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Résumé 

 

Les glycoside hydrolases (glycosidases) sont une classe d’enzymes capables de cliver les liens 

glycosidiques entre les sous-unités de monosaccharides principalement dans les 

polysaccharides, les glycolipides ou les glycoprotéines. Récemment, les recherches de l’équipe 

du Dr. Yann Guérardel à l’Université de Lille ont mené à la découverte d’une nouvelle 

glycosidase de Mycobacterium tuberculosis (Mtb). Cette enzyme, qui hydrolyse le galactane 

présent dans la paroi cellulaire de Mtb, pourrait expliquer la capacité de ces bactéries à 

remodeler leur paroi. Afin de permettre une caractérisation complète de cette nouvelle 

glycosidase (constantes cinétiques, mécanisme, site actif et acides aminés catalytiques), une 

sonde synthétique 5 a été conçue sur base de son mécanisme procédant par rétention de la 

configuration anomérique. Grâce à son atome de fluor placé à proximité de la position 

anomérique, la molécule 5 sera utilisée pour piéger l’acide aminé nucléophile de l’enzyme. La 

voie synthétique utilisée pour obtenir cette molécule est représentée ci-dessous. 
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Abbreviations and symbols 

Å Ångström 

AG Arabinogalactan 

AIDS Acquired immunodeficiency 

syndrome 

Araf Arabinofuranosyl 

Asp Aspartic acid 

δ Chemical shift 

DABCO 1,4-diazabicyclo[2.2.2]octane  

DCM Dichloromethane 

DI50 50 % infection dose 

DMAP N,N-dimethyl-4-aminopyridine 

DMAPA 3-(dimethylamino)-1-

propylamine 

DMF N,N-dimethylformamide 

DNA Deoxyribonucleic acid 

DNP Dinitrophenol 

Eq. Equivalent 

ESI Electron Spray ionization 

FDNB 1-fluoro-2,4-dinitrobenzene 

Galf Galactofuranosyl 

GalN Galactosamine 

GH Glycoside hydrolase 

GlcNAc N-acetylglucosamine 

Glu Glutamic acid 

Gram- Gram negative 

Gram+ Gram positive 

HIV Human immunodeficiency virus 

HRMS High resolution mass 

spectroscopy 

J Coupling constant 

LAM Lipoarabinomannan 

LM Lipomannan 

LPS Lipopolysaccharide 

mAGP Mycolyl-arabinogalactan-

peptidoglycan complex 

MDR Multi-drug resistant 

Mtb Mycobacterium tuberculosis 

Mur Muramic acid 

MurNAc N-acetyl-muramic acid 

MurNGly N-glycolyl-muramic acid 

NAD Nicotinamide adenine 

dinucleotide 

NFSI N-fluorobenzenesulfonimide 

NMR Nuclear magnetic resonance 

NOE Nuclear Overhauser effect 

PG Peptidoglycan 

PIM Phosphatidyl-myoinositol 

ppm parts-per-million 

r.t. Room temperature 

Rf Retention factor 

Rhap Rhamnopyranosyl 

SN1 / SN2 Nucleophilic substitution of 

1st/2nd order 

SNAr Nucleophilic aromatic 

substitution 

TB Tuberculosis 

THF Tetrahydrofuran 

TLC Thin layer chromatography 

TMS Trimethylsilyl 

XDR Extensively drug resistant 
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I.1 Mycobacterium tuberculosis, a major human pathogen 

Tuberculosis (TB) is an infectious disease caused by the pathogenic organism Mycobacterium 

tuberculosis (Mtb).1 It is estimated that 1.7 billion people (23 % of the world population) is 

currently infected by this pathogen in a latent phase.2 In 2017, this disease caused 1.6 million 

casualties and it is then categorized as one of the deadliest infectious diseases among HIV/AIDS 

and malaria. The specific TB antibiotics that were discovered five decades ago and that are still 

used to cure tuberculosis are becoming less and less effective over time because of the 

appearance of new resistant strains. Accordingly, rifampicin and isoniazid, which are first-line 

drugs for the treatment of TB, are ineffective against multi-drug resistant TB (MDR-TB). 

Among cases of MDR-TB, 8.5 % of them are estimated to be extensively drug-resistant TB 

(XDR-TB). Those infections are caused by bacteria that are MDR but also resistant to any 

fluoroquinolone and at least one of the second-line injectable drugs such as amikacin, 

capreomycin or kanamycin.3 Furthermore TB strains that are resistant to every known TB drugs 

have been characterized, which places tuberculosis as a major issue for public health.  It also 

means that the search for new essential targets of Mtb is a current major topic as there is an 

urgent need for controlling the proliferation of TB. 

I.2 Tuberculosis infection cycle 

Mtb is transmitted through the air thanks to tiny water droplets containing bacteria (Figure 1). 

Those are produced when an infected person cough or spit. The DI50 (the minimum number of 

pathogenic species inhaled to infect 50 % of a population) is estimated to be less than 10 for 

the human.4 When a healthy person breathes in the bacilli in suspension [A], Mtb travels 

through the lungs to reach its final location which is the pulmonary alveoli. First, the innate 

immune response takes place with the recruitment of immune cells such as neutrophils, 

inflammatory monocytes or interstitial macrophages.5 The purpose of those cells is to eliminate 

Mtb but they quickly become infected by the growing population of mycobacteria [B]. The 

adverse effect of this infection is that the recruitment of more phagocytic cells to the site of the 

infection benefits the pathogen as they provide additional niches for the bacterial population 

expansion. The ultimate step of the innate immune response is the formation of an early 

granuloma [C]. In some patients, this granuloma is sufficient to give rise to the eradication of 

the infection [D], while in others, this situation leads to a primary tuberculosis.6 
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Figure 1. Infection cycle of Mtb. Figure taken from C. Nunes-Alves et al.6 

After some time, an adaptive immune response takes place [E]. It consists in the recruitment of 

many leucocytes such as dendritic cells, T-cells, B-cells, etc. Those cells can activate the 

formation of a more advanced granuloma that will allow an interruption of the proliferation of 

bacteria [F]. The infection will stay in a latent phase and only a small percentage of individuals 

will develop an active tuberculosis afterwards. In those sensitive patients (mainly in 

immunosuppressed people), mycobacteria will multiply themselves inside the macrophage [G]. 

Upon coughing, the granuloma will break and the bacilli will be expectorated in the air. A new 

infectious cycle can start again. The particularity of Mtb is its ability to survive in macrophages 

which are a hostile environment. Its cell wall structure is believed to be the main reason for this 

unusual characteristic.7 

I.3 The cell wall of Mycobacterium tuberculosis 

I.3.1 Overview 

Conventionally, bacteria are divided into two major groups according to the composition of 

their cell wall: Gram-positive (Gram+) and Gram-negative (Gram-) (Figure 2).8 While the 

Gram+ bacteria possess a thick layer of peptidoglycans present on the surface of the bacterial 
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cell wall, Gram- bacteria do not have such accessible layer of peptidoglycans. Indeed, their cell 

wall structure is very different and is actually composed of a supplementary membrane above 

the plasma membrane. A thin layer of peptidoglycan is thus found in between the two lipidic 

bilayers (a location named “periplasm”). The external membrane is decorated by a layer of 

lipopolysaccharides (LPS) which are not found in Gram+ bacteria. The differentiation between 

the two types of bacteria was originally based on their sensitivity to the Gram staining test. It 

consisted in using a special dye that was able to color the Gram+ bacteria by interacting with 

the peptidoglycan on the surface of their cell wall. As the peptidoglycans in Gram- bacteria are 

entrapped in between the two lipidic bilayers of the cell wall, they cannot be reached by the dye 

and the Gram- bacteria are left uncolored. 

 

Figure 2. Comparison of cell wall structures between Gram-positive bacteria, Gram-negative 

bacteria and mycobacteria. Illustration taken from S. Akira et al.8 

While mycobacteria could be classified as Gram+ bacteria, their cell wall structure significantly 

differs from the cell wall composition of traditional Gram+ bacteria. The main difference is the 

higher proportion of lipids in the cell wall of mycobacteria. Those lipids may represent up to 

40 % of the cell dry mass while it is only 5 % in other Gram+ bacteria.9 They render the cell 

wall very impermeable (up to 10-100 times more impermeable than the cell wall of 

Pseudomonas aeruginosa which is already known to be quite impermeable).9 This feature 

explains the difficulty for the host (or even the usual antibiotics) to interact and eliminate 

mycobacteria. 
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The mycobacterial envelope is composed of three main components (Figure 3):  

- A plasma membrane found just like in any other cells. 

- An elaborated mycolyl-arabinogalactan-peptidoglycan (mAGP) complex. Mycolic 

acids are bound covalently to the arabinogalactan to form the mycomembrane with other 

glycolipids and lypoglycans. 

- An outer layer called “capsule” found only in the pathogenic strains. 

 

Figure 3. Cell wall structure of Mtb. Illustration taken from L. Shen.10 

The heart of this cell wall envelope is the mAGP complex which is composed of three layers 

bound covalently: mycolic acids, the arabinogalactan and the peptidoglycan.  

Peptidoglycans (PG) are made of long chains of alternating N-acetylglucosamine (GlcNAc) and 

muramic acid (Mur) linked in a β(1→4) fashion (Figure 4 and Scheme 1).11 The muramic acid 

residues in Mtb are a mixture of both the N-acetyl-muramic acid (MurNAc) and the N-glycolyl-

muramic acid (MurNGly). The latter is obtained by oxidation of MurNAc and it has only been 

observed in Mtb and Mycobacterium smegmatis. This modification would allow additional 

hydrogen bonding interactions between glycan chains and thus give a stronger rigidity to the 

PG. The glycan chains are cross-linked by tetrapeptide (L-alanilyl-D-isoglutaminyl-meso-

diaminopimelyl-D-alanine) side chains to form a mesh-like arrangement that confers rigidity to 

the cell.  
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Figure 4. Schematic structure of the PG. Illustration taken from K.M. Payne et al.12 

 

Scheme 1. Chemical structures of the glycosides found in the PG. 

Mycolic acids are very long fatty acids (up to 90 carbons) that are α-branched and β-

hydroxylated (Figure 5).9 They are esterified to two thirds of the non-reducing end of the last 

arabinofuranose residue of the arabinogalactan. They help to bind other fatty molecules like 

lipids, glycolipids and lipoproteins that are composing the outer membrane of the envelope. 

Those molecules (such as phosphatidyl-myoinositol (PIM), lipomannan (LM) and 

lipoarabinomannan (LAM)) have the ability to activate the immune system.13 

 

Figure 5. Structure of the mycolic acids found in Mtb. Illustration taken from M. Daffé.9 
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The arabinogalactan (AG) is the crucial part of the mAGP complex as it is the linker between 

the last two components. It is a heteropolysaccharide that contains two different chains of 

polysaccharides : the galactan and the arabinan (Figure 6 and Scheme 2).11 The first one is made 

of approximately 30 alternating β(1→5) and β(1→6)-linked D-galactofuranosyl (D-Galf) 

residues. It is covalently bound to approximately 10 % of the Mur residues of the PG by a 

phosphodiester linker. This linker unit is also composed of a disaccharide made of L-

rhamnopyranosyl (L-Rhap) (1→3)-linked to a GlcNAc. 

Three chains of arabinan are linked to the galactan via a bound to the C-5 hydroxyl of β(1→6)-

linked Galf units (on the 8th, 10th and 12th Galf residues).11 The arabinan itself is a 

polysaccharide made of 23 D-arabinofuranosyl (D-Araf) units with α(1→5) and α(1→3) bonds. 

There is a possibility of branching at the C-3 of α(1→5)-linked D-Araf units. The arabinan is 

terminated with a β(1→2) D-Araf residue. Then, it can be further decorated with succinyl and 

galactosamine (GalN) residues at the C-2 of α(3→5) linked D-Araf units. 

 

Scheme 2. Chemical structure of β-D-Galf and α-D-Araf. 

 

Figure 6. Structure of the arabinogalactan oligomers. Illustration taken from L. Shen.10 



 

14 

 

It is important to note that the overall structure of the mAGP complex is actually dynamic. 

Indeed, since the infection cycle of Mtb goes through many different environments, it induces 

many modifications of the mAGP complex for a better survival of Mtb in every situation. This 

aspect will be discussed in the following section. 

I.3.2 Cell wall remodeling 

The cell wall remodeling of Mtb is a major aspect of the immuno-evasion of the pathogen. By 

doing subtle variation to its envelope, Mtb can adapt itself better to the changing host 

environment during the different stages of the infection.14  

 

Figure 7. Structural differences of Mtb cell wall components between a fast in vivo and a slow in vitro growth. 

Illustration taken from K.J. Kieser et al.14 

The three main components of the mAGP complex (AG, PG and mycolic acids) can undergo 

various modifications. It has been shown that the composition of mycolic acids are different 

between mycobacteria growing in vivo and in vitro (Figure 7).14 The mycolic acids, along with 

the cell wall lipids, are much more present in the cells growing in vivo. Indeed, the thicker is 

the cell wall, the easier it is for Mtb to restrict the transit of toxic molecules. In that fashion, the 

lipids bound to the mycolic acids help trap toxic by-products from the catabolism of cholesterol 

during the growth in macrophages.14 Mycolic acids also have two additional functions: they 

participate in the immuno-evasion of the pathogen and have the ability to absorb toxic oxidative 

radicals. In a slow growth state (in vitro conditions), the abundance of immunostimulatory 

mycolic acids is reduced to potentially avoid recognition by the immune system.14  

The peptidoglycan also needs to undergo modifications to withstand the harmful conditions in 

the macrophages. The most important characteristic of the PG, in vivo, is the maintenance of 
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the 3-3 peptidic cross-links between the glycan chains as they promote chronic infection and 

antibiotic resistance. When Mtb has a slow growth such as in in vitro conditions, the number of 

peptidic cross-links is increased to obtain a better cell wall rigidity.14 

Finally, with regards to the arabinogalactan, the number of those polysaccharide chains 

increases during an in vivo growth.15 This observation is quite logical as it is the support for the 

mycolic acids that are more importantly found in the same conditions. 

Those modifications of the cell wall component and the ability of the bacteria to switch between 

different rates of growth implies the need for catabolic enzymes. Those enzymes are able to 

break down big molecules found in the cell wall into smaller pieces. It is especially the case for 

the breakdown of polysaccharides (a major component of the mAGP complex) performed by 

glycosidases. 

