE;

end

Box 6: SPEC Class

The status attribute is used to specify the state of the functional specification phase.
Initialized means that the specification phase has not yet been started. The specification is
Actire as long as the functionalities have not all been specified. When the status is Done,
the specification phase is over. This means also that the team may begin with the design of
the logical architecture.

The fùnctions attribute represents the different functionalities to specify. There are as
many instantiations of the FUNCTION class (see Box 7) as there are functionalities in the
requirements. For example, in a hospital management problem, admission, transfer and exit
of patients would be represented by objects of class FUNCTION. The Jog_repres attribute
represents the relationship to a module in the logical architecture. The definition of the
L_FUNC class will be explained in the logical architecture phase (Section 2.3.1.2).

FUNCTION :: superclass MODULE,CONTENTS;
log_repres: link L_FUNC;

end

Box 7: FUNCTION Class

The db_yrimitires attribute of class SPEC (see Box 6 above) represents the
specification of the functionalities that access the persistent data system. Ali these
specifications are stored in one object of the STATE class (see Box 8). The primitives that
are declared in an object of ST A TE class may be used in the specifications of the
functionalities (objects of class FUNCTION). As both classes (FUNCTION and STATE)
are children of the class SPEC in the composite-class hierarchy, all the primitives which are
used to specify the functionalities (in FONCTION objects) have to be specified in the object
of class STATE. However, the latter may not be automated. We assume that the engineers
who are working on a functional specification send a request to the engineer in charge with
the state specification as soon as the necessity occurs to add a new access primitive to the
persistent data. But this request is not formalized in the process. The split_into attribute
represents a relationship to the L _ ST A TE class of the logical architecture.

- 68 -

STATE :: superclass MODULE,CONTENTS;
split_into: set_of link L_STATE;

end

Box 8: ST A TE Class

2.3.2.2. The Logical Architecture Phase

The logical architecture phase represents the design phase (see Section 1.3) of our
environment.

All the elements of this phase are regrouped in the LOG AR CH class (see Box 9).
With an analogous semantics as for the specification class, LOGARCH serves not only for
readability but is also used to drive the software process.

LOGARCH : : superclass ENTITY;

end

status : (Initialized, Active, Done) = Initialized;
pas : DESIGN;
state: set_of L_STATE;
functions: set_of L_FUNC;
interface: set_of L_SCREEN;

Box 9: LOGARCH Class

The status attribute is used to specify the state of the logical architecture phase.
Initializxxl is the default value asserted at the instantiation of the object. The status attribute
may change its value to Active if and only if the specification phase is completed. When all
the descriptions of the modules are realized, the status becomes Done. This means that the
project team may start the physical architecture phase.

The pas attribute represents the PAS. As said before, the PAS is a transformation of
the ERA model. The DESIGN class (see Box 10 below) represents this schema in the data
model. An instantiation of this class is a module of level 3 (Jevel attribute) according to the
logical architecture in Section 1.3.1. The san attribute of this class points to the NAS
schema in the physical architecture.

DESIGN:: superclass MODULE,CONTENTS;
san : link PHYS DESIGN;

end
level : integer=3;

Box 10: DESIGN Class

- 69 -

The state attribute (see Box 9) represents the algorithms of the data access primitives.
The latter are constructed by implementing the specifications (modules of level 3), with
respect to the PAS. The L_STATE class represents those algorithm descriptions. The
L_STATE class is specified recursively (sub_state attribute, see Box 11 below). This allows
the project manager to add intermediate objects to represent some semantics among the
primitives. For example, chronological or functional coherence may be used to improve the
structure of the objectbase. The coded-in attribute links these objects to objects containing
the actual programming code (e.g. SQL).

L_STATE :: superclass MODULE,CONTENTS;
sub_state: set_of L_STATE;
coded_in : set_of link MOD _PROG;
level : integer= 3;

end;

Box 11: L STATE Class

The fùnctions attribute (see Box 9) represents the algorithms, i.e. modules of level
6/5, (in pseudo-code) associated with functionalities. Therefore, an L_FUNC class (see
Box 12) was added to the data model. These algorithms may use data access primitives and
need some interface screens as well. The uses state and uses screen attributes show - -
respectively these possibilities. _The L_FUNC class is specified recursively (sub_fùnctions
attribute, see Box 12) as a functionality may apply other functionalities. As for the
L_STATE class, L_FUNC has an attribute coded_in that points to the programming code of
the physical architecture. The Je~J attribute's value (6 or 5) is specified by the software
engineer.

L_FUNC :: superclass MODULE,CONTENTS;
uses_state: set_of link L_STATE;
uses_screen: set_of link L_SCREEN;
coded in : set of link MOD PROG

end;

- - -
sub_functions: set_of L-FUNC;
level : integer;

Box 12: L FUNC Class

The inter/à ce attribute (see Box 9) represents the screen de finitions. While writing the
algorithms for the functionalities, the programmer detects the necessity to communicate
with the end-user. The screens (e.g. a menu) are specified in the L_SCREEN (see Box 13
below) class. The L_SCREEN class is specified recursively (sub_screens attribute see
Box 13) analogous to L_FUNC. The communication among the programmers is not
formalized so that there are informai requests to the programmer in charge with the layout
of the screens. The coded _in attribute of class L _ SCREEN points to the programming code

- 70 -

of the screen. Finally, the uses_state attribute points to the L_STATE modules used by the
screen.

L_SCREEN :: superclass MODULE;
level: integer=4;
coded_in: link MOD_SCR;
sub screens: set of L SCREEN; - - -
uses_state: set_of link L_STATE;

end

Box 13: L SCREEN Class

2.3.2.3. The Physical Architecture Phase

The physical architecture phase corresponds to the implementation phase (see
Section 1. 4).

The PHYSARCH class (see Box 14) contains ail elements defined during the physical
architecture phase. Once again, this class does not only serve for the readability of the
object hierarchy, but also intervenes in the process.

PHYSARCH : : superclass ENTITY;
phy _ name : string;

end

status : (Initialized, Active, Done) = Initialized;
nas: PHYS_DESIGN;
db : PHYS_DB;
code : MOD _PROG;
screen code : set of MOD SCR; - - -

Box 14: PHYSARCH Class

The status attribute has an analogous meaning as for the LOGARCH class. The status
becomes Active if and only if the logical architecture is Done.

The nas attribute represents the NAS. The PHYS_DESIGN class (see Box 15) covers
this description.

The db_language attribute represents the NAS schema that is adapted to a concrete
database language. The SQL class (see Box 16) represents this schema. The latter is the
only one of the three design schemes that has to be changed if you switch to another
database language. The attribute contents contains the SQL schema.

- 71 -

PHYS_DESIGN :: superclass MODULE;
db_language: SQL;

end;

Box 15: PHYS DESIGN Class

SQL : : superclass MODULE;
contents : text = ". sql";

end;

Box 16: SQL Class

The db attribute (see Box 14 above) represents the actual database (i.e. the physical
tables) of the project. This consists of a simple coding of the results stored in the SQL class
object. A PHYS _ DB class is created for this purpose.

PHYS_DB :: superclass MODULE;
contents : text = ". tbl";

end;

Box 17: PHYS DB Class

The code attribute (see Box 14 above) represents ail the programming units (database
access primitives and functionalities), and the screen_code represents ail the screen
modules. The code attribute is of class MOD_PROG (see Box 18 below). The source and
obj_code attributes represent respectively the source and object code of the module, where
the latter is of type binary. The comp _res attribute gets the errors that may occur while
compiling or building an object of class MOD_PROG. The comp_status indicates the status
of compilation.

The MOD _PROG class is recursively defined (subroutines attribute). An object may
contain either a procedure code or a test module code. For example, to built a test program,
ail the children in the composite-object hierarchy must be Compiled; this status represents
an executable unit. The screens attribute points to screen code modules that the
programming code may include.

- 72 -

MOD _PROG : : superclass MODULE;
source : text = ". src";
obj_code: binary = ".obj";
comp_res: text;

end;

comp _ status : (lnitialized, NotCompiled, Compiled, NotBuilt, Built) = Initialized;
subroutines : set_of MOD _PROG;
screens: set_of link MOD_SCR;

Box 18: MOD PROG Class

The screen_code attribute of the PHYSARCH class (see Box 14) represents the
interface modules of the project. The attributes of the class MOD_SCR (see Box 19) have a
similar meaning as in the MOD _PROG class (see Box 18). However, these objects are not
executàble and thus the Built, l'VotBuilt values do not figure in the enumerated type of the
comp_status attribute.

MOD_SCR :: superclass MODULE;
source : text = ". dec";
obj_code : binary;
comp _ res : text;
comp_status: (Initialized, NotCompiled, Compiled) = lnitialized;

end;

Box 19: MOD SCR Class

2.3.2.4. The Maintenance Phase
-

The maintenance phase of the development process needs no. additional classes in the
data model. This phase is entirely performed with the existing objects. In fact, maintenance
is primarily a processing problem (rules) and is thus resolved in the process model (see
Section 2.4.2.4.D).

2.3.3 The Team Management

Besides the project, the team management is the second key component of the data
model. Every software engineer is represented by her/his own object in the objectbase. The
team management helps for task coordination and for task assignation control. The TEAM
class (Box 20 below) regroups the members of a programming team. This class is only
added for organizational purposes of the objectbase. The chief attribute designates the
manager of the team. The members attribute refers to the other software engineers working
on the project.

- 73 -

TEAM : : superclass ENTITY;
chief : MANAGER;
members : set_ of ENGINEER;

end;

Box 20: TEAM Class

To represent the software engineers, the ENGINEER class (see Box 21 below) is
specified. The software engineer has two attributes for identification. The login attribute of
type user serves to check the identity of the current user. · The name attribute has the same
purpose, but at another level. The name attribute is only used in the environment whereas
the login attribute is compared to a Unix user-id. For example, it is possible to have
different engineers for one and the same user account. This structure allows to perform
identity control even when the team uses only one account, i.e. the system may allow/deny
access to objects according to the name value, even if there is only one account with several
engineers.

ENGINEER : : superclass ENTITY;
login : user;
name : string;
jobs: set_of TASK;
rev jobs : set_ of REV _ T ASK;

end;

Box 21: ENGINEER Class

The MANAGER class (see Box 22 below) has the same attributes as the ENGINEER
class. The former class is used to point out the particular role played by the manager (the
manager disposes of more rules than an engineer).

MANAGER : : superclass ENGINEER;
end;

Box 22: MANAGER Class

Every software engineer (including the manager) may perform two types of tasks:
write or review a module, where module refers to ail the objects of class MODULE. To
represent the difference between them, we add two classes to the data model. The jobs
attribute points to the TASK class (see Box 23). This class is dedicated to the write work.
The TASK has a status attribute that indicates whether or not a module is currently linked
to this TASK. Moreover, the beg_date and end_date attributes represents the schedule of
that TASK. The comments attribute contains specific details about the work to be done.

- 74 -

T ASK : : superclass ENTITY;

end;

status : (Assigned, NotAssigned) = NotAssigned;
beg_ date : integer;
end_ date : integer;
comments : text;

Box 23: TASK Class

The REY _TASK class (see Box 24 below) is dedicated to review jobs. This class has
only a status attribute with the same semantics as for T ASK.

REY_ T ASK : : superclass ENTITY;
status: (Assigned, NotAssigned) = NotAssigned;

end;

Box 24: REY TASK Class

Beside the signification of the tasks (write and review), the two class definitions have
another purpose. As we assume that the number of instantiations per class (T ASK,
REY _TASK) is restricted for each programmer, the two classes may avoid a deadlock of
the process. Assume that there are only objects of class T ASK but no objects of class
REY_ T ASK. It may occur that all these objects ôf class T ASK would be Assigned, without
any review task assigned yet. As the programmers need to review the module before they
may release the links between the objects, the process would be blocked. To avoid such a
possibility, we introduce these two different classes. A side effect is that every programmer
has to perform both kinds of task, so that the work may be distributed more equally.

- 75 -

2.4 The Process Model

The process model is presented in two steps. The first step describes the general
context in which the process is developed. In a second step, we give a detailed description
of the different rules.

2.4.1 About the Process

ln Marve! there are two possibilities to drive a process. The process can either be
backward-driven or forward-driven. In the former case one starts from a goal and
attempts to perform a specific task. In the latter case one goes the other way round, from a
specific task to a goal. For our process we use the forward-driven approach as the
backward-driven approach is not adapted. By using the backward approach, the process
would start with the coding phase and go back to the physical architecture phase and then to
the logical architecture phase. This does not correspond, however, to the desired
progression of the process development. It is important to notice that the forward-driven
approach does not exclusively include forward chainings between rules, but may include
some backward chainings as well.

The number of chainings we use to drive the process is limited. The main reason is
that we want to control the automation of the process execution. Thus we explicitly prohibit
chaining possibilities that otherwise would have been done (e.g. the modify and the control
rules). This also explains the important number of chaining directives (no_backward,
no_ forward and no_ chain) in the rule definitions (MSL code).

This limited number of chainings is a direct consequence of the way we implement the
team management. As consecutive tasks (modify a fonction, control a fonction) on a same
module are performed by different team members, we cannot allow a chaining between
them.

The team management allows every team member to know exactly which tasks s/he
bas to carry out. Furthermore, only the assigned team member may access the module. This
bas as a consequence that the Marve! multi-user management, a lock/unlock mechanism, is
not used. The only exception is, however, the maintenance phase. At this level, there is no
team member assigned anymore, so that everyone may access any module. In this case the
Marvel lock/unlock mechanism avoids concurrent access to a same module.

- 76 -

2.4.2 Specification of the Process

2.4.2.1 Evolution of the Process

The evolution of the process describes the sequence of tasks that have to be done to
perform a software development process.

A. The Specification Phase

In Figure 3.5 we see the sequence of rule enactions corresponding to the specification
phase.

F

salifies a prccœditiœ

awomatiœ cbain to the rule

Figure 3.5: Rule Enaction in the Specification Phase

- 77 -

The software process always starts with the specification phase. However, prior to
this, the manager bas to initiate the project, which automatically activates the specification
phase. From this point on, the manager may assign the different team members to their
tasks. In the following, we call the software engineers accordingly to the task they perform,
i.e. programmer (write task) or reviewer. Once a module (state or function) is assigned,
the corresponding programmer can modify it. A module can be modified in more than one
attempt. Once the modification(s) is (are) done, the reviewer controls the module and, if
necessary, gives feedback to the programmer in charge. If there are more than one
functional modules, the preceding operations (see box F within Figure 5) are repeated in
parallel as often as there are function modules. The state module may only be achieved if
ail the function modules have been completed before. A successful review of the state
module ends the specification phase and activates the logical architecture phase.

- 78 -

B. The Logical Architecture Phase

In Figure 3.6 we see the succession of rule enactions corresponding to the logical
architecture phase.

galifiea • p"""'"1itiai

nîle

Figure 3.6: Rule Enaction in the Logical Architecture Phase

Once the logical architecture phase is activated, the project manager assigns the team
members to their tasks. From there on, the team member can modify her/his corresponding
module(s), namely design, lfiinc and Jscreen. These modules can then be controlled by their
assigned reviewer. The lstate module can, however, only be modified if the corresponding
design module (PAS) has already been completed. If there are more than one lfi.mc, lstate
and/or lscreen modules, the preceding steps have to be repeated for each of them. Once all
the modules have been successfully reviewed, and thus accepted, the logical architecture
phase is done, and the physical architecture phase is automatically activated.

- 79 -

C. The Physical Architecture Phase

In Figure 3. 7 we see the succession of rule enactions corresponding to the physical
architecture phase.

r iile

Figure 7: Rule Enaction in the Physical Architecture Phase

Once the physical architecture phase is activated, the project manager can start
assigning the team members to the mcxlules. One team member mcxlifies (draws) the NAS

- 80 -

(physical design) with regards to the PAS defined before. The same team member also
transforms the NAS to an SQL conform schema. However, the SQL schema may only be
reviewed if the NAS has been approved before. And once the SQL schema has been
successfully reviewed, the database may be physically constructed. Parallel to these steps,
the coding modules are modified by their corresponding programmers. When a set of
modules are successfully reviewed, the functionality they define can already be executed.
Once all the functionalities are done, the physical architecture phase is finished.

D. The Maintenance Phase

The main purpose of the maintenance phase in our Marve! environment is to provide
assistance during the correction and evolution of the objectbase. The initiative is taken by
the software engineers. If they decide to change an object, they can use the environment to
"mark" all the other objects affected by that change. It is up to the software engineers to
correct these objects and thus to obtain a "coherent" environment again.

The consistency maintenance of the objectbase is assured by several inference rules
and the chaining possibilities among them as shown in Figure 3.8.

J touchdown(procl] 1--------

1 touchdown[lfl] ~:-~::::-:r-~~-::_u~ch~u-p[~tes~t~l]~~

/ 71 \ J tollchdown[proc2} 1-/ --·

♦ J touch[f2} 1-/ \
1 touchdown[dbpo1iJ 1 1 toucb~ p[progr} 1

- \
1 touchlôwn[proc3] 1---~ touchup[test2] 1/

♦ user invoked
:> consistency cbaining

Figure 3. 8: Chaining Graph of Inference Rules

If a software engineer wants to change the target object 12, s/he can first use the
touch rule to change the object' s status to Maint. This will invoke a consistency chain as
shown in Figure 3.10. The touch rule forward chains to the touchdown rule, which is
recursively applied to a11 those objects affected by the changing of the object 12. The
affected objects also have their status set to Maint to indicate that they are in the
maintenance phase. From this point on, the programmer may start changing the target
object.

- 81 -

2.4.2.2 Specitication of the Rules

In the following sections, we give a detailed description of the rules used in our
environment. Ali the rules are described according to the following pattern.

The Marve) code part represents the syntax of the rule and is represented in a
CodeBox.

The context part specifies the goal of the rule and explains the possible
assumptions that are made. If there are comments to the different instantiations of a
rule, they are specified here.

The precondition part explains the contents of the èharacteristic function and gives
details about the property list.

The activity invocation part, explains the actions a programmer must carry out
during the activity and explains the role played by the envelope.

The effects part gives comments about the postcondition and possible chainings that
are related to the changes to the objectbase.

Sometimes, one or even more of these parts are not explicitly mentioned. This means
that there are no special remarks about that part for the current rule. For example, an
inference rule has no activity invocation.

There are some rules available only for managerial purposes (Section 2.4.2.2.A).
Other rules are specified for programming purposes (Section 2.4.2.2.B). The third category
are those rules added for process control (Section 2.4.2.2.C) and the last category is used to
lœep the objectbase in a consistent state (Section 2.4.2.2.D).

A. Management Rules

The first category of rules is dedicated to the manager of the programming team.
These rules should help the manager to distribute the work among the team members. There
are two categories of managing rules. The first category concems assigning tasks, i.e. the
establishment of links between the modules and the tasks of a programming engineer. The
second category of rules is used to show the evolution of the development process.

The manager disposes of two assign rules. The first is to assign a development task
and the other to assign a review task. The two rules are necessary as there are two types of
tasks in the data model.

a) Asmen Rule

context:

The as.ggn rule produces a link between a programmer' s task and a module.
Module may be ail those instantiations of classes that are subclasses of the MODULE
class, i.e. ail those objects that can be assigned.

