Institutional Repository - Research Portal

Dépébt Institutionnel - Portail de la Recherche

UNIVERSITE researchportal.unamur.be
DE NAMUK

THESIS / THESE

MASTER IN COMPUTER SCIENCE

Network Management Systems
The management of TCP/IP networks

Heyvaert, Didier

Award date:
1991

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

« Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 02. May. 2024

https://researchportal.unamur.be/en/studentTheses/1664758a-4485-4971-8c0b-f04dcaacdb1a

Facultés Universitaires Notre-Dame de la Paix, Namur
Institut d’/Informatique

Année académique 1990-1991

Network Management
Systems

The management of
TCP/IP networks

Didier HEYVAERT

Mémoire présenté en vue
de I’obtention du grade
de Licencié et Maitre

Promoteur : Philippe van Bastelaer en Informatique

Rue Grandgagnage, 21, B - 5000 NAMUR (BELGIUM)

Résumé

Lorsque, actuellement, on parle de réseaux, le sujet le plus abordé est celui
de leur gestion. Ceci est di a un besoin de plus en plus pressant du coté des
responsables de réseaux qui voient leur tiche se complexifier. Cette complexité a
pour cause, de nmaniere générale, le développement des réseaux de
télécommunications, tant du point de vue de leur taille que du point de vue de leur
composition. Les responsables de réseaux ont donc besoin de nouveaux outils pour les
aider a résoudre les problemes qui peuvent se présenter.

Dans ce travail, nous présenterons d’abord un approche de ce qu’est,
actuellement, la gestion des réseaux et des outils nécessaires a celle-ci. Puis, de
maniere a assimiler les concepts nécessaires a la compréhension du protocole SNMP,
nous décrirons les principaux protocoles du réseau TCP/IP. Cela permettra de décrire
le protocole de gestion des réseaux TCP/IP, SNMP (Simple Network Management
Protocol). Nous pourrons, ensuite, apres avoir brievement parcouru le protocol ISO
(Interconnexion de Systemes Ouverts) de gestion de réseaux, nous attarder sur

quelques programmes de gestion de réseaux.

Abstract

When, at the present time, it is spoken of networks, the most approached
subject is their management. This is due to a more and more urgent need for persons
responsible for the networks who see their task becoming complicated. This
complexity is generally caused by the development of telecommunication networks,
from the point of view of their size but also of their composition. Thus, the persons
responsible for the networks need new tools to help them solve the problems that can
arise.

In this work, we will first present a conception of what is, at the present
time, the management of networks and of the tools useful for the management. Then,
to assimilate the concepts needed to understand the SNMP protocol, we will describe
the main TCP/IP network protocols. This will allow to describe the TCP/IP network
management protocol, SNMP. Then, after having briefly glanced at the OSI (Open
Systems Interconnection) network management protocol, we will expose some
network management programs.

I would like to thank all the persons who have contributed to the elaboration
of this work.

First, I want to express my acknowledgement to M! Philippe van Bastelaer,
my work director at the Facultés Universitaires Notre-Dame de la Paix, Namur, who
offered me the opportunity of a training at the European Centre for Nuclear Research
(CERN), Geneva, during the first semester of the academic year 1990-1991.

I am also very grateful to all the members of the Computer and Networks /
Communication Systems (CN/CS) section of the CERN with whom I spent six
unforgettable months and especially M! John N. Gamble, my supervisor, who
introduced me to the problem of network management.

And finally I would like to thank MT Rudi Simon who spent many hours of
his time correcting all the English mistakes of this work.

Introduction

Chapter 1

1.1.

1.
1.
1.
1.

... 5

: Network Management Systemsccccececcene 7
People involved in managementeeeeueeees 7
1.1. The Higher Level Management Entityoooeiinni, 8
1.2. The Network Managerccooviiiiiiiiiiiiiiiiiiiiiiic e, 8
1.3, OPeIatOrS . ..oveieiieeeee e 8
1.4. Network ENZINEETSo.oiuiieiiiiiiiiiitiiiiieneeie e eieaaeenens 8
Network Management AT€aSeeeeeeereccosesscones 9
.2.1. Configuration Management................cooieviiiiiiiiiiiinianianann. 9
.2.2. Performance Managementc.ooovviiviviiinnaeiinannnnns 10
2.3, Fault Managementcooiiiiiiiiiiiii i 11
.2.4. Accounting Management..............coevuiiiiiiiiiiiiiiiien 11
.2.5. Security Management.................ooiiiiiiiiiii 12
Physical Level TOOLS ¢ veueeeeceeeeesseosssonnsens 13
301 ORMIMELET ...ttt e 13
3.2, Outlet Tester ...t 13
3.3, OSCIIOSCOPE ..vvintiiie it 14
.3.4. Time Domain Reflectometer (TDR)..................cooiiiiiinin, 14
5. POWeEr Meterot e 14
.3.6. Optical Time Domain Reflectometer (OTDR)........................ 14
.3.7. Optical Bandwidth Test Set..............ooiiiiiiiiiiiiiiiiines 15
3.8. Protocol Analyzer...........oooeiiiniiiiiiiiii i 15
Integrated Network Management Systems 16
.4.1. Graphical User Interface.................cooeiiiiiiiiiiinn, 16
B2, DAtADASE ... e 18
.4.3. Topology DB Builder...............c.oociiiiiiiiiiii e 20
A4 Alarm Manager.......oooooiiiii i 21
4.5. Devices PoOIlNG.........cooiiiiiiiiiiiii 22
4.6, Traffic MODItOT. ... 23
4.7. Reachability TestS..........coeviiiiiiiiiiiiiiiiiiiiee, 23
4.8, Addresses MOMItOTcoouiitiiiitiiiii i, 23
.4.9. Data Query and Values Settingcoooiiiin. 25
.4.10. Monitoring and Statistics Computing................ccoeveeeinanen.. 26
.4.11. Cryptographic Keys and Encipherment Manager 26
.4.12. Access Control and Authenticationc...oooeviiiinin.. 27
A3 Audit TrailS. ..o 27
4.14. B1111ng and ACCOUNLINGccvuininiiiiriiiiniinaiiaeeeanenenanns 27

Contents 2
Chapter 2 : The TCP/IP Protocol Suite.........ccccveeen.. 29
2.1, INtroducCtion cveeeeeeeesoeeeesoeesacoasensscenas 29
2.2, IP ProtoCOl «v.eoeeeeeeeensoeesosssosssssasacneos 32
22,10 TP SEIVICES vttt e e 32
222, IP Datagramooieiiiii i e 34
2.2.3. AdAIesSIngoovininiit e 36
224 ROULNE ... 38
2.2.5. Fragmentation and Reassemblyool, 39
2.3. ICMP ProtoCOl v v veeeeeeeeeeeasossssssassssssenss 44
2.4. UDP ProtoOCOl v v v o veeeeeeseeeesssesnsssssossenans 46
2.4.1. UDP PrimitivVescoiuiiiiiiiiiiiii it 46
2.4.2. UDP Datagramcovvriniiiiiiiiiie et eieeieee e eeeenan, 47
2.4.3. UDP CheckSUIMcouitiiiit i 48
2.5. TCP ProtoOCOl v .o oeeveeenesoessssenesssncsonssnsas 49
2.5.1. TCP Service Primitivesccoveiiiiiiiiiiiiiiiiii i, 49
2.5.2. TCP SEZMENL......inentiiitetee e e 51
2.5.3. TCP MechaniSmsco.oviiiriiiiniiiiiiiiiiieneieeeeeannes 52
Chapter 3 : Simple Network Management Protocol.......... 61
3.1. Structure of Management Information............ 63
3 L ASN. T 63
32 SMI 67
3.2, SNMP it ittt eeoeoeconocsssesesscsssssssscsssasnsaocs 73
3.2.1. Protocol Interaction..........c..ccoovviiiiiiiiiiiiiiiiii e, 74
3.2.2.SNMP PDUS ..ot 77
3.2.3. Administrative CONCEPLSccvviuviireririeieiiniieieranenenannnn. 80
3.2.4. Instance Identification and Lexicographic Order 81
3.2.5. Searching Tables with the Get-Next-Request 82
3.2.6. Example of Encoding............cocoooviiiiiiiiiiiiiiiiii 83
3e3. MIB ..ot iereeoeeosooososessososssssossnossocscssonsnas 85
3.3.1. SyStem GIOUP.uvnininieieii e eae e 85
3.3.2. Interfaces GIOUPcoeeiiiiiiveiiiiiiiie e, 86
3.3.3. Address Translation Groupocoovvvviiiniiiininiiiniinnn, 87
334 TP GIOUD ...eniiitiiiiee et e e 87
335 ICMP GIOUPvniineinee e e e, 89
3.3.6. TCP GIOUP. .. .uininitieii e e e e enns 89
3.3.7. UDP GIOUP ...ttt et et 90
3.3.8. EGP GIOUD ..ottt 91
3.3.9. Transmission GIOUPccvviviniiririiieriiiiiiinineiniiinenanens, 91
3.3.10. SNMP GIOUD. .. .cuineiniieee e e en, 91
Chapter 4 : CMIPcccoctecccoceccccsssaannsscscnsnnces 93
4., CMIP «c. vt eereseeoeoosoosrsscossossssscssasoncncsass 93
4.1.1. Management Informationcooi 93
4.1.2. Management ServiCesccvuveiiiiiniiiiiiiiiiiieeiaainnnnn. 95
4.1.3. Management ProtocolSccooiiiiiiiiiiiiiiiiieiien 96
4.1.4. WOTKING ...t e 97

Contents 3

4.2. CMOT @t eeeeeeoeoossasssssensnsecssssasasssassenes 99
4.2.1. Management Informationcooiiiini 99

4.2.2. PrOtOCO! ..ottt e e 100

4.2.3. OPIMON ..ottt e e 100

Chapter 5 : HP Openview Network Node Manager 102
5.1. Presentation and Commentseeeeeeeeeeeecas 102
5.1.1. Graphical User Interface................coooiiiiiiiiiiiiiiiiininn, 102

5.1.2. Alarm Manager.........coooiiiiiii e 106

5.1.3. Devices POING.......cooieiiiii i 107

5.1.4. Traffic MODItOr.oiiii i 107

5.1.5. Reachability Tests............ooviiiiiiiiii e, 109

5.1.6. Data QUETY.......cooviiniiiiiii i 109

.17 OtherS. .t e 111

5.2, CONCLUSION ¢ v e vt eveessesaosessssosossssossannsns 111
Chapter 6 : Digital Network TOOlS . ..cceueveeecccnnccnans 113
6.1. PossSibilitiesS Of DNT cueueeeeeesosseossccansnns 113
6.1.1. Graphical User Interface....... et 113

6.1.2. Database...........oceiiiiiiii 115

6.1.3. Topology DB builder............cccooviiiiiiiiiiiiiiiiiieie e 118

6.1.4. Alarm manager............c.oviriiiiieiiiie i, 119

6.1.5. Device pollingcoviiiiniiiiiiiici 119

6.1.6. Traffic MOMItOr...........oiiiiiii e 119

6.1.7. Reachability Tests.........c.c.coviiiiiiiiiiiiiiiiiiiiiieie e 120

6.1.8. Data Query and Values Settingooiiiiiiil, 121

6.1.9 Monitoring and Statistics Computingcooeiivnnnn. 124

6.2. CONCLIUSION ¢ v vt vvveveesoessosessossssanssonaes 126
Chapter 7 ¢ XGMONcoceceececccocccansnnanancsnnnnns 128
71, OVEIVIEW v oo evveeeencoocsnsscsncssesesssssnoses 128
7.2. DEtallsS cvveeeeeeeosssesesosscssoscssssonssonans 130
7.2.1. Graphical User Interface....................cooviiiiiiii i, 130

T.2.2. Database........couiniiiiiiiti e 132

7.2.3. Topology DB Builder.................oceviiiiiiiiiiiiiiicieeen 133

7.2.4. Devices Polling..........ccovvviniiiiiiiiii e 133

7.2.5. Traffic MOMItOr..........oviiiiiiiee e 134

7.2.6. Reachability Tests............cooveiiiiiiiiiiiiiiiiiiiiiie e 135

7.2.7. Data Query and Values Settingcccooiiiiininn.. 135

7.2.8. Automation SUPPOTL.........oeiuieitiiiiieiteniriieeteenaaasnenennn 136

7.3, CONCIUSION ¢ ettt eveeseeseccsssesssnsosssnssnsens 137
CONClUSION &t eeecececaceccacecacscsnsncnssnsssnncannnsa 140

AppendixX A ¢ SMIvceceencesncosccasnanccaancecncasnss Al

Contents

Appendix

Appendix C : SNMP....cccccse
Bibliographycc..c... ceoes
GlOoSSAry cvecececscescnnsoane .

B : MIB-IT.....cccccveveccvecscsconans

At the present time, the size and the number of networks are expanding in an
exponential way. And, thus, the control on the networks is proportionally harder to
keep. Therefore, different mechanisms to help in the management of networks must
be considered.

The aim of this work is to present the current state of the art in the
management of networks, in general, and of TCP/IP networks, in particular.

Three approaches have been followed.

The first one is an intuitive approach. It consists in a reflexion on what
network management could be. This reflexion led to the presentation of the people
involved in network management, of the tasks to perform and of the tools useful for
managing a network.

The second approach is practical. It has been realised through the testing of
network management programs at the European Centre for Nuclear Research (CERN)
in Geneva. The CERN is composed of a set of laboratories. The aim of the different
laboratories is to provide particle accelerators to searchers. All the teams coming at
CERN for carrying out experiments, have to take back their results with them for
further analysis. But they all have different computers and different ways of
communication. This involves that the CERN needs to have a very wide range of
computers and networks. All this infrastructure must remain operational as long as
possible. In order to no longer have the charge of maintaining its own management
programs, the CERN has decided to buy one. To be sure that this program comes up
to its expectation and responds to its needs, thorough tests had to be carried out.

The third approach is more formal. It consists in the analysis of the
communication mechanisms that take place between computers for network
management purposes. Therefore, some protocols useful for managing network will
be described.

Introduction 6

This work is divided into seven chapters. Chapter 1 resumes the intuitive
approach and lists the people, the tasks and the tools concerned with network
management. Chapter 2 gives a description of the main protocols used in TCP/IP
networks. This will allow to expose concepts used in the next chapter. Chapter 3
details the main protocol used for managing TCP/IP networks, the Simple Network
Management Protocol (SNMP). Chapter 4 briefly describes the OSI network
management protocol, the Common Management Information Protocol (CMIP) and
its application to TCP/IP networks. And chapter 5, chapter 6 and chapter 7 illustrate
the practical approach by presenting the different tested programs.

In the past, network management was limited to the only field of fault
management. The networks were limited in dimension and in complexity. One person
was able to know which components were used on the network and where they were
placed. The job was limited to locating the component that was causing the trouble.
This person only needed tools to help him or her in the location of faults.

Now, as the number of computers increases, the size of the networks grows
in proportion. And their complexity grows much more because the networks pass
from a single-vendor state to a multi-vendor state with all the related difficulties
(different protocols, different machines). If the networks change, they also become
more difficult to manage. More people will be involved in their management. And
other, more sophisticated tools to help in the management of the networks will be
indispensable. New tools must, therefore, be developed to cope with this complexity.
These tools will be composed by the integration of other more specific tools:
databases, monitors, etc. They will not only be used in the detection of network
problems but they will also serve in the network planning, performance testing,
inventory of network components, etc. These tools will be termed Integrated
Network Management Systems.

The rest of this chapter will be divided into four parts. The first section will
give a description of the different people involved in the management of the networks.
The second section will list the areas in which network management is used. The
"older" tools which helped and still help in the fault detection and location will be
presented in the third section. And finally, a review of all the components that should
be included in a performing integrated management tool are described in section four.

1.3 . People involved in
management

Now, as networks become more complex, their management is not the
business of one person anymore. Many people are concerned with this activity. In this

People Involved in Management 8

section, the different people concerned with network management are listed.
Information is also given about what they must know concerning the network. Dr J.
N. Gamble [GAMB90] gave many ideas for this section.

1.1.1. The Higher Level Management Entity

The higher level management entity is the authority that has the power to
manage the evolution of the network. This can be, for example, for a university the
academic authorities, for a firm the board of directors, etc. It requires information on
how well the network manager is doing his job. Figures, gathered over a long period,
on the network equipments, on the services offered, on the quality of the service are
needed for resource planning (manpower and equipment).

1.1.2. The Network Manager

The network manager is the person who is responsible for the good running
of the network. Because he is also involved in the resource planning, he needs the
same information as the Boss. Another job for the manager is to make the network
run with as few down periods as possible. For this, he needs many other tools to find
faults, to monitor performances, etc. These tools will be detailed later. The allocation
of network addresses for the various protocols that are supported is another important
role for the network manager. For this, database facilities are needed. For wide area
networking, accounting and authorization are of importance. Access security to the
network is also important. These are two other roles of the network manager.

1.1.3. rator

The operators are the ones that users contact when there appears to be a
problem and they are the ones who involve the maintenance experts (internal network
engineers or maintenance staffs from the vendors) to fix faults. They need to know if
there are faults on the network, where the faults are, who to call to repair them, etc.
Help is needed because, if the network is healthy, the operators will not be in the
habit of coping with fault situations and they must have quick reactions in case of
problems.

1.1.4, Network Engineers

Network engineers are concerned with the maintenance of the network
equipments, with the exact location of faults, with the repair of equipments, etc. For

People Involved in Management 9

maintenance, the engineers need information on the "health" of the network,
particularly at the physical level. They need to see error rates, traffic rates,
throughput rates of bridges, gateways, etc. For fault location, they need to know
"who is where" on the network and have the tools to precisely identify the nature of
the faults.

1 . 2 . Network Management Areas

As has been seen in the previous section, network management is the
business of more than one person. If, before, network management was limited to
fault management, now it has grown to many other areas. For example, the higher
level management entity needs performance information. The network manager must
be able to configure his network, to perform accounting related tasks and to set up
security mechanisms. The operators and network engineers need information
concerning faults and must be able to repair the network. In order to give a formal
description of all these needs, a management framework has been built. A lot of
information was found in the Management Framework for Open Systems
Interconnection [ISO7498-4]. Five network management areas have been defined:
configuration management, performance management, fault management, accounting
management and security management.

1.2.1. Configuration Management

The configuration management area can be divided into two sub-areas: the
configuration management itself and the name management.

The purpose of network configuration and name management is to define,
collect, manage and use configuration information (location, name, availability,
reachability information) and to control the configuration of the network resources, in
order to maintain the quality of service provided by the network environment.

"Some of the services that configuration management provides include setting
network parameters, collecting data on network status"[JOSE88], changing the
network configuration, displaying the network topology.

"Some of the services that name management provides include naming the
resources t0 be managed and managing name assignments."[JOSE88] It provides
services to help in the maintenance of name, address and location information and in
the assignment of network addresses for the different supported protocols.

Management Areas 10

In short, configuration management comprises the "mechanisms to determine
and control the characteristics and state of a network and to associate names with
managed resources”.[JOSE88]

1,2,2, Performance Management

Performance management involves monitoring the network, "obtaining
feedback on its usage, identifying weaknesses and exercising control to correct these
weaknesses. Typical weaknesses include processing bottle-necks, communication
delays, high error rates."[SLOMS88]

The performance management process can be split into the following
functions.

The system gathers statistical information (error rates, throughput) on the
network and on the important components of the network. In addition, the system
maintains logs of system state histories. Using the gathered information and the
logged historic information, it is possible to determine the system performance.

The following important function is the ability for the system to create
performance reports. They show statistics and performance evaluation results.

Using these reports, the network manager must take performance
optimization decisions. For example, if the traffic becomes too important for a
routing device, the network manager can decide to add a new one and to share the
traffic between the two routing devices.

When the optimization decision is taken, it is important to have the ability to
implement it. The network manager must be able to tune the performance of the
network. For instance, when the new routing device is installed, the manager must
dispose of tools to change the routing tables of other network devices in order to share
the traffic.

In brief, "performance management includes mechanisms to monitor and tune
the network performances”.[JOSE88]

Management Areas 11

1.2.3. Fault M men

Fault management is the activity which helps in the detection, the isolation
and the correction of faults on the network.

The faults on a network can be of multiple origins. They can result from
hardware or from software problems. The detection of faults can be made either by
polling the important network components or by receiving event messages sent by the
faulty components.

Once a fault has been detected, somebody must be advised, in general the
operator, that a problem occurred. This will be made by the mechanism of alarms.
The operator must react quickly and inform the network manager and/or network
engineers, if necessary. Alarms notifications will be kept and saved in order to help in
the network planning and in further corrections of network faults.

The network manager, in collaboration with engineers, will work in the
isolation of the faults. Expert systems can also be very helpful in the diagnosis of
faults.

Once a fault has been isolated, network engineers will be able to correct it.
Mechanisms can be used by the network manager to bypass the fault if the network
cannot be corrected quickly enough.

"In summary, fault management is the discipline of detecting, diagnosing,
bypassing, repairing and reporting on network equipment and service
failures. "[MINOS89c]

1.2.4. Accounting Management

Accounting management enables network managers to identify costs and
establish charges for the use of communications resources. Accounting management
can be divided into two functions.

The first one is the monitoring of all communications services. Accounting
information must be collected. This information includes the amount of data received
and data sent out by the network users. The network manager must be able to know
which networks have been used and what costs have been incurred and by whom.

Management Areas 12

Therefore, all devices that provide a payable communication service must maintain
statistics on all calls and call attempts.

These statistics will also permit the network manager to check the correct use
of the network. For example, it would be useful for the network manager to have the
possibility to fix budget limits for each network user and if the budget limit is
reached, the user should automatically see his access limited to the free services on
the network.

The second function of accounting management is the billing. The
communication statistics will be transferred to a central computer. This computer
collects together all the statistics from the different monitored entities. And, once a
fixed period is reached, invoices are generated from them automatically. This billing
function can also be combined with other services. For example, the users can receive
bills containing their expenses for communications, printers, CPU time, disk usage,
etc.[DALLSS]

In short, "accounting management includes mechanisms for controlling and
monitoring charges for the use of communications resources".[JOSE88]

1.2 curitvy M men

"Security management is an important issue: unauthorized or accidental
access to strategic components must be eliminated or minimized. "[MINO89c¢]

Security management supports the control and the distribution of information
to various end systems that provide security services and mechanisms and reports on
security-related events. Therefore, security management requires distribution of
information to these services and mechanisms, as well as the collection of information
concerning their operations. Examples are the distribution of cryptographic keys, the
distribution of information on an entity’s access rights, the reporting of both normal
and abnormal security events (audit trails) and service activation and
deactivation.[MINO89a]

In summary, security management functions include the creation, deletion
and control of security services and mechanisms; the distribution of security-relevant
information and the reporting of security-relevant events. It also concerns security of
the network management system itself.

Management Areas 13

1.3 . Physical ILevel Tools

Network interface cards, cables and other low-level hardwares all have an
impact on the behaviour of a network. If an interface card is working improperly or a
cable is not correctly terminated, errors may occur. In this case, the network will run
significantly more slowly due to retransmissions of mutilated and lost packets.

There is a number of ways to check if interface cards and cables are working
properly. Most network manufacturers include a basic diagnostic utility program
integrated within their hardware. These programs are able to detect severe errors.

For diagnosing cable problems, there is a wide range of tools available.
Different tools are available for copper-based (twisted pair or coaxial) networks and
for fibre optic networks. The four first ones described hereunder are aimed at copper-
based networks and the other three ones at fibre optic networks. The last one is much
more powerful and it is not limited to the detection of physical-level problems.

The majority of the points developed in this section are borrowed from
Daniel Minoli [MINO89b].

1.3.1. Ohmmeter

An ohmmeter is a simple tool that gives impedance measurement. An
ohmmeter can be used to locate open or shorted cables. If the measured impedance
matches the rated impedance of the cable, the cable is fine. If it does not match the
rated impedance, then the network has a short circuit, a crushed cable or a cable
break somewhere along the cable.

1.3.2 Tester

Sometimes the problem is not the cable but rather the electrical outlet. For
example, if an outlet is not grounded properly, noise or even current may be
introduced through the power supply into a workstation and then through the network
interface card onto the copper-based network cable. An outlet-tester can help detect
this type of problem.

Physical Level Tools 14

1 ill

An oscilloscope allows to examine the cable’s waveform. An oscilloscope
helps detect the existence of noise or other disturbances on the wire, such as
continuous voltage spikes.

1.3.4, Time Domain Refl meter (TDR

A time domain reflectometer operates by sending an electrical pulse over the
network cable, waiting for signal reflections. On a good cable there will be no
reflection. If there is a break or short circuit in the cable, the time it takes for the
pulse reflection to return gives the TDR a very accurate idea of where the fault is
located.

Fibre-based networks require different equipments. While they provide
significant advantages over conventional networks, the fibre networks necessitate
more sophisticated test equipment. Fibre optic instruments can be divided into three
categories: power meters, optical time domain reflectometers and optical bandwidth
test sets.

1 P r Meter

Power meters (or optical loss test sets) measure the optical power from a
length of fibre in much the same way that conventional power meters measure
electrical power. Two sets, both with transmit and receive capabilities, are used
together to make measurements in both directions. A light source, typically at the
point of origination, supplies the power which is detected at the end of the fibre link.
The meter displays the power detected in decibels.

1 ical Time Domain Refl meter (QTDR

OTDRs can be used to characterize a fibre wherein an optical pulse is
transmitted through the fibre and the resulting light scattered and reflected back to the
input is measured as a function of time. OTDRs are useful in estimating the
attenuation coefficient as a function of distance and in identifying the location of
defects and other losses. These devices operate on basically the same principles as a
copper-based TDR.

Physical Level Tools 15

137 ical B idth T

Optical bandwidth test sets consist of two separate parts: the source, whose
output data rate varies according to the frequency of input current applied to the
source (specified by frequency range parameter); and the detector, which reads the
changing signal, determines the frequency response and then displays a bandwidth
measurement.

Another very important more sophisticated tool for fault management is the
protocol analyzer. Even if this tool is directly connected at the physical level to the
network, it is not only a physical level diagnostic tool.

1.3.8. Protocol Analyzer

A protocol analyzer is a specialized station that collects, analyzes and
displays the data circulating in a network cable. An analyzer allows to see everything
on the cable: PDUs!, messages, files, passwords.

A protocol analyzer is not limited to hardware or cabling fault diagnosis.
Using a protocol analyzer, it should be possible to find spurious broadcast packets,
routing errors, addressing errors, etc. The protocol analyzer allows to examine
packets where problems are occurring and it files information in a packet dump for
later retrieval. It is then easier to track down the particular host or protocol which is
causing the problems. Good protocol analyzers are able to identify packets from many
different protocols and from every layer of each protocol. For example, they must be
able to identify packets from TCP/IP, OSI, DECnet, SNA, Appletalk, NFS and they
must be able to be placed on many supports (e.g. X25, Ethernet, Token Ring, etc).

If there is, for example, a broadcast storm, it is necessary to determine where
it comes from. The analyzer is able to decode a packet to find the address of the
sender. Then, the location of the faulty device can be found thanks to its address. And
if the sender is known, it is possible, by decoding the packets, to see which
application program sends these packets.

1 protocol Data Unit

Integrated Network Management Systems 16

1 .4 . Integrated Network
Management Svstems

An integrated network management system (INMS) is a program or a
collection of programs which integrates a number of network management
functionalities within the same workstation or the same environment.

Graphical User Interface

Alarm Devices Data .
DBMS Manager POlﬁng Query _— - ACcountlng
Network Management
Protocol

Communication Protocol

Operating System

Fig. 1.1: Integrated Network Management System

The major tools that compose an INMS are listed in the following points. As
shown in figure 1.1, two levels can be distinguished. The first level is composed of a
graphical user interface which provides an access to the other facilities. And the
second level contains all the other facilities, such as a DBMS, a topology DB builder,
an alarm manager, a devices polling entity, a traffic monitor, reachability tests, an
addresses monitor, a data query and values setting entity, a statistics monitoring and
computing entity, an encipherment manager, an access control and authentication
entity, an audit trail and a billing and accounting entity.

1.4.1. Graphical User Interface

It is necessary to provide an interface to access the management facilities.
This interface will enable to perform the management functions. "The overall function
of the human interface is to translate management information from the format
convenient for internal use into a format suitable for people to understand and to
translate commands and requests generated by a human into the form appropriate to
the service being managed. "[SLOMS88]

The objectives of the user interface are: display of networks, near real time
updates of network status, interactive query of network information and interactive
control of network elements.[MEUNS88] Tools should be able to display that
information to the user in a form that augments his/her ability to work with the data.

Integrated Network Management Systems 17

"A simple menu-driven system facilitates learning of the functions, while a command-
line mode allows the more accomplished user to by-pass the sometimes tedious
redisplays necessitated by the menus. "[MORRS89]

The map representation should give a global view of all the structure of the
network with the different segments, the bridges, the gateways, routing devices, etc.
Some aspects of the presentation should be automatically changed (for example:
change the colour of a node if it is down) regarding the information registered in the
topology database. It should also be possible to obtain information about a node only
by clicking on it with the mouse (type, name of device, state, throughout rate, error
rate, etc).

Prompt : Network Title Clocks
Menul | Menu2 | | | Help

Funcftion i

Function n

Graphical
pop-up

Text Form
abedefghij
123 Xyz

Fig. 1.2: Graphical user interface

The major elements of a graphical user interface are shown in figure 1.2, The
different screen areas are the following ones: [MEUNS8S8]

- the display area where the network is displayed,

- the context area which contains the title of what is being displayed in the display
area, e¢.g. European OSI Network,

- the clock area which gives both the current time and the time of the last network
update,

- the prompt area which is used to interact with the system,

- the pull down menus which give the user choices between different commands,

Integrated Network Management Systems 18

- pop-up forms which appear when the user requests specific information or when the
system needs input from the user and

- graphical pop-up forms are used to graphically present data.

A graphical workstation is interesting because it is much more convenient to
work with a graphical representation of the network than, for example, with a file
describing the topology of the network. It is also easier to see that a node is down,
when its colour changes on the screen. Help screens are also needed because some
tools will not be used very often and help is more convenient than documentation for
rapid consultation.

Furthermore, other tools are needed to draw or edit the map, to add, delete,
move objects and also to search for objects (by name, by address, etc).

1.4.2. Database

Database is a crucial resource for an Integrated Network Management
System. Databases are made to store information. And in rather large networks,
management information can run to a very respectable amount. That is why a good
Database Management System (DBMS) must be integrated in a network management
system. If possible, this DBMS must be well-known (e.g. Oracle) or must, at least,
be accessible by a well-known language (e.g. SQL?), in order to allow the network
responsible persons to write their own programs to exploit the recorded information
or to record information. For example, for report generation, no product can
anticipate all the different types of reports that may be requested of the data, so the
ability to extract information from the database via a user-written program is a
valuable asset.

Databases can be used for different applications in an INMS?. Some of the
different databases which can be considered are listed below.

v The first application is a network inventory. For any large network, it is
vital to have an inventory of objects connected to the network so that effective steps
can be taken if an object gives problems. The inventory database should contain
information on all the equipments that are connected to the network or form parts of
it. This information is: the owner’s name, the make and the type of the installed

2, structured Query Language
3, Integrated Network Management Systen.

Integrated Network Management Systems 19

devices, their location, the type of software used, etc. The database should serve as
directory of information for all classes of management but in particular as a tool for
the maintenance (search for the problems on the network, etc).

A second application of database is a topology database. This database
contains all the information necessary to display the map of the network topology. Its
information is the class of the devices, the map to which they belong, their places on
the map, their current status (up, down, inactive) and some information concerning
the traffic, for example, traffic passing through a link. This database will be directly
queried in order to display, on-line, the state of the network on the graphical user
interface.

Another application of databases in an INMS is the users directory. A list of
all the users can be very useful in many management areas. For example, this list
could be used in fault management to be able to determine the user of a faulty device
and where to find him. In accounting management, the invoices must be sent to the
users. Therefore, it is important to know where to send them, e.g. their E-mail
address. In security management, this directory could be used as repertory for
passwords and services that a user can employ and therefore be useful for the
authentication on the different computers of the network.

A vendor database is also of great importance in an INMS. This database
would contain information about the vendors, the maintenance contracts, the selling
contracts, people to contact, etc. This database would be very helpful in fault
management. When a fault occurs on a device, it will be easy to find its vendor and
then the maintenance contract, who to call to repair, etc.

