
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Spool scheduling and expert systems

Scheen, Benoit

Award date:
1990

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 25. Apr. 2024

https://researchportal.unamur.be/en/studentTheses/99e76d65-bee2-4e73-91c7-720670eab68c

SPOOL SCHEDULING

and

EXPERT SYSTEMS

by Benoit SCHEEN

Advisor Jean Ramaekers

A thesis submitted in
conformity with the requirements

for the degree of
"Licencié et Maitre en Informatique"

Facultés Notre-Dame de la Paix
Institut d'Informatique

Namur - September 1990

Acknowled~ements

First of all, I would like to express my
greatfulness to Mr Philippe Dumont from Siemens
Software S.A., who has devoted a lot of his
precious time to the follow-up of this work. His
practical experience as well as pedagogical
skills were extremely helpful.

Secondly, I wish to thank all the people of
the SWNll team from Siemens Software S.A. and the
VS2414 team from Siemens-Perlach (Munich - West
Germany) for the support they have brought during
the training period in Rhisnes and my stay in
Munich.

Next, I would like to express my
thankfulness to Mr Jean Ramaekers, professer at
the "Institut d'Informatique" of the University
of Namur, who has consented to guide this work
and who has offered me such an interesting
training.

Finally, I would love to thank Barbara for
her precious english skills and for her constant
support throughout the completion of this work.

Abstra t

ABSTRACT

For a long time, spool scheduling problems have been solved
through the use of conventional programming techniques. However,
in order to offer new functionalities and to improve the quality
of service of the spools systems, other programming techniques
may be considered. Among these techniques, we have chosen the
expert system approach. As a matter of fact, this approach seems
to be particularly adapted for the development of performant
spool systems. This thesis thus draws a prototype of a spool
scheduler expert system. It also studies the validity of such an
approach for the development of a commercial product.

RESUME

Depuis longue date, les problèmes de spool scheduling ont été
résolus grâce à des techniques de programmation traditionnelles.
Cependant, dans le but d'améliorer la qualité de service des
spools, d'autres techniques de programmation peuvent être
envisagées. Parmi celles-ci, nous avons retenu l'approche des
systèmes expert. Cette approche nous semble en effet
particulièrement adaptée à une amélioration qualitative des
spools. Dans cet ordre d'idée, ce mémoire présente un prototype
de système expert dédié au spool scheduling. Il s'étend
également sur la validité d'une telle approche pour le
développement d'un produit commercial.

1

Table of contents

TABLE OF CONTENTS

INTRODUCTION . 1

,SECTION 1 INTRODUCTION TO EXPERT SYSTEMS

CH.APTER 1 : WH.AT ARE EXPERT SYSTEMS? 3

1.1 The artificial intelligence context 3
1.1.1 Artificial intelligence domains 3
1.1.2 Knowledge representation 3
1.1. 3 Problem solving 4
1.1.4 Natural language interfaces 4
1.1. 5 Vision and robotics 4
1 . 1 . 6 Expert systems . 4

1.2 Definition of an expert system 4
1. 3 A little history 5

CH.APTER 2 : THE PROMISE OF EXPERT SYSTEMS 7

2.1 Conventional programs and expert systems 7
2.2 The advantages of expert systems 9

2.2.1 Increase of profitability 9
2.2.2 Better performances 10
2.2.3 Better knowledge manipulation 10
2.2.4 Act better than conventional programs 10

2.3 Why keep a human in the loop? •..................... 11
2.4 Limitations in the use of expert systems 12

2. 4. 1 Lack of resources . 12
2.4.2 Inherent limitations of expert systems 13
2.4.3 Expert systems take a long time to build 13

CH.APTER 3 : OVERVIEW OF EXPERT SYSTEM APPLICATIONS 14

3.1 Problem-solving activities 14
3. 2 Supported demains . 16

CH.APTER

4.1
4.2
4.3
4.4

4 :

The
The
The
The

ARCHITECTURE OF EXPERT SYSTEMS 18

knowledge base 18
inf erence engine . 19
interface module . 19
development engine 19

Table of contents

CHAPTER 5 : INSIDE EXPERT SYSTEMS 20

5.1 Knowledge representation 20
5.1.1 Rules ... 20
5. 1. 2 Semantic nets 21
5. 1. 3 Frames .. 22
5 .1. 4 Predicate calcul us 23

5. 2 Control strategies 24
5.2.1 Backward and forward chaining 24
5.2.2 Improving search efficiency 25

5.2.2.1 Depth-first versus breath-first search
•••••••••••••• 0 • 25

5.2.2.2 Problem reduction 25

CHAPTER 6 : KNOWLEDGE ENGINEERING 26

6.1 Principles for designing expert systems 26
6.2 Stages in building expert systems 28

6.2.1 Identification stage 28
6.2.1.1 Participant identification and roles 28
6.2.1.2 Problem identification 29
6.2.1.3 Resource identification 29
6.2.1.4 Goal identification 29

6.2.2 Conceptualization stage 31
6.2.3 Formalization stage 31
6.2.4 Implementation stage 31
6. 2. 5 Testing stage 31
6.2.6 Prototype revision 32

6.3 Knowledge acquisition 33
6.3.1 The problems of the knowledge acquisition

process 33
6.3.2 Sorne techniques to acquire knowledge 34

6. 4 Prototyping . 35
6.4.1 The importance of a rapid prototype 35
6.4.2 Development stages of a prototype 36

6.5 Evaluation of expert systems 36

CHAPTER 7 : TOOLS AND LANGUAGES 39

7.1 Building expert systems using programming languages
• 3 9

7.1.1 Traditional and artificial intelligence
languages 39

7 . 1 . 2 Lisp . 4 0
7.1.3 Prolog .. 41

7.2 Building expert systems using development tools 42

CHAP TER 8 : THE FUTURE . 4 5

8 .1 Commercial trends 45
8.2 Future developments in expert system technology 46

SECTION 2

Table of contents

EXISTING EXPERT SYSTEMS IN THE COMPUTER
SYSTEM DOMAIN

CHAPTER 1 : XCON • . 50

1.1 Introduction .. 50
1. 2 Inside XCON ... 51
1. 3 The benefits of XCON•.......................... 52
1. 4 A knowledge network•......................... 52

CHAPTER 2 : YES / MVS . . . • . 54

2. 1 Introduction•...•..................•....... 54
2. 2 The domain of YES/MVS••.................... 55
2.3 The system organization •...•..•....•......••........ 55
2.4 Building the knowledge base•............... 56

CHAPTER 3 : PERMAID•...................... 58

3. 1 Introduction .•...................................... 58
3. 2 Internal design•..................... 59
3.3 The inference engine•.......•................ 60
3. 4 Performances . 60

CHAPTER 4 : AI-SPEAR•............................... 61

4. 1 Introduction .. 61
4. 2 Problem description•.....•....•............ 61
4. 3 Example diagnosis . 62

CHAPTER 5 : OTHER EXISTING EXPERT SYSTEMS ...•............... 63

5 . 1 HUMAN . 6 3
5 . 2 CRIB . • . 6 3
5. 3 IDT . 63
5. 4 MESSAGE TRACE ANALYSER•.••....•.......•........ 64
5. 5 Other products . 64

Table of contents

SECTION 3 A PROTOTYPE OF A SPOOL SCHEDULER EXPERT
SYSTEM

CHAPTER 1 SCHEDULING PROBLEMS AND EXPERT SYSTEMS 66

CHAPTER 2 THE STRUCTURE OF A SPOOL 67

CHAPTER 3 IDENTIFICATION 69

3.1 Identification of the problem 69
3.1.1 Purpose and characteristics of a spool job 69
3.1.2 Purpose of the scheduling process 69
3.1.3 The existing algorithm 71

3.1.3.1 Physical and logical fit 71
3.1.3.2 Selection of a device for a job 71
3.1.3.3 Optimisation criterion for the

scheduling 72
3.1.3.4. Discussion this algorithm 72

3.1.4 Possibility of other algorithms ..•............ 73
3.1.5 Mechanisms which could be improved 73

3.2 Participant identification · 74
3. 3 Goal identification 75

CHAPTER 4 : CONCEPTUALIZATION 76

4.1 Configurations of the systems 76
4.1.1 System configuration of the current spool

system . 7 6
4.1.2 System configuration considered for the spool

expert system 77
4.1.3 System configuration used for the prototype ... 78

4.2 Basic concepts used within the context of the
prototype 79

4.2.1 The forms 80
4.2.2 The fonts 80
4.2.3 The devices 80
4.2.4 The jobs 81

4.3 Tasks to carry out by the prototype 81
4.3.1 Device management tasks 82
4.3.2 Form management tasks 82
4.3.3 Font management tasks 82
4.3.4 Tasks to control the printing of jobs 82
4. 3. 5 Information tasks . 82
4.3.6 Interrogation tasks · 83
4.3.7 Explanation tasks 83
4. 3. 8 Help tasks 83

CHAPTER 5 : FORMALIZATION•........................ 84

5.1 Knowledge representation tool 84
5.2 Knowledge representation 86

Table of contents

5.2.1 The forms 87
5.2.2 The fonts 87
5. 2. 3 The devices . 8 8
5.2.4 The jobs 90
5. 2. 5 Restrictions 91

5.3 Formalization of the user interface 92
5.3.1 The command language 92

5.3.1.1 Commands intended to the operator 92
5.3.1.2 Commands intended to the user 92

5. 3. 2 Dialogue screens 94
5. 3. 3 Helping messages 94

5.4 Architecture of the working memory 94
5.5 Architecture of the knowledge base.~ 96

CHAPTER 6 : IMPLEMENTATION 97

6.1 A prototype of a spool scheduler expert system,
version 1 97

6.2 A prototype of a spool scheduler expert system,
version 2 101

6.3 A prototype of a spool scheduler expert system,
version 3 104

CHAPTER 7 TESTING .. 106

CONCLUSION 108

APPENDIXES 111

BIBLIOGRAPHY ... 113

Figure 1.1
Figure 1.2

Figure 1.3
Figure 1. 4
Figure 1. 5
Figure 1.6
Figure 1.7
Figure 1. 8
Figure 1.9
Figure 1.10
Figure 1.11
Figure 1.12
Figure 1.13
Figure 1.14

Figure 1.15
Figure 1.16

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7

Figure 2.8

Figure 3.1
Figure 3.2
Figure 3.3

Figure 3.4

Figure 3.5
Figure 3.6

Table of figures

TABLE OF FIGURES

artificial intelligence disciplines 3
comparison of characteristics between expert

systems and conventional programs 7
problem-solving activities 14
supported domains . 1 7
architecture of expert systems 18
example of rule 20
example of semantic net 22
example of frame 23
example of predicate calculus 24
principles for designing expert systems 27
stages in building expert systems 30
example of rule in Lisp 41
major components of a shell 43
artificial intelligence/ expert system market

estimates 45
expert system market growth 46
structure of future expert system shells 47

example of rule in XCON . 52
DEC's expert knowledge network 53
YES/MVS system organization 55
YES/MVS operator console top level screen 56
rules from the JES queue space subdomain 57
example of PERMAID trouble-shooting session 58
portion of the PERMAID kernel knowledge base

. 5 9
excerpt from runs of AI-SPEAR 62

spool supported devices 67
spool functions 68
system configuration of the current version of

the spool 77
system configuration for the spool expert

system 78
scheduling process in version 1 98
scheduling process in version 2 102

Introduction

INTRODUCTION

Over the past several de cades, society has had an
infatuation with trying to breathe life or intelligence into
machines. We no longer want computers to just add, subtract,
multiply or divide, but to act human, to think. Imagine the
endless possibilities of intelligent machines : computer systems
that recommend profitable financial and marketing strategies,
create new designs in the automobile or semi conductors
industries, or quickly monitor and diagnosis a patient's health.
An entirely new research effort dedicated to the development of
artificial intelligence evolved, growing in significance to a
become virtual growth industry in today's world.

Expert systems - special-purpose computer programs using
expert knowledge to attain high level performances in a narrow
problem area - probably constitute the "hottest" topic in
artificial intelligence today. The expert system technology,
limited to academic laboratories in the 1970s, is now becoming
cost...:.effecti ve and is beginning to enter into commercial
applications.

Several dozens of expert systems have already been
developed in the fields of medicine, chemistry, geology,
manufacturing, ... For a while, however, a new research effort
focuses on the development of expert systems dedicated to the
computer system domain. Our work is integrated in this new
approach since its main goal was to develop a prototype of a
spool scheduling expert system.

The present thesis is therefore divided in three sections.

The purpose of the first section is to give an
introduction to the fundamental concepts and basic issues in
expert system research. Since this thesis is entirely dedicated
to the use and the development of expert systems, the first
section will offer a methodological context to the reader.

The second section will give a short overview of the
existing expert systems dedicated to the computer system domain.
As our prototype meddles in the development of expert systems
dedicated to computer systems, this second section will enable
us to better understand the validity of this new approach.

In the third section, the detailed analyse of our four
months' work will illustrate the theoretical concepts described
in the first section. The first chapter of this section focuses
on a brief overview of the existing expert systems developed in
the are a of scheduling problems. The second chapter gi ves
rudimentary knowledges about the structure of a spool. The final
five chapter apply the general methodology for building expert
systems to our problem.

--------'------------------------""""'&-'<-·]

SECTION 1

INTRODUCTION TO EXPERT SYSTEMS

Since our thesis is entirely dedicated to the
use and the development of expert systems, i t is
necessary to offer a methodological context to the
reader. Therefore, the purpose of this first section
is to give an introduction to the fundamental concepts
and basic issues in expert system research.

a e 2

What are expert systems ?

CHAPTER 1: WHAT ARE EXPERT SYSTEMS?

1.1 THE ARTIFICIAL INTELLIGENCE CONTEXT

1.1.1 Artificial intelligence domains

Artificial Intelligence is a scientific field concerned
with the creation of computer systems which can achieve human
levels of reasoning. More precisely, artificial intelligence is
the branch of information science that focuses on developing
computer programs able to perform tasks normally associated with
intelligent human behaviour.

The science of artificial intelligence is rather broad and
has, in effect, been explored from the beginning of time. The
modern beginning can perhaps be dated from 1956 when Claude
Shannon and Marvin Mtnsky met at Dartmouth College with other
information science pioneers for the unveiling of the world's
first expert system - Allen Newell's Logic Theorist.

Today, the science of artificial intelligence spans a
growing list of emerging disciplines [TOW-86] knowledge
representation, problem solving, natural language interfaces,
vision, robotics and expert systems.

KNOWLEDGE
REPRESENTATION

NATURAL LANGUAGE
INTERFACE

VISION

ROBOTICS

Figure 1.1 : artificial intelligence disciplines

1.1,2 Knowled~e representation

EXPERT
SYSTEMS

Knowledge representation is perhaps the most important
area of artificial intelligence research. It is the cornerstone
on which all the other disciplines are built. Its long range
quest is to find a general theory or method for representing any
knowledge (such a theory would make the capture of commonsense
knowledge possible and apply it to the solution of new
problems).

a e 3

What are expert systems ?

1.1,3 Problem solvine

Problem solving is finding a way to get from initial
situation to a desired goal. Humans doit very effectively using
deductive logic, procedural analysis, analogy, and induction.
Computers, at least at the present time, generally solve
problems only by deductive logic and procedural analysis.
Efforts in that area are developed to solve problems by analogy
and induction.

1,1,4 Natural Ianeuaee interfaces

The two primary goals of natural language research are to
understand how humans communicate and to cre.ate machines with
human-like communication skills.

1,1,5 Vision and robotics

Robotics is the branch of artificial intelligence research
that is concerned with enabling computers to see and manipulate
objects in their environment. Robotics research is primarily
directed in three areas : the development of visual sensors, the
development of manipulators and the development of heuristics
for object- and space-oriented environmental problem solving.

1,1,6 Expert systems [GEV-8 4 J

Experts systems probably constitute the "hottest" topic in
artificial intelligence today. Prior to the last decade, in
trying to find solutions to problems, artificial intelligence
researchers tended to rely on non-knowledge-guided search
techniques or computational logic. The se techniques were
successfully used to solve elementary problems or very well
structured problems such as games. However, realistic problems
exhibit the characteristics that their search space expands
exponentially with the number of parameters involved. For such
problems, these older techniques have generally proved to be
inadequate and a new approach was needed. This new approach
emphasized knowledge rather than search and has led to the field
of knowledge • engineering and expert systems. The resultant
expert systems technology, limited to academic laboratories in
the 1970s, is now becoming cost effective and is beginning to
enter into commercial applications.

1.2 DEFINITION OF AN EXPERT SYSTEM

Edward Feigenbaum, a leading researcher in knowledge
system at Stanford University, has defined an expert system as
[GEV-84]

" an intelligent computer program that uses
knowledge and inference procedures to sol ve
problems that are difficult enough to require
significant expertise for their solution. The
knowledge necessary to perform at such a level,

e4

What are exoert systems ?

plus the inference procedures used, can be
thought of as a model of the expertise of the
best practitioners of the field.
The knowledge of an expert system consists of
facts and heuristics. The facts constitute a
body of information that is widely shared,
publicly available, and generally agreed upon by
experts in a field. The heuristics are mostly
private, little-discussed rules of good
judgement (rules of plausible reasoning, rules
of good guessing) that characterize expert-level
decision making in the field. The performance
level of an expert system is primarily a
function of the size and quality of the
knowledge base that it possesses. "

An expert system can be distinguish from other kinds of
artificial intelligence program in that [JAC-86]

- it deals with subject matter of realistic complexity
that normally requires a large amount of human
expertise;

- it must exhibit high performance in terms of speed and
reliability in order to be a useful tool;

it must be capable of explaining and justifying
solutions and recommendations in order to convince the
user that its reasoning is, in fact, correct.

But right from the outset, we should give an expectation
warning : do not expect black magic ! Do not be surprised if
some ideas are not totally new (many people can discover an
idea, but few can recognise the significance of a key concept).
And do not expect expert systems to make a complex problem
simple. If a problem is complex, then it is a complex problem,
and nothing can be done aboutit. The expert systems approach
can only provide a mean of coping wi th complexi ty, not of
eliminating it.

1.3 A LITTLE HISTORY [GOO- 8 5]

In the very early days of artificial intelligence, there
was a widespread belief that it would be possible to produce
machines which were, to some degree, models of the human brain.
Approaches to intelligence such as the cybernetic approach or
the neural net approach were developed in the early 1950s. But
the inventors of these approaches show an assumption often
repeated in artificial intelligence - the assumption that if a
small system works well with small problems, then scaling it up
by a thousand times would enable it to work one thousand times
as quickly, or solve problems a thousand times as big.

In the late 1950s, interest in symbolic digital computing
eclipsed the cybernetic models. At the Dartmouth College

a 5

What are expert systems ?

Conference in 1956, Newell and Simon gave a paper on "The Logic
Theory Machine", and described how they had introduced the
concept of list to help program the proof of problems. Within a
few years, ~ist processing had a language of its own - Lisp. An
influential example of an early Lisp program was the GPS
(General Problem Solver) which Newell and Simon developed from
their Logic Theory Machine. But it turned out that programs like
GPS were too general, and could not be applied to big problems.
The behaviour of the best general problem solvers, the human
problem solvers, was observed to be weak and shallow, except in
the areas in which the human problem solver is a specialist.
This announced the switch from general purpose reasoning to
task-specific knowledge - the expert systems.

In 1965, Edward Feigenbaum had the insight which started
work on DENDRAL within the Stanford University. DENDRAL, the
first known expert system, was a departure from orthodoxy : a
special-purpose program, conceived to solve problems only in the
small topic of elucidating chemical structures. Concurrently to
the realization of DENDRAL, other expert system prototypes were
developed in the late 1960s in some research institutes. In
1969, CADAUCUS was implemented at the University of Pittsburgh
to aid physicians in the diagnosis of human internal diseases.
In 1970, MACSYMA (which represents approximately 100 work-years
of development time) was employed at the MIT (Massachusset
Institute of Technology) in sophisticated symbolic mathematical
analysis. Then, in 1972, came MYCIN, one of the most publicized
and famous expert systems, which assists the diagnosis and
treatment of infections blood diseases. During the 1970s, MYCIN
stimulated the development of other famous expert systems such
as PUFF, AM, PROSPECTOR and XCON - the first expert system to be
used successfully on a daily basis in a commercial environment
[WOL-87].

Since the beginning of the 1980s, expert system
development has become a key topic in artificial intelligence
research, leading to the implementation of hundreds of new
applications.

The promise of expert systems

CHAPTER 2 : THE PROMISE OF EXPERT SYSTEMS

2.1 CONVENTIONAL PROGRAMS AND EXPERT SYSTEMS

To gain a better understanding about what expert systems
really are, it is useful to compare them with the broad classes
of conventional programs. Characteristics unique to expert
systems are listed in Figure 1. 2. [WOL-87]

EXPERT SYSTEMS CONVENTIONAL PROGRAMS

1. quantitative and qualitative quantitative

2. symbolic processing numeric processing

3. heuristic computing algorithmic computing

4. data pattern driven control driven

5. uncertain and incomplete data exact and factual data

6. multiple solution path single solution path

7. explanation and justification no explanation

8. search intensive computation intensive

9. dynamic and static variables static variables

10. self-modification no self-modification

11. knowledgebase distinct from data and reasoning are mixed
reasoning mechanisms

Figure 1.2 comparison of characteristics between expert
systems and conventional programs

1. Expert systems are qualitative rather than quantitative in
their results. Expert systems do not simply generate answers;
the y analyze and present the "best" possible answer wi th
advice and recommendations. For example, an expert system can
not only identify a mechanical failure in a piece of
machinery, i t can also identify potential sources of the

The oromise of exoert svstems

failure with their associated certainty factors, which
indicate the strength of each recommendation.

2. Expert systems base their reasoning process on symbolic
manipulation - the type of reasoning employed by human
experts. Conventional programs recognize only numeric or
alphabetic manipulations.

3. Conventional programs are based on algorithmic computing -
they solve problems step-by-step. Expert systems computing
process employs heuristics inference procedures. In other
words, an expert system takes the place of a human expert in a
problem-solving environment by interpreting knowledge, using
heuristics, making inferences, and reasoning in ways similar
to those of the human expert.

4. Expert systems are data pattern directed, versus control
directed. Conventional programs execute according to a
predefined data flow, no matter what type of datais inputted.
Expert systems follow a flow determined by the relationship of
the inputted data and the current contextual environment.
There is no predefined execution path.

5. Expert systems can incorporate sets of values called
certainty factors, confidence factors and probabilities which
represent the definitude of a statement. The se values
represent the most common ways for the expert system to deal
with uncertainty.

6. Problems addressed to expert systems can have multiple
solution paths, one solution path, or no solution path. Expert
systems have some knowledge of the basic principles in the
problem domain; they know how they operate and how they arrive
at the results. Conventional programs simply execute according
to the predefined direction of the program. They have only one
solution path.

7. Expert systems are capable of reconstructing inference paths
for explanation and justification purposes. This provides what
is called an "audit trail" for the end user. The end user can
not ask a conventional program to explain how it derived its
answer.

8. Expert systems are search intensive rather than computation
intensive. Expert systems compare and analyse relationships
among numeric and nonnumeric data, versus straightforward
algebric computation of numeric data.

9. Expert systems are more flexibly designed than conventional
programs. This allows modifications as problems become better
defined and additional data becomes known. Since the
environment of an expert system is never static, an expert
system must be capable of manipulating dynamic variable
inputs. Dynamic variables are those that are constantly
changing, such as the stock market prices. An expert system
employing stock market prices must be flexible enough to
easily incorporate the continuous changes.

The promise of expert svstems

10. Sorne expert systems are self-modifying. If during, or after,
a program run, the expert system determines that a piece of
its data or knowledge base is incorrect, or no longer
applicable because the environment has changed, it has the
capacity to update the information. Consequently, if the same
set of parameters were reentered, the expert system might
deduce a different answer.

