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Copper resistance in Caulobacter crescentus - 
Characterization of the Pco operon and of an ABC transporter 

permease 
 

Gillet Sébastien 
 

Summary 
 
 
 

Selective pressure has driven evolution through the ages, forcing organisms to adapt time 

and again. Organisms developed strategies to face environmental stresses and maintain their fitness. 

In this context, Caulobacter crescentus, an oligotrophic alphaproteobacterium, has been studied to 

discover different systems it acquired during evolution to resist against metal stresses. 

 

In the first part of this thesis, we characterize the Pco system of C. crescentus, providing 

answers about the functions and localizations of two proteins, PcoA and PcoB. We demonstrate that 

PcoA is a multicopper oxidase detoxifying the periplasm of C. crescentus by oxidizing copper cations. 

Additionally, we show that PcoB acts like an efflux pump, exporting copper ions outside the 

bacterium.  We also investigate the role of another system, the Cus system, in the resistance against 

copper stresses. Finally, we conduct a large-scale in silico study, hoping to determine whether 

correlations exist between the conservation of genes and the behaviors, lifestyles, and environments 

of alphaproteobacteria. 

 

In the second part of the thesis, we characterize an ABC transporter permease and provide 

data suggesting that this protein would act like a cysteine exporter. Transporting cysteine from the 

cytoplasm towards the periplasm could help C. crescentus resist to stresses caused by several 

transition metals, including copper, silver, and cadmium. 
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“I’ll be there where fire makes you dance” 

- Ronnie James Dio  
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Environment 

1. Variability of the ecological factors 
 

Environmental studies often stress the importance of the ecological niche. This concept is not 

recent: the idea of a strong interdependency between an organism and its environment long 

predates modern ecology, going back to Ancient Greece (Pocheville 2015). While the concept did not 

bear the name of “ecological niche” yet, it was commonly accepted that a given environment is 

composed of a wide array of specific biotic and abiotic factors, and that these factors would suit 

some species better than others. Biotic factors have been described as the relationships developed 

between different organisms or species, such as predation, competition or symbiosis (Van Beneden 

1878; Pocheville 2015). The abiotic factors, on the other hand, encompass the various inorganic 

parameters, such as temperature, light, pressure, or pH (Haferburg & Kothe 2007; Levin & Carpenter 

2009).  

Charles Darwin, in “On the Origin of Species”, improved the notion of ecological niche. The 

idea that organisms “adapts through the means of natural selection” suggests they did not randomly 

settle in a perfect pre-existing niche. Rather, organisms would have co-evolved with the environment 

until their biological parameters for optimal fitness coincide with the ecological factors of the niche. 

In the late fifties, George Evelyn Hutchinson further refined the concept. Hutchinson coined 

the “multidimensionality” of the niches, where the different dimensions (the biotic and abiotic 

factors) are considered according to their accessibility. For instance, if two species are competing for 

the same nutrient, its presence in the environment does not equal its accessibility. He also 

acknowledges the “ebb and flow” nature of a niche, meaning that environmental factors can 

fluctuate over time, either transiently or in a more permanent way (Levin & Carpenter 2009; 

Pocheville 2015). A competing species can disappear from the niche; the temperature can change, so 

does the pH, and so on. These natural or anthropogenic variations could drastically reshape the 

environment as a whole.  

 

 

  



 

 

Fig. 1: Normal distribution illustrating the concept of ecological amplitude. For a defined parameter (temperature, pH, 
oxygen level…) a species will have an optimum point at which its fitness is maximum. Small variations around this 
theoretical “true optimum” that induce virtually no response from the organism define the “optimal range”. The “tolerance 
range” is defined as the range in which variations may or may not induce a response from the organism, but without 
affecting its phenotype, growth rate and apparent fitness. Diverging from this range will increase the chance to trigger an 
important stress, ultimately setting the organism into a “death zone”. 
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2. Limits of tolerance and stresses 
 

In order to maintain their fitness, organisms have thus to cope with these variations. Species 

can often tolerate small variations of a parameter from an optimum. For instance, the commensal 

bacterium Escherichia coli has an optimal growth temperature of 37°C. Yet, it can still survive and 

thrive in environment at 33°C without apparent phenotype issues, with little to no change in the 

genome expression (Polissi et al. 2003). However, as the temperature progressively differs from this 

temperature range, the growth is increasingly hindered. Morphology defects arise, and important 

changes are observed at the transcriptomic level. Under these conditions, the expression level of 

several dozen proteins is modified significantly (Polissi et al. 2003; Gadgil et al. 2005; Noor et al. 

2013). The bacteria are then undergoing a stress. 

“Stress”, in biology, is a poorly defined notion. As Hans Seyle stated it, not without irony: 

“Everybody knows what stress is and nobody knows what it is” (Seyle 1973).  In the broad sense of 

the term, a stress is anything that “impairs Darwinian fitness” (Bijlsma 1997). However, a stress must 

be characterized at least through the level of the stress and its intensity. A change in the 

environment could impact an organism at the molecular level, without affecting its physiology or its 

phenotype. However, another stress could impact not only the physiology of the individual, but the 

species as a whole, making it a stress at the population level. Likewise, because any deviation from 

the optimal situation could arguably be regarded as a stress, it is necessary to assess the “intensity” 

of the stress, although the threshold may seem arbitrary (Bijlsma 1997). 

These observations gave birth to the concept of “ecological amplitude” or “ecological 

valence”: an organism can tolerate moderate variations from an optimum without being in a “stress 

state”, until these variations exceed a threshold that will, in turn, trigger a response from the 

organism or results in its death (Fig. 1).  

Among the various abiotic factors that can trigger a stress is the lack or the excess of metals. 

  



 

Fig. 2: Periodic table of elements. The transition and posttransition metals, located from period 4 to 7 and from group 3 to 
12, are colored in turquoise. Modified from a public domain image created by Offnfopt, uploaded on Wikimedia Commons. 
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Metal stresses 

This section has been partially extracted from a chapter I wrote for “Microbial Diversity in the 

Genomic Era” (Das & Dash 2018).  

1. Metals classification 
 

Metals are ubiquitous in the environment, where their abundance may undergo important 

variations. Aluminum (Al), iron (Fe) or sodium (Na) are widely distributed, constituting 7.96%, 4.32% 

and 2.36% of the earth continental crust, respectively (Wedepohl 1995). Other metals such as silver 

(Ag) and cadmium (Cd) are considered as trace elements and account for only a fraction of 1% of the 

crust (Wedepohl 1995). The classification of various metal elements has been the subject of a large 

debate, resulting in many blurred notions, such as “heavy metals”, “trace metals”, or “transition 

metals” (Hawkes 1997). Transition metals (TM), like Fe, copper (Cu) and nickel (Ni), encompass metal 

elements found in the d-block of the periodic table, ranging from group 3 to group 11 and from 

period 4 to 7 (Fig. 2).  They are mostly characterized by their electron shell and their redox 

properties. Group 12 elements, such as zinc (Zn), Cd or mercury (Hg), are defined as “post-

transitional metals” (Cotton et al. 1999). While technically not included in the transition metal group, 

they display similar biochemical properties as TMs, which has led some authors to consider them as 

such. TM will be the focal point of this introduction and will be referred to as metals here below. 

2. Metals and bacteria – Coexisting for better or worse 

  a. There would be no life without metal 
 

 Metals are essential to life. They are involved in many cellular processes, ranging from 

respiration to muscle contraction and nucleic acid stabilization. It is estimated that metalloproteins 

represent approximately 30% of the bacterial proteome (Waldron & Robinson 2009). One of the 

major functions of metals is their role as essential cofactors. For instance, manganese (Mn) protects 

the cell against reactive oxygen species (ROS), as an obligate cofactor for certain types of catalase, 

peroxidase and superoxide dismutase (SOD) (Horsburgh et al. 2002). SOD catalyzes the dismutation 

of two superoxide anions (O2
.-) into O2 and the less reactive H2O2, which will be subsequently 

converted into H2O by the peroxidase and the catalase (Becker & Skaar 2014). Mn is essential in 

photosynthetic bacteria as well, where H2O oxidation relies on a Mn metalloenzyme (Horsburgh et al. 

2002). 
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In E. coli, Mn is also the catalytic factor of several exopeptidases, such as the Aminopeptidase 

P (APPro), which possesses a binuclear Mn core. APPro proteins are conserved in the 3 domains of 

life (Graham & Guss 2008) and are thought to have various biological functions, such as peptide 

degradation and proline recycling. APPro were also shown to be involved in the degradation of 

organophosphate compounds (Graham & Guss 2008). In eukaryotes, they play a role in hormone 

maturation and activity regulation (Yocum & Pecoraro 1999; Graham & Guss 2008; Graham et al. 

2006; Peng et al. 2017). 

Similarly to Mn, Cu and Zn play a role in ROS detoxification through a structural and catalytic 

function in SOD, respectively. Cu/Zn SODs are very common in eukaryotes, but are also conserved in 

bacteria, such as SodC in E. coli (Osman & Cavet 2008). Cu also serves as a catalytic cofactor for other 

enzymes, such as amino oxidases, NADH dehydrogenase-2 and cytochrome C oxidase (COX), the 

latter being critical in cellular respiration (Festa & Thiele 2011).  

The interaction of metal ions with specific amino acids often ensures the proper 

conformation of metalloproteins (Festa & Thiele 2011). Zn fingers are a prime example of metal-

mediated structural motifs, where Zn stabilizes the protein in a certain fold. Zn fingers-containing 

proteins are often involved in transcription, DNA recognition and apoptosis regulation (Laity et al. 

2001).  

In a similar way, Fe takes part to the electron transfer chain and in some cytochrome 

complexes, such as the succinate dehydrogenase (Failla 2003). In addition, Fe displays a strong 

affinity for sulfides, enabling the formation of iron-sulfur (Fe-S) clusters. Fe-S clusters are so 

ubiquitous and abundant that they are sometimes regarded as one of the most prevalent prosthetic 

group and one of the very first catalyst in life (Fontecave & Ollagnier-de-Choudens 2008; Beinert 

2000). Owing Fe crucial role in many cellular functions, Fe deprivation is often triggered by the host 

as a first line of defense upon pathogen infection (Becker & Skaar 2014). In order to adapt to this 

defense strategy, the causative agent of the Lyme disease Borrelia burgdorferi evolved by replacing 

Fe by Mn in its metalloproteins (Horsburgh et al. 2002). To overcome potential Fe limitation, bacteria 

also developed complex strategies. For instance, the small Fe-scavenging siderophores display a high 

affinity for Fe3+ and are secreted in the extracellular space upon Fe starvation by several bacterial 

species. In Gram-negative bacteria, Fe-bound siderophores then bind TonB-dependent receptors at 

the bacterial surface allowing Fe to enter the cell. In Gram-positive bacteria, like B. subtilis, 

siderophores can bind directly to specific ABC transporters anchored in the cytoplasmic membrane 

(Chandrangsu et al. 2017; Benson & Rivera 2013; Andrews et al. 2003). 
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  b. “The dose makes the poison” – When metals turn toxic 
 

 Despite their essential role in cellular processes, metals often turn toxic when their cellular 

concentration exceeds a specific threshold.  

i. Mismetallation 

Metal cytotoxicity mainly relies on their ability to compete with other metals and to cause 

mismetallation. In this context, the Irving-William series ranks transition metals according to the 

relative stability of the complexes they can form (Waldron & Robinson 2009; Festa & Thiele 2011), 

such that metals at the top of the series (like Cu) exhibit a higher affinity for a specific ligand, even at 

low concentration. 