I.4 Glycoside hydrolases 

Glycoside hydrolases (GH) (also named glycosidases) are a group of enzymes that are capable 

of catalyzing the cleavage of glycosidic bonds (Scheme 3). The reaction itself consists in the 

hydrolysis of the anomeric acetal and the release of the previous acceptor which can either be 

a glycoside (such as in polysaccharide) or an aglycon (such as in glycoproteins or glycolipids).  

 

Scheme 3. Reaction catalyzed by glycoside hydrolases. The acceptor of the glycoside is a water molecule. 

They are usually highly specific to their substrate and this specificity is associated to four 

criteria. 

- Carbohydrate monomer specificity: GHs are highly selective towards the sugar unit 

whose anomeric acetal is hydrolyzed into a lactol. This specificity is linked to the three 

main characteristics of every monosaccharide which are the series (L or D), the relative 

configuration (galactose, glucose, arabinose, etc.) and also the cycle size (pyranose or 

furanose). The group attached to the anomeric center of the substrate brings much less 

selectivity to the enzymatic process. 
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- Anomeric specificity (α or β bond cleavage): The anomeric configuration is the 

configuration of the C-1 stereocenter of the glycosidic substrate. It can either be α or β. 

An α-GH cannot hydrolyze a β-glycoside and vice-versa. 

- Bond cleavage location: Two classes of GHs are defined as a function of the hydrolyzed 

bond location: if the cleavage occurs at the terminal sugar unit of the polysaccharide 

chain, the enzyme is named exo, if it is “inside” the chain, it is named endo. 

- Reaction stereochemistry: All GHs use one of the two possible mechanisms that result 

in either the retention or the inversion of the anomeric configuration of the released 

monosaccharide. 

The reaction stereochemistry is an important characteristic of a glycosidase as it is directly 

linked to its mechanism. The understanding of this mechanism helps to identify which amino 

acids are essential in the enzyme active site. Mechanisms for these enzymes were first proposed 

by D. Koshland16 in 1953 but it was only confirmed later by S. Withers17 thanks to structures 

of GHs with inhibitors or substrate analogs bound in their active site.  

The glycoside hydrolases that act by inversion of configuration uses a one-step process. Only 

two catalytic amino acids are needed for the acetal hydrolysis and they are used in a general 

acid/base catalysis fashion.17 As illustrated in Scheme 4, the acidic amino acid activates first 

the leaving group by protonation to allow the basic amino acid to catalyze the attack from a 

water molecule to the free face of the anomeric position. The final molecule has an opposite 

anomeric configuration than the substrate. Although the mechanism depicted in Scheme 4 

suggests a pure SN2 mechanism, there is still a debate for a competition between SN1 and SN2 

mechanisms. 

 

Scheme 4. Inversion of configuration mechanism for the cleavage of a glycosidic bond catalyzed by an inverting 

glycoside hydrolase. 

The enzymes that act by retention of configuration use a two-step process. The binding site also 

requires only two catalytic amino acids but in contrast with the previous mechanism, one of 
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them acts as a catalytic nucleophile. First, the acidic amino acid activates the leaving group by 

protonation to allow the other amino acid to perform a nucleophilic attack on the free side of 

the anomeric carbon (Scheme 5). This situation leads to the formation of an intermediate where 

the enzyme is covalently bound to the substrate. In a second step, the deprotonated acidic amino 

acid activates the nucleophilic substitution from the bound amino acid to a water molecule. As 

a consequence of this double inversion sequence, the final product possesses the same anomeric 

configuration as the starting substrate. In both mechanisms, all the reactions go through a 

cationic oxycarbenium-like transition state. 

 

Scheme 5. Double inversion of configuration mechanism for the cleavage of a glycosidic bond catalyzed by a 

retaining glycoside hydrolase. 

It is noteworthy to mention that even if inverting and retaining glycosidases have similar active 

site structures, the distance between the two catalytic amino acids is not the same. 

Crystallographic structures show that this distance is in averages 5 Å for retaining GHs while 

it is 6-11 Å for inverting GHs.17 This proximity between the catalytic amino acids in retaining 

glycosidases is coherent with the fact that the enzyme actually binds covalently to the substrate 

between the two inversion steps. Noteworthy, not all the retaining glycosidases use an aspartic 

or a glutamic acid as the nucleophilic amino acid. For example, in the case of sialidases, a 

tyrosine acts as the nucleophile and is assisted by a neighboring basic amino acid.18 It is even 

possible for a retaining GH not to include a nucleophilic amino acid when the substrate 

possesses an N-acetyl or an N-glycolyl group at the C-2.19 The oxygen of those groups acts as 

an intramolecular nucleophile during the first inversion step. Lastly, there are retaining GHs 

that use an NAD cofactor and go through a very different mechanism than traditional retaining 
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GHs.20 This mechanism consists in the oxidation of the hydroxyl at the C-3, followed by the 

elimination of the anomeric group and finally the conjugate addition of a water molecule and 

the reduction of the C-3 carbon. 

I.5 A novel glycosidase from Mycobacterium tuberculosis 

The team of Dr. Yann Guérardel in the Glycobiology unit at the University of Lille (in 

collaboration with the team of Pr. Laurent Kremer) addressed the question of Mtb membrane 

remodeling.10 They were more specifically interested in the arabinan part of the cell wall and 

they looked for a catabolic enzyme targeting this specific part. To reach such objective, they 

searched into the DNA of Mtb to find coding sequences that were similar to already known L-

arabinanases from other species. This research allowed them to isolate three interesting coding 

genes: Rv0186, Rv0237 and Rv3096. After overexpression of those genes in E. coli bacteria 

and purification of the corresponding proteins, the researchers have conducted enzymatic assays 

and they have found that only Rv3096 was showing an activity towards the AG. To their 

surprise, they were able to determine that it was not an arabinanase but it was in fact targeting 

the galactan part of the AG! This demonstration was possible thanks to enzymatic assays with 

synthetic substrates bearing an anomeric paranitrophenyl group (Scheme 6 and Figure 8). Their 

conclusion to those experiments was that Rv3096 was a gene coding for a β-D-

galactofuranosidase that acts by retention of the anomeric configuration (unpublished results). 

 

Scheme 6.  Examples of a synthetic substrate used to determine substrate specificity of Rv3096. 

 

Figure 8. Activity of Rv3096 towards three synthetic substrates: pNP-β-D-Galf, pNP-β-D-Glup et pNP-α-L-Araf. 

Figure taken from L. Shen.10
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II. Objective
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Even if the team of Dr. Yann Guérardel has partially characterized this new glycosidase from 

Mtb, some important features remain to be studied. The first objective is to determine, 

experimentally, which residue (Asp or Glu) is the catalytic nucleophile. Based on sequence 

analogies and directed mutagenesis, Glu295 and Glu197 are likely candidates but an absolute 

proof has not yet been provided.10 Moreover, it would be of great importance to provide a tri-

dimensional structure of a covalent complex between the enzyme and its substrate. This 

structure would allow mapping and visualizing the active site and help identify the amino acids 

involved in the catalytic process. Such structure would also provide the conformational state of 

both the enzyme and the substrate at the heart of the catalytic process: just in between the two 

inversion steps.  

However, this enzyme cannot be co-crystallized with its natural substrate as the reaction is so 

fast it would be difficult to crystallize the enzyme while it is processing the reaction. A solution 

to circumvent this problem would be to incubate the enzyme during the crystallization process 

with a close synthetic analog of the substrate that would be slower than the natural substrate. 

This molecule would need to stabilize the enzyme-substrate complex so that it slows down the 

hydrolysis step and thus the release of the product from the active site. This scenario seems 

possible with molecule 1β derived from D-galactose as it possesses two major features 

illustrated in Scheme 7. 

 

Scheme 7. Structure of a potent mechanistic probe of Mtb novel β-D-galactofuranosidase. 

First, it has a very good leaving group (2,4-dinitrophenol) at the anomeric position. It means 

that the anomeric C-O bond cleavage and the binding of the probe to the enzyme during the 

first step of the enzymatic mechanism will be fast (Scheme 8). Secondly, it possesses a fluorine 

atom at the C-2 instead of a hydroxyl group. As the electronegativity of fluorine is much more 

superior to oxygen, the fluorine will destabilize the cationic oxycarbenium-like transition states. 

In particular, it will dramatically slow down the second inversion and thus restrict the ability of 

the enzyme to separate from its substrate. Moreover, the replacement of a hydroxyl group by a 

fluorine atom will result in the disruption of important hydrogen bonding interactions that have 
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been shown to stabilize the transition state for some GHs.21 Even though the fluorine also 

destabilizes the first transition state by the same principle, the formation of the intermediate 

will still happen since 2,4-dinitrophenol is a very good leaving group. As fluorine has a smaller 

size compared to a hydroxyl group, the replacement of a secondary alcohol at C-2 of molecule 

1β by a fluorine atom should not affect, sterically, the binding process to the enzyme.  

 

Scheme 8. Predicted inhibition mechanism of retaining glycosidases by molecule 1β. 

This molecule would not only give the possibility to obtain a 3D structure of the key covalent 

intermediate but it will help to confirm the retention of configuration nature of this mechanism 

thanks to kinetic assays. Indeed, this molecule should act as a time-dependent inactivator of the 

novel GH which would demonstrate, kinetically, that this enzyme proceeds through covalent 

catalysis. According to the litterature17,22, this principle has already been demonstrated and 

tested on many glycosidases. However, no reports have been made on the synthesis of molecule 

1β. This master thesis is thus aimed at developing a synthetic pathway for this molecule. The 

enzymatic assays and the co-crystallization experiments will be performed in the laboratory of 

our collaborators in the University of Lille. 

In the following “Results and discussion” section, we will first discuss the possible synthetic 

strategies for the preparation of molecule 1β based on its specific structural features. Then, we 

will describe our experimental efforts toward the synthesis of 1β and thus elaborate some 

concluding remarks. 
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III. Results and discussion 
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III.1 Synthetic pathway 

 

Scheme 9. Structures of the substrate used for the enzymatic assay, the targeted mechanistic probe and the enzyme 

natural substrate. There are three main characteristics of the targeted mechanistic probe: a five membered ring 

(blue), a fluorine atom at C-2 (green) and a good leaving group at C-1 (red). 

As shown in Scheme 9, the molecular probe has the following features: 

1) An overall structure similar to the enzyme natural substrate. There are in total five 

stereogenic centers that have to be firmly set as the enzyme is highly specific to its natural 

substrate (D-galactofuranose) and thus the molecular probe must have the hydroxyl groups 

oriented in the same way. One of the stereogenic centers is the anomeric carbon. It can 

either be α or β and this enzyme is only active towards the latter. On top of this, the ring 

size must be controlled. The enzyme will not bind the more commonly found pyranoside 

(six-membered ring) structure of D-galactose. The formation of the furanoside structure 

(five-membered ring) will be an important aspect of the synthesis. 

 

2) A fluorine atom at the C-2. This atom will be at the heart of the inactivation of the enzyme. 

It will need to be placed on the bottom α face of the ring to mimic the original position of 

the hydroxyl group present at the C-2. 

 

3) A good leaving group positioned at the anomeric position such as 2,4-dinitrophenol. This 

group will need to be placed with the β configuration as it is the normal configuration of 

the bond between sugar subunits in the natural polysaccharide on which the enzyme acts.  

With those features in mind, the synthetic pathway illustrated in Scheme 10 can be envisioned. 
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Scheme 10. The synthetic pathway envisioned for the synthesis of the mechanistic probe of Rv3096. 

The starting material of the synthesis is the cheap and commercially available D-galactose (4) 

which is mostly in its pyranose form at room temperature.23 This molecule has the advantage 

of having right away the desired configurations of the stereogenic center at the C-3, C-4 and C-

5. 

The first step will be the synthesis of a useful intermediate allowing a fluorination reaction. 

This intermediate 5 is called D-galactal and its enol ether function is nucleophilic enough to 

react with electrophilic fluorination reagents such as Selectfluor®.24 This will allow the addition 

of an electrophilic fluorine atom regioselectively at C-2 and with an excellent stereoselectivity, 

as required.  

After deprotection, molecule 6 will be obtained. As this molecule is mainly present in its 

pyranoside form, it will need to be converted in its less stable furanoside structure 7 thanks to 

a control or a shift of the equilibrium between the two species. 

The key coupling reaction can be achieved either as a direct glycosylation of a nitrophenol 

derivative which will require a preliminary anomeric activation or through a SNAr reaction after 

a selective anomeric deprotection. The stereoselectivity of this coupling step will have to be 

examined and controlled as the desired anomer must be β.  

Finally, the target molecule 1β can be obtained after a final careful deprotection of the remaining 

protecting groups without hydrolyzing the sensitive anomeric dinitrophenolate. 
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III.2 Synthesis of D-galactal 

Carbohydrates possessing a double bond between C-1 and C-2 are named endo-glycals. They 

are used for many purposes such as glycosylating agents in the synthesis of 2-deoxy sugars, as 

versatile chiral building blocks or even in the synthesis of glycoproteins.25 Among the various 

existing techniques to prepare them, the easiest one is probably the Fisher-Zach method. It 

consists in the reductive elimination of a protected 1-halogenoglycoside 9 which itself is easily 

prepared from the corresponding per ester 8. This elimination is realized thanks to zinc powder 

in an aqueous acetic acid solution. The zinc reacts with the organohalide to form an organozinc 

intermediate which rapidly undergoes elimination. The mechanism of this reaction is thought 

to involve a two-electron reduction process on the anomeric carbon, which is followed by the 

elimination of the C-2 acetate group.25 

 

Scheme 11. Preparation of D-galactal 5 thanks to the Fisher-Zach method. 

This widely employed sequence was thus performed starting with the peracetylation of D-

galactose 4 in acetic anhydride with perchloric acid as a catalyst (Scheme 11).26 The use of 

acetic anhydride as the solvent allows keeping the reaction mixture water free. The temperature 

must be controlled to avoid excess heat to be generated due to the exothermic nature of this 

reaction. This reaction had two important justifications. The first one is that an acetate group is 

a better leaving group than a hydroxyl group, which will be helpful for the elimination step. 

Secondly, it makes the substrate more lipophilic and thus more soluble in solvent of low to 

moderate polarity such as CH2Cl2 or EtOAc. As an important consequence, this characteristic 

renders workup with aqueous solutions possible. 

