
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Pyramide. A physical engine for the management of entity-relationship databases

Rossi, Didier

Award date:
1989

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 09. Apr. 2024

https://researchportal.unamur.be/en/studentTheses/584169b3-b5c7-427c-b222-59272e5440a3

a physical englne for the management
of enttty-relationshlp databases

D. ROSSI

MEMOIRE
Préaenté par

Didier ROSSI
envuo de robtentlon du titre de

Ucencl6 et Maftre en Sciences
Option Informatique

(Promoteur : Professeur J-L Hainaut)
Année académique 88-89

Mal 1989

Institut d'Informatique des Facultés Universitaires de Namur

ABSTRACT

The subject of this dissertation is the physical support of

an Entity-Relationship model layer. I have developed a "network"

Kernel Data Base Management System {DBMS}, the data model of which is

based on a subset of the entity-relationship model. This DBMS has

been designed while keeping in mind the specific needs of the upper

layer's model to be supported, thus allowing further extensions.

Another dissertation is aimed at realising a true Entity-Relationship

layer on top of the 'PYRAMIDE' {PhYsical engine foR the mAnageMent of

entity-relationship DatabasEs). Besides, I have also developed a

build-in Data Dictionary (DD) facility. This DD could be used as a

basis to offer high-level user facilities for dynamic schema

generation, which is not often possible in existing database systems.

RESUME

Le sujet de ce mémoire est le support physique d'une couche

du modèle Entité-Association. J'ai développé un noyau de système de

gestion de base de données (SGBD), dont le modèle de données est basé

sur un sous ensemble du modèle Entité-Association. Ce SGBD a été

conçu en gardant à l'esprit les besoins spécifiques du modèle de la

couche supérieure, permettant ainsi des extensions futures. Un autre

mémoire a pour but de réaliser une vraie couche Entité-Association au

dessus de 'PYRAMIDE' (moteur physique pour la gestion de bases de

données Entité-Association). A côté de cela, j'ai également développé

une fonctionnalité de Dictionnaire de Données (DD) incluse dans le

système. Ce DD pourrait être utilisé comme base pour offrir des

fonctionnalités de haut niveau pour la génération dynamique de schémas

par l'utilisateur; ce qui n'est pas souvent possible dans les systèmes

de base de données existants.

THANKS

It is a bit difficult to thank the persons who have more or

less contibuted to a work as one is always afraid to forget someone.

Nevertheless, it is really a pleasure for me to have the opportunity

to thank the people I remember for their help during my studies.

- I want first of all to thank my parents and my wife. Without

them I wouldn' t have been able to complete my s tudies . They have

always been by my side when I needed them, while staying away when it

was necessary.

- Then, I want to thank all the database research group members

at Forschungzentrum Informatik (FZI) of Karlsruhe (West Germany) where

I have accomplished my last year traineeship. I learned a lot while

working on the DAMOKLES - DBMS (UNIBASE project). I will never forget

how Doctor Klaus Dittrich, Michael Ranft and Angelika Kotz have

welcomed myself, and how helpful and nice the other members of the

group have always been tome. Besides the technical abilities I have

learned there, I've also earned very good friends.

- I cannot forget the teachers of the Institut Saint Berthuin of

Malonne who gave me a very rich educational background during my

secondary s tudies. The quali ty of their teaching and the basic

principles they inculcate to their students are very useful in every

day life. May I thank more especially prof essors De Boel, Leroy,

Richelle and the director mister Debources.

- And last but not least, I want to thank all the academic staff

of the Institut d'Informatique at the Facultés Notre-Dame de la Paix

of Namur for the exceptional framework they provide to their students.

The well-known quality of the education I have received here is far

more useful than only some technical knowledges. And I think I will

understand even more things with the time going on. May I thank more

especially Professor Jean-Luc Hainaut whom I have been working with

for three years, and who still helped me a lot for this dissertation.

TABLE OF CONTENTS

A. Introduction

B. Requirements Analysis

1. The State of the Art

1.1 The Situation in current CAD/CAM systems

1.2 The Situation in current SEEs

1,3 Conclusion

2. Engineering applications seen as particular Data Base

applications

2.1 Particularities of CAD/CAM applications

2.2 Particularities of Software Engineering

Environments

3, Advantages of DBMS support

4. Specific DB requirements of Engineering applications and

existing DBMS technology

4.1 A specific data model

4.2

4.1.1 The concept of structured abjects

4.1.2 Relationships

4.1,3 Versions and Configurations

4.1.4 Discussion

0ther requirements

4.2.1 Data consistency

4.2.2 Transaction management

4.2,3 Data integration

4.2.4 Performance

5, Shortcomings of existing DBMS

5,1 Data modelling

5.2 Consistency control

1

1

2

3

4

4

7

9

10

10

11

12

13

14

14

14

15

16

16

16

16

17

5.3 Transaction management

5.4 Performance

6. Principal solutions to DBMS support

6.1 Restricted DBMS support

6.2 Database design

6.3 DBMS extention

6.4 New DBMS

6.5 Conclusion

C. Specification of the PYRAMIDE project

1. The models of PYRAMIDE

1.1 The Entity-Relationship model

1.2 The logical model of the DBMS

1.3 The physical model of the DBMS

1.4 Schemata

2. Schemata mapping

2.1 From E/R to the logical model

2.2 From the logical to the physical model

3. The Data Dictionary of PYRAMIDE

3,1 Functions

3.2 Principles

3.2.1 The "empty" database

3.2.2 The database containing an E/R schema

3.2.3 The database containing a logical schema

3.2.4 The initialized database

3.2.5 The database with user's data

3.3 The Meta Schema of the data dictionary

- 2 -

17

18

18

19

19

19

19

20

1

1

2

3
5

5

6

6

7

7

7

9

9
10

10

11

11

4. Architectural principles 13

4.1 Basic functions and processors 14
4.1.1 Loading of an E/R schema 14

4.1.2 Loading or production of a logical schema 14

4.1.3 Initialization of the database 14
4.1.4 Accessing the database data 15

4.2 Secondary processors 15

D. The Programming Interface

1. General presentation

1.1 The basic choices and their motives

1.2 Description of the PYRAMIDE environment

2. The schema compiler

2.1 The general mechanism of creating a database

2.2 A Data Definition Language

2.3 The compilation of a database schema

2.4 Dynamic updating of a database schema

3. The programming interface

3.1 Data types and variables

3.2 Procedure arguments

3.3 The DbStatus return codes

3.4 Describing the kernel procedures

1

1

2

3

3
4
5

5

7

8

11

12

13
3.4.1 Diagnostic functions 13
3.4.2 Database management 15
3.4.3 Sequential and direct access to entities 17
3.4.4 Sequential access in a path 23
3.4.5 Updating entities 27
3.4.6 Updating paths 30
3.4.7 Variables manipulations 32
3.4.8 Setting the buffer size 35

- 3 -

3.4.9 Handling several databases

3,5 Transaction management

3.6 DbSys procedures

3.7 Fine tuning of parameters

4. Case studies

4.1 The Soft Env database

4.1.1

4.1.2

4.1.3

4.1.4

4.1.5

4.1.6

4.1.7

Description of the application domain

The programming environment

Simple sequential scanning

Selective sequential scanning

Immediate access based on identifier

A 2-level embedded access program

A 5-level embedded access program

4.2 The Bill-0f-Material (B0M) database

4.2.1 Description of the application domain

4.2.2 The programming environment

4.2.3 Part explosion

4.2.4 Computing the weight of a part

4,3 Listing of a schema

4.4 Loading a schema description

E. The PYRAMIDE - DBMS

1. The architecture of the DBMS

2. Physical data structure of PYRAMIDE-DBMS

2.1 Inter records chaining (bi-directional ring)

2.2 Intra path chaining (bi-directional)

2.3 Physical record composition

2.4 Physical structure of a page

2.5 The Schema information tables

2.6 General physical structure of the file

- 4 -

36

38
40
45

45

45

45

45

47

48
48
49

50

52

52

52

53

54

55

58

1

2

2

2

3

3

5

6

3, Implementation aspects

3,1 The enhanced LRU buffer management

3.2 The free space index

3,3 The ISAM

3.3.1 General ISAM principles

3.3.2 Inserting and deleting in a B-Tree

3.3.3 The ISAM of PYRAMIDE

3.4 The Database Definition Black (DDB)

3,5 Recovery management in PYRAMIDE

3,5,1 The log granule

3,5.2 Types of recovery

3.5.3 The recovery of a partly processed

transaction

3.5.4 The recovery

3.5.5 Reverse operations

F. Further developments and conclusion

1 Multi-user support and server functionality

2 Dynamic schema management

3 Conclusion

LITERATURE

- 5 -

7

7
8

8

9
10

10

12

13
14
15

17
17
19

1

1

2

INTRODUCTION

A Introduction

In the recent past, major advances have been made in the area of

Software Engineering Environments (SEEs} and Computer Aided

Design/Manufacturing (CAD/CAM). These advances are evident in many

application areas such as computer aided drafting systems for

instance. But when CAD/CAM application systems were first introduced,

they each operated independently and data was prepared manually as

input to the indi vidual programs. Gradually, engineers recognized

production inefficiencies due to gaps in the data flow, and sought to

bridge these gaps in a variety of ways. As Data Base Systems (DBSs}

had shown many advantages in administrative and economical fields, it

was sensible to also try and use them in engineering fields.

But as these new application' s domains of DBSs differ from the

usual domains by their specific demands, it is not surprising that the

current Data Base Management Systems (DBMSs) on the market do not

adequately support these non standard application's domains. Numerous

attemps are being made to use existing DBMSs for storing and

manipulating CAD/CAM data; however, many features of these data are

troublesome for current DBMSs. One of the reasons is that the

currently available data models are not designed to efficiently handle

complex information structures. Also, designers and engineers need

additional capabilities which conventional data management systems do

not offer.

It is then time to develop data models which are aimed at

supporting such special domains, so that they allow to define

particular data structures needed in these non standard applications.

The new concepts that are to be found in such data models are for

instance, modelisation and manipulation of complex structured

Entities, of versions of Entities and generalized n-n Relationships.

In order for a DBS that offers such a particular data model to

keep acceptable performances, one must also develop new techniques

that support efficiently these new concepts.

The subject of this dissertation is the physical support of an

Entity-Relationship model layer. I have developed a "network" Kernel

A Introduction

Data Base Management System, the data model of which is based on a

subset of the entity-relationship model. This DBMS has been designed

while keeping in mind the specific needs of the upper layer's model to

be supported, thus allowing further extensions. Another dissertation

is aimed at realising a true Entity-Relationship layer on top of the

'PYRAMIDE' {PhYsical engine foR the manAgeMent of entlty-relationship

DatabasEs). That dissertation should be presented by Feraille Patrick

and Tomasi Matthias in september of this year. Besides, I have also

developed a build-in Data Dictionary (DD) facility. This DD could be

used as a basis to offer high-level user facilities for dynamic schema

generation, which is not often possible in existing database systems.

This document is made up of five main parts. We have first

studied the specific requirements of such a DBS. This study is driven

from the researches made by the Database Research Group at the

"Forschungzentrum Informatik" of Karlsruhe (West Germany). Then we

propose a specification for the DBMS that fulfills our specific goals.

A thorough description of the PYRAMIDE programming interface follows,

before we explain the physical structure of PYRAMIDE and discuss some

implementation aspects. Finally, we conclude this dissertation by

evaluating the current environment and giving some ideas for further

developments.

- 2 -

Requirements nal)'sis

B Requirements Analysis

1. The St~te of the A~t

This chapter tries to summarize the researches that
have been done or that are still under way at FZI
Karlsruhe. The reader needing further development on the
subject can consult the literature given at the end of
this dissertation. Much of the information are driven
mainly from the Damokles and the Damascus projects.

1.1 The Situation in current CAO/CAM systems

One can predict an even larger trend toward CAD/CAM in the future

in the industrialized nations. And even though the database is often

the central part of such systems, it has traditionally received the

least attention. The majority of CAD/CAM systems are based on a

customized file system with no generally accepted format to which

other modules can interface. Data exchange between modules requires

tedious conversion. The reasons are manifold. First of all, today's

commercial DBMSs don't adequately support technical problem demains,

and it is not clear at all that general purpose DBMSs can achieve the

same efficiency that is possible with a special purpose file

structure. Secondly, CAD/CAM systems are usually designed and

implemented by engineers who are not database experts, and DB experts

have traditionally ignored technical problem demains.

The earliest applications of CAD have been in méchanical

engineering, where the goals of the CAD process are the design of a

mechanical part and the planning of its manufacturing process. But

among the engineering applications that have received considerable

attention in the recent past by database experts, the design of very

large-scale integrated circuits (VLSI) is one of the most popular one.

Here, the availabili ty of automated tools relying on an integrated

database supported by a sui table DBMS, is an essential precondi tion

for an economical design of customer specific chips. Today' s VLSI

design is highly automated and a complete CAD tools support is often

offered.

B Requirements Analysis

But in most case, the designer doesn I t access the DB directly.

It remains invisible for him and he only expects high performance

regarding the CAD tools. But since many of these tools are fairly

time consuming because of a high algorithmic complexity (simulators),

special care must be given that they are not further slowed down by a

large amount of I/0 opera tians caused by the DBMS. Particularily

regarding read accesses, since they tend ta outnumber the write

accesses. Several megabytes of data volume should be read in a few

minutes, where the designers seem ta tolerate much larger delays when

writing the same volume ta secondary storage.

1.2 The Situation in current SEEs

Software development is today regarded as an economic activity ta

which productivity and engineering principles have ta be applied. In

the last years, the hardware costs have been decreasing while software

costs were constantly increasing. This phenomenon is known as the

so-called "software crisis". This arises mainly from the fact that

softwares are often badly specified, with a bad architecture and are

poorly documented.

The costs for the development of a software can be divided in

analysis of the needs (10%}, fonctional specifications (10%), design

(15%), encoding (20%}, unitary tests (25%) and integration tests

(20%). Sa that's 45% of the costs ta correct (tests) what has been

badly specified (10%}. What's more, the development costs represent

only 33% of the total cost; the larger part (67%) being for the

maintenance of the software [Lams87J.

Ta deal with this "software crisis 11
, Integrated Software

Engineering Environments have been developed aimed at increasing the

productivity of the software development process, and the quality of

the final product. The main emphasis has been put on the analysis of

the development process, the automation of some steps which seemed

fairly straightforward and the integration of tools. Sa that today,

Software Engineers have got at their dispos al, a large quanti ty of

methods and tools (such as compilers and editors) that have already

- 2 -

B Requirements Analysis

achieved a high degree of sophistication and that can be used during

the different phases of the Software Life Cycle (SLC}.

Nevertheless, most of the solutions are of an isolated nature and

an integrated method covering all phases of the SLC is still missing.

Various 'tool boxes' are offered, but the total integration of tools

and the covering of the entire SLC can only be achieved with the help

of a data management component. Often, tools from two boxes or

sometimes even from the same boxe cannot easily be combined, because

of the mismatch between desired inputs and produced outputs, or

between the underlying methodologies. In today's available SEEs, the

data management is often build directly on a particular Operating

System (OS), enhanced with special mechanisms -as for instance Version

Control- needed by some tools. This solution leads to the well-known

problems of high redundancy, lack of data independancy, etc.

But over and above the high data volume to be managed,

standardization of existing and new tools is one of the prime motives

for the desire to introduce DBSs into SEEs. DBMSs can have an

integrating effect because they impose rigid standards on the data

organization. The integration must be based on the SLC that

structures the software development process into phases, and which may

differ from one company to another, or even from one project to

another. That is, the DBS must not impose one peculiar model, but has

to support different ones.

1.3 Conclusion

Data base concepts such as data modelling and manipulation, data

independancy, da ta securi ty, da ta in tegra tion, consis tency con trol,

access control and multi-users support seem to be very attractive also

for technical applications such as SEEs or CAD/CAM. But as we will

see, conventional business and administrative DBMSs cannot adequately

support the special needs of technical fields. Especially, the

classical data models, and the "short transaction" and consistency

concepts, lead to severe performance problems when applied in

technical fields. That is, in order to keep acceptable performances

- 3 -

B Requirements Analysis

in a DBS applied to SEEs, one has to develop a completely new DBMS

taylored to technical applications.

2. En.g:i.n.eer.in.g a.pp.1.ica.tic:,n.s seen.

a.s pa.rt:i.cula.r Da.ta. Ba.se

a.pp.1 :i.ca. t:i.c:,n.s

On one hand, Engineering Applications were in the past often

based on file-systems. But these systems, as we will see, are not

able to fully support the main requirements of these peculiar

applications. That is, special tools had to be developed to meet

these requirements.

On the other hand, in economical and administrative fields, DBMSs

have been of great help. But these conventional systems are

inadequate for Engineering applications. The principal weaknesses

corne from the traditional data model concepts such as consistency and

short transactions. But other characteristics of Data Bases (DB)

should also benefit Engineering applications.

2.1 Particularities of CAD/CAM applications

In VLSI design, custom design falls into full-custom design

(where a chip is designed from scratch according to given

specifications), and semi-custom design (by employing pre-defined

structures). In full-custom design, the design cost is high while

optimal performance can be achieved. In semi-custom design, one can

do - Cell-oriented design, where the designer has to select

particular cells (circuits already designed) from a library and to

properly interconnect them before evaluating the overall result;

Gate array design, which is very much like cell-oriented

design, but where the cells exist already physically (as a master

chip) thus lowering design and production costs, but reducing design

flexibility;

- 4 -

B Requirements Analysis

- Design based on regular structures, where cells of a single

type are arranged in a regular pattern being prefabricated and which

then requires only a few physical additions or alterations.

Furthermore, one can use several techniques depending on the

design phase. The design can proceed in a Constructive fashion with

interactive tools (such as graphie editors}, or in an Automatic

fashion where tools algorithmically generate the result. Semi

automatic methods requiring human intervention only at critical

points, may also be used.

The design process is often presented as a number of (possibly

iterated) phases : System level design - Register level design - Logic

design - Transistor level design - Geometrical layout design. These

phases being themselves decomposed into the same sequence of steps :

Specification - Overall design - Detail design - Verification. The

specification of a phase {except the first) is always derived from the

result of the preceding one, and the three design methods differ

mainly by the input information that each of the phases requires.

Each phase produces results called representations (in a fixed

number for a given methodology), which taken in their totality, forma

complete description of a circuit and its properties. Sorne examples

of representations are functional descriptions on various levels,

circuit models (in the form of text, program code or tables) to be

used for simulation and test data generation, manufacturing data for

controlling chip production ...

Variants (or alternatives) arise when a result produced in one

phase has more than one successor during the next phase (e.g.

different circuit diagrams). Also, as one can abandon a design and

return to preceeding results, a design history must be maintained in

the form of a sequence of revisions that reflect the chronological

evolution of the design process. To arrive at the overall design

description, the designer has to choose a configuration: that is, one

revision from each variant and one variant from each representation

(see figures B.1 and B.2}.

- 5 -

Design Object

Representation 1 · · · · Representation k · · · · Representation n

Variant K, 1 Variant K,m

Revislon KI, 1 Revision KI ,j Revislon KI ,p

Fu,e e.1 : Global structure of a design ob)ect,

Rev

Fu,e B.2: A design objeçt Instance and a configuration

B Requirements Analysis

The design process in mechanical engineering is very much like

VLSI design. The different construction methods are

Original design, when a novel solution is needed, the

components being already known or needing to be constructed as well;

- Adaptive design, when an existing solution has to be modified

(functionality and component arrangement);

Variant design, where functionality and components are

preserved, being only modified in fine shape, material properties and

scale;

- Principle design, being variant design restricted to scaling.

The designer can also strive for an economical and fast

production by using to the largest extent possible standardized parts

within the company or the industry, that are kept in the inventory.

Here again, the design process can be decomposed in (possibly

iterated) phases List of requirements - Definition of the function -

Defini tion of the physical principle - Shape design - Detailling -

Manufacture planning. Each phase including computing and drawing as

major acti vi ties, tools based on models emphasizing the geometric

properties of technical Objects are offered. They include metrics,

tolerances and surface properties, and permit the computation of side

or section views. A number of approaches for the description of the

geometry exist which are thoroughly explained in [Kemp87].

Like in VLSI design, an abject has a number of representations

(one or more per phase), and is decomposed into smaller Objects (often

predesigned} that can be obtained from archives and then be used after

suitable parametrization. As the designer is an indirect user of the

database (interacting with it through various tools), performance with

regard to data retrieval is of prime importance.

Unlike VLSI design, mechanical products exhibit little regularity

in their composition of smaller Objects. Also, the version problem is

less demanding as the representations are not all part of the final

abject, but rather play the role of intermediate information. The

concept of variant is also somewhat different as an object hasn't got

- 6 -

B Requirements Analysis

variants, but may rather be a variant of some other design abject.

Revisions are still needed, but mainly in order to trace the design

history. And as a consequence of this, the concept of configuration

is not much relevant in this field.

2.2 Particularities of Software Engineering Environments

There are close similari ties between software and VLSI design.

In bath domains the design abject is a large and complex structure

composed of numerous smaller abjects and each phase of the Life Cycle

constructs results giving different aspects of the global abject. The

life cycle of software development is often presented as

Requirements analysis - Functional specification - Overall design -

Component design - Component implementation - Component test - System

integration and test - Installation - Maintenance [Lams87], But this

crude organizational model is usually refined by imposing local models

on the various phases, giving like in VLSI design, a design procedure

plan that determines the exact order (including alternatives) in which

the tools are to be applied. Phase-specific tools manipula te the

represen ta tians wi thin one phase, where transforma tian tools bridge

the gap between successive phases. Further global acti vi ties (e. g.

project management) cannot be associated with a single phase, but must

also be supported.