 

Mismetallation may alter the conformation and therefore the function of a metalloprotein 

(Chandrangsu et al. 2017). In E. coli, Zn2+ was shown to decrease the activity of ribulose-3-phosphate 

5-epimerase (RPE) by replacing the cognate Fe2+ cofactor in the enzyme (Imlay 2014). Whether this 

effect is due to the high affinity of Zn for the ligand (preventing it from being released fast enough), 

or due to a structural alteration is not clear yet. This mismetallation is cytotoxic considering the role 

of RPE in sugar conversion (Imlay 2014). When Streptococcus pneumoniae is subjected to a Zn stress, 

Zn2+ competes with Mn2+ within the Mn2+ PsaA importer. Although PsaA  still retains a higher affinity 

for Mn2+, the Zn2+  binding with it seems significantly more stable, which may clog the importer and 

prevent further Mn import (McDevitt et al. 2011). 

Mismetallation seems to be a widespread mechanism of toxicity. It has been observed in all 3 

domains of life and has been reported with ions not listed in the Irving-William series, such as Cu+ 

(Chandrangsu et al. 2017),  Ag+ (Das & Dash 2017), Pb2+ (Fullmer et al. 1985) and Cd2+ (Hossain et al. 

2012). Pb2+ displaces Ca2+ in the calmodulin, disrupting cellular signaling in animal cells (Fullmer et al. 

1985). A similar effect is observed in plants, where Ca2+ ions bound to calmodulin are displaced by 

Cd2+  (Hossain et al. 2012). Cd was also reported to bind sulfhydryl groups and to displace cognate 

metal cofactors from various metalloproteins including transcription factors (Kim et al. 2007). 

Because of its high affinity for thiolate, Cu+ is proposed to disrupt Fe-S clusters (Dupont et al. 2011). 

In E. coli, it has been suggested that Cu+ damages Fe-S cluster dehydratases by displacing Fe atoms 

from the cluster, leading to the inactivation of the enzyme (Macomber & Imlay 2009). By binding 

thiols indiscriminately, Cu would therefore affect protein structure (Letelier et al. 2005).   
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ii. Oxidation of cellular substrates 

Metals can also promote the generation of ROS leading to an oxidative stress. Fe2+ is a well-

known catalyst of the Fenton reaction converting H2O2 into the highly toxic hydroxyl radical (OH.) 

that potentially oxidizes DNA, lipids and proteins (Winterbourn 1995). Cd2+ is thought to induce lipid 

peroxidation when it interacts with cell membranes (Rani et al. 2014). Cu+ is also able to catalyze a 

Fenton-like reaction in vitro (Santo et al. 2008; Rensing & Grass 2003), although the in vivo relevance 

of this process is still under debate due to the lack of evidence of Cu-induced ROS DNA damage 

(Macomber et al. 2007).  Cu is also able to generate other kinds of ROS, at least in vitro, such as nitric 

oxides through the oxidation of S-Nitrosothiol compounds (Achard et al. 2012; Gordge et al. 1995). 

Cd mismetallation can also indirectly promote oxidative stress by triggering the release of free Fe 

from various proteins, such as ferritins, which may in turn be involved in a Fenton reaction (Rani et 

al. 2014): 

 

In addition to ROS generation, Cu can potentially induce the formation of undesired disulfide 

bonds between 2 thiol groups (Hiniker et al. 2005). These disulfide bonds may impair protein 

conformation and lead to its inactivation, as it was shown with β-galactosidase (Hiniker et al. 2005; 

Tian et al. 2000). 

Recent studies revealed that dry Cu surfaces have a strong bactericide or bacteriostatic 

potential, although the mechanisms underlying this toxicity have not been completely elucidated yet. 

It is proposed that dissolved Cu ions may enter the cells and induce the toxic mechanisms described 

above (Molteni et al. 2010). In addition, dry Cu has been reported to promote a rapid loss of the 

membrane integrity referred to as contact killing (Santo et al. 2008; Santo et al. 2010; Grass et al. 

2011).  
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Metal-dedicated resistance systems 

  
Even though many metals share the same mechanisms of toxicity, bacteria evolved metal -

and cellular compartment-specific defense strategies, indicating that a fine-tuning of metal 

homeostasis is required for each metal in each cellular compartment to maintain bacterial fitness.  

1. Extracellular space - dealing with an invasive friend 
 

When the extracellular concentration of a given metal increases, the first “checkpoint” 

consists in limiting the entry of the metal in order to maintain proper cellular metal homeostasis and 

to avoid cellular damage. A straightforward mean to handle this stress is to downregulate the 

expression of metal importers.  

In Bacillus subtilis, Zn is sensed by the Zinc Uptake Regulator (Zur) protein. When intracellular 

Zn concentration increases, the dimeric protein Zur binds DNA and represses the Zur regulon 

involved in Zn uptake (Chandrangsu et al. 2017). A paralogous system exists for the Fe uptake 

regulation, where the Fur protein represses Fe acquisition gene in a similar way. These regulators are 

conserved in many bacterial classes. For instance, the actinobacterium Frankia genome encodes the 

Fur, Zur, Nur, Mur and Co-Fur proteins that regulate Fe, Zn, Ni, Mn, and Co import, respectively 

(Furnholm & Tisa 2014).  

In B. subtilis, Mg import relies on a magnesium-sensitive riboswitch (Dann et al. 2007). 

Indeed, the MgtE importer is likely the primary mechanism involved in Mg acquisition (Wakeman et 

al. 2014). Mg2+ induces a conformational change of the mgtE mRNA, which promotes its compaction 

and the inactivation of an antiterminator structure, causing mgtE transcription arrest.  

Chelation or precipitation of the soluble metal ions in the extracellular medium is another 

means to limit metal entry. In Saccharomyces cerevisiae, the SLF1 protein biomineralizes Cu at the 

surface of the yeast cells by converting CuSO4 (soluble Cu2+) into CuS (insoluble Cu+), increasing the 

yeast Cu tolerance (Yu et al. 1996). A similar strategy is observed in Cu-exposed P. aeruginosa 

biofilms, where brown Cu-containing precipitates can be found in the extracellular space, indicating a 

role of the biofilm in Cu chelation and cell protection (Harrison et al. 2005). 



 
Fig. 3: Depiction of the general structure of a P1B-type ATPase.  P1B-type ATPases contain six to eight transmembrane 
domains (TMD). These TMDs forms the main translocation channel. Three additional domains are facing the cytoplasm: the 
phosphoryl domain (P, in green), the catalytic activation domain (A, in blue), and the ATP-binding domain (N, in red). OM, 
outer membrane; IM, inner membrane. 
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2. Intracellular space – Keeping the place safe 
 

Unlike Gram-positive bacteria which display one single lipid membrane, the cytoplasm of 

Gram-negative bacteria is isolated from the extracellular medium by the periplasm, which is 

delimited by the inner membrane (cytoplasmic side) and the outer membrane (extracellular side). 

The periplasm and the cytoplasm harbor distinct physiological activities under more oxidative and 

more reducing conditions, respectively, implying that metal toxicity will vary relative to the cellular 

compartment. Therefore, several strategies have been developed through evolution to cope with 

cellular metal stress, ranging from metal export to detoxification of metal ions or toxic by-products. 

a. Efflux 
 

The most common strategy to regulate metal homeostasis consists in decreasing cellular 

metal concentration with the use of efflux pumps. Several types of efflux pumps have been 

characterized in bacteria.  

i. ATPases 

P1b-type ATPase (also known as E1-E2 ATPases) pumps are typical metal exporters and are 

conserved in many organisms, from bacteria to eukaryotes. These transporters use ATP hydrolysis as 

a source of energy to translocate a substrate across the cytoplasmic membrane. P1b-type ATPases 

typically contain 6 to 8 transmembrane domains (TMD) constituting the translocation channel. Three 

additional domains facing the cytoplasm are involved in ATP binding and hydrolysis, energy 

transduction, and regulation of the system (Fig. 3) (Argüello et al. 2011; Inesi et al. 2014).  

P1B-type ATPase have been characterized in many organisms. Cognate P1B-type ATPases have 

been identified for the specific transport of Cu+, Fe2+, Zn2+ and Co2+ (Culotta & Scott 2013; Guan et al. 

2015). In B. subtilis, Fe2+ export is mediated by the PfeT ATPase (Guan et al. 2015). In E. coli, Zn2+ 

cations are transported from the cytoplasm to the periplasm by the ZntA P1b-type ATPases (Rensing 

et al. 1997). Owing to their physicochemical properties, Cd2+, Pb2+
, and Ag+ likely use non-cognate 

ATPase (Argüello et al. 2011). 

  



 

Fig. 4: Classic structure of the HME-RND transporter family. The complex articulate itself around a RND protein (RND, in 
blue, anchored in the inner membrane), a periplasmic MFP (in red), and an OMP (in green). Metal ions (blue octagons) are 
delivered either from the periplasm or directly from the cytoplasm. OM, outer membrane; IM, inner membrane; HME, 
heavy metal efflux; RND, resistance-nodulation-division; MFP, membrane fusion protein; OMP, outer membrane channel 
protein. 

 
Fig. 5: Schematic representation of a CDF transporter. CDF are usually composed of six transmembrane helices (or TM 
domain). The second and fifth TM domain, depicted in green, comprise metal binding sites. The third helix, in pink, serves 
as a hydrophobic gate. The histidine-rich loop (IL-2, in dark red, linking the fourth and fifth TM domain) has a metal 
selectivity purpose. OM, outer membrane; IM, inner membrane; CDF, cation diffusion facilitators. 
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ii. HME-RND  

 

A Heavy Metal Resistance-Nodulation-Division (HME-RND) transporter is typically a tripartite 

complex where the RND protein, generally anchored in the inner membrane, is linked to an outer-

membrane channel protein (OMP) via a periplasmic membrane fusion protein (MFP) (Fig. 4)  

(Valencia et al. 2013; Nies 2003).  