The statistics database is the one in which all the information collected on
the network is saved. This information concerns the measures done on the nodes but
also on the network itself. An example of the application of this database would be
the fault detection. Every hour, the error rates of all the devices are logged in the
database. Then, it is possible to detect that a device is causing more and more errors
on the network. This allows to repair the faulty device before it completely goes
down. The statistics database can also be used to help in the network planning. It
gives long-term figures in order to build graphs on the evolution of the network
traffic. And for example, this allows to determine that, if the traffic increases in a
part of the network, a new routing device is needed to reduce the traffic. A non
restrictive list of statistics which can be collected, could contain network load,
number of packets passing through devices, percentage of errors in the packets, etc.

Integrated Network Management Systems 20

A faults database is also very useful in an INMS, especially for the solving
of later problems. This will mainly be helpful in the fault management area. The
faults database can be divided in two. The first part is the error log. This error log
contains a history of all the alarms sent to the operators. And it can be used to help in
the resolution of problems on the network. For example, it can be useful when trying
to isolate a problem to see that it has been caused by several other problems that
occurred previously. The second part of the faults database can be called the
maintenance database. This would mainly be used by the maintenance people. It
contains, for each type of problem, the list of operations that should, in theory, be
performed to cope with it. For each problem, a trouble ticket is issued. A trouble
ticket contains information on the date and time of the problem, the nature of the
problem, the specific devices and facilities involved, any short-term actions taken to
relieve the problem and information such as visits from the vendor’s maintenance
staff, dates on which parts were returned for repair and the date of the problem’s final
resolution. "The manager can call up reports on all trouble tickets that are
outstanding, are not solved within a given period and involve a specific device or
specific vendor. With such reports, a manager has an objective handle on such factors
as the reliability of a given component, the promptness of a given vendor’s field
service. "[NM50-600-1]

A large variety of tools must be present to help managing this amount of
information. For example, tools are needed to manually add or delete records on the
databases. Other higher level tools should be available to query the databases with
questions like "Give me information about all workstations using protocol XXX in
building 31".

An important tool for an optimum use of the databases is the reports
generator. To exploit the amount of information (mainly statistics), reports are
needed. Reporting capabilities should support graphics. Graphics communicate
information much better than texts or numbers. "INMS reporting features should
include the ability to search on any field, sort in any order and subtotal in any way.
As nobody can know in advance all the reports that will be required from the INMS,
the INMS should include a generic report writer with which new reports can be built
as time goes on."[NM20-300-1]

1.4.3, Topol DB Builder

For an INMS, an interesting tool is one that automatically builds a topology
database with the nodes that can be found on the network. To build the database, this

Integrated Network Management Systems 21

tool can inquire into currently existing sources of data, such as network routing
tables. It can also use promiscuous listening to the network traffic, looking at source
and destination addresses. Different programs can be used to build databases for the
different protocols used on the network. For example, in the case of a token ring
network running TCP/IP!, a program will be used to build a database containing all
the TCP/IP nodes. This program will listen to all packets passing on the network and
decode them to find the TCP/IP ones. When it has found valid TCP/IP addresses, it
will be able to check the routing tables of the TCP/IP machines corresponding to the
found addresses in order to detect new TCP/IP addresses and so on.

1.4.4. Alarm Manager

Alarm management is a crucial facility that is indispensable in an INMS.
Networks are not completely reliable and, in some organizations, network down time
can be very expensive. Therefore, errors must be detected as soon as possible. The
operators must be alerted of an absolute failure and also of a degrading condition by
using a set of alarms. When a problem is detected, an alarm signal, usually a
message, must be displayed at the operator’s console noting the type of
malfunctioning device, the location and the nature of failure. Systems with colour
displays use a special colour, usually red, for alarms. For example, if a line or a
device goes down, an alarm indication should be visibly displayed on the screen. The
map (or a part of it) containing the faulty object should be popped up and a window
with the actions to perform if the operator can solve the problem or with the people to
advise if he cannot solve it by himself, should be created.

The alarm indication should give information about all the events. The events
should also be saved on file and on paper to keep a trace of what happened. The
information is the date and time of the event, the type of event, the node or the line
that is concerned, the program that detected the problem and the alarm message which
explains the problem.

Automatic response to events is also a manner of not losing too much time
when an error occurs. In the case of rather frequent problems, sequences of actions
can be performed automatically by the INMS. For example, if the system detects that
a bridge is not working anymore, before sending an alarm to the operator, the alarm
manager can try to restart the bridge by itself and send a message to the operator to

4, Transmission Control Protocol/Internet Protocol.

Integrated Network Management Systems 22

explain what it has done. If this action does not work, then an alarm is displayed to
warn the operator.

1.4.5. Devices Polling

An important goal of a network management system is to detect if all
important devices on the network are working perfectly. If an object stops working as
it should, somebody must be informed, to cope with the problem. Therefore, it is
important to check, at regular intervals, if every object is working well. This function
is in direct relation with the alarm manager. But, although the devices polling entity
generates many alarms, it is not the only source of alarms. There are two ways of
doing this.

The first way is the trap message. The object to which a problem occurs,
sends a message to a well-known program, a trap handler. The trap handler will
update the topology database if significant problems arise. But traps are not enough.
Since an object can be unable to send a trap message, e.g. if it is not working
anymore, another way must be used. A program can poll all important objects to
check if every of them is all right. That is the second way.

This program should, at regular intervals, send requests to all devices. If one
device does not answer, the program knows that there is a problem. Then it updates
the topology database.

Nowadays, most networks are multivendor networks. Therefore there can be
different types of equipments on a network and, sometimes, different types of
protocols used by these equipments. A way for managing these objects is to use
several programs. The objects will be divided into classes regarding the different
protocols they support or the different makes. And a specific program will be run for
every class. For example, XXX program will be run for devices supporting the XXX
protocol, specific program for the equipments from one vendor, etc. All these
programs will send the information they gather to a centralization program or they
will directly update the topology database. This approach offers different advantages.
It allows to share the CPU load used by the polling between several machines. It
allows to easily modify a program if the protocol changes.

Integrated Network Management Systems 23

1.4.6, Traffic Monitor

In any network, bandwidth is an essential resource. Therefore, traffic should
be continually monitored in order to determine the traffic levels on the network. This
supervision can be made either on a line in the case of a point-to-point link or on a
complete network, e.g. in the case of an Ethernet network. On-line graphs of the
network traffic or the line load can be displayed on the graphical user interface. The
measures can also be logged in the statistics database. If the traffic or the load
becomes too high, the alarm manager must be warned.

1.4.7. Reachability T

The reachability test is indispensable for network testing, especially in a
multivendor environment. It allows to detect if a specified device is reachable from
the computer where the test has been performed. It consists in sending a packet and in
waiting if a response is sent back by the tested device. This test can be performed at
different levels. Three levels of testing can bring interesting information. The first
one is the data-link layer test. It provides a method for determining if a working data-
link level path exists between two adjacent hosts. Another test is targeted at the
transport layer. This test allows additional levels of the communications layers to be
controlled. Many failures may pass the data-link test and fail at the transport layer.
Finally, the application layer test passes through the entire seven OSI layers. "This
function loops data from a user-level task on host system to another user-level task on
the target system and back. With the success of this test, the network manager is
assured that a usable link from the host node to the target system exists. "[MORRS89]

1.4.8 A Monitor

The allocation of network addresses is a problem in most of the networks. In
theory, if a user wants to install, to move or to remove a device on the network, he
should ask the authorization to the network manager. This will enable the manager to
allocate addresses and to update the database with the location and address and with
the name of the person responsible for the equipment. This is the only way to control
the allocation of addresses. However in reality, people rarely warn the manager of the
changes they make either for location moves or address changes. Therefore tools are
needed to detect these changes automatically, to inform the network manager and
prepare the databases for update.

Integrated Network Management Systems 24

On all the network, addresses appearing on the packets must be registered.
This can be made by two means. The first one consists in adding equipments on every
part of the network to register the addresses of all the packets they detect. The second
means consists in using the tables built by network control devices. For example, the
learning bridges build a table for their two interfaces to know if they must copy a
packet on the other side. The gateways build routing tables to know where to send the
packets they receive. The lists of addresses can be used to locate the different
positions of the devices. It is possible, with the lists of addresses and the positions of
the gateways and of the bridges, to know on which segment of the network an object
with a given address can be found. It is also possible to compare these locations with
the ones found in the database to detect all changes of the network topology.

Figure 1.3 gives the example of a small LAN composed of four Ethernet
segments connected by learning MAC-level bridges.

N1 N2 N3 N4
S1 S2
1 1 2
Bridge 2 Bridge 3 Bridge 1
2 2 1
S3 S4
NS5 N6 N7
Fig. 1.3: Small LAN composed of MAC-level Bridges

The bridges need address tables to know if a packet coming from one side
must be copied on the other interface. And by looking at the origin and destination
addresses of every packet, they are able to build tables like the one shown on figure
1.4,

In the above example, it is possible for a program, with the tables as input,
to determine that if the node N 5 appears on side 2 of bridge 2, on side 2 of bridge 3
and on side 2 of bridge 1, it is located on segment S 3.

Integrated Network Management Systems | 25

Bridge 1 Bridge 2 Bridge 3
I1 |12 I1 |12 1112
N7|N1 N1|N5bH N7 N1
N2 N2/ N6 N3 N2
N5 N3 N4/ Nb
N6 N 4 N 6
N3 NT
N 4
Fig. 1.4: Routing tables of bridges

Every address detected is checked to see if it corresponds to a valid address
present in the database. The program should also check to see if two devices do not
have the same address. If so, there is an error in the address allocation (duplication)
or there is an unofficial use of addresses. In this case, the network manager must be
advised.

1.4.9. Da n 1 in

For an operator, information about the state of the objects or the behaviour of
the network and about how to react is sufficient. But the network manager needs
more. His task is more complex. If a problem occurs, the operator must only report
it. But the network manager must find from where the problem came and why it
occurred. Therefore, he needs detailed information about the hosts, the routers, the
bridges and the network itself. For example, he must be able to retrieve information
such as the number of messages that have been sent or received by a specific network
device.

Tools must be available to collect, on demand, information about the objects
on the network and to transform this information into a readable (graphs,...) and
useful way. For example, errors counters are not useful if they are not transformed
into error rates, either errors/second or errors/packet.

Furthermore, to be effective, a system must not only give the ability to read
values but it must also allow to set values. The system must enable to modify the
value of the configurable parameters in the network components. It could be, for
example, very useful to modify routing tables, to change the value of a "reset"
parameter of a given device. This mechanism could be used, as a first problem

Integrated Network Management Systems 26

solving attempt, to remotely restart a device which causes too many routing errors due
to a software problem.

1.4.10, Monitoring and Statisti mputin

Monitoring is the means by which management entities obtain information on
the system they are managing. In the management of a network, statistics on traffic,
throughput and error rates are very useful. These provide basic information on how
the network is performing. It is possible to see if there is a slow deterioration of a
service. In addition, figures on the size of the network, on the services offered, the
number of different computers in the network, the quality of the service (current
problems, system reliability, etc) are needed for resource planning.

With all the data collected during a period of time, a program will calculate
statistics about the network (error rate, load, users, failures, etc) and about the nodes
(up/down time, maximum packet received per second, etc). The stored data can also
be used to compute, for example, the load of a line and to modify the topology
database. The manager must also be able to fix thresholds on variables. If the value of
a variable becomes higher than the corresponding threshold, an alarm should be
displayed.

Using the database, the user should be able to consult data about the history
of the network and automatically create tables, reports, graphics, etc. This will be
used to see the state and the evolution of the network and help the network planning.

1.4.11 hic K nd Encipherment M I

The cryptographic keys and encipherment manager mechanisms allow to
encipher the information exchanged between two or more entities. The encipherment
manager possesses a list with the different groups of entities that must talk to each
other in a secure manner. The encipherment manager generates, at given intervals,
keys as required and distributes them to the relevant entities in the system. The
manager also determines the encipherment parameters. For example, the
encipherment manager determines which encipherment algorithm must be used and
when this algorithm must be changed. It must also distribute this information to the
relevant entities. An example of encipherment activity would be the access to a file
server containing secret information. The encipherment manager, every 15 minutes,
generates new cryptographic keys and it distributes them to the file server and its

Integrated Network Management Systems 27

authorized clients. By doing this, the access to the information is very difficult if not
registered in the manager’s access tables.

1412 . A ntrol and Authentication

Authentication is the mechanism by which a user identifies himself as a
legitimate user of the network. This is, in general, made by using passwords. Access
control is the mechanism by which the system controls which entity can access to
which resource on the network. This is, in general, implemented using access control
lists. The INMS allows to gather access control and authentication within a central
entity. Every time a user logs on in any computer of the network, instead of
authenticating the user with a local password, the computer will ask to the INMS if
the user is allowed to log on. This will have as advantage for the users to work with
only one password for all the services available on the network. And the mechanism
is nearly the same for access control. Every time an entity (user, program) wants to
access to a controlled service, the service asks the INMS if the entity is allowed to use
the service. The INMS checks its access lists to see if the entity is allowed to do so
and responds to the service that the access demand is accepted or rejected.

1.4.13. Audit Trail

Security audit is needed to record all exceptional events (e.g. attempts at
unauthorized access), normal events such as logs-on and file accesses to enable future
investigation in case of security problems. For an audit trail system to be effective, it
must provide the network manager with streamlined and useful information (rather
than mountains of raw data). The manager may wish to audit only certain users,
operations on files with certain extensions or in certain subdirectories, only certain
types of operations or certain servers. All file and directory creations, deletions and
renames may need to be reported. A system error log report, listing all system error
messages to alert the network manager of potential problems, may be
advantageous.[MINOS89d]

1.4.14, Billing and Accounting

Managers require accounting information to be able to charge for resources
used and to control costs incurred by accessing remote resources.

On each device furnishing payable network services, an accounting program
must be running. The accounting program must be able of maintaining statistics on all

Integrated Network Management Systems 28

calls and call attempts and these statistics should be adequate so that invoices can be
generated from them. Beside accumulating these statistics, the program will also "tell
each user at the end of the call, just how much that call has cost". The statistics are
stored in a database. The stored information is: the username, the source address, the
destination address, the date and time, the call statistics (call duration, number of
segments transmitted and received), the cost of the call.[DALL88]

Then, another program, called billing program, is run once a given period.
This program retrieves the accounting information in the database and then generates
invoices from it automatically. The costs can also be combined on invoices with other
payable services such as printing costs, CPU usage costs, ...

2 .1 . Introduction

TCP/IP has been created in the US research community in response to a
problem. The problem was to allow a collection of heterogeneous computers and
networks to communicate. To solve this problem, it was decided to build a number of
protocols.

The protocol architecture is divided into four layers. The protocols are
derived from the ones developed by the Department of Defense (DoD). The
standardization entity which oversees the development of these protocols, is the
Internet Activities Board (IAB).

- The Network Access Layer describes the physical and data-link technologies used to
realize transmission at the hardware level. It is concerned with the exchange of data
between a host and the network to which it is attached. The protocol used at this
layer will depend on the type of the network, for example X21, X25, IEEE 802.

- The Internet Layer provides the routing function across several networks. It
describes the internetworking technologies in order to "forget" the different
physical technologies. The major protocol developed for the internet layer is termed
the Internet Protocol (IP).

- The Host-to-host (or Transport) Layer describes the end-to-end technologies to
realize communications between hosts. For this layer, two protocols have been
developed. The first one, the Transmission Control Protocol (TCP), provides a
reliable mechanism to transfer data between computers. Whereas the second one,
the User Datagram Protocol (UDP), provides only a non-reliable datagram-oriented
transfer mechanism.

- The Application Layer contains protocols that provide end-user services. Examples
of application protocols are the File Transfer Protocol (FTP), the Simple Mail
Transfer Protocol (SMTP), etc.

As has been seen above, the aim of the internet layer is to interconnect
different networks. This interconnection is realized through the Internet Protocol (IP).
IP allows a computer to send messages to another computer wherever it may be (the

TCP/IP | 30

same or another network). A set of interconnected networks is called an Internet. An
example of internet is shown in figure 2.1.

Network 1
R1 R2
O 1@ @& @

Router

Fig. 2.1: Example of Internet

This internet is composed of three networks interconnected by three gateways
(or routers in IP language). The routers are responsible for choosing the best way to
reach the destination host and to transfer the messages between the different networks.
In an internet, the hosts are, thus, virtually connected to the same big network.

In general, all the hosts in the internet must implement protocols from the
four layers to provide services to the users. On the other end, the routers are not
obliged to implement the four layers. Only the two first ones are needed because they
are only concerned with the routing of datagrams which is made at the internet layer.
Nevertheless, since network management takes place in many networks, the two
upper layers are fairly often found in routers, as they are needed for management. In
these routers, the Simple Network Management Protocol (SNMP) is running on top of
UDP.

In the rest of this chapter, the major TCP/IP protocols will be described.
After this introduction, the second section will concentrate on IP. The third one will
explain a protocol which is, in general, found with IP; the Internet Control Message
Protocol (ICMP) is used to report on the behaviour of the network. Section four and
section five explain the two host-to-host protocols, respectively UDP and TCP. Many
other protocols can be found in the TCP/IP protocol suite but they are not the subject

TCP/IP 31

of this paper. Figure 2.2 gives an idea of all the protocols that can be found in the
suite.

& TELNET} SMTP FTP DNS SNMP

W ‘\
X
&

TCP UDP

EGP ICMP GGP

ARP /RARP IP

r | I
4\0@6 Network Access

Fig. 2.2: The TCP/IP protocol suite

Next to the four protocols (IP, ICMP, UDP and TCP) that will be described
hereunder in the following points of this second chapter, many others can be found.
For example, the Telnet protocol allows a user to open a session on another
computer. There is the File Transfer Protocol (FTP) which allows to transfer files
between computers and the Simple Mail Transfer Protocol (SMTP) which allows
users to exchange electronic mail. Above UDP, the Domain Name Server (DNS)
protocol permits to translate high-level computer names to IP addresses and vice
versa. The Simple Network Management Protocol (SNMP), used to manage
networks, will be described, in detail, in the third chapter. At the internet layer, many
protocols help IP in its delivery task. For example, the Exterior Gateway Protocol
(EGP) is a way by which routers can exchange information about which networks are
reachable via a particular router. The Gateway-to-Gateway Protocol (GGP) is a
way by which routers exchange routing information. The Address Resolution
Protocol (ARP) and Reverse Address Resolution Protocol (RARP) provide a
mechanism to translate IP addresses into network specific addresses and vice versa.

Internet Protocol 32

2 a2 - P Protocol

"The internet layer is responsible for providing transparency over both the
topology of the internet and the transmission media used in each physical network
comprising the internet."[ROSE91]

To be supported by the majority of media technologies, the internet layer
must be as simple as possible. That is why the Internet Protocol has been designed as
connectionless and for providing a non-reliable service. The aim of the internet
protocol is to transport PDUs called datagrams between any hosts in the internet. For
this, it provides a set of primitives to its users (layer above).

The service primitives are developed in the first point whereas the structure
of an IP datagram are described in the second point. The last three points give a
description of important mechanisms that are part of the IP protocol. These
mechanisms are: addressing, routing and fragmentation. Other less important
mechanisms are explained during the presentation of the primitives or during the
presentation of the PDU.

2.2.1. IP Servi

As IP provides a connectionless service to the upper layers, there are no
needs for connection establishment and connection release primitives. Therefore only
two IP primitives are defined by the IP specification [RFC791] : IP-DATA .request
and IP-DATA.indication. These primitives are less precisely specified than, for
example, the corresponding protocol data unit (PDU) because the vendors must be
free to implement the layers in order to make them as efficient as possible. Only a
functional specification is given for the IP services. The primitive preceded by an
arrow pointing downwards represents a request primitive from the IP user to IP. And
the one preceded by an arrow pointing upwards represents an indication primitive
from IP to the IP user.

v IP-DATA. request (Source Address, Destination Address, Protocol, Type Of
Service, Identifier, Don’t Fragment, Time To Live, Data length, Option Data,
Data)

* IP-DATA .indication (Source Address, Destination Address, Protocol, Data length,
Option Data, Data)

The parameters associated with the two primitives are : [STAL89]

Internet Protocol 33

- Source & Destination Addresses: Internetwork (or IP) addresses of sending and
receiving IP entities. (see pt 2.2.3)

— Protocol: 1t identifies the recipient protocol entity. (an IP user, e.g. TCP or UDP)

— Type Of Service: It is used to specify the treatment of the data units during the
transmission. The indicators are precedence, reliability, delay and throughput.

- Identifier: 1t is used to identify the data units uniquely (along with the addresses
and the protocol).

- Don’t Fragment: 1t indicates whether the various IP routers can segment data to
accomplish delivery. .

-> Time To Live; Maximum lifetime of data within the internet.
- Data Length: Length of data being transmitted.

— Option Data: Options requested by the user. The currently defined options are:
security, source routing, route recording, stream identification and timestamping.

— Data: User data to be transmitted.

The use of the primitives and the general model of operation for transmitting
a datagram is illustrated in figure 2.3.

Host A Host B

User User
t0 tI]

TCP Gateway X . TCP
10

Ip IP 4 Ip
- 193 (" ly

NAP-1 NAP-1| NAP-2 —t—&NETQ — NAP-2
7 8
w

Fig. 2.3: Transmission of a datagram

In this example, data is sent from Host A to Host B. [RFC791, pp.5-6]

- The sending IP user (here TCP!) uses the IP-DATA.request primitive to ask the
sending of data across the network. (1)

-> The IP entity builds an IP datagram which includes the final internetwork address.
It determines a local network address (here the local address of a router). (see
pt 2.2.4, the routing function)

1 ¢p : Transmission Control Protocol

Internet Protocol 34

— The IP entity gives the datagram and the local network address to the local network
interface. (12)

- The local network entity creates a data unit and sends it via the local network. (13-
t4)

- When the data unit arrives at the router, the local network entity strips off the
header and turns the datagram over to the internet entity.(r5) By examining the
destination IP address, the IP entity determines that the datagram is to be
forwarded. It determines the local network address for the next IP entity and sends
the datagram to the corresponding local network entity. (16)

-> The local network entity creates a data unit and sends it via the local network to the
destination host. (17-t8)

— At the destination host, the local network entity strips off the header and passes the
datagram to the IP entity.(79)

-> The IP entity determines that the datagram is for an application program in this

host. It passes the data and other parameters to the destination entity (here TCP).
For this, it uses the IP-DATA .indication primitive.(1/0)

2.2.2. 1P Datagram

A protocol data unit sent between IP entities is called a DATAGRAM. Its
structure is shown in figure 2.4. The fields that are marked with an asterisk, come
from or are derived from the IP-DATA. .request primitive, whereas the others come
from the IP entities themselves.

1 2 3
01234567890123456789012345678901

SOURCE ADDRESS
DESTINATION ADDRESS
OPTIONS + PADDING

VERSION| IHL |TYPE OF SERVICE TOTAL LENGTH
H IDENTIFICATION FLAGS FRAGMENT OFFSET
g TIME TO LIVE PROTOCOL HEADER CHECKSUM
:
r

DATA

Fig. 2.4: Internet datagram

The fields in the IP datagram are: [STAL89] & [RFC791]
—> Version (4 bits): Version number of the protocol.

— [HL (Internet Header Length) (4 bits): Length of the datagram header in 32-bit
words (IHL = 5).

Internet Protocol 35

- Type of service * (8 bits): The type of service field provides an indication of the
quality of service desired. The parameters are reliability, precedence, delay and
throughput. This type of service indication will be used by routers to select the
transmission parameters for a particular network, to select the network to be used
for the next hop or to select the next router when routing an internet datagram.

— Total length (16 bits): Length of the datagram measured in octets.

— Identification * (16 bits): The identification field, together with the addresses and
the user protocol, uniquely identifies a datagram.

— Flags (3 bits): The first bit of the flag is unused. The second, the Don’t Fragment
(DF) flag (*), if set, prohibits fragmentation. The third one, the More Fragment
(MF) flag is used for fragmentation and reassembly.

— Fragment Offset (13 bits): If the datagram has been fragmented, the fragment offset
field indicates where in the primitive datagram this fragment belongs. It is
measured in 64-bit units.

— Time to Live * (8 bits): The Time to Live field indicates the maximum time the
datagram is allowed to remain in the internet. It is an indication of an upper bound
on the lifetime of a datagram. "It is set by the sender of the datagram and reduced
at the points along the route where it is processed. If the time to live reaches zero
before the internet datagram reaches its destination, the internet datagram is
destroyed. The time to live can be thought of as a self destruct time
limit. "[RFC791]

- Protocol * (8 bits): The protocol field indicates the upper level protocol used in the
data portion of the datagram.

— Header Checksum (16 bits): Frame check sequence on the header only (except the
header checksum field). It is used to perform error detection. When an IP entity
receives a datagram, it recomputes the checksum. If it is not the same as the one in
the header checksum field, then the datagram is discarded. The header checksum is
recomputed each time the header is modified. For example, it must be recomputed
when the Time to Live changes or when the datagram is fragmented.

— Source Address * (32 bits). It represents the IP address of the sending IP entity.
(see pt 2.2.3)

- Destination Address * (32 bits): It represents the IP address of the recipient IP
entity. (see pt 2.2.3)

-> Options * (variable): The options field encodes the options requested by the sender.
(see IP services) "The options provide for control functions needed or useful in
some situations but unnecessary for the most common communications. The options
include provisions for timestamps, security and special routing. "[RFC791]

— Puadding (variable): The header padding is used to ensure that the internet header
ends on a 32-bit boundary.

- Data * (variable): The data field contains the data given by the IP user to be sent.
It must be a multiple of eight bits in length. Total length of a datagram is a
maximum of 65,535 octets.

Internet Protocol 36

223 A in

An IP address is a quantity of 4 octets (32 bits). It is divided into two fields:
a network number and a local address. The network number refers to a particular
physical network in an internet and the local address refers to a particular device
attached to that physical network. A flexible scheme for allocating the 32 bits has
been developed. IP addresses are divided into 5 classes, of which only three are
used.[ROSE91]

CLASS A)
1 3
01234567890123456789012345678901
0| NETWORK LOCAL ADDRESS

Class A specifies a small number of networks with a large number of hosts.
This corresponds to 128 Class A networks, each containing up to 16777214 hosts.
CLASS B
1 -2 3
01234567890123456789012345678901
10 NETWORK LOCAL ADDRESS

Class B specifies a moderate number of networks with a moderate number of
hosts. This corresponds to 16384 Class B networks, each containing up to 65534

hosts.
CLASS C
1 2 3
01234567890123456789012345678901
110 NETWORK LOCAL ADDRESS

Class C specifies a large number of networks with a small number of hosts
(2097152 networks with up to 254 hosts). And in addition, there exist two other
classes which remain unused.

CLASS D
1 2 3
01234567890123456789012345678901
1110 FORMAT UNDEFINED

Internet Protocol 37

L CLASS E) ;
01234567890123456789012345678901
11110 FORMAT UNDEFINED

In each class, two values for the host-identifier are reserved for a special
purpose. If all the bits are zero, then the resulting quantity refers specifically to the
network identified in the IP address. And, if all the bits are one, then the IP address
refers to all hosts attached to the network (the IP broadcast address).

To be easily understood by humans, the dotted quad notation is used for the
representation of addresses. Each octet is expressed as a decimal number, separated
by a dot. For example, a computer which has the local address 51274 and is
connected to the class B network 397 would have the following address.

1 2 3
01234567890123456789012345678901

1000000110001101(1100100001001010
| Network Number = 397 | Local Address = 51274 |

And in dotted quad notation, this address would be expressed by
129.141.200.74.
1000000210001101j11001200001001010
| Octet 1 =129 | Octet 2 = 141 | Octet 3 = 200 | Octet 4 = 74 |

The two-level addressing seems sufficient. But in practice, it is impossible
for a site to have more than one physical network (identified by the network number).
If a site is running several physical networks, then it needs several IP network
numbers, one for each physical network. This solution is not interesting since it
increases the number of networks and the address space is of limited length. A better
solution is to introduce a three-level addressing. "This allows each site to partition the
host-identifier portion of their IP network address. A network so sub-partitioned is
termed a subnet."[ROSE91] From the outside, the IP address appears to have two
components, the network and host identifiers. Inside the site using subnets, the host-
identifier is divided into two parts: a subnet-number and a host-number. The subnet-
number refers to a particular physical network within the site’s IP network and the
host-number refers to a particular device on that subnet. To divide the host-identifier
between the subnet- and host-numbers, a subnet mask is used. "The subnet mask is a
32-bit quantity which is logical-ANDed with an IP address in order to derive the
actual physical network being identified. "[ROSE91]

Internet Protocol 38

An example of the use of a subnet mask is shown in figure 2.5.

1 2 3
01234567890123456789012345678901

10/00000110001101/2100200001001010
| Network Identifier = 397 | Host Identifier = 51274 |
Subnet mask
yuafajajaafaafa|ajefafafa|afaja|z|a|2{a|ajzjrizjojojojojo]o
| Octet 1 = 255 | Octet 2 = 255 | Octet 3 = 255 | Octet 4 = 192 |

10/000001100011011100100001{001010
| Network Identifier = 407321 |Bost 1d.=10|
| Network = 397 | Subnetwork = 801 |Host Id.=10|

Fig. 2.5: Use of subnet mask

As the dotted quad notation is also used for subnet masks, this one would be
255.255.255.192. From the outside, the address will remain the same,
129.141.200.74 and refer to computer 51274 in class B network 397, as in the
preceding example. But from the inside, the meaning has changed. The address refers
to host 10 in the network 407321 or to host 10 in the subnetwork 801 from class B
network 397. Network 397 appears to have 1024 subnetworks, each able to contain 64
devices. Thus, within this site, networks 406528 (for subnetwork 0) to 407551 (for
subnetwork 1023) are available.

Thus, the two-level addressing (network identifier, host identifier) has
become, with subnet masks, a three-level addressing (network identifier, subnet
identifier, host identifier).

2.2.4. Routing

The routing problem concerns the choice about the way that the IP datagrams
must take to reach their destination. The IP modules must decide to which router or to
which host the datagram must be transmitted. This is called the "next hop". This
problem is not invoked in the protocol specification [RFC791].

Routing can be either direct or indirect. "If the destination is on the same IP
network, then the next hop is the destination IP address. This is termed direct routing.
Otherwise, the next hop must be to a router, on the same IP network as the local
device, which is somehow "closer” to the destination device. This is termed indirect
routing. "[ROSE91}

Internet Protocol 39

Each network device (router, host) maintains a routing table. The routing
table gives, for each possible destination network, the next router to which the IP
datagram should be sent. The routing table may be static or dynamic. A static table
contains fixed routes to predefined destinations. A dynamic table is more flexible in
responding both to error and congestion situations. For example, when a router goes
down, all of its neighbours will send out a status report. This allows other devices to
update their routing tables. This mechanism can also be used to control congestion.

"Usually both hosts and routers start with some initial configuration
information on stable storage. Then, they dynamically learn about the network
topology through protocol interactions (see other protocols of the suite). In addition,
there is also the notion of a default route, which can be used to reach a destination if
its IP network is not in the routing table."[ROSE91]

2.2.5. Fragmentation R mbl

An Internet is composed of many individual networks with their
particularities. One of the particularities is the maximum packet size, also called
maximum transmission unit (MTU). It would be impossible to fix a uniform packet
size across the networks. Therefore, routers must, if necessary, be able to fragment
datagrams into smaller segments before transmitting them. The reassembly of the
fragments can be made at different moments. A solution is to make the reassembly
only at the destination. Another solution is to make the reassembly as soon as possible
in the routers. The second solution has the disadvantages that the routers need larger
buffers and that dynamic routing is prohibited, whereas the principal disadvantage of
the first is the reduced efficiency of the networks which must transmit many small
datagrams. The first solution, reassembly at the destination host, has been chosen for
IP.