11. In expert systems, the knowledge base and the reasoning
mechanism are distinct entities. In fact, it is often possible
to use the reasoning mechanism with other knowledge bases to
create a new expert system. In conventional programs, internal
data and the reasoning mechanism are mixed entities.

2.2 THE ADV ANTAGES OF EXPERT SYSTEMS

To help us understand what makes expert systems valuable,
we shall discuss some of the advantages that expert systems have
upon human experts and conventional programs. [GOO-85)

2.2.1 Increase of profitability

Expert systems can increase profitability because they :

- allow more turnover : XCON1 , an expert system which configures
Vax computers, is a good example of how organisations can
benefit from expert systems. XCON has enabled DEC (Digital
Equipment Company) to increase fourfold the throughput of Vax
orders. It has reduced the error rate on orders from 35% to
about 2%.

- save money by saving time : DRILLING ADVISOR is an expert
system which the company Tesknowledge created for Elf
Aqui taine, a French oil company. This system acts as a
consultant on diagnosis and cure of drilling problems. When a
well is drilled in the search for gas or oil, geologists
collect large quantities of data called well-logs. These logs
must be analysed to discover whether oil or gas are present.
These analyses take a few days and a bad diagnosis is
expensive; one day of lost time on an oil-rig can cost Elf
$250.000. DRILLING ADVISOR reduces considerably the time spend
on analyses.

- save money on equipment : where a human relies on the more
detailed data from a more expensive instrument, an expert
system can investigate more thoroughly the information from an
instrument of lower quality.

- do a job with fewer staff: a company may be faced with the
problem of too few experts on a given problem. There may be
only one person in the organisation who has a skill that is
needed widely : an expert system can be used to distribute
knowledge throughout the organisation. Training a replacement

1 XCON is described in section 2.

The promise of expert systems

could take a long time, because skill at such tasks is usually
gained through long experience, not exclusively by the study
of formal rules and theoretical principles.

2.2.2 Better performances

Experts systems can perform better than a human because
they:

- do not become tired or bored: this reminds us that a computer
and its software can run 24 hours a day, 7 days a week.

- can handle large volumes of data : SUS is a naval application
that monitors the many different kinds of information
available to the commander of a naval vessel. SUS is used in
the many situations where the flood of information to a ship's
control centre is too great for a human.

- can respond more rapidly foreign exchange and commodity
markets are an area where immediate response to information
is vital. An expert system which could spot a trading
opportunity faster than a human would quickly recover its
costs.

- can work in hostile environment : this is an obvious advantage
of computer programs in general. We need only suggest the
benefits of applications such as reactor control, or deep-sea
drilling rigs.

2.2.3 Better knowled2e manipulation

Expert systems are tools for manipulating knowledge, they
can:

- discover new knowledge : AM is an expert system which tries to
discover new mathematical concepts form old ones. After
running for an hour in CPU time, AM had discovered about 300
new concepts; about 25 of these seemed interesting to
professional mathematicians.

- help manage complex documentation : the ESP ADVISOR expert
system was developed to replace complex manuals, procedures,
rules or regulations.

2.2,4 Act better than conventional oro2rams

Expert systems are better than conventional programs
because they

- can do tasks hard to program conventionally : XCON was such a
case. DEC had tried and failed to write conventional programs
to configure computers. ICL faced similar difficulties with
DRAGON, their system for configuring 2900 series computers.
The first full version of DRAGON took about 6 man-months to
develop. It is estimated that with conventional methods, it
would have taken 4 to 5 man-years to write the same system
(that would have been much harder to keep up-to-date).

a e JO

The promise of expert svstems

- can deal with uncertain and incomplete data : the knowledge
base in an expert system does not need to be complete before
the system can be useful. Similarly, the user can usually give
a "don't know" or "not sure" answer to one of the system's
questions during a session, and the expert system will still
be able to produce an answer, although it may not be a certain
one.

- can provide the users with explanation of why the computer is
asking a particular question and how the computer obtained a
particular result.

- can understand the goals of the user : a computer system that
is based on expert system technology in its user interface
includes knowledge about the user in the knowledge base. This
knowledge could assist the computer system in understanding
the user. With this understanding, the computer could provide
the user with assistance in using the computer.

2.3 WHY KEEP A HUMAN IN THE LOOP? [WAT-86]

If artificial expertise is so much better than human
expertise, why not eliminate human experts, replacing them with
expert systems? The most highly skilled expert can perhaps be
eliminated, but in many situations a moderately skilled expert
should be kept in the loop. The expert system can then be used
to augment and enhance this user's skills.

There are some very good reasons for not entirely
eliminating the human from the loop. Although expert systems
tend to perform well, there are important areas in which human
expertise is clearly superior to the artificial kind.

One such area is creativity. People are much more creative
and innovative than even the smartest programs. A human expert
can reorganize information and use it to synthesize new
knowledges. Human experts handle unexpected events by using
imaginative and novel approaches to problem solving, including
drawing analogies to situations in completely different problem
domains. Programs have had little success in doing this.

Another area where human expertise excels is learning.
Human experts adapt to changing conditions, they adjust their
strategies to conform to new situations. Expert systems are not
particularly good at learning new concepts or rules. Progress
has been made in developing programs that learn, but these
programs tend to work in extremely simple domains and don't do
well when confronted with the complexity and detail of real
world problems.

Human experts can make direct use of complex sensory
input, whether it be visual, auditory, tactile or olfactory. But
expert systems manipulate symbols that represent ideas and
concepts, so sensory data must be transformed into symbols that

Il

The promise of expert systems

can be understood by the system. Quite a bit of information may
be lost in the translation.

Finally, human experts and nonexperts alike have what we
might call commonsense knowledge. This is a very broad spectrum
of general knowledges about the world and how it works,
knowledges that virtually everyone has and uses. Because of the
enormous quantity of commonsense knowledge, there is no easy way
to build it into an intelligent program, particularly a
specialist one like an expert system. Commonsense knowledge
includes knowing what you know as well as what you don't know.
For example, if you were asked to recall the phone number of
your previous residence, you would search your memory trying to
retrieve the information. If you were asked to give the phone
number of Shakespeare, you would know at once that no answer
exists, since telephones weren't around in Shakespeare's time.
When an expert system is given questions it can't answer or for
which no answer exists, it doesn't have the commonsense to give
up. Instead, it may waste much time searching through its data
and rules for the solution. Even worse, when the solution isn't
found, it may think it is because its knowledge is incomplete
and ask for additional informations to complete the knowledge
base.

For these reasons and others relating to the public
acceptance of artificial expertise, expert systems are often
used in an advisory capacity - as a consultant or aid to either
an expert or novice user in some problem area.

2.4 LIMITATIONS IN THE USE OF EXPERT SYSTEMS

So far, we have seen that expert systems have many more
advantages than traditional programming techniques.
Nevertheless, it does not mean that expert systems have no
failings. Expert systems, like any other techniques, have their
own limits.

Companies encounter several types of difficulties when
trying to apply expert system technology to their problems [WAT-
8 6]

2.4. 1 Lack of resources

Personnel competent to design and develop the systems are
scarce, and few of the high-level support tools and languages
are fully developed or reliable.

There are two reasons for this lack of resources. First,
expert systems, like its parent field artificial intelligence,
is still quite new and unfamiliar to many computer specialists,
and therefore somewhat difficult for them to understand and
apply. Second, the crush of companies entering the artificial
intelligence arena has created many more openings for
experienced artificial intelligence and expert system people
than can be filled with existing personnel.

a e 12

The vromise of exvert systems

2.4,2 Inherent limitations of expert systems

Current expert systems and expert system tools have
limitations, many of which will gradually disappear as
artificial intelligence researchers advance the state of the
art. But for development efforts in the near future, they are a
fact of life.

Expert systems are not very good at representing temporal
or spatial knowledge. Representations of this type can require
huge amounts of memory to keep track of the state of things at
various points in time or to record the spatial relations
between different groups of objects.

We have already discussed the problems that expert systems
lack using commonsense or general knowledge about the world.

Expert systems have a very narrow domain of expertise and
hence, their operation is notas robustas the users might want.
Because of this, expert systems have difficulties recognizing
the limits of their ability. When pushed beyond their limits or
gi ven problems di f f.erent from those for which the y were
designed, expert systems can fail in surprising ways (to put it
another way, expert systems exhibit rather fragile behaviour at
their boundaries).

The most serious limitations of expert system building
tools is their inability to perform knowledge acquisition.
Knowledge acquisition is the major bottle-neck in expert system
development; it is tedious and time-consuming to extract
knowledge from an expert and incorporate it into a large
knowledge base. At present, a knowledge engineer extracts
knowledge from human experts and laboriously builds it into the
knowledge base. Despite research aimed at designing tools for
automatically acquiring the knowledge, the bottle-neck still
exists and results in project development times that seem
unnecessarily long.

Languages for building expert systems are notas flexible
and general as the knowledge engineer might want. Particular
types of knowledge (e.g. temporal or spatial) often can not be
represented easily, or different representational schemes can
not be represented naturally and efficiently in the same
language. Also, many languages do not provide mechanisms for
building adequate user interface. The explanations are still
primitive and a human expert may need to explain again what the
expert system has explained.

2.4,3 Expert systems take a Iom: time to buitd

Expert systems can not be built quickly. With the
currently available technology, it takes from 5 to 10 man-years
to build an expert system that solves a moderately complex
problem. XCON, the system that configures computers, took about
8 man-years to reach reasonable performance. Earlier systems
such as DENDRAL took over 30 man-years of effort to be built.

Overview of expert system applications

CHAPTER 3: OVERVIEW OF EXPERT SYSTEM APPLICATIONS

We can broaden our understanding of expert systems by
reviewing some of their most characteristic uses. We will
describe these uses from two perspectives : the basic activities
of expert systems and the areas in which they solve problems.

3.1 PROBLEM-SOL VING ACTIVITIES

Expert systems have been built to model the problem
solving strategies of human experts. Because different human
experts use different problem-solving techniques, the expert
systems modell~d after the strategies of the human use a variety
of problem-solving approaches. Depending on an expert' s
intentions in problem-solving strategies, the expert will
perform one or more of the activities listed in Figure 1.3 [MAR-
88]. The list may not be all-inclusive, but it does feature
activities that experts have been known to use and can be
supported by expert systems.

ACTNITY PROBLEM ADDRESSED

designing configuring objects under constraints

planning designing actions

forecasting inferring likely consequences of given situations

controlling governing overall system behavior

monitoring comparing observations to expected outcomes

diagnosing inferring system malfunctions from observables

prescribing finding remedies for malfunctions

interpreting inferring situation descriptions from sensor data

training diagnosing, debugging and repairing student behavior

Figure 1.3 problem-solving activities

a e 14

Overview of expert system applications

Designing is the task of developing configurations of
abjects based on a set of problem constraints. Examples are
designing integrated circuit layouts or creating complex organic
molecules. Because design is so closely coupled with planning,
many design systems provide mechanisms for developing and
refining plans to achieve the desired design.

Planning is the activity of establishing goals, plans,
policies, and procedures to achieve some end. Planning involves
organizing actions as well as determining the modes of actions.
Examples are creating an air strike plan or organizing the
construction of a new high-rise office building.

Forecasting involves the examination of information of a
given situation and predicting future situations. The
forecasting activity could also be looked at as inferring future
consequences of current decisions. Forecasting is often the act
of presenting predictions after study and analysis of all
available pertinent information. Examples are predicting the
damage to crops from some type of insect or estimating global
oil demand from the current geo-political world situation.

Controlling activities include direction, regulation and
coordination of systems or machines. The directing activities
include planning activities such as establishing goals and
procedures, forecasting such as observing the present
environment and correlating this with past data. Putting things
into the same or required order is an example of coordinating
activity.

Monitoring involves observing and checking for some
specific purpose. To monitor a system means to keep track of the
system, to observe the behaviour of the system and compare the
observations with planned or designed behaviours. Monitoring
systems usually have set limits within which the behaviour of
the system being monitored can vary without any action on the
part of the monitoring system. However, if observed system
behaviours exceed these limits, the monitoring system is
designed to noti fy some system or operator. Examples are
monitoring instrument readings in a nuclear reactor to detect
accident conditions or assisting patients in an intensive care
unit.

Diagnosing activities include investigating and analysing
the cause or nature of a problem. Diagnosing often involves the
act of identifying a cause from observable signs or symptoms.
Expert diagnostic systems infer what the problem is from
observable signs and symptoms that are presented to them.
Examples are locating faults in electrical circuits or finding
defective components in the coolant systems of nuclear reactor.

Prescribing is the activity of recommending or designating
the use of some agent as a remedy for a problem. Prescribing
activities are very often related to diagnosing activities. When
a doctor diagnosis a patient as having some illness, he will
often prescribe some medicine as a remedy to correct the
problem. Doctors can describe patient symptoms to the MYCIN

Overview of expert system a;mlications

expert system, and the system will diagnose bacterial infections
and prescribe treatment for the infection.

Interpreting systems use sensor data to infer situation
descriptions. Interpreting systems deal directly with real data
rather than with clean symbolic representations of the problem
situation. They face difficulties that many other types of
systems avoid because they may have to handle data that are
noisy, incomplete, unreliable or erroneous.

The goal of training is to increase the knowledge or skill
level of a student in some subject domain. Training often starts
with some investigation of what the student already knows about
the subject of interest. Analysis of what the student already
knows versus what the student should know determines what needs
to be taught. The GUIDON expert system is an intelligent system
that trains a student by asking questions to technical subjects,
receiving answers toits questions, and then either telling the
student that the response is correct or correcting the student's
response.

3.2 SUPPORTED DOMAINS

Although the basic activities of expert systems are easy
to describe, it is misleading to use them to categorize existing
expert systems because many expert systems perform more than
just one acti vi ty. For example, diagnosis often occurs wi th
debugging, monitoring with control, and planning with design.
Consequently, it is useful to categorize expert systems by the
type of problems they solve. Figure 1. 4 shows some of the
problem domains in which expert systems are now working [WAT-
86). Of these areas, the medical domain seems the most popular
one; more expert systems have been developed for medicine than
for any other problem area.

Expert system work in chemistry started with DENDRAL, an
innovative research project at Stanford University in the mid-
1960s. Current expert system work includes inferring molecular
structure, synthesizing organic molecules, and planning
experiments in molecular biology.

Expert system work in computer systems is typified by
XCON, one of the first and most successful systems of this type.
Current work in computer systems includes fault diagnosis,
computer configuration and manufacturing control.

Applications in electronics is dominated by research and
development efforts involving equipment fault diagnosis and
integrated circuit design. ACE, developed by Bell Laboratories
in the early 1980s, typifies fault diagnosis systems in this
area. It is being used by AT&T to locate and identify trouble
spots in telephone networks. Current expert system work in this
area also includes the development of instructional systems for
electrical troubleshooting and digital circuit design.

Overview of expert system applications

Agriculture Manufacturing

Chemistry Mathematics

Computer systems Medicine

Electronics Meteorology

Engineering Military science

Geology Physics

Information management Process control

Law Space technology

Figure 1.4 supported domains

Expert system in engineering is typified by DELTA, a fault
diagnosis system developed by General Electric in the mid-1980s.
General Electric uses DELTA on a commercial basic to help
maintenance personnel to find malfunctions in electric
locomotives. Current work in that domain includes other fault
diagnosis efforts and instruction in the operation of complex
process control systems.

Work in medicine began with MYCIN, one of the earliest and
best known expert systems. Developed at Stanford University in
the mid-1970s, MYCIN helps a physician diagnose and treat
infection blood diseases and is now being used for research and
medical teaching. Current expert system work in medicine
includes interpretation of medical test data, disease diagnosis,
disease treatment, and instruction in medical diagnosis and
management techniques.

Expert system work in the military domain has focused on
interpretation, prediction and planning. One of the first
military expert systems was HASP/SIAP. It identifies ship types
by interpreting data from systems that monitor regions of the
ocean. Current work in the military domain includes
interpretation of sensor data, prediction of combat results and
tactical planning.

Architecture of exoert systems

CHAPTER 4 : ARCHITECTURE OF EXPERT SYSTEMS

As shown in Figure 1.5, the four basic components of an
expert system are the knowledge base, the inference engine, the
interface module and the development engine [WOL-87).

4.1 THE KNOWLEDGE BASE

The knowledge base of an expert system contains the
information used to salve a problem. A knowledge base is a step
above conventional databases in that a knowledge base not only
contains static data as in a database, but also relational
informations. A third area of the knowledge base is the working
memory. The working memory is used only during processing and is
the resident space for information manipulation. In that area,
the knowledge base is modified by the inference engine as
situations and data change (a much more interactive area of the
expert system than the database). The working memory takes the
knowledge from the knowledge base and combines it with the
information supplied from the user to be massaged then·by the
inference engine in pursuit of a solution.

Working
Memory

, , ,,

,, ,,
7'

-

Figure 1. 5

User

t
USER

INTERFACE

) '
' '

INFERENCE
ENGINE

) '

' '
KNOWLEDGE - - DEVELOPMENT

BASE -...... ~

ENGINE

architecture of expert systems

Architecture of expert systems

4.2 THE INFERENCE ENGINE

The inference engine is the workhorse of the expert
system. It consists of the processes that work the knowledge
base, do analyses, form hypotheses, and audit the processes
according to some strategy that emulates the expert's reasoning.
The inference engine massages new information, combines it with
the knowledge base, considers the relationships in the knowledge
base and proceeds to solve the problems in working memory using
its established reasoning and search strategies. In other words,
the inference engine is "the thinker" of the system.

4.3 THE INTERFACE MODULE

Numerous interfaces are used in the creation and operation
of an expert system. Interfaces include a terminal, graphical
representations, multiple character windows and multiple graphie
windows. These interfaces operate in three situations. The first
situation is where the user acts as a client. Here the user
wants answers to problems. The second situation is where the
user acts as a tutor to enhance the expert system. Here the
user, primarily the knowledge engineer, wants to improve or
increase the knowledge of the expert system. The third situation
is where the user acts as a pupil of the expert system. In this
situation the user wants to harvest the knowledge base.

4.4 THE DEVELOPMENT ENGINE

A development engine, also called knowledge acquisition
subsystem, is vital in the creation of the expert system in that
it allows the knowledge engineer to create, modify, add and
delete information from the knowledge base. The development
engine is not always resident within the expert system

software2 .

2 The knowledge acquisition process will be dicussed in more
details in chapter 6.

19

Inside expert systems

CHAPTER 5 : INSIDE EXPERT SYSTEMS

5.1 KNOWLEDGE REPRESENTATION

The manner in which knowledge is represented crucially
affects the ease and speed with which a program canuse it.
Consider the example of Roman versus Arabie numerals. Both of
them can represent any positive whole number. There are
unambiguous rules for operations like addition and division.
These rules can be programmed into a computer, or embodied in
hardware. Despite this, no one would ever use a Roman numerical
like system for computer arithmetic. Therefore, knowledge
representation is critical subject. For this reason, the choice
of sui table formalisms and techniques for representing and
reasoning with knowledge is a matter of continuing debate and
active research in artificial intelligence circles.

In this chapter, we will briefly describe the four most
common ways to represent knowledge rules, semantic nets,
frames and predicate calculus.

s,1,1 Rules

The most popular format for representing knowledge in a
way that maintains its procedural character is the production
rule which is simply a statement program of the form [ALT-84]:

" IF premise (s) THEN action (s) "

The IF clause describes an abject, situation or position. If the
IF clause is true, the THEN clause of the production rule is
activated. The IF clause is called the premise; the THEN clause
is called the action. A rule is said to be activated when all
the conditions in the premise of the rule are satisfied by the
current situation. The production is said to be fired or
executed when the action is performed.

An example of a rule from a monitoring system is given
below. The system, called REACTOR, monitors instrument readings
in a nuclear reactor, looking for signs of accident [WAT-86].

IF The heat transfer from the primary coolant system to
the secondary coolant system is inadequate

and The feedwater flow is low

THEN The accident is low of feedwater

Figure 1.6 : example of rule

lnside expert svstems

The simple idea behind a set of production rules is that
they define a set of allowed transformations which moves a
problem from its initial statement toits solution. The current
state of a solution is represented by the set of facts asserted
in a database. The solution progresses by the matching of one
side of a rule resulting in changes to the database.

One of the original attractions of production rule
formalisms is their simplicity. Production rules are structured
similarly to the way people think about solving a problem. Given
a situation, production rules best express "what to do next"
statements. Despite this ideal, it has been pointed out that in
order to design usable systems, significant deviations are
necessary. These may involve introducing some structure into the
database, having various levels of rule, and allowing rules to
access standard programming procedures [ALT-84].

5.1.2 Semantic nets

Semantic network notation is based on the ancient and very
simple idea that memory is composed of associations between
concepts. The basic functional unit of a semantic network is a
structure consisting of two points, or nodes, linked by an arc.
Each node represents some concept and the arc represents a
relation between pairs of concepts. Such pairs of related
concepts may be thought of as representing a simple fact. The
judicious choice of relational labels permits the expression of
very complex groups of facts. Figure 1. 7 illustrates one
possible representation of facts about an employee "smith" [ALT-
8 4] •

Flexibility is the major advantage of semantic nets
through the ability to add, modify or delete new nodes and arcs
where appropriate. Another benefit is the ability to inherit
relationships from other nodes - more specifically, the ability
to reason and make assertions about one node and its
relationship with another node where no direct arc exists
between the two nodes [WOL-87]. This inheritance is illustrated
in Figure 1.7 by the statement "Mr Smith works-in building-1" .

The best known disadvantage of semantic nets is their
inability to represent complex situation. If the problem under
review has many exceptions, the number of nodes and arcs needed
to describe the various exceptions becomes very large, making
the structure of the semantic net inelegant and complex to
handle.

21

Inside expert systems

building-1

location

production-department

works-in

blue-eyes
has

smith
is-a

manager

is

40-years-old

Figure 1.7 example of semantic net

5,1,3 Frames

A frame is organized much like a semantic net [WAT-86). A
frame is a network of nodes and relations organized in a
hierarchy, where the topmost nodes represent general concepts
and the lower nodes represent more specific instances of those
concepts. So far, this looks just like a semantic net. But in a
frame, the concept at each node is defined by a collection of
attributes, called slots, and values of those attributes. A
frame is a partition of knowledge; a slot describes its
individual proprieties. The slot representation is a declarative
statement for asserting attributes of a frame. The slot can have
default values or subslots which represent a further breakdown
of attributes. Slots also allow for procedural attachments.
Procedures can be attached to slots to drive the reasoning or
problem-solving inference engine for that slot. The procedure is
a set of instructions that, when executed, produces consistent
results with the facts for a particular slot.

Figure 1. 8 is an example of a frame instantiated to
describe an employee "smith" named "sm-1" [ALT-84].

e 22

I nside exoert systems

name:

Figure 1.8

5.1.4 Predicate calculus [WOL-8 7 J

sm-1

specialisation-of: EMPLOYEE

name: smith, john, henri

age: 40

address : adr-1

department : production

salary : sal-1

start-date: april-1972 ·

to: now

example of frame

Predicate calculus, or logic programming, relies on the
truth and rules of inferences to represent symbols and their
relationships to each other. For example, If A Then Band A
exists, allow us to conclude B. This provides a simple way of
determining the truth or falsity of a statement. Predicate
calculus is actually an extension of propositional logic. The
form of logic most often used is first-order predicate logic,
which is an extension of predicate calculus.

First-order predicate logic works with variables,
predicates, sentential connectives, qualifiers and functions.
Variables are place holders to represent objects, things and
statement in question. Predicates describe a relationships or
make a statement about the variable under consideration.
Predicates can be thought of as verbs and can be applied to any
numbers of variables. Sentential connectives are used to make
complex sentences. The fi ve most commonly used sentent ial
connectives are

and

or
not
implies
equivalent

,.._ or &

V
-,

->
=

The notion of a function is similar to that of predicate,
except that a function returns objects that are related to their
arguments (for example, the function father-of(X,Y) will return
a name, nota true/false value).

a e 23

I nside expert systems

Figure 1.9 illustrates the fact that a persan X works in
the production department if that persan works in building-1 and
if that persan is a manager or if that persan is at least 40
years old.

works-in(X,production) = works-in(X,building-1) &
is-a(X,rnanager) v
is-at-least(X,40-years-old)

Figure 1.9 example of predicate calculus

5.2 CONTROL STRATEGIES

One important issue in the design of the control portion
of the expert system is the decision of the search procedure,
the order in which the rules are scanned for triggering. This
involves a decision on the direction of the search and the
search method. Control procedures are normally a part of the
inference engine, and the knowledge engineer has only limited
control over the procedure in most of the systems.