While RND complexes share a common structure in Gram-negative bacteria, they diverge 

enough to accommodate for different metals. For instance, in Pseudomonas putida, the CzcCBA 

system confers increased resistance against Zn2+, Cd2+ and Pb2+ (Leedjärv et al. 2008). In C. crescentus, 

the CzrCBA and NczCBA systems are involved in Cd and Zn, and Ni and Co efflux, respectively 

(Valencia et al. 2013). A similar system also exists in Helicobacter pylori, where CznABC mediates Cd, 

Zn, and Ni homeostasis. A tight regulation of cellular metal homeostasis is particularly important in 

the success of H. pylori infection (Stähler et al. 2006). In Cupriavidus metallidurans, the CzcCBA 

system, among others, confers higher resistance to Co, Cd, Zn and Ni (Nies 2003). 

 

iii. Cation diffusion facilitator 

 

The third major type of bacterial efflux pumps is the Cation Diffusion Facilitators (CDF) 

family. These membrane metalloproteins are classically composed of 6 transmembrane helices, 2 of 

which possess metal binding sites. The third TMD usually acts as a hydrophobic gate. A histidine-rich 

loop (IL-2) between the fourth and the fifth TMD has a metal selectivity purpose (Fig. 5)  (Kolaj-Robin 

et al. 2015). CDF mostly transport Zn2+, Co2+, Cd2+, Ni2+ and Fe2+ ions by diffusion along gradients (Nies 

2003; Higuchi et al. 2009). In E. coli, ZitB and YiiP antiporters export Zn2+ against H+ (Wei & Fu 2005; 

Chao & Fu 2004). This system is conserved across a large number of bacteria, including extremophiles 

such as the hyperthermophilic bacterium Thermotoga maritima (Higuchi et al. 2009). 

In B. subtilis, MneP and MneS CDF proteins are controlled by the Mn sensor and regulator 

MntR (Huang et al. 2017). MneP and mneS mutants exhibit an increased Mn sensitivity and 

accumulate 12 times more Mn ions than the wild-type strain (Huang et al. 2017).  

  



 

Fig. 6: Schematic representation of an ABC transporter. The transmembrane domains (in light blue) are anchored in the 
cytoplasmic membrane, where they serve as permeases. The cytoplasmic NBD (in green) featuring an ATP-binding cassette, 
uses the energy of ATP hydrolysis to modify the conformation of the complex to allow the transportation of substrates. OM, 
outer membrane; IM, inner membrane; NBD, nucleotide-binding domain. 
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iv. ABC transporters 

 

The ATP-Binding cassette (ABC) transporters family is the most conserved transport system 

in living organisms (Higgins 2001; Jones & George 2004).  

ABC transporters are generally composed of (i) a TMD anchored in the cytoplasmic 

membrane and acting as a permease and (ii) a cytoplasmic nucleotide-binding domain (NBD) 

featuring an ATP-binding cassette (Fig. 6). ABC transporters ensure the transport of a wide variety of 

substrates such as sugars, amino-acids and metals (Fath & Kolter 1993). In E. coli, YbbP and YbbA 

have been reported as 2 subunits of a putative metal exporting ABC system. (Moussatova et al. 

2008). Even though ABC metal exporters turn out to be less prevalent in bacteria than in the other 

domains of life, yet they are crucial in metal extrusion in many microorganisms, including unicellular 

fungi and algae. In S. cerevisiae, Yor1 is proposed to transport Cd-bound glutathione across the 

plasma membrane in order to maintain a proper cellular Cd concentration (Culotta & Scott 2013). In 

addition, the Fe-specific Atm1 ABC transporter was identified in the S. cerevisiae mitochondrial inner 

membrane, where it would protect mitochondrial DNA from Fe-induced oxidative damage by 

regulating mitochondrial Fe homeostasis. Accordingly, Atm1 mutants accumulate up to 30 times 

more mitochondrial Fe than the wild-type strain (Radisky et al. 1999; Schueck et al. 2001; Chloupková 

et al. 2003).  

In Arabidopsis thaliana, the ABC transporter AtPDR8 is upregulated in the presence of both 

Cd and Pb and provides an increased resistance to both metals (Kim et al. 2007). 

v. Others transport systems 

 

Several efflux systems do not belong to any of the aforementioned categories. Yet, they play 

an important role in metal homeostasis. For instance, the Fe integral inner membrane MbfA exporter 

has been identified in the Gram-negative bacteria Bradorhyzobium japonicum (Sankari & O’Brian 

2014). Interestingly, mbfa gene expression is induced by Fe only, suggesting that its function may be 

specific to this metal (Sankari & O’Brian 2014). 

 In E. coli, the expression of the RcnA inner membrane Ni/Co pump, previously known as 

YhoM, is induced by Ni and Co. Accordingly, a rcnA mutant exhibits an increased sensitivity to Ni and 

Co by accumulating nearly twice more Ni than the wild-type strain. RncA overexpression leads to a 

drastic decrease of the cellular Ni concentration below the wild-type level. However, RncA does not 

harbor any 
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 typical genetic signature from other known efflux system, suggesting that it belongs to a novel family 

(Rodrigue & Effantin 2005; Bleriot et al. 2011). 

Non-specific multidrug efflux pumps have been shown to mediate the export a broad variety 

of compounds and molecules, including metals (Blanco et al. 2016). Various bioinformatics tools 

facilitate the prediction of potential Periplasmic Export Protein (PEP) and Outer membrane Efflux 

Protein (OEM) based on sequence homology, without however predicting their substrate (Johnson & 

Church 1999).  

b. Storage and detoxification 
 

Owing to their cytotoxicity, free metals ions must remain scarce in the intracellular bacterial 

space. In eukaryotic cells, free Zn2+ concentration is in the picomolar range (Maret 2015). In bacteria, 

free Cu is estimated at less than one atom per cell, which is in agreement with the extreme 

sensitivity of the CueR sensor, theoretically within the zeptomolar range (Changela et al. 2003). In 

order to maintain such a low amount of free metal ions and to limit metal-associated damages, 

bacteria evolved molecules such as chelators, scavenging proteins and chaperones, displaying a 

strong affinity for metals.  

i. Metallochaperones 

 

Metallohaperones are cytoplasmic or periplasmic proteins acting as metal carriers. 

Metallochaperones not only isolate toxic free metal ions, but they also ensure their correct delivery 

to their cognate protein targets (Harrison et al. 1999; Waldron & Robinson 2009; Bagai et al. 2008). 

In E. coli, MerP binds Hg2+ cations and transfers them to the inner membrane MerT transporter, 

which feeds the cytoplasmic MerA mercuric reductase for Hg2+ detoxification into Hg0 (Das & Dash 

2017; Moore et al. 1990). Some metallochaperones provide protection against multiple metals. The 

periplasmic Zn chaperone ZinT binds not only Zn, but also Co, Cd and Hg (Kershaw et al. 2007; Colaço 

et al. 2016). Despite some contradictory results about ZinT function, zinT expression seems to rely on 

the Zn-specific regulator Zur. ZinT chaperone would deliver Zn to the ZnuABC inner membrane Zn 

importer, therefore playing an important role under Zn starvation as well. ZinT expression is also 

upregulated upon periplasmic Cd stress (Colaço et al. 2016). In addition, ZinT binds a wide array of 

metals and increases the resistance against Cd, Co and Hg.  It was even hypothesized that ZinT can 

deliver Co2+ ions to the previously described Ni/Co pump RcnA/B (Colaço et al. 2016).   
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 In B. subtilis, Cu+  ions are delivered to the CopA P1b-type ATPase by the CopZ chaperone 

(Radford et al. 2003). CopZ binds Cu+ via a typical MxCxxC binding domain (Cobine et al. 2002). This 

conserved domain is present in the majority of bacterial Cu chaperones identified so far (Harrison et 

al. 1999). Most of these metallochaperones display a βαββαβ (“Open-faced β Sandwich”) folding 

(Harrison et al. 1999; Pontel et al. 2015). E. Hirae CopZ is a cytoplasmic chaperone that delivers Cu+ 

ions to the CopY repressor, triggering its release from the cop operon promoter and allowing cop 

transcription. CopZ therefore acts as an indirect activator of the cop operon (Cobine et al. 1999; 

Cobine et al. 2002) In E. coli, no CopZ homolog has been identified. However, a recent study 

demonstrated that the CopA mRNA is translated into a chaperone protein through a ribosomal 

frameshifting (Meydan et al. 2017). The copA gene therefore encodes both the ATPase and its 

chaperone, highlighting the amazing optimization potential of bacterial genomes. 

ii. Metallothioneins 

 

Metallothioneins (MT) are small cytoplasmic or periplasmic proteins binding metals via 

thiolate bounds within cysteine residues (Hamer 1986). While their main biological function is still a 

matter of debate, they have been shown to bind Zn, Cu, Hg, Cd, As, or Ag (Chandrangsu et al. 2017; 

Culotta & Scott 2013; Peer et al. 2006). Unlike metallochaperones, MT do not play a role in directed 

metal transport. MT are found in eukaryotes and bacteria and often exhibit a “buffer-like” function 

to limit the toxicity of free metal ions. In Synechococcus species, the Smta metallothionein has been 

shown to bind Zn2+, but also possibly other ions, as its expression is also induced by Cu2+ and Cd2+ 

(Culotta & Scott 2013; Borkow & Gabbay 2005; Bruins et al. 2000). In Providencia vermicola the 

metallothionein BmtA sequesters Pb in the periplasm, leading to increased Pb resistance (Sharma et 

al. 2017). 

iii. Glutathione  

 

Glutathione (GSH) is a thiol compound produced by many organisms, including bacteria. In E. 

coli, it is synthesized in a two-step reaction from 3 amino acid precursors: Glu, Cys, and Gly (Masip et 

al. 2006). This reaction is catalyzed by GshA and GshB. GSH has a broad range of biological functions, 

including protection against various stresses, such as pH variation, osmotic shock or toxic products 

(Masip et al. 2006; Montoya 2013; Wang & Ballatori 1998; Potter et al. 2012). As an antioxidant, GSH 

plays a critical role in the defense against ROS (Potter et al. 2012). In E. coli, GSH protects against 

H2O2-induced oxidative stress (Masip et al. 2006).  
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Many Gram-positive bacteria, such as Streptococcus mutans, are lacking the GSH synthesis 

pathway (Sherrill & Fahey 1998; Vergauwen et al. 2013). In absence of GSH, some bacteria can 

produce other low molecular weight thiols to replace it (Smirnova & Oktyabrsky 2005), or import 

GSH from the environment. It was shown that S. mutans imports GSH from the environment through 

2 ABC transporters: TcyBC, and GshT, a solute binding protein possessing a high affinity for GSH 

(Vergauwen et al. 2013). An homologous system is present in the Gram-positive Streptococcus 

pneumoniae, where extracellular GSH is imported by the GshT ABC transporter (Potter et al. 2012). A 

S. pneumoniae GshT mutant is unable to grow properly when challenged with toxic Cu, Zn, or Cd 

concentrations (Potter et al. 2012). GSH mercaptides are also known to binds metals, such as Cu, Cr, 

or Zn via non-enzymatic reactions, providing a chelating effect and preventing the potential toxicity 

of free metal ions (Helbig et al. 2008; Ballatori 1994; Wang & Ballatori 1998). 