A. Fragmentation

The fragmentation of an internet datagram follows the process described
below. An internet protocol entity creates new internet datagrams and copies the
contents of the internet header fields from the initial datagram into the new internet
headers. The data of the initial datagram is divided into portions. The first portion of
the data is placed in the first new internet datagram and the total length field is set to
the length of the first datagram. The more-fragment flag is set to one. The second
portion of the data is placed in the second new internet datagram and the total length
field is set to the length of the second datagram. The more-fragment flag is set to

Internet Protocol 40

one... The last portion of the data is placed in the last new internet datagram and the
total length is set to the length of the datagram. The more-fragment flag carries the
same value as the initial datagram. The fragment offset field of the new internet
datagrams is set to the value of that field in the initial datagram plus the total number
of blocks copied in the preceding fragments. [RFC791]

An example of Fragmentation Procedure

An example of a fragmentation procedure is shown in figure 2.6. This
procedure has been given, as an example, in the IP standard [RFC791]. The option
chosen here is to cut the datagram into two non-equal parts. The length of the first
one is equal to the maximum packet size and the second one contains the rest of the
datagram. This last is reduced, if necessary, using the same process. Another option
would have been to cut the datagrams into two equal parts and redo this until the
length of each part is smaller than the maximum packet size.

Then TL =< MTU Else
T~DF=1_ _______——— E
SUB- Produce the First Fragment
MIT D Copy the original header
I OIHL <- [HL OTL <- TL
THE S OFO <- FO OMF <- MF
FRAG- C NFB <- MTU -IHL *4)/8
MENT A Attach the first NFB * 8 data octets
R
Correct the header
TO D MF <-1; TL <- (IHL*4) + (NFB*8)
D Recompute Checksum
THE A Submit the fragment to layer below
T Produce the Second Fragment
LAYER A Copy the header (selectively)
G Append the remaining data
BELOW R Correct the header
A IHL <- (((OIHL*4)-(length of options
M not copied))+3)/4
TL <- OTL -NFB*8 - (OIHL-IHL)*4)
FO <- OFO + NFB
MF <- OMF
Recompute Checksum
Repeat Until (last fragment submitted) or (datagram discarded)

(O)FO = (Old) Fragment Offset

(O)IHL=(Old) Internet Header
Length

(O)MF = (Old) More Fragment flag

(O)TL = (Old) Total Length

DF = Don't Fragment flag

NFB = Number of Fragment Block

MTU = Maximum Transmission Unit

Fig. 2.6: Fragmentation Procedure

Internet Protocol 4]

When an IP entity attempts to send the datagram, it checks the MTU of the
network. If the MTU is greater than or equal to the total length of the datagram, then
no further processing is required and the datagram is passed to the layer below.
Otherwise, the IP entity checks to see if the flags field in the datagram permits
fragmentation. If not, the datagram is discarded. Otherwise, the IP entity cuts the
datagram into two fragments, the first fragment being the maximum size and the
second fragment being the rest of the datagram. The fragment offset field contains a
number corresponding to where the user-data belongs, in 8-octet increments, in the
original datagram. Then, for each fragment, except for the last in the sequence, the
more fragments bit is set in the flags field. The first fragment is submitted to the layer
below to be transmitted, while the second fragment is submitted to this procedure in
case it is still too large.[RFC791] & [ROSE91]

B. Reassembl

The reassembly of a fragmented IP datagram is performed by the IP module
at the destination computer. "To reassemble the fragments of an internet datagram, an
internet protocol module combines internet datagrams that all have the same value for
the four fields: identification, source, destination and protocol. The combination is
done by placing the data portion of each fragment in the relative position indicated by
the fragment offset in that fragment’s internet header. The first fragment will have the
fragment offset zero and the last fragment will have the more-fragments flag reset to
zero. "[RFC791]

An example Reassembly Procedure

An example of a reassembly procedure is shown in figure 2.7. This
procedure has been introduced in the IP specification [RFC791].

A datagram is identified by its source and destination addresses, its protocol
and its identification field. The concatenation of these four values is termed the buffer
identifier (BUFID).

If the received datagram is a whole datagram (FO = 0 & MF = 0), then the
datagram is directly forwarded to the layer above and reassembly resources, if already
allocated, are released.

If the received datagram is not a whole datagram and if no other fragment
with this buffer identifier has already arrived, then reassembly resources are allocated.

Internet Protocol 42

The reassembly resources consist of a data buffer, a header buffer, a fragment block
received bit table (RCVBT), a total data length field and a timer. The data from the
fragment is placed in the data buffer according to its fragment offset and length and
bits are set in the fragment block received bit table corresponding to the fragment
blocks received.

BUFID <- Soutce, Destination, Protocol, Identification

Then FO=0&MF=0 __ _— FElee

Buffer with BUFID No Buffer with BUFID
T js allocate EIT is allocated E

Flush reassembly Allocate reassembly resources

for this BUFID with BUFID
TIMER <- TLB

Submit the Datagram | TDL<-0
to the Layer Above Put Data from fragment into data buffer with BUFID

from octet FO*8 to octet FO*8 + (TL-(IHL*4))

Set RCVBT bits fr. FO to FO + ((TL-(IHL*4)+7)/8)

T —— MF=0 E
TDL <- TL - (IHL*4) + (FO*8)|

T ——— FO0 E

Put Header in Header Buffer

all RCVBT bits are set
T & TDL<>0 E

TL <- TDL + (IHL *4) { TIMER <- MAX (TIMER, TTL)

Submit datagram to
the layer above While (TIMER > 0)

Free reassembly & (no next fragment)
resources for BUFID

Repeat Until (TIMER = 0) or (datagram submitted)

T ———— TIMER=0 E
Flush all reassembly for this BUFID

BUFID = BUFfer IDentifier

FO = Fragment Offset

[HL = Internet Header Length

MF =More Fragment flag

RCVBT = frag. block ReCeiVed Bit Table
TDL = Total Data Length

TL = Total Length

TLB = Timer Lower Bound

TTL = Time To Live

Fig. 2.7: Reassembly Procedure

If the received fragment is the last one (MF = 0), the total data length (TDL)
can be computed. If the fragment is the first one (FO = 0), its header is placed in the
header buffer.

Internet Protocol 43

If all fragments are received (all RCVBT bits set to one), then the total
datagram length (TL) is calculated, the datagram is passed to the layer above and
reassembly resources are released.

Otherwise, the procedure waits until the timer expires or a new fragment
arrives. If no new fragment arrives within a given time (TIMER = 0) or if the whole
datagram is reassembled then the procedure stops. If the timer runs out, resources are
released and the datagram is lost.[RFC791]

Internet Control Message Protocol 44

2 e 3 . TCMP Protocol

The Internet Control Message Protocol (ICMP) is, in general, associated with
each IP module. ICMP provides a low-level feedback on how the internet layer is
operating and how it might behave. ICMP provides a small number of control
messages for error-reporting. And even if they are at the same level, ICMP uses the
delivery services of IP.

The ICMP module is activated each time the IP module detects an error or an
event for which an ICMP message has been foreseen. The ICMP entity builds this
message and gives it up to the IP module which sends it into the data field of an IP
datagram to the entity which causes the problem.

The ICMP packet contains five different fields. Its format is given in figure

2.8.
1 2 3
01234567890123456789012345678901
TYPE CODE CHECKSUM
PARAMETERS
INFORMATION

Fig. 2.8: ICMP Message

The meaning of the fields is straight-forward:

-> Type (8 bits). 1dentifies which control message is being sent.

- Code (8 bits).: Identifies a basic parameter for the control message.

-> Checksum (16 bits): Checksum computed over the entire ICMP packet.

-> Parameters (32 bits): Used to specify more lengthy parameters.

- Information (variable): Provides additional information related to the message. In
general, for errors concerning a particular IP datagram, the beginning of this
datagram is copied in the information field of the related ICMP message.

The control messages supported by ICMP include:

- Destination unreachable.: This message is used in different circumstances. It is used

to report that a datagram could not be delivered because a network or a host was

unreachable, a protocol was not running or fragmentation was necessary but
disallowed by the flags field.

Internet Control Message Protocol 45

- Time exceeded: This message is sent to report that the time to live field of a
datagram reached zero and that it has been discarded. A host can send this message
if it cannot complete reassembly within a given time.

-> Parameter problem: This message is used to report an error in an IP header.

-> Source quench: The source quench message is used to report that a network device
is discarding datagrams due to lack of resources (e.g. buffers). It provides a
rudimentary form of flow control.

- Redirect: This message is used to advise of a better route to a destination IP
address.

-> Timestamp/timestamp reply. These messages are used to sample the delay in the
network between two network devices.

-> Information request/information reply: These messages are used by a host to
discover the address.of the local IP network.

— Address mask request/address mask reply: These messages are used to determine
the subnet mask associated with the local IP network.

-> Echolecho reply: These messages are used to test the reachability of an IP address,
to test the communication between two hosts. An echo message is sent and when
receiving such a message, the local IP entity responds by sending an echo reply
message.

A useful network management tool can be built with ICMP messages.

This program is called Packet INternet Groper (PING). To test reachability
of destinations, the PING program sends an ICMP echo message to an IP address and
awaits an echo reply message. By repeating this operation, PING can be used to
observe variations in network round-trip times and loss rates. This is useful to
discover the source of network congestion. Furthermore, it can be combined with IP
header options such as Source Routing and Record Routing to write other powerful
programs in order to isolate network problems.

User Datagram Protocol 46

2 .49 . UDP Protocol

At the IP layer, an address identifies a router or a host. It corresponds, in
OSI language, to a Network Service Access Point (NSAP). The User Datagram
Protocol (UDP) adds a mechanism to distinguish between different destinations within
a given host. This mechanism is a port addressing capability.

A port identifies a program executing on a machine and is equivalent to a
Transport SAP. Whereas at the internet layer, an address is sufficient to deliver
datagrams, at the UDP layer, a socket is needed. A socket is composed of an internet
address (32 bits) and a port number (16 bits). Thus, a socket is a quantity of 48 bits.

Because two computers need to agree on port numbers before they can
cooperate, a universal assignment mechanism must be used. An authority assigns
some special port numbers. These are called well-known ports. For example, if a file
has to be transferred between two computers, the two TFTP (Trivial File Transfer
Protocol) programs know that the port number of the peer program is 69.

The UDP provides a procedure for application programs to send messages to
other programs with a minimum of protocol mechanism. It provides a connectionless
service. An example of the use of UDP is in the context of network management.

UDP sits on top of IP. Therefore it has very little to do. It provides the same
unreliable, connectionless datagram delivery semantics as IP. UDP messages can be
lost, duplicated or arrive out of order.

In summary, "the User Datagram Protocol (UDP) provides unreliable
connectionless delivery service using IP to transport messages between machines. It
adds the ability to distinguish among multiple destinations within a given host
computer. "[COME91]

The first two points of this section will present respectively the service
primitives and the format of the UDP datagram, while the last point will describe the
only additional mechanism provided by UDP, the checksum computation.

2.4.1. UDP Primitives

As UDP provides a connectionless service to the upper layers, there is no
needs for connection establishment and connection release primitives. Therefore only

User Datagram Protocol 47

two UDP primitives are defined: UDP-DATA.request and UDP-DATA .indication.
The primitive preceded by an arrow pointing downwards represents a request
primitive from the UDP user to UDP. And the one preceded by an arrow pointing
upwards represents an indication primitive from UDP to the UDP user.

{ UDP-DATA.request (Source Address, Destination Address, Source Port,
Destination Port, Protocol, Type Of Service, Data length, Option Data, Data)

* UDP-DATA. indication (Source Address, Destination Address, Source Port,
Destination Port, Protocol, Data length, Option Data, Data)

The parameters associated with these primitives are the same as the ones
defined for the IP primitives. The two new parameters (Source Port and Destination
Port) represent the port number of the originating and destination UDP users.

2.4.2. UDP Datagram

The structure of the UDP datagram is shown in figure 2.9. To be transmitted
on the network, a UDP datagram is included in the DATA field of an IP datagram
(see fig. 2.4). The fields that are marked with an asterisk, come from or are derived
from the UDP-DATA. request primitive, whereas the others come from the UDP

entities themselves.

1 2 3
01234567890123456789012345678901
SOURCE PORT DESTINATION PORT
LENGTH CHECKSUM

DATA

Fig. 2.9: UDP Datagram

The meaning of the fields is the following:

- Source Port * (16 bits): Source Port is an optional field, when meaningful, it
indicates the port of the sending process and may be assumed to be the port to
which a reply should be addressed in the absence of any other information. If not
used, a value of zero is inserted.

- Destination Port * (16 bits): Destination Port has a meaning within the context of a
particular internet destination address.

-> Length (16 bits): Length is the length in octets of this user datagram including the
header and the data. (This means the minimum value of the length is eight.)

User Datagram Protocol | 48

- Checksum (16 bits): Checksum on a pseudo-header of information from the IP
header, on the UDP header and the data, padded with zero octets at the end (if
necessary) to make a multiple of two octets.

-> Data * (variable): The data field contains the data given by the UDP user to be
sent.

2.4 DP Ch m

UDP does not compute its checksum in the usual way. Before calculating the
sum, UDP prefixes a pseudo-header to the datagram. The purpose of using a pseudo-
header is to verify that the UDP datagram has reached its correct destination.

This verification is justified by the following reasoning. "The correct
destination consists of a specific machine and a specific protocol port within that
machine. The UDP header itself specifies only the protocol port number. Thus, to
verify the destination, UDP on the sending machine computes a checksum that covers
the IP addresses as well as the UDP datagram. At the ultimate destination, UDP
software verifies the checksum using the IP addresses obtained from the header of the
IP datagram that carried the UDP message. If the checksums agree, then it must be
true that the datagram has reached the intended destination host as well as the correct
protocol port within that host."[COME91]

The pseudo-header is described hereunder, in figure 2.10.

1 2 3
01234567890123456789012345678901

SOURCE ADDRESS
DESTINATION ADDRESS
EMPTY PROTOCOL UDP LENGTH
Fig. 2.10: UDP Pseudo-header

The fields of the pseudo-header are relatively self-explanatory: the empty
field is simply a zero-valued octet, the protocol field is the value used by IP to
identify UDP (17 decimal) and the UDP length field is the length of the UDP packet.
TCP also uses this 96-bit pseudo-header in its checksum calculation when achieving
user-data integrity. [ROSE91]

To compute the checksum, UDP first stores zero in the checksum field, then
computes a 16-bit one’s complement sum of the entire object, including the pseudo-
header, UDP header and user data. After that, it stores the sum in the checksum field.
Note that the pseudo-header is not transmitted with the datagram.

Transmission Control Protocol 49

2 .5. TCP Protocol

TCP is a transport protocol. But, unlike UDP, it provides a reliable
mechanism for the exchange of data between processes in different computers.

Reliable mechanism means, for a host to host protocol, that data are
delivered error free, in sequence, with no loss or duplication. A reliable mechanism
was needed because the lower level is fundamentally unreliable and the higher level
applications need to send large volumes of data. If the service is not reliable, error
detection and recovery have to be build in each application program. So, a general
purpose solution to the problem of providing a reliable stream delivery, has been
developed in the form of the TCP protocol.

TCP is a connection oriented protocol. This means that the data transfer must
be preceded and followed by connection establishment and connection termination
phases. As already seen with UDP, a process within a host using TCP services is
identified with a PORT (called TSAP in OSI). A port, when concatenated with an
internet address, forms a 48 bit SOCKET, which is unique throughout the internet.
When two TCP entities communicate, the exchanged units of data are termed
segments. Segments are interpreted relative to a connection. In TCP, a connection is
defined as the pairing of the two internet sockets. This 96-bit quantity uniquely
identifies the connection in an internet. Two simultaneous connections cannot take
place between the same pair of sockets.

TCP adds functionalities to the protocols presented above, but its
implementation is also much more complex. To describe these functionalities, the
same structure as in IP and UDP, will be used. The first point will explain the
different service primitives. The second one will present the TCP segment and the last
point will give a description of the mechanisms used during the three communication
phases.

2.5.1, TCP Service Primitives

The TCP service primitives are richer than those provided by IP. The set of
primitives and parameters is considerably more complex. As in every connection-
oriented protocol, three classes can be identified: connection establishment, data
transfer and connection release. A fourth class is used to report on errors and status.
The primitives will be presented using this structure. The primitives preceded by an
arrow pointing downwards represent request primitives from the TCP user to TCP.

Transmission Control Protocol 50

And the ones preceded by an arrow pointing upwards represent indication primitives
from TCP to the TCP user. A functional definition of the primitives is given in
[RFC793]. The interface given hereunder is derived from the one proposed in
[STALS89].

A. Connection establishment

v TCP-PASSIVE OPEN.request (source port, [destination port], [destination
address], [timeout], [timeout-action], [precedence], [security-range])

v TCP-ACTIVE OPEN.request (source port, destination port, destination address,
[timeout], [timeout-action], [precedence], [security-range], [data], [data length],
[Push flag], [Urgent flag])

* TCP-OPENID.indication (local connection name, source port, destination port,
destination address) .

* TCP-OPEN FAILURE.indication (local connection name)

* OPEN SUCCESS.indication (local connection name)

B. Data transfer

Vv TCP-DATA . request (local connection name, data, data length, Push flag, Urgent
flag, [timeout], [timeout-action])

* TCP-DATA.indication (local connection name, data, data length, Urgent flag)

C. Connection termination
¢ TCP-CLOSE.request (local connection name)
v TCP-ABORT.request (local connection name)
* TCP-CLOSING.indication (local connection name)

t TCP-TERMINATE.indication (local connection name, description)

D. Status and Error reporting
Vv TCP-STATUS.request (local connection name)

* TCP-STATUS.indication (local connection name, source port, source address,
destination port, destination address, connection state, receive window, send
window, amount awaiting ACK, amount awaiting receipt, urgent state, precedence,
security, timeout)

* TCP-ERROR.indication (local connection name, description)

The signification of the parameters associated with the different primitives is
obvious.

Transmission Control Protocol 51

2.5.2, TCP Segment

A protocol data unit sent between TCP entities is called a SEGMENT. Its
structure is shown in figure 2.11. To be transmitted on the network, a TCP segment
is included in the DATA field of an IP datagram (see fig. 2.4). The fields that are
marked with an asterisk, come from or are derived from TCP request primitives,
whereas the others come from the TCP entities themselves.

1 2 3
01234567890123456789012345678901
[SOURCE PORT DESTINATION PORT

il SEQUENCE NUMBER
g ACKNOWLEDGEMENT NUMBER
g OFFSET| RESERVED FLAGS WINDOW
' CHECKSUM URGENT POINTER
OPTIONS ¢ PADDING
USER-DATA

Fig. 2.11: TCP Segment

The fields in the segment are: [STAL89] & [RFC793] & [COME91]
- Source Port * (16 bits): The source port number.
- Destination Port * (16 bits): The destination port number.

- Sequence Number (32 bits): The sequence number of the first data octet in this
segment.

- Acknowledgement Number (32 bits): If the ACK bit of the flags field is set, this
field identifies the sequence number of the octet that the sender of the segment is
expecting to receive next.

- Offset (4 bits): The length of the segment header in 32 bit words.
— Reserved (6 bits): Reserved for future use.

- Flags (6 bits): Control bits indicating special functions for this segment: URG *:
Urgent pointer field is valid, ACK: Acknowledgement field is valid, PSH *: This
segment requests a push, RST: Reset the connection, SYN: Synchronize sequence
numbers, FIN: No more data from sender.

- Window (16 bits): The number of data octets which the sender of this segment is
willing to accept.

- Checksum (16 bits): A one’s complement sum, computed over a pseudo-header and
the entire TCP segment. (see UDP checksum)

Transmission Control Protocol 52

— Urgent Pointer * (16 bits): If the URG bit is set in the flags field, then this field
when added to the sequence number field indicates the first octet of non-urgent
data.

-> Options (variable): The only currently defined options is the maximum segment
size that will be accepted.

-> Padding (variable): The TCP header padding is used to ensure that the TCP header
ends and data begins on a 32 bit boundary.

— Data * (variable): User-data to be sent.

2.5.3. TCP Mechanisms

This part explains the different mechanisms used to transfer data from a local
TCP user to a remote TCP user. The three points give a description of the
transmission operations in a connection oriented protocol: connection establishment,
data transfer and connection termination. The second point, data transfer, explains
more particular mechanisms. These mechanisms enhance the basic service offered by
TCP. That is, for example the case for the urgent data mechanisms. Or they also fill
in the gaps left by IP. That is the case for the retransmission and the flow control
mechanisms. To easily understand the connection establishment and connection
release mechanisms, a state diagram is given in the TCP specification [RFC793]. This
diagram is reproduced in figure 2.12.

Transmission Control Protocol ’ 53

CLOSED
passive OPEN CLOSE
create TCB delete TSSOSE active OPEN
create TCB
LISTEN delete TCB snd SYN
rev SYN SEND
snd SYN,ACK snd SYN
SYN rev SYN SYN
RCVD snd ACK, SYN SENT
rcv ACK of SYN rcv SYN,ACK
e snd ACK
CLOSE
snd FIN ESTAB
CLOSE rcv FIN
snd FIN snd ACK
FINWAIT-1 CLOSE WAIT
rev ACK of FIN _rev FIN CLOSE
T snd ACK “snd FIN
FINWAIT-2 CLOSING LAST ACK
rev FIN rcv ACK of FIN rcv ACK of FIN
timeout - "~~~
TIVE WA [detere ToB 0022
Fig. 2.12: TCP State Diagram

A. Connection establishment

The protocol interaction used to set up a logical connection between two TCP
users is termed a three-way handshake. To keep state information relating to a
connection, each TCP entity maintains a Transmission Control Block (TCB). "This is
created during connection establishment, modified throughout the life of the
connection and then deleted when the connection is released."[ROSE91] It serves in
specifying the characteristics to be used for all data transfers on the connection and it
enables each TCP entity to maintain state information concerning the
connection.[STALS89]

Transmission Control Protocol 54

The values given in parentheses represent the states of the two TCP users
which want to establish a connection. The first one is the originator and the second
one is the destination. In the first case, the two entities do not want to establish a
connection at the same time. The mechanism of three-way handshake for
connection establishment is illustrated in the diagram of figure 2.13.

TCP user TCP TCP TCP user
TCP-ACTIVE OPEN TCP-PASSIVE OPEN
CLOSED N e CLOSED
TCP-OPENID «p}‘ TCP-OPENID
3
LISTEN
SYN SENT TCP-OPEN SUCCESS
SYN RCVD
TCP-OPEN SUCCESS ,YO
T
ESTAB

ESTAB

Fig. 2.13: Connection establishment

To begin, there is no connection. (CLOSED, CLOSED)

A connection enters the LISTEN state when a user signals that it will wait for
a connection request with a TCP-PASSIVE OPEN.request primitive. Then, TCP
issues an TCP-OPENID.indication primitive to the user. (CLOSED, LISTEN) The
user can issue a TCP-CLOSE.request primitive if it changes its mind.

"From the CLOSED state, the wuser may also issue a TCP-
ACTIVE OPEN.request primitive, which instructs TCP to attempt connection
establishment to a designated user (socket). In this case, TCP also issues a TCP-
OPENID.indication. "[STAL89] The originating TCP entity computes an initial
sequence number. "This must be chosen carefully so that segments from older
instances of this connection, which might be floating around the network, will not
cause confusion with this new connection."[ROSE91] The TCP sends a SYN
(Synchronize) segment to the destination TCP entity. In the example, the user that
initiated the TCP-PASSIVE OPEN.request has been chosen as destination. This
connection request is carried by a TCP segment. (SYN SENT, LISTEN)

Transmission Control Protocol 55

Upon receiving this segment, if no destination TCP user corresponding to the
specified port is in the LISTEN state, the connection is aborted by sending an RST
(Reset) segment. Otherwise, the destination TCP entity computes a sequence number,
signals the user that a connection is open with a TCP-OPEN SUCCESS.indication
primitive, sends a SYN/ACK segment and puts the connection in the SYN RCVD
state. (SYN SENT, SYN RCVD)

Upon receiving the SYN/ACK segment, the original TCP entity sends an
ACK (Acknowledgement) segment back, signals its user that the connection is open
with a TCP-OPEN SUCCESS.indication primitive and moves the connection to the
ESTABLISHED state. (ESTAB, SYN RCVD)

When the acknowledgement of the SYN is received by the responding TCP
entity, it too can move the connection to an ESTABLISHED state. (ESTAB, ESTAB)
The connection is prematurely aborted if either user issues a TCP-CLOSE.request
primitive.

Once the three-way handshake has been successfully concluded, the
connection enters the data transfer phase.

TCP user TCP TCP TCP user
TCP-ACTIVE OPEN
CLOSED TCP-ACTIVE OPEN / CLOSED
e
C;\, TCP-OPENID

TCP-OPENID

SYN SENT SYN SENT
TCP-OPEN SUCCESS
TCP-OPEN SUCCESS
SYN RCVD SYN RCVD
ESTAB
ESTAB

Fig. 2.14: Simultaneous Connection establishment

But the three-way handshake is also effective if two entities try to set up a
connection to each other at the same time. This case is illustrated in figure 2.14.

Transmission Control Protocol 56

To begin, there is no connection. (CLOSED, CL.OSED)

Then, nearly at the same time, the users issue a TCP-ACTIVE OPEN .request
primitive. The two TCP perform the same operations as was seen earlier. They both

enter the SYN SENT state. (SYN SENT, SYN SENT)

Upon receiving the SYN segment, they acknowledge it with a SYN/ACK
segment, signal their wusers that the connection is open (TCP-OPEN
SUCCESS.indication) and enter the SYN RCVD state. (SYN RCVD, SYN RCVD)

When they receive the acknowledgement of the other TCP, the connection is

established. (ESTAB, ESTAB)

B. Data transfer

Once the connection is established, each process can simultaneously send and
receive segments. The connection is full-duplex. For sending data, a TCP entity cuts
them, puts them in TCP segments and gives them up to IP to transmit them.

Without an appropriate mechanism, a TCP connection is not reliable. This is
chiefly due to two events. "First, the segment may be damaged in transit but
nevertheless arrive at its destination. TCP includes an error-detecting code in the
segment header; therefore, the receiving TCP entity can detect the error and discard
the segment. The second event is that a segment fails to arrive. In either case, the
sending TCP does not know that the segment transmission was
unsuccessful. "[STAL89]

Retransmission

The reliability of a TCP connection is achieved through the mechanism of
retransmission. This consists in retransmitting bad received or unreceived packets.
Two segment fields are especially involved in retransmission: the sequence number
field and the acknowledgement field.

A sequence number is attached to each data octet. The sequence number of
the first octet contained in the segment data field is transmitted in the segment header.
The acknowledgement field indicates the sequence number of the next data octet
which can be sent in the other direction. An ACK n+1 is interpreted to mean that the
TCP that issued the ACK has received all of the data up through sequence number n.

Transmission Control Protocol 57

Each time a TCP entity sends a segment, it starts a retransmission timer. A
timer is associated with each sent segment. Later, one of two events will happen:
"either an acknowledgement for the segment will be received and the timer can be
stopped; or the timer will expire. In this latter case, the TCP entity retransmits the
segment and restarts the timer."[ROSE91]

The problem is knowing when to retransmit. In the case of lost data, if the
sending transport entity retransmits too slowly, the throughput is reduced. If data is
delayed due to network congestion and the transport entity retransmits too quickly,
then it adds to the congestion and throughput gets even worse.[ROSE91]

Because of the variability of the networks that compose an internetwork
system, TCP uses an adaptive algorithm to dynamically determine the retransmission
timeout. The best value for this retransmission timer should be a bit longer than the
round trip delay (send segment, receive ACK).

Flow control

"The flow control mechanism is used in TCP to allow a receiving TCP to
regulate the rate at which data arrives from a sending TCP. One TCP entity would
want to restrain the rate of segment transmission over a connection because (...) of a
lack of receiving buffer space. Without some form of flow control, data may arrive
faster than it can be processed. This leads to inefficiency, as the sender must
retransmit a segment that successfully made it through to the receiver."[STALS9]

Each segment header contains a window field which represents the number of
octets that may be sent in each direction before an acknowledgement is returned. If a
TCP entity is able to receive many data, it will fix the window field to a large value.
If its buffer space begins to fill up, it will have to reduce the value of the window
field.

"Indicating a large window encourages transmissions. If more data arrives
than can be accepted, it will be discarded. This will result in excessive
retransmissions, adding unnecessarily to the load on the network and the TCPs.
Indicating a small window may restrict the transmission of data to the point of
introducing a round trip delay between each new segment transmitted. "[RFC793]

Transmission Control Protocol ’ 58

PUSH & URG

An application entity might need a mechanism for asking that all data it has
previously sent has been delivered to the end-user and are not buffered anymore in the
various communication entities. This is accomplished using a push function (PSH).
An application entity may indicate that data previously sent should be pushed. Then
the local TCP entity sets a PSH bit in the next new segment it sends. Upon receiving
such a segment, the remote TCP entity knows that it has to push user-data up to its
own application entity.

An urgent mechanism is also available with TCP. The semantics of urgent
data are application-specific.

The objective of the TCP urgent mechanism is to allow the sending user to
stimulate the receiving user to accept some urgent data.

The mechanism employs an urgent pointer. The URG control flag indicates
that the urgent pointer points to where urgent data ends in the stream. The absence of
this flag indicates that there is no urgent data in the segment.

"The receiving application entity, upon being notified that urgent data is
present in the stream, can quickly read from the stream until the urgent data is
exhausted. "[ROSE91]

C. Connection termination

When TCP users do not have any data to send anymore, they initiate a TCP-
CLOSE.request primitive. Two cases can essentially be distinguished. The first case
is when a user initiates a close before the other does so. The same principle as for
connection establishment (parentheses) is used to represent the states of the TCP users
which want to close a connection. The diagram illustrating the connection termination
is given in figure 2.15.

To begin, a connection is established between the two users. (ESTAB,
ESTAB)

When an application entity indicates that it has no more data to send by a
TCP-CLOSE.request primitive, the local TCP entity ensures that all the segments it
has sent have been acknowledged. Then the local TCP entity generates a FIN (Finish)

Transmission Control Protocol 59

segment and it enters the FINWAIT-1 state. All segments preceding and including
FIN will be retransmitted until acknowledged. (FINWAIT-1, ESTAB)

TCP user TCP TCP TCP user
ESTAB TCP-CLOSE

ESTAB

FINWAIT-1

CL.OSE WAIT

TCP-CLOSE

<
\
e TCP-CLOSING
Y'*Q -
<% At

- -
CFINWAIT-2 . <>

[— - LAST ACK
— lnmc out

CIL.OSED
TCP-TERMINATE

CLOSED

Fig. 2.15: Connection termination

Upon receiving the FIN segment, the other TCP acknowledges it with an
ACK segment, notifies the reception to its user with a TCP-CLOSING.indication and
enters the CLOSE WAIT state. (FINWAIT-1, CI. OSE WAIT)

When the closing TCP receives the acknowledgement, it can enter the
FINWAIT-2 state. At this point, only the TCP that does not initiate the close is

allowed to send new segments. (FINWAIT-2, CL.OSE WAIT)

When the TCP user that is in the CLOSE WAIT state has no more data to
send, it transmits a TCP-CLOSE.request to its TCP entity. A FIN is also generated in
this direction and it enters the LAST ACK state. (FINWAIT-2, I AST ACK)

Upon receiving the FIN, the first TCP acknowledges it by an ACK segment.
It notifies its user that the connection is closing with a TCP-TERMINATE.indication
primitive and can go in the TIME WAIT state. (TIME WAIT, LAST ACK)

When it receives the acknowledgement, the TCP that is in the LAST ACK
state can directly return to the CLOSED state, after notifying its user by a TCP-
TERMINATE.indication, while the other one must wait until a timer is run out.

(CLOSED, CLOSED)

Transmission Control Protocol 60

The second case is when the two users initiate a CLOSE at the same time.
An illustration is given in figure 2.16.

TCP user TCP TCP TCP user
ESTAB TCP-CLOSE TCP-CLOSE ESTAB
%
FINWAIT-1 @ FINWAIT-1
Q
/ Y"C& TCP-CLOSING
CLOSING TEP-CLOSING e CLOSING
B

TIME WAIT TCP-TERMINATE \

1T«Lme out Tep-TErMiNaTE TIME WAIT

Time out
CLOSED CLOSED
Fig. 2.16: Simultaneous connection termination

To begin, a connection is established between the two users. (ESTAB,
ESTAB)

A nearly simultaneous TCP-CLOSE .request by users at both ends causes FIN
segments to be exchanged and the TCPs to enter the FINWAIT-1 state. (FINWAIT-1,
FINWAIT-1

When all the segments preceding the FINs have been processed and
acknowledged, each TCP can ACK the FIN it has received, notify its user that it
received a FIN segment with a TCP-CLOSING.indication primitive and go in the
CLOSING state. (CLOSING, CLOSING)

Both will, upon receiving these ACKs, enter the TIME WAIT state (TIME
WAIT, TIME WAIT), say to their user that the connection is closed (TCP-
TERMINATE.indication) and when a timer is run out delete the connection.