These phases can be decomposed into (sub-) phases and so on; so

that the development process can be represented statically by a

treelike structure of units of work. The tools used during the

different phases in SEEs transform or analyse so-called documents.

These documents are part of the software product being developed, or

they represent intermediate results of the development process. The

resulting documents of a phase are also called representations of the

software product (source or abject code for instance). The

communication between work units is done as the output document of the

preceeding unit becomes the input for the following unit.

But the dynamic development process does not follow the linear

static structure. There are many iterations during which, a unit of

- 7 -

B Requirements Analysis

work will be redone. The reasons are that for instance, the result of

a work unit is no more necessary, as it doesn't lead to a solution of

the problem. In that case, the development process must go back to

find a better result (trial and errer). Or the development method is

so, that there are iterative units of work; that is, the result of the

preceeding iteration will be employed in the next one. So we get a

hierarchy of documents where each document is refined into a quantity

of documents of the same type (stepwise refinement). Or another

reason can be that the solution found from a document has other

alternative solutions (variants).

This is another similarity to VLSI design variants and

revisions for representations; usually covered under the standard term

versions. Variants are design alternatives within a given

representation that usually share the same module interface while

differing in its implementation. Revisions reflect the design history

of a given representation or variant in chronological order. The

version central ensures the user has the capability to manipulate and

access different versions, that given their usually huge amount, must

be stored and handled in an efficient manner.

Therefore, another important concept here, is also the one of

configuration. That is, a particular composition of the system where

one variant and in turn one revision of each component representation

has been chosen. Here again, the DBMS must offer facilities for

representing, manipulating and accessing configurations in an

efficient manner. As a difference to VLSI design, one must note that

here the number of components in a configuration is much higher (that

is, VLSI circuits exhibit regular properties where software products

do not), and older versions are relevant over long periods of time due

to maintenance requirements.

In order to eut down development costs, existing software modules

should be reused whenever possible. So that like in VLSI design,

libraries play also an important role in software design. But here

again, the number of library elements is larger than in VLSI design

because of the lack of regularity in design abjects. Also the need

- 8 -

B Requirements Analysis

for availability being much longer than in VLSI design (because of the

life expectancy), archiving is an essential aspect of software

engineering and should be closely integrated with the rest of DBMS's

activities.

Atl~a~tages of DBMS s~pport

The main advantage offered by a DBMS in comparison to the

files system approach is the integration of data and tools [Ditt86-b].

In usual files systems, each tool uses i ts own separate files and

individual formats. Therefore, transformation programs are needed to

interface the different tools. Furthermore, each time a new tool is

created or modified, this set of programs has to be modified or

extended. And of course, this separate storage of data for each tool

leads to the well-known problems of redundancy and inconsistencies

between the different copies of the data.

A Homogeneous standardized interface to realize data integration

is therefore clearly desirable. As all users and application programs

are provided with a stable common interface, tool construction becomes

easier and more comfortable. The DBMS "view mechanism" can also

support the necessary adaptation to the individual format each program

requires.

When designing an application, the concepts of a certain area of

interest (the so-called "perceived world") have to be mapped to data

structures and operators supported by the DBMS (DB design) [Hain86-a].

This mapping depends strongly on the data model concepts the DBMS

offers (structuring capabilities, generic operators and implicit

consistency constraints). This design process results in a database

schema serving as the structural skeleton for the actual database.

The concepts of a data model enable the user to express the semantics

of an application in higher level terms than bytes. Thus the design

process is much more user-friendly and the result is self-documenting

by means of the database schema.

- 9 -

B Requirements Analysis

DBSs offer data independancy on the physical as well as on the

logical level. That is, an application ignores the physical storage

structures and storage media actually being used by the DBMS. Thus

for intance, storage characteristics can be changed in order to

improve access performance without modifying the application programs.

Information about the logical structure of the data is kept in the

DBMS, while each application program can use its individual view;

thus , permit ting structures for new purposes to be crea ted wi thou t

modifying any of the previously existing programs.

DBMSs also of fer different mechanisms (as logging and recovery

management) in order to insure data security against loss or damage in

case of hardware, software or operating errors.

As the framework for structural consistency defined by the data

model is generally not sufficient to insure data consistency (that is

the database represents a complete and correct image reflecting the

world of interest}, consistency contrai enables the user to specify

additional explicit consistency constraints which are checked

automatically.

DBMSs perform access contrai in order to insure the privacy of

sensitive data contained in the database that has to be hidden from

unauthorized users. A user's view of the database can be restricted

to a subset of data or operations allowed on these data.

4. Spe ci Î i c DB req~irements C>Î

Engineering applications and

e::xisting DBMS tech.nology

4.1 A specific data model

The data model described herein is the one developed at FZI

Karlsruhe (West-Germany) in the framework of the DAMOKLES-DBMS, and is

only given as one example of what could be the data model supported by

the upper layer running on top of PYRAMIDE.

- 10 -

B Requirements Analysis

4.1.1 The concept of structured abjects

The basis for the development of a new DBS is its data model. It

describes the functional DBMS interface as i t is represented to the

outside world and determines the facilities for data storage, update

and retrieval. The data model excludes all aspects of the physical

data organisation (data independency), focusing only on its logical

properties. The principal requirement for the data model of an

engineering DBS is that it provides a structural abject-orientation.

That is, each object of the real world should be buil t onto one

database object, independantly of its internal structure [Ditt86-a].

Engineering applications often manipulate abjects of complex

structures built out of simpler abjects in a hierarchical or netlike

manner. This reflects the two typical design methodologies of

decomposing higher-level abjects into a set

(stepwise refinement), or of using already

building complexer ones (down-up).

of component abjects

existing abjects in

An object is an entity of the so-called "perceived world" and it

is described by its properties. Objects with the same properties

build up an object type. But as abjects in engineering applications

are structured abjects, they are not only described by descriptive

properties, but also by structural properties to express that an

object is composed of sub-objects (that can be in their turn also

structured abjects). The designed abject itself is entirely described

by the set of all representations and the nodes of the structural tree

are often also structured.

Instead of structured abjects, one can also talk about abjects

hierarchies that are not necessarily tree-like (each abject has at

most one father}, but can also be organised as networks (an object can

have more than one father). That is, hierarchies can overlap.

Descriptive properties can be described with attributes that

build a correspondance between simple type value(s) and an element of

the object type. A (combination of} attribute(s) can constitute a

key. In addition to basic simple types, there should also be

- 11 -

B Requirements Analysis

constructors that enable the user to define new types (by enumeration,

union or intersection).

Structural properties describe the composition of an abject into

inter-related sub-objects (structured abject). Sub-objects can also

be structured abjects, so that we have an abjects hierarchy. Also an

abject can be part of many structured abjects of the same type or

different types (overlapping); and a structured abject can comprise

sub-objects of the same type as his (recursion).

In addition to the concepts for data modelling, we must also have

new operators that can deal with such structured abjects. These are

for instance : creation of abjects (and sub-objects), insertion and

removal of sub-objects in/from structured abjects, reading and writing

of attribute values, copying and deleting of abjects, navigational

search in order to find all sub-objects and relationships belonging to

a structured abject and reversely, and associative access on basis of

attribute values. Objects can also have a surrogate key (given by the

system) which is system-wide unique and can never be changed. In that

case, navigating operations can give the keys of the found abjects as

a result [Damo88] and [Hart87],

Long fields (strings of Bytes of any length) with highly

efficient, file-like access operations are also required to deal with

large data volumes whose structure remains unknown to the DBMS.

4.1.2 Relationships

Relationships are associations of abjects in which an abject

plays a specific role. Relationships can also have attributes and

build up relationship types. Consistency constraints can also be

formulated by using the cardinality constraints. In an object

oriented data model, we should also have n-n relationships between

structured abjects (inter documents relationships), and between sub

objects of a structured abject (intra document relationships). These

relationships should of course be provided with efficient navigation

operations along them.

- 12 -

B Requirements Analysis

4.1.3 Versions and Configurations

In addition to the data representing the results of the various

design steps themselves, design management information has to be

maintained. For each design abject there are a number of

representations; that is, various forms of describing the abject at

different levels of detail, different methods of description, or

emphasizing different aspects. These representations are the inputs

and outputs of the different steps in the design process. Each

representation comprises a number of variants (alternative

approaches); and each variant shows a design history consisting of a

linear sequence of design states, that is revis ions (timed

modifications).

In order to be able to manage revisions and variants, the data

model must allow the modelling of versions of a structured abject.

That is, each version belongs to a generic abject that as well as its

versions, can have descriptive and structural properties. Each

version inherits the properties of its generic abject, while different

versions differ from themselves by the values given to particular

attributes (deltas). The versions are ordered in a linear, tree-like

or acyclic graph (versions-graph}. And finally, as versions are also

abjects, they can particip in relationships, have attributes and sub

objects, as well as versions.

The data model must also include operations that allow to

navigate in a versions-graph, find the generic abject of a given

version, create and delete versions.

Another problem closely tight to the versions management is the

management of configurations. The user must be able to define a

configuration; that is, he chooses for each abject, which version he

will be working with.

- 13 -

B Requirements Analysis

4.1.4 Discussion

The data model exposed previously could be supported by special

relationships (under-object and version relationships). But there are

at least two reasons not to do so [Ditt86-b]

- Structured abjects and versions are standard requirements in

the target application demains. Corresponding concepts in the data

model makes easier the semantic modellization; and therefore, the

resulting schema is more understandable.

- One can only achieve efficient implementation of these two

concepts by using specific techniques (abjects clustering and delta

mechanisms for instance).

4.2 Other requirements

4.2.1 Data consistency

Consistency concept indicates the fact that there is a one to one

correspondence between the content of the DB and the part of the world

it models. Consistency constraints caver the real world laws that

must be enforced to data, and that cannot be described only by means

of the data model. An operation violating a consistency constraint is

usually rejected, where in the engineering field it must be tolerated

because the operation is complex and costly.

Engineering applications comprise numerous consistency rules of

high complexity that apply to database states as well as transitions

between states. A large number of constraints are embodied

algorithmically in existing consistency control programs that have to

be exploited.

What's more, design is a lengthy stepwise and iterative creative

(sometimes trial-error) process involving a large amount of data.

Consistency cannot be achieved all at once; in fact inconsistencies

must be tolerated over varying periods of time. Consequently,

consistency checking cannot be done automatically after each DB

upda te. The DBMS must provide consis tency checking facili ties tha t

- 14 -

B Requirements Analysis

can be requested by the designer when needed. To allow flexible check

times and a variety of reactions when constraints are violated, the

DBMS can only provide basic mechanisms for consistency control that

the user/tools have to apply appropriately.

4.2.2 Transaction management

Transactions are user-defined units of work including sequences

of DB read and update accesses that transforma consistent DB state

into another consistent state.

updates within a transaction

A transaction is atomic, that is all

success or none is completed. A

transaction can commit, that is all operations within the transaction

have succeeded and deliver the DB in a consistent state. Or it can

abort, that is at least one operation of the transaction failed

leaving the DB in a inconsistent state. In that case, the transaction

must be rolled back, that is all operations completed since the

beginning of the transaction must be undone. And finally, an external

incident (system crash) can occur while a transaction is going on.

When the DBMS is restarted, all actions done since the beginning of

the transaction must be ignored (crash recovery). But the classical

notion of transaction (atomical, short duration, few data involved)

does not hold here and consequently transaction management must be

adapted to special requirements.

On the contrary to traditional applications with short

transactions (duration of some seconds at most), engineering

applications are characterized by very long transactions that may last

hours or days and even span across several sessions. One can even say

that a transaction begins with the initialisation of the design, and

ends when the abject is completely designed. These transactions

access large volumes of data that are however often confined to one

design abject or selected parts of it.

- 15 -

B Requirements Analysis

4.2.3 Data integration

The DBMS integrates all the tools of a given design environment

by integrating i ts data and enforcing certain standards for their

representation. But in contrast to traditional applications with

frequent interactive data access, engineering applications are made up

of tools (programs) that access the database. Consequently, the

programming interface of the DBMS is much more important than its

interactive interface.

4.2.4 Performance

In spite of the eminent advantages discussed so far, a DBMS will

not be acceptable for use in engineering applications if it does not

of fer adequate performance. Tools accessing large amounts of data

have to be supported wi thout causing intolerable delays. At best,

slightly longer times are tolerable for updates. Among others,

efficient storage structures and access mechanisms must be used in the

DBMS in order to achieve the needed performance. Sorne painful

compromises seem unavoidable; for instance, long fields might be used

for complex abjects even though this would relegate the consistency

control to the application programs.

5.

Experiences reported in the literature have shown that

today' s commercially available database systems do not meet most of

the requiremen ts lis ted above. The main reasons for these

shortcomings are as follows:

5.1 Data modelling

Existing systems offer traditional data models that are well

sui ted for simple, 'flat' data structures wi th a small number of

attributes per entity. These data models, especially the relationnal

model, are too poor to allow the total expression of all the semantics

- 16 -

B Requirements Analysis

of the data.

Objects of

supported.

Attribute domains are simple numerical or text types.

complex structure with complex attributes are not

The DBMS leaves the contruction and management of such

abjects totally to the application program, thus lacking user comfort,

implicit consistency, and above all efficiency. Current DBMSs offer

sophisticated mechanisms to access atomical data, where an engineering

abject is often composed of sub-objects thus giving many data when

accessing one abject.

management.

Often also, nothing is provided for versions

5,2 Consistency control

As far as today's DBMSs offer mechanisms for explicit consistency

control, it is accomplished in a rather fixed manner. The only way to

define consistency constraints is by logic predicates. Thus

procedural definition and integration of existing control algorithms

are not provided for, and one cannot deal wi th the large number of

highly complex consistency constraints that have to be expressed in

terms of test procedures.

All constrains have to be met at the end of each DB-transaction

which does not allow for user-defined check times, discrimination

between local and global constraints, and so on. If an inconsistency

is detected, the whole transaction will be rolled back, which is not

tolerable in case of long transactions.

5,3 Transaction management

The classical transaction management is geared to short

transactions only. These transactions are used as the uni ts of

consistency, recovery, and synchronization. At least the first two of

these issues need to be reconsidered in an engineering environment.

In design automation, neither the long duration of transactions, nor

their high data volume, nor the temporary consistency violations fit

into the traditional concept. All this raises serious doubts as to

- 17 -

B Requirements Analysis

whether transaction management as known in current DBMSs makes any

sense to engineering DBMSs.

In the recovery area, differences between commercial and

engineering applications are less drastic. Recovery from system crash

or media failure should still stand. The main difference is found in

handling transaction abort, where rollback only extends to the most

recent save point. The notion of atomici ty must also be revised

because each operation is costly, and the designer wants to restore

after a crash, as muchas possible of his work. Often, temporary data

inconsistency must be tolerated, because one cannot reject a set of

lengthy and costly operations that lead to an inconsistent abject.

This abject must be temporarily admitted till it is transformed into a

consistent designed abject (which is the final goal).

5,4 Performance

Bad performance is perhaps the most important reason for the low

acceptance of DBMSs in engineering. The storage structures and access

mechanisms offered by database systems so far are suited to simple

structures wi th few inter relationships. They are tailored to a

database with many data records belonging to a relatively small number

of different types. On the other hand, CAD/CAM applications for

instance, are characterized by a great number of different types, each

of which has rather few instances. Furthermore, in existing DBMSs the

user has to do extensive navigation to collect all the information

describing one complex abject.

6. P~.i:n.c.ipa.l solut.io:n.s to DBMS

suppo~t

As it has been pointed out, DBMS support exhibits a number

of advantages for engineering applications, though current solutions

are far from satisfactory. There are at least four principal ways to

overcome this situation [Ditt86-b] :

- 18 -

B Requirements Analysis

6.1 Restricted DBMS support

A solution chosen in some existing systems is to keep the proper

design data on files as before and to store only some structural

design management information in a (common) DBMS. This approach,

however, is only a first step

all major advantages are not

themselves.

6.2 Database Design

towards comprehensive DBMS support as

available for the engineering data

A conventional DBMS is used to store all the data. The complex

mapping of the application's semantic is completely left to the user

(database design) and is thus hidden in programs and their

documentation. Wi th this approach, all the shortcomings of

conventional DBMS are retained.

6.3 DBMS extention

This approach tries to overcome at least the data model

shortcomings by extending a conventional DBMS or putting an additional

layer on top, the interface is augmented to comprise application

specific modelling concepts. These concepts are automatically mapped

onto relations, sets etc. There is, however, no way to adapt the

system performance to the new 'on top' concepts, and all the other

drawbacks regarding transaction management, consistency control and

the like remain or need special treatment.

6.4 New DBMS

A completely

features. This

new DBMS is developed

solution is the only

providing

one that

all

can

necessary

offer an

application-specific interface combined wi th efficient storage

structures and adequate capabilities for synchronization, etc.

- 19 -

B Requirements Analysis

6,5 Conclusion

While the first solution is at least suitable as an intermediate

approach until better support is available, the second solution

clearly is a 'non-solution'. Though the third solution seems to be

rather attractive, it incorporates surprisingly high system

development effort (if all issues are considered) and still does not

render the desired efficiency. It is however a good rapid prototype

solution to try out navel data models. In the long run, only the

development of specific design database systems can provide the

necessary functionality and performance.

- 20 -

s

1111

Ill

C Specification of the PYRAMIDE Project

1. The mo<lels of PYRAMIDE

The term "database" is generally used to denote a collection

of data which represents a subset of the real world; the so-called

application domain. To describe what a PYRAMIDE database is, we shall

speak in terms of Entity types, Attributes and Relationship types, as

its data model is a subset of the Entity-Relationship model. We will

give a short definition for each of these terms, the reader looking

for more explanation can consult for instance [Boda83] or [Chen76].

The specific E/R model supported by the upper layer will be more

formally described in the dissertation of Feraille patrick and Tomasi

mathias realizing the E/R layer.

Let's take the following (somewhat simplified) example defining a

database for a SEE as described in the requirements analysis. A

software product is described by documents. Each document can have

many versions. And each version has been realized by one or more

authors under a contract number. This will be used as a basis for our

next programming examples.

1.1 The Entity-Relationship model

An Entity is an abstraction of an abject being important for the

application domain (e.g. a chip, a circuit in VLSI design, a function

or a program in Software Engineering). Entities are classified into

Entity types (e.g. PART is the collection of all the parts used in a

CAD system) .

When enti ties are in relation one wi th another, we speak of

Relationships. The collection of similar relationships is called a

Relationship type. Each relationship type is described by the number,

the type and the role of the entities that participate to the

association. A relationship type can connect two (binary) or more

entity types (n-ary) together. Each entity member of the relationship

type can also be characterized by i ts Connectivi ty (in how many

relationships of this type must we in minimum and can we in maximum

C Specification of the PYRAMIDE Project

find the same enti ty) . For example, in the 'DESCRIPTION' binary

relationship type, each enti ty of the 'SOFTWARE' enti ty type can be

associated with any number (say N) of entities of the 'DOCUMENT'

entity type, and each 'Document' entity can be associated with only

one 'Software' entity. Such a relationship type is therefore called

1-N (one to many), from 'SOFTWARE' to 'DOCUMENT', and N-1 (many to

one) from 'DOCUMENT' to 'SOFTWARE'. In the same way, a 'REALIZATION'

relationship type for instance, associating any number of 'Version'

(of a document) en ti ties to any number of 'Au thor' en ti ties , and

vice-versais said to be many to many (N-N). We can also speak of a

1-1 relationship type in case of a one to one association.

Properties of the application domain's abjects are represented by

Attributes attached to entity types or relationship types. A

particular entity or relationship has got attribute values for each of

the attributes attached to its type. An attribute can either be

simple or repetitive, elementary or decomposable, mandatory or

optional. For instance, one can say that the 'DOCUMENT' entity type

has a 'NAME' and a 'SUBJECT' as attributes (see figure C.1).

An identifier of an entity type is a group of attributes and/or

roles, for which two entities of this type cannot have the same

combination of values. The 'NAME' attribute is an identifier for the

'SOFTWARE' entity type, as there can't be two different softwares that

have the same name. A relationship of a given type can also be

identified by a group of attributes and/or the roles assumed by the

entities on which it is defined. (e.g. A BORROW relationship is

identified by the BOOK that is borrowed and the beginning date of the

borrowing) .

1.2 The logical model of the DBMS

The current data model supported by the PYRAMIDE-DBMS is a subset

of the E/R model. It comprises the concepts explained above with the

following restrictions. The relationship types are only binary and of

the 1-N kind (and N-1 in the reverse order). There are attributes

only for enti ty types, and they are always manda tory. And only a

- 2 -

SOFlWARE

Name
Release

(1-N) ls _ Described _ By

DESCRIPTION

(1-1) Describes

DOCUMENT

Nmne
Slbject

(1-N) Has _ Version

VERSIONING

(1-1)

VERSION

NLm
Date

AUTHOR

Nane
Team
Adctess(2)

Street
Number
Locallty

(1-N) Reallzes

REALIZA TION

Contract Nbr

BgureC.1 : The E-R schema of the SottJ;nv damhaa

C Specification of the PYRAMIDE Project

simple, elementary, (mandatory) entity attribute can be an identifier

for an entity type.

Enti ty attributes are represented by PASCAL data types. Each

enti ty of the application domain is represented together wi th i ts

attribute values by some sort of data stored in a file, that we shall

call an PYRAMIDE Entity.