The GSH oligomer phytochelatin is mainly present in plants where it sequesters various metal 

ions. It is also an important means of metal detoxification for numerous microorganisms such as 

unicellular algae or fungi (Helbig et al. 2008). In Schizosaccharomyces pombe, Cd2+-bound 

phytochelatin is translocated into a vacuolar compartment by the hmt1-encoded ABC transporter, 

thereby isolating the toxic metal from valuable cellular material  (Ortiz et al. 1992; Ortiz et al. 1995). 

iv. Ferritins 

Dedicated resistance systems can limit metal toxicity by combining sequestration with an 

oxidoreduction reaction. Ferritin, bacterioferritin, and ferritin-like proteins are multimeric proteins 

involved in the storage and detoxification of free Fe ions (Carrondo 2003; Das & Dash 2017). Ferritin 

proteins are conserved among most living organisms, from bacteria to mammals, underlying their 

utmost importance in the regulation of cellular Fe distribution and availability.  Ferritin is composed 

of 24 subunits forming a spherical shape that can hold up to 4500 Fe atoms and therefore acts as a 

Fe buffer and storage under both Fe starvation and excess. In addition, ferritin uses O2 to oxidize Fe2+ 

ions at the ferroxidase catalytic site within each ferritin subunit (Andrews et al. 2003). The soluble 

Fe2+ cations are thus stored in the less toxic Fe3+ ferrihydrite minerals (He et al. 2016), and can 

remobilize Fe2+ ions upon Fe starvation (Pulliainen et al. 2005; Andrews et al. 2003).  

Dps proteins (DNA-binding Proteins for Starved cells) are Fe detoxification proteins, similar to 

ferritins in the sense they also form roughly spherical shapes that encapsulate Fe ions (Andrews et al. 

2003). They are sometimes referred to as ferritin-like proteins, although they are composed of only 

12 subunits, limiting the number of bound Fe ions (about 500). Yet, Dps proteins are primarily 

involved in DNA protection against ROS during stationary phase (Almiron et al. 1992). Dps Fe binding 

ability was demonstrated much later (Zhao et al. 2002). 
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v. Multicopper Oxidases 

 

Multicopper Oxidases (MCO) use Cu ions as cofactors to oxidize a broad range of substrates 

(Solomon et al. 1996; Komori & Higuchi 2015). Classically, MCOs harbor 3 Cu binding sites. The 

mononuclear T1 Cu site accepts electrons and transfer them to a trinuclear cluster, which is 

composed of a mononuclear T2 Cu site and a binuclear T3 Cu center, binding and reducing O2  

(Solomon et al. 1996; Galli et al. 2004). Specific MCOs are involved in metal resistance by using the 

metal as a substrate (Solomon et al. 2008; Butterfield et al. 2013).  

Cu-oxidizing MCOs tend to be conserved, although small structural and functional variations 

can be observed. For instance, the Rhodobacter capsulatus CutO MCO provides Cu tolerance, despite 

the lack of an extra methionine-rich region (Wiethaus et al. 2006).  

vi. Other detoxification systems 

 

MerA is a Mercuric iron Reductase dedicated to the detoxification of the deleterious Hg2+ 

ions into the volatile and near-inert Hg0 in the cytoplasm of many bacteria (Moore et al. 1990). This 

system is conserved in various Gram-negative and Gram positive bacteria such as E. coli, B. subtilis, 

Bacillus thuringiensis and P. aeruginosa (Das & Dash 2017; Barkay et al. 2003; Moore et al. 1990; 

Schiering et al. 1991). 

Some metal reductases are coupled to efflux systems in order to provide their protective effect. For 

instance, the ArsC arsenate reductase turns the pentavalent As5+ (arsenate) into the trivalent As3+ 

(arsenite). Arsenate is an analog of phosphate that impairs phosphorylations in metabolic reactions. 

Arsenate also prevents ATP synthesis by inhibiting oxidative phosphorylations (Tamaki & 

Frankenberger Jr 1992). Arsenite is however regarded as more toxic than arsenate, owing to its 

ability to bind thiol groups (Tamaki & Frankenberger Jr 1992; Kaur et al. 2011; Kaur et al. 2009; Silver 

& Misra 1984). Nevertheless, the reduction of arsenate into arsenite is necessary for As homeostasis 

considering the specificity of the ArsA and ArsB exporters for arsenite (Bruins et al. 2000). 

Interestingly, in some bacteria such as certain Bacillus, Alcaligenes or Pseudomonas species, As3+ is 

oxidized into the less toxic As5+ (Tamaki & Frankenberger Jr 1992; Turner 1949; Osborne & Ehrlich 

1976).  

All these homeostasis, resistances, or detoxifications systems highlight the duality of metals. 

Both essential and potentially harmful, transition metals are particularly interesting to study. Cu, one 

of the most reactive transition metals according to the Irving-William series, was chosen as the focus 

of this work.  
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The Copper Case 

From a chemical point of view, Cu is a natural element that exists in several ionic forms. The 

most common forms are Cu+ and Cu2+. Both of these forms can potentially damage the cell, although 

the reduced Cu+ is regarded as slightly more toxic than the oxidized form Cu2+ (Osman & Cavet 2008). 

Interestingly, Earth (and Life) witnessed a major shift in Cu bioavailability. Until 2.5 billion years ago, 

the Earth had a reducing atmosphere, which maintained the majority of Cu in the insoluble cuprous 

form (Cu+). At the time, most of the oxygen was chelated by dissolved Fe ions. During the Great 

Oxygenation Event (GOE), the Earth atmosphere underwent a rapid and massive increase of O2, 

generating an oxidative environment (Margulis & Sagan 1987; Hao et al. 2016).  As O2 increased with 

the GOE, soluble Fe2+ was oxidized into the less soluble Fe3+
, and insoluble Cu+ was oxidized into 

soluble cupric form (Cu2+). This event marked a shift in metalloproteins composition, as they began to 

favor Cu as a cofactor (Hao et al. 2016). 

From a physicochemical point of view, Cu is a ductile and conductive metal, which is naturally 

present in the environment, such as in soils, sediments or water. Cu concentration displays important 

variations, either due to natural factors (e.g., the presence of Cu veins or deposits) or anthropogenic 

pollution. In non-polluted soils, the average Cu concentration is around 30 mg/kg (Adriano 2001; 

Komárek et al. 2010). In water, the reported average Cu concentration varies between 0.2 and 200 

µg/L. However, in case of pollution, these numbers can increase thousandfold (reaching up to a few 

g/kg and mg/L, respectively) (Monteiro et al. 2010; Hu et al. 2005; Nirel & Pasquini 2010; Moran 

2004). However, absolute concentrations are not always meaningful indicators. What often matters 

for most living organisms is the free or bioavailable Cu  more than the biochemically inert or 

inaccessible Cu. 

1. The two faces of a same (copper) coin 
 

Cu shares a long history with humankind. The Chalcolithic period, covering roughly 9000 to 

3500 B.C., is called the “Copper Age”, and marks the time in which humanity began to use Cu by 

inventing metallurgy. Cu is thus likely to be the oldest metal used by mankind. Nowadays, Cu is used 

for its physical properties in plumbing, in the automobile industry, in electronic components, wires… 

Moreover, importantly, Cu is also used for its toxic properties. 



 

Fig. 7: Examples of Cu usage for its antimicrobial properties. On the left is photography of section of the Edwin Smith 
Papyrus, in which Cu is presented as beneficial for wound treatments (Photography originally taken from the Rare Book 
Room, New York Academy of Medicine, Public domain, and recovered from http://nyam.org/news//2493.html). On the 
right is a digitized extract from Ann Arbor Argus (June 3, 1892, Public domain), depicting the recipe for the Bordeaux 
Mixture, used as an anti-fungal on potato cultures. 

 

 

Fig. 8: Cu redistribution in Murine macrophages. Murine macrophage were fixed and stained with DAPI (left) and a Cu 
specific probe (middle). Right image is the overlay with probed Cu in red, and both Macrophages and Salmonella DNA 
stained by DAPI in grey Picture from (Achard et al. 2012) 
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Although the mechanisms of Cu toxicity were not always understood, Cu has empirically 

been used as an antimicrobial, antiviral or antifungal solution for a long time. We can trace its use 

back to Ancient Egypt, where Cu tools were employed in medicine and Cu concoction prepared to 

cure various ailments (Fig. 7) (Breasted 1930; Grass et al. 2011). The new world pioneers used to put 

copper coins in water barrels in order to increase the time of use (Borkow & Gabbay 2005). In 

agriculture, the Bordeaux Mixture (mostly composed of CuSO4 and Ca(OH)₂) has been used since the 

19th century on vines, to prevent mildew infections (Fig. 7) (Hobman & Crossman 2015; Komárek et 

al. 2010). Cu is also used in boat paint as an anti-fouling means to prevent algae and microorganisms 

from adhering to the hull, or as a treatment against various diseases (Borkow & Gabbay 2005). 

Recently, the medical field renewed with the idea of using dry Cu as a means to limit nosocomial 

infections and encouraged hospitals to plate surfaces such as door handles or bed railings with Cu or 

Cu alloys (Hodgkinson & Petris 2012).  

Because Cu is essential at low dose and toxic as its concentration increases (Cfr. “Metal 

Stress”, point 2a. and 2b.), tuning the internal Cu concentration is similar to walking a thin line. 

Pathogens, for instance, often engage in a “tug-o-war” competition with the host, the latter trying to 

starve the former of this essential nutrient (Braymer & Giedroc 2014; Espart et al. 2015; Becker & 

Skaar 2014). Alternatively, the host can also try to kill the pathogen by accumulating Cu at the entry 

site of the infection, as it was observed in murine macrophages upon Salmonella (Fig. 8) or 

Cryptococcus neoformans infections (Achard et al. 2012; Espart et al. 2015). 
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2. Cu acquisition  
 

Cu entry in bacteria has been studied for years, although it remains elusive in most bacterial 

models (Porcheron et al. 2013; Argüello et al. 2013). For instance, there is no real consensus on how 

Cu ions enter E. coli cells. Most hypotheses formulated for Cu entrance in this organism come from 

indirect evidence. In E. coli, Cu acquisition was suggested to rely at least partially on porins 

(Lutkenhaus 1977; Argüello et al. 2013). E. coli strains lacking the “protein B porin” (later renamed 

OmpB) were described to be more resistant to Cu stress (Lutkenhaus 1977). The porin had been 

shown in-vitro to be a non-specific importer (Nakae 1976), able to transport various compounds 

across reconstituted vesicles. This led to think Cu may simply enter the cells in a non-specific way 

through OmpB.  

