Institutional Repository - Research Portal

Dépébt Institutionnel - Portail de la Recherche

UNIVERSITE researchportal.unamur.be
DE NAMUK

THESIS / THESE

MASTER IN COMPUTER SCIENCE

Implementation of loop checking

Henrard, Jean

Award date:
1991

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

« Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 20. Apr. 2024

https://researchportal.unamur.be/en/studentTheses/29331e88-6a5a-4015-9803-be761b4aa5ec

FACULTES
UNIVERSITAIRES
-N.D.DE LA PAIX

NAMUR

INSTITUT D'INFORMATIQUE

IMPLEMENTATION OF LOOP
CHECKING

by Jean HENRARD

Année académique 1990 - 1991

Promoteur :

Professeur B. Le Charlier

Mémoire présenté en vue
de l'obtention du titre

de Licencié et Maitre

en informatique

Acknowledgement

This work has heen done during my stay at the Centre for Mathematics and
Clomputer Science (CWI) at Amsterdam.

I thank the staff of CWI for their warm welcome and especially Doctor
J.-M. Jacquet and Mr R. Bol for their continuous help and Doctor K. Apt
for his helpful guidance. T thank my promotor, Professor B. Le Charlier, for
his pertinent remarks about this work.

I would like also to thank Ronald de Groot and Paul Smit for making
my stay in Amsterdam so pleasant and the Rotary Club for their financial
help.

Résumé

Apres une description des mécanisies de loop checking décrits dans [BAK 89)
el [B 90], deux implémentalions de ces mécanismes sont présentées. La
premiére consiste en un méta-interpréteur, écrit en PROLOG, pour des
programmes logiques. La seconde est un pré-compilateur qui transforme
un programme PROLOG et un nouvean qui inclu les mécanismes de loop
checking.

Une étude comparative de ces dillérentes implémentations est eflectuée,
ainsi que la comparaison des différents loop checking. IFinalement, la ques-
tion “Quel est le cotit du loop checking?” est posée.

Abstract

After a description of the loop checking mechanisms described in [BAK 89]
and [B 90], two implementations of these mechanisms are presented. The
first one is a meta-interpreter for logic programs written in PROLOG. The
second one is a pre-compiler that transform a PROLOG program into a new
one that include the loop checking mechanisms.

A comparison of the different implementations is done, as the comparison
of the different loop checking. Finally, the question “How costly is loop
checking?” is discussed.

—_—

Contents

1 Introduction 1
LI History . o o0 o0 oo e |
1.2 The hasicconcept o 2

1.2.1 Terminology 2
[.2.2 Substitutions and renaming 2
1.2.3 Unification L o oo 3
1.3 Resolution i
1.4 PROLOG e 5
1.h Termination o Lo G
1.6 Planofthe thesis o oL 3]

2 Loop checking 10
2.1 General considerations about loop checking 10
2.2 Equality checks 12
2.3 Subsumption checks o L oL 0oL 1l
2.4 Triangular loop checks o 0oL I8

3 The Meta-interpreter 21
3.0 Imtroduction L 24
3.2 Adding functionality to meta-interpreters 2
3.3 The meta-interpreter with loop checks 25

3.3.1 The implementation choices 25
3.3.2 The meta-intetpreter, 26
333 Loopchecking 28
3.3.4 A more realistic meta-interpreter 29
3.4 Thevesults L 31

4 The pre-compiler 34
4.1 Presentation of the pre-compiler 3
4.2 The pre-compiler for loop checking BY)

4.2.1 Representation of the objects 35
4.2.2 The transformation., 36
4.2.3 The loop.check proceduwre 37
4.2.4 The pre.compiler program 39
4.3 Modification of the pre-compiler 40
4.3.1 Sound wnification o L oo 10

iii

g aQa w »

4.3.2 Omitting loop check in certain clauses 41

4.3.3 Built-in predicates o 41
Al Fxample o 0.0 o e e 41
Conclusions 44
5.1 The example programs o oL 4
5.2 The different implementations 45
5.3 The different loop checks, 47
5.4 How costly is the loop checking 19
The meta-interpreter 52
Another meta-interpreter T2
The pre-compiler 75
The loop_check procedure 83

Chapter 1

Introduction

1.1 History

Since the beginning of computer science, people have tried to make languages
that are easier for humans to express themselves in. Starting from assembly
language, through FORTRAN, COBOL, PASCAL, C, they all carried the
imprint of the underlying machine, named the Von Neumann architecture.
Logic has been used as a tool for reasoning about computers and programs.
but the use of logic divectly as a programming language is quite recent. This
has resulted in so-called logic programming.

Logic programming is derived {rom an abstract model. which has no di-
rect dependency on one machine or another. It suggests that the knowledge
about the problem and assumptions are sufficient to solve it. A program is
a set of axioms and its execution is formalized as the attempl to prove a
logical statement.

In 1965, J.A. Robinson published the uniflication algorithm and the reso-
lution principle {R 65]. Shortly after R. Kowalski formulated the procedural
interpretation of Horn clause logic. An axiom

Al By and By and ... and B,

can be read and executed as a procedure of a recursive programming lan-
guage. In the early 1970’s, A. Colmerauer and his group developed a new
language, called PROLOG (for PROgrammation en LOGique)., hased on
Kowalski’s procedural interpretation.

In the late 1970°s D.H.D. Warren developed an eflicient implementa-
tion of PROLOG. Tor that purpose he created an abstract machine called
the WAM (Warren Abstract Machine) [W 84] on which almost all eflicient.
PROLOG implementations are based. It shows that logic programming is
a powerful, productive and practical programming formalism.

In the remainder of this chapter. I present logic programming and PRO-
LOG framework. First I give the basic concepts of logic programming (syn-
tax, substitutions, unifications), then I present SLD-resolution and PRO-
LOG itsell. Pinally T introduce the problem of termination,

1.2 The basic concept
1.2.1 Terminology

First, we suppose the existence ol the following sets of symbols:
o set of variables;

o set of functions. Funclions are essentially defined by two components:
a name, called the functor and an arity, which determines the number
ol arguments the function can take. Function of arity 0 are called
conslanis;

o set of predicates. Predicates are essentially defined by two components:
a name and an arity,

Terms are defined inductively as follows:
e a variable is a term;
e a constant is a term;

o il fis a n-ary function and il {y,.... 1, are terms then f({1.....1,) s
a term. [is called the functor of this terms.

If pis an n-ary predicate and £y,. ... 1, arve terms then p(ty, ..., 0,) is an
atomic formula or just an alom. An atom is also called a positive literal and
its negation (=p{ly,...,14,)) a negative literal.

A formula of the form

Ll V...V Ilm

where Ly,.... L, are literals, is called a clausc. Clauses are implicitly uni-
versally quantified. A Horn clause is a clause where exactly one literal is
positive. It is denoted by

H«~ By,....B,. (i{lm>0)
or
H. (if m = 0)

with the convention H — By,.... B,,.is ashorthand for IvV-B,Vv--.v=13,,.
The atowm I is called the head of the clause and the sequence I3y, ... 1, is
called the body of the clause. A goalis a clause with only negative literals,
it is denoted by «— By,..., B,,.

A procedure is a finite set of Horn clauses with the same head name and
arity. A Horn clause program is a set of procedures.

1.2.2 Substitutions and renaming

In logic programing, variables are bound to values by means of substitu-
tions. A substitulion @ is a finite set of the form {o/fy.... 0y /1,} where
each x; is a variable, the variables xy,...,x, are distinct, and each {; is
a term different from a;. The substitution is to he read as the variables

Xy, ...,y are bound to ty,....1, respectively. The empty substitution is
represented by €. A pair a;/t; is called a binding. {xy,...,a,} is called the
domain ol {ay/ty,..., ¢/t }.

WAt oitn) = {21, ..., 2y} then @ is called a renaming.

Substitutions are applied on terms, sequences of literals, clauses. For
an expression 2 and a substitution @, the application of 8 to [, denoted
149, is the new expression obtained from I by simultancously replacing each
occurrence in IZ of a variable (a;) from the domain of 8 by the corresponding
term (t;). The expression N8 is called an instance of . When 6 is a
renaming substitution then I8 is called a variant of I,

For two substitutions,

0= {ay/ti,. . .oan /)

and
Y= {yl/‘gb o '~y711/371)}-,

the composition of 8 and 7, denoted #y. is the set

{:l"l/tlf)'a e '7“771/1‘7173 .1/1/31~ cees .Um/sm}

where the pairs a;/tjy for which a; = t;7 and the pairs y;/s; for which
yi € {a1,...,2,} are removed.

A substitution 8 is more general than a substitution 8" (8 < ') il for
some substitution 4 we have 6y = ¢'.

1.2.3 Unification

A substitution € is called an unifier of two expressions I and ' ifl it verifies
Ef = I8, 1t is called a most general unifier (mgu) of E and F il it is more
general than any other unifier of I and I

The following algorithm is based upon Herbrand’s original algorithmn
which deals with solutions of finite sets of term equations. This algorithm
was presented in [MM 82].

The standard unification problem can be written as an equation

i =t",

A solution of the equation, a unifier, is a substitution 8, if it exists, which
makes the two terms identical.
For the set of equations

a unifier is a substitution which is simultancously the solution of all the
equations 1} = t7.

A set of equations is said to be in solve form ifl it satislies the [ollowing
conditions :

L. the equations are x; = t; (j = L,...k) where the a;’s are varjables;

2. every variable which is the left member of some equation occurs only
there.

A set of equations in solved form has the obvious unifier 8 = {a)/1y.....
ar/ti} and it is its mgu.

Thus to find the mgu of a set of equations is suflices to transformed it
into an equivalent set of equations in solved form.

The following algorithm does it if this is possible and otherwise halt. with
failure.

Given a set of equations, repeatedly perform any of the following trans-
formations. If no transformation applies, stop with failure.

1. f(Sl....,Bn) = f(tls---wl"n)

then replace by the equations sy = 11,....8, =

2. f(814.0s80) = g1, ly) where [# gor n# m
then halt with lailure

3. X = X (X is a variable)
then delete the equation

4. t = X where X is a variable and { is notl a variable
then replace by the equation X =1

X = { where 1 is not the same variable as X and X has another
occurrence in the set of equations
if X appears in t (this test is called the occur check)

then halt with failure
otherwise perform the substitution {X/t} on both sides of
every other equation

fu

The algorithm terminates when no step can be performed or when failure
arises,

1.3 Resolution

A problem is presented to a Horn clause program in the form of a goal.
G =— Ay,..., Ay, called a goal. The resolution of the goal G consists of an
attempt to prove the following sentence

AX, L XA A A A,

with the program clauses considered as axioms of a certain theory, where
Xi..... X} denote all the variables that appear in A ..., A,

Let P be a Horn clause program and ¢/ =« Ay,..., 4, a goal. Supposc
that ' = A — By,..., By, is a clause in I? such that A; (1 <1 < n), called
the selected atom, unifies with A with a mgu 6. Then

(.}" == (Al,. f .\f’\,'...], B]. . ..Bm, A,‘+1,. . .A,,,)()

is called the resolvent of G and ' with the mgu @ and it is denoted by
G = (' The rule that chose the selected atom is called the sclection
rule.

An SLD-devivation {SLD stands for Selection rule driven Lincar reso-
lution for Definite clauses) of P U {(} is a waximal sequence (/4. G, ...
of goals where (¢ = 7y together with a sequence Cy,('y,... of variants of
clauses from P and a sequence f#y,#,,... of substitutions such that for all
t=0,1,...

(. G4 =0 Gi—l—l

2. (!; does not have a variable in common with the derivation up to ¢/},
This condition is called the standardization apart.

The sequence Go, G, ... is said maximal il 1t is infinite or the last goal is
the empty goal or has no resolvent.

SLD-derivation may be finite or infinite. A finite SLD-derivation may
he successful or fail. A successful SLD-derivation is one that ends with the
empty goal, denoted by O. And the output is the value assigned to the
variables of the query; called the compuicd answer substitution for PU {('}.
If 84,...,0,, is the sequence of substitutions performed in the derivation to
find the empty goal then the computed answer substitution is the restriction
of 8y ...46,, to the variables of the query. A failed SLD-derivation is one that
ends with a goal for which it is not possible to find a resolvent w.r.t, .

Foragoal G =~ Ay,..., A, it is possible to have more than one clause’s
head that unifies with A4;, so we can have more than one resolvent for (¢, An
SLD-tree as in figure 1.1 is used to represent this; each node represents a goal,
the empty goal is represented by O with the computed answer substitution;
if for a goal there is no resolvent then it is surrounded by a box. An arc
represents one step in the derivation and is marked with the variant of the
clause and the mgu used to find the resolvent.

1.4 PROLOG

PROLOG is certainly the most well-known example of logic programming
language.

The variables are strings of letters and digits, beginning with a capi-
tal letter; function and predicate symbols are strings of letters and digits
beginning with a lower case letter.

In PROLOG program the Icftmost selection rule is used 1o find the re-
solvent. And a PROLOG program is not just a set of clauses but there
is an order in the clauses, the order is the order in the text of the pro-
gram. So the SLD-tree is construct as follow: for a program P and a goal
G = Ay, ..., 4, to find the resolvent in PROTLOG we take the next clause
in P,C"' = A — By,..., By, such that A and A unify to find the resolvent of
(7. And to search in this SLD-tree PROLOG used a depth-first left-to-right
search strategy.

[§

{712}

Figure 1.1: The SLD-tree of P U {— a(Z)}
with P = { CL : a(X) — b(Y).
(2 : a(X) — ¢(X).
€3 1 a(X) ~ d(X).
4 b(1).
51 (2). }

t

C
(|l

In PROLOG, negation is deflined as negation as failure, which means
that not(G) is “true” if it is not possible to derive G from the program.

PROLOG programs may contain culs (1) which dyvnamically prune the
gearch tree. For example if we have the following program:

P = {C1: a(X) — b(X). C5 : c(4).
C2: a(X) — <(X). 6 : ¢(2).
C3: b(1). C7: ¢3).
C4: b(X) — e(X). }

then the SLD-tree of P U {«~ a(X)} is represented in figure 1.2. If C3 is
replaced by the clause C3': b(1) — !. then SLD-tree is the same as in ligure
1.2 except the surrounded part of the tree is not developed.

PROLOG has also extra-logical predicates, that have nothing to do with
logic programming. They are mainly the 1/0 predicates, all programming
language need them to read and write files, print message on the sereen, ete.
There are also other extra-logical predicates like assert, retract, bagof.

1.5 Termination

Because of its depth-first search strategy. PROLOG sullers from the problem
that it can fall in the exploration of an infinite hranch although solutions
might be present in some other branches. The undesired consequence is thal
no solution can be reported although some exists and could be find by other
strategies.

—a(X)

a —e(X) (]

3
{x/2}

a O

“‘H
.

Figure 1.2: The SLD-tree prunes by

Example 1.1 To illustrate this point. let us consider the transitive closure
problem. It consists of finding every path between two nodes of a graph.
The relation v(ab) holds iff there is an are between a and b, The relalion
te(a,b) means that there exists a path between a and b Let P obe the naive
logic program defining the transitive closure te for the relation v (given by
the facis F1 - F4):
P o= {C1:te(X,Z) — (X2).

(2 1 te(X.Z) — o(X,Y), te(Y.Z).

F'1: r(ab).

F2 : r(b,a).

I3 : r(bc).

Iy : v(cd). }.

In the SLD-tree of P U {— tc(a,d)} (see figure 1.3) there is an infinilc

branch and the only solution is on the right of this infinite devivation. so
PROLOG never veaches that solution.

This non-termination problem can bhe solved in two ways:

o transform the program into a new one that does not have inlinite
branches in its search space;

o change the interpreter, so that it does not. go into the infinite bhranches.

The thesis take place in the second approach, a depth-first search mech-
anism is used in conjunction with a capability of pruning. Pruning an SLD-
tree means that at some point the interpreter is forced to stops its search
through a certain part of the tree, typically an infinite hranch. Ivery method
of pruning SLD-trees considered so far has been based on excluding some

-1

—tc(a,d)

—r{a,d) | —r(a,Y),lc(Yd)

I

—tc(h,d)

—r(b.d)

—tc(a,d)

Cl €2

—r(a,d) | —r(a,Ys),be(¥3,d)

I'1

—te(b,d)

ff——l‘(]),(l)

—r(h,Yy)le(¥o.d)

—1(b, Yy} te(Vy,d)

- -

—r(d,d)

1Y) e (V)

Figure 1.3: SLD-tree of PU {— tc(a,d)}

kind of repetition in the SLD-derivations, because such a repetition makes
the interpreter enter an infinite loop. That is why pruning SLD-trees has
been called loop checking.

1.6 Plan of the thesis

Following [BAIL 89] and [B 90], in chapter 2 we recall some relevant aspects
of the theory of loop checking, together with the definition of the loop checks
that are supported in implementation.

In chapter 3 meta-interpreters are described in general. Then the meta-
interpreter that supports loop checking is presented, Every part of the com-
putation process, deriving new goals as well as loop checking. is programmed
explicitly in PROLOG. This means that the program is slow, but allows to
measure the time spent on loop checking separately from the time spent to
find the next goal. Finally the output produced by the meta-interpreter are
explained.

In chapter 4 a more efficient implementation is presented: the program
given by the user is transformed into a new program that includes loop
checking (the program is pre-compiled). Then the additional layer of in-
trepretation is removed. First the transformation of program is presented
and the pre-compiler with loop checking is described. The search for applica-
ble clauses and unification is done by the underlying PROLOG system. but
the computations performed for the loop checks are still explicit. This in-
equality hetween the efficiency of generating the next goal and loop checking
makes this implementation less suitable for judging the relative cost of loop
checking. Some modifications of the pre-compiler are presented to increase
the efficiency of the transformed program.

In chapter 5 results obtained by the implementations presented in chap-
ter 3 and 4 are analyse to compare the performance of those implemen-
tations. Afterward the loop checks are compared for one of the mela-
interpreter, to show the relative cost of the dillerent loop checks, Finally
the question “How costly is loop checking?” is discussed, as some possible
optimizations of the meta-interpreter.

In the appendix, the PROLOG code of the meta-interpreter and the
pre-compiler are given.

Chapter 2

Loop checking

This chapter presents several loop checking mechanisms fully introduced in
[BAK 89].

The purpose of loop checking is to prune (stop the search of) infinite
branches of the SLD-tree without losing any solution. The loop check prunes
a branch when the current goal is “sufficiently similar™ to one goal that
appears previously in the derivation.

Different loop checks arises from giving different meanings to the term
“sufficiently similar”.

The ideal loop check may be characterized as follow. Firstly, it should
give all the solutions and prune every infinite branch as soon as possible.
Furthermore, if there are two branches giving the same solution it only
keeps the shortest one. Finally, it should not decrease the efficiency of the
interpreter (in time and memory space) for programs without infinite loops.
Obviously, such an ideal loop check does not exist and this for al least the
two following reasons:

¢ PROLOG has the full power of recursion theory and therefore the
termination of PROLOG programs is undecidable;

¢ a loop check necessarily keeps some information about the previous
goals and compares that with the current goal, so it needs both extra
space and time.

We will only be concerned here with loop checks that are computable
and independent of the program. They are called simple loop checks. Of
course simple loop checks that prune every infinite branch and do not lose
solitions exist only for some classes of programs,

2.1 General considerations about loop checking

A loop check can be seen as a function from SLD-trees to SLD-trees (subtree
of SLD-tree). transforming an SLD-tree 1o a subtree of it that contains its
rool and preferably no more the infinite hranches. I{ a node is pruned then
it is treated as if failed: all its descendants are removed. In the loop checks

10

used in this thesis, the decision that a node is pruned depends only on its
ancestors in the SLD-tree and not on the program. Because they are hased
on excluding some repetition in the SLD-derivation (if the pruned node is
the same as one of its ancestors).

Obviously, we would like the .loop checks to lose no solutions. This
corresponds to the concept of soundness. Diflerent degrees of soundness are
defined hereafter.

Definition 2.1 (Soundness)

e A loop check is weakly sound iff for cvery program I’ and goal (i, if
the SLD-trec of PU{G'} conlains a suceessful branch with a compuled
answer substitution 8 then the pruncd SLD-tree of P U {(/} conlains
also a successful branch with a computed answer substitution 8" possibly
different from 6.

o A loop check is sound iff for cvery program P and goal G, if the
SLD-tree of P U {G} contains a successful branch with a compulcd
answer substitution 8 then the pruned SLD-tree of P U {(} contains
a successful branch with a computed answer substitution 8 verifying
Go < G,

o A loop check is shortening iff for cecry program P and goal ¢/, if
the SLD-trec of PU{G} conlains a successful branch with a compuled
answer substitution 8 then the pruncd SLD-trec of PU {7} contains a
suecessful branch, that is not longer, with a computed answer substi-
tution 8" verifying G’ < (6.

Another desired property of a loop check is that it prunes every infinite
branch. This corresponds to the notion of completeness.

Definition 2.2 (Completeness)
A loop check is complete iff it pruncs cvery infinite SLD-derivation.

Dillerent loop checks will be presented in this chapter. One natural way
of comparing them is to test whether if one detects a loop the other one
detects this loop too.

Definition 2.3 (Stronger than)

The loop check Ly is stronger than the loop check Ly. iff for every program
P and goal G, if the SLD-devivation (¢ = Gy = -+ is pruncd by Ly al the
goal Gy then it is pruned by Ly at a goal Gy with i < k.

The following results are proved in [BAK 89]-

Proposition 2.1 Let Ly and Ly be loop cheeks and Ly be stronger than L.
1. If Ly is weakly sound. then Ly is weakly sound,

2. If Ly is sound, then Ly is sound.

i

3. If Ly is shortening, then Lo is shortening.

4. If Ly is complete, then Ly is complele,

In the following sections, the concrete loop checks implemented will be
presented.

2.2 Equality checks

A first class of loop check, named the equality cheeks, consists of under-
standing “G" is sufficiently similar to " as “G’ is equal to ™ in one of the
following two ways:

1. ' = (i1 for some renaming 7 (' is a variant of ()
2. (' = G'o for some substitution o (G’ is an instance of)

The induced pruning is justilied as follow. Assume that in the search
tree there is a branch with a descendant node of ¢y say ', “sulliciently
similar”, Two cases must be considered:

e there exist a proof for 7 so we can apply it directly to ¢ (with some
modification because G’ is not exactly (/). It is not necessary Lo prove
(', we can prune G';

e there is no proof for ', so the attempt to prove (v via (! cannot
succeed, so we can prune G

Finally, the first two equality checks (called cquality checks for goals) ave
the Equals Variant of Goal and the Fquals Instance of Goal.

Definition 2.4 Equals Variant of Goal (EVG)
A derivation

Gy =,0 Gl = =00 Gi= e =0 Gp= -

is pruned at the goal (), by the Equals Variant of Goal cheek if I is the
smallest level such that there exists i, 0 < i < k. and a renaming v such
that Gy, = G

Definition 2.5 Equals Instance of Goal (EIG)
A devivation

Go =0 Gr= =0 Gi= 2o, G =
is pruncd at the goal). by the Equals Variant of Goal cheek if I is the
smallest level such that there exists i, 0 < i < k, and there is a substitution

o such thal (G, = (o,

The following proposition is proved in [BAK 89].

12

Proposition 2.2 The Fquals Variant of Goal and Equals Instance of Goals
loop checks are weakly sound.

Let G; and (). (i < k) be two goals of a derivation with Gir = (. To
be sound an equality check must only prune () if the SLD-tree pruned at
() gives the same solution as the unpruned SLD-tree. This is the case if

(;1'001 v '0,'T = (:'lk()l . ‘01\- .

The construction Gofly -+ - 8; — G is called a resultant and Gyfly -+ - 8; is the
resultant head.

Here are the two new loop checks with this additional condition (called
cqualily checks for resullants).

Definition 2.6 Equals Variant of Resultant (EVR)

A derivation
Gy = ,0 Gy = =0 = e =0 Gl =+

is pruncd at the goal Gy by the Equals Variant of Resultant cheel if I
is the smallest level such that there exisisi: 0 < i < k. and a renaming 7
such that Gy = Gir and Gy -8, = Gy -+ 0;1.

Definition 2.7 Equals Instance of Resultant (EIR)
A derivation

Gy =M Gy= o = b Gi= - =0 G = -

is pruned at the goal) by the Equals Instance of Resultant check if k
is the smallest level such that there cxist i: 0 < i < k, and a substitution
o such that G = Gio and Gylly -+ -0, = G, - - 8;0.

The following results are proved in [BAK 89].

Proposition 2.3 The Equals Variant of Resultant and Equals Instanec of
Resultant loop checks are shortening.

The equality checks are not complete for all function-free programs (pro-
grams without function symbols). As an example consider the program I’
= {a — a;s.}. The SLD-tree of PU {— a} is

13

The equality checks do not prune it hecause the size ol the goal increases,
so there are never two “equal” goals. 'I'he problen is that there is an infinity
of s atoms produced and they are never selected,

A class of programs where this never happens can be pointed out: the
restricted programs.

Definition 2.8 Restricted program
Let P be a program. A clause Ay — Ay, .. A, (n > 0) is called re-
stricted w.r.t. P if there is no rccursive (divect or indirect) eall 1o Ay in
Ay Aot The only alom thal can be a recursive call is A,,.

A program P is called vestricted if every clause in P is vestriclicd w.r.l,
P.

The following results are proved in [BAK R9].

Proposition 2.4
The equality checks are complete for function-free restricted programs.

