
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Network Management Systems

The management of TCP/IP networks

Heyvaert, Didier

Award date:
1991

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 20. Apr. 2024

https://researchportal.unamur.be/en/studentTheses/1664758a-4485-4971-8c0b-f04dcaacdb1a

Facultés Universitaires Notre-Dame de la Paix, Namur

Institut d'Informatique

Année académique 1990-1991

Network Management
Systems

The management of
TCP/IP networks

Didier HEYV AERT

Promoteur : Philippe van Bastelaer

Mémoire présenté en vue
de l'obtention du grade
de Licencié et Maître

en Informatique

Rue Grandgagnage, 21, B - 5000 NAMUR (BELGIUM)

1 '

Résumé

Lorsque, actuellement, on parle de réseaux, le sujet le plus abordé est celui

de leur gestion. Ceci est dû à un besoin de plus en plus pressant du côté des

responsables de réseaux qui voient leur tâche se complexifier. Cette complexité a

pour cause, de manière générale, le développement des réseaux de

télécommunications, tant du point de vue de leur taille que du point de vue de leur

composition. Les responsables de réseaux ont donc besoin de nouveaux outils pour les

aider à résoudre les problèmes qui peuvent se présenter.

Dans ce travail, nous présenterons d'abord un approche de ce qu 'est,

actuellement, la gestion des réseaux et des outils nécessaires à celle-ci. Puis, de

manière à assimiler les concepts nécessaires à la compréhension du protocole SNMP,

nous décrirons les principaux protocoles du réseau TCP/IP. Cela permettra de décrire

le protocole de gestion des réseaux TCP/IP, SNMP (Simple Network Management

Protocol). Nous pourrons, ensuite, après avoir brièvement parcouru le protocol ISO

(Interconnexion de Systèmes Ouverts) de gestion de réseaux, nous attarder sur

quelques programmes de gestion de réseaux.

Abstract

When, at the present time, it is spoken of networks, the most approached

subject is their management. This is due to a more and more urgent need for persons

responsible for the networks who see their task becoming complicated. This

complexity is generally caused by the development of telecommunication networks,

from the point of view of their size but also of their composition. Thus, the persons

responsible for the networks need new tools to help them solve the problems that can

arise.

In this work, we will first present a conception of what is, at the present

time, the management of networks and of the tools useful for the management. Then,

to assimilate the concepts needed to understand the SNMP protocol, we will describe

the main TCP/IP network protocols. This will allow to describe the TCP/IP network

management protocol, SNMP. Then, after having briefly glanced at the OSI (Open

Systems Interconnection) network management protocol, we will expose some

network management programs.

I would like to thank all the persons who have contributed to the elaboration

of this work.

First, I want to express my acknowledgement to Mr Philippe van Bastelaer,

my work directorat the Facultés Universitaires Notre-Dame de la Paix, Namur, who

offered me the opportunity of a training at the European Centre for Nuclear Research

(CERN), Geneva, during the first semester of the academic year 1990-1991.

I am also very grateful to all the members of the Computer and Networks /

Communication Systems· (CN/CS) section of the CERN with whom I spent six

unforgettable months and especially Mr John N. Gambie, my supervisor, who

introduced me to the problem of network management.

And finally I would like to thank Mr Rudi Simon who spent many hours of

his time correcting all the English mistakes of this work.

Introduction . 5

Chapter 1 : Network Management Systems ••••••••..••••••••• 7

1.1. People involved in management•..... 7
1. 1. 1. The Higher Level Management Entity 8
1.1.2. The Network Manager .. 8
1.1.3. Operators .. 8
1.1.4. Network Engineers .. 8

1.2. Network Management Areas 9
1. 2. 1. Configuration Management ... 9
1. 2. 2. Performance Management ... 10
1.2.3. Fault Management .. 11
1.2.4. Accounting Management. .. 11
1.2.5. Security Management. .. 12

1.3. Physical Level Tools ..•..................•..•.. 13
1.3.1. Ohmmeter .. 13
1.3.2. Outlet Tester ... 13
1. 3. 3. Oscilloscope ... 14
1.3.4. Time Domain Reflectometer (TDR) 14
1.3.5. Power Meter ... 14
1.3.6. Optical Time Domain Reflectometer (OTDR) 14
1. 3. 7. Optical Bandwidth Test Set.. .. 15
1.3.8. Protocol Analyzer ... 15

1.4. Integrated Network Management Systems 16
1.4. 1. Graphical User Interface ... 16
1.4.2. Database .. 18
1.4.3. Topology DB Builder ... 20
1.4.4. Alarm Manager .. 21
1.4.5. Devices Polling .. 22
1.4.6. Traffic Monitor .. 23
1.4.7. Reachability Tests ... 23
1.4.8. Addresses Monitor .. 23
1.4.9. Data Query and Values Setting ... 25
1.4.10. Monitoring and Statistics Computing 26
1.4.11. Cryptographie Keys and Encipherment Manager 26
1.4.12. Access Control and Authentication 27
1. 4. 13. Audit Trails ... 27
1.4.14. Billing and Accounting ... 27

Contents 2

Chapter 2 : The TCP/IP Protocol Suite 29

2. 1 . Introduction . 2 9

2. 2. IP Protocol . 32
2.2.1. IP Services ... 32
2.2.2. IP Datagram ... 34
2. 2. 3. Addressing ... 36
2.2.4. Routing ... 38
2.2.5. Fragmentation and Reassembly ... 39

2. 3 . ICMP Protocol . 4 4

2. 4. UDF Protocol . 46
2.4.1. UDP Primitives ... 46
2. 4. 2. UD P Data gram .. 4 7
2.4.3. UDP Checksum ... 48

2. 5. TCP Protocol . . • . 49
2. 5. 1 . TCP Service Primitives .. 49
2.5.2. TCP Segment .. 51
2.5.3. TCP Mechanisms ... 52

Chapter 3: Simple Network Management Protocol 61

3.1. Structure of Management Information 63
3 .1.1. ASN. 1 .. 63
3.1.2. SMI ... 67

3 • 2 . SNMP • • • • • • • • • • • • . • . . • • 7 3
3. 2. 1. Protocol Interaction ... 7 4
3.2.2. SNMP PDUs .. 77
3.2.3. Administrative Concepts ... 80
3.2.4. Instance Identification and Lexicographie Order 81
3.2.5. Searching Tables with the Get-Next-Request 82
3. 2. 6. Example of Encoding ... 83

3.3. MIB •........•..•.........•........••........... 85
3.3.1. System Group .. 85
3. 3. 2. Interfaces Group .. 86
3. 3. 3. Address Translation Group .. 87
3.3.4. IP Group ... 87
3.3.5. ICMP Group ... 89
3.3.6. TCP Group ... 89
3.3.7. UDP Group .. 90
3.3.8. EGP Group .. 91
3. 3. 9. Transmission Group .. 91
3.3.10. SNMP Group ... 91

Chapter 4 : CMIP . . • . • . . • • • • . . • • 9 3

4. 1 . CMIP • • . . . • • • . • • • . . • • . • • . . • . • • • . . • . • . • . . • . . 9 3
4.1.1. Management Information .. 93
4.1.2. Management Services .. 95
4. 1. 3. Management Protocols ... 96
4.1.4. Working .. 97

Contents 3

4.2. CMOT ••• 99
4. 2 .1. Management Information .. 99
4.2.2. Protocol .. 100
4.2.3. Opinion ... 100

Chapter 5: HP Openview Network Node Manager 102

5.1. Presentation and Comments•..•........... 102
5. 1.1 . Graphical User Interface . 102
5.1.2. Alarm Manager .. 106
5. 1. 3. Devices Polling. 107
5. 1. 4. Traffic Monitor. 107
5 .1. 5. Reachability Tests ... 109
5. 1. 6. Data Query ... 109
5. 1. 7. Others. 111

5.2. Conclusion 111

Chapter 6 : Digital Network Tools 113

6 .1. Possibili ties of DNT•...............•.•. 113
6.1.1. Graphical User Interface ... 113
6.1.2. Database .. 115
6.1.3. Topology DB builder ... 118
6.1.4. Alarm manager .. 119
6.1.5. Device polling ... 119
6.1.6. Traffic monitor .. 119
6. 1. 7. Reachability Tests ... 120
6.1.8. Data Query and Values Setting 121
6.1. 9 Monitoring and Statistics Computing 124

6. 2. Conclusion 126

Chapter 7 : XGMON • 128

7 .1. Overview 128

7.2. Details 130
7. 2. 1. Graphical User Interface ... 130
7.2.2. Database .. 132
7.2.3. Topology DB Builder. .. 133
7.2.4. Devices Polling .. 133
7.2.5. Traffic Monitor .. 134
7.2.6. Reachability Tests ... 135
7.2.7. Data Query and Values Setting 135
7.2.8. Automation support ... 136

7. 3. Conclusion 137

Conclusion . 140

Appendix A : SMI . Al

Contents 4

Appendix B: MIB-II ..•...•.•...•..•...••...•..•••••.••.• A3

Appendix C . . SNMP • Al 7

Bibliography • • • . • • • • • • . • • I

Glossary • V

At the present time, the size and the number of networks are expanding in an

exponential way. And, thus, the control on the networks is proportionally harder to

keep. Therefore, different mechanisms to help in the management of networks must

be considered.

The aim of this work is to present the current state of the art in the

management of networks, in general, and of TCP/IP networks, in particular.

Three approaches have been followed.

The first one is an intuitive approach. It consists in a reflexion on what

network management could be. This reflexion led to the presentation of the people

involved in network management, of the tasks to perform and of the tools useful for

managing a network.

The second approach is practical. It bas been realised through the testing of

network management programs at the European Centre for Nuclear Research (CERN)

in Geneva. The CERN is composed of a set of laboratories. The aim of the different

laboratories is to provide particle accelerators to searchers. Ali the teams coming at

CERN for carrying out experiments, have to take back their results with them for

further analysis. But they ail have different computers and different ways of

communication. This involves that the CERN needs to have a very wide range of

computers and networks. Ali this infrastructure must remain operational as long as

possible. In order to no longer have the charge of maintaining its own management

programs, the CERN bas decided to buy one. To be sure that this program cornes up

to its expectation and responds to its needs, thorough tests had to be carried out.

The third approach is more formai. It consists in the analysis of the

communication mechanisms that take place between computers for network

management purposes. Therefore, some protocols useful for managing network will

be described.

Introduction 6

This work is divided into seven chapters. Chapter 1 resumes the intuitive

approach and lists the people, the tasks and the tools concemed with network

management. Chapter 2 gives a description of the main protocols used in TCP /IP

networks. This will allow to expose concepts used in the next chapter. Chapter 3

details the main protocol used for managing TCP/IP networks, the Simple Network

Management Protocol (SNMP). Chapter 4 briefly describes the OSI network

management protocol, the Common Management Information Protocol (CMIP) and

its application to TCP /IP networks. And chapter 5, chapter 6 and chapter 7 illustrate

the practical approach by presenting the different tested programs.

1

.............. ·····························1

• •. ·.•,, •.• ,, .• , .• ,•,, .• ,, .•• ,,:·•,.•.•.·,,',.•.•.,, .• ,., .• , ..•• ,,.,.,., ... •,, .• ,:.': .• ,·.•,:i,,•,,.,,.,,., .•.• , .• ,. : ci.E.K::i?fi:d§a : id ':: N:Ê:~WOR~ •.• , .• ,, .• ,·.•,.•,i,,•,.•.·,.• •. •.•,.·,•,.·.•.· •. •:.,.::.•: •.• ,,.•,,.i •• •, .•• ,,.·• •. ·.•,, .• ,: ..• ,, •.• , .• 1,, .• ::.·:,.•: •. i,, .• ::.•:,.•:.,.:.·,•:.,.::.•:,.·.•.,•.·,,•,,·.•.•.,•.•.,•:,.•:,.::.•:,.•:,.•:,.•:,.•:,.• •• •:.·.•, .•• ,,:•.·,.•.•,.•,· •. •.· •. •:.·,•,,. _ <: ~Bi~<f$~JâN~ tS"~s~~s: _

In the past, network management was limited to the only field of fault

management. The networks were limited in dimension and in complexity. One person

was able to know which components were used on the network and where they were

placed. The job was limited to locating the component that was causing the trouble.

This person only needed tools to help him or her in the location of faults.

Now, as the number of computers increases, the size of the networks grows

in proportion. And their complexity grows much more because the networks pass

from a single-vendor state to a multi-vendor state with all the related difficulties

(different protocols, different machines). If the networks change, they also become

more difficult to manage. More people will be involved in their management. And

other, more sophisticated tools to help in the management of the networks will be

indispensable. New tools must, therefore, be developed to cope with this complexity.

These tools will be composed by the integration of other more specific tools:

databases, monitors, etc. They will not only be used in the detection of network

problems but they will also serve in the network planning, performance testing,

inventory of network components, etc. These tools will be termed Integrated

Network Management Systems.

The rest of this chapter will be divided into four parts. The first section will

give a description of the different people involved in the management of the networks.

The second section will list the areas in which network management is used. The

"older" tools which helped and still help in the fault detection and location will be

presented in the third section. And finally, a review of all the components that should

be included in a performing integrated management tool are described in sectionfour.

1.1. People in~ol~ed i~
TI1.a.na.geTI1.en t

Now, as networks become more complex, their management is not the

business of one person anymore. Many people are concemed with this activity. In this

People Involved in Management 8

section, the different people concemed with network management are listed.

Information is also given about what they must know conceming the network. Dr J.

N. Gambie [GAMB90] gave many ideas for this section.

1.1. 1. The Higher Level Management Entity

The higher level management entity is the authority that has the power to

manage the evolution of the network. This can be, for example, for a university the

academic authorities, for a firm the board of directors, etc. It requires information on

how well the network manager is doing his job. Figures, gathered over a long period,

on the network equipments, on the services offered, on the quality of the service are

needed for resource planning (manpower and equipment).

1.1.2. The Network Manager

The network manager is the person who is responsible for the good running

of the network. Because he is also involved in the resource planning, he needs the

same information as the Boss. Another job for the manager is to make the network

run with as few down periods as possible. For this, he needs many other tools to find

faults, to monitor performances, etc. These tools will be detailed later. The allocation

of network addresses for the various protocols that are supported is another important

role for the network manager. For this, database facilities are needed. For wide area

networking, accounting and authorization are of importance. Access security to the

network is also important. These are two other roles of the network manager.

1. 1. 3. Ooerators

The operators are the ones that users contact when there appears to be a

problem and they are the ones who involve the maintenance experts (internai network

engineers or maintenance staffs from the vendors) to fix faults. They need to know if

there are faults on the network, where the faults are, who to call to repair them, etc.

Help is needed because, if the network is healthy, the operators will not be in the

habit of coping with fault situations and they must have quick reactions in case of

problems.

1.1.4. Network Engineers

N etwork engineers are concemed with the maintenance of the network

equipments, with the exact location of faults, with the repair of equipments, etc. For

People Involved in Management 9

maintenance, the engineers need information on the "health" of the network,

particularly at the physical level. They need to see error rates, traffic rates,

throughput rates of bridges, gateways, etc. For fault location, they need to know

"who is where" on the network and have the tools to precisely identify the nature of

the faults.

1.2. Net~~rk Manage~ent Areas

As bas been seen in the previous section, network management is the

business of more than one person. If, before, network management was limited to

fault management, now it bas grown to many other areas. For example, the higher

level management entity needs performance information. The network manager must

be able to configure bis network, to perform accounting related tasks and to set up

security mechanisms. The operators and network engineers need information

conceming faults and must be able to repair the network. In order to give a formai

description of all these needs, a management framework bas been built. A lot of

information was found in the Management Framework for Open Systems

Interconnection [IS07498-4]. Five network management areas have been defined:

configuration management, performance management, fault management, accounting

management and security management.

1.2.1. Configuration Management

The configuration management area can be divided into two sub-areas: the

configuration management itself and the name management.

The purpose of network configuration and name management is to define,

collect, manage and use configuration information (location, name, availability,

reachability information) and to control the configuration of the network resources, in

order to maintain the quality of service provided by the network environment.

"Sorne of the services that configuration management provides include setting

network parameters, collecting data on network status"[JOSE88], changing the

network configuration, displaying the network topology.

"Sorne of the services that name management provides include naming the

resources to be managed and managing name assignments. "[JOSE88] It provides

services to help in the maintenance of name, address and location information and in

the assignment of network addresses for the different supported protocols.

Management Areas 10

In short, configuration management comprises the "mechanisms to determine

and control the characteristics and state of a network and to associate names with

managed resources". [JOSE88]

1. 2. 2. Performance Management

Performance management involves monitoring the network, "obtaining

feedback on its usage, identifying weaknesses and exercising control to correct these

weaknesses. Typical weaknesses include processing bottle-necks, communication

delays, high error rates. "[SLOM88]

The performance management process can be ~'Plit into the following

functions.

The system gathers statistical information (error rates, throughput) on the

network and on the important components of the network. In addition, the system

maintains logs of system state histories. Using the gathered information and the

logged historie information, it is possible to determine the system performance.

The following important function is the ability for the system to create

performance reports. They show statistics and performance evaluation results.

Using these reports, the network manager must take performance

optimization decisions. For example, if the traffic becomes too important for a

routing device, the network manager can decide to add a new one and to share the

traffic between the two routing devices.

When the optimization decision is taken, it is important to have the ability to

implement it. The network manager must be able to tune the performance of the

network. For instance, when the new routing device is installed, the manager must

dispose of tools to change the routing tables of other network devices in order to share

the traffic.

In brief, "performance management includes mechanisms to monitor and tune

the network performances" .[JOSE88]

Management Areas 11

1.2.3. Fault Management

Fault management is the activity which helps in the detection, the isolation

and the correction of faults on the network.

The faults on a network can be of multiple origins. They can result from

hardware or from software problems. The detection of faults can be made either by

polling the important network components or by receiving event messages sent by the

faulty components.

Once a fault has been detected, somebody must be advised, in general the

operator, that a problem occurred. This will be made by the mechanism of alarms.

The operator must react quickly and inform the network manager and/ or network

engineers, if necessary. Alarms notifications will be kept and saved in order to help in

the network planning and in further corrections of network faults.

The network manager, in collaboration with engineers, will work in the

isolation of the faults. Expert systems can also be very helpful in the diagnosis of

faults.

Once a fault has been isolated, network engineers will be able to correct it.

Mechanisms can be used by the network manager to bypass the fault if the network

cannot be corrected quickly enough.

"In summary,

bypassing, repamng

failures. "[MIN089c]

fault management is the discipline of detecting, diagnosing,

and reporting on network equipment and service

1. 2.4. Accounting Management

Accounting management enables network managers to identify costs and

establish charges for the use of communications resources. Accounting management

can be divided into two functions.

The first one is the monitoring of all communications services. Accounting

information must be collected. This information includes the amount of data received

and data sent out by the network users. The network manager must be able to know

which networks have been used and what costs have been incurred and by whom.

Management Areas 12

Therefore, all devices that provide a payable communication service must maintain

statistics on all calls and call attempts.

These statistics will also permit the network manager to check the correct use

of the network. For example, it would be useful for the network manager to have the

possibility to fix budget limits for each network user and if the budget limit is

reached, the user should automatically see his access limited to the free services on

the network.

The second function of accounting management is the billing. The

communication statistics will be transferred to a central computer. This computer

collects together all the statistics from the different monitored entities. And, once a

fixed period is reached, invoices are generated from them automatically. This billing

function can also be combined with other services. For example, the users can receive

bills containing their expenses for communications, printers, CPU time, disk usage,

etc.[DALL88]

In short, "accounting management includes mechanisms for controlling and

monitoring charges for the use of communications resources" .[JOSE88]

1.2. 5. Security Management

"Security management is an important issue: unauthorized or accidentai

access to strategic components must be eliminated or minimized. "[MIN089c]

Security management supports the control and the distribution of information

to various end systems that provide security services and mechanisms and reports on

security-related events. Therefore, security management requires distribution of

information to these services and mechanisms, as well as the collection of information

concerning their operations. Examples are the distribution of cryptographie keys, the

distribution of information on an entity's access rights, the reporting of both normal

and abnormal security events (audit trails) and service activation and

deactivation. [MIN089a]

In summary, security management functions include the creation, deletion

and control of security services and mechanisms; the distribution of security-relevant

information and the reporting of security-relevant events. lt also concerns security of

the network management system itself.

Management Areas 13

Network interface cards, cables and other low-level hardwares all have an

impact on the behaviour of a network. If an interface card is working improperly or a

cab le is not correctly terminated, errors may occur. In this case, the network will run

significantly more slowly due to retransmissions of mutilated and lost packets.

There is a number of ways to check if interface cards and cables are working

properly. Most network manufacturers include a basic diagnostic utility program

integrated within their hardware. These programs are able to detect severe errors.

For diagnosing cable problems, there is a wide range of tools available.

Different tools are available for copper-based (twisted pair or coaxial) networks and

for fibre optic networks. The four first ones described hereunder are aimed at copper

based networks and the other three ones at fibre optic networks. The last one is much

more powerful and it is not limited to the detection of physical-level problems.

The majority of the points developed in this section are borrowed from

Daniel Minoli [MIN089b].

1.3.1. Ohmmeter

An ohmmeter is a simple tool that gives impedance measurement. An

ohmmeter can be used to locate open or shorted cables. If the measured impedance

matches the rated impedance of the cable, the cable is fine. If it does not match the

rated impedance, then the network bas a short circuit, a crushed cable or a cable

break somewhere along the cable.

1.3.2. Outlet Tester

Sometimes the problem is not the cable but rather the electrical outlet. For

example, if an outlet is not grounded properly, noise or even current may be

introduced through the power supply into a workstation and then through the network

interface card onto the copper-based network cable. An outlet • tester can help detect

this type of problem.

Physical Level Tools 14

1. 3. 3. Oscilloscope

An oscilloscope allows to examine the cable's waveform. An oscilloscope

helps detect the existence of noise or other disturbances on the wire, such as

continuous voltage spikes.

1.3.4. Time Domain Reflectometer (TOR}

A time domain reflectometer operates by sending an electrical pulse over the

network cable, waiting for signal reflections. On a good cable there will be no

reflection. If there is a break or short circuit in the cable, the time it takes for the

pulse reflection to return gives the TDR a very accurate idea of where the fault is

located.

Fibre-based networks require different equipments. While they provide

significant advantages over conventional networks, the fibre networks necessitate

more sophisticated test equipment. Fibre optic instruments can be divided into three

categories: power meters, optical time domain reflectometers and optical bandwidth

test sets.

1. 3. 5. Power Meter

Power meters (or optical loss test sets) measure the optical power from a

length of fibre in much the same way that conventional power meters measure

electrical power. Two sets, both with transmit and receive capabilities, are used

together to make measurements in both directions. A light source, typically at the

point of origination, supplies the power which is detected at the end of the fibre link.

The meter displays the power detected in decibels.

1.3.6. Optical Time Domain Reflectometer (OTDR}

OTD Rs can be used to characterize a fibre wherein an optical pulse is

transmitted through the fibre and the resulting light scattered and reflected back to the

input is measured as a function of time. OTDRs are useful in estimating the

attenuation coefficient as a function of distance and in identifying the location of

defects and other losses. These devices operate on basically the same principles as a

copper-based TDR.

Physjcal Level Tools 15

1. 3. 7. Optical Bandwidth Test Set

Optical bandwidth test sets consist of two separate parts: the source, whose

output data rate varies according to the frequency of input current applied to the

source (specified by frequency range parameter); and the detector, which reads the

changing signal, determines the frequency response and then displays a bandwidth

measurement.

Another very important more sophisticated tool for fault management is the

protocol analyzer. Even if this tool is directly connected at the physical level to the

network, it is not only a physical level diagnostic tool.

1. 3. 8. Protocol Analyzer

A protocol analyzer is a specialized station that collects, analyzes and

dhl)lays the data circulating in a network cable. An analyzer allows to see everything

on the cable: PDUs1, messages, files, passwords.

A protocol analyzer is not limited to hardware or cabling fault diagnosis.

Using a protocol analyzer, it should be possible to find spurious broadcast packets,

routing errors, addressing errors, etc. The protocol analyzer allows to examine

packets where problems are occurring and it files information in a packet dump for

later retrieval. lt is then easier to track down the particular host or protocol which is

causing the problems. Good protocol analyzers are able to identify packets from many

different protocols and from every layer of each protocol. For example, they must be

able to identify packets from TCP/IP, OSI, DECnet, SNA, Appletalk, NFS and they

must be able to be placed on many supports (e.g. X25, Ethernet, Token Ring, etc).

If there is, for example, a broadcast storm, it is necessary to determine where

it cornes from. The analyzer is able to decode a packet to find the address of the

sender. Then, the location of the faulty device can be found thanks toits address. And

if the sender is known, it is possible, by decoding the packets, to see which

application program sends these packets.

1. Protocol Data Unit

Integrated Network Management Systems

1.4. I~tegrated Net~ork
Ma~agerne~t Systems

16

An integrated network management system (INMS) is a program or a

collection of programs which integrates a number of network management

fonctionalities within the same workstation or the same environment.

Graphical User Interface

Network Mânagement
Protocol Il

Communication Protocol

Operating System

Fig. 1.1: Integrated Network Management System

The major tools that compose an INMS are listed in the following points. As

shown in figure 1.1, two levels can be distinguished. The first level is composed of a

graphical user interface which provides an access to the other facilities. And the

second level contains all the other facilities, such as a DBMS, a topology DB builder,

an alarm manager, a devices polling entity, a traffic monitor, reachability tests, an

addresses monitor, a data query and values setting entity, a statistics monitoring and

computing entity, an encipherment manager, an access control and authentication

entity, an audit trail and a billing and accounting entity.

1. 4. 1. Graphical User Interface

It is necessary to provide an interface to access the management facilities.

This interface will enable to perform the management fonctions. "The overall fonction

of the human interface is to translate management information from the format

convenient for internai use into a format suitable for people to understand and to

translate commands and requests generated by a human into the form appropriate to

the service being managed. "[SLOM88]

The objectives of the user interface are: display of networks, near real time

updates of network status, interactive query of network information and interactive

control of network elements.[MEUN88] Tools should be able to display that

information to the user in a form that augments his/her ability to work with the data.

Integrated Network Management Systems 17

"A simple menu-driven system facilitates leaming of the functions, while a command

line mode allows the more accomplished user to by-pass the sometimes tedious

redisplays necessitated by the menus. "[MORR89]

The map representation should give a global view of all the structure of the

network with the different segments, the bridges, the gateways, routing devices, etc.

Sorne aspects of the presentation should be automatically changed (for example:

change the colour of a node if it is down) regarding the information registered in the

topology database. It should also be possible to obtain information about a node only

by clicking on it with the mouse (type, name of device, state, throughout rate, error

rate, etc).

Prompt

Menu 1

Network Title

Menu2

1--------1 TextForm
abcdefghij
123 xyz

Fig. 1.2: Graphical user interface

Clocks

Help

The major elements of a graphical user interface are shown in figure 1 . 2. The

different screen areas are the following ones: [MEUN88]

- the display area where the network is displayed,

- the context area which contains the title of what is being displayed in the dh-play
area, e.g. European OSI Network,

- the dock area which gives both the current time and the time of the last network
update,

- the prompt area which is used to interact with the system,

- the pull down menus which give the user choices between different commands,

Integrated Network Management Systems 18

➔ pop-up forms which appear when the user requests specific information or when the
system needs input from the user and

➔ graphical pop-up forms are used to graphically present data.

A graphical workstation is interesting because it is much more convenient to

work with a graphical representation of the network than, for example, with a file

describing the topology of the network. It is also easier to see that a node is down,

when its colour changes on the screen. Help screens are also needed because some

tools will not be used very often and help is more convenient than documentation for

rapid consultation.

Furthermore, other tools are needed to draw or edit the map, to add, delete,

move objects and also to search for objects (by name, by address, etc).

1.4 .2. Database

Database 1s a crucial resource for an Integrated Network Management

System. Databases are made to store information. And in rather large networks,

management information can run to a very respectable amount. That is why a good

Database Management System (DBMS) must be integrated in a network management

system. If possible, this DBMS must be well-known (e.g. Oracle) or must, at least,

be accessible by a well-known language (e.g. SQL2), in order to allow the network

responsible persons to write their own programs to exploit the recorded information

or to record information. For example, for report generation, no product can

anticipate all the different types of reports that may be requested of the data, so the

ability to extract information from the database via a user-written program is a

valuable asset.

Databases can be used for different applications in an INMS3. Sorne of the

different databases which can be considered are listed below.

The first application is a network inventory. For any large network, it is

vital to have an inventory of objects connected to the network so that effective steps

can be taken if an object gives problems. The inventory database should contain

information on all the equipments that are connected to the network or form parts of

it. This information is: the owner's name, the make and the type of the installed

2. structured Query Language
3• Integrated Network Management System.

Integrated Network Management Systems 19

devices, their location, the type of software used, etc. The database should serve as

directory of information for all classes of management but in particular as a tool for

the maintenance (search for the problems on the network, etc).

A second application of database is a topology database. This database

contains all the information necessary to display the map of the network topology. Its

information is the class of the devices, the map to which they belong, their places on

the map, their current status (up, down, inactive) and some information conceming

the traffic, for example, traffic passing through a link. This database will be directly

queried in order to display, on-line, the state of the network on the graphical user

interface.

Another application of databases in an INMS is the users directory. A list of

all the users can be very useful in many management areas. For example, this list

could be used in fault management to be able to determine the user of a faulty device

and where to find him. In accounting management, the invoices must be sent to the

users. Therefore, it is important to know where to send them, e.g. their E-mail

address. In security management, this directory could be used as repertory for

passwords and services that a user can employ and therefore be useful for the

authentication on the different computers of the network.

A vendor database is also of great importance in an INMS. This database

would contain information about the vendors, the maintenance contracts, the selling

contracts, people to contact, etc. This database would be very helpful in fault

management. When a fault occurs on a device, it will be easy to find its vendor and

then the maintenance contract, who to call to repair, etc.

The statistics database is the one in which all the information collected on

the network is saved. This information concems the measures done on the nodes but

also on the network itself. An example of the application of this database would be

the fault detection. Every hour, the error rates of all the devices are logged in the

database. Then, it is possible to detect that a device is causing more and more errors

on the network. This allows to repair the faulty device before it completely goes

down. The statistics database can also be used to help in the network planning. It

gives long-term figures in order to build graphs on the evolution of the network

traffic. And for example, this allows to determine that, if the traffic increases in a

part of the network, a new routing device is needed to reduce the traffic. A non

restrictive list of statistics which can be collected, could contain network load,

number of packets passing through devices, percentage of errors in the packets, etc.

Integrated Network Management Systems 20

Afaults database is also very useful in an INMS, especially for the solving

of later problems. This will mainly be helpful in the fault management area. The

faults database can be divided in two. The first part is the error log. This error log

con tains a history of all the alarms sent to the opera tors. And it can be used to help in

the resolution of problems on the network. For example, it can be useful when trying

to isolate a problem to see that it has been caused by several other problems that

occurred previously. The second part of the faults database can be called the

maintenance database. This would mainly be used by the maintenance people. It

contains, for each type of problem, the list of operations that should, in theory, be

performed to cope with it. For each problem, a trouble ticket is issued. A trouble

ticket contains information on the date and time of the problem, the nature of the

problem, the specific devices and facilities involved, any short-term actions taken to

relieve the problem and information such as visits from the vendor's maintenance

staff, dates on which parts were retumed for repair and the date of the problem's final

resolution. "The manager can call up reports on all trouble tickets that are

outstanding, are not solved within a given period and involve a specific device or

specific vendor. With such reports, a manager has an objective handle on such factors

as the reliability of a given component, the promptness of a given vendor's field

service. "[NM50-600-1]

A large variety of tools must be present to help managing this amount of

information. For example, tools are needed to manually add or delete records on the

databases. Other higher level tools should be available to query the databases with

questions like "Give me information about all workstations using protocol XXX in

building 31 " .

An important tool for an optimum use of the databases is the reports
generator. To exploit the amount of information (mainly statistics), reports are

needed. Reporting capabilities should support graphies. Graphies communicate

information much better than texts or numbers. "INMS reporting features should

include the ability to search on any field, sort in any order and subtotal in any way.

As nobody can know in advance all the reports that will be required from the INMS,

the INMS should include a generic report writer with which new reports can be built

as time goes on. "[NM20-300-l]

1.4.3. Topology DB Builder

For an INMS, an interesting tool is one that automatically builds a topology

database with the nodes that can be found on the network. To build the database, this

Integrated Network Management Systems 21

tool can inquire into currently existing sources of data, such as network routing

tables. It can also use promiscuous listening to the network traffic, looking at source

and destination addresses. Different programs can be used to build databases for the

different protocols used on the network. For example, in the case of a token ring

network running TCP /IP4, a program will be used to build a database containing all

the TCP /IP nodes. This pro gram will listen to all packets passing on the network and

decode them to find the TCP/IP ones. When it has found valid TCP/IP addresses, it

will be able to check the routing tables of the TCP/IP machines corresponding to the

found addresses in order to detect new TCP/IP addresses and so on.

1.4.4. Alarm Manager

Alarm management is a crucial facility that is indispensable in an INMS.
Networks are not completely reliable and, in some organizations, network down time

can be very expensive. Therefore, errors must be detected as soon as possible. The

operators must be alerted of an absolute failure and also of a degrading condition by

using a set of alarms. When a problem is detected, an alarm signal, usually a

message, must be displayed at the operator's console noting the type of

malfunctioning device, the location and the nature of failure. Systems with colour

displays use a special colour, usually red, for alarms. For example, if a line or a

device goes down, an alarm indication should be visibly displayed on the screen. The

map (or a part of it) containing the faulty object should be popped up and a window

with the actions to perform if the operator can solve the problem or with the people to

ad vise if he cannot solve it by himself, should be created.