One must also notice that relationships are used to obtain

entities that are logically interconnected. For instance an

application program can ask for all the 'Document' entities that are

connected to a given 'Software' enti ty through 'Description'

relationships. Or also, to get the 'Software' enti ty related to a

given 'Document' entity. That is, the program navigates through the

database following the paths corresponding to the relationship types.

A given relationship type is mapped onto two path types; a 1-N path

type and its inverse N-1 path type. A path is always directed from

its origin entity towards its target entities.

1.3 The physical model of the DBMS

We should give a short description of the physical components of

a database. However, these concepts are not necessary to be known by

the novice programmer as all that is needed to write a program is the

database schema and the programming interface of the DBMS. A more

detailed explanation of these components will be given later on.

The prime component of a database is the interna! representation

of entities. An entity is physically represented by a string of bytes

that we will call an enti ty record or simply record for short. A

record contains the attribute values of the entity together with some

technical data needed by the DBMS. The complete description of a

record will be given in the next section.

These records are stored in a database file divided into pages of

1024 bytes. Records of any enti ty type can be stored in any page

provided a record do not span across several pages. A page is

- 3 -

C Specification of the PYRAMIDE Project

identified by its number which range from 1 T0 65000. Therefore the

DBMS can actually manage databases up to about 65 MegaBytes, which

seems to be sufficent in the current state of the art in personal

computers storage devices.

There are two s torage schemes for records ; they can ei ther be

s tored in a clustered manner or randomly. Wi th the clus ter s torage

scheme, a new record is stored in the same page of the last record

that has been accessed. This storage scheme is very efficient for

sequential access, as records that are created in burst tend to be

stored in contiguous pages. Another possibility is to store the

records in a random manner. In that case a page range must be

specified as it will be explained in the programming interface. With

that storage scheme the page where to store a new record is chosen

randomly within the page range, so that records are distributed as

uniformly as possible, leaving space between them. By defaul t, the

records are stored in a cluster manner.

In both storage schemes, if the page where to store a new record

is full, other pages are searched for space according to the

particular storage scheme. A free space index is used in order to

accelerate the search. If no sufficient space is found, new pages can

be added to the database file. The free space index garanties that

the closest page with at least the needed amount of free bytes will be

loaded in the buffer in no more than two physical accesses.

The DBMS uses a Buffer to store the pages it reads from the

database file. The buffer is an area in main memory that can contain

several pages from which the records are read and written to. When a

record is asked by an application program, the DBMS first searches the

buffer in order to spare physical accesses. If it is not present, it

is loaded from the file into the buffer. The bigger the buffer, the

higher the probability to find a requested record in main memory and

therefore, the lower the number of physical accesses. But a larger

size requires more memory and more time to manage the buffer. The

user can always fine tune the buffer size at runtime depending on his

- 4 -

C Specification of the PYRAMIDE Project

needs. A enhanced LRU strategy is used to manage the buffer, and will

be discussed later on.

PYRAMIDE offers also a build-in index structure to quickly access

entities according to their identifier value. The index structure is

implemented by B+trees, and allows much better performance than

sequential access. It is contained in the database file so that it

can' t be los t. The existence of an index for a gi ven en ti ty type

depends only on whether or not an identifier has been declared in the

schema for this entity type, and is transparent to the user. There is

no connection between the presence of an index and the particular

storage scheme that is chosen for the entity type.

1.4 Schemata

The specification of the enti ty types, enti ty attributes and

relationship types of a database is called its schema.

As in the PYRAMIDE data model, the relationship types are

restricted to 1-N binary types, a PYRAMIDE database schema accepts a

simple and intuitive graphical representation that is derived from the

usual graphical representation used for E/R concepts [Hain86-a]. Each

entity type is represented by a box containing its name and the names

of i ts attributes (an identifier being underlined) . A relationship

type is represented by an arc labelled with its name and joining the

boxes of the entity types. The 1-N direction is indicated by a small

triangle sticked on the arc which mimics the way the entities are

connected (the base of the triangle being on the N side).

2. Schemata mappi~g

The schemata are represented accordingly to a given data

model. Therefore the system must insure the correct mapping between a

schema expressed in the E/R model towards the PYRAMIDE logical model.

And also from a schema expressed in the PYRAMIDE model towards a

physical PYRAMIDE schema.

- 5 -

C Specification of the PYRAMIDE Project

2.1 From E/R to the logical model

This mapping is accompli shed by the upper layer and thus, will

not be discussed herein in details. We shall ins tead refer the

interested reader to the dissertation of Feraille patrick and Tomasi

mathias realizing the E/R layer.

In short we can say that there are direct translation rules

between the two models. For instance:

- a (N-N) binary relationship type would be decomposed into an

intermediate entity type and two {1-N} binary relationship types;

- a N-ary relationship type will be represented by an entity type

and N binary (N-1} relationship types from the new entity type to each

of the member entity types;

- a relationship type having attributes can also be transformed

as in the preceding example, each attribute being mapped onto an

attribute of the new entity type.

Because the PYRAMIDE Data Manipulation Language (DML), that is

the programming interface, is embedded in the programming language

'PASCAL', the data structures of the schema description have also to

be mapped to corresponding 'PASCAL' data structures. These 'PASCAL'

data structures are part of the programming interface and are

generated by the MetaCompiler in the form of a 'PASCAL' include file.

Here follows an example of such a mapping between the two models

(figure C.2} and of the resulting 'PASCAL' include file (figure c.3).

2.2 From the logical to the physical model

Each enti ty together wi th i ts attribute values will be

represented at the user level by 'PASCAL' data types, and stored at

the physical level in a language-independent structure on a mass

storage device such as a magnetic disk. Relationships will be

represented by a connection between entity representations. The DBMS

needs therefore information on the physical structures on which the

- 6 -

SOFTWARE

Nane
Release

L ~ Description

DOCUMENT

Narne
Sbject

L ~
Verslonlng

VERSION

Nlm
Date

"'
Reallzed _By

Realization

Caitract Nbr

V

Reallzes

AUTHOR

Nane
Team
Adctess(2]

Street
Number
Localtty

fkl.RC.2: Ibl loglçal schema of the Sott ... Env databm

CONST

TYPE

SOFTWARE
DOCUMENT
VERSION
REALIZATION
AUTHOR

DESCRIPTION
VERSIONING
REALIZED BY
REALIZES

TSOFTWARE :::

TDOCUMENT :::

TVERSION :::

:::

:::

:::

:::

:::

:::

:::

:::

:::

record

NAME
RELEASE

end;

record

NAME
SUBJECT

end;

record

String[35];
String[4];

String[35];
String[16O];

NUM integer;
DATE Sting[6];

end;

TREALIZATION::: record

CONTRACT NBR integer;
end;

TAUTHOR ::: record

NAME: String[35];
TEAM: byte;
ADDRESS: array [1 .. 2] of

record
street string[3O];
number integer;
locality: string[15];

end;
end;

Figure C.3 The resulting PASCAL include File.

C Specification of the PYRAMIDE Project

logical schema components are mapped. It needs for instance to known

what strorage scheme has been chosen for each enti ty type and the

corresponding page range. This mapping occurs when a PYRAMIDE

database schema is compiled into what we shall call the schema

internal tables of the DBMS.

Here follows an example of such a mapping (figure C.4).

3- The Data Dictio~a~y of PYRAMIDE

3 .1 Functions

The first function of the PYRAMIDE Data Dictionary is to store

E/R schemata. Thus, it allows the user to model the data in a fashion

as close to reality as possible, so that the data and relationships do

not need to be contrived to fit a given structure. The second

function is to store the mappings between schemata of a database. The

third function is to be an information resource for various processors

and application programs.

3.2 Principles

As outlined before, one of the characteristic of this DBMS is

that each database file incorporates its own description. In short,

one can say that each database file includes a data dictionary (DD).

The DD contains data describing the user schema. These data specifies

for instance that there are entity types 'SOFTWARE' and 'DOCUMENT',

that relationship type 'DESCRIPTION' is defined between them, and that

'NAME' is an attribute of 'DOCUMENT'. Since these data are about user

data, they are called Meta Data. They are organized according to a

specific schema called the Meta Schema. The Meta Schema includes such

entity types as 'ENTITY_TYPE', 'REL TYPE' and 'AITRIBUTE'. It is

defined according to the PYRAMIDE logical model (see figure C.5).

The Meta Schema is part of the schema of any database. A

database schema includes the abjects of the Meta Schema plus the

- 7 -

ENTITY TYPE

Software
Storage scheme
Page range
Index on

Document
Storage scheme

Version
Storage scheme

Realization
Storage scheme

Author
Storage scheme
Page range
Index on

RELATIONSHIP

Description
From Software
Ta Document

Versioning
From Document
Ta Version

random
1-50
Name

cluster

cluster

cluster

random
51-100
Name

Realized By
From
Ta

Version
Realization

Realizes
From
Ta

Author
Realization

Figure C.4 An example of a possible physical mapping

DBSCHEMA

~
Short_Name

DBSCHEMA_ET 1 l~ DBSCHEMA_RT

1
,--

DB_OB PESO
ENTITY TYPE REL TYPE -DB DESC

Name Narne
ShortName

Deeoriptor
Short_Name

Beg Fage
End]'age

1 ET_ROLE RT ROLE
.....

1 1
.....

RT_ATT
l~

ET GROUP H

ET_ATT RJLE -- RT_GROUP
ET ETDESC RT_Mlut: ~

ET DESC Name AT DESC Min Con
H d, Max Con .i~

o.oriptor o.oriptor

1 1

ATTRIBUTE GROUP
, 7

H

ATT_ATI Name ROLE COMP Numbor
VeJ Type Id
VarLength Sta1u8
Dec fW
Min_Rep
Max_Rep

K8Y

1 GR_COMP 1

~ ~ H H H.
ATT _ATTDESC ATT_O PMP d.

GR_GR1 GR GR2

ATT DESC COMPONENT GR RELATION

Deeoriptor Number Cff_Type
C_Type

Agn C.5 : The Net.a Schema of the data dlctlonmy.

C Specification of the PYRAMIDE Project

abjects of the user schema. A database includes Meta Data plus user

data.

They are no technical difference between Meta Data and user data

except that they are of different enti ty types. Meta Data can be

retrieved by an application program using the standard programming

interface. However, updating these data means updating the user

schema. That operation must be carried out with much care, and will

be allowed, in the current version of the DBMS, when defining a new

user schema only (i.e. no dynamic schema restructuring for now).

The Meta Data are essential for the operations of the programming

interface. Checking the correctness of an operation and translating a

logical operation into a physical operation requires the knowledge of

the logical and the physical schemata and of the mapping between

bath. However, the way the meta data are stored is not efficient

enough (accessing the data dictionary for each elementary operation

would slow down operations considerably) for driving user data

manipulation. Therefore, an internal version of the Meta Datais also

stored in the database in a highly packed format called the schema

internal tables. These internal tables are loaded in main memory when

opening a database, so that no physical access will be needed at

runtime. In principle, this internal version cannot be seen by

application programs.

An interesting (but somewhat puzzling) feature of the Meta Schema

is that it is self describing. A Meta Schema is a schema in its own

right. It must therefore be described by Meta Data, that are in turn

described by the Meta Schema ! Moreover, these Meta Data have a

schema internal table version as well. Therefore, consulting the data

dictionary gives, among others, information about its own schema.

To try to make things a bit clearer, we shall des cri be the

various states of a database starting from an empty database to a

database containing user data (figure C.6).

- 8 -

Tables
Meta data

Data describlng
themeta
schema

Metadata
Tables

Tables

tables

'Soft Env.dlb' wlb an E/R schema .w

Data
describlng
themeta
schema

Meta Data

Data
describlng

1he Soft _Env
E/Rschema

Data
describlng

1heSoft Env

, loglcal
1

, schema
1
1
1
1

'Soit Env.dlb'wlbalQdcal schema .w

fil.UC.&: the vm1ous states of a daJWHfflft

Data

C Specification of the PYRAMIDE Project

3.2.1 The "empty" database

An empty database contains no user schema, and therefore no user

data. Its only contents are:

- a minimal data dictionary;

- the schema internal tables of the data dictionary;

The schema of the empty database is the Meta Schema and its only

data are the Meta Data describing the meta schema. Therefore, the

only significant operation is consulting the Meta Data of the Meta

Schema.

The 'standard.dtb' database file is the origin prototype of any

empty database. Building the 'Soft Env.dtb' database starts with

copying the 'standard.dtb' into 'Soft Env.dtb'.

3.2.2 The database containing a E/R schema

As the "empty" database already contains the schema internal

tables of the data dictionary, the progammer can call the DBMS

primitives to work on the Meta Schema. He can for instance, describe

and load the 'Soft Env' E/R user schema into the 'Soft Env.dtb'

database. For this, he canuse the Meta Data PASCAL types contained

in the file 'Standard. typ' . A compiler for an E/R Data De finition

Language (DDL) should be realized in the upper layer by Feraille

Patrick and Tomasi Matthias that would make this work easier.

Now the database contains a E/R user schema in addition to the

Meta Schema. Its data are the Meta Data describing the Meta Schema

plus the Meta Data describing the E/R user schema. Still, it does not

contain any internal tables for the E/R user schema. Therefore, the

only significant operation added is consulting and/or modifying the

Meta Data of the E/R user schema.

- 9 -

C Specification of the PYRAMIDE Project

3.2.3 The database containing the logical schema

This step is achieved via a schema processor that is to be

realized within the upper layer. It will realize the mapping between

the E/R and the logical user schemata. This pre-processing solution

has the advantage of freeing the DBMS of some problems such as

consistency and conformity control of the logical user schema,

enabling us to keep a very performing and compact physical engine.

A logical user schema can also be described using a DDL and its

compiler, or if it is not available yet, it can even be loaded in the

database by a application program working on the Meta Data types, as

for the loading of the E/R user schema.

Now the database contains a logical user schema in addition to

the E/R user schema and the Meta Schema. Its data are the Meta Data

describing the Meta Schema plus the Meta Data describing the E/R user

schema and the Meta Data describing the logical user schema. Still,

it does not contain any internal tables for the logical user schema.

Therefore, the only significant operation added is consulting and/or

modifying the Meta Data of the logical user schema.

3.2.4 The initialized database

To make the schema description known to the PYRAMIDE-DBMS, it has

to be compiled by the MetaCompiler, which analyzes the logical user

schema and stores an internal representation in the Data Dictionary.

The internal tables are updated, so that the DBMS will be able to work

not only on the Meta Data, but also on the new database schema.

Besides, the MetaCompiler will also create a 'PASCAL' include file

named 'Soft_Env. typ' containing the data types needed to program on

the database schema.

Now, the database contains, besides the Meta Data, the internal

tables for the database schema. Therefore, the user can program on

the logical user schema by using the PASCAL data types generated by

the MetaCompiler in the include file.

- 10 -

Meta data

1
1 1
1 1

, 1 Data loata
1 Data 1 1 describlng

Meta I Soft _Env describlng I describfng I the Soft Env
eta 1 1 -1hem I the Soft_Env l logical

schema I E/Aschemalschema
1 1

1 1
1 1
1 1

JbelDN@bed ·&ott __ Eny.dth'

Metadata

1 1
1 1
1 1
1 'Data

1 Data I Data ! descrtblng
Meta I Soft_Env descrlblng ! describlng ! 1he Soit_ Env

schema! schema 1hemeta ! 1he Soft_Env l logloal
1ables 1 1Bbles schema I E/A schemal schema

1 1 1
1 1 1
1 1 1
1 1 1

1 1
1 1

'Soit Eny.dttt wltJ user•s data ...

Data

User
data

fiMeC,Z: lheyaious states of P dDfnbftH (çontinuatioo)

C Specification of the PYRAMIDE Project

3,2.5 The database with user's data

From now on, the user can create, update and retrieve data on

basis of the database schema he has described. The database contains

user data in addition to the Meta Data describing the various

schemata.

Please note that the Meta Data describing the Meta Schema is

present for completeness and documentation purposes. It should only

be accessed in read mode. Updating this Meta Schema would have no

harmful consequences as neither the DBMS, nor the MetaCompiler do take

these modifications into account, but the documentation purpose won't

be accurate anymore.

Besides documentation purposes, the data dictionary functionality

is needed by the schemata compiling solution we have chosen to

implement, and later, for the dynamic extension of a database schema.

This aspect will be developped in an other section of this document.

3,3 The Meta Schema of the DD

A schema is described in the data dictionary in terms of entity

types, entity attributes and relationship types. As shown in the Meta

Schema (figure C. 5) , a db schema is gi ven a name (optionally a short

name), which must be a valid file name (without extension) for the

Operating-Sytem (OS) used with the computer. Generally a 1 to 8

'normal' characters string will do.

Each entity type has a name (optionally a short name) which is a

valid 'PASCAL' name, and which is unique within a given schema. The

entities can also be stored in a 'cluster' manner or randomly within a

range delimited by its beginning and ending page.

An attribute has a name which is a valid 'PASCAL' name. The

attributes of a given entity have different names, but attributes of

different entity types may have the same name. An attribute has a

- 11 -

C Specification of the PYRAMIDE Project

value type which is a valid 'Pascal' data type such as Integer, Char,

Byte, bOolean, Real, String and 'Group' as an attribute can be a

composed as a Pascal record. In the case of the string type, the

value length gives the maximum length of the string. In the case of

composed a t tri bu te, the decomposi tian flag is set to true. The

minimum and maximum repetitiveness must also be given. An entity type

need not have attributes, but if it has at least one attribute, one of

them can be the enti ty identifier. In that case i t is the only

component of a group of which the identifier flag is set to true.

A relationship type has a name (optionally a short name) which is

a valid 'PASCAL' name, and which is unique within a given schema. It

is defined between two entity types who need not be distinct. That is

one can easily describe so-called 'recursive' entity types (e.g. the

classical 'HAS_SON' relationship type on the recursive 'MAN' entity

type). Each entity type being part of a relationship type play a

specific role, with a name, and its minimum and maximum connectivity.

The other components of the Meta Schema are not used by the

current PYRAMIDE version, but are uselful to other processors using

for instance the data dictionary as an information resource.

We can see that the Meta Schema of the data dictionary has been

conceived to allow the storage of schemata belonging to the different

data models.

In our example, the E/R user schema could be represented by

creating an entity of type DBSCHEMA with the identifier NAME

'Soft E/R', and connecting it to entities of type ENTITY_TYPE with the

NAME 'Version' and 'Author'. A ATTRIBUTE entity of NAME 'Name',

VAL TYPE 'String', VAL_LENGTH '80', DEC 'False', MIN REP and MAX REP

equal to 'one' would be connected to the 'Author' ENTITY TYPE entity.

A REL TYPE enti ty of NAME 'Realization' would be connected to the

'Soft_E/R' DBSCHEMA entity. It would also be connected to ROLE

entities of NAME 'Realizes' and 'Realized_By'. The 'Realizes' ROLE

entity with a MIN_CON of one and a MAX_CON of N, would be connected to

the 'Author' entity. The 'Realized_By' ROLE entity with a MIN CON of

- 12 -

C Specification of the PYRAMIDE Project

one and a MAX CON of N, would be connected to the 'Version' entity,

and so on ...

In the logical user schema, the N-N 'Realization' REL_TYPE entity

would be transformed into a ENTITY TYPE entity of the same NAME. Two

REL TYPE entities of NAME 'Realizes' and 'Realized_By' would be

created. The 'Realizes' REL_TYPE entity would be connected to ROLE

entities of NAME 'Target' and 'Origin'. The 'Origin' ROLE entity with

a MIN CON and MAX CON of one would be connected to the 'Author'

ENTITY_TYPE entity. The 'Target' ROLE entity with a MIN CON of one

and a MAX CON of N would be connected to the 'Realization' ENTITY TYPE

entity, and so on

And finally, at the physical level, we would have information

such as the page range and the storage scheme for the ENTITY TYPE

entities 'Version' and 'Author'.

4.

As a first step towards understanding engineering-DBMSs, we

thought a good prime objective was the development of a DBMS based on

the En ti ty-Rel a tionship model . This goal was reached by developing

the system into two layers : a physical layer which implements a "low

level" DBMS, and an upper layer which offers functionalities based on

the E/R model. The subject of this thesis is the design and

realization of the DBMS supporting the E/R layer : the PYRAMIDE -

DBMS.

It seemed to us that a DBMS offering a restriction of the E/R

model as a data model, was a good basis to realize this physical

engine, as there are direct translation rules between the two models.

That is, the main architecture is made up of two layers. At the

lower level, we have Entities and (1 to N) binary Relationships

wi thout attributes. The upper level being in charge of translating

true E/R primitives into primitives of the physical motor. For

- 13 -

C Specification of the PYRAMIDE Project

instance, a pre-processor could translate an access loop on the

Versions written by an Author, into two access loops on the

Realizations of the Author, and then on the Version of the current

Realization.

4.1 Basic functions and processors

4.1.1 Loading of an E/R schema

The first function that the system must offer is the possibility

for a programmer to load and store a true E/R schema. This can be

done either by a specific application program working on the Meta Data

types of the data dictionary, or by the DDL-processor of the upper

layer (which is in fact also an application program running on top of

PYRAMIDE). That is, the programming interface can work on ordinary

data, as well as on Meta Data (depending on the (Meta) Data types that

are used).

4.1.2 Loading or production of a logical schema

The second function is to load and store a logical schema of the

database in the data dictionary. This can also be done by an

application program working on a subset of the Meta Data types. But

the best solution is to traduce the E/R schema to a logical schema, by

using the schemata-processor to be offered by the upper layer. Thus

the schema can be checked and the result is guaranteed to be a conform

PYRAMIDE logical schema.