There are two search decisions that must be made in
designing the control strategy [TOW-86]

1. What is the starting point ? The starting point
determines whether the search uses forward chaining or
backward chaining.

2. How can the search be more efficient? This involves

developing heuristics 3 to resolve conflicts when
multiple paths exist and for eliminating paths that are
not useful.

5.2.1 Backward and forward chainin2

In a backward chaining system, a conclusion is assumed and
the inference engine works backward in an attempt to find the
facts supporting that conclusion. As soon as it finds a valid
conclusion, it moves to a subgoal for that conclusion and then
tries to prove this. This type of search is often called a goal
driven search.

In a forward chaining system, the inference engine starts
with the facts, and then works forward to find a conclusion that
is supported by the facts. As each new conclusion is reached, it
is added to the working memory. Forward search strategies are
often called data-driven searches.

3 heur i st ic from a greek word "heur i ski en", meaning to
discover or invent by onself, to find.

24

Jnside expert systems

5,2,2 Improvin2 search efficiency

In a system with hundreds of rules, it is often advisable
to implement strategies to minimize or improve efficiency of the
search. A few of the search strategies used to improve
efficiency are depth-first search, breath-first search and
problem-reduction.

5.2.2.1 Depth-first versus breath-first search

In a depth-first search, details are pursued as deeply as
possible until the search fails. In a breath-first search, all
possible details atone level are scanned before moving to the
next detail level. An expert generally appreciates the depth
first search because all details relative to a particular
conclusion are presented together. A generalist prefers the
breath-first search, as such an analysis is not restricted by
previously conceived relationships of the details.

5.2.2.2 Problem reduction

In this strategy, subgoals are defined and then an attempt
is made to prove these as intermediate conclusions to the final
goal. By carefully defining the rules so that the problem
solution is a hierarchy of goals and subgoals, the search path
can be minimized in the problem solution space.

K nowledge engineering

CHAPTER 6 : KNOWLEDGE ENGINEERING

Building an expert system is vastly different from coding
a program. It is an entirely new area of computing. This chapter
addresses a new area of expertise : knowledge engineering.
Knowledge engineering is the process of synthesizing knowledge
into a computer system so that problems are electronically
solved through symbolic manipulation and reasoning of the
knowledge base [WOL-87]. A knowledge engineer differs from a
programmer in that the former must not only be technically
adept with expert system software, but must also possess
superior psychological, communicative, and management skills. A
programmer, given an application with known inputs and outputs,
must provide the means to transform the inputs into outputs. The
primary task of a knowledge engineer is to identify critical
inputs and outputs, discern the inner process by which the human
expert transforms these inputs into outputs, establish this
knowledge in the appropriate computer system, · and finally,
encourage the successful integration of the expert system into
the organisation.

6.1 PRINCIPLES FOR DESIGNING EXPERT SYSTEMS

About 20 years have elapsed since the first known expert
systems. One might thus expect the development of a clear set of
general principles for designing expert systems. However, the
design of expert systems is still an art and the principles
which have emerged are far from general, representing little
more than a summation of conventional wisdom. Therefore, the
principles shown in Figure 1.10 are seen as a powerful starting
point for expert system design, but they do not represent a
universal theory for designing such systems.

Bounded domain [SIE-86]. To be able to build a practical expert
system which offers advice in a given domain, you should be
able to clearly define the limits of that domain. The domain
should have a finite number of goals, solution approaches,
relationships and factors. Furthermore, the number of goals
and solutions approaches should be small and the number of
relationships and factors should not be so large as to cause
confusion.

Separate knowledge from inference engine [SIM-84]. In this way,
the expert system is divided into an inference engine and a
knowledge base, allowing the knowledge to be more easily
identified, more explicit and more accessible. If the two are
intermixed, domain knowledge will get spread out through the
inference engine, and it becomes less clear what we ought to
change to improve the system.

K nowledge engineering

1. Define the limits of the domain

2. Separate the inference engine and the knowledge base

3. Use representation as uniform as possible

4. Keep the inference engine simple

5. Exploit redundancy

6. Build a prototype as soon as possible

7. Expert should be available throughout the project

8. Keep the expert's interest in the project

.
Figure 1.10 : principles for designing expert systems

Uniform representation [SIM-84]. This cuts down the number of
mechanisms required, keeping system design simpler and more
transparent. Each time a new representation is added to the
system, something else in the system has to be able to handle
it, has to know its syntax or semantics to be able to use it.
Bence fewer representations mean a simpler, more transparent
system.

Simple inference engine [SIM-84). Keeping the inference engine
simple helps in several ways. Since explanations are generated
by replaying the actions of the system, keeping those actions
simple means that little work is necessary to produce
comprehensible explanations. Knowledge acquisition is also
easier. When the inference engine is less complicated, less
work is needed to determine exactly what knowledge has to be
added to improve system performances.

Exploit redundancy [HAY-83). Redundant data, hypothesis
structures and inference rules can be useful to avoid problems
caused by erroneous or missing information. No conclusion
should rely too strongly on a single piece of evidence.

Build a prototype [WEI-84). Because expert reasoning problems
are frequently poorly specified, one needs to have something
concrete to view. It is particularly important for the expert
to see something running early. A running program is worth
thousands of words from an unformalized interview with the
expert. The initial prototype may be crude, will certainly be
incomplete, and may contain inaccuracies but at least it
provides a good starting point.

Expert availability [BON-85]. It is essential that genuine
expert is available throughout the whole period of the

e 27

Knowledge engineering

project, and that several other experts can be called upon to
criticize and improve the prototype version. It is of prime
importance to include all the unusual cases met by these
experts. An experienced specialist will often go straight to
the heart of a problem because he knows the right questions to
ask.

Keeping the expert 's interest [BON-85). Expert systems suffered
for a long time from predictions of enthusiastic practitioners
who made extravagant claims about what the computer would be
able to do. The scepticism this bring along should then be
overcome by quickly developing a prototype and showing that it
actually works, even if its achievements are not quite up to
the original aim. The expert who was . involved in the
construction of the system will be encouraged to continue if
he sees some of his own reasoning processes represented in the
machine.

6.2 ST AGES IN BUILDING EXPERT SYSTEMS

As said in part 6.1, expert system builders don't have a
series of well-defined steps that they follow when constructing
a system. The inherent complexity of the system building process
precludes laying out all the steps in advance. As a result,
system builders have pointed out that an evolutionary
development is the most effective way to proceed.

The evolution of an expert system normally proceeds from
simple to bard tasks by incrementally improving the organization
and representation of the system's knowledge. This incremental
approach to development means that the system itself can assist
in the development effort. As soon as builders acquire enough
knowledge to construct even a very simple system, they do so and
use feedback from the running model to direct and focus their
efforts. The incremental approach also means that the system
builders can profit from what they learn in implementing the
initial aspects of the system.

Expert system development can be viewed as five highly
interdependent phases [WAT-86) identification,
conceptualization, formalization, implementation and testing.
Figure 1.11 illustrates how these phases interact.

6.2.1 Identification sta1:e

The first stage in building an expert system is to
characterize the important aspects of the problem. This involves
identifying the participants, problem characteristics, resources
and goals.

6.2.1, 1 Participant identification and roles

Before the development process can begin, the participants
must be selected and their roles defined. The most common
scenario involves interaction between the domain experts and the

a e 28

Knowledge engineering

knowledge engineers. Domain experts actas informants who tell
the knowledge engineers about their knowledge or expertise. The
knowledge engineers actas designers and builders of the expert
system through the whole development process. But the
construction of an expert system can also include other
participants such as the future users of the system. These
participants may help the knowledge engineers to design a better
environment for the final product.

6.2.1.2 Problem identification

Once the participants are chosen, the knowledge engineers
and domain experts can proceed toward identifying the problem
under consideration. This involves an informal exchange of views
on various aspects of the problem, its definition,
characteristics, and subproblems. The objective is to
characterize the problem and its supporting knowledge structures
so that the development of the knowledge base may begin. Several
iterations of the problem definition may be necessary since the
knowledge engineers or domain experts may find that the initial
problem considered is too large or unwieldy for the resources
available. In short, the participants isolate and verbalize the
knowledge that is relevant to the solving of the problem and
identify the key elements of the problem description.

6.2.1.3 Resource identification

Resources are needed for acquiring the knowledge,
implementing the system, and testing it. Typical resources are
knowledge sources, time, computing facilities, and money.

The domain experts and knowledge engineers must use
various sources to obtain knowledge relevant to building expert
system. For the domain experts, these include past problem
solving experience, textbooks, and examples of problems and
solutions. For the knowledge engineers, the sources include
experience on analogous problems and knowledge about methods,
representations, and tools for building expert systems.

Time is a critical resource. Both knowledge engineers and
domain experts must be able to devote many months of intensive
activity just to get the first prototype running. Obviously,
computing and financial resources are critically scarce.

6.2.1.4 Goal identification

It is likely that the domain experts will identify the
goals or objectives of building the expert system when
identifying the problem. It is helpful, however, to separate the
goals from specific tasks of the problem, since they constitute
additional constraints that can be useful in characterizing the
feasibility of certain approaches.

a e 29

hj
1-'
lQ
i::::
ri
(D

1-'

1-'
1-'

(/)

rt
PJ
lQ
(D
(/)

1-'
::s
t1
i::::
1-'
f-'
o..
1-'-
::s
lQ

(D

X
'D
(1)
ri
rt

(/)

'<
(/)

rt
(1)

:3
(/)

1 ,/

How can the important
aspects of the problem

be characterized ?

IDENTIFICATION

'~

Requirements What concepts are Concep~
,... needed to produce a -solution?

CONCEPTUALIZATION

' ' t
How can the Structure What rules will ~

knowledge be ,- embody the
fom1ally represented? knowledge?

FORMALIZATION IMPLEMENTATION

Re formulations

Redesigns

Rclïncmcnts

Rules How can the .,__
rules be _.

validated?

TESTING

·~
;:s
C)

i
1<1:>
~

(1:)

(1:)

1-
(1:)

1~.
;:s

Knowledge engineering

6.2,2 Conceptualization sta2e

The key concepts and relations, already mentioned during
the identification stage, are made explicit during the
conceptualization stage. This stage, like the previous one,
involves repeated interactions between the knowledge engineers
and the domain experts that are important, difficult and time
consuming. It will be tempting to try to analyze the problem
correctly and completely before implementing a trial system.
During this stage, subtasks, strategies and constraints related
to the problem-solving activity are also explored. At this time,
the issue of the detail level of the knowledge representation is
usually addressed.

6,2,3 Formalization sta2e

The formalization process involves mapping the key
concepts, subproblems, and information flow characteristics
isolated during conceptualization into more formal
representations based on various knowledge engineering tools or
frameworks. The knowledge engineers now take a morè active role,
telling the domain experts about the existing tools,
representations, and problem types that seem to match the
problem at hand.

The result of formalizing the conceptual information flow
and subproblem elements is a partial specification for building
a prototype. This specification follows from the choice of
organizing framework and the explicit sketch of the concepts and
relations essential to the problem.

6,2,4 Implementation sta2e

Implementation involves mapping the formalized knowledge
from the previous stage into the representational framework
associated with the tool chosen for the problem. As the
knowledge in this framework is made consistent and compatible,
and is organized to define a particular control and information
flow, it becomes an executable program. The knowledge engineers
evolve a useful representation for the knowledge and use it to
develop a prototype expert system.

The knowledge made explicit during the formalization stage
specifies the contents of the data structures, the inference
rules, and the control strategies. The tool or representation
framework specifies their form. Local consistency of the
problem-solving primitives will already have been worked out in
previous stages but does not guarantee an executable program,
since there may be global mismatches between data structures and
some rules or control specifications. Such inconsistencies must
be eliminated to ensure rapid development of the prototype
expert system.

6.2,5 Testin2 stage [HAY- 8 3]

The testing stage involves evaluating the prototype system
and representational forms used to implement it. Once the

1

Knowledge engineering

prototype system runs from start to finish on two or three
examples, it should be tested with a variety of examples to
determine weaknesses in the knowledge base and inference
structure. The experienced knowledge engineer will elicit from
the domain expert those problems likely to challenge the
performances of the system and reveal serious weaknesses or
errors. The elements usually found to cause poor performance
because of faulty adjustment are input/output characteristics,
inference rules, control strategies, and test examples.

The primary input/output characteristics are data
acquisition and conclusion presentation. The method of acquiring
data may be faulty or inadequate due to the fact that wrong
questions are being asked or not enough information is being
gathered. The conclusions output by the program may either be
adequate or inadequate. There may be too few or too many
conclusions, with not enough or too many intermediate hypotheses
specified. The conclusions may not be appropriately organized or
ordered, and the output may be at an inappropriate level of
detail, either too verbose or too sparse.

The most obvious place to look for errors in reasoning is
in the set of inference rules. Among other things, rules may be
incorrect, inconsistent, incomplete, or entirely missing. If a
rule's premises are incorrect, they may lead to an inappropriate
context of application, thus invalidating its logic. Similarly,
the conclusion of a rule may be incorrect, often in scope or in
failure to separate subcases. And even if both premises and
conclusions are correct, they may be linked via incorrect
measures of association.

Errors in a prototype system often occur in the control
strategies used. When the system considers items in an order
that differs from the "natural order" of the experts, the
knowledge engineers must look to the control structure for
problems. Sequencing is more than cosmetic : there are often
good reasons why data are considered in a particular way.

Finally, problems with a prototype system may arise from
selecting poor test examples. Sometimes, failures can be traced
to particularities of the test problem that were outside the
intended scope of the system. More often, however, the set of
test cases is too homogeneous and fails to test the program
adequately. To ensure against such homogeneity, the test problem
examples must be organized so that they cover the subproblems,
probe the boundaries of expected "hard" cases, deal with the
"classical" or prototypical cases of a problem, exhibit
ambiguity, and provide for situations involving both hard and
soft data.

6,2,6 Prototype revision

In the course of building an expert system, there is
almost constant revision, which may involve reformulation of
concepts, redesign of representations, or refinement of the
implemented system. Refinement of the prototype normally
involves recycling through the implementation and testing stages
in order to tune or adjust the rules and their control

2

Knowledge engineering

structures until the expected behaviour is obtained. The result
of revision should be a convergence of performance. If this does
not occur, the knowledge engineer must undertake more drastic
modifications of the architecture or knowledge base. This is
called redesign, a recycling back through the formalization
stage with the new representation. If the difficulties are even
more serious, they may involve mistakes of conceptualization or
identification that will necessitate a reformulation of some of
the concepts (abjects, relations or processes) used in the
program.

6.3 KNOWLEDGE ACQUISITION

6,3,1 The problems of the knowlect2e acquisition process [WAT-8 6 J

One of the most critical responsibilities of the knowledge
engineer is knowledge acquisition. Acquiring the knowledge
needed to power an expert system and structuring that knowledge
into a usable form is one of the primary bottle-necks in expert
system development (this phenomenon is amplified by the fact
that no automatic methods for doing this exist, with the
exception of some very simple system-building aids).

Knowledge acquisition is defined as the process of
identifying, extracting, documenting, and analyzing the
information processing behaviour of domain experts in order to
define the knowledge base and inference engine of an expert
system. Knowledge in an expert system may originate from many
sources, such as textbooks, reports, databases, case studies,
empirical data, and personal experience. However, the dominant
source of knowledge in today's expert systems is the domain
expert. A knowledge engineer usually obtains this knowledge
through direct interaction with the expert.

This interaction consists of a prolonged series of
intense, systematic interviews, usually extending over a period
of many months. During the interviews, the knowledge engineer
presents the expert with realistic problems to solve that are
the type of problems the expert system is being designed to
handle.

The knowledge engineer must work with the expert in the
context of solving particular problems. It is seldom effective
to ask the experts directly about their rules or methods for
solving a particular type of problem in the domain. Domain
experts usually have great difficulty expressing such rules. One
reason for this is that experts have a tendency to state their
conclusions and the reasoning behind them in general terms that
are too broad for effective machine analysis. Experts make
complex judgments rapidly, without laboriously reexamining and
restating each step in their reasoning process. The pieces of
basic knowledge are assumed and are combined so quickly that it
is difficult for them to describe the process.

Knowledge engineering

Even worse, when experts attempt to explain how they
reached a conclusion, they often construct plausible lines of
reasoning that bear little resemblance to their actual problem
solving activity. This effect has at least two import;.ant
implications for the building of expert systems first, it
suggests that domain experts need outside help to clarify and.
explicate their thinking and problem sol ving. Secondly, i t
suggests that the knowledge engineer should believe in a
legitimate rule of expertise only if the expert has demonstrated
the accuracy's use of the rule during problem solving.

Sometimes, the behaviour of experts appears more intuitive
than intelligent. Considerable knowledge has been found to be an
essential prerequisite to expert skill. Large numbers of
patterns serve as an index to guide the expert in a fraction of
a second to relevant parts of the knowledge store. This capacity
to use patterns to guide a problem's interpretation and solution
is probably a large part of what we call physical intuition
(this is due to the fact that when experts solve problems in
their area of expertise, they recognize new situations as
instances of things wi th which they are already familiar) .
However, when experts are faced with new or novel situations,
they behave more like intelligent novices. They tend to apply
general principles and deductive steps that provide casual links
between various stages of a problem-solving sequence.

These differences in problem-solving strategies suggest
some techniques for decompiling an expert' s knowledge. One
possibility is to present novel situations (perhaps suggested by
other experts) and note the process they perform to solve the
problem. An alternative is to present an intelligent novice with
a standard problem to gain insight into the actual problem
solving activity.

6.3,2 Sorne techniques to acquire knowJed~e [Goo- 8 s J

The first essential in any knowledge engineering involving
experts is close contact between the expert and the knowledge
engineer. Once a working relationship has been established, the
knowledge engineer needs a battery of techniques for eliciting
the knowledge from the expert. The most common techniques are :

Examples problems. In this form of interview, the expert is
presented with an example of the sort that the expert system
will be expected to tackle.

Classification interviews. The purpose of this form of interview
is to gain insight into the expert's mental model of the
problem domain. In that analysis, the expert is presented with
triple of objects from the domain and asked to say what
features distinguish any two from the third.

Directed interviews. The knowledge engineer picks a set of
representative problem and informally discusses them with the
expert. The goal is to determine how the expert organizes
knowledge about each problem, represents concepts and
hypotheses, and handles inconsistent or imprecise knowledge.

e 34

Knowledge engineering

Discussion of a prototype system. The expert examines and
critiques each rule in the prototype system and evaluates the
control strategies used to select the rules.

On-site observation. The knowledge engineer observes the expert
solving real problems on the job rather than realistic
problems in a laboratory setting.

6.4 PROTOTYPING

6.4.1 The importance of a rapid prototype

We have seen in part 6.2 that, as soon as builders acquire
enough knowledge to construct a system even very simple, they do
so and use feedback from running model to direct and focus their
efforts. This very early system, also called rapid prototype,
has a significant importance when building expert systems. Many
reasons help us understand why a rapid prototype should be
implemented as soon as possible.

First of all, a rapid prototype might positively influence
the decision concerning the final acceptance of the project. A
rapid prototype takes just a little time to develop, and, if
this one already unveils general good performances, it could
influence the verdict to fund the development of a commercial
product.

Moreover, the rapid prototyping approach is based on the
belief that it significantly reduces the risk of an incorrect
identification of the problem, experts, or problem-solving
methods. As discussed previously, most expert systems
effectively deal with ill-defined, poorly structured problems.
No conceptual model of the problem may have been formulated
previously, and intended users may not be able to express their
ideas and objectives correctly. The use of rapid prototyping can
help the developer and the intended user to define the
requirements and design specifications for the full-scale expert
system.

Another reason for developing a rapid prototype is to make
something work early in a project, rather than waiting until the
end of lengthy paper analysis and design phases to begin coding.
That working prototype will stimulate the intended user as well
as the developers since it allows them to better visualize the
enhancements of the project.

Finally, prototyping improves the communication between
the knowledge engineer and the human expert. By getting experts
involved in discussions of the functional areas of daily
operations, the knowledge engineer helps the experts to better
understand the evolution of the project, and to be more
confident concerning the impacts of the expert system. A more
confident expert and a better assisted knowledge engineer
improves the atmosphere of work.

Knowledge engineering

All these reasons make us believe that rapid prototyping
is a key concept that has the potential to produce more complex
systems, more quickly and successfully than by other means.

6.4,2 Devetopment sta2es of a prototype [WAT- s 6]

Because of the incremental approach chosen for the
development process, most expert systems evolve from the initial
prototype to the final commercial product through certain
stages. We identify five development stages.

Most expert systems begin as a demonstration prototype (or
rapid prototype), that is, a small demonstration program that
handles a portion of the problem that will eventually be
addressed. This type of program is often used in two ways
first, to convince potential sources of funding that expert
system technology can effectively be applied to the problem in
question; and second, to test ideas about problem definition,
scoping, and representation for the domain.

Most current expert systems have evolved to the stage of
research prototype, a medium-sized program capable of displaying
credible performance on a number of test cases. These systems
tend to be fragile; they may fail completely when given problems
that fall near the boundary separating problems they can handle
from those they can not. Because they lack sufficient testing,
they may also fail in some problems well within their scope.

Sorne expert systems have evolved past the research
prototype to the stage of field prototype. These systems are
medium- to large-sized programs that have been revised through
testing on real problems in the user communi ty. They are
moderately reliable, contain smooth, friendly interfaces, and
address the needs of the end-user.

A few expert systems have reached the stage of production
prototype. These systems are large programs that have been
extensively field-tested and are likely to have been
reimplemented in a more efficient language to increase speed and
to reduce computer storage requirements.

Only a few expert systems have reached the stage of
commercial system. These systems are production prototypes used
on a commercial basis.

6.5 EVALUATION OF EXPERT SYSTEMS

Evaluation of expert systems, unlike knowledge acquisition
or inferencing mechanisms, is a topic that has been minimally
addressed. However, evaluation, whether informal or formal, is
an important element in expert system development because it
enables a feedback process to take place, whereby the comments
serve as a basis for iterative refinements. But expert system
evaluation is often nebulous since there are no universally
accepted or unbiased formal specifications against which the

Knowled~e en~ineerin~

system can be judged. Expert system evaluation is analogous to
evaluating a financial portfolio. Several performance indexes
exist (e. g. liquidi ty ratios, pro fi tability measures, leading
indicators, ...) , but no measure or group of values has been
universally accepted as a standard to evaluate portfolio
performances. A portfolio can be measured against several
criteria for analysis, but the analysis will always be subject
to personal interpretation. Prototype development standard
setting is not overly useful either. If formal evaluation
specifications are written after the prototype is developed, a
biased evaluation will most likely result.

There are two approaches which illustrate the two extremes
in evaluating expert system performances [WEI-84]. One is the
anecdotal approach, the other is the empirical approach. With
the anecdotal approach, the model designers describe their good
experiences, orthose situations where the program performed
well. They describe the situations, perhaps even recreating a
session with the program, that duplicate the original
performances. In those situations where the program performs
poorly, attempts are made to correct the program. And therefore,
as new problem situations arise, new information is incorporated
into the model.

The second approach places its emphasis on the eropirical
evaluation of performances over many problem cases stored in a
database. Sorne kind of rigourous testing procedure must be
specified to compare the model-produced interpretations with
independently obtained, conclusive interpretations for the same
problem cases. Traditionally, the testing is carried out once
the system is relatively well developed. While an empirical
approach to testing may be clearly superior to an anecdotal one,
implementing the methods and obtaining the representative cases
for the database often cornes up against severe practical
obstacles. In some domains, such as medicine, it may be possible
to gather large numbers of cases for the relatively common
diseases, but rare diseases always present a problem in getting
enough representative coverage for validation. In other domains,
such as geological exploration, the cost of obtaining sample
cases may be very high, and only a few of any type may be
readily available.