The alarm indication should give information about all the events. The events

should also be saved on file and on paper to keep a trace of what happened. The

information is the date and time of the event, the type of event, the node or the line

that is concemed, the program that detected the problem and the alarm message which

explains the problem.

Automatic response to events is also a manner of not losing too much time

when an error occurs. In the case of rather frequent problems, sequences of actions

can be performed automatically by the INMS. For example, if the system detects that

a bridge is not working anymore, before sending an alarm to the operator, the alarm

manager can try to restart the bridge by itself and send a message to the operator to

4. Transmission Control Protocol/Internet Protocol.

Integrated Network Management Systems 22

explain what it has done. If this action does not work, then an alarm is displayed to

warn the operator.

1.4.5. Devices Polling

An important goal of a network management system is to detect if ail

important devices on the network are working perfectly. If an object stops working as

it should, somebody must be informed, to cope with the problem. Therefore, it is

important to check, at regular intervals, if every object is working well. This function

is in direct relation with the alarm manager. But, although the devices polling entity

generates many alarms, it is not the only source of alarms. There are two ways of

doing this.

The first way is the trap message. The object to which a problem occurs,

sends a message to a well-known program, a trap handler. The trap handler will

update the topology database if significant problems arise. But traps are not enough.

Since an object can be unable to send a trap message, e.g. if it is not working

anymore, another way must be used. A program can poil all important objects to

check if every of them is all right. That is the second way.

This program should, at regular intervals, sef!d requests to all devices. If one

device does not answer, the program knows that there is a problem. Then it updates

the topology database.

Nowadays, most networks are multivendor networks. Therefore there can be

different types of equipments on a network and, sometimes, different types of

protocols used by these equipments. A way for managing these objects is to use

several programs. The objects will be divided into classes regarding the different

protocols they support or the different makes. And a specific program will be run for

every class. For example, XXX program will be run for devices supporting the XXX

protocol, specific program for the equipments from one vendor, etc. All these

programs will send the information they gather to a centralization program or they

will directly update the topology database. This approach offers different advantages.

It allows to share the CPU load used by the polling between several machines. It

allows to easily modify a program if the protocol changes.

Integrated Network Management Systems 23

1.4.6. Traffic Monitor

In any network, bandwidth is an essential resource. Therefore, traffic should

be continually monitored in order to determine the traffic levels on the network. This

supervision can be made either on a line in the case of a point-to-point link or on a

complete network, e.g. in the case of an Ethernet network. On-line graphs of the

network traffic or the line load can be displayed on the graphical user interface. The

measures can also be logged in the statistics database. If the traffic or the load

becomes too high, the alarm manager must be wamed.

1.4. 7. Reachability Tests

The reachability test is indh'J)ensable for network testing, especially in a

multivendor environment. It allows to detect if a specified device is reachable from

the computer where the test has been performed. It consists in sending a packet and in

waiting if a response is sent back by the tested device. This test can be performed at

different levels. Three levels of testing can bring interesting information. The first

one is the data-link layer test. It provides a method for determining if a working data

link level path exists between two adjacent hosts. Another test is targeted at the

transport layer. This test allows additional levels of the communications layers to be

controlled. Many failures may pass the data-link test and fail at the transport layer.

Finally, the application layer test passes through the entire seven OSI layers. "This

function loops data from a user-level task on host system to another user-level task on

the target system and back. With the success of this test, the network manager is

assured that a usable link from the host node to the target system exists. "[MORR89]

1.4. 8. Addresses Monitor

The allocation of network addresses is a problem in most of the networks. In

theory, if a user wants to install, to move or to remove a device on the network, he

should ask the authorization to the network manager. This will enable the manager to

allocate addresses and to update the database with the location and address and with

the name of the person re~'J)onsible for the equipment. This is the only way to control

the allocation of addresses. However in reality, people rarely wam the manager of the

changes they make either for location moves or address changes. Therefore tools are

needed to detect these changes automatically, to inform the network manager and

prepare the databases for update.

Integrated Network Management Systems 24

On ail the network, addresses appearing on the packets must be registered.

This can be made by two means. The first one consists in adding equipments on every

part of the network to register the addresses of all the packets they detect. The second

means consists in using the tables built by network control devices. For example, the

leaming bridges build a table for their two interfaces to know if they must copy a

packet on the other side. The gateways build routing tables to know where to send the

packets they receive. The lists of addresses can be used to locate the different

positions of the devices. It is possible, with the lists of addresses and the positions of

the gateways and of the bridges, to know on which segment of the network an object

with a given address can be found. It is also possible to compare these locations with

the ones found in the database to detect all changes of the network topology.

Figure 1.3 gives the example of a small LAN composed of four Ethernet

segments connected by learning MAC-level bridges.

Nl N2 N3 N4

S 1 S2

1 1 2

Bridge 2 Bridge 3 Bridge 1

2 2

S3 S4

N5 N6 N7

Fig. 1.3: Small LAN composed of MAC-level Bridges

The bridges need address tables to know if a packet coming from one side

must be copied on the other interface. And by looking at the origin and destination

addresses of every packet, they are able to build tables like the one shown on figure

1.4.

In the above example, it is possible for a program, with the tables as input,

to determine that if the node N 5 appears on side 2 of bridge 2, on side 2 of bridge 3

and on side 2 of bridge 1, it is located on segment S 3.

Integrated Network Management Systems 25

Bridge 1 Bridge 2 Bridge 3
1 l 1 121 1 l 1 121 I l 1 121
N7 Nl Nl N5 N7 Nl

N2 N2 N6 N3 N2
N5 N3 N4 N5
N6 N4 N6
N3 N7
N4

Fig. 1.4: Routing tables of bridges

Every a<ldress detected is checked to see if it corresponds to a valid address

present in the database. The program should also check to see if two devices do not

have the same address. If so, there is an error in the a<l<lress allocation (duplication)

or there is an unofficial use of addresses. In this case, the network manager must be

advised.

1.4.9. Data Ouery and Values Setting

For an operator, information about the state of the objects or the behaviour of

the network and about how to react is sufficient. But the network manager needs

more. His task is more complex. If a problem occurs, the operator must only report

it. But the network manager must find from where the problem came and why it

occurred. Therefore, he needs detailed information about the hosts, the routers, the

bridges and the network itself. For example, he must be able to retrieve information

such as the number of messages that have been sent or received by a specific network

device.

Tools must be available to collect, on deman<l, information about the objects

on the network and to transform this information into a readable (graphs, ...) and

useful way. For example, errors counters are not useful if they are not transformed

into error rates, either errors/second or errors/packet.

Furthermore, to be effective, a system must not only give the ability to read

values but it must also allow to set values. The system must enable to modify the

value of the configurable parameters in the network components. It could be, for

example, very useful to modify routing tables, to change the value of a "reset"

parameter of a given device. This mechanism could be used, as a first problem

Integrated Network Management Systems 26

solving attempt, to remotely restart a device which causes too many routing errors due

to a software problem.

1.4, 10. Monitoring and Statistics Computing

Monitoring is the means by which management entities obtain information on

the system they are managing. In the management of a network, statistics on traffic,

throughput and error rates are very useful. These provide basic information on how

the network is performing. lt is possible to see if there is a slow deterioration of a

service. In addition, figures on the size of the network, on the services offered, the

number of different computers in the network, the quality of the service (current

problems, system reliability, etc) are needed for resource planning.

With all the data collected during a period of time, a program will calculate

statistics about the network (error rate, load, users, failures, etc) and about the nodes

(up/down time, maximum packet received per second, etc). The stored data can also

be used to compute, for example, the load of a line and to modify the topology

database. The manager must also be able to fix thresholds on variables. If the value of

a variable becomes higher than the corresponding threshold, an alarm should be

displayed.

Using the database, the user should be able to consult data about the history

of the network and automatically create tables, reports, graphies, etc. This will be

used to see the state and the evolution of the network and help the network planning.

1.4.11. Cryptographie Keys and Encipherment Manager

The cryptographie keys and encipherment manager mechanisms allow to

encipher the information exchanged between two or more entities. The encipherment

manager possesses a list with the different groups of entities that must talk to each

other in a secure manner. The encipherment manager generates, at given intervals,

keys as required and distributes them to the relevant entities in the system. The

manager also determines the encipherment parameters. For example, the

encipherment manager determines which encipherment algorithm must be used and

when this algorithm must be changed. lt must also distribute this information to the

relevant entities. An example of encipherment activity would be the access to a file

server containing secret information. The encipherment manager, every 15 minutes,

generates new cryptographie keys and it distributes them to the file server and its

Integrated Network Management Systems 27

authorized clients. By doing this, the access to the information is very difficult if not

registered in the manager's access tables.

1.4.12. Access Control and Authentication

Authentication is the mechanism by which a user identifies himself as a

legitimate user of the network. This is, in general, made by using passwords. Access

control is the mechanism by which the system controls which entity can access to

which resource on the network. This is, in general, implemented using access control

lists. The INMS allows to gather access control and authentication within a central

entity. Every time a user logs on in any computer of the network, instead of

authenticating the user with a local password, the computer will ask to the INMS if

the user is allowed to log on. This will have as advantage for the users to work with

only one password for all the services available on the network. And the mechanism

is nearly the same for access control. Every time an entity (user, program) wants to

access to a controlled service, the service asks the INMS if the entity is allowed to use

the service. The INMS checks its access lists to see if the entity is allowed to do so

and responds to the service that the access demand is accepted or rejected.

1.4. 13. Audit Trails

Security audit is needed to record ail exceptional events (e.g. attempts at

unauthorized access), normal events such as logs-on and file accesses to enable future

investigation in case of security problems. For an audit trait system to be effective, it

must provide the network manager with streamlined and useful information (rather

than mountains of raw data). The manager may wish to audit only certain users,

operations on files with certain extensions or in certain subdirectories, only certain

types of operations or certain servers. All file and directory creations, deletions and

renames may need to be reported. A system error log report, listing ail system error

messages to alert the network manager of potential problems, may be

advantageous. [MIN089d]

1.4.14. Billing and Accounting

Managers require accounting information to be able to charge for resources

used and to control costs incurred by accessing remote resources.

On each device fumishing payable network services, an accounting program

must be running. The accounting program must be able of maintaining statistics on all

Integrated Network Management Systems 28

calls and call attempts and these statistics should be adequate so that invoices can be

generated from them. Beside accumulating these statistics, the program will also "tell

each user at the end of the call, just how much that call has cost". The statistics are

stored in a database. The stored information is: the usemame, the source address, the

destination address, the date and time, the call statistics (call duration, number of

segments transmitted and received), the cost of the call.[DALL88]

Theo, another program, called billing program, is run once a given period.

This program retrieves the accounting information in the database and then generates

invoices from it automatically. The costs can also be combined on invoices with other

payable services such as printing costs, CPU usage costs, ...

I.,,.,,.•·•,.•', .• ,,.,, .• ,,.,,.,, .• ,,.,,.,, .• , .. ,,., .• ,, .• , ..• ,·.•,.•.· .. • .. ,., .• , ..•. '.•, ..• , .•.•.• , ...•.• , •.• ,·,•···:·:·••.·•, ç;-~~~g.·: i: } # -:r .• , •. •,·••::••:~·•·:.••·~.t .••. :.·.:.• .. ~.r .••.•.••.•. •.=.•.:.:.·•.••,

0

.-.•··•·(·E.:, •.• , •. :, •. ·.•·····:·•····d/4 :: .••.••. il •.•..• ,,.,, .•..• ,, .• ,,.,,.:.',.•·•,,•·•,.•',.•.·.·,.•:·,•,,•.,•:,.•,•,.•.·.,•,,•.•.• .. •,, .•.• ,,.,, .• , ..• , ..• ,, .• ,, .• ,, .• ,,.,,.•,, .• ,,.•:•,.··•:,.':.•·••,•·•,.::., .• ::•.·:• •. I _ ?) •J?:R(:►-9.l.t>~,tn:.>.XJ ... ~~.~•:~::•;Çt··· .

I :n. t ~ o d.-u. c::: t i o :n.

TCP/IP has been created in the US research community in response to a

problem. The problem was to allow a collection of heterogeneous computers and

networks to communicate. To solve this problem, it was decided to build a number of

protocols.

The protocol architecture is divided into four layers. The protocols are

derived from the ones developed by the Department of Defense (DoD). The

standardization entity which oversees the development of these protocols, is the

Internet Activities Board (IAB).

- The Network Access Layer describes the physical and data-link technologies used to
realize transmission at the hardware level. It is concerned with the exchange of data
between a host and the network to which it is attached. The protocol used at this
layer will depend on the type of the network, for example X21, X25, IEEE 802.

- The Internet Layer provides the routing function across several networks. It
describes the internetworking technologies in order to "forget" the different
physical technologies. The major protocol developed for the internet layer is termed
the Internet Protocol (IP).

- The Host-to-host (or Transport) Layer describes the end-to-end technologies to
realize communications between hosts. For this layer, two protocols have been
developed. The first one, the Transmission Contrai Protocol (TCP), provides a
reliable mechanism to transfer data between computers. Whereas the second one,
the User Datagram Protocol (UDP), provides only a non-reliable datagram-oriented
transfer mechanism.

- The Application Layer contains protocols that provide end-user services. Examples
of application protocols are the File Transfer Protocol (FTP), the Simple Mail
Transfer Protocol (SMTP), etc.

As has been seen above, the aim of the internet layer is to interconnect

different networks. This interconnection is realized through the Internet Protocol (IP).

IP allows a computer to send messages to another computer wherever it may be (the

TCP/IP 30

same or another network). A set of interconnected networks is called an Internet. An

example of internet is shown in figure 2. 1 .

OHost

□Router

Network 1

R3

Fig. 2.1: Example of Internet

R2

This internet is composed of three networks interconnected by three gateways

(or routers in IP language). The routers are responsible for choosing the best way to

reach the destination host and to transfer the messages between the different networks.

In an internet, the hosts are, thus, virtually connected to the same big network.

In general, ail the hosts in the internet must implement protocols from the

four layers to provide services to the users. On the other end, the routers are not

obliged to implement the four layers. Only the two first ones are needed because they

are only concerned with the routing of datagrams which is made at the internet layer.

Nevertheless, since network management takes place in many networks, the two

upper layers are fairly often found in routers, as they are needed for management. In

these routers, the Simple Network Management Protocol (SNMP) is running on top of

UDP.

In the rest of this chapter, the major TCP/IP protocols will be described.

After this introduction, the second section will concentrate on IP. The third one will

explain a protocol which is, in general, found with IP; the Internet Control Message

Protocol (ICMP) is used to report on the behaviour of the network. Section four and

section five explain the two host-to-host protocols, respectively UDP and TCP. Many

other protocols can be found in the TCP/IP protocol suite but they are not the subject

TCP/IP 31

of this paper. Figure 2.2 gives an idea of ail the protocols that can be found in the

suite.

TELNET SMTP FTP DNS SNMP

TCP UDP

EGP ICMP GGP

ARP /RARP IP ,__ _______ ______ _____.

Network Access

Fig. 2.2: The TCP/IP protocol suite

Next to the four protocols (IP, ICMP, UDP and TCP) that will be described

hereunder in the following points of this second chapter, many others can be found.

For example, the Telnet protocol allows a user to open a session on another

computer. There is the File Transfer Protocol (FTP) which allows to transfer files

between computers and the Simple Mail Transfer Protocol (SMTP) which allows

users to exchange electronic mail. Above UDP, the Domain Name Server (DNS)

protocol permits to translate high-level computer names to IP addresses and vice

versa. The Simple Network Management Protocol (SNMP), used to manage

networks, will be described, in detail, in the third chapter. At the internet layer, many

protocols help IP in its delivery task. For example, the Exterior Gateway Protocol

(EGP) is a way by which routers can exchange information about which networks are

reachable via a particular router. The Gateway-to-Gateway Protocol (GGP) is a

way by which routers exchange routing information. The Address Resolution

Protocol (ARP) and Reverse Address Resolution Protocol (RARP) provide a

mechanism to translate IP addresses into network specific addresses and vice versa.

Internet Protocol 32

2. 2. IP P:rc::,t.c::,cc::,l

"The internet layer is responsible for providing transparency over both the

topology of the internet and the transmission media used in each physical network

comprising the internet." [ROSE91]

To be supported by the majority of media technologies, the internet layer

must be as simple as possible. That is why the Internet Protocol bas been designed as

connectionless and for providing a non-reliable service. The aim of the internet

protocol is to transport PDUs called datagrams between any hosts in the internet. For

this, it provides a set of primitives toits users (layer above).

The service primitives are developed in the .first point whereas the structure

of an IP datagram are described in the second point. The last three points give a

description of important mechanisms that are part of the IP protocol. These

mechanisms are: addressing, routing and fragmentation. Other less important

mechanisms are explained during the presentation of the primitives or during the

presentation of the PDU.

2.2.1. IP Services

As IP provides a connectionless service to -the upper layers, there are no

needs for connection establishment and connection release primitives. Therefore only

two IP primitives are defined by the IP specification [RFC791] : IP-DATA.request

and IP-DATA.indication. These primitives are less precisely ~'J)ecified than, for

example, the corresponding protocol data unit (PDU) because the vendors must be

free to implement the layers in order to make them as efficient as possible. Only a

functional specification is given for the IP services. The primitive preceded by an

arrow pointing downwards represents a request primitive from the IP user to IP. And

the one preceded by an arrow pointing upwards represents an indication primitive

from IP to the IP user.

,1, IP-DATA.request (Source Address, Destination Address, Protocol, Type Of
Service, Identifier, Don't Fragment, Time To Live, Data length, Option Data,
Data)

t IP-DATA.indication (Source Address, Destination Address, Protocol, Data length,
Option Data, Data)

The parameters associated with the two primitives are : [ST AL89]

Internet Protoco1 33

➔ Source & Destination Addresses: Intemetwork (or IP) addresses of sending and
receiving IP entities. (see pt 2.2.3)

➔ Protocol: It identifies the recipient protocol entity. (an IP user, e.g. TCP or UDP)

➔ Type Of Service: It is used to specify the treatment of the data units during the
transmission. The indicators are precedence, reliability, delay and throughput.

➔ Identifier: It is used to identify the data units uniquely (along with the addresses
and the protocol).

➔ Don 't Fragment: It indicates whether the various IP routers can segment data to
accomplish delivery.

➔ Time To Live: Maximum lifetime of data within the internet.

➔ Data Length: Length of data being transmitted.

➔ Option Data: Options requested by the user. The currently defined options are:
security, source routing, route recording, stream identification and timestamping.

➔ Data: User data to be transmitted.

The use of the primitives and the general model of operation for transmitting

a data gram is illustrated in figure 2. 3.

Host A Host B

User User

TCP Gateway X TCP

IP IP IP

NAP-1 NAP-1 NAP-2 NAP-2

Fig. 2.3: Transmission of a datagram

In this example, data is sent from Host A to Host B. [RFC791, pp.5-6]

➔ The sending IP user (here TCP1) uses the IP-DATA.request primitive to ask the
sending of data across the network. (tl)

➔ The IP entity builds an IP datagram which includes the final intemetwork address.
It determines a local network address (here the local address of a router). (see
pt 2.2.4, the routing function)

1. TCP: Transmission Control Protocol

Internet Protocol 34

➔ The IP entity gives the datagrarn and the local network address to the local network
interface. (t2)

➔ The local network entity creates a data unit and sends it via the local network. (t3-
t4)

➔ When the data unit arrives at the router, the local network entity strips off the
header and tums the datagrarn over to the internet entity. (t5) By exarnining the
destination IP address, the IP entity determines that the datagrarn is to be
forwarded. lt deterrnines the local network address for the next IP entity and sends
the datagrarn to the corresponding local network entity. (t6)

➔ The local network entity creates a data unit and sends it via the local network to the
destination host. (t7-t8)

➔ At the destination host, the local network entity strips off the header and passes the
datagrarn to the IP entity. (t9)

➔ The IP entity deterrnines that the datagrarn is for an application prograrn in this
host. lt passes the data and other pararneters to the destination entity (here TCP).
For this, it uses the IP-DATA.indication primitive.(tlO)

2,2.2. IP Datagram

A protocol data unit sent between IP entities is called a DATAGRAM. lts

structure is shown in figure 2.4. The fields that are rnarked with an asterisk, corne

from or are derived frorn the IP-DATA.request primitive, whereas the others corne

frorn the IP entities thernselves.

H
e
a
d
e
r

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

VERSION! IHL !TYPE OF SERVICE TOTAL LENGTH

IDENTIFICATION FLAGSI FRAGMENT OFFSET

TIME TO LIVE 1 PROTOCOL HEADER CHECKSUM

SOURCE ADDRESS

DESTINATION ADDRESS

OPTIONS+ PADDING

DATA

Fig. 2.4: Internet datagram

The fields in the IP datagrarn are: [STAL89] & [RFC791]

➔ Version (4 bits): Version nurnber of the protocol.

➔ !HL (Internet Header Length) (4 bits): Length of the datagrarn header in 32-bit
words (IHL ~ 5).

Internet Protocol 35

➔ Type of service * (8 bits): The type of service field provides an indication of the
quality of service desired. The parameters are reliability, precedence, delay and
throughput. This type of service indication will be used by routers to select the
transmission parameters for a particular network, to select the network to be used
for the next hop or to select the next router when routing an internet datagram.

➔ Total length (16 bits): Length of the datagram measured in octets.

➔ Identification * (16 bits): The identification field, together with the addresses and
the user protocol, uniquely identifies a datagram.

➔ Flags (3 bits): The first bit of the flag is unused. The second, the Don't Fragment
(DF) flag (*), if set, prohibits fragmentation. The third one, the More Fragment
(MF) flag is used for fragmentation and reassembly.

➔ Fragment Offset (] 3 bits): If the datagram has been fragmented, the fragment offset
field indicates where in the primitive datagram this fragment belongs. It is
measured in 64-bit units.

➔ Time to Live * (8 bits): The Time to Live field indicates the maximum time the
datagram is allowed to remain in the internet. It is an indication of an upper bound
on the lifetime of a datagram. "It is set by the sender of the datagram and reduced
at the points along the route where it is processed. If the time to live reaches zero
before the internet datagram reaches its destination, the internet datagram is
destroyed. The time to live can be thought of as a self destruct time
limit. "[RFC791]

➔ Protocol * (8 bits): The protocol field indicates the upper level protocol used in the
data portion of the datagram.

➔ Header Checksum (16 bits): Frame check sequence on the header only (except the
header checksum field). It is used to perform error detection. When an IP entity
receives a datagram, it recomputes the checksum. If it is not the same as the one in
the header checksum field, then the datagram is discarded. The header checksum is
recomputed each time the header is modified. For example, it must be recomputed
when the Time to Live changes or when the datagram is fragmented.

➔ Source Address * (32 bits): It represents the IP address of the sending IP entity.
(see pt 2.2.3)

➔ Destination Address * (32 bits): It represents the IP address of the recipient IP
entity. (see pt 2.2.3)

➔ Options * (variable): The options field encodes the options requested by the sender.
(see IP services) "The options provide for control fonctions needed or useful in
some situations but unnecessary for the most common communications. The options
include provisions for timestamps, security and special routing. "[RFC791]

➔ Padding (variable): The header padding is used to ensure that the internet header
ends on a 32-bit boundary.

➔ Data * (variable): The data field contains the data given by the IP user to be sent.
It must be a multiple of eight bits in length. Total length of a datagram is a
maximum of 65,535 octets.

Internet Protocol 36

2 ,2, 3. Addressing

An IP address is a quantity of 4 octets (32 bits). lt is divided into two fields:

a network number and a local address. The network number refers to a particular

physical network in an internet and the local address refers to a particular device

attached to that physical network. A flexible scheme for allocating the 32 bits bas

been developed. IP addresses are divided into 5 classes, of which only three are

used.[ROSE91]

CLASSA
1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

joj NETWORK LOCAL ADDRESS

Class A specifies a small number of networks with a large number of hosts.

This corresponds to 128 Class A networks, each containing up to 16777214 hosts.

CLASS B
1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

NETWORK LOCAL ADDRESS

Class B specifies a moderate number of networks with a moderate number of

hosts. This corre~'J)onds to 16384 Class B networks, each containing up to 65534

hosts.

CLASS C
1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

j 1 1 0 1 NETWORK I LOCAL ADDRESS 1

Class C specifies a large number of networks with a small number of hosts

(2097152 networks with up to 254 hosts). And in addition, there exist two other

classes which remain unused.

CLASS D
1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

j111 oj FORMAT UNDEFINED

Internet Protocol 37

CLASSE
1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

11111 ol FORMAT UNDEFINED

In each class, two values for the host-identifier are reserved for a special

purpose. If all the bits are zero, then the resulting quantity refers specifically to the

network identified in the IP address. And, if all the bits are one, then the IP address

refers to all hosts attached to the network (the IP broadcast address).

To be easily understood by humans, the dotted quad notation is used for the

representation of addresses. Each octet is expressed as a decimal number, separated

by a dot. For example, a computer which has the local address 51274 and is

connected to the class B network 397 would have the following address.

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

11olooooo11ooo11o1111 o o 1 o o o o 1 o o 1 o 1 oj

1 Network Number = 397 1 Local Address = 51274 1

And in dotted quad notation, this address would be expressed by

129.141.200.74 .
.-11_0_0_0_0 _0_0_1...,..I 1_0 _0_0_1_1 -o-1T""I 1_1_0_0 _1_0_9_0_,,.l-0 _1_0_0_1 -o -1--,01

1 Octet 1 = 129 1 Octet 2 = 141 1 Octet 3 = 200 1 Octet 4 = 74 1

The two-level addressing seems sufficient. But in practice, it is impossible

for a site to have more than one physical network (identified by the network number).

If a site is running several physical ne_tworks, then it needs several IP network

numbers, one for each physical network. This solution is not interesting since it

increases the number of networks and the address space is of limited length. A better

solution is to introduce a three-level addressing. "This allows each site to partition the

host-identifier portion of their IP network address. A network so sub-partitioned is

termed a subnet. "[ROSE91] From the outside, the IP address appears to have two

components, the network and host identifiers. Inside the site using subnets, the host

identifier is divided into two parts: a subnet-number and a host-number. The subnet

number refers to a particular physical network within the site's IP network and the

host-number refers to a particular device on that subnet. To <livide the host-identifier

between the subnet- and host-numbers, a subnet mask is used. "The subnet mask is a

32-bit quantity which is logical-ANDed with an IP address in order to derive the

actual physical network being identified. "[ROSE91]

Internet Protoco1 38

An example of the use of a subnet mask is shown in figure 2.5.

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

j1olooooo11ooo11o1111 o o 1 o o o o 1 o o 1 o 1 o!

1 Network Identifier= 397 1 Host Identifier= 51274 1

Subnet mask

l1!1!1!1!1!1l1l1l1l1l1l1l1l1l1!1l1l1l1l1!1l1l1!1l1l1lolololololol
1 Octet 1 = 255 1 Octet 2 = 255 1 Octet 3 = 255 1 Octet 4 = 192 1

11olooooo11ooo11o111 o o 1 o o o o 110 o 1 o 1 o!

1 Network Identifier= 407321 !Host Id.=lOJ

1 Network = 397 1 Subnetwork = 801 JHost Id.=10I

Fig. 2.5: Use of subnet mask

As the dotted quad notation is also used for subnet masks, this one would be

255.255.255.192. From the outside, the address will remain the same,

129.141.200.74 and refer to computer 51274 in class B network 397, as in the

preceding example. But from the inside, the meaning bas changed. The address refers

to host 10 in the network 407321 or to host 10 in the subnetwork 801 from class B

network 397. Network 397 appears to have 1024 subnetworks, each able to contain 64

devices. Thus, within this site, networks 406528 (for subnetwork 0) to 407551 (for

subnetwork 1023) are available.

Thus, the two-level addressing (network identifier, host identifier) bas

become, with subnet masks, a three-level addressing (network identifier, subnet

identifier, host identifier).

2.2.4. Routing

The routing problem concems the choice about the way that the IP datagrams

must take to reach their destination. The IP modules must decide to which router or to

which host the datagram must be transmitted. This is called the "next hop". This

problem is not invoked in the protocol specification [RFC791] .

Routing can be either direct or indirect. "If the destination is on the same IP

network, then the next hop is the destination IP address. This is termed direct routing.

Otherwise, the next hop must be to a router, on the same IP network as the local

device, which is somehow "doser" to the destination device. This is termed indirect

routing. "[ROSE91]

Internet Protocol 39

Each network device (router, host) maintains a routing table. The routing

table gives, for each possible destination network, the next router to which the IP

datagram should be sent. The routing table may be static or dynamic. A static table

contains fixed routes to predefined destinations. A dynamic table is more flexible in

responding both to error and congestion situations. For example, when a router goes

down, all of its neighbours will send out a status report. This allows other devices to

update their routing tables. This mechanism can also be used to control congestion.

"Usually both hosts and routers start with some initial configuration

information on stable storage. Then, they dynamically learn about the network

topology through protocol interactions (see other protocols of the suite). In addition,

there is also the notion of a default route, which can be used to reach a destination if

its IP network is not in the routing table. "[ROSE91]

2.2.5. Fragmentation and Reassembly

An Internet is composed of many individual networks with their

particularities. One of the particularities is the maximum packet size, also called

maximum transmission unit (MTU). It would be impossible to fix a uniform packet

size across the networks. Therefore, routers must, if necessary, be able to fragment

datagrams into smaller segments before transmitting them. The reassembly of the

fragments can be made at different moments. A solution is to make the reassembly

only at the destination. Another solution is to make the reassembly as soon as possible

in the routers. The second solution has the disadvantages that the routers need larger

buffers and that dynamic routing is prohibited, whereas the principal disadvantage of

the first is the reduced efficiency of the networks which must transmit many small

datagrams. The first solution, reassembly at the destination host, has been chosen for

IP.

A. Fragmentation

The fragmentation of an internet datagram follows the process described

below. An internet protocol entity creates new internet datagrams and copies the

contents of the internet header fields from the initial datagram into the new internet

headers. The data of the initial datagram is divided into portions. The first portion of

the data is placed in the first new internet datagram and the total length field is set to

the length of the first datagram. The more-fragment flag is set to one. The second

portion of the data is placed in the second new internet datagram and the total length

field is set to the length of the second datagram. The more-fragment flag is set to

Internet Protocol 40

one ... The last portion of the datais placed in the last new internet datagram and the

total length is set to the length of the datagram. The more-fragment flag carries the

same value as the initial datagram. The fragment offset field of the new internet

datagrams is set to the value of that field in the initial datagram plus the total number

of blocks copied in the preceding fragments. [RFC79 l]

An example of Fragmentation Procedure

An example of a fragmentation procedure is shown in figure 2.6. This

procedure has been given, as an example, in the IP standard [RFC791]. The option

chosen here is to eut the datagram into two non-equal parts. The length of the first

one is equal to the maximum packet size and the second one contains the rest of the

datagram. This last is _reduced, if necessary, using the same process. Another option

would have been to eut the datagrams into two equal parts and redo this until the

length of each part is smaller than the maximum packet size.

~TL <MTU

?---_DF- 1

SUB- Produce the First Fra,zment
MIT D Coov the ori1Zinal header

THE
I OIHL <- IHL OTL <-TL
s OFO <-FO OMF<-MF

FRAG-
C NFB <- (MTU - IHL *4) / 8
A Attach the first NFB * 8 data octets MENT R Correct the header

TO
D MF<- 1; TL<- (IHL*4) + (NFB*8)

D
Recompute Checksum

THE A Submit the fragment to layer below

T Produce the Second Fra~ment
LAYER A Copy the header (selectively)

Annend the remainin!Z data G
BELOW R Correct the header

A IHL <- (((OIHL*4)-(length of options
M not copied))+3)/4

TL<- OTL -NFB*8 - (OIHL-IHL)*4)
FO <- OFO + NFB
MF<-OMF
Recompute Checksum

Repeat Until (last fragment submitted) or (datagram discarded)

(O)FO = (Old) Fragment Offset
(O)IHL=(Old) Internet Header

Length
(O)MF = (Old) More Fragment flag
(O)TL = (Old) Total Length
DF = Don't Fragment flag
NFB = Number of Fragment Black
MTU = Maximum Transmission Unit

Fig. 2.6: Fragmentation Procedure

Else

E

Internet Protoco1 41

When an IP entity attempts to send the datagram, it checks the MTU of the

network. If the MTU is greater than or equal to the total length of the datagram, then

no further processing is required and the datagram is passed to the layer below.

Otherwise, the IP entity checks to see if the flags field in the datagram permits

fragmentation. If not, the datagram is discarded. Otherwise, the IP entity cuts the

datagram into two fragments, the first fragment being the maximum size and the

second fragment being the rest of the data gram. The fragment offset field contains a

number corresponding to where the user-data belongs, in 8-octet increments, in the

original datagram. Then, for each fragment, except for the last in the sequence, the

more fragments bit is set in the flags field. The first fragment is submitted to the layer

below to be transmitted, while the second fragment is submitted to this procedure in

case it is still too large.[RFC791] & [ROSE91]

B. Reassembly

The reassembly of a fragmented IP datagram is performed by the IP module

at the destination computer. "To reassemble the fragments of an internet datagram, an

internet protocol module combines internet datagrams that all have the same value for

the four fields: identification, source, destination and protocol. The combination is

dune by placing the data portion of each fragment in the relative position indicated by

the fragment offset in that fragment's internet header. The first fragment will have the

fragment offset zero and the last fragment will have the more-fragments flag reset to

zero. "[RFC791]

An examRle Reassembly Procedure

An example of a reassembly procedure is shown m figure 2.7. This

procedure bas been introduced in the IP specification [RFC791].

A datagram is identified by its source and destination addresses, its protocol

and its identification field. The concatenation of these four values is termed the buffer

identifier (BUFID).