Proposition 2.5

1. equals instant of goal is stronger than equals variant of goal:

i3

equals variant of goal is stronger than cquals variant of resultant:

%

. equals instant of goal is stronger than cquals instant of resullant:

4. equals instant of resullant is stronger than cquals variant of resultant;

Example 2.1 To dllustrate the diffcrence between the equality checks for
goals and for resultants, let us consider the following program:
P ={C1: a(Y) — b(Y).

2 : a(1) — a(1).

€3 : b(2) ~ a(Y).

4 1 b(3), }.

The SLD-tree of PU{— a(X)} is shown in the figure 2.1, In this {rec, the
nodes are not the goals but the resultanis to show the difference between loop
checks for goals and for resultants. The place where a loop check pruncs is
marked by a line label by the name of the loop check.

The equality checks for goals are weakly sound so they prunc too carly
Jor finding the solution {X/2}.

2.3 Subsumption checks

In the subsumption checks the relation “¢’ is sufliciently similar to " is
understood as G is included in ¢/, modulo a renaming or a substitution,
Similar to the equality checks, we consider four subsumption checks: two
for goals and two for resultants.

14

C3

.
X/2 \ 4, !
v/ | :
! i
E1G 1(2) — a{Y; ! 0 1 1) — b(|
a(2) —alyy) A a(l) = b)'
EVG ! :
(71 -’.‘) ! '
{Y/¥1} ' ! !
a(2) — b(¥7) a(2) = a(l) j |
r [}
3 ! _ 7 EIR ;
Yy/2 ! G 6(,‘.2 !
i/ |
t 1
| 1
2) — a(Yy) !] 2) — b(1 1(2) —~ a(l '
a(2) — a(Yy) | (x/2) ol2) = b} @) =eld) ,

Figure 2.1: SLD-tree of PU {— a(X)}

Definition 2.9 Goal inclusion

For two goals Gy and Gy, Gy € Gy if all the clements of the representation
of G'y as a list occur in the same orvder in the list vepresentation of (4, not
necessary in adjacent posilions.

For example (a,c) C (a,b,c), but (c,a) € (a,b,e). Here only the list

representation of goal is used. In [BAK 89) the multiset representation of

goal is also used, the distinction between lists and multisets plays also a role

for the equality checks. If we use the multiset representation of goals then
A | 8

{eya) C (a,b,e).

Definition 2.10 Subsumes Variant of Goal (SVG)
A derivation

Go =e,e, Gr= =20, G2 2o Ge= e

is pruned at the goal Gy by the Subsumes Variant of Goal check iff k
is the smallest level such that there exists i:) < i < k and a renaming 7
such that Gy, 2O Gr.

Definition 2.11 Subsumes Instance of Goal (SIG)
A derivation

Go = Gr= =00 G = =000, Oy =

is pruned at the goal Gy by the Subsumes Instance of Goal check iff I
is the smallest level such that there exisis i : 0 < i < k and a substitution
o such that (), 2 G0,

Definition 2.12 Subsumes Variant of Resultant (SVR)
A derivation

Gy = ,0 Giy= o0 =00 Gipo= =P eyl Gl = -

is pruned al the goal Gt by the Subsumes Variant of Resultant cheek ifff
ke is the smallest level such that there exists i 0 0 <4 <k and a renaming
7 such that G O Gim and Gy -+ -0, = Gy - -0,

Definition 2.13 Subsumes Instance of Resultant (SIR)
A derivation

Go =0 Gi= =200, Gr= 2o, G

is pruncd at the goal Gy, by the Subsumes Instance of Resultant cheelk iff
Lk is the smallest level such that there exist 1 0 < i < k and a substitution
o such that Gy 2 Gio and Gy ++ -0 = (p0, -+ - 0;0.

The following results are proved in [BAL 89).

Proposition 2.6

1. subsumes variant of goal, subsumes instance of goal are weakly sound;

2, subsumes variant of resultant. subswmes instanee of resultant are shori-
ening.

Proposition 2.7

1. subsumes instant of goal is stronger than subsumes variant of goal:

2, subsumes variant of goal is stronger than subsumes variant of resul-
lani;

3. subsumes instant of goal is stronger than subsumes instant of resultant:

4. subsumes instant of resultant is stronger than subswmes variant of re-
sullant;

5. every subsumption checks is stronger than the corresponding cquality
check.

16

« a(Xp).b(Xo)
|
— a(Xy).s(X1,X0).b(Xo)
|
— a(Xy),5(X2,X1),5(X1.X0),b(Xo)
|

l
— a(Xp) s(Xp Xi=1),v + 08(X 1. X0),b(Xp)
l

Figure 2.2: SLD-tree of P U {«— a(X¢).b(X0)}

Corollary 2.1 All the subsumption checks are complete for function-free
restricted programs.

Subsumption checks are stronger than the corresponding equality choecks,
so it could be possible to find other classes of programs for which subsump-
tion checks are complete. To suggest what can be these dilferent classes lot
us analyse the following program P = {a(X) — a(Y).s(Y.X)} with respect. to
the query — a(Xg),b(Xo). The SLD-tree of P U {— a(Xy),b(Xy)} is displayed
in the figure 2.2.

It contains an infinite branch that is not pruned by any of the subsump-
tion checks. As far as the subsumption checks for goals are concerned. one
has to find a renaming or a substitution 7 such that for one i : 0 < i < k

a(X1e) sk X ko 1), -+ - 5(X1 Xo).b(Xo)
)
(a(X).s(XiXiot) - -+ 8(X1.X0).b(X0)) T

This amounts to finding a 7 such that Xom =Xy, ... X7 = X; and X;7 =Xy,
which is impossible hecause there exists no 7 such that X;r = X; and X;r =
Xi. The resultant checks are weaker so we obtain the same result.,

Why is this derivation not pruned? It’s a combination of three problems:

I. a new variable is introduced by the “recursive” literal a(Y);

2. there is a relation hetween the new variable Y and the old variable X
(via the literal s(Y,X));

3. the recursive literal a(Y) is selected befove the other one b(Xy).
The last problem is avoided by the use of restricted programs. We can

define two new classes of programs that avoid the other two problems.

17

Definition 2.14 nvi program

A elause (! is non-variable introducing (nvi) iff cvery variable that ap-
pears in the body of C' also appears in the head of C'. A program P is nvi
iff every clause in P is nvi,

Definition 2.15 svo program

A clause C' has the single variable occurrence (svo) property iff in the
body of !, no variable oceurs morve than once. A program P is svo iff cvery
clause in P is svo.

Clearly nvi programs avoid the first problem and svo programs avoid the
second one. The following results are proved in {[BAK 89].

Proposition 2.8 Subsumption checks are complete for function-free nei
and svo programs.

Example 2.2 To illustrate where the diffcrent loop check prunc, let us con-
sider the following program P
P = {C1: a(X) — a(1), b(X).

2 : a(1).

€3 1 b(X) — ¢(X), b(Y).

4+ b(0).

C'5 1 <(0). }.

The SLD-tree of PU{— a(Z)} is shown in figure 2.3. The equality cheelks
do not prune the left branch because P is not a rvestricted program. This is
only the case for the subsumption checks since they are complele for svo
program and P is onc of them.

The first loop check that pruncs. among the loop cheeks we have studicd.
is the SIG check because a(1),b(Z) D a(Z)T for the substitution T = {Z/1}.
The next pruning loop check is the SVG cheek that prunes al two places:
on one hand because a(1)b(1),6(Z) D (a(1).b(Z))r for the renaming T = «
and on the other hand because <(Z)b(Y,) 2 b(Z)T for the renaming v =
{Z]Y2,Y3/Z}. Finally the subsumption checks for resullanis prune al heo
different places: the former onc a(1),b(1),b(Z) 2 (a(1),b(Z))r and a(Z) = a(Z)r
Jor 7 = € and the other onc because ¢(Y3),b(Yz) 2 b(Yy)T and a(0) = a(0) r
for T = {},/Y5}.

2.4 Triangular loop checks

The equality and subsumption checks compare every goal with every pre-
vious goal. The number of goal comparisons performed is thus quadratic
in the number of goals generated. For a finite SLD-derivation D il | D] is
the length of the derivation D, then the equality and subsumption checks
perform 3| D|(|D] - 1) goal comparisons.

To improve the efficiency of loop checks, it is necessary to decrease the
number of performed comparisons. In this section two loop checks derived
from the previous loop checks are introduced. The understanding ol the

18

sl {//l}
(']
{x/1
SV = a(l)bdl -
. : _‘.::1"1' (4
1 2 b
(x/1) : | i)
L
¢
= a(1),b(1),b(1),6(Z) = b(1),b(Z)) '\ = c(Z),b(}3) {//()}
1 I
! 3 b5
i {x\/l}l | 12/0)
BNy BICLEV
AR
: 3 4
SIR | {Z/%2 {Y2/0)
SVR,
1) ()
L= (V) h()5) {Z/0}
C'5
{Y,/0}
e b(Yy) EIR, EVR
: 4
\ {¥5/0}
Y
]
{Z/0}

Figure 2.3: SLD-tree of PU {~— a(Z)}

19

relation “is sufliciently similar™ is not changed but the loop checks diller in
where the comparisons are performed: given an infinite set of natural num-
bers 5, two goals (7 and (7 are compared if 7 < & and & € § (respectively
Lk €S).

Definition 2.16 single selected
A single selected loop check S only compares two goals G,), (0 < 1< k)
iflkeds.

Definition 2.17 double selected
A double selected loop check for S only compares two goals Gy, G (0 <
i< kyifi,kes.

Note that by taking 5 as the set of natural number N, the single and
double selected loop checks become full-comparison loop checks (the one we
had before).

Obviously, the number of comparisons depends on the set 5. In [B90] it
is shown for the double selected loop checks that if § = {3i(i + 1)}i € N}
then the number of comparisons is linear in the number of goals developed.

Numbers of the form %i(H— 1) are usually called triangular numbers, this
is why selected loop checks with 5 = {3i(i+ 1)]i € N} are called triangular
loop checks.

The following soundness and completeness results are also proved in
[B 90].

Proposition 2.9 For a fixed loop cheek:
L. full comparison is stronger than single selected;
2, single selected is stronger than double selected.
So we have the following corollary.

Corollary 2.2

1. The single and double selceted equality and subsumption checks bascd
on goals are weakly sound.

2. The single and double selected cquality and subsumption checks bascd
on resultants are shortening.

Proposition 2.10

1. The single and double sclected cquality checks arve complete for funelion-
Jree restricted programs.

2. The single and double selected subsumption checks are complete for
Junction-free restricted programs.

The single and double sclected subsumption checks are complete for
Junetion-free nvi programs.

4. The single and double selected subsumption cheeks are compleie for
Junetion-free svo programs.

20

Chapter 3

The Meta-interpreter

This chapter presents a meta-interpreter equiped with loop checking mech-
anisms for logic programs.

The loop checks are firstly implemented in a meta-interpreter because
it is the easiest way to build a new PROLOG interpreter without having
to write a huge program. The objective of this meta-interpreter is not to
have an efficient implementation of the loop checks but rather to enable the
practical comparison of the different loop checks.

This chapter is structured as follows. General meta-interpreters em-
bodying no loop checking are presented in section 3.1 and some example of
simple meta-interpreters are given in section 3.2. In section 3.3, the meta-
interpreter that implement the loop checks presented in chapter 2 is de-
scribed. Finally in section 3.4, the results obtained by the meta-interpreter
are discused.

3.1 Introduction

Following [S 88], we define meta-interpreters as follows.

Definition 3.1 Meta-interpreter
A meta-interpreter is an inferpreter for (a subsel of) a language written
in the language itself.

So meta-interpreters treat other program as data.

I'll only consider here meta-interpreters for PROLOG. In PROLOG the
clauses of a program are represented as PROLOG terms and there exisls
several “non-first order predicates™ to read or modify them. Therefore PRO-
LOG does not make difference hetween program and data. Here this facility
is used. The meta-interpreter is just added to the program and it read the
program clauses when it needs them. Other solutions ave possible, but. then
the program must be store in a file (or a database) and the access 1o pro-
gram clauses must be explicitly programimed in the meta-interpreter, which
is less eflicient and needs more programming eflorts.

Differences between meta-interpreters can be characterized in terms of
their granularity, that is the parts of the computation that is made explicitly
by the meta-interpreter.

21

The coarsest granularity is just to let PROLOG do everything: the goal
to be solved is given to the interpreter. This meta-interpreter consist of only
one clause:
solve(Goal) :-

call(Goal).
where call(Goal) is a PROLOG meta-logical predicate that solve the goal Goal.

On the other hand the finest granularity is obtained by the meta-interpre-
ter doing everything: it chooses the atom to be solved, the clanse to be used.
makes the unification, handles backtracking, ... The advantage of a finer
granularity is that the meta-interpreter controls more (for example it can
use an occur check in the unification) but of course such a meta-interpretor
is slower, needs more memory space and requires much more programming
effort.

In the remainder of this section dilferent simple meta-interpreters are
explained, these meta-interpreters can not handle full PROLOG: system
predicates and ! are not treated correctly.

The “vanilla” meta-interpreter just selects the (leftmost) literal to bhe
solved and let PROLOG do the remainder. Its code is given at ligure 3.1,

solve(true).

solve((A,B)) :-]
solve(A), solve(B).

solve(A) :-
clause(A,Body),
solve(Body).

Figure 3.1: The “vanilla™ meta-interpreter

To understand the “vanilla” interpreter, we have to explain the PRO-
LOG predicate clause. clause(A, Body). where A is a non-variable term, search
for a clause whose head matches A, 'The head and body of those clauses are
unified with A and Body respectively. If the clause reduces to a fact then
Body is the atom true, otherwise Body represents the body as a function with
two argument (“first literal” and “remainder of the body™) and the infixed
functor “.".

Declaratively, the meta-interpreter acts as follows. The atom frue is true
(first clause). The conjunction (A,B)is true il Ais true and B is true (second
clause). A goal A is true if there is a clause A — Body in the interpreted
program such that Body is true (third clause).

Here is the procedural reading of the vanilla meta-interpreter. In the
first clause, the emptly goal, represented by the atom {rue, is solved, The
next clause concerns goals with more than one literals, to solve a conjunction
(A.B). solve A and then solve B, The goal reduction is covered by the linal
clause. To solve a goal, choose a clause {rom the program whose head unilies
with the goal, and recursively solve the body of the clause.

22

solve({]).
solve([Atom |RestOfGoal]) :-

clause(Atom, Body),
append.body_to_goal(Body, RestOfGoal, NewGoal),
solve(NewGoal).
append_body_to_goal(true, Goal, Goal) :-
L
append_body_to_goal((A,B), Goal, [A|B.Goal]) :-
!|
append_body_to_goal(B, Goal, B_Goal).
append_body_to_goal(B, Goal, [B]).

Figure 3.2: Meta-interpreter that keeps the entire goal to he solved as a list.

The procedural reading is necessary to show that the vanilla meta-
interpreter reflects PROLOG’s choices of implementing the abstract compu-
tation model of logic programming. The leftmost selection rule is gnarantied
by the second clause, the leftmost goal in the conjunction is solved first,
The sequential search and backtracking comes from PROLOG’s behaviour
in satisfying the procedure clause.

This meta-interpreter does not keep explicitly the entire goal to he
solved. So when we need it (we need it for the loop checking!), we have
to maintain a list with the goal. The code of such a meta-interpreter is
given in figure 3.2.

The central part of this meta-interpreter is the procedure
append_body_to_goal(Body, Goal, NewGoal)
where NewGoal is Body transformed into a list append to Goal:

if Body = true
then
NewGoal = Goal
otherwise { Body = (B, (By, (... (Byy-1,By)...))) m > 1}
NewGoal = [By,..., B,;|Goal]

The first clause is used if the clause was a fact {the body is represented
by the atom true), then the list of body literals is the empty list, so NewGoal
= Goal and it is the only solution. The cut (!) prevent o use the third clause
that gives the wrong result: [{rue|Goal].

The second clause is used if the body has more than one literal, then the
first one is the head of the list and the tail of the list is the remainder of
the body, which is transformed in a list. is append to Goal, this is done hy a
recursive call to append_body_to_goal. The ! is also there to avoid the use of
third clause, if the body has at least two literals. If the third clause is used
with Body = (A,B) then the result is {(A,B)|Goal] and not [A,B|Goal].

23

The third clause is used if the body contains only one literal, then New-
Goal is the list with this literal as first element followed by Goal.

Now for the solve procedure itself, the first clause is used if the goal to
solve is empty, then the goal is solved. Otherwise we take the first element of
the goal (because PROLOG uses the leftmost rules selection), and replace it
by its body, which is done hy append_body._to_goal. Again the mgu is applied
implicitly. Finally the new goal, NewGoal, is solved. The sequential search
and backtracking comes from PROLOG’s hehaviour in satisfying procedure
clause,

3.2 Adding functionality to meta-interpreters

The meta-interpreters presented until now just execute logic programs and
not more. But it is possible to add some side eflects, for example tracing
(printing each goal on the screen), producing the proofl tree. stopping the
research alter D derivations, ...

Here is a meta-interpreter thal stops the search if the proof depth is
more than D [S 88] (which is in fact a meta-interpreter with a very simple
loop check).

solve(true, D).
solve({A.B),D) :-
solve(A,D},solve(B,D).
solve(A,D) -
D>0,
clause(A,Body),
D1 is D-1,
solve(Body,D1).

It is based on the vanilla meta-interpreter. At each derivation step (in
the third clause) the number of derivations Jeft is decreased by one and the
search stop when it reach 0.

Here is another interpreter that gives the number of derivation steps
performed to find the solution.

solve(true,0).

solve((A,B),D) :-
solve(A,DA),
solve(B,DB),
D is DA+DB.

solve(A,D) -
clause(A,Body),
solve(Body,D1),
Dis D1 + 1.

[SS 86]. For that purpose we add a new clause that directly calls PROLOG
to solve these predicates.

24

solve(true).
solve((A,B)) :-
solve(A),solve(B).
solve(A) :-
syst(A),
call(A).
solve(A) -
clause(A,B),solve(B).

And we have to declare all the system predicates as
syst(clause(A,B)).
syst(X=Y).
syst(X is Y).
syst(X < Y).

1

Almost all meta-interpreters are based on the “vanilla™-interpreter or the
meta-interpreter with goal represented as a list with some literals added.
parameters and/or clauses to obtain the desired functionality.

3.3 The meta-interpreter with loop checks

In this section a meta-interpreter that performs loop checking is presented.
First the information needed to perform loop checking and the choices made
for their representation are explained, and then the meta-interpreter and the
loop checking procedure are described. Finally, modifications are presented
to make possible some prediction about more eflicient interpreters with loop
check.

3.3.1 The implementation choices

The implementation of loop checks described in chapter 2 requires al least
the memorization of the list of previous goals and the current goal. Loop
checks for resultants also need the list of the previous resultant heads and
the current resultant head. Single and double selected loop checks need the
current depth in the SLD-tree.

So our starting point is the meta-interpreter that explicitly represents
the current goal as a list. It keeps two other lists, one with the previous
goals and the other one with the previous resultant heads. In this meta-
interpreter, the mgu found by the wnification between the first literal of
the goal and the head of the clause is not given explicitlv, but found by
the underlying PROLOG interpreter, and hence applied everywhere. But
here this substitution must not be applied to the list of previous goals,
but must only be applied to the current goal and used to compute the
new resultant. Hence the unification must be made explicitly by the meta-
interpreter and the mgu must be memorised. An additional advantage of
making the unification in the meta-interpreter is that it allows us to opt for
a sound unification procedure (with occur check).

Another problem in the previous meta-interpreters is that they do not
make a difference between variables of the interpreted program (object-varia-
bles) and variables of the meta-interpreter (called meta-variables hecause
they can be instantiated to a goal). To prevent this problem, the object-
variables are replaced by new constants starting with the character “$" (a
variable A become a constant §4).

A binding is represented by a function with cq as functor and two argu-
ments, the first one is the name of the variable and the second one is the
term bound to that variable and a substitution is represented as a list of
bindings, {x1/t1,...,an/t,} becomes [eq(ay dy), ..o cqlan 1,)].

3.3.2 The meta-interpreter

The user adds his program to the meta-interpreter and presents a goal of
the form «solvel(Goal,Check) to it (the program must not use predicates
defined by the meta-interpreter). The parameter Check specilies the kind
of loop check that is to be used. The available values are non (no loop
check and does not keep the lists of goals and resultant heads, only the
usual interpretation), empty (no loop check but updates the lists of goals
and resultant heads), for the full comparison cvy, eig. cvr, eir. svg, sig. sor,
sir and for their single triangular (**¥.s1) and double triangular (***.di)
variant, Goal is the goal to be solved (the root of the SLD-tree) where
variables are represented by a string starting with “$”,

The procedure solvel initializes the counters used for the statistics. calls
the meta-interpreter itself (with all the parameters) and prints the value of
the counters and the derivation after it finds a solution. The counters are
used to compare the number of unifications and matchings made to find the
solution and those made by the loop check. The meta-interpreter stops and
gives the value of the counters and the current hranch of the SLD-tree when
it finds a solution, when it prunes a branch and when it arrives at a goal
that fails.

The main procedure of the meta-interpreter is

solve(Check, Goal, Resultant, Substitution, ListGoal, ListResult,
LastVar, Depth, 1, Fl, Derivation).

It has eight input parameters and one output parameter. When the deriva-
tion
Go =cy,0, = Gror =00, G
has been constructed, these parameters have the following meaning,
Input parameters for the construction of the derivation:

Goal (i (also used for loop checking):
Substitution @y +- -8, restricted to the variables of Gly;
LastVar the number of variables used

(needed for standardization apart).
Input parameters for loop checking:

26

solve(Check,], -, -, - = = - - -, [true]) :- /¥ success */
{prints the computed answer substitution and the length of the derivation}.
solve(Check, Goal, Resultant, Substitution, ListGoal, ListResult,
LastVar, Depth, 1, Fl, Derivation) :-
check(Check, Goal, Resultant, ListGoal, ListResult, Depth, Fi,
NewListGoal, NewlListResult),
! /*no loop has been detected */
find_new_goal.resultant(Goal, Resultant, Substitution, LastVar,
NewGoal, NewResuitant, NewSubstitution, NewlastVar),
(NewGoal = [false|.] — >
/* the current goal has no resolvent */
Derivation = [false],
{prints the length of the derivation}
/¥ the current goal has a resolvent */
update_depth(Depth, I, FI, NewDepth, Newl, NewFl),
Derivation = [NewGoal|NewDerivation],
solve(Check, NewGoal, NewResultant, NewSubstitution, NewListGoal,
NewlistResult, NewlLastVar, NewDepth, Newl, NewFi, NewDerivation)
)-
solve(Check, Goal, _, _, -, _, -, -, [prune]) :- /* aloop : prune */
{prints the length of the derivation}.

Figure 3.3: The solve procedure

Check is the loop check that is used;
Resultant is Ggby « + - 6.

ListGoal is [(Vf—1,. .., Go]"s

Lis&ResuIt is [Globy +++Oh_y.. ... Gyt
Depth is k;

FI=3I(I+1)and 3T+ 1)I < Depth < 1I(1+1).

Output (provided that a finite derivation is generated):
Derivation: [(Frp1,. .. Gy true] means (i, = 0O,
[Graty .oy Guyprune] means (7, is pruned and
[Grgra. . Gy false] means (), has failed.
The figure 3.3 presents a simplified version of the procedure solve without
the output predicates which print some information on the screen. The
complete version of the meta-interpreter can be found in the appendix.

'"When a double triangular loop check is used, these lists contain only the goals (resni-
tant heads) with a triangular index. When non is used, these lists are not maintained.

2The list of resultant heads is maintained only for loop checks for resultants aud for
the emply loop check.

27

The first clause is used when the current goal is empty, that is when
the meta-interpreter has found a solution. In that case the complete version
prints the associated computed answer substitution together with the length
of its derivation.

The second clause invokes the loop check procedure itself. If check suc-
ceeds, no loop is detected, find_new_goal_result computes the next goal to be
solved. I the current goal has no resolvent, there is no clause head that
unifies with the selected (leftmost) atom, then a list of the form [false]|.] is
produced as the next goal. So if the next goal is of the form [false|] then
current goal failed and Derivation is [false] otherwise the current goal is solved
by a recursive call to solve. This is done by the control sequence P— >Q:R
which is analogous to “if P then Q7 else R. If a loop is detected in the second
clause, check fail, then the third clause applies. In the full version the depth
of the pruned leaf is printed.

3.3.3 Loop checking

The procedure check, which performs the loop checking itsell, is in fact a
kind of selector that calls the right loop check procedure according to the
Check parameter and updates the lists of the previous goals and resultants.
This procedure has 11 clauses, one for each loop checking mechanism imple-
mented.

The updating of the list of goals (and the list of resultant heads for
the checks for resultants) used for the foop check is the same for all the
loop checks, except for the double trianguiar loop check. For the double
triangular loop check we only put the current goal and resultant in the lists
if the current depth (D) is in the set & = {3i(i + 1)]i € N}. To know
whether D is in the set %, three counters are maintain, D, i and [fi. with
fi= %i(i—k 1) and %(i —1}yi< D < %i(i+ 1), When D = fi, D is in the set
S,

For the other loop checks, we just add the current goal (and current
resultant for the checks for resultants) to the lists every time,

The loop checks use five procediires: compute_substitution, renaming, incl_sub.
incl_ren, same_substitution,

compute substitution(E,F,Substitution) checks whether E is an instance of F,
Fa = F. If so, it returns the substitution o.Substitution.

renaming(E,F,Renaming) checks whether F is a variant of E. F= Er. If so,
it returns the substitution 7 (Renaming).