Many dimensions exist in evaluating the effectiveness or
utility of an expert system in an organisation - evaluations
relating to [WOL-87]

- user acceptance,
- performance of the system, completeness and

accuracy,
- utility or value-added benefits,
- liability and risk,
- feedback to the knowledge engineers.

From the user's perspective, the system needs to have a
smooth, efficient, and "natural" interface. The advice of the
expert system must be useful, and an explanation and
justification module needs to be present to explain its

37

Knowledge engineering

decisions in case any questions should arise during the working
session.

A critical performance and validation check is to execute
several test scenarios that the human experts have already
solved to see if the expert system produces the same answers.
The evaluation is broken down into two areas a static
evaluation and a dynamic evaluation. The static evaluation is
the testing of the knowledge base for consistency and
completeness. Is the knowledge base sufficient in its
representation of the domain? Is it too limited a domain? The
dynamic evaluation is the testing of the reasoning process and
advice given. Is the decision reliable and accurate? The static
and dynamic evaluations are best judged against the correctness
of the advice from the expert system against the human experts.

The question of competence or performance can be weighed
against the utility or value-added benefits of an expert system.
By establishing an expert system, how much time and money did
the organization save ? Did the expert system increase
productivity ? Was it effective ? This evaluation is
organisationally dependent, as each organization operates under
a different utility function.

One aspect of the evaluation phase is the liability risk
an organization can incur when using an expert system. Just how
costly are expert system errors ? What happens if a problem
exists, but the expert system does not act ? As the focus of
decision makes shifts to computers, away from human experts, all
sorts of liability questions arise.

And, as said before, evaluation enables a feedback process
to take place, whereby the comments serve as a basis for
iterative refinements. Establishing hurdle points and feedback
evaluations will greatly enhance the chances that the expert
system development is proceeding in the right direction.

T ools and languages

CHAPTER 7 : TOOLS AND LANGUAGES

Once the knowledge for an expert system has been acquired,
the knowledge engineer has to decide which software tools he
should use to build the expert system itself. A wide range of
tools, incorporating man y facil i ties and feat ures, is now
commercially available. Choosing a tool is not just a question
of selecting a convenient piece of software. The tool to be used
usually dictates the knowledge representation system to be used,
and so a decision about the knowledge representation has to be
made first. Deciding the appropriate knowledge representation
methods is one of the main skills an experienced knowledge
engineer can offer.

7.1 BUILDING EXPERT SYSTEMS USING PROGRAMMING LANGUAGES

Expert systems can be built using different types of
tools. The most basic tool is the programming language. Using a
high-level programming language means building both the
knowledge representation mechanism and the reasoning mechanism
from scratch. The usual alternative is to use an expert system
shell, which contains both a ready-made inference mechanism and
some form of knowledge representation scheme.

The advantage of building expert systems in high-level
languages is that it allows great flexibility. The inference
mechanism and the knowledge representation system can be
tailored exactly to the application in hand. The disadvantage is
the amount of time taken to build the system, compared with
using a shell, and the amount of effort that may go into re
inventing the developing facilities that are available in
existing shell systems.

If a high-level language is chosen, there is a further
choice. There is a wide range of traditional programming
languages, and there are also specialised artificial
intelligence programming languages.

7,1.1 Traditional and artificial intelligence Ianguages [Goo-s 5 J

A. Goodall considers languages in three classes the
first two classes are traditional languages; the third class
gathers the artificial intelligence languages.

The first class of languages includes Algol, Basic, C,
Cobol and Fortran. These languages suffer from a disadvantage;
they can manipulate only a small range of data types. In all
these languages, the range of types includes no more than
numbers, logical values, and character strings (where as writing
an expert system, the programmer needs to handle objects like
rules, nets, menus, recorded explanations, and grammars).

Tools and languages

The second class of languages includes Algol68 and Pascal.
Unlike the first class, these languages do provide a convenient
way of encoding rules, nets, etc ...

The third class of languages is the artificial
intelligence languages of which the prime members are Lisp and
Prolog.

With the two first classes of languages, the programmer
must break his problem into a set of subtasks to be
implemented; apport ion each subtask as a "procedure",
"function", "subroutine" or "routine"; encode each procedure as
a chunk of programming language text; compile the entire text,
turning it into machine-code; run the machine-code. If he has
designed the program correctly, then it will run the first time.
But this rarely happens, and so the program must be debugged.

In Prolog and Lisp, the programmer can debug his program
by feeding all of it into the Prolog or Lisp system. He can then
call each procedure in turn and check that it does the correct
thing and generates the correct result. The system will help
with this task by giving "trace" output when requested: this
output can show the sequence in which procedures have called
other procedures, and can depict the value of various variables.
By contrast, in the second class of traditional languages, the
programmer must rewrite his program to incorporate statements
which explicitly call each procedure to be checked, and which
explicitly demand "trace" output through "write" or "print"
statements. He must then recompile the program, and re-run it.
If the debugging output is not adequate, he must repeat the
process. It is also easier with artificial intelligence
languages to test programs which are incomplete but still
runable. Such programs can arise because a set of rules is not
fully known, or because only part of an inference method has
been decided on.

Having said this, why use traditional languages when
building expert systems ? The most likely reason is that no
other language is sold for the hardware on which the expert
system is to run. The next reason is that some expert systems
must run on small machines with not much memory. Implementations
of the more advanced languages may take up too much space, run
slowly, or not give the programmer the fine control he needs to
save space and time.

7,1,2 Lisp

Lisp was invented in the 1950s by John McCarthy, who was
motivated by a desire to implement a practical list-processing
language for symbolic artificial intelligence work. Lisp allows
the programmer to represent objects like rules and nets as
"lists" - as sequence of numbers, char acter strings or other
lists. Mathematical functions, predicate logic, logical
connectives, and list manipulations can be applied to these
lists. Lisp is a highly interactive, flexible, and recursive
language. The major advantage of Lisp is its nesting nature,
which lends itself to many problem-solving techniques, such as
searching.

T ools and languages

Several limitations were evident with early versions of
Lisp: problems such as large memory requirements, extensive CPU
demands and limited applicational use. But thanks to recent
innovations in hardware design, Lisp has been given renewed
power. Today, it is a more sophisticated language that has taken
on a variety of dialects (descendants of Lisp include MACLISP,
ZETALISP, COMMON LISP, FRANZLISP, INTERLISP, T-LISP, NLISP,
LISP /VM, ...) .

One of the primary reasons Lisp is so popular (especially
in North America) is that a symbolic program is naturally
represented in Lisp data structures. Programs and data have the
same form and can thus be treated somewhat interchangeably,
allowing Lisp users to write programs capable of running and
modifying other programs. This allows an expert system program
to make changes to lines of its own code while running.

The Figure 1.12 shows how a rule might be written as a
list in Lisp [WOL-87].

IF the time of the culture is recent
AND the site of the culture is blood

TREN the locus of the culture is abdomen
OR the locus of the culture is pelvis

(IF
(AND

(of culture time recent)
(of culture site blood)

)

(OR
(of culture locus abdomen)
(of culture locus pelvis)

)
)

Figure 1.12 example of rule in Lisp

7,1.3 Prolo1:

Invented around 1970 by A. Colmarauer and his associated
at the University of Marseille, Prolog is a major competition to
Lisp in the artificial intelligence community. The basis of
Prolog is the notion of logic programming in which computation
can be viewed as controlled, logical inferences. Prolog is a
language suitable for applications requiring the simulation of
intelligence - applications in such areas as expert systems,
deductive databases, language processing, planning systems, and
design applications.

It is not an algorithmic language such as Cobol or Pascal,
but it is based on the concept of formal logic (predicate
calcul us) . It dispenses with the notions of "goto", "do for",

e 41

T ools and languages

and "while do", and instead incorporates the mechanisms required
by intelligent programs - advanced pattern matching, generalized
record structuring, list manipulation, and depth-first search
strategy based on backtracking.

Prolog uses symbolic representations of the objects and
relationships between those objects to specify known facts and
relationships about a problem, thus creating "clauses". Clauses
make up the program, with the conclusion being stated first.
Prolog's power lies in its ability to infer facts from other
facts. The user can give the computer nonnumeric information and
have it deduce additional nonnumeric information.

Another advantage of Prolog is its compactness. A three
page listing in Lisp can be condensed to one page of Prolog.
This can be accomplished because control is implicit - it is
already provided by the system - whereas in Lisp, a control
system must be written to run the application.

And finally, since a Prolog program is a series of
statements in logic, it can be understood declaratively. That
is, it can be understood quite separately from considerations of
how it will be executed. Traditional languages can only be
understood procedurally. That is by considering what happens
when the program is executed on a computer. This is an important
issue because it takes us one step nearer the goal of all
programming languages - being able to specify what is to be done
and leaving the how up to the computer.

Prolog, like Lisp, has its language derivations, such as
PROLOG-2, MPROLOG, LM-PROLOG, C-PROLOG, QUINTUS PROLOG, TURBO
PROLOG,

7.2 BUILDING EXPERT SYSTEMS USING DEVELOPMENT TOOLS

Instead of building an expert system from scratch, it is
sometimes possible to speed up the development stages with the
use of expert system shells. Shell systems are generally
regarded as knowledge engineering tools that include most of the
elements necessary to build a complete expert system. The
intention is that shell systems should attract applications from
many different subject areas. Basic inference procedures, for
example, are quite universal, whether used in medical diagnosis,
chemical analysis or military planning.

A shell system usually contains [WOL-87]

- a predefined inference engine that knows how to use the
knowledge base to reach conclusions,

- a knowledge base development engine (editor) for
constructing and editing the knowledge base,

- a spelling checker to make sure words are typed
correctly,

e 42

Tools and languages

an on-line logic reasoning base for explaining how and
why a conclusion was reached,

- performance monitoring tools for testing and debugging
the expert system during development; this enables the
knowledge engineer to set trace and break point
conditions (for debugging purposes) based on the
knowledge base versus a location counter in the program,

- a graphic/windowing package for ease of interactive use
to illustrate information and relationship, allowing
knowledge engineers to switch from one environment to
another without losing context,

- integration with traditional software tools such as word
processors, spreadsheets, and communication programs.

Figure 1.13 illustrates the major components of an expert
system shell [WAT-86].

Trace
Facilities

DEBUGGING
AIDS

Automated
Testing

Automatic
Bookkeeping

Break
Packages

Syntax
Checking

KNOWLEDGE
BASEEDITOR

Consistency
Checking

Knowledge
Extraction

TOOL
SUPPORT

ENVIRONMENT

Menus

Operating
System

Accessibility

INPUT/OUTPUT
FACILITIES

Run-Time
knowledge
Acquisition

Retrospective
Reasoning

EXPLANATION
FACILITIES

Hypothetical
Reasoning

Counterfactual
Reasoning

Figure 1.13 major components of a shell

The advantage of starting with a development tool is that
the knowledge engineering acquisition tools and utilities have
already been built. Development tools can drastically reduce the
time spent to create the prototype, allowing for more time to
test and debug the prototype. Another reason in favour of
purchasing a development tool is to exploit an existing rule
language and inference engine.

Tools and languages

The disadvantage of a development tool is that it will
generally embody only one reasoning methodology and knowledge
representation technique, while sophisticated applications often
require a combination of techniques. Most development tools
available are rule-based. The knowledge engineer is thus
restricted to construct the knowledge base as a series of If-.
Then, or If-Then-Else statements. Another possible disadvantage
of development tools is cost. Minicomputer and main frame
development tools, while declining in cost, still require a
substantial investment (prices range from $1.000 to $18.000).

Sorne of the well-known tools available are PERSONAL
CONSULTANT PLUS, KES, Sl, LOOPS, EMYCIN, HEARSAY-III., APES, ES/P
ADVISOR, EXPERT-EASE, Ml, KEE, AGE, GURU, TIMM, RULEMASTER,
EXSYS,

a 44

The uture

CHAPTERS:THEFUTURE

In this chapter, we discuss the future of expert systems.
But we should warn against being too optimistic. In the first
chapter, we showed how two approaches to artificial intelligence
seemed, in their early stages, to promise much more than they
could deliver - these approaches were the cybernetic neural-net
approach to artificial intelligence and the General Problem
Solver. Due to the focus on specific knowledge, expert systems
can solve problems which general methods could previously not
touch. But they can not solve all problems ! Other techniques,
perhaps not yet dreamed of, will cope with the remaining tasks.

8.1 COMMERCIAL TRENDS [HU- 8 7]

Most forecasts for expert system market are included in
those for artificial intelligence. However, more than 25% of the
artificial intelligence market is for expert systems. Estimates
of the combined artificial intelligence/ expert system market
size are shown in Figure 1.14.

Figure 1.14

YEAR DOLLARS

1983 $ 80 million

1984 148 million

1985 250 million

1990 3-12 billion

1995 40-70 billion

2000 50-120 billion

artificial intelligence/ expert system market
estimates

These estimates were made in 1985 and anticipate a general
trend in market growth for artificial intelligence / expert
system of about 60% compounded annually.

The market size for expert systems alone is shown in
Figure 1.15. Since the late 1970s, the expert system market has
been the fastest growing segment of the artificial intelligence
industry. This market segment grew from $9 million in 1982 to

45

The uture

$74 million in 1985, and would grow to $810 million (projected)
in 1990. The market growth rate during this period is averaged
at 65% annually. The number of new start-up companies pursuing
the expert system market increased from 7 in 1982 to 28 in 1985.
And many of these companies are expanding rapidly.

800

700
Il projected

rJl ■ facts
'"' ~ 600 --0
Q 500
~
0
rJl 400 = 0 - 300 -....
~

200 1
Q.l = = 100 Q.l
Q.l
~ 0

1982 1983 1984 1985 1986 1987 1988 1989 1990

years

Figure 1.15 expert system market growth

8.2 FUTURE DEVELOPMENTS IN EXPERT SYSTEM TECHNOLOGY

According to [MAR-88], improvements will be made in four
areas:

Knowledge representation. Existing knowledge representation
schemes will be extended to handle inheritance directly and to
handle hundreds of thousands of rules. Concurrently, new
knowledge representation schemes will be developed and
provided in new expert system tools or new releases of
existing tool products.

Knowledge acquisition. The majority of the time spent in
developing an expert system, when using an expert system
shell, is dedicated to knowledge acquisition activities.
Decreasing costs related to knowledge acquisition would
significantly decrease expert system development costs.
Decreasing costs can be achieved through automated editors and
self-learning systems. Self-learning systems are truly the
hope of the future. With these systems, knowledge acquisition
could be accomplished much more quickly. However, research in
this area has yet to produce effective tools. The only tools
that have been produced so far are induction tools. Human

a e 46

The uture

experts gain a lot of their expertise from experience. Each
event helps human experts by providing them with new data
about the subject domain. As they experience more events, they
find meaningful causal relationships between the various
pieces of data. Attempts have been made to develop knowledge
acquisition tools based on this inductive process, but limited
success has been realized so far. Another area of interest in
self-learning research is tied to another knowledge source
used by human experts textbooks and subject-specific
magazines. It is hoped that someday, we will use electronic
text scanners to read this material and then use an
intelligent knowledge acquisition program to derive domain
knowledge from this material.

l

1

1

1

1

Structure
Module

Figure 1.16

.

....

......

Plug-In Modules

-- -- -- --- -- Knowledge Representation 1

.............................. J Knowledge Representation 2 ____________ ___.

-----~------------~
Inference Engine 1

.......

................................... 1 --- ____________ __, Inference Engine 2

- - -, ___ u_s_e_r-_S_y_s_te_m_I_nt_e_rf_a_c_e_1_
.....................

.....__ '-...... J User-System Interface 2 ______________ __. ______________ __

....._:'__ 1 Graphies Facility ______________ _.

....._ -_, ___ L_a_n_gu_a_g_e_In_t_e_rf_a_c_e_l _ __, ' ' ' ''~J __________ ____. , _ Language Interface 2

structure of future expert system shells

Expert system tools. The second generation of expert system
shells should be built in a modular fashion. The basic ·shell
product will be a structural module. As shown in Figure 1.16,
this module will provide some basic development capabilities,
such as general knowledge data management and a knowledge
engineer building tool interface. This module will be built to
accept other more specific function modules. These function
modules will plug into the structural module and provide the
expert system shell with requisite functions. These function
modules will provide various functional capabilities; for
example, there might be two inference engine modules

a e47

The uture

available, one for backward chaining and one for forward
chaining.

Expert system interfacing. User interfaces of future expert
systems might be integrated with speech recognition and
synthesis systems. Users will be able to vocalize their
queries and responses, and expert systems will provide
questions and consultations to the user verbally. These speech
interfaces will be helpful to users such as machinists who
have their hands full. Other interface system possibilities
include vision and advanced graphies.

In short, the future of expert system technology looks
promising. The successes already experienced with the
technology, though modest, have generated great interest,
research supports and business development. The research should
provide us with more capable systems that can be developed with
fewer resources, particularly human resources.

a e48

SECTION 2

EXISTING EXPERT SYSTEMS

IN THE COMPUTER SYSTEM DOMAIN

The idea of on-line monitoring or controlling of
a computer by another is not new. Watch-dog processors
and maintenance processors have been designed to
assist in the recovery from software errors and
hardware errors while the subject computer is in
operation. What is new is the application of an expert
system approach to the control of computer operations.

Since we have used this new approach to build a
prototype of a spool scheduler expert system
(described in section 3), a better knowledge of the
few existing expert systems dedicated to the computer
system domain appears to be helpful. Therefore, this
section will give a short overview of what has already
been done in the computer system domain. Sorne of the
best known expert systems in that field will be
shortly analyzed, others will be quickly described and
the remaining systems will just be mentioned.

e 49

Existing expert systems in the computer system domain

CHAPTER 1 : XCON

AN EXPERT SYSTEM FOR CONFIGURING COMPUTERS

1.1 INTRODUCTION

The computer manufacturer DEC (Digital Equipment Company)
is well-known for the flexibility of its Vax computer range. For
instance, a customer who needs a Vax has a choice of at least
four or five kinds of processor, perhaps ten models of terminal,
and disk drives with capacities going from 50 megabytes to at
least 300 megabytes. A customer who orders a Vax will explicitly
specify some components, such as the processor type, and the
size of memory. He will leave other components, perhaps the kind
of power supply, for DEC to decide on.

When gi ven an order, Dec must first check that i t is
complete. It must then see whether all the items are compatible.
After which it will then lay out the floor plan and finally
design the cabled connections. As the complexity of its systems
increased, the company f ound i t harder to carry out the se
configurations; several attempts to write conventional programs
to solve this problem failed and there were not enough skilled
people in the company to keep up with demand. Moreover, DEC
wanted to avoid scenarios like the following : delivering a
complete $500.000 Vax system to the customer's site but
forgetting a small $5 cable. Although allowance losses like this
add up over time, there is a more significant cost in terms of
lost time and goodwill when the customer must wait for something
as minoras a missing cable.

To counter all these problems, XCON, also known as Rl,
began in 1978 as a joint effort between DEC and Carnegie-Mellon
University. Two years later, DEC took the prototype out of the
university environment and started to use it in the real world
of day-to-day manufacturing.

XCON configures Vax systems at a very detailed level based
on its task-specific knowledge. It determines necessary
modifications on each order, produces diagrams of spatial and
logical relationships between hundreds of components in a
complete system, and defines cable lengths between components.

Existin~ ezyert systems in the computer svstem domain

1.2 INSIDE XCON

XCON contains about 4500 rules 1 that are located in a
section called production memory. Another section of memory
where the configuration work is actually performed is called
working memory. At any time, the working memory contains
descriptions of certain database components and of partial
configurations that have been determined so far.

XCON's approach to configuration can be seen as a search
through all its rules to find one rule whose conditions match
the items that happen to be in the working memory at that
moment. Every time XCON instantiates a rule, it adds, deletes or
modifies an item in the working memory. The changes in working
memory indicate increasing progress in configuring computer
systems. As a result of the changes to working memory, the next
time XCON cycles through its rules, it finds new matching
patterns plus old ones that no longer match. In this way, XCON
progresses from configuration task to task or context to
context. It begins with a starting state that contains a
description of the components in the customer' s order. It
progresses through a series of intermediate states that describe
partial configurations and the as-yet-unconfigured components.
Finally, it reaches a solution state (when no more rules can be
fired), in which the entire computer system is configured. A
consequence of this pattern-matching technique is that XCON
almost never generates any dead-end paths. Therefore, it rarely
has to backtrack to an earlier situation in order to find the
true path.

The rule DISTRIBUTE-MB-DEVICES-3 for the distribution of
massbus devices among the massbuses in the Vax computer is shown
in Figure 2.1 [HU-87].

This rule shows that there are 6 conditions to be met
before one of the single-port disk drives on the order is
assigned to one of the massbuses.

1 by the end of 1986.

e 51

Existing expert systems in the com,puter system domain

Rule: Distribute-MB-Devices-3
IF : The most current active context is

distributing massbus devices
And there is a single-port disk drive that

has not been assigned to a massbus
And there are no unassigned dual-port disk

drives
And the number of devices that each

massbus should support is known
And there is a massbus that has been

assigned at least one disk drive and that
should support additional disk drives

And the type of cable needed to connect the
disk drive to the previous device on the
massbus is known

TREN: Assign the disk drive to the massbus

Figure 2.1 : example of rule in XCON

1.3 THE BENEFITS OF XCON

It took some time to incorporate all the knowledge of how
to configure in XCON, but by the end of 1983 it was achieving
98% correct configurations. XCON has allowed DEC to serve 4
times as many orders without increasing the number of human
experts. XCON performs jobs that were previously undertaken by
an experienced technical editor much faster and more accurately.
For example, a Vax system order that may take the editor as long
as 20 minutes to examine and determine what computer components
need to be replaced or added can typically be completed by XCON
in less than a minute. XCON has also reduced the error rate on
orders from 35% to 2%. The total savings for DEC between 1980
and 1985 is estimated to be about $12 million. This saving does
not take into account customer satisfaction with accurate and
on-time delivery and related reduction in labour and material
cost.

1.4 A KNOWLEDGE NETWORK

XCON is now firmly entrenched and routinely used at DEC.
Since its acceptance, the DEC artificial intelligence group is
integrating a series of other expert systems with XCON. These
integrated expert systems will eventually form what DEC calls a
knowledge network to integrate sales, engineering,
configuration, manufacturing, distribution, installation and
field service [RAU-88].

Among the expert systems shown in Figure 2.2, we find:

- XSEL which helps salespeople quote prices on multiple versions
of configured computer system orders at their point of sale,

Existing expert systems in the comouter system domain

XSITE which is used by field service people for site
preparation and site management,

- ISA which schedules customer system orders against the current
and planned material allocations,

- IMACS which schedules the floor capacity for the system being
built, manages inventory and manages problems that arise
during the manufacturing process,

- ILOG which helps manage the distribution of the computer
products from the plant to the customer,

1

INET which helps make organizational and distribution
management decisions.

Sales Engineering Manufacturing

Customer ~ XSEL ~ XCON ~ XCON
(intelligent (expert (expert

)) salesl?erson's configurer) configurer)
ass1tant)

~
ISA

(intelligent
scheduling
assistant)

J
IMACS

(intelligent
manuf acturing
control system)

w
Field service Distribution Distribution

XSITE ILOG INET
(expert on-site

~
(intelligent

~
(intelligent

intallation) logistics for distribution
distribution) analysis and

organization)

Figure 2.2 DEC's expert knowledge network

Existing expert systems in the com12uter system domain

CHAPTER 2 : YES / MVS

A CONTINUOUS REAL TIME EXPERT SYSTEM FOR MVS OPERATORS

The Yorktown
a continuous real
control over an
operators.