Then, 8 was treated with HBr in acetic acid to obtain 9. No work-up is realized on this sensitive 

intermediate as the treatment of the crude mixture with cold water can partially degrade the 

molecule. Instead, the crude was only concentrated in vacuo with precautions being taken (such 

as a NaOH trap) to avoid the release of corrosive vapors. Finally, molecule 5 was obtained by 

adding zinc dust in suspension to a solution of reagent cooled to -15 °C. Purification by silica 

gel chromatography allowed the obtention of a colorless syrup with 63 % yield over two steps. 
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It has been discussed in the literature25 that the heterogeneous reaction conditions can explain 

the difficulty to reproduce results from other authors for such elimination. The quality of the 

zinc powder can be mentioned as a factor influencing the yield though it is not, in this case, as 

critical as in other organometallic transformations. Solutions exist to diminish the lack of 

reproducibility problems. Those include pre-washing the zinc dust with diluted HCl or using 

platinum and copper salts to promote the reaction at the surface of the zinc particles. There is 

also the possibility of formation of minor side products resulting, for instance, from the 

solvolytic displacement of the anomeric bromide by acetic acid and water. 

In an attempt to increase the yield obtained with the traditional method, reaction conditions 

more recently described in the literature were tested for the reductive elimination step.27 In this 

method, the crude bromide 9 is treated with Zn(s)/NH4Cl(s) in acetonitrile at 60 °C for 1 hour 

(Scheme 12). The ammonium chloride acts as a source of protons similarly to acetic acid in the 

previous conditions. The final yield obtained with this method was only 25 % over two steps. 

As it is much lower than in the first method, it has been decided to use the original conditions 

instead. 

 

Scheme 12. Alternative conditions used for the formation of D-galactal 5. 

III.3 Fluorination with Selectfluor® 

Protected D-galactal 5 being nucleophilic at C-2, an addition of an electrophilic fluorine atom 

on the double bond can then be envisioned. Historically, the first source of electrophilic fluorine 

used on glycals was molecular fluorine F2 which is highly toxic and very difficult to handle.24 

Later on, electrophilic fluorination reagents such as CF3OF, FClO3 and XeF2 were explored and 

tested with glycals but the results were not fully satisfactory. A major breakthrough in the field 

of electrophilic fluorination of glycals arose from the discovery of the exceptional properties of 

Selectfluor® 10 (1-chloromethyl-4-fluorodiazoniabicylo[2,2,2] bis(tetrafluorobotate)) (Scheme 

13). This reagent has the advantages of being mild, safe, and stable besides being an effective 

source of electrophilic fluorine. Indeed, the fluorine atom in this molecule is bound to a 

positively charged nitrogen which renders it highly electrophilic. With glycals, Selectfluor® 
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gives much better results than two other very popular electrophilic fluorination reagents: NFSI 

(N-Fluorobenzenesulfonimide) 11 and N-Fluoropyridinium 12. 

 

Scheme 13. Structure of commercially available selectfluor®, NFSI and N-Fluoropyridinium. 

The electronic distribution of the enol ether function of D-galactal implies that the C-2 is the 

most nucleophilic position which means that the addition of the fluorine will be regioselective. 

As depicted in Scheme 14, the first step of the reaction mechanism is the formation, in a syn 

manner, of a 2-fluoro-1-trisalkylammonium intermediate 14.28 The stereoselectivity of this first 

step is dictated by the steric hindrance of the top face of D-galactal that is mainly due to the 

substituent at the C-4. It means that the fluorine exclusively reacts from the bottom α face. The 

second step is the attack of a nucleophile 15 that substitutes the ammonium on the anomeric 

position. There is a strong debate about the nature of this substitution. It is believed that it is not 

a pure SN2 process. A mechanistic study28 has shown that increasing the bulk size of the 

incoming nucleophile in that kind of reaction does change the α/β ratio in favor of the product 

with the less steric clash. This result suggests a SN1-like process, despite the presence of the 

fluorine atom. 

 

Scheme 14. Mechanism of the fluorination of D-galactal 5 with Selectfluor® 10. 

This reaction is realized at room temperature in a mixture of water and nitromethane (Scheme 

15).29 Nitromethane is chosen as the solvent because it can dissolve the charged Selectfluor salt 

and it remains inert during the reaction. After consumption of the starting material (monitored 

by TLC, usually 5 hours), the reaction is heated to reflux for 1 hour so that all the 2-fluoro-1-

trisalkylammonium 14 intermediate is hydrolyzed. Glycoside 16 is obtained after purification 

by silica-gel chromatography with a 68 % yield. 
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Scheme 15. Fluorination of D-galactal with selectfluor bis-tetrafluoroborate 10. 

It is known in the literature22 that the counterion of Selectfluor® can have an effect on the 

formation of side products and subsequently on the yield. Selectfluor® is commercially 

available as a bis-tetrafluoroborate salt. This counter anion is actually a source of nucleophilic 

fluorine and thus can allow the formation of a 1,2-difluorosaccharide as a side product. Based 

on that hypothesis, the use of a triflate counterion, which is much less nucleophilic and more 

soluble in nitromethane, may increase the yield in the desired product. For example, the 

reported yields for the fluorination of diacetylfucal with benzyl alcohol as the nucleophile 

varied from 26 % to 72 % when Selectfluor bis-triflate 17 was used instead of commercial 

Selectfluor® 10. However, the impact of the counterion effect also depends a lot on the nature 

of the substrate and on the nucleophilic species that adds to the anomeric center. To test if the 

same effect could be observed on D-galactal, Selectfluor bis-triflate 17 has been synthesized 

from commercially available Selectfluor bis-tetrafluoroborate 10 with a 91 % yield (Scheme 

16). 

 

Scheme 16. Synthesis of Selectfluor® bis-triflate from commercially available Selectfluor®. 

Then, the fluorination of D-galactal was performed with that particular salt to see the effect on 

the obtained yield after purification (Scheme 17). Unfortunately, the yield (42 %) was actually 

lower than with the commercial Selectfluor®. It can be explained by the fact that the reactions 

were not performed on the same scale. Indeed, minor losses by experimental errors can have a 

higher impact on the yield with reactions done on small scale. Still, as the yield with standard 

Selectfluor® is satisfactory to fulfill our objectives, it has been decided to carry on the 

fluorination step with commercially available Selectfluor®. 
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Scheme 17. Fluorination of D-galactal with selectfluor bis-triflate 17. 

Once the fluorination step was optimized, the acetyl groups could then be deprotected. For that 

matter, the Zemplén deacetylation procedure has been followed (Scheme 18).30 It consists in 

using a catalytic amount of sodium methoxide in methanol to deprotect quickly all the acetyl 

groups. After complete consumption of the starting material (monitored by TLC, usually 20 

minutes), the final crude mixture is passed through a short column of Dowex 50WX8. This 

resin is an ion-exchange resin with sulfonic acid functional groups that will allow the removal 

of sodium salts from the desired product. Then the solution is concentrated in vacuo to obtain 

6 as a slight yellowish syrup (99 % yield) that eventually solidifies into a white solid after a day 

at rest. 

 

Scheme 18. Deprotection of the acetyl functions with MeONa to obtain 2-deoxy-2-fluoro-D-galactopyranose. 

III.4 Conversion from pyranose to furanose 

The predominant isomer of D-galactose at 30 °C is its pyranoside form (94 %) and its furanoside 

form accounts only for 6 %.23 In general, pyranosides are thermodynamically favored over their 

furanoside counterparts. This is mainly due to the minimization of the steric interactions 

between the hydroxyl groups in six-membered ring.31 As the desired form of the target molecule 

is the furanoside, molecule 6 needs to be converted with the highest possible yield to the 5-

membered ring. A few approaches (Scheme 19) to achieve this objective exist such as the one-

step anomeric O-alkylation of galactose32, per-O-benzoylation of galactose in hot pyridine33 or 

the one-step tert-butyldimethylsilylation of galactose in DMF.34  
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Scheme 19. Described reactions of galactose conversion to its furanose form found in the literature. 

However, one technique related to 2-deoxy-2-fluoro-D-galactose 6 is described in the literature: 

it consists in the per-O-acetylation in pyridine at reflux by Q. Zhang and H.-W. Liu to get 7 

with a 28 % yield (Scheme 20).35 We thus decided to assess first whether this reaction was 

reproducible in our hands. In this reaction, the totally unprotected carbohydrate 6 is first heated 

at 110 °C for 2 hours in pyridine and acetic anhydride is then added dropwise to the solution 

which is left for 90 minutes under stirring. After cooling down to room temperature, a mixture 

of both pyranoside and furanoside products is obtained and the separation can be performed by 

silica-gel column chromatography. In practice, the final yield of furanoside product obtained is 

25 %. 

 

Scheme 20. Pyranoside into furanoside conversion of molecule 6. 

There are two possible hypotheses that can explain this conversion (Scheme 21). The first one 

is based on thermodynamics and would suppose that the equilibrium constant of the 

furanoside/pyranoside interconversion (Kp-f) is more favorable at 110 °C than at room 

temperature. Once this equilibrium is established at high temperature, it is frozen by the 

acetylation of the anomeric lactol with acetic anhydride. This protection will prevent the 

furanoside ring to re-open and to re-cyclize into the 6-membered ring when the glycoside cools 

back to room temperature. 
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The second explanation is based on kinetics and would imply that the anomeric acetylation rate 

constant of the furanoside (kf) is faster than the one of the pyranoside (kp) at higher temperature. 

It means that, based on the Curtin-Hammett principle, the product that forms the fastest will be 

the most present in the reaction mixture. 

 

Scheme 21. General scheme of formation of fluorogalactosides 7 and 22. 

As the obtained yield with those conditions is quite low, a set of reaction times has been tested 

to evaluate their impacts on the conversion to furanoside product 7 (Table 1). The percentages 

of α,β-furanoside and α,β-pyranoside in the crude have been determined by 19F NMR. As each 

molecule possesses only one fluorine atom, the integration of each peak indicates the proportion 

of each molecule relative to the others. To identify which peaks correspond to the pyranosides 

(α and β), a reference has been synthesized from molecule 16 (Scheme 22). In this experiment, 

a furanoside cannot be formed as the hydroxyl group at C-4 is already protected in 16. 

 

Scheme 22. Acetylation reaction of molecule 16 to obtain a NMR reference. 

The results gathered in Table 1 suggest that the equilibrium between the pyranoside and the 

furanoside is achieved within 1 hour and does not lead to any change within a 4-hours time 

scale. The conversion is total in all cases. 

Equilibration time α/β-furanoses (%) α/β-pyranoses (%) Unknown molecules (%) 

1 h 23.0 58.2 18.9 

2 h 24.7 57.5 17.8 

4 h 23.0 59.3 17.7 

Table 1. Calculated NMR yields for different equilibration times in hot pyridine of the pyranoside to furanoside 

conversion. Reaction conditions: 1) Pyridine (reflux), 6 (0.38 mmol.L-1), equilibration time 2) Dropwise addition 

of Ac2O (16.7 eq.), pyridine (reflux), 1h30 3) Addition of DMAP, 0.5 eq, 1h (r.t.). 
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To investigate the effect of the acylating agent on latter transformations, the same reaction was 

performed with benzoyl chloride instead of acetic anhydride (Scheme 23).33 NMR of the crude 

showed indeed the formation of the furanoside product with approximately the same proportion 

of furanoside to pyranoside products than with acetyl protecting groups. However, it was 

impossible to separate these two molecules by silica gel chromatography. As shown in the next 

section, this pyranoside/furanoside mixture was still used for further reactions since it allowed 

us to compare the effect of the protecting esters on the reactivity and thus the stability of these 

glycosides. 

 

Scheme 23. Benzoylation reaction of molecule 6 at 110 °C in pyridine. 

III.5 Glycosylation reaction of a nitrophenol derivative 

The last major structure modification that has to be done to obtain the target molecule is to 

couple glycoside 7 with a good leaving such as 4-nitrophenol or 2,4-dinitrophenol. Two distinct 

approaches have been explored and are described in the following sections. 

III.5.1 Direct substitution of the anomeric group. 

The method consists in a direct substitution of the anomeric acetate by a nucleophile under 

Lewis acid activation (Scheme 24). The chosen nucleophile is 4-nitrophenol as it has a good 

leaving group characteristic and its deprotonated form (4-nitrophenolate) has the particular 

characteristic of absorbing light in the visible spectrum. This feature facilitates enzymatic 

assays with GHs by using a simple UV-visible spectrometer and measuring the absorbance at 

410 nm.36  

The first reaction tested is the SnCl4 catalyzed substitution of the anomeric acetate by 4-

nitrophenol. This reaction was selected because it is described in the literature for the non-

fluorinated D-galactofuranose.37 It consists in first adding the Lewis acid in a solution of the 

glycoside to activate it and in a second time, adding the nucleophile to allow the substitution. 

This reaction is realized at room temperature for 3 hours, followed by an aqueous work-up and 

a final purification by column chromatography. Many trials of this reaction have been 
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performed by modifying some parameters such as the number of equivalents of reagents or the 

nature of the protecting group on the glycoside (Table 2). Unfortunately, none of them have 

allowed the formation of the target molecule 25. 

 

Scheme 24. Lewis acid catalyzed substitution of the anomeric acetate group by 4-nitrophenol. 

Entry Protecting groups Eq. SnCl4 Eq. 4-nitrophenol Conversion (%) Yield (%) 

1 Acetyl 1.4 1.2 54 0 

2 Acetyl 2.8 2.2 39 0 

3 Benzoyl 1.4 + 0.5 1.2 37 0 
Table 2. Conversions observed for the SnCl4 catalyzed coupling reaction with 4-nitrophenol (Scheme 24). The 

conversions have been evaluated by 19F NMR. 

In every case, the 19F NMR spectrum of the crude shows partial consumption of the starting 

material (α and β furanosides) and apparition of one major product. The isolation of this product 

was possible by column chromatography and it was postulated first that it was the lactol by-

product 26 that would be obtained by hydrolysis of the desired molecule during the aqueous 

work-up (Scheme 25). This hypothesis was supported by the fact that the 1H NMR spectrum of 

that by-product was clearly (Figure 9) showing seven protons and three acetyl groups. 

 

Scheme 25. Hypothesized formation of the lactol by-product 26 after aqueous work up of glycoside 25. 
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Figure 9. 1H NMR spectrum of molecule 27 (main product of the SnCl4 coupling reaction). 