If the received datagram is a whole datagram (FO = 0 & MF = 0), then the

datagram is directly forwarded to the layer above and reassembly resources, if already

allocated, are released.

If the received datagram is not a whole datagram and if no other fragment

with this buffer identifier has already arrived, then reassembly resources are allocated.

Internet Protocol 42

The reassembly resources consist of a data buffer, a header buffer, a fragment block

received bit table (RCVBT), a total data length field and a timer. The data from the

fragment is placed in the data buffer according to its fragment offset and length and

bits are set in the fragment block received bit table corresponding to the fragment

blocks received.

BUFID <- Source, Destination, Protocol, Identification
Tuen

Allocate reassembly resources
with BUFID

1-----__,J.,,:::.._ _ ___:~ TIMER <- TLB

Submit the Datagram
to the Layer Above

TDL<-0
Put Data from fragment into data buffer with BUFID
from octet FO*8 to octet FO*8 + (TL-(IHL *4))

TL <- TDL + (IllL *4) TIMER <- MAX (TIMER. ffi)
Submit datagram to

the layer above While (TIMER > 0)
Free reas.sembly & (no next fragment)

resources for BUFID

Repeat Until (TIMER = 0) or (datagram submitted)

T TIMER=O E
Flush ail reassembly for this BUFID

BUFID = BUFfer IDentifier
FO = Fragment Offset
IHL = Internet Header Length
MF = More Fragment flag
RCVBT = frag. block ReCeiV ed Bit Table
TDL = Total Data Length
TL = Total Length
TLB = Timer Lower Bound
TTL = Time To Live

Fig. 2.7: Reassembly Procedure

If the received fragment is the last one (MF = 0), the total data length (TDL)

can be computed. If the fragment is the first one (FO = 0), its header is placed in the

header buff er.

Internet Protocol 43

If all fragments are received (all RCVBT bits set to one), then the total

datagram length (TL) is calculated, the datagram is passed to the layer above and

reassembly resources are released.

Otherwise, the procedure waits until the timer expires or a new fragment

arrives. If no new fragment arrives within a given time (TIMER = 0) or if the whole

datagram is reassembled then the procedure stops. If the timer runs out, resources are

released and the datagram is lost.[RFC791]

Internet Control Message Protocol 44

ICMP P:rotocol

The Internet Control Message Protocol (ICMP) is, in general, associated with

each IP module. ICMP provides a low-level feedback on how the internet layer is

operating and how it might behave. ICMP provides a small number of control

messages for error-reporting. And even if they are at the same level, ICMP uses the

delivery services of IP.

The ICMP module is activated each time the IP module detects an error or an

event for which an ICMP message bas been foreseen. The ICMP entity builds this

message and gives it up to the IP module which sends it into the data field of an IP

datagram to the entity which causes the problem.

The ICMP packet contains five different fields. Its format is given in figure

2.8.

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

TYPE
1

CODE
1

CHECKSUM

PARAMETERS

INFORMATION

Fig. 2.8: ICMP Message

The meaning of the fields is straight-forward:

➔ Type (8 bits): Identifies which control message is being sent.

➔ Code (8 bits): Identifies a basic parameter for the control message.

➔ Checksum (16 bits): Checksum computed over the entire ICMP packet.

➔ Parameters (32 bits): Used to specify more lengthy parameters.

➔ Information (variable): Provides additional information related to the message. In
general, for errors concerning a particular IP datagram, the beginning of this
datagram is copied in the information field of the related ICMP message.

The control messages supported by ICMP include:

➔ Destination unreachable: This message is used in different circumstances. It is used
to report that a datagram could not be delivered because a network or a host was
unreachable, a protocol was not running or fragmentation was necessary but
disallowed by the flags field.

Internet Control Message Protocol 45

➔ Time exceeded: This message is sent to report that the time to live field of a
datagram reached zero and that it has been discarded. A host can send this message
if it cannot complete reassembly within a given time.

➔ Parameter problem: This message is used to report an error in an IP header.

➔ Source quench: The source quench message is used to report that a network device
is discarding datagrams due to lack of resources (e.g. buffers). It provides a
rudimentary form of flow control.

➔ Redirect: This message is used to advise of a better route to a destination IP
address.

➔ Timestamp/timestamp reply: These messages are used to sample the delay in the
network between two network devices.

➔ Information requestlinformation reply: These messages are used by a host to
discover the address.of the local IP network.

➔ Address mask request/address mask reply: These messages are used to determine
the subnet mask associated with the local IP network.

➔ Echo/echo reply: These messages are used to test the reachability of an IP address,
to test the communication between two hosts. An echo message is sent and when
receiving such a message, the local IP entity responds by sending an echo reply
message.

A useful network management tool can be built with ICMP messages.

This program is called Packet INtemet Groper (PING). To test reachability

of destinations, the PING program sends an ICMP echo message to an IP address and

awaits an echo reply message. By repeating this operation, PING can be used to

observe variations in network round-trip times and loss rates. This is useful to

discover the source of network congestion. Furthermore, it can be combined with IP

header options such as Source Routing and Record Routing to write other powerful

programs in order to isolate network problems.

User Datagram Protocol 46

2-4- UDP Protocol

At the IP layer, an address identifies a router or a host. It corresponds, in

OSI language, to a Network Service Access Point (NSAP). The User Datagram

Protocol (UDP) adds a mechanism to distinguish between different destinations within

a given host. This mechanism is a port addressing capability.

A port identifies a program executing on a machine and is equivalent to a

Transport SAP. Whereas at the internet layer, an address is sufficient to de li ver

datagrams, at the UDP layer, a socket is needed. A socket is composed of an internet

address (32 bits) and a port number (16 bits). Thus, a socket is a quantity of 48 bits.

Because two computers need to agree on port numbers before they can

cooperate, a universal assignment mechanism must be used. An authority assigns

some special port numbers. These are called well-known ports. For example, if a file

has to be transferred between two computers, the two TFTP (Trivial File Transfer

Protocol) programs know that the port number of the peer program is 69.

The UDP provides a procedure for application programs to send messages to

other programs with a minimum of protocol mechanism. It provides a connectionless

service. An example of the use of UDP is in the context of network management.

UDP sits on top of IP. Therefore it has very little to do. It provides the same

unreliable, connectionless datagram delivery semantics as IP. UDP messages can be

lost, duplicated or arrive out of order.

In summary, "the User Datagram Protocol (UDP) provides unreliable

connectionless delivery service using IP to transport messages between machines. It

adds the ability to distinguish among multiple destinations within a given host

computer. "[COME91]

The first two points of this section will present respectively the service

primitives and the format of the UDP datagram, while the last point will describe the

only additional mechanism provided by UDP, the checksum computation.

2.4. 1. UDP Primitives

As UDP provides a connectionless service to the upper layers, there is no

needs for connection establishment and connection release primitives. Therefore only

User Datagram Protocol 47

two UDP primitives are defined: UDP-DATA.request and UDP-DATA.indication.

The primitive preceded by an arrow pointing downwards represents a request

primitive from the UDP user to UDP. And the one preceded by an arrow pointing

upwards represents an indication primitive from UDP to the UDP user.

i UDP-DATA.request (Source Address, Destination Address, Source Port,
Destination Port, Protocol, Type Of Service, Data length, Option Data, Data)

t UDP-DATA.indication (Source Address, Destination Address, Source Port,
Destination Port, Protocol, Data length, Option Data, Data)

The parameters associated with these primitives are the same as the ones

defined for the IP primitives. The two new parameters (Source Port and Destination

Port) represent the port number of the originating and destination UDP users.

2.4.2. UDP Datagram

The structure of the UDP datagram is shown in figure 2.9. To be transmitted

on the network, a UDP datagram is included in the DATA field of an IP datagram

(see fig. 2.4). The fields that are marked with an asterisk, corne from or are derived

from the UDP-DATA.request primitive, whereas the others corne from the UDP

entities themselves.

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

SOURCE PORT DESTINATION PORT

LENGTH CHECKSUM

DATA

Fig. 2.9: UDP Datagram

The meaning of the fields is the following:

➔ Source Port * (16 bits): Source Port is an optional field, when meaningful, it
indicates the port of the sending process and may be assumed to be the port to
which a reply should be addressed in the absence of any other information. If not
used, a value of zero is inserted.

➔ Destination Port * (16 bits): Destination Port has a meaning within the context of a
particular internet destination address.

➔ Length (16 bits): Length is the length in octets of this user datagram including the
header and the data. (This means the minimum value of the length is eight.)

User Datagram Protocol 48

➔ Checksum (16 bits): Checksum on a pseudo-header of information from the IP
header, on the UDP header and the data, padded with zero octets at the end (if
necessary) to make a multiple of two octets.

➔ Data * (variable): The data field contains the data given by the UDP user to be
sent.

2.4.3. UDP Checksum

UDP does not compute its checksum in the usual way. Before calculating the

sum, UDP prefixes a pseudo-header to the datagram. The purpose of using a pseudo

header is to verify that the UDP datagram has reached its correct destination.

This verification is justified by the following reasoning. "The correct

destination consists of a specific machine and a specific protocol port within that

machine. The UDP header itself specifies only the protocol port number. Thus, to

verify the destination, UDP on the sending machine computes a checksum that covers

the IP addresses as well as the UDP datagram. At the ultimate destination, UDP

software verifies the checksum using the IP addresses obtained from the header of the

IP datagram that carried the UDP message. If the checksums agree, then it must be

true that the datagram has reached the intended destination host as well as the correct

protocol port within that host. "[COME91]

The pseudo-header is described hereunder, in figure 2.10.

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

SOURCE ADDRESS

DESTINATION ADDRESS

EMPTY
1

PROTOCOL
1

UDP LENGTH

Fig. 2.10: UDP Pseudo-header

The fields of the pseudo-header are relatively self-explanatory: the empty

field is simply a zero-valued octet, the protocol field is the value used by IP to

identify UDP (17 decimal) and the UDP length field is the length of the UDP packet.

TCP also uses this 96-bit pseudo-header in its checksum calculation when achieving

user-data integrity. [ROSE91]

To compute the checksum, UDP first stores zero in the checksum field, then

computes a 16-bit one's complement surn of the entire object, including the pseudo

header, UDP header and user data. After that, it stores the sum in the checksum field.

Note that the pseudo-header is not transmitted with the datagram.

Transmission Control Protocol 49

TCP is a transport protocol. But, unlike UDP, it provides a reliable

mechanism for the exchange of data between processes in different computers.

Reliable mechanism means, for a host to host protocol, that data are

delivered error free, in sequence, with no loss or duplication. A reliable mechanism

was needed because the lower level is fundamentally unreliable and the higher level

applications need to send large volumes of data. If the service is not reliable, error

detection and recovery have to be build in each application program. So, a general

purpose solution to the problem of providing a reliable stream delivery, has been

developed in the form of the TCP protocol.

TCP is a connection oriented protocol. This means that the data transfer must

be preceded and followed by connection establishment and connection termination

phases. As already seen with UDP, a process within a host using TCP services is

identified with a PORT (called TSAP in OSI). A port, when concatenated with an

internet address, forms a 48 bit SOCKET, which is unique throughout the internet.

When two TCP entities communicate, the exchanged units of data are termed

segments. Segments are interpreted relative to a connection. In TCP, a connection is

defined as the pairing of the two internet sockets. This 96-bit quantity uniquely

identifies the connection in an internet. Two simultaneous connections cannot take

place between the same pair of sockets.

TCP adds functionalities to the protocols presented above, but its

implementation is also much more complex. To describe these functionalities, the

same structure as in IP and UDP, will be used. The first point will explain the

different service primitives. The second one will present the TCP segment and the last
point will give a description of the mechanisms used during the three communication

phases.

2. 5 .1. TCP Service Primitives

The TCP service primitives are ri cher than those provided by IP. The set of

primitives and parameters is considerably more complex. As in every connection

oriented protocol, three classes can be identified: connection establishment, data

transfer and connection release. A fourth class is used to report on errors and status.

The primitives will be presented using this structure. The primitives preceded by an

arrow pointing downwards represent request primitives from the TCP user to TCP.

Transmission Control Protocol 50

And the ones preceded by an arrow pointing upwards represent indication primitives

from TCP to the TCP user. A functional definition of the primitives is given m

[RFC793]. The interface given hereunder is derived from the one proposed in

[STAL89].

A. Connection establishment

i TCP-PASSIVE OPEN.request (source port, [destination port], [destination
address], [timeout], [timeout-action], [precedence], [security-range])

i TCP-ACTIVE OPEN .request (source port, destination port, destination address,
[timeout], [timeout-action], [precedence], [security-range], [data], [data length],
[Push flag], [Urgent flag])

t TCP-OPENID.indication (local connection name, source port, destination port,
destination address) .

t TCP-OPEN FAILURE.indication (local connection name)

t OPEN SUCCESS.indication (local connection name)

B. Data transfer

i TCP-DATA.request (local connection name, data, data length, Push flag, Urgent
flag, [timeout], [timeout-action])

t TCP-DATA.indication (local connection name, data, data length, Urgent flag)

C. Connection termination

i TCP-CLOSE.request (local connection name)

i TCP-ABORT.request (local connection name)

t TCP-CLOSING.indication (local connection name)

t TCP-TERMINATE.indication (local connection name, description)

D. Status and Error reporting

i TCP-STATUS.request (local connection name)

t TCP-STATUS.indication (local connection name, source port, source address,
destination port, destination address, connection state, receive window, send
window, amount awaiting ACK, amount awaiting receipt, urgent state, precedence,
security, timeout)

t TCP-ERROR.indication (local connection name, description)

The signification of the parameters associated with the different primitives is

obvious.

Transmission Contro1 Protoco1 51

2,5,2, TCP Segment

A protocol data unit sent between TCP entities is called a SEGMENT. Its

structure is shown in figure 2.11. To be transmitted on the network, a TCP segment

is included in the DATA field of an IP data gram (see fig. 2. 4). The fields that are

marked with an asterisk, corne from or are derived from TCP request primitives,

whereas the others corne from the TCP entities themselves.

H
e
a
d
e
r

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

SOURCE PORT DESTINATION PORT

SEQUENCE NUMBER

ACKNOWLEDGEMENT NUMBER

OFFSET! RESERVED 1 FLAGS WINDOW

CHECKSUM URGENT POINTER

OPTIONS . PADDING .
USER-DATA

Fig. 2.11: TCP Segment

The fields in the segment are: [STAL89] & [RFC793] & [COME91]

➔ Source Port* (16 bits): The source port number.

➔ Destination Port* (16 bits): The destination port number.

➔ Sequence Number (32 bits): The sequence number of the first data octet in this
segment.

➔ Acknowledgement Number (32 bits): If the ACK bit of the flags field is set, this
field identifies the sequence number of the octet that the sender of the segment is
expecting to receive next.

➔ Offset (4 bits): The length of the segment header in 32 bit words.

➔ Reserved (6 bits): Reserved for future use.

➔ Flags (6 bits): Control bits indicating special functions for this segment: URG *:
Urgent pointer field is valid, ACK: Acknowledgement field is valid, PSH *: This
segment requests a push, RST: Reset the connection, SYN: Synchronize sequence
numbers, FIN: No more data from sender.

➔ Window (16 bits): The number of data octets which the sender of this segment is
willing to accept.

➔ Checksum (16 bits): A one's complement sum, computed over a pseudo-header and
the entire TCP segment. (see UDP checksum)

Transmission Contro1 Protoco1 52

- Urgent Pointer * (16 bits): If the URG bit is set in the flags field, then this field
when added to the sequence number field indicates the first octet of non-urgent
data.

- Options (variable): The only currently defined options is the maximum segment
size that will be accepted.

- Padding (variable): The TCP header padding is used to ensure that the TCP header
ends and data begins on a 32 bit boundary.

- Data * (variable): User-data to be sent.

2. 5. 3. TCP Mechanisms

This part explains the different mechanisms used to transfer data from a local

TCP user to a remote TCP user. The three points give a description of the

transmission operations in a connection oriented protocol: connection establishment,

data transfer and connection termination. The second point, data transfer, explains

more particular mechanisms. These mechanisms enhance the basic service offered by

TCP. That is, for example the case for the urgent data mechanisms. Or they also fill

in the gaps left by IP. That is the case for the retransmission and the flow control

mechanisms. To easily understand the connection establishment and connection

release mechanisms, astate diagram is given in the TCP specification [RFC793]. This

diagram is reproduced in figure 2.12.

Transmission Control Protocol

1
CLOSED

passive OPEN
create TCB

1
LISTEN

rcv SYN
snd SYN,ACK

SYN rcv SYN

1
1

1

CLOSE
delete TCB

CLOSE
1 delete TCB

SEND
snd SYN

SYN

acti
cre

ve OPEN
ate TCB
d SYN sn

RCVD snd ACK, SYN SENT

rcv ACK of SYN rcv SYN,ACK
... snd ACK

CLOSE
1

ESTAB
1 snd FIN

CLOSE rcv FIN
snd FIN snd ACK

1

FINWAIT-1 CLOSE WAIT

rcv ACK of FIN rcv FIN CLOS
... snd ACK

E
N-snd FI

FINWAIT-2
1

CLOSING
1

LAST ACK

rcv FIN
rcv ACK of FIN rcv AC K of FIN

...
snd ACK

1
-------,

TIME WAIT 1 tirneout I CLOSED ,
1 1 delete TCB L ______ ..!

Fig. 2.12: TCP State Diagram

A. Connection establishment

53

The protocol interaction used to set up a logical connection between two TCP

users is termed a three-way handshake. To keep state information relating to a

connection, each TCP entity maintains a Transmission Control Block (TCB). "This is

created during connection establishment, modified throughout the life of the

connection and then deleted when the connection is released. "[ROSE91] It serves in

specifying the characteristics to be used for all data transfers on the connection and it

enables each TCP entity to maintain state information conceming the

connection. [ST AL89]

Transmission Control Protocol 54

The values given in parentheses represent the states of the two TCP users

which want to establish a connection. The first one is the originator and the second

one is the destination. In the first case, the two entities do not want to establish a

connection at the same time. The mechanism of three-way handshake for

connection establishment is illustrated in the diagram of figure 2.13.

TCP user TCP TCP TCP user

TCP-ACTIVE OPEN TCP-PASSIVE OPEN

CLOSED CLOSED

TCP-OPENID

LISTEN

SYN SENT TCP-OPEN SUCCESS

SYNRCVD
TCP-OPEN SUCCESS

ESTAB

ESTAB

Fig. 2.13: Connection establishment

To begin, there is no connection. (CLOSED, CLOSED)

A connection enters the LISTEN state when a user signais that it will wait for

a connection request with a TCP-PASSIVE OPEN.request primitive. Then, TCP

issues an TCP-OPENID. indication primitive to the user. (CLOSED, LISTEN) The

user can issue a TCP-CLOSE.request primitive if it changes its mind.

"From the CLOSED state, the user may also issue a TCP

ACTIVE OPEN.request primitive, which instructs TCP to attempt connection

establishment to a designated user (socket). In this case, TCP also issues a TCP

OPENID.indication. "[STAL89] The originating TCP entity computes an initial

sequence number. "This must be chosen carefully so that segments from older

instances of this connection, which might be floating around the network, will not

cause confusion with this new connection. "[ROSE91] The TCP sends a SYN

(Synchronize) segment to the destination TCP entity. In the example, the user that

initiated the TCP-PASSIVE OPEN.request has been chosen as destination. This

connection request is carried by a TCP segment. (SYN SENT, LISTEN)

Transmission Control Protocol 55

Upon receiving this segment, if no destination TCP user corresponding to the

specified port is in the LISTEN state, the connection is aborted by sending an RST

(Reset) segment. Otherwise, the destination TCP entity computes a sequence number,

signais the user that a connection is open with a TCP-OPEN SUCCESS.indication

primitive, sends a SYN/ACK segment and puts the connection in the SYN RCVD

state. (SYN SENT, SYN RCVD)

Upon receiving the SYN/ ACK segment, the original TCP entity sends an

ACK (Acknowledgement) segment back, signais its user that the connection is open

with a TCP-OPEN SUCCESS.indication primitive and moves the connection to the

EST ABLISHED state. (EST AB, SYN RCVD)

When the acknowledgement of the SYN is received by the responding TCP

entity, it too can move the connection to an ESTABLISHED state. (EST AB, EST AB)

The connection is prematurely aborted if either user issues a TCP-CLOSE.request

primitive.

Once the three-way handshake has been successfully concluded, the

connection enters the data transfer phase.

TCP user TCP TCP TCPuser

TCP-ACTIVE OPEN

CLOSED TCP-ACITVE OPEN / CLOSED

"" TCP-OPENID

SYN SENT SYN SENT

TCP-OPEN SUCCESS
TCP-OPEN SUCCESS

SYNRCVD SYNRCVD

ESTAB
ESTAB

Fig. 2.14: Simultaneous Connection establishment

But the three-way handshake is also effective if two entities try to set up a

connection to each other at the same time. This case is illustrated in figure 2.14.

Transmission Contro1 Protoco1 56

To begin, there is no connection. (ÇLOSED, CLOSED)

Then, nearly at the same time, the users issue a TCP-ACTIVE OPEN .request

primitive. The two TCP perform the same operations as was seen earlier. They both

enter the SYN SENT state. (SYN SENT, SYN SENT)

Upon receiving the SYN segment, they acknowledge it with a SYN/ ACK

segment, signal their users that the connection is open (TCP-OPEN

SUCCESS.indication) and enter the SYN RCVD state. (SYN RCVD, SYN RCVD)

When they receive the acknowledgement of the other TCP, the connection is

established. (EST AB, EST AB)

B. Data transfer

Once the connection is established, each process can simultaneously send and

receive segments. The connection is full-duplex. For sending data, a TCP entity cuts

them, puts them in TCP segments and gives them up to IP to transmit them.

Without an appropriate mechanism, a TCP connection is not reliable. This is

chiefly due to two events. "First, the segment may be damaged in transit but

nevertheless arrive at its destination. TCP includes an error-detecting code in the

segment header; therefore, the receiving TCP entity can detect the error and discard

the segment. The second event is that a segment fails to arrive. In either case, the

sending TCP does not know that the segment transmission was

unsuccessful. "[STAL89]

Retransmission

The reliability of a TCP connection is achieved through the mechanism of

retransmission. This consists in retransmitting bad received or unreceived packets.

Two segment fields are especially involved in retransmission: the sequence number

field and the acknowledgement field.

A sequence number is attached to each data octet. The sequence number of

the first octet contained in the segment data field is transmitted in the segment header.

The acknowled~ement field indicates the sequence number of the next data octet

which can be sent in the other direction. An ACK n+ 1 is interpreted to mean that the

TCP that issued the ACK has received all of the data up through sequence number n.

Transmission Control Protocol 57

Each time a TCP entity sends a segment, it starts a retransmission timer. A

timer is associated with each sent segment. La ter, one of two events will happen:

"either an acknowledgement for the segment will be received and the timer can be

stopped; or the timer will expire. In this latter case, the TCP entity retransmits the

segment and restarts the timer. "[ROSE91]

The problem is knowing when to retransmit. In the case of lost data, if the

sending transport entity retransmits too slowly, the throughput is reduced. If data is

delayed due to network congestion and the transport entity retransmits too quickly,

then it adds to the congestion and throughput gets even worse.[ROSE91]

Because of the variability of the networks that compose an intemetwork

system, TCP uses an adaptive algorithm to dynamically determine the retransmission

timeout. The best value for this retransmission timer should be a bit longer than the

round trip delay (send segment, receive ACK).

Flow control

"The flow control mechanism is used in TCP to allow a receiving TCP to

regulate the rate at which data arrives from a sending TCP. One TCP entity would

want to restrain the rate of segment transmission over a connection because (...) of a

lack of receiving buffer space. Without some form of flow control, data may arrive

faster than it can be processed. This leads to inefficiency, as the sender must

retransmit a segment that successfully made it through to the receiver. "[ST AL89]

Each segment header contains a window field which represents the number of

octets that may be sent in each direction before an acknowledgement is retumed. If a

TCP entity is able to receive many data, it will fix the window field to a large value.

If its buffer space begins to fill up, it will have to reduce the value of the window

field.

"Indicating a large window encourages transmissions. If more data arrives

than can be accepted, it will be discarded. This will result in excessive

retransmissions, adding unnecessarily to the load on the network and the TCPs.

Indicating a small window may restrict the transmission of data to the point of

introducing a round trip delay between each new segment transmitted. "[RFC793]

Transmission Control Protocol 58

PUSH & URG

An application entity might need a mechanism for asking that all data it has

previously sent has been delivered to the end-user and are not buff ered anymore in the

various communication entities. This is accomplished using a push function (PSH).

An application entity may indicate that data previously sent should be pushed. Then

the local TCP entity sets a PSH bit in the next new segment it sends. Upon receiving

such a segment, the remote TCP entity knows that it has to push user-data up to its

own application entity.

An urgent mechanism is also available with TCP. The semantics of urgent

data are application-specific.

The objective of the TCP urgent mechanism is to allow the sending user to

stimulate the receiving user to accept some urgent data.

The mechanism employs an urgent pointer. The URO control flag indicates

that the urgent pointer points to where urgent data ends in the stream. The absence of

this flag indicates that there is no urgent data in the segment.

"The receiving application entity, upon being notified that urgent data is

present in the stream, can quickly read from the stream until the urgent data is

exhausted. "[ROSE91]

C. Connection termination

When TCP users do not have any data to send anymore, they initiate a TCP

CLOSE.request primitive. Two cases can essentially be distinguished. The first case

is when a user initiates a close before the other does so. The same principle as for

connection establishment (parentheses) is used to represent the states of the TCP users

which want to close a connection. The diagram illustrating the connection termination

is given in figure 2.15.

To begin, a connection 1s established between the two users. (ESTAB,

ESTAB)

When an application entity indicates that it has no more data to send by a

TCP-CLOSE.request primitive, the local TCP entity ensures that all the segments it

has sent have been acknowledged. Then the local TCP entity generates a FIN (Finish)

Transmission Contro1 Protoco1 59

segment and it enters the FINW AIT-1 state. Ail segments preceding and including

FIN will be retransmitted until acknowledged. (FINWAIT-1, ESTAB)

TCP user TCP TCP TCP user

ESTAB TCP-CLC>SE

FINVVAIT-1 ~
ESTAB

'--TCP-CLOSINO

CLOSEVVAIT

PINVVAIT-2

TilVIE VV AIT TC'P-TE~IN~ ~<&--

----!Time out ~

LASTACK

CLOSED '--TCP-TER..l'l,,IINA TE

CLOSED

Fig. 2.15: Connection termination

Upon receiving the FIN segment, the other TCP acknowledges it with an

ACK segment, notifies the reception toits user with a TCP-CLOSING.indication and

enters the CLOSE W AIT state. (FINW AIT-1, CLOSE W AIT)

When the closing TCP receives the acknowledgement, it can enter the

FINWAIT-2 state. At this point, only the TCP that does not initiate the close is

allowed to send new segments. (FINWAIT-2, CLOSE WAIT)

When the TCP user that is in the CLOSE W AIT state has no more data to

send, it transmits a TCP-CLOSE.request to its TCP entity. A FIN is also generated in

this direction and it enters the LAST ACK state. (FINW AIT-2, LAST ACK)

Upon receiving the FIN, the first TCP acknowledges it by an ACK segment.

It notifies its user that the connection is closing with a TCP-TERMINATE.indication

primitive and can go in the TIME WAIT state. (TIME WAIT, LAST ACK)

When it receives the acknowledgement, the TCP that is in the LAST ACK

state can directly retum to the CLOSED state, after notifying its user by a TCP

TERMIN A TE. indication, while the other one must wait until a timer is run out.

(CLOSED, CLOSED)

Transmission Control Protocol 60

The second case is when the two users initiate a CLOSE at the same time.

An illustration is given in figure 2. 16.

TCP user TCP TCP TCP user

ESTAB TCP-CLOSE
TCP-CLOSE ESTAB

/

FINWAIT-1 FINWAIT-1

""' TCP-CLOSING

CLOSING CLOSING

TIMEWAIT TCP-TERMINATE

----! Tùne out·

CLOSED

TCP-TERMINATE TIMEWAIT

Ti111e out! ----

CLOS ED

Fig. 2.16: Simultaneous connection termination

To begin, a connection 1s established between the two users. ŒSTAB,

ESTAB)

A nearly simultaneous TCP-CLOSE.request by users at both ends causes FIN

segments to be exchanged and the TCPs to enter the FINW AIT-1 state. (FINWAIT-1,

FINWAIT-1)

When all the segments preceding the FIN s have been processed and

acknowledged, each TCP can ACK the FIN it bas received, notify its user that it

received a FIN segment with a TCP-CLOSING.indication primitive and go in the

CLOSING state. (CLOSING, CLOSING)

Both will, upon receiving these ACKs, enter the TIME W AIT state (TIME

W AIT, TIME W AIT). say to their user that the connection is closed (TCP

TERMIN A TE .indication) and when a timer is run out delete the connection.

(CLOSED, CLOSED)

Instead of requesting a graceful release, an application entity may determine

that it wishes to immediately abort the connection. In this case, the local TCP entity

generates a Reset segment (RST) and the connection is immediately released. Any

data in transit is lost.

!! !. :.:.:. C:·····:·············•~······.•···•·:······························•···•·•.l?•···•····•:·•-.;.•······œ·}·: ... :'.:lll<.····~ ... ·.•·•·:~.:.r.'.:111<.:.t :.~.: .•. ::?-.. •.~.:.0:.••~•.t .. •·•:#.•.-.: .•. t.•.•.I~.·•.~.•.•:.:œ.•·•.•.:.·•.~ .•. :.M~li:ê\]f iii½:~o~id\ ;&,'!"~ ,.--.~'!".a;;.Co:..._,. ;;a.: ~ii:Qgia.►.iili#.±Uti•>< < >t••· •

The management of TCP /IP networks can be divided into 3 components:

managed nodes, a management station and a network management protocol to

ex change management information between managed nodes and management stations.

In TCP/IP, the management is ruled by 4 standards. Two of them define the

information about network devices which are managed . These are the Structure of

Management Information (SMI) [RFCl 155] which defines rules to build an MIB and

the Management Information Base (MIB) [RFCl 156] which defines the information to

manage. The two other ones define protocols that can be used to manage this

information. The first one, the Simple Network Management Protocol (SNMP)

[RFCl 157] will be explained in this chapter. SNMP has been chosen as the short-term

TCP/IP management protocol. And, now, it becomes to be wide~l)read. CMOT

(CMIP Over TCP/IP) [RFC1095], the second protocol, has been chosen as the long

term protocol. It is derived from the ISO network management protocol, the Common

Management Information Protocol (CMIP). A migration from SNMP to CMOT is

foreseen in the future, although not certain. This migration would make easier, from a

management point of view, the migration from TCP/IP to OSI, as the management

protocols would be nearly the same. These two protocols (CMIP and CMOT) will be

briefly described in the next chapter.

The TCP/IP management protocols are runmng at the application level,

above UDP or TCP. An example of the management architecture is illustrated in

figure 3.1.

In TCP/IP, the management is exercised in the following way. Each

managed device runs a server program, called agent, and maintains information about

its state.

The management station (M.S. in figure 3.1) runs application programs

which use the management protocol to contact the agents on managed devices in order

Network Management 62

to perform management actions. These actions can be the retrieval of information, the

change of parameters, etc.

OHost

□Router

Network 1

Agent

Fig. 3.1: Example of management architecture

The major concem that prevailed during the specification of SNMP and the

MIB is the ability to realise, as fast as possible, working implementations of the

concepts. For this, simplicity was the keyword. The agents had to be as small as

possible in order to have rapid implementations. Therefore, the amount of information

contained in the MIB is restricted and the design of SNMP is very simple.

As already said before, in TCP/IP, to manage devices, the management

station retrieves or sets the value of variables in the agents. These variables are chosen

in order that the management station is able to infer the state of the devices. The rules

for constructing the variables and for defining the names to give them are explained in

the .first section of the chapter. The second section will deal with the management

protocol, SNMP. The last section will review all the variables that are part of the

MIB. The other management protocol, CMOT, will be presented in the next chapter.

Structure of Management Information

3-1- Str~ct~re of Manage~ent
Infor~ation

63

At the application level, not only the way by which information is exchanged

is of importance, but also is the information. In the network management context, this

information concerns the state of network devices. As the devices are heterogeneous

in nature (different utilities, different makes, etc), they do not use the same interna}

representation of information. That is why a formalism must be used to work with a

commun way for representing the information. And this is made by a definition

language, the Abstract Syntax Notation 1 (ASN.1) [ISO8824] which is an ISO

standard. This will be the subject of thefirst point of this section.

This information must be expressed in the same formalism, but it must also

be defined by the same rules. And this is the role of the Structure of Management

Information (SMI) that will be analysed in the second point.

3, 1.1. ASN, 1

The problem to solve was to allow a set of heterogeneous machines to talk to

each other, in order to exchange information. And these heterogeneous machines use

different formats to represent their data. A solution to solve this problem is to use a

common externat data format. The format chosen for representing TCP/IP network

management information is the Abstract Syntax Notation 1 (ASN .1) developed by

ISO and the CCITT.

The ASN .1 specification is described in International Standard 8824

[ISO8824]. The rules for encoding ASN .1 data structures to a bit stream for

transmission are given in International Standard 8825 [ISO8825]. In TCP/IP network

management, ASN.1 is used for defining the formats of the PDUs and also for

defining the managed information.

"ASN .1 helps keep the standards documents unambiguous, helps ease the

implementation of network management protocols and guarantees interoperability. "

[COME91]

The basic concept of ASN. 1 is the module. A module packages together all

data structure types relating to a common theme. A module is expressed by:

Management Information: ASN.1 64

module DEFINITIONS ::= BEGIN

END

ASN .1 defines 3 different objects (uppercase and lowercase letters are of

importance):

- types: which are used to define new data structures (e.g. Qauge),

- values: which are instances of a type (e.g. internet) and

- macros: which are used to change the grammar of the language (e.g. OBJECT-
TYPE).