4.1.3 Initialization of the database

When a logical schema has been stored in the data dictionary, it

must be compiled into a physical schema that will be stored in the

internal tables, before the DBMS can work on this schema. This is

accomplished by the PYRAMIDE MetaCompiler that generates the new

database file and the data types needed to program on the new schema.

- 14 -

C Specification of the PYRAMIDE Project

4.1.4 Accessing the database data

In order to fulfill all the preceding functions and the basic one

that is to access user data contained in the database, the user is

provided with a programming interface. The interface comprises

'PASCAL' data types (generated by the MetaCompiler on basis of a

logical schema) and a set of 'PASCAL' procedures and functions to

operate on the data of the database.

4.2 Secondary processors

A second objective, was that the programming interface should be

kept as close as possible to the N.D.B.S. (a Network Data Base System)

interface [Ross87] and [Hain87]. That is, the numerous existing

NDBS-programs and tools should be able to run on top of PYRAMIDE at

the lowest possible adaptation cost. The database compatibility at

the physical level between the two DBMSs was however not possible to

keep, as PYRAMIDE off ers much more powerful features than NDBS does

(i.e. the data dictionary}.

Such tools already existing for NDBS and that could be easily

adapted to PYRAMIDE are a schema loader, a data input processor and a

report writer. A fourth generation language (4GL) is also currently

under development. That is, someone could work with PYRAMIDE without

having to program anything. The user would load his schema with the

schema loader, and compile it. Then he would use the data input

processor to enter data in the database (this processor asks the user

to input data on basis of tree-like structures of the schema). He

would then manipulate data with the 4GL. And finally, he would make a

report of the contents of the database with the help of the report

writer. One can notice that all these processors are in fact

application programs built on top of the PYRAMIDE interface, some of

them accessing the data dictionary contained in a database.

Therefore, some concepts implemented in PYRAMIDE are inspired by

NDBS (which I programmed some years ago), where they have proven to be

effective. Nevertheless, PYRAMIDE is not an extension of NDBS. The

- 15 -

C Specification of the PYRAMIDE Project

architecture has been designed to allow easy maintenance and further

extension. Features like Indexed Sequential Access Method (ISAM) are

supplied. New organization techniques at the file level have also

been developed to support the present and forthcoming features like

dynamic extension of the DB schema at runtime.

In summary, we can say that we have tried to build a new DBMS

that could efficiently support the E-R layer, while keeping as much

compatibility with NDBS as possible. That is, PYRAMIDE can be seen at

one and the same time as a stand alone DBMS, and a part of a much

larger Entity-Relationship database system.

- 16 -

1111

Il

D The Programming Interface

1.1 The basic choices and their motives

PYRAMIDE is, as explained before, a "two-goals" project. On one

hand, it must play the role of the lower layer of a much larger

Entity-Relationships system. But on the other hand, it must also be

the true successor of NDBS, in order not to loose the compatibility

with programs already existing or still under development.

Therefore, simplicity, low-cost and efficiency in the context of

microcomputers are the qualities that the PYRAMIDE-DBMS has kept from

its NDBS predecessor. But besides these, the new DBMS offers features

necessary to the upper layer which can also benefi t the PYRAMIDE

programmer.

Simplicity, as the programming interface is embedded in the

PASCAL language. Therefore, it is very easy for a pascal programmer

to quickly write programs to handle databases of any complexity. This

aspect is also very important in engineering applications where the

DBMS must play the role of the common integrating interface for the

different tools.

Low-cost, particularily in terms of disks accesses, processing

time and main memory requirement. As shown in the requirements

analysis, this is of prime importance in order not to slow down the

already fairly time consuming CAD/CAM tools. Special care has also

been given in order to favour the read accesses, where larger delays

seem to be tolerated by designers while writing to secondary storage.

Efficiency, as all the needs of the upper layer have to be

fullfilled by PYRAMIDE, while i t must be able to run wi thin the

,limitations of Personnal Computers currently available on the market.

D The Programming Interface

1.2 Description of the PYRAMIDE environment

PYRAMIDE is a so-called Network-DBMS and its data model is a

subset of the Entity-Relationship (E-R) model. Thus it can easily be

understood by non technical users, as a clear distinction between the

semantic structure of the data and its physical representation is

established.

Its programming interface deriving directly from NDBS, has been

kept simple. Thus complex programs can easily be written using only a

subset of the database functions PYRAMIDE offers. The absence of

implici t arguments (such as currency indicators in Codasyl) or side

effects of the database functions ensure a total visibili ty of the

programming abjects concerned by database operations. What is more,

the programming interface is directly traced from the PASCAL syntax,

totally complying wi th i ts da ta types and programming rules. Thus

making easy to salve even recursive problems generally considered as

difficult to program in existing DBMSs.

Therefore, even if PYRAMIDE is an educational DBMS, the features

it offers are close to commercial DBMSs. A multi-layers architecture

implemented as a "unit" in TURBO-PASCAL (Version 5) allows easy

maintenance and further extension. "All-in-one" self-describing data

file, compact variable-length data storage, bi-directional record

chaining, Indexed Sequential Access Method (ISAM) implemented by

B+Tree-like indexes, enhanced Least Recently Used (LRU} buffer

management, parametrised storage schemes (clustered or random),

transaction and recovery management, embedded data dictionary, embryon

of dynamic schema management, possibility to work with several

databases at the same time, are some of the characteristics that make

PYRAMIDE a very competitive DBMS for handling complex and large

databases on microcomputers. Moreover, features like multi-user

support, a true dynamic schema management, and many other enhancements

could be developed in the future that would make together with the

compatible NDBS tools currently available or under development, a very

complete stand alone database system environment. Besides the

necessary and existing schema compiler, such tools coming soon are for

- 2 -

D The Programming Interface

instance a Fourth Generation Language (4GL), a data input processor, a

report writer and a Data Definition Language (DDL) with its compiler

that will make easier the work of the PASCAL-PYRAMIDE programmer.

The current "prereleased" version (0.00) developed within the

framework of this dissertation includes the two essential components;

that is, a database handler and a schema compiler. The database

handler comprises the set of database functions offered to the

programmer to handle efficiently its data. And the schema compiler is

a program using the PYRAMIDE-DBMS to read the description of a

database (its schema which is included in the database itself), and

produce as an output the database file (ready to be processed) and the

PASCAL types needed to program. The logical schema description of the

database can be loaded using a program (in PYRAMIDE-PASCAL) or even

better, the DDL if it is available.

.2. The schema compiler

The MetaCompiler is an application program build on top of

the PYRAMIDE-DBMS. It automatically generates from the Database

schema description, a database file processable by the DBMS and the

'PASCAL' data types needed to program.

2.1 The general mechanism of creating a database

It is not our aim to give any guidelines for the design of a

database. The reader needing information on how to build his database

schema and the programs to manipulate data, will find a thorough

discussion of this subject in [Boda83] and [Hain86-a]. We shall

therefore stick only to functional, architectural and technical

problems involved by the PYRAMIDE-DBMS itself and describe the basic

mechanism to create a database.

Before the user can program on a database, he must create the

database file itself. He first has to copy the standard database file

named 'standard.dtb' to the file that will contain his database (e.g.

- 3 -

D The Programming Interface

'Soft_Env.dtb').

in this file.

the 'Soft Env'

Then he has to load the database schema description

This can be done by using a program that manipulates

database file. As a mat ter of fact, the initial

'Soft_Env' database is not empty; its data dictionary contains the

Meta Schema description which has already been compiled into the

internal tables needed to program on this schema. A 'standard.typ'

file containing the 'PASCAL' data types corresponding to this Met!=).

Schema is also available. An example of such a program is given in

the case studies.

Then the user can run the MetaCompiler program which will read

the schema description of the Soft Env database contained in its data

dictionary. That is, a database contains its own description (self

describing file). Then it will modifie the 'Soft Env.dtb' database

file and create a 'Soft_Env.typ' file containing the 'PASCAL' data

types needed to program. From now on, the database will be ready to

be processed.

2.2 A Data Definition Language

Another much easier way for loading the schema description would

be to use a Data Definition Language (DDL) and its compiler. Such a

helpful tool should be provided for PYRAMIDE shortly. As it is not

part of this dissertation we shall refer the interested reader to

Professer Hainaut for further information. Nevertheless, the

principles of such a tool will be outlined herein.

The task of the user is made easier as he only has to describe

the database schema in the DDL. That is, he must observe strictly the

rules defining the language, but doesn' t have to program anything.

Let's assume that a text file containing the DDL description of the

schema exists. The DDL-compiler will read this description and load

consequently the data dictionary of the database file. When the

compilation is done, the description of the database schema is

inserted in the data dictionary of the database. The user only has

then to run the Metacompiler to get all what he needs.

- 4 -

D The Programming Interface

One of the advantages of this way of working is that the analyzer

first checks whether the schema description is syntactically and

semantically correct according to the language rules, before loading

it. If the schema contains an error, the loading process is aborted

and the error is signaled. The DDL-compiler has then to be called

again after correction of the schema description.

2.3 The compilation of a database schema

When a schema description is loaded in the data dictionary of the

database, the Metacompiler must be called to process it. For the time

being, the Metacompiler interface is quite simple. The user only has

to give the name of the database file and the name of the schema

within this database to be processed. The validity of these names is

checked and in case the Metacompiler does not find either the database

or the DB schema, it writes an errer message and asks for a new name.

Then the database schema is read and if i t is syntactically

correct, the internal tables and other information needed by the DBMS

are generated in a new ' . DTB' database file and a new ' . TYP' file

containing the data structures corresponding to the schema is also

created. The old '.DTB' and '.TYP' files are respectively renamed

'.ODB' and '.OTP'.

In case of a schema errer, a message is displayed and the

compilation process is aborted. The database schema description will

have to be corrected before calling the Metacompiler again.

2.4 Dynamic updating of a database schema

This problem has also been taken into account during the

realization of this DBMS. We think the dynamic updating of a database

schema is an interesting functionnality for an engineering DBMS. But

in order to be able to offer this possibility at the upper level, this

lower layer has got to support this concept also.

- 5 -

D The Programming Interface

The problem is to enable the user to create, delete or modify

data structures at any moment during his work session. As this is not

known during the compilation of the database schema, it has to be

performed dynamically. This is a very difficult problem to salve as

all preceding data have to be modified in some cases.

As a first step towards a true dynamic schema management, we have

included the de fini tians of the Meta schema and the database schema

into the database file itself. That is, each and every database file

has got a kernel which is also a true Data Dictionary containing its

own database schema. In other words, each database contains a Meta

Database which is a data dictionary. Therefore, the Metacompiler

accesses the database during the database schema compilation (as the

DB contains the data dictionary). And an application program can also

accessit, during execution, in order to read and/or modify the schema

describing the data structures.

A modification of the data structures of a database is performed

by updating its database schema. These changes can be performed by

the use of the programming interface operating on the special data

structures that are described in the Meta Schema. The programming is

kept very simple as there are no special functions but the basic

procedures of the DBMS. A more general example of updating a database

schema is to create a new one; and a program doing this is given in

the case studies. The reader will also find there, a program that

lists the schema description of a database.

Special care must be given when working on the Meta Schema as the

user can completely corrupt the database. No protection is provided

as the main objective was to keep the programming interface as

straight as possible. It is only the abjects the procedures are

working on that change. Therefore, preventing the user to do some

things depending on the abject he his working on, would have been a

blow to the simplicity of the programming interface. We believe the

advanced programmer dealing wi th dynamic updating of the schema or

other very special purpose functionalities should be aware of what he

is doing. The special types needed to program on the Meta schema are

- 6 -

D The Programming Interface

contained in the 'STANDARD.TYP' file. Therefore, this file must be

included in the program that is intended to update the schema. If it

is not present, there is no danger to corrupt the schema in any way.

As this is an advanced functionality, a thorough explanation of

the mechanism used in the current version of PYRAMIDE as en embryon of

dynamic schema management will be given in the physical description

part of the DBMS. We can say for now that after a database schema has

been updated, it must be recompiled before the user can work on the

new data structures. This implies for the time being, calling again

the MetaCompiler which will generate the new files. The preexisting

data are still contained in the old version of the database file, and

thus can be retrieved from this file, processed according to the

updating of the schema, and finally re-inserted in the new database

file.

We are aware this is not a true dynamic process. But i t is a

good first step towards it, as all what is necessary to implement it,

is physically present in the file structure.

3-

Besides the descriptive objective of a database that has

been discussed, another purpose of a database is also to be an

efficient and reliable data server for a large class of needs. This

objective is fullfilled by the Data Manipulation Language which will

be described herein in details.

The PYRAMIDE-DML comprises a set of generic operations that may

be used to create, retrieve and update data stored in PYRAMIDE

Databases. To enable tools to utilize the DML operations, the DML has

to be embedded in the programming language in which those application

programs are implemented. Since the PYRAMIDE-DBMS is intended to run

primarily on microcomputers, and bearing in mind the main objectives

exposed previously, i t naturally provides for an embedding in the

PASCAL programming language. The PASCAL programming interface is made

up of generic PASCAL procedures contained in a TURBO-PASCAL 'UNIT',

- 7 -

D The Programming Interface

and of a ' . TYP' include file containing the resul t of mapping the

PYRAMIDE data structures to corresponding PASCAL data structures.

This mapping is schema-dependent and is performed by the PYRAMIDE

MetaCompiler.

N.B. A Turbo-pascal "unit" is in fact a way of implementing a

module. It provides a set of capabili ties through procedures and

functions, with supporting constants, data types and variables; but it

hides how those capabili ties are actually implemented by separating

the unit into a (public) interface and a (private) implementation

section. When a program uses a unit, all the unit' s declarations

become available, as if they had been defined wi thin the program

itself. That is, the procedures and functions visible to any program

using the unit are declared in the interface, while their actual

bodies are found in the implementation part. The unit interface can

also contain constants, data types and variables that are to be known

by the using programs. The implementation part can have addi tional

declarations of its own, although these are not visible to any program

using the unit.

3.1 Data types and variables

After the application programmer has defined its database schema

and has compiled it, he can begin working on the data i tself. For

this purpose he has at his disposal the set of operators of the

PYRAMIDE Data Manipulation Langage (DML). These operators are

themsel ves mapped to PASCAL procedures tha t cons ti tu te the PYRAMIDE

programming interface. These procedures allow him to open many

databases at the same time and close them, to access entities of a

given type sequentially or directly on basis of an identifier value,

to access sequentially entities linked to another via a path, to

update entities (create, modify and delete) and paths (insert and

remove), and to manipulate variables.

These procedures are available by inserting a 'USES PYRAMIDE'

statement at the beginning of the PASCAL application program. In

- 8 -

D The Programming Interface

order to communicate with the DBMS, the application program needs also

additional data types and variables. The application-specific

parameters are mapped onto PASCAL data types and variables which are

automatically generated in a '.TYP' file (e.g. 'Soft_Env.typ') by the

MetaCompiler on basis of the database schema. This file must also be

included in the application program by inserting for instance a '(*$1

Soft_Env.typ *)' statement. From now on the programmer is provided

with new data types and variables that allow him to work on entities,

paths and to transmit attribute values.

As a necessary background, we must introduce the general concepts

of the programming interface. These are that of reference, database

reference, reference variable, entity variable and the schema

component designators.

- Database reference : before using some procedures of the DBMS,

the user must specify the database he wants to work with. This can be

done at the opening of the DB or with a selection procedure if he is

working wi th several opened DB. Each da tabase tha t is opened is

referenced by some kind of pointer that is called the database

reference.

Reference while navigating through the database, the

application program must be able to fix particular entities to proceed

to other entities. For this, PYRAMIDE provides the concept of

Reference. A Reference is a data type (DbRef) of which a value can

de signa te an en ti ty.

referenced.

A special NULL value says that no entity is

- A Reference Variable is a PASCAL variable of DbRef type. Such

a variable can either designate an entity of any type, or be NULL or

undefined (before it is assigned a value). In fact, references can be

seen as so-called surrogate keys as each entity stored in a PYRAMIDE

database is identified by a system-wide unique reference generated by

the system itself. The reference remains unchanged during the

lifetime of the referred entity, and a reference of an entity that has

been deleted will never again be assigned to another enti ty. An

- 9 -

D The Programming Interface

application program has the possibility to store a reference into a

reference variable in its own address space, and to use it to refer

the enti ty. But special care must be given when handling these

variables, and most of the time they should be manipulated only by the

DBMS's procedures. In particular, the programmer should never modify

the value of such a variable or pass an undefined variable as an input

argument to the DBMS, or unpredictable results could occur.

- An entity variable is a PASCAL variable of one of the entity

variable types automatically generated by the MetaCompiler in the

' . TYP' file. The se types are prefixed wi th the let ter 'T' , as for

instance 'TSOFTWARE' for 'Software' entity variables. Such an entity

variable can contain the attribute values for entities of the

concerned type and no other. Besides this, it also has some

components needed by the DBMS (such as the reference of the current

entity), that should only be manipulated by the DBMS's procedures.

Designators for the schema components.

First of all, one must designate the database. This is done by

using its name, possibly prefixed by a path, but without any

extension. Each entity type is designated by a given numeric code

automatically generated by the MetaCompiler in the '.TYP' file. The

code is a PASCAL integer constant with the name of the entity type as

for instance, 'SOFTWARE= 13'. Each relationship type is designated

by a given numeric code automatically generated by the MetaCompiler in

the '.TYP' file. The code is a PASCAL integer constant with the name

of the relationship type as for instance, 'DESCRIPTION' = 19'. This

code also designates the 1-N paths related to that relationship type,

and the inverse N-1 paths can be designated by negating that code.

For instance, '- DESCRIPTION' designates the paths from Documents to

Software entities.

One must note that the application programmer is not aware of the

actual values of these constants that are automatically generated by

the MetaCompiler. Instead, the programmer will use the names of these

constants that he knows from the schema definition.

- 10 -

D The Programming Interface

3,2 Procedure arguments

Most of the arguments are common to several procedures and will

therefore be described herein.

DataBase : is a string or constant expression containing from 1

to 64 characters giving the name of a database, possibly including a

path, but without any extension.

Examples : 'SOFT_ENV' or 'C:\data\pyramide\PART' are valid.

But 'SOFT ENV.DB' is NOT valid.

DbDesc : is a variable of the DDB type. That is, a pointer

towards a Database Descriptor Bloc. The DDB type is defined wi thin

the '.TYP' file generated by the MetaCompiler.

Example : Var DB1, DB2: DDB;

Entity Type is any positive integer expression giving the

numeric code of a valid entity type of the database. These codes are

generated in the ' . TYP' file in the form of a predefined integer

constant named after the entity type it designates.

Examples : SOFTWARE, DOCUMENT, VERSION.

Path Type is any integer expression giving {in i ts absolu te

value) the numeric code of a valid relationship type of the database.

These codes are generated in the '.TYP' file in the form of a

predefined integer constant named after the relationship type it

designates. If the value is positive, it designates the 1-N path

type. If it is negative, it designates the N-1 inverse path type.

Example 'DESCRIPTION' designates the 1-N path type from

SOFTWARE to DOCUMENT, and '- DESCRIPTION' designates the N-1 inverse

path type from DOCUMENT to SOFTWARE.

Ent Var: is any entity variable of the type Tentity_type_name.

Examples : Var Pyramide, Ndbs : TSOFTWARE;

Var ReqAnalysis, SourceCode: TDOCUMENT;

Origin is any entity variable of the type Tentity_type_name

designating an origin entity of a path.

- 11 -

D The Programming Interface

Target is any entity variable of the type Tentity_type_name

designating a target entity of a path.

Ref Var is any reference variable of type DbRef.

R/E Var is either a Ref Var or an Ent Var.

3.3 The DbStatus return codes

After a procedure of the DBMS has been called by an application

program, the integer global variable named DBSTATUS indicates how the

operation has been carried out. Detailed explanation will be given

for each and every DBMS' s procedures, but as the returned code has

generally a common meaning we list here the possible values and the

corresponding meaning.

0 the operation has been correctly carried out.

1 the requested abject (entity, database) has not been found.

2 identifier uniqueness violation during an update operation.

10 incorrect entity type code.

11 incorrect relationship type code.

30 incorrect reference value given as an input.

70 out of main memory space.

80 out of disk memory space.

90 incorrect reference found in the database; the database is

corrupted.

99 1/0 or system error.

As one can see, the seriousness of the incident increases wi th

the return code value. One digit codes de fine normal candi tians.

Return codes 10 and 11 define a wrong designation of a schema

component, probably from a syntactic error in the program. Return

code 30 is more severe, and greater return codes are due to grave

external accidents.

- 12 -

D The Programming Interface

3.4 Describing the Kernel procedures

The PYRAMIDE Data Manipulation Language may be characterized as a

"one enti ty /relationship at a time" interface. This means that in

contrast to set-oriented interfaces such as SQL, every PYRAMIDE

operation always return at most one entity to the calling program.

Furthermore, PYRAMIDE is a database system of the Network-DBMS family.

That is, the application program can access and update the data stored

in a PYRAMIDE database by navigating from entity to entity via the

relationships defined between entities.

We will describe each procedure separately, giving summary

examples in the case studies. The programmer need not use all these

procedures. Less than a dozen of them are sufficient to write easily

simple database management programs.