However, there were some oddities about this assumption: 

1) The supposed “lactol” was eluting at a higher Rf than the starting material although it is 

supposed to be more polar. 

2) Only one anomer of the lactol could be observed by NMR. It seems quite unusual as there 

is an equilibrium between α and β lactols which should allow for the formation of both of 

them even if one is minor. 

3) The NMR spectra of the reaction mixture before and after aqueous work-up are the same. 

Yet, the reaction is water-free before work-up. It thus raises the question of how the lactol 

could have been formed without water? 

Based on those facts, another hypothesis was formulated and was later confirmed by high 

resolution mass spectroscopy. The by-product was actually the anomeric chloride 27 formed by 

reaction of the glycoside 7 with SnCl4 (Scheme 26).  

 

Scheme 26. Confirmed by-product structure obtained by the coupling reaction with SnCl4. 

This molecule is indeed less polar and its formation can be explained even without the presence 

of water. The apparition of molecule 27 can be rationalized by the destabilization of the 

oxycarbenium intermediate because of the fluorine atom at C-2. With the non-fluorinated D-
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galactofuranose, the formation of the target molecule 31 is realized by anchimeric assistance of 

the nearest acetyl group at C-2 (Scheme 27).38 This explains how 4-nitrophenol has the ability 

to bind to the anomeric position even if it is a poor nucleophile. This mechanism cannot be 

applied to the fluorinated D-galactofuranose as there is not a C-2 acetyl group. Furthermore, the 

putative oxycarbenium intermediate is highly destabilized by the fluorine. As the chloride is 

the best nucleophile in the reaction mixture and the anomeric acetyl group can still be activated 

by SnCl4, there is a direct substitution of the acetate group by the chloride. Then the 

intermediate 27 prevents the reaction from going further because 4-nitrophenol is not 

nucleophilic enough to substitute the chloride directly under those conditions. 

 

Scheme 27. Mechanism of SnCl4 catalyzed coupling reaction with 4-nitrophenol with fluorinated and non-

fluorinated D-galactofuranose. 

Another way of activating the anomeric position needed to be envisioned. Q. Zhang and H.-W. 

Liu35 were the first one working on molecule 7 and their objective was to couple it with a uridine 

diphosphate group so that they could conduct mechanistic studies on the UDP-Galactopyranose 

Mutase enzyme from Mtb. In their synthesis, they substituted the anomeric acetate group of 7 

by a phosphate group using TMSBr and Et3N. This method has been tried for our purposes with 

the only modification being that the nucleophilic species is 4-nitrophenol instead of a phosphate 

molecule (Scheme 28). Unfortunately, the reaction was not successful as the conversion was 

really low (6 %) according to the 19F NMR spectrum.  

 

Scheme 28. Synthetic scheme of 25 through the intermediate bromide 33. 
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As a direct substitution did not seem to work well, it has been decided to explore a different 

synthetic route. 

III.5.2 Selective anomeric deprotection and SNAr 

An important class of reactions in aromatic chemistry is the nucleophilic aromatic substitution 

(SNAr). This kind of reaction relies on the displacement of a leaving group bound on an aromatic 

ring by a nucleophile. For this reaction to happen, the aromatic ring has to bear an electron-

withdrawing group ortho or para to the position of the leaving group.  

For our purpose, the SNAr reaction can be used to couple 4-nitrophenol with the glycoside as 

the presence of a nitro function on the structure of the leaving group fulfills one of the conditions 

required for a successful SNAr reaction. It is even conceivable to install a 2,4-dinitrophenol 

derivative on the glycoside as this molecule is more activated towards SNAr thanks to the 

presence of two electron withdrawing groups. Moreover, dinitrophenol (pKa = 4.07)39 is even 

a better leaving group than 4-nitrophenol (pKa = 7.15)39 which is a strong advantage in view of 

the use of this molecule as a reactive inhibitor of a glycosidase. Indeed, the better is the leaving 

group on the anomeric center, the easier is the first step of the enzymatic mechanism and thus 

the formation of the covalent enzyme-substrate complex. 

The idea would be to first selectively deprotect the anomeric acetyl function of molecule 7 to 

form a lactol and in a second time, perform a reaction between the free hydroxyl group and 1-

fluoro-2,4-dinitrobenzene. Those reactions will be described in the following sections. 

III.5.2.1 Selective anomeric deprotection 

In carbohydrate chemistry, the selective deprotection of anomeric acetates is classically 

performed thanks to hydrazine acetate. This reaction has even been described in the literature 

on the penta-O-acetyl-D-galactofuranose in DMF.40 The selective deprotection of the anomeric 

ester in presence of several primary and secondary acetate has been ascribed to the better 

leaving group ability of a lactol over alcohols. 

However, the use of hydrazine as a reagent has some drawbacks as it has a bad shelf stability 

and toxicity. In addition, DMF is a hazardous solvent which may complicate workup due to its 

polarity and high boiling point. Recently, a novel method of selective anomeric acetyl 

deprotection has been developed. It consists in using 3-(dimethylamino)-1-propylamine 

(DMAPA) and THF as the solvent (Scheme 29).41 DMAPA 34 features a primary amine that 
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can act as a nucleophile for the deprotection of the acetyl function and a tertiary amine acting 

as a base. This allows an easy elimination of the amide formed after deacetylation by a simple 

acidic work-up which can dramatically facilitate silica gel chromatography. 

 

Scheme 29. Structure of 3-(dimethylamino)-1-propylamine (DMAPA). 

These two different conditions (hydrazine and DMAPA) have been tested for this purpose and 

the results are summarized in Table 3. 

Entry 
Deprotecting 

agent 
Eq. 

Reaction 

time 

Conversion 

(%) 

Products composition 

(%) 

  

1 DMAPA 5 2 h 88 0 100 

2 DMAPA 1.15 4 h 52 57 33 

3 Hydrazine acetate 1.2 2 h 43 62 27 

Table 3. Conversion and distribution of products from reaction crude of the anomeric deprotection (Scheme 30). 

Percentages were calculated from the 19F NMR. 

We first used the conditions including DMAPA described by Andersen et al. (Table 3, entry 

1).41 The conversion was quite high but the main product was found to be the pyranoside lactol 

16 (Scheme 30). This result was quite unexpected because it meant that not only the anomeric 

position had been deprotected but also the acetyl at C-5. Moreover, the 1H NMR of the crude 

showed that the pyranoside lactol 16 had its C-4 re-acetylated. These transformations are 

difficult to rationalize as the amide 35 formed with DMAPA by the anomeric deprotection is a 

poor acylating agent. To prevent the formation of pyranoside 16, we modified the original 

method by reducing the number of equivalents of DMAPA to 1.15 (entry 2). It indeed allowed 

the formation of the lactol furanoside but also of a non-negligible amount of pyranoside at the 

same time.  

 

Scheme 30. Selective anomeric deprotection of furanoside 7 with DMAPA 34. 
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A reasonable way to explain the formation of molecule 16 would be an intramolecular transfer 

of an acetyl group from C-5 to C-4 (Scheme 31). In that case, the pyranoside lactol acts as a 

thermodynamic sink and shifts the equilibria towards its formation.  

 

Scheme 31. Possible mechanism of the conversion of furanoside into pyranoside through a C-5 acetyl migration. 

The final attempt of direct selective anomeric deprotection was made using hydrazine acetate 

(Scheme 32). But as shown in the entry 3 of Table 3, the conversion was low and there was still 

formation of the pyranoside lactol 16. All those trials show that deprotecting selectively the 

anomeric acetyl group requires finding a compromise between conversion and 

furanose/pyranose ratio. Instead of optimizing further this nucleophilic regioselective 

deacetylation reaction, we decided to explore a different pathway. 

 

Scheme 32. Selective anomeric deprotection of furanoside 7 with hydrazine. 

In reference to the synthesis of D-galactal in section III.2, it was discovered that the 1-bromo 

intermediate 9 was relatively unstable and could be hydrolyzed in the presence of water. This 

gave us the idea to follow such a sequence. Indeed, if it is possible to substitute the anomeric 

acetate group by a bromide, then this reactive intermediate could be transformed into lactol 26 

(Scheme 33). The bromination reaction is usually performed under strongly acidic conditions 

which would be different from the problematic basic conditions described above.  

The bromination was performed with a large excess of HBr in DCM (Scheme 33). After 12 

hours at room temperature, the conversion was total and the only major product observed by 

NMR was the expected β-1-bromo glycoside 33. Since bromide 33 was unreactive in wet 

toluene, we turned our attention to different hydrolytic conditions. An aqueous work-up with 

saturated NaHCO3 of a solution of molecule 33 in DCM was performed but no reaction was 

observed either. In fact, by destabilizing the oxycarbenium intermediate, the fluorine atom at 

C-2 greatly stabilizes bromide 33.  
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Scheme 33. Synthetic route used to obtain the furanoside lactol 26. 

Conditions were found eventually in the literature for hydrolyzing tri-O-acetyl-2-deoxy-2-

fluoro-α-D-mannopyrannose.42 Those conditions include the use of silver carbonate in a 

solution of Acetone/Water. The silver cation plays an important role as it forms an insoluble 

salt with bromide which prevents it from rebinding to the glycoside. The carbonate is a mild 

base allowing some hydroxide ions to be generated in the mixture and those will react with the 

oxycarbenium anomeric center. After purification by column chromatography, molecule 26 

was obtained with a 64 % yield over two steps. The ratio of α to β is 1:9 as determined by 19F 

NMR. However, this ratio should not be considered as definitive for the further SNAr reaction 

as the equilibrium between the two anomers can lead to different distribution of 

diastereoisomers. 

III.5.2.2 Nucleophilic aromatic substitution on the lactol 

Once the lactol 26 is obtained, it was possible to envision a reaction between the free hydroxyl 

group and an aromatic derivative in a nucleophilic aromatic substitution fashion. This reaction 

is performed with 1-fluoro-2,4-dinitrobenzene (FDNB) and 1,4-diazabicyclo[2.2.2]octane 

(DABCO) which acts as a base. This reaction has been initially described in DMF for 1.5 hours 

at room temperature with other lactols.43 However, the same reaction has also been described 

in acetonitrile which is a huge advantage considering the lower boiling point of this solvent. 

This allows then an easier elimination of the solvent at the end of the reaction.44 

This reaction is most often described as a two-step mechanism45 in which the first step consists 

in the nucleophilic attack of the oxygen from the hydroxyl group to the C-1 of FDNB (Scheme 

34). In the second step, there is elimination of the fluorine atom and recovering of the 

aromaticity of the benzene ring. The by-product of the reaction is a salt of protonated DABCO 

and fluoride. Recent results in the literature suggested that such a reaction could follow a 

concerted mechanism.46 
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Scheme 34. Possible mechanism of a SNAr applied for the coupling of 2,4-dinitrophenol with glycoside 26. 

This reaction has been performed at room temperature for 2.5 hours (Scheme 35). After 

purification, glycoside 41 was obtained with a combined 57 % yield and an α/β ratio of isolated 

anomers of 2:3. The separation of each diastereoisomer by silica gel chromatography was 

facilitated by the large difference in polarity between both molecules. Indeed, with an eluent 

made of EtOAc and cyclohexane in a 1:1 ratio, the α anomer has a Rf of 0.30 while the β anomer 

has a Rf of 0.72. 

 

Scheme 35. Reaction scheme of the SNAr reaction with lactol 26 and FDNB. 

Once those two molecules were isolated, it was necessary to demonstrate the α/β absolute 

configurations of the two anomers. First assumptions could be made based on the NMR 

coupling constants. Indeed, it is well known that based on the 3D conformations for 

pyranosides, the 1H-1H coupling constants can differ between trans-diaxial protons and axial-

equatorial protons.47 Equatorial-axial coupling constants are usually found between 1 Hz and 4 

Hz while equatorial to equatorial coupling constants range between 0 Hz to 2 Hz. If we consider 

that furanoside molecules are mainly present in an envelope conformation, the measured 

coupling constants between H-1 and H-2 might possibly be characteristic of the anomeric 

configuration (Scheme 36).31 In the β anomer there is a pseudo-equatorial to pseudo-equatorial 

relationship between H-1 and H-2 which correlates with the 0 Hz observed coupling constant 

while in the α anomer, this relation is pseudo-axial to pseudo-equatorial and the measured 

coupling constant equals 4.3 Hz. The same kind of relationship between dihedral angles has 

also been observed with the coupling constants between H-1 and the fluorine. This coupling 

constant equals 9.4 Hz in the β anomer where the fluorine is in pseudo-axial position while it is 

0 Hz for the α anomer where the fluorine is in pseudo-equatorial position. 
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Scheme 36. Preferred envelope conformations of both diastereoisomers according to literature.31 The measured 

coupling constants between H-1, H-2,H-3 and F are represented in the scheme. 

Noteworthy, similar coupling constants are observed with comparable furanosides described in 

the literature. In that respect, the described H1-H2 and H1-F coupling constants of both isolated 

anomers of glycoside 7 by Q. Zhang and H.-W. Liu35 are nearly identical to our synthesized 

anomeric equivalent 41α and 41β.  

However, the apparent conformation of a furanoside is mainly an average of many 

conformations arising from envelope and twist interconversions and general coupling constants 

rules for pyranosides may not apply for furanosides.48 We thus need a complementary technique 

to confirm the anomeric configuration of each molecule. The preferred characterization 

technique for this purpose is the nuclear Overhauser effect (NOE) observed in NMR. The 

principle of this technique is to detect interactions between protons through space and not 

through chemical bonds as for the coupling constants. By irradiating a specific nucleus (here 

the anomeric H-1 proton), it is possible to evidence the protons that are in close proximity.  

In the NOE spectrum of the first analyzed anomer illustrated in Figure 10, a strong interaction 

with the H-2 proton and with an aromatic proton from the 2,4-dinitrophenyl group are observed. 

The same interactions are also observed in the NOE spectrum of the other anomer in Figure 11 

and thus they cannot help us determine the anomeric configuration. However, a small 

interaction between H-1 with a proton located at 4.29 ppm can also be seen. This NMR shift 

corresponds to H-4 and according to the structure, it strongly suggests an α configuration as 

those two protons are both on the same face of the ring.  

Concerning the NOE spectrum of the second anomer illustrated in Figure 11, no interaction can 

be seen between H-1 and any other proton with the exception of H-2 and an aromatic proton. 