Note that, this is not a renaming but the renaming restricted to the
variables of E. For example if E = a(X,Y,A) and F = a(A,B,C) then 7 =
{X/AY[B A/CY and not {X/ANY/B.AJC.CIX.B/Y}. This substitu-
tion is enough, the only time we need 7 is in the variant checks for resul-
tants, when we compare Gty ---8; — G and Gyby -0, — Gy (1 < k),
We want to know if there exists a renaming 7, such that G;r = ¢} and
Gipby -+ - 8T = Gy -+ - 8. We Llest this in three steps.

Lo o= {ay/ty, .o 2, /1) such thal Ghirp = Gy

28

2. 12 ={u1/%15 oy Ym/ 8} such that Gply -+ 87y = Gl - - O

3. iffor j e {1,....,n} and L € {1,....m} we have x; = y then 1; = g
must hold.

The only case when the three conditions are satisfied and the renaming
7 does not exist is when for example we have

(-1’091 . '0,’ e (.:,‘ = g((:) — f(B)

and
Gobh 0 — (G = g(A) — {(A)

where 1y = {B/A} and 1 = {(//A} satisly the third condition. But this
sitnation never occurs hecause the resultant head g(C) transforms into g(A)
only il C/A € Oy -+ 0. C does not appear in the variables of the clanses
used to find the derivation from G to (/p by standardizing apart. So ('
must be in ¢; and hence in the domain of 7.

The next two procedures are used for the subsumption checks. incl.sub(E,F.-
Substitution) checks if there exists a substitution, Substitution, such that ap-
plied to E, E is included in F.

incl_ren(E,F,Renaming) chiecks whether there exists a renaming, Renaming.
stich that applied to E, E is included in F.

same.substitution(51,52) where S1 and S2 are two substitutions:

S1 = [eq(Vi, Ay)seeyeq(Viy A 92 = [eq(W By) coeq(W,, By)] It
checks if for all 1 < i< nand I < j <msuch that Vi = W then A; = I3,

3.3.4 A more realistic meta-interpreter

The question "How costly is loop checking?” suggest a compatison hetween
an eflicient PROLOG interpreter with loop checking and existing PROLOG
interpreters. As developing a really efficient interpreter with loop checking
involves much more work than making the relatively simple implementation
presented in this thesis, it would be helpful to have a meta-interpreter where
the efliciency (or inefficiency) of the loop checking and the goal derivation
are the same,

It must be possible to make a more efficient loop checking procedure
if we are not forced to memorize twice the list of goals: one for the loop
checking and the other one for the derivation mechanism. It must be also
possible to find faster if there is a goal sufliciently similar to the current
one without comparing the current goal with every previous goals. But to
do this we have to write a completely different meta-interpreter with other
data structure,

The meta-interpreter presented until now have the advantage to show
all the SLD-tree even the pruned and failed branch which is not done by a
"real” interpreter and is quite consuming in time and space.

To have a meta-interpreter that stop only when it finds a solution we
have to change slightly the specification of solve and find_new_goal_result.

IFor

29

solve(Check, [}, - - - o = =1 = 2) - [*success* /
{prints the computed answer substitution}
solve(Check, Goal, Resultant, Substitution, ListGoal, ListResult,
LastVar, Depth, I, F1) :-
check(Check, Goal, Resultant, ListGoal, ListResult, Depth, Fl,
NewlistGoal, NewListResuit),
! /* no loop has been detected */
find_new_goal_result(Goal, Resultant, Substitution, LastVar, NewGoal,
NewResultant, NewSubstitution, NewbLastVar),
update_depth(Depth, |, FI, NewDepth, Newl, NewFl),
solve(Check, NewGoal, NewResultant, NewSubstitution, NewlistGoal,
NewListResult, NewlastVar, NewDepth, Newl, NewFl}).

Figure 3.4:

solve(Check, Goal, Resultant, Substitution, ListGoal, ListResuit,
LastVar, Depth, |, FI).

the meaning of the eight input parameters are the same as before. In this
new version the output parameter has disappeared and it succeed only when
a solution is found. lts code is given in the figure 3.4

The first clause is used, like in the previous version, when the current
goal is empty.

The second clause invokes the loop check procedure itsell. 1f check sue-
ceeds, no loop is detected, find_new_goal_result computes the next goal to he
solved. If the current goal has no resolvent then find_new_goal_result lails (this
is the difference with the first version of find_new_goal_result). 1[I the current
goal has a rvesolvent then it is solved by a recursive call to solve.

It is also possible to increase the efliciency of the goal derivation by using
PROLOG variable in the program. Then the application of the substitution
is done implicitly to all the terms. In order to avoid the substitution to
be applied to the list of previous goals and resultant heads, goal (resultant
head) that is added to the list of previous goals {previous resultant heads)
is renamed first, using fresh variables.

I do not use this technique hiere hecause T think this is too efficient if we
compare it with the loop checking where the matching is made completely
explicitly. For example if we use the transitive closure program presented in
the first chapter with the relation {r(a,b),....r(y.z)}. and the meta-interpreter
that use our variables, the “$ variables”. the cpu-time to compute the deriva-
tions (the time spent in the procedure find.new_goal_resultant) is six time the
cpu-time use to compute the same derivation with the meta-interpreter that
use directly the PROLOG variables, sce table 5.1. But the time used to
make the loop checking itself (the cpu-tinie spent in the check procedure) is
almost the same in the two meta-interpreter,

This will be discus in more detail in chapter 4,

30

3.4 The results

In this section, I describe the counters and some examples to show the results
given by the first version of the meta-interpreter.

The first two counters report, respectively, the cpu-time used to con-
struct the derivation (the time spent in the procedure find_new_goal_result).
the cpu-time used to make the loop checking (the time spent in the procedure
check). This is the cpu-time given by PROLOG. Note that its value changes
from one execution to another, depending of the status of the system (the
other processes) when the program is executed.

The other counters are the number of nodes of SLD-tree already devel-
oped, the number of goal comparisons performed in the Joop check and the
number of goals added to the list of previous goals and the list of previous
resultant heads.

In PROLOG there are no glohal variables and if the results are passed
by parameters, the information is lost when backtracking occurs, However,
I use the Quintus PROLOG which offers the possibility to call some proce-
dures written in another language. Thus the counters are implemented with
global variables in C. There is 10 counters, five (0 ...d) that use integer
numbers and five (0 ... 4) that use real numbers. There is six predicates to
manipulate them:

init_int(Counter): the integer counter Counter is equal to 0;
init_float(Counter): the real counter Counter is equal to 0;

add.int(Counter,Value): the integer Value is added to the integer counter
Counter;

add_float(Counter,Value): the real Value is added to the real counter Counter:

read_int(Counter Value): the value of the integer counter Counter is put in
Value;

read_float(Counter,Value): the value of the real conunter Counter is put in Value.

Let us take some examples of the second chapter to see what the output
of the meta-interpreter looks like and how it can be translated back to an
SLD-tree,

With program of example 2.1 (using equality checks), the following an-
swers are produced.

7- solvel(eig,[a($X)]).
derivation [[a($X)],[b($X)].[a($Y2)],prune]

computed answer substitution [eq($X,3)]
derivation [[a($X)].[b($X)].[).true]

derivation [[a($X)].[a(1)],prune]

31

?- solvel(evr,[a($X)]).
derivation [[a($X)].[b($X)].[a(3Y2)].[b($Y2)].[a($Y4)].prune]

computed answer substitution [eq($X,2)]
derivation [[a($X)].[b($X)].[a($Y2)].[b($Y2)].{]. true]

derivation [[a($X)],[b($X)],[a($Y2)].{a(1)].[b(1)] false]
derivation {[a($X)],[b($X)].[a($Y2)},[a(1)].[a(1)].prune]

computed answer substitution [eq{$X,3)}]
derivation [[a($X)],[b($X)}.[].true]

derivation {[a($X)],[a(1)].[b(1)] false]

derivation [[a($X)],[a(1)].[a(1)].prune]

As shown in figure 2.1 the eig loop check finds only one solution, {.X'/3}
and prune the tree two times. The evr loop check finds two solutions, { X/2}
and {X/3}; prunes three times and find a leal that failed.

~And for the program of example 2.2 (using subswne checks), the follow-
ing answers are produced.

?7- solvel(sig,[a($2)]).
Derivation = [[a($Z)],[a(1).b($Z)],prune];

computed answer substitution: [eq($Z,1)]
Derivation = [[a($Z}],[],true]

7- solvel(svg,[a($Z)]).
Derivation = [[a($Z)],[a(1).b($Z)].[a(1),b(1),b($Z)].prune];

Derivation = [[a($Z)].[a(1),b($Z)].[b($Z)].[c($Z).b($Y2)].prune];

computed answer substitution: [eq($Z,0))
Derivation = [[a($Z)],[a(1).b($Z)).[b($Z)].{].true]:

computed answer substitution: [eq($Z,1)]
Derivation = [[a($Z)].[],true]

?7- solvel(sir,[a($Z)]).
Derivation = [[a($Z)].[a(1).b($Z)].[a(1).b(1),b($Z)],prune];

Derivation = [[a($Z)].[a(1).b($Z)]).[5($Z)).[c($Z).b($Y2)].[b(3Y2)],
[c($Y2),b($Y4)], prune];

computed answer substitution: [eq($Z,0))

32

Derivation = [[a($2)].[a(1),b($2)].[b($2)].[c($Z).b($Y2)].[b($Y2)]. [} true};

computed answer substitution: {eq($Z,0)]
Derivation = [[a($Z)].[a(1),b($Z)].[b($Z)].[}.true};

computed answer substitution: [eq($Z,1)]
Derivation = [[a($2)],[].true]

The result of this program for the equality checks is not displayed because
they do not prune the first branch which is infinite, so they never give a
solution. As shown in figure 2.3 the sig loop check finds only one solution.
{Z/1} and prunes once. The svg loop check finds two solutions, {7/0} and
{Z/1} and prunes two times. The sir foop check finds three solutions, {7/0}
two times and {Z/1} and prunes two times,

33

Chapter 4
The pre-compiler

This chapter presents a pre-compiler that transforms a PROLOG program
into another one with loop checking mechanisims included in it.

The loop checks are implemented almost in the same way as in the meta-
interpreter, but the transformed program executed under PROLOG is more
efficient than the program interpreted hy the meta-interpreter. The main
reasons are that the additional layer of interpretation is removed and the
search for applicable clause and unification is then done hy the underlying
PROLOG system, but the computations performed for the loop checks are
still explicit.

4.1 Presentation of the pre-compiler

The purpose of the pre-compiler is to take a program (here a PROLOG
program) and to transform it into another program of the same language
by adding instructions to improve or modily the execution of the original
program (here a PROLOG program that uses a loop checking mechanisim).
Then the resulting program can be interpreted or compiled like every pro-
gram {here it is interpreted by the ordinary PROLOG interpreter). This is
schematized in figure 4.1.

program

{ transformation

I program tmnsfonno(q

J interpretation

results

Figure 4.1:

31

append([], L2, L2,1).

append([H|T], L2, [H|LApp], LA) -
append(T,L2,LApp,LAL),
LAlis LA + 1.

append([],L2,L2).
append([H|{T],L2,[H|LApp]) :- =
append(T,L2,LApp).

Figure 4.2: transformation of the append procedure to compute the length
of the derivation.

Example 4.1
An example of a pre-compiler transformation consist in adding ncw param-
clers and literals 1o every clauscs of the program in order to compule the
length of the derivation. Two parameters need to be added to cvery lileral
Jor that purpose: the first one is the length of the derivation before the literal
is proved and the second is the length of the derivation after the success of
the literal. Furthermore, an extra instruction is to be added at the beginning
of each clause: 1t consists in adding 1 {o the length of the derivation. Figure
4.2 gives an ceample of this transformation lo the append procedure.

After the vesolution of append((1, 2, 3], [4, 5], LApp, Length), Length is {he
length of the derivation to find Lapp = [1, 2, 3, 4, 5]. the concatenation of the
lists [1, 2, 3] and {4, 5).

It is possible to execute the transformed program with the usual PRO-
LOG interpreter and then to compare its execution with the program beflore
its transformation. The transformation can he done automatically and once
for all.

4.2 The pre-compiler for loop checking

The transformation of a program without loop check to one with loop check
consists of adding a call to the procedure loop_check in each clause and adding
the parameters needed for the loop checking in each literal. To execute the
transformed program it has to he loaded in memory with the loop_check
procedure, Then it can be directly executed with the PROLOG interpreter.
Because the goal derivation is done by the underlying PROLOG system it
is not possible to stop when a derivation fails like with the meta-interpreter.
Thus the transformed program only stop when it finds a solution and not
when it prunes or finds a failed derivations.

4.2.1 Representation of the objects

To be able to use the PROLOG interpreter the normal PROLOG variables
are used, and not our own variables as in the meta-interpreter. We must
still avoid that a variable that is bound by solving the current goal is also
hound in the list of previous goals (resultant heads). To this end each
goal (resultant head) that is added to the list of previous goals (previous
resultant heads) is renamed first, using fresh variables (of course the same
renaming must be applied to a goal () and the corresponding resultant head
Gyfy - --81). This renaming is doue by the procedure copy_term.

4.2.2 The transformation
The parameters to be added to the literals are of three kinds:
the loop check to be performed;

the parameter values needed by the loop check before the execution of the
clause;

the parameter values after the execution of the clause.

As seen in subsection 3.3.1, the pieces of information needed by the loop
check are the following: the kind of loop check to be performed, the current
goal, the list of the previous goals, the current resultant head, the list of the
previous resultant heads and the current depth in the derivation (for the
selected loop checks).

If we have the following derivation

(--"U =y ,0 Gy= = (~>"j-—l i(‘;.({, (-”j = h(;"&:),h(Z—;),. v ‘71(211) =

= (-;’111,—1 :>("nn0ny ("m = (‘I(Zl)»- o ln(Zn))()_i-!-l * ‘Hm =

such that no loop is detected and no goal without resolvent are found in the
sequence Gj = - =, o G,y then the call to the procedure hin the
transformed program to solve h(.X) in ; with the loop check Check is

h(X', Check, ListGoal, ListResult, Goal, Resultant, Depth, ListGoal’,
ListResult’, Goal’, Depth')

when the clause is entered
ListGoal is (7}, ..., Go];
ListResult is [Giofy ... 0;,...,Go]'%
Goal is (¢ =[h(X)1(Z1),. - . W(Z)];
Resultant is G'ofly - - - 8;;
Depth is j
and when the clause is done
ListGoal' is [Gs ..., Glo]t;
ListResult’ is [Glofy .. .0, ..., Go]'%;
Goal' is Gy =([1(Z1)e o Wi(Z0)]) i1+ - Oy

Resultant is Glofly « - 00541+ Oy

"When a double triangular loop check is used, these lists contain ouly the goals (resul-
tant heads) with a triangular index. When non is used. these lists are not maintained.

2The list of resultant heads is maintained only for loop checks for resultants and for
the emply loop check

36

Depth' is m.

The resultant head (Resultant) appears only once in the parameters he-
cause it is always the same term except that the substitution 8;,y...0,, is
applied. PROLOG interpreter applies these substitutions to every param-
eters. Therefore, if before the clause is entered Resultant is Giofy - 6; then
when the clause is done Resultant is Gyfy -+ - 0,8, -0,,.

Il a loop is detected or there is a goal without resolvent in the sequence
Gj= =, 101 Gm—1 then the call to the procedure h fails.

loop_check is the only literal added in the body of the clause to perform
the loop checking. It is added as the first literal of the body. If we have the
following clause:

h(X) -
b1 (7).

b (¥a).
then the transformed clause will be:

h(;‘{', Check, ListGoal, ListResult, Goal, Resultant, Depth,
ListGoaly 41, ListResult), 11,Goal, 41,Depth, 11) -
loop_check(Check, [by(¥7). ... b,(¥})]. ListGoal, ListResult, Goal, Resultant,
Depth, ListGoaly, ListResulty, Goaly,Depth;),
b](f"], Check, ListGoaly, ListResulty, Goaly, Resultant,
Depthq, ListGoal,, ListResulty, Goaly, Depthy),

b, (Y,, Check, ListGoal,, ListResult,, Goal,, Resuitant, Depth,,,
ListGoaly 41, ListResult, .y, Goal, 11, Depth, 41).

4.2.3 The loop_check procedure

loop_check updates the current goal, the list of goals, the list of resultant
heads and the depth; checks il it detects a loop or not. Il it detects a loop
it prints that it prunes the tree, the current list of goals and depth and then
fails. Il it has found a solution it prints the current list of goals and depth.
loop_check has seven input parameters:

Check: the kind of loop check to be performed;

bi(Y1),by(¥)]: the body of the clause;

ListGoal: the list of previous goals without the current one;

ListResult: the list of previous resultant heads without the current one;
Goal: Lhe previous goal, the goal with h(.X') as first literal;

Resultant: the current resultant head;

37

loop.check(Check, [], ListGoal, ListResult, [H], Resultant, Depth,
[[H]|ListGoal], [Resultant|ListResult], [H], NewDepth) :-
|
copy-term([Resultant|[H]], [NewResultant|NewGoal]),
NewDepth is Depth + 1,
{prints that it found a solution, the derivation and the length of the derivation}.
loop_check(Check, Body, ListGoal, ListResult, [H|Goal], Resultant, Depth,
NewListGoal, NewListResult, CurrentGoal, NewDepth) :-
NewDepth is Depth + 1,
append(Body, Goal, CurrentGoal),
check{Check, CurrentGoal, Resultant, ListGoal, ListResult, NewDepth,
NewlistGoal, NewListResutl),
L /* no loop has been detected*/
loop_check(Check, Body, ListGoal, ListResult, [H|Goal], Resultant, Depth,
- - CurrentGoal, NewDepth) :-
{prints that it prunes the SLD-tree, prints the derivation and its length}
! /* there is a loop */

fail.
Figure -1.3: The loop_check procedure

Depth: the depth of Goal in the derivation
and four output parameters
ListGoaly: the list of previous goal with the current one;
ListResulty: the list of previous resultant heads with the current one:
Goaly: the current goal;
Depthy: the current depth in the derivation

A simplified version of the loop_check procedure is given in ligure 1.3, This
is a version without the predicates that display the results on the screen.
The full version can be found in the appendix. The procedure loop_check has
three clauses.

The first clause applies when a solution is found, the current goal is
empty (the body of the clause is empty and the previous goal contain only
the head of the clause). It does not Jook for a loop.

If the current goal is not empty the second clause is invoked. It computes
the current goal and depth and calls the check procedure (to check for a loop).
The check procedure is almost the same as the one in the meta-interpreter
(its text is in the appendix). If check does not detect a loop, then it succeeds,

If check failed. a loop is detected, the third clause is invoked. The third
clause prints that it prunes the tree at this point and prints the list of goals
and the depth. If the user is not interested in knowing when the tree is
pruned, this clause can be removed.

38

4.2.4 The pre_compiler program

The transformation of the program. to add the loop checking mechanis.
is quite easy but it’s tedious hecause of the mumber of parameters to add
to all the clauses. Ilere is a program (a "pre-compiler®) which make this
transformation automatically.

Another problem is that with the transformed program, when the user
wants to ask a query, he has to initialize the parameters for the loop check.
The solution is to provide a new clause that fills all these new parameters
for him. This new clause has the same nameé as the old one and the same
parameters plus a new one which is the kind of loop checking to be per-
formed. If A{X) is a predicate the user will use in the query, a new clause
is added:

h(.X, Check) :-
copy_term([h(.Y)], OldileadRename),
h(X', Check, [OldHeadRename], OldHeadRename, [h(.X)], h(X), 0,
ListGoal, ListResult, LastGoal, Depth).

This works only if the user asks only queries that consist of one atom!
The arguments of the pre_compile procedure are:

the file where the program to be transformed is;

the file where it puts the transformed program;

the name of the procedure that the user can use as a query;

the arity of this procedure (without the loop checking argument).

The procedure pre_compile opens the input and output file. creates the
clause that the user can use as query (the one with the same parameters as
the original one plus the parameter for the kind ol loop check) and transforms
the program. To make the transformed program it calls the transform_clause
procedure which transforms all the clauses from the current clause to the
end of the input file and puts them into the output file.

The first clause of transform_clause procedure is used when it is at the end
of the input file (the current clause is “end_of_file™).

The second one is used if the current clause has a body, it is a function
with two argument (the head and the body) and “:-7
the head of the new clause by taking the old one and adding the extra
arguments. To make the body of the new clause, it puts the call to the
loop_check procedure as the first literal of the body and then the literals of
the original body, where it adds the extra parameters. I reads the next
clause and calls recursively transform_clause for transforming the remainder
of the inputl stream.

The third one is used if the current clause has no body, it isn’t a function
with “:-” as functor (the test in the previous clause fail). The head of the

as functor. It makes

39

new clause is the head of the oviginal one where we add the extra parameters,
The body of the new clause has only one literal, the call to the procedure
loop_check. It reads the next clause and call recursively transform_clause for
transforming the remainder of the input stream.

4.3 Modification of the pre-compiler

The program transformations presented in the previous section, are quite
simple, as they always do the same thing to all the clauses of the program.

But it is convenient to make other transformations. In this section three
of them are presented: adding a unification with occur check, omitting the
loop check in certain clauses (for which the user knows there is no loop) and
allowing to use “built-in predicates” thal cannot be transformed.

4.3.1 Sound unification

In the previous section, only the unification of PROLOG is used, without
occur check. To add the occur check to the unification, it is possible to write
a new predicate that performs the unification with occur check and use it
when the occur check is necessary. Let us look where unification is used
in a PROLOG program to see how to incorporate the sound unification.
First, unification is used when the user asks it explicitly (i.e. X=Y). In this
case it is up to him to decide if he needs the unification with or without
occur check and we have to provide him with both of them. Thereafter,
we will use X = Y for a unification without occur-check and unif(X, Y) for a
unification with occur-check. The second case is the unification of a clause
head with a literal. All the variables of the clause head are different from
the variables of the literal. The occur check is unnecessary if the clause
head has no repeated variables (each variable of the clause head unifies with
one term that does not contain the variable itsell). Heads without repeated
variables are called linecar [S 89]. We can transform nonlinear clause heads
by replacing repeated occurrences of variables by new variables to make the
clause head linear and the new variables in the transformed clause head
are then unified with the original variables by sound unification with occur
check in the transformed clause body. Now unifving the clause head with
a literal can be done without occur check. The user desiring a unification
with occur check can use the new predicate unif(X,Y).

This transformation can he done automatically by the pre-compiler. The
principle is to find the repeated occurrences of variables in the head to
replace them by new variable except one occurrence of each and then to add
in the body calls to the predicate unif (which performs sound unification) to
unify the new variables with the original one.

Example 4.2
p(X1, Y1, {(X.Y)) -
p(XY f(X,Y)). = unif(X,X1),
unif(Y,Y1).

40

Of course, the pre-compiler will perform the other body transformation
to include the loop check mechanism in the transformed program. The
complete program transformation is decomposed into three parts. In the
first one, the clause head is made linear, as just described. This is achieved
by the procedure find_dupl.

The second one transforms the clause to include the loop checking mech-
anism.

And the third one, realized when we have the transformed hody, is to
add at the beginning of the body one call to unif per pair in the list of pairs
(original variable, new variables). This is done by the procedure add_unif.

4.3.2 Omitting loop check in certain clauses

Another modification of the transformed program is aimed at decreasing
the cost of loop checking. Sometimes we know that some procedure never
generates an infinite loop. For these procedures it is a good idea not to
perform the loop check, but to update the different arguments only. The
easiest way to do that, is to use in these procedures the loop check emply’
to be able to continue the loop checking at the end of the procedure.

The user has to put the atom no_loop_check as the first literal of the hody
when he does not want to perform the loop check in that clause and the one
that are called by it (the pre-compiler puts the loop check empty in that
clause).

In the pre-compiler there are two different wayvs of transforming the
hody. If the first literal is the atom no_loop._check then the transformed bhody
has the call to loop_check as first literal and then the literals different form
no_loop_check transformed in the usual way, except that the kind of loop check
is empty. Otherwise we transform the body in the usual way.

4.3.3 Built-in predicates

The original version of the pre-compiler transforms all the literals in the
body, but if some “built-in predicate™ are used as write. we cannot add the
extra arguments to this predicate. The solution is to test hefore adding the
extra arguments if the predicate is not a system predicate. This is done by
the procedure transform literal: if the predicate is declared as system (by ihe
predicate system) then the new literal is the same, otherwise extra parameters
are added to the original one.

4.4 Example

The result of transforming the program of figure 2.1:

a(Y) - b(Y).
a(1) :- a(1).
b(2) :- a(Y).
b(3).

is:

/* new program created by transforming the file fig2.2 */

a(.20,.8):-
copy.-term({a(20)],-11),
a(20,.8,[-11],-11,[a(-20)].a(_20),0,-12,.13,.14,15).

a(-92,.117,.118,.119,.120,.121,.122,.123,.124,.125,.126):-
loop_check(-117,[b(_92)],-118,.119,.120,.121,.122,.167,.168,.169,_170),
b(.92,.117,.167,.168,.169,.121,.170,-123,.124,_125,.126).

a(1,-254,.255,_256,.257,.258,.259,_260,.261,.262,.263):-
loop_check(-254,[a(1)],255,.256,.257,.258,.259,_304,_305,.306,.307),
a(1,.254,.304,.305,.306,.258,.307,.260,.261,.262,_263).

b(2,-392,.393,.394,.395,_396,.397,.398,.399,.400,.401):-
loop_check(-392,[a(-374)],-393,.394,.395,.396,.397,.442,_.443,_444,_445),
a(-374,.392, 442,443,444 396, 445,.398,.399,.400,.401).

b(3,-512,513,.514, 515, 516,.517,.518,.519,.520,_521):-
loop_check(_512,[},-513,.514,.515,_516,_517,.518,.519,_520,.521).