(CLOSED, CLOSED)

Instead of requesting a graceful release, an application entity may determine
that it wishes to immediately abort the connection. In this case, the local TCP entity
generates a Reset segment (RST) and the connection is immediately released. Any
data in transit is lost.

The management of TCP/IP networks can be divided into 3 components:
managed nodes, a management station and a network management protocol to
exchange management information between managed nodes and management stations.

In TCP/IP, the management is ruled by 4 standards. Two of them define the
information about network devices which are managed . These are the Structure of
Management Information (SMI) [RFC1155] which defines rules to build an MIB and
the Management Information Base (MIB) [RFC1156] which defines the information to
manage. The two other ones define protocols that can be used to manage this
information. The first one, the Simple Network Management Protocol (SNMP)
[RFC1157] will be explained in this chapter. SNMP has been chosen as the short-term
TCP/IP management protocol. And, now, it becomes to be widespread. CMOT
(CMIP Over TCP/IP) [RFC1095], the second protocol, has been chosen as the long-
term protocol. It is derived from the ISO network management protocol, the Common
Management Information Protocol (CMIP). A migration from SNMP to CMOT is
foreseen in the future, although not certain. This migration would make easier, from a
management point of view, the migration from TCP/IP to OSI, as the management
protocols would be nearly the same. These two protocols (CMIP and CMOT) will be
briefly described in the next chapter.

The TCP/IP management protocols are running at the application level,
above UDP or TCP. An example of the management architecture is illustrated in
figure 3.1.

In TCP/IP, the management is exercised in the following way. Each
managed device runs a server program, called agent, and maintains information about
its state.

The management station (M.S. in figure 3.1) runs application programs
which use the management protocol to contact the agents on managed devices in order

Network Management 62

to perform management actions. These actions can be the retrieval of information, the
change of parameters, etc.

Network 1

Agent / Agent
Agent
A t

O mom S

Router

Fig. 3.1: Example of management architecture

The major concern that prevailed during the specification of SNMP and the
MIB is the ability to realise, as fast as possible, working implementations of the
concepts. For this, simplicity was the keyword. The agents had to be as small as
possible in order to have rapid implementations. Therefore, the amount of information
contained in the MIB is restricted and the design of SNMP is very simple.

As already said before, in TCP/IP, to manage devices, the management
station retrieves or sets the value of variables in the agents. These variables are chosen
in order that the management station is able to infer the state of the devices. The rules
for constructing the variables and for defining the names to give them are explained in
the first section of the chapter. The second section will deal with the management
protocol, SNMP. The last section will review all the variables that are part of the
MIB. The other management protocol, CMOT, will be presented in the next chapter.

Structure of Management Information ' 63

3 -1 . Structure of Management
Information

At the application level, not only the way by which information is exchanged
is of importance, but also is the information. In the network management context, this
information concerns the state of network devices. As the devices are heterogeneous
in nature (different utilities, different makes, etc), they do not use the same internal
representation of information. That is why a formalism must be used to work with a
common way for representing the information. And this is made by a definition
language, the Abstract Syntax Notation 1 (ASN.1) [ISO8824] which is an ISO
standard. This will be the subject of the first point of this section.

This information must be expressed in the same formalism, but it must also
be defined by the same rules. And this is the role of the Structure of Management
Information (SMI) that will be analysed in the second point.

3.1.1. ASN.1

The problem to solve was to allow a set of heterogeneous machines to talk to
each other, in order to exchange information. And these heterogeneous machines use
different formats to represent their data. A solution to solve this problem is to use a
common external data format. The format chosen for representing TCP/IP network
management information is the Abstract Syntax Notation 1 (ASN.1) developed by
ISO and the CCITT.

The ASN.1 specification is described in International Standard 8824
[ISO8824]. The rules for encoding ASN.1 data structures to a bit stream for
transmission are given in International Standard 8825 [ISO8825]. In TCP/IP network
management, ASN.1 is used for defining the formats of the PDUs and also for
defining the managed information.

"ASN.1 helps keep the standards documents unambiguous, helps ease the
implementation of network management protocols and guarantees interoperability.”
[COME91]

The basic concept of ASN.1 is the module. A module packages together all
data structure types relating to a common theme. A module is expressed by:

Management Information : ASN.1 64

module DEFINITIONS ::= BEGIN
END
ASN.1 defines 3 different objects (uppercase and lowercase letters are of
importance):
- types: which are used to define new data structures (e.g. Gauge),
- values: which are instances of a type (e.g. internet) and
- macros: which are used to change the grammar of the language (e.g. OBJECT-

TYPE).

A type is defined by:
NameOfType ::=

TYPE

While a value is defined by:
nameOfValue NameOfType ::=

VALUE

The types can be separated into 4 categories: primitive types, constructor
types, tagged types and subtypes.

A. Primitive Types

ASN.1 defines 7 primitive types: INTEGER, BOOLEAN, BIT STRING,
OCTET STRING, ANY, NULL and OBJECT IDENTIFIER from which only 4 are
allowed to be used for network management: INTEGER, OCTET STRING, NULL
and OBJECT IDENTIFIER.

Integer

An Integer is a cardinal number used for counting. In addition, it is possible
to associate names with values that might be taken by instances of the data type. For
example:

Day ::=
INTEGER {sunday (1), monday (2), tuesday (3), ...)}

today Day ::= monday (or today Day ::= 1)

Management Information : ASN.1 65

Octet String

An octet string is a list of octets that can take a value between 0 and 255. An
octet string can be used to represent characters or byte oriented data.

Null

The NULL type has only one value, also called NULL. When a field is
assigned the value NULL, it means that this field has no type at all. The NULL type
is currently not used in network management.

Obiect Identifier!

Object identifiers are used to name objects whatever the semantics associated
with them may be. An object identifier is a specially encoded sequence of integers
which uniquely identifies a node in a unique naming tree defined by ISO.

An object identifier is represented by a sequence of non-negative integers
(and/or a brief textual description). The integers are seen as forming the nodes or the
leaves of a tree. The administrative control of the meanings assigned to the nodes may
be delegated as one traverses the tree.

The format of an object identifier can be one of the following ones:

- integers separated by dots. For instance, 1.0.8571.5.1 represents an identifier
formed by the root then the node with label 1, then the node with label O, then the
node with label 8571, etc.

- small text. For example iso.standard. ftam

- a combination of the two. For example iso (1) standard (0).8751.5.1

An example of the use of object identifiers follows:
MgntInfo ::= OBJECT IDENTIFIER

mib MgntInfo ::=
{136121)
or {iso org dod 1 2 1}
or {iso(l) org(3) 6 1 2 1}

1, see the structure in pt 3.1.2 (SMI)

Management Information : ASN.]I ' 66

B. Constructors

ASN.1 defines 5 constructors, SEQUENCE, SEQUENCE OF, SET, SET
OF and CHOICE from which only 2 are allowed to be used in network management
SEQUENCE and SEQUENCE OF.

Sequence

A sequence is an ordered list of 0 or more elements of various types. It can
be seen as a record in Pascal. For example:
person ::= SEQUENCE ({

name OCTET STRING,
age INTEGER

)

Sequence of

A sequence of is a list of 0 or more elements of the same single type. It
corresponds to an array in some programming languages. For example,

groupOfPersons ::= SEQUENCE OF person
C. Tagged Types

A tag is used to identify a data type of a field within a particular
environment. Four types of tags are defined in ASN.1. They differ by their scope.
The classes are Universal, Application-wide, Context-specific and Private-use.

A tag is defined by the following syntax: class + non-negative integer. For
example, [APPLICATION 4] represents the fifth data type (the numbers begin at 0)
which is meaningful within a particular application. Universal data types are
meaningful throughout all ASN.1 definitions.

D. Subtypes
In ASN.1, subtyping is an important means for defining new types. Methods
for defining subtypes are numerous. For TCP/IP network management, only two of

these methods are allowed.

The first method is to fix the length of, for example, a string.

Management Information : ASN.I 67

IpAddress ::=
[APPLICATION 1]
OCTET STRING (SIZE (4))

This example fixes the length of the octet string to 4. This permits to
represent address like 128.141.200.10. This example also shows that this is the
second tag which is defined in the application.

The second method for defining subtypes is to fix the values that can be taken
by the variables. For example,

Counter ::=
[APPLICATION 2]
INTEGER (0..4294967295)

3.1.2. SMI

The Structure of Management Information defines the general framework
within which an MIB can be defined.[STAL89] The MIB can be seen as a database,
as a collection of managed objects, which specifies network management variables
and their meanings, while the SMI defines the schema for the database. If an MIB is
defined according to the SMI guidelines, it can be used with either SNMP or CMOT.
The complete definition of SMI is given in Appendix A.

The SMI defines 3 important concepts. The first one is the specification of
the rules for naming the variables, the objects. The second one is the definition of the
data types that can be used in the MIB. It gives the rules for defining variable types
and makes restrictions on the types of variables allowed in the MIB. The third one
gives the format to use for defining objects.

A. Names

Names are used to identify managed objects. The objects, in the management
context, are hierarchical. The OBJECT IDENTIFIER type has been chosen to
represent these objects. The semantic of the OBJECT IDENTIFIER has been

explained in the preceding point.

The root of the tree is not labelled but it has 3 subordinates:
- ccitt (0) which is administered by the CCITT.
- iso (1) which is managed by the ISO.

- joint-iso-ccitt (2) which is administered by both.

Management Information : SMI 68

For network management, only the iso subtree is of interest. This node has
four subordinates:

- standard (0) which contains all international standards. For example, 1.0.8571 is the
identifier of the FTAM standard.

- registration-authority (1) which is reserved for use by OSI registration authorities.

- member-body (2) which has a subordinate assigned to each member body of ISO.
Each node receives a label corresponding to the Decimal Country Code (DCC) of
the member body.

- identified-organization (3) which has a subordinate assigned to any organization that
ISO wishes to favour.

One of the children node of the org(3) node has been assigned to the
Department of Defense (DoD) which, in turn, has decided to allocate a node to the
Internet community. This node will be administered by the Internet Activities Board.
This is formalised by the following definition.

internet OBJECT IDENTIFIER ::=
{ iso org(3) dod(6) 1 }

The IAB has decided to give 4 children nodes to the internet node. They
choose directory, mgmt, experimental and private.

directory OBJECT IDENTIFIER ::= { internet 1 }
mgmt OBJECT IDENTIFIER ::= { internet 2 }
experimental OBJECT IDENTIFIER ::= { internet 3 }
private OBJECT IDENTIFIER ::= { internet 4 }

The directory(1) subtree is reserved for using the OSI directory in the
internet.

The mgmt(2) subtree is used to identify objects which are defined in IAB
documents. The administration of this subtree is given to the Internet Assigned
Numbers authority. For the moment, only one subtree of mgmt(2) is defined, mib.
This contains objects described in the MIB specification.

mib OBJECT IDENTIFIER ::= {mgmt 1 } or 1.3.6.1.2.1
The experimental(3) subtree identifies objects used in internet experiments. It

is administered by the same authority as the mgmt subtree. It is used to test new
experimental mib objects.

Management Information : SMI 69

The last subtree, private(4), is administered by the Assigned Numbers
authority. Now, only one subtree is defined, enterprises(l). It allows to register
vendor-specific objects. It is defined by:

enterprises OBJECT IDENTIFIER ::= { private 1 }

To summarise the structure, the tree is described in figure 3.2.

label from the root 10
this point is 1.3 .6

internet

jolnt-
Iso-ccltt
3

Fig. 3.2: Naming tree

B. Data Types

This point will review all the data types that can be used in an MIB
definition. As already seen in the presentation of ASN.1, not all the ASN.1 types are
available for constructing new object types or for defining MIB variables. The first
point will describe the primitive types. The second one will review the two allowed
constructor types. And the third point will show new special data types defined by the
SMI.

Primitive Types

Only the INTEGER, OCTET STRING, OBJECT IDENTIFIER and NULL
primitive types are allowed in the management framework.

Management Information : SMI 70

Constructor Types

The SMI allows to use two kinds of constructor types. This gives the
possibility to build lists or tables.

For lists, the syntax is:

<list> ::=
SEQUENCE {
<typel>,
éi&peN>

In this definition, each <type> corresponds to a primitive type or a new
defined type.
For tables, the syntax is:

<table> ::=
SEQUENCE OF <T1ist>

These definitions lead to the observation that all tables defined for network
management are two-dimensional.

Defined Types

New application-wide types are defined in the SMI. The new defined types
are six in number.

NetworkAddress

The NetworkAddress is a data type which represents an address from one of
several protocol families. Currently, only one CHOICE is present.
NetworkAddress ::=
CHOICE {

internet
IpAddress

IpAddress

The IpAddress type represents a 32-bit internet address. This is an OCTET
STRING, in network byte-order.

Management Information : SMI ’ 71

IpAddress ::=
[APPLICATION 0]
IMPLICIT OCTET STRING (SIZE (4))

Counter

The Counter type represents a non-negative integer, which monotonously
increases until it reaches a maximum value. Then it rolls over to zero and it starts
increasing again from zero. The maximum value is 2321

Counter ::=

[APPLICATION 1]
IMPLICIT INTEGER (0..4294967295)

Gauge

A Gauge represents a non-negative integer, which may increase or decrease
but which stops at a maximum value. Gauge are used to measure levels, such as the
current number of packets stored in a queue.

Gauge ::=

[APPLICATION 2]
IMPLICIT INTEGER (0..4294967295)

TimeTicks

A TimeTicks represents a non-negative integer which counts the time in
hundredths of a second since a given epoch. This type is used for timestamps and
clock values.

TimeTicks ::=

[APPLICATION 3]
IMPLICIT INTEGER (0..4294967295)

Opaque

"The Opaque type represents an arbitrary encoding. It is used as an escape
mechanism, to bypass the limitations of the restrictive data typing used by the
SMI. "[ROSE91]

Opaque ::=

[APPLICATION 4]
IMPLICIT OCTET STRING

Management Information : SMI 72

C. Managed Objects

The SMI also defines the format to use to define objects in the MIB. An
object can be defined using four fields. The first one is an OBJECT DESCRIPTOR
with its corresponding OBJECT IDENTIFIER. The second one, the SYNTAX, is the
abstract syntax for the object type. The third one represents the ACCESS and the last
one the STATUS of the defined type. This is formalised by the following macro:

OBJECT-MACRO ::=
BEGIN
TYPE NOTATION ::= "SYNTAX" type (TYPE ObjectSyntax)
"ACCESS" Access
"STATUS" Status
VALUE NOTATION ::= value (VALUE ObjectName)
Access ::= "read-only"
"read-write"
"write-only"
"not-accessible"
Status ::= "mandatory"
"optional"
"obsolete"

END

A simple example describing the use of the macro is given below.

sysDescr OBJECT-TYPE
SYNTAX OCTET STRING
ACCESS read-only
STATUS mandatory
i:= { system 1 }

The syntax field represents the data type which models the object. This is one of the
allowed data types described in the preceding point. In the example, the type of the
object is an OCTET STRING.

The access field represents the level of access to the managed object. the value of the
object can be not-accessible, read-only, read-write or write-only. In the example,
the access is read-only. This means that the value can be read but cannot be
modified.

The status field represents the implementation requirements for the managed objects.
If the status is mandatory then the managed nodes must implement this object. If
the status is optional, this object may be implemented and if it is obsolete, the
object needs no longer to be implemented. In the example, the object is mandatory.
This means that it must be implemented in every system.

The value field represents the name of the object. The type of the object name is an
OBJECT IDENTIFIER. In the example, the object name is { system 1 }.

Simple Network Management Protocol 73

3 .2 . SNMP

The Simple Network Management Protocol specifies the communication
between a management station and an agent executing on a host or a router. It defines
the form and the meaning of messages exchanged and the representation of names and
values in those messages. SNMP also defines administrative relationships among
routers being managed. For example, it provides a means for authenticating the
managers.[COME91]

SNMP has been designed simple. This is for several reasons. The first one is
to allow network management programs to be implemented quickly to meet the
immediate needs of the Internet. The second one is to allow implementations in agents
to be small and efficient in order that the agents spend the majority of their time on
performing their primary functions. Any significant management processing needs are
performed in management stations for which network management is the primary
function.[STALS89]

An other design goal was to make SNMP robust under adverse network
conditions (for fault management). Therefore, SNMP is datagram-oriented. This
means that no connections must be established between two entities and that SNMP
has the whole control on the retransmissions of datagrams. As it is datagram-oriented,
the protocol messages must be sent wholly contained within a single
datagram.[STAL89] SNMP also specifies that operations must be aromic, meaning
that if a single SNMP message contains operations on more than one variable, the
agent either performs all operations or none of them.[COME91]

To manage the networks, SNMP uses a method called a "trap-directed
polling"[STAL89]. This means that the agents are only able to send a limited number
of traps to the management station. And in case of a problem, when it is warned, the
management station has the responsibility to further investigate.

For the transmission of messages on the network, SNMP uses the services of
the User Datagram Protocol. The UDP ports used by SNMP are port 161 for the
agents and port 162 for management stations.

In this section, several points will be studied. The first one reviews the
different interactions that can be performed between a management station and an
agent. The second one gives the format of the SNMP PDUs. The third point explains
some administrative concepts. The fourth point shows how instances of objects are

Simple Network Management Protocol 74

identified while the fifth one explains the mechanism used to retrieve a whole table
from the MIB. The last one gives an example of the encoding of the PDUs for
transmission in the data field of a UDP datagram. The complete specification of
SNMP is given in Appendix C.

3.2.1. Protocol Interaction

Unlike the other protocols of the suite described in the previous chapter,
SNMP is an application layer protocol. The working of the protocol will rather be
described in terms of protocol interactions that can be found during the
communications than in terms of service primitives.

Four protocol interactions can be shown off. The first one is the get
interaction. (figure 3.3)

MAINAGER AGEINT

e

i |

Fig. 3.3: Get interaction

The get interaction allows the manager to retrieve management information
from the agent with a get-request. The agent will respond with a get-response
message.

MANAGER AGEINT

[REE—-.

D —

Fig. 3.4: Get-next interaction

Simple Network Management Protocol 75

The second means for retrieving management information is the get-next
interaction. (figure 3.4)

The get-next interaction allows the manager to traverse a portion of the MIB.
This is because the get-next-request operation asks the agent to return the value of
the object following the one specified in the get-next-request message. The agent
will also respond with a get-response message.

The third interaction, the set, is shown in figure 3.5.

MAINAGER ACGENT

————

Fig. 3.5: Set interaction

The set interaction permits the manager to store information in the agent
MIB. The manager requests the agent to change the value of MIB variables as
specified in the set-request message. The agent responds with a get-response
message which informs the management station on how the operation took place.

And the last interaction is the trap.(figure 3.6)

MANAGER AGENT

<

Fig. 3.6: Trap interaction

The trap interaction allows the agent to report an event to the manager. For
this, it sends a trap message which contains the description of the event to the

Simple Network Management Protocol 76

management station. This interaction requires no message from the manager to the
agent.

These protocol interactions permit to distinguish 5 protocol data units which
are exchanged between the managers and the agents. These PDUs are get-request,
get-next-request, set-request, get-response and trap.

Hereunder is described more deeply how they are working.

A. Get-Request

The get-request operation names a set of variables and requests that the
agent generates a get-respomnse containing their values. For each variable in the
request, the named instance is retrieved if it matches exactly with an object instance
available in the agent MIB. Otherwise, if the instance does not exist, a get-response
is returned with error noSuchName.[ROSE91] & [STALS9]

B. Get-Next-Request

The get-next-request operation also requests that the agent generates a get-
response containing the values of a set of objects. But in this case, for each of the
object names in the variable list, it is the name and the value of the next object which
is returned in the get-response.[STAL89] If the end of the MIB is reached, a get-
response is returned with error noSuchName.[ROSE91] This mechanism is discussed
hereunder in point 3.2.5.

C. Set-Request

The set-request operation requests that each of the objects named in the
variable list be set to the values specified. All of the variables are updated
simultaneously and a get-response identical to the request is returned. Simultaneously
means that either all variables must be updated or none of them. If an instance does
not exist, a get-response is returned with error noSuchName. If the instance exists
but does not permit writing, a get-response is returned with error readOnly. If the
instance exists and permits writing, but the value supplied has a wrong syntax or a
range error, a get-response is returned with error badValue.[STAL89] & [ROSE91]

Simple Network Management Protocol 77

D. Get-Response

The get-response is sent back by an agent to return the result of an operation
requested by a management station with a get-request, a get-next-request or a set-
request PDU. When receiving a get-response, the manager checks its list of
previously sent requests to locate the one which matches this response. If no record is
found, the response is discarded. Otherwise, the manager handles the response in an
appropriate fashion.[ROSE91]

E. Trap

The trap is generated by an agent for sending a notification to a management
station of the occurrence of some significant event. The message identifies which
agent generated the trap and when, and what type of event occurred. A variable list is
also present. In this case, the objects and their values are used to supply additional
information about the event.[STAL89]

3.2.2 MP PD

SNMP messages do not have fixed fields. For this, they are expressed using
the ASN.1 notation. An SNMP message consists of three parts: a version, a
community name and a data field. This is shown below:

Message ::=
SEQUENCE {
version
INTEGER {
version-1(0)
b

community

OCTET STRING,
data

ANY

- version. The protocol version number.
- community: The community name of the requester.

- dara: The data field contains the protocol data units (PDUs). The protocol data
units are two in number. As can be seen in the following definitions, the get-
request, the get-next-request, the get-response and the set-request PDUs have the
same format, whilst the trap PDU has a specific format.

PDUs ::=
CHOICE (
get-request
GetRequest-PDU,

Simple Network Management Protocol 78

get-next-request
GetNextRequest-PDU,

get-response
GetResponse-PDU,

set-request
SetRequest-PDU,

trap
Trap-PDU
}
GetRequest-PDU ::= [0]
IMPLICIT PDU
GetNextRequest-PDU ::= [1]
IMPLICIT PDU
GetResponse-PDU ::= [2]
IMPLICIT PDU
SetRequest-PDU ::= [3]

IMPLICIT PDU

The first one is the "normal” PDU. It is the same for the Get, Get-Next,
Response and Set messages. It contains four fields: request-id, error-status, error-
index and variable-bindings.

PDU ::=
SEQUENCE {
request-id
INTEGER,

error-status

INTEGER
noError(0),
tooBig(1),
noSuchName(2),
badValue(3),
readOnly(4),
genkrr(5)

}s

error-index
INTEGER,

variable-bindings
VarBindList
}

VarBind ::= SEQUENCE {
name
Ob jectName,
value
Ob jectSyntax

VarBindList ::=
SEQUENCE OF VarBind

Simple Network Management Protocol 79

- request-id: The request-id field is an integer which is used to distinguish the
requests in progress or for a response which is the same as the one in the
corresponding request.

- error-status: The error-status field indicates if an error occurred when processing
the request. An error occurs when (1) the result of an operation cannot fit into a
single SNMP message, (2) an unknown variable has been requested, (3) an
incorrect syntax or value was given for modifying a variable, (4) a read-only
variable was tried to be modified and the value (5) is given for unforeseen errors.

- error-index. The error-index indicates which variable in the request was in error. It
is only used with noSuchName, badValue and ReadOnly errors. (pointer to the
variable-bindings list)

- variable-bindings: The variable-bindings field contains a list of variables that are
concerned with the current operation. The variables contain a name and a value.
The value part is not significant for request PDUs.

The second PDU is only used for the Trap messages. Its structure is the
following one:

Trap-PDU ::=
[4]
IMPLICIT SEQUENCE ¢
enterprise
OBJECT IDENTIFIER,
agent-addr
NetworkAddress,
generic-trap
INTEGER (
coldStart(0),
warmStart(1),
TinkDown(2),
TinkUp(3),
authenticationFailure(4),
egpNeighborlLoss(5),
enterpriseSpecific(6)
F
specific-trap
INTEGER,
time-stamp
TimeTicks,
variable-bindings
VarBindList
}

- enterprise: The agent’s sysObjectID (MIB).
-> agent-addr: The agent’s network address.

- generic-trap: A generic trap is generated if (0) the agent is reinitializing itself and
objects may be altered, (1) the agent is reinitializing itself and the objects will not
be altered, (2) an interface went to the down state, (3) an interface went to the up
state, (4) an SNMP entity claimed to be in a community but was not, (5) a
neighbour went to the down state and (6) another event occurs.

Simple Network Management Protocol 80

-> specific-trap. The specific-trap field identifies an enterprise specific trap in case the
generic-trap field takes the value (6) enterpriseSpecific.

- time-stamp. The value of the agent sysUpTime (see MIB).

-> variable-bindings. A list of variables containing information about the trap.
3.2.3. Administrativ n

A community is a set of SNMP entities. An agent belongs to a set of
communities. A community is represented by a string of octet, a community name. An
SNMP message always contains a community name, sent in the clear. The community
name is used for three purposes: authentication, access control and proxy
identification.

A. Authentication

Now, only a trivial scheme for authentication is used. "If the community
name corresponds to a community known to the receiving SNMP entity, the sending
SNMP entity is considered to be authenticated as a member of that
community. "[ROSE91] Any SNMP message with a valid community name is
authentic.

B. Access Control

"The purpose of access control is to provide different management
capabilities to different management stations."[STAL89] Once the sending SNMP
entity is authenticated, the managed node must determine what level of access is
allowed. The community defines the subset of the MIB (a view) to which requests can
have access and the access mode allowed (read-only, read-write, write-only and not-
accessible).

C. Proxy

As network managers want to manage all the devices in their networks (e.g.
bridges, modems and not only hosts and routers), SNMP uses the proxy management
to satisfy this need. A special agent (proxy agent) is running on another machine
implementing the protocol suite. When such a device is to be managed, the
management station contacts the proxy agent. This agent contacts the device to
perform the desired operation using the device’s protocol. Then, the results are
returned to the proxy agent which sends them to the management station (using

Simple Network Management Protocol 81

SNMP). The proxy agent acts as an intermediate between the management station and
the device.

"A proxy agent has a view of managed objects corresponding to its foreign
devices. Since all of the objects contained by an agent need not be visible to a
community, a proxy community has a view containing exactly those objects
corresponding to a particular foreign device."[ROSE91]

3.2.4. Instance Identification and Lexicographic T

Object identifiers are used to identify the types of the MIB objects. SNMP
uses another scheme for identifying the instances of the objects.

If the object is a column of a table, to identify instances of the columns or
rows, SNMP uses a value composed by the object identifier plus a suffix which is the
set of columns necessary to make the suffix unique. If more than one column is
necessary, then the suffix is constructed by concatenating the columns.

"For example, instances of the columns of the ifTable? are identified by using
the value of the iffndex column. So, the instance of ifDescr associated with the first
interface is: [ROSE91]

ifDescr.l or 1.3.6.1.2.1.2.2.1.2.1

If the object is not a column, the suffix is 0. For example, the identifier of an
instance of sysDescr is:

sysDescr.0 or 1.3.6.1.2.1.1.1.0

With such instance identifiers, a lexicographic ordering is created over all
objects instances. A lexicographic ordering means that "for instances names a and b,
one of the three conditions consistently holds: either a<b, a=b or a>b".[ROSE91]

By having a lexicographic ordering of all object instances in the agent’s MIB,
the management station can supply an object identifier and ask for the object instance
which occurs next in the ordering.[STAL89] This will allow, as explained in the next
point, to easily retrieve all the variables composing a table in the MIB.

2, see the description of the MIB in point 3.3.

Simple Network Management Protocol 82

3.2.5. Searching Tables with the Get-Next-Request’

It was already seen that it is possible to identify individual elements of a table
by appending a suffix to the object identifier. But a management station may wish to
examine entries in a table for which it does not know all valid suffixes. The get-next-
request operation allows this. It also allows to iterate through a table without
knowing how many items the table contains.

When a management station sends a get-next-request, it supplies a prefix of
a valid object identifier. The agent responds by sending a get-response command for
the variable that has an object identifier lexicographically greater than the one in the
request. The call get-next-request (sysDescr.0) returns the name and the value of
the next instance in the tree which is sysObjectID.0. But the operand need not identify
an instance, it can be any object identifier. For example, the call get-next-request
(sysDescr) returns the name and the value of the next instance in the tree which is
sysDescr.0. Thus, the get-next-request operator can be used to see if an object is
supported by an agent. The only thing to do is to specify the name of the object rather
than the desired instance of that object.

The MIB uses suffixes to index tables. Thus, a management station can send
the prefix of a table object identifier and receive the first element of the table. Then,
it can send the name of the first element of the table and receive the second and so
on.[COME91] Because of the names used in the MIB, when traversing a table, each
instance of the first column is retrieved, then each instance of the second column is
retrieved, and so on, until the end of the table is reached.

Tables can be quickly retrieved by using the fact that the get-next-request
operator can be given multiple operands. "For example, the call get-next-request
(ipRouteDest, ipRoutelfIndex, ipRouteNextHop) returns the name and value of
these three columns in the first row of the IP routing table. To find the next row in
the table, the returned names are used as operands to another call to the get-next-
request operator. This process may be continued until the entire table is traversed.

The end of the table is detected when the next object instance returned has a
different prefix than the one given in the get-next-request. An error is returned only

3, Readers should have a look at the HIB structure before reading the two following
points.

Simple Network Management Protocol 83

if an operand given to the get-next operator is lexicographically greater than or equal
to the instance identifier with the lexicographically largest value. For example:
get-next-request (ipRouteDest) -> ipRouteDest.0.0.0.0

get-next-request (ipRouteDest.0.0.0.0) -> ipRouteDest.192.33.4.
get-next-request (ipRouteDest.192.33.4.0) -> ipRoutelfIndex.0.0.0.

0
0

The third call to the get-next operator returned an instance with a different
prefix than the supplied operator. Thus, the manager knows it has reached the end of
that column in the table.[ROSE91]

3.2.6. Example of Encoding

Beside ASN.1 specification, there is another standard, the Basic Encoding
Rules (BER) [ISO8825] which is a transfer syntax to serialize instances of ASN.1 data
types into strings of octets.

The ASN.1 types are encoded with 3 fields:
- tag: field which indicates the ASN.1 type,
- length: field which indicates the size of the ASN.1 encoded value and

- value: field which contains the encoded value.

All the encoding rules will not be described in this point. Only an example of
encoding will be given. For further analyses, see [ROSE91] or [ISO8825].

A get-response PDU returning the value of the sysDecr variable will have
the following ASN.1 representation:

snmpMessage Message ::=

version version-1,

community "public"

data {

get-response {

request-id 17,
error-status nokrror,
error-index 0,
variable-bindings {

{
name 1.3.6.1.2.1.1.1.0,
value {
simple { string "unix" }

Simple Network Management Protocol 84
}
}
}
And the BER encoding for this message would be:
30 2A 02 01 00
SEQUENCE len=42 INTEGER Ten=1 vers=0
04 06 70 75 62 6C 69 63
STRING '|en=6 |Ip|l |lull ||bl| Il'lll Il‘ill IICH
A2 1D 02 01 11
get-response len=29 INTEGER len=1 req. id=17
02 01 00 02 01 00
INTEGER len=1 status INTEGER len=1 error index
30 12 30 10 06 08
SEQUENCE len=18 SEQUENCE len=16 objectid len=8
2B 06 01 02 01 01 01 00
1.3 . 6 1 2 .1 1 1 . 0
04 04 75 6E 69 78
object value len=4 "u" "n" "i "x"

The message is, thus, a sequence of 42 octets in length and it contains 3

fields. The first one is an integer of 1 octet in length which contains the version

number (0). The second one is a string of length 6 which represents the community

name (public). And the third field is the encoding of the get-response which is 29

octets in length and contains 4 fields. The first three fields are all 1-octet integers
which represent the request identification (17), the status field (0) and error index (0).
The fourth field is the variable bindings-list. Therefore, it is represented by a

sequence. This sequence contains only one item, the sequence representing the
instance identification (1.3.6.1.2.1.1.1.0) and its value (unix).