A type is defined by:

NameOfType
TYPE

. ·.. -

White a value is defined by:

nameOfValue NameOfType
VALUE

The types can be separated into 4 categories: primitive types, constructor

types, tagged types and subtypes.

A. Primitive Types

ASN.1 defines 7 primitive types: INTEGER, BOOLEAN, BIT STRING,

OCTET STRING, ANY, NULL and OBJECT IDENTIFIER from which only 4 are

allowed to be used for network management: INTEGER, OCTET STRING, NULL

and OBJECT IDENTIFIER.

Integer

An Integer is a cardinal number used for counting. In addition, it is possible

to associate names with values that might be taken by instances of the data type. For

example:

Day : :=
INTEGER {sunday (1), monday (2), tuesday (3), ...)}

today Day::= monday (or today Day::= 1)

Management Information · ASN.1 65

Octet String

An octet string is a list of octets that can take a value between O and 255. An

octet string can be used to represent characters or byte oriented data.

The NULL type has only one value, also called NULL. When a field is

assigned the value NULL, it means that this field has no type at all. The NULL type

is currently not used in network management.

Object Identifier1

Object identifiers are used to name objects whatever the semantics associated

with them may be. An object identifier is a specially encoded sequence of integers

which uniquely identifies a node in a unique naming tree defined by ISO.

An object identifier is represented by a sequence of non-negative integers

(and/or a brief textual description). The integers are seen as forming the nodes or the

leaves of a tree. The administrative control of the meanings assigned to the nodes may

be delegated as one traverses the tree.

The format of an object identifier can be one of the following ones:

- integers separated by dots. For instance, 1. 0. 8571. 5 .1 represents an identifier
formed by the root then the node with label 1, then the node with label 0, then the
node with label 8571, etc.

- small text. For example iso.standard.ftam

- a combination of the two. For example iso (1) standard (0).8751.5.1

An example of the use of object identifiers follows:

Mgntinfo : := OBJECT IDENTIFIER

mib Mgntinfo ::=
{1 3 6 1 2 l}

or {iso org dod 1 2 l}
or {iso(l) org(3) 6 1 2 l}

1. see the structure in pt 3.1.2 (SMI)

Management Information ASN.1 66

B. Canstructars

ASN .1 defines 5 constructors, SEQUENCE, SEQUENCE OF, SET, SET

OF and CHOICE from which only 2 are allowed to be used in network management

SEQUENCE and SEQUENCE OF.

Sequence

A sequence is an ordered list of O or more elements of various types. It can

be seen as a record in Pascal. For example:

persan ::= SEQUENCE {
name OCTET STRING,
age INTEGER
)

Sequence of

A sequence of is a list of O or more elements of the same single type. It

corresponds to an array in some programming languages. For example,

graupOfPersans ::= SEQUENCE OF persan

C. Taqged Types

A tag is used to identify a data type of a field within a particular

environment. Four types of tags are defined in ASN .1. They differ by their scope.

The classes are Universal, Application-wide, Context-specific and Private-use.

A tag is defined by the following syntax: class + non-negative integer. For

example, [APPLICATION 4] represents the fifth data type (the numbers begin at 0)

which is meaningful within a particular application. Universal data types are

meaningful throughout all ASN .1 definitions.

O. Subtypes

In ASN .1, subtyping is an important means for defining new types. Methods

for defining subtypes are numerous. For TCP/IP network management, only two of

these methods are allowed.

The first method is to fix the length of, for example, a string.

Management Information · ASN.1

IpAddress ::=
[APPLICATION 1]

OCTET STRING (SIZE (4))

67

This example fixes the length of the octet string to 4. This permits to

represent address like 128.141.200.10. This example also shows that this is the

second tag which is defined in the application.

The second method for defining subtypes is to fix the values that can be taken

by the variables. For example,

Counter ::=
[APPLICATION 2]

INTEGER (0 .. 4294967295)

3,1.2. SMI

The Structure of Management Information defines the general framework

within which an MIB can be defined. [ST AL89] The MIB can be seen as a database,

as a collection of managed objects, which specifies network management variables

and their meanings, while the SMI defines the schema for the database. If an MIB is

defined according to the SMI guidelines, it can be used with either SNMP or CMOT.

The complete definition of SMI is given in Appendix A.

The SMI defines 3 important concepts. The first one is the specification of

the rules for naming the variables, the objects. The second one is the definition of the

data types that can be used in the MIB. It gives the rules for defining variable types

and makes restrictions on the types of variables allowed in the MIB. The third one

gives the format to use for defining objects.

A. Names

Names are used to identify managed objects. The objects, in the management

context, are hierarchical. The OBJECT IDENTIFIER type has been chosen to

represent these objects. The semantic of the OBJECT IDENTIFIER has been

explained in the preceding point.

The root of the tree is not labelled but it has 3 subordinates:

- ccitt (0) which is administered by the CCITT.

- iso (1) which is managed by the ISO.

- joint-iso-ccitt (2) which is administered by both.

Management Information SMI 68

For network management, only the iso subtree is of interest. This node bas

four subordinates:

- standard (0) which contains ail international standards. For example, 1.0.8571 is the
identifier of the FT AM standard.

- registration-authority (1) which is reserved for use by OSI registration authorities.

- member-body (2) which bas a subordinate assigned to each member body of ISO.
Each node receives a label corresponding to the Decimal Country Code (DCC) of
the member body.

- identified-organization (3) which bas a subordinate assigned to any organization that
ISO wishes to favour.

One of the children node of the org(3) node bas been assigned to the

Department of Defense (DoD) which, in turn, bas decided to allocate a node to the

Internet community. This node will be administered by the Internet Activities Board.

This is formalised by the following definition.

internet OBJECT IDENTIFIER ::=
{ iso org(3) dod(6) 1}

The IAB bas decided to give 4 children nodes to the internet node. They

choose directory, mgmt, experimental and private.

directory OBJECT IDENTIFIER . ·- { internet 1 }
mgmt OBJECT IDENTIFIER . ·- { internet 2 } .. -
experimental OBJECT IDENTIFIER . ·- { internet 3 }
private OBJECT IDENTIFIER . ·- { internet 4 } .. -

The directory(l) subtree is reserved for using the OSI directory in the

internet.

The mgmt(2) subtree is used to identify objects which are defined in IAB

documents. The administration of this subtree is given to the Internet Assigned

Numbers authority. For the moment, only one subtree of mgmt(2) is defined, mib.

This contains objects described in the MIB specification.

mib OBJECT IDENTIFIER ::= { mgmt 1 } or 1.3.6.1.2.1

The experimenta1(3) subtree identifies objects used in internet experiments. It

is administered by the same authority as the mgmt subtree. It is used to test new

experimental mib objects.

Management Informatjon · SMI 69

The last subtree, private(4), is administered by the Assigned Numbers

authority. Now, only one subtree is defined, enterprises(l). It allows to register

vendor-specific objects. It is defined by:

enterprises OBJECT IDENTIFIER ::= { private 1}

To summarise the structure, the tree is described in figure 3.2.

Fig. 3.2: Naming tree

B. Data Types

: _ label [rom the roor to
rhis po11u is / .J ,6

This point will review all the dàta types that can be used in an MIB

definition. As already seen in the presentation of ASN .1, not all the ASN .1 types are

available for constructing new object types or for defining MIB variables. The first

point will describe the primitive types. The second one will review the two allowed

constructor types. And the third point will show new special data types defined by the

SMI.

Primitive Types

Only the INTEGER, OCTET STRING, OBJECT IDENTIFIER and NULL

primitive types are allowed in the management framework.

Management Information SMI 70

Constructor Types

The SMI allows to use two kinds of constructor types. This g1ves the

possibility to build lists or tables.

For lists, the syntax is:

<li st> : : =
SEQUENCE {

<typel>,

<typeN>
}

In this definition, each <type> corresponds to a primitive type or a new

defined type.

For tables, the syntax is:

<table> : : =
SEQUENCE OF <list>

These definitions lead to the observation that ail tables defined for network

management are two-dimensional.

Defined Types

New application-wide types are defined in the SMI. The new defined types

are six in number.

NetworkAddress

The NetworkAddress is a data type which represents an address from one of

several protocol families. Currently, only one CHOICE is present.

NetworkAddress ::=
CHOICE {

}

internet
IpAddress

IpAddress

The IpAddress type represents a 32-bit internet address. This is an OCTET

STRING, in network byte-order.

Management Information SMI

IpAddress ::=
[APPLICATION O]

IMPLICIT OCTET STRING (SIZE (4))

Counter

71

The Counter type represents a non-negative integer, which monotonously

increases until it reaches a maximum value. Then it rolls over to zero and it starts

increasing again from zero. The maximum value is 232_ 1.

Counter : :=
[APPLICATION 1]

IMPLICIT INTEGER (0 .. 4294967295)

Gauge

A Gauge represents a non-negative integer, which may increase or decrease

but which stops at a maximum value. Gauge are used to measure levels, such as the

current number of packets stored in a queue.

Gauge : : =
[APPLICATION 2]

IMPLICIT INTEGER (0 .. 4294967295)

TimeTicks

A TimeTicks represents a non-negative integer which counts the time in

hundredths of a second since a given epoch. This type is used for timestamps and

clock values.

Timeîicks ··
[APPLICATION 3]

IMPLICIT INTEGER (0 .. 4294967295)

Opaque

"The Opaque type represents an arbitrary encoding. It is used as an escape

mechanism, to bypass the limitations of the restrictive data typing used by the

SMI. "[ROSE91]

Opaque : :=
[APPLICATION 4]

IMPLICIT OCTET STRING

Management Information SM! 72

C. Managed Objects

The SMI also defines the format to use to define objects in the MIB. An

object can be defined using four fields. The first one is an OBJECT DESCRIPTOR

with its corresponding OBJECT IDENTIFIER. The second oQe, the SYNT AX, is the

abstract syntax for the object type. The third one represents the ACCESS and the last

one the STATUS of the defined type. This is formalised by the following macro:

OBJECT-MACRO ::=
BEGIN

END

TYPE NOTATION ··- 11 SYNTAX 11 type (TYPE ObjectSyntax)
11 ACCESS 11 Access
11 STATUS 11 Status

VALUE NOTATION ::= value (VALUE ObjectName)
Access ::= 11 read-only 11

11 read-write 11

"write-on ly"
11 not-accessible 11

Status ··- 11 mandatory 11

1

"optional"
"obsolete"

A simple example describing the use of the macro is given below.

sysDescr OBJECT-TYPE
SYNTAX OCTET STRING
ACCESS read-only
STATUS mandatory
: : = (system 1 }

The syntax field represents the data type which models the object. This is one of the
allowed data types described in the preceding point. In the example, the type of the
object is an OCTET STRING.

The access field represents the level of access to the managed object. the value of the
object can be not-accessible, read-only, read-write or write-only. In the example,
the access is read-only. This means that the value can be read but cannot be
modified.

The status field represents the implementation requirements for the managed objects.
If the status is mandatory then the managed nodes must implement this object. If
the status is optional, this object may be implemented and if it is obsolete, the
object needs no longer to be implemented. In the example, the object is mandatory.
This means that it must be implemented in every system.

The value field represents the name of the object. The type of the object name is an
OBJECT IDENTIFIER. In the example, the object name is { system 1 } .

Simple Network Management Protoco1 73

3.2. SNMP

The Simple Network Management Protocol specifies the communication

between a management station and an agent executing on a host or a router. It defines

the form and the meaning of messages exchanged and the representation of names and

values in those messages. SNMP also defines administrative relationships among

routers being managed. For example, it provides a means for authenticating the

managers.[COME91]

SNMP has been designed simple. This is for several reasons. The first one is

to allow network management programs to be implemented quickly to meet the

immediate needs of the Internet. The second one is to allow implementations in agents

to be small and efficient in order that the agents spend the majority of their time on

performing their primary functions. Any significant management processing needs are

performed in management stations for which network management is the primary

function. [ST AL89]

An other design goal was to make SNMP robust under adverse network

conditions (for fault management). Therefore, SNMP is datagram-oriented. This

means that no connections must be established between two entities and that SNMP

has the whole control on the retransmissions of datagrams. As it is datagram-oriented,

the protocol messages must be sent wholly - contained within a single

datagram. [STAL89] SNMP also specifies that operations must be atomic, meaning

that if a single SNMP message contains operations on more than one variable, the

agent either performs all operations or none of them.[COME91]

To manage the networks, SNMP uses a method called a "trap-directed

polling"[STAL89]. This means that the agents are only able to send a limited number

of traps to the management station. And in case of a problem, when it is wamed, the

management station has the responsibility to further investigate.

For the transmission of messages on the network, SNMP uses the services of

the User Datagram Protocol. The UDP ports used by SNMP are port 161 for the

agents and port 162 for management stations.

In this section, several points will be studied. The .first one reviews the

different interactions that can be performed between a management station and an

agent. The second one gives the format of the SNMP PDUs. The third point explains

some administrative concepts. The Jourth point shows how instances of objects are

Simple Network Management Protocol 74

identified while the fifth one explains the mechanism used to retrieve a whole table

from the MIB. The last one gives an example of the encoding of the PDUs for

transmission in the data field of a UDP datagram. The complete specification of

SNMP is given in Appendix C.

3. 2. 1 . Protocol Interaction

Unlike the other protocols of the suite described in the previous chapter,

SNMP is an application layer protocol. The working of the protocol will rather be

described in terms of protocol interactions that can be found during the

communications than in terms of service primitives.

Four protocol interactions can be shown off. The first one is the get

interaction. (figure 3. 3)

:r-v:IA.N" A.G-ER A.G-EN"'T

Fig. 3.3: Get interaction

The get interaction allows the manager to retrieve management information

from the agent with a get-request. The agent will respond with a get-response

message.

:r-v:IA.N" A.G-ER A.G-EN"'T

Fig. 3.4: Get-next interaction

Simple Network Management Protoco1 75

The second means for retrieving management information is the get-next

interaction. (figure 3. 4)

The get-next interaction allows the manager to traverse a portion of the MIB.

This is because the get-next-request operation asks the agent to retum the value of

the object following the one specified in the get-next-request message. The agent

will also respond with a get-response message.

The third interaction, the set, is shown in figure 3 .5.

Fig. 3.5: Set interaction

The set interaction permits the manager to store information in the agent

MIB. The manager requests the agent to change the value of MIB variables as

specified in the set-request message. The agent responds with a get-response

message which informs the management station on how the operation took place.

And the last interaction is the trap.(figure 3.6)

MANAGER AGENT

Fig. 3.6: Trap interaction

The trap interaction allows the agent to report an event to the manager. For

this, it sends a trap message which contains the description of the event to the

Simple Network Management Protocol 76

management station. This interaction requires no message from the manager to the

agent.

These protocol interactions permit to distinguish 5 protocol data units which

are exchanged between the managers and the agents. These PDUs are get-request,

get-next-request, set-request, get-response and trap.

Hereunder is described more deeply how they are working.

A. Get-Request

The get-request operation names a set of variables and requests that the

agent generates a get-response containing their values. For each variable in the

request, the named instance is retrieved if it matches exactly with an object instance

available in the agent MIB. Otherwise, if the instance does not exist, a get-response

is returned with error noSuchName. [ROSE91] & [ST AL89]

B. Get-Next-Request

The get-next-request operation also requests that the agent generates a get

response containing the values of a set of objects. But in this case, for each of the

object names in the variable list, it is the name and the value of the next object which

is returned in the get-response. [ST AL89] If the end of the MIB is reached, a get

response is returned with error noSuchName.[ROSE9l] This mechanism is discussed

hereunder in point 3. 2. 5.

C. Set-Request

The set-request operation requests that each of the objects named in the

variable list be set to the values specified. All of the variables are updated

simultaneously and a get-response identical to the request is returned. Simultaneously

means that either all variables must be updated or none of them. If an instance does

not exist, a get-response is returned with error noSuchName. If the instance exists

but does not permit writing, a get-response is returned with error readOnly. If the

instance exists and permits writing, but the value supplied has a wrong syntax or a

range error, a get-response is returned with error badValue.[STAL89] & [ROSE91]

Simple Network Management Protocol 77

D. Get-Response

The get-response is sent back by an agent to return the result of an operation

requested by a management station with a get-request, a get-next-request or a set

request PDU. When receiving a get-response, the manager checks its list of

previously sent requests to locate the one which matches this response. If no record is

found, the response is discarded. Otherwise, the manager handles the response in an

appropriate fashion.[ROSE91]

E. Trap

The trap is generated by an agent for sending a notification to a management

station of the occurrence of some significant event. The message identifies which

agent generated the trap and when, and what type of event occurred. A variable list is

also present. In this case, the objects and their values are used to supply additional

information about the event. [ST AL89]

3.2.2. SNMP PDUs

SNMP messages do not have fixed fields. For this, they are expressed using

the ASN.1 notation. An SNMP message consists of three parts: a version, a

community name and a data field. This is shown below:

Message
SEQUENCE {

}

version
INTEGER {

version-1(0)
},

community
OCTET STRING,

data
ANY

➔ version: The protocol version number.

➔ community: The community name of the requester.

➔ data: The data field contains the protocol data units (PDUs). The protocol data
units are two in number. As can be seen in the following definitions, the get
request, the get-next-request, the get-response and the set-request PDUs have the
same format, whilst the trap PDU has a specific format.

PDUs : :=
CHOICE {

get-request
GetRequest-PDU,

Simple Network Management Protocol

)

get-next-request
GetNextRequest-POU,

get-response
GetResponse-POU,

set-request
SetRequest-POU,

trap
Trap-POU

GetRequest-POU ··- [O]
IMPLICIT POU

GetNextRequest-POU ::= [l]
IMPLICIT POU

GetResponse-POU ::= [2]
IMPLICIT POU

SetRequest-POU ::= [3]
IMPLICIT POU

78

The first one is the "normal" PDU. It is the same for the Get, Get-Next,

Response and Set messages. It contains four fields: request-id, error-status, error

index and variable-bindings.

POU : :=

VarBind

SEQUENCE {
request-id

INTEGER,

)

. ·.. -

error-status
INTEGER {

noError(O),
tooB ig(l),
noSuchName(2),
badValue(3),
read0nly(4),
genErr(S)

) '
error-index

INTEGER,

variable-bindings
VarBindlist

SEQUENCE {
name

ObjectName,
value

ObjectSyntax
)

VarBindlist ::=
SEQUENCE OF VarBind

Simple Network Management Protocol 79

➔ request-id: The request-id field is an integer which is used to distinguish the
requests in progress or for a response which is the same as the one in the
corresponding request.

➔ error-status: The error-status field indicates if an error occurred when processing
the request. An error occurs when (1) the result of an operation cannot fit into a
single SNMP message, (2) an unknown variable has been requested, (3) an
incorrect syntax or value was given for modifying a variable, (4) a read-only
variable was tried to be modified and the value (5) is given for unforeseen errors.

➔ error-index: The error-index indicates which variable in the request was in error. lt
is only used with noSuchName, badValue and ReadOnly errors. (pointer to the
variable-bindings list)

➔ variable-bindings: The variable-bindings field contains a list of variables that are
concerned with the current operation. The variables contain a name and a value.
The value partis not significant for request PDUs.

The second PDU is only used for the Trap messages. lts structure is the

following one:

Trap-PDU : :=
[4]

IMPLICIT SEQUENCE {
enterprise

)

OBJECT IDENTIFIER,
agent-addr

NetworkAddress,
generic-trap

INTEGER {

) '

coldStart(O),
warmStart (1) ,
linkDown(2),
linkUp(3),
authenticationFailure(4),
egpNeighborloss(5),
enterpriseSpecific(6)

spec if i c-trap
INTEGER,

time-stamp
Timeîicks,

variable-bindings
VarBindlist

➔ enterprise: The agent's sysObjectlD (MIB).

➔ agent-addr: The agent's network address.

➔ generic-trap: A generic trap is generated if (0) the agent is reinitializing itself and
objects may be altered, (1) the agent is reinitializing itself and the objects will not
be altered, (2) an interface went to the down state, (3) an interface went to the up
state, (4) an SNMP entity claimed to be in a community but was not, (5) a
neighbour went to the down state and (6) another event occurs.

Simple Network Management Protocol BO

➔ specific-trap: The specific-trap field identifies an enterprise specific trap in case the
generic-trap field takes the value (6) enterpriseSpecific.

➔ time-stamp: The value of the agent sysUpTime (see MIB).

➔ variable-bindings: A list of variables containing information about the trap.

3. 2. 3. Administrative Concepts

A community is a set of SNMP entities. An agent be longs to a set of

communities. A community is represented by a string of octet, a community name. An

SNMP message always contains a community name, sent in the clear. The community

name is used for three purposes: authentication, access control and proxy

identification.

A. Authentication

Now, only a trivial scheme for authentication is used. "If the community

name corresponds to a community known to the receiving SNMP entity, the sending

SNMP entity is considered to be authenticated as a member of that

community. "[ROSE91] Any SNMP message with a valid community name is

authentic.

B. Access Control

"The purpose of access control is to provide different management

capabilities to different management stations. "[STAL89] Once the sending SNMP

entity is authenticated, the managed node must determine what level of access is

allowed. The community defines the subset of the MIB (a view) to which requests can

have access and the access mode allowed (read-only, read-write, write-only and not

accessible).

C. Proxy

As network managers want to manage all the devices in their networks (e.g.

bridges, modems and not only hosts and routers), SNMP uses the proxy management

to satisfy this need. A special agent (proxy agent) is running on another machine

implementing the protocol suite. When such a device is to be managed, the

management station contacts the proxy agent. This agent contacts the device to

perform the desired operation using the device's protocol. Then, the results are

retumed to the proxy agent which sends them to the management station (using

Simple Network Management Protocol 81

SNMP). The proxy agent acts as an intermediate between the management station and

the device.

"A proxy agent has a view of managed objects correspon<ling to its foreign

devices. Since ail of the objects contained by an agent need not be visible to a

community, a proxy community has a view containing exactly those objects

corresponding to a particular foreign device. "[ROSE91]

3.2.4. Instance Identification and Lexicographie Order

Object identifiers are used to identify the types of the MIB objects. SNMP

uses another scheme for identifying the instances of the objects.

If the object is a column of a table, to identify instances of the columns or

rows, SNMP uses a value composed by the object identifier plus a suffix which is the

set of columns necessary to make the suffix unique. If more than one column is

necessary, then the suffix is constructed by concatenating the columns.

"For example, instances of the columns of the ifI'able2 are identified by using

the value of the iflndex column. So, the instance of ifl)escr associated with the first

interface is: [ROSE91]

ifDescr.1 or 1.3.6.1.2.1.2.2.1.2.1

If the object is nota column, the suffix is O. For example, the identifier of an

instance of sysDescr is:

sysDescr.O or 1.3.6.1.2.1.1.1.0

With such instance identifiers, a lexicographie ordering is created over ail

objects instances. A lexicographie ordering means that "for instances names a and b,

one of the three conditions consistently holds: either a< b, a= b or a> b". [ROSE91]

By having a lexicographie ordering of all object instances in the agent's MIB,

the management station can supply an object identifier and ask for the object instance

which occurs next in the ordering. [STAL89] This will allow, as explained in the next

point, to easily retrieve all the variables composing a table in the MIB.

2• see the description of the MIB in point 3.3.

Simple Network Management Protocol 82

3.2.5. Searching Tables with the Get-Next-Reguest3

It was already seen that it is possible to identify individual elements of a table

by appending a suffix to the object identifier. But a management station may wish to

examine entries in a table for which it does not know all valid suffixes. The get-next

request operation allows this. It also allows to iterate through a table without

knowing how many items the table contains.

When a management station sends a get-next-request, it supplies a prefix of

a valid object identifier. The agent responds by sending a get-response command for

the variable that has an object identifier lexicographically greater than the one in the

request. The call get-next-request (sysDescr.O) retums the name and the value of

the next instance in the tree which is JysObject/D.0. But the operand need not identify

an instance, it can be any object identifier. For example, the call get-next-request

(sysDescr) retums the name and the value of the next instance in the tree which is

sysDescr.0. Thus, the get-next-request operator can be used to see if an object is

supported by an agent. The only thing to do is to specify the name of the object rather

than the desired instance of that object.

The MIB uses suffixes to index tables. Thus, a management station can send

the prefix of a table object identifier and receive the first element of the table. Then,

it can send the name of the first element of the table and receive the second and so

on.[COME91] Because of the names used in the MIB, when traversing a table, each

instance of the first column is retrieved, then each instance of the second column is

retrieved, and so on, until the end of the table is reached.

Tables can be quickly retrieved by using the fact that the get-next-request

operator can be given multiple operands. "For example, the call get-next-request

(ipRouteDest, ipRoutelflndex, ipRouteNextHop) retums the name and value of

these three columns in the first row of the IP routing table. To find the next row in

the table, the retumed names are used as operands to another call to the get-next

request operator. This process may be continued until the entire table is traversed.

The end of the table is detected when the next object instance retumed has a

different prefix than the one given in the get-next-request. An error is retumed only

3. Readers should have a look at the MIB structure before reading the two following
points.

s;mp1e Network Management Protoco1 83

if an operand given to the get-next operator is lexicographically greater than or equal

to the instance identifier with the lexicographically largest value. For example:

get-next-request (ipRouteDest)
get-next-request (ipRouteDest.0.0.0.0)
get-next-request (ipRouteDest.192.33.4.0)

-> ipRouteDest.0.0.0.0
-> ipRouteDest.192.33.4.0
-> ipRouteifindex.0.0.0.0

The third call to the get-next operator retumed an instance with a different

prefix than the supplied operator. Thus, the manager knows it has reached the end of

that column in the table.[ROSE91]

3. 2. 6. Example of Encoding

Beside ASN .1 specification, there is another standard, the Basic Encoding

Rules (BER) [1S08825] which is a transfer syntax to serialize instances of ASN .1 data

types into strings of octets.

The ASN.1 types are encoded with 3 fields:

- tag: field which indicates the ASN .1 type,

- length: field which indicates the size of the ASN .1 encoded value and

- value: field which contains the encoded value.

Ali the encoding rules will not be described in this point. Only an example of

encoding will be given. For further analyses, see [ROSE91] or [1S08825].

A get-response PDU retuming the value of the sysDecr variable will have

the following ASN .1 representation:

snmpMessage Message ::=
{
version version-1,
community "public"
data {

get-response (
request-id 17,
error-status noError,
error-index O,
variable-bindings {

{

}
}

name l.3.6.l.2.1.1.1.0,
value (

simple (string "unix" }
}

Simple Network Management Protocol 84

}
}

}

And the BER encoding for this message would be:

30 2A 02 01 00

SEQUENCE len=42 INTEGER len=l vers=O

04 06 70 75 62 6C 69 63

STRING len=6 "p" "u" "b" Ill" Ili Il "c"

A2 1D 02 01 11

get-response len=29 INTEGER len=l req. id=l7

02 01 00 02 01 00

INTEGER len=l status INTEGER len=l error index

30 12 30 10 06 08

SEQUENCE len=l8 SEQUENCE len=l6 objectid len=8

2B 06 01 02 01 01 01 00

1.3 6 . 1 2 1 1 . 1 0

04 04 75 6E 69 78

object value len=4 "u" "n" Ili Il "x"

The message is, thus, a sequence of 42 octets in length and it contains 3

fields. The first one is an integer of 1 octet in length which contains the version

number (0). The second one is a string of length 6 which represents the community

name (public). And the third field is the encoding of the get-response which is 29

octets in length and contains 4 fields. The first three fields are all 1-octet integers

which represent the request identification (17), the status field (0) and error index (0).

The fourth field is the variable bindings-list. Therefore, it is represented by a

sequence. This sequence contains only one item, the sequence representing the

instance identification (1.3.6.1.2.1.1. 1.0) and its value (unix).

Management Informatjon Base (MIB) 85

3.3. MIB

The MIB describes the objects which are expected to be implemented by

managed nodes running the Internet protocol suite. It describes the variables needed

for monitoring and controlling the various components of the Internet.

The first version of the MIB, MIB-I [RFC1156], contains objects which are

considered to be essential for management. It was designed to include the minimal

number of managed objects thought to be useful for internet management. Thus, an

object is included in the MIB if it is considered to be essential to management. The

criteria that an object has to meet to be considered as essential are listed in the MIB-I

specification. In theory, all the objects defined in the MIB are mandatory. But, in

some cases, it is allowed to "forget" some of them. For example, if a router does not

implement the TCP protocol, the TCP-related MIB variables may not be included in

the MIB.

The first MIB specification was considered as the first step. But now, another

MIB, MIB-II, has been specified [RFCl 158]. It is currently a proposed internet

standard. The emphasis of MIB-II is to create new objects whilst maintaining

compatibility with the SMI and MIB-I. The entire MIB-II specification is given in

Appendix B.

The MIB has been divided into 10 groups: System, Interfaces, Address

Translation, IP, ICMP, TCP, UDP, EGP, Transmission and SNMP. These groups

have been defined to provide a means of assigning object identifiers and to provide a

method for implementations of agents to know which objects they must implement. In

the MIB, the format of the description is given using the OBJECT-TYPE definition.

In several groups, variables are listed in the same line. This is only for compactness

reasons.

3. 3. 1. System Group

The system group is mandatory for all managed nodes. It contains general

configuration information, in particular, information about the system's manufacturer,

software revision and how long the system has been up.

system OBJECT IDENTIFIER ::= { mib 2}

➔ sysDescr: Textual description of the entity.

Management Information Base (MIB) 86

➔ sysObjectID: Identification of the agent. The value is allocated within the SMI
enterprises subtree.

➔ !JysUpTime: The time since the agent was started.

In MIB-II were added the following objects:

➔ sysContact: The name of person to contact conceming this device.

➔ sysName: The device name.

➔ !JysLocation: The device physical location.

➔ !JysServices: The services offered by the device.

3. 3. 2. Interfaces Group

The Interfaces group is mandatory for ail managed nodes. It contains

information on the entities at the interface layer. It presents information about each

network interface in the system.

interfaces OBJECT IDENTIFIER::= { mib 2}

The interface group contains two objects:

➔ ijNumber: The number of network interfaces.

➔ ifI'able: A table which contains information about the interfaces. There is one row
for each interface.

Each row of the table contains several columns:

➔ iflndex, ijDescr, ifI'ype: A unique value for each interface (identifier), a text
describing the interface and the type of the interface (e.g. ethemet-csmacd, fddi).

➔ ifMtu, ijSpeed, ifPhysicalAddress: The maximum transmission unit, the
transmission rate in bits/second and the media-specific address of the interface.

➔ ifAdminStatus, ifOperStatus, ifl.astChange: The desired state of the interface, its
current operational state and how long ago its state changed.

➔ iflnOctets, iflnUcastPkts, iflnNUcastPkts, iflnDiscards, iflnE"ors,
iflnUnknownProtos: The total number of octets received on the interface, the
number of unicast packets, of broadcast or multicast packets delivered to the upper
layer and the number of inbound packets discarded due to resource limitations, due
to format errors and due to unknown protocol.

➔ ifOutOctets, ifOutUcastPkts, ifOutNUcastPkts, ifOutDiscards, ifOutE"ors,
ifOutQLen: The total number of octets transmitted on the interface, the number of
unicast packets, of broadcast or multicast packets from the upper layer, the number

Management Information Base (MIB) 87

of outbound packets discarded due to resource limitations or due to format errors
and the size of the output packet queue.

An object has been added in MIB-II:

➔ ijSpecific: A reference to MIB definitions specific to the particular media being
used to realize the interface.

3. 3. 3. Address Translation Group

The address translation group contains the mappings between IP addresses

and subnetwork-specific addresses that all IP systems must support. It contains a table

which is the union across all interfaces of the translation tables for converting an IP

address into a subnetwork-specific address. It must be implemented by all systems.

at OBJECT IDENTIFIER ::= { mib 3)

Each row of the table contains three columns:

➔ atlftndex: The number of the interface.

➔ atPhysAddress: The media-dependent physical address.

➔ atNetAddress: The IP address corre~l)onding to the physical address.

Note that in MIB-II, the information on address resolution has been moved to

the network protocol group (IP group).

3.3.4. IP Group

The IP group contains information about the IP layer. The IP group is

mandatory for all systems. It contains several simple type variables and three tables.

ip OBJECT IDENTIFIER ::= { mib 4)

The simple type variables are:

➔ ipForwarding: It indicates whether the entity is acting as gateway or as host.

➔ ipDefaultTI'L: The default Time To Live for IP packets.

➔ iplnReceives, iplnHdrErrors, iplnAddrErrors, ipForwDatagrams,
ipUnknownProtos, iplnDiscards, iplnDelivers: The total number of input
datagrams, of input datagrams discarded due to errors in IP header, due to
addressing errors, the number of datagrams forwarded, the number of datagrams

Management Informatjon Base (MIB) 88

sent to unknown protocols, the number of datagrams discarded due to resource
limitations and the number of datagrams successfully delivered to the upper layer.

➔ ipOutRequests, ipOutDiscards, ipOutNoRoutes: The number of datagrams received
· from the upper layer, discarded due to resource limitation and discarded due to no

route.

➔ ipReasmTimeout, ipReasmReqds, ipReasmOKs, ipReasmFails: The timeout value
for reassembly, the number of received IP fragments needing reassembly,
successfully reassembled and unsuccessfully reassembled.

➔ ipFragOKs, ipFragFails, ipFragCreates: The number of IP datagrams successfully
fragmented, discarded because they had to be fragmented but could not due to the
DF flag and the number of IP fragments generated.

The IP address table contains IP addressing information conceming this

entity.

➔ ipAddrTable: The table of addressing information.

Each row of the table contains:

➔ ipAdEntAddr, ipAdEntlftndex:, ipAdEntNetMask, ipAdEntBcastAddr: The IP
address of this entry, the number of the interface, the subnet mask of this IP
address and the least-significant bit of the IP broadcast address.