- 82 -

Moreover, the manager bas to specify a schedule for the task. The be gin and end
dates, which s/he bas to introduce are not validated by the Marvel environment. That
means that the manager may assert any value to these attributes. The begin dates may
be overlapping so as to indicate that a programmer may perform more than one task
between these dates.

~ign [?func:FUNCTION, ?ta:TASK]:

(and (exists SPEC ?spec suchthat (member [?spec.functions ?func])
(exists ENGINEER ?pg suchthat (member [?pg.jobs ?ta]))):

(and no_chain {?spec.status = Active)
no_chain (?func.status = Initialized)
no_ chain (?ta. status = Assigned))

{ INTERACTIVE schedule ?ta.comments ?pg.name return ?beg ?end ?name}

(and (?func.status = Assigned)
(?ta.status = Assigned)
(?func.engineer = ?pg.name)
(?func.name = ?name)
(?ta. beg_ date = ?beg)
(?ta.end_date = ?end)
(linkto [?func.pro_eng ?ta]));

CodeBox 1: Assign Rule

There is no test if the person executing the assign rule is really the manager in the
objectbase. In fact, we assume that the assign strategy containing the rules figures
only in the set of strategies dedicated to the manager.

The assign rule has two formal parameters, one is a subclass of MODULE and one
of type TASK. In CodeBox 1, we see an example where the amgn rule is applied on
an object of class FUNCTION (subclass of MODULE) that is defined in the
specification phase. The first parameter of the rule designates the class that is used in
the characteristic function. If the parameter is of class DESIGN, the SPEC class is
replaced by the LOGARCH class in the characteristic function, according to the
composite-class hierarchy shown in Figure 3.4.

precondition ;

The characteristic fonction searches for the ancestor object which is an instantiation
of one of the following classes: SPEC, WGARCH or PHYSARCH. It also
determines the programmer who owns the task object that is given as the second
parameter.

If the searched objects have been found, and this will be the case in a consistent
objectbase, the property list evaluates the following precondition clauses:

- if the development phase (i.e. specification, logical architecture, physical
architecture) to which the module belongs to is the current one, i.e.
(ph.status = ktire).

- 83 -

- if the task to which one wants to connect the module is not yet assigned.
- if the module itself is not yet assigned (status = Initialized)

activity invocation :

If this precondition is satisfied, the rule executes the schedule envelope that starts
an interactive session in the client window where the manager may introduce the
different values, namely the module's name, the begin and end date of the task as well
as a comment about this task. This comment may be as long as s/he wants. All these
data will be sent to the addressed programmer via mail.

effects:

At the end of the assigning work, the different attributes are updated according to
the values read during the interactive session are asserted to the correspondent
attributes. Finally, the two objects (?.iJnc and ?ta) are linked to each other. This link
is only temporary and will stay only as long as the module has not successfully passed
the review task. The link allows the corresponding programmer to access the module.

The assign rule performs a forward chain to the send rule (see Section C below) if
the (?mo.status=Assigned) predicate is satisfied. In fact, other chainings are possible
but have to be prohibited. For instance, assign could forward chain to the modify
rule, but this activity is performed by another team member.

b) Asmgn _ rev Rule

assign_rev[?func:FUNCTION, ?ta:TASK]:

(and (exists ENGINEER ?pg suchthat (member [?pg.rev jobs ?ta])):

(and (or no_chain (?func.status = Assigned)

{}

no_chain (?func.status = Active)
no_chain (?func.status = Done))

(?pg.name < > ?func.engineer)
(?ta.status = NotAssigned))

(and no_chain (?ta.status = Assigned)
no_chain (?func.reviewer = ?pg.name)
(linkto [?func.rev _ eng ?ta]));

CodeBox 2: Assign _rev Rule

context:

The assign _ rev rule creates a link between a reviewer' s task and a module.
However, contrary to the assign rule, the manager must not (and may not anyway)
specify a schedule. We estimate that a mail to the reviewer at the time when her/his
task may begin is more useful than a predefined schedule.

- 84 -

The asmgn_rev rule may only be invoked after the asmgn rule (see Figures 5,6 and
7), but prior to the control rule (see below). By this way, the manager may decide
later on which engineer will be assigned to review a module. This allows a more
flexible process, i.e. the manager may distribute tasks · according to the actual
availability of the team members.

The asmgn_rev rule has two formai parameters, one is a subclass of MODULE and
one of class REV _ T ASK. In CodeBox 2, we see an example where the rule is
instantiated with a parameter of class FONCTION.

precondition :

The characteristic function searches for the engineer object that owns the task that
the manager has selected. The property list evaluates the following precondition
clauses:

- if there is already a programmer in charge with this module.
- if the programmer and the chosen reviewer are two different persons.
- if the review task to which you want to connect the module is not yet assigned.

etTects:

As for the asmgn rule, the two parameter objects are linked together. The reviewer
attribute gets the engineer's name and the status of the review task is set to Assigned
while the module's status remains unchanged.

The asmgn _ rev rule performs no chaining. Actually, this rule does not offer any
interesting chaining possibilities.

c) Overview Rule

overview [?!:>-pec:SPEC]:
(forall MODULE ?mo suchthat (ancestor [?spec ?mo])):

{ LISTER list ?mo.m_name ?mo.status ?mo.engineer ?mo.reviewer}

CodeBox 3: Overview Rule

context:

To improve the management task, the manager should have a permanent overview
of the project' s evolution. Particularly, the knowledge of the evolution of the different
tasks may help her/him to intervene as soon as possible. The overview rule gives a
list of all existing objects corresponding to a development phase.

The overview rule is only available to the manager, even if there is no explicit test
to verify it. This rule figures only in the rule set of the manager.

The overview rule is applied on the different development phases, 1.e. SPEC,
LOGARCH and PHYSARCH. We give an example in the CodeBox 3.

- 85 -

precondition :

The characteristic function sea.rches for ail descendants of the selected development
phase object. However, the property list is empty which ailows the manager to follow
the project evolution at any rime.

activity invocation:

Ali the objects found are listed and ordered by class. The list envelope prints a list
in the client window showing the module name, the programmer, the reviewer and the
current status of the object. The default values asserted to these attributes at
instantiation rime guarantee that the information provided is significant. For instance,
if no programmer is assigned, the correspondent value in the list is none.

effects:

Besides the provided list there is no change on an object of the objectbase. Thus,
no chaining possibilities are provided.

B. Programmiog Rules

The second category of rules are dedicated to all the team membèrs. These rules are
needed to execute the software development process. For better readability, we · classify
them in two categories. The first category regroups ail the rules that invoke an edit activity.
The second category, which we call coding rules, contains ail the rules (e.g. compile, build)
necessary for the coding steps in the software development.

1. Edit Rules

ln this section, we explain the rules that invoke an edit tool (Emacs editor). Each of
the rule names reflect a special context under which the editor tool is invoked.

a) Modify Rule

modify [?mo : MODULE]:

(and (msts TASK ?ta sucbtbat (linkto [?mo.pro_eng ?ta]))
(msts ENGINEER ?pg sucbtbat (member [?pg.jobs ?ta]))):

(and (?pg.login = CurrentUser)
(or no_cbain (?mo.status = Assigned)

no_cbain (?mo.status = Active)
no_cbain (?mo.status = Reviewed))

{ EDITOR edit ?mo.contents}

(?mo.status = Active);
(?mo.status = Done);

CodeBox 4: Modify Rule

- 86 -

context:

The modify rule edits an object file attribute. This rule can only be invoked by the
programmer of the object and not by the reviewer. Modify should be understood
either as changing an existing file or creating a new file.

The modify rule may be invoked on each object of the MODULE class. However,
the preconditions may be different. For example, the programmer has to wait until
the NAS is completed before defining a database object of class PHYS _DESIGN,
whereas the modification of a FUNCTION object can be started immediately after the
assignation. In CodeBox 4, we give the general description of the modify rule. The
changes perfonned for several subclasses are visible in the rule enaction graphs of the
development phases (see Figures 5,6 and 7).

precondition :

The characteristic function searches for the programmer who is linked to the
module via one of her/his tasks. The property list then evaluates the following
precondition clauses:

- if the programmer' s login found in the query is identical with the current
programmer' s login of the Unix system (in other words, if s/he is the assigned
engineer).
-if the module status has one of the following values: the module's file attribute has
not been edited before (status = Assigned), it was edited but not completed
(status=Active), or it has been reviewed but there are changes to make
(status=revie~.

acüvity invocation :

The activity runs the edit envelope. This envelope loads an editor. When the
programmer has left the editor, s/he is asked, in the client window, if the editing
work is completed or not.

effects:

Depending on the programmer' s choice at the end of an editing session, the
module' s status becomes Active or Done, where Done means that the module is ready
to be reviewed.

The modify rule perfonns a forward chaining to the send rule if the
(?mo_status=Done) predicate is satisfied. At the end of the modification either the
assigned reviewer is infonned of the completion of the task or, if no reviewer is
assigned, the manager will be notified to assign one. A possible chain to the control
rule was prohibited as the review task is perfonned by another engineer.

- 87 -

b) Control Rule

control [?mo:MODULE]:
(and (exists T ASK ?tal suchthat (linkto [?mo. pro_ eng ?tal]))

(exists REV _TASK ?ta2 suchthat (linkto [?mo.rev_eng ?ta2]))
(exists ENGINEER ?pg suchthat (member [?pg.rev jobs ?ta2]))):

(and no_chain (?mo.status = Done)
(?pg.login = CurrentUser))

{ EDITOR review ?mo.source ?mo.feedback ?mo.engineer}

no_forward (?mo.status = Reviewd);
(and (?mo.status = Ready)

no_chain (?tal.status = NotAssigned)
no_chain (?ta2.status = NotAssigned)

(unlink [?mo.pro_eng ?tal])
(unlink [?mo.rev_eng ?ta2]));

CodeBox 5: Control Rule

context:

The control rule is used by a programmer to review a module. The rule may only
be invoked if a review task bas been assigned before. The reviewer gets the module's
file attribute in a read-only mode. If there are some comments to make, they are
saved in a feedback file that is sent to the programmer of the module.

precondition :

The characteristic function searches for the two task objects (?ta 1, ?ta2) (see
CodeBox 5) linked to the module. As the tasks will be unlinked from the module
when the reviewer bas no criticisms to make, these objects must be known.
Furthermore, the reviewer is also needed in order to compare her/his name
(?pg.login) with the CurrentUser (reviewer) attribute. The property list evaluates the
following preconditions:

- if the reviewer who is linked to the module is the current user (Unix system login);
-if the editing session (specification) of the module was accomplished by the
programmer.

ti •h • ti ac VIu mvoca on :

The activity runs the review envelope. This envelopes pumps up an Emacs editor
which is divided in two parts. In the upper part, the module's file attribute is listed in
read-only modus. In the lower part, the reviewer may enter her/his comments that
will be saved to the fèedback attribute (?mo.feedbac~. If the latter is not changed,
then the review task is supposed to be completed without any critics. Otherwise, the
feedback is automatically sent to the programmer.

- 88 -

effects :

Depending on the reviewer' s decision, the module is either reviewed, if there are
critical remarks, or ready, if the module is approved by the reviewer. In the latter
case, the links between the module at one side and the programmer and the reviewer
at the other are unlinked, so that the module is no longer accessible neither through
the modify rule, nor through the control rule. Of course, the status attributes of the
T ASK and REY_ T ASK objects are reset to Not.Assigned, which means that the
corresponding reviewer and programmer may be reassigned to other modules.

The control rule has a possible forward chaining to the finish rule (see below) if
the (?mo.status = Ready) predicate is satisfied. However, this chaining is only
performed if the other descendants of the development phase have ail been completed,
i.e. their corresponding status is Ready before and the module that has been
successfully reviewed was the last module to be defined in the corresponding phase.

c) Doc Rule

context:

doc [?doc:DOC]:

{ EDITOR edit_doc ?doc.contents retum ?name ?module}

(and (?doc.name = ?name)
(?doc.author = CurrentUser)
(?doc.module = ?module));

CodeBox 6: Doc Rule

Every software development process should be sufficiently documented. The doc
rule edits a documentation object, or more precisely the object' s file attribute
contents. The structure of the documentation objects is left to the manager (see data
model Figure 3.4). There is no special restriction to edit a document object and the
engineer is free to document her/his work. The documentation may be linked to the
modules it refers to, but this link is not required. We assume that the engineer
introduces an existing module name in the module attribute, but there is no test if this
name really corresponds to an existing object in the objectbase.

activity invocation ;

The activity runs the edit_doc envelope. This envelope calls the tool to edit the
corresponding module. The programmer has to introduce a document name and the
name of the referred module(s). Both values are read interactively in the client
window.

- 89 -

effects:

The values are asserted to the correspondent attributes. The author attribute is
asserted with the current user's name by using the CurrentUser primitive (see
CodeBox 6).

d) Touch Rule

context:

touch [?co:CONTENTS]:

no_chain (?co.status = Ready)

{ EDITOR touch ?co.contents }
[?co.status = Maint]

CodeBox 7: Touch Rule

The touch rule is used for file editing purpose. This rule is however only used in
the maintenance phase. In fact, the touch rule "breaks" the existing object "network"
(links and parent-child relationships) by trying to change a target module after the
development phase has been completed.

The touch rule does not check if the engineer is the person who worked on the
module before. Thus any engineer may use it if the module status is ready.

If an engineer changes the target module, all the modules affected by this change
may become inconsistent. Thus, ail the affected modules will have their status
changed to Maint in case the target module has been changed.

It is important that ail necessary links, i.e. those indicating the propagation of the
modules, have been installed (using the propagate rule below) before fi.ring the touch
rule. Otherwise, the consistency of the objectbase is no longer guaranteed.

The rule is applied on objects of class CONTENTS (see CodeBox 7).

precondition :

. The touch rule has no characteristic function. The property list tests if the module
has been completed before (?co.status=Read~.

activity invocation ;

The activity invokes a touch envelope that writes a waming in the client window.
The warning should alert the engineer that possible modifications on the file will
invoke consistency chainings. The engineer may then either leave the rule without
modifying the target module or s/he may change it, which automatically invokes the
propagation chain.

- 90 -

effects :

If the engineer does not change the target module, the rule has no effect.
Otherwise, the status is changed to Maint indicating that the module is in maintenance
phase.

There is a consistency chain if the [?co_status = Maint] predicate is satisfied (see
CodeBox 7). This chain will change recursively the statuses of the affected modules to
Maint. This is performed by several inference rules (see consistency rules below).

e) Maint Rule

maint [?co:CONTENTS]:

no_chain (?co.status = Maint)
{ EDITOR change ?co.contents }
no_chain (?co.status = Ready); (1) # for text files only
[?co.comp_status = NotCompiled J (2); for source files only

CodeBox 8: Maint rule

context:

The maint rule is the counterpart of the touch rule. This rule is analogous to the
modify rule, but only modifies the module if the object' s status is Maint. With this
rule the programmer may "repair the damage" provoked by the touch rule.

This rule does not check the programmer' s identity.

precondition ;

The property list checks if the status is set to Maint.

activity invocation :

The activity runs the change envelope which invokes the editor tool to allow the
engineer to change the corresponding file.

effects:

No effect is asserted when the programmer has not yet completed her/his work.
Otherwise, the status is switched to the corresponding value, i.e.(?co.status = Readf)
or [?co.comp_status = NotCompiledj (see CodeBox 8).

If the second effect [?co.comp_status = NotCompiledj is asserted, then all anc~stor
objects of class MOD _PROG are no longer executable and thus a consistency chain is
invoked that resets all ancestor objects to NotBuild. For the first effect
(?co.status = Ready), no chain is useful and is thus prohibited.

- 91 -

If the maint rule is invoked with an object of class CONTENTS, then the first (1)
effect may be asserted. For an object of class MOD_PROG or MOD_SCR the second
(2) effect may be asserted.

2. Coding Rules

The coding rules are needed principally during the physical architecture phase. These
rules perform activities such as compiling a source file or running an executable program.

a) Compile Rule

compile [?mod:MOD _PROG]:
(forall MOD _PROG ?modl suchthat (member [?mod.subroutines ?mod])):
(and no_backward (?modl.comp_status = Compiled)

(?mod.status = NotCompiled))

{ COMPILER compile ?mod.source ?mod.obj_code
?mod.comp_res ?modl.source}

(?mod.comp_status = Compiled);
(?mod.comp_status = NotCompiled);

CodeBox 9: Compile Rule

context:

The compile rule invokes a compiler on the source file attribute. Ali the
descendant (or children) modules of the parameter object are supposed to be
procedures of the latter. In other words, the parameter module represents a program,
and the descendants are the procedures used by this program.

The compile rule is invoked on objects of class MOD_PROG or MOD_SCREEN
(see example in CodeBox 9).

precondition :

The characteristic function binds ail the children objects of a module. The property
list checks if they are compiled.

activity invocation :

The activity runs a compiler on the object's source code. If the compilation
succeeds, the object's binary file attribute obj_code (object code) will contain the
object code. If the compilation fails, the errors are stored in the comp _ res attribute
and may be consulted by the viewErr rule (see below).

- 92 -

b) Build Rule

build [?mo:MOD _pROG]:

(and (forall MOD _PROG ?modl suchtbat (member [?mod.subroutines ?modl]))
(forall MOD_SCR ?scr suchtbat (linkto [?modl.screens ?scr]))
(forall MOD _ SCR ?scrl suchtbat (linkto [?mod.screens ?scrl]))):

(and (?modl.comp_status = Compiled)
(?scrl.comp_status = Compiled)
(?scr.comp_status = Compiled)
(or (?mod.comp_status = NotBuilt)

(?mod.comp_status = Compiled)))

{ COMPILER build ?mod.source ?mod.obj_code ?modl.obj_code
?scrl.obj_code ?scr.obj_code ?mod.comp_res }

(?mod.comp_status = Built);
(?mod.comp_status = NotBuilt);

CocleBox 10: Build Rule

context:

The build rule creates an executable program. This rule is applied on MOD_PROG
(see CodeBox 10).

preçondition :

The characteristic function searches for ail the children of the parameter object
(?mo). Furthermore, ail the screens objects (?scr) that are linked either to those
children or to the parameter object itself are bound too. The property list checks if ail
the bound objects are compiled.

activity invocation ;

The build envelope compiles the source code (?mod.source) of the current object
and links it together with the object codes (?mod.obj_code) of the other modules. If
this building fails, the results are written in the comp_res file attribute which may be
consulted with the viewErr rule.

c) ViewErr Rule

viewErr [?mod:MOD_PROG]:

{ VIEWER view_err?scr.comp_res}

CocleBox 11: ViewErr Rule

- 93 -

context:

The viewErr rule allows to consult the errors that may occur during a compilation
or a building activity. In fact , the compile rule inserts ail compilation errors in a
compilation results file (comp_res, see CodeBox 11). The rule lists the contents of this
file in the client window.

activity invocation :

The wew_err envelope prints the contents of the comp_res attribute on the default
printer.

d) Exec mie

context:

exec [?mod:MOD_PROG]:

no_forward (?mod.comp_status = Built)
{ RUNNER exec ?mod.obj_code }

CodeBox 12: Exec Rule

The exec rule runs an executable program. This rule is only used during the coding
phase of the software development process. This rule is applied on objects of class
MOD_PROG (see CodeBox 13).

precondition :

The property list checks if there is an executable program, i.e. if the program has
been built.

activity:

The activity runs the exec envelope. This calls a command tool window where the
user may run the executable program. To retum to the Marvel environment, the
programmer has to delete this window by typing exit.

e) Print_out Rule

context;

The print_out rule allows the printing of the text files on the default printer.

precondition :

The property list checks if the module's file has already been edited, i.e. if there is
a file to print.