Management Information Base (MIB) 85

3 .3. MTB

The MIB describes the objects which are expected to be implemented by
managed nodes running the Internet protocol suite. It describes the variables needed
for monitoring and controlling the various components of the Internet.

The first version of the MIB, MIB-I [RFC1156], contains objects which are
considered to be essential for management. It was designed to include the minimal
number of managed objects thought to be useful for internet management. Thus, an
object is included in the MIB if it is considered to be essential to management. The
criteria that an object has to meet to be considered as essential are listed in the MIB-I
specification. In theory, all the objects defined in the MIB are mandatory. But, in
some cases, it is allowed to "forget" some of them. For example, if a router does not
implement the TCP protocol, the TCP-related MIB variables may not be included in
the MIB.

The first MIB specification was considered as the first step. But now, another
MIB, MIB-II, has been specified [RFC1158]. It is currently a proposed internet
standard. The emphasis of MIB-II is to create new objects whilst maintaining
compatibility with the SMI and MIB-1. The entire MIB-II specification is given in
Appendix B.

The MIB has been divided into 10 groups: System, Interfaces, Address
Translation, IP, ICMP, TCP, UDP, EGP, Transmission and SNMP. These groups
have been defined to provide a means of assigning object identifiers and to provide a
method for implementations of agents to know which objects they must implement. In
the MIB, the format of the description is given using the OBJECT-TYPE definition.
In several groups, variables are listed in the same line. This is only for compactness
reasons.

3.3.1 System Group

The system group is mandatory for all managed nodes. It contains general
configuration information, in particular, information about the system’s manufacturer,
software revision and how long the system has been up.

system OBJECT IDENTIFIER ::= { mib 2 }

- sysDescr: Textual description of the entity.

Management Information Base (MIB) 86

- sysObjectID: 1dentification of the agent. The value is allocated within the SMI
enterprises subtree.

- sysUpTime: The time since the agent was started.

In MIB-II were added the following objects:
- sysContact: The name of person to contact concerning this device.
-> sysName: The device name.
- sysLocation: The device physical location.

- sysServices: The services offered by the device.

3.3.2. Interfaces Group

The Interfaces group is mandatory for all managed nodes. It contains
information on the entities at the interface layer. It presents information about each
network interface in the system.

interfaces OBJECT IDENTIFIER ::= { mib 2 }

The interface group contains two objects:
- ifNumber: The number of network interfaces.

- ifTable: A table which contains information about the interfaces. There is one row
for each interface.

Each row of the table contains several columns:

-> iflndex, ifDescr, ifType: A unique value for each interface (identifier), a text
describing the interface and the type of the interface (e.g. ethernet-csmacd, fddi).

- ifMtu, ifSpeed, ifPhysicalAddress: The maximum transmission unit, the
transmission rate in bits/second and the media-specific address of the interface.

- ifAdminStatus, ifOperStatus, ifLastChange: The desired state of the interface, its
current operational state and how long ago its state changed.

- ifInOctets, ifinUcastPkts, ifInNUcastPkts, ifInDiscards, ifInErrors,
ifinUnknownProtos: The total number of octets received on the interface, the
number of unicast packets, of broadcast or multicast packets delivered to the upper
layer and the number of inbound packets discarded due to resource limitations, due
to format errors and due to unknown protocol.

- ifOutOctets, ifOutUcastPkts, ifOutNUcastPkts, ifOutDiscards, ifOutErrors,
ifOutQLen: The total number of octets transmitted on the interface, the number of
unicast packets, of broadcast or multicast packets from the upper layer, the number

Management Information Base (MIB) 87

of outbound packets discarded due to resource limitations or due to format errors
and the size of the output packet queue.

An object has been added in MIB-II:
- [fSpecific: A reference to MIB definitions specific to the particular media being
used to realize the interface.

3.3.3. Address Translation Group

The address translation group contains the mappings between IP addresses
and subnetwork-specific addresses that all IP systems must support. It contains a table
which is the union across all interfaces of the translation tables for converting an IP
address into a subnetwork-specific address. It must be implemented by all systems.

at OBJECT IDENTIFIER ::= { mib 3 }

Each row of the table contains three columns:
- atlfIndex: The number of the interface.
- atPhysAddress: The media-dependent physical address.
- atNetAddress: The IP address corresponding to the physical address.

Note that in MIB-II, the information on address resolution has been moved to
the network protocol group (IP group).

3.3.4. 1P Group

The IP group contains information about the IP layer. The IP group is
mandatory for all systems. It contains several simple type variables and three tables.

ip OBJECT IDENTIFIER ::= { mib 4 }

The simple type variables are:
- ipForwarding: It indicates whether the entity is acting as gateway or as host.
-> ipDefault TTL: The default Time To Live for IP packets.

-> ipInReceives, ipInHdrErrors, ipInAddrErrors, ipForwDatagrams,
ipUnknownProtos, ipInDiscards, ipInDelivers: The total number of input
datagrams, of input datagrams discarded due to errors in IP header, due to
addressing errors, the number of datagrams forwarded, the number of datagrams

Management Information Base (MIB) 88

sent to unknown protocols, the number of datagrams discarded due to resource
limitations and the number of datagrams successfully delivered to the upper layer.

-> ipOutRequests, ipOutDiscards, ipOutNoRoutes: The number of datagrams received
from the upper layer, discarded due to resource limitation and discarded due to no
route.

- ipReasmTimeout, ipReasmReqds, ipReasmOKs, ipReasmFuails: The timeout value
for reassembly, the number of received IP fragments needing reassembly,
successfully reassembled and unsuccessfully reassembled.

- ipFragOKs, ipFragFails, ipFragCreates: The number of IP datagrams successfully

fragmented, discarded because they had to be fragmented but could not due to the
DF flag and the number of IP fragments generated.

The IP address table contains IP addressing information concerning this
entity.

-> ipAddrTable: The table of addressing information.

Each row of the table contains:

- IpAdEntAddr, ipAdEntlfIndex:, ipAdEntNetMask, ipAdEntBcastAddr: The 1P
address of this entry, the number of the interface, the subnet mask of this [P
address and the least-significant bit of the IP broadcast address.

Another column was added in MIB-II:

-> ipAdEntReasmMaxSize: The size of the largest IP datagram that this entity is able to

reassemble.

The IP routing table contains an entry for each known route.

-> ipRoutingTable: The routing table of this entity.

Each row contains:

-> ipRouteDest, ipRoutelfIndex: The destination IP address and the number of the
interface.

- ipRouteMetricl, ipRouteMetric2, ipRouteMetric3, ipRouteMetric4: The primary and
alternate routing metrics for this route.

- ipRouteNextHop, ipRouteType, ipRouteProto, ipRouteAge: The 1P address of the
next hop, the type of the route (invalid, direct, remote, other), the mechanism used
to determine the route (local, netmgmt, icmp, egp, ggp, ...) and the age of the
route in seconds.

MIB-II added one column:

Management Information Base (MIB) 89

-> ipRouteMask: The subnet mask of the destination address.

Another table was added in MIB-II, the IP address translation table, which
replaces the tables in the address translation group.

- ipNetToMediaTable: The IP address translation table.

Each row of the table contains:
- ipNetToMedialfIndex, ipNetToMediaPhysAddress, ipNetToMediaNetAddress,

ipNetToMediaType: The interface number, the media physical address, the IP
address and how the mapping was determined (static, dynamic, invalid, other).

3.3.5. ICMP Group

The ICMP group contains information about the ICMP protocol. As ICMP is
mandatory for all devices implementing IP, it must be implemented in all systems.

jcmp OBJECT IDENTIFIER ::= { mib 5)

This group contains 26 variables. As seen in the previous chapter, ICMP
possesses several different messages. The ICMP group contains two variables for each
ICMP message, one for counting the number of generated messages and one for the
number of received messages of this type. For example:

-> icmpInDestUnreachs, icmpOutDestUnreachs: The number of "destination
unreachable” messages sent and received.

The four additional variables are:
- icmpInMsgs, icmpOutMsgs, icmpInErrors, icmpOutErrors: The number of

messages received and sent and the number of messages received in errors or not
sent due to errors.

TCP Gr

The TCP group contains information about the TCP protocol. It must be
implemented in all systems implementing TCP.

tcp OBJECT IDENTIFIER ::= { mib 6)

The TCP group contains:

Management Information Base (MIB) 90

- tcpRtoAlgorithm, tcpRtoMin, tcpRtoMax: The algorithm used to determine the
retransmission timeout and the minimum and maximum values permitted for the
retransmission timeout.

- tcpMaxConn, tcpActiveOpens, tcpPassiveOpens, tcpAttemptFails, tcpEstabResets,
tcpCurrEstab: The maximum number of connections allowed, the number of active
and passive opens, of connection attempts which failed, of connection resets and of
connections currently established.

- tepInSegs, tcpOutSegs, tepRetransSegs: The number of segments received, sent and
retransmitted.

Two variables were added in MIB-II:

-> tcplnErrs, tcpOutRsts: The number of received segments discarded due to format

errors and the number of resets sent.

The TCP connection table contains TCP connection-specific information.

- tcpConnTable: TCP connection table

Each row of the table contains:
- tcpConnState, tepConnLocalAddress, tcpConnLocalPort, tcpConnRemAddress,

tcpConnRemPort: The state of the connection (listen, sys sent, estab,...) and the
local and remote addresses and ports of the connected entities.

3.7. UDP Grou

The UDP group contains information about the UDP protocol. It must be
implemented in all systems implementing UDP.

udp OBJECT IDENTIFIER ::= { mib 7 }

The UDP group contains:
- udpInDatagrams, udpNoPorts, udpInErrors, udpOutDatagrams: The number of

received datagrams delivered to users, sent to unknown ports, discarded due to
format errors and the number of sent datagrams.

In MIB-II, a new table, which contains information about the application
entities which are using UDP, has been added:

-> udpTable: UDP listener table.

Each row of the table contains:

Management Information Base (MIB) 91

- udpLocalAddress, udpLocalPort: The local IP address and port of the UDP user.
EGP Gr

The EGP group is required only for the systems which support the Exterior
Gateway Protocol.

egp OBJECT IDENTIFIER ::= { mib 8 }

It contains:
- egpInMsgs, egpInErrors, egpOutMsgs, egpOutErrors: The number of sent and
received EGP messages and the number of EGP messages received with errors and
not sent due to resource limitations.

It also contains a table with information about the neighbours.

-> egpNeighTable: EGP neighbour table.

Each row of the table contains;

-> egpNeighState, egpNeighAddr: The state and the address of the neighbour.

MIB-II added many other entries to this tables (see Appendix B).

3.3.9. Transmission Group

The transmission group is defined in MIB-II only. It should contain media-
specific MIB variables. But the variables to be included are still tested in the
experimental subtree.

transmission OBJECT IDENTIFIER ::= { mib-2 10 }

3.3.10. SNMP Group

The SNMP group is only defined in MIB-II. It contains SNMP-related
information. Some of the variables will be zero-valued for implementations which act
only as agent or as management stations.

snmp OBJECT IDENTIFIER ::= { mib-2 11 }
— snmpInPkts: The number of SNMP PDUs received.

- snmplnBadVersions, snmpInBadCommunityNames: The number of received PDUs
with an unsupported version number and with an unknown community name.

Management Information Base (MIB) 92

- snmpInBadCommunityUses: The number of received PDUs which contain an
operation that was not allowed by the community name.

-> snmpInASNParseErrs, snmplnBadTypes: The number of received PDUs containing
an ASN.1 parsing error and which had an unknown PDU type.

- snmpInTooBigs, snmpInNoSuchNames, snmpInBadValues, snmpInReadOnlys,
snmpInGenErrs: The number of received PDUs for which the value of the
"ErrorStatus” field is tooBig, noSuchName, badValue, readOnly and genErr.

-> snmpInTotalReqVars, snmpInTotalSetVars: The number of MIB objects
successfully retrieved as the result of either a Get-Request or a Get-Next PDU and
the number of MIB objects successfully set as the result of a Set-Request PDU.

- snmplnGetRequests, snmpInGetNexts, snmplnSetRequests, snmpInGetResponses,
snmpInTraps: The number of Get-Request, Get-Next, Set-Request, Get-Response
and Trap PDUs which have been processed by the SNMP entity.

-> snmpOutPkts: The number of SNMP PDUs sent.

- snmpOutTooBigs, snmpOutNoSuchNames, snmpQOutBadValues,
snmpOutReadOnlys, snmpOutGenErrs: The number of generated PDUs for which
the value of the "ErrorStatus” field is tooBig, noSuchName, badValue, readOnly
and genErr.

- snmpOutGetRequests, snmpQOutGetNexts, snmpQutSetRequests,
snmpQOutGetResponses, snmpOutTraps: The number of Get-Request, Get-Next, Set-
Request, Get-Response and Trap PDUs which have been generated by the SNMP
entity.

- snmpEnableAuthTraps: 1t indicates if the agent is configured to generate
authentication-failure traps.

In this chapter, the OSI structure for network management, the Common
Management Information Protocol (CMIP) will be briefly described. Common means
that CMIP is a general purposes network management protocol. It is not only aimed
at OSI networks. Therefore, it has been applied to the management of TCP/IP
networks. This has been named CMOT, the Common Management information
protocol Over TCP/IP. CMOT will be examined in the second section.

4.1. CMIP

Like SNMP, CMIP is designed to transfer network management information
from one place to another. The review of CMIP will be made in four points. The first
one will have a look at the management information. The second one will examine the
services provided to the user and the third one will analyse the PDUs used to transfer
the information. The last point will give rapid explanations on the working of CMIP.
Many ideas to realize this chapter have been found in [RFC1095].

4.1.1. Management Inf ion

As in SNMP, management information is stored in a Management
Information Base (MIB) defined by a Structure of Management Information
[ISO10165-1]. However, the organisation of the MIB is not the same as in SNMP. In
CMIP, the base concepts are the abstraction of a managed object and the various
kinds of relationships that objects can be involved in. Hierarchies formed by the
relations between the objects are also of importance. Three hierarchies are defined:
the registration, the containment and the inheritance hierarchies.

Managed Objects and Attributes

Management information is modelled using object-oriented techniques.
Everything to be managed in the network is represented by managed objects.
Examples of managed objects are protocol entities, modems and connections.

CMIP ' 94

An object class represents a collection of managed objects with the same or
similar properties. "A managed object is defined as an instance of the object class.
Each object class is defined as having (among other things) a set of
attributes. "[STAL89] An example of an object class is transport connection. There
are a number of managed objects (specific transport connections) that are instances of
this class. -

Managed object classes are defined by:

- the attributes or properties the object has,
- the CMIS operations that can be performed on the object,
- the actions that can be performed on the object,
- the events that the object can generate and
- information about various relationships the object may be involved in.
"CMIP objects are represented using the ISO defined ASN.1 [ISO8824] and

are encoded using the ISO Basic Encoding Rules (BER) [ISO8825]. For SNMP only a
subset is used."[WARR90]

The Registration Hierarchy

The registration hierarchy is determined by the ASN.1 registration tree for
assigning OBJECT IDENTIFIERs. In the context of management, these OBJECT
IDENTIFIERs are used for identifying object classes and attributes. Its purpose is
simply to generate universal unique identifiers.

The Containment Hierarchy

The containment hierarchy is constructed by applying the relationship "is
contained in" to objects and attributes. Objects of one class may contain other objects.
Objects may also contain attributes. The containment hierarchy is important because it
can be used for identifying instances of a managed object.

One or more attributes (distinguished attributes) are chosen so that specifying
their values uniquely identifies which managed object is being referenced.[STAL89]
A distinguished attribute is composed of an OBJECT IDENTIFIER naming the
attribute and the value of the attribute. For each object class, the distinguished
attributes that differentiate instances of that class are called the relative distinguished

CMIP 95

name. A sequence of relative distinguished names is the distinguished name of the
managed object. The containment hierarchy is sometimes referred to as the naming
tree because it is used to name a particular instance of a managed object. For
example, if the highest object class represented in the hierarchy is a network and
nodes are contained in a network, then if an object class (transport entity) that is
contained in an node, contains an object class transport connection, an instance of a
transport connection can be identified by the concatenation of "instance information"
for each object class.

The Inheritance Hierarchy

The inheritance hierarchy is constructed by applying the relationship "inherits
properties of" to object classes. An object class may inherit properties of another
object class. Refinement is obtained by adding additional properties. In this
relationship, the parent class is called the superclass and the inheriting class the
subclass. The inheritance hierarchy has no relevance to the naming of object
instances. |

4.1.2. Management Services

CMIS [IS09595] is an Application Service Element which is used by an
application process to exchange information and commands. The following 10 CMIS
service primitives form the basis for all OSI management activities:

- M-EVENT-REPORT: It provides a means to report events to the management
station.

- M-CONFIRMED-EVENT-REPORT: It is the same as M-EVENT-REPORT but it
requires an acknowledgment from the management station.

- M-CONFIRMED-GET: It allows to retrieve management information from the
peer MIB.

- M-SET: It allows to modify information in the peer MIB.

- M-CONFIRMED-SET: It is the same as M-SET but it requires an
acknowledgement.

— M-ACTION: It requests to perform some action.

- M-CONFIRMED-ACTION: It requests to perform some action but it requires a
confirmation by the managed device.

- M-LINKED-REPLY: It is used to link different replies in response to multiple
requests.

CMIP 96

-> M-CONFIRMED-CREATE: It requests to create a managed object instance.
- M-CONFIRMED-DELETE: It requests to delete a managed object instance.
- M-INITIALIZE: 1t is used to initialize an association.

- M-TERMINATE: It is used to terminate an association.

- M-UABORT: It is used to abruptly terminate an association.

4.1.3. Management Protocols

"OSI application layer protocols are built using Application Service Elements
(ASEs). CMIP [IS09596] uses three ASEs: The Association Control Service Element
(ACSE), the Remote Operations Service Element (ROSE) and the Common
Management Information Service Element (CMISE). "[STAL89]

CMIP uses the Association Control Service Element [[SO8649] & [ISO8650]
to establish and release associations between application entities. Before any
management operations can be performed using CMIP, it is necessary for the two
application entities involved to form an association. The five ACSE PDUs that are
used by CMIP to manage its associations are: the AARQ (Association request) PDU
to request the establishment of an association, the AARE (Association Response) PDU
to confirm the establishment, the RLRQ (Release. Request) PDU to request the
graceful termination of an association, the RLRE (Release Response) PDU to confirm
the graceful termination and the ABRT (Abrupt) PDU to abruptly close the
association.

CMIP uses the Remote Operations Service Elements (ROSE) [ISO9072-
11&[1S09072-2] to provide the transaction oriented services required by the systems
management application entity. The ROSE are supported by four PDUs: the ROIV
(Invoke) PDU to invoke to perform an operation, the RORS (Return Result) PDU to
report the successful completion of an operation, the RORE (Return Error) PDU to
report the unsuccessful completion of an operation and the RORJ (Reject) PDU to
reject an operation request due to a problem."[KLER88]

CMISE provides the network management applications with the Common
Management Information Services (CMIS). These services are listed in the point
hereabove. The last three ones (M-INITIALIZE, M-TERMINATE and M-UABORT)
are performed by using the ACSE while the other ones are performed by using the
ROSE.

CMIP 97

4.1.4, Working

Here are described , in bulk, some of the important characteristics of CMIP.

CMIP is an association oriented protocol. Thus, it requires a reliable
transport layer such as TP-4 or TCP/IP. An association oriented protocol involves
more processing for communications because an association must be established
before sending data. However the sender of a CMIP message is sure the message has
reached its destination which is not the case with SNMP for which the applications
have to guarantee delivery by themselves. Therefore, CMIP is better for retrieving
large amounts of data. But a problem with association oriented protocols is that the
network is harder to manage when trouble occurs because of the connection
establishment phase. For example, if the network is saturated by a device, it could be
difficult to send more than one message to stop this device.

CMIP provides for the implementation of sophisticated conditional
commands based on object type, value and relative location in the managed network.
For example, a CMIP-based management system could directly request port
information for all gateways for which ifNumber > = 5. SNMP would request the
information from all routers and check the ifNumber value to see if the router is of
interest.[WARR90]

CMIP requests can be either atomic or carried out on a best effort basis. If an
error occurs during the processing of the request, if the request is atomic, no result is
returned and if it is carried out on a best effort basis, all the results which cause no
errors are returned. Furthermore, CMIP supports linked replies. If the response is too
large to fit in a single packet, several packets can be linked together to return the
response. SNMP is only able to return a reply packet per request.[WARR90]

The data query mechanism makes that CMIP is oriented more toward
retrieving aggregate information than individual items of information as with
SNMP.[FISH91]

SNMP actions can only be performed as side effects of variables setting,
whereas CMIP provides its user with the definition and execution of object specific
imperative commands.[WARR90]

CMIP 98

Both SNMP and CMIP agents are able to send event messages to their
managers. But SNMP events are always unconfirmed while CMIP events either
confirmed or unconfirmed.

SNMP uses a polling-based management. This means that the manager
regularly asks each device for its status. "CMIP uses an event-based management.
The managed devices asynchronously send pre-configured information of interest to
the manager. The device informs the manager of its status when it changes. "[FISH91]

The event-based management has the advantage that if a large number of
devices is to be managed, it will consume less network bandwidth than the polling
based management. However some stupid devices may be unable to tell the manager
that they have problems and, in this case, polling is more appropriate.

And finally, CMIP is significantly more complex to design and implement
than SNMP. It also occupies more code-space (3 times more than SNMP) which is
important in some devices with limited resources.

cMoT 99

a4 .2 . Mo

CMOT differs from CMIP for at least two points. The first one is the
information which can be managed and the second one is the structure of the protocol
layers.

4.2.1, Management Information

As CMOT uses the standard Internet MIB, the Internet SMI does not use the
notions of object class and attribute. Only the concepts of object type and object
instance are used. In order to use CMIP to convey information defined in terms of the
Internet SMI, it is necessary to show how object instances are specified and to provide
the necessary structure for differentiating object class and attributes. These objectives
are both met by separating the containment hierarchy used for naming objects from
the registration hierarchy and by imposing an object class structure on the Internet
SMI.[RFC1095]

The mapping between the Internet SMI and the containment hierarchy is
achieved by mapping those object types defined in the Internet MIB as leaf nodes to
attributes and non-leaf node object types to object classes. The mapping with the MIB
is shown in figure 4.1. [STAL89] For example, the attributes of the system class are
sysDescr, sysObjectID and sysUpTime.

Systen

interfaces at i icﬁp tép uép e'p

| |

ifTable AtTable ipAddrTable ipRoutingTable tcpConnTable egpNelghTable

ifEntry atEntry ipAddrEntry ipRoutingEntry tcpConnEntry egpNelghEntry
Fig. 4.1: Mapping of MIB to CHOT containment hierarchy

The OBJECT IDENTIFIER naming a distinguished attribute together with its
value is called an attribute value assertion. A set of attribute value assertions is the
relative distinguished name associated with that object class. The sequence of relative
distinguished names for each of the object classes in the containment hierarchy to
which a managed object belongs is the distinguished name of the object.

The Internet SMI does not use the inheritance hierarchy.

CHOT 100

4.2.2, Protocol

The following figure (4.2) summarizes the CMOT protocol suite. It contains
the ISO ACSE protocol, the ISO ROSE protocol, the ISO CMIP protocol, the
Lightweight presentation protocol (LPP), UDP, TCP and IP.

Management Application Processes
CMISE
ISO 9595 / 9596
ACSE ROSE
ISO 8649 / 8650 ISO 9072-1/2
LPP
RFC 1085
TCP UDP
RFC793 RFC 768
IP
RFC 791
Fig. 4.2: CMOT protocol suite

The difference between OSI CMIP and CMOT is the LPP layer.

The problem was to put ISO application protocols on top of TCP/IP. But the
gap between the ISO protocols (ACSE and ROSE) and the Internet protocols (UDP
and TCP) must be filled. The approach is presented in [RFC1085]. Since the service
elements required for network management do not require the use of full ISO
presentation layer services, it is possible to define a simple presentation layer that
provides only the services required. This lightweight presentation protocol allows the
use of ISO presentation services over both TCP and UDP.

4.2 inion

The opinion of David Mahler (vice-president of marketing for Remedy, a
company in Palo Alto, CA, developing protocol-independent network management
products) about CMOT will conclude this chapter. Mahler said in [FISH91]: "My
particular opinion, and I think you’ll find it to be the general consensus, is that
CMOT is dead. It lost its market window, and SNMP has very well filled the role of

cMOT 101

management protocol for TCP/IP. The SNMP community delivered more
functionality, faster, to the market place. (...) The CMOT community was working
on the problem of managing TCP/IP devices. That’s the same thing that SNMP was
doing. The OSI/Network Management Forum worked on a very different problem.
[Its members] didn’t care what network you were trying to manage. They said the
management systems had to talk to each other and were largely independent of the
kind of network out there."

Openview is termed as a node manager. Therefore management operations
concentrate on the nodes and the management function on the network is less
developed. For example, it is not possible to find a monitoring function that detects
broadcast storms. Every action made by the program consists of operations on the
individual nodes and not on the network.

Openview has been tested on a HP-9000 workstation under the Unix (HP-
UX) operating system. It uses the services of X-window to make the displays on the
screen. Openview is made to manage nodes implementing at least the Internet
Protocol. Some functions are available for Ethernet LANs but Openview is also
convenient for WANSs.

In the first section, the main functions of HP Openview are covered. And in
the second section, a conclusion resumes the positive and negative points of this

program.,

S .1 . Presentation and
Comments

Below are summarized the major possibilities of Openview.

5.1.1, Graphical User Interface

A. Presentation

Openview possesses a database containing a representation of the network.
This database is automatically updated with information coming from the nodes (by
polling the nodes, listening to broadcast traffic (ARP), etc). Openview draws a view
of the network using this database. An example of a general map is displayed in
figure 5.1.

HP Openview 103

Threchold Events

Hetuork Tepology Evente
Error Events

Status Events

Hode Configuration Events
All Events

WREEAW]

137,16.1%7) ¢
192.70,69.15 TN

Hau Dbject llolding Area

Hap [read-urite] Status Honitoring = CH Topology Update = FULL

I~ Qutonatic Lauout Redo Layout

Fig. 5.1: Example of map

The map of the network is represented in three different levels.

Internet Level.

It shows a logical view of the entire network (internal and external). Here
only the networks and the gateways are displayed. (As in figure 5.1)

Physical Level.

It shows a view of a network with all the segments, the bridges, etc. It is
accessed by clicking on a network in the Internet level.

Segment Level.

It shows a view of a segment with all the nodes connected on this segment. It
is accessed by clicking on a segment in the Physical level. An example of a three

level map is given in figure 5.2.

HP Openview 104

g}-’ HP OpenVisw Netwark Node =} gus Seyment View: <sther> Segment] -

e [die Lecate Pegutzt Teer Qtiudee

157,15, 09%, 31
) (258, jie 0 376,19
d

<

U qu-GT 129, 141128, 128, 111207141128, 14128, 1A Ji28. 141, H-namedi-nli 20, T4t tfext -JI78 X P (B ST 1

120, L1, T4 U0 141, a1 00, 14J128, 14]128, 14]1<0, 141098, 14120, 1 4J10 T4}i00, L4 T 2 1 v, 1ai}i9, 140, 31,3

23,1418, 141128, 14(128, L8, (4128, 1T Skl S8, T4 e, L4129, T4 TI20, 4120, TVl 1 Y08 1 i T cd, T, 13173

.

~ /
& \ // 174, 14008, 140128, 14U AT 141128, 14126, 14]128, [4{128, 1 4f1 28,1 ¢{1 28, 141128, T4 28. 1 411 28 141129, 140103, 141 43, 39)
SERIHEIT Py] 3 —‘l
m \ (f 3 cvrarkemabrmm: 1] rrs3 raind
4 N N - 1
y %{ AN B o e B Al Fferaio] btul Gitsql
57 85!184 ¥ toadatr ol Jtcpol
S N, /s ¢ %._,
D N/ /_¢> 9 14 f0. 142131, 9.38
& N -
P fiz8. 111, 52,97) 14128, 141 | Jeervnd]
153,141,176
i%207,1.3
How Qbjoct Holding Avas

[i TYUNCTR ST B)

R @ tiew (bject Holding Ares

.'v.(-.rm:t (e dasteatis Lypat

As Openview possesses a topology builder, it automatically draws a view of
an entire internetwork with the routers, the networks and the hosts that it can detect.
This view is not complete because only the nodes implementing the IP protocol can be
detected with the topology builder. Therefore, if the network contains bridges,
repeaters, terminal servers, they will not be automatically detected and, thus, they
will not be present on the screen. The user has to add bridges, new segments,
repeaters to the map built by the topology builder. By this means, the map will
correspond to the real (complete) physical topology of the network. These changes are
saved in the database.

To help update the network, Openview disposes of tools to edit the views.
These tools allow users to add and to remove objects (computers, bridges,...) or
connections, and to move an object from one segment or one network to another, or
to change the type of an object. An object can be moved to another part of the view
only by using the mouse.

A snapshot of the network can be taken. The snapshot is a representation of
the network at a certain moment. A snapshot is a means for saving a network map. It
is possible to take a snapshot, change the network topology and, if wanted, restore the
old version of the network. A snapshot can be recovered to work with a previous
view of the network.

HP Openview 105

Every object can be either managed or unmanaged. If it is managed, then it
will be polled at fixed intervals to learn information on its status, its performances,
etc. If it is unmanaged, no information about it will be available. When managed, a
node sends information to the node manager.

The user can locate an object by using many parameters. An object can be
found by its name, its IP address, its link address. One or more objects can be located
by using the type or the comment field. Every object corresponding to the selected
type or to the chosen comment is highlighted. All SNMP or non-SNMP objects can
also be found. The window containing the highlighted objects is created and/or
popped up if it is already present on the screen.

It is possible to find the route between two objects. The only thing to do is to
give the addresses or select the objects. And the program highlights the route and
gives the address of every gateway that is on the route.

By clicking with the right button on an object, a description of it is displayed.
If the object is a node, the description contains the name, the type, some comments
and the SNMP or non-SNMP character of the host. It also contains the IP address, the
link address, the type of every interface. If the object is a network, the description
contains the name of the network, the network number, the number of segments, the
number of nodes and some comments about the network.

B. Comments

The presentation of the program is very good. It looks very professional. The
windows are well designed, with shadows, etc. Openview is very easy to use because
the drawing is made automatically. But the only way to stop the extension of the map
is to unmanage the end objects. This is not very convenient. It would have been better
to add a learn on/off function to begin or stop the extension of the map.

But the drawing is more difficult if made manually. The display is divided
into three levels and these levels cannot be changed. It is not flexible. It is impossible
to move an object from one level to another. It is, for example, impossible to make a
host become a gateway because they do not belong to the same level. To make this
sort of change, the user must delete the host and create a gateway with the same name
and the same address. The user must be rigourous when adding new objects. It is not
possible to add an object without giving its name or its address. It seems constraining
but it is better than having an object with no name on the map.

HP Openview 106

The user can choose to place the objects wherever he wants. But he can use a
facility to redraw the map where the placement is calculated by the program. This
function works perfectly well but only if the map is not overloaded. If there are too
many objects on the map, they begin to be superposed.

A bad thing to notice is that, in the internet level, all the networks are
represented by the same picture. It would have been better to use different pictures for
Ethernet, point to point links, etc.

The facility to search the route between two nodes works well but there are
two imperfections. The first one is that in the answer table, sometimes the name of
the gateway is given and sometimes the IP address is given. It is not very easy to
follow the trace. The- second imperfection appears when the two nodes are on the
same network but on different segments. On the network level, there is no highlight
between the two segments.

In conclusion, the graphical representation of the network is not perfect but is
very good. The possibility to stop the extension of the map would have been very
useful. All useful tools to draw the map and manage objects (add, delete,...) are
present. And once the basic concepts of the different levels are understood, it is very
easy to work with the graphical facilities.