PYRAMIDE also allows to work with several databases. Each

database that has been opened at some point intime and not closed is

called an opened database. Among the opened da tabases , there is a

particular one that is the active database. Except the open and close

procedures, all procedures of the interface implicitly operate on the

active database. The last opened database is by default the active

one. If the user wants to work with another database he can change

the active database with a special selection procedure.

3.4.1 Diagnostic functions

As seen previously, by the end of a function or a procedure of

the programming interface that has been called, a code is returned

giving information on how the operation has been carried out. Sorne

boolean diagnostic functions corresponding to these return codes are

also offered to the programmer.

- 13 -

D The Programming Interface

NAME

dbfound - found, DbStatus = 0

INTERFACE

dbfound

DESCRIPTION

Boolean

Returns true if the last DBMS's procedure called returned

dbstatus = O; false otherwise.

NAME

dbnotfound - not found, DbStatus = 1

INTERFACE

dbnotfound

DESCRIPTION

Boolean

Returns true if the last DBMS's procedure called returned

dbstatus = 1; false otherwise.

NA.ME

dbnonunique - not unique, DbStatus = 2

INTERFACE

dbnonunique

DESCRIPTION

Boolean

Returns true if the last DBMS's procedure called returned

dbstatus = 2; false otherwise.

NA.ME

dbsevere - severe problem, DbStatus > 2

INTERFACE

dbsevere Boolean

- 14 -

D The Programming Interface

DESCRIPTION

Returns true if the last DBMS's procedure called returned

dbstatus > 2; false otherwise.

NAME

dbpanic - very serious problem, DbStatus > 30

INTERFACE

dbpanic

DESCRIPTION

Boolean

Returns true if the last DBMS's procedure called returned

dbstatus > 30; false otherwise.

3,4.2 Database Management

NAME

dbopen - database opening

INTERFACE

dbopen (DataBase, var DbDesc)

DESCRIPTION

This is the first procedure to be called before the user can work

on the da tabase. If the da tabase named Da taBase exis ts , opens i t,

makes it available for the program (it becomes the active database of

the program), initialises the DDB (DbDesc points to the Database

Descriptor Bloc), and returns dbstatus = O. If no such database has

been found or if any I/0 or system error occurred, no database is

available for the program, DbDesc is undefined and dbstatus is

different from O.

- 15 -

D The Programming Interface

RETURN CODES

dbstatus = 0 the database has been opened;

dbstatus = 1 the database has not been found;

dbstatus = 70 no sufficient main memory to create a new DDB;

dbstatus = 99 I/0 or system error;

NAME

dbclose - database closing

INTERFACE

dbclose (var DbDesc)

DESCRIPTION

The application program must call this procedure at the end of

its work in order to save all the update operations done till the

opening of the database. If several databases had been opened, this

procedure must be called for each of them. Closes the database

designated by DbDesc, if any; from now on there is no active database

for the program, and DbDesc is set to nil. Please, pay attention that

this procedure must be called before using DbDesc again; otherwise

unpredictible results could occur.

RETURN CODES

dbstatus = 0

dbstatus = 1

dbstatus = 99

EXAMPLE

Var dbl DDB;

the database has been closed;

no database pointed by dbdesc has been found;

1/0 or system error;

dbopen ('Soft_Env' ,dbl);

if not dbfound then goto err_open;

dbclose (dbl};

if dbnotfound then goto err_close;

- 16 -

D The Programming Interface

3.4.3 Sequential and Direct access to entities

NAME

dbfirst - get first entity

INTERFACE

dbfirst (Entity_Type, var Ent_Var)

DESCRIPTION

Finds the first entity of the type Entity_Type in the active

database and stores i ts reference and i ts attribute values into the

variable Ent Var.

Ent_Var is unchanged.

RETURN CODES

dbstatus = 0

dbstatus = 1

dbstatus = 10

dbstatus = 90

dbstatus = 99

NAME

If that entity doesn' t exist, the content of

an entity has been found;

entity not found; the Entity_Type set is empty;

Entity_Type has an incorrect value;

corrupted database;

I/0 or system error;

dblast - get last entity

INTERFACE

dblast (Entity_Type, var Ent_Var)

DESCRIPTION

Finds the last entity of the type Entity_Type in the active

database and stores its reference and its attribute values into the

variable Ent Var.

Ent Var is unchanged.

If that entity doesn't exist, the content of

- 17 -

D The Programming Interface

RETURN CODES

dbstatus = 0 an entity has been found;

dbstatus = 1 entity not found; the Entity_Type set is empty;

dbstatus = 10 Entity_Type has an incorrect value;

dbstatus = 90 corrupted database;

dbstatus = 99 I/0 or system error;

NAME

dbnext - get next entity

INTERFACE

dbnext (Entity_Type, var Ent_Var)

DESCRIPTION

If Ent_Var designates an entity of type Entity_Type of the active

database which is not the last one, the procedure finds the entity of

the type Entity_Type that follows the entity designated by Ent_Var in

the database. It then stores the reference and the attribute values

of the next entity into the variable Ent Var. If Ent Var was the last

entity, the content of Ent_Var is unchanged. If Ent Var has a null

reference, dbnext acts as dbfirst (the successor of none is the first

one). The dbfirst procedure is therefore redundant.

RETURN CODES

dbstatus = 0 an entity has been found;

dbstatus = 1 entity not found;

dbstatus = 10 Entity_Type has an incorrect value;

dbstatus = 30 Ent Var has an incorrect value;

dbstatus = 90 corrupted database;

dbstatus = 99 I/0 or system error;

- 18 -

D The Programming Interface

NAME

dbprior - get prier entity

INTERFACE

dbprior (Entity_Type, var Ent_Var)

DESCRIPTION

If Ent_Var designates an entity of type Entity_Type of the active

database which is not the first one, the procedure finds the entity of

the type Entity_Type that precedes the entity designated by Ent_Var in

the database. It then stores the reference and the attribute values

of the next entity into the variable Ent_Var. If Ent Var was the

first entity, the content of Ent_Var is unchanged. If Ent Var has a

null reference, dbprior acts as dblast (the predecessor of none is the

last one). The dblast procedure is therefore redundant.

RETURN CODES

dbstatus = 0 an entity has been found;

dbstatus = 1 entity not found;

dbstatus = 10 Entity_Type has an incorrect value;

dbstatus = 30 Ent Var has an incorrect value;

dbstatus = 90 corrupted database;

dbstatus = 99 I/0 or system errer;

EXAMPLE

Let's give an example of a program that opens the database named

'Soft _Env' , wri tes to the screen the name of all software en ti ties

stored in that database, and then closes it.

Label exit, err_open, err_trt;

Type TS0FTWARE = record (* generated by MetaComp *)

name : string[35];

release : string[4];

end;

- 19 -

D The Programming Interface

NAME

Var dbl

soft

BEGIN

DDB;

TSOFTWARE;

dbopen ('Soft_Env' ,dbl); (* opening of the DB*)

if not dbfound then goto err_open;

dbfirst (Software, soft);

while dbfound do

begin

(* gets first entity *)

writeln ('Software name = ',soft.name);

dbnext (Software, soft) (* gets next entity *)

end;

if dbsevere or dbpanic goto err_trt;

goto exit;

err_open:

err_trt : ... ;

exit: dbclose (dbl)

END.

(* closes the working DB*)

dbid - get entity based on identifier value

INTERFACE

dbid (Entity_Type, var Ent_Var)

DESCRIPTION

Finds in the active database the entity of the type Entity_Type

that is identified by the identifier value previously stored in

Ent_Var; stores its reference and its attribute value into the

variable Ent Var. If the entity has not been found, the content of

Ent Var is unchanged.

- 20 -

D The Programming Interface

RETURN CODES

dbstatus = 0 the entity has been found;

dbstatus = 1 no entity has been found;

dbstatus = 10 Entity_Type has an incorrect value; maybe this

entity type hasn't got an identifier;

dbstatus = 90 corrupted database;

dbstatus = 99 I/0 or system error;

EXAMPLE

Here follows a part of a program that gives the number of the

team to which belongs an author identified by his name.

NAIVIE

Type TAUTH0R = record

Var designer

name

team

end;

TAUTH0R;

string[35]:

integer;

readln (designer.name);

dbid (Author, designer);

if dbfound

then writeln ('Team number ·' . '
else if dbnotfound

designer.team)

then writeln ('Designer unknown')

else goto err_trt;

dbdirect - direct access to an entity

INTERFACE

dbdirect (Entity_Type, var Ent_Var, var R/E_Var}

- 21 -

D The Programming Interface

DESCRIPTION

Finds in the active database the entity of the type Entity_Type

referenced by the entity variable or the reference variable Var;

stores its reference and its attribute values into the variable

Ent Var. Ent Var and Var don' t need to be distinct.

has not been found, the content of Ent Var is unchanged.

RETURN CODES

dbstatus = 0 the entity has been found;

dbstatus = 1 no entity has been found;

dbstatus = 10 Entity_Type has an incorrect value;

dbstatus = 30 Var has an incorrect value;

dbstatus = 90 corrupted database;

dbstatus = 99 I/0 or system errer;

Ex.AMPLE

If the en ti ty

The following example accesses softwares of which the references

have previously been s tored in the array soft _ ls t, and wri tes their

name onto the screen. NS gives the actual number of references stored

in the array.

Const max= 100;

Var soft: TSOFTWARE;

soft_lst: array[1 .. Max] of DbRef;

NS, i : integer;

for i

begin

= 1 to NS do

dbdirect (Software, soft, soft_lst[i]);

if dbstatus <> 0 then goto err_trt;

writeln (soft.name)

end;

- 22 -

D The Programming Interface

3.4.4 Sequential access in a path

NAME

dbfpath - get first entity in path

INTERFACE

dbfpath (var Target, var Origin, Path_Type)

DESCRIPTION

Finds the first entity connected to the entity Origin by the path

Path_Type in the active database, and stores its reference and its

attribute values into the variable Target. If the entity has not been

found, the content of Target is unchanged. This procedure can be used

for both 1-N and N-1 paths. If Path_Type is positive, the 1-N way is

used, else it is the N-1 way.

RETURN CODES

dbstatus = 0 the entity has been found;

dbstatus = 1 no entity has been found; no entity is connected

to Origin entity;

dbstatus = 11 Path_Type has an incorrect value;

dbstatus = 30 Origin has an incorrect value;

dbstatus = 90 corrupted database;

dbstatus = 99 I/0 or system error;

EXAMPLE

Here follows an example of getting the software to which belongs

a document (using the N-1 path).

Var soft

doc

TSOFTWARE;

TDOCUMENT;

dbfpath (soft, doc, - Description);

if dbfound

then writeln ('software name = ',soft.name);

- 23 -

D The Programming Interface

NAIVIE

dblpath - get last entity in path

INTERFACE

dblpath (var Target, var Origin, Path_Type)

DESCRIPTION

Finds the last entity connected to the entity Origin by the path

Path_Type in the active database, and stores its reference and its

attribute values into the variable Target. If the entity has not been

found, the content of Target is unchanged. This procedure can be used

for bath 1-N and N-1 paths. If Path_Type is positive, the 1-N way is

used, else it is the N-1 way.

RETURN CODES

dbstatus = 0 the entity has been found;

dbstatus = 1 no entity has been found; no entity

to Origin entity;

dbstatus = 11 Path_Type has an incorrect value;

dbstatus = 30 Origin has an incorrect value;

dbstatus

dbstatus

EXAMPLE

Var soft

doc

=

=

90 corrupted database;

99 I/0 or system error;

TSOFTWARE;

TDOCUMENT;

dblpath (doc, soft, Description);

if dbfound

is

then writeln ('Last document is ',doc.name);

- 24 -

connected

D The Programming Interface

NAME

dbnpath - get next entity in path

INTERFACE

dbnpath (var Target, var 0rigin, Path_Type)

DESCRIPTION

If Target designates an entity of type Entity_Type of the active

database which is not the last one in the path, the procedure finds

the entity that follows the entity Target among those connected to the

entity 0rigin by the path Path_Type in the database. Then, it stores

its reference and its attribute values into the variable Target. If

the entity has not been found, the content of Target is unchanged. If

Target has an initial null reference, dbnpath acts as dbfpath (the

successor of none is the first one). The dbfpath procedure is

therefore redundant. If used for N-1 paths, it consistently returns

DbStatus = 1.

RETURN CODES

dbstatus = 0 the entity has been found;

dbstatus = 1 no entity has been found; the Target entity was

the last one;

dbstatus = 11 Path_Type has an incorrect value;

dbstatus = 30 Target or 0rigin have an incorrect value;

dbstatus = 90 corrupted database;

dbstatus = 99 I/0 or system error;

EXAMPLE

Here is a part of a program that lists all documents connected to

a software.

Var soft

doc

TS0FTWARE;

TD0CUMENT;

- 25 -

D The Programming Interface

NAME

dbfpath (doc, soft, Description);

while dbfound do

begin

writeln ('document name = ', doc.name);

dbnpath (doc, soft, Description)

end;

dbppath - get prier entity in path

INTERFACE

dbppath (var Target, var Origin, Path_Type)

DESCRIPTION

If Target designates an entity of type Entity_Type of the active

database which is not the first one in the path, the procedure finds

the entity that precedes the entity Target among those connected to

the entity Origin by the path Path_Type in the database. Then, it

stores its reference and its attribute values into the variable

Target. If the entity has not been found, the content of Target is

unchanged. If Target has an initial null reference, dbppath acts as

dblpath (the predecessor of none is the last one). The dblpath

procedure is therefore redundant.

consistently returns DbStatus = 1.

If used for N-1 paths, it

RETURN CODES

dbstatus = 0 the entity has been found;

dbstatus = 1 no entity has been found; the Target entity was

the last one;

dbstatus = 11 Path_Type has an incorrect value;

dbstatus = 30 Target or Origin have an incorrect value;

dbstatus = 90 corrupted database;

dbstatus = 99 I/0 or system error;

- 26 -

D The Programming Interface

Ex.AMPLE

Var soft

doc

TSOFTWARE;

TDOCUMENT;

writeln ('Here follows a list of documents beginning from

the last to the first one');

dblpath (doc, soft, Description);

while dbfound do

begin

writeln ('document name = ', doc.name);

dbppath (doc, soft, Description)

end;

3,4,5 Updating entities

NAME

dbcreate - create entity

INTERFACE

dbcreate (Entity_Type, var Ent_Var)

DESCRIPTION

Creates and inserts in the database an entity of type

Enti ty _Type. The attribute values are obtained from Ent Var and the

reference of the new entity is stored into the variable Ent Var. If

Entity_Type has an identifier, there must be no other entity of that

type with the same value for that attribute.

RETURN CODES

dbstatus = 0 the entity has been created;

dbstatus = 2 an entity with the same identifier value already

exists; no entity is created;

dbstatus = 10 Entity_Type has an incorrect value;

dbstatus = 90 corrupted database

dbstatus = 99 I/0 or system error;

- 27 -

D The Programming Interface

EXAMPLE

NAME

VAR soft TSOFTWARE;

soft.name := 'TURBO_PASCAL';

soft.release := '5.00';

dbcreate (Software, soft);

case dbstatus of

0

2 goto err_id;

else goto err_serious;

end;

dbdelete - delete entity

INTERFACE

dbdelete (Entity_Type, var Ent_Var)

DESCRIPTION

Brases from the active database the entity designated by Ent_Var

of type Entity_Type. The reference part of the variable Ent Var is

set ta null, but no other components are modified. If the entity ta

be deleted is a target in some 1-N paths, it is first removed from

them. If the entity ta be deleted is an origin of some 1-N paths,

their target enti ties are first removed from these paths, and thus

made free again. These entities can still be accessed sequentially or

by other paths ta which they participate.

We must also warn the user against the problem of so-called

'dangling references' when using several entity variables to designate

the same entity. When that entity is deleted, the entity variable

passed in the procedure as an argument is set ta NULL. But other

enti ty variables may s till reference the deleted enti ty, and can

- 28 -

D The Programming Interface

therefore lead to some problems if they are used before being updated.

This problem is well known for PASCAL pointers as well.

RETURN CODES

dbstatus = 0 the entity has been deleted;

dbstatus = 10 Entity_Type has an incorrect value;

dbstatus = 30 Ent Var has an incorrect value;

dbstatus = 90 corrupted database

dbstatus = 99 I/0 or system error;

EXAMPLE

NAME

VAR soft TSOFTWARE;

soft.name := 'TURBO_PASCAL";

dbid (Software, soft);

if dbstatus > 0 then goto err_trt;

dbdelete (Software, soft);

if dbstatus > 0 then goto err_trt;

dbmodify - modify entity

INTERFACE

dbmodify (Entity_Type, var Ent_Var)

DESCRIPTION

Modifies the attribute values of the entity of type Entity_Type

designated by Ent_Var. The attribute values are obtained from

Ent Var. If Entity_Type has an identifier, there must be no other

entity of that type with the same value for that particular attribute.

- 29 -

D The Programming Interface

RETURN CODES

dbstatus = 0 the entity has been modified;

dbstatus = 2 an entity with the same identifier

exists; no modification occured;

dbstatus = 10 Entity_Type has an incorrect value;

dbstatus = 30 Ent Var has an incorrect value;

dbstatus = 90 corrupted database

dbstatus = 99 I/0 or system error;

EXAMPLE

VAR soft TS0FTWARE;

soft.name := 'TURB0-C';

dbid (Software, soft);

if dbstatus > 0 then goto err_trt;

soft.name := 'TURB0_C';

soft.release := '2.00';

dbmodify (Software, soft);

if dbstatus > 0 then goto err_trt;

3.4.6 Updating paths

NAME

dbinsert - insert entity into path

INTERFACE

dbinsert (var Target, var 0rigin, Path_Type)

DESCRIPTION

value already

Connects the entity Target to the entity 0rigin; more precisely,

inserts the entity designated by Target as a target of the 1-N path of

type Path_Type with origin designated by 0rigin. If that entity was

already a target in a path of that type, it is first removed from that

- 30 -

D The Programming Interface

path. That procedure should only be used for 1-N paths; if used for

N-1 paths, it always returns DbStatus = 11.

RETURN CODES

dbstatus = 0 the entity has been inserted;

dbstatus = 11 Path_Type has an incorrect value;

dbstatus = 30 Target or 0rigin have incorrect value;

dbstatus = 90 corrupted database

dbstatus = 99 I/0 or system error;

EXAMPLE

The following example creates a document entity and connects it

to a software.

NAME

VAR soft

doc

TS0FTWARE;

TD0CUMENT;

doc.name .- 'Requirements';

doc.subject := 'Analysis_of_Needs';

dbcreate (Document, doc);

if dbstatus > 0 then goto err_trt;

soft.name := 'Pyramide';

dbid (Software, soft);

if dbstatus > 0 then goto err_trt;

dbinsert (doc, soft, Description);

if dbstatus > 0 then goto err_trt;

dbremove - remove entity from path

INTERFACE

dbremove (var Target, var 0rigin, Path_Type)

- 31 -

D The Programming Interface

DESCRIPTION

Disconnects the entity Target from the entity Origin; more

precisely, removes the entity designated by Target from the 1-N path

of type Path_Type with the origin designated by Origin. That

procedure should only be used for 1-N paths; if used for N-1 paths, it

always returns DbStatus = 11.

RETURN CODES

dbstatus = 0 the entity has been removed;

dbstatus = 11 Path_Type has an incorrect value;

dbstatus = 30 Target or Origin have incorrect values;

dbstatus =

dbstatus =

EXAMPLE

VAR doc

ver

90 corrupted database

99 I/0 or system error;

TDOCUMENT;

TVERSION;

dbremove (ver, doc, Versioning);

if dbstatus > 0 then goto err trt;

3.4.7 Variables manipulation

These procedures handle reference and entity variables in order

to avoid user mismanipulation.

NAME

dbclear - clear reference variable

INTERFACE

dbclear (var Ent_Var)

DESCRIPTION

The Ent Var variable reference is set to null. Therefore i t

references no entity any more. The attribute values are left

- 32 -

D The Programming Interface

unchanged. No type checking is performed, therefore this operation

always succeds and no return code is provided.

NAME

dbcopyatt - copy attribute values

INTERFACE

dbcopyatt (Entity_Type, var Ent_Varl, var Ent_Var2)

DESCRIPTION

Copies the attribute values of Ent_Varl of type Entity_Type to

Ent Var2. Other information (e.g. reference,type) are left unchanged.

One must note that as the Entity_type parameter is present, no

type checking is needed nor performed on the entity variables. It is

therefore possible to copy the attribute values between entity

variables of different entity types (provided they have the same

attributes structure).

RETURN CODES

dbstatus = 0

dbstatus = 10

NAME

the attribute values have been copied;

Ent Varl is not of type Entity_Type;

dbcopyall - copy attribute values and reference

INTERFACE

dbcopyall (Entity_Type, var Ent_Varl, var Ent_Var2)

DESCRIPTION

Copies entirely (e.g. reference, type and attribute values) the

variable Ent Varl of type Entity_Type to Ent Var2. Therefore the two

entity variables designate the same entity and contain the same

attribute values.

- 33 -

D The Programming Interface

RETURN CODES

dbstatus = 0

dbstatus = 10

the attribute values have been copied;

Ent Varl is not of type Entity_Type;

NAME

dbcopyref - copy reference

INTERFACE

dbcopyref (var Ent_Varl, var Ent_Var2}

DESCRIPTION

Copies the reference of Ent Varl to Ent Var2. Therefore the two

en ti ty variables de signa te the same en ti ty. No type checking is

performed, therefore this operation always succeds and no return code

is provided. Other information (e.g. reference,type) are left

unchanged.