- 94 -

print_out [?co:CONTENTS]:

(or no_chain (?co.status = Active)
no_chain (?co.status = Done)
no_chain (?co.status = Reviewd)
no_chain (?co.status = Ready))

{ PRINTER print ?co.contents }

CodeBox 13: Print out Rule

activity invocation :

The file of the module is sent to the default printer. This printer has possibly to be
changed in the print envelope.

C. General Rules

In the general rules section, we specify ail those rules that are not directly related to
the construction of a software product, but are necessary for a correct execution of the
process. These rules ailow to pass from one development phase to another. In a consistent
objectbase, ail these rules are invoked automatically by chaining and need thus not to be
fired manually.

a) Initiale Rule

context:

initiate [?p:PROJECT]:

(?p.status = NotActive)
{ INTERACTIVE ini }
(?p.status = Active);

CodeBox 14: Initiate Rule

The initiale rule is the first rule to be fired when a team starts with the
development of a software. The rule activates the project, so that the assignment work
may be started. This is the only rule that is fired manually by a manager. It is only
available in the set of rules dedicated to the team manager. There is no further test
about the identity of the latter.

precondition :

No characteristic function is necessary. The property list evaluates whether the
project status is .Actire or N:Jt.Active (see CodeBox 14).

- 95 -

activity invocation :

If the project was not yet activated, the initiate envelope is run and the manager is
asked if the requirements are met, which allows the project team to start with the
specification phase.

effects:

A positive response changes the status to Actùe. The initiate rule performs an
automation chain to the activate rule.

b) Activate Rule

bide activate [?log: LOGARCH]:
(and (exms PROJECT ?proj suchthat (member [?proj .log_architecture ?log]

(exms SPEC ?spec suchthat (member [?proj.specification ?spec]))):
(?spec.status = Done)
{}
no_chain (?log.status = Active)

CodeBox 15: Activate Rule

The above rule is used to activate the logical architecture phase. The physical
architecture is activated in a similar way. The specification phase, however, has no
preceding phase and is thus activated automatically after project initiation.

context:

The activate rule allows to start with a new software development phase. The rule
is either invoked after the initiate rule or the finish rule. Unless this rule is not fired,
the programmer cannot assign engineers to modules under this development phase.

As the engineers need not to tire this rule manually, it is hidden to the latter, i.e. it
does not figure among the commands in the rule menu. The activate rule is applied on
SPEC, PHYS_ARCH or LOG_ARCH (see example in CodeBox 15).

precondition :

The characteristic function searches for the preceding development phase of the
process (e.g. specification precedes logical architecture). The property list tests if the
phase has been finished.

effects:

The development phase is activated and the development process may continue.

- 96 -

c) Achieve Rule

achieve [?st:STATE]:
(and (exists SPEC ?spec sucbthat (member [?spec.db_primitives ?st]))

(forall FUNCTION ?func suchtbat (member [?spec.functions ?func]))):

(and no_cbain (?func.status = Ready)
no_backward (?st.status = Active));

{}
(?st.status = Done)

CodeBox 16: Achieve Rule

context:

The achieve rule is used in different contexts. The main goal is to complete a task
that has not been completed (or could not have been completed) by another rule.

For instance, a programmer may not complete an object of class STA TE unless ail
the functionalities (of class FUNCTION) are completed. To finally terminate the
modification of the state, i.e. to set the status to Done, the achieve rule is fired (for
more details about the achieve rule see the code in the Appendix C).

precondition ;

As the situations in which the achieve rule may be used are very different, the
precondition is specific for each of them. Remember, however, that the objects on
which the precondition is verified are queried by the characteristic function. In
CodeBox 16, we give one of the possible achieve rules.

effects:

The status attribute of the object is updated.

The achieve rule waits until ail the fonctions are completed. Only then it allows to
finish the modification of the state (?st) which means that the module may be
reviewed.

d) Finish Rule

bide f"mish [?spec:SPEC]:
(forall MODULE ?mo sucbtbat (ancestor [?spec ?mo])):
(?mo.status = Ready)
{}
(?spec.status = Done);

CodeBox 17: Finish Rule

- 97 -

context:

The finish rule completes a development phase. In fact, to respect the order in
which the development phases are performed, it is essential that a phase has to be
completed before the process can go on to the following phase. The finish rule
definition for the other development phases is implemented by replacing the SPEC
class by LOG AR CH or PHYSARCH (see CodeBox 17).

precondition :

The characteristic function searches all descendants of the phase object. The
property list then checks if ail the found objects are Ready, which means that the
phase is completed.

effects:

The status of the correspondent phase object is set to Done. The finish rule invokes
a forward chain to activate the next development phase.

e) Send Rule

context:

send [?mo:MODULE]:

(and no_backward (?mo.status = Done)
no_backward (?mo.reviewer < > "none"))

{ MAILER mail_rev ?mo.reviewer ?mo.name}

CodeBox 18: Send Rule

The send rule organizes an automatic mailing mechanism among the team
members. The contents of the mails are standardized. The rules are invoked
automatically if a team member completes her/his task on an object such that this
object may be reviewed by another team member. For instance, the programming
engineer gets a schedule via mail as soon as the assignment is done.

precondition :

The send rule is applied on the module that has been completed
(?mo.status = one). If the revie~r attribute is not none (the default value) , then there
is already a reviewer assigned (see CodeBox 18). For more code details, see the mail
strategy in the Appendix C.

activity invocation :

The activity runs the mail_rev envelope. This envelope simply sends the standard
text to the reviewer indicating also the name of the module.

- 98 -

D. Coosistency rules

The objectbase has to reflect the process development status at any time. Sorne rules
are defined only for consistency maintenance. Most of them are not visible to the user. To
keep the database consistent and powerful, the programmers have to use some rules
manually.

a) Propagate Rule

propagate [?mo:MODULE, ?mol:MODULE]:

{}
(linkto [?mo.attr ?mol]);

CodeBox 19: Propagate Rule

context:

The propagate rule produces a link between two subclasses of the MODULE
class. This link shows the propagation of the module through the different
development phases.

The rule must be used by the engineer. There is no chaining related with this rule,
neither is there a help facility. In fact, the Marvel system cannot anticipate these
links. But to perform properly, the engineer should use the propagate rule as soon as
possible to visualize the propagation.

The rule has the same effect as the link built-in command. The use of the
propagate rule is however easier as the correspondent attribute is already defined,
contrary to the link built-in command.

The link established by the rule is vital if the process should work correctly. This
link has to be persistent. As the link may be removed by the unlinkbuilt-in command,
we assume that the latter is only used for correction activities.

The parameters used for these rules are of subclasses of MODULE. The attr
attribute is replaced with the current link attribute of that subclass (see data model in
Section 2.3).

etTects:

A link is established between the two modules.

b) Inference Rules for Consistency Maintenance

To keep the objectbase consistent at any time, the process model contains some
inference rules that are fired after the execution of an engineer' s activity. Ali these rules are
hidden to the user. Once the consistency chain is invoked, it cannot be stopped by the

- 99 -

engineer anymore. In the case that one of the rules fails, for any reason whatever, the
whole chain is rolled back.

We add some consistency rules that "propagate" some changes in order to reflect the
current actual state of the objectbase at any time. The consistency chains are invoked either
by the touch or by the maint rule.

The consistency chain follows the "roads" constructed by the propagate rule and thus
the latter has to be used correctly. In the following, we explain one of those rules, namely
touchdown, in more details. All the other rules are built according to the same schema.

a) Touchdown Rule

bide touchdown [?lfunc:L_FUNC):
(exists FUNCTION ?func sucbthat (linkto [?func.log_repres ?lfunc])):
[?func.status = Maint]
{}
[?lfunc.status = Maint];

CodeBox 20: Touchdown Rule

context:

The rule changes the status of the L _ FUNC object (? lfùnc) that is linked by the
FUNC object (?fùnc) if the latter has been touched (i.e. status = Maint). Note that
both the property Jist and the effect clause are between square brackets (see
CodeBox 20).

precondition :

The characteristic function searches the "previous" object. This object may be
either connected via a link or a parent-child relationship. The property list then
evaluates if the status of the "previous" has been changed by the touch rule.

effects:

If the precondition is satisfied, the status of the current object is also changed. The
rule verifies if there are eventually other chainings to perform.

In Figure 3.9, we show the possible consistency chainings among the rules. The
doted line is the representation in the Marvel print graph option for consistency
chainings.

- 100 -

'-"'M'-'l"'n--'-tc'-'Wl= T'-'EHT= S'-'>---'! 1,_~<SQL> , 1 ! ~<UTATE> ! ! t.ouch<COlTEHTS> .J
.,, "' • , I ,.._ _,,,_ .,. ____ .,. __ _ ._,•;;_~;,_;,,~•1:~•~. : - - - ..,~ -- - .. _, - - - ,. ., ------.. "' ... :,,_ - .. - ------~.. :::

..L··-L -'-· ·-(PHVS.DESI L,(... _ .. _ .. _ - .,. - - - - .,. - - - - .,. ., - - - .,. ., - , ,L - - , - :: - - - .,. _, :_._ _·,-'.:_..;_:~ ... ,--
~ ~ ,-,,- .. -:::: -

--;:,-·'-'- ---

The consistency
maintenance phase.
Section 2.4.2.1.D.

,'

Figure 3. 9: Consistency-Chain Graph.

chain graph
A complete

represents
example

- 101 -

the
of a

consistency chainings of
possible chain 1s g1ven

the
in

2.5 Initialization of the Objectbase

Before a team may start the actual development work, the objectbase has to be "filled
up" in order to represent the development process. The objectbase may be created
progressively, but it is preferable to have a minimum of objects of each class in the
beginning to get a better overview of its extent. We have built such a "prototype
objectbase" for our environment (see Figure 3.10). The names of the objects represent their
contents in an abstract manner. These names may be changed, if desired, by the manager
using the rename built-in command. Remember, however, that each assignable module gets
a name during the execution of the as.ggn rule.

n.--1 J.O C..-rent. Object.: top/project.s/proyphys_rchit.ect.ure/physarch/_...../acrl

•2r•

Figure 3.10: Example of "Prototype Objectbase"

- 102 -

add

browse

chance
.,_

del.t.e

exec:ut.e

1-.lp

ll,,k -print.

'l'lit.
rer..-
r--unliJlk -lllltlll CIIIS

..-
cl...i

l.oad

na.--llze

assi _rev

build

clean
C ile

cont.rol

dac

3. MARVEL EVALUATION

In this section we present four categories of problems. By conceptual problems
(Section 3.1) we understand features that we found but that are not operational in the
current version. The missing features section (Section 3.2) brings out some features that
might improve the "power" of the Marvel kemel. Furthermore, we give some constructive
remarks about the Marvel Graphical User Interface (GUI) (Section 3.3). Finally, we
mention the programming errors (Section 3.4) that we discovered during the development
of our Marvel environment.

3.1 Conceptual Problems

The conceptual problems we detected are the Unix file system restrictions, the
limitation of multi-parameter rules and the MSL syntax.

3.1.1 Unix File System Restrictions

The composite-hierarchy is mapped to the Unix file system and every object is
represented in a unique Unix directory. The object hierarchy presented in Figure 3.11 is a
possible one. This means that every engineer (eng 1 and eng2) may have several tasks with
identical names (taskl and task2) as the respective directories are umque
(... lteamlmembers/engl/ jobsltaskl and . . . /teamlmembersleng2/jobs/taskl). This
denomination causes, however, troubles during rule invocation.

rom____

/ ~
~l e~ 2

module / \ / \

taskl task2 taskl task2

Figure 3.11: Composite-Object Hierarchy

For instance, if the manager wants to assign the module to taskl of eng 1, the Marvel
system produces an error message saying that taskl is not unique and it does not invoke the
aRgn rule. This behavior is difficult to understand, as the end-user explicitly selects the
two object parameters of the rule. Consequently, the semantics of the composite-object
hierarchy cannot be fully represented by the Unix file system. This has as a consequence
that objects of the same class must have different names.

3.1.2 Chaining on Multi-Parameter Rules

The chaining mechanism is the important feature of Marvel, but it is not yet fully
operational. Although the definition of multi-parameter rules is allowed, the chaining
mechanism, as it is currently implemented, is not totally applicable to those rules. A multi-

- 103 -

parameter rule does not allow other rules to forward chain into it. This is due to the way the
Marvel system determines the parameter object at execution time, i.e. dynamic binding of
parameter (see Part 2). A chaining is always performed based on a predicate that allows to
find the correspondent parameter, whereas the other parameter cannot be found with this
approach. For example, the as&gn rule in our environment has a possible forward chaining
to the as.ggn _ rev rule. Both are multi-parameter rules, but while it is possible to start a
forward chain from the a~gn rule, it is impossible to forward chain into the as&gn _ rev
rule as the Marvel system cannot determinate the second parameter of that rule (of class
REV_TASK).

3.1.3 The MSL Syntax

To be more readable, the MSL syntax should include some additional keywords,
especially to distinguish the different parts (characteristic function, property list. ..) of a
rule. Another problem is the difficulty to visualize chaining possibilities. In fact, MSL does
not explicitly show the chaining possibilities of the rule. Additional keywords could
improve the situation that could avoid the use of the print-graph option.

3.2 Missing Features

In the current version there are no privileges on built-in commands, neither is there a
possibility to use built-in commands in rules. We describe the usefulness of these features
and give some ideas how they could be implemented.

3.2.1 Privileges on Built-In Commands

There is no mechanism to provide access privileges either to objects, or to built-in
commands. Without access restrictions, every team member can add or delete objects,
which may cause severe consistency problems (e.g. too much objects, additional links that
destroy the consistency defined in the data model). In our environment, we assume that the
manager is the only person who may add/delete objects of the objectbase. There is however
no possibility to control this assumption. A hard-coded solution would remedy to this
problem. Different solutions are imaginable. A first possibility would consist in a restrictive
access to the built-in commands. This means that the administrator has to define for every
user a set of the accessible (or not accessible) built-in commands analogous to the subset of
rules. A second possibility would be to define for every object class the access privileges,
i.e. add, delete or change an object, with regards to the read/write/execute privileges of the
corresponding Unix file. In this case it would be the owner of the account who would
define the accesses.

As the first possibility is independent of the Unix file system, the access privileges are
easier to be defined by the administrator, but perhaps more difficult to implement in the
Marvel kemel. In our environment, the manager would have access privileges to ail the
built-in commands, whereas the programmers would have restricted accesses. On the other
side, the second possibility is more flexible and easier to implement. In our environment,
the latter solution would not be convenient, as the hierarchy of a team (manager and
software engineers) could not be clearly defined by the administrator. This means that in a
"multi-user" environment like ours, it is important that the project manager defines the
objectbase, and thus the access privileges.

- 104 -

3.2.3 Built-In Commands and Rules

In the current Marvel version, the only built-in commands that can be used in a rule
specification are the lmk and unlink commands. In some cases, other built-in commands
could be useful. You could imagine adding an object within a rule with the built-in add
command. We can illustrate this by giving an example of our environment. In the latter, a
fi.me object bas to be linked to an]fi.me object. In the current version of our environment,
we only assume that this is realized by a team member. With the possibility to use built-in
commands in rules, the process could create the object (]fi.me) and the corresponding link
automatically. This would improve the consistency of the objectbase which would no longer
be based on assumptions.

3.3 About the Interface

In this section we briefly describe the Marvel window and give suggestions how it
may be improved.

3.3.1 The Marve) Window

The Marvel GUI is shown in Figure 3.12. It is composed of one window, called the
Marvel Window, divided in several sub windows. It is important to notice that this GUI is
complemented by a client window. The latter is a command tool window where the client
session bas been started and that is used for user communication purposes.

/ Marvel 3.0 Current Command Status Window

Display Window

Text Window

Figure 3.12: The Marvel Window

Current Object

Built-in
Commands
Menu

up I down

Rule
Menu

The Status Window displays the current Marvel version, the Current Object and
the Current Command. The Marvel version value is permanently present (in our
case 3.0), whereas the Current Command is only shown if a command is selected, but not
yet executed (e.g. the user is selecting the parameter object(s)). The Current Object value
gives the access path (in terms of the Unix file system) to the current object. For instance,

- 105 -

if the testl object of Figure 3.10 is the current object, its value would be
top/projects/proj/phys _ architecture/physarch/code/progrlsubroutines/testl.

The Display Window shows the objects present in the composite-object hierarchy and
is also used to display the chaining graph built with the print-graph command.

The Text Window is used for communication purposes. On one side, the user
specifies the parameter object(s) for a selected rule in this window. On the other side, the
Marvel system provides information about objects or rules in response to a user request, or
the system displays performed chainings and possible error messages.

The Built-In Commands Menu contains ail the predefined commands of the Marvel
system. These commands are either used to make modifications on the composite-object
hierarchy (e. g. add, delete, move) or they are used to change the display layout of the latter
(e.g. zoom, display options). If a built-in command has several options, the latter are
accessible by clicking with the mouse on the corresponding command menu box.

The administrator has an additional command menu, which is situated in the lower
part of the built-in Command Menu (see Figure 3.10) and help the administrator in the
environment construction.

Finally, the Rule Menu contains ail or a subset of the rules specified by the project
administrator to model the dynamic behavior of the environment. If ail the rules do not fit
in the Rule Menu box, the Up/Down buttons allow to scroll through them.

3.3.2 Towards an Unique Communication Window

In the current Marvel version, there are two different windows where communication
with the user is performed. In the Text Window (see Figure 3.12), the user gets ail
communications concerning the composite-object hierarchy and enacts the rules. In the
Client Window, ail the communications related to activity invocations (envelopes) are
performed.

A better and more coherent solution would be to allow ail types of user
communication in one Window, namely the Text Window. The necessity for a unique
window is illustrated in Figure 3.13.

Client Window

Screen
Marvel Window

Figure 3.13: Overlapping of the Client Window with the Marvel Window

- 106 -

In fact, the Marvel Window is not resiz.able and most of the time it hides the Client
Window. This is confusing for a user if the Text Window is blocked in an activity
invocation and is waiting for a response in the Client Window, that is not visible at this
time. In a unique window, such a situation could not disturb a user.

If this unique communication window is difficult to implement, the user must a least
have the possibility to resize the Marvel Window in order to allow him to have both
communication windows visible on the screen.

3.3.3 Problems with the GUI

We are conscious that the current version of the Marvel GUI is still at a prototype
level and thus presents some weaknesses which we will emphasize in the following
paragraphs.

The composite-object hierarchy may not have more than 10 levels. Once a user
defines the 11th, the Marve! system shuts down (core dump) and the current objectbase is
unrecoverable. This problem cou.Id be avoided if it would be documented.

Another problem in the Status Window, is the overlapping of the Current Command
value by the Current Object value once the latter becomes too long. Of course this problem
is of less importance than the one cited before, but nevertheless it causes a readability
problem and should be taken into consideration for future versions.