Recently, however, a new Cu acquisition pathway was discovered in a pathogenic strain of E. 

coli. In UPEC strain, Cu would be imported by the Yersiniabactin (Ybt) metallophore (Koh et al. 2017). 

The ybt gene is found in a pathogenicity island and was originally characterized in Yersinia pestis. The 

Ybt metallophore was first described to help the bacterium resist Cu stress. Ybt would bind free Cu 

ions to prevent toxicity (Chaturvedi et al. 2013; Koh & Henderson 2015). However, recent 

developments indicate that in case of Cu deficiency, Cu-Ybt complexes may also be uptaken by the 

FyuA OM protein. FuyA would then import them in the periplasm. The YbtP/Q protein tandem, 

anchored in the IM, may be involved in Cu-Ybt dissociation, or even in Cu transport toward the 

cytoplasm (Koh et al. 2017). 

In other bacteria, some Cu importers have been identified. In Enterococcus hirae, the CopA 

protein, although usually regarded as an exporter (cfr. point 3.a.), was reported to be a Cu importer. 

However, the evidence sustaining the uptake function remain indirect (Odermatt et al. 1993; Solioz & 

Stoyanov 2003). 

In the alphaproteobacterium Rhodobacter capsulatus, Cu is likely to be imported in the 

cytoplasm by CcoA, a transporter belonging to the major facilitator superfamily (Khalfaoui-Hassani et 

al. 2018). Interestingly, CcoA homologs, despite being absent in C. crescentus, are found in several 

other alphaproteobacteria, including S. meliloti or Ochrobactrum anthropi. In E. coli, this cytoplasmic 

import could be performed (in addition to the YbtPQ pathway described above) by the hypothetical 

importer PcoD, localized in the IM (Argüello et al. 2013). However, the fact most cuproenzymes are 

located in the periplasm led some authors to think the cytoplasmic Cu import would be so limited it 

may not require specific transporters (Argüello et al. 2013; Osman & Cavet 2008). 



 

Fig. 9: Schematic overview of the Cue system in E. coli. Upon Cu sensing, the CueR protein will upregulate the transcription 
of the cueO and copA genes. The CopA ATPase will anchor in the inner membrane and channel Cu

+
 ions to the periplasm, 

where the CueO MCO will detoxify them by oxidizing them in Cu
2+

 

 

Fig. 10: Ribbon drawing of the crystal structure of E. coli CueO. The T1 Cu and Cu3O clusters are depicted as spheres. The 3 
domains are colored separately. Image from (Roberts et al. 2002) 
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3. The major Cu resistance systems of the E. coli model 
 

In the E. coli model for the transition metals homeostasis, the 3 main copper resistance 

systems are the Cue system, the Cus system, and the Pco system.  

a. The Cue system 
 

The first line of defense is thought to be the Cue system, composed of CueR, CueO, and 

CopA. A Cu cytoplasmic censor (the CueR protein, acting both as a sensor and a transcriptional 

regulator) detects free Cu ions in the cytoplasm. Upon detection, CueR activates the transcription of 

the copA gene, encoding the CopA P1b-type ATPase (Fig. 9). 

P1b-type ATPases typically share a distinctive Cu-binding motif composed of 2 cysteines 

(CXXC) in the cytoplasmic N-terminus, before the transmembrane helices  (Hodgkinson & Petris 

2012). In E. coli CopA, CGHC and CASC can be found in the position 14-17 and 112-115, respectively, 

both before the first TMD in position 185. Additionally, P1b-type ATPases usually feature a conserved 

HP or CP(C/H) motif in the sixth TMD (Argüello et al. 2011). This CPC pattern can be found in position 

497-499 in CopA (Rensing & Franke 2013; Rensing et al. 2000). 

CopA homologues have been found in many bacterial species, including B. subtilis, 

Sinorhyzobium meliloti, Legionella pneumophila, and E. hirae (Porcheron et al. 2013; Patel et al. 2014; 

Argüello et al. 2013; Multhaup et al. 2001). As mentioned in the previous point, in E. hirae, CopA was 

first characterized as an importer. The export function would then be carried out by the CopB ATPase 

(Odermatt et al. 1993). It is interesting to note that CopA does not bind free soluble Cu ions, which 

would be highly toxic in the cytoplasm, but receives the ions from a transporter (see chaperone 

section below). 

 Along with the copA transcription, CueR also upregulates the expression of cueO, coding for 

a periplasmic MCO involved in Cu detoxification (Fig. 9 and Fig. 10).  

  



 

Fig. 11: Schematic overview of the CuS system in E. coli. The histidine kinase CusS, anchored in the IM, acts as a Cu sensor. 
Upon detection, the signal will be transmitted to the transcriptional activator CusR. CusR will upregulate the transcription of 
the cusABCF operon, encoding for a HME-RND type export system.  

 

Fig. 12: Ribbon drawing of the crystal structure of E. coli CuSA, CusB and CusC. A) Ribbon drawing of the assembly of CusA 
homotrimer B) Ribbon diagram of the CusB protomer. C) Ribbon representation of the CusC trimer. Picture assembled with 
images taken from (Long et al. 2012; Kulathila et al. 2011) 
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MCOs use Cu ions as cofactors to oxidize a broad range of substrates (Solomon et al. 1996; 

Komori & Higuchi 2015). In E. coli, CueO oxidizes Cu+ into the less toxic Cu2+ by using O2 as a final 

acceptor (Grass & Rensing 2001). Cu+ oxidation will therefore result in a 4 electrons reduction of O2 

into 2 H2O molecules (Grass & Rensing 2001; Djoko et al. 2010). Classically, MCOs harbor three Cu 

binding sites. The mononuclear T1 Cu site accepts electrons and transfer them to a trinuclear cluster, 

which is composed of a mononuclear T2 Cu site and a binuclear T3 Cu center, binding and reducing 

O2  (Solomon et al. 1996; Galli et al. 2004). Specific MCOs are involved in metal resistance by using 

the metal as a substrate (Solomon et al. 2008; Butterfield et al. 2013). Near the T1 Cu site, CueO also 

displays a methionine-rich region binding a labile Cu ion in the context of a phenol oxidase activity 

(Roberts et al. 2003; Cortes Castrillona et al. 2015; Djoko et al. 2010). CueO is translocated into the 

periplasm through the TAT pathway, where it detoxifies Cu+ into Cu2+. 

b. The Cus system 
 

The Cus system acts as the second line of defense for E. coli. While the threshold for its 

activation seems to be twenty times higher than the Cue threshold (Outten et al. 2001), the Cus 

system is critical for the cell when the Cue system is saturated and overwhelmed by the Cu stress.  

The inner membrane sensor CusS is a histidine kinase that autophosphorylates upon Cu 

detection. CusS~P then transfers its phosphate to the transcriptional activator CusR. CusR~P 

stimulates the transcription of the cusABCF operon encoding a HME-RND complex, which then 

pumps Cu ions from the cytoplasm or the periplasm to the extracellular space (Fig. 11) (Osman & 

Cavet 2008; Long et al. 2012). Interestingly, the CusABC complex may not be entirely specific to Cu 

and might also exports Ag+ (Franke et al. 2003). 

The integral inner membrane CusA is the RND protein per se, and forms a homotrimer (Fig. 

12 A) (Kim et al. 2011). A large periplasmic domain allows the interaction with CusB and CusC, while a 

smaller additional domain protrudes in the cytoplasm (Delmar et al. 2013). CusA binds cytoplasmic 

Cu+ or Ag+ ions through Met residues (M573, M623 and M672). Additional Met clusters in the periplasmic 

domains are thought to create a “methionine relay network”, transporting the cations to the CusC 

OMP via CusB, the MFP (Delmar et al. 2013).  

CusB is spanning across the periplasm and bridges CusA to CusC. It can also bind Cu+ or Ag+ 

ions directly from the periplasmic chaperone CusF (Fig. 11). CusB comprises four domains (Fig. 12 B), 

3 of which are mostly composed of β-strands. 
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 The fourth domain is slightly different and consists in a three--helices bundle, whose function is 

poorly understood (Delmar et al. 2013; Kim et al. 2011). Indeed, this fourth domain is not found in 

any other described bacterial MFP, making homology comparison virtually impossible. It is thought to 

interact with CusC, facilitating the delivery of cations to the OMP (Delmar et al. 2013). 

CusC is a 12-stranded β-barrels forming a channel in the outer membrane for membrane ions 

export (Fig. 12 C). It is a trimeric complex, each monomer comprising 4 β-strands each. As the 

structure of CusC does not point toward any metal-specific feature, the specificity of the CusABC 

complex is thought to rely on CusA and CusB (Delmar et al. 2013). 

The fourth member of the cus operon encodes the small periplasmic CusF chaperone (Fig. 

11). CusF binds Cu+ ions and delivers them for export to CusB within the CusABC RND efflux pump 

(Bagai et al. 2008). CusF is reported to bind Cu+ and Ag+ through an HMM motif (H36 M47 M49), as well 

as a Trp residue (W44) (Loftin et al. 2007; Loftin & Mcevoy 2009). The Trp generates a π-interaction, 

weaker than the bond with the metal cation that would result from a third Met residue. This reduced 

affinity is crucial to allow the transfer of the metal to CusB (Loftin & Mcevoy 2009)  

c. The Pco system 
 

The third major system for Cu resistance in E. coli presented here is the Pco system. The Pco 

system was identified in E. coli strains isolated from feces of pigs whose diet had been supplemented 

with Cu (Tetaz & Luke 1983). Cu has been known to improve growth and mass gain in livestock and 

poultry (Silveira et al. 2014; Shurson et al. 1990; Lewis 1995). While the mechanisms promoting this 

growth have yet to be completely elucidated, it is thought to be due to the bactericidal effect of Cu. 

Cu  acts as a pseudo-antibiotic treatment, preventing common diarrheal diseases that slow down the 

growth of the animals (Yazdankhah et al. 2014). However, due to Cu toxicity, new regulations have 

been set. For instance, the European Union now limits Cu in diet to a maximum of 175 ppm (Silveira 

et al. 2014).  