Another column was added in MIB-II:

➔ ipAdEntReasmMaxSize: The size of the largest IP datagram that this entity is able to
reassemble.

The IP routing table contains an entry for each known route.

➔ ipRoutingTable: The routing table of this entity.

Each row contains:

➔ ipRouteDest, ipRoutelftndex: The destination IP address and the number of the
interface.

➔ ipRouteMetricl, ipRouteMetric2, ipRouteMetric3, ipRouteMetric4: The primary and
altemate routing metrics for this route.

➔ ipRouteNextHop, ipRouteType, ipRouteProto, ipRouteAge: The IP address of the
next hop, the type of the route (invalid, direct, remote, other), the mechanism used
to determine the route (local, netmgmt, icmp, egp, ggp, ...) and the age of the
route in seconds.

MIB-II added one column:

Management Information Base (MIB) 89

➔ ipRouteMask: The subnet mask of the destination address.

Another table was added in MIB-11, the IP address translation table, which

replaces the tables in the address translation group.

➔ ipNetToMediaTable: The IP address translation table.

Each row of the table contains:

➔ ipNetToMedialftndex, ipNetToMediaPhysAddress, ipNetToMediaNetAddress,
ipNetToMediaType: The interface numbèr, the media physical address, the IP
address and how the mapping was determined (static, dynamic, invalid, other).

3.3.5. ICMP Group

The ICMP group contains information about the ICMP protocol. As ICMP is

mandatory for ail devices implementing IP, it must be implemented in ail systems.

icmp OBJECT IDENTIFIER ::= { mib 5}

This group contains 26 variables. As seen in the previous chapter, ICMP

possesses several different messages. The ICMP group contains two variables for each

ICMP message, one for counting the number of generated messages and one for the

number of received messages of this type. For example:

➔ icmplnDestUnreachs, icmpOutDestUnreachs: The number of "destination
unreachable" messages sent and received.

The four additional variables are:

➔ icmplnMsgs, icmpOutMsgs, icmplnE"ors, icmpOutE"ors: The number of
messages received and sent and the number of messages received in errors or not
sent due to errors.

3.3.6. TCP Group

The TCP group contains information about the TCP protocol. lt must be

implemented in ail systems implementing TCP.

tep OBJECT IDENTIFIER ::= { mib 6}

The TCP group contains:

Management Information Base (MIB) 90

➔ tcpRtoAlgorithm, tcpRtoMin, tlpRtoMa:x: The algorithm used to determine the
retransmission timeout and the minimum and maximum values permitted for the
retransmission timeout.

➔ tcpMa:xConn, tlpActiveOpens, tcpPassiveOpens, tcpAttemptFails, tlpEstabResets,
tcpCurrEstab: The maximum number of connections allowed, the number of active
and passive opens, of connection attempts which failed, of connection resets and of
connections currently established.

➔ tcplnSegs, tcpOutSegs, tcpRetransSegs: The number of segments received, sent and
retransmitted.

Two variables were added in MIB-II:

➔ tlplnErrs, tcpOutRsts: The number of received segments discarded due to format
errors and the number of resets sent.

The TCP connection table contains TCP connection-specific information.

➔ tcpConnTable: TCP connection table

Each row of the table contains:

➔ tlpConnState, tcpConnLocalAddress, tcpConnLocalPort, tcpConnRemAddress,
tcpConnRemPort: The state of the connection (listen, sys sent, estab, ...) and the
local and remote addresses and ports of the connected entities.

3.3.7. UDP Group

The UDP group contains information about the UDP protocol. It must be

implemented in all systems implementing UDP.

udp OBJECT IDENTIFIER ::= { mib 7}

The UDP group contains:

➔ udplnDatagrams, udpNoPorts, udplnErrors, udpOutDatagrams: The number of
received datagrams delivered to users, sent to unknown ports, discarded due to
format errors and the number of sent datagrams.

In MIB-II, a new table, which contains information about the application

entities which are using UDP, has been added:

➔ udpTable: UDP listener table.

Each row of the table contains:

Management Information Base (MIB) 91

➔ udpLocalAddress, udpLocalPort: The local IP address and port of the UDP user.

3.3.8. EGP Group

The EGP group is required only for the systems which support the Exterior

Gateway Protocol.

egp OBJECT IDENTIFIER { mib 8)

lt con tains:

➔ egplnMsgs, egplnErrors, egpOutMsgs, egpOutErrors: The number of sent and
received EGP messages and the number of EGP messages received with errors and
not sent due to resource limitations.

lt also contains a table with information about the neighbours.

➔ egpNeighTable: EGP neighbour table.

Each row of the table contains:

➔ egpNeighState, egpNeighAddr: The state and the address of the neighbour.

MIB-II added many other entries to this tables (see Appendix B).

3. 3. 9. Transmission Group

The transmission group is defined in MIB-II only. lt should contain media

specific MIB variables. But the variables to be included are still tested in the

experimental subtree.

transmission OBJECT IDENTIFIER

3.3.10. SNMP Group

. ·.. - { mib-2 10)

The SNMP group is only defined in MIB-II. lt contains SNMP-related

information. Sorne of the variables will be zero-valued for implementations which act

only as agent or as management stations.

snmp OBJECT IDENTIFIER ::= { mib-2 11)

➔ snmplnPkts: The number of SNMP PDUs received.

➔ snmplnBadVersions, snmplnBadCommunityNames: The number of received PDUs
with an unsupported version number and with an unknown community name.

Management Information Base (MIB) 92

➔ snmplnBadCommunityUses: The number of received PDUs which contain an
operation that was not allowed by the community name.

➔ snmplnASNParseErrs, snmplnBadTypes: The number of received PDUs containing
an ASN .1 parsing error and which had an unknown PDU type.

➔ snmplnTooBigs, snmplnNoSuchNames, snmplnBadValues, snmplnReadOnlys,
snmplnGenErrs: The number of received PDUs for which the value of the
"ErrorStatus" field is tooBig, noSuchName, badValue, readOnly and genErr.

➔ snmplnTotalReqVars, snmplnTotalSetVars: The number of MIB objects
successfully retrieved as the result of either a Get-Request or a Get-Next PDU and
the number of MIB objects successfully set as the result of a Set-Request PDU.

➔ snmplnGetRequests, snmplnGetNexts, snmplnSetRequests, snmplnGetResponses,
snmplnTraps: The number of Get-Request, Get-Next, Set-Request, Get-Response
and Trap PDUs which have been processed by the SNMP entity.

➔ snmpOutPkts: The number of SNMP PDUs sent.

➔ snmpOutTooBigs, snmpOutNoSuchNames, snmpOutBadValues,
snmpOutReadOnlys, snmpOutGenErrs: The number of generated PDUs for which
the value of the "ErrorStatus" field is tooBig, noSuchName, badValue, readOnly
and genErr.

➔ snmpOutGetRequests, snmpOutGetNexts, snmpOutSetRequests,
snmpOutGetResponses, snmpOutTraps: The number of Get-Request, Get-Next, Set
Request, Get-Response and Trap PDUs which have been generated by the SNMP
entity.

➔ snmpEnableAuthTraps: It indicates if the agent is configured to generate
authentication-failure traps.

In this chapter, the OSI structure for network management, the Common

Management Information Protocol (CMIP) will be briefly described. Common means

that CMIP is a general purposes network management protocol. It is not only aimed

at OSI networks. Therefore, it has been applied to the management of TCP/IP

networks. This has been named CMOT, the Common Management information

protocol Over TCP/IP. CMOT will be examined in the second section.

4 . .1.. CMIP

Like SNMP, CMIP is designed to transfer network management information

from one place to another. The review of CMIP will be made in four points. The first

one will have a look at the management information. The second one will examine the

services provided to the user and the third one will analyse the PDUs used to transfer

the information. The last point will give rapid explanations on the working of CMIP.

Many ideas to realize this chapter have been found in [RFC1095].

4.1. 1. Management Information

As in SNMP, management information is stored in a Management

Information Base (MIB) defined by a Structure of Management Information

[ISO 10165-1]. However, the organisation of the MIB is not the same as in SNMP. In

CMIP, the base concepts are the abstraction of a managed object and the various

kinds of relationships that objects can be involved in. Hierarchies formed by the

relations between the objects are also of importance. Three hierarchies are defined:

the registration, the containment and the inheritance hierarchies.

Managed Objects and Attributes

Management information is modelled using object-oriented techniques.

Everything to be managed in the network is represented by managed objects.

Examples of managed objects are protocol entities, modems and connections.

CMIP 94

An object class represents a collection of managed objects with the same or

similar properties. "A managed object is defined as an instance of the object class.

Each object class is defined as having (among other things) a set of

attributes. "[STAL89] An example of an object class is transport connection. There

are a number of managed objects (specific transport connections) that are instances of

this class.

Managed object classes are defined by:

- the attributes or properties the object has,

- the CMIS operations that can be performed on the object,

- the actions that can be performed on the object,

- the events that the object can generate and

- information about various relationships the object may be involved in.

"CMIP objects are represented using the ISO defined ASN .1 [ISO8824] and

are encoded using the ISO Basic Encoding Rules (BER) [ISO8825]. For SNMP only a

subset is used. "[WARR90]

The Registration Hierarchy

The registration hierarchy is determined by the ASN .1 registration tree for

assigning OBJECT IDENTIFIERs. In the context of management, these OBJECT

IDENTIFIERs are used for identifying object classes and attributes. Its purpose is

simply to generate universal unique identifiers.

The Containment Hierarchy

The containment hierarchy is constructed by applying the relationship "is

contained in" to objects and attributes. Objects of one class may contain other objects.

Objects may also contain attributes. The containment hierarchy is important because it

can be used for identifying instances of a managed object.

One or more attributes (distinguished attributes) are chosen so that specifying

their values uniquely identifies which managed object is being referenced. [ST AL89]

A distinguished attribute is composed of an OBJECT IDENTIFIER naming the

attribute and the value of the attribute. For each object class, the distinguished

attributes that differentiate instances of that class are called the relative distinguished

CMIP 95

name. A sequence of relative distinguished names is the distinguished name of the

managed object. The containment hierarchy is sometimes referred to as the naming
tree because it is used to name a particular instance of a managed object. For

example, if the highest object class represented in the hierarchy is a network and

nodes are contained in a network, then if an object class (transpon entity) that is

contained in an node, contains an object class transpon connection, an instance of a

transpon connection can be identified by the concatenation of "instance information"

for each object class.

The Inheritance Hierarchy

The inheritance hierarchy is constructed by applying the relationship "inherits

properties of" to object classes. An object class may inherit properties of another

object class. Refinement is obtained by adding additional properties. In this

relationship, the parent class is called the superclass and the inheriting class the

subclass. The inheritance hierarchy has no relevance to the naming of object

instances.

4 .1. 2. Management Services

CMIS [1S09595] is an Application Service Element which is used by an

application process to exchange information and commands. The following 10 CMIS

service primitives form the basis for all OSI management activities:

➔ M-EVENT-REPORT: It provides a means to report events to the management
station.

➔ M-CONFIRMED-EVENT-REPORT: It is the same as M-EVENT-REPORT but it
requires an acknowledgment from the management station.

➔ M-CONFIRMED-GET: It allows to retrieve management information from the
peer MIB.

➔ M-SET: It allows to modify information in the peer MIB.

➔ M-CONFIRMED-SET: lt is the same as M-SET but it requires an
acknowledgement.

➔ M-ACTION: It requests to perform some action.

➔ M-CONFIRMED-ACTION: It requests to perform some action but it requires a
confirmation by the managed device.

➔ M-LINKED-REPLY: lt is used to link different replies in response to multiple
requests.

CMIP 96

➔ M-CONFIRMED-CREATE: It requests to create a managed object instance.

➔ M-CONFIRMED-DELETE: It requests to delete a managed object instance.

➔ M-INITIAL IZE: It is used to initialize an association.

➔ M-TERMINATE: It is used to terminate an association.

➔ M-UABORT: It is used to abruptly terminate an association.

4 .1. 3. Management Protocols

"OSI application layer protocols are built using Application Service Elements

(ASEs). CMIP [ISO9596] uses three ASEs: The Association Control Service Element

(ACSE), the Remote Operations Service Element (ROSE) and the Commun

Management Information Service Element (CMISE). "[STAL89]

CMIP uses the Association Control Service Element [ISO8649] & [ISO8650]

to establish and release associations between application entities. Before any

management operations can be performed using CMIP, it is necessary for the two

application entities involved to form an association. The five ACSE PDUs that are

used by CMIP to manage its associations are: the AARQ (Association request) PDU

to request the establishment of an association, the AARE (Association Response) PDU

to confirm the establishment, the RLRQ (Release - Request) PDU to request the

graceful termination of an association, the RLRE (Release Response) PDU to confirm

the graceful termination and the ABRT (Abrupt) PDU to abruptly close the

association.

CMIP uses the Remote Operations Service Elements (ROSE) [ISO9072-

l]&[ISO9072-2] to provide the transaction oriented services required by the systems

management application entity. The ROSE are supported by four PDUs: the ROIV

(Invoke) PDU to invoke to perform an operation, the RORS (Retum Result) PDU to

report the successful completion of an operation, the RORE (Retum Error) PDU to

report the unsuccessful completion of an operation and the RORJ (Reject) PDU to

reject an operation request due to a problem. "[KLER88]

CMISE provides the network management applications with the Commun

Management Information Services (CMIS). These services are listed in the point

hereabove. The last three ones (M-INITIALIZE, M-TERMINATE and M-UABORT)

are performed by using the ACSE while the other ones are performed by using the

ROSE.

CMIP 97

4.1.4. Working

Here are described , in bulk, some of the important characteristics of CMIP.

CMIP is an association oriented protocol. Thus, it requires a reliable

transport layer such as TP-4 or TCP/IP. An association oriented protocol involves

more processing for communications because an association must be established

before sending data. However the sender of a CMIP message is sure the message has

reached its destination which is not the case with SNMP for which the applications

have to guarantee delivery by themselves. Therefore, CMIP is better for retrieving

large amounts of data. But a problem with association oriented protocols is that the

network is harder to manage when trouble occurs because of the connection

establishment phase. For example, if the network is saturated by a device, it could be

difficult to send more than one message to stop this device.

CMIP provides for the implementation of sophisticate<l conditional

commands based on object type, value and relative location in the managed network.

For example, a CMIP-based management system could directly request port

information for all gateways for which ifNumber > = 5. SNMP would request the

information from ail routers and check the ifNumber value to see if the router is of

interest. [W ARR90]

CMIP requests can be either atomic or carried out on a best effort basis. If an

error occurs during the processing of the request, if the request is atomic, no result is

retumed and if it is carried out on a best effort basis, all the results which cause no

errors are retume<l. Furthermore, CMIP supports linked replies. If the re~l)onse is too

large to fit in a single packet, several packets can be linke<l together to retum the

re~l)onse. SNMP is only able to retum a reply packet per request. [W ARR90]

The data query mechanism makes that CMIP is oriented more toward

retrieving aggregate information than individual items of information as with

SNMP. [FISH91]

SNMP actions can only be performed as side effects of variables setting,

whereas CMIP provides its user with the definition and execution of object specific

imperative commands. [W ARR90]

CMIP 98

Both SNMP and CMIP agents are able to send event messages to their

managers. But SNMP events are always unconfirmed while CMIP events either

confirmed or unconfirmed.

SNMP uses a polling-based management. This means that the manager

regularly asks each device for its status. "CMIP uses an event-based management.

The managed devices asynchronously send pre-configured information of interest to

the manager. The device informs the manager of its status when it changes. "[FISH91]

The event-based management has the advantage that if a large number of

devices is to be managed, it will consume less network bandwidth than the polling

based management. However some stupid devices may be unable to tell the manager

that they have problems and, in this case, polling is more appropriate.

And finally, CMIP is significantly more complex to design and implement

than SNMP. It also occupies more code-~l)ace (3 times more than SNMP) which is

important in some devices with limited resources.

CMOT 99

4. 2. CMOT

CMOT differs from CMIP for at least two points. The first one is the

information which can be managed and the second one is the structure of the protocol

layers.

4,2.1. Management Information

As CMOT uses the standard Internet MIB, the Internet SMI does not use the

notions of object class and attribute. Only the concepts of object type and object

instance are used. In order to use CMIP to convey information defined in terms of the

Internet SMI, it is necessary to show how object instances are specified and to provide

the necessary structure for differentiating object class and attributes. These objectives

are both met by separating the containment hierarchy used for naming objects from

the registration hierarchy and by imposing an object class structure on the Internet

SMI. [RFC 1095]

The mapping between the Internet SMI and the containment hierarchy is

achieved by mapping those object types defined in the Internet MIB as leaf nodes to

attributes and non-leaf node object types to object classes. The mapping with the MIB

is shown in figure 4.1. [ST AL89] For example, the attributes of the system class are

!lysDescr, !lysObjectID and sysUpTime.

interfaces

ifTable

ifEtry

r AtTable

1 atEntry

System
j

.1 • 1

~ mp

ipAddrTable ipRout1ngTable

ipAddlEntry ipRoutlngEntry

tcpConnTable

1 tcpConnEntry

Fig. 4.1: Mapping of MIB to CMOT containment hierarchy

t egpNe1ghTable

1 egpNe1ghEntry

The OBJECT IDENTIFIER naming a distinguished attribute together with its

value is called an attribute value assertion. A set of attribute value assertions is the

relative distinguished name associated with that object class. The sequence of relative

distinguished names for each of the object classes in the containment hierarchy to

which a managed object belongs is the distinguished name of the object.

The Internet SMI does not use the inheritance hierarchy.

CMOT 100

4.2.2. Protocol

The following figure (4.2) summarizes the CMOT protocol suite. It contains

the ISO ACSE protocol, the ISO ROSE protocol, the ISO CMIP protocol, the

Lightweight presentation protocol (LPP), UDP, TCP and IP.

Management Application Processes

CMISE
ISO 9595 / 9596

ACSE
ISO 8649 / 8650

1 1

TCP
RFC793

LPP
RFC 1085

1 1

IP
RFC 791

ROSE
ISO 9072-1/2

UDP
RFC 768

Fig. 4.2: CMOT protocol suite

The difference between OSI CMIP and CMOT is the LPP layer.

The problem was to put ISO application protocols on top of TCP/IP. But the

gap between the ISO protocols (ACSE and ROSE) and the Internet protocols (UDP

and TCP) must be filled. The approach is presented in [RFC1085]. Since the service

elements required for network management do not require the use of full ISO

presentation layer services, it is possible to define a simple presentation layer that

provides only the services required. This lightweight presentation protocol allows the

use of ISO presentation services over both TCP and UDP.

4,2,3. Opinion

The opinion of David Mahler (vice-president of marketing for Remedy, a

company in Palo Alto, CA, developing protocol-independent network management

products) about CMOT will conclude this chapter. Mahler said in [FISH91]: "My

particular opinion, and I think you'll find it to be the general consensus, is that

CMOT is dead. It lost its market window, and SNMP has very well filled the role of

CMOT 101

management protocol for TCP/IP. The SNMP community delivered more

functionality, faster, to the market place. (...) The CMOT community was working

on the problem of managing TCP/IP devices. That's the same thing that SNMP was

doing. The OSI/Network Management Forum worked on a very different problem.

[Its members] didn't care what network you were trying to manage. They said the

management systems had to talk to each other and were largely independent of the

kind of network out there."

Openview is termed as a node manager. Therefore management operations

concentrate on the nodes and the management function on the network is less

developed. For example, it is not possible to find a monitoring function that detects

broadcast storms. Every action made by the program consists of operations on the

individual nodes and not on the network.

Openview has been tested on a HP-9000 workstation under the Unix (HP

UX) operating system. lt uses the services of X-window to make the dh1>lays on the

screen. Openview is made to manage nodes implementing at least the Internet

Protocol. Sorne functions are available for Ethernet LANs but Openview is also

convenient for WANs.

In the first section, the main functions of HP Openview are covered. And in

the second section, a conclusion resumes the positive and negative points of this

program.

5.1. P~ese~tatic::,~ a~d
C c::,n1.n1.e ~ t s

Below are summarized the major possibilities of Openview.

5. 1.1. Graphical User Interface

A. Presentation

Openview possesses a database containing a representation of the network.

This database is automatically updated with information coming from the nodes (by

polling the nodes, listening to broadcast traffic (ARP), etc). Openview draws a view

of the network using this database. An example of a general map is displayed in

figure 5.1.

HP Openview 103

lleu (X>Ject lloldln9 Area

Fig. 5.1: Example of map

The map of the network is represented in three different levels.

Internet Level.

It shows a logical view of the entire network (intemal and extemal). Here

only the networks and the gateways are displayed. (As in figure 5.1)

Physical Level.

It shows a view of a network with all the segments, the bridges, etc. It is

accessed by clicking on a network in the Internet level.

Segment Level.

It shows a view of a segment with all the nodes connected on this segment. It

is accessed by clicking on a segment in the Physical level. An example of a three

level map is given in figure 5.2.

HP Openview 104

Fig. 5.2: Three level map

As Openview possesses a topology builder, it automatically draws a view of

an entire internetwork with the routers, the networks and the hosts that it can detect.

This view is not complete because only the nodes implementing the IP protocol can be

detected with the topology builder. Therefore, if the network contains bridges,

repeaters, terminal servers, they will not be automatically detected and, thus, they

will not be present on the screen. The user has to add bridges, new segments,

repeaters to the map built by the topology builder. By this means, the map will

correspond to the real (complete) physical topology of the network. These changes are

saved in the database.

To help update the network, Openview disposes of tools to edit the views.

These tools allow users to add and to remove objects (computers, bridges, ...) or

connections, and to move an object from one segment or one network to another, or

to change the type of an object. An object can be moved to another part of the view

only by using the mouse.

A snapshot of the network can be taken. The snapshot is a representation of

the network at a certain moment. A snapshot is a means for saving a network map. It

is possible to take a snapshot, change the network topology and, if wanted, restore the

old version of the network. A snapshot can be recovered to work with a previous

view of the network.

HP Openview 105

Every object can be either managed or unmanaged. If it is managed, then it

will be polled at fixed intervals to leam information on its status, its performances,

etc. If it is unmanaged, no information about it will be available. When managed, a

node sends information to the node manager.

The user can locate an object by using many parameters. An object can be

found by its name, its IP address, its link address. One or more objects can be located

by using the type or the comment field. Every object corresponding to the selected

type or to the chosen comment is highlighted. Ali SNMP or non-SNMP objects can

also be found. The window containing the highlighted objects is created and/or

popped up if it is already present on the screen.

It is possible to find the route between two objects. The only thing to do is to

give the addresses or select the objects. And the program highlights the route and

gives the address of every gateway that is on the route.

By clicking with the right button on an object, a description of it is displayed.

If the object is a node, the description contains the name, the type, some comments

and the SNMP or non-SNMP character of the host. It also contains the IP address, the

link address, the type of every interface. If the object is a network, the description

contains the name of the network, the network number, the number of segments, the

number of nodes and some comments about the network.

B. Comments

The presentation of the program is very good. It looks very professional. The

windows are well designed, with shadows, etc. Openview is very easy to use because

the drawing is made automatically. But the only way to stop the extension of the map

is to unmanage the end objects. This is not very convenient. It would have been better

to add a leam on/ off function to be gin or stop the extension of the map.

But the drawing is more difficult if made manually. The display is divided

into three levels and these levels cannot be changed. It is not flexible. It is impossible

to move an object from one level to another. It is, for example, impossible to make a

host become a gateway because they do not belong to the same level. To make this

sort of change, the user must delete the host and create a gateway with the same name

and the same address. The user must be rigourous when adding new objects. It is not

possible to add an object without giving its name or its address. It seems constraining

but it is better than having an object with no name on the map.

HP Openview 106

The user can choose to place the objects wherever he wants. But he canuse a

facility to redraw the map where the placement is calculated by the program. This

function works perfectly well but only if the map is not overloaded. If there are too

many objects on the map, they begin to be superposed.

A bad thing to notice is that, in the internet level, all the networks are

represented by the same picture. lt would have been better to use different pictures for

Ethernet, point to point links, etc.

The facility to search the route between two nodes works well but there are

two imperfections. The first one is that in the answer table, sometimes the name of

the gateway is given and sometimes the IP address is given. lt is not very easy to

follow the trace. The- second imperfection appears when the two nodes are on the

same network but on different segments. On the network level, there is no highlight

between the two segments.

In conclusion, the graphical representation of the network is not perfect but is

very good. The possibility to stop the extension of the map would have been very

useful. All useful tools to draw the map and manage objects (add, delete, ...) are

present. And once the basic concepts of the different levels are understood, it is very

easy to work with the graphical facilities.

5. 1. 2. Alarm Manager

As can be seen in the graphical user interface, an alarm manager is always

present on the screen (see figure 5.1). By clicking on the different buttons, it gives

the possibility to display the different events gathered. The events are divided into

five categories. The first category is related to thresholds trespassing, the second one

to network topology changes, the third one to errors, the fourth to status events and

the last one to node configuration changes. The sixth button displays the events from

the five categories. As can be seen in figure 5.3, an event is characterized by a

timestamp, the node concerned, the source of the information (Node or Manager) and

the description of the event.

HP Openview 107

Fig. 5.3: All Events display

5. 1. 3. Devices Polling

It is possible to enable or disable the polling of the nodes and to fix the

intervals between two pollings for all the nodes. Different polling intervals can be

selected, each corresponding to a particular function. These are: discovery of new

nodes, status of one node, thresholds polling·(system load, diskspace, interface).

5.1.4. Traffiç Monitor

A. Presentation

It is possible to fix thresholds for every machine in particular. It is only

needed to select a node, choose a type of polling and fix the threshold. The types of

polling are interface percent defe"ed, interface percent collisions, interface CRC

e"ors, interface percent input e"ors, interface percent output e"ors, CPU load and

percentage of used disk space .

The program is able to produce on-line graphs using some parameters of one

node. It can make graphs representing the CPU load of a node (only available for

specific stations), the interface traffic, the link: transmissions and link: receptions

HP Openview 108

(available for the SNMP hosts). An example of a graph on the interface traffic is

shown in figure 5.4. It shows the out packets on the "ethernet O" interface of gateway

"ext-gw-01 ".

Interface Trafflc since Thu Jan 17 11 :18:18 1991

.J In F;d et, FU·; : ·;ce

.J Out [rr,:,r.:

p~.i.

Hver-:iga 1J

Current û

:~-1~------...------~------,.-------,---~--.--------

i;.1 = ---- ---+----- ---1-----·--

î5'1 -----=!!!!!!!!!!!----- ""'-------t--------+----------l-------1--

.j/J =-----!!!!!!!!!!! ~ ----- ____ .,, =- -------+-------+------+--

", ! 2.:.1+------+-,-'-'r---+--,--+-V--H---r--+--l+--,'----f------1--

, \ . \ /' .,-· \ ''---\ /
' \,•·-"\ / \ -\ \ ' . ,; ~ \

lù-l------"-.,_+----"--+------+-'----'----l-'-----,f-------1--

11:D:41
fan 17

lla~1a or IP H:k'r>:"::.:: Interf:1ces lle.::z.a9=:::

-~-•_t-...;
9

"-•,,_-o1_i ____ _. a.:•"':r.;.t.::.al:.::!J'----' ~ ----------------------------------J Pollrng Inter<;->l Etherretl
·:ert.:,11

F Re select Recet

Fig. 5.4: Interface Traffic

B. Comments

The threshold function is indispensable in a management system. But here,

We think it is too limited. Only 6 variables are available, and amongst these 6

variables, only 4 can be used normally and only concern interface dependent

parameters. The last two ones are HP dependent. It should have been possible to fix

thresholds on a wider choice of variables .

HP Openview

5.1.5. Reachability Tests

A. Presentation

109

It is possible to test if anode is working or not (up, down). This test is made

by the ping procedure. The program sends ICMP echo packets and wait for answers

from the tested machine. The time between the sending of every packet and the

response is shown. The program also calculates the maximum, minimum and average

time between the sending and the reception.

Another interesting test to make is the remote ping test. The program forces a

remote node to send packets to another one. The remote node listens to an answer and

sends the results to the program.

The program is able, for every node, to make an immediate demand poli.

The polling consists for a normal non-SNMP node of a ping test, a demand of

description and a verification of the nodename. The SNMP nodes are also requested

to send their internai tables Iike routing table, ARP cache, services, etc.

B. Comments

These functions are useful in a management program. They represent the

minimum facilities. All of them work well.

There is also a monitoring program called netmon which collects information

like node up/down from the managed objects and sends it to the graphical

representation of the network in order to update the colour of the nodes. But this

program dies too frequently. This problem was investigated but not yet resolved when

this test was performed.

5.1.6. Data Ouery

A. Presentation

For the nodes supporting the SNMP protocol, more information can be

retrieved by using the Request menu. It is possible to obtain immediately all the

events that occurred on this node, the interfaces, the addresses, the routing table, the

ARP (Address Resolution Protocol) cache memory and the services provided by the

node. The result of an interface query is given in figure 5.5.