The transformed program is difficult to read because it uses the PRO-
LOG notation for the variables (numbers preceded by a “.") and not the
variables of the original program (strings with a capital letters as first char-
acter). This is due to the [act the pre-compiler takes the clauses of the pro-
gram as PROLOG objects (variables, predicates, ...) and not as a string of

characters. lere are the results of executing the transfortmed program.

?7- a(X, eig).
prune
Derivation = [[a(-113)].[b(-71)].[a(-15)]]

true
Derivation = [[].[b(-71)],[a(-15)]]
X=3;

prune
Derivation = [[a(1)],[a(-15)]]
?- a(X,eir).
prune
Derivation = [[a(-295)],[b(.250)],[a(-166)].[b(_71)].[a(-15)]]

true
Derivation = {[J.[b(_250)].[a(-166)],[b(-71)].[a(-15)]]
X=2;

prune

Derivation = {[a(1)].{a(1)].[a(-166)].[b(_71)].[a(-15)]]

42

true

Derivation = [[],[b(-71)],[2(-15)]]
X=3;

prune
Derivation = [[a(1)].[a(1)].[a(-15)]]

i no

| The derivation is given in the reverse order, because in the pre-compiled
! program I decided not to keep track of the derivation, but to use the list of
previous goals instead, which is constructed in the reverse order.

.

43

Chapter 5

Conclusions

Until now different implementations of loop checking were presented. ln this
chapter, I'll compare the implementations and the loop checks themselves.
Afterwards the question “llow costly is loop checking” will be discussed.

5.1 The example programs

When a loop check is used, we lave to make a choice belween a weak loop
check that prune late (or not at all) and a stronger loop check which prune
earlier but is usually costlier (as shown later). The example program deter-
mines which is the hest one. What does it means “the best one™? On one
hand, the cheapest one is certainly the one that use no loop check at all. But
on the other hand, it fails to detect loops, resulting in infinite computation.
which is difficult to compare with a loop check that detects the loop and
gives a finite result!

Our purpose is not to show where the dilferent loop checks prune the
SLD-tree , which is done in [BAK 89], but only their different cost. Thus.
if two loop checks are compared, the object program and the initial goal is
chosen such that the resulting SLD-tree is pruned, by the two loop checks.
at the same place(s). In particular when a loop check is compared 1o the
empty loop check, the object program does not loop.

In practice the transitive closure program presented in the example |.1
is used with different relation r. One of the interest of this program is thaf
it allows us to control the presence and length of loops easily by modilving
the relation r.

The following numerical results are obtained using three different graph
structures: one linear and two civcular. The linear one (called program [is
the transitive closure program with the relation {r: r(a.c),..., r(y.z)} and the
initial goal —tec(a,z). The SLD-tree contains 79 nodes, one derivation that
succeed and 27 that failed.

The first circular program (called program 2) is also the transitive closure
program with the relation r:

r(a,b). r(cd). r(ef). r(gh). (i) rt(bh). r(hj) (ki) r(mn)
r(bc). r(de). r{fig). r(h). r(aj). r(ah). rlek). r(km). r(no).
rop). r(p.a). r(ar). r(rh).

and the initial goal —te(a,c). The SLD-tree produced by any of the full-
comparison check have 96 nodes, one derivation that succeed, 29 that failed
and five that are pruned. For single (respectively double) triangular check
the number of nodes developed is of 110 (respectively 188), one (respectively
one) derivation succeed, 34 (respectively 61) failed and b (respectively 5) are
pruned.

The second circular program (called program 3) is a slightly different.
version ol the transitive closure program [NS 91}].

Let e be the edge relation of a digraph, and d he a subset of the nodes in
the graph, Then the following program defines t to be the transitive closure
restricted to paths starting at a node in d and such that all intermediate
nodes have self-loops :

t(X,Y) - d(X), e(W,W), e(W.Y), t{X,W).
t(X,Y) - d(X), e(X,Y).

with the facts:

e(a,g). e(g.g) e(f.g). e(ff). e(fi). e(ii). e(gh). e(ch). e(hi).
e(l,a). e(lb). e(ba). e(bj). e(dc). e(hd) elek) e(ee). efie).
e(a,a). e(bb). e(hh).

d(a). d(l). d(e). d(f).

and the initial goal —t(X k).

The SLD-tree produce by the equality loop checks (respectively sub-
sumption loop checks) have 465 (respectively 433) nodes, 10 (respectively
10) derivation that succeed, 214 (respectively 130) that failed and 32 {ve-
spectively [16) that are pruned.

5.2 The different implementations

It appears that the most time- and space-consuming component of our
implementations is the explicit manipulation of substitutions, which occurs
hoth in the construction of the derivation (in the form of unification and
application of substitution to the next goal) and in the loop check (in the
form of matching and application of substitution to the resultant head).
Consequently the cpu-time spent to find the resolvent of the current goal
(“derive”-time) and the cpu-time spent in the loop checking (the cpu-time
spent in the procedure check and to apply the substitution to the resultant
head) (“check”-time) are good indicalions of the efficiency of the implemen-
tations.

Tables 5.1 and 5.2 show our measurements (in seconds of used cpu-time),
In table 5.1 “program 17 with the initial goal —tec(a,z) is interpreted for four
different implementations and five loop checks (non, cig, cir, sig, sir).

program | | meta | real-meta | real-metalWRV | pre
non | derive | 7TR.0 65.5 4.1 0.1
check 1.7 1.3 0 0
eig | derive | 78.0 65.6 1.1] 0.
check 17.2 16.7 15.0 § 14,4
eir | derive | 78.2 65.8 2] o
check 25.2 17.5 16.1] 15.3
sig | derive | 787 65.2 2y 0.1
check | 26.7 23.5 23.0 | 21.8
sir derive | 7R, G: .8 27 0.1
check 26.7 25.2 23.9 | 22.6

Table 5.1: The derive and check-time for interpreting program [with difler-
ent implementations

program 2 | meta | real-meta | real-metaWRV | pre
eig | derive | 93.2 84.1 14.61 0.3
check | 10.8 10.4 881 &1
eir | derive | 93.2 84.1 .61 0.3
check | 11.6 11.2 9.5] K7
sig | derive | 93.6 S 14.5¢ 0.3
check 16.1 15.5 13.2] 12,4
sit | derive | 9.1 83.5 .57 04
check 16.7 15.7 13.8 1 12,9

Table 5.2: The derive and check-time for interpreting program 2 with differ-
ent implementations

Table 5.2 shows “program 27, with the initial goal «—te(a,c), interpreted
by the four implementations with four loop checks (cig. cir, sig. sir),
The four implementation are:

“meta”: the first meta-interpreter presented in subsection 3.3.2;

“real-meta”: the meta-interpreter that only said when a derivation succeed,
as presented in subsection 3.3.4;

“real-metalVRY™: the same meta-interpreter as “real-meta™ except that it
uses the PROLOG variables and not our “$ variables™;

“pre”: the pre-compiled program, presented in section 1.2, interpreted by
the PROLOG system.

The first thing to note is that the “check”™ time is almost the same for
all the four implementations. There is a small dilference helween the two
implementations that use the “§ variables™ (mefa and real-meta) and the two

46

program 1 emply | non cig | ovg eir ovr
derive-time 65.5 | 65.6) 65.6] 65.7] 658 654
check-time 130 L3} 167 177 L1751 191
comparison 0 0 1978 L 1978 1978} 1078
literals in fist 183 0 101 101 183 183
program 1 sig | svg sir | svr | osirst | osirddt
derive-time 65.2 1 6481 64.8] 650} 6491 64,7
check-time 2351 2051 252 259 4.5 2.1
coniparison JOTR L1978 [1978 | L1978 | 250 68
literals in list 104] 104] 1831 183 183 35

Table 5.3: Comparision of the dillerent loop checks for program 1

that use the PROLOG variables. This is because in the implementations
with the PROLOG variables the application of substitution to the resultant
head is explicit and so we can not measure it. This can be seen in table
5.1 for the loop check non where the “check™ time is not equal to zero for
the first two meta-interpreters, this represent the time used to apply the
substitution to the resultant head.

Now let us analyse the “derive”-time of the different implementations.
The derive-time with meta is about 12 seconds bigger than with real-mcta
in table 5.1 and nine seconds in table 5.2. This represent the time used to
find if a leaf of the SLD-tree failed and keep the derivation. In real-meta
when a leaf failed it is the procedure find_new_goal_resultant which failed.

A large part of the time spent in the computation of the resolvent is
used to apply the substitution to the new goal. This can be seen when we
compare the derive-time of real-meta and of real-meta WRY, derive-time in
real-meta is about six time dervive-time in real-meta WRV, This is due to the
fact that the application of substitution is made explicitly in real-meia and
implicitly in real-metaWRV by the underlying PROLOG system which is
very eflicient.

The computation of the resolvent is even more eflicient with the pre-
compiled program, pre, hecause it is done completely implicitly by the un-
derlying PROLOG system.

5.3 The different loop checks

In this section the different loop checks will he compared. To do this we
use the result obtained by real-meta for the three programs. The results are
displayed in table 5.3, 5.4 and 5.5. Where derive-time is the total cpu-time,
in seconds, used to compute the next goal; cheek-time is the total cpu-time,
in seconds, used to perform the loop checking itsell. Comparisons is the
total number of goal comparisons. Literals in list is the total number of
literals stored in the list of goals and the list of resultant heads for the loop
checking,.

47

program 2 eig | evg elr evy
derive-time 8.1 1 8.1 SL2) 8.5
check-time 104} 101 112 L1L.5H
comparison 1150 1 1150 | L1150 § 1150
literals in list | 120 12071 211 { 211

program 2 sig | svg sir svr | sir.st | sir,dt
derive-time 8441 R3.91 83.51 82.9] 95.3 1 167.3
check-time 15,51 15.5 1 15.7 1 158 4.5 H.2

comparison 1150 | 1150 | 1150 | [150 | 245 174
literals in list | 120 120 211 | 211 | 243 R2

Table 5.4: Comparision of the different loop checks for program 2

program 3 eig | evg eir evy
derive-time 444.5 | 443.6 | 4400 | 44401
check-time 60.7 | 737] T3.6 5.9
comparison 6832 | 6832 06832 GR32
literals in list 879 | K79 | 1312 1312
program 3 sig svg sir SVI

derive-time 306.5 | 307.0 | 310.7 | 310.5
check-time T13.6 7 113.3] 116.7 115.3
comparison BAT2 | 572 T2 5472
literals in list 647 647 964 964

Table 5.5: Comparision of the different loop checks for program 3

For the linear program, program I, all the loop checks are used and for
the two circular, program 2 and program 3, the loop checks empty and non
are not used since they do not detect loops and never give results.

For the first two programs, see table 5.3 and 5.4 the number of node in the
SLD-tree developed is the same for all the full-comparison loop checks. Thus
derive-time is the same for all the full-comparison loop checking. For the
program 3 the subsumption checks prune earlier than the equality checks.
they develop respectively 562 and 678 nodes. So derive-time Tor the four
subsumption checks is smaller than derive-time for the four equality checks.

The results of tables 5.3 and 5.4 show that the subsumption checks are
sighificaly more expensive than the equality checks. Due to the small size of
the goals derived with the initial goal <—te(a,z) or «—te(a,c) (one or two literals
with a mean length of 1.5) the subsumption checks are approximately 40%
more expensive.

in program 3, where the goals are higger (from one to four literals with a
mean length of 2.5}, it is more diflicult to evaluate the cost of subsumption
checks hecause subsumption and equality checks do not develop the same

48

number of nodes in the SLD-tree. But it is possible to evaluate the time of
one goal comparison (check-time divided by the number of goal comparisons
done). The time for one goal comparison is about 0.01 second for the equality
checks and 0.02 second for the subsumption checks. This means that the
subsumption checks are about 100% more expensive.

We can see that if the mean size of the goals raises from 1.5 to 2.5
literals, the cost of the subsumption checks augments {from 40% to 100%.
If the mean size of the goals augments we can imagine that the cost of
subsumption check increases in the same manner.

The result show that there is no much difference among the equality
checks (and among the subsumption checks). The checks based on goals
are slightly cheaper and use less space than those based on resultant. This
represent the time use to compare the resultant heads and the space to store
them.

The checks testing for instance are cheaper than those testing for vari-
ance. This is due to the implementation: first. a substitution is compuled.
then it is tested if this substitution is renaming.

In table 5.3, the advantage of the triangular foop checks are evident: they
need much less time. But this program does not show their disadvantage.
they develop the same SLD-tree as the full-comparison checks and so make
less comparison. Usually, they prune the derivation Jater, so they develop
more nodes, This is shown in tables 5.1, They do not compare each goal,
so they detect loops later than the full-comparison check and develop more
node of the SLD-tree. Thus for the triangular checks check-time decreases
but derive-time increases. Due to the fact that we use triangular numbers,
the deeper we are in the SLD-tree the longer is the distance bhetween two
checks and we have to develop more nodes after the beginning of the foop
Lo detect it.

If we look more precisely to the figures of check-time for the single and
double triangular loop checks, we can see that single triangular check make
more comparisons but check-time is smaller than for double triangular check.
This is because the time to apply the substitution to the resultant head.
which is done for each nodes. is counted in check-time. In table 5.3 the
time to apply the substitution to one resultant head is about 0.016 second
(check-time for empty loop check, 1.3 second, divided by the number of
nodes, 76). therefore for the single (respectively double) triangular loop
check that develop 109 nodes (respectively (87 nodes) the time used Lo apply
substitution to resultant heads is about .7 seconds (respectively 3 seconds)
and therefore the time for the comparison itsell is 2.8 seconds (respectively

2.2).

5.4 How costly is the loop checking

To answer to the question “How costly is the loop checking?” we should
compare an efficient PROLOG interpreter with loop checking with existing
PROLOG interpreters. As developing a really eflicient PROLOG interpreter

49

with loop checking involves a lot of work and it is not the purpose of this
thesis, it will he helpful to use a meta-interpreter to have an idea of the
result obtained with an efficient implementation.

But which implementation should we use for that purpose? This im-
plementation is of course less eflicient than the real one, but its inefficiency
must be the same for the construction of the derivation and the loop checking
itself.

The four implementations used in this chapter have almost the same loop
checking efliciency. At the opposite, the construction of the derivation are
quite different. In real-metaWRV and pre, due to the use of the PROLOG
variables, the manipulation of the substitution is done implicitly and so is
very eflicient with respect of the loop checking (perhaps too efficient). In
real-meta the application of substitution, unification and matching are made
explicitly. Thus it seems that the construction of derivation and the loop
checking are made with the same degrees of efficiency. In meta, the efficiency
of the application of substitution, unification and matching is the same as
for real-meta. But meta do more work than an usual PROLOG system: it
stop when a goal failed and when a derivation is pruned.

I think real-meta is a good meta-interpreter to give an idea of the per-
formance ol a real PROLOG interpreter with loop check. The tables 5.3,
5.4 and 5.5 show the results obtain by those three programs interpreted by
real-meta.

The cost of the loop check depends of course on the program and the
check used. If the average size of the goals is higger the time to compare
goals will be bigger than for smaller goals. T'he three example use here have
quite small goals. But one may suspect that it costs too much to apply the
full-comparison loop check to a large example with few loops. In such cases,
the use of a triangular loop checks definitely beats using no loop check at all.
This applies in particular to programs that are still being tested/dehugged:
they are not supposed to loop but some loops may be present.

The construction of the derivation can be greatly improved with some
common optimization techniques, such as last call optimization. It is con-
ceivable that such optimization would increases the relative cost of the loop
checking. On the other hand, our loop checking procedure itself could cer-
tainly be improved, for example by using some kind of “incremental” testing
(an equality check tests first if two goals have the same length, then whether
they have the same predicates in the same order and so on), ordering the
previous goal by the probability to be similar to the current one. Also the
storage and retrieval of previous goals could he improved by some hashing
techniques, These optimizations would make loop checking less costly.

[think it’s difficult to predict the cost of the loop checking with the
implementations presented here. At the beginning the meta-interpreter was
just seen as a prototype to show that it was possible to implement loop
checking and to make some experiments to see what was the SLD-tree pro-
duced by some programs. It was only at the end of the work that the
question “How costly is the loop checking?” was asked. This is why the
different implementations do not use all the optimization techniques.

Anyway the loop checking always cost something, so an interpreter with
loop checking is less efficient than one without. In some case where the
efliciency is not too important, for example for debbuging programs or for
writing programs in a more declarative sytle, the cost of loop checking is
acceptable. The weakness of the loop checks presented here is the relatively
small class of programs for which they are complete.

Appendix A

The meta-interpreter

This is the code of the PROLOG meta-interpreter, written in quintus PRO-
LOG, describe in section 3.3.

It can only interpret pure PROLOG programs (without negation and
cuts). It does not use ordinary variables, the variables must start with the
character “§”,

The user call

solvel(check,[a($X)]).

means solve the goal —a(X) with the loop check check. The meta-interpreter
and the program must be loaded in memory. In the program all the variables
must be atoms that start with the character “$”. TFor example a(X) :- b(Y)
must be transformed in a($X) :- b($Y).

This implementation updates five counters:

two real counters: the “check-time™ (the cpu-time spent in the procedure
check and to apply the substitution to the resultant head) and the
“derive-time” (the cpu-time spent to find the resolvent of the current
goal).

three integer counter: the number ol goal comparisons made, the number
of node developed and the number of literals stored in the list of goals
and the list of resultant heads for the loop checking.

[FAEHEFER S I R R R R B R R

r* Jean HENRARD 14 may 1991 */
* CWI - Amsterdam - The Netherlands */
/* FNDP - Namur - Belgium */

GRS R R R AR

[*ASHREBEFE RS AFHHHEGHRIRARH BRI R FHR RS SR B R R R R R/

/* The structure of solvel is : */
/* solvel */
[* create_answer_substitution */
/* print_derivation */
I* solve */
1* check (cfr the definition of the check procedure) */
/* find_new_goal_resultant *f
I* apply_sub_sub */
* apply_sub_expr */
I* member_sub */
* append */
/* is_var */
* apply_sub_expr */
/* append */
/* d_clause */
= d_unif ’ *f
/* occur */
/* is_var */
* append */
r* is_var */
I* replace_var_sub */
* apply_binding */
I* transform_body_to_list */
* fresh_variables */
* apply_sub_expr */
I* make_fresh_substitution *f
/* append */
* list_var */

[*EFEFHFHIAT AR HH RS R R R R R SR R B R

r* */
/* solvel(Check,Goal) */
> */
/* type : Check in { non, empty, evg, eig, evr, eir, svg, sig, svr, sir, */
/* (evg,st), (eig,st), (evrst), (eir,st), (svg,st), (sig,st), (svr,st), */
1* (sir,st), (evg,dr), (eig,dr), (evr,du), (eir,dt), (svg,dr), (sig,du), */
/* (svr,d1), (sir,dD)}. */
/* Goal = expression */
/* relation - side effect : solve the goal 'Goal’ with the loop check 'Check’ */
/* if it finds a solution then prints the computed answer */
I* solution, the depth where the solution is found and the */
/* derivation; */
I* if it prunes the derivation then prints the depth */
/* where the branch is pruned and the derivaton; */
/* if it finds a branch that fail then prints the depth */
/* where the branch fails and the derivation. *f
/* directionnality : in (gr, gr, var) : out (gr, gr. gr) *f
I'* * /
solvel(Check, Goal) :-

/* Inidalisation of the counters for */
mit_float(1), /* check time */
init_float(2), /* derivation time */
init_int(1), /* number of goal comparisons */
init_int(2), /* number of nodes developed */
init_int(3), /* number of literals keep in the lists */

create_answer_substitution(Goal,], Substitution),
solve(Check, Goal, Goal, Substitution, {J, (], 1. 0, 0, 0,Derivarion),
/* read of all the counters and display them */

read_float(1, TC),

read_floay2, TD),

read_iny(1, GC),

read_int(2, G),

read_int(3, LL),

nl, write(" check :),

write(Check),

nl, write('derivation time '),

wri[e(—rD)v

nl, write('time comparison),

write(TC),

nl, write('number of goal comparisons '),
write(GC),

nl, write('number of node developed),
write(G),

nl, write('number of literals in the lists),

write(LL),
nl, write('derivation "),
nl, print_derivation([Goal | Derivation]),
nl, nl,
fail. /* for finding all the solutions */

solvel(Check,) :-

/* no more solution, prints the final version of the counters*/
read_float(l, TC),
read_floa(2, TD),
read_ini(1, GC),
read_int(2, G),
read_ini(3, LL),
nl, write(' check : "),
write(Check),
nl, write('derivation time),
write(TD),
nl, write('time comparison),
write(TC),
nl, write(number of goal comparisons ’),
write(GC),
nl, write('number of node developed %),
write(G),
nl, write('number of literals in the lists),
write(LL).

r* */
/* solve(Check, Goal, Resultant, Substunution, ListGoal, */
I* ListResult, LastVar, Depth, I, FI, Derivation) */
/* i
/* type : Check in { non, empty, evg, eig, evr, eir, svg, sig, svr, sir, */
/* (evg,st), (eig,st), (evr,st), (eir,st), (svg,st), (sig.st), (svr,st), */
* (sir,st), (evg,dt), (eig,dr), (evr,dr), (eir,dt), (svg,dr), (sig,dt), */
I* (svr,dt), (sir,dt)}. */
I* Goal, Resultant : expressions */
/* Substitution : list of bindings */
/* ListGoal, ListResult, Derivation : lists of expressions */
= LastVar, Depth : integers */
J* relation : * [
/* When the derivation is */
” Go=> {Cp.01} . => Gy => {Cp 8 Gy */
/* has been constructed, the meanings of the parameters are the following: */
/* Goal = Gy (also used for loop checking); */
r* Substitution = the list of bindings representing 91...8x */
/* restricted to the variables of Gg; */
/* LastVar = the number of variables used (needed for */
/* standardization apart.) */
/* Input parameters for loop checking: */
I* Check = the loop check that is used: */
1* Resultant = GOSI"-Sk; */
r* ListGoal = [Gy.1, .. Gols */
/* ListResult = [GOSI...Sk, . Go]; */
/* Depth = k. */
r* FI=12I0+1)and 1/2(0-1)-I1<D<12i(i+ 1) */
* if D=FI then D is a triangular number */
/* If a double triangular check is used, ListGoal (ListResult) */
/* contains only the goals (resultant heads) with a wiangular */
/* index. When "non" is used, these lists are not maintained. */
/* LisResult is only maintain for loop checks for resultant */
/* or "empty” loop check. */
/* Curput (provided that a finite derivation is generated) */
/= Derivation = [Gy,1, - Gy, true] means G, is empty */
* [Gy.1s +m Gy, prune] means G, is pruned */
/* [Gy+1s -o Gy, false] means G, is failed */
P */

/* if a solution is found (the goal 10 be solved is empty) */ /* if we are in a infinit loop (not(check(...))) then we

solve(Check, [], Resultant, Substitution, ListGoal, ListResult, /* prune the derivation at this point.
LastVar, Depth, 1, F], [true]) :- solve(Check, [A | Goal], Resultant, Substtution, ListGoal, ListResult,
nl, write(Substitution), LastVar, Depth, I, FI, [prune]) :-
nl, write(depth "), /* not(check(...)), a loop is detected
write(Depth). nl, write('depth),
f* if Literal is a system predicate */ write(Depth).

solve(Check, [Literal | Goal], Resultant, Substitution, ListGoal,
ListResult, LastVar, Depth, I, FI, [NewGoal | Derivation]) :-

syst(Literal), /* definition of the built-in predicate
!
call_syst(Literal, CAS), syst(_ =).
apply_sub_expr(Goal, CAS, NewGoal), syst(_ >= _).
apply_sub_expr(Resultant, CAS, NewResultant), syst(_ >).
apply_sub_sub(Substitution, CAS, NewSubstitution), syst(_ <).
update_depth(Depth, I, FI, NewDepth, Newl, NewFI), : syst(_ =< _).
solve(Check, NewGoal, NewResultant, NewSubstitution, syst(_ is).
[NewGoal | ListGoal], [NewResultant | ListResult],
LastVar, NewDepth, Newl, NewF], Derivation). call_syst(X=Y, Substrtution) :-
/* we perform the loop check (Check) 1o see if we can continue, */ d_unif([X], (Y], Substirution).
/* then we compute the next goal to be solved and the */ call_sysy(X>=Y, []) :-
/* substirution (NewSubstitution) and the new resultant */ X>=Y.
/* (NewResultant) and solve the new goal */ call_systX>Y, []) :-
solve(Check, Goal, Resultant, Substitution, ListGoal, ListResult, X>Y.
LastVar, Depth, 1, FI, Derivation) :- call_syst(X<Y, []) :-
/* Goal is not empty and ists first literal is not a */ X<Y.
/* built-in predicate */ call_syst(X=<Y, []) :-
check(Check, Goal, Resultant, ListGoal, ListResult, X=<Y.
Depth, FI, NewListGoal, NewListResult), call_sysuXis Y, [eq(X, Z2)]) :-
!, is_var(X),
find_new_goal_resultant(Goal, Resultant, Substitution, LastVar, !,
NewGoal, NewResultant, NewSubstitution, NewLastVar), ZisY.
(NewGoal = [falsel_] -> call_syst(X is Y, []) :-
f* the current goal has no resolvent */ XisY.