The lack of interaction with H-4 allows us to confirm that this anomer has the opposite 

configuration of the first analyzed molecule and that it is indeed the β anomer. 
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Figure 10. 1H NOE NMR spectrum of 41α. The irradiated proton is H-1 and a small interaction with H-4 proton 

can be seen. 

 

Figure 11. 1H NOE NMR spectrum of 41β. The irradiated proton is H-1 and apart interactions with H-2, no other 

interactions can be observed. 
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Based on the analyses of 1H-1H, 1H-19F coupling constants and NOE spectra, we could thus 

assign the absolute configuration of both anomers of 41.  

III.6 Final deprotection 

The last step of the synthesis is a mild deprotection of the last three acetyl functions. To perform 

this reaction, two different methods were tested. The first method is the so-called Zemplén 

deacetylation (Na in CH3OH or CH3ONa in CH3OH) as used for the deprotection of glycoside 

16. Those conditions are described in the literature for the deprotection of the non-fluorinated 

D-galactofuranose coupled with 4-nitrophenol.37 A different technique consists in using acetyl 

chloride in MeOH. This reaction is described in the literature for the deprotection of non-

fluorinated glycosides coupled with 2,4-dinitrophenol.49 The results obtained with those two 

different techniques can be found in Table 4. 

Entry Reagent Equivalent Conditions 

Crude compositiona (%) Isolated 

yield 

(%) 
Target 

molecule 

Degradation 

products 

Starting 

Material 

1 MeONa 0.65 30 min. 0 °C 40 60 0 23 

2 MeONa 0.1 → 0.4 90 min. 0 °C 24 62 14 / 

3 AcCl 47.6 

8 hours 0 °C 

and overnight 

at 4 °C 

100 0 0 62 

Table 4. Deacetylation of glycoside 41β. a) Assessed by 19F-NMR. 

The first attempt at deprotecting the acetyl groups of glycoside 41β was performed with catalytic 

amount of sodium methoxide in methanol (Table 4, entry 1). However, these conditions were 

found to be too harsh for the substrate as the reaction led to some degradation. The main 

degradation products being 2,4-dinitrophenolate and 1-O-methoxy-2-fluoro-D-galactopyanose 

(not isolated). Even if the amount of catalytic MeONa was reduced (entry 2), the degradation 

was still observed and the conversion was even worse. 

The second technique uses acetyl chloride in methanol (entry 3). This reaction might seem 

unusual as acetyl chloride is more commonly used to actually esterify alcohols but it can have 

a different role if it is used in methanol. Indeed, methanol will react with AcCl to form MeOAc 

and by doing so, it will slowly generate HCl in situ. This last molecule will catalyze the 

transesterification of the acetyl groups to methanol which is in large excess. At the end, the 
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totally deprotected glycoside 1 will be obtained. This reaction was performed for 8 hours at 0 

°C and then overnight at 4 °C (Scheme 37). The conversion was total and the obtained yield 

after column chromatography is 70 % for 1β and 11 % for the 1α. The difference in yield might 

be due to different stability of the two diastereoisomers. 

 

Scheme 37. Deprotection of all acetyl groups on glycoside 41a and 41β with AcCl in MeOH. 

The target molecule being obtained in both anomeric configuration, precise amounts were 

weighed and were sent to the University of Lille. The team working on the novel glycosidase 

will be able to pursue their biochemical investigations on the enzyme. Finally, α-D-

galactofuranoside 1α, with the “wrong” anomeric position (the targeted enzyme is a β-

glycosidase) will be used by the enzymologists as a control molecule. 
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IV. Conclusion 
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The objective of this master thesis was to find a working synthetic pathway to a mechanistic 

probe of a novel glycosidase from Mycobacterium tuberculosis. This probe would allow a better 

understanding of the novel enzyme at the molecular level. The structure of the probe 1β (Scheme 

38) has been designed according to the supposed retention of the anomeric configuration 

mechanism that is shared among many glycosidases. It is based on the structure of its natural 

substrate (D-galactan) but with two major modifications:  

1) A fluorine atom at C-2 instead of the hydroxyl group 

2) A good leaving group on the anomeric position 

 

Scheme 38. Structure of the mechanistic probe. 

As this molecule was not described in the literature, it was necessary to look for a viable 

synthetic route (Scheme 39). 

 

Scheme 39. Synthetic route towards the synthesis of the molecular probe 1β with the yield of each major step. 

The first synthesized molecule was D-galactal 5 which was obtained with no major issues. The 

only problem encountered for this synthesis was the low stability of the galactosyl bromide 

intermediate which simply implied to avoid an aqueous work-up. More recent conditions 

reporting a better yield were tested but they were less effective in our hands. Thus it has been 

concluded that the standard Fisher-Zach method was the best to follow. 

Fluorination was performed with Selecfluor® to obtain 2-deoxy-2-fluoro-D-galactopyranose 6 

with a moderate yield. Two different selectfluor salt were tested to see the impact of the 
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counterion on the reaction. The best yields were obtained with the commercial Selectfluor® salt 

(tetrafluoroborate counterion) while the modified salt (triflate counterion) gave a lower yield. 

The full deprotection of the acetyl function has been performed thanks to the Zemplén 

conditions with a very good yield. 

Conversion from the pyranoside 6 to the furanoside 7 has been performed following conditions 

inspired by the seminal work of Q. Zhang and H.-W. Liu.35 This reaction has been found to be 

reproducible with yields similar to the one reported in their article. As those yields were low, 

different reaction times were tested but unfortunately, they gave the same 

pyranoside/furanoside ratio. 

The anomeric coupling of the fluorinated furanoside with a dinitrophenyl group was tested with 

two different approaches. The first one, based upon the direct Lewis acid catalyzed substitution 

of the anomeric acetate group by 4-nitrophenol, did not afford the desired glycoside under 

various reaction conditions. The second approach, based on a SNAr reaction, required first the 

selective deprotection of the anomeric acetyl function. The usual conditions based on the use 

of nucleophilic amines such as DMAPA or hydrazine acetate did not work because they led to 

the formation of the pyranoside lactol. Instead, it was necessary to realize first an anomeric 

bromination followed by hydrolysis under basic conditions to obtain the furanoside lactol 

successfully with moderate yield. The SNAr has been performed on this lactol with 1-fluoro-

2,4-dinitrobenzene to obtain a mixture of α/β coupling products which were easily separated by 

chromatography. The final reaction was a mild deprotection of the acetyl functions. Sodium 

methoxide in catalytic amounts was found to be too harsh and lead to degradation while acetyl 

chloride in methanol allowed a mild deprotection with good yield for the desired anomer 1β. 

The objective of this master thesis is then fulfilled. Indeed, a synthetic route to the desired 

molecular probe has been found. Now that the target molecule has been synthesized, a 

biochemical investigation is ongoing within the laboratory of Dr. Guérardel (Université de 

Lille). The inhibition and inactivation properties of probe 1β will be first assessed. In parallel, 

controlled co-crystallization experiments with the target galactofuranosidase and furanoside 1β 

are under progress to obtain a 3D structure of the enzyme in complex with 1β. 
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V. Outlooks 
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V.1 Planned enzymatic studies 

As explained in the introduction, the synthesized molecular probe 1 should act as an inativator 

(Scheme 40). By binding to the catalytic site (Ki), the enzyme will catalyze the hydrolysis of 

the probe (kinact.) which should release 2,4-dinitrophenol. It will allow the formation of a stable 

enzyme-probe complex that will not be able to process the next reaction which is the release of 

the free enzyme (krelease). According to this model, the intermediate E-I should accumulate as 

krelease is much slower than kinact.. As a result, inactivation of the enzyme should be observed in 

a time-dependent manner if the inactivation step is slow enough to fit in the timescale of an 

enzymatic assay.50 

 

Scheme 40. Reaction scheme of the target glycosidase (E) with the molecular probe (I-DNP). KI is the non-covalent 

binding rate constant between the probe and the enzyme, kinact. is the reaction rate of the first inversion step and 

krelease is the reaction rate of the third inversion step. 

The kinetic study of the enzyme in the presence of the probe has to be based on the evaluation 

of a time-dependent inhibition. The usual test consists in incubating the enzyme with the 

potential inactivator for different time periods and then evaluating the residual activity of the 

enzyme with a non-fluorinated substrate such as 2,4-dinitrophenyl-D-galactofuranose. A 

decrease in residual activity over time of incubation with the inhibitor should be observed. 

According to the reaction scheme presented in Scheme 40, the inactivation rate should follow 

simple pseudo first-order kinetics.51 The plot of the residual activity against the time of 

incubation should fit a single exponential from which can be obtained a first-order rate constant. 

To obtain Ki and kinact., the same experiment has to be done at different concentrations of the 

inhibitor to draw a plot of the reciprocal first-rate constant versus the reciprocal inhibitor 

concentration. This plot should give a straight line from which Ki and kinact. can be extracted. 

It is important to mention that for this test to be successful, it is necessary to screen the 

conditions of inhibition (concentration of enzymes, of inhibitors, T°,…) as the time necessary 

to completely suppress the activity of the enzyme depends a lot on both the nature of the 

inactivator and the enzyme.52  
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V.2 Synthesis of di-fluorinated D-galactofuranose 

An interesting outlook would be the synthesis of a di-fluorinated molecular probe. The 

introduction of a second fluorine atom at C-2 can enhance or alter dramatically the activity in 

biological processes.53 Our laboratory is especially interested in this question because we 

observed, on another enzyme of TB’s cell wall biosynthesis, a dramatic effect on the inhibition 

or behavior of a monofluorinated substrate analogue compared to a polyfluorinated one.54,55  

The synthesis of the difluorinated-D-galactopyranose is described in the literature. It is a three-

step synthesis starting from tri-O-acetyl-D-galactal 5. First 5 is fluorinated with Selectfluor® in 

presence of MgBr2 (a source of bromide). Then the obtained molecule 42 undergoes elimination 

with Et3N to form a fluorinated galactal 43. Finally, this last intermediate reacts once again with 

Selectfluor® to add the second fluorine atom and form molecule 44. Those reactions have 

already been done in the laboratory and the obtained yield for each step after purification is 

given in Scheme 41. 

 

Scheme 41. Synthetic pathway to difluorinated galactopyranose 44. 

It would be interesting to investigate if the equilibrium between pyranoside and furanoside can 

also be shifted at high temperature. And if it is the case, it would be interesting to know if a 

simple column chromatography would allow a separation between pyranoside and furanoside 

products. To do so, glycoside 44 needs however to be first fully deprotected. A first attempt of 

deprotection has been done under the Zemplén conditions previously used. Unfortunately, the 

results of this reaction was not satisfactory as the reaction was not complete. It would probably 

need more investigation to find suitable conditions in terms of reaction time and purification 

technique. 
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VI. Experimental part
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VI.1 Generalities 

The molecular weights of the different molecules have been calculated with the software 

ChemDraw® 17.1. 

The NMR spectra used for the characterization of the synthesized molecules were recorded 

either on a JEOL JNM EX-400 (at 400 MHz for 1H, 100 MHz for 13C and 377 MHz for 19F) or 

on a JEOL KNM EX-500 (at 500 MHz for 1H, 126 MHz for 13C and 471 MHz for 19F). All the 

spectra were realized in CDCl3, CD3OD or D2O. The chemical shifts (δ) are quoted in parts per 

million (ppm) and are calibrated with the solvent residual peak (CDCl3: 
1H 7.26 ppm, 13C 77.0 

ppm, CD3OD: 1H 3.31 ppm, 13C 49.0 ppm, D2O: 1H 4.79 ppm). The chemical shifts of 19F NMR 

spectra are uncorrected. 

Each 1H NMR spectrum is described in the following manner: chemical shift (ppm), 

multiplicity, coupling constants (Hz), integration. 

The 13C spectra are 1H decoupled. The chemical shift is reported with the eventual coupling 

constants with the 19F nucleus. 

The multiplicity is reported in the following manner: s = singlet, d = doublet, t = triplet, m = 

multiplet. 

All the 1-D spectra are analyzed thanks to MestReNova® 12 and all the 2-D spectra (COSY 

(1H, 1H), HMQC (13C, 1H)) are analyzed thanks to Delta® 5.2.1. 

The carbon (and corresponding hydrogen) numbering follows the classical numbering of 

carbohydrates with the position 1 being the anomeric carbon. For the aryl substituents at the 

anomeric position, the quaternary aromatic carbon attached to the oxygen is assigned ipso. The 

other carbons are assigned ortho, meta and para respectively (Scheme 42). In the assignation 

of each nucleus, an “A” corresponds to the α anomer while a “B” corresponds to the β anomer 

of the same molecule. 

 

Scheme 42. Carbohydrate numbering. 
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The HRMS spectra were performed on a Bruker MaXis mass spectrometer Q-TOF by the 

“Fédération de recherche” ICOA/CBM (FR2708) platform of Orléans in France. The analytes 

were dissolved in a suitable solvent at a concentration of 1 mg/mL and diluted 500 times in 

methanol. The diluted solution (1 µL) were delivered to the ESI source by a Dionex Ultimate 

3000 RSLC chain used in FIA (Flow Injection Analysis) mode at a flow rate of 200 µL/min. 

with a mixture of CH3CN + 0.1 % of HCO2H (65/35) for positive mode and without formic 

acid for negative mode. The injection volume is 0.2 µL. ESI conditions were as follows: 

capillary voltage was set at 4.5 kV; dry nitrogen was used as a nebulizing gas at 0.6 bars and as 

a drying gas at 200 °C at a rate of 7.0 mL/min. The ESI-MS was recorded at 1 Hz in the range 

of 50-3000 m/z. The calibration was performed with ESI-TOF tuning mix from Agilent and 

corrected using lock at m/z 299.294457 (methyl stearate) and 1221.990638 (HP-1221).The data 

were processed using Bruker DataAnalysis 4.1 software. 

The infrared spectra were acquired on a Perkin-Elmer Spectrum II FT-IR System UATR on 

neat compounds mounted with a diamond crystal. The selected absorption bands are reported 

by wavenumber (cm-1). The spectra were measured between wavenumbers of 4000-450 cm-1. 

The TLCs were performed with aluminum-baked 0.2 mm thick Merck Silica gel 60F254 plates. 

The compounds were detected by one of the following methods: 

- Fluorescence quenching detection at 254 nm. 

- Dipping into a 5 % phosphomolybdic acid solution in ethanol and subsequent heating. 