2.1 INTRODUCTION

[GRI-84]

Expert System for MVS2 operator (YES/MVS) is
time expert system that exerts interactive
operating system as an aid to computer

Computer operation is a monitoring and problem-solving
activity that must be conducted in real time. It is becoming
increasingly complexas data processing installations grow. The
control of a typical large system rests largely in the hands of
just a few operators. Beside carrying on such routine activities
as mounting tapes, loading and changing forms in printers, an
operator continuously monitors the condition of the subject
operating system and initiates queries and/ or commands to
diagnose and solve problems as they arise. To deal with such
complexity, operators and system programmers often rely on many
"rules of thumb" gained through experience. A long training
period is also required to produce a skilled operator. The
resulting shortage of skilled operators and the increasing
complexi ty of the operator' s job call for more powerful
installation management tools. Therefore, the expert system
approach was a natural choice.

There are many new requirements in building a real time
expert system to assista computer operator. The environment is
too complex and dynamic for obtaining information by querying
the human operator. Unlike many other expert systems, this means
that conclusions are based on primitive facts obtained directly
from the system being monitored and not from human interpreted
inputs.

To be able to handle real time on-line data, the inference
engine needs to be mainly data dri ven. The OPS5 production
system was chosen primarily for this reason.

2 MVS : Multiple Virtual Storage operating system is the most
widely used operating system on large IBM mainframe
computers.

4

Existing expert systems in the computer system domain

2.2 THE DOMAIN OF YES/MVS

The MVS operating system running with a Job Entry System
(JES), puts out various system messages to the operator. While
there are literally hundreds of different of messages, the
number that are relevant to an operator is much smaller. The
majority of purely informational messages may usually be
statically filtered and diverted to a log. Even then, the peak
message rate from MVS to the operator sometimes exceeds 100 a
minute.

When a problem is detected, the operator.may query MVS for
additional information and send one or more corrective commands.
The operator must often anticipate informational needs and
dynamically keep track of a number of relevant status variables.
There are many different subdomains in the domain of operator
activities. The six subdomains described below were selected for
the implementation of the expert system:

- Jes queue space management
- problems in channel-to-channel links

scheduling large batch jobs off prime shift
- MVS detected hardware errors
- monitoring software subsystems
- performance monitoring

2.3 THE SYSTEM ORGANIZATION

Subject
MVS

Machine
CCOP

MCCF
Virtual 1----1

Machine

Expert
Virtual

Machine

Operato
Interfacei--,----tt"b=::!l
Virtual

Machin

Figure 2.3 : YES/MVS system organization

Because YES/MVS and the subject MVS system are resident in
different computers, problems in MVS do not interfere with the
operation of the expert system. YES/MVS is partitioned into
three virtual machines (as shown in Figure 2.3). One of these
contains the MVS operator expert, the second one contains the
MVS Communication Control Facility (MCCF), and the third one is

a e 5

Existing expert systems in the computer system domain

used to control the YES/MVS operator's display console. The MCCF
communicates with the MVS system through a separately developed
facility, called CCOP. The CCOP provides centralized control and
filtering of messages to the computer and their operators.

The YES/MVS operator console displays on-line messages on
the top level input screen describing events that are related to
the various tasks YES/MVS is concerned with. The operator may
select one of the displayed messages and request further detail.
The detail level screen contains the recommend action or
information along with an explanation. If an action is called
for, the operator is given the choice of automatically issuing
the command, showing that he will manually type the recommended
command at another terminal, or rejecting the command being
proposed. If the command is rejected, the operator is prompted
to enter the reasons for the rejection which is fed back to the
YES/MVS knowledge engineers.

YES/HVS TOP LEVEL 16: 14 Pendlnq: 0

15:57 BATCH SCHEOULER STATUS UPOATEO: 16:09
15:57 SMF: CHECK STATUS or SHF OATASETS
16:09 BATCH SCHEO: MOOIFY JOB·IO 5003 10 PRIORITY 14
16: 10 SMF: EHTER OUMP FOR SYSI.HANA
16:11 CTCFIX: RESTART COMMUNICATION 10 HTVHI

PFOl PF02 PFOJ PF04 PFOS PF06 Pf07 PF08 PF09 PFIO Pfll PFI?
U. I. EXIT WRKNG SELCT DONE BACK rwo RfRStt [RRST HO~f

Figure 2.4 YES/MVS operator console top level screen

2.4 BUILDING THE KNOWLEDGE BASE

Most of the expertise is encoded in over 500 OPS5 rules
distributed between the expert virtual machine and the display
control virtual machine. Sorne of the expertise was encoded in
relational tables. Sorne expertise was implemented in the MCCF
translation tables for more direct execution. Therefore, the
knowledge base is not restricted to the rule base only.

Figure 2.5 is an example of a pair of rules that stop the
reception on an incoming link with JES queue space that is
critically low and restart the reception when it improves.

a e56

Existin2 exvert systems in the comvuter system domain

YES/MVS extends the use of expert system techniques to
continuous real time control applications. The success gained
with this approach allows applications of expert system
technology to other areas of computer installation management
capacity planning, configuration and installation ..

(p stop-reception
(Task "task-id jes-q-space)
(JES-Q "mode panic)
{ <the-Link>(Link "id <L-id>

"status <<active i/o-active>>
"receive yes)}

(Call remote-make
Link-command "id <L-id>

"receive no
"rm-to: MCCF)

(Modify <the-Link> "receive to-be-no))

(p start-reception
(Task "task-id jes-q-space)
(JES-Q "mode<> -,panic)
{ <the-Link>(Link "id<L-id>

"status <<active i/o-active>>
"receive no)}

(Call remote-make
Link-command "id <L-id>

"receive yes
"rm-to: MCCF)

(Modify <the-Link>

; If the task of
; maintaining JES-q-space

; is active, the space
; is critically low, and

; there is an active

; receiving Link
; then eut the Link
; and mark the Link
; reception status as
; about to be no.

; If the task of maintaining
; JES-q-space is active,

; the space is not
; critically low, and
; there is an active Link
; not receiving,

; then
; reopen the Link
; and mark the Link status
; as about to be yes.

"receive to-be-yes))

Figure 2.5 rules from the JES queue space subdomain

Existing expert systems in the comçJUter system domain

CHAPTER 3 : PERMAID

A MULTIPARADIGM KNOWLEDGE-BASED SYSTEM FOR DIAGNOSIS OF
LARGE MAINFRAME PERIPHERALS [ROL-87]

3.1 INTRODUCTION

PERMAID is a mutiparadigm expert system that is used for
diagnosis and maintenance of approximately 10.000 large fixed
head disk subsystems that are components of mainframe computers.
PERMAID performs three primary functions :

- trouble-shooting of observed problems,
- predictive maintenance,
- media and file recovery.

It also provides training as a secondary function. The
trouble-shooting function is used by a field service engineer to
identify and repair faults in the disk subsystem (i.e. the disk
drive, disk controller and the associated operating system
software). The media and file recovery function is used by the
field service engineer in collaboration with the customer's site
representati ve to perform file recovery and to perform "soft
repair". The predictive maintenance function is used to direct
the field service engineer through a routine "check up"
procedure that determines whether any preemptive maintenance
action should be taken to prevent serious faults from occurring.

Figure 2.6

Please choose one of the following:

(User's responses are shaded.)

Please indlcate which errer messages have been reported:

00/00 01/24 05/04 09/00 13/00 15/50
00/01 01/30 05/05 09/10 13/12 15/52
01/02 !1 02/1 01 05/10 09/11 13/23 16/00

1 1 1 1 1 1
01/07 02/12 07100 10/10 Il 13/26111 16/10
01/10 03/00 07/02 10/12 13/30 16/60

Please indicate which errer conditions have been observed:

visible smoke
smells like somethin burnin

17/00
17/01
17/10

1

17/17
18/00

unit will net sto runnin intermittent 'check li hl"

1s bit 5 of detailed status word 4 (the 'splndle speed lest' bit) set?

1

example of PERMAID trouble-shooting session

Existing expert systems in the computer svstem domain

The trouble-shooting portion of PERMAID operates using a
question-and-answer consultation model. After the user has
indicated which initial symptoms are present, the trouble
shooting process asks the user to run tests and make
observations that are required to identify the problem. Figure
2.6 shows an example of a small part of PERMAID trouble-shooting
session.

3.2 INTERNAL DESIGN

The heart of the system is the "fault-resolution kernel"
which is used to identify faults. The knowledge representation
for this kernel is based on the use of frames and networks.

PERMAID supplies explanation information that is tailored
for the five different types of user expert, knowledge
engineer, specialist user, field service engineer, and trainee.

At the end of each session, a complete trace of the
session is written to. a long-term history file that is used to
analyse and modify PERMAID's performance.

The kernel knowledge base is a directed acyclic graph that
represents cause/effect relationships (the graph currently
includes approximately 2500 nodes). A portion of the kernel
knowledge base is shown in Figure 2. 7 in the form that is
displayed by the knowledge base editor.

Note that the structure is a graph (and not a tree)
because any given cause can have many effects and any given
effect can have many causes. Conceptually, each node is a frame.
Each frame includes a number of slots that contain information
that is either local to the particular frame or inherited from a
higher frame.

ntermittentSpindleSpeedLoss

rakeProblern

owerSupply Problerns

SeekSpeedProblern

Figure 2.7 portion of the PERMAID kernel knowledge base

9

Existing expert systems in the computer system domain

3.3 THE INFERENCE ENGINE

The trouble-shooting inference process begins with the
user selecting any number of starting symptoms. The initial
symptoms are then evaluated to select one primary symptom that
will be the starting node for the search process. Once the
primary symptom has been identified, the process is based on the
systematic selection and test of possible causes for a given
effect. Once the cause of a given effect is identified, the
process "moves" to the new cause and is recursively restarted
with the newly identified cause being treated as an effect.

A bad spot on a disk can produce a solid visible error. It
is possible, however, for a bad spot to result in many retriable
errors. In this case, no explicit error message is printed but
information is logged on the site error log. This type of
situation is detected by the use of the predictive maintenance
function. Processing in this section initially focuses on the
interpretation of an error-summary log which isolates potential
problems to speci fic areas of the disk subsystem and then
classifies possible problems within the isolated area.

The heart of the support-environment is a graphic-oriented
knowledge base editor that displays the graphs on which PERMAID
is based. The graphie display is updated dynamically during
execution. Nodes that are on the current search path are
darkened and the node that is currently being tested is shaded.
As the selection process decides on the next node to expand,
each of the nodes that are being considered flash as they are
being considered.

3.4 PERFORMANCES

The f irst use of PERMAID was for training, but i t is
increasively used in every day life. However, it is important to
realize that e~en if the system is perfectly implemented, it may
still produce advice that is "incorrect'' in the sense that it
doesn't actually fix the problem, but "correct" in the sense
that it is the best possible advice. Let us say that the
performances of PERMAID are notas good as that of an expert but
are really better than the typical field service engineer.

a e 60

Existin~ expert systems in the computer system domain

CHAPTER 4 : AI-SPEAR

A COMPUTER SYSTEM FAILURE ANALYSIS TOOL [BIL-84]

4.1 INTRODUCTION

Computer system failure may be caused by hardware or
software faults, system load or other factors. Many intermittent
failures can be analyzed using symptom-directed diagnosis based
on events in the error-log. This technique is being used by
major manufacturers of computer hardware. Bossen reports on its
use in IBM systems and DEC have introduced SPEAR (Standard
Package for Error Analysis and Reporting), a library of such
programs for their major operating systems.

A further step was made when DEC created a rule-based
implementation of SPEAR' s analysis function, leading to an
expert system called AI-SPEAR. DEC implemented approximately 150
SPEAR theories (which require about 700 OPS5 rules) and uses AI
SPEAR as an in-house tool.

4.2 PROBLEM DESCRIPTION

SPEAR' s knowledge of how failures relate to faults is
summarized by a set of ru les ("theories" in SPEAR par lance) ,
each of which hypothesizes the presence of one or more hardware
faults. With the previous implementation of SPEAR, there is no
way for a user to ask for an explanation of the reasoning that
led to a conclusion. Many of the SPEAR theories are simple
enough for a complicated explanation to be useless. However,
some of the conclusions are triggered by a complicated
juxtaposition of events, or are reached by a long chain of
inferences.

The previous version of SPEAR does not handle differential
diagnosis in hierarchical hardware configurations correctly . If
two tape drives connected to a single controller each report
errors, the diagnosis made by SPEAR is that something is wrong
with the controller since it was the common element in the
observed failures.

For all these reasons, DEC felt that these sorts of
analysis of failure patterns would bring a lot more satisfaction
in a rule-based expert system.

After a careful study of available rule-based languages
and systems, the OPS5 production system was chosen for AI-SPEAR.
This was encoded since a version has been developed within DEC
and since the XCON program has shown that OPS5 can run well with
a large number of rules.

Existing expert systems in the computer system domain

4.3 EXAMPLE DIAGNOSIS

Figure 2. 8 is excerpted from runs of AI-SPEAR. This
diagnosis demonstrates the program's ability to explain its
inference process.

$ run tap0l

AI-SPEAR TAP Vl.2
TU78 Tape Analysis Prograrn

Error file: rep322.dat

34 records read frorn file: rep322.dat

**
THEORY-2.3.3.22 B.2
TM Fault B - Read Path Failure Error

Diagnosis:

Replace the M8950 board for channel 3

Additional Information:

device narne:

eccsta-err:
chxtie:
earliest tirne:
latest tirne:
error count:

MFAO Serial Nurnber: 3737

0
3
1983-08-07 18:05:36.00

1983-08-07 18:35:36.00
12

Do you want an explanation? y

TM Fault B - Read Path Failure Error was inferred because
int-code is 32 and failure-code is 27

It was next observed that eccsta-err is 0

It was next observed that chxtie is not 0

leading to the stated diagnosis.

Press return to continue ...

Figure 2.8 excerpt from runs of AI-SPEAR

Existing expert systems in the computer system domain

CHAPTER 5 : OTHER EXISTING EXPERT SYSTEMS

5.1 HUMAN

Unix is a high performance operating system, but
unfortunately, it has always been the antithesis of user
friendly. Therefore, a company named Cognosys in conjunction
with British Telecom has developed a product called HUMAN. HUMAN
is an expert system consisting of a set of 30 files including
800 to 1000 rules each. Human appears to the user as an
extension of Unix itself and provides easy to use assistance to
operators. The product covers four areas of administrative
tasks: user and group administration, adding printers,
terminals, and backup management. The result is a faster and
easier way of obtaining information from booklets which often
hold a simple solution to a problem within pages of intimidating
complexity.

5.2 CRIB [WAT-86]

CRIB is an expert system which helps computer engineer and
system maintainers locate computer hardware and software faults.
The engineer gives the system a description of his observations
in simple English-like terms. CRIB matches this against a
database of known faults. By successively matching larger and
larger groups of symptoms with the incoming description, CRIB
arrives at a subunit which is either repairable or replaceable.
If a subunit is reached and the fault is not cured, the system
backtracks automatically to the last decision point and tries to
find another match. CRIB contains hardware and software fault
diagnosis expertise as a collection of action-symptom pairs
where the action is designed to elicit the symptom from the
machine. CRIB models the machine under diagnosis as a simple
hierarchy of subunits in a semantic net. This system was
developed by ICL.

5.3 IDT [WAT-86]

This expert system assists technicians to locate the field
replaceable units that should be replaced to fix faults in PDP
11/03 computers. The system uses knowledge about the unit under
test, such as the functions of its components and their relation
to each other, to select and execute diagnostic tests, and to
interpret the results. The system is rule-based and was written
by DEC in OPS5.

Existing expert systems in the computer system domain

5.4 MESSAGE TRACE ANALYSER [WAT-86]

This expert system helps debug real time systems such as
large telecommunication switching machines containing hundreds
of processors. The MESSAGE TRACE ANALYSER examines interprocess
mes sage traces, identi fy ing illegal message sequences to
localize the fault within a process. The system considers the
sender process identifier, the receiver process identifier, the
message type, and the time stamp fields of messages in the
trace. General debugging heuristics and facts about the specific
system being debugged are represented as rules and applied using
both f orward and backward chaining. The system contains a
limited explanation facility that allows it to answer questions
about its reasoning. MESSAGE TRACE ANALYSER is written in Prolog
and was developed at the University of Waterloo.

5.5 OTHERPRODUCTS [HEN-85] [WOL-87]

A few more products exist such as

- EDD, to design databases

- EXSYS, to develop software from entity-attribute relationship
information provided by system analysts

- PQCC, to develop compilers from supplied language and target
machine specification

- PSI, to compose computer programs based on descriptions of
tasks to be performed

- CDX, to analyze VMS dump files after system crash

PROUST, to analyze Pascal programs written by novice
programmers

- QUEST, to search databases

- DIAG8100, to diagnose failures in data processing equipment

- FAULTFINDER, to diagnose failures in disk drives

- PROGRAMMER'S APPRENTICE, to assist programmers with software
construction and debugging.

a 64

SECTION 3

A PROTOTYPE OF A SPOOL SCHEDULER

EXPERT SYSTEM

This third section focuses on the four-months'
work we have realized in collaboration with Siemens
Software. The detailed analyse of this work will
enable us to illustrate the more theoretical concepts
described in section 1.

Since the main objective of this work was to
build a prototype of a spool scheduler expert system,
the first· chapter of this section focuses on a brief
overview of the existing expert systems developed in
the area of scheduling problems. The second chapter
gives rudimentary knowledges about the structure of a
spool. The final fi ve chapters apply the general
methodology for building expert systems to our
problem.

a e 6

Scheduling uroblems and exuert systems

CHAPTER 1 : SCHEDULING PROBLEMS AND EXPERT SYSTEMS

The scheduling of logistical activities and the assignment
of discrete resources (people, machine, etc ...) to tasks or
responsibilities are well-studied problems, and algorithms have
been developed to determine optimal or near-optimal schedules.

People have been using the techniques of linear programming1 to
do the scheduling for a long time, and apparently, it works well
[KEL-87] . But there are some important restrictions on
mathematical optimization problems, the most severe being that
all the numbers in the function to be optimized must be known
constants, and all of the constraints must be well-defined. In
other words, the problem must be a well-defined, deterministic
optimization. For many situations involving production
resources, these requirements can be closely approximated. But
in some other situations, many of the criterions are not well
defined or deterministic, and so the methods of heuristic
inference may be applicable.

Sorne expert systems in the area of scheduling have already
been developed [SIL-87]. An example of such a system is NUDGE,
an expert system for scheduling business meetings. The user
enters a set of requirements for the meeting (e.g. the type or
purpose of the meeting, who is to attend, a range of times
within the meeting should be held, etc ...), and NUDGE interacts
with its user to find a suitable time, place, and attendance
list. Other expert systems for scheduling and assignment have
been developed in the problem domains of factory scheduling,
office automation, and human resources management. An example is
ISIS, a frame-based system for factory scheduling. ISIS performs
a constraint-directed search for an acceptable production
schedule when the constrains involve due dates, inventories,
costs, schedule stability, resource availability, machine
capacities, precedence of operations and certain preferences of
factory management (e.g. a preference for using one machine over
another whenever possible). Another such system is ODYSSEY, a
frame-based expert system for scheduling business trips. ODYSSEY
contains procedures for resolving inconsistencies and
ambiguities in a user's stated trip requirements. Another system
is OMEGA, a rule-based expert system for personnel assignment.
OMEGA helps the user to assign available personnel to job
openings when inconsistencies in job requirements, personnel
qualifications, and the availability of travel funds for
reassignment must be resolved.

As we can see, the approach of using expert system
techniques in the area of scheduling is not new and a few
products already exist on the market. But we will see later on

1 Linear programming is one of many mathematical techniques for
optimizing certain well-defined combinations of variables. It
has been used often for dynamic production planning, as well
as distribution and product mix problems.

6

Scheduling vroblems and exvert systems

that a similar (and still experimental) approach can be used to
resolve spool scheduling problems.

CHAPTER 2 : THE STRUCTURE OF A SPOOL

What is a spool ? A spool is an independent part of the
control system in an operating system. By means of independent
internal task executions, a spool controls input/ output
operations for particular device families either while the
program processing continues or after it has been completed. In
other words, a spool provides coordination between rapid
processing in the central processor and the less rapid
input/output operations.

Spool input/output operations comprise
- reading / punching punch cards,
- reading files from / writing files to floppy disks,
- printing listings,
- outputting files to tapes,
- controlling remote batch tasks.

Figure 3.1 illustrates the devices and supported by a
spool

for input - punch card for output - printer
- floppy disk
- magnetic tape
- terminal

----------------------....... -----

----... --.. --.. --.. ---....

SPOOL

n
~

- punch card
- floppy disk
- magnetic tape
- terminal

□

Figure 3.1 spool supported devices

7

2

The structure of a spool

Figure 3.2 illustrates the functions of a spool 2

User
tasks

n
é

Figure 3.2

In the following pages,
printing function.

Device-specific
spoolin
tasks

SPOOL
control

task

Device-specific
spoolout

tasks

• r·······1 ---...... -~----···· ----------' 7,,

spool functions

Console

[g~
lll11l

Operator

System
Administrator

D
~

-~
Data display terminal

we will concentrate only on the

a e 68

Identification

CHAPTER 3 : IDENTIFICATION

3.1 IDENTIFICATION OF THE PROBLEM

3,1.1 Purpose and characteristics of a spool job

The main purpose of a spool job is to print a file or part
of a file on a printer. Its main characteristics are the
identification of the file or part of file to be printed, but
several other characteristics are important for the caller.

The caller can speci fy on which paper, wi th which
character sets and which form-overlays the job must be executed.
Further on, he can specify that the file to be printed contains
control characters which are specific to a particular hardware.
He can assigna name to his job, so as to recognize it later on.
He can also assigna priority to the job.

At an other point of view, the user can specify where the
print has to occur. Basically, we distinguish the local
printers, which are accessed by a channel, and the remote ones,
which are connected to the network. The user can specify that
the print is to be done on any local printer or on a given
remote one. It is also possible to assigna "destination" name
to one or several devices. The user has also the possibility to
specify that the print is to be sent to this destination, i.e.
to be processed on any device with this destination name
representing a pool of printers.

The characteristics described above are explicitly chosen
by the user. The spool jobs also have characteristics which are
not explicitly specified. They are : the size of the file to be
printed, the identification of the user, the account number
under which he works, a spoolout-class number associated to this
account number.

All these informations concerning a spool job are stored
in a "Spool Control Block" (SCB) which is kept in a special
file. This SCB is in fact an order-form for the spool job. This
file is used by the scheduler to attribute the jobs to the
printers.

3,1.2 Purpose of the schedulin1: process

The purpose of the scheduling is to treat all spool jobs
under optimal conditions. However, the word "optimal" has not
necessarily the same meaning for everybody.

For the user, the criterion is to minimize the waiting
time, at the condition that all his requirements are satisfied.

For the system administrator, the criterion is the best
use of the computer centre, i.e. to satisfy the user's needs at

a e 69

Identification

the minimal costs, or rather, to earn the maximum for the
minimal expense. Let us remark that he can charge a job more
when it is processed in a shorter delay, particularly if he can
guarantee this delay in advance.

For the operator, the cri ter ion would be rather to
minimize his efforts. This particularly concerns the changing of
paper or form-overlays. Once a given paper is loaded on a
printer, the best for him would be that the complete box is used
before loading another one. Further on, he prefers that the same
type of paper is used for a long time (i.e. several boxes), so
that he can bring several boxes together.

These requirements are not always co_ntradictory. For
example, to change the paper frequently is not pleasant for the
operator, but also not for the system administrator because
during the change over, the printer remains unused. On the other
hand, the best use of the computer centre necessarily has a
positive effect on the waiting time for the user.

But in any case, even if a unique criterion is found, it
is not possible to find the mathematically optimal solution,
this for several reasons.

The first reason is the fact that the load is not known in
advance. At any time, there is a certain amount of jobs to be
done for which an optimal program of scheduling could be found.
But this program becomes obsolete as soon as a new job is
entered into the queue. The problem would be different if the
jobs to be done were registered during a session, and executed
only during the following one.