5.1.2, Alarm Manager

As can be seen in the graphical user interface, an alarm manager is always
present on the screen (see figure 5.1). By clicking on the different buttons, it gives
the possibility to display the different events gathered. The events are divided into
five categories. The first category is related to thresholds trespassing, the second one
to network topology changes, the third one to errors, the fourth to status events and
the last one to node configuration changes. The sixth button displays the events from
the five categories. As can be seen in figure 5.3, an event is characterized by a
timestamp, the node concerned, the source of the information (Node or Manager) and
the description of the event.

HP Openview

107

4 Jan 47

0 Jan 17

u-Jan 17

u Jan L7 (
Thu Jan 17 1"‘05‘13 1931
Thu Jan 17 10;06:18 1931

41 17.14

n

70 °4E 3

LRI

Thu Jan 17 10:06:18 1391 132,70,246.6

H Made Up

H Interface
H Hode Up

N Interface 128
H Hode Up

H Interface 128
H Nnde Dnmn

128,141,22.20 up,
410127 up,
141,547 down,

2,65,125,129 Chang
. 29 Added

N Interface lLB 141.15.‘
H Hode Up

128,14

of Link pddr
of Link Addr
h of Link Addres
H H1°matuh of Link Addres

with rode
th node
with node

Acknowledge
ALl Events

fioknowledge

Selected Events

Highlight
Hodes

ng 5 3: A1l Events d1sp1ay

1.3.D Pollin

It is possible to enable or disable the polling of the nodes and to

fix the

intervals between two pollings for all the nodes. Different polling intervals can be
selected, each corresponding to a particular function. These are: discovery of new

nodes, status of one node, thresholds polling (system load, diskspace, interface).

5.1.4. Traffic Monitor

A. Presentation

It is possible to fix thresholds for every machine in particular. It is only
needed to select a node, choose a type of polling and fix the threshold. The types of
polling are interface percent deferred, interface percent collisions, interface CRC
errors, interface percent input errors, interface percent output errors, CPU load and

percentage of used disk space .

The program is able to produce on-line graphs using some parameters of one
node. It can make graphs representing the CPU load of a node (only available for
specific stations), the interface traffic, the link transmissions and link receptions

HP Openview 108

(available for the SNMP hosts). An example of a graph on the interface traffic is
shown in figure 5.4. It shows the out packets on the "ethernet 0" interface of gateway
"ext-gw-01".

[82] interface Traffic since Thu Jan 17 11:18:18 1991

A In Fa

Pregt K3
Huer g 4%
Lurrent B

o Tre Ereon

™ ur. Packets
Peat 41
Huerags 17
Current o3
0wt Crvor:
Pesl.

Rverage

Current

i t
11:13:21 1113041
Jan A7 Jan 17

Hane or IP Hiddrez: Interfaces

axt-gu-nl
___9______._1 Zertald

Polling Interval Ethernetl

Zeriall

oo Reselect

Fig. 5.4: Interface Traffic

B. Comments

The threshold function is indispensable in a management system. But here,
We think it is too limited. Only 6 variables are available, and amongst these 6
variables, only 4 can be used normally and only concern interface dependent
parameters. The last two ones are HP dependent. It should have been possible to fix
thresholds on a wider choice of variables.

HP Openview ‘ 109

5.1.5, Reachability Tests

A. Presentation

It is possible to test if a node is working or not (up, down). This test is made
by the ping procedure. The program sends ICMP echo packets and wait for answers
from the tested machine. The time between the sending of every packet and the
response is shown. The program also calculates the maximum, minimum and average
time between the sending and the reception.

Another interesting test to make is the remote ping test. The program forces a
remote node to send packets to another one. The remote node listens to an answer and
sends the results to the program.

The program is able, for every node, to make an immediate demand poll.
The polling consists for a normal non-SNMP node of a ping test, a demand of
description and a verification of the nodename. The SNMP nodes are also requested
to send their internal tables like routing table, ARP cache, services, etc.

B. Comments

These functions are useful in a management program. They represent the
minimum facilities. All of them work well.

There is also a monitoring program called netmon which collects information
like node up/down from the managed objects and sends it to the graphical
representation of the network in order to update the colour of the nodes. But this
program dies too frequently. This problem was investigated but not yet resolved when
this test was performed.

5.1.6. Data Query

A. Presentatio

For the nodes supporting the SNMP protocol, more information can be
retrieved by using the Request menu. It is possible to obtain immediately all the
events that occurred on this node, the interfaces, the addresses, the routing table, the
ARP (Address Resolution Protocol) cache memory and the services provided by the
node. The result of an interface query is given in figure 5.5.

HP Openview 110

[nterfaces forext-gw—01 [

Name or IP Address
ext-qu-01
Interface Type Status InPackets InErrors QutPackets OutErrors

ethernet 4617869 2269635
propPointToP 1145161 1235658
ethernet 2935945 2782853
propPointToP 342840 411970
rfc877-x25 2817839 4521088
propPointToP 143336 146963
rfcB877-x25 111181 173470
propPointToP 193966 208415

SCOoOLOoOeo

oo) I Restart I I Resevlectw» l - Close '

Fig 5.5: Interface Display

For devices connected to an Ethernet network, data-link counters (CRC-,
send-errors,...) are also available.

The TCP connections option displays the TCP connection table that can be
found in the MIB TCP group. It contains, for each connection, its state and the local
and remote addresses and ports which identify the connection.

The disk space option says that no file system information is returned by the
tested node (except for the station itself). This last option is HP dependent.

The program is able to test the protocol supported by every node (ICMP,
TCP, SNMP). It can test if the three protocols are implemented on the machine, at
the same time or one at a time.

B. Comments

These functions give only global information about an object. They give
routing tables, interfaces, etc, but they do not give more detailed information like the
value of a particular MIB variable or the error rate on a specific interface of an
SNMP object. Information given by these functions cannot be used efficiently to
detect, for example, troubles on the network.

HP Openview 111

1.7 T

It is also possible to connect directly to a computer simply by selecting this
computer on the segment view and using the connect option of the last menu. The
same mechanism is used to connect to a gateway. It is done by using the Telnet
Protocol.

The last possibility offered by this program is to start the System
Administration Manager (SAM) on a remote node (HP-UX) in order to reduce the
management related CPU load on this station.

5.2. Conclusion
In conclusion, Openview has two advantages and five disadvantages.

Openview is attractive because it is a well finished product. It looks very
professional and is, in fact, rather easy to use with the mouse. For example, the
menus and the windows are designed in a perfect way. The common operations are
working satisfyingly. It is very pleasant to work with a program possessing a
graphical interface like the one possessed by Openview.

Furthermore, the graphs that can be displa&ed are very pleasant and very
readable.

But its disadvantages are important.

The first is that it is only able to manage the nodes. No operations can be
made on the network itself. For example, it is impossible to listen to the broadcast
traffic. The only way to have an idea of the traffic is to examine the number of
packets passing through gateways, which is not representative at all.

The second severe problem is that it is never possible to save anything on
files. All information gathered by the program (tables, rates,...) can only be displayed
on the screen. When it disappears from the screen, it is lost. Long tables are easier to
read on a paper copy than on the screen. And if data are stored on a file, they can be
used by other applications, for example, by a statistics database.

The following problem is the poor capacity of gathering information. The
program is too limited. It is only able to retrieve a few tables such as services table,

HP Openview 112

routing table, interfaces table and values of some variables such as crc-errors, number
of packets sent, number of collisions from a remote object. It is not sufficient to
manage a network. For example, the possibility to retrieve MIB variables from a
remote object would have been very useful.

Furthermore, it is impossible to act directly on remote devices. For example,
it is not possible to change the value of an MIB variable from the management
station.

Another problem is that Openview is unable to manage the bridges. Nothing
is available to get information from the bridges. Therefore, the program is less useful
for some internal networks (bridged Ethernets) than for external networks.

To end the conclusion, We would say that Openview is designed for the
network manager and not for operators. Operators need to be warned as quickly as
possible if a problem occurs. And this is impossible with Openview which only
displays a small error box. Openview is not a satisfying product for the operators. It
can be satisfying for the manager to have a global view of the network and to perform
the first tracking operations when a problem occurs. But in this eventuality, the
manager needs in complement more specific tools, to investigate more deeply.

This chapter describes an experience with the new Digital product for
managing networks, the Digital Network Tools (DNT).

All the possibilities offered by this program will be reviewed in the first
section. And then, a conclusion about this product will end the chapter.

S .1 . Possibilities of DNT

The DNT program uses SNMP, Decnet or CMOT to manage a network. It is
running on a Decstation with the Ultrix (Unix from Digital) operating system. A
colour screen is mandatory to display the information. This is made using the
Decwindows graphical interface.

1. Graphical 1 Interf;

A. Presentation

As presented in figure 6.1, the graphical user interface is composed of four
windows. '

— The first one is the general window, called Network Map Application. It is used
to draw the map and support the menus.

- The second window is the Palette window. It is divided into three parts. The first
part gives a legend of the different colours used to display the elements of the map.
The second part contains symbols which represent objects available to design the
map. And the third part contains symbols which represent functions the user can
perform. It is possible to hide the palette window if the map does not need to be
changed anymore, in order to enlarge the other windows.

-> The third window is the Navigation window. It is used, if the map is too big, to
navigate from one part to another. In the small square, the part of the map currently
displayed in the network map application window is shown off.

- The fourth one is the Alarm Management window. It is used to display alarms.
This will be explained hereunder.

Digital Network Tools 114

31} Netwark Map Application; Read/Write Actess [Raot, Levei 0] Eﬁ Palette >
Map Fauit Configuration Perfarmance Security Accgunting Reporting Qther Color Lagend

< UP DOWN WARNING SELECT
UNKNOWN NO RESPONSE

o o o s s :

J0

Cilek MB2 on symboi for help, |
sun| sun@ sunigs pmixil pmIn2 pmaxd pmANS brute :

CIEIRE ||
o |

- .

0000 ===
hpt hp2 apollol apoilo2 o X - l
\Av‘y /
termserver aog Ig ./ ij
o {7 N

i1l IO4 !

! Navigation

\% m
< C 1 > 10 @

Cammand Halp

O
{10-Jul-1990 13:48:01} msg rcv from Alarm Type(mss_map] at Object{pmaxd]
Requasting Database Hrite Access.

<
QA 2O

Fig. 6.1: DNT Main Screen

The network map application window does not only display the map, but it is
aiso used to support the menus. Eight menus are visible. Five of them correspond to
the five management categories defined in the OSI management framework [ISO7498-
4] configuration, fault, performance, security and accounting management. The other
three menus are more specific and are used for performing map, reporting and other
(remote connections) operations.

When drawing the map, the user places objects wherever he wants only by
clicking on the corresponding symbols of the palette. To make a connection between
two objects, the user can use the corresponding symbol on the palette or a connection
function on the map menu. This function is mainly used to make a connection
between two objects which does not appear in the network map application window at
the same time because they are placed too far from one another.

To map can also be built with several levels. The user must choose the view
symbol on the palette to represent a sub-map. Then, when clicking on this symbol on

Digital Network Tools 115

the map, the user enters in a new view and he has the possibility to build a new sub-
map.

If the map if too large, it may not fit into the map application window. Only
a part of it is displayed on the main window. And it is not easy to search the entire
map in order to find an object. The user is allowed to find an object by its name. If
the object is found, the view to which the object belongs is displayed on the window.

The user can save the map. The map is not automatically saved when a
change is made. Furthermore, the user can rebuild a previously saved map. This
permits to recover the last saved map, providing the latest changes have not been
saved.

A function to print the map is also available. This function is very useful
because, in general in the map application window, only a part of the whole map is
displayed.

B. Comments

It is easy to draw the map manually. All the drawing functions are available
on the screen (palette). But it becomes more complex to work with different views
because some objects are represented on both the upper and the lower views. For
example, if an Ethernet segment is to be represented by a view, the gateway between
the Ethernet segment and the rest of the network will be shown on both views. But its
place is the same on the two views. Therefore, this object must be placed in order that
two objects are not superposed.

1.2.D

Six different databases can be distinguished in DNT: a service database, an
object database, an interface database, a group database, a topology database and a
statistics database.

Presentation

In the Service Database, it is possible to save detailed information
concerning the vendors, the contracts, the location of devices and the contacts which
are important for network management. The user can add, update, query and delete

Digital Network Tools 116

details for any service. A facility lets the user copy information from or to files. An
example of vendor information is given in figure 6.2.

service Database

Vendor Inforwation

21 |pEc

Nane l}liqital Equipnent Corporaticn
dd [25 Vashingtan Streot

City _}_(ev Ingland

State irY 12345-0987

Country S A
Cant . _Name Ll’etn Sullivan

Cont:._Phone [543-783-0123

Service_Hrs f{B.UO an to 5.00 pn

Rasp.Tine [Generally sane day
Escalation [ithe calls axe escalated to high priority after 24 houry of
Efitst respanss.
i
It
Cament |Digital noeds no introduction. You are d of quality |
{Iurvice
|
I
Y
| B
Save l [etete | [pismiss |

Fig. 6.2: Vendor information

The Object Database allows the user to manage information about network
objects. The information is categorized into four classes which correspond to the
service classes. An object is associated with an occurrence of each class. The user can
add, update or query all these classes. If some service information has not been
defined, it can be added from the object database. Thus, it is possible to update the
service database directly from the object database and associate the services with the
object.

The Interface Database allows the user to enter information about an object
and its interfaces. The object information is the name, the community name, the
group name, the protocol used to discover the object status and the polling interval.
The interface information is the connection type, the name and the address of the
interfaces, the protocol used for polling and the priority for polling the interfaces.
When the user enters a new interface, he must type the name of the interface and if it
is possible to resolve it using the Domain Name Server protocol or some other means,
the address of the interface can be displayed by clicking on the address field. An
example of the interface database screen is shown in figure 6.3.

Digital Network Tools ' 117

Object [pmaxi!

Community Name | public polling Multiplier 1

Protocol Used For Map Status Display Group

Address Type

Connected to Connection Tyge Address Name Address 1 Address 2 Protocol Priovity
[oco | [Etharnal | [pmax3 | [16.121.0. 67 || |)

Message Box

{Thu Jul § 11:04:48 1990] Object glennm information written to database.
{Thu Jul 5 11:05:28 1980] Object sun2? information written to database.

Fig. 6.3: Interface database

J40

| Hext Page

The Group Database allows the user to manage the groups. A group is a
gathering of one or more objects which possess a common characteristic. An object
can belong to more than one group. For example, it is possible to define an SNMP
group which contains all objects that can be polled using the SNMP protocol. This
permits to divide the consumption of resources between different computers and to
reduce the global load of the network. Each group of objects can be polled by a
different agent. And if the groups are designed taking into account the location of the
managed objects, the polling agents can be installed in the same areas as the managed
objects. It minimizes the traffic between the objects and their polling agent.

The Topology Database contains all the information necessary to display the
map of the network. The information is the place of the objects on the map, their
status, etc. This database is directly queried in order to display, on-line, the state of
the network on the graphical user interface.

The Statistics Database, an INGRES database, is used to store and retrieve
reporting information. Objects can be polled at regular intervals in order to store the
value of variables in the database. The database can also receive information from
incoming traps. With the data contained in the statistics database, reports can be
generated. These reports are built by a report generator. But reports can also be
created by a user. They can be made using an SQL interface, an INGRES Report
Writer or embedded SQL commands through a C program.

Digital Network Tools 118

Comments

In the service database, information can be copied to a simple file in order to
use it to add new objects which have nearly the same characteristics. It is, for
example, possible to save the information about contract X and then use this
information in contract Y. But it is also allowed to copy information concerning a
service to a file and then load this information within another service. No error
message is displayed but the window is filled with rubbish. The program does not
check if the information belongs to the same service.

As has been said in the first chapter, it is vital to have an inventory of objects
connected to the network. But the service and object databases do not fulfil this
requirement as they should. First, they only contain what could be called
administrative information. That is location, contract, etc. Administrative information
is indispensable but not sufficient. Network information such as IP or Decnet address,
physical address, is also needed. If, for example, a problem is detected coming for
object with physical address X, it is important to know to which object it corresponds
and then, when the object is found, information is needed such as vendor, contract
and location to resolve this problem. Second, this function does not perform any
network query or verification. That is the result of the first problem. The databases
have no relation with the network. There should exist a link between the objects in the
databases and the packets passing on the network. And, for example, this link could
be made by an address field in the object database or by a relation with the interface
database.

In the Interface Database, only two connection types are available, Ethernet
(or token ring) and point to point serial. In fact, more types are needed in a real
network. For example, if an X25 connection is present in a gateway, it is not possible
to display it. The program should, at least, for the gateways, examine the interface
ifTable ifEntry ifType MIB variables to see the number and the type of the interfaces
on one object.

1.3. Topology DB builder

An autotopology function to draw automatically different maps (for Decnet
nodes, SNMP nodes, etc) is in plan. But it was not yet available for this field test, so
it could not be tested.

Digital Network Tools 119

6.1.4, Alarm manager

There is only an alarm window which displays the events. Every message
contains a time stamp, the object name, the type of the alarm and an alarm message.
It is possible to make searches on this window using different arguments. But this is
not very friendly. It would have been better to class the messages, for example,
according to their type.

1.5. Devi Hin

Device polling is made through programs which send the information they
gather to a topology database. And the map is directly updated using this database.
The colour of an object is determined by its state. The real state is displayed only if
this object can be examined using SNMP or Decnet. A non-SNMP or non-Decnet
object is marked as unknown. But for the gateways supporting SNMP, DNT displays
the state of each interface and the global state of the object.

6.1.6, Traffic monitor

The traffic monitoring function can be divided into two parts. The first one is
an Ethernet traffic monitoring function. The second one is rather a traffic monitor for
device interfaces.

Presentation

The Ethernet Packet Filter function provides the user with a display of the
load (percentage of the total bandwidth in use during a particular period) on the
Ethernet. The user can choose between displaying the aggregate load and displaying a
trend graph. He can also choose to display a separate graph for each packet type or
for each source or destination address. Many other display options are available.

The Monitor Interfaces function monitors all interfaces of an SNMP object.
It counts the number of input and/or output packets on each interface and displays one
or two graphs for each interface. The user can choose to display the number of input
and/or output bytes per interface. He can also choose between displaying input
information, output information or both. An example is given in figure 6.4.

Digital Network Tools 120

MSXPERFMON

SHMP Interface Performance Monitor ¥ersion 3.0
copyright (C) NYSERNet Inc. 1987,61388

Agent: 16.121.0.1 Interval: 2 seconds
Interface: 127.0.0.1

inpkts so|

packets/second
outpkts 50'
Interface: 16.121,0.1 Packets/second

inpkts SOWW

packets/second

outpkts 5%

packets/second

Fig. 6.4: Monitor Interfaces

Comments

A monitoring function of the Ethernet is essential for the management of
Ethernet networks. When problems occur, it is vital to react as quickly as possible.
But, the problem is that with DNT it is only possible to monitor Ethernet traffic. It
would have been better to have the possibility to monitor traffic on other networks,
for example, on Token Rings. It is also impossible to fix a threshold on the network
load. The only possibility given is to display a graph of the load. But in case of a
problem, the program is unable to detect it and therefore no alarm can be generated.

When monitoring the interfaces, the displayed graphs are too small. It would
have been better to display only one interface at the same time but to have made the
graph bigger. It is not easy to have an idea of the height and of the scale of the

graphs.

1.7, Reachability T

Presentation

The Ping reachability test allows to check if a host responds to an ICMP
echo message. If no object is selected before invoking the function, a terminal
window is created and the user must type the name of the object to ping. If an object
is selected, the ping test begins immediately. It displays the ping time for every
packet and when the user stops it, it computes the minimum, maximum and average
ping times.

Digital Network Tools 121

The traceroute Ping prints the route taken by an IP packet to the destination
host. It uses the same display as the ping test. The same remarks are available for this
function. It displays the names of the different hosts on the route and the time to reach
them.

Comments
For those two tests, a terminal window is created. But the user must click in
the window before beginning any action in this window. A non-terminal window
would have made the use of these functions more friendly .

1.8. D n | in

Six functions are available to query and set management variables. Three of
them are aimed at SNMP agents and the other ones at DECNET objects.

Presentation
E Query for TCP/IP variables |
Object lqlemm: Pratacol
Community {publid Retries |1 Timeout |5 (secands)

[at eqgp [icmp interfaces ip
i ip address ip routing I system tep udp

SYSTEM Information (glenmm 16.121.0.41) O

Description : glenmm:DECstation3100:ULTRIX T4.0-) (Rev. 144) System %
Object id : 1.3.6.1.4.1.361
Uptime i 16961700 (hundreths/sec)

ADRESS TRANSLATION Information (glenmm 16,121,0.41)

Interface Neotwork Address Physical_Address
1

in0 16.121.0. aa-00-40-00-11-el 3
in0 16.121.0.2 80~-00-2h-11-13-19

In0 16.121.0.60 00-00-00--00~00-09

Ino 16.121.0.561 8§0-00-20-00-80-43

In0 16.121.0.62 80-00-20-20~26-ad

In0 16.121.0.565 aa-00-40-00-cf-e2

1no 16.121.0.66 aa-00-40-00-c6-e2

In0 16.121.0.67 00-00-00-00-00-00

In0 16.121.0.68 80-00-90~-10-82-c}l

1n0 16,121.0.69 80-00-90-00-56~45 U
ino 16.121.0.72 aa-00-40-00-cl-e2 O
A Do

Message Box

Quering glenmm for address translation information...
Query completed.

40

Fig. 6.5: SNMP object Query

The user can query the SNMP objects. He can extract information about
various MIB variables from this object. It is possible to retrieve the Address
translation table, IP address table, IP routing table and the values of EGP, ICMP,

Digital Network Tools ' 122

Interfaces, IP, TCP, UDP and system parameters. This function is shown in figure
6.5.

Furthermore, it is also possible to automatically send SNMP requests to
retrieve the value of MIB variables. The user must create a file to be used by the
query function. In the file, the address of the queried object (and some details like
timeout, number of retries,...), the base interval between two queries and the names
of variables to query must be given. The results are saved in a file.

For Decnet objects, two query functions are available. The Query Decnet
Objects function is used to query specific Decnet variables such as nodes, circuits,
lines, executor, objects, node counters, circuit counters, line counters and exec
counters. It uses nearly the same display as the "Query SNMP objects”. There is also
a possibility to save the outputs in a file.

The second one, the Query object using Data Dictionary, has been
implemented to support private MIB variables. The Data Dictionary contains variables
which are not part of the MIB specification but which possess the same
representation. This function allows the user to query a class of MIB variables. In
addition, some vendor specific variables are added to the set of MIB variables, for
example, Cisco variables which are specific to Cisco routers. Others can be added by
the user regarding his needs. The user also has the possibility to use files. A file menu
can be displayed in which he can choose between saving or logging output to a file.
The save option prints in a file everything that has been done previously since the call
of this function. The log option prints in a file everything that is done by the user
until this option is stopped or until the function is dismissed.

For setting the value of parameters, two functions are available, one for
SNMP objects and the other one for Decnet objects. The Set SNMP Object function
allows the user to choose a MIB variable and to set its value (if it is possible). When
this function is invoked, the object is queried for the existing value of the MIB
variable that has been specified. Then the user can decide to change this value. The
program displays a message if it is successful in performing the change.

The Set Decnet object function allows the user to interactively issue all NCP
commands to any Decnet objects. It also gives the possibility to use an input file
containing a list of NCP commands if, from time to time, the same actions have to be
performed. The commands can be executed on more than one node at the same time.
A menu enables to use files. It is possible to write the output window in a file, to log

Digital Network Tools 123

output in a file or to save the commands performed in a file. This function is
illustrated in figure 6.6.

DECnet management V1.0

file Clear Help

Object |asdg
nevs |l
NCP commands
show active node %
show known nodes
U
<
NCP Output Box
(o)
Active Node Volatile Suwmary as of Thu Jul 5 11:43:35 EDT 1990 C

Node State Active Dalay Circuit Next Node
Links

56.51 (ENGLES) On
Identification

= DECnet~VAX V5.3, VMS V5.3
Active links =

D
2
Known Node Volatile Summary as of Thu Jul 5 11:43:41 £DT 1990

Node State Active Daléy Circuit Haxt Node
Links

56.51 (EHGLES) Oon ISS
< (10

[Apply l ‘ Clear l [Cancel | [Dismiss]

Fig. 6.6: Set Decnet Object

Comments

The query SNMP objects function is useful because it rapidly gives general
information about a specific object. But there are some problems. First, when the user
asks to print a table, if the table is too long, it is not possible to stop the display. The
user must wait until the end of the query. The second problem is related to the
message box. If the same error message occurs more than once, the user cannot see if
more than one message was printed. There is no difference on the screen. The only
way to see the difference is to count the number of messages using the scroll bar.

The Query SNMP object using config file function is useful because it
allows to make off-line observations and over a long period of time. It can be used,
for example, to gather statistics or to monitor a specific MIB variable. But it is
impossible to stop the query function within the program. The user is forced to kill
the process if he wants to stop the query.

Digital Network Tools 124

The Query Decnet Objects function is useful because it rapidly gives
general information about a specific object. The information is grouped in categories
which are labelled in the right way. But some problems are present. There is a help
menu but when clicking on this menu, nothing works, no help appears.

The Data Dictionary has been made to allow the user to deal with non-
standard variables and vendor-specific variables. The manager can add these variables
to the Data Dictionary and retrieve their values by using this function. This is very
interesting because all cases of manageable objects are not foreseen in the MIB. In the
function, there is a problem with the cancel button which does not work correctly or
does not work at all. When querying a large table (IP routing table for example), it is
not possible to stop the display. The only solution is to stop the query function with a
kill command.

The Set Decnet object function is very powerful. It allows to manage all
Decnet objects from the management program. But the problem is that the user must
know all NCP commands to use it. It would have been better if the program could
help the user in issuing these commands with, for example, a menu-based interface.

1.9 Monitorin isti mputin
Presentation

The Plot MIB Variables and Bargraph MIB Variables functions allow to
display the value of an MIB variable and to display a graph of the value of a MIB
variable over time (only for the numeric variables). This function consists of three
steps. (1)The user must give the object name and choose a variable class. Then a new
window is created, it shows all the variables of the chosen class. (2)Then the user
selects one or more variables to print their value at the present moment. (3)After that,
the user can select one variable for which the value is printed, and use it to plot a
graph or a bar graph. An option of the plotting window exists to modify the interval
between two plots during the display and without stopping it.

Another function gives the possibility to gather SNMP information from
various objects and store the information in the statistics database. For specifying the
objects to query and the variables to retrieve, a screen like the one shown in figure
6.7 is used. 40

Digital Network Tools 125

T object setup

ob]ect l“‘"" Filters Reparting
Polling Multiplier [[1 o 9 Enable
st mera — ke oot
Retrles \h_ o

SELECT MIB VARIABLES

Function MIB Variable Muldplier . Min Max
[ifinoctats _1 i 1] nong Inonuj
| inucasteies. i 1 [nond |nond
|ittnNucastkes 1] [[nong |nong
[ifinerrars_1] [[nond |nong
| itoutoctets_if i [nong |nond
|ifoutucastokts] [|nond_ |nang

Log |itoutvucastrkes 1] [1i [nond | nond
[outerrors_i] [[nong_ |nang
L Ll
= i L B li

Message Box
Screen Cleared.
End of varlable 1ist Ei

Fig. 6.7: Reporting object setup

Furthermore, this function allows to fix minimum and maximum thresholds
on MIB variables. And if one of these thresholds is bypassed, then an alarm is
automatically generated.

Comments

Various problems can be found when using the plot and bargraph functions.
The first one is that in the Plot MIB variables, there is no time scale on the graphs. In
the Bargraph MIB Variables function, when the user wants to change the display
interval, the display of the interval becomes unreadable and then all the display inside
the window vanishes.

These two functions could have been grouped. The only thing that changes is
the last window. An option in one of the first windows could have let the user choose
between the drawing of a normal graph or a bar graph.

It should be noted that for thresholds fixing, only the value of MIB variables
can be used to fix thresholds. This seems sufficient but, in fact, MIB variables are, in
majority, values such as counters, integer, gauge, etc. It has little sense to fix
thresholds on such values. For example, nobody cares to know that 540 errors occur

Digital Network Tools 126

since the last reboot of the device. Rates are more important, for example, 10 errors
per second.

S .2 . Conclusion

In conclusion, DNT is a rather good product. Many elements listed in the
first chapter are present. But it is not perfect because some useful functions are not
implemented and others need to be improved. However the program that has been
tested is still on field test and improvements are foreseen for the next versions.

Below are listed the important features of the program. Only a few of them
are negative. But many of the positive points must be moderated by negative aspects.

The graphical representation of the topology of the network is pleasant. The
display is good and obvious. The tools to draw the map are always present on the
screen and are easy to use. But the drawing of the whole map is rather painful. It is
difficult to remember to enter the name and the interfaces every time a new object is
added. But this problem should be solved in the next version of the program. In this
version, the autotopology function should be present. This should well improve the
friendliness of the program for the design of the map.

A big advantage of DNT is that it will give the possibility to manage objects
using different protocols (SNMP, CMOT, DECNET). It is useful because the
management is not restricted to a single protocol. For the moment, CMOT
management is not yet available.

A good idea of DNT is the implementation of databases. They are used to
give information on the services, the objects and their interfaces. It is an indispensable
function in a network management system. But this function is not sufficient. Alone,
it is only a gathering of information. Such a database needs to be dynamic. For
example, the program should have functions to interact with the network, functions to
verify that the databases and the network are coherent. And nothing like that is
available in DNT.

An advantage of DNT is the possibility to print reports using statistics about
the objects. The information is stored in an INGRES database, therefore it is possible
to retrieve this information with the built-in tools (print different types of reports) or
with the special tools made by the user. But these statistics are only concerning MIB
variables which consist in gauge, counters, integers, etc. That is not very interesting

Digital Network Tools 127

in this state. What would have been much more interesting is information about rates,
for example error rates, traffic, throughput rates (packets/sec, bytes/sec), etc.

A problem of the program is that it is impossible to send useful alarms when
thresholds are exceeded. It is possible to print alarms if thresholds are exceeded but
the thresholds can only be defined on MIB variables. For example, it is not interesting
to know the number of errors on an interface but what is interesting is to know the
error rate on this interface. It is more interesting to know that there have been 100
errors/second than to know that there have been 1280 errors since the last reboot of
the machine. And it is not possible to define thresholds on such variables.

Another interesting feature is the possibility to print graphs of the load on the
Ethernet. It is important to have the possibility to fix thresholds on this value. And
only a display on the screen is made. It would also have been interesting to use this
data in the reports.

The alarms are not very easy to handle. To be useful to the operators, the
alarm display must be improved. All alarms are coming in the same small window,
without filtering nor classification. This alarm handling system is useful, if a problem
is detected, to react, to understand what happened or to see when it occurs but it is
not useful to help in the detection of the problem.

A bad point is that the program does not provide tools to manage the bridges.
The management of bridges is not useful if the program is used for WAN
management but if the program must be used as a tool to manage, for example,
Ethernet LANS, that is a very important feature. Fortunately, this function is foreseen
in a following version.

To end the conclusion, DNT can be considered as a rather good product.
However it could become a better product once it is finished, for example when
important features like the autotopology function and the management of bridges have
been included.

The analyse of this product will begin with an overview of the working of the
program. Then, detailed information will be given about the different commands that
are available and about the problems discovered with these commands. Finally, a
global opinion concerning this program will be given in the conclusion.

7 -1 - Overswiew

XGMON is a network monitoring program developed by IBM. It is still on
field test. It runs on an IBM PC/RT computer with the AIX (Unix from IBM)
operating system. It uses X-window to make the display on the screen. Note that
some limited facilities are available with a simple non-graphical terminal.

XGMON provides an environment that includes a command language,
simultaneous execution of multiple, independent queries and an X11-based graphical
presentation of the network. XGMON has been designed to manage TCP/IP
networks. Only the nodes running IP, and better SNMP, will be taken into account.
Some limited T1 modems management facilities are also available but have not been
tested.

The major function of the XGMON core is to oversee the operations of the
virtual G-machines. These are imaginary machines that execute G-code object code.
The XGMON core contains a compiler that translates programs written in G (Gateway
language "similar" to C) into G-code. Each virtual machine works on its own
program and, because XGMON is able to control more than one virtual G-machine,
more than one program can be executing at the same time. Each machine is
essentially independent of all the others (it is possible to implement some inter-
machine communication, if needed).