- Dipping into a solution of ceric (IV) ammonium nitrate (10 g/L), ammonium molybdate 

tetrahydrate (50 g/L) in 50 mL of concentrated sulfuric acid and 450 mL of water. 

Heating is subsequently applied. 

Retention factors (Rf) are indicated with the corresponding eluent used. 

The flash chromatographies were performed on silica gel using Davisil® (particle size 40-63 

µm, 60 Å) in usual conditions (± 30 g of silica for 1 g of crude). The solvents were at least of 

technical grade and distilled prior to use. The indicated mixture ratios are given as volumic 

percentages. 

The reagents and chemicals were obtained from Merck, Fischer, ABCR, Carbosynth and were 

used without purification if not stated. The reactions were performed using purified and dried 

solvents if necessary. Dichloromethane and toluene were dried through a MBraun SPS system. 

CH3CN, Pyridine, Et3N were distilled from CaH2 and stored over 4 Å molecular sieves. DMF, 
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CH3NO2 and MeOH were bought anhydrous and stored over 4 Å molecular sieves. Deionized 

water was used for reaction work-up. Dowex® 50WX8 was rinsed with aqueous 1M HCl and 

then rinsed with H2O until neutral pH. 

All reactions were carried out under an argon atmosphere in a round bottom flask closed by a 

septum and a rubber balloon filled up with argon, and stirred with a Teflon stirring rod. 

VI.2 Synthesis and protocols 

VI.2.1 tri-O-acetyl-D-galactal 

 

In a dried flask, D-galactose (0,17 g, 0.94 mmol) was suspended in acetic anhydride (100 mL, 

1064 mmol, 7.6 eq.) under argon atmosphere. The suspension was cooled to 0 °C and then 

perchloric acid (0.6 mL, 6.9 mmol, 0.05 eq.) was added dropwise under stirring. Then, D-

galactose was added by portion of 5 g every 15 minutes (25 g total, 140 mmol, 1 eq.). The 

reaction was left to warm to room temperature and was monitored by TLC. After 2 hours, the 

reaction was finished and the crude had turned orange. Bromhydric acid (110 mL, 33 % in 

AcOH, 637 mmol, 4.6 eq.) was added dropwise to the solution and stirring was kept going on. 

After 1 hour, the reaction was complete (monitored by TLC). To avoid degradation of the 

product, no work-up was done and the crude was concentrated in vacuo to obtain a thick 

brownish syrup (a sodium hydroxide trap was set up to protect the pump and the laboratory 

from corrosive vapors). 

The previous brownish syrup was added to a suspension of zinc powder (63.17 g, 966 mmol, 

6,9 eq., Mesh 12) in AcOH/H2O (50 % v/v, 200 mL) first cooled to -15 °C. After 1 hour of 

stirring at 0 °C, TLC showed completion of the reaction. The crude was diluted with 265 mL 

of CH2Cl2 and filtered over Celite® to remove the excess zinc powder. Then the organic phase 

was washed with ice-cold distilled water (3 x 80 mL), saturated NaHCO3 (2 x 50 mL) and brine 

(1 x 50 mL). The organic phase was dried over MgSO4, filtered and concentrated in vacuo to 

obtain an orange oil. The crude oil was purified by silica gel chromatography 

(EtOAc/Cyclohexane (1:2)) to obtain D-galactal as a colorless syrup (yield = 63 %). Analytical 

data collaborated with those described in the literature.56 
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 Formula : C12H16O7 

 Molecular weight : 272.25 g/mol 

 Rf : 0.68 (EtOAc/n-Hexane 1:1) 

 Aspect : Colorless syrup 

 1H NMR (500 MHz, CDCl3) : δ 6.46 (dd, J = 6.3, 1.8 Hz, 1H, H-1), 5.59 – 5.51 (m, 1H, 

H-3), 5.46 – 5.39 (m, 1H, H-4), 4.73 (ddd, J = 6.3, 2.7, 1.5 Hz, 1H, H-2), 4.35 – 4.30 

(m, 1H, H-5), 4.29 – 4.19 (m, 2H, H-6 + H-6’), 2.13 (s, 3H, Ac), 2.09 (s, 3H, Ac), 2.03 

(s, 3H, Ac) 

 13C NMR (126 MHz, CDCl3) : δ 170.76 (Ac), 170.48 (Ac), 170.33 (Ac), 145.56 (C-1), 

98.97 (C-2), 72.91 (C-5), 64.01 (C-3), 63.84 (C-4), 62.08 (C-6), 20.98 (Ac), 20.93 (Ac), 

20.83 (Ac). 

 HRMS (ESI) : m/z Calculated for C12H16O7 [M+Na]+ : 295.0788; found : 295.0790; δ 

= 0.6 ppm 
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VI.2.2 3,4,6-tri-O-acetyl-2-deoxy-2-fluoro-D-galactopyranose 

 

Selectfluor® (37.16 g, 105 mmol, 1.2 eq.) was added to a solution of D-galactal (23.8 g, 87.4 

mmol, 1 eq.) in a mixture of nitromethane/water (195 mL, 5:1 (v/v)) with stirring. After 

completion of the reaction (monitored by TLC, usually 3 hours), the mixture was heated to 

reflux (100 °C) for 30 minutes. Then, the reaction was cooled back to room temperature and 

the crude was concentrated in vacuo. The obtained gel was diluted in CH2Cl2 and then filtered. 

The organic phase was then concentrated in vacuo and purification by silica gel 

chromatography (EtOAc/Cyclohexane (1:2)) afforded a colorless syrup (yield = 68 %, α/β = 

2:1). Analytical data collaborated with those described in the literature.57 

 Formula : C12H17O8F 

 Molecular weight : 308.26 g/mol 

 Rf : 0.47 (EtOAc/n-Hexane 1:1) 

 Aspect : Colorless syrup 

 1H NMR (500 MHz, CDCl3) : δ 5.54 (d, J = 3.7 Hz, 1H, H-1α), 5.51 – 5.44 (m, 2H, H-

3α, H-4α), 5.42 (ddd, J = 3.7, 2.6, 1.2 Hz, 1H, H-4β), 5.12 (ddd, J = 12.8, 9.9, 3.6 Hz, 

1H, H-3β), 4.91 (dd, J = 7.6, 3.8 Hz, 1H, H-1β), 4.78 (ddd, J = 50.2, 10.0, 3.7 Hz, 1H, 

H-2α), 4.49 (ddd, J = 51.5, 9.9, 7.6 Hz, 1H, H-2β), 4.49 (td, J = 6.4, 0.8 Hz, 1H, H-5α), 

4.12 (s, 1H, H-6β), 4.11 (s, 1H, H-6’β), 4.10 (d, J = 2.2 Hz, 1H, H-6α), 4.08 (d, J = 2.6 

Hz, 1H, H-6’α), 3.98 (ddd, J = 7.0, 6.2, 1.2 Hz, 1H, H-5β), 3.43 (s, 1H, OHα), 2.14 (s, 

3H, Ac), 2.14 (s, 3H, Ac), 2.06 (s, 3H, Ac), 2.05 (s, 3H, Ac), 2.05 (s, 3H, Ac), 2.04 (s, 

3H, Ac). 

 13C NMR (126 MHz, CDCl3) : δ 170.76 (Ac), 170.73 (Ac), 170.29 (Ac), 170.26 (Ac), 

95.02 (d, J = 23.5 Hz, C-1β), 90.86 (d, J = 21.5 Hz, C-1α), 89.22 (d, J = 186.7 Hz, C-2β), 

85.84 (d, J = 189.2 Hz, C-2α), 71.07 (d, J = 18.6 Hz, C-3β), 71.06 (C-5β), 68.84 (d, J = 

7.8 Hz, C-4α), 67.96 (d, J = 19.1 Hz, C-3α), 67.94 (C-4β), 66.55 (C-5β), 61.77 (C-6α), 

61.54 (C-6β), 20.86 (Ac), 20.83 (Ac), 20.73 (Ac), 20.70 (Ac). 

 19F NMR (471 MHz, CDCl3) : δ -206.65 (dddd, J = 51.6, 12.9, 3.9, 2.6 Hz, Fβ), -207.14 

(ddd, J = 50.2, 11.0, 3.5 Hz, Fα). 

 HRMS (ESI) : m/z Calculated for C12H17O8F [M+Na]+ : 331.0799; found : 331.0801; 

δ = 0.6 ppm 
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VI.2.3 Selectfluor bis-triflate 

 

In a dried flask, Selectfluor bis-tetrafluoroborate (1,00 g, 2.82 mmol, 1 eq.) was suspended in 

dry acetonitrile (40 mL) under argon atmosphere. The suspension was cooled to 0 °C and then 

trimethylsilyltrifluoromethanesulfonate (1.12 mL, 6.20 mmol, 2.2 eq.) was added dropwise to 

the mixture. The reaction was left overnight at room temperature under stirring. After 

evaporation of the solvent in vacuo, the solid was suspended in diethyl ether (100 mL), filtered 

and washed abundantly with Et2O. The white solid obtained was dried in vacuo to obtain 

selectfluor bis-triflate (yield = 91 %).  

 Formula : C9H14O6N2S2F7Cl 

 Molecular weight : 478.77 g/mol 

 Aspect : White powder 

 1H NMR (500 MHz, D2O) : δ 5.52 (s, 2H, -CH2-Cl), 4.98 (q, J = 7.4 Hz, 6H, -CH2-NF), 

4.52 (t, J = 7.6 Hz, 6H, -CH2-NCH2Cl). 

 13C NMR (126 MHz, D2O) : δ 68.98 (-CH2-Cl), 57.33-57.21 (-CH2-NF), 53.70 (-CH2-

NCH2Cl). 

 19F NMR (471 MHz, D2O) : δ 47.68 (F-N), -78.87 (CF3). 
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VI.2.4 2-deoxy-2-fluoro-D-galactopyranose 

 

Under stirring at room temperature sodium methoxide (967 mg, 17.9 mmol, 0.3 eq.) was added 

to a solution of 3,4,6-tri-O-acetyl-2-deoxy-2-fluoro-D-galactopyranose (18.39 g, 59.7 mmol, 1 

eq.) in MeOH (184 mL). When all the starting material has been consumed (monitored by TLC, 

usually 30 minutes), the crude was concentrated in vacuo, diluted in a small amount of distilled 

water and then eluted on a column of Dowex® 50WX8 (previously washed with HCl 1M and 

then with water). The filtrate was concentrated in vacuo to obtain a white solid after a night at 

rest (yield = 99 %, α/β = 1:2). Analytical data collaborated with those described in the 

literature.58 

 Formula : C6H11O5F 

 Molecular weight : 182.15 g/mol 

 Rf : 0.13 (MeOH/CH2Cl2 1:9) 

 Aspect : white solid 

 1H NMR (500 MHz, CD3OD) : δ 5.26 (d, J = 3.9 Hz, 1H, H-1α), 4.61 (dd, J = 7.7, 3.5 

Hz, 1H, H-1β), 4.53 (ddd, J = 50.6, 9.7, 3.9 Hz, 1H, H-2α), 4.22 (ddd, J = 52.1, 9.4, 7.6 

Hz, 1H, H-2β), 4.02 – 3.94 (m, 2H, H-3α + H-5α), 3.92 (td, J = 3.8, 1.3 Hz, 1H, H-4α), 

3.84 (td, J = 3.4, 1.1 Hz, 1H, H-4β), 3.72 – 3.63 (m, 5H, H-3β + H-6β + H-6'β + H-6α + 

H-6'α), 3.52 (ddd, J = 6.7, 5.4, 1.1 Hz, 1H, H-5β). 

 13C NMR (126 MHz, CD3OD) : δ 96.10 (d, J = 23.5 Hz, C-1β), 94.15 (d, J= 180.7 Hz, 

C-2β), 91.69 (d, J = 91.69 Hz, C-1α), 90.58 (d, J = 184.0 Hz, C-2α), 76.66 (C-5β), 73.25 

(d, J = 17.2 Hz, C-3β), 71.61 (d, J = 8.3 Hz, C-4α), 71.51 (C-5α), 70.97 (d, J = 8.9 Hz, C-

4β), 69.24 (d, J = 17.3 Hz, C-3α), 62.38 (C-6α), 62.24 (C-6β). 

 19F NMR (471 MHz, CD3OD) : δ -208.84 (ddt, J = 52.1, 13.9, 3.0 Hz, Fβ), -209.86 (ddd, 

J = 51.1, 11.9, 4.4 Hz, Fα). 

 HRMS (ESI) : m/z Calculated for C6H11O5F [M+Na]+ : 205.0482 ; found : 205.0481; 

δ = 0.8 ppm 
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VI.2.5 1,3,4,6-tetra-O-acetyl-2-deoxy-2-fluoro-D-galactopyranose 

 

In a dried flask, 3,4,6-tri-O-acetyl-2-deoxy-2-fluoro-D-galactopyranose (50 mg, 0.16 mmol, 1 

eq.) was dissolved in pyridine (0.5 mL, 38.76 mmol, 242.2 eq.) under argon atmosphere. Acetic 

anhydride (18 µL, 0.19 mmol, 1.2 eq.) and DMAP (14 mg, 0.11 mmol, 0.7 eq.) were added to 

the solution. The mixture was left under stirring at room temperature and the reaction was 

monitored by TLC. When the reaction was completed, saturated NaHCO3 (5 mL) was added to 

the crude. The aqueous phase was then extracted with CH2Cl2 (3 x 5mL). The organic phases 

were gathered, dried over MgSO4, filtered and concentrated in vacuo to afford a pale orange 

solid (69 mg, α/β = 3:2, containing impurities). Analytical data collaborated with those 

described in the literature.59  

 Formula : C14H19O9F 

 Molecular weight : 350.30 g/mol 

 Rf : 0.71 (EtOAc/n-hexane 1:1) 

 Aspect : Pale orange solid 

 1H NMR (500 MHz, CDCl3) : δ 6.46 (d, J = 3.9 Hz, 1H, H-1α), 5.79 (dd, J = 8.0, 4.1 

Hz, 1H, H-1β), 5.52 (td, J = 3.4, 1.4 Hz, 1H, H-4α), 5.45 (ddd, J = 3.7, 2.6, 1.1 Hz, 1H, 

H-4β), 5.41 (ddd, J = 11.0, 10.2, 3.5 Hz, 1H, H-3α), 5.17 (ddd, J = 13.2, 9.8, 3.5 Hz, 1H, 

H-3β), 4.89 (ddd, J = 49.2, 10.2, 3.9 Hz, 1H, H-2α), 4.65 (ddd, J = 51.5, 9.9, 8.1 Hz, 1H, 

H-2β), 4.31 (tdd, J = 6.7, 1.5, 0.6 Hz, 1H, H-5α), 4.12 (dd, J = 6.5, 5.4 Hz, 1H, H-6α), 

4.12 – 4.02 (m, 4H, H-5β, H-6’α, H-6β, H-6β), 2.19 (s, 3H, Ac), 2.19 (s, 3H, Ac), 2.15 (s, 

6H, Ac), 2.06 (s, 3H, Ac), 2.06 (s, 3H, Ac), 2.04 (s, 3H, Ac), 2.04 (s, 3H, Ac). 