Another reason is that the load to execute a job is only
approximately known. The size of the file is certainly known,
but not the number of records, and still less the number of
lines. There is an estimation based on the filesize : it is
supposed that there are 17 lines in each 2048 bytes block, and
this factor can be changed by the system administrator. However,
it is easy to understand that this estimation is not accurate
enough for an pptimisation. It would, of course, be possible to
scan the file during the PRINT command validation, and simulate
the processing in order to know to exact number of lines, but
this would be too expensive. An optimisation should not be more
expensive than the process to be optimized itself.

A further problem is the reactions of the operator. When
the spool requests the loading of a paper, it occurs that a box
of paper is available close to the device, but it is not always
the case; it is even possible that there is no paper of this
type at all. If we also take into account the operator's skill,
availability and motivation, the delay to load paper ranges from
less than one minute to 15 minutes, after which the request can
also be rejected. let us also remark that the spool is not aware
of the quantity of paper which is still available on the device,
before a new loading. It can occur that the paper remaining on
the device is not sufficient for a job, in which case, it would
possibly be better to directly request another paper right away.

a e 70

Identification

This is not taken into account because the spool does not know
the size of the loaded paper.

Let us mention a last point : the spool does not take into
account the fact that a file is on tape or not. But opening a
file on tape also means an operator reaction, which is also
unknown. During the time spent to load the tape, the printer
also remains unused.

3.1,3 The existin2 aI2orithm3

3.1.3.1 Physical and logical fit

Due toits characteristics, a spool job is not necessarily
executable on any device type. It canuse features (rotation,
characters sets, overlays, ...) which are only available on
certain device types. It is also possible that the form it uses
is defined only for certain device types. Each SCB thus contains
the indication of the possible device types, which is of course
considered by the scheduling algorithm.

In addition, the system administrator has the possibility
to specify "logical" cri ter ions for the scheduling. When
starting a device, he has operands to restrict it to jobs using
certain values of the characteristics. For example, he can
restrict it to certain users, or account numbers, or forms, and
so on, or to a given range of priorities. A job which satisfies
all the logical criterions for a given device has a so-called
logical fit. If in addition, it can be processed on a device of
this type, it also has a physical fit. But this does not mean
that it will necessarily be processed on it.

3.1.3.2 Selection of a device for a job

When a job has a physical and a logical fit on several
devices, it is still possible that it has a better fit on a
certain device that on the other ones. For example, a device
which accepts only one user-id becomes a kind of exclusiveness
of this user-id, and should thus have a better fit than devices
accepting all user-ids. The problem is however not so simple.
Let us suppose that a device is reserved to a given user-id but
accepts jobs of all priorities, and another one is reserved to a
given range of priorities but accepts all user-ids. A job from
this user-id and a corresponding priority has a logical fit on
both. But for the system administrator, the criterions have not
necessarily the same importance. For example, he could send all
jobs with a lower priority onto a tape, in order to replay them
during the night. He can thus consider that the priority is to
be considered first. In older spool versions, five criterions
were considered for the better fit : the priority which was only
allowed for tapes, the form, the user-id, the class and the dia.
A device with a priority had a better fit than any other one,
while a device with one or several of the four other criterions
had a better fit than devices without criterion.

3 This algorithm is the one developped by Siemens Software S.A.

Identification

For each active device, it is thus possible to compute a
weight which is the sum of all specified criterions. When a job
has a physical fit and a logical fit on several devices, it is
scheduled on the one with the greatest weight. This device is
said to have the best fit for the job.

3.1.3.3 Optimisation criterion for the scheduling

In addition to the rules expressed above, the scheduling
must keep each device active, as long as one or several jobs
that have a best fit on i t are present. With this set of
constraints, the goal is to minimize the change-over cost when
starting a new job on a device.

In older spool versions, two criterions were considered to
compute the cost of the change over : the paper change and the
form-overlay change (the dia). It was considered that the change
of paper was more expensive than the dia change, and that all
other criterions were free. In further versions, the number of
character sets to be loaded, and the size of the fob (the dia on
laser printers) to be loaded were also considered, but with a
lower cost because these loadings cost a waiting time, but no
operator action.

Since the spool version 2.4a, it is possible to choose any
criterion in any order, to compute the change over cost. For
example, it can be interesting to take the user-id into account,
because sequential listings for the same user do not need to be
separated by the operator.

The scheduling thus tries to find a job with the best fit,
which has all the chosen characteristics identical to the ones
of the preceding job. If none is found, it tries to find a job
with all identical characteristics, except the last one, then
except the two last ones and so on.

If several jobs exist which identically satisfy these
conditions, there is still a set of characteristics which
determines the first one : the priority and the age of the job.
The system administrator can choose in which order these
characteristics are to be considered.

3.1.3.4 Discussion this algorithm

This algorithm ignores several aspects of the problem :

- It ignores the size of the jobs; if one of the waiting jobs is
longer than the sum of all the others, it would be interesting
to start it at once on a device, and process all the other
jobs on the other devices. But the scheduling completely
ignores this aspect. Eventually, it will schedule the longer
job after all the other ones.

- The scheduling ignores the possibility of paper-end, despite
the fact that this is also a paper change, possibly as
expensive as when another paper is required.

72

Identification

The scheduling ignores the fact that opening a tape file needs
to find a free tape device, and requires an operator reaction.

In summary, one could say that some simplifications have
been arbitrarily introduced in the problem in order to make it
determinist.

However, the se simplifications are somehow crude. The
provision of paper is taken as the most expensive change-over
when it is decided by the scheduling itself, and completely
ignored when it occurs at paper-end. The validity of this
processing, though, depends on the computer centre i tsel f.
However, if the paper remains the most expensive component of
the change-over cost, a job using a non-standard paper will be
delayed until no other job remains in the waiting queue at all.
If the printing capacity is computed to have a high use rate,
such an event could possibly never occur ! Should it be computed
to have a lower rate, but a fast response time, the optimisation
is likely to completely fail in most cases, when a job is
terminated, there is no choice between waiting jobs.

Let us also mention that it is not possible to guarantee
that a job will be processed in a given delay.

3,1,4 Possibility of other at2orithms

Do other algorithms exist? Most certainly. Each customer
has probably his own needs, which could be covered by a
corresponding algorithm.

The one provided by the spool is to be considered as a
general one, but without real flexibility. It offers multiple
commands, with numerous operands which have an impact on the
processing but a rather indirect one. The selection criterions
for a device have an effect on this device, but also on the
other ones, due to the best fit. This never forces a job to be
processed on a given device.

The modification of the device weights, the change-over
costs, and the priority also influence the scheduling, but the
effects can be very different, depending on e.g. the load. For
example, the modification of the change-over costs has no effect
at all, as soon as there is no waiting job for the device.

This does not mean that it is better to replace this
scheduling by another one. It would be necessary to write
quantities of scheduling algorithms among which each customer
would have to choose. In summary, the system administrator needs
a very good feeling of the system, if he wants to conduct the
spool scheduling.

3,1,5 Mechanisms which could be improved

In the present status, the management of the spool devices
is completely manual. The spool administrator gives arbitrary
selection operands when he starts the devices. It occurs that
jobs can not be scheduled on any one, because they have no fit
on any one.

7

Identification

An interesting feature would thus be an analysis of the
jobs in queue, and the choice of the selection operands in order
to process these jobs under optimal conditions. In this purpose,
the program interface should be able to give information like :

- the lists of forms, classes, user-ids, of the
remaining jobs eventually with the number of jobs;

- the lists of jobs which are not schedulable.

In any case, it is supposed that a scheduling program is
active, which keeps information about the waiting and active
jobs, and starts the devices or modifies their characteristics.
It can be informed of each PRINT command, or i t can get
informations on statistics. It can be informed of each started
job on a device, and each job end, and it can get informations
about each active device.

Moreover, the program can get other kinds of informations,
e.g. the quantity of loaded paper, better and dynamic
estimations of paper changes, and so on. It seems that such a
scheduler could constitute an interesting and performing expert
system.

3.2 PARTICIPANT IDENTIFICATION

After identifying the problem, it is necessary to identify
the participants to the development process of the expert
system. We distinguish five classes of participants : the end
users, the operators, the system administrators, the experts and
the knowledge engineers.

the end-users : the end-users are obviously key-participants to
the development process because they are part of the
finalities of the expert system. They are the ones who will
use most of the functions of the system. The end-users should
theref ore be part of the development process, especially
during the identification and conceptualization stages.

the operators : the operators are other key-participants to the
development process because they are, like the end-users, part
of the finalities of the project. In part 3.1, we have pointed
out how the current spool scheduler badly lacks management
functions dedicated to the operators (e.g. functions to know
the type of paper that should be used on a particular printer,
functions to know when a box of paper has to be changed, ...).
The operators should therefore be an active part of the
development process, especially during the identification and
the conceptualization stages.

the system administrators the system administrators are
another kind of "user" of the spool scheduler. However, their
functions are restricted to set several parameters that are
necessary for a good processing of the spool scheduler (in
other words, the system administrator operates for the tuning,

74

Identification

the parametring of the scheduler). To a certain extend, they
should participate in the development process because they
could contribute to a better tuning of the system.

the experts and the knowledge engineers : these two classes of
participants are gathered into one because in our case, the
expert and the knowledge engineer are one and the same person.
As a matter of fact, in the spool scheduling domain, the
experts are computer scientists who are working for many years
in that domain and who have already developed several versions
of conventional spool schedulers. In other words, no one knows
the scheduling problems better than these computer scientists
and, no doubt, no one else would be more capable of developing
a spool scheduler expert system. Therefore, in our particular
case, the expert is also the person who builds the scheduler.
By learning the expert system techniques, this expert would
become the knowledge engineer in charge of the development
process (this is an enviable situation because, on one hand,
this situation reduces the number of people involved in the
building process, and on the other hand, this situation
cancels all the knowledge acquisition problems described in
section 1). This class of participants is of course the most
important one because it will be responsible of the whole
development process.

3.3 GOAL IDENTIFICATION

The initial goal of the project was double. First, the
project had to study and to implement different scheduling
algorithms using expert system techniques. We have already said
in part 3.1 that many different scheduling algorithms exist and
that some of them have been implemented by Siemens for a
commercial use. These algorithms however have been implemented
with conventional languages. So, the first goal of the project
was to study the feasibility to implement these scheduling
algorithms using some expert system techniques. According to the
available time, one or several prototypes of spool scheduler
expert system had to be built, each of these prototypes
corresponding to a different scheduling algorithm. As the
creation of an expert system prototype is a long-term task and
as the number of resources was limited, this or these prototypes
had to be simple but sufficiently complete to appreciate the
feasibility of such an approach. This or these prototypes had to
gather all the basic concepts of a conventional spool scheduler
while implementing each time a different scheduling mechanism.

The second goal of the project was to study the potential
of this new approach. The spool scheduler developed by Siemens
is a performant product that is continuously improved. However,
this product can not propose several interesting functions (e.g.
display the list of non-schedulable jobs, display the list of
the user-ids of the remaining jobs, make some dynamic
estimations of the need in paper, ...) because it was developed
with a conventional language. On the other hand, an approach
that uses the expert system techniques can offer many of these
functions. Being short of time and of resources, the

Identification

implementation of these functions was not possible. Therefore,
the second goal of the project was to study the potential of
this new approach.

CHAPTER 4: CONCEPTUALIZATION

4.1 CONFIGURATIONS OF THE SYSTEMS

In order to get a better understanding of the processing
of a spool expert system, we will illustrate the system
configurations of the current version of the spool, the system
configuration considered for the use of a spool expert system,
and the system configuration used for the development of the
prototype.

4,1.1 System confii:uration of the current spool system

Figure 3.3 shows the system configuration of the current

version of the spool system developed by Siemens 4

In this configuration, the spool system is integrated to
the control system of a "central computer" (i.e. a mainframe or
a minicomputer). This central computer is connected to :

- 0, one or several terminals
- 0, one or several terminal and/or computer

networks
- 0, one or several printers
- 0, one or several printer and/or computer

networks.

In this type of configuration, the jobs sent by the
terminals or by other computers are processed within the central
computer. The spool system receives the jobs, processes them
(i.e. chooses the optimal printer for each incoming job) and
sends the jobs to the selected printer.

4 Network A and network B might be gathered in one.

Figure 3.3

Control
System

CENTRAL
COMPUTER

Conceptualization

1111

system configuration of the current version of the
spool

4,1.2 System confi~uration considered for the spool expert system

Figure 3.4 illustrates the system configuration envisaged
for the spool expert system.

In this type of configuration, the spool system is not
integrated to the central computer anymore. The spool expert
system is installed on a micro-computer (e. g. a 80386-based
computer) that is entirely dedicated to the spool scheduling
activity. Thus, the central computer does not process any jobs;
they are directly sent to the micro-computer. This micro
computer receives all the jobs, processes them and sends them to
the printers.

The configuration shown in Figure 3.3 might be used for
the spool expert system. But the Pro log language chosen to
implement the system is very time- and space-consuming. In that
case, the global performances of the system would be very low.

a e 7

Conceutualization

Therefore, the configuration shown in Figure 3. 4
preferred to the previous one because all the power
computer (i.e. CPU time and memory space) is entirely
to the expert system.

PC Computer

1 1
1 1 . .

Central Computer
1 1
1 1
1 1
1 1

has been
of the PC
dedicated

1111

Figure 3.4 : system configuration for the spool expert system

4,1.3 System configuration used for the prototype

The system configuration used for the development of the
prototype amounts to a simple 80386-PC computer (i.e. the type
of computer that was chosen for a real implementation of the
expert system) . The main reason for such a bare configuration
is, of course, the limitation of available resources. It is not
conceivable to allocate one or several printers, as well as, one
or several terminals exclusively for the development of a

e 78

Conceotualizatio n

prototype (even if this prototype is developed within the
research centre of a big computer manufacturer !) .

As there was only one computer without any real connection
to any printer, we have developed a simulation prototype. We are
talking about "simulation" because the prototype does not start
any "real" printing at any time. The prime goal of the project
was to study and to implement different kinds of scheduling.
Therefore, the prototype confines itself to display on which
device the job could be printed (i.e. the prototype displays the
result of the execution of the scheduling algorithm). The reader
might find this simulation approach relatively restrictive in
regard to the initial goals. That is why, during all the
development process, we took care that this simulation prototype
could easily be transformed in a "real" printing prototype. As a
matter of fact, only a couple of lines have to be changed to
transform the prototype. After these changes, the prototype will
not only display the result of the scheduling, but will also
start a "real" printing of a file.

We also would like to point out that, during the
construction of the ~rototype, we did not adopta particular
strategy concerning the use of the system. In other words, we
did not develop a prototype that was exclusively rèserved either
to the end-users nor to the operators nor to the • system
administrators. On the contrary, we have adopted a pluralist
strategy in order to determine if the prototype could satisfy

all the participants. Therefore, the command language5 gathers
all the commands dedicated to the end-users, to the operators
and to the system administrators without any distinction of
classes. This approach is justified by the fact that it is
easier to develop, to test and to evaluate a prototype without
much usage restrictions. However, if this approach appears to be
too soft, it is always possible to modify the prototype. As a
matter of fact, only a couple of lines have to be changed to
restrict the use of the system to a particular class of
participants (e.g. we could restrict the command language to a
certain kind of user-id or to a certain level of user priority).
In that case, we would adopta particular strategy.

4.2 BASIC CONCEPTS USED WITHIN THE CONTEXT OF THE PROTOTYPE

The development of an expert system is a long-term task
which requires numerous resources. Being short of time, our
prototype of a spool scheduler expert system only had to gather
the basic concepts that are necessary for the correct execution
of a spool. The important concepts used for our prototype are :
the forms, the fonts, the devices, and the jobs.

5 The command language is described in paragraph 4.4

79

Conceptualization

4.2,1 The forms

By form, we mean the type of paper that can be used on a
particular printer. Within the context of the development of our
prototype, a form can be characterized by :

- a name = a value enabling to identify each form,
- a feeding type= the type of mechanism for dragging the

paper,
- the paper size = the size of paper used on the printer,
- a job start sheet = the type of front-page to print,
- a job end sheet = the type of sheet ending the spoolout of a

job,
- a job separator sheet = the type of separation between each

page,
- the fob = the type of dia for laser printers.

A form is thus characterized by a set of values explicitly
chosen by the operator and/or by the system administrator.

4.2,2 The fonts

By font, we mean the character set that can be used to
print the job. Within the context of the development of our
prototype, a font can be characterized by :

- a name = a value enabling to identify each font,
- a printing qua li ty = a value representing the pr inting

quality of the characters,
- a type= the type of characters (e.g. Courier, Times, Roman,

...) '
- a style= the style of the characters (e.g. italic, bold,

underlined, ...) ,
- a character size = the size of the character.

4,2,3 The devices

By device, we mean any printer likely to print a job
(these devices can be local or remote printers). Within the
context of our_prototype, a device is characterized by :

- a name = a value enabling to identify each device,
- a printer type= the type and/or the brand of the device,
- an address = a destination name representing a pool of

printers,
- a user priority = the lowest user priority allowed to send a

job to the device,
- a user range= a restricting set of users allowed to use the

device,
- a class range = a restricting set of spoolout classes

associated to the account number of the user,
- a dia= the form-overlay with which the job must be executed,
- a form range= a restricting set of forms that can be used on

the device,
- an active form = the current form installed on the device,
- a font range= a restricting set of fonts that can be used on

the device,
- an active font= the current font,

Co ne eo tualization

- a rotation value= the orientation of the characters on the
paper,

- a buffer size = the greatest allowed size of a job devoted to
be printed on the device (it is a restricting value on the
size of the job and not on the buffer size of the printer),

- a device state = the current state of the device.

A device is
explicitly chosen
administrator.

4,2.4 The jobs

thus characterized by a
by the operator and/or

set
by

of
the

values
system

By job, we mean any file or part of a file likely to be
printed on a particular device. Within the context of our
prototype, the characteristics of a job are :

- a job identifier= a value enabling to identify each job,
- a job state = the current state of the job,
- a device name = the device name on which the job should be

printed,
- a first page number = a value representing the page number of

the first page to be printed (i.e. the page number marking
the beginning of the printing),

- a last page number = a value representing the page number of
the last page to be printed (i.e. the page number indicating
the end of the printing),

- a form = the form to be used,
- a font= the font to be used,
- a dia= the form-overlay with which the job must be executed,
- a rotation value= the orientation of the characters on the

paper,
- a job priority = a priority assigned to the job,
- a number of copies,
- a remove flag = a value indicating if the file must be erased

after printing or not,
- the file size = the size of the file to be printed,
- the user priority = the priority assigned to the user,
- the user identifier= the value identifying the user,
- the job class = the spoolout class associated to the account

nurnber of the user.

Among this set of characteristics, the first two are
determined automatically by the spool scheduler, the following
ten are expl ici tly chosen by the user, and the four last
characteristics implicitly depend on the user.

4.3 T ASKS TO CARRY OUT BY THE PROTOTYPE

We have already said that the main goal of the project was
to implement a prototype that simulates the scheduling of a job.
In this part, we will dissect this goal and give a more detailed
analyse of the different tasks the program should carry out. We
identified eight different types of tasks.

Conceptualization

4,3.1 Device mana2ement tasks

At any time, the operator and/ or system administrator
should be able to :

- add a new device to the knowledge base 6,
- modify the characteristics of an existing device (e.g. modify

the active form or the active font of a printer),
- delete an existing device (e.g. an old printer is replaced by

a new one) .

4.3.2 Form mana2ement tasks

At any moment, the operator and/or system administrator
should be able to :

- add a new form to the knowledge base (e.g. a new type of
paper has just been released),

- modify the characteristics of an existing form (e.g. no more
front-page for draft listing),

- delete an existing form (e.g. an old type of paper is no more
available) .

4,3,3 Font mana2ement tasks

At any instant, the operator of the system administrator
should be able to

- add a new font to the knowledge base,
- modify an existing font (e.g. the printing quality of a font

has been improved),
- delete an existing font (e.g. an old printer using a very

particular font has been removed; since the font was used
only on that printer, i t should be deleted from the
knowledge base).

4,3.4 Tasks to control the printin~ of jobs

At any time, the user should be allowed to

- send a new job to the spool,
modify the characteristics of a job (e.g. if a job is
rejected because of form mismatch, the user should be able
to send the job to another device or to modify the form of
the job),

- delete a job that has not already been executed (e.g. if the
user has send the wrong file to the spool, the user should
be able to recall the job).

4,3,5 Information tasks

At any moment, the user, the operator or the system
administrator should be able to gain complete informations on:

6 This corresponds to the connection of a new printer to the
pool of printers.

a e 82

Concevtualization

- the set of devices available in the knowledge base,
- the set of forms available in the knowledge base,
- the set of fonts available in the knowledge base,
- the set of jobs in the waiting queues.

4,3.6 Interro2ation tasks

At any instant, the user, the operator or the system
administrator should be able to :

- know the state of any device or the state of any job (e.g. to
know if a job has been printed or if a device is currently
available),

- modify the state of a device or the state of a job.

4,3, 7 Explanation tasks

The user should be allowed to understand the approach that
has been used by the prototype to simulate the scheduling of a
job. Therefore, the prototype has to give explanations
concerning the different steps it took to resolve the
scheduling. In other words, the prototype has to explain how and
why it reached a certain solution7 .

4,3,8 Hetp tasks

The expert system prototype should give help to the user
concerning:

- the different commands available,
the data types allowed during the insertion or the
modification of a device, of a form, of a font or of a job.

7 Due to the lack of time, this function was not implemented.
But a similar result can be obtained with the TRACE or the
DEBUG command of the Prolog language.

F ormalization

CHAPTER 5: FORMALIZATION

5.1 KNOWLEDGE REPRESENTATION TOOL

The language used to formalize the knowledge and to
implement the spool prototype is the Prolog language version 1.1
developed by Siemens. In order to get a better understanding of
the choices made to formalize and to implement the system, this
paragraph reviews some basic mechanisms of Prolog.

Prolog is a programming language for symbolic, non-numeric
computation. It is specially well suited for solving problems
that involve abjects and relations between abjects. The fact
that Tom is a parent of Bob can be written in Prolog as :

parent(tom,bob).

Here, parent was· chosen as the name of a relation; tom and
bob are its arguments. When this clause has been communicated to
the Prolog system, Prolog can be asked a few questions about the
parent relation. For example, is Tom a parent of Bob?

?- parent(tom,bob).

Having found this to be an asserted fact in the program,
Prolog will answer yes. More interesting questions can also be
asked. For example, who is Bob's parent?

?- parent(X,bob).

The system will answer X=tom.

Our program can be asked an even broader question
a parent of whom?

?- parent(X,Y).

who is

Prolog will display the solutions one at a time until all
the solutions have been found. Here, the answer is :

X=tom, Y=bob

Our example has helped to illustrate some important
points:

it is easy in Prolog to define a relation, such as the parent
relation.

- the user can easily query the Prolog system about relations.
- a Prolog program consists of clauses.
- the arguments of relations can (among other things) be :

concrete abjects, or constants (such as tom), or general
abjects (such as X). Objects of the first kind are called
atoms. Objects of the second kind are called variables.

F ormalization

- questions to the system consist of one or more goals. The
word "goals" is used because Pro log accepts questions as
goals that are to be satisfied.

As an extension to the program, let us introduce the
offspring relation as the inverse of the parent relation. The
corresponding Prolog clause is

offspring (Y, X) · - parent (X, Y) .

This clause is also called a rule. There is an important
difference between facts and rules. A fact is something that is
always, unconditionally true. On the other hand, rules specify
things that may be true if some condition is satisfied.
Therefore, rules have a condition part (the body) - i.e. the
right-hand side of the rule - and a conclusion part (the head) -
i.e. the left-hand side of the rule. Facts are clauses that have
the empty body. Questions only have the body. Rules have the
head and the (non-empty) body.