Thanks to the Display Window, the end-user has a correct representation of the tree
structure of the objectbase, which could be summarized as l-Wlat you de.ine is what- you
see. Once the objectbase becomes too large, the user may use the 200m command to
guarantee the readability of the objectbase structure.

The print-graph command whose output (chaining graph) is displayed in the Display
Window, constitutes a powerful tool for the administrator. However, there are some
technical problems with that command. First, this command needs at least 5 rules to print a
chaining graph. Although it may not seem very useful to print a chaining graph with less
then 4 rules, there is no reason to prohibit it. Furthermore, if there are too many ru.les
loaded simultaneously in the Marvel system, the chaining graph becomes unreadable
(Figure 3.14 shows the chaining graph of our environment). Finally, the chaining graph is
not permanently the same for a same environment. In fact, the graph in Figure 3.14 is not
similar to the graph presented in Figure 3.15 although they were both constructed with
exactly the same rule set.

- 107 -

Figure 3.14: Chaining Graph

si

Figure 3. 15: Chaining Graph

The Text Window allows to make available a "history" of the previous command
executions which may be consulted by scrolling through this window. The space of the Text
Window buffer seems, however, too small. This "problem" was detected when the
administrator asked to print the definition of a rule in the text window. It happens that this
rule had many instantiations, but it was not possible to consult ail of them. An extension of
the buffer size may probably remedy to this situation.

- 108 -

Furthermore, the end-user may select the parameter object(s) of a rule by typing it
(them) in the Text Window. The Marvel system supports an easier and more ergonomie
possibility, namely to click on them with the mouse. This may avoid typing errors.
However, once the rule is selected there is no undo command to cancel its invocation. In
this case, the only way to simulate the undo command is to tire the rule without arguments,
which produces an error message in the Text Window.

The produced error messages are too general. They do not precisely express the
reason why an error occurred and sometimes the same error message is used for different
types of errors. This is very confusing for the user. For instance, if the user gives more
than one object for a single-parameter rule or if s/he applies a rule on a wrong object class,
the error message will be the same in both cases. Another problem has been detected for
error messages produced by a failed precondition. Remember that the precondition is
composed of a characteristic fonction and a property list. Nevertheless, the produced error
messages are inconsistent, i.e. a failed characteristic function produces no error messages,
whereas a failed property list d~s, but it does not mention the failed predicate.

3.4 Programming errors

The programming errors we detected deal with the lacking inheritance of link
attributes, the denomination of attributes and rules, and the MSL loader.

3.4.1 Inheritance Attribute

The Marvel system provides for an object class inheritance mechanism. When we
tried to inherit the MODULE superclass attributes to ail its subclasses, we run into
problems as the link attributes were not inherited. However, there is no plausible reason
why link attributes should not be inherited. Thus we assume that this is a programming
error (bug) that should be corrected in future Marvel versions. We solved the problem by
explicitly specifying the corresponding link attributes in every subclass of the MODULE
superclass.

3.4.2 Attribute and Rule Names

Every Marvel class definition contains a set of attributes. According to the Marvel
manuals, every identifier may be used to denote the attributes. However, for the attributes
of type string, the "name" identifier causes problems. As long as the server is running, the
value asserted to this "name" attribute causes no problem. Once the client session is fmished
and the server killed, the "name" attribute loses its current value and is replaced with the
default value at the next interactive session. As the lœder does not notify an error during
the compilation of the data model, this is a severe problem.

An analogous problem was detected with the rule denomination. The rule name must
be different from the names of the built-in commands. For instance, we called a rule
print_out instead of print. We tried the latter denomination, but the system did not invoke
the correspondent rule without giving an adequate error message. Even if this is a
restriction, it is understandable for semantic reasons. On another side, we called a rule
review according to the task it should perform. But this name was refused by the Marvel
system and caused an error message although the name does not figure among the built-in

- 109 -

command names. If these restrictions are known, they should be explicitly mentioned in the
Marvel manuals.

3.4.3 The MSL Loader

The MSL loader is used by the administrator to translate the MSL specifications (i.e.
the data and the process models) into an intermediate representation. The resulting error
messages of the loader are, however, not expressive enough to help the administrator in the
error correction. Other errors are even not mentioned by the loader. In the sequel, we give
some concrete examples of this problem.

In our data model we used single quotes ' ' instead of double quotes " " (see Box 25)
and the loader gave the following error message : ('.' '. '). This is obviously not a very
expressive error message to help the administrator to localize the syntax error.

TASK : : superclass ...

end;

MODULE:: superclass ...
contents : text = '. src'
pro_ eng : link task

end.

use of single quotes is incorrect
lower case is an error

Box 25 : Example of Loader Problems

In an other case, we made a type error by defining an attribute type as (pro_ eng: link
task) instead of (pro_eng: link TASK). The loader, however, completed the parsing of the
data model without any error messages, although the link keyword has always to be
followed by a class type identifier, i.e. TASK in uppercase letters according to the
definition of the class (see Box 25). When we wanted to start the Marvel server, the system
crashed ("segmentation fault").

When the administrator tries to load a strategy within the Marvel Text Window by
using the built-in Joad command containing some syntax errors, the resulting error message
is: "rc is" followed by a number. To find the corresponding error, the administrator has to
search outside the Marvel Window to identify the error.

In future versions of Marvel, it will be necessary to "upgrade" the loader to a
powerful compiler.

- 110-

CONCLUSION

CONCLUSION

In this work, we reported an experiment using Marvel to support a specific
development process covering the whole software lifecycle. Through this experiment, we
have learned about the benefits of using Marvel with respects to another Software
Development Environment (SDE) but we have also detected some weaknesses. More
specifically our contribution was reported in three parts:

In Part I, we presented the main concepts characterizing second generation SDE's.
Then, we defined a set of criteria and analyzed to what extent they are verified by
four representative SDE's.

In Part II, we made a synthesis of the main papers published on Marvel and
illustrated the main concepts by progressively building a small Marvel environment.

In Part m, we described the Marvel environment that we have implemented with
the Marvel kemel for covering a whole lifecycle developing process. We isolated the
main concepts of the development process in order to conceive the correspondent data
model and identified the sequence of tasks to implement them with Marvel rules. This
in depth study allowed us to evaluate the Marvel system at the end of this part.

The Marvel environment allows us to support some kind of transformational approach
up to a certain degree. Moreover, it includes some team management aspects. lt is
important to emphasize that the primary goal of the experiment was to investi.gate to what
extend Marvel is able to meet the whole lifecycle. Thus the resulting environment should
rather be considered as a tool for leaming a development process than to be used for real
applications. This is due to the following reasons.

First, the quality of a Marvel environment is largely dependent of the various tools
it may invoke. In our environment, we only use a normal editor to edit the various
specifications and algorithms. Thereby, we have not integrated feedback due to
corrections in specification.

Second, the notion of active user guidance in our environment is limited. In fact,
the environment assures the chronological sequence of tasks by prohibiting the
premature fi.ring of a rule that enacts this task, rather than it indicates the different
steps to follow by the user. A development task is always initiated by a user and not
by the Marvel system. As there are no automated activities to perform between the
development tasks in the specification and the logical architecture phases (no adequate
tools are provided), the process consists in a list of user initiated task without active
guidance in between.

Third, the necessity to restrain the number of chainings decreases the "active"
aspect of the environment. Remember that we had to reduce the number of chainings
as Marvel does not yet provide the possibility to chain between different users.

Finally, the present environment is based on a large number of assumptions. A
first category concems the user-friendliness of the product. Ali actions are supposed
to be performed by a software engineer who does not attempt to crash the system.
These assumptions could be avoided by improving the user interface of our
environment. Another category is due to missing features of the Marvel kemel
noticed before (Section 3.2 of Part Ill).

- 112 -

In this work, we only reported the way we followed for instantiating Marvel to our
own purpose but we feel necessary the existence of a methodology bringing active guidance
to the Marvel administrator.

To conclude, we would like to say that the criticisms made in Part III are not intended
to devaluate the Marvel kemel, but rather to indicate the features that should be considered
in future research.

We feel that our instantiation of the environment could be improved with the features
presented at the end of Part m. Furthermore,

- its active user guidance has to be reconsidered which means to provide powerful
tools for the specification and design phases.

- another interesting attempt could be the integration of the C/Marvel environment
into our environment in order to improve the modeling of the coding phase. This
experiment could even be undertaken without further modifications of the Marve!
kemel.

- 113 -

REFERENCES

REFERENCES

[Bar88], BARGHOUTI, N.S., KAISER, G.E., Implementation ofa Knowledge Based
Programming Environment, Proc. 21st Annual Hawaii Int'l Conf. on Systems
Sciences, IEEE Computer Society Press, Los Alamitos, Calif., pp. 54-63, 1988.

[Bel92], BELKHATIR, N., MELO, W.L., ESTUBLIER,J., NACER, A.N., Supporting
So.iwa.re .Maintenance Evolution Process in the Adèle System, Proc. of the 30st
Annual ACM Southeast Conference, Raleigh, NC, April 8-10, 1992.

[Bel91], BELKHATIR, N., ESTUBLIER, J., MELO, W. L., Adèle 2 : A Support to
Large So.iwa.re .Development Process, Proc. of 1 st International Conference on
the Software Process, IEEE Computer Society Press, Redondo Beach, CA,
October 21-22, 1991

[Ben90], BEN-SHAUL, 1., An Object Oriented FrameVKJrk fiJr Rule-Based Development
Environments (Position Paper), Department of Computer Science, Columbia
University New York, July 1990.

[Cou91], COUTAZ, J., BASS, L., Developing Software for the User Interface, SEI Series
in Software, Addison Wesley Publishing Company, 1991.

[Dat90], DATE, C.J., An introduction to Database Systems, Volume I, 5th ed., The
Systems Programming Serie, Addison Wesley, 1990.

[Dow87], DOWSON, M., Integrated Project Support with /Star, IEEE Software, 4(6),
September 1987, pp. 6-15.

[Dub91], DUBOIS, E., "Méthodologie de Développement de Logiciels (MDL), Notes de
cours de 2ème Licence et Maîtrise en Informatique, Année Académique 1991-
1992.

[G~l], GISI, M.A., Extending A Tool Integration Language (Experience Report),
Department of Computer Science, Columbia University New York, April 1991.

[Hai86], HAINAUT, J.-L., Conception Assistée des Applications InfiJrmatiques, Tome 2,
Conception de la base de données, Masson, 1986.

[Hei91], HEINEMAN, G.T., KAISER, G.E., BARGHOUTI, N.S., BEN-SHAUL, 1.,
Rule Chaining in MARVEL : Dynamic Binding of Parameters (Technical Report),
Department of Computer Science, Columbia University New York, May 1991.

[How82], HOWDEN, E. W., Contemporary Software .Development Environments,
Communications of the ACM, 25(5), May 1982, pp.318-329.

[Kai90], KAISER, G.E., BARGHOUTI, N.S.,SOKOLSKY, M.H., Preliminary
Experience with Process Ab:leling in the MARVEL SOFIWARE DEVELOPMENI'
Environment Kemel, Proc. 23rd Ann. Hawaii Int'l Conf. Systems Sciences, IEEE
Computer Society Press, Los Alamitos, Calif., 1990, pp. 131-140.

References - 1

[Kai88a], KAISER, G.E., BARGHOUTI, N.S., FEILER, P.H, SCHWANKE, R.W.,
Database Support for Knowledge-Based Engineering Environments, IEEE Expert,
Vol.3, No.2, Summer 1989, pp. 18-32.

[Kai88b], KAISER, G.E., FEILER, P.H., POPOVITCH, S.S., Intelligent Assistance for
Soflware Development and .Maintenance, IEEE Software , Vol.5, No.3, May
1988, pp. 40-49.

[Kho90], KHOSHAFIAN, S., ABONOUS, R., Object Orientation Concepts, Languages,
Databases, User Interfaces, Wiley, 1990.

[Mar92], MARVEL 3.0 Implementor's Mànual, Department of Computer Science,
Columbia University New York, January 23, 1992.

[Mar9la], MARVEL 3.0 Administrator's Mànual, Department of Computer Science,
Columbia University New York, October 9, 1991.

[Mar91b], MARVEL 3.0 User's Mànual, Department of Computer Science, Columbia
University New York, October 25, 1991.

[Mey88], MEYER, B. Object-Oriented Soflware Construction, Prentice Hall International,
Series in Computer Science, 1988.

[Nil87], NILSSON, N.J., Logical Foundations of Arti.icial Intelligence, Morgan
Kaufmann Publishers, Inc. Los Altos, CA, 1987.

[Ost87], OSTERWEIL, L., Software Processes Are Software Too, in Proc. 9th Int. Conf.
Software Engineering, Monterey, CA, March 1987, pp.2-13.

[Ost81], OSTERWEIL, L., Software Environment Research: Directions for the Next Pive
Years, Computer 14(4), April 1981, pp.35-43.

[Par72], PARNAS, D., On the criteria to be used in decomposing systems into modules,
Communication of the ACM, 15 (2), 1972, pp.1053-1058.

[Rat87], RATCLIFF, B., Soflware Engineering: Principles and Methods, Blackwell
Scientific Publications, 1987.

[Shn86], SHNEIDERMAN, B., Designing the User Interface, Reading, Mass.: Addison
Wesley, 1986.

[Som89], SOMMERVILLE, I., Software Engineering, 3rd ed., Addison-Wesley, 1989.

[Sten87], STENNING, V.,On the Role of an Environment, in Proc. 9th Int. Conf.
Software Engineering, Monterey, CA, 1987, pp.30-34.

[Sten86], STENNING, V., An Introduction to ISTAR, in SOMMERVILLE, I, ed.,
Soflware Engineering Environments, Peter Peregrinus Ltd., London, 1986, pp.1-
22.

References - 2

[Tan89], TANENBAUM, A., Computer J\ktworks , 2nd ed. Prentice Hall International
Inc., Englewood Cliffs, N.J, 1989.

[Vla90], van LAMSWEERDE, A., A Distributed Rule Base Architecture for Making
Project Databases Active, CS Department, University of Louvain-La-Neuve,
April 15, 1990.

[Vla88], - van LAMSWEERDE, A., DELCOURT, B., DEWR, E., SCHA YES, M.C.,
CHAMPAGNE, R., Generic lifecycle Support in the ALMA Environment, IEEE
Transactions on Software Engineering, vol. SE-14, no. 6, June 1988, pp. 720-
741.

[Vla87], van LAMSWEERDE, A., BUYSE, M., DELCOURT, B., DEWR, E.,
ERVIER, M., SCHAYES, M.C., BOUQUELLE, J.P., CHAMPAGNE, R.,
NISOLE, P., SELDESLACHTS, J., 'IbeKemelofa GenericSoitWdre
Development Environment , Proceedings 2nd ACM Software Engineering
Symposium on Pratical Software Development Environments. ACM Sigplan
Notices 22(1), January 1987, pp. 208-217.

[Vla82], van LAMSWEERDE, A., Les outils d'aide au développement de logiciels: un
aperçu des tendances actuelles, in Proc. J1 lA 82, Paris, June 1982.

[Was89], WASSERMAN, A.I. , Tool Integration in Software Engineering Environments, in
Fred Long (Ed.), Software Engineering Environments, International Workshop
on Environments, Chinon, France, LNCS 467, Springer Verlag, September
1989, pp.137 149.

References - 3

APPENDIX

APPENDIX A : MSL Reference Manual

This is the full definition of the MSL language. It is written in the forms of tokens
(terminais) and productions. The parser and semantic analyzer are implemented in yacc, an
LALR shift-reduce parser generator, and the lexical analyzer is implemented in lex, a
lexical-analysis generator, which recognizes regular expressions. Familiarity with yacc and
lex will help to understand this appendix but is not required. Familiarity with context-free
grammars is required.

1. The Tokens

[0-9]
[a-z A-Z]
{ LETTER } 1 { DIGIT }
{ LETTER }+
[\t]

1.1 Basic patterns

DIGIT
LETTER
BOTH
LETTERS
SPACES
IDSTRING
SUFFIX
COMMENT
QUOTEID
QUOTESTR
COMMENT

{ LETTER} ({ LETTERS} 1 {DIGIT}+ 1 _)*
({ BOTH} 1 \, 1 \.) *
\ #. *
" [0-9 a-z A-Z]* "
fi \ fi ([A \ fi] 1 \\\fi)*\ fi

"#. *

1.2 Keywords

CurrentClient
CurrentTime
ResetClient
ancestor

clientid
consistency
end

and
automation
binary
boolean

end_ objectbase
exists
exports
false
forall

built in overload hide

1.3 Special Tokens

() { } []

- -- EQ_ OP_ tok
<> -- EQ_OP _tok
<= -- EXP OP tok
>= -- EXP OP tok
> --EXP OP tok
< -- EXP OP tok

(EQ)
(NEQ)
(LEQ)
(GEQ)
(GT)
(LT)

imports
insert
integer
link
linkto
member
nil
no backward
no chain

Appendix A - 1

no forward
not
objectbase
or
real
remove
return
rules
set of

startegy
string
suchthat
superclass
text
time
true
unlink
user

+=

(*
*)

--D COLON
-- MATH OP tok (PLUS_ EQ)
-- MA TH_ OP _tok (MINUS_ EQ)
-- OTHER _ LEFT _ KW (NO_ CHAIN)
-- OTHER_RIGHT_KW (NO_CHAIN)

1.4 Numbers and Identitiers

This section outlines some of the very low-level details that lex understands. lt uses
the standard notations of regular expressions. A character in quotes is a literai character, 1

represents options, + indicates one or more of the specified item, * represents O or more of
the specified item. The ? represents an optional item. Items in (...) are groupings, while
items in { ... } indicate a user-defined character class (see 1.1).