 13C NMR (126 MHz, CDCl3) : δ 170.48 (Ac), 170.21 (Ac), 170.09 (Ac), 170.05 (Ac), 

169.96 (Ac), 169.00 (Ac), 168.97 (Ac), 91.67 (d, J = 24.7 Hz, C-1β), 89.06 (d, J = 22.9 

Hz, C-1α), 87.79 (d, J = 188.4 Hz, C-2β), 84.24 (d, 191.0 Hz, C-2α), 71.83 (C-5β), 71.06 

(d, J = 18.8, C-3β), 68.66 (C-5α), 68.27 (d, J = 18.8 Hz, C-3α), 67.99 (d, J = 7.7 Hz, C-

4α), 67.53 (d, J = 7.9 Hz, C-4β), 61.08 (C-6α), 60.94 (C-6β), 21.02 (Ac), 20.96 (Ac), 

20.77 (Ac), 20.67 (Ac). 

 19F NMR (471 MHz, CDCl3) : δ -207.95 (ddt, J = 52.0, 12.9, 3.5 Hz, Fβ), -208.95 (ddd, 

J = 49.3, 11.1, 3.3 Hz, Fα). 

 HRMS (ESI) : m/z Calculated for C14H19O9F [M+Na]+ : 373.0905 ; found : 373.0907; 

δ = 0.6 ppm 
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VI.2.6 1,3,5,6-tetra-O-acetyl-2-deoxy-2-fluoro-D-galactofuranose 

 

In a dried flask, 2-deoxy-2-fluro-D-galactopyranose (100 mg, 0.55 mmol, 1 eq.) was dissolved 

in distilled pyridine (1.44 mL, 17.9 mmol, 32.6 eq.) under argon atmosphere. The solution was 

heated to reflux at 110 °C for 2 hours with moderate stirring.  Then, acetic anhydride (0.87 mL, 

9.17 mmol, 16.7 eq.) was added dropwise to the reaction mixture which was left for an 

additional 1 h 30 at 110 °C. Then the mixture was allowed to cool down to room temperature. 

The crude was concentrated in vacuo and purified by silica gel chromatography (eluted with 

EtOAc/Cyclohexane (1:2)). The furanoses products eluted second after pyranoses products. 

After concentration in vacuo, a light yellow syrup was obtained (yield = 25 %). 

First fraction was mainly composed of the α anomer (60 % α-furanose, 10 % β-furanose, 10 % 

α-pyranose, 9 % β-pyranose, 11 % others) while the second fraction was mainly composed of 

the β anomer (13 % α-furanose, 84 % β-furanose, 3 % impurity). Analytical data collaborated 

with those described in the literature.35 

 Formula : C14H19O9F 

 Molecular weight : 350.30 g/mol 

 Rf : 0.53 (EtOAc/n-Hexane 1:1) 

 Aspect : Light yellow syrup 

 1H NMR (500 MHz, CDCl3) : 

o α-anomer : δ 6.30 (d, J = 4.5 Hz, 1H, H-1), 5.59 (dt, J = 16.1, 6.1 Hz, 1H, H-3), 

5.28 (td, J = 5.9, 4.3 Hz, 1H, H-5), 5.12 (ddd, J = 51.9, 6.2, 4.5 Hz, 1H, H-2), 

4.30 (dd, J = 12.1, 4.3 Hz, 1H, H-6), 4.19 – 4.10 (m, 2H, H-6’ + H-4), 2.17 (s, 

3H, Ac), 2.13 (s, 3H, Ac), 2.12 (s, 3H, Ac), 2.05 (s, 3H, Ac).  

o β-anomer : δ 6.37 (dd, J = 10.8, 0.9 Hz, 1H, H-1), 5.41 (ddd, J = 6.9, 4.4, 3.2 

Hz, 1H, H-5), 5.14 (ddt, J = 21.4, 4.6, 1.1 Hz, 1H, H-3), 4.97 (dd, J = 49.1, 1.0 

Hz, 1H, H-2), 4.38 (dd, J = 4.6, 3.3 Hz, 1H, H-4), 4.32 (dd, J = 11.9, 4.4 Hz, 1H, 

H-6), 4.24 (dd, J = 11.9, 6.9 Hz, 1H, H-6’), 2.13 (s, 3H, Ac), 2.12 (s, 3H, Ac), 

2.11 (s, 3H, Ac), 2.06 (s, 3H, Ac). 

 13C NMR (126 MHz, CDCl3) :  

o α-anomer :  δ 170.56 (Ac), 169.96 (Ac), 169.79 (Ac), 169.57 (Ac),  92.82 (d, J 

= 50.7 Hz, C-1), 91.94 (d, J = 135.1 Hz, C-2), 79.27 (d, J = 7.8 Hz, C-4), 73.83 

(d, J = 24.3 Hz, C-3), 70.17 (C-5), 62.14 (C-6), 21.17 (Ac), 20.91 (Ac), 20.79 

(Ac), 20.77 (Ac).  
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o β-anomer : δ 170.67 (Ac), 169.36 (Ac), 169.81 (Ac), 169.09 (Ac),  99.01 (d, J = 

37.9 Hz, C-1), 97.42 (d, J = 185.3 Hz, C-2), 83.33 (C-4), 76.38 (d, J = 30.7 Hz, 

C-3), 69.22 (C-5), 62.60 (C-6), 21.04 (Ac), 20.81 (Ac), 20.69 (Ac). 

 19F NMR (471 MHz, CDCl3) :  

o α-anomer : δ -205.72 (dd, J = 51.8, 16.2 Hz).  

o β-anomer : δ -190.53 (dd, J = 49.1, 21.4, 10.8 Hz) 

 HRMS (ESI) : m/z Calculated for C14H19O9F [M+Na]+ : 373.0905 ; found : 373.0904; 

δ = 0.4 ppm 

α anomer spectra: 
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β anomer spectra: 
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VI.2.7 3,5,6-tri-O-acetyl-2-deoxy-2-fluoro-D-galactofuranose 

 

In a dried flask, 1,3,5,6-tetra-O-acetyl-2-deoxy-2-fluoro-D-galactofuranose (469 mg, 1,34 

mmol, 1 eq.) was dissolved in distilled CH2Cl2 (4,7 mL) under argon atmosphere. The reagent 

was cooled to 0 °C before the dropwise addition of HBr 33 % in AcOH (1,24 mL, 21,7 mmol, 

16,3 eq.) under stirring. The reaction was left overnight at room temperature. After 

concentration of the crude in vacuo, the residue was diluted in DCM (25 mL), washed with 

saturated NaHCO3 (3 x 25 mL), brine (1 x 25 mL), dried over MgSO4, filtrated and concentrated 

in vacuo for the next step. The obtained orange oil was dissolved in a 10:1 mixture of 

Acetone/H2O (5 mL) and then Ag2CO3 (369mg, 1,34 mmol, 1 eq.) was added to the solution 

under stirring. After 90 minutes of reaction time at room temperature, the crude was filtered on 

silica and concentrated to dryness. Purification by silica gel chromatography 

((EtOAc/Cyclohexane (1:2)) afforded a colorless syrup (64 % yield, α/β = 1:9). 

 Formula : C12H17O8F 

 Molecular weight : 308.26 g/mol 

 Rf : 0.35 (EtOAc/Cyclohexane 1:1) 

 Aspect : Colorless syrup 

 1H NMR (500 MHz, CDCl3) : δ 5.59 (dd, J = 10.7, 3.4 Hz, 1H, H-1), 5.41 (ddd, J = 6.9, 

4.7, 3.5 Hz, 1H, H-4), 5.08 (ddd, J = 22.0, 4.7, 1.8 Hz, 1H, H-3), 4.92 (dd, J = 49.4, 1.0 

Hz, 1H, H-2), 4.42 (dd, J = 4.8, 3.5 Hz, 1H, H-5), 4.34 (dd, J = 11.7, 4.7 Hz, 1H, H-6), 

4.21 (dd, J = 11.8, 6.9 Hz, 1H, H-6’), 3.00 (t, J = 3.4 Hz, 1H, OH), 2.13 (s, 3H, Ac), 

2.11 (s, 3H, Ac), 2.06 (s, 3H, Ac). 

 13C NMR (126 MHz, CDCl3) : δ 170.76 (Ac), 170.41 (Ac), 170.08 (Ac), 100.47 (d, J = 

35.5 Hz, C-1), 98.16 (d, J = 183.1 Hz, C-2), 81.56 (C-4), 76.90 (d, J = 30.4 Hz, C-3), 

69.55 (C-5), 62.63 (C-6), 20.89 (Ac), 20.88 (Ac), 20.81 (Ac). 

 19F NMR (471 MHz, CDCl3) : δ -190.72 (dddd, J = 49.4, 22.4, 10.7, 2.2 Hz, Fβ), -205.43 

(ddd, J = 50.7, 16.5, 8.9 Hz, Fα). 

 HRMS (ESI) : m/z Calculated for C12H17FO8 [M+Na]+ : 331.0799; found : 331.0800; 

δ = 0.1 ppm 
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VI.2.8 1-O-(o,p-dinitrophenyl)-3,5,6-tri-O-acetyl-2-deoxy-2-fluoro-α-D-

galactofuranose and 1-O-(o,p-dinitrophenyl)-3,5,6-tri-O-acetyl-2-

deoxy-2-fluoro-β-D-galactofuranose 

 

In a dried flask, 3,5,6-tri-O-acetyl-2-deoxy-2-fluoro-D-galactofuranose (220 mg, 0.71 mmol, 1 

eq.) and 1,4-diazabicyclo[2.2.2]octane (248 mg, 2.21 mmol, 1.1 eq.) were dissolved in 2.9 mL 

of dry CH3CN under argon atmosphere. 1-fluoro-2,4-dinitrobenzene (99 µL, 0.79 mmol, 1.1 

eq.) was added dropwise to the solution and the reaction was left under stirring at room 

temperature for 2 h 30. The crude was concentrated in vacuo and then diluted in CH2Cl2 (72 

mL), washed with HCl 1M (2 x 72 mL) and with H2O (1 x 72 mL), dried with MgSO4, filtrated 

and concentrated in vacuo. Purification was performed by silica gel chromatography 

(EtOAc/Cyclohexane (1:2)). To remove the yellow tint of the purified fraction, a work-up with 

saturated NaHCO3 was performed. The two anomers could be separated as a pale yellow syrup 

(Yield: α anomer = 27 %, β anomer = 30 %). 

 Formula : C18H19FN2O12 

 Molecular weight : 474.35 g/mol 

 Rf :  

o α anomer : 0.30 (EtOAc/Cyclohexane 1:1) 

o β anomer : 0.72 (EtOAc/Cyclohexane 1:1) 

 Aspect : Light yellow syrup 

 1H NMR (500 MHz, Chloroform-d) :  

o α anomer : δ 8.78 (d, J = 2.7 Hz, 1H, H-m’), 8.44 (dd, J = 9.2, 2.8 Hz, 1H, H-

m), 7.45 (d, J = 9.3 Hz, 1H, H-o), 5.90 (d, J = 4.3 Hz, 1H, H-1), 5.73 (dt, J = 

15.9, 7.0 Hz, 1H, H-3), 5.29 (ddd, J = 51.4, 7.2, 4.4 Hz, 1H, H-2), 5.31 – 5.26 

(m, 1H, H-5), 4.29 (dd, J = 6.7, 3.8 Hz, 1H, H-4), 4.22 (dd, J = 11.6, 5.5 Hz, 1H, 

H-6), 4.03 (dd, J = 11.6, 6.4 Hz, 1H, H-6’), 2.15 (s, 3H, Ac), 2.04 (s, 3H, Ac), 

1.96 (s, 3H, Ac). 

o β anomer : δ 8.74 (d, J = 2.7 Hz, 1H, H-m’), 8.45 (dd, J = 9.3, 2.8 Hz, 1H, H-

m), 7.47 (d, J = 9.3 Hz, 1H, H-o), 6.11 (d, J = 9.4 Hz, 1H, H-1), 5.46 (ddd, J = 

6.9, 4.9, 3.3 Hz, 1H, H-5), 5.25 (dd, J = 48.5, 0.9 Hz, 1H, H-2), 5.17 (ddd, J = 

20.0, 3.9, 0.8 Hz, 1H, H-3), 4.45 (t, J = 3.6 Hz, 1H, H-4), 4.28 (dd, J = 11.8, 4.9 

Hz, 1H, H-6), 4.20 (dd, J = 11.8, 7.0 Hz, 1H, H-6’), 2.17 (s, 3H), 2.11 (s, 3H), 

2.02 (s, 3H). 
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 13C NMR (126 MHz, Chloroform-d) :  

o α anomer : δ 170.47 (Ac), 169.79 (Ac), 169.74 (Ac), 153.76 (C-i), 141.80 (C-p), 

139.95 (C-o’), 128.95 (C-m), 122.02 (C-m’), 117.14 (C-o), 97.92 (d, J = 17.2 

Hz, C-1), 91.53 (d, J = 207.8 Hz, C-2), 80.15 (d, J = 8.1 Hz, C-4), 72.92 (d, J = 

23.7 Hz, C-3), 69.07 (C-5), 61.78 (C-6), 20.80 (Ac), 20.69 (Ac), 20.53 (Ac). 

o β anomer : δ 170.55 (Ac), 170.23 (Ac), 170.20 (Ac), 153.00 (C-i), 148.05 (C-p), 

141.84 (C-o’), 128.93 (C-m), 121.88 (C-m’), 117.25 (C-o), 103.94 (d, J = 36.7 

Hz, C-1), 96.98 (d, J = 185.2 Hz, C-2), 84.57 (C-4), 75.87 (d, J = 30.5 Hz, C-3), 

69.09 (C-5), 62.30 (C-6), 20.84 (Ac), 20.81 (Ac), 20.66 (Ac). 