NAME

dbequal - verify reference equality

INTERFACE

dbequal (var Ent_Varl, var Ent_Var2) Boolean

DESCRIPTION

Returns TRUE if the references of Ent Varl and Ent Var2 are

equal; that is, the two variables designate the same entity in the

database or are bath null. No type checking is performed, therefore

this operation always succeds and no return code is provided.

NAME

dbnull - verify null reference

INTERFACE

dbnull (var Ent_Var) Boolean

- 34 -

D The Programming Interface

DESCRIPTION

Returns TRUE if the references of Ent Varl is null; that is, the

variable designates no entity in the database. No type checking is

performed, therefore this operation always succeds and no return code

is provided. Note that a variable that has not received any value yet

is undefined and not Null. There is therefore no way to see whether a

variable has been initialized or not.

3,4.8 Setting the buffer size

The buffer size can dynamically be modified at runtime with the

following procedure.

NAME

dbbuffer change buffer size

INTERFACE

dbbuffer (length integer}

DESCRIPTION

Sets a new buffer length given as a number of 'pages' (of 1024

bytes) stored in the main memory buffer. The default value is set to

8; the minimum is 1 and the maximum is 100 pages. If length is not

within this range, no changes are performed. When this procedure is

called every pages contained in the buffer are saved to secondary

memory. Thus, all preceding changes that occured in the database are

secured on disk. The buffer and the variables needed to manage it are

reset, so that the global situation is the same as after the opening

of the database.

RETURN CODES

dbstatus = 0 the buffer size has been changed;

dbstatus = 1 the length parameter has an incorrect value;

dbstatus = 70 no sufficient main memory space to create new

buffers;

dbstatus = 99 I/0 or system error;

- 35 -

D The Programming Interface

3.4.9 Handling several databases

As already said, PYRAMIDE allows to work on several databases at

the same time. The databases must have been opened thus initializing

the database descriptor bloc pointers. Then, the last database that

has been opened is active and all primitives that are being called

operate on the active DB. If the user wants to perform some

operations on another opened database, he must select it, so that it

becomes the active database.

NAME

dbselect - select a database

INTERFACE

dbselect (DbDesc)

DESCRIPTION

Selects a database descriptor bloc. From

database is the one pointed by this descriptor.

now on , the active

Pay attention that

the pointed database must have been opened previously. The previous

active database is disactivated, but not closed !

RETURN CODES

dbstatus = 0

dbstatus = 1

EXAMPLE

the database pointed by DbDesc is active;

no opened database is pointed by DbDesc;

In the following example, we suppose that the 'Employee' database

con tains among others, the Analyst enti ty type which has the same

attribute 'name' as Author in the 'Soft Env' database. Therefore the

following program creates in the Employee database, the Analysts that

are Authors in the Soft Env database.

Label err_open;

- 36 -

D The Programming Interface

Type TAUTHOR

TANALYST

Var designer

analyst

dbl, db2

=

=

record

name

team

end;

record

name

address

end;

TAUTHOR;

TANALYST;

DDB;

string[35];

integer;

string[35];

record

street

number

locality

end;

dbopen {Employee, dbl);

string[30];

integer;

: string[15];

IF DbStatus <> 0 then goto err_open;

dbopen (Soft_Env, db2);

IF DbStatus <> 0 then goto err_open;

Dbfirst (Author, designer);

While DbFound do

Begin

Analyst.name := Author.name;

dbselect (dbl) ;

dbcreate (Analyst, designer);

dbselect (db2);

dbnext (Author, designer)

End;

- 37 -

D The Programming Interface

NOTE

An entity variable is divided in three main parts. The attribute

part can be handled by the application program, while the two other

parts (reference and type code part) should normally never be accessed

by anyone but the DBMS.

There are two kinds of primitives in the programming interface.

The first kind allow to initialize an entity variable (Dbfirst,

Dblast, Dbcopyall, Dbclear, Dbcreate). That is, these primitives fill

in the various parts of the resulting entity variable.

The primitives of the other kind need that the rigth entity type

code be present in the entity variables passed as parameters.

Therefore, these entity variables must have been previously filled in

by some initializing procedure. These primitives that have to access

the type code are dbfpath and dblpath for the origin entity variable;

Dbnpath, dbppath, dbremove and dbinsert for the origin and the target

entity variables; and Dbnext, Dbprior, Dbmodify and dbdelete for the

entity variable.

3.5 Integrity management

PYRAMIDE will allow embedded transactions. This is possible by

building a hierarchy of transactions. Each transaction is composed of

a set of child transactions that must begin after and end before their

parent transaction.

structure allowing

transactions and to

Embedded transactions offer a dynamic control

to distribute the work between the child

do roll back on a limited number of child

transactions. This particular transactions management is a first

answer to the specific needs already discussed in the requirements

analysis.

- 38 -

D The Programming Interface

NAME

dbbgtr - begin a new transaction

INTERFACE

dbbgtr (var ta id integer)

DESCRIPTION

Within the active database, a transaction is started as unit of

consistency, synchronisation and recovery. If the operation is

successful the transaction identifier is given as a result in ta id.

If the transaction is started inside an already on-going transaction,

it is considered as being its child.

RETURN CODES

dbstatus = 0

dbstatus = 30

NAME

a new transaction has begun;

problem creating a new transaction;

dbendtr - end transaction

INTERFACE

dbendtr (ta_id integer)

DESCRIPTION

Within the active database, the transaction identified by ta_id

and all its child transactions will be finished. After this operation

has terminated correctly, all changes that have been performed since

transaction begin are made permanent in the database.

RETURN CODES

dbstatus = 0

dbstatus = 90

the transaction has ended;

problem ending the transaction;

- 39 -

D The Programming Interface

NAME

dbabtr - abort transaction

INTERFACE

dbabtr (ta_id integer}

DESCRIPTION

Within the active database, the transaction identified by ta_id

and all its child transactions will be aborted by undoing all updates

that have been performed since the begin of that transaction.

RETURN CODES

dbstatus = 0

dbstatus = 90

the transaction has aborted;

problem aborting the transaction;

3. 6 · The DbSys procedures

A set of DbSys procedures allow the user to work on the physical

structures of the DBMS which are hidden in the Unit. Using these

procedures can be dangereous. They should only be used by advanced

programmers being acquainted with the physical level of PYRAMIDE.

Therefore these procedures are only outlined in this document.

These additional primitives are interesting for performance

measuring, and also to unders tand how the Kernel primitives work.

Such procedures allow for instance the programmer to do debugging of

the Kernel primitives at a very low level. Functionalities such as to

enable/disable tracing along the internal procedures of the DBMS are

supported. Procedures to read internal schema information or internal

pointers are also provided.

As conditional compiling is performed, these procedures are not

always availaible depending on the compiled version in use.

Therefore, parameters setting at source code level is sometimes

necessary before re-compiling to have these procedures available. If

you need such enhancements or simply more information, please contact

- 40 -

D The Programming Interface

either the author or Professor Hainaut.

description of some of these primitives.

NAME

dbsys traceon - enables tracing

INTERFACE

dbsys traceon (level integer, output

DESCRIPTION

Here follows a short

string[64])

Enables tracing among internal primitives of the DBMS at a given

level, and directs the result towards the indicated output "file"

("de bug. trc" , screen, prin ter, ...) .

RETURN CODES

dbstatus = 0

dbstatus = 90

NAME

tracing is enabled;

not possible to open the output;

dbsys traceoff - disables tracing

INTERFACE

dbsys_traceoff

DESCRIPTION

Disables any previously active tracing.

RETURN CODES

dbstatus = 0

dbstatus = 90
tracing is disabled;

not possible to close the output;

- 41 -

D The Programming Interface

NAME

dbsys ref - decodes a reference

INTERFACE

dbsys_ref (var Ref_Var, var page integer, var posit integer)

DESCRIPTION

Decodes an internal reference of an entity into its page number

and its position inside that page.

NAME

dbsys space - gives the free space

INTERFACE

dbsys_space (page integer) integer

DESCRIPTION

Gives the remaining free space in a given page designated by its

physical number.

NAME

dbsys first - get first record

INTERFACE

dbsys_first (page integer, var Ent_Var)

DESCRIPTION

Finds the first entity record whatever its type contained in the

given page of the active database and stores its reference and its

attribute values into the variable Ent Var. If that enti ty doesn' t

exist, the content of Ent Var is unchanged.

- 42 -

D The Programming Interface

RETURN CODES

dbstatus = 0 an entity has been found;

dbstatus = 1 entity not found; there aren't any entity in that

page of the active database;

dbstatus = 99 I/0 or system error;

NAME

dbsys next - get next record

INTERFACE

dbsys_next (page integer, var Ent_Var)

DESCRIPTION

If Ent Var designates an entity of the given page in the active

database which is not the last one, the procedure finds the next

entity whatever its type that follows the entity designated by Ent_Var

in the database. It then stores the reference and the attribute

values of the next entity into the variable Ent Var. If Ent Var was

the last entity in that page, the content of Ent Var is unchanged. If

Ent Var has a null reference, dbnext acts as dbfirst (the successor of

none is the first one). The dbfirst procedure is therefore redundant.

RETURN CODES

dbstatus = 0

dbstatus = 1

dbstatus = 99

an entity has been found;

entity not found; no more entities in that page;

I/0 or system error;

N.B. These two last procedures enables the programmer to dump the

entity records contained in a given page. Therefore, it is very easy

to completely dump the content of a whole database, by scanning all

the pages with those procedures.

- 43 -

D The Programming Interface

NAME

dbsys info ent - get info about entity type

INTERFACE

dbsys_info ent (type: integer, var Latt, Lptr, posid, Lid,

typid, Pbeg, Pend: integer)

DESCRIPTION

Gives information about the entity records of a given type. It

gives the length of the attributes and of the pointers, the position,

the length and the type of the identifier, and the page range for the

entity type.

RETURN CODES

dbstatus = 0

dbstatus = 10

NAME

the entity descriptor has been found;

the entity type doesn't exist;

dbsys info path - get info about a path type

INTERFACE

dbsys info path (path: integer, var typorig, typtarg, posorig, - -

postarg: integer)

DESCRIPTION

Gives information about the paths of a given path type. It gives

the entity types of the origin and the target, and the position of the

path pointers in the respective entities.

RETURN CODES

dbstatus = 0

dbstatus = 10

the path descriptor has been found;

the path type doesn't exist;

- 44 -

D The Prograrnrning Interface

3.7 Fine tuning of parameters

Sorne physical pararneters can be set to user defined values in

order to get optirnized performance frorn a given set of applications.

These pararneters are the storage scherne and the page range of each

entity type. A detailed explanation of the resulting effects will be

given in the physical description of the DBMS.

The storage scherne of each entity type can be set either to

Clustered or Randorn. The default setting is clustered. If the

storage scherne is Randorn, an explicit page range must be given. The

page range of each entity type can be set as the beginning and ending

page nurnbers such that 0 < Beg <= End <= 65000. This is done at

scherna description tirne, and cannot further be rnodified after scherna

compilation.

4 Ca.se st'l..l.d..:i..es

4.1 The Soft Env database

4.1.1 Description of the application dornain

A software product is described by documents. Each document can

have rnany versions. And each version has been realized by one or more

authors under a contract nurnber. The scherna of the database is given

in figure D.1.

4.1.2 The prograrnrning environrnent

The following definitions are available in the Soft Env.TYP file

after compilation of the scherna with the MetaCornpiler. This file must

be included in any prograrn working with the Soft Env database.

- 45 -

SOFTWARE

Nane
Release

L ~ Description

DOCUMENT

Nsne
Sl.bject

L ~ Verslonlng

VERSION

Nun
Date

Reallzed_By

Realization

Conlract Nbr -

V

Reallzes

AUTHOR

Nane
Team
Adâess(2]

Street
Number
Locallty

Agn 0.1 : lheloglçal schema of the Soft .. Env database

D The Programming Interface

CONST

SOFTWARE =
DOCUMENT =
VERSION =
REALIZATION =
AUTHOR =

DESCRIPTION =
VERSIONING =
REALIZED BY =
REALIZES ·-

TYPE

TSOFTWARE = record

NAME String[35];

RELEASE String[4];

end;

TDOCUMENT = record

NAME String[35];

SUBJECT String[16O];

end;

TVERSION = record

NUM integer;

DATE Sting[6];

end;

TREALIZATION = record

CONTRACT NBR integer;

end;

- 46 -

D The Programming Interface

TAUTHOR = record

NAME String[35];

TEAM byte;

ADDRESS : array [1 .. 2] of

record

street

number

string[3O];

integer;

locality: string[15];

end;

end;

4.1.3 Simple sequential scanning

This first program lists the characteristics of all the SOFTWARE

entities. It simply scans the SOFTWARE entities in the database and

displays the values of NAME and RELEASE for each of them.

program seql;

uses pyramide;

{$1 soft_env.typ}

Var SOFT

dtb

Begin

TSOFTWARE;

DDB;

dbopen ('soft_env', dtb);

dbfirst (SOFTWARE,SOFT);

While DbFound DO

Begin

End;

writeln (SOFT.NAME, SOFT.RELEASE);

dbnext (SOFTWARE,SOFT)

dbclose (dtb)

End.

- 47 -

D The Programming Interface

4.1.4 Selective sequential scanning

The program lists the RELEASE of all the DOCUMENT entities whose

NAME matches the value given by the user at the terminal. Since NAME

doesn't identify a DOCUMENT, the program has to check explicitly the

NAME value of each DOCUMENT.

program seq2;

uses pyramide;

{$1 soft_env.typ}

Var DOC

Name

dtb

TDOCUMENT;

String[35];

DDB;

Begin

dbopen ('soft_env' ,dtb);

write ('Enter document name

dbfirst (DOCUMENT,DOC);

While DbFound DO

Begin

if DOC.NAME = Name

then

'); readln(Name);

writeln (DOC.RELEASE);

dbnext (DOCUMENT,DOC)

End;

dbclose (dtb)

End.

4.1.5 Immediate access based on identifier

The program displays the characteristics of the SOFTWARE entity

(if any) whose NAME matches the value given by the user at the

terminal. A NAME value identifies at most one SOFTWARE entity.

- 48 -

D The Programming Interface

program ident;

uses pyramide;

{$1 soft_env.typ}

Var SOFT

dtb

TSOFTWARE;

DDB;

Begin

dbopen ('soft_env' ,dtb);

Write ('Enter software name

dbid (SOFTWARE,SOFT);

if DbFound DO

'); readln {SOFT.NAME);

then writeln (SOFT.NAME, SOFT.RELEASE);

dbclose {dtb)

End.

4.1.6 A 2-level embedded access program

The program prints a report giving the NAME of all DOCUMENT

entities for each SOFTWARE entity of the database. For each SOFTWARE

entity, the program examines all the DOCUMENT entities that are

connected toit via DESCRIPTION and gets the value of their NAME.

program path;

uses pyramide;

{$1 soft_env.typ}

Var SOFT

DOC

dtb

Begin

TSOFTWARE;

TDOCUMENT;

DDB;

dbopen ('soft_env' ,dtb);

dbfirst (SOFTWARE,SOFT);

- 49 -

D The Programming Interface

End.

While DbFound DO

Begin

End;

writeln (SOFT.NAME);

dbfpath (DOC, SOFT, DESCRIPTION);

While Dbfound DO

Begin

writeln (' DOC.NAME, DOC.SUBJECT);

dbnpath (DOC, SOFT, DESCRIPTION)

End;

dbnext (SOFTWARE,SOFT)

dbclose (dtb)

4.1,7 A 5-level embedded access program

That program is a bit more complex since it navigates through all

the entity types of the database. Its purpose is to list the NAME of

all the AUTHOR that have been working on a given SOFTWARE.

The main structure of the algorithm can be paraphrased into the

pseudo-program:

get the specified SOFTWARE

for each of DOCUMENT of the SOFTWARE

for each VERSION of the current DOCUMENT

for each REALIZATION of the current VERSION

get the corresponding AUTHOR

print his NAME

One can note that there is also a protection against the multiple

printing of the same AUTHOR name. The Putset procedure puts a new

name into a set of names. The boolean InSet procedure is true if the

name is already in the set. So with the additional test, we are sure

not to print trwice the same name.

- 50 -

D The Programming Interface

program Aut;

uses pyramide;

{$1 soft_env.typ}

Var SOFT TSOFTWARE;

DOC TDOCUMENT;

VER TVERSION;

REAL TREALIZATION;

AUT TAUTHOR;

dtb DDB;

Begin

InitSet;

dbopen ('soft_env' ,dtb);

write ('Enter software name

dbid (SOFTWARE,SOFT);

'); readln(SOFT.NAME);

if DbFound then

Begin

dbfpath (DOC, SOFT, DESCRIPTION);

While Dbfound DO

Begin

dbfpath (VER, DOC, VERSIONING);

While DbFound DO

Begin

dbfapth (REAL, VER, REALIZED_BY);

While DbFound DO

Begin

dbfpath (AUT, REAL, - REALIZES);

if DbFound and Not InSet(AUT.NAME)

then Begin

PutSet (AUT.NAME);

writeln (AUT.NAME)

End;

dbnpath (REAL,VER,REALIZED_BY)

END;

dbnpath (VER,DOC,VERSIONING)

- 51 -

D The Programming Interface

End;

dbnpath (DOC, SOFT, DESCRIPTION)

End

End;

dbclose (dtb)

End.

4.2 The Bill-Of-Material (BOM) database

4.2.1 Description of the application domain

This example is taken from [Hain87], It concerns the description

of a collection of machine parts in such a way that a part can be made

up of other simpler parts, called its sub-parts. We admit that a part

enters into at most one other part, called its super-part. Moreover,

a part cannot go into itself, neither directly nor indirectly.

The database schema (figure D.2) includes only one entity type,

namely PART. A PART entity is characterized by its NAME, which is an

identifier, the QUANTITY of such parts that enter into the super part

and the WEIGHT of one such part. The super/sub-part relationship is

represented by the PSP relationship type.

4.2.2 The programming environment

The following definitions are available in the file BOM.TYP that

must be included in any program working with the BOM database. This

file has been automatically generated by the MetaCompiler.

CONST

PART=

PSP =

- 52 -

PART PSP

Na:ne
\ [7 Quantity

Welght

Figure D.2: ThelQglçalaçhemaoflhe BOIi datph@lft

D The Programming Interface

TYPE

TPART = record

NAME

QUANTITY

WEIGHT

end;

4.2.3 Part explosion

String[35];

Integer;

Real;

The schema is basically recursive and naturally induces some

recursive procedures such as the following.

Let' s design a program that displays the characteristics of a

given part together with all its direct and indirect sub-parts. We

will define a procedure, called EXPLODE, that displays the

characteristics of a part, then applies i tself to each sub-part of

that part.

program BOM1;

uses pyramide;

{$1 bom.typ}

Var P : TPART;

dtb : DDB;

Procedure EXPLODE (var P

Var SP : TPART;

Begin

writeln (P.NAME};

dbfpath (SP,P,PSP};

While DbFound DO

Begin

TPART);

EXP LO DE (SP} ;

dbnpath (SP,P,PSP}

End

End;

- 53 -

D The Programming Interface

Begin

dbopen ('soft_env' ,dtb);

write ('Enter id-name of the part ta explode ');

readln (P.NAME);

dbid (PART ,P);

if DbFound

then EXPLODE (P);

dbclose (dtb)

End.

4.2.4 Computing the weight of a part

A similar structure can be used ta salve the problem of computing

the weight of a part, knowing the weight and the number of each of its

sub-parts, and sa on recursively. The PWEIGHT procedure updates the

database so that the WEIGHT of each super-part depending on a given

part Pis computed as the sum of the weight of all its sub-parts.

program BOM2;

uses pyramide;

{$1 bom.typ}

Var P: TPART;

dtb : DDB;

{the root of the part decomposition}

Function PWEIGHT (var P : TPART) : real;

Var SP TPART; {one of the components of part P}

PW real; {the weight of part P}

Begin

PW := O;

dbfpath (SP,P,PSP);

While DbFound DO

Begin

PW := PW + SP.QUANTITY * PWEIGHT (SP);

dbnpath (SP,P,PSP)

End;

- 54 -

D The Programming Interface

End;

if PW > 0 {update part Pif it has at least one component}

then Begin

P. WEIGHT : = PW;

dbmodify (PART,P)

END;

PWEIGHT : = PW {return the weight of part P}

Begin

End.

dbopen ('soft_env' ,dtb);

write ('Enter id-name of the part to update ');

readln (P.NAME);

dbid (PART,P);

if DbFound

then writeln('Weight of part' ,P.NAME,' = ',PWEIGHT(P));

dbclose (dtb)

4.3 Listing of a schema

We give herein a program that lists the ENTITY TYPE entities of a

schema together with the ATTRIBUTE entities connected to them, and the

REL TYPE entities. The Process_Att procedure processes recursively

the component attributes of a super-attribute. And from each REL TYPE

entity, the program scans the ENTITY TYPE entities connected toit via

a ROLE entity. This example shows clearly that working on the Meta

Datais the same as working on normal data. There is only the types

(contained in standard.typ) the primitives are working on which

change.