A question to Prolog is always a sequence of one or more
goals. To answer a question, Prolog tries to satisfy all the
goals. To satisfy a goal means to demonstrate that the goal is
true, assuming that the relations in the program are true. In
other words, to satisfy a goal means to demonstrate that the
goal logically follows from the facts and rules in the program.
If the question contains variables, Prolog also has to find what
are the particular abjects (in place of variables) for which the
goals are satisfied. The particular instantiation of variables
to these abjects is displayed to the user. If Prolog can not
demonstrate for some instantiation of variables that the goals
logically follows from the program, then Prolog's answer to the
question will be "no".

For example, given the question

?- offspring(bob,tom).

Prolog will try to satisfy this goal. In order to do so,
it will try to find a clause in the program from which the above
goal could immediately follow. Obvious ly, the only clause
relevant to this end is the rule about the offspring relation

because the head of this rule match8 the goal.

offspring (X, Y) :- parent (X, Y) .

Since the goal is offspring(bob,tom), the variables in the
rule must be instanciated as follows X=tom, Y=bob. The
original goal offspring(bob,tom) is then replaced by a new goal:

8 Given two terms, we say taht they match if
(1) they are identical, or
(2) the variables in both terms can be instancied to

objects in such a way that, after the substitution of
variables by these abjects, the terms become identical.

F ormalization

parent(tom,bob).

This goal is immediately satisfied because it appears in
9 the program as a fact .

In the previous examples, it has always been possible to
understand the result of the program without exactly knowing how
the system actually found the results. It therefore makes sense
to distinguish between two levels of meaning of Prolog programs:
the declarative meaning and the procedural meaning.

The declarative meaning is concerned only with the
relations defined by the program. The declarative meaning thus
determines what will be the output of the program. On the other
hand, the procedural meaning also determines how this output is
obtained - i.e. how are the relations actually evaluated by the
Prolog system.

The ability of Prolog to work out many procedural details
on its own is considered to be one of its specific advantages.
It encourages the programmer to consider the declarative meaning
of programs, relati vely independently of their procedural
meaning. Since the results of the program are, in principle,
determined by its declarative meaning, this should be (in

' ' 1) ff' ' t f 't' l O principe su icien or wri ing programs

5.2 KNOWLEDGE REPRESENTATION

In chapter 4, we have determined the important concepts
used in the prototype. In this paragraph, we will concentrate on
the formalization of these concepts in Prolog.

As each concept can be identified by a set of
characteristics, these concepts will be represented by a list of
attributes (each attribute corresponding to a characteristic).
Within the context of our work, some attributes accept only two
or three different types of value. This might be quite
restrictive comparing to the large amount of values allowed by
some attributes. However, for the development of a prototype,
the restriction in the number of different values does not
change the validity of a feasibility study. Therefore, we have
opted for simplicity.

9 If there is no clause in the program whose head matches the
goal parent (tom,bob), then this goal fails. In that case,
Prolog backtracks to the original goal to try an alternative
way to derive to top goal offspring(bob,tom).

10 Unfortunately, however, the declarative approach is not
always sufficient, especially in large programs where the
procedural aspects can not be completely ignored by the
programmer for practical reasons of executional efficiency.

F ormalization

The formalization of the different concepts and the types
of value allowed for the corresponding attributes are the

following 11

5,2, 1 The forms

A form will be formalized by the following list of
attributes:

[name, feeding type, paper size, job-start-sheet, job-end
sheet, job-separator-sheet, fob]

The values allowed for the different attributes are

- name :
any string of characters starting with a lowercase letter

- feeding type :

-

<single> for a sheet-by-sheet feeding
<listing> for a continuous feeding

paper size :
<a3> for a paper corresponding to

standard A3
<a4> for a paper corresponding to

standard A4
<a5> for a paper corresponding to

standard A5

the international

the international

the international

- job-start-sheet :
<brief> for a short front-page (a couple lines)
<long> for a long front-page (a whole page)
<none> for a printing without front-page

- job-end-sheet
<brief> for a short end-sheet (a couple lines)
<long> for a long end-sheet (a whole page)
<none> for a printing without end-sheet

- job-separator-sheet :
<brief> for a short in-between sheet (1 or 2 lines)
<long> for a long in-between sheet (5 or 10 lines)
<none> for a printing without any in-between lines

- fob :
either an element from the set {fl,f2,f3} to simulate a

particular fob,
or nothing if there should not be any fob.

5,2,2 The fonts

A font will be formalized by the following list of
attributes:

[name, printing quality, style, type, size]

11 Words between "<"and">" should be written as such.

F ormalization

The values allowed for the different attributes are

- name :
any string of characters starting with a lowercase letter

- printing quality :
<draft> to simulate a fast and draft printing quality
<normal> to simulate a normal printing quality
<high> to simulate a very high printing quality

- style :
a non repetitive list of elements belonging to the set

{italic,underlined,bold}

- type :
<courier> for a character type "Courier"
<times> for a character type "Times"

- size :
<10> for 10 points size
<12> for 12 points size
<14> for 14 points size

5,2,3 The devices

A device will be formalized by the following list of
attributes:

[name, printer type, address, lowest priority, user-id
range, class range, dia, form range, active form, font
range, active font, buffer size, device state]

The values allowed for the different attributes are

- name :
any string of characters starting with a lowercase letter

- printer type :
any string of characters starting with a lowercase letter

- address :
any string of characters starting with a lowercase letter

- lowest priority:

any integer between 0 and 255 12

12 0 is the highest user priority and 255 is the lowest user
priority.

F ormalization

- user-id range :
either a list of user-ids to bound the use of the device

, 13 to certain users ,
or nothing if the device can be used by everyone

- class range :
either a non repetitive list of elements belonging to the

set {cll,cl2,cl3,cl4} to bound the use of the device
to certain spoolout classes,

or nothing if the device can accept any spoolout class

- dia :
either an element of the set {dial,dia2,dia3,dia4} if the

device will print jobs with one of these dias,
or nothing if the device does not use any particular dia

- form range :
either a non repetitive list of existing form names to

bound the use of the device to these forms,
or nothing if the device can accept any type of form

- active form:
the name of the current active form (i.e. a string of

characters starting with a lowercase letter)

- font range :
either a non repetitive list of existing font names to

bound the use of the device to these fonts,
or nothing if the device can accept any type of font

- active font :
the name of the current active font (i.e. a string of

characters starting with a lowercase letter)

- rotation:
<portrait> for a printing with a vertical orientation
<landscape> for a printing with an horizontal orientation

- buffer size :
either an integer between 1 and 999.999 to bound the use

of the device to jobs which size are smaller than this
integer,

or nothing if the device accepts jobs of any size

- device state :
<active> if the device can be used

14 <wait> if the device is momentarily out-of-order

13 A user-id is a string of characters starting with a lowercase
letter.

14 A more dynamic management of the devices (i.e. determining if
the device state is "printing", "waiting for a job", "out of
order", ...) couldn't be considered due to the lack of time.

e 89

F ormalization

5,2.4 The jobs

A job will be formalized by the following list of
attributes:

[job-id, file name, device, page from, page to, form,
font, dia, rotation, file size, user priority, user-id,
job class, number of copies, remove, job priority, job
state]

The values allowed for the different attributes are :

- job-id:
, t 15 an in eger

- file name :
any string of characters starting with a lowercase letter

- device :
either the name of an existing device (i.e. a string of

characters starting with a lowercase letter) to print
the job on a particular device,

or nothing if the job can be printed on any device

- page from:
either an integer to start the printing from a particular

page number,
or nothing to start the printing from the beginning of the

file

- page to :
either an integer to print the job until a particular page

number,
or nothing to print the job until the end of the file

- form:
either the name of an existing form (i.e. a string of

characters starting with a lowercase letter) to print
the job with a particular form,

or nothing to print the job with any form

- font :
either the name of an existing font (i.e. a string of

characters starting with a lowercase letter) to print
the job with a particular font,

or nothing to print the job with any font

- dia :
either an element of the set {dial,dia2,dia3,dia4} to

print the job with a particular dia,
or nothing to print the job without any dia

- rotation :
<portrait> to print the job with a vertical orientation

15 This integer is dynamically determined by the system and not
by the user.

F ormalization

<landscape> to print the job with an horizontal
orientation

- file size :
an integer

- user priority
an integer between 0 and 255

- user-id:
a string of characters starting with a lowercase letter

- job class :
an element of the set {cll,cl2,cl3,cl4}

- number of copies :
either an integer greater than 1 to print several copies,
or nothing to print one copy

- remove :
<yes> to delete the file after the printing
<no> either way

- job priority :
either an integer between 0 and 30 to print the job with a

particular priority (0 is the highest priority, 30 is
the lowest priority},

or nothing to print the job with the default priority
(i.e. 15}

- job state :
<active> to send the job to the spool scheduler

<wait> to momentary set the job to a waiting state16

5,2.5 Restrictions

For a correct execution of the system, it is not allowed:

- to use uppercase letters as values for the attributes. Because
the system is using Prolog, any uppercase letter or any string
starting with an uppercase letter would be considered as an
internal variable of the system. Any uppercase letter could
therefore induce many problems during the system's execution.

- to use xxxxxxxx and xxxxxxx as file name, device name, form
name or font name. These two strings are reserved for the
execution of certain internal functions of the system.

16 d . A more ynamic
the job state
"printing", ... }
time.

management of the jobs (i.e. determining if
is "printed", "waiting for a device",
couldn't be considered due to the lack of

a 91

F ormalization

5.3 FORMALIZATION OF THE USER INTERFACE

To be able to carry out the tasks described in paragraph
4.2, the user should be able to interact with the expert system.
To enable this dialogue between the user and the spool
scheduler, we have created a simple but complete interface. This
interface consists of a command language, some dialogue screens
and a set of help messages.

5.3,l The command Iamrnage

5.3.1.1 Commands intended to the operator

The commands intended to the operator (and to the system
administrator) enable to carry out management tasks for the
devices, the forms and the fonts. These commands are :

add dev dev-name:
add a new device named dev-name to the working memory

modify dev dev-name:
modify a device named dev-name to the working memory

delete dev dev-name:
delete a device named dev-name to the working memory

add form form-name:
add a new form named form-name to the working memory

modify form form-name:
modify a form named form-name to the working memory

delete form form-name:
delete a form named form-name to the working memory

add font font-name:
add a new font named font-name to the working memory

modify font font-name:
modify a font named font-name to the working memory

delete form font-name:
delete a font named font-name to the working memory

set dev dev-name active
set a device named dev-name to the active state

set dev dev-name wait :
set a device named dev-name to the wait state

5.3.1.2 Commands intended to the user

The commands intended to the user (and in a certain way to
the operator) are

show dev short :
display the name, the type, the active form and the state

of each device
show dev long:

display all attributes of each device
show dev free :

display all attributes of each free (unused) device
show dev form:

display the name, the active form and the form range of
each device

a e 92

F ormalization

show dev font :
display the name, the active font and the font range of

each device
show dev prio :

display the name, the lowest user priority and the user-id
range of each device

show dev dia :
display the name, the dia and the rotation of each device

show form short :
display the name, the paper size, the fob, and the feeding

type of each form
show form long:

display all attributes of each form
show font short :

display the name, the printing quality, the type and the
style of each font

show font long:
display all attributes of each font

show job short :
display the job-id, the file name, the device and the

state of every job
show job long:

display all attributes of every job
stat dev dev-name:

display the name, the state, the active form, the active
font, the dia, the rotation, the active job and the
number of waiting jobs of a device named dev-name

stat job job-id:
display the job-id, the file name, the user-id, the state,

the affected device and the requested number of copies
of a job identified by job-id

stat global system:
17 display the current status of the whole spool system

print file-name:
simulate the printing of a file with default values

print file-name m:
simulate the printing of a file with specific attribute

values chosen by the user
modify print :

modify the values of the last print command18

delete job job-id:
delete a job from the working memory

set job job-id active :
set the job in an active state

set job job-id wait :
set the job in a wait state

free dev-name:
simulate the liberation of a device named dev-name (i.e.

the device has printed a file and is ready to print
another one)

17 This command works only if some printers are connected to the
computer.

18 This command is useful when a print request has just been
refused because of a wrong filled attribute.

help

load

save

end

display the commands available

load the working memory from a file

save the working memory in a file

quit the spool scheduler prototype

F ormalization

5.3.2 Dialo2ue screens

Among the commands described above, some commands require
many parameters to be executed. For example, a correct execution
of the commands add, modify or print requires the user to enter
a lot of different values.

To enable an easy way to
created some dialogue screens.
advantage :

enter these values, we have
This process has a double

- first, this process is easy to implement by the builder
of the prototype. It is, in fact, easier and faster to
create some dialogue screens than to write a full parser
able to dissect any sophisticated command. This process
being faster, it enables us to devote more time to other
important tasks.

- secondly, this process is easier to tackle by the user.
It is, in fact, easier for the user to follow the steps
given by the system (dialogue screens, orientation
messages, ...) than to memorize for each command the
list of parameters, the right syntax for these
parameters, the default values,

5.3,3 Hetpin2 messa2es

At any time (while displaying the result of the
scheduling, while entering values, while writing down commands,
...) the user is helped with a large amount of helping messages.
These short messages enable an easier and better use of the
prototype. These messages indicate for instance :

- the types of values to enter
- the syntax errors and their correction
- the semantic errors
- the results of the scheduling and the tasks to carry out

if a job has not been scheduled
- the reasons for the wrong execution of a command
- etc ...

5.4 ARCHITECTURE OF THE WORKING MEMORY

This working memory gathers all the important concepts
identified in chapter 4 (i.e. the devices, the jobs, the forms
and the fonts). These concepts are represented in the working

94

F ormalization

memory by lists of attributes. However, because of internal
handling problems of these lists, some elements had to be added
to the working memory.

On one hand, we had to frame these lists with an
identifier. Because the working memory gathers lists of all
types, the system must have a way to recognize which are the
lists of devices, the lists of jobs, the lists of forms, and the
lists of fonts. In other words, the system must have a way to
identify each type of list. Therefore, each list has been framed
with an identifier. The lists in the working memory look like :

for the devices :

dev([name, printer type, address, lowest priority, user-id
range, class range, dia, form range, active form, font
range, active font, rotation, buffer size, device
state])

for the forms

form([name, feeding type, paper size, job start sheet, job
end sheet, job separator sheet, fob])

for the fonts

font([name, printing quality, style, type, size])

for the jobs :

job([job-id, file name, device, page from, page to, form,
font, dia, rotation, file size, user priority, user-id,
job class, number of copies, remove, job priority, job
state])

On the other hand, flag-lists had to be added for each
concept. As a matter of fact, for some commands, the inference
engine has to search through the working memory to gather all
the lists belonging to the same concept (e.g. the set of devices
for a show dev long). But, our inference engine searches through
the working memory for a particular type of list from the first
list of this type tilla certain flag (and il.Q.t. till the last
list of this type). This means that if the inference engine does
not locate a certain flag, he is unable to give the set of lists
of a common type. In a similar way, he is unable to search
through the working memory to find a particular element. To
solve this problem, flag-lists have been added for each concept.
These flag-lists look like :

for the devices :

dev([xxxxxxx,1,1,1,1,1,1,1,1,l,1,1,1,1])

for the forms :

form([xxxxxxx,1,1,l,1,1,1))

9

for the fonts :

font([xxxxxxx,1,1,1,1])

for the jobs :

job([O,xxxxxxx,1,1,1,1,1,1,l,1,l,1,1,1,1,l,1])

F ormalization

The way these lists are sorted in the working memory does
not matter (as long as the lists of a same concept are gathered
together). An example of the architecture of the working memory
is shown in Appendix.

5.5 ARCHITECTURE OF THE KNOWLEDGE BASE

The set of rules composing the knowledge base are sorted
in the following order

- rules for handling internal structures
- rules concerning the choice of the command to execute
- rules for adding devices, forms, or fonts to the working

memory (the add command) ·
- rules to simulate the printing of a job (the print

command)
- rules to modify devices, forms, fonts, or jobs in the

working memory (the modify command)
- rules to display informations (the show command)
- ru les to display device and job states (the s ta t

command)
- rules to delete devices, forms, fonts, or jobs from the

working memory (the delete command)
- rules to set a device or a job to a new state (the set

command)
- rules to execute the scheduling of a job.

e 96

I mplementation

CHAPTER 6: IMPLEMENTATION

In accordance with the prime goal of the project, three
different versions of the prototype have been implemented, each
one corresponding to a particular scheduling techniques.
However, though being di fferent, the se three versions have
common parts, namely :

- the user interface module,

- the knowledge base, except the scheduling rules (i.e.
all the rules concerning the process of the add, modify,
show, stat, set, delete, load, save, print, and free
command).

Since these three versions are implemented in Prolog, the
three prototypes use the same inference engine and the same
architecture for the working memory.

Paragraphs 6. 1 through 6. 3 analyse in details the
scheduling algorithms and the way they were implemented.

6.1 A PROTOTYPE OF A SPOOL SCHEDULER EXPERT SYSTEM, VERSION 1

In this first version of the prototype, the scheduling
process starts when a user executes a print command. In this
version, each device has a waiting queue. When the spool
prototype receives a job, it starts the scheduling process of
this job i.e. according to the characteristics of the devices
and the characteristics of the job, the spool determines the
"best", the "optimal" device to print this job. Once a device
has been selected, the spool prototype puts the job in the
waiting queue of that device. The printing of the job will take
place when all the jobs previously placed in the waiting queue

19 · are printed .

This scheduling process is illustrated in Figure 3.5.

In this Figure 3.5, the different steps correspond to the
following processings :

19 Remember that in our case, the prototype just simulates the
printing.

e 97

Implementation

' '
step 1

no
Is the job in

ACTIVE state?

yes

' ,
step 2

Print the job on a particular
no

device chosen by the user ? i
step 4

Find a device which characteristics
yes match with the job attributes

' (' (
step 3 step 5

no
Is there a physical and logical Did the scheduler find -
fit with a particular device ? a device?

yes yes

' ' ,, no

step 6

Put the job in the waiting queue
of the selected device

.....
;;:,_
~

~

---..

' '
Figure 3.5 scheduling process in version 1

step 1 : is the job in active state?

If the job state attribute of the job is active, the
scheduling process goes on. In the other case, the scheduling
process is stopped and will restart with a set job job-id active
command.

step 2 : print the job on a particular device?

If the device attribute of the job is filled with a device
name, the spool prototype will check if that particular device

98

Imvlementation

can print the job. In the other case, the prototype will try to
find any other device to print the job.

step 3 is there a physical and logical fit with the particular
device?

At this stage, the prototype checks if the particular
device can print the job, i.e. it successively checks if :

- the file size is smaller or equal to the device buffer
size

- the job form belongs to the device form range
- the job font belongs to the device font range
- the job dia matches with the device dia
- the job rotation matches with the device rotation
- the job user priority is smaller or equal to the device

user priority
- the job user-id belongs to the device user-id range
- the job class belongs to the device class range
- the job form matches with the device active form
- the job font matches with the device active font

If all these values match together (physical and logical
fit)· and are well-suited (the active form and the active font
are the ones asked in the print command), then the job will be
printed on that particular device. If, on the other hand, these
values do not match together (this means that some
characteristics of the job can not be accepted by the device),
the scheduling process is stopped and a message is sent to the
user. The user has then the opportunity to modify the attributes
of his job with a modify print command.

step 4 find any device whose characteristics match with the
job attributes

If the user has not specified a particular device in his
print command, the prototype tries to find a device with at
least a logical and physical fit.

- first, the prototype searches the set of active devices
having the same dia and rotation value as the ones found in
the print command. This set of devices is called DEVLIST.

- if DEVLIST is empty, go to step 5

- if DEVLIST is not empty, the scheduler searches among the
elements of DEVLIST for all the devices with a physical and
logical fit, i.e. it successively checks for each device if:

- the file size is smaller or equal to the device
buffer size

- the job form belongs to the device form range
- the job font belongs to the device font range
- the job user priority is smaller or equal to the

device user priority

99

Imvlementation

- the job user-id belongs to the device user-id
range

- the job class belongs to the device class range
- the job form matches with the device active form
- the job font matches with the device active font

- the devices selected are shared out in two different lists
- the LOGLIST which gathers the devices with a

physical and logical fit
the BESTLIST which gathers the "best" devices,
i.e. the devices with a physical fit, with a
logical fit, and which active form and active font
are the ones requested in the print command.

step 5 : did the scheduler find a device?

At this stage, the prototype checks the following
situations:

if DEVLIST is empty, the scheduling process is stopped, and a
message is sent to the user to tell him that his job can not
be printed on any device. ·

if LOGLIST (and consequently BESTLIST) is empty, the
scheduling process is stopped, and a message is sent to the
user to ask him to change some attributes of his job.

- if BESTLIST is empty and LOGLIST is not empty, the job can be
printed on at least one device but with another form and/or
another font than the one requested. Therefore, a message is
sent to the user to suggest him to change the attributes of
his job or to change the form and/or the font of the device
(i.e. this would be a "physical" change).

- if BESTLIST is not empty, the scheduler has to choose the
optimal device among the elements of BESTLIST. This choice
is based on the user-id range, the class range and the user
priority. The optimal device is the one that offers the
strongest restrictions on the user-id range and the class
range, and that offers the lowest user priority, i.e.

- if the use of a device is restricted to a small
range of users, this device is preferred to the
one that accepts all users,

- if the use of a device is restricted to a small
range of job classes, this device is preferred to
the one that accepts all kinds of job classes,

- a device is preferred to another one if its use is
restricted to users with a higher priority level.

step 6 : put the job in the waiting gueue of the selected device

If a device has been selected, the prototype sends a
message to the user to tell him that his job has been placed in
the waiting queue of that device.

I m-olementation

6.2 A PROTOTYPE OF A SPOOL SCHEDULER EXPERT SYSTEM, VERSION 2

In the second version of the prototype, the scheduling
process starts when a device is freed, i.e. when a device has
finished to print a job and is ready to print a new job. In
order to simulate this freeing, the user executes a free dev
name command.

In this version, each job sent to the spool scheduler is
placed in the spool waiting queue. There, the jobs wait to be
processed. And when a device is freed, the system starts the
scheduling process of that device, i.e. according to the
characteristics of the device and the characteristics of all the
jobs in the spool waiting queue, the spool determines the
"best", the "optimal" job to be printed on that device. Once a
job has been selected, it is deleted from the waiting queue and
sent to the device for printing.

The scheduling process of this second version is
illustrated in Figure 3.6.

In this Figure 3.6, the different steps correspond to the
following processings :

step 1

ste:p 2

the user sends a print command

:print the job on a :particular device?

If the device attribute of the job is filled with a device
name, the spool prototype will check if that particular device
can print the job. On the other hand, the scheduler places the
job in the waiting queue.

ste:p 3 is there a :physical and logical fit with the :particular
device?

In this stage, the prototype checks if the particular
device can print the job, i.e. it successively checks if:

- the file size is smaller or equal to the device buffer
size

- the job form belongs to the device form range
- the job font belongs to the device font range
- the job dia matches with the device dia
- the job rotation matches with the device rotation
- the job user priority is smaller or equal to the qevice

user priority
- the job user-id belongs to the device user-id range
- the job class belongs to the device class range

If all these values match together (physical and logical
fit), then the job will be placed in the spool waiting queue.
If, on the other hand, these values do not match together (this
means that some characteristics of the job can not be accepted
by the device), a message is sent to the user. The user has then

a e 101

Imolementation

the opportunity to modify the attributes of his job with a
modify print command.

~
step 1

The user sends a PRINT command

step 1.,

Print the job on a particular device ?
no

yes ' .
step:;

no Is there a physical and logical flt
with the particular device ?

yes ~

~

' • step 4

Put the job in the waitaing queue
,.__
-

~
~tf':n 'i

A device is freed

~
step 6

Are there jobs to be printed no

on that device ? V
step 8

yes Fmd a job which characteristics match ,, with the device characteristcs

steo7
V .t"ma me tJest JOO to tJe prmtea

on that device steo 9
yes

Did the scheduler find a job ?