HP Openview 110

~f ' """"" " ·'" ' . . " . . ;~------~~ ~m ~~X
)>, .. ,.. ,, ~

~:~: Na111e or IP Address ~~

-- 1 ~® Interface ÎHPe HTU Status InPackets InErrors OutPackets OutErrors ~~ ~❖: ... ,--___ _..;; _________________________ -::rt!❖

~~: EthernetO ethernet 1500 up 4617869 3809 2269635 0 ::::
~~: SerialO propPointToP 1500 up 1145161 81 1235658 0 ~~
~~\ Ethernet1 ethernet 1500 up 2935945 13 2782853 0 ~~
~::: Serial1 propPointToP 1500 up 342840 71 411970 0 \:~
@ Serial2 rfc877-x25 1500 up 2817839 18 4521088 0 ::\:
~~: Serial3 propPointToP 1500 up 143336 2 146963 0 i::
~:;: Serial4 rfc877-x25 1500 up 111181 11 173470 0 ~:(
~~~ Serial5 propPointToP 1500 up 193966 373 208415 0 ~~ 

ii ~==============================Lill 
~~: Messages ~:: 

1 ·;· ,_,,,,:;,::~✓.@«xs,a,,a,s,,::::~;~,,;,,"'~""'::'.❖::~❖,""'"'"''"""'~::,,,._,.,,,, J 
Fig 5.5: Interface Display 

For devices connected to an Ethernet network, data-link counters (CRC-, 

send-errors, ... ) are also available. 

The TCP connections option displays the TCP connection table that can be 

found in the MIB TCP group. It contains, for each connection, its state and the local 

and remote addresses and ports which identify the connection. 

The disk space option says that no file system information is retumed by the 

tested node ( except for the station itself). This last option is HP dependent. 

The program is able to test the protocol supported by every node (ICMP, 

TCP, SNMP). It can test if the three protocols are implemented on the machine, at 

the same time or one at a time. 

B. Comments 

These functions give only global information about an object. They g1ve 

routing tables, interfaces, etc, but they do not give more detailed information like the 

value of a particular MIB variable or the error rate on a specific interface of an 

SNMP object. Information given by these functions cannot be used efficiently to 

detect, for example, troubles on the network. 



HP Openview 111 

5. 1. 7. Others 

It is also possible to connect directly to a computer simply by selecting this 

computer on the segment view and using the connect option of the last menu. The 

same mechanism is used to connect to a gateway. lt is done by using the Telnet 

Protocol. 

The last possibility offered by this program is to start the System 

Administration Manager (SAM) on a remote node (HP-UX) in order to reduce the 

management related CPU load on this station. 

5.2. Cc::,n.c::l1..1sic::,n. 

In conclusion, Openview bas two advantages and five disadvantages. 

Openview is attractive because it is a well finished product. It looks very 

professional and is, in fact, rather easy to use with the mouse. For example, the 

menus and the windows are designed in a perfect way. The common operations are 

working satisfyingly. It is very pleasant to work with a program possessing a 

graphical interface like the one possessed by Openview. 

Furthermore, the graphs that can be displayed are very pleasant and very 

readable. 

But its disadvantages are important. 

The first is that it is only able to manage the nodes. No operations can be 

made on the network itself. For example, it is impossible to listen to the broadcast 

traffic. The only way to have an idea of the traffic is to examine the number of 

packets passing through gateways, which is not representative at all. 

The second severe problem is that it is never possible to save anything on 

files. AU information gathered by the program (tables, rates, ... ) can only be dh1>layed 

on the screen. When it disappears from the screen, it is lost. Long tables are easier to 

read on a paper copy than on the screen. And if data are stored on a file, they can be 

used by other applications, for example, by a statistics database. 

The following problem is the poor capacity of gathering information. The 

program is too limited. It is only able to retrieve a few tables such as services table, 



HP Openview 112 

routing table, interfaces table and values of some variables such as crc-errors, number 

of packets sent, number of collisions from a remote object. It is not sufficient to 

manage a network. For example, the possibility to retrieve MIB variables from a 

remote object would have been very useful. 

Furthermore, it is impossible to act directly on remote devices. For example, 

it is not possible to change the value of an MIB variable from the management 

station. 

Another problem is that Openview is unable to manage the bridges. Nothing 

is available to get information from the bridges. Therefore, the program is less useful 

for some internai networks (bridged Ethernets) than for externat networks. 

To end the conclusion, We would say that Openview is designed for the 

network manager and not for opera tors. Operators need to be warned as quickly as 

possible if a problem occurs. And this is impossible with Openview which only 

displays a small error box. Openview is not a satisfying product for the operators. It 

can be satisfying for the manager to have a global view of the network and to perform 

the first tracking operations when a problem occurs. But in this eventuality, the 

manager needs in complement more specific tools, to investigate more deeply. 



This chapter describes an experience with the new Digital product for 

managing networks, the Digital Network Tools (DNT). 

All the possibilities offered by this program will be reviewed in the first 

section. And then, a conclusion about this product will end the chapter. 

6-1- Possibilities of DNT 

The DNT program uses SNMP, Decnet or CMOT to manage a network. It is 

running on a Decstation with the Ultrix (Unix from Digital) operating system. A 

colour screen is mandatory to display the information. This is made using the 

Decwindows graphical interface. 

6. 1.1. Graphical User Interface 

A. Presentation 

As presented in figure 6 .1, the graphical user interface is composed of four 

windows. 

➔ The first one is the general window, called Network Map Application. lt is used 
to draw the map and support the menus. 

➔ The second window is the Palette window. It is divided into three parts. The first 
part gives a legend of the different col ours used to display the elements of the map. 
The second part contains symbols which represent objects available to design the 
map. And the third part contains symbols which represent fonctions the user can 
perform. It is possible to hide the palette window if the map does not need to be 
changed anymore, in order to enlarge the other windows. 

➔ The third window is the Navigation window. lt is used, if the map is too big, to 
navigate from one part to another. In the small square, the part of the map currently 
displayed in the network map application window is shown off. 

➔ The fourth one is the Alann Management window. lt is used to display alarms. 
This will be explained hereunder. 



Digital Network Tools 114 

:: Networic .\fap Application: Read/Write Accus (Root, Level O) Pal ■ tte 

\4ao Fault Conflgun.tlon Performance Securitv Aceountlng Reportlng Other Color Ugend 0 ' 
à UP OOWN WARNINC SELECT 

UNKNOWN NO RESPONSE 

ô ô ô ô ô ô ô 
sun su sun 86 pm >el pm K2 pm K3 om ,s bn, e 

TESTINC 

dlck MB2 on svmbol for help. 
' 

1 

[ô]g[sg~ 
0901 

~EJ[Q]~ 1 

1 i 

E] 1 

iô ô ô ô ~ ~ o[:'tl 
ho I hol auollol aoollo2 

o".-. ~ -
termserver Jg 

/ 
QJ;l_Q -/ " 
•,Pi.l :7ib Q) ' ,_ 

,\lavlgatlon 

<) 

Dlmmand 

(10-Jul-1990 13:48:01) msg rnv rroa Alam Type(rns_.,..pJ 
Requastinq Databêse Hrite Access. 

0 

Fig. 6.1: ONT Main Screen 

The network map application window does not only display the map, but it is 

also used to support the menus. Eight menus are visible. Pive of them correspond to 

the five management categories defined in the OSI management framework [1S07 498-

4]: configuration, fault, performance, security and accounting management. The other 

three menus are more specific and are used for performing map, reporting and other 

( remote connections) operations. 

When drawing the map, the user places objects wherever he wants only by 

clicking on the corre~l)onding symbols of the palette. To make a connection between 

two objects, the user canuse the corresponding symbol on the palette or a connection 

function on the map menu. This function is mainly used to make a connection 

between two objects which does not appear in the network map application window at 

the same time because they are placed too far from one another. 

To map can also be built with several levels. The user must choose the view 

symbol on the palette to represent a sub-map. Then, when clicking on this symbol on 



Digital Network Tools 115 

the map, the user enters in a new view and he has the possibility to build a new sub

map. 

If the map if too large, it may not fit into the map application window. Only 

a part of it is displayed on the main window. And it is not easy to search the entire 

map in order to find an object. The user is allowed to find an object by its name. If 

the object is found, the view to which the object belongs is displayed on the window. 

The user can save the map. The map is not automatically saved when a 

change is made. Furthermore, the user can rebuild a previously saved map. This 

permits to recover the last saved map, providing the latest changes have not been 

saved. 

A fonction to print the map is also available. This fonction is very usefol 

because, in general in the map application window, only a part of the whole map is 

displayed. 

B. Comments 

It is easy to draw the map manually. All the drawing fonctions are available 

on the screen (palette). But it becomes more complex to work with different views 

because some objects are represented on both the upper and the lower views. For 

example, if an Ethernet segment is to be represented by a view, the gateway between 

the Ethernet segment and the rest of the network will be shown on both views. But its 

place is the same on the two views. Therefore, this object must be placed in order that 

two objects are not superposed. 

6. 1. 2. Database 

Six different databases can be distinguished in DNT: a service database, an 

object database, an interface database, a group database, a topology database and a 

statistics database. 

Presentation 

In the Service Database, it is possible to save detailed information 

concerning the vendors, the contracts, the location of devices and the contacts which 

are important for network management. The user can add, update, query and delete 



Digital Network Tools 116 

details for any service. A facility lets the user copy information from or to files. An 

example of vendor information is given in figure 6. 2. 

W Service Databa,e ,. 

"°Y ._tn,_o _____ _ 

Data. 1 Yendor 

Vendor Infontatitri 

Id "-)JE_O _____ _ 

Nanc j)Jigita.1 EquiJmmt Corporation 

Addreu t2s vclt:i.ngto:n Street 

City i},cv 1:ngland 

St•t• jIIY 12345-0987 

Country "--l,, _s , __ 

Cont ._Hal!leL ~"'.Pe_te_r SUl_liY_ao ___ _ 

Cont._Ph<wle t:'543-789-0123 

semce_ttrs lp. 00 an to 5. 00 pa 

Rasp. Tine l;oenerally :rane d.ay 

Escalatioo \~Ibe call:r are escalated to hirji priority after 24 hauxs of 

tfir'llt resp<mH. 

c, ........ l)Jigital neeib no introduction, Yoo. axe assured of quality 

,:rerrico 

1 Dt1l.ete 

Fig. 6.2: Vendor information 

6 

0 

The Object Database allows the user to manage information about network 

objects. The information is categorized into four classes which correspond to the 

service classes. An object is associated with an occurrence of each class. The user can 

add, update or query all these classes. If some service information bas not been 

defined, it can be added from the object database. Thus, it is possible to update the 

service database directly from the object database and associate the services with the 

object. 

The lnteeface Database allows the user to enter information about an object 

and its interfaces. The object information is the name, the community name, the 

group name, the protocol used to discover the object status and the polling interval. 

The interface information is the connection type, the name and the address of the 

interfaces, the protocol used for polling and the priority for polling the interfaces. 

When the user enters a new interface, he must type the name of the interface and if it 

is possible to resolve it using the Domain Name Server protocol or some other means, 

the address of the interface can be displayed by clicking on the address field. An 

example of the interface database screen is shown in figure 6.3. 



Digital Network Tools 117 

[~[8_1nt_er_fa_ce_s ______ ~---------=-----------l!_;i[-li11 
Object lpmaxJ 

Community Name l~p_uh_l_ic ______ _ 

Protocol Used For Map Status Dlsplay [J[:==:J Croup 

Polllng Multiplier 11 
'"-;:::I =oe=FA=uL=T ~ 

Address Type ~I I_P_~ 

Connected to Connectlon Type Address Name Address 1 Address 2 Protocol Ptiority 

l~?GO----~) jEthernetj ) jpmaxJ 1.---11-6-.1-21-.-0.-6,,,...7 ---, ______ ~ D 

Message Box 

[Thu Jul 5 11:04:48 1990] Object glenrnn information written to clatabase. 
[Thu Jul 5 11:05:28 1990] Object sun2 information written to clatabase. 

· Hext (>o;l<IH 1 l 11ext Object 1 

Fig. 6.3: Interface database 

1 Dismiss I 

ô 
9 

The Group Database allows the user to manage the groups. A group is a 

gathering of one or more objects which possess a commun characteristic. An object 

can belong to more than one group. For example, it is possible to define an SNMP 

group which contains ail objects that can be polled using the SNMP protocol. This 

permits to <livide the consumption of resources between different computers and to 

reduce the global load of the network. Each group of objects can be polled by a 

different agent. And if the groups are designed taking into account the location of the 

managed objects, the polling agents can be installed in the same areas as the managed 

objects. It minimizes the traffic between the objects and their polling agent. 

The Topology Database contains ail the information necessary to display the 

map of the network. The information is the place of the objects on the map, their 

status, etc. This database is directly queried in order to display, on-line, the state of 

the network on the graphical user interface. 

The Statistics Database, an INGRES database, is used to store and retrieve 

reporting information. Objects can be polled at regular intervals in order to store the 

value of variables in the database. The database can also receive information from 

incoming traps. With the data contained in the statistics database, reports can be 

generated. These reports are built by a report generator. But reports can also be 

created by a user. They can be made using an SQL interface, an INGRES Report 

Writer or embedded SQL commands through a C program. 



Digital Network Tools 118 

Comments 

In the service database, information can be copied to a simple file in order to 

use it to add new objects which have nearly the same characteristics. It is, for 

example, possible to save the information about contract X and then use this 

information in contract Y. But it is also allowed to copy information conceming a 

service to a file and then load this information within another service. No error 

message is displayed but the window is filled with rubbish. The program does not 

check if the information belongs to the same service. 

As bas been said in the first chapter, it is vital to have an inventory of objects 

connected to the network. But the service and object databases do not fulfil this 

requirement as they should. First, they only contain what could be called 

administrative information. That is location, contract, etc. Administrative information 

is indispensable but not sufficient. Network information such as IP or Decnet address, 

physical address, is also needed. If, for example, a problem is detected coming for 

object with physical address X, it is important to know to which object it corre~l)onds 

and then, when the object is found, information is needed such as vendor, contract 

and location to resolve this problem. Second, this function does not perform any 

network query or verification. That is the result of the first problem. The databases 

have no relation with the network. There should exist a link between the objects in the 

<latabases and the packets passing on the network. And, for example, this link could 

be made by an address field in the object database or by a relation with the interface 

database. 

In the Interface Database, only two connection types are available, Ethernet 

( or token ring) and point to point serial. In fact, more types are needed in a real 

network. For example, if an X25 connection is present in a gateway, it is not possible 

to display it. The program should, at least, for the gateways, examine the interface 

itTable_ifEntry_iffype MIB variables to see the number and the type of the interfaces 

on one object. 

6.1.3. Topology DB builder 

An autotopology function to draw automatically different maps (for Decnet 

nodes, SNMP nodes, etc) is in plan. But it was not yet available for this field test, so 

it could not be tested. 



Digital Network Too1s 119 

6, 1, 4. Alarm manager 

There is only an alarm window which displays the events. Every message 

contains a time stamp, the object name, the type of the alarm and an alarm message. 

It is possible to make searches on this window using different arguments. But this is 

not very friendly. It would have been better to class the messages, for example, 

according to their type. 

6. 1.5. Device oolling 

Device polling is made through programs which send the information they 

gather to a topology database. And the map is directly updated using this database. 

The colour of an object is determined by its state. The real state is displayed only if 

this object can be examined using SNMP or Decnet. A non-SNMP or non-Decnet 

object is marked as unknown. But for the gateways supporting SNMP, DNT displays 

the state of each interface and the global state of the object. 

6, 1,6. Traffic monitor 

The traffic monitoring function can be divided into two parts. The first one is 

an Ethernet traffic monitoring function. The second qne is rather a traffic monitor for 

device interfaces. 

Presentation 

The Ethernet Packet Filter function provides the user with a display of the 

load (percentage of the total bandwidth in use during a particular period) on the 

Ethernet. The user can choose between displaying the aggregate load and displaying a 

trend graph. He can also choose to display a separate graph for each packet type or 

for each source or destination address. Many other display options are available. 

The Monitor Inteifaces function monitors all interfaces of an SNMP object. 

It counts the number of input and/ or output packets on each interface and displays one 

or two graphs for each interface. The user can choose to display the number of input 

and/or output bytes per interface. He can also choose between displaying input 

information, output information or both. An example is given in figure 6.4. 



Digital Network Tools 120 

!Gll NMSXPERFMON lb!ll@J 
~ 

SNMP Interface Performance Monitor Uersion 3.0 

Copyright (C) N~SERNet Inc. 1987,1988 

Agent: 16.121.0.1 Interval: 2 seconds 
Interface: 12?.0.0.1 

inpkts sol 
packets/second 

outpkts sol 
Interface: 16.121.0.1 packets/second 

inpkts 50 .! •. '{' ., 1 

packets/ second 

outpkts sol 
packets/second 

Fig. 6.4: Monitor Interfaces 

Comments 

A monitoring function of the Ethernet is essential for the management of 

Ethernet networks. When problems occur, it is vital to react as quickly as possible. 

But, the problem is that with DNT it is only possible to monitor Ethernet traffic. It 

would have been better to have the possibility to monitor traffic on other networks, 

for example, on Token Rings. lt is also impossible to fix a threshold on the network 

load. The only possibility given is to display a graph of the load. But in case of a 

problem, the program is unable to detect it and therefore no alarm can be generated. 

When monitoring the interfaces, the displayed graphs are too small. lt would 

have been better to display only one interface at the same time but to have made the 

graph bigger. lt is not easy to have an idea of the height and of the scale of the 

graphs. 

6.1. 7. Reachability Tests 

Presentation 

The Ping reachability test allows to check if a host responds to an ICMP 

echo message. If no object is selected before invoking the function, a terminal 

window is created and the user must type the name of the object to ping. If an object 

is selected, the ping test begins immediately. lt dü,l)lays the ping time for every 

packet and when the user stops it, it computes the minimum, maximum and average 

ping times. 



Digital Network Tools 121 

The traceroute Ping prints the route taken by an IP packet to the destination 

host. It uses the same display as the ping test. The same remarks are available for this 

fonction. It displays the names of the different hosts on the route and the time to reach 

them. 

Comments 

For those two tests, a terminal window is created. But the user must click in 

the window before beginning any action in this window. A non-terminal window 

would have made the use of these fonctions more friendly . 

6. 1. 8. Data Ouery and Values Setting 

Six fonctions are available to query and set management variables. Three of 

them are aimed at SNMP agents and the other ones at DECNET objects. 

Presentation 

::1 Query for Ta>/IP Yarlables 

Object Protocol j SNMP 1 

Community "'-jp_ub_l_i~.:....: __ Retrles jj__ Tlmeout li_ (seconds) 

1 at 11 egp Il icmp 11 interfaces 11 ip 

1 ip address 11 ip rout ing 11 syst""' 11 tep 11 udp 

SYSTEM Inform.otion (glennm 16.121.0.41) 

Description: glel1lllll:DECstation3100:ULTRIK T4.0-l (Rev. 144) System• 
Object id : 1.3.6.1.4.1.361 
Uptme : 16961700 (hundreths/sec) 

llDRESS TRJUISLATION lnform.otion (gleDJ11'11 16,121.0.41) 

Interface uetwork_Address Physical_Address 
lnO 16.121.0.1 aa-00-40-00-11-el 
lnO 16,121.0.2 80-00-2b-ll-13-19 
lnO 16.121.0.60 00-00-00-00-00-oo 
lnO 16.121.0.61 80-00-20-00-80-43 
lnO 16. 121. o. 62 ao-00-20-20-2 6-ad 
lnO 16.121.0.65 aa-00-40-00-cf-e2 
lnO 16.121.0.66 aa-00-40-00-c6-e2 
InO 16.121.0.67 00-00-00-00-00-oo 
lnO 16.121.0.68 80-00-90-10-82-cl 
lnO 16.121.0.69 80-00-90-00-56-45 
lnO 16.121.0.72 aa-00-40-00-cl-e2 
01 

Message Box 

Quering glenmn for address translation inforraation ... 
Query completed. 

11.J-lb 

ô 

Q 

1 DiS111iss 1 

Fig. 6.5: SNMP object Query 

The user can query the SNMP objects. He can extract information about 

various MIB variables from this object. lt is possible to retrieve the Address 

translation table, IP address table, IP routing table and the values of EGP, ICMP, 



Digital Network Tools 122 

Interfaces, IP, TCP, UDP and system parameters. This function is shown in figure 

6.5. 

Furthermore, it is also possible to automatically send SNMP requests to 

retrieve the value of MIB variables. The user must create a file to be used by the 

query function. In the file, the address of the queried object (and some details like 

timeout, number of retries, ... ), the base interval between two queries and the names 

of variables to query must be given. The results are saved in a file. 

For Decnet objects, two query functions are available. The Query Decnet 

Objects function is used to query specific Decnet variables such as nodes, circuits, 

lines, executor, objects, node counters, circuit counters, line counters and exec 

counters. It uses nearly the same display as the "Query SNMP objects". There is also 

a possibility to save the outputs in a file. 

The second one, the Query object using Data Dictionary, has been 

implemented to support private MIB variables. The Data Dictionary contains variables 

which are not part of the MIB specification but which possess the same 

representation. This function allows the user to query a class of MIB variables. In 

addition, some vendor specific variables are added to the set of MIB variables, for 

example, Cisco variables which are specific to Cisco routers. Others can be added by 

the user regarding his needs. The user also has the possibility to use files. A file menu 

can be displayed in which he can choose between saving or logging output to a file. 

The save option prints in a file everything that has been done previously since the call 

of this function. The log option prints in a file everything that is done by the user 

until this option is stopped or until the function is dismissed. 

For setting the value of parameters, two functions are available, one for 

SNMP objects and the other one for Decnet objects. The Set SNMP Object function 

allows the user to choose a MIB variable and to set its value (if it is possible). When 

this function is invoked, the object is queried for the existing value of the MIB 

variable that has been specified. Then the user can decide to change this value. The 

program displays a message if it is successful in performing the change. 

The Set Decnet object function allows the user to interactively issue all NCP 

commands to any Decnet objects. It also gives the possibility to use an input file 

containing a list of NCP commands if, from time to time, the same actions have to be 

performed. The commands can be executed on more than one node at the same time. 

A menu enables to use files. It is possible to write the output window in a file, to log 



Digital Network Tools 123 

output in a file or to save the commands performed m a file. This function is 

illustrated in figure 6.6. 

l!II DECnet management VI.O l!!JJ;t 
File Clear Help 

Ob)ect'-a_sd_,_s, _________________ _ 

NCP> e....f __________________ _ 

NCP commands 

show active node 

show known nodes 

NCP Output Box 

Active lfode Volatile sunnary as of Thu Jul 5 Il: 41: 35 EDT 1990 

Node state 

56. 51 (ENGC.ES) On 
Identification 
Active links 

Active Delay Circuit lfext !Iode 
Links 

= DECnet-Vru< vs. 3, Vl!S vs. 3 
= 2 

Known Node Volatile SU!nary as of Thu Jul 5 11:43:41 CDT 1990 

Node state Active Delay Circuit Hext Mode 
Links 

56.51 (EIIGLES) On 

<) 

1 Apply 1 Cleu 1 Dismiss 1 

Fig. 6.6: Set Decnet Object 

Comments 

6 

r 

0 

0 
C> 

The query SNMP objects function is useful because it rapidly gives general 

information about a specific object. But there are some problems. First, when the user 

asks to print a table, if the table is too long, it is not possible to stop the display. The 

user must wait until the end of the query. The second problem is related to the 

message box. If the same error message occurs more than once, the user cannot see if 

more than one message was printed. There is no difference on the screen. The only 

way to see the difference is to count the number of messages using the scroll bar. 

The Query SNMP object using con.fig file function is useful because it 

allows to make off-line observations and over a long period of time. It can be used, 

for example, to gather statistics or to monitor a specific MIB variable. But it is 

impossible to stop the query function within the program. The user is forced to kill 

the process if he wants to stop the query. 



Digital Network Tools 124 

The Query Decnet Objects fonction is usefol because it rapidly gives 

general information about a specific object. The information is grouped in categories 

which are labelled in the right way. But some problems are present. There is a help 

menu but when clicking on this menu, nothing works, no help appears. 

The Data Dictionary bas been made to allow the user to deal with non

standard variables and vendor-specific variables. The manager can add these variables 

to the Data Dictionary and retrieve their values by using this fonction. This is very 

interesting because all cases of manageable objects are not foreseen in the MIB. In the 

fonction, there is a problem with the cancel button which does not work correctly or 

does not work at all. When querying a large table (IP routing table for example), it is 

not possible to stop the display. The only solution is to stop the query fonction with a 

kill command. 

The Set Decnet object fonction is very powerfol. It allows to manage ail 

Decnet objects from the management program. But the problem is that the user must 

know ail N CP commands to use it. It would have been better if the pro gram could 

help the user in issuing these commands with, for example, a menu-based interface. 

6.1,9 Monitoring and Statistics Computing 

Presentation 

The Plot MIB Variables and Bargraph MIB Variables fonctions allow to 

display the value of an MIB variable and to display a graph of the value of a MIB 

variable over time (only for the numeric variables). This fonction consists of three 

steps. (l)The user must give the object name and choose a variable class. Then a new 

window is created, it shows ail the variables of the chosen class. (2)Then the user 

selects one or more variables to print their value at the present moment. (3)After that, 

the user can select one variable for which the value is printed, and use it to plot a 

graph or a bar graph. An option of the plotting window exists to modify the interval 

between two plots during the display and without stopping it. 

Another fonction gives the possibility to gather SNMP information from 

various objects and store the information in the statistics database. For specifying the 

objects to query and the variables to retrieve, a screen like the one shown in figure 

6.7 is used.♦© 



Digital Network Tools 125 

lll) Object Setup ~:5.I 

abject I adams FllteN 

Polllng Multiplier L 11611§ 
Tlmeout JntervaJ L fllter1 

fllter2 

Retrles L 
SELECT MIB VARIABLES 

Function MIS Variable 

1 Log 1 !1t1noctets_1{ 

1 Log 1 j lllnUcastPkts_ 1i 

1 Log 1 1 iflnNUcastPl<IL 1{ 

1 Log 1 1 ifln[rrors_ 1I 

1 Log 1 1 lfOutoctets_ 1f 

1 Loy 1 j lfOuttJcastPkts_1[ 

1 ton 1 j 1routNUcastPkts_ 1j 

1 Log 1 l 1tOut:Errors_1J 

j Log 1 li 
1 Log 1 II 

Mest:age Box 

\Screen Cleared. 
End o[ variable 11st 

1 Next Page 1 

Reportlng 

C, ~ Enable 

~ 
0 Dlsable 

Ç) ~ 

Multiplier Min Max 

li_ 1 non~ j non'\ 

li_ i non~ 1 non~ 

lL_ j non~ \ non~ 

li_ 1 non~ 1 non~ 

li_ \ non~ j non~ 

li_ 1 nont\ j non~ 

li_ 1 non~ \ non~ 

li_ 1 non(\ 1 non~ 

LLL 
LLL 

1~ 
j ,\e:-ct Ohjett 1 ~ 

Fig. 6.7: Reporting object setup 

Furthermore, this function allows to fix minimum and maximum thresholds 

on MIB variables. And if one of these thresholds is bypassed, then an alarm is 

automatically generated. 

Comments 

Various problems can be found when using the plot and bargraph functions. 

The first one is that in the Plot MIB variables, there is no time scale on the graphs. In 

the Bargraph MIB Variables function, when the user wants to change the display 

interval, the dh1>lay of the interval becomes unreadable and then all the display inside 

the window vanishes. 

These two functions could have been grouped. The only thing that changes is 

the last window. An option in one of the first windows could have let the user choose 

between the drawing of a normal graph or a bar graph. 

It should be noted that for thresholds fixing, only the value of MIB variables 

can be used to fix thresholds. This seems sufficient but, in fact, MIB variables are, in 

majority, values such as counters, integer, gauge, etc. It bas little sense to fix 

thresholds on such values. For example, nobody cares to know that 540 errors occur 



Digital Network Tools 126 

since the last reboot of the device. Rates are more important, for example, 10 errors 

per second. 

6.2. Cc:>n.clu.sic:>n. 

In conclusion, DNT is a rather good product. Many elements listed in the 

first chapter are present. But it is not perfect because some useful functions are not 

implemented and others need to be improved. However the program that has been 

tested is still on field test and improvements are foreseen for the next versions. 

Below are listed the important features of the program. Only a few of them 

are negative. But many of the positive points must be moderated by negative aspects. 

The graphical representation of the topology of the network is pleasant. The 

display is good and obvious. The tools to draw the map are always present on the 

screen and are easy to use. But the drawing of the whole map is rather painful. It is 

difficult to remember to enter the name and the interfaces every time a new object is 

added. But this problem should be solved in the next version of the program. In this 

version, the autotopology function should be present. This should well improve the 

friendliness of the pro gram for the design of the map. 

A big advantage of DNT is that it will give the possibility to manage objects 

using different protocols (SNMP, CMOT, DECNET). It is useful because the 

management is not restricted to a single protocol. For the moment, CMOT 

management is not yet available. 

A good idea of DNT is the implementation of databases. They are used to 

give information on the services, the objects and their interfaces. It is an indi~l)ensable 

function in a network management system. But this function is not sufficient. Alone, 

it is only a gathering of information. Such a database needs to be dynamic. For 

example, the program should have functions to interact with the network, functions to 

verify that the databases and the network are coherent. And nothing like that is 

available in DNT. 

An advantage of DNT is the possibility to print reports using statistics about 

the objects. The information is stored in an INGRES database, therefore it is possible 