"-"{DIGIT}+ 1 {DIGIT}+

"-"?{DIGIT}*". "({DIGIT}+) 1

-- IVAL

"-"?{DIGIT}*". "({DIGIT}+) (Ele)"-"?{DIGIT}+ -- RYAL

"?" {IDSTRING} -- VARIABLE
"?" {IDSTRING}". "{IDSTRING}
"?" {IDSTRING} Il:" {IDSTRING}

-- BVAR
--PARAM

{IDTSRING}(" /" {IDSTRING}) +
{IDSTRING}

-- PATH
-- ID

{QUOTEID} -- QUOTE_ID
{QUOTESTR} -- QUOTE_STR
"{SUFFIX}" --FILE NAME

2. The Productions

This section outlines a11 the productions of the grammar. Multiple entries denote alternative
derivations of a non-terminal.

start
1mp_exp
imp _ name _ list

exp_ name _ list

objbase

classes

STRATEGY_KW ID imp_exp objbase rule_section oversection
IMPORTS_KW imp_name_list; EXPORTS_KW exp_name_list;
nothing
ID
imp _ name _list , ID
nothing
ID
exp_ nama _ list , ID
nothing
OBJECTBASE_KW classes ENDOBJECTBASE_KW
class
classes class

Appendix A - 2

class ID D _ COLON superclasses attributes END_ KW
superclasses SUPERCLASS _ KW ;

SUPERCLASS_KW super_name_list;
super_ name _ list ID

supemame _list , ID
attributes attrib

attrib

autoinitiable _ type

initiable _ type

noninitiable _ type

enumerated _ type
file_type

et_ name _ list

init val

rule section

rules

rule

parameters

bindings

attributes attrib
ID : noninitiable_type;
ID : autoinitiable _ type ;
ID : initiable _ type ;
ID: initiable_type EQ_OP _TOK init_ val;
USER KW
TIME KW
CLIENTID KW
STRING KW
INITEGER KW
REAL KW
BOOLEAN KW
file_type
enumerated _ type
ID
SETOF KWID
LINK KWID
SETOF KW LINK KW ID - -
(et_name_list)
TEXT KW
BINARY KW
ID
et_name_list, ID
ID
FILE NAME
PATH
QUOTE_STR_KW
QUOT_ID_KW
BOOL VAL TOK - -
IVAL
RYAL
nothing
RULES KW rules
rule
rules rule
ID [parameters] : bindings: precond activity mult_posts
HIDE_KW ID [parameters J:bindings:precond activity multposts
nothing
PARAM
parameters , PARAM
nothing
binding
(BOOL _OP_ TOK binding_list binding)

Appendix A - 3

binding (QUANTIFIER_TOK ID VARIABLE SUCHTHAT_KW
binding_ cond)

binding_ expr _ list binding_ cond

binding_ cond
binding_ expr _ list binding_ cond
(set_expr)
(expression)
(multiple_ bind _ cond)

multiple_bind_cond BOOL_OP _TOK binding_expr_list binding_cond

binding_ list

activity

action
outputs

out var item
out var list

act var list

mult_posts

NOT_ TOK binding_ cond
binding
binding_ list binding
{ }
{ action }
ID ID act var list
nothing
RETURN KW OUT VAR LIST - - -
VARIABLE
nothing
OUT V AR LIST OUTBV AR ITEM act var item - - - - -
QUOTE ID
QUOTE_STR_ID
VARIABLE
nothing
act var list act var item - - - -

mult_post_list
mult_post_list post ;

mult_post_list post ;
post allowed _post _ cond

(BOOL _OP_ TOK post_ list allowed _post_ cond)
post_ list allowed _post_ cond

allowed _post_ cond consistency _ cond

precond

which cond
allowed _pre _ cond

allowed list

expr_cond
operand

automation cond
both cond
other _ cond _post
nothing
which cond
allowed _pre _ cond
both cond
automation cond
other _ cond _pre
consistency _ cond
which cond
allowed list which cond - -
BV AR MATH_ OP _TOK operand
BVAR
QUOTE_ID
QUOTE_STR
RYAL
IVAL

Appendix A - 4

consistency _ cond

automation cond

other _ cond _pre

other _ cond _post

solo cond

solo_post

multiple_ cond

expression

post_expr

expression_ tail

set_expr

exp_op

[solo_ cond]
CONSISTENCY_KW (solo_cond)
(solo_ cond)
AUTOMATION_KW (solo_cond)
OTHER_LEFf _KW solo_ cond OTHER_ RIGHT _KW
NO_BACKWARD_KW (solo_cond)
OTHER_LEFf _KW solo _post OTHER_RIGHT _ KW
NO_FORWARD_KW (solo_post)
NO_ BACKW ARD _ KW (solo _post)
NO_ BACKW ARD _ KW [solo _post]
NO_ CHAIN_ KW (solo _post)
expressions
expr_cond
POST EXPR
POST LINK EXPR - -
POST UNLINK EXPR - -
BOOL OP TOK allowed list which cond - - - -
NOT KW which cond - -
BV AR exp_ op expression_ tail
BVAR EQ_OP_TOK BOOL_VAL_TOK
BVAR exp_op IVAL
BVAR exp_op RYAL
BV AR EQ_ OP_ TOK BOOL_ V AL_ TOK
BV AR EQ_OP _TOK EXPRESSION_TAIL
BVAR
ID
QUOTE_ID
QUOTE_STR
MEMBER_KW [BVAR VARIABLE]
ANCESTOR_KW [VARIABLE VARIABLE]
LINK_TO_KW [BVAR VARIABLE]
LINK_TO_KW [BVAR NIL_TOK]
EQ_OP_TOK
EX OP TOK

Appendix A - 5

strategy datamodel

imports none;
exports ail;

objectbase

TOP : : superclass ENTITY;
top_ name : string;
projects : PROJECT;
team: TEAM;

end

APPENDIX B : Data Model

PROJECT : : superclass ENTITY;
proj_ name : string;
status : (NotActive , Active)= NotActive ;
specification : SPEC;
log_architecture: LOGARCH;
phys _ architecture : PHYSARCH;
documentation : DOC;

end

###################### TEAM MANAGEMENT #######################

TEAM : : superclass ENTITY;
team _ name : string;
chef : MANAGER;
members : set_ of ENGINEER;

end

MANAGER : : superclass ENTITY;
login : user;
eng_ name : string;
jobs : set_ of T ASK;
rev jobs : set_ of REY_ T ASK;

end

ENGINEER : : superclass ENTITY;
login : user;
eng_ name : string;
jobs: set_ofTASK;
rev jobs : set_ of REY_ TASK;

end

TASK : : superclass ENTITY;
status: (Assigned, NotAssigned)= NotAssigned;
beg_ date : integer;
end_ date : integer;
comments : text;

end

REY _TASK :: superclass ENTITY;
status: (Assigned, NotAssigned)= NotAssigned;

end

#################11######## SUPERCLASSES ########################

Appendix B - 1

MODULE:: superclass ENTITY;
m _ name : string = "noname";
engineer: string = "none";
reviewer : string = "none";
status: (Initialized, Assigned, Active, Done, Reviewd, Maint, Ready)= lnitialized;
feedback : text;
pro_ eng : liok TASK;
rev _ eng : liok REY_ TASK;
doc : liok DOC;

end

CONTENTS:: superclass MODULE;
contents : text;

end

########################## SPECIFICATION #######################

SPEC : : superclass ENTITY;
spec _ name : string;
db _primitives : ST A TE;
config_changes: C_STATE;
fonctions: set_ofFUNCTION;
status : (Initialized, Active, Done) = Initialized;

end

FUNCTION :: superclass MODULE,CONTENTS;
log_repres: liok L_FUNC;
pro_ eng : liok TASK;
rev _ eng : liok REY_ TASK;
doc : liok DOC;

end;

STATE :: superclass MODULE,CONTENTS;
split_ into : set_ of liok L _ ST A TE;
pro_ eng : liok T ASK;
rev _ eng : liok REY_ T ASK;
doc : liok DOC;

end

##########11############ LOGICAL ARCHITECTURE ######################

LOGARCH : : superclass ENTITY;
log_ name : string;
sap: DESIGN;
interface : set_ of L _ SCREEN;
fonctions: set_of L_FUNC;
state: set_of L_STATE;
status : (Initialized, Active, Done)= Initialized;
contents : text;

end

L_STATE :: superclass MODULE,CONTENTS;
level : integer= 3;
sub_cat: set_of L_STATE;
coded_in: set_ofliok MOD_PROG;
pro_ eng : liok T ASK;
rev _ eng : liok REY_ TASK;
doc : liok DOC;

end

Appendix B - 2

L_FUNC :: superclass MODULE,CONTENTS;
level : integer;
sub lfunc : 'set of L FUNC· - - - '

' uses_ state : set_ of link L _ ST A TE;
uses_ scr : set_ of link L _ SCREEN;
coded_in: set_of link MOD _PROG;
pro_ eng : link TASK;
rev _ eng : link REV _ TASK;
doc : link DOC;

end

L_SCREEN :: superclass MODULE,CONTENTS;
level : integer= 4;
sub _ lscreen : set_ of L _ SCREEN;
uses_ lstate : set_ of link L _ ST A TE;
contents : text = " . scr";
code: link MOD_SCR;
feedback : text;
pro_ eng : link TASK;
rev_eng: link REV _TASK;
doc : link DOC;

end

DESIGN :: superclass MODULE,CONTENTS.
level : integer= 3;
contents: text = ".dsg";
pro_ eng : link TASK;
rev _ eng : link REV _ TASK;
doc : link DOC;
sap: link PHYS_DESIGN;

end

###################### PHYSICAL ARCHITECTURE ######################

PHYSARCH : : superclass ENTITY;
san: PHYS_DESIGN;
screens: set_ofMOD_SCR;
db: PHYS_DB;
code : MOD _ PROG;
phy _ name : string;
status: (lnitialized, Active, Done)= Initialized;

end

MOD_PROG :: superclass MODULE;
source : text;
obj_code: binary;
comp _res : text;
comp_status: (lnitialized, NotCompiled, Compiled, NotBuilt, Built)= Initialized;
subroutines : set_ of MOD _ PROG;
screens: set_of link MOD _SCR;
pro_eng: link TASK;
rev _ eng : link REV _ TASK;
doc : link DOC;

end

PHYS_DESIGN :: superclass MODULE,CONTENTS;
contents: text = ".dsg";
pro_ eng : link TASK;
rev _ eng : link REV _ TASK;
doc : link DOC;

Appendix B - 3

db _language : SQL;
end

SQL :: superclass MODULE,CONTENTS;
doc : link DOC;

end

DOC:: superclass CONTENTS;
doc_name :string;
module : string;
author : string;
docs : set_ of DOC;

end

MOD_SCR :: superclass MODULE;
source: text;
obj_code: binary;
comp _ res : text;
comp _ status : (lnitialized , NotCompiled , Compiled) = Initialized;
Ievel : integer;
pro_ eng : link T ASK;
rev _ eng : link REV _ TASK;
doc : link DOC;

end

PHYS_DB :: superclass MODULE,CONTENTS;
pro_ eng : link T ASK;
rev _ eng : link REV _ T ASK;
doc: link DOC;

end
end_ objectbase

Appendix B - 4

_J

APPENDIX C : Process Model

strategy achieve

imports datamodel;
exports ail;

rules

achieve [?st:STATE]:
(and (exists SPEC ?spec suchthat (member [?spec.db_primitives ?st]))

(forall .FUNCTION ?func suchthat (member [?spec.functions ?func]})):
(and no_chain (?func.status = Ready)

no_backward (?st.status = Active))
{}
[?st.stàtus = Done];

achieve [?sql:SQL]:
(exists PHYS_DESIGN ?dsg suchthat (member [?dsg.db_language ?sql])):
(and no_chain (?dsg.status = Ready)

no_backward (?sql.status = Active))
{}
(?sql.status = Done);

achieve [?mod:MOD _PROG]:

(and no_backward (?mod.status = Active)
no_backward (?mod.comp_status = Compiled))

{}
no_ backward (?mod. status = Done);

achieve [?scr:MOD_SCR]:

(and no_backward (?scr.status = Active)
no_backward (?scr.comp_status = Compiled))

{}
no_backward (?scr.status = Done);

achievel [?mod:MOD_PROG]:

(and no_cbain (?mod.status = Maint)
(or (?mod.comp_status = Compiled)

(?mod.comp_status = Built)))
{}
no_chain (?mod.status = Ready);

achievel [?scr:MOD_SCR]:

(and no_chain (?scr.status = Maint)
(?scr.comp_status = Compiled))

{}
(?scr.status = Ready);

##f#f/1###################################11#######################

strategy activate

imports datamodl;
exports ail;

Appendix C - 1

objectbase

INTERACTIVE : : superclass TOOL;
ini : string = ini;

end

end_ objectbase

rules

initiate [?p:PROJECT]:

(?p.status = NotActive)
{ INTERACTIVE ini }

(?p.status = Active);

bide activate [?spec:SPEC]:
(exists PROJECT ?proj suchthat (member [?proj.specification ?spec])):
(and no_backward (?proj.status = Active)

(?spec.status = lnitialized))
{}
no_chain (?spec.status = Active);

bide activate [?log:LOGARCH]:
(and (exists PROJECT ?proj suchthat (member [?proj.log_arcbitecture ?log]))

(exists SPEC ?spec suchthat (member [?proj.specification ?spec]))):
(?spec.status = Done)
{}
no_chain (?log.status = Active);

bide activate [?phy:PHYSARCH]:
(and (exists PROJECT ?proj suchthat (member [?proj.phys_arcbitecture ?phy]))

(exists LOGARCH ?log suchthat (member [?proj.log_arcbitecture ?log]))):
(?log.status = Done)
{}
no_ chain (?phy. status = Active);

strategy assign

imports datamodel;
exports ail;

objectbase

INTERACTIVE:: superclass TOOL;
schedule : string = schedule;

end

end_ objectbase

rules

assign [?st:STATE, ?ta:TASK]:
(and (exists SPEC ?spec i.-uchthat (member [?spec.db _primitives ?st]))

(exists ENGINEER ?pg suchthat (member [?pg.jobs ?ta]))):
(and no_chain (?ta.status = NotAssigned)

no_chain (?spec.status = Active)
no_chain (?st.status = Initialized))

Appendix C - 2

{ INTERACTIVE schedule ?ta.comments ?pg.eng_name return ?beg ?end ?name}
(and (?st.status = Assigned)

(?ta.status = Assigned)
(?st.engineer = ?pg.eng_name)
(?st.m_name = ?name)
(?ta.beg_date = ?beg)
(?ta.end_date = ?end)
(linkto [?st.pro_eng ?ta]));

assign [?func:FUNCTION, ?ta:TASK]:
(and (exists SPEC ?spec suchthat (member [?spec.functions ?func]))

(exists ENGINEER ?pg suchthat (member [?pg.jobs ?ta]))):
(and (?ta.status = NotAssigned)

(?spec.status = Active)
(?func.status = lnitialized))

{ INTERACTIVE schedule ?ta.comments ?pg.eng_name return ?beg ?end ?name}
(and (?func.status = Assigned)

(?ta.status = Assigned)
(?func.engineer = ?pg.eng_name)
(?func.m_name = ?name)
(?ta. beg_ date = ?beg)
(?ta.end_date = ?end)
(linkto [?func.pro_eng ?ta]));

assign [?dsg:DESIGN , ?ta:TASK]:
(and (exists LOGARCH ?log suchthat (member [?log.sap ?dsg]))

(exists ENGINEER ?pg suchthat (member [?pg.jobs ?ta]))):
(and no_chain (?ta.status = NotAssigned)

no_chain (?log.status = Active)
no_chain (?dsg.status = Initialized))

{ INTERACTIVE schedule ?ta.comments ?pg.eng_name return ?beg ?end ?name}
(and (?dsg.status = Assigned)

(?ta. status = Assigned)
(?dsg.engineer = ?pg.eng_name)
(?dsg.m_name = ?name)
(?ta. beg_ date = ?beg)
(?ta.end_date = ?end)
(linkto [?dsg.pro_eng ?ta]));

assign [?lst:L_STATE, ?ta:TASK]:
(and (exists LOGARCH ?log suchthat (ancestor [-?log ?lst]))

(exists ENGINEER ?pg suchthat (member [?pg.jobs ?ta]))):
(and no_chain (?ta.status = NotAssigned)

no_chain(?log.status = Active)
no_chain (?lst.status = lnitialized))

{ INTERACTIVE schedule ?ta.comments ?pg.eng_name return ?beg ?end ?name}
(and (?lst. status = Assigned)

(?ta.status = Assigned)
(?lst.engineer = ?pg.eng_name)
(?lst.m_name = ?name)
(?ta. beg_ date = ?beg)
(?ta.end_date = ?end)
(linkto [?lst.pro_eng ?ta]));

assign [?lfunc:L_FUNC, ?ta:TASK]:
(and (exists LOGARCH ?log suchthat (member [?log.functions ?lfunc]))

(exists ENGINEER ?pg suchthat (member [?pg.jobs ?ta]))):
(and no_chain (?ta.status = NotAssigned)

no_chain (?log.status = Active)
no_chain (?lfunc.status = Initialized))

{ INTERACTIVE schedule ?ta.comments ?pg.eng_name retum ?beg ?end ?name}

Appendix C - 3

(and (?lfunc.status = Assigned)
(?ta.status = Assigned)
(?lfunc.engineer = ?pg.eng_name)
(?lfunc.m_name = ?name)
(?ta. beg_ date = ?beg)
(?ta.end_date = ?end)
(linkto [?lfunc.pro_eng ?ta]));

assign [?lscr:L_SCREEN, ?ta:TASK]:
(and (exists LOGARCH ?log suchthat (member [?log.interface ?lscr]))

(exists ENGINEER ?pg suchthat (member [?pg.jobs ?ta]))):
(and no_chain (?ta.status = NotAssigned)

no_chain (?log.status = Active)
no_ chain (?lscr. status = lnitialized))

{ INTERACTIVE schedule ?ta.comments ?pg.eng_name retum ?beg ?end ?name}
(and (?lscr. status = Assigned)

(?ta. status = Assigned)
(?lscr.engineer = ?pg.eng_name)
(?lscr.m_name = ?name)
(?ta. beg_ date = ?beg)
(?ta.end_date = ?end)
(linkto [?lscr.pro_eng ?ta]));

assign [?dsg:PHYS_DESIGN, ?ta:TASK]:
(and (exists PHYSARCH ?phy suchthat (member [?phy .san ?dsg]))

(exists ENGINEER ?pg suchthat (member [?pg.jobs ?ta]))
(exists SQL ?sql suchthat (member [?dsg.db_language ?sql]))):

(and no_chain (?ta.status = NotAssigned)
no_ chain (?phy. status = Active)
no_chain (?dsg.status = lnitialized))

{ INTERACTIVE schedule ?ta.comments ?pg.eng_name return ?beg ?end ?name}
(and (?dsg.status = Assigned)

(?ta. status = Assigned)
(?dsg.engineer = ?pg.eng_name)
(?sql.engineer = ?pg.eng_name)
(?dsg.m_name = ?name)
(?ta. beg_ date = ?beg)
(?ta.end_date = ?end)
(linkto [?dsg.pro_eng ?ta]));

assign [?mod:MOD_PROG , ?ta:TASK]:
(and (exists PHYSARCH ?phy suchthat (ancestor [?phy ?mod]))

(exists ENGINEER ?pg suchthat (member [?pg.jobs ?ta]))):
(and no_chain (?ta.status = NotAssigned)

no_ chain (?phy. status = Active)
no_chain (?mod.status = Initialized))

{ INTERACTIVE schedule ?ta.comments ?pg.eng_name retum ?beg ?end ?name}
(and (?mod.status = Assigned)

(?ta. status = Assigned)
(?mod.engineer = ?pg.eng_name)
(?mod.m _ name = ?name)
(?ta. beg_ date = ?beg)
(?ta.end_date = ?end)
(linkto [?mod.pro_eng ?ta]));

assign [?db:PHYS_DB , ?ta:TASK]:
(and (exists PHYSARCH ?phy suchthat (member [?phy .db ?db]))

(exists ENGINEER ?pg suchthat (member [?pg.jobs ?ta]))):
(and no_chain (?ta.status = NotAssigned)

no_chain (?phy.status = Active)
no_chain (?db.status = Initialized))

Appendix C - 4

{ INTERACTIVE scbedule ?ta.comments ?pg.eng_name retum ?beg ?end ?name}
(and (?db.status = Assigned)