Derivation = [false],

nl, write('detph),

write(Depth)

; /* the current goal has a resolvent *f

update_depth(Depth, L, FI, NewDepth, Newl, NewFT),

Derivation = [NewGoal | NewDerivation],

solve(Check, NewGoal, NewResultant, NewSubstirution,
NewListGoal, NewListResult, NewLastVar, NewDepth,
Newl, NewF], Derivation)

* */

[* create_answer_substitution(Expr, OldSubstitution, */
/* NewSubstitution) */
™ */
/* type : Expr : expression */
/* OldSubstdrution, NewSubstitution : lists of binding */
/* relation : if [8X), ... ,SX,] is the list of variables */
/* occuring in Expr then NewSubstitution */
/* = [eq($X;y, $Xi1)s--. £q(SXiy, $Xii) | OldSubstitution] */
/* where the SX; are the variables that does */
/* not appear in OldSubstitution */
/* directionnality : in(gr, gr, var) : out(gr, gr, gr) */
* */

create_answer_substitution({], OldSubstitution, OldSubstitution).
create_answer_substitution({E | Expr], OldSubstitution, NewSubstitution) :-
is_var(E),
!
(member_sub(_, OldSubstitution, E) ->
create_answer_substitution(Expr, OldSubstitution, NewSubstitution)
create_answer_substitution(Expr, [eq(E, E) | OldSubstitution],
New Substitution)
).
create_answer_substitution([E | Expr], OldSubstitution, NewSubstimton) :-
/* not (is_var(E)) */
E=.[{ |List,
append(List, Expr, NewExpr),
create_answer_substitution(NewExpr, OldSubstitution, NewSubstitution).

/*

*/

/*

print_derivation(Derivation)

*/

/‘*
/*
/*
/*
I*
/*
/*
/*
/*
/*

type : Derivation : a list

relation - side effect :
Derivation = [Ly, ... ,.L}]
then it prints

L
o

directionnality : in(novar) : out{novar)

*/
*/
*/
*/
*/
*/
*/

*/
*/

print_derivation([]).
print_derivation([Goal | Derivation]) :-

write(Goal),
nl,
print_derivation(Derivation).

*/

update_depth(Depth, 1, FI, NewDepth, Newl, NewFI)

*/

type : Depth, I, FI, NewDepth, Newl, NewFI : integers
relation :
if Depth =F1
then Newl=1+1
NewFI = FI + Newl
NewDepth = Depth + 1
else Newl=1
NewFI=FI
NewDepth = Depth + 1
directonnality : in(gr, gr, gr, var, var, var)
out(gr, gr, gr, gr, T, gT)

*/
*/
*/
*/
*/
*/
*/
*f
*/
*/
*/
*/
*/

update_depth(Depth, I, Depth, NewDepth, Newl, NewFT) :-
!

NewlisI+1,
NewFl is Depth + Newl,
NewDepth is Depth + 1.

update_depth(Depth, I, FI, NewDepth, I, FI) :-

NewDepth is Depth + 1.

[*HF RS SRS I R R R SR S SRR R

/*

THE LOOP CHECK PROCEDURES

*/

[*##3E EF S HRS SR ERMF AT BRI R R R

> */
/* check(Check, Goal, Resultant, ListGoal, ListResult, Depth, */
/* NewListGoal, NewListResult) */
~ */
/* checkuse CASE 1 :////f */
/* CASE 2 :check EVG */
/* renaming >/
/* CASE 3 : check_EIG */
I* compute_substitution */
/* CASE 4 :check_EVR */
/* same_EVR */
I* Tenaming */
/* same_substitution */
/* CASE 5 :check_EIR */
/* same_EIR */
/* compute_substitution */
/* same_substitution * [
I* CASE 6 :check_SVG */
/* incl_ren */
/* CASE 7 :check_SIG */
/* incl_sub */
/* CASE 8 :check_SVR *f
[* same_SVYR */
/* incl_ren =/
/* renaming >/
/* same_substitution */
/* CASE 9 : check_SIR */
/* same_SIR */
* incl_sub */
/* compute_substitution */
1* same_substitution */
I* CASE 10 : check_t >/
I* check_EVG, check_FEIG, check_EVR, */
I* check_EIR, check_SVG, check_EIG, */
I* check_SVR, check_SIR */
/* CASE 11 : check_t */
/* check_EVG, check_EIG, check_EVR, */
/* check_EIR, check_SVG, check_EIG, */
hd check_SVR, check_SIR */
™ >/

~ , i
/* type: Check in { non, empty, evg, eig, evr, eir, svg, sig, svr, sir, */
/* (evg,st), (eig,st), (evrst), (eir,st), (svg,st), (sig.st), (svr.st), *f
I* (sir,st), (evg,dt), (eig,dt), (evr,dy), (eir,dt), (svg,du), (sig.dt), */
/* (svr,dt), (sir,dt)}. */
I* Goal, Resultant : expressions = lists of terms and/or atoms */
/* ListGoal, ListResult, NewListGoal, NewListResult : */
/* lists of expressions */
/* depth : integer */
/* relation ; Check is the kind of loop check to be performed */
/* Depth is the depth where the loop check occur */
r* ListGoeal = [Gy, ...G,] */
I* ListResult = [R;, .. ,R]] */
I* if there is no i such that Goal 'is sufficiently similar’ */
r* o G; w.r.t. Check */
/* and Resultant 'is sufficiently similar’ to R; w.r.t. Check */
I* then NewListGoal = {Goal | ListGoal] */
I* NewListResult = [resultant | ListResult] */
1* exept if Check = ***_d t then */
I* if Depthin {1/2i(i + 1)} 1in N} */
1* then NewListGoal = [Goal | ListGoal] */
I* NewListResult = [Resultant | ListResult] */
/* else NewListGoal = ListGoal */
I* NewListResult = ListResult */
/* directionnality : */
I* in(gr, gr, gr, gr, gr, gr, var, var) : */
/* out(gr, gr, gr, gr, gr, gf, g1, gT) *//
/

/***\

CASE1

no loop check

*******************************#**t***********************#/

check(empty, Goal, Resultant, ListGoal, ListResult, Depth, FI, [Goal | ListGoal],

check(non, Goal, Resultant, ListGoal, ListResult, Depth. FI, ListGoal, ListResulr).

[Resultant | ListResult]) :-
length(Goal, G),
length(Resultant, R),
NisG+R,
add_int(3, N).

/**tt*******\

CASE2 Equals Variant of Goal

************************X**********************************/

check(evg, Goal, Resultant, ListGoal, ListResult, Depth, FI, {Goal | ListGoal},

ListResult):-
check_EVG(Goal, ListGoal),
length(Goal, G),

add_int(3, G).
I* *]
/* check_EVG(Goal, LisiGoal) */
I* */
/* type : Goal : expression */
/* ListGoal : list of expressions = [Gy, .. ,G,] */
/* relation : there is no i and renaming 8 such that G; 8 = Goal */
/* directionnality : in(gr, gr) : out(gr, gr) */
r* */

check_EVG(Goal, []).

check_EVG(Goal, [G | ListGoall):-
add_int(1, 1),
statistics(runtime,_),

\+ renaming(G, Goal, Renaming),
statistics(runtime, [, T1),
add_float(1, T),

check_EVG(Goal, ListGoal).

/***********************t***********************************\

CASE3 Equals Instance of Goal

***********************t”*******t*******l*******t*t*******/

check(eig, Goal, Resultant, ListGoal, ListResult, Depth, FI, [Goal | ListGoal],

ListResult):-
check_EIG(Goal, ListGoal),
length(Goal, G),

add_mu(3, G).

/*

*/

/*

check_EIG(Goal, ListGoal)

*/

/*
/*
/*
/*
/*
/*

type : Goal : expression

ListGoal : list of expressions = [G_1, .. ,G_n]}
relation : there is no i and substitution 8 such that G; 6 = Goal
directionnality : in(gr, gr) : out(gr, gr)

*/
*/
*/

*/
*/

check_EIG(Goal, []).
check_EIG(Goal, [G | ListGoall):-

add_ini(1, 1),
statistics{runtime, _),
\+ compute_substitution(G, Goal, Substitution),
statistics(runtime, [_ , T]),
add_float(1, T),
check_EIG(Goal, ListGoal).

/**x**x***************\

CASE4 Equals Variant of Resultant

***l

check(evr, Goal, Resultant, ListGoal, ListResult, Depth, FI, [{Goal | ListGoal],

[Resultant | ListResult]):-
check_EVR(Goal, Resultant, ListGoal, ListResult),
length(Goal, G),
length(Resultant, R),
NisG+R,
add_int(3, N).

*f

/*

check_EVR(Goal, Resultant, ListGoal, ListResulr)

*/
*/

/*
/*
/*
/*
/*
/*

type : Goal, Resultant : expressions
ListGoal = list of expressions = [G;, .. ,G]
ListResult = list of expressions = [Ry, .. .R,]
relation : there is no i and renaming 8 such that G; 8 = Goal
and R; 8 = Resultant
directionnality : in(gr, gr) : out(gr, gr)

*/
*/
*/
*/
*/
*/
*/

check_EVR(Goal, Resultant, {1, {]).
check_EVR(Goal, Resultant, [G | ListGoal}, [R | ListResult}):-
add_int(1, 1),
statistics(runtime, _),
‘- same_EVR(Goal, Resultant, G, R),
statistics(runtime, [_ , T},
add_float(1, T),
check_EVR(Goal, Resultant, ListGeoal, ListResult).

/* */
/* same_EVR(Goal, Resultant, G, R) */
r* =/
/* type : Goal, Resultant, G, R : expressions */
/* relation : there is a renaming 6 such that G 8 = Goal */
/* and R 0 = Resultant */
/* directionnality : in(gr, gr) : out(gr, gr) */
r* */

same_EVR(Goal, Resultant, G, R):-
renaming(G, Goal, Renaming),
renaming(R, Resultant. Renamingl),
same_substitution(Renaming, Renamingl).

/***\

CASES Equals Instance of Resultant

************t**/

check(eir, Goal, Resultant, ListGoal, ListResult, Depth, FI, [Goal | ListGoal],

[Resultant | ListResult]):-
check_EIR(Goal, Resultant, ListGoal, ListResult),
length(Goal, G),
length(Resultant, R),
NisG+R,
add_iny3, N).

/*

*/

/*

check_EIR(Goal, Resultant, ListGoal, ListResult)

*/

/*
/*
/*
/*
/*
/*
/*
/*

type : Goal, Resultant : expressions
ListGoal = list of expressions = [Gy, .. .G,]
ListResult = list of expressions = [Ry, .. ,R,]
relation : there is no i and substitution 8 such that G; 8 = Goal
and R; 0 = Resultant
directionnality : in(gr, gr) : out(gr, gr)

*/
*/
*/
*/
*/
*/

check_EIR(Goal, Resultant, {], [1).
check_EIR(Goal, Resultant, [G | ListGoal], {R | ListResult]):-

add_int(1, 1),
statistics(runtime, _),
\+ same_EJR(Goal, Resultant,G, R),
statistics(runtime, [_, T]),
add_float(1, T),
check EIR(Goal, Resultant, ListGoal, ListResult).

/*
/*
/*

same_EIR(Goal, Resultant, G, R)

*/

*/

*/

/*
/*
/*
/*
/*

type : Goal, Resultant, G, R : expressions

relation : there is a substitution 8 such that G 8 = Goal
and R 8 = Resultant

directionnality : in(gr, gr) : ou(gr, gr)

*/
*/
*/
*/
*/

same_EIR(Goal, Resultant, G, R):-

compute_substitution(G, Goal, SubstitutionGoal),
compute_substitution(R, Resultant, SubstitutionResult),
same_substitution(SubstitutionGoal, SubstimtionResult).

/*************************t********#************************\

CASE 6 Subsumes VYariant of Goal

/*#***************‘*********************************xt******/

check(svg, Goal, Resultant, ListGoal, ListResult, Depth, FI, [Goal | ListGoal],

, ListResult):-
check_SVG(Goal, ListGeal),
length(Goal, G),

add_ini(3, G).
* */
/* check _SVG(Goal, ListGoal) */
/* o
/* type : Goal : expression */
/* ListGoal : list expressions = [Gy, .. ,Gy] */
/* relation : there is no i and renaming 0 such that G; 6 = Goal */
/* directionnality : in(gr, gr) : out(gr, gr) */
* */

check_SVG(Goal, []).

check_SVG(Goal, {G | ListGoal}):-
add_int(1, 1),
statistics(runtime, _),

\+ incl_ren(G, Goal, Renaming),
statistics(runtime, [_ , T},
add_floaw(l, T),

check_SVG(Goal, ListGoal).

/***********************t*#****************t****************\

CASE7 Subsumes Instance of Goal

*****************'*#*!*****************************t*******/

check(sig, Goal, Resultant, ListGoal, ListResult, Depth, FI, [Goal | ListGoal],

ListResult):-
check_SIG(Goal, ListGoal),
length(Goal, G),

add_ini(3, G).

/*

/*

/’*

check_SIG(Goal, ListGoal)

*/
*/

/*
/*
/*
/*
/*
/*

type : Goal : expression

ListGoal : list expressions = [Gq, .. ,G,]

relation : there is no i and substitution 9
such that G; 6 = Goal

directionnality : in(gr, gr) : out(gr, gr)

*/
*/
*/

*/
*/

check_SIG(Goal, [}).
check_SIG(Goal, [G | ListGoal]):-

add_int(1, 1),
statistics(runtime, _),

\+ incl_sub(G, Goal, Substitution),
statistics(runtime, [, T]),
add_float(1, T),

check_SIG(Goal, ListGoal).

/***\

CASES8 Subsumes Variant of Resultant
**************************************x****x*x*******xx‘***/

check(svr, Goal, Resultant, ListGoal, ListResult, Depth, Fl, [Goal | ListGoal],

[Resultant | ListResult]):-
check_SVR(Goal, Resultant, ListGoal, ListResult),
length(Goal, G),
length(Resultant, R),

NisG+R,
add_int(3, N).

*f

/*

check_SVR(Goal, Resultant, ListGoal, ListResult)

*/
*!

/*
/*
l*
/*
/*
/*

type : Goal, Resultant : expressions
ListGoal = list of expressions = [Gy, .. ,Gy)
ListResutl = list of expressions = [Ry, .. ,R;]
relation : there is no i and renaming 0 such that G; © include in Goal
and R; 8 = Resultant
directionnality : in (gr, gr, g7, g7) : out (gr, gr, gr, 1)

=/
*/
>/
*/
*/
*/

check_SVR(Goal, Resultant, [}, []). I* */

check_SVR(Goal, Resultant, [G ! ListGoal], [R | ListResult}):- /* check_SIR(Goal, Resultant, ListGoal, ListResult) */

add_int(1, 1), * */

statistics(runtime, _), /* type : Goal, Resultant : expressions */

o+ same__.SV_R(Goal_. Resultant, G, R), /* ListGoal = list of expressions = [Gy, .. ,G,] */

statistics(runtime, [_ , T]), /* ListResult = list of expressions = [Ry, .. ,Ry] */

add_floar(1, T), /* relation : there is no i and substirution 8 such that G; 8 include in Goal ~ */

check_SVR(Goal, Resultant, ListGoal, ListResult). /* and R; 0 = Resultant) */

/* directionnality : in (gr, gr, gr, gr) : out (gr, gr, gr, gr) */

/* */ F i
5: same_SVR(Goal, Resultant, G, R) :‘; check_SIR(Goal, Resultant, {J, []).

check_SIR(Goal, Resultant, [G | ListGoal], [R | ListResuit]):-

/* type : Goal, Resultant, G, R : expressions */ add_ini(1, 1)
/* relation : there is a renaming 8 such that G 8 include in Goal */ statistics (runum e)
* - 1]
lr directionn R 8= Resultant o \+ same_SIR(Goal, Resuitant, G, R),
I irectionnality : in (gr, gr, gr, gr) : out (gr. gr, gr, gr) 4 statistics(runtime, {_ , T]),

dd_float(l, T),

same_SVR(Goal, Resultant, G, R):- check_SIR(Goal, Resultant, ListGoal, ListResulr).

mcl_ren(G, Goal, RenamingGoal),

renaming(R. Resultant, RenamingResultant), /* =/

same_subsuxrion(RenamingResultant, RenamingGoal). /* same_SIR(Goal, Resultant, G, R) *]

* */

»* . . 3 *

/*t***\ / lype.. Goal‘ R.esul[ant’ .G' :R) exPreSSlom . . /

CASE /* relation : there is a substitution 8 such that G . 6 mnclude in Goal */

ASE 9 Subsumes Instance of Resultant /* dR .0 = Resultan */
*t***********#***********************i*********************/ . . a_n .. = Resu t

/* directionnality : in (gr, gr, gr, gr) : out (gr, gr, gr, gr) */

™ *

check(sir, Goal, Resultant, ListGoal, ListResult, Depth, FI, [Goal | ListGoal],
[Resultant | ListResult}):-
check_SIR(Goal, Resultant, ListGoal, ListResult),
length(Goal, G),
length(Resultant, R),
NisG+R,
add_in(3, N).

same_SIR(Geal, Resultant, G, R):-
incl_sub(G, Goal, SubstitutionGoal),
compute_substitution(R, Resultant, SubstitutionResultant),
same_substitution(SubstitutionResultant, SubstitutionGoal).

/*t*******************t**************t****t****#************\

CASE 10 Single Triangle loop checks

*************************************t*****************t***/

check((Full, st), Goal, Resultant, ListGoal, ListResult, Depth, Depth,
{Goal | ListGoal], [Resultant | ListResult]):-
1
check_t(Full, Goal, Resultant, ListGoal, ListResult),
length(Goal, G),
length(Resultant, R),
NisG+R,
add_int(3, N).
check((Full, st), Goal, Resultant, ListGoal, ListResult, Depth, FI,
[Goal | ListGoal], [Resultant | ListResult]):-
length(Goal, G),
length(Resultant, R),
NisG+R,
add_int(3, N).

/***\

CASE 11 Double Triangle loop checks

Nt 20 30 26 30 o 0 00 o 0 0k e e e 3 e K3 i ofe St e o ok e 3k e i ke S o T ok e 46 i e B i e e e K e e K fe K ke e ke ek [
i

check((Full, dt), Goal, Resultant, ListGoal, ListResult, Depth, Depth,
[GoallListGoal],[ResultantiListResult]) :-
!
check_t(Full, Goal, Resultant, ListGoal, ListResult),
length(Goal, G),
length(Resultant, R),
NisG+R,
add_inu(3, N).
check((Full, dt), Goal, Resultant, ListGoal, ListResult, Depth, FI,
ListGoal, ListResult).

* *
/* check_t(Check, Goal, Resultant, ListGoal, ListResulr) x/
f- !
/* 1type : Check in {non, evg, eig,evr,eir,svg,sig,svr,sir} */
/* Goal, Resultant : expressions */
/* ListGoal, ListResult : lists of expressions *f
/* relaton : ListGoal = [Gy, .. ,G,] */
/* ListResult = [Ry, .. ,Ry] */
[* there is no i such that Goal, Resultant is sufficiently */
/* simnilar 0 G;,R; w.r.t. Check */
/* directionnality : in (gr, novar, novar, novar, novar) */
/* : out (gr, novar, novar, novar, fovar) */
r* */

check_t(evg, Goal, Resultant, ListGoal, ListResult):-
check_EVG(Goal, ListGoal).

check_t(eig, Goal, Resultant, ListGoal, ListResult):-
check_EIG(Goal, ListGoal).

check_t(evr, Goal, Resultant, ListGoal, ListResult):-
check_EVR(Goal, Resultant, ListGoal, ListResult).

check_t(eir, Goal, Resultant, ListGoal, ListResult):-
check_EIR(Goal, Resultant, ListGoal, ListResult).

check_t(svg, Goal, Resultant, ListGoal, LisiResult):-
check_SVYG(Goal, ListGoal).

check_t(sig, Goal, Resultant, ListGoal, ListResult):-
check_SIG(Goal, ListGoal).

check_t(svr, Goal, Resultant, ListGoal, ListResulr):-
check_SVR(Goal, Resultant, ListGoal, ListResult).

check_t(sir, Goal, Resultant, ListGoal, ListResult):-
check_SIR(Goal, Resultant, ListGoal, ListResult).

[*E#HEFEFEFHER SR SRR S R R S R R R A
r* FIND THE NEXT GOAL TO SOLVE */
[*EERERF AR RS H AL SR AR RS S H B R

* */
/* find_new_goal_resultani(PrevGoal, PrevResultant, Substitution, */
/* LastVar, NewGoal, NewResultant, NewSubstitution, */
/* NewLastVar) */
* */
/* type : PrevGoal, PrevResultant, NewGoal, NewResultant : expressions */
/* Substrtuton, NewSubstitution : lists of bindings */
/* LastVar, NewLastVar : integers */
/* relation : NewGoal is PrevGoal where we replace the first litteral is */
/* replaced by its body (Body) if it exist else by the atom 'false’ */
/* NewResultant is PrevResultant to which we apply the. */
/* unification computes to found Body */
/* The new variables are numered from LastVar to NewLastVar. */
[* directuonnality : in(gr, gr, gr, gr, var, var, var, var) */
* out(gr, gr, gr, gT, gT, T, &I, g1) */
> */

fud_new_goal_resultant([A | Goal},PrevResultant, Substitution, LastVar,

NewGoal, NewResultant, NewSubstitution, NewLastVar) :-
statistics(runtime, _),
d_clause(A, Goal, NewGoal, SubstitutionClause, LastVar, NewLastVar),
apply_sub_sub(Substitution, SubstitutionClause, NewSubstitution),
statistics(runtime, [_, T)),
add_float(2, T),
statistics(runtime, _),
apply_sub_expr(PrevResultant, SubstitutionClause, NewResultant),
statistics(runtime, [, T1}),
add_float(l, T1),
add_in(2, 1).

r* */
J* d_clause(Head, Goal, NewGoal, Unifier, Number, NewNumber) *5
* *
/* twype: Head:f(y,. .t */
r* = term */
I* Goal, NewGoal : expressions */
/* Unifier : list of bindings */
/* Number, NewNumber : integers */
/* relation : if there is a clause in the program (H :- B) */
/* and an unifier Unifier such that */
1* Head . Unifier = H . Unifier */
I* then Body = B . Unifier */
/* and all the variables that appear in H and B are */
I* renamed, NewNumber - Number is the number of */
/* variables renamed */
/* else NewGoal = [false | Goal], Unifier = [], NewNumber = Number */
/* directionnality : in (gr, gr, var, var, gr, var */
= out (gr, gr, gr, 2T, I, 2r) */
r K
d_clause(Head, Body, Unifier, Number, NewNumber) :-
functor(Head, F, N),
/* This part checks only if there is 27 least a *\
* clause which head unify with Head, it can be removed *
* as the second clause of d_clause if we are not *
* interested in the fact that the interpreter stops *
* when it finds a failing branch */
functor(NewHeadl, F, N),
clause(NewHeadl, B11),
d_unif([NewHead1], [Head], Unifierl),
]
functor(NewHead, F, N),
clause(NewHead, B),
fresh_variables([NewHead | [B]], [H | [B1}]], Number, NewNumber),
append_body_to_goal(B1, Goal, Goall),
d_unif([H], [Head), Unifler),
apply_sub_expr(Goall, Unifier, NewGoal).
d_clause{Head,[false], [], Number, Number).
/* if there is no clause head unifying with Head */

/* */
/* fresh_variables(In, Cut, Number, NewNumber) */
* */
/* type: in, out : expressions */
/* Number, Newnumber : integer */
[* relation : Cut is In where we change all the name of the variables 1o */
/* unused ones */
/* NewNumber - Number is the number of renamed variables */
/* directionnality : in (gr, var, gr, var) : out (gr, gr, gr, gr) */
* */
/* ex: mput In = [f(SX,SY).p(SX.5Z),2g(SY)] */
/* Number =1 */
/* output Qut = [f(SX1,5Y2),p(5X1,5Z3),2(SY2)] */
/* NewNumber = 4 */
* */
fresh_variables(In, Out, Number, NewNumber) :-

list_var(In, [J, List_of var_In),

make_fresh_substitution(List_of_var_In, Substitution, Number,

NewNumber),

apply_sub_expr(In, Substitution, Our).
* */
/* append_body_to_goal(Body, Goal, NewGoal) */
r* */
/* type : Body is the body like you recieve it from clause(Head, Body) */
/* Goal, NewGoal : expressions */
/* relaton : NewGoal = [Body transformed in a list | Goal} *f
* */

append_body_to_goal(true, Goal, Goal) :-
t.

append_body_to_goal(((A.B), Goal, [AIB_Goal]) :-
1

append_body_to_goal(B, Goal, B_Goal).
append_body_to_goal((B, Goal, [BiGoal]).

[EHFEHHHH G RE R ER R B R R R S B R B R B 4R

/* COMPUTE SUBSTITUTION, RENAMING, UNIFICATION, ... */

[RE# SRR R T AR B EHERI R R R R

/*

*/

/*

compute_substitution(Left, Right, Substitution)

*/

/*
/*
/*
/*
/*
/*
/*

type : Left, Right = expressions = lists of terms and/or atoms
Substitution : list of bindings
relation : there is a substitution Substitution such that
Left . Substitution = Right
directionnality : in (gr, gr, var) : out (gr, gr, gr)

*/
*/
*/
*/
*/
=/
*

compute_substtution(Left, Right, Substitution) :-

/*

compute_substitution_1(Left, Right, {], Substitution).