to retrieve this information with the built-in tools (print different types of reports) or 

with the ~l)ecial tools made by the user. But these statistics are only concerning MIB 

variables which consist in gauge, counters, integers, etc. That is not very interesting 



Digital Network Tools 127 

in this state. What would have been much more interesting is information about rates, 

for example error rates, tra.ffic, throughput rates (packets/sec, bytes/sec), etc. 

A problem of the program is that it is impossible to send usefol alarms when 

thresholds are exceeded. It is possible to print alarms if thresholds are exceeded but 

the thresholds can only be defined on MIB variables. For example, it is not interesting 

to know the number of errors on an interface but what is interesting is to know the 

error rate on this interface. It is more interesting to know that there have been 100 

errors/second than to know that there have been 1280 errors since the last reboot of 

the machine. And it is not possible to define thresholds on such variables. 

Another interesting feature is the possibility to print graphs of the load on the 

Ethernet. It is important to have the possibility to fix thresholds on this value. And 

only a display on the screen is made. It would also have been interesting to use this 

data in the reports. 

The alarms are not very easy to handle. To be usefol to the operators, the 

alarm display must be improved. All alarms are coming in the same small window, 

without filtering nor classification. This alarm handling system is usefol, if a problem 

is detected, to react, to understand what happened or to see when it occurs but it is 

not usefol to help in the detection of the problem. 

A bad point is that the program does not provide tools to manage the bridges. 

The management of bridges is not usefol if the program is used for W AN 

management but if the program must be used as a tool to manage, for example, 

Ethernet LANs, that is a very important feature. Fortunately, this fonction is foreseen 

in a following version. 

To end the conclusion, DNT can be considered as a rather good product. 

However it could become a better product once it is finished, for example when 

important features like the autotopology fonction and the management of bridges have 

been included. 



The analyse of this product will begin with an overview of the working of the 

program. Then, detailed information will be given about the different commands that 

are available and about the problems discovered with these commands. Finally, a 

global opinion conceming this program will be given in the conclusion. 

7.1. O-v-er-v-ie'vt7 

XGMON is a network monitoring program developed by IBM. It is still on 

field test. It runs on an IBM PC/RT computer with the AIX (Unix from IBM) 

operating system. It uses X-window to make the display on the screen. Note that 

some limited facilities are available with a simple non-graphical terminal. 

XGMON provides an environment that includes a command language, 

simultaneous execution of multiple, independent queries and an Xl 1-based graphical 

presentation of the network. XGMON has been designed to manage TCP/IP 

networks. Only the nodes running IP, and better SNMP, will be taken into account. 

Sorne limited Tl modems management facilities are also available but have not been 

tested. 

The major function of the XGMON core is to oversee the operations of the 

virtual G-machines. These are imaginary machines that execute G-code object code. 

The XGMON core contains a compiler that translates programs written in G (Gateway 

language "similar" to C) into G-code. Each virtual machine works on its own 

program and, because XGMON is able to control more than one virtual G-machine, 

more than one program can be executing at the same time. Each machine is 

essentially independent of all the others (it is possible to implement some inter

machine communication, if needed). 

This makes that the XGMON system is extendible. New commands can be 

added in much the same way new commands are added to the UNIX operating 

system. One simply writes an appropriate program in the G programming language, 



XGMON 129 

and it can be made available as a new command. New commands can be added at any 

time and used without having to terminate the current XGMON program. Similarly, 

commands that have bugs can be corrected without having to stop everything. This 

means that algorithms can be corrected without having to lose global state information 

that has already been collected. The aspect of the screen is presented in figure 7 .1. 

CSH>XGMON 

> COMPILE MAP 
> PINO ALL 
> SNMP_GET 
> 

Machine 6 

Machine 5 

Machine 4 

Machine 3 

Machine 2 

SNMP_GET 

Machine 1 

PING_ALL 

Fig. 7.1: XGMON screen 

When running with X 11, each virtual G machine has a window associated 

with it. A program (library command) running in the virtual G-machine may write 

output to this window. lt is also possible for graphies to be drawn in this window. It 

is nota text-only "output device". 

Each virtual G machine has a standard output device. Normally this is 

associated with the above mentioned window. However it is possible to redirect the 

output from a virtual G machine into a file instead of to the window. This makes it 

possible to save information that will be processed off-line. 

The XGMON core provides a set of general purpose, intrinsic functions 

which are used by library commands to perform work. AH active processing is 

performed by library commands which are programs extemal to the XGMON core. 

Any local customization of algorithms is embedded in library commands. The core is 



XGMON 130 

normally not altered. The intrinsic functions attend with the database operations, the 

string manipulations, the file I/O, the graphies, etc. 

XGMON possesses 2 types of commands. A small number of commands 

which are built into the XGMON core are classified as system commands. In general, 

system commands are used to control virtual G-machines. The majority of commands 

are classified as library commands. These are G-programs stored as source code 

which are compiled into G-code and executed when required by virtual G-machines. 

Two mechanisms are used to reduce the load of the SNMP agents and the 

traffic created by the monitoring functions. The first is the use of a cache database 

and the second is the possibility to bind several XGMON and/or other systems (for 

example Netview) to an SNMP query engine which will attend with the query to 

SNMP agents. 

Another interesting feature is the possibility to make automation. G-programs 

can be set up so that they will automatically get started when a certain variable 

changes or a user-defined event occurs. 

7.2. Oeta.ils 

7. 2. 1. Graphical User Interface 

A. Presentation 

The user can draw a graph to represent the network. For this, he must build a 

file in which he gives the names of the objects and where to place them, their 

interfaces and the links between the objects. Then, this file must be compiled by the 

XGMON compiler and a window is created to display the topology. The nodes are 

coloured regarding their status which is found in the cache database. An object can be 

represented by a user-defined X-window bitmap. If any of the links or hosts defined 

by the current topology description are down, a signal can be played. Traps or SNMP 

requests are used to fix the status of SNMP objects and ping is used to fix the status 

of other TCP/IP objects. The width of the link between two objects can be 

automatically adjusted regarding the value of different MIB interface variables. 

Library commands are provided to help with the display of the network. 



XGMON 131 

The display, dont_ display commands are used to control which types of 

display elements can be drawn on the topology display. It is possible to display or to 

bide the hosts, the links, the nodes, etc. 

The move command allows to change the position of a display element within 

a topology display window. The user can choose between entering the name of the 

node and its new position or changing its position using the mouse. The rename 
command allows to change the name of a display element. The user must type the old 

name and the new one. The name of the object is changed on the topology map. The 

add_new command allows the user to add new objects on the topology di~l)lay. He 

must only enter the name of the object and then place it on the map with the mouse. 

To make the change permanent for all these functions, the map must be saved. 

The save _win command can be used to save the current topology information 

stored in the XGMON core as a G topology description file. It is used to save the 

topology when new nodes have been added or when the display has been changed. 

The traffic command sets up the necessary environment to drive the links 

widths on the topology display based on counters such as packets in or out, octets in 

or out, errors in or out. This command does not acquire the needed data by itself. 

Another program (snmp _y _ail) must be running to perform this task. 

B. Comments 

This way to build the topology map of a network is very tedious. The 

interactive way to enter and to place the objects is much easier. With an interactive 

program, the only thing to do is to choose the type of object to display, to give its 

name and to draw the lines representing the connections with other objects. With 

XGMON, a file must be used to enter the name of the object, its place, the IP 

addresses of its interfaces and the links existing between the objects. Then the file 

must be compiled and the result is displayed on the screen. If an error occurs, the file 

must be re-edited, modified and re-compiled. 

The library commands provided to help with the drawing are not very useful. 

The move command could help to move objects but it does not work very well with 

the mouse. This makes that the place of the object on the grid has to be calculated. 

The add _ new command allows to place an object with the mouse. But this modifies 

only the display, no information (for example interface information) must be entered. 

Therefore, the topology file must be edited to add this information. And the third 



XGMON 132 

command (save win) allows the user to save the topology display in a topology file. 

But unfortunately, a lot of information is lost during the save. Only the essential 

information is kept. For example, the bitmaps, the physical links, the inactive objects 

are not saved on the topology file. This option is only useful when the topology map 

is drawn for the first time. The user places the objects wherever he wants and then 

after saving the map, he edits the file to make further customization. 

Furthermore, the topology window is too small. The coordinates are relative 

to a 100 by 100 grid. Then, in general, no more than 5 objects can be drawn on the 

same line. If the map is too big, it is difficult to draw. It is also possible to use groups 

of objects. If a group is defined, a new window is created when clicking on this group 

object. But it is not sufficient if the network is big. A bigger window should have 

been very useful. 

The traffic command is useful. lt gives rapid graphical view of the load on a 

line or of the numbers of errors on the line. Ail these values are calculated on a per 

second basis. But it is rather difficult to set it up. The user must for example adjust 

the scale of the line manually. This is not made automatically by the program. The 

user must also choose on which side of the line the measure will be made. 

Unfortunately, this function is not available for connections other than serial lines. It 

is not, for example, possible to use it for the interface connected to an Ethernet. 

7 .2.2. Database 

XGMON disposes of only one database, a cache database. This gathers a lot 

of information and makes it available to ail programs running within the XGMON 

environment. Whenever SNMP data or ping information is received in response to G

program initiated requests, XGMON stores that information in an internai database. 

The information is then made available not only to the requesting G-program, but also 

to any other G-program that wants that same information. The data is kept in the 

cache for a user-specified time. If unsolicited traps corne in, that information is also 

stored in the database and made available to G-programs. 



XGMON 

7.2.3, Topology DB Builder 

A. Presentation 

133 

An easy way to draw the map of the topology of the network is to use 

programs that are able to find all SNMP nodes present on the network. XGMON 

integrates such a program. It is called explore. 

This command is used to explore all the network, searching for the SNMP 

agents. From a beginning agent, the program searches for the new SNMP agents by 

looking at every interface. Once it finds a new agent, it stores the address and it will 

use it later to search for other agents. 

B. Comments 

The explore command is useful to find all SNMP nodes with a g1ven 

community name. By looking to the result file, it is possible to see all the nodes 

explored by the program. Unfortunately, this command does not display graphically 

the nodes that it found. Neither does it build a topology file that could be compiled by 

XGMON to have the topology display. 

7. 2 .4. Devices Polling 

A. Presentation 

The detection of problems on the network is an important goal for a network 

management system. For this, the user disposes of 3 mechanisms: the snmp polling 

and trap management for SNMP objects and the iterative ping test for SNMP object 

or only TCP/IP objects. In XGMON, the 3 mechanisms are performed by library 

commands. 

The ping_all command is used to ping, at regular intervals, all IP-based hosts 

defined by the topology description. 

The snmp _p _ ail command is used to poli ail SNMP-based agents for the 

status of their interfaces. The agents to be polled are defined by the topology 

description. 

The trap command accepts and handles SNMP traps received by XGMON. 

The traps are also recorded in a file in the current directory. 



XGMON 134 

Multiple copies of XGMON can be used in concert when joined with an 

SNMP Query Engine. A single copy of XGMON can drive the topology displays of 

the other instances, as can any other network management system connected to the 

SNMP Query Engine. If the SNMP query engine has been started on one machine, 

XGMON can be told to obtain all data via that query engine. The database is then 

maintained by the query engine. Multiple XGMON instances can thus share the same 

data, so only one instance has to run the G-programs that do all the polling and all 

instances of XGMON get an indication of the status of the network. This will have as 

effect to reduce the network traffic due to network management and also to reduce the 

time spent by managed devices in responding to management requests. 

B. Comments 

In XGMON, this testing function is satisfying. In general, the 3 commands 

are run at the beginning of the working session. But the user is not obliged to run the 

3 at the same time. If there are no objects other than SNMP objects, then the ping test 

can be ignored. 

In the snmp _y_ all command, a big problem occurs when several SNMP 

objects must be managed at the same time. Every time the program wants to poil the 

SNMP objects, either a memory fault or a bus fault occurs. This problem has been 

reported to IBM. 

7. 2. 5. Traffic Monitor 

A. Presentation 

In a network, the relevant problems are not only problems of node failures. 

For example, some problems concem traffic becoming too important on one 

interface. Therefore, it is important to have a display of the load on ail the interfaces 

of a host. lt can also be important to give an idea of the repartition of the load during 

one day. In XGMON, the pe,fmon command can be used for this purpose. 

The pe,fmon command displays graphically counts of incoming and outgoing 

packets on a specific host. The program makes on-line graphs of ail interfaces of the 

given host. 



XGMON 135 

B. Comments 

Perfmon is not sufficient for traffic monitoring. Other functions should have 

been implemented such as functions to fix thresholds on MIB or other variables and to 

send alarms if one of these thresholds is exceeded. 

Another problem is that it is only possible to get graphs on in/out packets. It 

is, for example, impossible to get graphs conceming error-rates on the interfaces of 

an object. 

Sorne bugs are present within perfmon. The first is at the initialization. Parts 

of the screen background are used as the window background. Furthermore, when the 

scale of the graphs changes, the graphs are reinitialized. And the graphs are too small. 

It is not possible to have an idea of the values of the displayed counters. 

7 .2.6. Reachability Tests 

The ping command pings one specific host. If the hosts responds, the time to 

make the trip is displayed, otherwise a message is displayed announcing that there 

was no response. 

The trace _path command determines the route between two hosts. It queries 

SNMP agents defined by the topology description for routing information. 

7. 2. 7. Data Ouery and Values Setting 

A. Presentation 

All these functions allow to get much information about the objects. For the 

SNMP objects, XGMON possesses a panel of commands which are designed to access 

or to set the value of all MIB variables. It is also possible to get the ARP cache of an 

object. And a command allows to know the way followed by the packets to go from 

one host to another one. 

The snmp _get, snmp _g_ next and snmp _set commands are used to request an 

SNMP agent to retum or to modify the value of MIB variables using, respectively, 

the SNMP get-request, get-next-request and set-request. The snmp y _List command 

acquires the status of one or more hosts that have an SNMP agent running. Each host 

must be defined by the current topology description. 



XGMON 136 

The snmp_dump command is used to dump a table. It queries the agent as 

long as the retumed MIB variable object IDs have the same prefix as the given 

variable. 

Other commands are available for retrieving table information. For example, 

it is possible to retrieve the IP address table, the IP routing table, information 

associated with the interfaces of a host or router, the IP address translation tables 

(ARP cache), the table of EGP neighbours and the table containing TCP connection

specific information of an SNMP agent. lt is also possible to get values of other MIB 

variables, for example, ICMP counters, IP-related counters, TCP counters and UDP 

counters. 

B. Comments 

All these functions g1ve interesting information about all SNMP objects 

connected to the network. AU MIB variables can be known, either using group 

commands or using single SNMP get requests. To a certain extent, SNMP objects can 

be controUed by setting SNMP MIB variables. AU these commands work well. 

However, the number of such functions is too important. Because it is not possible to 

remember the name of each variable, a better way of doing such requests would have 

been to use one or two functions integrating menus. Furthermore, the use of these 

functions is not easy. The user is forced to type every time the name of the command, 

the name of the object to work with and sometimes the name of the requested MIB 

variable and some options. A better solution, at least, would have been to give the 

possibility to select the objects on the map in order to avoid typing their name. The 

best solution to perform these functions is to use menus to select the functions and the 

names of the variables and to give the possibility to select objects directly on the user 

interface. 

7. 2. 8. Automation support 

A. Presentation 

An important aspect of a network management system is the possibility to 

perform some actions automatically when a given event occurs. For example, it is 

interesting to have a program that detects if a host has problems and to send a 

command to reboot it. XGMON possesses 3 library commands to help in the support 

of automation. 



XGMON 137 

The add _Ji/ter, del _Ji/ter commands are used to add or delete automation 

filters. The automation filters detect when the value of a given MIB variable changes, 

and in this case, start library commands specified by the user. These commands could 

permit the creation of a program which would be able to detect when a variable 

trespasses a given threshold. The problem is that the number of allowed filters is 

restricted. This would work only for a limited set of variables. 

When invoked, the display _var command obtains the desired data from the 

internat cache and displays it. It is, in general, used for debugging. For example, if 

this command is given as an argument to the add__Jilter, in association with an MIB 

variable, every time the value of the given variable changes, its new value is 

displayed by the display_var command. 

B. Comments 

It is very interesting to have the possibility to automate certain tasks. With 
XGMON, it should be rather easy to do nearly everything. But this automation is only 

possible within a certain range. Commands can only be run if the value of a given 

MIB variable changes. lt is not possible to make automation with other arguments. 

However the automated task is not defined. The user can do everything he 

wants. He can build a program which will serve as an argument to the add__Jilter 

command. 

7.3. Cc:::>n.c:::l-u.sic:::>n. 

XGMON possesses 3 characteristics that make it attractive. They allow to 

reduce the network and the hosts load due to management operations, to make 

automation and to write one's own applications. 

The first characteristic is that XGMON possesses an SNMP Query Engine 

and a cache database. These two particularities are aimed at reducing the traffic and 

the load of devices created by the network management systems. Now, as the number 

of network management systems is growing, it is important to load the hosts and the 

network by traffic and not by management requests. However, the Query Engine is an 

IBM product and only Netview and XGMON are able to share the data collected by 

it. 



XGMON 138 

The second characteristic is that XGMON is able to do automation. It is 

possible to start some tasks when a special event occurs. This possibility can be usefol 

in an operational environment. For example, before warning the operators that a 

problem occurs, a number of operations can be performed to resolve the problem 

automatically. 

And the third characteristic which is the most interesting one is the possibility 

to write one's own programs. As XGMON possesses a compiler, it is rather easy to 

write new commands that can be added to the set of already available library 

commands and that can be used as any other one. 

But on the other side, XGMON does not possess interesting fonctions which 

are nearly indispensable in the normal management of a network. 

The first one is that it does not perform management fonctions at a layer 

below the IP layer. For example, it is not able to manage Mac-level bridges. This 

makes it unable to help in the management of LANs composed of, for example, 

several Ethernet segments connected by Mac-level bridges. XGMON is only able to 

manage SNMP or TCP/IP hosts. And, for the moment, in LAN management, SNMP 

is rarely used. However, for WAN management or the management of other LANs, 

this characteristic is not important at all. 

The second problem is that XGMON does not give the ability to fix 

thresholds on different variables without writing the necessary programs. This is a big 

problem because this type of failure cannot be detected. The only detectable failures 

are the failures concerning anode or a line going down. 

Furthermore, there is, in XGMON, no obvious display of the alarms. No 

library command is available to gather and to display all the alarms in an obvious 

way. To make the program operational, such a fonction must be written by the user. 

Another negative point is that XGMON is only a host management program. 

It is nota product for managing a network. It is, for example, interesting in a LAN to 

know the number of broadcast and multicast packets loading the network. This is not 

possible with XGMON but for W AN management, it is not important. 

And the last negative point is that XGMON does not use menus. For some 

commands, it is not important, but for others it is nearly indispensable. For example, 

in the snmp _get command, the user must enter the name of the MIB variable to query 



XGMON 139 

and I think it is not easy to remember the right syntax for each variable. The use of 

menus would have been useful. 

In conclusion, XGMON is not a product that can be used by a network 

manager without a consistent programming work. lt does neither possess easy-to-use 

query functions nor below-IP management functions and the alarms are not handled. 

However, it can be used by the operators. If an alarm management function 

is written, it is possible to display a view of the network and of the errors which can 

occur on it. But work must be done to make this product usable. 

One of the goals of this program is to give tools to a programmer to write the 

commands that he really needs to manage his network. In this manner, XGMON 
fulfils its task and it can be seen as a good development tool. 



For people developing and maintaining networks, the problem of network 

management becomes more an<l more important. 

This is due to at least two reasons. 

The first one is that the needs for computers and communications between 

computers are increasing. So the size of the networks increases. 

The second reason is that, in general, as the offer of network devices is more 

varied, people do not buy all the devices from a single ven<lor. This makes that the 

networks are more heterogeneous than before. 

The need for powerful tools for managing bigger networks begins to be faced 

by the apparition of integrated network management systems like the one described in 

chapter 1 and like the ones tested in chapters 5, 6 and 7. 

In what concems the heterogeneity of the networks, ISO bas begun to answer 

the needs for common management protocols by specifying a set of network 

management standards with CMIP as the centre. But OSI networks are not very 

widespread yet and, even if CMIP is a common management protocol and if it is not 

only intended for OSI networks, CMIP implementations are rare. 

On the other band, TCP/IP networks are developing very rapi<lly. And the 

Internet Activity Board, the TCP /IP authority, managed to respond to the needs for 

management systems. This bas been made in two steps. 

The first step was to develop, as fast as possible, working systems, even 

simple, to respond to urgent needs. This led to the specification of SNMP. SNMP is 

now in tune. Many implementations can be found on the market. (3 of them have 

been tested). Furthermore, many vendors propose an SNMP agent with their network 

devices. 



Conclusion 141 

The second step is the specification of CMOT, derived from CMIP. CMOT 

is aimed at making easier the transition from TCP/IP to OSI. But CMOT has few 

chances of emerging because it focuses on the place caught by SNMP, which SNMP 

fills satisfyingly. 

Specialists predict that both SNMP and CMIP could be used in the future for 

managing networks. SNMP would be used for the communications between 

management stations and agents and CMIP would be used for the communications 

between management stations. 

This work was particularly based on TCP/IP and on the management of 

TCP/IP networks with SNMP. But further analysis of CMIP and of CMOT could 

help to see whether CMOT is definitely dead and whether CMIP and SNMP are 

"compatible" and could be used in concert to manage networks. 



RFC1155-SMI DEFINITIONS : : = BEGIN 

EXPORTS -- EVERYTHING 
internet, directory, mgmt, 
experimental, private, enterprises, 
OBJECT-TYPE, ObjectName, ObjectSyntax, 

simpleSyntax, 
Applicationsyntax, NetworkAddress, IpAddress, 
Counter, Gauge, TimeTicks, Opaque; 

-- the path to the root 

internet OBJECT IDENTIFIER : := { iso org(3) dod(6) 1 ) 

directory OBJECT IDENTIFIER : : = { internet 1 ) 

mgmt OBJECT IDENTIFIER : : = { internet 2 ) 

exper imental OBJECT IDENTIFIER : : = { internet 3 ) 

private OBJECT IDENTIFIER : := { internet 4 ) 
enterprises OBJECT IDENTIFIER : : = { pri vate 1 ) 

-- definition of object types 

OBJECT-TYPE MACRO : : = 
BEGIH 

TYPE NC1l1ATION ::= "SYNTAX" type (TYPE ObjectSyntax) 
"ACCESS" Access 
"STATUS" Status 

VALUE HC1l1ATIOH : := value (VALUE ObjectName) 

Access : := "read-only" 
"read-write" 
"write-only" 
"not-accessible" 

Status : := "mandatory" 

1 

"optional" 
"obsolete" 

END 

-- names of abjects in the HIB 

ObjectName : : = 
OBJECT IDEHTIFIER 

-- syntax of abjects in the HIB 

Objectsyntax : := 
CHOICE { 

simple 
SimpleSyntax, 

-- note that simple SEQUENCES are not directly 
-- mentioned here to keep things simple ( i, e,, 
-- prevent mis-use). However, application-wide 
-- types which are IHPLICITly encoded simple 
-- SEQUENCEs may appear in the tollowing CHOICE 

application-wide 
ApplicationSyntax 

SimpleSyntax : : = 
CHOICE ( 

number 
INTEGER, 

string 
OCTET STRING, 

object 
OBJECT IDEHTIFIER, 

empty 
HULL 

Applicationsyntax : : = 
CHOICE { 

address 
NetworkAddress, 

counter 
Counter, 

gauge 
Gauge, 

ticks 
TimeTicks, 

arbitrary 
Opaque 

-- other application-wide types, as they are 



Appendix A SMI 

-- defined, will be added here 
) 

-- application-wide types 

NetworkAddress : : = 
CHOICE ( 

internet 
IpAddress 

IpAddress : := 
[ APPLICATION O] -- in network-byte order 

IllPLICIT OCTET STRING ( SIZE ( 4) ) 

Counter : := 
[APPLICATION 1] 

IllPLICIT IHTEGER (0 .. 4294967295) 

Gauge : := 
[APPLICATION 2] 

IllPLICIT IHTEGER (0,,4294967295) 

TimeTicks : : = 
[APPLICATION 3] 

IllPLICIT IHTEGER (O •• 4294967295) 

Opaque : := 
[ APPLICATION 4] -- arbitrary ASN .1 value, 

IllPLICIT OCTET STRING -- "double-mpped" 

END 

A2 



RFC1158-MIB 

DEFINITIONS : : = BEGIN 

IMPORTS 
mgmt, OBJECT-TYPE, NetworkAddress, IpAddress, 
Counter, Gauge, TimeTicks 

FROK RFC1155·SMI; 

mib-2 OBJECT IDENTIFIER::= ( mgnt 1) 
-- (same prefix as HIB-I) 

system OBJECT IDENTIFIER : : = ( mib-2 1 ) 
interfaces OBJECT IDENTIFIER : := ( mib-2 2 ) 
at OBJECT IDENTIFIER : : = ( mib-2 3 ) 
ip OBJECT IDENTIFIER : := ( mib-2 4 ) 
icmp OBJECT IDENTIFIER : : = ( mib-2 5 ) 
tep OBJECT IDENTIFIER::= ( mib-2 6) 
udp OBJECT IDENTIFIER : : = ( mib-2 7 ) 
egp OBJECT IDENTIFIER : : = ( mib-2 8 ) 
-- cmot OBJECT IDENTIFIER : := { mib-2 9 } 
transmission OBJECT IDENTIFIER : := ( mib-2 10 ) 
snmp OBJECT IDENTIFIER : : = ( mib-2 11 ) 

-- abject types 

-- the System group 

sysDescr OBJEC'HYPE 
SYHTAX DisplayString ( SIZE ( 0 .. 255)) 
ACCESS read-onl y 
STATUS mandatory 
::= ( system 1 ) 

sysObjectID OBJECT-TYPE 
SYNTAX OBJECT IDENTIFIER 
ACCESS read-onl y 
STATUS mandatory 
: : = ( system 2 ) 

sysUpTime OBJECT-TYPE 
SYNTAX TimeTicks 
ACCESS read-only 
STATUS mandatory 
: := ( system 3 ) 

sysContact OBJECT-TYPE 
SYNTAX DisplayString ( SIZE ( 0 .. 255)) 

-- HIB·II 

ACCESS read-write 
STA'IDS 11andatory 
: : = ( system 4 ) 

sysName OBJECT-TYPE 
SYNTAX DisplayString ( SIZE ( 0 .. 255)) 
ACCESS read-write 
STA'IDS mandatory 
: : = ( system 5 ) 

sysLocation OBJECT-TYPE 
SYNTAX DisplayString ( SIZE ( 0 .. 255)) 
ACCESS read-only 
STA'IDS mandatory 
: : = ( system 6 ) 

sysServices OBJECT-TYPE 
SYNTAX INTEGER (0, .127) 
ACCESS read-only 
STA'IDS mandatory 
: : = ( system 7 ) 

-- the Interfaces group 

ifNUllber OBJECT-TYPE 
SYNTAX INTEGER 
ACCESS read-only 
STATUS 11andatory 
: : = ( interfaces 1 } 

-- the Interfaces table 

ifTable OBJECT-TYPE 
SYNTAX SEQUENCE OF IfEntry 
ACCESS read-only 
STATUS mandatory 
: : = ( interfaces 2 ) 

ifEntry OBJECT-TYPE 
SYNTAX IfEntry 
ACCESS read-only 
STATUS mandatory 
: := ( ifTable 1 ) 

If Entry : : = SFl,lUEHCE ( 
ifindex 

INTEGER, 
ifDescr 



Appendix B MIB-11 

Displaystring, 
ifType 

INTEGRR, 
ifMtu 

INTEGRR, 
ifSpeed 

Gauge, 
if PhysAddress 

OC'ffl STRING, 
ifAdminstatus 

INTEGRR, 
if Operstatus 

INTEGRR, 
if LastChange 

TimeTicks, 
ifinOctets 

Counter, 
if InUcastPkts 

Counter, 
ifinNUcastPkts 

Counter, 
ifinDiscards 

Counter, 
ifinErrors 

Counter, 
ifinUnknownProtos 

Counter, 
if OutOctets 

Counter, 
if outUcastPkts 

Counter, 
ifOutNUcastPkts 

Counter, 
ifOutDiscards 

Counter, 
ifOutErrors 

Counter, 
ifoutQLen 

Gauge, 
ifSpecific 

OBJECT IDENTIFIER 

i findex OBJECT-TYPE 
SYHTAX IliTEGRR 
ACCESS read-only 
STATOS mandatory 
: := ( ifEntry 1 } 

if Descr OBJECT-TYPE 
SYHTAX DisplayString ( SIZE ( 0 .. 255)) 
ACCESS read-only 
STATOS mandatory 
: := ( ifEntry 2 } 

ifType OBJECT-TYPE 
SYHTAX IliTEGRR ( 

other(l), -- none of the 

regular1822(2), 
hdh1822(3), 
ddn-x25( 4), 
rfc877-x25(5), 
ethernet-csmacd( 6), 
iso88023-csmacd(7), 
iso88024-tokenBus(8), 
iso88025-tokenRing(9), 
iso88026-man(lO), 
star Lan( 11), 
proteon-10Mbit(l2), 
proteon-80Mbit(13), 
hyperchannel ( 14) , 
fddi(15), 
lapb(16), 
sdlc( 17), 
tl-carrier( 18), 

A4 

-- following 

cept( 19), -- european 
-- equivalent of T-1 

basicISDN( 20), 
primaryISDN ( 21), 

-- proprietary 
-- serial 

propPointToPointSerial ( 22) , 
terminalServer-asyncPort( 23), 
softwareLoopback(24), 
eon(25), -- CU/P over IP 

l 

ethernet-3Mbit(26), 
nsip(27), 
slip( 28) 

ACCESS read-only 
STA'IDS mandatory 
: := ( ifEntry 3 l 

ifMtu OBJECT-TYPE 
SYHTAX INTEGRR 
ACCESS read-onl y 
STA'IDS mandatory 
: := { ifEntry 4 l 