(?ta.status = Assigned)
(?db.engineer = ?pg.eng_name)
(?db.m_name = ?name)
(?ta. beg_ date = ?beg)
(?ta.end_date = ?end)
(linkto [?db.pro_eng '?ta]));

assign [?scr:MOD_SCR, ?ta:TASK]:
(and (exists PHYSARCH ?phy suchthat (member [?pby.screens ?scr]))

(exists ENGINEER ?pg suchthat (member [?pg.jobs ?ta]))):
(and no_cbain (?ta.status = NotAssigned)

no_ cbain (?phy. status = Active)
no_cbain (?scr.status = lnitialized))

{ INTERACTIVE schedule ?ta.comments ?pg.eng-=-name retum ?beg ?end ?name}
(and (?scr.status = Assigned)

(?ta.status = Assigned)
(?scr.engineer = ?pg.eng_name)
(?scr.m_name = ?name)
(?ta. beg_ date = ?beg)
(?ta.end_date = ?end)
(linkto [?scr.pro_eng ?ta]));

############ffl##########lf####ffl#########################/1#####

· strategy assign rev

imports datamodel;
exports ail;

rules

assign_rev [?dsg:PHYS_DESIGN, ?ta:REV _TASK]:
(and (exists ENGINEER ?pg sucbthat (member [?pg.rev _jobs ?ta]))

(exists SQL ?sql sucbthat (member [?dsg.db_Ianguage ?sql]))):
(and (orno_cbain (?dsg.status = Assigned)

no_cbain (?dsg.status = Active)
no_cbain (?dsg.status = Done))

(?pg.eng_name < > ?dsg.engineer)
(?ta.status = NotAssigned))

{}
(and no_chain (?ta.status = Assigned)

no_cbain (?dsg.reviewer = ?pg.eng_name)
no_cbain (?sql.reviewer = ?pg.eng_name)

(linkto [?dsg.rev_eng ?ta]));

assign_rev [?mod:MOD _PROG , ?ta:REV _TASK]:
(exists ENGINEER ?pg sucbthat (member [?pg.rev jobs ?ta])):
(and (or no_cbain (?mod.status = Assigned)

no_ cbain (?mod. status = Active)
no_cbain (?mod.status = Done))

(?pg.eng_name < > ?mod.engineer)
(?ta.status = NotAssigned))

{}
(and no_ cbain (?ta. status = Assigned)

no_cbain (?mod.reviewer = ?pg.eng_name)
(linkto [?mod.rev_eng ?ta]));

assign_rev [?db:PHYS_DB , ?ta:REV _TASK]:

Appendix C - 5

(exists ENGINEER ?pg suchthat (member [?pg.rev jobs ?ta])):
(and (or no_chain (?db.status = Assigned)

no_chain (?db.status = Active)
no_chain (?db.status = Done))

(?pg.eng_name < > ?db.engineer)
(?ta.status = NotAssigned))

{}
(and no_chain (?ta.status = Assigned)

no_chain (?db.reviewer = ?pg.eng_name)
(linkto [?db.rev_eng ?ta]));

assign_rev [?scr:MOD_SCR, ?ta:REV _TASK]:
(exists ENGINEER ?pg suchthat (member [?pg.revjobs ?ta])):
(and (or no_chain (?scr.status = Assigned)

no_chain (?scr.status = Active)
no_chain (?scr.status = Done))

(?pg.eng_name < > ?scr.engineer)
(?ta.status = NotAssigned))

{}
(and no_chain (?ta.status = Assigned)

no_chain (?scr.reviewer = ?pg.eng_name)
(linkto [?scr.rev _ eng ?ta]));

assign_rev [?dsg:DESIGN, ?ta:REV _TASK]:
(exists ENGINEER ?pg suchthat (member [?pg.rev jobs ?ta])):
(and (or no_chain (?dsg.status = Assigned)

no_chain (?dsg.status = Active)
no_chain (?dsg.status = Done))

(?pg.eng_name < > ?dsg.engineer)
(?ta.status = NotAssigned))

{}
(and no_chain (?ta.status = Assigned)

no_chain (?dsg.reviewer = ?pg.eng_name)
(linkto [?dsg.rev_eng ?ta]));

assign_rev [?lst:L_STATE, ?ta:REV _TASK]:
(exists ENGINEER ?pg suchthat (member [?pg.rev jobs ?ta])):
(and (or no_chain (?lst.status = Assigned)

no_chain (?lst.status = Active)
no_chain (?lst.status = Done))

(?pg .eng_ name < > ?lst.engineer)
(?ta.status = NotAssigned))

{}
(and no_chain (?ta.status = Assigned)

no_chain (?lst.reviewer = ?eng.name)
(linkto [?lst. rev _ eng ?ta]));

assign_rev [?lfunc:L_FUNC, ?ta:REV _TASK]:
(exists ENGINEER ?pg suchthat (member [?pg.rev jobs ?ta])):
(and (or no_chain (?lfunc.status = Assigned)

no_chain (?lfunc.status = Active)
no_chain (?lfunc.status = Done))

(?pg.eng_name < > ?lfunc.engineer)
(?ta.status = NotAssigned))

{}
(and no_ chain (?ta. status = Assigned)

no_chain (?lfunc.reviewer = ?pg.eng_name)
(linkto [?lfunc.rev _ eng ?ta]));

assign_rev [?lscr:L_SCREEN, ?ta:REV _TASK]:
(exists ENGINEER ?pg suchthat (member [?pg.rev jobs ?ta])):
(and (or no_ chain (?lscr. status = Assigned)

Appendix C - 6

{}

no_chain (?lscr.status = Active)
no_chain (?lscr.status = Done))

(?pg.eng_name < > ?lscr.engineer)
(?ta.status = NotAssigned))

(and no_chain (?ta.status = Assigned)
no_chain (?lscr.reviewer = ?pg.eng_name)

(linkto [?lscr.rev_eng ?ta]));

assign_rev [?st:STATE, ?ta:REV _TASK]:
(exists ENGINEER ?pg sucbthat (member [?pg.rev jobs ?ta])):
(and (or no_chain (?st.status = Assigned)

no_chain (?st.status = Active)
no_chain (?st.status = Done))

(?pg.eng_name < > ?st.engineer)
(?ta.status = NotAssigned))

{}
(and no_cbain (?ta.status = Assigned)

no_chain (?st.reviewer = ?pg.eng_name)
(linkto [?st.rev _ eng ?ta]));

assign_rev [?func:FUNCTION , ?ta:REV _TASK]:
(exists ENGINEER ?pg sucbthat (member [?pg.rev jobs ?ta])):
(and (or no_ chain (?func.status = Assigned)

no_chain (?func.status = Active)
no_chain (?func.status = Done))

(?pg.eng_name < > ?func.engineer)
(?ta. status = N otAssigned))

{}
(and no_chain (?ta.status = Assigned)

no_chain (?func.reviewer = ?pg.eng_name)
(linkto [?func. rev _ eng ?ta]));

lfff#####################ffl#######################ffl############

strategy compiler

imports datamodel;
exports all;

objectbase

COMPILER:: superclass TOOL;
compile : string = compile;
scrcompile : string = scrcompile;
build : string = build;

end

VIEWER :: superclass TOOL;
viewerr : string = viewerr;

end

RUNNER :: superclass TOOL;
exec : string = exec;

end

end_ objectbase

rules

compile [?mod:MOD _PROG]:

Appendix C - 7

(forall MOD _PROG ?modl suchthat (member [?mod.subroutines ?modl])):
(and no_backward (?modl.comp_status = Compiled)

(?mod.comp_status = NotCompiled))
{ COMPILER compile ?mod.source ?mod.obj_code ?mod.comp_res ?modl.source}
(?mod.comp_status = Compiled);
no_forward (?mod.comp_status = NotCompiled);

compile [?scr:MOD_SCR]:

(?scr.comp_status = NotCompiled)
{ COMPILER scrcompile ?scr.source ?scr.obj_code ?scr.comp_res}
(?scr.comp_status = Compiled);
no_forward (?scr.comp_status = NotCompiled);

build [?mod:MOD_PROG]:
(and (forall MOD _PROG ?modl suchthat (member [?mod.subroutines ?modl]))

(forall MOD_SCR ?scr suchthat (linkto [?modl.screens ?scr]))
(forall MOD _SCR ?scrl suchthat (linkto [?mod.screens ?scrl]))):

(and (or (?modl .comp _ status = Compiled)
(?modl.comp_status = Built))

(?scr.comp_status = Compiled)
(?scrl.comp_status = Compiled)
(or (?mod.comp_status = NotBuilt)

(?mod.comp_status = Compiled)))
{ COMPILER build ?mod.source ?mod.obj_code ?modl.obj_code ?scr.obj_code ?scrl.obj_code

?mod.comp_res}
(?mod.comp_status = Built);
(?mod.comp_status = NotBuilt);

viewerr [?mod:MOD _PROG]:

{ VIEWER viewerr ?mod.comp_res}

viewerr [?scr:MOD_SCR]:

{ VIEWER viewerr ?scr.comp_res}

exec [?mod:MOD _PROG]:

no_forward (?mod.comp_status = Built)
{ RUNNER exec ?mod.obj_code}

strategy control

imports datamodel;
exports ail;

objectbase

EDITOR :: superclass TOOL;
review : string = review;

end

end_ objectbase

rules

Appendix C - 8

control [?st: ST A TE] :
(and (exists TASK ?tal suchthat (linkto [?st.pro_eng ?tal]))

(e:xists REV _TASK ?ta2 suchthat (linkto [?st.rev _eng ?ta2]))
(exists ENGINEER ?pg suchthat (member [?pg.rev jobs ?ta2]))):

(and no_chain (?st.status = Done)
(?pg.login = CurrentUser))

{ EDITOR review ?st.contents ?st.feedback ?st.engineer}
no_ forward (?st. status = Reviewd);
(and (?st.status = Ready)

no_chain (?tal.status = NotAssigned)
no_chain (?ta2.status = NotAssigned)
(unlink [?st. pro_ eng ?tal])
(unlink [?st. rev _ eng ?ta2]));

control [?func:FUNCTION]:
(and (e:xists TASK ?tal suchthat (1inkto [?func.pro_eng ?tal]))

(e:xists REV _ TASK ?ta2 suchthat (linkto [?func.rev _ eng ?ta2]))
(e:xists ENGINEER ?pg suchthat (member [?pg.rev jobs ?ta2]))):

(and no_chain (?func.status = Done)
(?pg.login = CurrentUser))

{ EDITOR review ?func.contents ?func.feedback ?func.engineer}
no_forward (?func.status = Reviewd);
(and (?func.status = Ready)

no_chain(?tal.status = NotAssigned)
no_chain (?ta2.status = NotAssigned)
(unlink [?func.pro_eng ?tal])
(unlink [?func.rev_eng ?ta2]));

control [?dsg:DESIGN]:
(and (exists TASK ?tal suchthat (1inkto [?dsg.pro_eng ?tal]))

(exists REY _TASK ?ta2 suchthat (linkto [?dsg.rev _eng ?ta2]))
(e:xists ENGINEER ?pg suchthat (member [?pg.rev jobs ?ta2]))):

(and no_chain (?dsg.status = Done)
(?pg.login = CurrentUser))

{ EDITOR review ?dsg.contents ?dsg.feedback ?dsg.engineer}
no_forward (?dsg.status = Reviewd);
(and no_forward (?dsg.status = Ready)

no_chain (?tal.status = NotAssigned)
no_chain (?ta2.status = NotAssigned)
(unlink [?dsg.pro_eng ?tal])
(unlink [?dsg. rev _ eng ?ta2]));

control [?lst:L_STATE]:
(and (e:xists TASK ?tal suchthat (linkto [?lst.pro_eng ?tal]))

(exists REV _ TASK ?ta2 suchthat (linkto [?lst. rev _ eng ?ta2]))
(e:xists ENGINEER ?pg suchthat (member [?pg.rev jobs ?ta2]))):

(and no_chain (?lst.status = Done)
(?pg.login = CurrentUser))

{ EDITOR review ?lst.contents ?lst.feedback ?lst.engineer}
no_ forward (?lst. status = Reviewd);
(and (?lst.status = Ready)

no_chain (?tal.status = NotAssigned)
no_chain (?ta2.status = NotAssigned)
(unlink [?lst. pro_ eng ?tal])
(unlink [?lst.rev _ eng ?ta2]));

control [?lfunc:L_FUNC]:
(and (e:xists TASK ?tal suchthat (1inkto [?lfunc.pro_eng ?tal]))

(e:xists REV _ TASK ?ta2 suchthat (linkto [?lfunc.rev _ eng ?ta2]))
(e:xists ENGINEER ?pg suchthat (member [?pg.rev jobs ?ta2]))):

Appendix C - 9

(and no_chain (?lfunc.status = Done)
(?pg.login = CurrentUser))

{ EDITOR review ?lfunc.contents ?lfunc.feedback ?lfunc.engineer}
no_foiward (?lfunc.status = Reviewd);
(and (?lfunc.status = Ready)

no_chain (?tal.status = NotAssigned)
no_chain (?ta2.status = NotAssigned)
(unlink [?lfunc. pro_ eng ?tal))
(unlink [?lfunc.rev_eng ?ta2]));

control [?lscr: L _ SCREEN] :
(and (exists TASK ?tal suchthat (linkto [?lscr.pro_eng ?tal]))

(exists REV _TASK ?ta2 suchthat (linkto [?lscr.rev_eng ?ta2]))
(exists ENGINEER ?pg suchthat (member [?pg.revjobs ?ta2]))):

(and no_chain (?lscr.status = Do!)e)
(?pg.login = CurrentUser))

{ EDITOR review ?lscr.contents ?lscr.feedback ?lscr.engineer}
no_foiward (?lscr.status = Reviewd);
(and (?lscr. status = Ready)

no_chain (?tal.status = NotAssigned)
no_chain (?ta2.status = NotAssigned)
(unlink [?lscr.pro_eng ?tal])
(unlink [?lscr.rev_eng ?ta2]));

control [?dsg:PHYS_DESIGN]:
(and (exists TASK ?tal suchthat (linkto [?dsg.pro_eng ?tal]))

(exists REV _ T ASK ?ta2 suchthat (linkto [? dsg. rev _ eng ?ta2]))
(exists ENGINEER ?pg suchthat (member [?pg.rev jobs ?ta2]))):

(and no_chain (?dsg.status = Done)
(?pg.login = CurrentUser))

{ EDITOR review ?dsg.contents ?dsg.feedback ?dsg.engineer }
no_foiward (?dsg.status = Reviewd);
(?dsg.status = Ready);

control [?sql:SQL]:
(and (exists PHYS_DESIGN ?dsg suchthat (member [?dsg.db_language ?sql]))

(exists TASK ?tal suchthat (linkto [?dsg.pro_eng ?tal]))
(exists REV _TASK ?ta2 suchthat (linkto [?dsg.rev _eng ?ta2]))
(exists ENGINEER ?pg suchthat (member [?pg.rev jobs ?ta2]))):

(and no_chain (?dsg.status = Ready)
no_chain (?sql.status = Done)
(?pg.login = CurrentUser))

{ EDITOR review ?sql.contents ?sql.feedback ?dsg.engineer }
no_foiward (?sql.status = Reviewd);
(and (?sql.status = Ready)

no_chain (?tal.status = NotAssigned)
no_chain (?ta2.status = NotAssigned)
(unlink [?dsg.pro_eng ?tal])
(unlink [?dsg.rev_eng ?ta2]));

control [?db:PHYS_DB]:
(and (exists TASK ?tal suchthat (linkto [?db.pro_eng ?tal]))

(exists REV _ T ASK ?ta2 suchthat (linkto [?db.rev _ eng ?ta2]))
(exists ENGINEER ?pg suchthat (member [?pg.rev jobs ?ta2]))):

(and no_chain (?db.status = Done)
(?pg.login = CurrentUser))

{ EDITOR review ?db.contents ?db.feedback ?db.engineer}
no_foiward (?db.status = Reviewd);
(and (?db.status = Ready)

no_chain (?tal.status = NotAssigned)
no_chain (?ta2.status = NotAssigned)

Appendix C - 10

(un1ink [?db.pro_eng ?tal])
(un1ink [?db.rev _ eng ?ta2]));

control [?mod:MOD _PROG]:
(and (exists TASK ?tal suchthat (linkto [?mod.pro_eng ?tal]))

(exists REV _ T ASK ?ta2 suchthat (linkto [?mod. rev _ eng ?ta2]))
(exists ENGINEER ?pg suchthat (member [?pg.rev jobs ?ta2]))):

(and no_ chain (?mod. status = Done)
(?pg.login = CurrentUser))

{ EDITOR review ?mod.source ?mod.feedback ?mod.engineer}
no _foiward (?mod.status = Reviewd);

(and
(?mod.status = Ready)
no_chain (?tal.status = NotAssigned)
no_chain (?ta2.status = NotAssigned)
(unlink [?mod.pro_eng ?tal])
(unlink [?mod. rev _ eng ?ta2]));

control [?scr:MOD _SCR):
(and (exists TASK ?tal suchthat (linkto [?scr.pro_eng ?tal]))

(exists REV _TASK ?ta2 suchthat (linkto [?scr.rev _eng ?ta2]))
(exists ENGINEER ?pg suchthat (member [?pg.rev jobs ?ta2]))):

(and no_chain (?scr.status = Done)
(?pg.login = CurrentUser))

{ EDITOR review ?scr.source ?scr.feedback ?scr.engineer }
no_foiward (?scr.status = Reviewd);
(and

(?scr.status = Ready)
no_cbain (?tal.status = NotAssigned)
no_cbain (?ta2.status = NotAssigned)
(unlink [?scr.pro_eng ?tal])
(un1ink [?scr.rev_eng ?ta2]));

#####################1#1###

strategy doc

imports datamodel;
exports all;

objectbase

EDITOR : : superclass TOOL;
edit_doc : string = edit_doc;

end

end_ objectbase

rules

doc [?doc:DOC]:

{ EDITOR edit_doc ?doc.contents retum ?name ?module}
(and (?doc.doc_name = ?name)

(?doc.author = CurrentUser)
(?doc.module = ?module));

#############################1#1#################################

Appendix C - 11

strategy finish

imports datamodel;
exports ail;

rules

finish [?spec:SPEC]:
(and (forall FUNCTION ?func suchtbat (member [?spec.functions ?func]))

(forall STATE ?st suchtbat (member [?spec.db_primitives ?st]))):
(and no_backward (?func.status = Ready)

no_backward (?st.status = Ready)
no_backward (?cst.status = Ready))

{}
(?spec.status = Done);

finish [?Iog:LOGARCH]:
(and (forall L_FUNC ?Ifunc suchtbat (member [?log.fonctions ?Ifunc]))

(forall L_STATE ?lst suchtbat (member [?log.state ?Ist]))
(forall DESIGN ?dsg suchthat (member [?log.sap ?dsg]))
(forall L_SCREEN ?lscr suchthat (member [?log.interface ?lscr]))):

(and no_ backward (?Ifunc. status = Ready)
no_ backward (?lst. status = Ready)
no_backward (?dsg.status = Ready)
no_backward (?lscr.status = Ready)}

{}
(?Iog.status = Done);

finish [?phy:PHYSARCH]:
(and (forall PHYS_DESIGN ?dsg suchtbat (member [?phy.san ?dsg]))