*/

/*
/*
/*

compute_substitution_1(Left, Right, FirstSubstitution,
Substitution)

*/
*/
*/

/*
/*
/*
/*
/*
/*

type : Left, Right = expressions = lists of terms and/or atoms
FirstSubstitution, Substitution : list of binding s
relation : there is a substitution 8 such that Left . 6 = Right
Substitution = {0 | FirstSubstitution]
without duplicates
directionnality : in (gr, gr, gr, var) : out {gr, g1, gr, gT)

*/
*]
*/
*/
*/
*/

/)k

compute_substitution_1([], {], FirstSubstitution, FirstSubstitution) :-

!

compl.x.te_substimtion_l([L I Left], [R | Right], FirstSubsdrution,

Substitution) :-
is_var(L),
!

(member_sub(L, FirstSubstitudon, Term) ->

R =Term,

compute_substitution_1(Left, Right, FirstSubstitution, Substitution)

; compute_substiution_1(Left, Right, {eq(L, R) | FirstSubstitution]
Substtution)

)

compute_substitution_1([L | Left], {R | Right], FirstSubstittion,

Substitution) :-
!

.y

*/

*

/*

functor(L, F, N),

funcror(R, F, N),

L =.[FiListL],

append(ListL, Left, NewLeft),

R =.. [F | ListR],

append(ListR, Right, NewRight),

compute_substitution_1(NewLeft, NewRight, FirstSubstitution,
Substitution).

/*
/*

renaming(Left, Right, Renaming)

*/
*/
*/

/*
/*
/*
/*
/*
/*

type : Left, Right = expressions = lists of terms and/or atoms
Renaming : list of bindings
relation : there is a renaming Renaming such that
Left . Renaming = Right
directionnality : in (gr, gr, var) : out (gr, gr, gr)

*/
*/
*/
*/
*/

renaming(Left, Right, Renaming) :-

compute_substitution(Left, Right, Renaming),
is_renaming(Renaming).

*/

/*
/*
/*

is_renaming(Renaming)

*/
*/

/*
/*
l*
/*
/*

type : Renaming : list of bindings

relation : Renaming = [eq(Vy, Ty), - ,eq(Vy, Tl
Ty, .. , T, are distinct variables

directionnality : in(gr) : out(gr)

*/
*/
*/
*/

is_renaming([]).
is_renaming([eq(_. ,T) | Renaming]) :-

/*

is_var(T),
no_in_renaming(T, Renaming),
is_renaming(Renaming).

*/

*/

/* no_in_renaming(T, Renaming) */
/*)
/* type: T:avariable */
r* Renaming : list of bindings */
/* relation : Renaming = {eq(Vy, Ty). .. .eq(V4, Tyl */
/* Tnotin {Ty, .., Ty} */
/* directionnality : in(gr, gr) : out(gr,gr) */
* i
no_in_renaming(T, (1.
no_in_renaming(T, [eq(_, T1) | Renaming]) :-

Tw—=T],

no_in_renaming(T, Renaming).
* i
/* incl_sub(Left, Right, Substirution) */
f“ i
/* type : Left, Right = expressions = lists of terms and/or atoms *f
/* Substitution : list of bindings *f
/* relation : there is a substitution Substitution such that */
[* Left . Substitution include in Right */
/* directionnality : in (gr, g1, ver) @ out (gr, g1, gr) */
/* K
incl_sub(Left, Right, Substitution) :-

incl_sub_1(Left, Right, [], Substitution).
r* */
/* incl_sub_1(Left, Right, OldSubstitution, NewSubstitution) */
”)
/* type : Left, Right = expressions */
™* = lists of terms and/or atoms */
* OldSubstitution, NewSubstitution : */
* lists of bindings */
/* relation : there is a substitution theta such that */
/* Left . 8 include in Right */
* NewSubstitution = [0 | OldSubstitution] *]
/* directionnality : in (gr, gr, gr, var) : out {(gr, gr, gr, gr) */
f“ K

incl_sub_1({], Right, OldSubsdrtuticn, OldSubstitution).

incl_sub_1({ExprL | Left], [ExprR | Right], OldSubsttution, NewSubstitution) :-

compute_substitution_1([ExprL], [ExprR], OldSubstitution,
NewSubstitutionl),
incl_sub_l(Left, Right, NewSubstitudonl, NewSubstitution).
incl_sub_1(Left, {ExprR | Right], OldSubstirution, NewSubstitution) :-
incl_sub_l(Left, Right, OldSubstitution, NewSubstitution).

" */
/* incl_ren(Left, Right, Renaming) */
I i
/* type : Left, Right = expressions = lists of terms and/or atoms */
/* Renaming : list of bindings */
/* relation : there is a renaming Renaming such that */
/™ Left . Renaming include in Right */
/* directionnality : in (gr, gr, gr, var) : out (gr, gr, gr, gr) */
” */
incl_ren(Left, Right, Renaming) :-
incl_ren_I(Left, Right, [], Renaming).

™ */
/* incl_ren_l(Left, Right, OldRenaming, NewRenaming) */
™ */
/* type : Left, Right = expressions = lists of terms and/or atoms */
/™ OldRenaming, NewRenaming : */
™ lists of bindings */
/* relation : there is a renaming Renaming such that *f
™* Left . Renaming include in Right */
/* NewRenaming = (Renaming | OldRenaming] */
/* directionnality : in (gr, gr. gr. var) : out (gr, gr. gr, gr) */
r~ */

mncl_ren_1([], Right, OldRenaming, OldRenaming).
incl_ren_1([ExprL | Left], [ExprR | Right], OldRenaming, NewRenaming) :-

compute_substitution_1{{ExprL], [ExprR], OldRenaming, NewRenamingl),

is_renaming(NewRenaming1),

incl_ren_l(Left, Right, NewRenamingl, NewRenaming).
incl_ren_1(Left, [ExprR ! Right], OldRenaming, NewRenaming) :-

incl_ren_l(Left, Right, OldRenaming, NewRenaming).

/t‘t.‘.‘ltt!t.‘t-‘ﬂ‘.'taﬂ.‘tt‘tBﬁ.tttttttttttﬁﬁ‘tttt“!*tt*t\

* occur_check(Var, Expr)

-

LI LRI IS ERE R AR ER R L RS R LR A2t LR E R e e R R Rt Bl kL]

* type: Var: vanable
* Expr : single expression
* relation : Var does not occur in Expr

»
»
»

\P*tt#t‘!t*“*ttﬁ***t“#***#ﬁ#tt####**tt*t*ttt*#tt**#*#t***’/

occur_check(Var, Expr) :-
is_var(Expr),
!,
Var \= Expr.
occur_check(Var, Expr) :-

/* not(is_var(Expr) */
Expr=.. _ILT],
occur_check_list(Var, LT).
” i
/* occur_check_list(Var, List) */
Tad : */
/* type: Var: variable */
Thd List : list of atoms and/or terms */
/* relation : Var does not occur in List */
/* directionnality : in (gr, gr) : out (gr, gr) */
fad *

occur_check_list(Var, (]).
occur_check_list(Var, [T 1 Ts)]) :-

occur_check(Var, T),
!

o'ccm_check_list(Var. Ts).

" */
/* d_unif(Left, Right, Unifier) */
r o
/* type : Left, Right = expressions = lists of atoms and/or terms */
/* Unifier : list of bindings */
/* relation : there is a unifier Unifier such that */
/* Left . Unifier = Right . Unifier */
/* directionnality : in (gr, gr, var) : out (gr, gr, gr) */
Jad */

d_unif(Left, Right, Unifier) :-
d_unif_l(Left, Right,], Unifier).

r i
/* d_unif_l(Left, Right, OldUnifier, NewUnifier) =/
” o
/*® type : Left, Right = expressions = lists of atoms and/or terms =/
I* OldUnifie, NewUnifier : lists of bindings =/
/* relation : there is a unifier O such that s/
™ Left. 9 =Right. 9 *f
I* NewUnifier = {6 | OldUnifier . 0] */
/* directionnality : in (gr, gr. gr, var) : out (gr, gr. gr, gr) =f
* i
d_unif_1([Left | Lefts], [Left | Rights], OldUnifier, NewUnifier) :-
is_var(Left),
1
d_unif_1(Lefts, Rights, OldUnifier, NewUnifier).
d_unif_1([Left | Lefts], [Right | Rights], OldUnifier, NewUnifier) :-
/™ not(Left = Right) *f
is_var(Left),
1
occur_check(Left, Right),
apply_binding(Left, Right, Lefts, NewLefts),
apply_binding(Left, Right, Rights, NewRights),
replace_var_sub(Left, Right, OldUnifier, OldUnifierl),
d_unif_1(NewLefts, NewRights, [eq(Left, Right) | OldUnifierl],
NewUnifier).
d_unif_1([Left | Lefts], [Right | Rights}, OldUnifier, NewUnifier) :-
/* not(is_var(Left)) *f
is_var(Right),
!
occur_check(Right, Left),
apply_binding(Right, Left, Lefts, NewLefts),
apply_binding(Right, Left, Rights, NewRights),
replace_var_sub(Right, Left, OldUnifier, OldUnifierl),
d_unif 1(NewLefts, NewRights, [eq(Right, Left) | OldUnifierl],
NewUnifier).
d_unif_1([Left | Lefts], [Right | Rights], OldUnifier, NewUnifier) :-
/* not(is_var(Left)) and not(is_var(Right)) =/

Left =.. [F ListLeft],

Right =.. [F | ListRight],

append(ListLeft, Lefts, NewLefts),

append(ListRight, Rights, NewRights),

d_unif_1(NewLefts, NewRights, OldUnifier, NewUnifier).
d_unif_1({J, (], Unifier, Unifier).

[*REFFHFHEHEH R S R R R

/*

APPLY SUBSTITUTION

*/

[* #HEFHEFHEHAH S R R R R R

r* */
/* apply_binding(Var, Expr, Old, New) */
r* */
/* type : Var = variable */
/* Expr = single expression = term or atom */
/* Old, New = expressions = lists of terms andfor atoms */
/* relation : New is the result of replacing all occurrences */
/* of Var (a variable) in Old by Expr */
5: directionnality : in (gr, gr, gr, var) : out (gr, gr, gr, gr) */
*/
apply_binding(Var, Expr, [], [1).
apply_binding(Var, Expr, [Var | Olds], [Expr | News]) :-
!v
apply_binding(Var, Expr, Olds, News).
apply_binding(Var, Expr, [Old | Olds], [Old | News)) :-
/* not(Old = Var) */
is_var(Old),
L
apply_binding(Var, Expr, Olds, News).
apply_binding(Var, Expr, {Old | Olds], [New | News]) :-
[* not(is_var(Old)) *f

functor(Old, F, N),

functor(New, F, N),

apply_binding F(N, Var, Expr, Old, New),
apply_binding(Var, Expr, Olds, News).

/*

*/

/*

apply_binding F(N, Var, Expr, Old, New)

*/

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

type : N =integer

Var =variable

Expr = single expression = term or atom

Oold =Xy, .. . Xy, - Xme)

New =f£(Yy, ... Yq, s Yy
relation : (Yy, .., Y,) is the result of remplacing all

occurrence of Var (a variable) in (X, .. X)) by Expr
directionnality : in (gr, gr, gr, gr, var) :

out (gr, gr, gr, g1, gr)

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

apply_binding F(N, Var, Expr, Old, New) :-

N>0,

arg(N, Old, Arg),

apply_binding(Var, Expr, [Arg], [Argl]),
arg(N, New, Argl),

N1iis N-1,

1

apply_binding_F(N1, Var, Expr, Old, New).

apply_binding_F(0, Var, Expr, Old, New).

J*

*/

/*

apply_sub_expr(Expr, Substitution, NewExpr)

*/

/*
/*
/*
/*
/*
r*

type : Expr, NewExpr = lists of terms and/or atoms = expressions
Substitution = list of bindings

relation : NewExpr = Expr . Substitution

directionnality : in (gr, gr, var) : out (gr, gr, gr)

*/
*/
*/
*/
*/
*/

apply_sub_expr({], Substitution, {]).
apply_sub_expr{[Var | Expr], Substitution, [NewVar | NewExpr]) :-

is_var(Var),
! ’
(member_sub(Var, Substitution, NewVar) ->
apply_sub_expr(Expr, Substitution, NewExpr)
: NewVar = Var,
apply_sub_expr(Expr, Substitution, NewExpr)

apply_sub_expr([E | Expr], Substitution, [NewE | NewExpr]) :-

/*

/* not(is_var(E))
functor(E, F, N),
functor(NewE, F, N),
apply_sub_expr_F(N, Substitution, E, NewE),
apply_sub_expr(Expr, Substitution, NewExpr).

*/

/*
/*

apply_sub_expr_E(N, Substitution, OldFunc, NewFunc)

/*
/*
/*
/*
/*
/*
/*

type : N: integer

Substitution = list of bindings

OldFunc = (X, .. . XN, - +Xmy)

NewFunc = f(Y1, .. ,YN, - » ¥my)
relation : (Yy, .., ¥n) = (X1, .. . Xy) - Substitution
directionnality : in (gr, gr, gr, var) : out (gr, gr, gr, gr)

apply_sub_expr_F(0, Substitution, OldFune, NewFunc).
apply_sub_expr_F(N, Substitution, OldFunc, NewFunc) :-

N>0,

arg(N, OldFunc, Arg),

apply_sub_expr([Arg], Substitution, [NewArg]),

arg(N, NewFunc, NewArg),

Ni1isN-1,

apply_sub_expr_F(N1, Substitution, OldFunc, NewFunc).

/*

[F#R SR AR R R

* MANIPULATION OF THE SUBSTITUTIONS

*/

[Fé# RS A SRR S R R

*

/*

replace_var_sub(Var, Term, OldUnification, NewUnification)

*/

/*
/*
/*
/*
/*
/*
/*
/*

type : Var =variable
Term = term
OldUnification, NewUnification : lists of bindings

relation : NewUnification is the result of remplacing all occurrence of

Var (a variable) in T; of OldUnification by Term
directionnality : in (gr, gr, gr, var) : out (gr, g1, &I, g1)

*/
*/
*/
*/
*/
*/
*/
*/

replace_var_sub(Var, Term, [], {])-

replace_var_sub(Var, Term, [eq(V, T) | Olds], {eq(V, NewT) | News]) :-

/*

apply_binding(Var, Term, [T], [NewT)),
replace_var_sub(Var, Term, Olds, News).

/*

same_substitution(Subl, Sub2)

/*
/*
/*
/*
/*
/*
/*

type : Subl, Sub2 : lists of bindings

relation : Subl = [eq(Vy, T}), ...eq(V, Tl
Ssz = [eQ(le Sl)y . veq(wmy Sm)]
for all Vi = WJ then Tl = SJ

directionnality : in (gr, gr) : out (gr, gr)

same_substitution([], Sub2).
same_substituton([eq(V, T) | Subl], Sub2) :-

member_sub(V, Sub2, T1),
!

T=T1,
same_substitution(Subl, Sub2).

same_substitution([S | Sub1],Sub2) :-

/* not(member_sub(V, Sub2, T1))
same_substitution(Subl, Sub2).

*/

* */
/* apply_sub_sub(Substl, Subst2, NewSubstl) */
/* */
/* type : Substl, Subst2, NewSubstl : lists of bindings */
/* relation : Substl = [eq(Vy, Ty), .. ,eq(Vy, T_n)] */
* Subst2 = [eq(W, Sy, .. .eq(Wig, Sp)] */
I* NewSubstl = [eq(Vy, T, .- ,eq(Vy, T)] */
1* Ty =T; . Subst2 and it remove it if T;' = V; */
/* directionnality : in (gr, gr, var) : out (gr, gr, gr) */
/* */
apply_sub_sub([], Subsi2, []).

apply_y_sub__sub([eq(V, T) | Substl], Subst2, [eq(V, NewT) | NewSubstl]) :-

.apply_sub_expr([T], Subst2, [NewT]),
apply_sub_sub(Substl, Subst2, NewSubstl).

I* */
/* make_fresh_substitution(ListVar, Substitution, Number, NewNumber) */
* */
/* type : ListVar : list of variables */
/* Substitution : list of bindings */
/* Number, NewNumber : integers */
/* relation : ListVar = [V_1, ..,V_n] */
/* Substitution = [eq(V,, YV, .Number), .., */
/* eq(Vy, V{ Number+n-1)] */
/* NewNumber = Number +n */
[* directionnality : in (gr, var, gr, var) : out (gr, gr, g, gr) */
* */

make_fresh_substitution([], {], Number, Number).
make_fresh_substitution([Var | ListVar], [eq(Var, NewVar) | Substitution],

Number, NewNumber) :-
name(Var, ASCII_Var),
name(Number, ASCII_Number),
append(ASCII_Var, ASCII_Number, ASCII_NewVar),
name(NewVar, ASCII_NewVar),
Numberl is Number + 1,
make_fresh_substitution(ListVar, Substitution, Numberl, NewNumber).

e i
/* member_sub(Var, Substitution, Expr) */
r* */
/* type: Var:variable */
/* Substitution : list of bindings */
/* Expr : term or atom */
/* relation : Substitudon = [eq(Vy, Ty), .. ,eq(V,, To)l */
/* thereisisuch that V="V;thenT=T; */
/* directionnality : in (gr, gr, var) : out (gr, gr, gr) */
I* */
member_sub(Var, [eq(Var, Expr) | Substitution], Expr) :-
N

member_sub(Var, {S | Substitution], Expr) :-

/* noy(Var = §) */

member_sub(Var, Substitution, Expr).

[*RE#EHH RS AR SRR SR R SRR

I* GENERAL PREDICATES

*/

JR S e G e s i

:- compile(library(basics)).
/* the definitions of member and append */
I* */
/* list_var(Expression, OldList, NewList) */
/* */
/* type : Expression = list of terms and/or atoms = expression */
1* NewlList, OldList = lists of variables */
/* relation : NewList is (OldList + the list of Expression's */
[* variables) without duplicates */
/* directionnality : in (gr, gr, var) : out (gr, gr, gr) */
* ™
list_var([], OldList, OldList).
list_var([Var | Expression], OldList, NewList) :-

is_var(Var),

5

(memberchk(Var, OldList) ->

list_var(Expression, OldList, NewList)

; list_var(Expression, [Var | OldList], NewList)

).
list_var([Func | Expression], OldList, NewList) :-

/* not(is_var(Func)) */

Func =.. [_ | NewFunc],

append(NewFunc,Expression, NewExpression),

list_var(NewExpression, OldList, NewList).
/* */
/* is_var(Var) */
r* */
/* relation: Varis a variable (Var is of the form $...) */
I* 36 is the ASCII code of $ */
/* directionnality : in (gr) : out (gr) */
* */
is_var(Var) :-

atomic(Var),

name(Var, [36 | _]). /*[36]="% */

:- compile(counter).

/* compile the counter predicates */
/* init_int/1, add_int/2, read_int/2, init_float/2, add float/2,read_float/2 */

[RHH R R R R R R R R
/* here is the code of the C program that is used to manipulate the counters */
[RE#HEHBHEHRHHHEHEHH S S ES A R SRR R R

#ifndef lint
static char SCCSid[] = "@(#)90/01/14 counter.c ";
#endif

long ctr_int{5];
float ctr_float[5];

void init_integer(Counter)
int Counter;
{ crr_int[Counter] = 0; }

void add_integer(Counter, Value)
int Counter;
long Value;
{ ctr_int{Counter] = ctr_int[Counter} + Value; }

long read_integer(Counter)
int Counter;
{ return(ctr_int{Counter]); }

void mit_real(Counter)
int Counter;
{ cur_float[Counter] = 0; }

void add_real(Counter, Value)
int Counter;
float Value;
{ ctr_float[Counter] = ctr_float{Counter] + Value; }

float read_real(Counter)
int Counter;
{ return{ctr_float{Counter]); }

Appendix B

Another meta-interpreter

Here is given the code of the procedure solve and find_new_goal_result presented
in subsection 3.3.4. The other procedures of the meta-interpreter are the
same as in the previous one.

This meta-interpreter only stops when it finds a solution.

V2

r* */
/* solve(Check, Goal, Resultant, Substitution, ListGoal, */
/* ListResult, LastVar, Depth, Derivation) */
* */
/* type : Check in { non, empty, evg, eig, evr, eir, svg, sig, svr, sir, */
/* (evg,st), (eig,st), (evr,st), (eir,st), (svg,st), (sig,st), (svr,st), */f
/* (sir,st), (evg,dt), (eig,dt), (evr,dt), (eir,dt), (svg,dt), (sig,dt), */
/* (svr,dt), (sir,dr)}. */
/* Goal, Resultant : expressions */
/* Substitution : list of bindings */
[* ListGoal, ListResult, Derivation : lists of expressions */
[* LastVar, Depth : integers */
[* relation : */
/* When the derivation is */
[* Go=> {C1,8;} ..=>Gy 1= {C.B)G */
/* has been constructed, the meanings of the parameters are the following: */
1* Goal = Gy (also used for loop checking); */
/* Substitution = the list of bindings representing 91...8x *f
[* restricted to the variables of Gy */
[* LastVar = the number of variables used (needed for */
/* standardization apart.) */
/* Input parameters for loop checking: */
/* Check = the loop check that is used; */
1* Resultant = GOSI...Sk; */
I* ListGoal = [Gy.1, ., Go); */
[* ListResult = [GQSI...Sk, ey Go]; */
/* Depth = k. */
r* Fi=1210+1)and 1/20-1)-I<D<12i(i+1) */
/* ifD=Fl thenD is a riangular number */
/* If a double wiangular check is used, ListGoal (ListResult) *f
/* contains only the goals (resultant heads) with a triangular */
/* index. When "non" is used, these lists are not maintained. */
/* ListResult is only maintain for loop checks for resultants */
/* or "empty" loop check. */

/* if a solution is found (the goal to be solved is empty)

solve(Check, [], Resultant, Substitution, ListGoal, ListResult,

LastVar, Depth,], FI) :-
nl, write(Substitution).
/* used to solve built-in predicates, define is syst

solve(Check, [Literal | Goall], Resultant, Substitution, ListGoal,

ListResuilt, LastVar, Depth, I, FI) :-
syst(Literal), !,
call_syst(Literal, CAS),
apply_sub_expr(Goal, CAS, NewGoal),
apply_sub_expr(Resultant, CAS, NewResultant),
apply_sub_sub(Substitution, CAS, NewSubstitution),
update_detph(Depth, I, FI, NewDepth, Newl, NewFI),
soive(Check, NewGoal, NewResultant, NewSubstitution,

[NewGoal | ListGoal], [NewResultant | ListResult],

LastVar, NewDepth, New], NewFI).
/* we perform the loop check (Check) to see if we can continue, then
/* we compute the next goal to be solved and the substitution
J* (NewSubstitution) and the new resultant (NewResultant) and solve
[* the new goal

solve(Check, Goal, Resultant, Substitution, ListGoal, ListResult,

LastVar, Depth, I, FI) :-
/* Goal is not empty and ists first literal is not a built-in predicate
check(Check, Goal, Resultant, ListGoal, ListResult,
Depth, FI, NewListGoal, NewLijstResult),
1
find_new_goal_resultant(Goal, Resultant, Substitution, LastVar,
NewGoal, NewResultant, NewSubstitution, NewLastVar),
update_detph(Depth, I, FI, NewDepth, Newl, NewFI),

solve(Check, NewGoal, NewResultant, NewSubstitution, NewListGoal,

NewListResult, NewLastVar, NewDepth, Newl, NewFI).

*/

*/

*/
*/
*/
*/

r* */
/* find_new_goal_resultant(PrevGoal, PrevResultant, Substitution, */
/* LastVar, NewGoal, NewResultant, NewSubstitution, */
I* NewLastVar) */
/* */
/* type : PrevGoal, PrevResultant, NewGoal, NewResultant : expressions */
r* Substitution, NewSubstitution : lists of bindings */
1* LastVar, NewLastVar : integers */
/* relation : NewGoal is PrevGoal where we replace the first litteral by its */
I* body (Body) if it exist else by the atom 'false’ */
I* NewResultant is PrevResultant to which we apply the */
/* unification computes to found Body */
/* The new variables are numered from LastVar 1o NewLastVar. */
/* directonnality : in(gr, gr, gr, gr, var, var, var, var) */
I* ou(gr, gr, gr, g1, gf, 8T, gF, gr) */
* */

find_new_goal_resultant([A | Goal],PrevResultant, Substitution, LastVar,
NewGoal, NewResultant, NewSubstitution, NewLastVar) :-

statistics(runtime, _),

d_clause(A, Goal, NewGoal, SubstitutionClause, LastVar, NewLastVar),

apply_sub_sub(Substitution, SubstitutionClause, NewSubstitution),
statistics(runtime, [_ , T)),
add_float(2, T),
statistics(runtime, _),

apply_sub_expr(PrevResultant, SubstitutionClause, NewResultant),
statistics(runtime, [, T1}),
add_float(1, T1),
add_int(2, 1).