 19F NMR (471 MHz, Chloroform-d) :  

o α : δ -205.99 (dd, J = 51.5, 15.8 Hz).  

o β : δ -192.66 (ddd, J = 48.5, 19.9, 9.4 Hz). 

 FTIR : (β anomer) 

o 1537.7 cm-1 (N-O assymetrical stretching) 

o 1345.2 cm-1 (N-O symmetrical stretching) 

 HRMS (ESI) : m/z Calculated for C18H19FN2O12 [M+Na]+ : 497.0814; found : 

497.0808; δ = 1.2 ppm 

α anomer spectra:  
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β anomer spectra: 

 

 



 

81 

 

 

 

  



 

82 

 

VI.2.9 1-O-(o,p-dinitrophenyl)-2-deoxy-2-fluoro-β-D-galactofuranose 

 

In a dried flask, 1-O-(o,p-dinitrophenyl)-3,5,6-tri-O-acetyl-2-deoxy-2-fluoro-D-

galactofuranose (185 mg, 0.39 mmol, 1 eq.) was dissolved in anhydrous MeOH (16.9 mL) 

under argon atmosphere. After cooling of the solution to 0 °C, acetyl chloride (1.32 mL, 18.6 

mmol, 47.6 eq.) was added dropwise and the reaction was left under stirring for 8 hours at 0 °C 

and then one night at 4 °C. TLC showed total consumption of the starting material (Rf: 0.84) 

and apparition of only one product (Rf: 0.30). A short silica column (MeOH/CHCl3 (1:9)) 

afforded a yellow syrup (70 % yield). 

 Formula : C12H13FN2O9 

 Molecular weight : 348.24 g/mol 

 Rf : 0.30 (MeOH/CHCl3 1:9) 

 Aspect : Yellow syrup 

 1H NMR (500 MHz, CD3OD) : δ 8.76 (d, J = 2.8 Hz, 1H, H-m’), 8.49 (dd, J = 9.3, 2.8 

Hz, 1H, H-m), 7.68 (d, J = 9.3 Hz, 1H, H-o), 6.15 (dt, J = 11.6, 1.0 Hz, 1H, H-1), 5.18 

(ddd, J = 51.8, 3.3, 1.1 Hz, 1H, H-2), 4.47 (dddd, J = 25.9, 7.4, 3.3, 0.8 Hz, 1H, H-3), 

4.16 (dd, J = 7.5, 3.2 Hz, 1H, H-4), 3.77 (td, J = 6.4, 3.2 Hz, 1H, H-5), 3.64 – 3.55 (m, 

2H, H-6 + H-6’). 

 13C NMR (126 MHz, CD3OD) : δ 154.94 (C-i), 142.85 (C-p), 141.43 (C-o’), 129.68 

(C-m), 122.37 (C-m’), 119.42 (C-o), 106.22 (d, J = 39.1 Hz, C-1), 103.45 (d, J = 184.3 

Hz, C-2), 85.74 (d, J = 5.7 Hz, C-4), 76.25 (d, J = 25.7 Hz, C-3), 71.48 (C-5), 64.00 (C-

6). 

 19F NMR (471 MHz, CD3OD) : δ -193.52 (ddd, J = 51.8, 25.9, 11.6 Hz, Fβ). 

 FTIR :  

o 1529.8 cm-1 (N-O assymetrical stretching) 

o 1345.2 cm-1 (N-O symmetrical stretching) 

 HRMS (ESI) : m/z Calculated for C12H13FN2O9 [M+Na]+ : 371.0497; found : 371.0496; 

δ = 0.4 ppm 
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VI.2.10 1-O-(o,p-dinitrophenyl)-2-deoxy-2-fluoro-α-D-galactofuranose 

 

In a dried flask, 1-O-(o,p-dinitrophenyl)-3,5,6-tri-O-acetyl-2-deoxy-2-fluoro-D-

galactofuranose (166 mg, 0.35 mmol, 1 eq.) was dissolved in anhydrous MeOH (15.2 mL) 

under argon atmosphere. After cooling of the solution to 0 °C, acetyl chloride (1.19 mL, 16.6 

mmol, 47.6 eq.) was added dropwise and the reaction was left under stirring for 8 hours at 0 °C 

and then one night at 4 °C. TLC showed total consumption of the starting material (Rf: 0.69) 

and apparition of only one product (Rf: 0.27). A short silica column (MeOH/CHCl3 (1:9)) 

afforded a yellow syrup (11 % yield). 

 Formula : C12H13FN2O9 

 Molecular weight : 348.24 g/mol 

 Rf : 0.27 (MeOH/CHCl3 1:9) 

 Aspect : Yellow syrup 

 1H NMR (500 MHz, CD3OD) : δ 8.70 (d, J = 2.8 Hz, 1H, H-m’), 8.43 (dd, J = 9.3, 2.8 

Hz, 1H, H-m), 7.59 (d, J = 9.3 Hz, 1H, H-o), 6.08 (dd, J = 4.2, 1.6 Hz, 1H, H-1), 5.07 

(ddd, J = 52.4, 7.9, 4.2 Hz, 1H, H-2), 4.62 (dt, J = 17.1, 7.7 Hz, 1H, H-3), 3.92 (dd, J = 

7.7, 4.6 Hz, 1H, H-4), 3.61 (dt, J = 6.7, 5.1 Hz, 1H, H-5), 3.52 (dd, J = 11.2, 5.5 Hz, 

1H, H-6), 3.46 (dd, J = 11.2, 6.7 Hz, 1H, H-6’). 

 13C NMR (126 MHz, CD3OD) : δ 155.38 (C-i), 142.36 (C-p), 141.21 (C-p’), 129.56 

(C-m), 122.28 (C-m’), 118.86 (C-o), 99.40 (d, J = 17.5 Hz, C-1), 95.88 (d, J = 202.5 Hz, 

C-2), 84.07 (d, J = 10.1 Hz, C-4), 72.72 (d, J = 20.9 Hz, C-3), 72.66 (C-5), 63.62 (C-6). 

 19F NMR (471 MHz, CD3OD) : δ -210.19 (ddt, J = 52.3, 17.2, 1.9 Hz). 

 HRMS (ESI) : m/z Calculated for C12H13FN2O9 [M+Na]+ : 371.0497; found : 371.0499; 

δ = 0.3 ppm 
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VI.2.11 3,4,6-tri-O-acetyl-2-deoxy-2-fluoro-α-D-galactopyranosyl bromide 

 

In a dried flask, per-O-acetyl-D-galactal (5.30 g, 19.5 mmol, 1 eq.) was dissolved in dry 

CH3NO2 (145 mL) under argon atmosphere. Selectfluor® (10.34 g, 29.2 mmol, 1.5 eq.) was 

added to the solution and the mixture was left under stirring overnight at room temperature. 

Then anhydrous MgBr2 (7.17 g, 38.9 mmol, 2 eq.) was added to the mixture which was heated 

to reflux for 30 minutes.  After addition, the reaction mixture had taken a yellow color. Once 

the reaction had cooled down to room temperature, the crude was treated with brine (200 mL) 

and the aqueous phase was extracted with EtOAc (2 X 150 mL). The organic phases were 

combined, dried over MgSO4, filtrated and concentrated in vacuo. Purification was done with 

silica gel chromatography (Cyclohexane/EtOAc (6:4)) to obtain a yellow syrup (86% yield). 

Analytical data collaborated with those described in the literature.60 

 Formula : C12H16BrFO7 

 Molecular weight : 371.16 g/mol 

 Rf : 0.63 (EtOAc/Cyclohexane 1:1) 

 Aspect : Yellow syrup 

 1H NMR (500 MHz, CDCl3) : δ 6.61 (ddd, J = 4.2, 1.1, 0.6 Hz, 1H, H-1), 5.53 (td, J = 

3.4, 1.4 Hz, 1H, H-4), 5.47 (td, J = 10.0, 3.5 Hz, 1H, H-3), 4.76 (ddd, J = 50.1, 10.0, 4.2 

Hz, 1H, H-2), 4.51 (tdd, J = 6.4, 1.4, 0.7 Hz, 1H, H-5), 4.17 (dd, J = 11.5, 6.3 Hz, 1H, 

H-6), 4.11 (dd, J = 12.2, 6.1 Hz, 1H, H-6’), 2.14 (s, 3H, Ac), 2.06 (s, 3H, Ac), 2.05 (s, 

3H, Ac). 

 13C NMR (126 MHz, CDCl3) : δ 170.45 (Ac), 169.87 (Ac), 169.84 (Ac), 86.92 (d, J = 

25.4 Hz, C-1), 84.29 (d, J = 195.2 Hz, C-2), 71.34 (C-5), 69.06 (d, J = 18.0 Hz, C-3), 

67.59 (d, J = 7.6 Hz, C-4), 60.76 (C-6), 20.75 (Ac), 20.69 (Ac), 20.62 (Ac). 

 19F NMR (471 MHz, CDCl3) : δ -194.84 (dddd, J = 50.2, 10.2, 3.4, 1.2 Hz, Fα). 



 

89 

 

 

 



 

90 

 

 

  



 

91 

 

VI.2.12 3,4,6-tri-O-acetyl-2-deoxy-2-fluoro-D-galactal 

 

In a dried flask, 3,4,6-tri-O-acetyl-2-deoxy-2-fluoro-α-D-galactopyranosyl bromide (6.190 g, 

16.68 mmol, 1 eq.) was dissolved in dry acetonitrile (56 mL) under argon atmosphere. Distilled 

Et3N (6.97 mL, 50.03 mmol, 3.0 eq.) was added dropwise to the solution under stirring at room 

temperature. Then the temperature of the reaction was adjusted to reflux for 2 hours. The 

reaction was quenched by careful addition of HCl 1M (50 mL) at 0°C. Then the mixture was 

diluted with EtOAc (50 mL) and the aqueous phase was extracted with EtOAc (50 mL). The 

organic phases were combined, dried over MgSO4, filtrated and concentrated in vacuo. 

Purification was done with silica gel chromatography (Cyclohexane/EtOAc (6:4)) to obtain a 

yellow syrup (68 % yield). Analytical data collaborated with those described in the literature.53 

 Formula : C12H15FO7 

 Molecular weight : 290.24 g/mol 

 Rf : 0.69 (EtOAc/Cyclohexane 1:1) 

 Aspect : Yellow syrup 

 1H NMR (500 MHz, CDCl3) : δ 6.75 (dd, J = 4.7, 1.2 Hz, 1H, H-1), 5.87 (dq, J = 5.0, 

1.1 Hz, 1H, H-3), 5.44 (ddd, J = 5.0, 3.6, 2.4 Hz, 1H, H-4), 4.32 (dd, J = 11.3, 7.6 Hz, 

1H, H-6), 4.27 – 4.23 (m, 1H, H-5), 4.19 (dd, J = 11.3, 4.5 Hz, 1H, H6’), 2.13 (s, 3H, 

Ac), 2.09 (s, 3H, Ac), 2.08 (s, 3H, Ac). 

 13C NMR (126 MHz, CDCl3) : δ 170.68 (Ac), 170.20 (Ac), 169.95 (Ac), 142.78 (d, J = 

244.2 Hz, C-2), 132.52 (d, J = 40.5 Hz, C-1), 76.91 (C-5), 64.28 (d, J = 6.8 Hz, C-4), 

62.88 (d, J = 21.6 Hz, C-3), 61.16 (C-6), 20.88 (Ac), 20.68 (Ac), 20.66 (Ac). 

 19F NMR (471 MHz, CDCl3) : δ -168.04 (s). 



 

92 

 

 

 



 

93 

 

 

  



 

94 

 

 

VI.2.13 3,4,6-tri-O-acetyl-2-deoxy-2-fluoro-α-D-galactopyranose 

 

In a dried flask, 3,4,6-tri-O-acetyl-2-deoxy-2-fluoro-D-galactal (3.280 g, 11,3 mmol, 1 eq.) was 

dissolved in a 4:1 (v:v) mixture of nitromethane in water (214 mL) under argon atmosphere. 

Under stirring, Selectfluor® (6.005 g, 17.0 mmol, 1.5 eq.) was added to the solution which was 

left overnight at room temperature. The following day, the mixture was heated to reflux for 30 

minutes. Once it had cooled down to room temperature, the crude was poured into brine (400 

mL) and the aqueous phase was extracted with EtOAc (2 x 400 mL). The organic phases were 

combined, dried over MgSO4, filtrated and concentrated in vacuo. Purification was performed 

by silica gel chromatography (EtOAc/Cyclohexane 1:1) to obtain a colorless syrup (33 % yield). 

Analytical data collaborated with those described in the literature.53 

 Formula : C12H16F2O8 

 Molecular weight : 326.25 g/mol 

 Rf : 0.61 (EtOAc/Cyclohexane 1:1) 

 Aspect : Colorless syrup 

 1H NMR (500 MHz, CDCl3) : δ 5.51 – 5.43 (m, 2H, H-3 + H-4), 5.30 (dd, J = 5.0, 1.8 

Hz, 1H, H-1), 4.57 (td, J = 6.6, 1.0 Hz, 1H, H-5), 4.17 (d, J = 1.4 Hz, 1H, H-6), 4.16 (d, 

J = 1.7 Hz, 1H, H-6’), 2.15 (s, 3H, Ac), 2.10 (s, 3H, Ac), 2.06 (s, 3H, Ac). 

 13C NMR (126 MHz, CDCl3) : δ 170.79 (Ac), 170.64 (Ac), 169.82 (Ac), 114.32 (t, J = 

252.4 Hz, C-2), 92.05 (t, J = 31.4 Hz, C-1), 67.44 (d, J = 3.8 Hz, C-4), 66.54 (C-5), 

65.77 (t, J = 19.1 Hz, C-3), 61.56 (C-6), 20.80 (Ac), 20.68 (Ac), 20.53 (Ac). 

 19F NMR (471 MHz, CDCl3) : δ -119.71 (dddd, J = 252.0, 19.6, 4.8, 1.3 Hz), -119.77 

(dddt, J = 253.5, 41.3, 9.7, 4.0, 1.9 Hz). 

 HRMS (ESI) : m/z Calculated for C12H16F2O8 [M+Na]+ : 349.0705; found : 349.0707; 

δ = 0.3 ppm 
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