(forall PHYS_DB ?db suchtbat (member [?phy .db ?db]))
(forall MOD _PROG ?mod suchthat (ancestor [?phy ?mod]))
(forall MOD_SCR ?scr suchthat (member [?phy.screens ?scr]))
(forall SQL ?sql suchtbat (ancestor [?phy ?sql]))):

(and no_backward (?dsg.status = Ready)
no_backward (?db.status = Ready)
no_backward (?mod.status = Ready)
no_backward (?scr.status = Ready)
no_backward (?sql.status = Ready))

{}
(?phy .status = Done);

finish [?lst:L _ STATE] :
(forall L_STATE ?lstl suchtbat (member [?lst.sub_cat ?lstl])):
(and no_ backward ('?lstl . status = Ready)

(?lst.status = lnitialized))
{}
no_forward (?lst.status = Ready);

strategy mail

imports datamodel;
exports none;

objectbase

MAILER:: superclass TOOL;
mail : string = mail;

Appendix C - 12

maill: string= maill;
mail2: string = mail2;

end

end_ objectbase

rules

send [?mo:MODULE]:
(exists TASK ?ta suchthat (linkto [?mo.pro_eng ?ta])):
no_ backward (?mo.status = Assigned)
{ MAILER mail ?mo.m_name ?mo.engineer ?ta.comments ?ta.beg_date ?ta.end_date}

sendl [?mo:MODULE]:
(and (exists MDL ?mdl suchthat (ancestor [?mdl ?mo]))

(exists MANAGER ?man suchthat (ancestor [?mdl ?man]))):
(and no_ backward (?mo. status = Done)

no_backward (?mo.reviewer = "none"))
{ MAILER maill ?mo.m_name ?man.eng_name}

send2 [?mo:MODULE]:

(and no_backward (?mo.status = Done)
no_backward (?mo.reviewer < > "none"))

{ MAILER mail2 ?mo.reviewer ?mo.m_name}

strategy maint

imports datamodel;
exports ail;

objectbase

EDITOR : : superclass TOOL;
change : string = change;

end

end_ objectbase

rules

maint [?co:CONTENTS]:

no_chain (?co.status = Maint)
{ EDITOR change ?co.contents}
no_chain (?co.status = Ready);

maint [?mod:MOD_PROG]:

no_ chain (?mod. status = Maint)
{ EDITOR change ?mod.source}
[?mod.comp_status = NotCompiled);

maint [?scr:MOD_SCR]:

no_chain (?scr.status = Maint)

Appendix C - 13

{ EDITOR change ?sec.source }
[?scr.comp_status = NotCompiled];

maintup [?mod:MOD _PROG]:
(exists MOD _ SCR ?scr suchthat (linkto [?mod.screens ?scr)}):
[?scr.comp_status = NotCompiled]

{}
[?mod.comp_status = NotBuilt];

maintup2 [?mod:MOD_PROG]:
(exists MOD _PROG ?modl suchthat (member [?mod.subroutines ?modl])):
[?modl.comp_status = NotCompiled)
{}
[?mod.comp_status = NotBuilt];

maintup3 [?mod:MOD _PROG]:
(exists MOD _PROG ?modl suchthat (member [?mod.subroutines ?modl])):
[?modl.comp_status = NotBuilt J
{}
[?mod.comp_status = NotBuilt];

strategy modify

imports datamodel;
exports ail;

objectbase

EDITOR :: superclass TOOL;
edit : string = edit;
graph : string = graph;
graph _ 2 : string = graph2;
console : string = console;
edit_ code : string = edit_ code;

end

end_ objectbase

rules

modify [?st:STATE]:
(and (exists TASK ?ta suchthat (linkto [?st.pro_eng ?ta]))

(exists ENGINEER ?pg suchthat (member [?pg.jobs ?ta]))):
(and (?pg.logio = CurreotUser)

(or no_chain (?st.status = Assigned)
no_chain (?st.status =Active)
no_chain (?st.status = Reviewd)))

{ EDITOR edit ?st.contents }
no_forward (?st.status = Active);
(and (?st.status = Initialized)

(?st.status = Active));

modify [?fuoc:FUNCTION]:
(and (exists TASK ?ta suchthat (linkto [?fuoc.pro_eng ?ta]))

(exists ENGINEER ?pg suchthat (member [?pg.jobs ?ta]))):
(and (?pg.logio = CurrentUser)

(or no_chain (?fuoc.status = Assigned)
no_chain (?fuoc.status = Active)
no_chain (?fuoc.status = Reviewd)))

Appendix C - 14

{ EDITOR edit ?func.contents }
(?func.status = Active);
[?func.status = Done];

modify [?dsg:DESIGN]:
(and (exists TASK ?ta suchthat (linkto [?dsg.pro_eng ?ta]))

(exists ENGINEER ?pg suchthat (member [?pg.jobs ?ta]))):
(and (?pg.login = CurrentUser)

(or no_chain (?dsg.status = Assigned)
no_chain (?dsg.status = Active)
no_chain (?dsg.status = Reviewd)))

{ EDITOR graph ?dsg.contents }
(?dsg.status = Active);
(?dsg.status = Done);

modify [?lst: L _ ST ATE] :
(and (exists T ASK ?ta suchthat (linkto [?lst. pro_ eng ?ta]))

(exists ENGINEER ?pg suchthat (member [?pg.jobs ?ta]))
(exists LOGARCH ?log suchthat (ancestor [?log ?lst]))
(exists DESIGN ?dsg suchthat (member [?log.sap ?dsg]))):

(and (?pg.login = CurrentUser)
no_backward (?dsg.status = Ready)
(or no_ chain (?lst. status = Assigned)

no_ chain (?lst. status = Active)
no_chain (?lst.status = Reviewd)))

{ EDITOR edit ?lst.contents}
(?lst.status = Active);
(?lst.status = Done);

modify [?lfunc:L_FUNC]:
(and (exists TASK ?ta suchthat (linkto [?lfunc.pro_eng ?ta]))

(exists ENGINEER ?pg suchthat (member [?pg.jobs ?ta]))):
(and (?pg.login = CurrentUser)

(or no_chain (?lfunc.status = Assigned)
no_chain (?lfunc.status = Active)
no_chain (?lfunc.status = Reviewd)))

{ EDITOR edit ?lfunc.contents }
(?lfunc.status = Active);
(?lfunc.status = Done);

modify [?lscr:L_SCREEN]:
(and (exists TASK ?ta suchthat (linkto [?lscr.pro_eng ?ta]))

(exists ENGINEER ?pg suchthat (member [?pg.jobs ?ta]))):
(and (?pg.login = CurrentUser)

(or no_chain (?lscr.status = Assigned)
no_chain (?lscr.status = Active)
no_ chain (?lscr. status = Reviewd)))

{ ED ITO R edit ?lscr. contents }
(?lscr.status = Active);
(?lscr. status = Done);

modify [?dsg:PHYS_DESIGN]:
(and (exists TASK ?ta suchthat (linkto [?dsg.pro_eng ?ta]))

(exists ENGINEER ?pg suchthat (member [?pg.jobs ?ta]))
(exists DESIGN ?dsgl suchthat (linkto [?dsgl .sap ?dsg]))):

(and (?pg.login = CurrentUser)
(or no_chain (?dsg.status = Assigned)

no_chain (?dsg.status = Active)
no_chain (?dsg.status = Reviewd)))

{ EDITOR graph_2 ?dsg.contents ?dsgl.contents}
(?dsg.status = Active);

Appendix C - 15

(?dsg.status = Done);

modify [?db:PHYS_DB]:
(and (exists TASK ?ta suchthat (linkto [?db.pro_eng ?ta]))

(exists ENGINEER ?pg suchthat (member [?pg.jobs ?ta]))
(exists PHYSARCH ?phy suchthat (member [?phy.db ?db]))
(exists SQL ?sql suchthat (ancestor [?phy ?sql]))):

(and (?pg .login = CurrentU ser)
(?sql.status = Re.ady)))

{ EDITOR console ?db.contents }
(?db.status = Active);
(?db.status = Done);

modify [?sql:SQL]:
(and (exists PHYS_DESIGN ?dsg suchthat (member [?dsg.db_language ?sql]))

(exists T ASK ?ta suchthat (linkto [?dsg. pro_ eng ?ta]))
(exists ENGINEER ?pg suchthat (member [?pg.jobs ?ta]))):

(and (?pg.login = CurrentUser)
(or no_chain (?sql.status = lnitialized)

no_chain (?sql.status = Active)
no_chain (?sql.status = Reviewd))

(orno_chain (?dsg.status = Ready)
no_chain (?dsg.status = Done)
no_chain (?dsg.status = Reviewd)
no_chain (?dsg.status = Active)))

{ EDITOR graph_2 ?sql.contents ?dsg.contents}
no_forward (?sql.status = Active);
(and (?sql.status = lnitialized)

(?sql.status = Active));

modify [?mod:MOD_PROG]:
(and (exists TASK ?ta suchthat (linkto [?mod.pro_eng ?ta]))

(exists ENGINEER ?pg suchthat (member [?pg.jobs ?ta]))):
(and (?pg.login = CurrentUser)

(or no_chain (?mod.status = Assigned)
no_ chain (?mod. status = Active)
no_ chain (?mod. status = Reviewd)
no_chain (?mod.comp_status = NotCompiled)))

{ EDITOR edit_code ?mod.source}
(and (?mod. status = Active)

no_forward (?mod.comp_status = lnitialized));
(and (?mod.status = Active)

(?mod.comp_status = Initialized) # dummy for chaining
no_backward { ?mod.comp_status = NotCompiled));

modify [?scr:MOD_SCR]:
(and { exists TASK ?ta suchthat { linkto [?scr.pro_eng ?ta]))

{ exists ENGINEER ?pg suchthat { member [?pg.jobs ?ta]))):
(and { ?pg.login = CurrentUser)

(or no_chain (?scr.status = Assigned)
no_chain (?scr.status = Active)
no_chain (?scr.status = Reviewd)
no_chain (?scr.comp_status = NotCompiled)))

{ EDITOR edit_code ?scr.source}
{ and (?scr.status = Active)

no_forward { ?scr.comp_status = NotCompiled));
{ and (?scr.status = Active)

(?scr.comp_status = lnitialized) # dummy for chaining
(?scr.comp_status = NotCompiled));

Appendix C - 16

strategy overview

imports datamodel;
exports ail;

objectbase

LISTER : : superclass TOO L;
list : string = list;
listl : string = listl ;
list2: string = list2;

end

end_ objectbase

rules

overview [?spec:SPEC]:
(and (forall FONCTION ?func suchthat (member [?spec.functions ?func]))

(forall STATE ?st suchthat (member [?spec.db_primitives ?st]))):
{ LISTER list ?func.m_name ?func.status ?func.engineer ?func.reviewer

?st.m_name ?st.status ?st.engineer ?st.reviewer)

overview [?log:LOGARCH]:
(and (forall L_FUNC ?lfunc suchthat (member [?log.functions ?lfunc]))

(forall L _ ST A TE ?lst suchthat (ancestor [?log ?lst]))
(forall L_SCREEN ?lscr suchthat (member [?log.interface ?lscr]))
(forall DESIGN ?dsg suchthat (member [?log.sap ?dsg]))):

{ LlSTER listl ?lfunc.m_name ?lfunc.status ?lfunc.engineer ?lfunc.reviewer
?lst.m_name ?lst.status ?lst.engineer ?lst.reviewer
?lscr.m_name ?lscr.status ?lscr.engineer ?lscr.reviewer
?ds ?ds ?ds . ?ds . } . g.m_name. g.status . g.engmeer. g.rev1ewer

overview [?phy:PHYSARCH]:
(and (forall PHYS_DESIGN ?dsg suchthat (member [?phy.san ?dsg]))

(forall SQL ?sql suchthat (ancestor [?phy ?sql]))
(forall MOD_PROG ?mod suchthat (ancestor [?phy ?mod]))
(forall MOD_SCR ?scr suchthat (member [?phy.screens ?scr]))
(forall PHYS_DB ?db suchthat (member [?phy.db ?db]))):

{ LlSTER list2 ?dsg.m_name ?dsg.status ?dsg.engineer ?dsg.reviewer
?sql.m_name ?sql.status ?dsg.engineer ?dsg.reviewer
?db.m_name ?db.status ?db.engineer ?db.reviewer
?scr.m_name ?scr.status ?scr.engineer ?scr.reviewer
?mod.m_name ?mod.status ?mod.engineer ?mod.reviewer}

strategy print

imports data.mode];
exports all;

objectbase

PRINTER :: superclass TOOL;
print : string = print;

end

Appendix C - 17

end_ objectbase

rules

print_out [?co:CONTENTS]:

(or no_chain (?co.status = Active)
no_chain (?co.status = Done)
no_chain (?co.status = Ready)
no_chain (?co.status = Reviewd))

{ PRINTER print ?co.contents }

print_out [?mod:MOD_PROG]:

(or no_ chain (?mod. status = Active)
no_ chain (?mod. status = Done)
no_chain (?mod.status = Ready)
no_chain (?mod.status = Reviewd))

{ PRINTER print ?mod.source }

print_out [?scr:MOD_SCR]:

(or no_chain (?scr.status = Active)
no_chain (?scr.status = Done)
no_chain (?scr.status = Ready)
no_chain (?scr.status = Reviewd))

{ PRINTER print ?scr.source }

strategy propagate

imports datamodel;
exports all;

rules

propagate [?st:STATE, ?lst:L_STATE]:

{}
(linkto [?st.split_into ?lst]);

propagate [?func:FUNCTION, ?lfunc:L_FUNC]:

{}
(linkto [?func.log_ repres ?lfunc]);

propagate [?lfunc:L_FUNC, ?lst:L_STATE]:

{}
(linkto [?lfunc.uses_state ?lst]);

propagate [?lfunc:L_FUNC, ?Iscr:L_SCREEN]:

{}
(linkto [?lfunc.uses_scr ?Iscr]);

propagate [?lfunc:L_FUNC, ?mod:MOD_PROG]:

Appendix C - 18

_J

{}
(linkto [?lfunc.coded_in ?mod]);

propagate [?lscr:L_SCREEN, ?scr:MOD_SCR]:

{}
(linkto [?lscr.code ?scr]);

propagate [?lscr:L_SCREEN, ?lst.L_STATE]

{}
(linkto [?lscr.uses_lstate ?lst]

propagate [?lst:L_STATE, ?mod:MOD_PROG]:

{}
(linkto [?lst.coded_in ?mod]);

propagate [?dsg:DESIGN, ?phdsg:PHYS_DESIGN]:

{}
(linkto [?dsg.sap ?phdsg]);

propagate [?mod:MOD_PROG, ?scr:MOD_SCR]:

{}
(linkto [?mod.screens ?scr]);

propagate [?mo:MODULE, ?doc:DOC]:

{}
(linkto [?mo.doc ?doc]);

#########ffl############ffl###########lf####lfff###################

strategy touch

imports datamodel;
exports ail;

objectbase

EDITOR : : superclass TOOL;
touch : string = touch;
change : string = change;

end

end_ objectbase

rules

touch [?co:CONTENTS]:
no_chain (?co.status = Ready)
{ EDITOR touch ?co.contents }
[?co.status = Maint];

touch [?mod:MOD _PROG]:

no_chain (?mod.status = Ready)
{ EDITOR touch ?mod.source}

Appendix C - 19

(and [?mod. status = Maint]
[?mod.comp_status = NotCompiled]);

touch [?scr:MOD_SCR]:

no_chain (?scr.status = Ready)
{ EDITOR touch ?scr.source}
(and [?scr. status = Maint]

no_backward [?scr.comp_status = NotCompiled]);

bide touchdown [?lfunc:L_FUNC]:
(exists FUNCTION ?func suchthat (linkto [?func.log_repres ?lfunc])):
[?func.status = Maint]
{}
[?lfunc.status = Maint];

bide touchdown [?lst: L _ STATE] :
(exists ST A TE ?st suchthat (linkto [?st. split_ into ?lst])):
[?st.status = Maint]

{}
[?lst.status = Maint);

bide toucbdown [?mod:MOD_PROG]:
(exists L_FUNC ?Jfunc suchthat (linkto [?Jfunc.coded_in ?mod])):
[?lfunc.status = Maint]
{}
[?mod.status = Maint];

bide touchdown2 [?mod:MOD_PROG]:
(exists L_STATE ?lst suchthat (Iinkto [?lst.coded_in ?mod])):
[?lst. status = Maint]
{}

[?mod.status = Maint];

bide touchdown [?dsg:PHYS_DESIGN]:
(exists DESIGN ?dsgl suchthat (linkto [?dsgl .sap ?dsg])):
[?dsgl.status = Maint]
{}

[?dsg.status = Maint];

bide touchdown [?sql:SQL]:
(exists PHYS_DESIGN ?dsg suchthat (member [?dsg.db_language ?sql])):
[?dsg.status = Maint]
{}
[?sql.status = Maint];

bide touchdown [?db:PHYS_DB]:
(and (exists PHYSARCH ?phy suchthat (member [?phy .db ?db]))

(exists SQL ?sql suchthat (ancestor [?phy ?sql]))):
[?sql.status = Maint]
{}
[?db.status = Maint];

bide touchdown [?scr:MOD_SCR]:
(exists L_SCREEN ?lscr suchthat (linkto [?lscr.code ?scr])):
[?lscr. status ~ Maint]
{}
[?scr.status = Maint];

bide toucbup [?mod:MOD_PROG]:
(exists MOD _PROG ?modl sucbthat (member [?mod.subroutines ?modl])):

Appendix C - 20

[?modl.status = Maint J
{}
[?mod.status = Maint];

bide touchup [?lst: L _ ST A TE] :
(exists L_FUNC ?lfunc suchthat (linkto [?lfunc.uses_state ?lst])):
[?lfunc.status = Maint]
{}
[?lst.status = Maint];

Appendix C - 21

ENVELOPE build;

SHELLsh;

INPUT
text : thefile;
binary : main_ object_f;
set_ of binary : object_ code;
set_ of binary : scr _ codes;
binary : scr _ code;
test : results;

OUTPUT
none;

BEGIN
echo
echo---
echo "now building ... "

echo " build ok ?"
read ok
if ["$ok" = "y" J
then

else

echo "Build successful "
ret val=O

echo " errors " > > $results

APPENDIX D : Envelopes

echo "Build failed (-> look with viewErr rule)"
ret_val= l

fi

RETURN "$ret_ val";
END

ENVELOPE change;

The envelope Edit_file is used by the mod_design, mod_test_code
rules. It pumps up an emacs and allows the modifications.