In response to the Cu-enriched diet, the flora of the animals was forced to adapt, and new 

resistance systems appeared. Among them was the plasmid-borne pco system, carried on the 

pRJ1004 conjugative vector, and found in some E. coli strains (Tetaz & Luke 1983; Brown et al. 1995). 

On the pRJ1004, the Pco system is encoded by seven genes (pcoA; pcoB; pcoC; pcoD; pcoR; pcoS and 

pcoE), distributed in three clusters. The first cluster is the pcoABCD operon, the second is the pcoRS 

operon and, finally, pcoE, located further down the genome. 



 

Fig. 13: Schematic overview of the Pco system in E. coli. The histidine kinase PcoS, anchored in the IM, acts as a Cu sensor. 
Upon detection, the signal will be transmitted to the transcriptional activator PcoR. PcoR upregulates the transcription of 
the pcoABCD(E) operon. PcoA is a periplasmic MCO that, akin to CueO, detoxifies the periplasm by oxidizing Cu

+
 into Cu

2+
. 

PcoB is predicted to be an export system in the OM, driving Cu outside the cell. PcoC is thought to be a Cu-binding protein 
that delivers Cu cations to either PcoA or PcoD. PcoD is predicted to be a Cu importer in the IM, and PcoE a periplasmic Cu 
chaperone. 
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 The PcoRS proteins are part of a two-component system strikingly similar to CusRS and 

function the same way. PcoS is the sensor and PcoR the transcriptional activator that upregulates the 

transcription of the pcoABCDE genes. Interestingly, CusRS can compensate for the absence of PcoRS 

and can ultimately activate the transcription of the pco operon  (Franke et al. 2003). 

The PcoABCDE proteins are involved in Cu detoxification and export, but not all of them are 

thoroughly characterized (Fig. 13). PcoA is a periplasmic MCO, paralog of CueO. Less is known about 

PcoB. In-silico analyses predicted a possible interaction with PcoA and is thought to export Cu 

(Hobman & Crossman 2014). PcoC is a methionine-rich Cu binding protein, whose function remains 

elusive despite a solved crystal structure (Wernimont et al. 2003). The current hypothesis is that 

PcoC feeds PcoA or PcoD with Cu+ for detoxification (Fig. 13). PcoD is predicted to be an inner 

membrane protein containing 8 transmembrane domains, which would import Cu from the 

periplasm to the cytoplasm (Rensing & Grass 2003). Finally, PcoE is a putative periplasmic chaperone 

of unknown function (Fig. 13) (Argüello et al. 2013). 

  



 

Fig. 14: C. crescentus cell cycle. The ST cell initiates DNA replication, leading to the formation of a PD cell. The PD cell will 
yield a new SW cell and a ST cell upon cell division. The motile SW can potentially explore new environments, but has to 
undergo a differentiation process and differentiate into a ST cell in order to replicate its chromosome and to divide. 
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Caulobacter crescentus 

1. A free-living alphaproteobactrium 
 

Isolated for the first time at the end of the 19th century by Loeffler, and observed more 

thoroughly in the dawn of the 20th century by Jones, Caulobacter was not properly characterized until 

a few decades later, when Henrici and Johnson established Caulobacter vibrioides, also called 

Caulobacter crescentus, as the representative species of the Caulobacter genus (Henrici & Johnson 

1935; Abraham et al. 1999).  The work of Poindexter will flesh out the genus further (Poindexter 

1964), and many others afterwards will make of C. crescentus a model species for cell cycle 

progression and regulation (see below). 

Albeit ubiquitous, C. crescentus was long regarded as a mostly aquatic alphaproteobacterium 

(Abraham et al. 1999). However, a recent development tends to indicate that C. crescentus would 

rather be mostly present in soils, in addition to other environments such as water bodies (Wilhelm 

2018). Early on, Caulobacter ability to thrive in low-nutrient and toxic environments was reported 

(Poindexter 1981; Poindexter 1964). Therefore, Caulobacter is regarded as a pioneer genus, able to 

colonize oligotrophic and polluted environments.  

2. Caulobacter crescentus cell cycle 
 

C. crescentus became a model for its dimorphism. It is one of the most striking examples of 

asymmetric cell cycle, a hallmark in many alphaproteobacteria. C. crescentus cell cycle culminates 

with an asymmetrical cell division, yielding two morphologically and physiologically distinct 

progenies, one flagellated swarmer (SW) cell and one sessile stalked (ST) cell. 

The SW cell is limited to the G1 phase and is therefore unable to replicate its DNA. In the context of a 

differentiation process, the SW cell will loosely attach to a surface, shed its flagellum, retract its pili 

and synthesize a stalk at the same pole. The resulting ST cell is now strongly bound to the surface via 

a polysaccharidic holdfast located at the tip of the stalk and immediately starts chromosome 

replication (S phase). After completion of DNA replication, the growing ST cell enters the G2 phase 

and turns into a predivisional (PD) cell that will grow a new flagellum at the pole opposite to the stalk 

(Fig. 14).  



 

Fig. 15: Schematic representation of the result of a silicate gradient synchrony of C. crescentus. The surface capsule 
possessed by the ST and PD cells makes them less dense. They will therefore not migrate as far as the SW cell in the silicate 
gradient upon centrifugation. The upper band contains a mix of ST and PD cell, while the lower band contains the SW cells. 
The SW cell population can be recovered for further experiments. Cartoon modified from (Schrader & Shapiro 2015) 
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The PD cell will then undergo an asymmetrical cell division yielding a new SW cell and a ST cell, the 

later immediately starting a new round of DNA replication (Fig. 14) (Curtis & Brun 2010).  

The presence of a capsule at the ST and PD cell surface lowers their density and therefore 

facilitates the isolation of SW cells by centrifugation in a silicate gradient, where the more dense SW 

cells will accumulate deeper in the gradient (Fig. 15). The SW cell population can be recovered, 

washed and placed in fresh medium. The bacteria will then progress throughout their cell cycle in a 

synchronized manner, allowing the monitoring of the different stages of the cycle (Kirkpatrick & 

Viollier 2012; Schrader & Shapiro 2015). 

4. C. crescentus defense strategy against metals – A brief overview 
 

C. crescentus is known to colonize polluted environments and to resist various metals, such 

as cadium, chromium or selenium (Braz & Marques 2005; Kavamura & Esposito 2010; Hu et al. 2005; 

Yung et al. 2014). High-throughput transcriptomic studies were conducted to establish the profile of 

gene expression underlying these resistance processes. Genes encoding efflux pumps, heat-shock 

proteins and resistance systems against oxidative stress were found to be overexpressed upon 

exposure to these metals.  

Interestingly, C. crescentus was also shown to be highly resistant to Uranium (U) (Yung & Jiao 

2014; North et al. 2004; Yung et al. 2015; Hu et al. 2005). In case of U stress, C. crescentus seems to 

operate in a two-steps strategy. Firstly, C. crescentus induces the biomineralization of U ions through 

the PhoY phosphatase, likely decreasing its toxicity. The biomineralization process precipitates the U 

in the form of U-phosphate, depleting the bioavailable phosphate from the cell. This phosphate 

starvation is compensated by the upregulation of the transcription of a phytase, which is likely to 

supply phosphate to the bacterium during the U stress condition (Yung & Jiao 2014; Yung et al. 

2014). As some bacterial phytases can hydrolyse a broad range of substrates (Konietzny & Greiner 

2004; Priyodip et al. 2017), they might use various phosphorylated compounds, such as ATP or 

Glucose 6-phosphate, to make up for the phosphate starvation induced by the U stress. 

Despite the high-throughput analysis, not much is known about the biochemical functions of 

the various metal homeostasis or resistance systems. Many of them are probably still undiscovered 

or at least not annotated. The work presented in this thesis aim to contribute to the characterization 

of systems involved in the detoxification of the periplasmic space of C. crescentus. 
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Objective 

 

 Owing to their ambivalent nature, transition metals represent a potential threat for living 

organisms and their concentration needs to be tightly regulated. Bacteria have developed a broad 

diversity of systems throughout evolution to regulate this concentration or to counteract the various 

adverse effects the metal stresses can generate. 

 This thesis aims to elucidate some of the strategies that C. crescentus, a model 

alphaproteobacterium known to colonize oligotrophic and polluted environments, has acquired and 

set up to face Cu and other metallic stresses. More specifically, this work will focus on the periplasm 

of C. crescentus, as the periplasm is known to harbor most of the cuproproteins (Argüello et al. 

2013). It is likely to be one of the first lines of defense against extracellular metallic ions (or at least 

Cu ions) that could create cellular damage.  

 This thesis will be divided into 2 main part. The first section will be dedicated to the Pco and 

Cus systems, known in E. coli for their role against Cu stress. The objective is to see whether they are 

present or not in C. crescentus, and whether there are involved in Cu resistance and detoxification. 

The Pco system, poorly described in E. coli, will be characterized functionally. At the end of this first 

chapter, a large bioinformatic study will be described. The objective of this analysis is to elucidate 

whether or not a correlation exists between the conservation of the Pco and Cus system in 

alphaproteobacteria and their lifestyle. 

 The second part of the thesis will be centered on another metal resistance system of C. 

crescentus, and ABC transporter permease discovered during a genetic screen performed by the 

research group. The objective is to characterize its function, its intracellular localization, and 

eventually its expression throughout the cell cycle. 
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RESULTS – Part I  

  



Table 1: Result of the ortholog search with E. coli proteins as query sequence against the C. crescentus proteome. 

 

 

Fig. 16: Conservation of the E. coli Pco system in C. crescentus. Double-headed arrows indicate a reciprocal best match. 
One-way arrows indicate simple homology. A. Results with PcoAEc as query sequence B. Results with PcoBEc as query 
sequence C. No results could be found with PcoCEc, PcoDEc or PcoEEc as query sequences. D. Results with PcoREc as query 
sequence E. Results with PcoSEc as query sequence F. Organisation of the PcoAB operon. 
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The Pco and Cus systems 

1. The Pco System detoxifies the periplasm of Caulobacter crescentus 

a. Bioinformatics – establishing the hypothetical model 

i. Search for orthologs from E. coli sequences 

 

E. coli is a model for TM resistance and homeostasis systems. Many of these systems are 

conserved in other species of the proteobacteria phylum. To obtain a general idea of which Cu 

resistance systems are conserved in C. crescentus, a search for orthologs was conducted. We 

assessed the presence of E. coli Pco protein orthologs in our strain of interest, the C. crescentus 

CB15N (synonymous of NA1000). The NCBI BLAST+ 2.4.0 package was employed, with an E value 

threshold of 9e-16. The amino acid (AA) sequences of the 7 Pco proteins of E. coli were taken as the 

query. These proteins will be referred from now on with the Ec suffix (e.g., PcoAEc, indicating the E. 

coli version of PcoA). The proteins listed without any suffix belong to C. crescentus. The resulting best 

matches are listed in Table 1. PcoCEc, PcoDEc and PcoEEc analysis did not provide any results matching 

the search criteria, likely indicating the absence of orthologs in C. crescentus (Table 1 & Fig. 16 C). 