- 55 -

D The Programming Interface

program listdb;

{ -- listing of a schema description -- }

uses pyramide;

{$1 standard.typ}

label EXIT;

var SCH TDBSCHEMA;

ET1, ET2 TENTITY_TYPE;

RT TREL_TYPE;

ROL TROLE;

ATI TATIRIBUTE;

DTB DDB;

I : integer;

Procedure Process Att (var ATI: TATT);

Var SATI: TATT;

Begin

{one of the component attribute of Att}

End;

writeln (ATI.NAME);

dbfpath (SATI, ATT, ATI_ATI);

While DbFound Do

Begin

Process_Att (SATI);

dbnpath (SATI, ATI, ATI_ATI)

End

begin

dbopen('standard', DTB);

if DbStatus <> 0 then begin

writeln ('problem opening');

goto exit

end;

write ('Enter a schema name '); readln (SCH.NAME);

- 56 -

D The Programming Interface

dbid (DBSCHEMA,SCH);

if DbNotFound then begin

writeln ('Schema not found');

goto exit

end;

dbfpath (ETl,SCH,DBSCHEMA_ET);

WHILE DBFOUND DO { list the ENTITY TYPE entities}

BEGIN

writeln ('ET: ',ETl.NAME);

dbfpath (ATT,ETl,ET_ATT);

WHILE DBFOUND DO { list the ATTRIBUTE entities}

BEGIN

Process_Att (ATT); {process recursively the attributes}

dbnpath (ATT,ETl,ET_ATT);

END;

dbnpath (ETl,SCH,DBSCHEMA_ET);

END;

dbfpath (RT,SCH,DBSCHEMA_RT);

WHILE DBFOUND DO { list the REL TYPE entities}

BEGIN

writeln ('RT: ',RT.NAME);

dbfpath (ROL, RT, RT_ROLE);

While DbFound DO

Begin {list the ENTITY TYPE entities connected by a ROLE}

dbfpath (ET2, ROL, - ET_ROLE);

End;

if DbFound then

writeln ('ET: ',ET2.NAME,' with role ',ROL.NAME);

dbnpath (ROL, RT, RT_ROLE)

dbnpath (RT,SCH,DBSCHEMA_RT);

END;

dbclose(DTB);

EXIT

end.

- 57 -

D The Programming Interface

4.4 Loading of a schema description

Here follows a program that loads the description of the BOM

schema in the form of meta data.

program loaddb;

uses pyramide;

{$1 standard.typ}

label EXIT, fin;

var SCH TDBSCHEMA;

DTB DDB;

ET TENTITY_TYPE;

RT TREL_TYPE;

Rol TROLE;

Att TATTRIBUTE;

Corn TCOMPONENT;

GR TGROUP;

I integer;

begin

dbopen('BOM' ,DTB);

SCH.NAME := 'BOM_Schema'; {creating a new BOM schema}

SCH.Short_Name := '';

dbcreate(DBSCHEMA,SCH);

ET.Name := 'PART';

ET.Short_Name := '';

ET.Beg_Page .- O;

{creating the entity type PART}

ET.End_Page .- O;

dbcreate(ENTITY_TYPE,ET};

dbinsert (ET,SCH,DBSCHEMA_ET};

ATT.NAME := 'NAME';

ATT.VAL_TYPE := 'S';

ATT.VAL LENGTH := 35;
ATT.DEC := O;

ATT.MIN REP := 1;

{creating the attribute NAME}

- 58 -

D The Programming Interface

ATT.MAX_REP := 1;

dbcreate (ATTRIBUTE,ATT};

dbinsert (ATT,ET,ET ATT);

COM.NUMBER := 1;

COM.C TYPE:= 'S';

dbcreate (COMPONENT,COM};

dbinsert {COM,ATT,ATT_COMP);

GR.NUMBER := 1;

GR.ID := 'Y';

GR.STATUS := 'P';

GR.REF:= 'N';

GR.KEY:= 'Y';

dbcreate (GROUP,GR);

dbinsert (COM,GR,GR_COMP};

ATT.NAME := 'QUANTITY';

ATT.VAL TYPE:= 'I';

ATT.DEC := O;

ATT.MIN REP .- 1;

ATT.MAX REP .- 1;

dbcreate (ATTRIBUTE,ATT);

dbinsert (ATT,ET,ET_ATT};

ATT.NAME := 'WEIGHT';

ATT.VAL TYPE:= 'R';

ATT.DEC := O;

ATT.MIN REP := 1;

ATT.MAX REP .- 1;

dbcreate (ATTRIBUTE,ATT};

dbinsert (ATT,ET,ET_ATT);

RT.NAME := 'PSP';

RT.SHORT_NAME := '';

{creating the attribute QUANTITY}

{creating the attribute WEIGHT}

{creating the relationship type}

dbcreate (REL_TYPE,RT);

dbinsert (RT,SCH,DBSCHEMA RT};

Rol.NAME := 'ORIGIN';

- 59 -

D The Programming Interface

Rol.MIN CON.- 1;

Rol.MAX CON.- 1;

dbcreate (ROLE,Rol);

dbinsert (Rol,RT,RT_ROLE);

dbfirst (ENTITY_TYPE,ET);

dbinsert (Rol,ET,ET_ROLE);

Rol.NAME := 'TARGET';

Rol.MIN CON.- 1;

Rol.MAX CON:= 9999;
dbcreate (ROLE,Rol);

dbinsert (Rol,RT,RT_ROLE);

dbnext (ENTITY_TYPE,ET);

dbinsert (Rol,ET,ET_ROLE);

fin: dbclose(DTB);

EXIT

end.

- 60 -

IDE-DBM

E The PYRAMIDE - DBMS

1. The ~~chitectu~e of the DBMS

PYRAMIDE has been programmed into three main layers

corresponding to different levels of abstraction. The well-known

advantages of such a hierarchical structure are to reduce the

complexi ty of the system (as i t is decomposed in to smaller

components), while insuring its independance with respect to

maintenance (as interrelations between the different layers are

restricted). The view offered at each level hides the concepts

belonging to the other layers, thus simplifiyng the perception of each

part making up the global system. And the independency principle is

that the modification of given layer doesn't induce any change in the

other layers.

The higher layer deals with the concepts of entity type, relation

type, a t tri bu te and da ta base. I t comprises primitives to manage

databases, to access and update entities and relations and to work on

attribute values. The intermediate layer deals with the concepts of

reference, logical accesses and schema information tables. It

comprises primitives to retrieve information from the tables, to

access and update records, to navigate among paths between records and

to manage references. And finally, the lower layer deals with

physical concepts such as page, buffer, string of bytes and pointers.

We find here primitives to work at the file and byte level.

Between the logical and the physical layers, we can also find the

!SAM (Indexed Sequential Access Method) that allows to quicken access

to entities according to their identifier value.

E The PYRAMIDE - DBMS

2. Ph.ysica..l da.ta. C>:f

PYHAMI.DE-DBMS

2.1 Inter records chaining (bi-directional ring)

The sequential scanning of records of the same type is made

possible by chaining them one to another with pointers. A pointers

table gives the reference of the first record for each type (if it

doesn't exist, the reference is Null). Then each record is chained

bi-directionally in a ring fashion. That is, each record has a first

pointer towards its preceding record in the chain and a second pointer

towards the next one (see figure E. 1) . Thus, enabling very easy

access to the firs t, las t, previous and next record, in no more than

one physical access {if it is not already in the buffer).

Here the ring solution was chosen because it doesn't cost

anything to find the first record in the ring thanks to the presence

of an indirection table painting towards it. The same solution was

not chosen for path pointers as we will see in the next point.

2.2 Intra path chaining (bi-directional}

Here, the sequential scanning of the records in a path is

realized as follow. The origin enti ty record has a pointer towards

its first target record in the path and another towards its last

target. In turn, each target entity record has a pointer towards the

preceding target in the path, another towards the next one and a third

one towards its origin entity record (see figure E.2). Thus, enabling

easy access to the first, last, prior and next target, and back to the

origin record from a target, in no more than one physical access (if

not present in the buffer).

The ring method was not implemented here, because it would cost

one more physical access (to the origin record) to find the first

target in the ring. Instead, the first target in our system is the

- 2. -

/
,/

l

.. ·· ···-·-·---.

1--------f -.-·
i

"

'

..
f

' J
\ I ' _, ... ____ .,,---

Figure E. 1 : Inter@nttl.ie1 çhalning

...

i.--····· - ...

Origin
1 1 \ 1 , 1 1

. \,
/

..---
/ .,,

I
/

--·
,,,, ,,_"Il,

" i
' i
i

. .

..... ··\••' •'
.......

\
\

' .\ ,,
' .. -- ____ ,,-~

Agn E.2 : intra patte chalning

E The PYRAMIDE - DBMS

one without any preceding target; the last one having not any

following target (pointers set to the Null reference).

2.3 Physical record composition

We must distinguish the record composition between records stored

into reference variables (in main memory) and records stored in the

database (in the file or the buffer).

In the database, a record is composed of its entity type coded

in to one byte, a string of pain ters (three bytes) towards other

records to implement sequential access among records of a given type

and inside paths between records, and the attribute values of the

entity record (figure E.3).

In reference variables, a record is preceded by i ts reference

(three bytes) and the pointers are not present (figure E.4).

So, this explains the formula to calculate the length of a

record. That is, besides its attribute values, a record in the DB is

composed of a type (one byte), two inter records pointers (2 * 3

bytes), and (3 * the number of paths in which its type is the target

type) + (2 * the number of paths in which its type is the origin

type). In a reference variable, the actual length occupied by the

record can be calculated as the total attributes length + 1 (for the

type byte).

2.4 Physical structure of a page

As already said, the database is completely contained in one file

that is divided into pages of 1024 bytes.

There are various types of pages. For the mas t part, pages

contain user data and/or meta data, they are called data pages. But

some others contain schema information tables, or records pointers, or

free space indexes, or B-trees indexes. Each page has its four first

bytes reserved for special purpose. In particular, the third byte

- 3 -

. Type String of Pointers Attribute values

Fu,re E,3: record coumosltiQo 10 the dat@bgse

Reference I Type 1 Attribute values

Fun E,4: record composition ln• Yftd@hle

E The PYRAMIDE - DBMS

always give the type of the page. "l" is for pages containing schema

information tables. "2" is for the en ti ty record pointers page. "3"

is for level-one free space index and 11 411 for the second-level pages.

"5" is for the B-Trees indirection table page. 11 611 is for the B-Trees

indexes and "7" for the B-Trees leaf pages. And finally, "10" denotes

a page where datais strored in the form of entity records. This is

important for recovery purposes and also to control access to some

pages.

The different kinds of page have also different structures. We

will described here the pages containing data stored in the form of

records. The other kinds of page will be studied later.

A data page is composed of a data zone and an indirection

pointers table. The first two bytes of the page are pointers to these

two zones that avoid collision. The first byte points towards the

last pointer of the indirection table. Where the second byte points

to the last bloc of bytes occupied by data. One must note also that

the first byte gives the right number of the pointer, while the second

gives a value in terms of data blocs (that is four bytes). The

pointers (one byte) in the indirection table also give a value in

terms of data blocs. That is, we lose in fact an average of two bytes

per record which seems negligible (see figure E.5).

The address of a record is decomposed into a page number coded

onto two bytes, and a rank number of the record into the given page

coded onto one byte. An address is said to be NULL if the page number

and the rank are set to zero. It is an invalid address since the

first page (numbered zero) always contains DB management information

and ranks begin with number one.

The address part that gives the rank number of the record stored

in the current page, is in fact the number of the pointer towards this

record in the indirection table. That is, we can theoretically have a

maximum of 255 records stored in a page. A pointer in the indirection

table having a value equal to zero means that the corresponding record

has been deleted. This system insures the stability of the addresses

- 4 -

F'u,:e E.5 : the stnJcture of a data page

Attribute pointer position k:l's k:l's Page
length length ofld length type range

Entttytype ctescnptor

origin's target's pointers pointers
type type ln orlgln lntarget

eattJwe descdptor

fiMe E.&: descriPtom for entHy and pa1h tmes

E The PYRAMIDE - DBMS

of the records in case a page is recompacted. That is, after deletion

of a record, the page is recompacted and the values of the indirection

table pointers are updated. And as records are never moved from one

page to another, our system insures the global s tabili ty of the

addresses.

2.5 The schema information tables

We can easily understand that the DBMS needs to know some

information about the entity records and the paths between them.

These information are given by the schema internal tables.

These tables contain for each entity type, the length of its

attributes, the length of its paths pointers, the position, the length

and the type of the identifier attribute (if it there is one), and the

storage page range. That is nine bytes for each entity record

descriptor. In addi tian the tables con tain for each pa th type, the

origin and target entity types, and the positions of the path pointers

in the origin and targets records; that is, four bytes per path type

(figure E.6).

These tables are contained in specially structured pages. The

first two bytes of the page are used as a pointer towards the next

"table" page (if it exists, else zero). The third byte gives the page

type (i.e. ' 1') , and the four th byte gi ves an offset value for the

beginning of the data pages. The next byte gives the number of entity

record descriptors, and then corne the descriptors one after another in

increasing order of the type code. The byte following the last entity

record descriptor gives the number of path descriptors which then corne

one after another in increasing order of the path code. The DBMS has

therefore, all the information necessary to access these tables, and

then to use them to navigate from one record to another and retrieve

or update data. As the information contained in those tables is

accessed very often, they are stored at opening time and stay always

in main memory.

- 5 -

E The PYRAMIDE - DBMS

One can point out the redundancy between the database schema and

i ts compiled form s tored in the in ternal tables. The informa tian

needed by the DBMS could therefore be derived from the schema at the

opening of the database. But this would involve a loss of time and

could lead to internal errors if the schema is updated. In our

solution, the changes are taken into account only if the schema is

recompiled.

2.6 General physical structure of the file

The first page always contains the schema information tables that

have previously been compiled by the MetaCompiler. If they span

across more than one page, the pages containing them are chained one

to another via pointers included in the pages themselves. This

chaining mechanism allows further extension of these tables as they

can be expanded anywhere in the database file provided that some

protection is awarded to these particular pages. This is very

important for dynamic updating facilities of the database schemata and

is already supported by the current version of the DBMS.

Then we have a page containing pointers to access the first

entity record of each entity type. The other records belonging to the

same type being chained one to another, thus enabling sequential

access. The next page con tains an indirection table to B-Trees

indexes corresponding to each enti ty type. And finally there is a

page containing the "level-one" free space index, and another

containing the first "level-two" free space index.

The schema information tables pages, the record pointers page,

the B-Trees indirection table page and the level-one free space index

page are loaded into tables in main memory at opening time, in order

to speed up frequent access to them.

From this short description we can already note that the first

page available from the user point of view is the page logically

numbered one, which in fact begins with a physical number equal to 3 +

- 6 -

E The PYRAMIDE - DBMS

the number of pages for the internal tables located at the beginning

of the file.

Impleme~t~ti~~ ~spects

3.1 The enhanced LRU Buffer management

The pages that are read from the database file are loaded into a

special area in main memory called a buffer. This buffer is

decomposed into frames. A frame can contain exactly one page of the

file and the default number of frames (8) can be changed at runtime.

Each frame has a descriptor giving the number of the page that is

currently loaded in the frame, a flag that is set to true when the

page has been updated while being in main memory, and a date giving

information on the age of the page (see figure E.7).

That is, each time a page is accessed in the buffer, a global

date variable is increased and the date field of the frame's

descriptor is updated. When there is no more empty frames in the

buffer, one of the frames must be freed before another page can be

loaded. The frame must be carefully chosen, as if it contains a page

that has been updated, an access to the disk is necessary to unload it

back into the database file so that the changes are made permanent.

On the other hand, if the frame contains a page that is often

accessed, even read only, it should stay in main memory. In short we

can say that in our system, the oldest page is chosen (that is, the

page that has been the least recently accessed). But pages that have

been updated are protected has their age is divided by two.

Every time a page is needed by the DBMS, it first searches the

buffer. In case the requested page is present, no physical access

occurs. Otherwise, the page is loaded into the buffer, after having

freed a frame containing the least recently used page, if needed.

This strategy allows the DBMS to keep the working set of pages in main

memory, thus reducing drastically physical accesses.

- 7 -

Buff.;:e::..r ______ _ Butter descriptor

Frame Frame
1 2

Max
Space, Ptr

10:24

PageNbr date modlfied

Figure E.7 : the Byffer

0

0

0

344

1024

.... ----
i-~-~--

__ .. --________ ...-.
--► --------

Databasefile

Figure E.8 : the free mace Index

E The PYRAMIDE - DBMS

When the global date reaches its maximum value, it is re

initialized together with the frames descriptors. The system is so,

that the relative age of the pages is kept the same. Thus, this re

initialization (which happens rarely) introduces no disfunction.

3.2 The free space index

When searching where to store data in the database (i.e. in which

data page), a free space index is used. As we have seen previously,

if the page where a record should be stored (according toits storage

scheme) is full, some other pages are looked for. But if those pages

were to be accessed to see how much space is left, it would increase

dramatically physical accesses and thus, lower the DBMS performances.

Instead, a two level index is being searched. Each entry of the

first level (contained in one database's page stored in main memory)

gives the maximum space available that can be found in a given set of

510 database pages and a pointer towards a second level page indexing

those da ta pages. Then, each en try of a page of the second level

gives the remaining space in a given page (figure E.8). Therefore,

our system insures the DBMS to find the right page where to store some

data in no more than one physical access. Still, at most one physical

access is needed to store the data (if the page was not in the

buffer). That is, any data record can always be stored in the

database in no more than two physical accesses (including the search

for free space and the storing of the record).

The special purpose pages in the database are protected against

user data insertion as they are declared full (the corresponding free

space index's entry is zero) as soon as they are created.

3,3 The ISAM

In order to retrieve random information very quickly from a large

database, an Indexed Sequential Access Method is provided to access

data on basis of an identifier value. That is, for each entity type

having an identifier, an index is build in the database.

- 8 -

E The PYRAMIDE - DBMS

3.3.1 General ISAM principles

An ISAM is composed of individual pieces of information called

"keys". A key is an ASCII string representing some value in a data

record. The index is arranged in such a way that keys can be

retrieved randomly and sequentially. While there are many ways to

implement an ISAM index, the B-Tree is generally accepted as being the

current state of the art.

A tree structure is called such because if all the search paths

are drawn out, they look like an inverted tree. The search starts at

the root and progresses towards the bot tom (the leaf level) . In a

simple binary tree, each key is stored in an individual node together

with two pointers that make up the search paths through the tree. A

search through a binary tree is very simple. The searched key is

compared to the key in the root and if i t matches, the search is

successful. Otherwise, the search must go on. That is, if the key is

smaller than the key in the root, the path designated by the left

pointer is taken; else, the path to the right is taken. Then the key

is compared to the key in the current node and appropriate action is

taken. The search goes on until the key is found in some node or a

leaf node is unsuccessfully evaluated.

As long as the nodes are kept in main memory this is an efficient

method. But once the nodes must be stored on secondary storage

devices (because of the large volume), the performance quickly

degrades because of the large number of physical accesses required.

Other problems can also arise when keys are inserted, as the tree can

become unbalanced. That is, some search paths are made longer than

others. This requires the insertion algori thms be aware of this

possiblity, and subsequently these procedures become much more

complicated. The B-tree (from R. Bayer) system tries to overcome

these problems. The most obvious difference is that from any node

there can be more than two paths to the next node. Thus, it allows

many more keys to be stored in each node, and reduces drastically the

physical accesses and therefore, the search time.

- 9 -

E The PYRAMIDE - DBMS

The first step of searching a B-Tree is to look at the root node

and scan sequentially each key in the node (sorted in ASCII sequence).

The process stops when either a matching key is found (the search is

successful) or a higher key is found. In case no match is found, the

path to follow to the next level is given by the pointer which sits

where the searched key should be if it existed in the node. The next

node is read and the same procedure is followed until either the key

is found or a leaf node is unsuccessfully scanned.

3.3.2 Inserting and deleting in a B-Tree

Insertion into a B-Tree uses the search procedure as it gives the

place where the key should sit if it existed. Then the key is simply

inserted into the node where it should be. Note that keys are always

inserted into leaf nodes as an insertion is only allowed if the search

failed. If the node into which the key is to be inserted is full, a

split occurs. The keys are divided into two nodes and since there is

a new node, a pointer to i t must be inserted in to the level above.

Usually the middle key of the two nodes is brought up to the previous

level to be used as a separator. If the node above is also full, then

i t too migh t be spli t. This can continue till the root, and if i t

also has to be split, a new root node is created so that the tree

becomes one level higher. Since all node expansions are done on the

leaf level, a B-Tree is always balanced. That is, an insertion will

never increase the search path to one leaf node and not the others.

Deletion of a key is simply finding the key and taking it out of

the node. If a key doesn't reside in a leaf, then a new key must take

its place to provide the same paths as the deleted key. This new key

is found by getting the next key in sequence from the deleted key.

3.3.3 The ISAM of PYRAMIDE

One of the most important variants of the B-Tree is the B+Tree,

where all the keys are stored in leaf nodes. The upper levels simply

provide pointers to the next lower level, and so on until the leaf

level is reached. In addition, all the leaves are linked together, so

- 10 -

E The PYRAMIDE - DBMS

that we have a B-Tree type of path to the proper posi tian in a

sequential list of the keys. The general idea of the PYRAMIDE ISAM is

driven from the B-Trees strategy to manage indexes [Baye72] and its

B+Tree variant, but adapted in our particular case according to what

W!:l can call a "secondary index realized by inverted file" [Hain86-b]

(figure E. 9) •

One of the peculiarity of our system is that the indexes are

contained in the database file itself, thus suppressing the risks of

loosing an index file or not updating data in such a file. A table

stored in main memory gives for each entity type a pointer towards the

first level's page of the index (Zero if there is no identifier, thus

no index exists). Then we have an index composed of several levels.