This makes that the XGMON system is extendible. New commands can be
added in much the same way new commands are added to the UNIX operating
system. One simply writes an appropriate program in the G programming language,

XGHON 129

and it can be made available as a new command. New commands can be added at any
time and used without having to terminate the current XGMON program. Similarly,
commands that have bugs can be corrected without having to stop everything. This
means that algorithms can be corrected without having to lose global state information
that has already been collected. The aspect of the screen is presented in figure 7.1.

CSH> XGMON

> COMPILE MAP
> PING_ALL

> SNMP_GET

>

Machine 6 |
Machine 5 : |

Machine 4

Machine 3]

[Machine 2

SNMP_GET
 Machine 1

PING_ALL

Fig. 7.1: XGMON scréen

When running with X11, each virtual G machine has a window associated
with it. A program (library command) running in the virtual G-machine may write
output to this window. It is also possible for graphics to be drawn in this window. It
is not a text-only "output device".

Each virtual G machine has a standard output device. Normally this is
associated with the above mentioned window. However it is possible to redirect the
output from a virtual G machine into a file instead of to the window. This makes it
possible to save information that will be processed off-line.

The XGMON core provides a set of general purpose, intrinsic functions
which are used by library commands to perform work. All active processing is
performed by library commands which are programs external to the XGMON core.
Any local customization of algorithms is embedded in library commands. The core is

XGMON 130

normally not altered. The intrinsic functions attend with the database operations, the
string manipulations, the file I/O, the graphics, etc.

XGMON possesses 2 types of commands. A small number of commands
which are built into the XGMON core are classified as system commands. In general,
system commands are used to control virtual G-machines. The majority of commands
are classified as library commands. These are G-programs stored as source code
which are compiled into G-code and executed when required by virtual G-machines.

Two mechanisms are used to reduce the load of the SNMP agents and the
traffic created by the monitoring functions. The first is the use of a cache database
and the second is the possibility to bind several XGMON and/or other systems (for
example Netview) to an SNMP query engine which will attend with the query to
SNMP agents.

Another interesting feature is the possibility to make automation. G-programs
can be set up so that they will automatically get started when a certain variable
changes or a user-defined event occurs.

T e 2 o Details

7.2.1, Graphical User Interface

A. Presentation

The user can draw a graph to represent the network. For this, he must build a
file in which he gives the names of the objects and where to place them, their
interfaces and the links between the objects. Then, this file must be compiled by the
XGMON compiler and a window is created to display the topology. The nodes are
coloured regarding their status which is found in the cache database. An object can be
represented by a user-defined X-window bitmap. If any of the links or hosts defined
by the current topology description are down, a signal can be played. Traps or SNMP
requests are used to fix the status of SNMP objects and ping is used to fix the status
of other TCP/IP objects. The width of the link between two objects can be
automatically adjusted regarding the value of different MIB interface variables.

Library commands are provided to help with the display of the network.

XGMON 131

The display, dont display commands are used to control which types of
display elements can be drawn on the topology display. It is possible to display or to
hide the hosts, the links, the nodes, etc.

The move command allows to change the position of a display element within
a topology display window. The user can choose between entering the name of the
node and its new position or changing its position using the mouse. The rename
command allows to change the name of a display element. The user must type the old
name and the new one. The name of the object is changed on the topology map. The
add new command allows the user to add new objects on the topology display. He
must only enter the name of the object and then place it on the map with the mouse.
To make the change permanent for all these functions, the map must be saved.

The save_win command can be used to save the current topology information
stored in the XGMON core as a G topology description file. It is used to save the
topology when new nodes have been added or when the display has been changed.

The traffic command sets up the necessary environment to drive the links
widths on the topology display based on counters such as packets in or out, octets in
or out, errors in or out. This command does not acquire the needed data by itself.
Another program (snmp_p_all) must be running to perform this task.

B. Comments

This way to build the topology map of a network is very tedious. The
interactive way to enter and to place the objects is much easier. With an interactive
program, the only thing to do is to choose the type of object to display, to give its
name and to draw the lines representing the connections with other objects. With
XGMON, a file must be used to enter the name of the object, its place, the IP
addresses of its interfaces and the links existing between the objects. Then the file
must be compiled and the result is displayed on the screen. If an error occurs, the file
must be re-edited, modified and re-compiled.

The library commands provided to help with the drawing are not very useful.
The move command could help to move objects but it does not work very well with
the mouse. This makes that the place of the object on the grid has to be calculated.
The add new command allows to place an object with the mouse. But this modifies
only the display, no information (for example interface information) must be entered.
Therefore, the topology file must be edited to add this information. And the third

XGMON 132

command (save_win) allows the user to save the topology display in a topology file.
But unfortunately, a lot of information is lost during the save. Only the essential
information is kept. For example, the bitmaps, the physical links, the inactive objects
are not saved on the topology file. This option is only useful when the topology map
is drawn for the first time. The user places the objects wherever he wants and then
after saving the map, he edits the file to make further customization.

Furthermore, the topology window is too small. The coordinates are relative
to a 100 by 100 grid. Then, in general, no more than 5 objects can be drawn on the
same line. If the map is too big, it is difficult to draw. It is also possible to use groups
of objects. If a group is defined, a new window is created when clicking on this group
object. But it is not sufficient if the network is big. A bigger window should have
been very useful.

The traffic command is useful. It gives rapid graphical view of the load on a
line or of the numbers of errors on the line. All these values are calculated on a per
second basis. But it is rather difficult to set it up. The user must for example adjust
the scale of the line manually. This is not made automatically by the program. The
user must also choose on which side of the line the measure will be made.
Unfortunately, this function is not available for connections other than serial lines. It
is not, for example, possible to use it for the interface connected to an Ethernet.

1.2.2, Database

XGMON disposes of only one database, a cache database. This gathers a lot
of information and makes it available to all programs running within the XGMON
environment. Whenever SNMP data or ping information is received in response to G-
program initiated requests, XGMON stores that information in an internal database.
The information is then made available not only to the requesting G-program, but also
to any other G-program that wants that same information. The data is kept in the
cache for a user-specified time. If unsolicited traps come in, that information is also
stored in the database and made available to G-programs.

XGMON 133

7.2.3, Topol DB Builder

A. Presentation

An easy way to draw the map of the topology of the network is to use
programs that are able to find all SNMP nodes present on the network. XGMON
integrates such a program. It is called explore.

This command is used to explore all the network, searching for the SNMP
agents. From a beginning agent, the program searches for the new SNMP agents by
looking at every interface. Once it finds a new agent, it stores the address and it will
use it later to search for other agents.

B. Comments

The explore command is useful to find all SNMP nodes with a given
community name. By looking to the result file, it is possible to see all the nodes
explored by the program. Unfortunately, this command does not display graphically
the nodes that it found. Neither does it build a topology file that could be compiled by
XGMON to have the topology display.

71.2.4, Devices Polling

A. Presentation

The detection of problems on the network is an important goal for a network
management system. For this, the user disposes of 3 mechanisms: the snmp polling
and trap management for SNMP objects and the iterative ping test for SNMP object
or only TCP/IP objects. In XGMON, the 3 mechanisms are performed by library
commands.

The ping_all command is used to ping, at regular intervals, all IP-based hosts
defined by the topology description.

The snmp _p all command is used to poll all SNMP-based agents for the
status of their interfaces. The agents to be polled are defined by the topology
description. '

The frap command accepts and handles SNMP traps received by XGMON.
The traps are also recorded in a file in the current directory.

XGMON 134

Multiple copies of XGMON can be used in concert when joined with an
SNMP Query Engine. A single copy of XGMON can drive the topology displays of
the other instances, as can any other network management system connected to the
SNMP Query Engine. If the SNMP query engine has been started on one machine,
XGMON can be told to obtain all data via that query engine. The database is then
maintained by the query engine. Multiple XGMON instances can thus share the same
data, so only one instance has to run the G-programs that do all the polling and all
instances of XGMON get an indication of the status of the network. This will have as
effect to reduce the network traffic due to network management and also to reduce the
time spent by managed devices in responding to management requests.

B. Comments

In XGMON, this testing function is satisfying. In general, the 3 commands
are run at the beginning of the working session. But the user is not obliged to run the
3 at the same time. If there are no objects other than SNMP objects, then the ping test
can be ignored.

In the snmp p all command, a big problem occurs when several SNMP
objects must be managed at the same time. Every time the program wants to poll the
SNMP objects, either a memory fault or a bus fault occurs. This problem has been
reported to IBM. '

7.2.5. Traffic Monitor

A. Presentation

In a network, the relevant problems are not only problems of node failures.
For example, some problems concern traffic becoming too important on one
interface. Therefore, it is important to have a display of the load on all the interfaces
of a host. It can also be important to give an idea of the repartition of the load during
one day. In XGMON, the perfinon command can be used for this purpose.

The perfinon command displays graphically counts of incoming and outgoing
packets on a specific host. The program makes on-line graphs of all interfaces of the
given host.

XGMON 135

B. Comments

Perfmon is not sufficient for traffic monitoring. Other functions should have
been implemented such as functions to fix thresholds on MIB or other variables and to
send alarms if one of these thresholds is exceeded.

Another problem is that it is only possible to get graphs on in/out packets. It
is, for example, impossible to get graphs concerning error-rates on the interfaces of
an object.

Some bugs are present within perfmon. The first is at the initialization. Parts
of the screen background are used as the window background. Furthermore, when the
scale of the graphs changes, the graphs are reinitialized. And the graphs are too small.
It is not possible to have an idea of the values of the displayed counters.

7.2.6. Reachability T

The ping command pings one specific host. If the hosts responds, the time to
make the trip is displayed, otherwise a message is displayed announcing that there
Wwas no response.

The trace_path command determines the route between two hosts. It queries
SNMP agents defined by the topology description for routing information.

7.2,7. D 1 in

A. Presentation

All these functions allow to get much information about the objects. For the
SNMP objects, XGMON possesses a panel of commands which are designed to access
or to set the value of all MIB variables. It is also possible to get the ARP cache of an
object. And a command allows to know the way followed by the packets to go from
one host to another one.

The snmp_get, snmp_g next and snmp_set commands are used to request an
SNMP agent to return or to modify the value of MIB variables using, respectively,
the SNMP get-request, get-next-request and set-request. The snmp p list command
acquires the status of one or more hosts that have an SNMP agent running. Each host
must be defined by the current topology description.

XGMON 136

The snmp_dump command is used to dump a table. It queries the agent as
long as the returned MIB variable object IDs have the same prefix as the given
variable.

Other commands are available for retrieving table information. For example,
it is possible to retrieve the IP address table, the IP routing table, information
associated with the interfaces of a host or router, the IP address translation tables
(ARP cache), the table of EGP neighbours and the table containing TCP connection-
specific information of an SNMP agent. It is also possible to get values of other MIB
variables, for example, ICMP counters, IP-related counters, TCP counters and UDP
counters.

B. Comments

All these functions give interesting information about all SNMP objects
connected to the network. All MIB variables can be known, either using group
commands or using single SNMP get requests. To a certain extent, SNMP objects can
be controlled by setting SNMP MIB variables. All these commands work well.
However, the number of such functions is too important. Because it is not possible to
remember the name of each variable, a better way of doing such requests would have
been to use one or two functions integrating menus. Furthermore, the use of these
functions is not easy. The user is forced to type every time the name of the command,
the name of the object to work with and sometimes the name of the requested MIB
variable and some options. A better solution, at least, would have been to give the
possibility to select the objects on the map in order to avoid typing their name. The
best solution to perform these functions is to use menus to select the functions and the
names of the variables and to give the possibility to select objects directly on the user
interface.

7.2.8. Automation support

A. Presentation

An important aspect of a network management system is the possibility to
perform some actions automatically when a given event occurs. For example, it is
interesting to have a program that detects if a host has problems and to send a
command to reboot it. XGMON possesses 3 library commands to help in the support
of automation. ‘

XGMON 137

The add_filter, del filter commands are used to add or delete automation
filters. The automation filters detect when the value of a given MIB variable changes,
and in this case, start library commands specified by the user. These commands could
permit the creation of a program which would be able to detect when a variable
trespasses a given threshold. The problem is that the number of allowed filters is
restricted. This would work only for a limited set of variables.

When invoked, the display var command obtains the desired data from the
internal cache and displays it. It is, in general, used for debugging. For example, if
this command is given as an argument to the add filter, in association with an MIB
variable, every time the value of the given variable changes, its new value is
displayed by the display var command.

B. Comments

It is very interesting to have the possibility to automate certain tasks. With
XGMON, it should be rather easy to do nearly everything. But this automation is only
possible within a certain range. Commands can only be run if the value of a given
MIB variable changes. It is not possible to make automation with other arguments.

However the automated task is not defined. The user can do everything he
wants. He can build a program which will serve as an argument to the add filter
command.

7 a3 . Conclusion

XGMON possesses 3 characteristics that make it attractive. They allow to
reduce the network and the hosts load due to management operations, to make
automation and to write one’s own applications.

The first characteristic is that XGMON possesses an SNMP Query Engine
and a cache database. These two particularities are aimed at reducing the traffic and
the load of devices created by the network management systems. Now, as the number
of network management systems is growing, it is important to load the hosts and the
network by traffic and not by management requests. However, the Query Engine is an
IBM product and only Netview and XGMON are able to share the data collected by
it.

XGMON 138

The second characteristic is that XGMON is able to do automation. It is
possible to start some tasks when a special event occurs. This possibility can be useful
in an operational environment. For example, before warning the operators that a
problem occurs, a number of operations can be performed to resolve the problem
automatically.

And the third characteristic which is the most interesting one is the possibility
to write one’s own programs. As XGMON possesses a compiler, it is rather easy to
write new commands that can be added to the set of already available library
commands and that can be used as any other one.

But on the other side, XGMON does not possess interesting functions which
are nearly indispensable in the normal management of a network.

The first one is that it does not perform management functions at a layer
below the IP layer. For example, it is not able to manage Mac-level bridges. This
makes it unable to help in the management of LANs composed of, for example,
several Ethernet segments connected by Mac-level bridges. XGMON is only able to
manage SNMP or TCP/IP hosts. And, for the moment, in LAN management, SNMP
is rarely used. However, for WAN management or the management of other LANSs,
this characteristic is not important at all.

The second problem is that XGMON does not give the ability to fix
thresholds on different variables without writing the necessary programs. This is a big
problem because this type of failure cannot be detected. The only detectable failures
are the failures concerning a node or a line going down.

Furthermore, there is, in XGMON, no obvious display of the alarms. No
library command is available to gather and to display all the alarms in an obvious
way. To make the program operational, such a function must be written by the user.

Another negative point is that XGMON is only a host management program.
It is not a product for managing a network. It is, for example, interesting in a LAN to
know the number of broadcast and multicast packets loading the network. This is not
possible with XGMON but for WAN management, it is not important.

And the last negative point is that XGMON does not use menus. For some
commands, it is not important, but for others it is nearly indispensable. For example,
in the snmp_get command, the user must enter the name of the MIB variable to query

XGHON 139

and I think it is not easy to remember the right syntax for each variable. The use of
menus would have been useful.

In conclusion, XGMON is not a product that can be used by a network
manager without a consistent programming work. It does neither possess easy-to-use
query functions nor below-IP management functions and the alarms are not handled.

However, it can be used by the operators. If an alarm management function
is written, it is possible to display a view of the network and of the errors which can
occur on it. But work must be done to make this product usable.

One of the goals of this program is to give tools to a programmer to write the
commands that he really needs to manage his network. In this manner, XGMON
fulfils its task and it can be seen as a good development tool.

For people developing and maintaining networks, the problem of network
management becomes more and more important.

This is due to at least two reasons.

The first one is that the needs for computers and communications between
computers are increasing. So the size of the networks increases.

The second reason is that, in general, as the offer of network devices is more
varied, people do not buy all the devices from a single vendor. This makes that the
networks are more heterogeneous than before,

The need for powerful tools for managing bigger networks begins to be faced
by the apparition of integrated network management systems like the one described in
chapter 1 and like the ones tested in chapters 5, 6 and 7.

In what concerns the heterogeneity of the networks, ISO has begun to answer
the needs for common management protocols by specifying a set of network
management standards with CMIP as the centre. But OSI networks are not very
widespread yet and, even if CMIP is a common management protocol and if it is not
only intended for OSI networks, CMIP implementations are rare.

On the other hand, TCP/IP networks are developing very rapidly. And the
Internet Activity Board, the TCP/IP authority, managed to respond to the needs for
management systems. This has been made in two steps.

The first step was to develop, as fast as possible, working systems, even
simple, to respond to urgent needs. This led to the specification of SNMP. SNMP is
now in tune. Many implementations can be found on the market. (3 of them have
been tested). Furthermore, many vendors propose an SNMP agent with their network
devices.

Conclusion 141

The second step is the specification of CMOT, derived from CMIP. CMOT
is aimed at making easier the transition from TCP/IP to OSI. But CMOT has few
chances of emerging because it focuses on the place caught by SNMP, which SNMP
fills satisfyingly.

Specialists predict that both SNMP and CMIP could be used in the future for
managing networks. SNMP would be used for the communications between
management stations and agents and CMIP would be used for the communications
between management stations.

This work was particularly based on TCP/IP and on the management of
TCP/IP networks with SNMP. But further analysis of CMIP and of CMOT could
help to see whether CMOT is definitely dead and whether CMIP and SNMP are
“compatible" and could be used in concert to manage networks.

RFC1155-SKI DEFINITIONS ::= BEGIN

EXPORTS -- EVERYTHING
internet, directory, ngmt,
experimental, private, enterprises,
OBJECT-TYPE, ObjectName, ObjectSyntax,
SimpleSyntax,
ApplicationSyntax, NetworkAddress, IpAddress,
Counter, Gauge, TimeTicks, Opaque;

-- the path to the root

internet OBJECT IDENTIFIER ::= { iso org(3) dod(6) 1}

directory OBJECT IDENTIFIER ::= { internet 1)
nqut OBJECT IDENTIFIER ::= { internet 2)
experinental OBJECT IDENTIFIER ::= (internet 3)

private OBJECT IDENTIFIRR ::= { internet 4)
enterprises OBJECT IDENTIFIRR ::= { private 1)

-- definition of object types

OBJECT-TYPE MACRO ::=
BEGIN
TYPE NOTATION ::= "SYNTAX" type (TYPR ObjectSyntax)
MACCESS" Access
NSTATUS" Status
VALUE NOTATION ::= value (VALUE ObjectName)

Access ::= "read-only"
"read-write"
"write-only"
"not-accessible”
Status ::= "mandatory"
: "optional®
fobsolete®

ED
-- names of objects in the HIB

ObjectNane ::=
OBJECT IDENTIFIER

-- syntax of objects in the MIB

ObjectSyntax ::=
CHOICR {
sinple
SimpleSyntax,

-- note that simple SEQUENCEs are not directly

-~ mentioned here to keep things simple (i.e.,

-- prevent mis-use). However, application-wide
-- types which are INPLICITly encoded simple

-~ SEQUENCEs may appear in the following CHOICE

application-wide
ApplicationSyntax
)

SimpleSyntax i:=
CHOICE (
nuxber
INTEGER,

string
OCTET STRING,

object
OBJECT IDENTIFIER,

- enpty
WOLL
J

ApplicationSyntax ::=
CHOICE {
address
NetworkAddress,

counter
Counter,

gauge
Gauge,

ticks
TineTicks,

arbitrary
Opaque

-~ other application-wide types, as they are

Appendix A : SMI

A2

-- defined, will be added here
}

-- application-wide types

NetworkAddress ::=
CHOICE {
internet
IpAddress

)

IpAddress i:=
[APPLICATION 0} -- in network-byte order
IMPLICIT OCTET STRING (SIZE (4))

Counter ::=
[APPLICATTON 1)
IMPLICIT INTEGER (0..4294967295)

Gauge ::=
[APPLICATION 2]
INPLICIT INTEGER (0..4294967295)

TineTicks ::=
[APPLICATION 3]
TMPLICIT INTEGER (0..4294967295)

Opaque 3=
[APPLICATION 4] -- arhitrary ASN.1 value,
INPLICIT OCTET STRING -- "double-wrapped"

RFC1158-KIB
DEFINITIONS ::= BEGIN

THPORTS
ngnt, OBJECT-TYPE, NetworkAddress, IpAddress,
Counter, Gauge, TimeTicks
FROM RFC1155-GMI;
nib-2 OBJECT IDENTIFIER ::= { mgut 1 } =- HIB-II
-- (same prefix as HIB-I)

systen OBJECT IDENTIFIRR ::= { mib-2 1)
interfaces OBJECT IDENTIFIER ::= { mib=2 2 |
at OBJECT IDENTIFIRR ::= { mib-2 3)
ip OBJECT IDENTIFIRR ::= { nib~2 4)
icmp OBJECT IDENTIFIER ::= { mib-2 5
tep OBJECT IDENTIFIRR ::= { mib=2 6)
udp OBJECT IDENTIFIRR ::= { mib-2 7
eqgp OBJECT IDENTIFIRR ::= { nib-2 §)
-~ coot OBJECT IDENTIFIER ::= { mib-2 9)
transmission OBJECT IDENTIFIRR ::= { mib-2 10)
snmp OBJECT IDENTIFIER ::= { mib-2 11 }

-~ object types
-- the System group

sysDescr OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-only
STATUS nmandatory
1= { systen 1)

sysObjectID OBJECT-TYPR
SYNTAX OBJECT IDENTIFIER
ACCESS read-only
STATUS mandatory
1= { systen 2 |

sysUpTine OBJECT-TYPE
SYNTAX TimeTicks
ACCESS read-only
STATUS mandatory
1= { systen 3 }

sysContact OBJECT-TYPR
SYNTAX DisplayString (SIZE (0..255))

ACCESS read-write
STATUS nmandatory
ti= { system 4)

syshane OBJRCT-TYPR
SYNTAX DisplayString (SIZE (0..255))
ACCRSS read-write
STATUS nmandatory
1= { systen 5)

sysLocation OBJECT-TYPE
SYNTAX DisplayString (SIZR (0..255))
ACCESS read-only
STATUS mandatory
vi= { systen 6)

sysServices OBJECT-TYPE
SYNTAX INTEGER (0..127)
ACCESS read-only
STATUS nmandatory
1= | systen 7)

-~ the Interfaces qroup

ifNunber OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
t1= (interfaces 1)

-= the Interfaces table

ifTable OBJECT-TYPE
SYNTAX SEQUENCE OF IfEntry
ACCESS read-only
STATUS mandatory
s1= (interfaces 2)

ifEntry OBJECT-TYPE
SYNTAX IfEntry
ACCESS read-only
STATUS wandatory
= | 1fTable 1)

IfEntry ::= SEQUENCE |
ifIndex
INTEGER,
ifDescr

Appendix B : MIB-I1I A4
DisplayString, -~ following
ifType reqular1822(2),
INTEGER, hdh1822(3),
1fMtu ddn-x25(4),
INTRGER, rfc877-x25(5),
ifSpeed ethernet-csnacd(6),
Gauge, 15088023-csmacd(7),
ifPhysAddress 18088024-tokenBus(8),
OCTET STRING, 15088025-tokenRing(9),
ifAdminStatus 15088026-ran{10),
INTEGER, starlan(11),
ifOperStatus proteon-10bit(12),
INTEGER, proteon-0Mbit(13),
iflLastChange hyperchannel(14),
TineTicks, fddi(15),
1fIn0ctets laph(16),
Counter, sdle(17),
1fInUcastPkts ti-carrier(18),
Counter, cept(19), == elropean
ifInNUcastPkts -- equivalent of T-1
Counter, basicISDN(20),
ifInDiscards prinaryISON(21),
Counter, -~ proprietary
ifInBrrors -~ gerial
Counter, propPointToPointSerial(22),
1fInUnknownProtos terminalServer-asyncPort(23),
Counter, softwareLoopback(24),
ifoutOctets eon(25), == CINP over IP
Counter, ethernet-3Kbit(26),
1fOutUcastPkts nsip(27), -~ NS over IP
Counter, s1ip(28) -~ generic SLIP
ifOutNUcastPkts)
Counter, ACCESS read-only
ifoutDiscards STATUS mandatory
Counter, = { iffntry 3)
ifoutErrors
Counter, if¥tu OBJECT-TYPR
1foutQLen SYNTAX INTEGER
' Gauge, ACCESS read-only
ifSpecific STATUS mandatory
OBJECT IDENTIFIER = { ifEntry 4)

)

ifIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS wmandatory
= (iffntry 1)

ifDescr OBJRCT-TYPE

SYNTAX DisplayString (SIZE (0..255))

ACCESS read-only
STATUS mandatory
= { iffntry 2)

1fType OBJECT-TYPR
SYNTAX INTEGER |
other(1),

-- none of the

1fSpeed OBJECT-TYPE
SYNTAX Gauge
ACCESS read-only
STATUS nandatory
1= (ifEntry 5)

ifPhysAddress OBJRCT-TYPR
SYNTAX OCTET STRING
ACCBSS read-only
STATUS nandatory
= { iffntry 6)

1fAdninStatus OBJECT-TYPR
SYNTAX INTRGER (
up(1),

down(2},

-- ready to pass packets

Appendix B : MIB-II

Ab

testing(3) -- in some test mode
}
ACCESS read-write
STATUS nandatory
= ifEntry 7)

ifoperStatus OBJECT-TYPR
SYNTAX INTEGER {
up(1), ~- ready to pass packets
down(2),
testing(3) -- in some test mode
J
ACCESS read-only
STATUS mandatory
1= { ifEntry 8)

iflastChange OBJECT-TYPE
SYNTAX TimeTicks
ACCESS read-only
STATUS nmandatory
= { iffntry 9)

1fInOctets OBJRCT-TYPR
SYNTAX Counter
ACCESS read-only
STATUS mandatory
ni= { ifEntry 10)

1fInUcastPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
ni= { ifEntry 11)

1fInNUcastPkts OBJECT-TYER
SYNTAX Counter
ACCESS read-only
STATUS nmandatory
ni= { ifEntry 12)

ifInDiscards OBJECT-TYPR
SYNTAX Counter
ACCESS read-only
STATUS mandatory
si= (iffntry 13)

ifInErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS nmandatory
vi= (ifBntry 14)

ifInUnknownProtos OBJECT-TYPR
SYNTAX Counter
ACCESS read-only
STATUS pandatory
= { iffntry 15)

1fOutOctets OBJRCT-TYPR
SYNTAX Counter
ACCESS read-only
STATUS nnandatory
si= (ifBntry 16)

ifOutUcastPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
= { ifEntry 17)

ifOutNUcastPkts OBJECT-TYPR
SYNTAX Counter
ACCESS read-only
STATUS mandatory
= { ifEntry 18)

1f0utDiscards OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
1= (ifEntry 19)

1f0utBrrors OBJECT-TYPR
SYNTAX Counter
ACCESS read-only
STATUS mandatory
1= (ifEntry 20)

ifoutQLen OBJECT-TYPE
SYNTAX Gauge
ACCESS read-only
STATUS mandatory
= (ifEntry 21 §

ifSpecific OBJECT-TYPE
SYNTAX OBUECT IDENTIPIER
ACCESS read-only
STATUS mandatory
= { ifEntry 22)

nullSpecific OBJECT IDENTIFIER :i= { 00)
-- the Address Translation group (deprecated)

atTable OBJECT-TYPE
SYNTAX SEQUENCE OF AtEntry
ACCESS read-write
STATUS deprecated
n={atl}

atEntry OBJECT-TYPE
SYNTAX AtEntry
ACCESS read-write
STATUS deprecated
1= { atTable 1 |

Appendix B : MIB-II

Ab

AtEntry = SEQUENCE {
atIfIndex
INTEGER,
atPhysAddress
OCTET STRING,
atHetAddress
NetworkAddress

)

atIfIndex OBJECT-TYPR
SYNTAX INTEGER
ACCESS read-write
STATUS deprecated
1= | atBntry 1)

atPhysAddress OBJECT-TYPR
SYNTAX OCTET STRING
ACCESS read-write
STATUS deprecated
o= { atBntry 2)

atNetAddress OBJECT-TYPR
SYNTAX NetworkAddress
ACCRSS read-write
STATUS deprecated
$i= { atBntry 3)

== the IP group

ipForwarding OBJECT-TYPR
SYNTAX INTEGRR {
gateway(1),

host(2)

}
ACCESS read-write

STATUS mandatory
n={1ipl)

ipDefaultTTL OBJECT-TYPR
SYNTAX INTEGER
ACCESS read-write
STATUS wmandatory
= {ip2)

ipInReceives OBJECT-TYPE
SYNTAX Counter
ACCBSS read-only
STATUS mandatory

n={ip3)

ipInHdrErrors OBJECT-TYPE
SYNTAX Counter
ACCBSS read-only
STATUS mandatory
= {ip#4)

-- entity forwards
-~ datagrans

-~ entity does NOT
-~ forward datagrams

ipInAddrErrors OBJECT-TYPR
SYNTAX Counter
ACCESS read-only
STATUS mandatory
n={iph5)

ipForwDatagrans OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS nmandatory
= {ip6)

ipInUnknownProtos OBJECT-TYPR
SYNTAX Counter
ACCESS read-only
STATUS nmandatory
n={ip7)

ipInDiscards OBJECT-TYPR
SYNTAX Counter
ACCBSS read-only
STATUS nmandatory

n={ip8)

ipIndelivers OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory

n={ip9)

ipOutRequests OBJECT-TYPE
SYNTAX Counter
ACCBSS read-only
STATUS nmandatory
n={p10)

ipoutDiscards OBJECT-TYPE
SYNTAX Counter
ACCBSS read-only
STATUS nmandatory
n={ipll)

ipOutNoRoutes OBJECT-TYPR
SYNTAX Counter
ACCESS read-only
STATUS mandatory
v={ipl2)

ipReasaTineout OBJECT-TYPR
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
= {ipl3)

ipReasmReqds OBJECT-TYPR
SYNTAX Counter
ACCESS read-only

Appendix B : MIB-II

A7

STATUS nandatory
se= {ip 14)

ipReasnOKs OBJECT-TYPR
SYNTAX Counter
ACCESS read-only
STATUS nandatory
n={ip15)

ipReasnFails OBJRCT-TYPR
SYNTAX Counter
ACCESS read-only
STATUS nmandatory
1= {ip16)

ipPragOKs OBJECT-TYPR
SYNTAX Counter
ACCESS read-only
STATUS mandatory
n={ip17)

ipPragFails OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS nandatory
s={ ip18)

ipFragCreates OBJECT-TYPE
SYNTAX Counter
ACCBSS read-only
STATUS nandatory
= {ip19)

-~ the IP Interface table

ipAddrTable OBJECT-TYPE
SYNTAX SEQUENCE OF IpAddrEntry
ACCESS read-only
STATUS nmandatory
n=(dp20)

ipAddrEBntry OBJECT-TYPR
SYNTAX IpAddrEntry
ACCBSS read-only
STATUS nandatory
t:= { ipAddrTable 1)

IpAddrEntry ::= SEQUENCE |
1pAdEntAddr
IpAddress,
ipAdEntIfIndex
INTEGER,
ipAdEntNetMask
IpAddress,
ipAdEntBeastAddr
INTEGRR,
ipAdEntReasnNaxSize
INTRGRR (0..65535)

}

ipAdEntAddr OBJECT-TYPR
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
1= { ipAddrEntry 1}

ipAdEntIfIndex OBJECT-TYPE
SYNTAX INTRGER
ACCESS read-only
STATUS mandatory
ti= { ipAddrEntry 2)

ipAdEntNetMask OBJECT-TYPR
SYNTAX IpAddress
ACCESS read-cnly
STATUS mandatory
2= { ipAddrEntry 3)

ipAdEntBcastAddr OBJECT-TYPR
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
t1= (ipAddrEntry 4)

ipAdEntReasnMaxSiz OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
v3= { ipAddrEntry 5)

-- the IP Routing table

ipRoutingTable OBJECT-TYPE
SYNTAX SEQUENCE OF IpRouteEntry
ACCESS read-write
STATUS mandatory
n={ip)

ipRouteEntry OBJECT-TYPE
SYNTAX IpRouteBntry
ACCESS read-write
STATUS mandatory
1:= { ipRoutingTable 1 }

IpRouteEntry :i= SEQUENCE {
ipRouteDest
IpAddress,
ipRouteIfIndex
INTEGER,
ipRouteMetricl
INTRGER,
ipRouteMetric?
INTEGER,
ipRouteMetrics
INTEGER,
ipRouteMetricd

Appendix B : MIB-II

A8

TNTEGER,
ipRouteNextHop
IpAddress,
ipRouteType
TNTEGER,
ipRouteProto
INTEGER,
ipRouteAge
INTEGER,
ipRouteMask
IpAddress

)

ipRouteDest OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-write
STATUS mandatory
i:= { ipRouteEntry 1}

ipRouteIfIndex OBJECT-TYPE
SYNTAX INTRGER
ACCESS read-write
STATUS mandatory
s1= { ipRouteEntry 2 |

ipRouteMetricl OBJECT-TYPE
SYNTAX INTEGER
ACCBSS read-write
STATUS nandatory
s:= { ipRouteEntry 3)

ipRouteMetric2 OBJECT-TYPR
SYNTAX INTEGRR
ACCESS read-write
STATUS wandatory
11= { ipRouteEntry 4)

ipRouteNetricd OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-write
STATUS nmandatory
11= { ipRouteEntry 5)

ipRouteMetric4 OBJRCT-TYPR
SYNTAX INTRGER
ACCESS read-write
STATUS mandatory
i:= { ipRouteEntry 6)

ipRouteNextHop OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-write
STATUS mandatory
11= { ipRouteEntry 7)

ipRouteType OBJECT-TYPE
SYNTAX INTEGER {
other(1),

-~ none of the following

invalid(2),

direct(3),

remote(4)

!
ACCRSS read-write
STATUS nmandatory
13= { ipRouteEntry 8 |

ipRouteProto OBJECT-TYPE
SYNTAX INTEGER (
other(1),

local(2)},
netoqut(3),

fomp(4),

egpls),
990(6),
hello(7),
rip(8),
is-1s(9),
es~is(10),
ciscoIqrp(11)
bbnSpfIgp(12)
ospf(13)
byp(14)

}

ACCESS read-only
STATUS mandatory
s1= (ipRouteEntry 9 }

ipRouteAge OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-write
STATUS nmandatory
41= { ipRouteEntry 10)

ipRouteMask OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-write

-~ an invalidated route

-- route to directly
-- connected
-- (sub~)network

-= route to a non-local
-= host /network/
~= Sub=network

-- none of the following

-= non-protocol
-~ inforpation

-~ e.g., nanually
-~ configured entries

-- set via a network
== management protocol

-~ obtained via ICHP,
-~ e.q., Redirect

-- the following are
-- qateway routing
== protocols

!
!