ifSpeed OBJECT-TYPE 
SYNTAX Gauge 
ACCESS read-only 
STA'IDS mandatory 
: := ( ifEntry 5 l 

ifPhysAddress OBJECT-TYPE 
SYNTAX OC'ffl STRING 
ACCESS read-onl y 
STA'IDS mandatory 
: := { ifEntry 6 l 

if AdJlinStatus OBJECT-TYPE 
SYNTAX INTEGRR ( 

-- XNS over IP 
-- generic SLIP 

up(l), -- ready to pass packets 
down(2), 



Appendix B MIB-11 

testing ( 3) -- in some test mode 
} 

ACCF.<iS read-wri te 
STATUS mandatory 
::= ( ifEntry 7} 

if Operstatus OBJECT-TYPE 
SYNTAX INTEGER { 

up( 1), -- ready to pass packets 
down(2), 
testing( 3) -- in some test mode 

} 
ACCESS read-only 
STATUS mandatory 
: := ( ifEntry 8 } 

ifLastChange OBJECT-TYPE 
SYNTAX TimeTicks 
ACCESS read-onl y 
STATUS mandatory 
: := ( ifEntry 9 } 

ifinOctets OBJECT-TYPE 
SYNTAX Counter 
ACCESS read-only 
STATUS mandatory 
: := ( ifEntry 10 } 

ifinUcastPkts OBJECT-TYPE 
SYNTAX Counter 
ACCESS read-only 
STATUS mandatory 
::= { ifEntry 11} 

ifinNUcastPkts OBJECT-TYPE 
SYNTAX Counter 
ACCESS read-onl y 
STATUS mandatory 
: := { ifEntry 12 } 

ifinDiscards OBJECT-TYPE 
SYlffAX Counter 
ACCESS read-only 
STATUS mandatory 
: := { ifEntry 13 } 

ifinErrors OBJECT-TYPE 
SYNTAX Counter 
ACCF.<iS read-onl y 
STATUS mandatory 
: := { ifEntry 14 } 

ifinUnknownProtos OBJECT-TYPE 
SYNTAX Counter 
ACCESS read-only 
STATUS mandatory 
::= ( ifEntry 15} 

ifOutOctets OBJECT-TYPE 
SY!i'l'AX Counter 
ACCESS read-only 
STATUS mandatory 
: := { ifEntry 16 l 

ifoutUcastPkts OBJECT-TYPE 
SY!i'l'AX Counter 
ACCESS read-only 
STATUS mandatory 
: := ( ifEntry 17 } 

ifoutNUcastPkts OBJECT·TYPE 
SYNTAX Counter 
ACCESS read-only 
STATUS mandatory 
::= { ifEntry 18 l 

ifoutDiscards OBJEC'l'-TYPE 
SYNTAX Counter 
ACCESS read-only 
STATUS mandatory 
: := { ifEntry 19 } 

if OutErrors OBJECT-TYPE 
SY!i'l'AX Counter 
ACCESS read-only 
STATUS mandatory 
::= ( ifEntry 20} 

ifOutQLen OBJECT-TYPE 
SYNTAX Gauge 
ACCESS read-only 
STATUS mandatory 
::= ( ifEntry 21 l 

ifSpecif ic OBJECT-TYPE 
SY!i'l'AX OBJECT IDENTIFIER 
ACCF.<iS read-onl y 
STATUS mandatory 
::= ( ifEntry 22} 

nullSpecific OBJECT IDENTIFIER : := ( 0 0 l 

-- the Address Translation group ( deprecated) 

atTable OBJECT-TYPE 
SY!i'l'AX SEQUEHCE OF AtEntry 
ACCF.<iS read-write 
STATUS deprecated 
: := { at 1 } 

atEntry OBJECT-TYPE 
SYNTAX AtEntry 
ACCF.<iS read-write 
STATUS deprecated 
::= { atTable 1} 

AS 



Appendix B MIB-II 

AtEntry : : = SF.QOFJ(CE { 
atifindex 

TIITF.GER, 
atPhysAddress 

OCTET STRING, 
atNetAddress 

NetworkAddress 

atifindex OBJECMYPE 
SYNTAX INTEGER 
ACCESS read-write 
STA'roS deprecated 
: := ( atEntry 1 } 

atPhysAddress OBJECT-TYPE 
SYNTAX OCTET STRING 
ACCESS read-write 
STA'roS deprecated 
: := ( atEntry 2 } 

atNetAddress OBJECT-TYPE 
SYNTAX NetworkAddress 
ACCESS read-write 
STA'roS deprecated 
: := { atEntry 3 } 

-- the IP group 

ipForwarding OMECT-TYPE 
SYNTAX INTEGER { 

) 

gateway( 1), -- entity torwards 
-- datagrams 

host(2) -- entity does N!YI' 
-- forward datagrams 

ACCESS read-write 
STA'roS mandatory 
: := { ip 1 ) 

ipDefaultTTL OMECT-TYPE 
SYNTAX TIITF.GER 
ACCESS read-write 
STA'roS mandatory 
: := ( ip 2 ) 

ipinReceives OBJECT-TYPE 
SYNTAX Counter 
ACCESS read-onl y 
STA'roS mandatory 
: := ( ip 3 ) 

ipinHdrErrors OMECT-TYPE 
SYNTAX Counter 
ACCESS read-only 
STA'roS mandatory 
: := ( ip 4 ) 

ipinAddrErrors OBJECT-TYPE 
SYNTAX Counter 
ACCESS read-only 
STA'roS mandatory 
: := { ip 5 ) 

ipForwDatagrams OBJECT-TYPE 
SYNTAX Counter 
ACCESS read-only 
STA'roS mandatory 
: := { ip 6 ) 

i pinUnknownProtos OBJECT-TYPE 
SYNTAX counter 
ACCESS read-onl y 
STA'roS mandatory 
: := ( ip 7 ) 

ipinDiscards OBJECT-TYPE 
SYNTAX Counter 
ACCESS read-only 
STA'roS mandatory 
: := { ip 8 ) 

ipinDelivers OBJECT-TYPE 
SYNTAX Counter 
ACCESS read-onl y 
STA'roS mandatory 
: := ( ip 9 ) 

i pOutRequests OBJECT-TYPE 
SYNTAX counter 
ACCESS read-onl y 
STA'roS mandatory 
::= ( iplO) 

ipOutDiscards OBJECT-TYPE 
SYNTAX Counter 
ACCESS read-only 
STA'roS mandatory 
: := ( ip 11 ) 

ipOutNoRoutes OMECT-TYPE 
SYNTAX Counter 
ACCESS read-only 
STA'roS mandatory 
: := ( ip 12 ) 

ipReasmTi11eout OMECT-TYPE 
SYNTAX TIITF.GER 
ACCESS read-onl y 
STA'roS mandatory 
: := { ip 13 ) 

ipReasllReqds OBJECT-TYPE 
SYNTAX Counter 
ACCESS read-onl y 

A6 



Appendix B MIB-11 

STA'l'US nandatory 
::= ( ipl4) 

ipReasmOKs OBJBC'MYPE 
SY11TAX Counter 
ACCBSS read-only 
STA'l'US nandatory 
::=(ipl5) 

ipReasmFails OBJBC'MYPE 
SY11TAX Counter 
ACCBSS read-only 
STA'ruS mandatory 
: := ( ip 16 ) 

ipFragOKs OllJBC'MYPE 
SY11TAX Counter 
ACCBSS read·onl y 
STA'l'US mandatory 
: := ( ip 17 ) 

ipFragFails OBJBC'MYPE 
SY11TAX Counter 
ACCBSS read·onl y 
STA'ruS nandatory 
: := ( ip 18 ) 

ipFragCreates OBJBC'l'-TYPE 
SY11TAX Counter 
ACCBSS read-only 
STA'l'US raandatory 
: := ( ip 19 ) 

-- the IP Interface table 

ipAddrTable OBJBC'l'-TYPE 
SY11TAX SBQUEIICB OF IpAddrEntry 
ACCBSS read-onl y 
STA'l'US mandatory 
: := ( ip 20 ) 

ipAddrEntry OBJECT-TYPE 
SY11TAX IpAddrEntry 
ACCBSS read-only 
STA'l'US nandatory 
::= ( ipAddrTable 1 ) 

IpAddrEntry : : = SEQUEIICB ( 
ipAdEntAddr 

IpAddress, 
ipAdEntifindex 

Ili'l'EGER, 
ipAdEntNetMask 

IpAddress, 
ipAdEntBcastAddr 

Ili'l'EGER, 
ipAdEntReasnl!axsize 

IlffEGER (0,,65535) 

ipAdEntAddr OBJECT·TYPE 
SY11TAX IpAàdress 
ACCESS reaà-onl y 
STA'l'IJS mandatory 
: : = ( ipAddrEntry 1 ) 

ipAdEntifindex OBJECT-TYPE 
SY11TAX INTEGER 
ACCBSS read-onl y 
STA'l'IJS mandatory 
: := ( ipAddrEntry 2 ) 

ipAdEntNetMask OBJBC'l'-TYPE 
SY11TAX IpAddress 
ACCESS read-cnly 
STA'l'IJS mandatory 
::= ( ipAddrEntry 3} 

ipAdEntBcastAddr OBJBC'l'-TYPE 
SY11TAX INTEGER 
ACCESS read-onl y 
STA'l'IJS mandatory 
::= ( ipAddrEntry 4 ) 

ipAdEntReasnl!axSiz OBJBC'l'-TYPE 
SYNTAX INTEGER (0 .. 65535) 
ACCESS read-onl y 
STA'l'IJS 11andatory 
: := { ipAddrEntry 5 ) 

-- the IP Routing table 

ipRoutingTable OBJBC'l'-TYPE 
SYHTAX SEQUEIICB OF IpRouteEntry 
ACCESS read-write 
STA'l'IJS mandatory 
: := { ip 21 ) 

ipRouteEntry OBJBC'l'-TYPE 
SYNTAX IpRouteEntry 
ACCESS read-write 
STA'l'IJS mandatory 
::= { ipRoutingTable 1) 

IpRouteEntry : : = SEQOEHCB { 
ipRouteDest 

IpAddress, 
ipRouteifindex 

Ili'l'EGER, 
ipRouteMetricl 

INTEGER, 
ipRouteMetric2 

INTEGER, 
ipRouteMetric3 

INTEGER, 
ipRouteMetric4 

Al 



Appendix B MIB-II 

IHTEGER, 
ipRouteNextHop 

IpAddress, 
ipRouteType 

IHTEGER, 
ipRouteProto 

IHTEGER, 
ipRouteAge 

IHTEGER, 
ipRouteMask 

IpAddress 

ipRouteDest OBJEC'MYPE 
SYN'I'AX IpAddress 
ACCESS read-wri te 
STA'IDS nandatory 
: : = ( ipRouteEntry 1 ) 

i pRouteifindex OBJECT-TYPE 
SYN'I'AX IHTEGER 
ACCESS read-write 
STATUS 11andatory 
: : = ( ipRouteEntry 2 ) 

ipRouteMetricl OBJEC'MYPE 
SYN'I'AX IHTEGER 
ACCESS read-write 
STA'IDS nandatory 
::= ( ipRouteEntry 3 ) 

ipRouteMetric2 OBJECT-TYPE 
SYN'I'AX IHTEGER 
ACCESS read-write 
STATUS 11andatory 
: : = ( ipRouteEntry 4 ) 

ipRouteMetric3 OBJECT-TYPE 
SYllTAX IHTEGER 
ACCESS read-write 
STATUS 11andatory 
: := ( ipRouteEntry 5 ) 

ipRouteMetric4 OBJECT-TYPE 
SYllTAX IfflGER 
ACCESS read-write 
STATUS 11andatory 
: := ( ipRouteEntry 6 ) 

ipRouteNextHop OBJECT-TYPE 
SYllTAX IpAddress 
ACCESS read-write 
STATUS 11andatory 
: : = ( ipRouteEntry 7 ) 

ipRouteType OBJECT-TYPE 
SYllTAX IHTEGER ( 

other( 1), -- none of the tollowing 

AB 

invalid(2), -- an invalidated route 

-- route to directly 
direct(3), -- connected 

) 

-- ( sub-) network 

-- route to a non-local 
renote(4) -- host/network/ 

-- sub-network 

ACCESS read-write 
STA'IDS mandatory 
: : = ( i pRouteEntry 8 ) 

i pRouteProto OBJECT-TYPE 
SYN'I'AX IHTEGER ( 

) 

other ( 1) , -- none of the f ollowing 

-- non-protocol 
-- int ormation 

-- e.g., manually 
local(2), -- contigured entries 

-- set via a network 
netmgmt ( 3) , -- management protocol 

-- obtained via ICHP, 
icmp( 4), -- e. g., Redirect 

-- the f ollowing are 
-- gateway routing 
-- protocols 

egp(5), 
ggp(6), 
hello(7), 
rip(B), 
is-is(9), 
es-is( 10), 
ciscoigrp(ll), 
bbnSpfigp(l2), 
ospf(13) 
bgp(14) 

ACCESS read-onl y 
STATUS mandatory 
::= ( ipRouteEntry 9) 

ipRouteAge OBJEC'T-TYPE 
SYllTAX IHTEGER 
ACCESS read-write 
STATUS mandatory 
::= ( ipRouteEntry 10) 

ipRouteMask OBJECT-TYPE 
SYHTAX IpAddress 
ACCESS read-write 



Appendix 8 MIB-II 

STA'IUS nandatory 
::= ( ipRouteEntry 11 ) 

-- the IP Mdress Translation tables 

ipNetToMediaTable OBJECT-TYPE 
SYNTAX SEQUENCE OF IpNetToMediaEntry 
ACCESS read-write 
STA'IUS mandatory 
::=(ip22) 

ipNetToMediaEntry OBJECT-TYPE 
SYNTAX IpNetToMediaEntry 
ACCESS read-write 
STA'IUS mandatory 
: : = ( ipNetToMediaTable 1 ) 

IpNetToMediaEntry : : = SEQUENCE ( 
ipNetToMediaifindex 

IN'l'EGER, 
i pNetToMediaPhysAddress 

OCTET STRDIG, 
ipNetToMediaNetAddress 

IpAddress, 
ipNetoToMediaType 

IN'I'EGER 

ipNetToMediaifindex OBJECT-TYPE 
SYNTAX INTEGER 
ACCESS read-wri te 
STATUS mandatory 
: : = ( ipNetToMediaEntry 1 ) 

ipNetToMediaPhysAddress OBJECT-TYPE 
SYNTAX OCTET STRDIG 
ACCESS read-write 
STATUS mandatory 
: : = ( ipNetToMediaEntry 2 ) 

ipNetToMediaNetAddress OBJECT-TYPE 
SYli'l'AX IpAddress 
ACCESS read-write 
STATUS mandatory 
: := ( ipNetToMediaEntry 3 ) 

ipNetToMediaType OBJECT-TYPE 
SYNTAX IN'I'EGER ( 

) 

other(l), -- none of the follO!iing 

invalid(2), -- an invalidated mapping 
dynamic(3), -- connected (sub-)network 

static( 4) 

ACCESS read-write 
STATUS mandatory 
::= ( ipNetToMediaEntry 4) 

-- the ICHP group 

icmpinHsgs OBJECT-TYPE 
SYNTAX Counter 
ACCESS read-onl y 
STATUS mandatory 
: := { icmp 1 ) 

icmpinErrors OBJECT-TYPE 
SYNTAX Counter 
ACCESS read-only 
STATUS mandatory 
: := { icnp 2 ) 

icmpinDestUnreachs OBJECT-TYPE 
SYNTAX Counter 
ACCESS read-only 
STATUS mandatory 
: := ( icnp 3 ) 

icmpinTimeExcds OBJECT-TYPE 
SYNTAX Counter 
ACCESS read-onl y 
STATUS mandatory 
: := ( icmp 4 ) 

icmpinParnProbs OBJECT-TYPE 
SYNTAX Counter 
ACCESS read·only 
STATUS mandatory 
: := ( icnp 5 ) 

icmpinSrcQuenchs OBJECT-TYPE 
SYNTAX Counter 
ACCESS read-onl y 
STATUS mandatory 
: := { icnp 6 ) 

icmpinRedirects OBJECT-TYPE 
SYNTAX Counter 
ACCESS read-onl y 
STATUS mandatory 
: := ( icnp 7 ) 

icmpinEchos OBJECT-TYPE 
SYNTAX Counter 
ACCESS read-only 
STATUS mandatory 
: := ( icmp 8 ) 

icmpinEchoReps OBJECT-TYPE 
SYNTAX Counter 
ACCESS read-onl y 
STA'IUS mandatory 
::= ( icmp9) 

A9 



Appendix B MIB-11 

icnpinTinestanps OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-onl y 
STATOS mandatory 
: := ( icnp 10 l 

icmpinTinestanpReps OmcT-TYPE 
SYHTAX Counter 
ACCESS read-only 
STATOS mandatory 
::= ( icmp 11) 

icmpinAddrMasks OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-only 
STATOS mandatory 
: : = ( icmp 12 ) 

icmpinAddrMaskReps OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-only 
STATOS mandatory 
::= ( icmp 13 ) 

icmpOutMsgs OmcT-TYPE 
SYHTAX Counter 
ACCESS read-onl y 
STATOS mandatory 
: := ( icmp 14 ) 

icmpOutErrors OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-only 
STATOS mandatory 
: := ( icnp 15 ) 

icmpOutDestUnreachs OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-onl y 
STATOS mandatory 
: := ( icnp 16 ) 

icmpOutTineExcds OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-onl y 
STATOS mandatory 
::= ( icnp 17 ) 

icmpOutFarmProbs OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-onl y 
STATOS mandatory 
: := ( icmp 18 ) 

icmpOutsrcQuenchs OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-only 
STATOS mandatory 

::= ( icnp 19) 

icmpOutRedirects OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-only 
STATOS mandatory 
: : = ( icmp 20 ) 

icmpOutEchos OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-only 
STATOS mandatory 
: : = ( icmp 21 ) 

icmpOutEchoReps OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-onl y 
STATOS mandatory 
: := ( icmp 22 ) 

icmpOutTimestamps OBJECT-TYPE 
SYHTAX Counter 
ACCESS read·only 
STATOS mandatory 
: := ( icmp 23 ) 

icmpOutTimestampReps OmcT-TYPE 
SYHTAX Counter 
ACCESS read-onl y 
STATOS mandatory 
::= ( icmp 24) 

icmpOutAddrMasks OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-only 
STATOS mandatory 
: := ( icmp 25 ) 

icmpOutAddrMaskReps OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-only 
STATOS mandatory 
::= ( icmp 26 ) 

-- the TCP group 

tcpRtoAlgorithm OmcT-TYPE 
SYHTAX IIITEGER ( 

AIO 

other( 1), -- none of the following 

) 

constant(2), -- a constant rto 
rsre(3), -- HIL-STD-1778, 
vanj(4) -- Van Jacobson's 

-- algorithm 

ACCESS read-only 
STA'IDS mandatory 
: := ( tep 1 ) 



Appendix B MIB-II 

tepRtoMin OBJECT-TYPE 
SYHTAX IIITEGER 
ACCESS read-onl y 
STATOS nandatory 
::= ( tep 2) 

tepRtoMax OBJECT-TYPE 
SYHTAX IIITEGER 
ACCESS read-onl y 
STATOS 11andatory 
::= ( tep3) 

tepMaxConn OBJECT-TYPE 
SYHTAX IIITEGER 
ACCESS read-onl y 
STATOS 11andatory 
::= ( tep4) 

tepAeti veOpens OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-onl y 
STATOS 11andatory 
: := ( tep 5 ) 

tepPassi veopens OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-onl y 
STATOS 11andatory 
::= ( tep6) 

tepAttemptFails OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-only 
STATOS nandatory 
: := ( tep 7 ) 

tcpEstabResets OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-only 
STATOS nandatory 
: := ( tep 8 ) 

tepCurrEstab OBJECT-TYPE 
SYHTAX Gauge 
ACCESS read-onl y 
STATOS nandatory 
::= ( tep9) 

tepinSegs OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-onl y 
STATOS nandatory 
::= ( teplO) 

tepOUtSegs OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-onl y 

STATOS nandatory 
: := ( tep 11 ) 

tepRetransSegs OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-only 
STATOS nandatory 
: := ( tep 12 ) 

-- the TCP connections table 

tepConnTable OBJECT-TYPE 
SYHTAX SEQUENCE OF TepConnEntry 
ACCESS read-only 
STATOS mandatory 
: := ( tep 13 ) 

tepConnEntry OBJECT-TYPE 
SYHTAX TepConnEntry 
ACCESS read-onl y 
STATOS nandatory 
: : = ( tepConnTable 1 ) 

TepConnEntry ::= SEQUENCE ( 
tepConnState 

IIITEGER, 
tepConnLoealAddress 

IpAddress, 
tepConnLoealPort 

IN'l'EGER ( 0 .. 65535), 
tepConnRellAddress 

IpAddress, 
tcpConnRenPort 

IN'l'EGER (0, ,65535) 

tepConnState OBJECT-TYPE 
SYHTAX IN'l'EGER ( 

) 

closed( 1), 
listen( 2), 
synSent ( 3) , 
synReceived( 4), 
established( 5), 
f inWaitl( 6), 
finWait2(7), 
closeWait(8), 
lastAck(9), 
closing(lO), 
timeWait( 11) 

ACCESS read-onl y 
STATUS 11andatory 
::= { tcpConnEntry 1 ) 

tcpConnLocalAddress OBJECT-TYPE 
SYHTAX IpAddress 
ACCESS read-only 
STATUS 11andatory 

All 



Appendix B MIB-11 

: : = { tcpConnEntry 2 ] 

tcpConnLocalPort OBJECT-TYPE 
SYHTAX IIITEGER ( 0 .. 65535) 
ACCESS read-onl y 
STATUS mandatory 
: : = ( tcpConnEntry 3 ] 

tcpConnRemAddress OBJECT-TYPE 
SYHTAX IpAddress 
ACCESS read·only 
STATUS mandatory 
: : = ( tcpConnEntry 4 ) 

tcpConnRemPort OBJECT-TYPE 
SYHTAX IIITEGER (0, .65535) 
ACCESS read-only 
STATUS mandatory 
: : = ( tcpConnEntry 5 ) 

-- addi tional TCP variables 

tcpinErrs OBJECT-TYPE 
SYHTAX Counter 
ACCESS read·onl y 
STATUS mandatory 
::= { tcpl4) 

tcpOutRsts OBJECT-TYPE 
SYNTAX Counter 
ACCESS read·onl y 
STATUS mandatory 
: := { tep 15 ) 

-- the UDP group 

udplnDatagrallS OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-onl y 
STA'IUS mandatory 
: := { udp 1 ) 

udpNoPorts OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-only 
STA'IUS nandatory 
: := { udp 2 ) 

udpinErrors OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-only 
STA'IUS mandatory 
::= ( udp3) 

udpOutDatagrallS OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-onl y 

STA'IUS nandatory 
::={udp4l 

-- the UDP listener table 

udpTable OBJECT-TYPE 
SYHTAX SEQUENCE OF UdpEntry 
ACCESS read·onl y 
STA'IUS mandatory 
: := { udp 5 ) 

udpEntry OBJECT-TYPE 
SYHTAX UdpEntry 
ACCESS read-only 
STA'IUS mandatory 
::= { udpTable 1 ) 

UdpEntry : : = SEQUENCE { 
udpLocalAddress 

IpAddress, 
udpLocalPort 

IIITEGER ( 0 .. 65535) 

udpLocalAddress OBJECT-TYPE 
SYNTAX IpAddress 
ACCESS read-onl y 
STATUS mandatory 
::= { udpEntry 1 ) 

udpLocalPort OBJECT-TYPE 
SYNTAX IIITEGER (0,,65535) 
ACCESS read-only 
STATUS mandatory 
: := { udpEntry 2 ) 

-- the EGP group 

egplnMsgs OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-only 
STA'IUS mandatory 
::={egpl) 

egplnErrors OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-onl y 
STA'IUS mandatory 
: := { egp 2 ) 

egpOutMsgs OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-only 
STA'IUS mandatory 
: := { egp 3 ) 

egpOutErrors OBJECT-TYPE 

A12 



Appendix B MIB-II 

SYHTAX Counter 
A~ read-onl y 
STA'IDS llandatory 
::={egp4} 

-- the EGP Neighbor table 

egpNeighTable OBJECT-TYPE 
SYHTAX SEQUEHCE OF EgpNeighEntry 
ACCESS read-onl y 
STA'IDS mandatory 
::=(egp5} 

egpNeighEntry OBJECT-TYPE 
SYHTAX EgpNeighEntry 
ACCESS read·only 
STA'IDS mandatory 
::= { egpNeighTable 1 ) 

EgpNeighEntry : : = SEQIJENCE ( 
egpNeighState 

INTEGER, 
egpNeighAddr 

IpAddress, 
egpNeighAs 

INTEGER, 
egpNeighinMsgs 

Counter, 
egpNeighinErrs 

Counter, 
egpNeighOutMsgs 

Counter, 
egpNeighOutErrs 

Counter, 
egpNeighinErrMsgs 

Counter, 
egpNeighOutErrMsgs 

Counter, 
egpNeighStateUps 

Counter, 
egpNeighStateDowns 

Counter, 
egpNeighintervalHello 

OO'EGER, 
egpNeighintervalPoll 

INTEGER, 
egpNeighMode 

INTEGER, 
egpNeighEventTrigger 

INTEGER 

egpNeighState OBJECT-TYPE 
SYNTAX INTEGER { 

idle(l), 
acquisition( 2), 
down( 3), 
up( 4), 

cease(5) 
} 

ACCESS read-only 
STATUS mandatory 
::= { egpNeighEntry 1} 

egpNeighAddr OBJECT-TYPE 
SYNTAX IpAddress 
ACCESS read-only 
STATUS mandatory 
: : = { egpNeighEntry 2 ) 

egpNeighAs OBJECT-TYPE 
SYHTAX INTEGER 
ACCESS read-onl y 
STATUS mandatory 
::= { egpNeighEntry 3 ) 

egpNeighinMsgs OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-only 
STATUS mandatory 
: := ( egpNeighEntry 4 } 

egpNeighinErrs OBJECT-TYPE 
SYNTAX Counter 
ACCESS read-only 
STATUS mandatory 
::= ( egpNeighEntry 5) 

egpNeighOutMsgs OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-only 
STATUS mandatory 
::= ( egpNeighEntry 6 ) 

egpNeighOutErrs OBJECT-TYPE 
SYNTAX Counter 
ACCESS read-only 
STATUS mandatory 
::= ( egpNeighEntry 7) 

egpNeighinErrMsgs OBJECT-TYPE 
SYNTAX Counter 
ACCESS read-only 
STATUS mandatory 
::= { egpNeighEntry 8} 

egpNeighOutErrMsgs OBJECT-TYPE 
SYNTAX Counter 
ACCESS read·onl y 
STATUS mandatory 
: := { egpNeighEntry 9 } 

egpNeighStateUps OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-only 
STATUS mandatory 

Al3 



Appendix 8 MIB-II 

: : = ( egpNeighEntry 10 ) 

egpNeighStateDowns OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-onl y 
STATUS llandatory 
::= ( egpNeighEntry 11 ) 

egpNeighintervalHello OBJECT-TYPE 
SYHTAX INTEGER 
ACCESS read-onl y 
STATUS mandatory 
: : = ( egpNeighEntry 12 ) 

egpNeighintervalPoll OBJECT-TYPE 
SYHTAX INTEGER 
ACCESS read-onl y 
STATUS mandatory 
: : = ( egpNeighEntry 13 ) 

egpNeighMode OBJECT-'l'YPE 
SYHTAX INTEGER ( 

) 

active(l), 
passive(2) 

ACCRSS read-onl y 
STA'IUS mandatory 
: := ( egpNeighEntry 14 ) 

egpNeighEventTrigger OBJECT-TYPE 
SYNTAX INTEGER ( 

start(l), 
stop(2) 

) 
ACCESS read-write 
STATUS mandatory 
: : = ( egpNeighEntry 15 ) 

-- additional EGP variables 

egpAs OBJECT-TYPE 
SYHTAX IIITEGER 
ACCESS read-onl y 
STATUS llandatory 
: := ( egp 6 ) 

-- the Transmission group ( empty at present) 

-- the SNMP group 

SllllpinPkts OBJECT-TYPE 
SYNTAX Counter 
ACCESS read-onl y 
STA'IUS 11andatory 
: := ( snmp 1 ) 

SllllpOutPkts OBJECT-TYPE 

SYNTAX Counter 
ACCESS read-only 
STA'IUS 11andatory 
::= ( snmp2) 

SllllplnBadVersions OBJECT-TYPE 
SYNTAX Counter 
ACCESS read-only 
STA'IUS 11andatory 
: := ( snmp 3 ) 

snmplnBadCommunityNames OBJECT-TYPE 
SYNTAX Counter 
ACCRSS read-onl y 
STA'IUS mandatory 
::= ( snmp4) 

snmplnBadCommunityUses OBJECT-TYPE 
SYNTAX Counter 
ACCRSS read-onl y 
STA'IUS mandatory 
: := ( Sllllp 5 ) 

snmplnASNParseErrs OBJECT-TYPE 
SYNTAX Counter 
ACCESS read-only 
STA'IUS mandatory 
: := ( snmp 6 ) 

snmplnBadTypes OBJECT-TYPE 
SYNTAX Counter 
ACCESS read-only 
STA'IUS mandatory 
::= ( snmp7) 

snmplnTooBigs OBJECT-TYPE 
SYNTAX Counter 
ACCESS read-only 
STA'IUS mandatory 
::= ( snmp8) 

snmplnNoSuchNames OBJECT-TYPE 
SYNTAX Counter 
ACCESS read-onl y 
STA'IUS mandatory 
: := ( snmp 9 ) 

snllplnBadValues OBJECT-TYPE 
SYNTAX Counter 
ACCESS read-onl y 
STA'IUS 11andatory 
::= ( snmp 10) 

snmplnReadOnlys OBJECT-TYPE 
SYNTAX Counter 
ACCESS read-only 
STA'IUS 11andatory 
::= ( snmp 11) 

A14 



Appendix B MIB-II 

S11llpinGenErrs OBJEC'MYPE 
SYil'l'AX Counter 
ACCESS read-onl y 
STA'IDS nandatory 
::= ( S11llp 12) 

S11llpinTotalReqVars OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-only 
STA'IDS 11andatory 
::= ( Sllllpl3} 

snmpinTotalSetVars OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-onl y 
STA'IDS nandatory 
::= ( snmp 14} 

sllllpinGetRequests OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-onl y 
STA'IDS mandatory 
: : = ( Sllllp 15 ) 

snmpinGetNexts OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-only 
STA'IDS nandatory 
::= ( snmp 16} 

snmpinSetRequests OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-only 
STA'IDS mandatory 
: := ( S11llp 17 } 

snmpinGetResponses OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-onl y 
STA'IDS nandatory 
: := ( S11llp 18 } 

snmpinTraps OBJEC'HYPE 
SYHTAX Counter 
ACCESS read-only 
STA'IDS nandatory 
: := ( snmp 19 } 

S11llp0utTooBigs OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-only 
STA'IDS mandatory 
: := ( Sllllp 20 ) 

SllllpOutNoSuchNames OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-onl y 

STA'IDS nandatory 
: := ( Sllllp 21 } 

snmpOutBadValues OBJECT-TYPE 
SYHTAX Counter 
ACCESS read·onl y 
STA'IDS mandatory 
: := ( S11llp 22 } 

snmpOutReadOnlys OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-only 
STA'IDS mandatory 
: := ( Sllllp 23 ) 

SllllpOutGenErrs OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-only 
STA'IDS mandatory 
: := ( snmp 24 ) 

snmpOutGetRequests OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-only 
STA'IDS mandatory 
: := ( Sllllp 25 } 

SllllpOUtGetNexts OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-only 
STA'IDS mandatory 
: := ( Sllllp ~6 ) 

snmpOutSetRequests OBJECT-TYPE 
SYHTAX Counter 
ACCESS read·only 
STA'IDS mandatory 
: : = ( snmp 27 } 

snmpOutGetResponses OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-only 
STA'IDS mandatory 
::= ( snmp 28 ) 

S11llp0utTraps OBJECT-TYPE 
SYHTAX Counter 
ACCESS read-only 
STA'IDS mandatory 
: : = ( snmp 29 ) 

snmpEnableAuthTraps OBJECT-TYPE 
SYHTAX IIITEGER ( 

enabled ( 1), 
disabled( 2) 

} 
ACCESS read-write 
STATUS mandatory 

AIS 



Appendix B: MIB-II A16 

: := { snnp 30 l 

END 



RFC1157-SNMP DEFINITIONS::= BEGIN 

IMPORTS 
ObjectNane, Objectsyntax, NetworkAddress, 
IpAddress, TimeTicks 

FROM RFC1155-SMI; 

-- top-level message 

Message::= 
SEQUENCE ( 

version -- version-1 for this RFC 
INTEGRR ( 

version-1 ( o) 
), 

co1111unity -- colll.lllUnity name 
OCTET STRING, 

data -- e.g., PWs if trivial 
ANY -- authentication is being used 

) 

-- protocol data units 

PDUs : := 
CHOICE ( 

get-request 
GetRequest-PDU, 

get-next-request 
GetNextRequest-PDU, 

get-response 
GetResponse-PDU, 

set-request 
SetRequest-PDU, 

trap 
Trap-PDU 

-- PWs 

GetRequest-PDU : := 

[O] 
IllPLICIT PDU 

GetNextRequest-PDU : := 
[1] 

Il!PLICIT PDU 

GetResponse-PDU : : = 
[ 2 I 

Il!PLICIT PDU 

SetRequest-PDU : : = 
[ 3 l 

PDU : := 

Il!PLICIT PDU 

SEQUENCE ( 
request-id 

INTEGRR, 

error-status -- sometimes ignored 
INTEGRR ( 

noError(O), 
tooBig(l), 
noSuchName ( 2) , 
badValue( 3), 
readOnly( 4), 
genErr(5) 

), 

error-index 
IN'l'EGRR, 

-- sometimes ignored 

variable-bindings -- values sometimes ignored 
VarBindList 

Trap-PDU : : = 
[ 4] 

Il!PLICIT SEQUENCE ( 
enterprise -- type of object generating 

-- trap, see sysObjectID 

OBJECT IDENTIFIER, 

agent-addr -- address of object 
NetworkAddress, -- generating trap 

generic-trap -- generic trap type 



Appendix C SNMP 

IHTEGER { 

), 

coldStart( O), 
war11Start( 1), 
linkDown(2), 
linkUp(3), 
authenticationFailure(4), 
egpNeighborLoss ( 5), 
enterpriseSpecif ic ( 6) 

specific-trap -- specific code, present even 
INTEGER, -- if generic-trap is not 

-- enterpriseSpecif ic 

time-stamp -- time elapsed between the last 
TimeTicks, -- (re)initialization of the 

-- network entity and the 
-- generation of the trap 

variable-bindings -- ninterestingn 
-- information 

VarBindList 

-- variable bindings 

VarBind : := 
SEQUF.HCE { 

name 
ObjectName, 

value 
Objectsyntax 

VarBindList : : = 
SEQUF.HCE OF 

VarBind 

END 

AJB 



[COME91] Douglas E. COMER, INTERNETWORKING WITH TCP/IP: 
VOLUME 1; PRINCIPLES, PROTOCOLS, AND ARCHITECTURE, 
second edition, Prentice Hall, Englewood Cliffs, New 
Jersey, 1991 

[DAIS88] Jean-Paul DAISOMONT, REFLEXION SUR LE MODELE 
TCP/IP, COMPARAISON ET ANALYSE D'IMPLEMENTATION, 
Facultés Universitaires Notre-Dame de la Paix, 
Institut d'Informatique, NAMUR, 1987-1988 

[DALL88] I.N. DALLAS, "Operational Experiences in Managing 
a LAN/WAN Gateway", ISSUES IN LAN MANAGEMENT, 
Dallas/Spratt editors, IFIP, 1988, pp.95-113 

[FISH91] Sharon FISHER, "Dueling Protocols, Will SNMP win 
out over CMIP, of vice versa?", BYTE, March 1991, 
pp.183-190. 

[GAMB90] Dr John N. GAMBLE, Experience at CERN in the 
Management of Large-Scale Multivendor LANs, CERN 
Computing and Networks Division, CERN/CN/90, June 5, 
1990 

[HALL88] Jane HALL, Robbert van RENESSE, Hans van STAVEREN, 
"Gateways and Management in an Internet Environment", 
ISSUES IN LAN MANAGEMENT, Dallas/Spratt editors, 
IFIP, 1988, pp.77-94 

[ISO7498-4] ISO/IEC 7498-4, Information Processing Systems 
- Open Systems Interconnection - Basic Reference 
Model - Part 4: Management Framework, International 
standards Organization, November 15, 1989 

[ISO8649] ISO/IEC 8649, Information Processing Systems -
Open Systems Interconnection, Service Definition for 
Association Control Service Element, International 
Standards Organization 

[ISO8650] ISO/IEC 8650, Information Processing Systems -
Open Systems Interconnection, Protocol Specification 
for Association Control Service Element, 
International Standards Organization 

[ISO8824] ISO/IEC 8824, Information Processing Systems -
Open Systems Interconnection - Specification of 
Abstract Syntax Notation One (ASN.1), International 
standards Organization, May, 1987 

I 



[ISO8825] ISO/IEC'8825, Information Processing Systems -
Open Systems Interconnec~ion - Specification of Basic 
Encoding Rules for Abstract Syntax· Notation One 
(ASN.1), International Standards Organization, May, 
1987 

[ISO9072-1] ISO/IEC 9072-1, Information Processing Systems 
- Open Systems Interconnection, Text Communication -
Message-Oriented Test Interchange System (MOTIS) -
Remote Operations, Part 1: Model, Notation and 
Service Definition, International Standards 
Organization, 1988 

[ISO9072-2] ISO/IEC 9072-2, Information Processing Systems 
- Open Systems Interconnection, Text Communication -
Message-Oriented Test Interchange System (MOTIS) -
Remote Operations, Part 2: Protocol Specification, 
International Standards Organization, 1988 

[ISO9595] ISO/IEC-9595, Information Processing Systems -
Open Systems Interconnection, Management Information 
Service Definition - Part 2: Common Management 
Information Service, International Standards 
Organization, December 22, 1988 

[ISO9596] ISO/IEC 9596, Information Processing Systems -
Open Systems Interconnection, Management Information 
Protocol Definition - Part 2: Common Management 
Information Protocol, International Standards 
Organization, December 22, 1988 

[ISO10165-1] ISO/IEC 10165-1, Information Processing 
Systems - Open Systems Interconneétion, Structure of 
Management Information, Part 1: Management 
Information Model, International Standards 
Organization 

[JOSE88] Celia JOSEPH, Kurudi H. MURALIDHAR, "Network 
Management: A Manager's Perspective", ENTERPRISE 
Conference Proceedings, Society of Manufacturing 
Engineers, 1988 

[KLER88] S. Mark KLERER, "The OSI Management Architecture: 
an Overview", IEEE NETWORK, Vol.2 N°2, March, 1988, 
pp.20-29 

[MEUN88] J.M. MEUNIER, "An Interactive Network Display 
System for Network Management", IEEE 1988 Network 
Operations and Management Symposium, New Orleans, LA, 
February 28-March 2, 1988, pp.1.18-18.18 

[MINO89a] Daniel MINOLI, "Evolving Security Management 
Standards", DATAPRO NETWORK MANAGEMENT/DATAPRO 
RESEARCH, 1990 McGRAW-HILL, 1989, pp.NM20_500_101-107 

II 



[ MINO89b J J)aniel M:tNOLi, iWMa_n,aging_' Loëa"( i0:ea N.~j:works : 
Faùl t. ·and. C_onf i'guration Manag~Il\~1'.lt" ~ . P?-T~PRO NETWORK 
MANAG~MENT/DATAPRO RE9EARCH, lJ90_McGRAW~HILL, 1989, 
pp.NM50_30Ô_401-411 · · ' . · 

[MINO89c] Daniel MINOLI, "Network Management Functions: 
Telecommunications Hardware", DATAPRO NETWORK 
MANAGEMENT/DATAPRO RESEARCH, 1990 McGRAW-HILL, 
October, 1989, pp.NM20_100_101-105 

[MINO89d] Daniel MINOLI, "Managing Local Area Networks: 
Accounting, Performance and Security Management", 
DATAPRO NETWORK MANAGEMENT/DATAPRO RESEARCH, 1990 
McGRAW-HILL, June 1989, pp.NM50_300_501-508 

[MORR89] Wayne MORRISON, "Ethernet LAN Management NMCC/VAX 
ETHERnim, A Case Study", Proceedings of the IFIP 
TC6/WG6.6 Symposium on Integrated Network Management, 
Boston, ELSEVIER SCIENCE PUBLISHERS, May 15-17, 1989 

[NM20-300-l] "Inventory and Configuration Management", 
DATAPRO NETWORK MANAGEMENT/DATAPRO RESEARCH, 1990 
McGRAW-HILL, June 1989, pp.NM20_300_101-104 

[NM50-600-l] "Modem/Multiplexer-Based Network Management", 
DATAPRO NETWORK MANAGEMENT/DATAPRO RESEARCH, 1990 
McGRAW-HILL, June 1989, pp.NM50_600_101-106 

[RFC768] User Datagram Protocol, Request For Comments 768, 
J. Postel, DDN Network Information Center, SRI 
International, August 28, 1980 

[RFC791] Internet Protocol, Request For Comments 791, DDN 
Network Information Center, SRI International, 
September, 1981 

[RFC792] Internet Control Message Protocol, Request For 
Comments 792, DDN Network Information Center, SRI 
International, 1981 

[RFC793] Transmission Control Protocol, Request For 
Comments 793, DDN Network Information Center, SRI 
International, September 1981 

[RFC1085] ISO Presentation Services on top of TCP/IP-based 
internets, Marshall T. ROSE, Request For Comments 
1085, DDN Network Information Center, SRI 
International, December, 1988 

[RFC1095] The Common Management Information Services and 
Protocol over TCP/IP (CMOT), Request for Comments 
1095, Unnikrishnan S. WARRIER, Larry BESAW, DDN 
Network Information Center, SRI International, April, 
1989 

III 



[RFC1155] Structure and Identification of Management 
Information for TCP/IP based internets, Request for 
Comments 1155, Marshall T. ROSE, Keith McCloghrie, 
DDN Network Information Center, SRI International, 
May, 1990 

[RFC1156] Management Information Base for Network 
Management of TCP/IP based internets, Request for 
Comments 1156, Marshall T. ROSE, Keith McCloghrie, 
DDN Network Information Center, SRI International, 
May, 1990 

[RFC1157] A simple Network Management Protocol, Request for 
Comments 1157, Jeffrey D. CASE, Mark S. FEDOR, Martin 
L. SCHOFFSTALL, James R. DAVIN, DDN Network 
Information Center, SRI International, May 1990 

[RFC1158] Management Information Base for Network 
Management of TCP/IP based internets: MIB-II, Request 
for Comments 1158, Marshall T. ROSE, DDN Network 
Information Center, SRI International, May, 1990 

[ROSE91] Marshall T. ROSE, THE SIMPLE BOOK: AN INTRODUCTION 
TO MANAGEMENT OF TCP/IP-BASED INTERNETS, Prentice 
Hall, Englewood Cliffs, New Jersey, 1991 

[SLOM88] Morris SLOMAN, "Distributed Systems Management", 
ISSUES IN LAN MANAGEMENT, Dallas/Spratt editors, 
IFIP, 1988, pp. 15-46 

[STAL89] William STALLINGS, HANDBOOK OF COMPUTER
COMMUNICATIONS STANDARDS : THE TCP/IP PROTOCOL SUITE 
(VOLUME 3), Second Edition, Howard W. Sams & Company, 
1989 

[TANE88] Adrew S. TANENBAUM, Computer Networks, Prentice 
Hall Software Series, Prentice-Hall, Englewood 
Cliffs, New Jersey, 1988 

[WARR90] Unni WARRIER, Amatzia BEN-ARTZI, Asheem CHANDNA, 
"Network Management of TCP/IP Networks: Present and 
Future", IEEE NETWORK MAGAZINE, July, 1990, pp. 35-42 

IV 



ACK 
ARP 
ASN.l 
BER 
CCITT 

CMIP 
CMIS 
CMOT 
CPU 
DBMS 
DEC 
OF 
ONS 
DoD _, 
EGP 
FIN 
FTAM 
FTP 
GGP 
IAB 
ICMP 
IHL 
INMS 
IP 
ISO 
LAN 

Acknowledgement segment 
Address Resolution Protocol 
Abstract Syntax Notation 1 
Basic Encoding Rules 
Comité Consultatif International de la Téléphonie et 
de la Télégraphi~ 
Common Management Information Protocol 
Common Management Information Service 
CMIP over TCP/IP 
Central Processing Unit 
DataBase Management System 
Digital Equipment Company 
Don't Fragment flag 
Domain Name Server 
Department of Defense 
Exterior Gateway Protocol 
Finish segment 
File Transfer, Access and Management 
File Transfer Protocol 
Gateway-to-Gateway Protocol 
Internet Activities Board 
Internet Control Message Protocol 
Internet Header Length 
Integrated Network Management System 
Internet Protocol 
International Standards Organisation 
Local Area Network 

V 

I 



MF 
MIB 
MTU 
NFS 
NSAP 
OSI 
OTOR 
POU 
PING 
RARP 
RFC 
RST 
SAP 
SMI 
SMTP 
SNA 
SNMP 
SQL 
SYN 
TCB 
TCP 
TOR 
TFTP 
TSAP 
TTL 
UDP 
WAN 

More Fragment flag 
Management Information Base 
Maximum Transmission Unit 
Network File System 
Network Service Access Point 
Open System Interconnection 
Optical Time Domain Reflectometer 
Protocol Data Unit 
Packet INternet Groper 
Reverse Address Resolution Protocol 
Requests For Comments 
Reset 
Service Access Point 
Structure of Management Information 
Simple Mail Transfer Protocol 
Systems Network Architecture (IBM) 
Simple Network Management Protocol 
Structured Query Language 
Synchronize segment 
Transmission Control Block 
Transmission Control Protocol 
Time Domain Reflectometer 
Trivial File Transfer Protocol 
Transport Service Access Point 
Time To Live field 
User Datagram Protocol 
Wide Area Network 

VI 



Réalisation, impression et reliure: SPRL Centre de Reprographie• Tél.: 081/22.87.72 