V ' ' no
step 10

Print the job on the device

~

.__

V

Figure 3.6 scheduling process in version 2

a 102

step 4

step 5

put the job in the spool waiting queue

a device is freed

Jmplementation

A user simulates the freeing of a device with a free dev
name command.

step 6 : are there jobs to be printed on that device?

The scheduler searches in the spool waiting queue the set
of active jobs to be printed on that device. This set of jobs is
called LOGLIST (because the physical and logical fit of these
jobs have already been checked in step 3).

If LOGLIST is not empty, go to step 7; otherwise, go to
step 8.

step 7 : find the "best" job to be printed on that device

Among the elements of LOGLIST, the system searches the
jobs with a better fit, i.e. the jobs of which both the form and
font match with the active form and active font of the device.
The set of jobs with a better fit is called BESTLIST.

- if BESTLIST is not empty, the system selects the job with the
highest job priority (if there are several jobs with the
same priority level, the system chooses the oldest job).

- if BESTLIST is empty, the jobs can be printed on the device
but with another form and/ or another font than the ones
requested. Therefore, the system selects the job with the
highest priority and sends a message to the correspondent
user to suggest him to change the attributes of his job or
to change the form and/or the font of the device (this would
be a "physical" change).

step 8 find any job whose characteristics match with the
device characteristics

If the user has not specified a particular device in his
print command, the system tries to find a job with at least a
physical and logical fit.

- first, the scheduler searches the set of active jobs having
the same dia and rotation value as the one of the freed
device. This set of jobs is called JOBLIST.

- if JOBLIST is empty, go to step 9.

- if JOBLIST is not empty, the scheduler searches among the
elements of JOBLIST for all the jobs with a physical and
logical fit, i.e. it successively checks for each job if:

- the file size is smaller or equal to the device
buffer size

- the job form belongs to the device form range
- the job font belongs to the device font range

Imolementation

- the job user priority is smaller or equal to the
device user priority

- the job user-id belongs to the device user-id
range

- the job class belongs to the device class range
- the job form matches with the device active form
- the job font matches with the device active font

- the jobs selected are shared out in two different lists :
- the LOG LI ST which gathers the devices wi th a

physical and logical fit,
- the BESTLIST which gathers the "best" jobs, i.e.

the jobs with a physical fit, with a logical fit,
and which form and font correspond to the active
form and active font of the device.

step 9 : ctid the scheduler find a job?

In this stage, the scheduler checks the following
situations:

- if JOBLIST is empty, the scheduling process is stopped, and a
message is sent to the user to tell him that the device can
not print any job.

if LOGLIST (and consequently BESTLIST) is empty, the
scheduling process is stopped, and a message is sent to the
user to tell him that the device can not print any job.

- if BESTLIST is empty and LOGLIST is not empty, the device can
print at least one job but with another form and/or another
font than the ones requested. Therefore, a message is sent
to the user to suggest him to change the attributes of his
job or to change the form and/or the font of the device
(i.e. this would be a "physical" change).

- if BESTLIST is not empty, the scheduler has to choose the
optimal job among the elements of BESTLIST. This choice is
based on the job priority and the age of the job. The
optimal job is the one with the highest job priority. If
several jobs have the same priority level, the system
chooses the oldest one.

step 10 : print the job on the device

The system sends a message to the user to tell him which
job will be printed next on the device.

6.3 A PROTOTYPE OF A SPOOL SCHEDULER EXPERT SYSTEM, VERSION 3

This third version of the prototype is a mixed version of
the two first ones. It corresponds to the second version (in the
way that the scheduling process starts when a device is freed)
to which a module has been added. This additional module starts

a e 104

lmplementation

a pre-scheduling process (similar to the scheduling process of
version 1) on the set of free devices.

As a matter of fact, a close analyse of the second version
of the prototype reveals a lack of efficiency in the management
of the free devices : when the scheduler does not allocate a job
to a free device, this device remains unused as long as a user
re-executes a free dev-name command. To solve this problem, a
third version of the prototype has been implemented. In this
third version, if a device is freed and if no job has been
allocated to that device, then the device is placed in a list of
free devices called FREELIST. In this way, when a user executes
a print command, the system starts a pre-scheduling process on
the elements of FREELIST, i.e. instead of placing the job in the
spool waiting queue, the system will try to print the job on one
of the currently unused devices. If a free device can print the
job, then it is deleted from the FREELIST and the job is
directly printed on that device. If on the other hand, any free
device can not print the job, then the FREELIST remains the same
and the job is placed in the spool waiting queue.

The pre-scheduling process corresponds to the scheduling
process of version 1, except that the system considers only the
few devices of the FREELIST instead of considering all the
devices of the working memory. All other functions (scheduling
of the spool waiting queue, ...) correspond to the ones
implemented in version 2.

JO

T tin

CHAPTER 7 : TESTING

The final stage in building an expert system is the
testing stage. This involves evaluating the prototype system and
the representation forms used to implement it.

In our case, the spool scheduler prototypes have been
tested with a variety of examples to determine weaknesses in the
knowledge base and inference structure. The different test
problem examples have been organized so that they cover the
subproblems, probe the boundaries of expected "hard" cases, and
deal with the "classical" cases of a problem.

Several weaknesses have been found leading to a regular
revision of the prototypes. Sorne concepts had to be
reformulated. Sorne representations had to be redesigned. But
most of the weaknesses were eliminated through small refinements
of the system, i.e. recycling through the implementation and
testing stages in order to tune or adjust the rules and their
control structures until the expected behaviour is obtained.

The result of these regular revisions led to a· higher
level of performances. Although the general performances of the
system have never been tested with any statistical tool, the
response time of the system (i.e. the time between the user
executes a command and the system displays a response message)
has always been very short (0.2 or 0.3 second).

CONCLUSION

a e 107

Conclusion

CONCLUSION

To develop a real spool scheduler expert system is a
complex and long-term task that would go beyond the context of
this dissertation. That is the reason why, right from the
beginning, the orientation of the project was to develop an
experimental prototype. This means that, even if the system is
not dedicated to a commercial use, its development is
nevertheless based on a realistic study of the existing.

In this order of ideas have been defined the two main
goals of the project on one hand, to tackle the spool
scheduling problem with a new computer approach (i.e. the expert
system approach), and, on the other hand, to define the
possibilities offered by this new approach to build a commercial
product.

To answer the first goal, we have applied the general
methodology for building expert systems to our spool scheduling
problem. We have started with an identification stage to study
the numerous advantages and disadvantages of the traditional
spool scheduler (i.e. the spool written with conventional
languages), and to identify the different mechanisms
(algorithmic or others) that are to be used for the building of
a prototype. We have carried on with a conceptualization stage
to define the system configuration, the basic concepts, their
truth values and the relations between them. This second stage
has also enabled us to define the tasks the prototype has to
carry on. The formalization stage has then enabled us to choose
a pertinent representation mode for the concepts and their
relations. Finally, the implementation stage has enabled us to
illustrate the modelisation of the scheduling process with a
particular algorithm (and since there are many scheduling
processes, we have implemented three algorithms, leading to
three different versions of our prototype).

When one tries to evaluate these prototypes, one has to
adopt an imprecise procedure. As a matter of fact, evaluation of
expert systems, unlike knowledge acquisition or inferencing
mechanisms, is a topic that has been minimally addressed. Expert
system evaluation is often nebulous, since there are no
universally accepted or unbiased formal specifications against
which the system can be judged. We will then evaluate our
prototypes through the criterions identified by [WOL-87], that
is : the user acceptance, the performances of the system, the
utility or value-added benefits, the liability risk and the
feedback to the knowledge engineers.

From the user's perspective, the prototypes have a smooth
and quite efficient interface. Of course, this interface is not
perfect but it provides the user with a simple command language,
many dialogue screens, man y helping messages, . . . Due to the

Conclusio

lack of time, only the explanation module could not be
developed. However, we could compensate this lack through the
use of the TRACE or DEBUG command of the Prolog debugger. These
two commands allow the user to follow, step by step, the
progression of the inference engine. This way thus enables us to
understand how the prototype reached a particular result.

The quality of the decisions taken by the prototypes has
been fully tested with a wide range of test cases. And the
answers derivated from these test cases match with the
criterions given by the experts. However, the tested systems are
mere prototypes which gather only the basic concepts of a spool.
The improvement of the reasoning techniques and the broadening
of the knowledge base could thus be an extension to our work.

From the point of view of the value-added benefits, our
prototypes bring out some of the numerous advantages of the
expert systems. As a matter of fact, our prototypes provide the
user with a lot of informations that are not available with the
traditional spool systems. Thus, at any time, the user or the
operator may get informations on the devices (e.g. the list of
free devices; the list of devices with a particular form; the
list of priority range allowed on each device; the list of
devices reserved to a certain range of user-ids; ...) or
informations on the jobs (e.g. the list of the forms, the
classes, of the user-ids of the remaining jobs; the list of jobs
which are not schedulable; ...) . These rapid prototypes thus let
us foresee already the numerous possibilities that could be
offered by a real spool expert system.

The liability risk question is, in our case, irrelevant
because our systems are just bare simulation prototypes that can
not cause any damage to a particular organization.

Finally, evaluation enables a feedback process to take
place whereby the comments serve as basis for iterative
refinements. In that connection, we could review some of our
initial choices such as the scheduling algorithms, the system
configuration or the choice of language. As said before, there
are a lot of different scheduling algorithms, each one of them
validating some particular criterions. In our project, we have
implemented three different algorithms. But this does not mean
that these algorithms are the most pertinent ones, or the ones
that offer the best performances. It is so advisable to consider
other scheduling forms and, possibly, to compare the
performances (qualitative and quantitative) of these systems
with the performances of our prototypes. This comparison could
then determine "the" schedul ing process to adopt for a real
expert system. The choice of the Prolog language could also be
reconsidered. Even if this language is well suited for the
development of expert systems, it still needs large computer
resources (it particularly needs large stacks which have been a
critical resource in the development of our prototypes). The use
of another language or, possibly, the use of an expert system
shell could therefore be considered. At last, the configuration
of the expert system could also be reviewed. This configuration
was defined as such because of the large computer resources
necessary for the execution of a Prolog program. Its advantages

Conclusion

are to reserve all the power (in CPU and in memory) of a PC
computer and to offer a specific console to the operator.
However, this configuration is quite cumbersome (it needs an
additional computer) and might be more costly than a standard
configuration. It could so be redefined, especially if we plan
to use another language.

Through the evaluation of our prototypes, we have
partially answered to the second goal of the project (because we
have shown how our prototypes already offer new functions that
are not available with the conventional spools). But a real
spool expert system could provide a lot more possibilities. In
fact, a spool expert system could supply the user with a better
quality of service (additional informations, better user
interface, ...) . But it could also offer a better management of
the printers. Through its "experience" (i.e. the analysis of the
previously solved problems and the quality of its knowledge
base), a spool expert system could dynamically analyse the jobs
in queue in order to process them under optimal conditions. It
could make a dynamic estimation of paper changes to relieve the
operator of his work. It could also help the system
administrator in the choice of selection operands. In summary,
many important new functions could thus be implemented through
the use of expert system technology, leading to a new generation
of spool systems.

Beyond the cliches, the realization of this work has
enabled us to discover a promising approach in the development
of spool scheduler : the expert system approach. It is likely
that spool scheduler expert systems will develop in the near
future, and it is to be hoped that, eventually, the quality of
the services offered to the user will be highly improved.

A endi

APPENDIX

This appendix illustrates the architecture of the working
memory in the second version of our spool scheduler prototype

dev([dev15,bull,addr15,200, [usrl,usr2,usr3], '', '', [form4, form5, f
orm6],form5, [fontl,font2,font3],font3,portrait,0,active]).
dev ([dev14, siemens, addr14, 240, '', '', dial, '', form5, [font3, font 4, f
ont5,font6],font6,portrait,65000,active]).
dev ([dev13,philips, addr13, 215, [usr3, usr4, usr5, usr6], '', '', [forml
,form2,form3,form4],form4, [fontl,font5],fontl,portrait,90000,act
ive]) .
dev([dev12,ibm,addr12,225, '', [cll,cl2,cl4],dial, [forml,form3],fo
rm3, '',font5,portrait,0,active]).
dev([devll,olivetti,addrll,245,' ',' ',dia2, [form2,form5,form6],fo
rm2, '',font6,portrait,120000,active]).
dev([devl0,amstrad,addrl0,235, [usr4,usr8,usr10], '',dial, '',forml
, [fontl,font2,font6],font2,landscape,0,active]).
dev ([dev9, compaq, addr9, 200, '', [cll, cl2, cl3],' ', '', form5, '', font4
,portrait, 80000,active]).
dev([dev8,hewlett,addr8,235, [usrl,usr7,usr8], [cll,cl2],dial, [for
m3,form5,form6],form3, '',font3,portrait,0,active]).
dev ([dev7, xerox, addr7, 200, '', '', '', [form2, form4], form4, [fontl, fo
nt2,font4,font6],font2,portrait,0,active]).
dev ([dev6, digital, addr6, 250, [usr4, usr6, usr7, usr8] , ' ', dia3, ' ', for
m4, '', font3,portrait, 95000, active]).
dev([dev5,toshiba,addr5,200, '',' ',' ', [form3,form5,form6],form6, [
font2,font3],font3,landscape,0,active]).
dev([dev4,bull,addr4,240,' ', '',dia3, [form3,form4,form6],form4, ''
,font3,portrait,0,active]).
dev ([dev3, siemens, addr3, 255, '', [cl2, cl3],' ', '', form5, [fontl, font
2,font6],font6,portrait,120000,active]).
dev([dev2,oki,addr2,230, [usr7,usr8], '',dial, [form5,form6],form5,
'',fontl,portrait,0,active]).
dev([devl,ibm,addrl,200, [usrl,usr2,usr3],' ',dia3, [form2,form5,fo
rm6],form2, [fontl,font4],font4,portrait,0,active]).
dev([xxxxxxx,1,l,1,l,1,l,1,1,1,1,1,1,1]).

form([form6,single,a4,none,none,none, '']).
form([form5,single,a4,long,none,none,f2]).
form([form4,listing,a4,long,long,none, '']).
form([form3,listing,a4,brief,brief,none, ''])
form ([form2, listing, a4, brief, brief, brief, fl]) .
form([forml,listing,a4,none,none,none, '']).
f o rm ([xxxxxxx, 1, 1, 1, 1, 1, 1]) .

Ill

font ([font6, high, [bold, italic], courier, 12]).
font ([font5,high, '' ,courier, 12]).
font ([font4, normal, [bold], tirnes, 12]) .
font([font3,draft, [underlined],courier,12]).
font([font2,draft,' ',courier,14]).
font([fontl,high, [underlined,bold],times,14]).
font ([xxxxxxx, 1, 1, 1, 1]).

A

job ([15, file15, '', 0, 0, form3, '','',portrait, 80000, 240, usr2, cll, O,
n, 15, active]).
job([14,file14, 11 ,20,30,form5, 11 ,dia2,portrait,50000,255,usrl0,c
13, 0, n, 15, active]).
job([13,file13, 11 ,0,0, '',font4, '',portrait,11Q000,210,usr7,cl2,0
, n, 15, active]).
job([12,file12, '',10,10,forrnl,font6,dial,portrait,2000,210,usrll
, cll, 0, n, 15, active]).
job ([11, filell,' ', 0, 0,' ', '', '', landscape, 12000, 255, usrl, cl2, O, y,
2 5, active]) . ·
job([lO,filelO, 11 ,0,0, 11

,
11 ,dia3,portrait,56000,220,usrl3,cl2,0,

n,15,active]).
job ([9, fi le 9, ' ' , 0, 0, f orm6, font 1, ' ' , portrait, 34 200,235, usr 9, cl 1, 3
, n, 5, active]) .
job ([8, file8, '', 0, 0, forrn2, '', dial, landscape, 25500, 215, usr3, cl3, O
, y, 10, active]) .
job ([7, file7,' ', 10, 70, '', font5, '' ,portrait, 120000, 240,usr20, cll,
O,n,15,active]).
j o b ([6 , fi 1 e 6 , ' ' , 0 , 0 , ' ' , ' ' , di a 3 , portrait , 7 0 0 0 , 2 3 0 , us r 11 , c 11 , 0 , n , 1
5, active]).
job ([5, file5,' ', O, O, '','','',portrait, 4500, 245,usr7, cl2, 0, y, 15, a
ctive]) .
job([4,file4, '',0,0,form5,font2,dia2,portrait,34800,200,usr4,cll
, 0, n, 15, active]).
job ([3, file3, '', 0, 0, '', '', '', landscape, 500,150, usr8, cl3, 2, n, 1, ac
ti ve]) .
j o b ([2 , fi 1 e 2 , ' ' , 0 , 0 , f o rrn 6 , ' ' , di a 1 , portrait , 3 5 0 0 , 2 5 5 , us r 6 , c 11 , O , n
, 15, active]).
job ([1, filel, '', O, 0, '', font3, '' ,portrait,5500,244,usrl4,cl2, O,n,
15, active]) .
job([O,xxxxxxx~l,1,1,1,1,1,l,1,1,1,1,1,1,1,1]).

112

Bibliography

BIBLIOGRAPHY

[ALT-84) : ALTY, J.L., Expert systems - concepts and examples,
The National Computing Centre Ltd, Manchester, 1984.

[BIL-84) BILLMERS, M.A., SWARTWOUT, M.W., AI-SPEAR : a
computer system failure analysis tool, in Proceedings of
the Sixth European Conference on Artificial Intelligence,
September 1984, pp. 61-69.

[BON-85] : BONNET, A., Artificial intelligence - Promise and
performance, Prentice-Hall International Ltd., London,
1985, pp. 142-216.

[BOO-84) BOOSE, J.H.,
transfer of human
National Conference
1984, pp. 27-33.

Personal construct theory and the
expertise, in Proceedings of the
on Artificial Intelligence, August

[BRA-86) : BRATKO, I., Prolog - programming for artificial
intelligence, International Computer Science Series, 1986.

[CHO-87) : CHORAFAS, D.N., Applying Expert Systems in Business,
McGraw-Hill Book Company, New York, 1987.

[CLA-8 3) : CLANCEY, W. J., The advantages of abstract control
knowledge in expert system design, in Proceedings of the
National Conference on Artificial Intelligence, August
1983, pp. 74-78.

[FOR-87] : FORD, N., How machines think, John Wiley & Sons Ltd.,
Chichester, 1987, pp. 171-185.

[GEV-84] : GEVARTER, W. B., Artificial intelligence - expert
systems - computer vision and natural language processing,
Noyes Publications, Park Ridge, 1984, pp. 71-86.

[GEV-85) GEVARTER, W.B., Intelligent machines an
introductory perspective of artificial intelligence and
robotics, Prentice-Hall Inc., Englewood Cliffs, 1985, pp.
47-66.

[GOO-85) : GOODALL, A., The guide to expert systems, Learned
Information Ltd, 1985.

[GRI-84) : GRIESMER, J.H., HONG, S.J., KARNAUGH, M., KASTNER,
J.K., SCHOR, M.I., YES/MVS: a continuous real time expert
system, in Proceedings of the National Conference on
Artificial Intelligence, August 1984, pp. 130-136.

li

Biblio~rwhv

[HAY-83] HAYES-ROTH, F., WATERMANN, D.A., LENAT, D.B.,
Building expert systems, Addison-Wesley Publishing Company
Inc., Reading, 1983.

[HEN-85] HENNINGS, R.D., Artificial intelligence 1.
Expertsysteme, Mathware-Verlag GmbH, Berlin, 1985, pp.
271-310.

[HU-87] : HU, S.D., Expert systems for software engineers and
managers, Chapman and Hall, New York, 1987.

[JAC-86] JACKSON, P., Introduction to expert systems,
Addision-Wesley Publishing Company, Reading, 1986.

[JAN-85] : JANSON, P.A., Operating systems - structures and
mechanisms, Academic Press Ltd., London, 1985, pp. 71-100.

[KEL-87] : KELLER, R., Expert system technology - Development &
application, Prentice-Hall Inc., Englewood Cliffs, 1987.

[KLA-86] KLAHR, P., WATERMAN, D.A., Expert systems
techniques, tools, and applications, Addison-Wesley
Publishing Company Inc., Reading, 1986.

[KRI-87] : KRIZ, J., Knowledge-based expert systems in industry,
Ellis Horwood Ltd., Chichester, 1987, pp. 17-23.

[LEE-88] : LEE, SUH, PAMS : a domain-specific knowledge-based
parallel machine scheduling system, in Expert Systems,
Vol. 5, No. 3, August 1988.

[LIE-86] : LIEBOWITZ, J., Useful approach for evaluating expert
systems, in Expert Systems, Vol. 3, No. 2, April 1986.

[MAR-88] : MARTIN, J., OXMAN, S., Building expert systems - a
tutorial, Prentice-Hall Inc., Englewood Cliffs, 1988.

[MIL-87] : MILENKOVIC, M., Operating systems - concepts and
design, McGraw-Hill Book Company, New York, 1987, pp. 99-
121.

[NAY-84] NAYLOR, C., Build your own expert system, Sigma
Technical Press, Wilmslow, 1984, pp. 1-12.

[NEG-85] : NEGOITA, C.V., Expert systems and fuzzy systems, The
Benjamin/Cummings Publishing Company, Menlo Park, 1985,
pp. 1-47.

[PIN-89] PINKERT, J.R., WEAR, L.L., Operating systems -
concepts, policies, and mechanisms, Prentice-Hall Inc.,
Englewood Cliffs, 1989, pp. 232-248.

[RAU-88] : RAUCH-HINDIN, W.B., A guide to commercial artificial
intelligence, Prentice-Hall Inc., Englewood Cliffs, 1988,
pp. 236-282.

114

B iblio ~raphy

[ROL-87] : ROLSTON, D.W., A multiparadigm knowledge-based system
for diagnosis of large mainframe peripherals, in
Proceedings the Third Conference on Artificial
Intelligence Applications, February 1987, pp. 150-155.

[SAV-88] SAVORY, S.E., Artificial intelligence and expert
systems, Ellis Horwood Ltd., Chichester, 1988, pp. 15-35.

[SHI-8 4] : SHI RAI, Y., TSUJI I, J-I., Artifi.cial intelligence -
concepts, techniques, and applications, John Wiley & Sons
Ltd., Chichester, 1984, pp. 103-131.

[SIE-86] : SIEGEL, P., Expert systems - a non-programmer's guide
to development and applications, Tab Books Inc., Blue
Ridge Summit, 1986, pp. 1-159.

[S IL-8 7] S ILVERMAN, B. G., Expert systems for business,
Addison-Wesley Publishing Company Inc., Reading, 1987, pp.
5-51.

[SIM-84] SIMONS, G.L., Introducing artificial intelligence,
The National Computing Centre Ltd., Manchester, 1984, pp.
175-207.

[SIM-85] : SIMONS, G.L., Expert systems and micros, The National
Computing Centre Ltd., Manchester, 1985.

[STE-86] STERLING, L., SHAPIRO, E., The art of Prolog :
advanced programming techniques, The MIT Press, Cambridge,
1986.

[TOW-86] : TOWNSEND, C., FEUCHT, D., Designing and programming
personnal expert systems, Tab Books Inc., Blue Ridge
Summit, 1986, pp. 1-47.

[WAT-86] : WATERMAN, D.A., A guide to expert systems, Addison
Wesley Publishing Company Inc., Reading, 1986.

[WEI-84] : WEISS, S.M., KULIKOWSKI, C.A., A practical guide to
designing expert systems, Rowman & Allanheld Publishers,
Totowa, 1984.

[WIN-8 6] WINSTON, P., PREDERGAST, K., The AI business --
commercial uses of artificial intelligence, The MIT Press,
Cambridge, 1986, pp. 15-51.

[WOL-87] : WOLFGRAM, D.D., DEAR, T.J., GALBRAITH, C.S., Expert
systems for the technical professional, John Wiley & Sons
Ltd., Chichester, 1987.

a e Il