Appendix B : MIB-II

A9

STATUS nmandatory
s:= { ipRouteBntry 11)

-- the IP Address Translation tables

ipNetToMediaTable OBJECT-TYPR
SYNTAX SEQUENCE OF IpNetToMediaEntry
ACCRSS read-write
STATUS nmandatory
n={ip22)

ipNetToMediaBntry OBJECT-TYPE
SYNTAX IpNetToNediaEntry
ACCRSS read-write
STATUS mandatory
112 { ipNetToMediaTable 1)

IpNetToMediaEntry ::= SEQUENCE {
ipNetTodedialfIndex
INTEGER,
ipNetToMediaPhysAddress
OCTET STRING,
ipNetToMediaNetAddress
IpAddress,
ipNetoToNediaType
INTEGER

}

ipNetToMediaIfIndex OBJECT-TYPR
SYNTAX INTEGER
ACCESS read-write
STATUS mandatory
1= (ipNetToMediaEntry 1

ipNetToNediaPhysAddress OBJECT-TYPE
SYNTAX OCTRT STRING
ACCESS read-write
STATUS nmandatory
11z { ipNetToMediaEntry 2 }

ipNetToNediaNetAddress OBJECT-TYPR
SYNTAX IpAddress
ACCRSS read-write
STATUS wandatory
13= { ipNetToNediaBntry 3

ipNetToMediaType OBJECT-TYPR
SYNTAX INTEGER {
other(1), =~ none of the following
invalid(2), -~ an Invalidated mapping
dynanic(3), -~ connected (sub~)network

static(4)
)
ACCESS read-write
STATUS mandatory
t1= { ipNetToMediaEntry 4 }

-~ the ICHP group

icapInNsgs OBJECT-TYPR
SYNTAX Counter
ACCESS read-only
STATUS nmandatory
ni= { demp 1)

icapInErrors OBJECT-TYPE
SYNTAY Counter
ACCESS read-only
STATUS mandatory
iz { omp 2)

icmpInDestUnreachs OBJECT-TYPR
SYNTAX Counter
ACCESS read-only
STATOS mandatory
= demp 3)

icmpInTineBycds OBJECT-TYPE
SYNTAX Counter
ACCBSS read-only
STATUS mandatory
= { demp 4)

icupInParnProbs OBJECT-TYPR
SYNTAX Counter
ACCESS read-only
STATUS mandatory
= { lemp 5)

icmpInSrcQuenchs OBJECT-TYPE
SYNTAX Counter
ACCRSS read-only
STATUS mandatory
ti= { lcmp 6)

icmpInRedirects OBJECT-TYPR
SYNTAX Counter
ACCESS read-only
STATUS mandatory
vz (emp 7)

icmpInEchos OBJECT-TYPR
SYNTAX Counter
ACCESS read-only
STATUS nmandatory
= (dcmp 8)

icmpInEchoReps OBJECT-TYPR
SYNTAX Counter
ACCBSS read-only
STATUS mandatory
vi= { demp 9)

Appendix B : MIB-II Al0
icapInTinestanps OBJECT-TYPE = (lemp 19)
SYNTAX Counter
ACCESS read-only icmpOutRedirects OBJECT-TYPE
STATUS nandatory SYNTAX Counter
si= { dcap 10 } ACCESS read-only
STATUS rmandatory
icapInTinestanpReps OBJECT-TYPR si= { dcmp 20 |
SYNTAX Counter
ACCESS read-only icmpOutEchos OBJECT-TYPE
STATUS mandatory SYNTAX Counter
1= icmp 11) ACCESS read-only
STATUS nmandatory
icmpInddrMasks OBJECT-TYPR iz (lemp 2L)
SYNTAX Counter
ACCESS read-only icnpoutEchoReps OBJECT-TYPR
STATUS mandatory SYNTAX Counter
= (cmp 12) ACCESS read-only
STATUS mandatory
icmpInAddrMaskReps OBJECT-TYPE = { lcap 22)
SYNTAX Counter
ACCESS read-only icapOutTinestanps OBJRCT-TYPE
STATUS randatory SYNTAX Counter
1= { lemp 13) ACCESS read-only
STATUS randatory
icmpOut¥sgs OBJECT-TYPE iz (lemp 23)
SYNTAX Counter
ACCESS read-only icmpoutTinestanpReps OBJECT-TYPR
STATUS wandatory SYNTAX Counter
vi= (lemp 14) ACCESS read-only
STATUS mandatory
icmpOutErrors OBJECT-TYPE vi= (lcmp 24)
SYNTAX Counter -
ACCESS read-only icnpOutAddrMasks OBJECT-TYPR
STATUS mandatory SYNTAX Counter
ni= (lemp 15) ACCESS read-only
STATUS nmandatory
icnpoutDestUnreachs OBJECT-TYPR = { demp 25)
SYNTAX Counter
ACCESS read-only icpoutAddriaskReps OBJECT-TYPR
STATUS nmandatory SYNTAX Counter
1= (icmp 16) ACCESS read-only
STATOS randatory
icupoutTineExcds OBJECT-TYPR 1= dcmp 26 |
SYNTAX Counter
ACCESS read-only
STATUS mandatory -- the TCP group
n= (demp 17 }
tcpRtoAlgorithe OBJECT-TYPR
LempOutParnProbs OBJECT-TYPE SYNTAX INTEGER {
SYNTAX Counter other(l), -~ none of the following
ACCESS read-only constant(2), -- a constant rto
STATUS mandatory rsre(3), -- MIL-STD-1778,
= (icmp 18) vanj(4) -~ Van Jacobson’s

icmpoutSrcQuenchs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory

-~ algorithn
J
ACCESS read-only
STATUS nandatory
= {tepl)

Appendix B : MIB-II

All

tcpRtoMin OBJRCT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS nandatory
b= { tep 2)

tcpRtoMax OBJECT-TYPR
SYNTAX INTEGRR
ACCESS read-only
STATUS mandatory
t={tep 3}

tcpMaxConn OBJECT-TYPR
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
HER X

tepActiveOpens OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
2= [tep 5)

tcpPassiveOpens OBJRCT-TYPR
SYNTAX Counter
ACCESS read-only
STATUS nmandatory
2= { tep 6)

tcpattemptFails OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS nandatory
ve={tep 7))

topEstabResets OBJECT-TYPR
SYNTAX Counter
ACCBSS read-only
STATUS nmandatory
= tep 8}

topCurrEstab OBJECT-TYPR
SYNTAX (Gauge
ACCESS read-only
STATUS nandatory
wE{tep9)

tcpInSeqs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS nandatory
0= { tep 10)

tcpoutSeqs OBJECT-TYPE
SYNTAX Counter
ACCBSS read-only

STATUS mandatory
e={tep 1)

tcpRetransSeqs OBJECT-TYPR

SYNTAY Counter
ACCRSS read-only
STATUS mandatory
n={ tep 12)

-= the TCP connections table

tepConnTable OBJECT-TYPR

SYNTAX SEQUENCE OF TcpConnEntry

ACCRSS read-only
STATUS mandatory
n={tep13)

tepConnEntry OBJECT-TYPR

SYNTAX TcpConnEntry
ACCESS read-only
STATUS mandatory

1= { tepConnTable 1)

TepConnEntry ::= SEQUENCE |

}

tepConnState
INTEGER,
tepConnLocaldddress
IpAddress,
tepConnLocalPort
INTEGRR (0..65535)
tepConnRenAddress
IpAddress,
tepConnRenPort
INTEGER (0..65535)

tepConnState OBJECT-TYPE

 SYNIAX INTEGER {
closed(1),
listen(2),
synSent(3),
synReceived(4),
established(5),
finkait1(6),
finWait2(7),
closeHait(s),
lastAck(9),
closing(10),
tineWait(11)
J

ACCESS read-only

STATUS nandatory

t+= { tepComnEntry 1)

tepConnLocalAddress OBJECT-TYPE

SYNTAX IpAddress
ACCESS read-only
STATUS nandatory

Appendix B : MIB-II

Al2

s3= { tcpConnEntry 2 |

tepConnLocalPort OBJECT-TYPR
SYNTAX INTEGER (0..65535)
ACCRSS read-only
STATUS randatory
s:= { topConnEntry 3 }

tcpConnRenAddress OBJECT-TYPR
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
s:= { topConnEntry 4)

tepConnRenPort OBJECT-TYPR
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
t1= { tepConnEntry 5 |

-- additional TCP variables

topInErrs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
n={tep 14

tepOutRsts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
o= tep 15)

- the UDP group

udpInDatagrans OBJECT-TYPR
SYNTAX Counter
ACCRSS read-only
STATUS nandatory
t={udpl)

udploPorts OBJECT-TYPE
SYNTAX Counter
ACCRSS read-only
STATUS mandatory
s={udp2)

udpInErrors OBJECT-TYPR
SYNTAX Counter
ACCESS read-only
STATUS nandatory
2= {udp 3}

udpOutDatagrans OBJECT-TYPE
SYNTAX Counter
ACCESS read-only

STATUS mandatory
n={udpd)

-~ the UDP listener table

udpPable OBJECT-TYPE
SYNTAX SEQUENCE OF UdpEntry
ACCESS read-only
STATUS nmandatory
s={udp5)

udpEntry OBJECT-TYPE
SYNTAX UdpEntry
ACCESS read-only
STATUS mandatory
::= { udpTable 1)

UdpEntry ::= SEQUENCE {
udplocaladdress
IpAddress,
udpLocalPort
INTRGER (0..65535)

}

udpLocalAddress OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
3= { udpEntry 1}

udpLocalPort OBJECT-TYPE
SYNTAX INTEGER {0..65535)
ACCESS read-only
STATUS nmandatory
t:= { udpBntry 2 }

-- the EGP group

eqpIn¥sgs OBJECT-TYPE
SYNTAX Counter
ACCBSS read-only
STATUS mandatory

n={egpl)

egpInErrors OBJECT-TYPR
SYNTAX Counter
ACCESS read-only
STATUS nmandatory

={eg?)

eqpOutisqs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS nandatory

v={egpd)

eqpOutErrors OBJECT-TYPR

Appendix B : MIB-II

Al3

SYNTAX Counter
ACCESS read-only
STATUS nmandatory

2= {egpd)
-~ the EGP Neighbor table

egpNeighTable OBJECT-TYPR

SYNTAX SEQUENCE OF EgpNeighEntry

ACCESS read-only
STATUS mandatory

= {egph)

egpNeighEntry OBJECT-TYPE
SYNTAX EqgpNeighEntry
ACCESS read-only
STATUS mandatory
1:= { egpleighTable 1)

EgpleighBntry ::= SRQUENCE {
egpNeighState
INTRGER,
egpNeighAddr
IpAddress,
egpieighAs
INTEGER,
egpNeighInisgs
Counter,
egpleighInErrs
Counter,
egpNeighOutMsgs
Counter,
egpNeighOutBrrs
Counter,
egpNeighInErrisgs
Counter,
egpieighOutBrrsgs
Counter,
egpNeighStatelps
Counter,
egpNeighStateDowns
Counter,
egpNeighIntervaltello
INTEGER,
egpNeighIntervalPoll
INTRGER,
egpieighNode
INTEGER,
egpNeighEventTrigger
INTEGER

}

egpieighState OBJECT-TYPR
SYNTAX INTEGER {
idle(1),
acquisition(2),
down(3},
up(4),

cease(5)
)
ACCESS read-only
STATUS mandatory
ti= | egpleiqhEntry 1)

egpNeighAddr OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS nandatory
11= { eqpNeighEntry 2)

egpNeighAs OBJECT-TYPR
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
11= (egpeighBntry 3)

egpieighInksgs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
s:= (eqpleighEntry 4)

egpNeighInErrs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
21= (egpeighEntry 5)

egpNeighOutMsgs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS nandatory
11= (egpNeighEntry 6)

eqpNeighOutBrrs OBJECT-TYPR
SYNTAX Counter
ACCBSS read-only
STATUS mandatory
s1= (egpeighEntry 7)

egpNeighInErrMsgs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory

s1= { egpNeighEntry 8 }

egpNeighOutErrNsgs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
s1= { egpleighBntry 9)

egpeighStateUps OBJECT-TYPR
SYNTAX Counter
ACCBSS read-only
STATOS mandatory

Appendix B : MIB-II

Al4

11= { eqpNeighBntry 10

egpNeighStateDowns OBJECT-TYPR
SYNTAX Counter
ACCESS read-only
STATUS nandatory
1= (egpNeighEntry 11)

egpieighIntervaliello OBJECT-TYPE
SYNTAX INTRGER
ACCESS read-only
STATUS nmandatory
1i= { egpeighEntry 12)

egpieighIntervalPoll OBJECT-TYPE
SYNTAX INTRGER
ACCESS read-only
STATUS mandatory
11= (egpNeighEntry 13)

egpNeighode OBJECT-TYPE
SYNTAX INTEGER {
active(l),
passive(2)
}
ACCESS read-only
STATUS nmandatory
1:= (egpeighBntry 14)

egpieighEventTrigger OBJRCT-TYPE
SYNTAX INTEGER (
start(1),
stop(2)
J
ACCBSS read-write
STATUS mandatory
11z (egpeighEntry 15)

-~ additional RGP variables

eqpAs OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS nandatory

1= {egp6)
-~ the Transmission group (empty at present)

-~ the SNHP group

snmpInPkts OBJECT-TYPR
SYNTAX Counter
ACCESS read-only
STATUS mandatory
= {spl)

snmpOutPkts OBJECT-TYPR

SYNTAX Counter
ACCESS read-only
STATUS mandatory
si= {snmp 2 |

snopInBadVersions OBJECT-TYPR
SYNTAX Counter
ACCESS read-only
STATUS mandatory
ve= {snmp 3)

snmpInBadCommunityNames OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS nandatory
si= { snmp 4)

snupInBadCommunityUses OBJECT-TYPR
SYNTAX Counter
ACCESS read-only
STATUS mandatory
1= {smmp 5)

snopInASKParsefrrs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
sz { snmp 6)

snapInBadTypes OBJECT-TYPE
SYNTAX Counter
ACCRSS read-only
STATUS nmandatory
= {smmp 7)

snupInTooBigs OBJECT-TYPR
SYNTAX Counter
ACCESS read-only
STATUS mandatory
o= {shmp 8)

snmpInNoSuchNames OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS nmandatory
= {snp 9)

snepInBadValues OBJECT-TYPR
SYNTAX Counter
ACCBSS read-only
STATUS nmandatory
¢e= { smp 10)

snpInReaddnlys OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS nandatory
ti= {smp 11)

Appendix B : MIB-II

Al5

snepInGenfrrs OBJRCT-TYPR
SYNTAX Counter
ACCESS read-only
STATUS nandatory
si= { smp 12)

snpInTotalReqVars OBJECT-TYPR
SYNTAX Counter
ACCESS read-only
STATUS mandatory
si= { smup 13 }

snmpInTotalSetVars OBJRCT-TYPE
SYNTAX Counter
ACCBSS read-only
STATUS nmandatory
ti= { smop U4)

snepInGetRequests OBJECT-TYPR
SYNTAX Counter
ACCESS read-only
STATUS mandatory
$i= { smmp 15)

snmpInGetNexts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS nandatory
ti= { snmp 16)

snmpInSetRequests OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATOS nmandatory
ve= { snmp 17)

snmpInGetResponses OBJECT-TYPE
SYKTAX Counter
ACCESS read-only
STATUS nandatory
se= (snmp 18)

snupInTraps OBJECT-TYPE
SYNTAX Counter
ACCBSS read-only
STATUS nandatory
si= { snmp 19)

snupOutTooBigs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
se= { snmp 20 }

snmpoutNoSuchNanes OBJECT-TYPR
SYNTAX Counter
ACCESS read-only

STATUS nandatory
$i= [snmp 21)

snupOutBadValues OBJECT-TYPR
SYNTAX Counter
ACCESS read-only
STATUS nmandatory
$i= {smmp 22)

snepOutReadonlys OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS nmandatory
$i= | snmp 23)

snrpOutGenErrs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS nmandatory
b= {snmp 24)

snpOutGetRequests OBJRCT-TYPE
SYNTAX Counter
ACCESS rsad-only
STATUS mandatory
t= { smp 25)

snmpOutGetNexts OBJECT-TYPR
SYNTAX Counter
ACCESS read-only
STATUS nmandatory
te= [snmp 26)

snmpOutSetRequests OBJRCT-TYPR
SYNTAX Counter
ACCESS read-only
STATUS mandatory
si= { snmp 27)

snnpOutGetResponses OBJECT-TYPR
SYNTAX Counter
ACCRSS read-only
STATOS mandatory
si= {snmp 28)

snupOutTraps OBJECT-TYPR
SYNTAX Counter
ACCBSS read-only
STATOS mandatory
1= {smp 29)

snapEnableAuthTraps OBJECT-TYPR
SYNTAX INTEGER {
enabled(1),
disabled(2)
J
ACCESS read-write
STATUS mandatory

Appendix B : MIB-II Al6

$i= { snmp 30 }

RFC1157-SNMP DEFINITIONS ::= BEGIN

TMPORTS
ObjectName, ObjectSyntax, NetworkAddress,
IpAddress, TimeTicks
FROM RFC1155-SHI;

-~ top-level message

Message ::=
SEQUENCE {
version -= version-1 for this RFC
INTEGER {
version-1{0)

i

comnunity -~ community name
OCTET STRING,
data -- e.0., PDs if trivial
ANY -~ authentication is being used

)

-- protocol data units
POUs ::=
CHOICE (
get-request
GetRequest-PDU,

get-next-request
GetNextRequest-PDU,

get-response
GetResponse-PDY,

set-request
SetRequest-PDU,

trap
Trap-PDU

== PlUs

GetRequest-PDU ::=

(0]
THPLICIT PDU

GetNextRequest-PDU 3:=

(1]
INPLICIT PDU

GetResponse=PDU 1:=

(2]
THPLICIT FOU

SetRequest-pDU ::=

(3]
INPLICIT PDU

POU :=
SEQUENCE {
request-id
TNTEGER,

error-status

INTEGER (
noBrror(0},
tooBig(1),
noSuch¥ame(2),
badValue(3),
readOnly(4),
genErr(5)

b

-- sometimes ignored

error-index
INTEGER,

-~ sometimes ignored

variable-bindings -~ values sometimes ignored
VarBindList

)

Trap-PDU ::=
(4]
IMPLICIT SRQUENCE |
enterprise == type of object generating

-- trap, see sysobjectID
OBJECT IDENTIFIER,

agent-addr -~ address of object
NetworkAddress, =-- generating trap

generic-trap -~ generic trap type

Appendix C : SNMP Al8

INTEGER (
coldStart(0),
varaStart(1),
linkDown(2),
1inkUp(3),
authenticationFailure(4),
egpleighborLoss(5),
enterpriseSpecific(s)

Ji

specific-trap -~ specific code, present even
INTEGER, -- if gemeric-trap Is not
-- enterpriseSpecific

tine-stamp -- time elapsed between the last
TineTicks, == (re)initialization of the
-- network entity and the
-- generation of the trap

variable-bindings -- "interesting"
-~ Information
VarBindList

-~ variable bindings

VarBind ::=
SEQUENCE {
name
ObjectNane,

value
ObjectSyntax
)

VarBindList ::=

SEQURKCE OF
VarBind

[COME91] Douglas E. COMER, INTERNETWORKING WITH TCP/IP:
VOLUME 1; PRINCIPLES, PROTOCOLS, AND ARCHITECTURE,
second edition, Prentice Hall, Englewood Cliffs, New
Jersey, 1991

[DATS88] Jean-Paul DAISOMONT, REFLEXION SUR LE MODELE
TCP/IP, COMPARAISON ET ANALYSE D‘/IMPLEMENTATION,
Facultés Universitaires Notre-Dame de la Paix,
Institut d’Informatique, NAMUR, 1987-1988

[DALL88] I.N. DALLAS, "Operational Experiences in Managing
a LAN/WAN Gateway", ISSUES IN LAN MANAGEMENT,
Dallas/Spratt editors, IFIP, 1988, pp.95-113

[FISH91] Sharon FISHER, "Dueling Protocols, Will SNMP win
out over CMIP, of vice versa?", BYTE, March 1991,
pp.183-190.

[GAMB90] Dr John N. GAMBLE, Experience at CERN in the
Management of Large-Scale Multivendor LANs, CERN
Computing and Networks Division, CERN/CN/90, June 5,
1990

[HALL88] Jane HALL, Robbert van RENESSE, Hans van STAVEREN,
"Gateways and Management in an Internet Environment",
ISSUES IN LAN MANAGEMENT, Dallas/Spratt editors,
IFIP, 1988, pp.77-94

[IS07498-4] ISO/IEC 7498-4, Information Processing Systems
- Open Systems Interconnection - Basic Reference
Model - Part 4: Management Framework, International
Standards Organization, November 15, 1989

[IS08649] ISO/IEC 8649, Information Processing Systems -
Open Systems Interconnection, Service Definition for
Association Control Service Element, International
Standards Organization

[IS08650] ISO/IEC 8650, Information Processing Systems -
Open Systems Interconnection, Protocol Specification
for Association Control Service Element,
International Standards Organization

[IS08824] ISO/IEC 8824, Information Processing Systems -
Open Systems Interconnection - Specification of
Abstract Syntax Notation One (ASN.1l), International
Standards Organization, May, 1987

[IS08825] ISO/IEC 8825, Information Processing Systems -
Open Systems Interconnection - Specification of Basic
Encoding Rules for Abstract Syntax Notation One
(ASN.1), International Standards Organization, May,
1987

[IS09072-1] ISO/IEC 9072-1, Information Processing Systems
- Open Systems Interconnection, Text Communication -
Message-Oriented Test Interchange System (MOTIS) -
Remote Operations, Part 1: Model, Notation and
Service Definition, International Standards
Organization, 1988

[IS09072-2] ISO/IEC 9072-2, Information Processing Systems
- Open Systems Interconnection, Text Communication -
Message-Oriented Test Interchange System (MOTIS) -
Remote Operations, Part 2: Protocol Specification,
International Standards Organization, 1988

[IS09595] ISO/IEC -9595, Information Processing Systems -
Open Systems Interconnection, Management Information
Service Definition - Part 2: Common Management
Information Service, International Standards
Organization, December 22, 1988

[IS09596] ISO/IEC 9596, Information Processing Systems -
Open Systems Interconnection, Management Information
Protocol Definition - Part 2: Common Management
Information Protocol, International Standards
Organization, December 22, 1988

[IS010165-1] ISO/IEC 10165-1, Information Processing
Systems - Open Systems Interconnection, Structure of
Management Information, Part 1: Management
Information Model, International Standards
Organization

[JOSE88] Celia JOSEPH, Kurudi H. MURALIDHAR, "Network
Management: A Manager’s Perspective", ENTERPRISE
Conference Proceedings, Society of Manufacturing
Engineers, 1988

[KLER88] S. Mark KLERER, "The OSI Management Architecture:
an Overview", IEEE NETWORK, Vol.2 N°2, March, 1988,
pp.20-29

[MEUN88] J.M. MEUNIER, "An Interactive Network Display
System for Network Management", IEEE 1988 Network
Operations and Management Symposium, New Orleans, LA,
February 28-March 2, 1988, pp.1.18-18.18

[MINO89a] Daniel MINOLI, "Evolving Security Management

Standards", DATAPRO NETWORK MANAGEMENT/DATAPRO
RESEARCH, 1990 McGRAW-HILL, 1989, pp.NM20_500_101-107

II

- [MINO89b] Daniel MINOLI "Managing Local Area Networks :
Fault and Canquratloﬂ Management“ DATAPRO NETWORK
MANAGEMENT/DATAPRO RFSEARCH 1990 MCGRAW HILI, 1989,
pPp.NM50_300_401-411

[MINO89c] Daniel MINOLI, "Network Management Functions:
Telecommunications Hardware", DATAPRO NETWORK
MANAGEMENT/DATAPRO RESEARCH, 1990 McGRAW-HILL,
October, 1989, pp.NM20_100_101-105

[MINO89d] Daniel MINOLI, "Managing Local Area Networks:
Accounting, Performance and Security Management",
DATAPRO NETWORK MANAGEMENT/DATAPRO RESEARCH, 1990
McGRAW-HILL, June 1989, pp.NM50_300_501-508

[MORR89] Wayne MORRISON, "Ethernet LAN Management NMCC/VAX
ETHERnim, A Case Study", Proceedings of the IFIP
TC6/WG6.6 Symposium on Integrated Network Management,
Boston, ELSEVIER SCIENCE PUBLISHERS, May 15-17, 1989

[NM20-300~1] "Inventory and Configuration Management",
DATAPRO NETWORK MANAGEMENT/DATAPRO RESEARCH, 1990
MCGRAW-HILL, June 1989, pp.NM20_300_101-104

[NM50-600-1] "Modem/Multiplexer-Based Network Management",
DATAPRO NETWORK MANAGEMENT/DATAPRO RESEARCH, 1990
McGRAW-HILL, June 1989, pp.NM50_600_101-106

[RFC768] User Datagram Protocol, Request For Comments 768,
J. Postel, DDN Network Information Center, SRI
International, August 28, 1980

[RFC791] Internet Protocol, Request For Comments 791, DDN
Network Information Center, SRI International,
September, 1981

[RFC792] Internet Control Message Protocol, Request For
Comments 792, DDN Network Information Center, SRI
International, 1981

[RFC793] Transmission Control Protocol, Request For
Comments 793, DDN Network Information Center, SRI
International, September 1981

[RFC1085] ISO Presentation Services on top of TCP/IP-based
internets, Marshall T. ROSE, Request For Comments
1085, DDN Network Information Center, SRI
International, December, 1988

[RFC1095] The Common Management Information Services and
Protocol over TCP/IP (CMOT), Request for Comments
1095, Unnikrishnan S. WARRIER, Larry BESAW, DDN
Network Information Center, SRI International, April,
1989

111

[RFC1155] Structure and Identification of Management
Information for TCP/IP based internets, Reguest for
Comments 1155, Marshall T. ROSE, Keith McCloghrie,
DDN Network Information Center, SRI International,
May, 1990

[RFC1156] Management Information Base for Network
Management of TCP/IP based internets, Request for
Comments 1156, Marshall T. ROSE, Keith McCloghrie,
DDN Network Information Center, SRI International,
May, 1990

[RFC1157] A simple Network Management Protocol, Request for
Comments 1157, Jeffrey D. CASE, Mark S. FEDOR, Martin
L. SCHOFFSTALL, James R. DAVIN, DDN Network
Information Center, SRI International, May 1990

[RFC1158] Management Information Base for Network
Management of TCP/IP based internets: MIB-II, Request
for Comments 1158, Marshall T. ROSE, DDN Network
Information Center, SRI International, May, 1990

[ROSE91] Marshall T. ROSE, THE SIMPLE BOOK: AN INTRODUCTION
TO MANAGEMENT OF TCP/IP-BASED INTERNETS, Prentice
Hall, Englewood Cliffs, New Jersey, 1991

[SLOM88] Morris SLOMAN, "Distributed Systems Management",
ISSUES IN LAN MANAGEMENT, Dallas/Spratt editors,
IFIP, 1988, pp. 15-46

[STAL89] William STALLINGS, HANDBOOK OF COMPUTER-
COMMUNICATIONS STANDARDS : THE TCP/IP PROTOCOL SUITE
(VOLUME 3), Second Edition, Howard W. Sams & Company,
1989

[TANE88] Adrew S. TANENBAUM, Computer Networks, Prentice
Hall Software Series, Prentice-Hall, Englewood
Cliffs, New Jersey, 1988

[WARR90] Unni WARRIER, Amatzia BEN~ARTZI, Asheem CHANDNA,

"Network Management of TCP/IP Networks: Present and
Future", IEEE NETWORK MAGAZINE, July, 1990, pp. 35-42

v

ACK
ARP
ASN.1
BER
CCITT

CMIP
CMIS
CMOT
CPU
DBMS
DEC
DF
DNS
DoD .-
EGP
FIN
FTAM
FTP
GGP
1AB
ICMP
THL
INMS
IP
IS0
LAN

: Acknowledgement segment

: Address Resolution Protocol

: Abstract Syntax Notation 1

: Basic Encoding Rules

: Comité Consultatif International de la Téléphonie et

de la Télégraphie

: Common Management Information Protocol
: Common Management Information Service
: CMIP over TCP/IP

: Central Processing Unit

: DataBase Management System

: Digital Equipment Company

: Don’t Fragment flag

: Domain Name Server

: Department of Defense

: Exterior Gateway Protocol

Finish segment
File Transfer, Access and Management
File Transfer Protocol

: Gateway-to-Gateway Protocol

Internet Activities Board

Internet Control Message Protocol
Internet Header Length

Integrated Network Management System
Internet Protocol

International Standards Organisation
Local Area Network

MF
MIB
MTU
NFS
NSAP
0SI
OTDR
PDU
PING
RARP
RFC
RST
SAP
SMI
SMTP
SNA
SNMP
sSqQL
SYN
TCB
TCP
TDR
TFTP
TSAP
TTL
upp
WAN

: More Fragment flag
: Management Information Base
: Maximum Transmission Unit

Network File System
Network Service Access Point

: Open System Interconnection
: Optical Time Domain Reflectometer

Protocol Data Unit
Packet INternet Groper

: Reverse Address Resolution Protocol
: Requests For Comments
: Reset

Service Access Point

Structure of Management Information
Simple Mail Transfer Protocol
Systems Network Architecture (IBM)
SimpTle Network Management Protocol
Structured Query Language
Synchronize segment

: Transmission Control Block

: Transmission Control Protocol
: Time Domain Reflectometer

: Trivial File Transfer Protocol
: Transport Service Access Point
: Time To Live field

User Datagram Protocol

: Wide Area Network

Vi

Réalisation, impression et reliure : SPRL Centre de Reprographie - Tél. : 081/22.87.72