However, several matches were found for PcoAEc, PcoBEc, PcoREc and PcoSEc.  

The best match recovered from the PcoAEc “blast” is CCNA_01015, a 571 AA protein encoded 

by the eponymous gene (Table 1). Running the reverse research with the CCNA_01015 AA sequence 

as the query against the E. coli proteome leads to PcoAEc as the first result, indicating a reciprocal 

best match (Fig. 16 A). Both proteins match each other as the highest scoring candidate in the other 

proteome.  

The blast search for PcoBEc returned CCNA_01016 as the best hit. This 303 AA protein is 

encoded by a gene neighboring the PcoAEc ortholog candidate, CCNA_01015 (Table 1). PcoBEc and the 

C. crescentus homolog are listed as reciprocal best matches (Fig. 16 B). Interestingly, the 

CCNA_01015 and CCNA_01016 genes seem to work in operon. There is a 3 base pairs overlap 

between the two genes, and no distinct promoter for CCNA_01016 could be predicted (Fig. 16 F).  

The PcoREc and PcoSEc results are less straightforward to interpret. The blast search returned 

many matches as potential ortholog candidates (Fig. 16 D&E), which may not be so surprising. PcoREc 

and PcoSEc are indeed a very classical two-component system, with a histidine kinase and a response 

regulator. Such systems are generally well conserved, and paralogs can be found scattered all over 

the genome. 



 

Fig. 17: Structure and domain prediction for CCNA_01015 (PcoA). A. Result of the Foundation analysis. Secondary 
structures are represented along with their sequence position on the X axis. α-helices are represented in fuchsia and β-
strands in cyan. The wiggly line beneath the secondary structure represents disorder. The further away from the X axis, the 
more the disorder. B1 Tertiary structure prediction through I-Tasser. The secondary structure composing the 3D model are 
color-coded. α-helices are represented in fushia, β-strands in yellow. B2. TAT signal prediction. C. Results of the HMMER 
domain prediction. The three domains (violet, green and pink) correspond to three Cu oxidase subdomains. 
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 This may explain why CusRS could replace PcoRS in the absence of the latter in E. coli 

(Franke et al. 2003). Indeed, both systems are strikingly similar, which makes ortholog search 

complicated. Multiple good matches are to be expected. Despite the status of reciprocal best 

matches for both PcoREc and PcoSEc, it is unclear whether these candidates are involved in Cu sensing 

and in the regulation of the pcoAB operon. The C. crescentus predicted pcoR and pcoS are both 

isolated in the genome, and physically apart from pcoA and pcoB.  It is therefore unlikely that 

CCNA_02845 and CCNA_03326 are the functional orthologs of PcoREc and PcoSEc. 

PcoA 

The protein sequence of PcoA was thoroughly analysed through a series of bioinformatic 

tools, allowing us to obtain predictions about its structure and domains. 

ii. Structure 

 The PcoA protein sequence was first introduced in Foundation, a “protein sequence features 

visualizer” from the CADB (Centro Andaluz de Biología del Desarrollo, Sevilla) (Fig. 17 A). Foundation 

aggregates result from three different software: Psi-pred, predicting 2nd structures, IUPred, assessing 

disorder, and TMHMM, looking for transmembrane helices.  

 PcoA displays a majority of β-sheets, with a few α-helices scattered mostly in the first half of 

the protein (from position 16 to 37 and 191 to 251). A large disordered region is located from 

position 348 to 423. These predictions are in line with the solved structure of PcoAEc. For further 

comparison, two additional analyses were carried out.  

 The first one is another secondary structure prediction made by the Quick2D aggregative 

tool. Quick2D, akin to Foundation, requires several other tools to perform the prediction. However, 

Quick2D pings the same request to several different algorithms dedicated to the same function and 

crosschecks the results. It will therefore return, for instance, multiple calculation results for the 

disordered or for the α-helices/β-sheets structures. Albeit a bit more complete (Quick2D also report 

coiled-coil and π-helices if any), the results are slightly redundant with those obtained with 

Foundation (Fig. S1). 

 The second supplementary analysis was a tertiary structure prediction, performed by I-

TASSER (Iterative Threading ASSEmbly Refinement). I-TASSER is an online web-service dedicated to 

protein structure and function prediction. I-TASSER uses a user input (i.e. the query AA sequence) 

and tries, by homology, to find similar folds or known templates from PDB (“The Protein Data Bank”, 

one of the largest database of 3D structures, gathering published crystallography, Cryo-electron 

microscopy or NMR spectroscopy results). 



 

Fig. 18: I-Tasser pipeline. The input sequence is processed by several algorithms to create a 3D model and predict 
functions. (Yang & Zhang 2015) 
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I-TASSER then aligns the query and the model, and builds a 3D structure for the matching regions. For 

the non-matching regions (that do not align with known templates), I-TASSER will try to create a 

model ab initio, based on the sequence itself and the biochemical properties of the different amino 

acids. The different fragments will subsequently be assembled. Usually, there will be some 

uncertainties about the correct 3D conformation of the protein. I-TASSER will therefore run a large 

set of possible structures and use the SPICKER algorithm to cluster these hypothetical models. It will 

compare similarity and identify the lowest free-energy state that would be more favorable for the 

protein (and therefore more likely to be correct). Based on SPICKER results, I-TASSER will report the 

five most probable results with a score of confidence (Yang & Zhang 2015).  

 These models can be evaluated manually and refined with any supplementary information 

not computed by the service. Additionally, one can choose to input the resulting structure for a 

second prediction process with the COACH program that will attempt to predict and annotate the 

function of the query protein (Fig. 18). 

 The I-TASSER prediction for PcoA can be seen in Fig. 17 B1. The model seems consistent with 

the known structure of the E. coli ortholog (Fig. 10). 

iii. Signals and domains prediction 

 

 Additional bioinformatic analyses were achieved to predict signal peptides and enzymatic 

domains. The TatP 1.0 server is an online service that looks for Twin-Arginine signal peptide in a given 

sequence, via the recognition of conserved cleavage sites and consensus patterns. PcoA is predicted 

to possess a TAT signal at the N-Terminus (Fig. 17 B2). The cleavage site would be around position 38 

and a typical TAT recognition pattern (DRRTLL) can be found. This pattern is similar to the SRRXFLK 

consensus motif reported in the literature (Stanley 2000). This is consistent with what is known for  

PcoAEc, reported to have a similar TAT signal for periplasm export (Sun et al. 2002). PcoA would thus 

fold in the cytoplasm before being exported into the periplasm of C. crescentus. 

Finally, the PcoA sequence was entered in the HMMER webserver. HMMER is an online 

platform building profile hidden Markov models for a query sequence, which uses this profile to 

screen similarities in large databases and libraries. This allows gathering of various information, 

including prediction about protein domains (Potter et al. 2018).  

 

  



 

Fig. 19: Structure and domain prediction for CCNA_01016 (PcoB). A. Result of the Foundation analysis. Secondary 
structures are represented along with their sequence position on the horizontal axis. α-helices are represented in fushia 
and β-strands in cyan. The wiggly line in beneath the secondary structure represents disorder. The further away from the 
horizontal axis, the more the disorder. B Tertiary structure prediction through I-Tasser, both inside and top-down view. C. 
Results of the HMMER domain prediction. The only predicted domain corresponds of Cu resistance domain precursor. 

 

Fig. 20: HHomp prediction. HHomp screen for outer membrane features based on homologies found in various protein 
databases. The probability for the query sequence to be an OMP is summarized at the top of the image, with more details 
in the bottom line.   
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Three Cu oxidase domains are detected in PcoA, forming an expected multicopper oxidase 

complex (Fig. 17 C). Taken together, bioinformatics suggests that PcoA is very likely to be a functional 

MCO. Every domain and the signal peptide from the E. coli ortholog seem to be conserved, and the 

predicted secondary and tertiary structure are equally similar. 

PcoB 

ii’. Structure 

 

 Similar bioinformatic analyses were performed on PcoB, using the same parameters except 

for the query input corresponding to the CCNA_01016 AA sequence. 

 PcoB N-terminus seems to have no defined and only disordered secondary structure. From 

position 90 to 160, α-helices and β-strands interweave before a long sequence of low disorder 

displaying several β-sheets (Fig. 19 A). Although not completely clear (Fig. S2), there seems to be 12 

β-strands. A succession of 12 β-strands can be indicative of a β-Barrel protein, like the NanC porin or 

TolC transporter in E. coli (Fairman et al. 2012). β-Barrels can be formed from 8 to 24 β strands 

(Fairman et al. 2012). 

This β-barrel hypothesis is supported by the I-TASSER tertiary structure prediction, as the 

resulting PcoB 3D model seems to form a β-barrel-like channel (Fig. 19 B).  

iii’. Domain prediction 

 

No signal peptide could be detected via the TatP algorithm. Other signal prediction tools 

detected neither TAT nor SEC signal. If PcoB is indeed an OM protein as it was suggested for the E. 

coli ortholog, no obvious translocation motif can explain how PcoB is exported from the cytoplasm to 

the OM. However, a manual analysis reveals a potential poorly conserved SEC motif, characterized by 

AXA repeated patterns (positions 13-15, 20-22 and 34-36) and a high occurrence of hydrophobic AA 

in the PcoB N-terminus (Payne et al. 2012). 

Alternatively, PcoB could be translocated through a “hitchhiking” system, as shown for 

several proteins, like the HybC / HybO tandem from E. coli (Rodrigue et al. 1999). In this context, the 

protein lacking the TAT signal is co-translocated with an interacting partner in a “piggyback-ride” 

fashion (Palmer & Berks 2012). 



 

Fig. 21: Implication of PcoA and PcoB in Cu resistance. A. Phenotype of the WT, ΔAB and ΔAB/pAB strains in HIGG defined 
medium under control (orange) or 1,16 mM Cu stress (blue) conditions. B, C, D and E. Growth profiles of the ΔAB, ΔA and 
ΔB strains, respectively, transformed with the empty vector (EV), pAB, pA or pB, or not transformed (Null condition – no 
vector) under a 1.16 mM Cu stress in HIGG defined medium.  
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 Using HMMER, a CopB domain was predicted in PcoB (Fig. 19 C). This Cu resistance system 

domain is also found in PcoBEc, comforting this idea of functional orthology between PcoBEc and 

CCNA_01016. 