/*

/*

d_clause(Head, Goal, NewGoal, Unifier, Number, NewNumber)

/*
J*
/*
I*
'/*
I*
[*
/*
I*
[*
/*
/*
/*
/*
J*
/*

type : Head: f(t;, .. ,t,)
L = term
Goal, NewGoal : expressions
Unifier : list of bindings
Number, NewNumber : integers
relation : if there is a clause in the program (H :- B)
and an unifier Unifier such that
Head . Unifier = H . Unifier
then Body = B . Unifier
and all the variables that appear in H and B are
renamed, NewNumber - Number is the number of
variables renamed
directionnality: in (gr, gr, var, var, gr, var) :
out (gr, gr, gr, gr, &I, gr)

d_clause(Head, Goal, NewGoal, Unifier, Number, NewNumber) :-

functor(Head, F, N),

functor(NewHead, F, N),

clause(NewHead, B),

fresh_variables([NewHead | {B]], [H ! [B1]], Number, NewNumber),
d_unif([H], {Head}, Unifier),

append_body_to_goal(B1, Goal, Goall),
apply_sub_expr(Goall,Unifier, NewGoal).

Appendix C

The pre-compiler

Here is the code of the pre-compiler presented in the chapter 4. It transforms
a PROLOG program into another PROLOG program that uses the loop
checking mechanisms (in fact calls the procedure loop.check).

The call to the pre-compiler is

pre_compile(InputFile, OutputFile, UserQuery, Arity)
where
IhputFile is the name of the file that contains the program;
OutputFile is the name of the file where the transformed program is written:

UserGoal is the name of the predicate that the user uses as a query gnd Arity
its arity.

When the user asks the query he has to add a last parameter which is
the kind of loop check to be performed. The procedure loop_check must be
loaded with the transformed program.

=1
fon |

[EHEHEH R R R R R

I* Jean HENRARD 14 may 1991 */
r* CWI - Amsterdam - The Netherlands */
/* FNDP - Namur - Belgium */

[*EEFFHSBE R R AR R R

[*HEHB R RS R R R R R

/* There is the structure of the pre_compile program */
/* pre_compile *f
/* wansform_clause */
I* print */
/* protray */
/* write_body */
r* find_dupl */
/* find_dupl_F . */
I* append */
I* member_var */
I* make_new_head */
1* append */
/* make_new_body ' */
I* make_new_body_1 */
I* transform_literal */
* sys *
I* append *f
/* mlb */
r* add_unif */
/* make_user_goal */
/* create_list_var */
/* append */
I* print */
r* protray */
/* write_body */

[*EEFERFRFHE R R R S S |

pre_compile(InputFile, OutputFile, UserGoal, Arity)

type : InputFile, OutputFile, UserGoal : atoms
Arity : mnteger
relation and side effect
InputFile is the name of an existing file
It creates a new clause :
UserGoal(Xy, .. Kty Check):-
UserGoal(Ay, .. .Xangy» Check,
[[OldHead]], [OldHead],
[OldHead],OldHead,0,ListGoal,
ListResult, LastGoal, Depth).
with OldHead = UserGoal(Xy, .. ,X griry) and puts it in the file
OutputFile.
Transforms the program of file InputFile to a new
program that uses the loop_checking and puts this new
program in the file OutputFile after the clause
"UserGoal (..)"
directionnality : in (gr, gr, gr, gr) : out (gr, gr, g1, gr)

e -~
I I I A R NI S T A R N A

*****************K‘*}

o
~

pre_compile(InputFile, OutputFile, UserGoal, Arity):-
see(InputFile),
tell(OurputFile),
write('/* new program created by transforming the file),
write(InputFile),
write(" */), nl,
make_user_goal(UserGoal, Arity),
read(Clause),
transform_clause(Clause),
seen,
told.

/***\

* transform_clause(OldClause)

*

e ke e s ke 2k s ke e e ok ke 3 ok ok ok e ol e Sk 3 3¢ Sl Sk ke Stk 6 ok 36 ok ke e sk ke sfe ok ek ok 3 e ok ok K 3 K ok 6k ok e e kR

* type : OldClause : aclause

* relation : transforms (to use de loop checking) all the clauses
* from OldClause to the end of the input stream and puts
* the transform edclauses into the output stream.

* directionnality : in (gr) : out (gr)

* ¥ ¥ *

x*

***/

transform_clause('end_of_file'):-
!
transform_clause(OldClause):-
* OldClause \== 'end_of_file' */
/¥ check if OldClause has a body (OldClause is a
/* function with two arguments and ":-' as functor)
name(F, [58, 45)), /*[58,45) ="
functor(OldClause, F, 2),
1
[*makes the head of the newclause
arg(1, OldClause, Headl),
find_dupl(Headl, {], ListCouple, Head, ListVar),

make_new_head(Head, Check, ListGoal, ListResult, LastGoal,

Resultant, Depth,
LastListGoal, LastListResult, LastlLastGoal,
LastDepth, NewHead),
/* makes the body of the new clause
arg(2, OldClause, OldBody),
make_new_body(OldBody, Check, ListGoal,
ListResult, LastGoal, Resultant, Depth,
LastListGoal, LastListResult, LastLastGoal,
LastDepth, NewBody),
add_unif(NewBody, ListCouple, NewBody1),
/* creates the new clause
functor(NewClause, F, 2),
arg(1, NewClause, NewHead),
arg(2, NewClause, NewBodyl),
/* prints the new clause in the output stream
print(NewClause),
/* read the next clause in the input stream
read(NextClause),
transform_clause(NextClause).

*/
*/
*/

*/

*/

*/

*/
*/

transform_clause(OldClausel):-

/* OldClause has no body (it isn't a function with

/* ':- as functor

/* makes the head of the newclause
find_dupl(OldClausel, [], ListCouple, OldClause, ListVar),
make_new_head(OldClause, Check, ListGoal, ListResult, LastGoal,

Resultant, Depth,

LastListGoal, LastListResult, LastLastGoal,

LastDepth, NewHead),

[* makes the body of the new clause
add_unif(loop_check(Check, [], ListGoal, ListResult, LastGoal,

Resultant, Depth, LastListGoal, LastListResult,
LastLastGoal, LastDepth),

ListCouple, NewBody),

/* creates the new clause
name(F, [58, 45]),
functor(NewClause, F, 2),
arg(1, NewClause, NewHead),
arg(2, NewClause, NewBody),

[* prints the new clause in the output stream
print(NewClause),

[* read the next clause in the input stream
read(NextClause),
transform_clause(NextClause).

*/
*/
*/

*

*/

*/
*/

%

make_new_head(Head, Check, ListGoal, ListResult, LastGoal,
Resultant, Depth, LastListGoal, LastListResult,
LastLastGoal, LastDepth, NewHead)

type : Head, NewHead : terms

Check, ListGoal, ListResult, LastGoal, Resultant, Depth,

LastListGoal, LastListResult, LastLastGoal, LastDepth :
variables

relation : Head = (X, .. ,X;)

NewHead = £(X;, .. X,.Check, ListGoal, ListResult, LastGoal,
Resultant, Depth, LastListGoal, LastListResultant,
LastLastGoal, LastDepth)

directionnality :

in (novar,var,var,var,var,var,gr,var,var,var,var,var) :

out (novar,var,var,var,Vvar,var,gr,var,var,var,gr,novar)

***************}

make_new_head(Head, Check, ListGoal, ListResult,

LastGoal, Resultant, Depth,
LastListGoal, LastListResult, LastLastGoal, LastDepth,
NewHead):-
Head =..ListArg,
append(ListArg, [Check, ListGoal, ListResult,
LastGoal, Resultant, Depth,
LastListGoal, LastListResult,
LastLastGoal,LastDepth],
NewListArg),
NewHead =.. NewListArg.

*
~

make_new_body(OldBody, Check, ListGoall, ListResultl, LastGoall,
Resultant, Depthl,
LastListGoal, LastListResult, LastLastGoal, LastDepth,
NewBody)

/*
*
*
*
*
*

* This procedure allows the user to say if he is sure that the clause

* can not generate a loop, he put "no_loop_check” as the first literal
* of the body. Then the precompiler produces a body that does not

* performs the loop check but just updates the differents parameters
* (this is done by using the kind of loop check "non").

s

type : OldBody, NewBody :
Check, ListGoall, ListResultl, LastGoall, Resultant, Depthl,
LastListGoal, LastListResult, LastLastGoal, LastDepth :
variables
relation : OldBody = (b1(Y1), . ,ba(Yo)
if b; = 'no_loop_check’
then NewBody = (
loop_check(non, ListBody, ListGeal, ListResult, LastGoal,
Resultant,Depth,ListGoall, ListResultl,LastGoall,
Depthl %
b2(Yq,non,ListGoaly, .. Depth;, ListGoal,, ... ,Depthy),
by (Y .non,ListGoal,, .. ,Depth,
LastListGoal, .. ,LastDepth)).
else NewBody = (
loop_check(Check,ListBody,ListGoal,ListResult,
LastGoal,Resultant,Depth,ListGoal,,
ListResulty,LastGoal;,Depth,),
b1(Y;,Check,ListGoal;, .. Depthy,
ListGoaly, ... ,Depth,)s
b,(Y,,Check,ListGoal,, .. ,Depth,,
LastListGoal, .. ,LastDepth)).
directionnality :
in (novar,any,var,var,var,var,gr,var,var,var,var) :
out (novar,any,var,var,var,var,grvar,var,var,novar)

¥ % & K X X K K K X K ¥ K K K ¥ ¥ ¥ ¥ X ¥ H ¥ X X

%

*************************************}

*
-~

make_new_body(('no_loop_check',OldBody), Check, ListGoal, ListResult,

LastGoal, Resuitant, Depth,
LastListGoal, LastListResult, LastLastGoal, LastDepth,
NewBody):-

1

make_new_body_1(OldBody, non, ListGoall, ListResultl, LastGoall,
Resultant, Depthl,
LastListGoal, LastListResult, LastLastGoal, LastDepth,
NewBody1),

mlb(OldBody, ListBody),

NewBody = (loop_check(non, LisitBody, ListGoal, ListResult,
LastGoal, Resultant, Depth, ListGoall, ListResultl,
LastGoall, Depthl),

NewBodyl).
make_new_body('no_loop_check’, Check, ListGoal, ListResult, LastGoal,
Resultant, Depth, .
LastListGoal, LastListResult, LastLastGoal, LastDepth,
NewBody):-

!

NewBody = loop_check(non, [], ListGoal, ListResult, LastGoal,
Resultant, Depth,

LastListGoal, LastListResult, LastLastGoal, LastDepth).

make_new_bedy(OldBody, Check, ListGoal, ListResult, LastGoal,

Resultant, Depth,

LastListGoal, LastListResult, LastLastGoal, LastDepth,

NewBody):-

/* OldBody \== (no_loop_check, Body) */

make_new_body_1(OldBody, Check, ListGoeall, ListResultl, LastGoall,

Resultant, Depthl,

LastListGoal, LastListResult, LastLastGoal, LastDepth,

NewBody1),

mlb(OldBody, ListBody),

NewBody = (loop_check(Check, ListBody, ListGoal, ListResult,
LastGoal, Resultant, Depth, ListGoall, ListResultl,
LastGoall, Depthl),

NewBodyl).

-
.
.
.
.
.
.
»
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
N
.
.
.
.
.
.
1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

make_new_body_1(OldBody, Check, ListGoall, ListResultl, *
LastGoall, Resultant, Depthl, *

*

*

* ¥ ¥ *

LastListGoal, LastListResult, LastLastGoal, LastDepth,
NewBody)
type : OldBody, NewBody :
Check, ListGoall, ListResultl, LastGoall, Resultant,
Depthl, LastListGoal, LastListResult, LastLastGoal,
LastDepth : variables
relation : OldBody = (b1(Y 1), .. .bo(Yo)) n>=1
NewBody = (by(Y;,Check,ListGoal, .. Depth,
ListGoaly, ... ,Depthy),
b,(Y,,,.Check,ListGoal, .y, .. ,Depthy. 1,
LastListGoal, .. ,LastDepth))-
directionnality :
in (novar,any,var,var,var,var,gr,var,var,var,var) :
out (novar,any,var,var,var,var,grvar,var,var,novar)

* ¥ K ¥ ¥ K K X X X ¥ ¥ ¥
* K K X X ¥ ¥ X ¥ K X X ¥

e
*
*

~

make_new_body_1((Arg, Next), Check, ListGoal, ListResult, LasiGoal,
Resultant, Depth,
LastListGoal, LastListResult, LastLastGoal, LastDepth,
(NewArg, NewNext)):-
!
transform_literal(Arg, Check, ListGoal, ListResult, LastGoal,
Resultant, Depth, ListGoall, ListResultl, LastGoall,
Depthl, NewArg),
make_new_body_1(Next, Check,
ListGoall, ListResultl, LastGoall, Resultant,Depthl,
LastListGoal, LastListResult, LastLastGoal, LastDepth,
NewNext).
make_new_body_1(LastArg, Check, ListGoal, ListResult, LastGoal, Resultant,
Depth,
LastListGoal, LastListResult, LastLastGoal. LastDepth,
NewLastArg):-
transform_literal(LastArg, Check, ListGoal, ListResult, LastGoal,
Resultant, Depth, LastListGoal, LastListResult,
LastLastGoal, LastDepth, NewLastArg).

/ PN TINI NI NI NIININ NI NIE SN INNINIIIIIIIIIIINIINIIIINIIINIINININIIININIIIIYNY \

* rransform_literal(Literal, Check, ListGoal, ListResult,
* LastGoal, Resultant, Depth, NextListGoal,
* NextListResult, NextLastGoal, NextDepth,
* newLiteral)

* # K * %

TEII AN IR IIIININNNIIINNIIIIIINNI923990959993 179999933999 939232%93959332979932399379

* This procedure allows to define some "system predicate” that we do
* not have to wansform.

*
*

P IIIII I IIINIYSNNIIIIIIN TN IIIIIIIININNIIIIIINNNNIIINININIINNIIIIIINIININIITY

* type : Literal, NewLiteral : terms

* Check, ListGoal, ListResult, LastGoal, Resultant, Depth,
* NextListGoal, NextListResult, NextLastGoal, NextDepth :
* variables

* relation : if syst(Literal)

* then Newliteral = Literal

* and ListGoal = NextListGoal

* ListResult = NextListResult

* LastGoal = NextLastGoal

* Depth = NextDepth

* else (not(syst(Literal))), Literal = {X;, .., X))

* NewlLiteral = f(X;, .., X, Check, ListGoal, ListResult,
* LastGoal, Resultant, Depth, NextListGoal,

* NextListResult, NextLastGoal, NextDepth

* directionnality :

* in(novar,any,var,var,var,var,var,var,var,var,var,var) :

* out(novar,any,var,var,var,var,var,var,var,var,var,novar)
*

T YIIIIIIIIINIIIIIIIIIII I IYIIIEITIIAIIIIIINIIINIISYYINITIINIIINIININIIIINIIININIIIIIIIIVIIIIIGEY

transform_literal(Literal, Check, ListGoal, ListResult, LastGoal,
Resultant, Depth, ListGoal, ListResult, LastGoal, Depth,
Literal):-
syst(Literal),
!

transform_literal(Literal, Check, ListGoal, ListResult, LastGoal,

Resultant, Depth, NextListGoal, NextListResult, NextLastGoal,

NextDepth, NewLiteral):-
/* not(syst(Literal))
Literal =.. ListLiteral,

append(ListLiteral, {Check, ListGoal, ListResult, LastGoal, Resultant,

Depth, NextListGoal, NexiListResult, NextLastGoal,
NextDepth],
NewListLiteral),
NewLiteral =.. NewListLiteral.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*/

*/

syst(unif(L1, L2)).
syst(L1=L2).
syst(!).

find_dupl(Head, ListVar, ListCouple, NewHead, NewListVar)

-type : Head, NewHead : termns
ListVar, NewListVar : lists of variables
ListCouple : list of lists of 2 elements
relation : the variables that appear in Head = X, .. X,

and Xu = XIZ' . Xkl = sz

with X1y - Xy in [Xq, .. ,.X,] union ListVar
Xizo Kz in [Xy, - Xp)

ListCouple = [[X1,X'12], .- .[Xy1.X'k2]]

NewHead is Head where X, .. Xy, are replace by
X2, - X2l

X'y, .. » Xy are variables that are unique (new variables)

directionnality : in(novar, novar, var, var, var) :
out(novar, novar, novar, novar, novar)

* ¥ K K X X X ¥ X X X X X X *-\¥

%

***************}

*
~—

find_dupl(Head, ListVar, [[Head, Var]], Var, ListVar):-
var(Head),
member_var(Head, ListVar),
1

find_dupl(Head, ListVar, [}, Head, [Head | ListVar]):-

/* not(member_var(Head, ListVar))

var(Head),
!

find_dupl(Head, ListVar, ListCouple, NewHead, NewListVar):-
/* not(var(Head))
functor(Head, F, N),
functor(NewHead, F, N),

find_dupl_F(N, Head, ListVar, ListCouple, NewHead, NewListVar).

find_dupl_F(0, Head, ListVar, []J, NewHead, ListVar).

*/

*/

find_dupl_F(N, Head, ListVar, ListCouple, NewHead, NewListVar):-

~—~
*

* K K ¥ ¥ X X ¥ ¥ ¥

%

N>0,

arg(N, Head, Arg),

find_dupl(Arg, ListVar, ListCouplel, NewArg, ListVarl),

arg(N, NewHead, NewArg),

N1lisN-1,

find_dupl F(N1, Head, ListVarl, ListCouple2, NewHead, NewListVar),
append(ListCouplel, ListCouple2, ListCouple),

1

add_unif(Body, ListCouple, NewBody)

type : Body, NewBody : clauses
ListCouple : list of lists of 2 elements
relation : ListCouple = [[X1.X12], .. .[Xp1.%02]]
Body=(L,,...L) m>=1
NewBodyClause = (unif(X;1.X12), .. unif(X;;.X,2).
Ly, - L)
directionnality : in(novar, novar, var)
: out(novar, novar, novar)

n>=0

* * K K X K K K X ¥ }

add_unif(Body, [], Body).
add_unif(Body, [[X, Y] | ListCouple], (unif(X, Y), NewBody)):-

add_unif(Body, ListCouple, NewBody).

*
~

/***\

*

make_user_goal(Name, Arity)

*

e 3 24 o 3 24 e e 6 e 36 4 S v 3k 3 e S e el s sk 3 s ke K ke S ok S sk S ek e e B ok e ke sk ko ok Sk 3 sk e 3 sk e e kR

LR S BN R R B A

*

type : Name : atom
Arity : integer
relation : puts on the output stream the clause :
Name(X, .. Xarity.Check):-
copy_term([OldHead],OldHeadChange),
Name(X}, .. Xy Check,[OldHeadChange],
OldHeadChange,[OldHead],0ldHead, 0,
ListGoal,ListResult,LastGoal,Depth).
where OldHead = Name(Xl, - ,X Ax'lty)
directionnality : in (gr, gr) : out (gr, gr)

*

* ¥ ¥ K K * * ¥

*

***/

make_user_goal(Name, Arity):-

G X % % ¥ % % F

/* creating the head */
create_list_var(Arity, ListVar),
append(ListVar, [Check], ArgHead),

Head =.. [Name | ArgHead],
/* creating the body */
OldHead =.. [Name | ListVar],
append(ListVar, [Check, [OldHeadChange], OldHeadChange, [OldHead],
OldHead, 0, ListGoal,
ListResult, LastGoal, Depth],
ArgNewHead),

NewHead =.. [Name | ArgNewHead],

[* creating the clause *f
name(F, {58, 45), J* [58, 45] = = */
functor(Clause, F, 2),
arg(1, Clause, Head),
arg(2, Clause, (copy_term([OldHead], OldHeadChange),

NewHead)),
print(Clause).

’I\
create_list_var(N, ListVar) *
*
type : N : integer *
ListVar : list of variables *
relation : ListVar is a list of N differents variables *
directionnality : in (gr, var) : out (gr, listvar) *
*/

create_list_var(0, []).
create_list_var(N, [Var | ListVar]):-

N>0,
N1lisN-1,
create_list_var(N1, ListVar).

I "
* portray(Clause) *
* *
* type : Clause: clause *
* side effect : prints the clause Clause on the output stream *
* if Clause = h(X) :- by (Yy), ...by(Yy) *
* then it prints *
* h(X):- *
* by (Y1), *
* swe *
* ba(Yn)- *
* directionnality : in (gr) : out (gr) *

* ¥

portray(Clause):-

name(F, [58, 45]), /* [58, 45] ="' */
functor(Clause, F, 2),

arg(1, Clause, Head),

write(Head), write(F),

arg(2, Clause,Body),

write_body(Body),

write("."),

nl.

D ettt ettt et e tn e s e i s e te e s ee =\

* write_body(Body) *
e ttesesssannnteasaneanteantsaesanaaantannteae e taanenetan e n—aannaneaaannaantancaanaaanns *

* type:Body: *

* side effect : prints Body on the output stream. *

* directionnality : in (gr) : out (gr) *
A et ettt e e e re et as e ee e te e e ea s et s baaeseaaneaae */

write_body((Arg, Body)):-
1
nl,
tab(8),
write(Arg),
write(',),
write_body(Body).
write_body(Arg):-
nl,
tab(8),
write{Arg).

:- compile(library(basics)).

/* the definitions of memberchk and append */
member_var(X, [Y ! Ls]):-

X==Y,

1.
member_var(X, [L | Ls]):-

member_var(X, Ls).
* */
/* mlb(Body, ListBody) *f
/* i
/* type : Body is the body like you recieve it from */
I* clause(Head, Body) */
/* ListBody : expression */
/* relation : ListBody = Body ransformed in a list */
r* */

mib(true, []):-
L

mib(,'(B, Body), [B | ListBody]):-
!

mlb(Body, ListBody).
mlb(Body, [Body]).

Appendix D

The loop_check procedure

Here is the code of the loop_check procedure that must be used with pre-
compiled programs.

83

VR S R S s i s s

I* Jean HENRARD 14 may 1991 */
/* CWI - Amsterdam - The Netherlands */
r* FNDP - Namur - Belgium */

[HEFESH SR R R R R S R

~
*

loop_check(Check, Body, ListGoal, ListResult, LastGoal,
Resultant, Depth, NewListGoal, NewListResult,
CurrentGoal, NewDepth)

type : Check in { non, empty, evg, eig, evr, eir, svg, sig, svr, sir,
(evg,st), (eig,st), (evr,st), (eir,st), (svg,st), (sig,st), (svr,st),
(sir,st), (evg,dt), (eig,dt), (evr,dt), (eir,dt), (svg,dt), (sig,dt),
(svr,dt), (sir,dt)}.
Body : expression
ListGoal, ListResult, NewListGoal, NewListResult :
lists of expressions
LastGoal, Resultant, CurrentGoal : expressions
Depth, NewDepth : integers
relation : NewListGoal = the new list of the goals need for the further
loop_check
NewListResult = the new list of the resultants need for the
further loop_check
CurrentGoal is the current goal to be solve = LastGoal with its
first element replaces by Body
NewDepth = Depth + 1
directionnality :
in (gr,novar,novar,novar,novar,novar,gr,var,var,var,var)
out (gr,novar,novar,novar,novar,novar,gr,novar,novar,novar,gr)

***********************}

* Ok * K K R R K KX X KK KKK XX XK KX

-
*
*
~

P

loop_check(Check, [], ListGoal, ListResult, [H], Resultant, Depth,
{[1! ListGoal], ListResult, {], NewDepth):-
!
NewDepth is Depth + 1,
nl, write('true),
nl, write([[] | ListGoal]),
nl, write(NewDepth).
loop_check(Check, Body, ListGoal, ListResult, [H | Goal], Resultant, Depth,
NewListGoal, NewListResult, CurrentGoal, NewDepth):-
/¥ N+ Body =[] */
NewDepth is Depth + 1,

append(Body, Goal, CurrentGoal),
check(Check, CurrentGoal, Resultant, ListGoal,

ListResult, NewDepth, NewListGoal, NewListResult),
!

loop_c;fxeck(Check, Body, ListGoal, ListResult, {H | Goal], Resultant, Depth,

[CurrentGoal | ListGoal], ListResuit, CurrentGoal, NewDepth):-
/* This clause could be removed if we don't want to know when
/* a derivation is pruned
/*+ Body = [] and W check(...)
NewDepth is Depth + 1/*,
append(Body, Goal, CurrentGoal),
nl, write(prune),
nl, write([CurrentGoal | ListGoal}),
nl, write(NewDepth)*/,
/* the program just said whem he prune but didn't stop
!, fail.