SHELLsh;

INPUT
text : thefile;

OUTPUT
none;

BEGIN
clear
SaveReport= 'ls -1 $thefile'
ret code=2

Call the emacs editor
#-----

emacs -fn 9xl5 -geometcy 80x24 $thefile
#------

NewReport= 'ls -1 $thefile'

Appendix D - 1

echo "Are you ready with maintenance yin?"
read answer
if ["$answer" = "y"]
then

if ["$SaveReport" = "$NewReport"]
then

ret code=l
else

ret_code=0
fi

####1#1##

ENVELOPE compile;

The envelope compile is used by the compile rule. It invokes a C
compiler on the source_ code (from the module or the testpackage)

SHELLsh;

INPUT
text : source_ f;
binary : object_f;
text : results;

OUTPUT
none;

BEGIN
if [-f $results]
then rm $results
fi
echo "---------"
echo "compiling < 'basename $source_ t~ > ... "
echo "compile ok "
read ok

cc -c $source_f -o $object_f > > $results 2>&1
if ["$ok" = "y"]
then

else

fi

echo "Compile successful "
ret val=0

echo "This are your compile errors " > > $results
echo "Compile failed (--> look with viewErr rule"
ret val= 1

RETURN "$ret_val";
END

############################1#1#1#1#1#1#########1#1#1#1##############

ENVELOPE console;

#Runa shell in an Open Windows terminal window

SHELLsh;

Appendix D - 2

INPUT
text : contents;

OUTPUT
none;

BEGIN
echo "This command tool server to construct the sql tables."
echo "Type 'exit' or <CTRL>-d to stop"
echo "--------"
pwd
cmdtool;
echo "Are you ready witb table construction? y/n ?"
read answer
if ["$imswer" = "y"]
th.en

ret code=l
else

ret code=O
fi

RETURN "$ret_code";
END

#ffl####ffl############################ffl##########ffl######ffl

ENVELOPE edit;
SHELLsh;

INPUT
text : tbefile;

OUTPUT
none;

BEGIN
clear

Cali the emacs editor
emacs -fn 9x15 -geometry 80x24 $tbefile
echo "File is ready to review y/n "
read answer
if ["$answer" = "y"]
th.en

ret code=l
else

ret code=O
fi

· RETURN "$ret_code";
END

############ffl###ffl##############fflffl##fflffl###############

ENVELOPE edit _ file;

SHELLsh;

INPUT
text : tbefile;

OUTPUT

Appendix D - 3

none;

BEGIN
Test to see if file already exists
#---------

Created= "Yes"
SaveReport= 'ls -1 $thefile'
if [-f $thefile]
then

Created= "No"
fi

echo "File needs to be created: "$Created
Cali the emacs editor
#-----

emacs -fn 9x15 -geometry 80x55 $thefile
#------

echo " Is the code ready for compiling y/n"
readanswer
if ["$answer" = "y"]
then

ret code=l
else

ret code=0
fi

RETURN "$ret_code";
END

ENVELOPE edit _ doc;

SHELLsh;

INPUT
text : thefile;

OUTPUT
string : NAME,MODULE;

BEGIN
echo " Please enter the object name "
readNAME
echo " For what module ?"
readMODULE
emacs -fn 9x15 -geometry 80x55 $thefile

#------
RETURN "0" :$NAME,$MODULE;

END

ENVELOPE graph2;

SHELLsh;

INPUT
text : thefile;
text : feedb _ file;

Appendix D - 4

OUTPUT
none;

BEGIN
EL_FILE=/bnp/review$$
touch $EL_FILE
This places the feedback in the lower buffer, and places the
design in the upper buffer in read only moe.
#---------------
echo \(fmd-file \ "$thefile\ "\) > > $EL_FILE
echo \(split-window\) > > $EL_FILE
echo \(fmd-file-read-only \ "$feedb _file\"\) > > $EL_ FILE
emacs -fn 9x15 -geometry 80x55 -1 $EL_FILE
rm $EL_FILE
echo" Is the file ready to review y/n ?"
read answer
if ["$answer" = "y" J
then

ret_code=l
else

ret code=0
fi

RETURN "$ret_code";
END

ENVELOPE ini;

The envelope INI is used by the initiate rule and asks the manager if
the project is ready to be scheduled.

SHELLsh;

INPUT
none;

OUTPUT
none;

BEGIN
clear
echo "1s the project ready to be started? [yin): "
read answer
if ["$answer" = "y")
then ret val= 0
else ret val= 1
fi
RETURN "$ret_val";
END

ENVELOPE list;

SHELLksh;

INPUT
set_ of string : func _ name;

Appendix D - 5

set_ of enumerated : f _ status;
set_ of string : f _user_ name;
set_ of string : f _ reviewer;

set_ of string : state _ name;
set_ of enumerated : st_ status;
set_ of string : st_ user_ name;
set_ of string : st_ reviewer;

OUTPUT
none;

BEGIN
#----------------
List for ail fonctions

#----------------
flagl = u

flag2=""
flag3= ""
flag4=""
for i in $fane_ name
do
flagl = "$flagl O"
flag2= ""
for j in $f _ status
do
flag2= "$flag2 O"
flag3= ""
for k in $f_user_name
do
flag3= "$flag3 O"
tlag4= ""
for 1 in $f_reviewer

do
flag4= "$flag4 O"
if ["$flagl" = "$flag2" -a "$tlag2" = "$tlag3" -a "$tlag3" = "$flag4"]
then

Body of your envelope. I just print them out .
echo-------
echo "Name of fonction : "$i
echo "actual status : "$j
echo "engineer : "$k
echo "reviewer : "$1
echo--------

fi
done

done
done

done

#--------
#list for ail state
#--------
tlagl= ""
flag2= ""
flag3= ""
tlag4= ""
for i in $state _ name
do
flagl = "$flagl O"
flag2= ""

Appendix D - 6

for j in $st_ status
do
flag2= "$flag2 0"
flag3= ""
for k in $st_ user_ name
do
flag3 = "$flag3 0"
flag4= ""
for I in $st _ reviewer

do
flag4= "$flag4 0"
if ["$flagl" = "$flag2" -a "$flag2" = "$flag3" -a "$flag3" = "$flag4"]
then

Body of your envelope. I just print them out .
echo-------
echo "Name of state
echo "actual status
echo • engineer

: "$i
: "$j
: "$k
: "$1 echo "reviewer

echo--------
fi

done
done

done
done
RETURN "0";
END

##################################1#1############################

ENVELOPE listl;

SHELLsh;

INPUT
set_ of string : lfunc _ name;
set_ of enumerated : If_ status;
set_ of string : If_ user_ name;
set_ of string : If_ reviewer;

set_of string : lstate_name;
set_ of enumerated : 1st _ status;
set_ of string : lst_ user_ name;
set_ of string : 1st _ reviewer;

set_ of string : lscr _ name;
set_ of enumerated : lscr _ status;
set_ of string : lscr _user_ name;
set_ of string : lscr _ reviewer;

set_ of string : dsg_ name;
set_ of enumerated : dsg_ status;
set_ of string : dsg_ user_ name;
set_ of string : dsg_ reviewer;

OUTPUT
none;

BEGIN

#----------------
Appendix D - 7

List for all lfunctions

#----------------
clear
echo " LIST OF PROGRESS IN LOGICAL ARCHITECTURE "
echo" - - ---- ----- "

flagl=""
flag2= ""
flag3=""
flag4= ""
for i in $lfunc _ name
do
flag1="$flagl 0"
flag2=""
for j in $If_ status
do
flag2= "$flag2 0"
flag3= ""
for k in $If.:...user_name
do
flag3= "$flag3 0"
flag4=""
for l in $If_ reviewer

do
flag4= "$flag4 0"
if ["$flagl" = "$flag2" -a "$flag2" = "$flag3" -a "$flag3" = "$flag4"]
then

Body of your envelope. I just print them out .
echo-------
echo "Name of lfunction : "$i
echo "actual status : "$j
echo "engineer : "$k
echo "reviewer : "$1
echo-------

fi
done

done
done

done
#--------
#list for all lstate
#--------
flagl=""
flag2= ""
flag3=""
flag4= ""
for i in $lstate _name
do
flagl = "$flagl 0"
flag2= ""
for j in $lst_ status
do
flag2= "$flag2 0"
flag3=""
for k in $lst_ user_ name
do
flag3= "$flag3 0"
flag4= ""
for 1 in $lst_ reviewer

do
flag4= "$flag4 0"

Appendix D - 8

if ["$flagl" = "$flag2" -a "$flag2" = "$flag3" -a "$flag3" = "$flag4"]
then

Body of your envelope. I just print them out .
echo-------
echo "Name of log_state : "$i
echo "actual status : "$j
echo "engineer : "$k
echo "reviewer : "$1
echo--------
fi

done
done

done
done
#--------
#list for ail screens
#--------
flagl = ""
flag2=""
flag3= ""
flag4=""
for i in $lscr _ name
do
flagl = "$flagl O"
flag2=""
for j in $lscr _ status
do
flag2= "$flag2 O"
flag3= ""
for k in $lscr_user_name
do
flag3= "$flag3 O"
flag4= ""
for lin $lscr_reviewer

do
flag4= "$flag4 O"
if ["$flagl" = "$flag2" -a "$flag2" = "$flag3" -a "$flag3" = "$flag4"]
then

Body of your envelope. I just print them out .
echo-------
echo "Name of screen
echo "actual status
echo "engineer

: "$i
: "$j
: "$k
: "$1 echo "reviewer

echo-------
fi

done
done

done
done
#--------
#list for ail design
#--------
flagl=""
flag2= n

flag3=""
flag4=""
for i in $dsg_ name
do
flag1="$flagl O"

Appendix D - 9

flag2= 0

for j in $dsg_ status
do
flag2= "$flag2 o·
flag3= ""
for k in $dsg_ user_ name
do
flag3= "$flag3 o·
flag4=""
for l in $dsg_ reviewer

do
flag4= "$flag4 o·
if ["$flagl" = "$flag2" -a "$flag2" = "$flag3" -a "$flag3" = "$flag4" J
then

Body of your envelope. I just print them out .
echo-------
echo "Name of design : "$i
echo "actual status : "$j
echo • engineer : "$k
echo "reviewer : "$1
echo-------

fi
done

done
done

done
RETURN "O";
END

###########ffl####################ffl########fflffl#########ffl#

ENVELOPE list2;

SHELL sh;

INPUT
set_ of string : dsg_ name;
set_ of enumerated : dsg_ status;
set_ of string : dsg_ user_ name;
set_of string : dsg_reviewer;

set_ of string : sql_ name;
set_of enumerated : sql_status;
set_of string : sql_user_name;
set_of string : sql_reviewer;

set_ of string : db _ name;
set_ of enumerated : db _ status;
set_ of string : db _user_ name;
set_ of string : db _reviewer;

set_ of string : scr _ name;
set_ of enumerated : scr _ status;
set_ of string : scr _user_ name;
set_of string : scr_reviewer;

· set_ of string : mod _ name;
set_of enumerated : mod_status;
set_ of string : mod _user_ name;
set_ of string : mod _ reviewer;

Appendix D - 10

OUTPUT
none;

BEGIN
#----------------
List for ail phys _ design
#----------------
flagl = ""
flag2= ""
flag3= ""
flag4=""

for i in $dsg_ name
do
flagl = "$flagl 0"
flag2= ""
for j in $dsg_ status
do
flag2= "$flag2 0"
flag3= ""
for k in $dsg_ user_ name
do
flag3= "$flag3 0"
flag4=""
for l in $dsg_ reviewer

do
flag4= "$flag4 0"
if ["$flagl" = "$flag2" -a "$flag2" = "$flag3" -a "$flag3" = "$flag4"]
then

Body of your envelope. I just print them out .
echo-------
echo "Name of screen
echo "actual status
echo "engineer

: "$i
: "$j
: "$k
: "$1 echo "reviewer

echo-------
fi

done
done

done
done
#--------
#list for ail sql
#--------

clear
echo " LIST OF PROGRESS IN LOGICAL ARCHITECTURE "
echo" -----------"

flagl=""
flag2=""
flag3=""
flag4=""
for i in $sql_ name
do
flagl = "$flagl 0"
flag2=""
for j in $sql_status
do
flag2= "$flag2 0"
flag3= ...

Appendix D - 11

for k in $sql_ user_ name
do
flag3= "$flag3 O"
flag4= ""
for I in $sql_ reviewer

do
flag4= "$flag4 O"
if ["$flagl" = "$flag2" -a "$flag2" = "$flag3" -a "$flag3" = "$flag4"]
then

Body of your envelope. I just print them out .
echo-------
echo "Name of design : "$i
echo "actual status : "$j
echo "engineer : "$k
echo "reviewer : "$1
echo--------

fi
done

done
done

done

#--------
#list for ail phys _ db

#--------
flagl= ""
flag2=""
flag3=""
flag4=""
for i in $db _ name
do
flagl = "$flagl O"
flag2= ""
for j in $db _ status
do
flag2= "$flag2 O"
flag3=""
for k in $db _user_ name
do
flag3= "$flag3 O"
flag4=""
for I in $db _ reviewer

do
flag4= "$flag4 O"
if ["$flagl" = "$flag2" -a "$flag2" = "$flag3" -a "$flag3" = "$flag4"]
then

Body of your envelope. I just print them out .
echo-------
echo "Name of db_language: "$i
echo "actual status : "$j
echo "engineer : "$k
echo "reviewer : "$1
echo--------

fi
done

done
done

done
#--------
#list for ail screens

#--------
Appendix D - 12

flagl=""
flag2=""
flag3=""
flag4=""

for i in $scr _ name
do
flagl = "$flagl O"
flag2= ""
for j in $scr _ status
do
flag2= "$flag2 O"
flag3=""
for k in $scr _user_ name
do
flag3= "$flag3 O"
flag4= ""
for lin $scr_reviewer

do
flag4= "$flag4 O"
if ["$flagl" = "$flag2" -a "$flag2" = "$flag3" -a "$flag3" = "$flag4"]
then

Body of your envelope. I just print them out .
echo-------
echo "Name of database : "$i
echo "actual status : "$j
echo "engineer : "$k
echo "reviewer : "$1
echo--------

fi
done

done
done

done
#--------
#list for ail modules progr
#--------
flagl = ""
flag2= ""
flag3= ""
flag4=""
for i in $mod _ name
do
flagl = "$flagl O"
flag2= ""
for j in $mod _ status
do
flag2= "$flag2 O"
flag3= ""
for k in $mod _ user _name
do
flag3= "$flag3 O"
flag4=""
for lin $mod_reviewer

do
flag4= "$flag4 O"
if ["$flagl" = "$flag2" -a "$flag2" = "$flag3" -a "$flag3" = "$flag4"]
then

Body of your envelope. I just print them out .
echo-------

Appendix D - 13

echo "Name of module : "$i
echo "actual status : "$j
echo "engineer : "$k
echo "reviewer : "$1
echo-------

fi
done

done
done

done
RETURN "0";
END

ENVELOPE mail_ eng;

SHELLsh;

INPUT
string : name;
string : adr;
set of text : comments;
set of int : beg;
set of int : end;

OUTPUT
none;

BEGIN
echo "now sending mail . .. "
construction of the message
echo " Schedule for : " $name > > message$$
echo " ----" > > message$$
echo " " > > message$$
echo " Begin date : " $beg > > message$$
echo " End date : " $end > > message$$
echo " Description of task : " > > message$$
echo > > message$$
cat $comments > > message$$
mailing
mail $adr < message$$
rm message$$
RETURN "0" ;
END

ENVELOPE mail_ man;

SHELLsh;

INPUT
string : name;
string : adr;

OUTPUT
none ;

Appendix D - 14

BEGIN
echo" The fonction", $name, "is ready to review but there is no reviewer assigned yet" > > message$$
mail $adr < message$$
rm message$$
RETURN "O";
END

##11#####################

ENVELOPE mail_rev;

SHELLsh;

INPUT
string : adr;
string : name;

OUTPUT
none;

BEGIN
echo" The fonction ", $name, "is ready to review" > > message$$
mail $adr < message$$
rm message$$
RETURN "O";
END

###11##################

ENVELOPE print;

SHELLsh;

INPUT
text : thefùe;

OUTPUT
none;

BEGIN
echo "now printing ... "
rubens $thefile

RETURN "O";
END

##11#####################

ENVELOPE review;

SHELLsh;

INPUT
text : thefùe;
text : feedb _ file;
string : name;

OUTPUT
none;

BEGIN

Appendix D - 15

if [-f$feedb_file]
then

rm $feedb _ file
fi

EL _FILE= /tmp/review$$
touch $EL_ FILE
This places the feedback in the lower buffer, and places the
design in the upper buffer in read only mode.

#---------------
echo \(find-file \"$feedb_file\"\) > > $EL_FILE
echo \(split-window\) > > $EL_FILE
echo \(find-file-read-only \"$thefile\"\) > > $EL_FILE

emacs -fn 9x15 -geometry 80x55 -1 $EL_FILE
rm $EL_FILE
test to see if the feedback file exists. If yes, it is mailed,
otherwise nothing happens.
if [-f $feedb_file]
then

mail $name < $feedb _file
ret code=O

else
ret code=l

fi
RETURN "$ret_code";
END

###l#llffl###ll#f#fffl#llfflffllffffl###########l#llfflffl###lffffl#l#llffl####ffl###

ENVELOPE schedule;

SHELL sh;

INPUT
text : comments;
string : person;

OUTPUT
string : 0 _ NAME;
int : TIME _ B, TIME _ E;

BEGIN
clear
echo---------
echo----- SCHEDULER ---
echo----------
if [-f $comments] # test to see if file exists or not
then

rm $comments
fi
echo "Now scheduling: $person"
echo
echo "Please enter object name : "
readO NAME
echo "Please enter dates as follows : "
echo
echo "Monday December 2, 1991 as : 911202"
echo

Get Beginning Date
#----

Appendix D - 16

echo "Beginning Date [YYMMDD] : "
read TIME B

Get Ending Date
echo "Ending Date [YYMMDD]: "
read TIME E

Get comments
answer= ""
echo "Type <. > to finish"
echo "Enter text here ...
echo-------
read answer
while ["$answer" != "."]
do

echo $answer > > $comments
read answer

done
echo--------

RETURN "0": $TIME_B, $TIME_E, $O_NAME;
END

ENVELOPE compile;

SHELLsh;

INPUT
text : source _f;
binary : object_f;
text : results;

OUTPUT
none;

BEGIN
if [-f $results]
then rm $results
fi
echo"---------"
echo "compiling < 'basename $source_ f' > ... "
echo "compile ok "
readok

cc -c $source_f -o $object_f > > $results 2>&1
CSTATUS=$?

if ["$ok" = "y"]
then

else

fi

echo "Compile successful "
ret val=0

echo "This are your compile errors" > > $results
echo "Compile failed (- > look with viewErr rule"
ret val= 1

RETURN "$ret_val";
END

ENVELOPE touch;

Appendix D - 17

SHELL sh;

INPUT
text : thefile;

OUTPUT
none;

BEGIN
clear
ret code=l
SaveReport= 'ls -1 $thefile'
echo"WARNING"
echo "----"
echo " Modification of this file will invoke consistency cbainings "
echo" Do you really want to modify this file (y/n) "
read answer
if ["$answer" = "y"]
then

Call the emacs editor
#------
emacs -fn 9x15 -geometry 70x40 $thefile
#------
NewReport= 'ls -1 $thefile'
if ["$SaveReport" = "$NewReport"]
then

echo "File not changed"
ret_code= 1

else
echo "File changed, consistency cbainings ... "
ret code=0

fi
else

echo "File not changed"
fi
RETURN "$ret_code";

END

ENVELOPE viewerr;

SHELL sh;

INPUT
text : compile_ log;

OUTPUT
none;

BEGIN
echo "! = = = = = = = = compile errors are printed = = = = = = = = = = = = = = = = ="
rybens $compile_log
RETURN "0";
END

Appendix D - 18