Each entry of an index page at a given level gives a pointer towards a

next level' s page and the maximum value of the identifier (key)

contained in that page. The last index level points towards "B-Tree

leaf pages". Each entry of a B-Tree leaf page points towards an

entity record in the database and gives its identifier value (see

figure) . And each level of an index (and the leaf level tao) is

sorted on the increasing order of the identifier values.

In this system, the search uses the upper levels as a roadmap to

the next level, and it is only until a leaf is reached that the key is

actually looked for. Therefore, all searches use the same number of

nodes, and every search will be a worst case of a normal B-Tree (which

is still very good under most circumstances). Since all searches take

approximately the same amount of time, a high degree of consistency is

also achieved, which can have its benefits in a real-world situation.

The reader will also note that only one access key is allowed per

en ti ty type. In the future we could enhance the system so tha t i t

would allow any number of access keys per entity type or even access

keys in paths, but these concepts were not needed by the current upper

layer.

In order to be as much performing as possible, the loadrate of

the index pages is supervised by the system. In particular, different

- 11 -

B-Tree
indirection

table

Leaves

' .____ ' .,,,..--,,.
'--

._____,'\
\
\ .,-·-"

\ ,
\ '

L.eeves X . \ I . __ """L.,. \ .. ~-.
-•- \ I i.---c-----t---·-··t

\
' \
\

Euu E,9 : the ISAII of PYRAMIDE

Database

E The PYRAMIDE - DBMS

insertion procedures (insert before and insert last) are applied

depending on the loading strategy. Otherwise, in case of a sorted

loading process, the index pages could be splitted each time a new

record is inserted. That is, the system acts differently depending on

whether the application program does an append or a loading process.

There is a also a maximum loadrate for the pages, which is a parameter

of the insertion procedures. And even when entries are deleted, the

system keeps a satisfying loadrate by trying to catenate neighbouring

pages. With those cares, the loadrate of an index page in our system

is comprised between 50% and 80%.

When an entry is inserted before another, the normal append

process in a B+Tree is performed (including splipping of pages if

needed). But when an entry must be inserted as the last one (sorted

loading process) , the pages are not filled in completely. If the

loadrate of the page would exceed 80%, then a new page is created

where the entry is stored. Therefore, we can be sure not to have too

many spli t ting when new en tries will be s tored in the index pages.

Also, if the loadrate of a page becomes smaller than 50% after an

entry has been deleted, the system tries to reorganize the

neighbouring pages so that the entries are equally distributed. If

possible, two pages can even be catenated. That is, the entries of

the two pages are stored in one of them, and the other page is made

free again.

3.4 The database definition block (DDB)

The database definition block is an area in main memory where all

the information needed by the DBMS to manage a given database is

stored. This area is referenced by a database pointer located in the

application program memory area and that designates the database to

work with (figure E.10).

The block contains :

- a pointer towards the database file;

- the database name as a string of characters;

- an offset value for the beginning of data pages;

- 12 -

DBMS-Memory
DDB-Array

MainMemory
D81's D08

EJS
l~'-1 · · ·

D81 082

Global
DDB

D82's 008

reference variable

AQplcatlon program's memory

Ei1D E.10 : The DetAha§s, Peflnfflon Blocks

E The PYRAMIDE - DBMS

- the number of entity types and of relationship types;

- the buffer area;

- a timer giving the global date;

- the entity type descriptors table;

- the relationship type descriptors table;

- the indirection record pointers table;

- the level-one free space index table;

- the B-Tree indirection table;

- the reference of the last record that has been accessed.

When a new database is opened, its DDB pointer is stored in an

array and will only be deleted when the database is closed. A global

DDB pointer is set to the new value referencing the active database.

If another database is selected, the array is searched for the value

of i ts DDB pointer and if i t is found, the global DDB pointer is

updated.

3.5 Recovery management in PYRAMIDE

The reconstruction of a consistent DB state after an abnormal

termination of a short transaction (abort) or after a system crash

(crashrecovery} is called Recovery.

To recover the state of a transaction after its abnormal

termination or after a system error, one must have a log-component

that had stored this state. That component should then be read to

re-build the current state.

The wors t conditions occur wi th a crashrecovery, for here the

re-build of a consistent DB state is also hampered by the loss of the

main memory. So this implies that all data necessary for a

crashrecovery must be stored in secondary memory, to be safe in case

of a system crash.

The recovery function of PYRAMIDE is not implemented yet.

However, some problems that have to be considered before implementing

it will be discussed in the next pages that summarize the work Michael

- 13 -

E The PYRAMIDE - DBMS

Ranft, Andreas Geppert and I have made at FZI for the DAMOKLES-DBMS

[Ranf88].

3.5.1 The log-granule

The quantity of information that is stored in a log-entry (log

record) is called the log-granule. The question here is what

information on the DB state one must have at the beginning of a

transaction to be able later to recover it quickly. First of all,

there are many possibilities concerning the contents of a log-record.

- the content of a page that has been changed by the transaction;

- the content, the address and the length of a bytestring that

has been changed by the transaction;

- an operation that does the opposite change (reverse operation).

The advantage if the first two solutions is the simple search of

the log-record and a primitive recovery strategy replace the new

values by the old ones. The disadvantage is that with this strategy

of logging, data changes that have not directly been done by the user,

must also be recorded. These secondary data are for instance, access

paths or other internal lists that are necessary for the manipulation

of primary data by the user.

This problem can be solved by recording reverse operations, so

that all secondary data will be changed automatically. What's more,

the log-entry of a reverse operation is shorter than a complete page,

or the bytestrings that would be recorded in the two first strategies.

The disadvantage is that the reverse operations must be defined, and

for some, be calculated during the on-going of the current operation.

This problem is emphasized with operations on structured entities, as

one only knows which entities are effectively concerned during the

on-going of the operation.

One must also notice that there is a dependency between the log

granule and the locked-granule (= quantity of information that is used

for the synchronisation of short transactions) that is expressed as :

log-granule<= locked-granule.

- 14 -

E The PYRAMIDE - DBMS

This dependency can be explained in the following example. Let's

take as log-granule pages, and as locked-granule only records. Let's

take also two transactions Tl and T2 that change two different records

Rl and R2 located in the same page Pl. During the execution of Tl,

page Pl will be s tored in the log and then the record Rl will be

changed; giving page Pl'. Then the transaction P2 will record page

Pl' and then change record R2; giving page Pl''. Then T2 ends, so the

changes become permanent. But transaction Tl is then aborted, and its

changes must be done reversely; that is, page Pl'' is replaced by page

Pl. But in that case, the changes of T2 (that should have been left

unchanged) are also reversed.

granule was too big.

This happens only because the log-

If the synchronisation component in PYRAMIDE is to be smaller

than pages (e.g. entities or part of entities), the first proposal

(pages as log-entries) should not be taken. The second proposal

should also not be accepted if we are looking for as much concurrency

as possible, as the fact that secondary data must also be stored does

not correspond to that goal.

In conclusion, the log-granule in PYRAMIDE should be reverse

operations of the most upper level (interface primitives) as to ensure

as much concurrency as possible.

3.5.2 Types of recovery

During a recovery operation, the results of transactions that did

not terminate properly must be reversed (UNDO) and sometimes the

results of transactions that did terminate successfully must be redone

(REDO). This depends completely upon the buffering strategy that is

implemented:

- if .only UNDO-operations are implemeted, then by the successful

end of a transaction, all changed pages must have been written

in the DB, so that the changes are secure.

- if only REDO-operations are implemented, then this implies that

the writing of changed pages is allowed only when the

transaction has successfully ended.

- 15 -

E The PYRAMIDE - DBMS

- and if UNDO and REDO operations are implemented,

buffering strategy doesn't matter; that is, the writing

pages in the DB can occur at any moment.

then the

of the

The choice of one of the three possibilities only depends on the

buffer strategy and the expense (in terms of DB operations) for the

recovery.

writting

But one must be aware that in all three possibilities, the

of the changed pages is bound to the writing of the

corresponding log-entry.

Particularly, the expense in I/0 operations should be smaller in

the third strategy, while it should be almost the same in the two

others.

It seems a bit foolish to implement only REDO-operations, for it

would be very cri tic when working on very large enti ties. So this

strategy will no longer be discussed.

The choice between UNDO and UNDO/REDO must therefore be done on

basis of the expense in DB operations during the recovery. It is

quite clear that the expense for the recovery logging itself would be

smaller when only UNDO operations are to be written in the log. But

on the other hand, the expense for the recovery, during an on-going

operation should be less in the third strategy, for here only the

log-entries must be stored in secondary memory at commit point (no

matter the changed pages are saved or not).

But this last remark doesn't stand here for a reverse operation

can only be carried out if all data to be reversed are consistent.

That is, all changed pages must have been written in secondary memory

before the log-entry is saved. And this is exactly the UNDO strategy!

So as the third possibility does not lead here to any advantage, the

strategy to be chosen is to implement only UNDO operations.

- 16 -

E The PYRAMIDE - DBMS

3,5,3 The recovery of a partly processed transaction

Reverse operations cannot deal with only partly processed

transaction for it would lead to an inconsistent state of the DB. But

the recovery must also support these cases, as for instance, after a

system fault or a system crash during a DB-operation, to re-build a

consistent DB state.

But here a characteristic of PYRAMIDE must be invoked : a DB

operation can be seen as an atomic action of a transaction. That is,

a DB-operation must be completly ended before the next begins.

With the help of this concept, it will be possible during a DB

operation to use page-logging, for there can't be any locked-/log

granule conflict inside an atomic action.

If the operation could not be entirely done (i.e. there was a

system crash during the operation), then with the help of the traced

pages, the system can re-build a consistent DB state that enables to

carry out reverse operations.

That is, there are two log concepts. During an operation, we'll

have logging of the modified pages; and at the end of the operation,

logging of the reverse operations which will replace the pages

previously stored in the log.

3.5.4 The recovery

Principle

The re-build procedure of a consistent DB state after an abort

transaction or a system crash is always the same. The log-entries

will be read in a lifo strategy. When the entry is a before-page, the

current page will be replaced by its original. Otherwise, the entry

is a reverse-operation that will be processed. This is done until the

read log-entry says all necessary recovery actions have been done.

Then the system can get back toits normal work.

- 17 -

E The PYRAMIDE - DBMS

Recovery after abnormal ending of a transaction (abort)

To reverse a single transaction, one only has to read backwards

the log-records of this transaction and of its child transactions, and

process them, till arrival to the record that marks the parent

transaction's begin.

Recovery after a system crash

The crash recovery will process all existing log-records, till it

reaches the log-entry that marks the starting point of the DB system.

Normally, i t is the only exis ting record. Otherwise, all existing

transactions will be reversed. Here, the reverse-operations of the

various transactions can be processed in any order. This is possible

because (thanks to the locking mecanism) the different transactions

can only concern disjuncted enti ties and relationships. Still of

course, inside a transaction, the log-records must be processed from

the youngest towards the oldest (lifo).

Idempotency of the recovery:

One has of course no garanty that another DBS crash won't occur

during the recovery operations. This means that all recovery

operations must be idempotent (that is, the results must be the same,

no mat ter how many times i t has been carried out) . But reverse

operations are only partly idempotent, and not at all when the system

crash occurs inside a DB operation. The logical consequence to this,

is that one has to do logging also during the recovery procedure. But

it's a nonsense first to carry out the reverse operation of a traced

reverse operation, and then that operation i tself. So the crash

recovery procedure must know which log-records have been correctly

handled during the preceding recovery procedure.

For instance, the crash recovery procedure could process only the

traced pages, and then compare the log of the previous recovery

actions with the original log, till it reaches the last correctly

- 18 -

E The PYRAMIDE - DBMS

handled recovery action.

handled.

The original log can then be normally

A much simpler strategy (still efficient) is to copy the current

Database before doing crash recovery and to mark somewhere that from

now on we are doing crash recovery. Then if another crash occurs

during this recovery operation, we only have to copy back the saved

Database and to redo all the recovery procedure as if nothing

happened.

3,5.5 Reverse operations

The DB operations for which the recovery is necessary can be

divided in four categories.

1. DB operations that can be reversed by only one reverse

operation of which all parameters are known at least, at the end of

the operation.

Ex Dbbgtr, Dbendtr, Dbabtr, Dbcreate, Dbinsert, Dbremove.

2. DB operations that can be reversed by only one reverse

operation of which parameters must be partly calculated.

Ex: Dbmodify.

3. DB operations that must be reversed using more than one

reverse operation of which parameters must be partly calculated.

Ex: Dbdelete.

Remark:

Begin and abort transaction operations need reverse operations

which constitues a proof of consistency at the end of the recovery

action (as for a "normal" transaction).

- 19 -

Section F:

Further developments
And Conclusion

F Further developments and Conclusion

1 Mu.lti-u.ser support a.n.d ser-ver

fu.n.ction.ality

The first enhancement for the DBMS we could think of is to

exp and i t from a single-user to a mul ti-user system. This is made

easier by the fact the Kernel primitives are not much aware of the

abjects they manipulate. That is, all the information peculiar to a

given application is stored in the application memory, and the DBMS

only has a pointer towards the DDB containing the information it needs

to operate on the proper data.

Therefore, we can easily think of a server-like system, that

would be called by several application programs using interrupts to

request some operation. The calling process would only have to pass

the pointer towards its own DDB and information for the operation to

be carried out by the DBMS. This is a major improvement, that would

require among others, implementing a lock manager to regulate

concurrency between the various calling processes.

2 Dyn.a.mic schema. man.a.gemen.t

CAD/CAM data is characterized by its dynamic schema. As

seen previously, a schema defines the allowable structures for data

instances and is generally viewed as a static collection of data

types. The data types represent attributes, entity types and

relationship types of the application being modeled. CAD/CAM data

differ from business-oriented data because the structure of CAD/CAM

data actually grows with the design of the artifact and therefore

cannot be completely defined in a static schema. At each

manufacturing phase, schema specification is interleaved very closely

with the construction of an object [Camm87J.

Most of the DBMS adhere to a static schema definition.

Generally, schema definition and generation are expensive off-line

tasks. The enormous overhead for database reconfiguration due to

schema modifications prohibits the practical use of an interactive

F Further developments and Conclusion

dynamic schema in most existing systems. Thus, the desired structure

of the enti ties to be represented is completely defined at schema

de finition time and cannot be subsequently modified. An increasing

number of DBMS are allowing schema revision to the extent that

revisions are upwardly compatible with the existing schema, and

previously loaded data. However, this limitation still requires a

user to make a strict distinction between schema definition and data

specification, and the operations for performing each.

The dynamic quality of the schema and data requires some highly

flexible and interactive user facilities. Users need to view or

navigate the database dictionary, and dynamically modify the schema.

They need to retrieve schema information such as the attributes which

are defined for a given entity type or the relationship types that

have been described. Corresponding operations for modifying the

schema and the data should also be av ail able. These facili ties

include initial generation of a new schema when designing a new part,

and interleaving the schema definition with the storing of specific

data values.

The construction of such facilities entails the definition of the

structure of the schema and data (from a user's viewpoint) and user

operations for viewing and manipulating the schema and the data.

These have already been realized within this dissertation. We would

have now, to enable the system to do dynamic compilation and

modification of a schema stored in the data dictionary. But this

would be for another dissertation yet to corne.

3 Con.cl us ion..

We have designed a very complete DBMS on basis of

specifications driven from a thorough requirements analysis. When

developing each part of the system, we have always kept in mind three

major objectives. First of all, to comply with the needs of the upper

E/R layer. Secondly, to keep as much compatibility with the NDBS

- 2 -

F Further developments and Conclusion

tools as possible. And finally, to always look for more performance,

as it is of major importance for the target application domains.

In conclusion we can say that PYRAMIDE is a first step towards

developing a much more powerful system. It already offers interesting

features, such as its embedded data dictionary, that could be enhanced

in the next future.

- 3 -

[Baye72]

[Boda83]

[Camm87]

[Chen76]

[Date83]

[Depp80]

[Ditt86-a]

[Ditt86-b]

Lite rature

Bayer, R.; McCreight, E. : Organization and

maintenance of large ordered indexes. Acta

Infomatica 1, 173-189, Springer Verlag 1972.

Bodart, F.; Pigneur Y. : Conception assistée des

applications informatiques, 1- Etude d'opportunité

et analyse conceptuelle. Masson éditions &

Presses Universitaires de Namur, 1983.

Cammarata, S.J.; Melkanoff, M.A. : An interactive

data dictionary facility for CAD/CAM databases.

Proceedings from the first international workshop

on expert database systems. Benjamin/Cummings

publishing company inc., 1987,

Chen, P.P.-S. : The Entity/Relationship Madel -

Towards a unified view of data. ACM Transactions

On Database Systems, Vol 1, N°1, March 1976.

Date, C.J. : Introduction to database systems,

Volume II, Addison-Wesley 1983.

Deppe C.; Bartholomew, A. : B-Tree ISAM concepts.

Dr Dobb's Journal, Number 80, P. 289 - 292,

June 1980.

Dittrich, K.R. : Object-oriented database systems:

The notions and the issues. Proc. ACM/IEEE Int.

Workshop on object-oriented database systems,

1986.

Dittrich, K.R.; Katz, A.M.; Mülle, J.A. : Database

support for VLSI design: The Damascus system. In

CAD-Schnittstellen und Datentransferformate im

Elektronikbereich, ZGDV-Buchreihe "Beitrage zur

Graphischen Datenverarbeitung", Springer Verlag

1986.

[Damo86]

[Damo87]

[Damo88]

[Doug79]

[Fauv88]

[Gott86]

[Hask88J

[Hain86-a]

Gotthard, W. and al. : Damokles : das Datenmodell

des Unibase - Entwicklungsdatenbanksystems,

Verbundprojekt Unibase. Projektbericht, FZI,

Karlsruhe, Marz 1986.

Damokles Projekt, Datenbankunterstützung für

Software-Produktionsumgebungen. In Technischer

Bericht des FZI - 1987.

Damokles, Reference Manual of Release 2.0.

Forschungzentrum Informatik an der Universitat

Karlsruhe, March 1988.

Douglas, C. : The ubiquitous B-Tree. Computing

surveys, Vol.1, N°2, June 1979,

Fauvet, M.C. : ETIC: Un SGBD pour la CAO dans un

environnement partagé. Thèse de Doctorat USTMG de

l'Université Joseph Fourier - Grenoble 1,

Spécialité Informatique, 1988.

Gotthard, W.; Dittrich, K.R.; Lockemann, P.C. :

Datenbanken In Software - Produktionsumgebungen

das Projekt Damokles und sein Entwurfsobjekt -

Datenmodell. Proc. GI-Fachtagung "Die Zukunft der

Informationssyteme", LINZ, Springer, 1986.

Haskin, R. and al. : Recovery management in

QuickSilver. ACM Transactions on Computer

Systems, Vol. 6, N° 1, February 1988, pages

82-108.

Hainaut, J-L. : Conception assistée des

applications informatiques, 2- conception de la

base de données. Masson éditions & Presses

Universitaires de Namur, 1986.

- 2 -

[Hain86-b]

[Hain87]

[Hart87]

[Kemp87J

[Knut73]

[Lams87J

[Lock83]

Hainaut, J-L. : Technologie des fichiers. Notes

de cours, Institut d'Informatique des Facultés

Universitaires Notre Dame de la Paix à Namur,

1986.

Hainaut, J-L. : NDBS - a simple database system

for small computers. Document interne, Institut

d'Informatique des Facultés Universitaires Notre

Dame de la Paix à Namur, 1987.

Hartig, M. : Feinplanung und realisierung eines

"Internal Object Managers" für das Datenbanksystem

Damokles. Diplomarbeit - Institut II der Fakultat

für Informatik - Universitat Karlsruhe, 1987.

Kemper, A.; Wallrath M. : An analysis of Geometric

Modeling in Database Systems. ACM Computing

Surveys, Vol. 19, N° 1, March 1987.

Knuth, D.E. : The art of computer programming,

Vol3, Sorting and searching. Addison-Wesley

Publishing Company, 1973.

Van Lamsweerde, A. : Méthodologie de développement

de logiciels. Notes de cours, Institut

d'Informatique des Facultés Universitaires Notre

Dame de la Paix à Namur, 1987.

Lockemann, P.C. : Analysis of version and

configuration control in a software engineering

environment. In Entity-Relationship approach to

software engineering. Elsevier Science Publishers

B.V. (North.-Holland).

- 3 -

[Lock85]

[Obri88]

[Ranf88]

[Ross87]

[Turb88]

[VERH78]

Lockemann, P.C. and al. : Anforderungen

technischer Anwendungen an Datenbanksysteme. In

Blaser, A.; Pistor, P. {eds} : Datenbank - Systeme

für Büro, Tehnik und Wissenschaft, GI-Fachtagung,

Karlsruhe, Informatik - Fachberichte 94, Springer,

1985, page 1-26.

O'Brien, S.K. : Turbo Pascal - Advanced

programmer's guide. Borland-Osborne/McGraw-Hill,

Programming series, 1988.

Ranft, M. : Recovery für das Datenbanksystem

Damokles. Technischer paper - Forschungzentrum

Informatik an der Universitat Karlsruhe, 1988.

Rossi, D. : NDBS - Primitives de base du SGBD,

Travail Personnel de première Licence et Maîtrise.

Institut d'Informatique des Facultés

Universitaires Notre-Dame de la Paix à Namur,

1987.

Turbo Pascal, User's guide and programmer's

reference. Borland, 1988.

Verhofstad, J.S.M. Recovery Techniques For

Database Systems. Computing Surveys, Vol.10, N°2,

June 1978.

- 4 -