*/
*/
*/

*/

[H#FHHHH B R R R S R
I* THE LOOP CHECKS PROCEDURES */
[R R AR |

/* .
/* check(Check, Goal, Resultant, ListGoal, ListResult, Depth, */
/* NewListGoal, NewListResult) */
r* */
/* check use CASE1 :/j/lf */
/* CASE 2 :check_EVG */
/* Tenaming */
/* CASE 3 :check EIG */
J* compute_substitution */
/* CASE 4 :check_ EVR */
/* same_EVR */
1* renaming */
1* same_substitution */
/* CASE 5 :check EIR */
/* same_EIR */
I* compute_substitution */
/* same_substitution */
/* CASE 6 :check_SVG */
/* incl_ren */
J* CASE 7 : check_SIG */
/* incl_sub */
/* CASE 8 :check_SVR */
/* same_SVR */
/* incl_ren */
/* renaming */
/* same_substitution */
/* CASE 9 :check_SIR */
/* same_SIR */
/* incl_sub */
/* compute_substitution */
1* same_substitution */
/* CASE 10 : check_t */
/* check_EVG, check_EIG, check EVR, */
/* check_EIR, check_SVG, check EIG, */
/* check_SVR, check_SIR */
/* CASE 11 : check_t */
/* check EVG, check_EIG, check_EVR, */
/* check_EIR, check_SVG, check_EIG, */
/* check_SVR, check_SIR */
[*

/* J
/* type: Check in { non, empty, evg, eig, evr, eir, svg, sig, svr, sir, */
/* (evg,st), (eig,st), (evr,st), (eir,st), (svg,st), (sig.st), (svr.st), */
/* (sir,st), (evg,dr), (eig,dt), (evr,dt), (eir,dt), (svg,db), (sig.dt), */
/* (svr,dt), (sir,dr)}. *f
/* Goal, Resultant : expressions = lists of terms and/or atoms */
/* ListGoal, ListResult, NewListGoal, NewListResult : */
/* lists of expressions */
I* depth : integer */
/* relation : Check is the kind of loop check to be performed */
r* Depth is the depth where the loop check occur */
/* if ListGoal =[Gy, .. ,G,] *f
/* ListResult = [Ry, .. ,Ry] */
/* then there is no i such that Goal 'is sufficiently similar’ */
/* to G; w.r.t. Check */
r* and Resultant 'is sufficiently similar’ to R; w.r.t. Check */
I* NewListGoal = [Goal | ListGoal] */
/* NewlListResult = [resultant | ListResult] */
/* exept if Check = ***_d_t then */
/* if Depthin {1/2ii+ 1)! iin N} */
/* then NewListGoal = [Goal | ListGoal] */
/* NewListResult = [Resultant | ListResult] *f
/* else NewListGoal = ListGoal */
/* NewListResult = ListResult */
/* directionnality : */
I* in(gr, gr, gr, gr. 81, g1, Var, var) : */
I* out(gr, gr, gr, gr, g, T, &I, gI) */
*/

/***\

CASE1

no loop check

***/

check(empty, Goal, Resultant, ListGoal, ListResult, Depth,

[NewGoal | ListGoal], [NewResultant | ListResult}) :-
copy_term([Resultant | Goal], [NewResultant | NewGoal]).

check(non, Goal, Resultant, ListGoal, ListResult, Depth, ListGoal,

ListResult) :-
copy_term([Resultant | Goal], [NewResultant | NewGoal]).

[A A A A KR KRR K R R

CASE2 Equals Variant of Goal

N Ao KR K ok R K A o KR KRRk Rk

check(evg, Goal, Resultant, ListGoal, ListResult, Depth,
ListGoal, ListResult):-
copy_term({Resultant | Goal], [NewResultant | NewGoal]),
check_EVG(NewGoal, ListGoal).

I* */
/* check_EYG(Goal, ListGoal) */
/* */
/* type : Goal : expression */
/* ListGoal : list of expressions = [Gy, .. ,G,] */
/* relation : there is no i and renaming 6 such that G; 8 = Goal */
/* directionnality : in(gr, gr) : out(gr, gr) */
e i

check_EVG(Goal, []).
check_EVG(Goal, [G} ListGoal]):-
\+ renaming(G, Goal, Renaming),
check_EVG(Goal, ListGoal).

/***\

CASE3 Equals Instance of Goal

***/

check(eig, Goal, Resultant, ListGoal, ListResult, Depth,
ListGoal, ListResult):-
copy_term([Resultant | Goal], [NewResultant | NewGoal)),
check_EIG(NewGoal, ListGoal).

/* */
/* check_EIG(Goal, ListGoal) */
/* */
/* type : Goal : expression */
/* ListGoal : list of expressions = [G_1, .. ,G_n] */
/* relation : there is no i and substitution 6 such that G; 8 = Goal */
/* directionnality : in(gr, gr) : out(gr, gr) */
* */

check_EIG(Goal, []).

check_EIG(Goal, [G | ListGoal]):-
“+ compute_substitution(G, Goal, Substitution),
check_EIG(Goal, ListGoal).

/***\

CASE4 Equals Variant of Resultant

***/

check(evr, Goal, Resultant, ListGoal, ListResult, Depth,
[NewGoal | ListGoal], [NewResultant | ListResult}):-
copy_term([Resultant | Goal], [NewResultant | NewGoal]),
check_ EVR(NewGoal, NewResultant, ListGoal, ListResult).

/* */
/* check_EVR(Goal, Resultant, ListGoal, ListResult) */
" i
/* type : Goal, Resultant : expressions */
/* ListGoal = list of expressions = [Gy, .. ,G,] */
/* ListResult = list of expressions = [Ry, .. Ry} */
/* relation : there is no i and renaming © such that G; 6 = Goal */
/* and R; 8 = Resultant */
/* directionnality : in{gr, gr) : out(gr, gr) */
r* *f

check_EVR(Goal, Resultant, [}, []).

check_EVR(Goal, Resultant, [G | ListGoal}, [R | ListResult]):-
\+ same_EVR(Goal, Resultant, G, R),
check_EVR(Goal, Resultant, ListGoal, ListResult).

* */

/* same_EVR(Goal, Resultant, G, R) */
r J
/* type : Goal, Resultant, G, R : expressions */
/* relation : there is a renaming © such that G 6 = Goal */
/* and R 6 = Resultant *f
/* directionnality : in(gr, gr) : out(gr, gr) */
r* */

same_EVR(Goal, Resultant, G, R):-
renaming(G, Goal, RenamingGoal),
renaming([R], [Resultant], RenamingResultant),
same_substitution(RenamingResultant, RenamingGoal).

/***\

CASES Equals Instance of Resultant

***/

check(eir, Goal, Resultant, ListGoal, ListResult, Depth,
[NewGoal | ListGoal], [NewResultant | ListResult]):-
copy._term([Resultant | Goal], [NewResultant | NewGoal]),
check_EIR(NewGoal, NewResultant, ListGoal, ListResult).

r* */
/* check_EIR(Goal, Resultant, ListGoal, ListResult) */
* .
/* type : Goal, Resultant : expressions */
/* ListGoal = list of expressions = [Gy, .. ,G,] */
/* ListResult = list of expressions = [Ry, .. ,R,] */
/* relation : there is no i and substitution 6 such that G; 8 = Goal */
I* and R; 6 = Resultant */
[* directionnality : in(gr, gr) : out(gr, gr) */
r i

check_EIR(Goal, Resultant, [], [).

check_EIR(Goal, Resultant, [G | ListGoal), [R 1 ListResult]):-
\+ same_EIR(Goal, Resultant, G, R),
check_EIR(Goal, Resultant, ListGoal, ListResult).

" : *

/* same_EIR(Goal, Resultant, G, R) */
> */
/* type : Goal, Resultant, G, R : expressions */
/* relation : there is a substitution 8 such that G8 = Goal */
/* and R 6 = Resultant */
/* directionnality : in(gr, gr) : out(gr, gr) */
r* */

same_EIR(Goal, Resultant, G, R):-
compute_substitution(G, Goal, SubstitutionGoal),
compute_substitution([R], [Resultant], SubstitutionResultant),
same_substitution(SubstitutionGoal, SubstitutionResultant).

/***\

CASE 6 Subsumes Variant of Goal

/***/

check(svg, Goal, Resultant, ListGoal, ListResult, Depth,
ListGoal, ListResult):-
copy_term({Resultant | Goal], [NewResultant | NewGoal]),
check_SVG(NewGoal, ListGoal).

r* */
/* check_SVG(Goal, ListGoal) *5
ﬁ %
/* type : Goal : expression */
/* ListGoal : list expressions = [Gq, .. ,G,] */
/* relation : there is no i and renaming 0 such that G; 8 = Goal */
/* directionnality : in(gr, gr) : out(gr, gr) ";;
/*

check_SVG(Goal, [1).
check_SVG(Godal, [G | ListGoal]):-
M incl_ren(G, Goal, Renaming),
check_SVYG(Goal, ListGoal).

/***\

CASE7 Subsumes Instance of Goal

***/

check(sig, Goal, Resultant, ListGoal, ListResult, Depth,
ListGoal, ListResult):-
copy_term([Resultant | Goal], [NewResultant | NewGoal}),
check_SIG(Goal, ListGoal).

* */
/* check_SIG(Goal, ListGoal) *f
[* */
/* type: Goal : expression */
/* ListGoal : list expressions = [Gy, .. ,G,] */
/* relation : there is no i and substitution 6 */
I* such that G; 8 = Goal */
/* directionnality : in(gr, gr) : out(gr, gr) */
* */
/* check_SIG(Goal, ListGoal) */
/* true if Goal . Substitution is not include in ListGoal */

check_SIG(Goal, []).

check_SIG(Goal, {G | ListGoal]):-
M incl_sub(G, Goal, Substittion),
check_SIG(Goal, ListGoal).

/***\

CASE 8 Subsumes Variant of Resultant
***/

check(svr, Goal, Resultant, ListGoal, ListResult, Depth,
[NewGoal | ListGoal}, [NewResultant | ListResult]):-
copy_term([Resultant | Goal], [NewResultant | NewGoal}),
check_SVR(NewGoal, NewResultant, ListGoal, ListResult).

/* i

/* check_SVR(Goal, Resultant, ListGoal, ListResult) * 5
ﬁ %*
/* type : Goal, Resultant : expressions */
I* ListGoal = list of expressions = [Gy, .. ,G,] *f
/* ListResutl = list of expressions = [Ry, .. ,R] */
/* relation : there is no i and renaming 9 such that G; 8 include in Goal *f
1* and R; 6 = Resultant */
/* directionnality : in {(gr, gr, gr, gr) : out (gr, gr, gr, 2r) */
* */

check_SVR(Goal, Resultant,], {1).

check_SVR(Goal, Resultant, [G | ListGoal)}, [R ! ListResult]):-
\+ same_SVR(Goal, Resultant, G, R),
check_SVR(Goal, Resultant, ListGoal, ListResult).

/* i
/* same_SVR(Goal, Resultant, G, R) */
/* i/
/* type: Goal, Resultant, G, R : expressions */
/* relation : there is a renaming 6 such that G 6 include in Goal *f
I* and R 8 = Resultant */
/* directionnality : in (gr, gr, gr, gr) : out (gr, gr, gr. gr) */
r* */

same_SVR(Goal, Resultant, G, R):-
incl_ren(G, Goal, RenamingGoal),
renaming([R], {Resultant], RenamingResultant),
same_substitution(RenamingResultant, RenamingGoal).

/**#******************\

CASE9 Subsumes Instance of Resultant

t****************/

check(sir, Goal, Resultant, ListGoal, ListResult, Depth,
[NewGoal | ListGoal}, [NewResultant | ListResult]):-
copy_term([Resultant | Goal}, [NewResultant | NewGoal]),
check_SIR(NewGoal, NewResultant, ListGoal, ListResult),
!

* */
/* check_SIR(Goal, Resultant, ListGoal, ListResult) */
/* */
/* type : Goal, Resultant : expressions */
/* ListGoal = list of expressions = [Gy, .. ,Gq) */
/* ListResult = list of expressions = [Ry, .. ,R,] */
/* relation : there is no i and substitution © such that G; 8 include in Goal =~ */
/* and R; 8 = Resultant */
/* directionnality : in (gr, gr, gr, gr) : out (gr, gr, g, gr) *f
* */
check_SIR(Goal, Resultant, [], [1).

check_SIR(Goal, Resultant, {G | ListGoal], [R | ListResult]):-

\+ same_SIR(Goal, Resultant, G, R),
check_SIR(Goal, Resultant, ListGoal, ListResult).

/* */
/* same_SIR(Goal, Resultant, G, R) */
* */
/* type: Goal, Resultant, G, R : expressions */
/* relation : there is a substitution 8 such that G 9 include in Goal */
/* and R 6 = Resultant */
/* directionnality : in (gr, gr, gr, gr) : out (gr, gr, gr, 2r) */
> */

same_SIR(Goal, Resultant, G, R):-
incl_sub(G, Goal, SubstitutionGoal),
compute_substituticn([R], [Resultant], SubstitutionResultant),
same_substitution(SubstitutionResultant, SubstitutionGoal).

/***\

CASE 10 Single triangle loop checks

***/

:- compile(library(math)).

check((Full,st), Goal, Resultant, ListGoal, ListResult, Depth,
[NewGoal | ListGoal], [NewResultant | ListResult]):-

copy_term([Resultant | Goal], [NewResultant | NewGoal]),

Value is (1+(8 * Depth)),

sqri(Value, I),

(1is float(integer(D)) ->
check_t(Full, NewGoal, [NewResultant], ListGoal, ListResult)
rue

.o

/***\

CASE 11 double triangle loop checks

***l

check((Full,dt), Goal, Resultant, ListGoal, ListResult, Depth,

NewListGoal, NewListResult) :-

Value is (1+(8 * Depth)),

sqri(Value, 1),

(Iis float(integer(I)) >
copy_term([Resultant | Goal}, [NewResultant | NewGoal]),
check_t(Full, NewGoal, [NewResultant], ListGoal, ListResult),
NewListGoal = [NewGoal | ListGoal],
NewListResult = [NewResultant | ListResult]

; NewListGoal = ListGoal,

NewListResult = ListResult

).

* */ [HE#H$HH S R R R R R

/* check_t(Check, Goal, Resultant, ListGoal, ListResult) */ /* COMPUTE SUBSTITUTION, RENAMING, UNIFICATION, */
/> */ JEHEHHERHE S R R SR R x|
/* type : Check in {non, evg, eig,evr,eir,svg,sig,svr,sir} */
/* Goal, Resultant : expressions */ r* */
I* ListGoal, ListResult : lists of expressions */ /* compute_substitution(Left, Right, Substitution) */
/* relation : ListGoal = [Gy, ..,G,] */ r* */
/* ListResult = [Ry, .. ,Rq] */ /* type : Left, Right = expressions */
/* there is no i such that Goal, Resultant is sufficiently */ ~ = lists of terms and/or atoms */
/* similar to G;,R; w.r.t. Check */ /* Substitution : list of bindings */
/* directionnality : in (gr, novar, novar, novar, novar) */ /* relation : there is a suk?stiFution S}lbstitution such that */
/* : out (gr, novar, novar, Novar, novar) */ /* Left. Substiution = Right */
/* */ 5: directionnality : in (gr, gr, var) : out (gr, gr, gr) ’:‘;
check_t(evg, Goal, Resultant, ListGoal, ListResult):- e . L.
check_EVG(Goal, ListGoal). : compute_subsutunop(Lgft, Right, Su.bstmmon):— o
check_t(eig, Goal, Resultant, ListGoal, ListResult):- compute_substitution_1(Left, Right, [], Substitution).
check_EIG(Goal, ListGoal).
check_t(evr, Goal, Resultant, ListGoal, ListResult):-
check_EVR(Goal, Resultant, ListGoal, ListResult). r T ‘ _ T */
check_t(eir, Goal, Resultant, ListGoal, ListResult):- /* compute_substitution_1(Left, Right, FirstSubstitution, */
check_EIR(Goal, Resultant, ListGoal, ListResult). I* Substitution) */
check_t(svg, Goal, Resultant, ListGoal, ListResult):- I " - */
check_SVG(Goal, ListGoal). [* type : Left, Right = expressions */
check_t(sig, Goal, Resultant, ListGoal, ListResult):- * = lists of terms and/or atoms */
check_SIG(Goal, ListGoal). /* FirstSubstitution, Substitution : list of bindings */
check_t(svr, Goal, Resultant, ListGoal, ListResult):- /* relation : there is a substitution 8 such tl'{at Left . 8 = Right */
check_SVR(Goal, Resultant, ListGoal, ListResult). /* Substitution = [8 | FirstSubstitution] */
check_t(sir, Goal, Resultant, ListGoal, ListResult):- I* L. ‘YlthO}“ duplicates */
check_SIR(Goal, Resultant, ListGoal, ListResult). ;: directionnality : in (gr. gr, gr, var) : out (gr, gr, gf, g1) :“;

compute_substitution_1({], [], FirstSubstirution, FirstSubstitution):-
!

compute_substitution_1([L | Left], [R | Right], FirstSubstitution,
Substitution) :-
var(L),
!

(member_sub(L., FirstSubstitution, Term) ->
R =Temn,
compute_substitution_1(Left, Right, FirstSubstitution, Substitution)
; compute_substimution_1(Left, Right, [eq(L, R) | FirstSubstitution],
Substitution)
)

compu.te_substimtion_l([L | Left], [R | Right], FirstSubstitution,

/*

Substitution):-
J*\+ var(L) */
functor(L, F, N),
™ var(R),
functor(R, F, N),
L=. [FiLisiL],
append(ListL, Left, NewLeft),
R =.. [F I ListR],
append(ListR, Right, NewRight),
compute_substitution_1(NewLeft, NewRight, FirstSubstitution,
Substitution).

*/

/*

renaming(Left, Right, Renaming)

*/

/*
/*
/*
/*
/*
/*
/*

type : Left, Right = expressions = lists of terms and/or atoms
Renaming : list of bindings
relation : there is a renaming Renaming such that
Left . Renaming = Right
directionnality : in (gr, gr, var) : out (gr, gr. gr)

*/
*/
*/
*/
*/
*/
*/

renaming(Left, Right, Renaming):-

compute_substitution(Left, Right, Renaming),
compute_substitution(Right, Left, Renamingl).

/*
/*
/*

incl_sub(Left, Right, Substitution)

*/
*/
*/

/*
/*
/*
/*
/*
/*

type : Left, Right = expressions
= lists of terms and/or atoms
Substitution : list of binding substitutions
relation : there is a substitution Substitution such that
Left . Substitution include in Right

directionnality : in (gr, gr, var) : out (gr, gr, gr)

*/
*/
*/
*/
*/
*/

/*

incl_sub(Left, Right, Substitution):-

/*

mcl_sub_1(Left, Right, {], Substitution).

*/

*/

/*

incl_sub_1(Left, Right, OldSubstitution, NewSubstitution)

/*
/*
/*
/*
/*
/*
/*
/*
/*

type : Left, Right = expressions = lists of terms and/or atoms
OldSubstitution, NewSubstitution :
lists of bindings
relation : there is a substitution theta such that
Left. 0 include in Right
NewSubstitution = {0 | OldSubstitution]
directionnality : in (gr, gr, gr, var) : out {gr, gr, gr, g0)

incl_sub_1({], Right, OldSubstitution, OldSubstitution).
incl_sub_1([ExprL | Left], [ExprR | Right], OldSubstitution, NewSubstitution):-

/*

compute_substitution_1({[ExprL], [ExprR], OldSubstitution,
NewSubstitutionl),

incl_sub_1(Left, Right, NewSubstitutionl, NewSubstitution).
incl_sub_l1(Left, {ExprR | Right], OldSubstitution, NewSubstitution):-

incl_sub_1(Left, Right, OldSubstitution, NewSubstitution).

*/

/*
/*

incl_ren(Left, Right, Renaming)

*/
*/

/*
/*
/*
/*
/*

type : Left, Right = expressions = lists of terms and/or atoms
Renaming : list of bindings

relation : there is a renaming Renaming such that
Left . Renaming include in Right

directionnality : in (gr, gr, gr, var) : out (gr, gr, gr, gr)

*/
*/
*/
*/
*/

/*

incl_ren(Left, Right, Renaming):-

incl_ren_1(Left, Right, [], Renaming).

*/

/* !

/* incl_ren_l(Left, Right, OldRenaming, NewRenaming) */
* !
/* type : Left, Right = expressions = lists of terms and/or atoms *f
/* OldRenaming, NewRenaming : lists of bindings */
/* relation : there is a renaming Renaming such that */
/* Left . Renaming include in Right */
/* NewRenaming = [Renaming | OldRenaming] */
/* directionnality : in (gr, gr, gr, var) : out (gr, gr, g1, 2r) */
s o

incl_ren_1([], Right, OldRenaming, OldRenaming).
incl_ren_1([ExprL | Left], [ExprR | Right], OldRenaming, NewRenaming):-
renaming([ExprL}, [ExprR], Renaming),
same_substitution(Renaming, OldRenaming),
append(Renaming, OldRenaming, OldRenamingl),
incl_ren_1(Left, Right, OldRenamingl, NewRenaming).
incl_ren_1(Left, [ExprR | Right], OldRenaming, NewRenaming):-
incl_ren_l(Left, Right, OldRenaming, NewRenaming).

unif(Left, Right)

type : Left, Right : expressions
relation : Left = Right (+ occur check)

% % % F % ¥
\: * * } *~)

unif(Left, Right):-
unif_1([Left], [Right]).
unif_1([L | Left], [R | Right]):-
var(L),
var(R),
1
R=L,
unif_1(Left, Right).
unif_1([L | Left], [R | Right]):-
/*\+ var(R) */
var(L),
1
occur_check(L, R),
L=R,
unif_1(Left, Right).

unif_1({L 1 Left], [R | Right]):-
¥+ var(L) */
var(R),
1
occur_check(R, L),
R=L,
unif_1(Left, Right).
unif_1([L | Left], [R | Right]):-
2+ var(L) and - var(R) */
functor(L, F, NL),
L =. [F ! Listl],
functor(R, F, NL),
R =.. [F ! LisiR],
append(ListL, Left, NewLeft),
append(ListR, Right, NewRight),
unif_1(NewLeft, NewRight).

unif_1({], [])-
/***\
* occur_check(Var, Expr) *
=k 2k o 3k ok 46l S 3K s 2k i ke sk e 2k she e vk vl 2k 2k ke 2de vic e sk v 2k sfe ke sk e 3¢ de e 3 vje ok e ke e e Sk K Sk K ek ok 3 K kK ek kR K
* type : Var: variable *
* Expr : single expression *
* relation : Var does not occur in Expr *

***/

occur_check(Var, Expr):-
var(Expr),
1

Var \== Expr.
occur_check(Var, Expr):-

Expr=. [FILT],

occur_check_list(Var, LT).

occur_check_list(Var, [1).
occur_check _list(Var, [T | Ts]):-
occur_check(Var, T),

occur_check_list(Var, Ts).

J s S S S g ks

* MANIPULATION OF THE SUBSTITUTIONS
[### S A R R

*/

/* */
/* same_substitution(Subl, Sub2) */
I* */
/* type : Subl, Sub2 : lists of bindings */
/* relation : Subl = [eq(Vy, Ty), - .eq(Vy, Tyl */
I* Sub2 = [eq(Wy, Sy), .- .eq(Wg, Sp)l */
/* fora]lVi=thhenT1=Sj */
/* directionnality : in (gr, gr) : out (gr, gr) */
I* */
same_substitution([], Sub2).
same_substitution([eq(V, T) | Subl], Sub2):-

member_sub(V, Sub2, T1),

!,

T==T1,

same_substitution(Subl, Sub2).
same_substitution([S | Subl], Sub2):-

same_substitution(Subl, Sub2).
/* */
/* member_sub(Var, Substitution, Expr) */
* */
/* type : Var: variable */
/* Substitution : list of bindings */
[* Expr : term or atom */
/* relation : Substitution = [eq(V1, Ty), ... eq(Va, Tl */
I* thereisisuchthatV=V;then T=T; */
/* directionnality : in (gr, gr, var) : out (gr, gr, gr) */
/* */
member_sub(Var, [eq(V, Expr) | Substitution}, Expr):-

Var =V,

1
member_sub(Var,[S | Substitution], Expr):-

N+ Var=3§ */

member_sub(Var, Substitution, Expr).

[R#EEHEE S R R R R R
* GENERAL PREDICATES */
[EHE#HHH RS HH S R R

:- compile(library(basics)).

Bibliography

[A 88]

[BAK 89

(B 90]

[MM 82]

[NS 91)

[P 87]
(R 65]

[SS 86)

[S 8]

K.R. Apt, Introduction to Logic Programming (revised and ew-
tended version), Technical Report ('S-R8826, Clentre for Mathe-
matics and Computer Sciences, Amsterdam, 1988.

R.N. Bol, K.R. Apt, J.W. Klop, An Analysis of Loop Checek-
ing Mechanisms for Logic Programs, Technical Report (!S-RR9.12,
Centre for Mathematics and Computer Sciences, Amsterdan,
1989,

R.N. Bol, Towards more ¢fficient loop cheks, in: Proceeding of the
1990 North American conference on Logic Programming (S. De-
bray, M. Hermenegildo eds.), MIT Press, Cambridge Massachus-
sets, 1990, 465-479.

Y. Deville, Logic Programming. systemalic program development.
Addison Wesley, 1990,

J.W. Lloyd, Foundations of Logic Programming, Second Edition,
Springer-Verlag, Berlin, 1987.

A. Martelli, U. Montanari, Am Efficient Unification Algorithm.
ACM transactions on Programing languages and systems, Vol ..
No 2, 1982, 258-282.

J.F. Naughton, Y. Sagiv, A simple characterization of uniform
boundness for class of recursions, journal of logic programming.
Vol 10, No 3 & 4, 1991, 233-253.

C-PROLOG User's Manual, Version 1.5, November 26. 1937

J.A. Robinson, A machine-oriented logic based on the resolulion
principle, JACM, 12:1, January 1965, 23-41.

L. Sterling and E. Shapiro, The Art of PROLOG : Advanced
Programming Techniques, Cambridge, MA : MIT PRESS

L. Sterling, Constructing mcta-interpreter for logic programs,
Lecture notes, Advanced School on Fondations of Logic Program-
ming, Alghero, Sardinia, Italy, September 1988,

94

[S 89] M.E. Stickel, A PROLOG Technology Theorem Prover : A Necw
Exposition and Implementation in PROLOG, Technical note 464,
Artificial Intelligence Center, Computer and Information Sciences
Division, SRI International, June 89.

[W 4] D.ID. Warren, An abstract PROLOG instruction set, Report
309, Artificial Intelligence Center, SRI international, Menlo Park,
CA, October 1984,