Finally, HHomp, working on the same principle than HHMER, was used to assess the 

presence of any OM feature in PcoB. A hit was detected, and the probability the query sequence to 

be an OMP was evaluated at 98.2%, strongly supporting the putative OM localization of PcoB (Fig. 

20). 

 b. Importance of the Pco system in Cu resistance 
 

 To assess the role of the Pco system in C. crescentus Cu resistance, several clean knock-out 

strains were engineered. A knock-out strain for the pcoAB operon was constructed (∆AB strain), as 

well as single knock-out strains for pcoA (∆A) and pcoB (∆B). The genetic backgrounds were tested in 

presence of various Cu sources (CuSO4, CuCl2) and in different media (HIGG, PYE), allowing to 

determine for each medium a typical “stress condition” where the general fitness is negatively 

impacted. The ∆AB strain displays a higher sensitivity to Cu than the WT, suggesting that PcoA and 

PcoB are involved in Cu resistance as expected (Fig. 21 A). Interestingly, the single knock-out strains 

resulted in the same phenotype as the ∆AB background, strongly hinting that both PcoA and PcoB 

are working together, and both are required for the Pco system to be functional (figure Fig. 21 C, D, 

& E). 

 The complementation strain ∆AB/pAB restored the WT phenotype and even slightly 

potentiated Cu resistance (Fig. 21 A). This effect has been imputed to the overexpression of both 

PcoA and PcoB resulting from the choice of vector and the promoter. Indeed, the complementation 

strain carries the pco operon on a pMR10 replicative plasmid under the control of a strong pLac 

promoter. Because the pMR10 is likely to be present in more than one single copy and because the 

pLAC is probably stronger than the endogenous pcoAB promoter, the complementation strain likely 

contains more copies of the PcoAB proteins than the WT, resulting in a higher resistance to Cu.  

 The introduction of a valid functional copy of pcoB on a plasmid in the ∆B (∆B/pB) strain also 

saved the phenotype (figure 18 E). However, a similar attempt for the pcoA knock-out (∆A/pA) was 

infructuous in restoring the WT phenotype (Fig. 21 D), indicating that pcoA deletion has a polar effect 

on pcoB. This may not be surprising considering the operon organization and the overlap between 

the two genes. 



 

Fig. 22: A. Expression levels of PcoB in the cytoplasm (Cyto), and periplasm (Peri). MreB and PstS-mcherry were used as 
Cyto and Peri controls, respectively. B. Expression levels of PcoB in the cytoplasm inner membrane (IM) and outer 
membrane (OM). DivK, CckA and ElpS-3Flag and RsaF were the Cyto, IM and OM controls, respectively. 

 

 

Fig. 23: Relative oxygen concentration (%) over time measured with a control buffer, purified BSA, purified PcoA and 
purified PcoB. The red dotted line represents the calibration baseline. 

All together, these data tend to support the hypothetical model according to which PcoA is a 

periplasmic MCO oxidizing Cu+ into Cu2+. 
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c. Biochemical characterization of PcoA: localization and function 
 

While the previous experiments shed light on the importance of the Pco system under Cu 

stress, they did not address the biochemical mechanisms underlying Cu resistance provided by this 

system. Therefore, PcoA was characterized, based on the assumption that it works in a similar 

fashion as its E. coli ortholog.  

i. PcoA is located in the periplasm 

 

 A fractionation assay, separating the periplasm from the cytoplasm, was performed. PcoA 

was immunodetected in the periplasmic fraction, consistent with its predicted role of periplasmic 

MCO. In this experiment, MreB was used as a cytoplasmic control, while the PstS-mCherry fusion 

serves as the periplasmic control (Fig. 22 A) (Schlimpert et al. 2013). However, in this assay, the 

periplamic fraction is not pure, and also contains the OM. To rule out the possibility of PcoA 

anchoring in the OM, an additional purification step isolating the OM and the IM was carried out. 

This experiment was negative for the immunodetection of PcoA, suggesting that PcoA is a soluble 

periplasmic protein. The Divk and CckA proteins were used as cytoplasmic and IM control, 

respectively, while both a ElpS-3flag fusion and RsaF were picked as OM controls (le Blastier et al. 

2010; Lam et al. 2003; Yung et al. 2015).  

 

ii.      PcoA acts as a periplasmic MCO 

 

 Based on the similarities between PcoAEc and its paralog CueOEc, we hypothesized that PcoA 

could be a MCO, and we decided to assess the capacity of the protein to oxidize Cu+ into Cu2+ . During 

Cu oxidation process, MCOs reduce O2 in H2O as a byproduct of the reaction. Recording the variation 

in O2 concentration when purified PcoA is mixed with a Cu+ source would therefore provide a way to 

confirm or refute our hypothesis. This experiment was done via an oxygraph. The source used was 

Copper(I) tetrakis(acetonitrile) hexafluorophosphate ([Cu(CH3CN)4]PF6), a “caged” copper 

component that stabilizes the Cu core to prevent self-oxidation.  



 

Fig. 24: Expression level of PcoB in the cytoplasm (Cyto), inner membrane (IM) and outer membrane (OM). MreB, CckA 
and RsaF were used as Cyto, inner membrane (IM) and outer membrane (OM) controls, respectively. 

 

 

Fig. 25: Intracellular Cu concentrations in the WT, ΔAB, ΔB, ΔAB/pA and ΔAB/pB strains under a moderate Cu stress (5 
minutes of 1.16 mM CuSO4 in HIGG defined medium). 
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 Purified PcoA-His is placed in an oxygraph chamber where an electrode monitors the O2 

content. At a defined time, the Cu-based substrate is injected in the chamber through a syringe. If 

PcoA is indeed a MCO, the O2 concentration in the chamber will decrease. The condition with a 

control buffer and the condition with BSA did not react to the Cu substrate. However, the PcoA 

condition immediately showed a drastic decrease in O2 concentration (Fig. 23). The PcoB condition 

displays a slow, albeit noticeable, O2 decrease, possibly because the protein is interacting with Cu, 

destabilizing the substrate and favoring auto-oxidation.  

d. Biochemical characterization of PcoB: localization and function 
 

i. PcoB localizes in the OM of C. crescentus 

 

 Similarly to PcoA, a membrane fraction assay was performed. PcoB displays an OM 

localization, consistent with its putative role as an efflux pump (Fig. 24). CckA serves as IM control, 

while RsaF is used as an OM fraction control. MreB has been included as the cytoplasmic fraction 

control. 

ii. PcoB acts as a Cu efflux pump 

 

We sought to assess the ability of PcoB to export Cu outside the cell. By combining flow 

cytometry, which allows for cell counting, and Atomic Absorption Spectrometry (AAS), which can be 

used to measure the absolute Cu concentration in a sample, we were able to average the Cu 

concentration per cell (Lawarée et al. 2016). This experiment was performed in several genetic 

backgrounds by Emeline Lawarée in the context of her own PhD thesis. The ∆AB mutant seems to 

accumulate twice as much intracellular Cu as the WT strain (Fig. 25), potentially explaining the 

growth defect observed with that strain when placed in contact with a moderate amount Cu (Fig. 21 

A). Interestingly, the internal Cu concentration for both the ∆B and the ∆AB/pA strains are on the 

same range than the double knock-out (Fig. 25). This would indicate that in absence of PcoB, the cell 

either accumulates Cu at a faster rate, or is unable to export it out of the cell. This is further 

supported by the result of the ∆AB/pB background, mimicking a ∆A mutant, where the expression of 

PcoB on a plasmid is restoring the WT phenotype. The slight overexpression of PcoB actually makes 

the intracellular Cu concentration drop even lower than the wild type strain, strongly suggesting an 

efflux pump role for PcoB. 



Table 2: Result of the Cus homolog research with E. coli proteins as query sequence against C. crescentus proteome 

  

 

 

Fig. 26: Conservation of the E. coli CusABC system in C. crescentus. Red double-headed arrows indicate a reciprocal best 
match. Red one-way arrow indicate the best ortholog candidate. One-way black arrows indicate simple orthology. A. 
Results with CusAEc as query sequence B. Results with CusBEc as query sequence C. Results with CusCEc as query sequence. 
D. Operon and gene neighborhoods of the best matches. Red frames indicate the genes selected for the knockouts.  
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 However, one should remember that this strain does not grow well in presence of Cu stress 

(Fig. 26 C). This likely indicate that both PcoA and PcoB are equally important. PcoA thus seems 

crucial to detoxify the Cu present in the periplasm, even though PcoB would be actively exporting Cu 

in the extracellular environment.   

2. The involvement of C. crescentus Cus System in Cu resistance is 

unclear 

a. Bioinformatics – establishing a hypothetical model 

i. Homologs research from E. coli sequences 

 

 The search for orthologs of the E. coli Cus system has been more complicated than expected. 

The E. coli Cus system is a complex belonging to the HME-RND family, which is widespread in 

bacterial species. There is often multiple (HME-)RND operons scattered over the genome, each one 

coding for an export complex with its cognate substrate  (antibiotics, metals, …). Because of their 

similarities, any homology search is likely to give several matches, regardless the actual substrate 

specificity. 

 CusAEc, CusBEc and CusCEc AA sequences were used as query, and “blasted” against the C. 

crescentus proteome. CusAEc  blast search resulted in several good matches (Table 2), although the 

first homolog listed (CCNA_02473) is undeniably the best candidate with a 0.00 E value and a 

Reciprocal Best Match (Fig. 26 A). The gene coding for CCNA_02473 works in operon with the 

CCNA_02471 & CCNA_02472 genes predicted to encode a Co-Zn-Cd resistance system. 

The orthologs search for CusBEc returned three potential candidates. CCNA_01261 is the best 

result, but not a reciprocal best match (Fig. 26 B). However, the second best match is CCNA_02472, 

encoded by a gene neighboring the CCNA_02473 gene, which is the best candidate for cusA. In 

addition, blasting CCNA_02472 against the E. coli proteome returns CusBEc as the best match. It is 

worth noting that E values for these candidates are close to the threshold, and the bit scores are 

around 10 times lower than for the CusAEc orthologs search.  

The CusCEc orthologs search returned three hits. The best candidate is CCNA_00849. It stands 

above the other two in terms of score and E value and is a reciprocal best match (Fig. 26 C). 

Surprisingly, the best match is thus not CCNA_02471 as we could have expected (considering 

CCNA_02472 and CCNA_02473 were good matches for CusBEc and CusAEc, respectively).  



 

Fig. 27: Structure and domain prediction for CCNA_02473 (CusA). A. Result of the Foundation analysis. Secondary structure 
are represented along with their sequence position on the horizontal axis. α-helices are represented in fushia and Β-strands 
in cyan. The wiggly line in beneath the secondary structure represents disorder. The further away from the horizontal axis, 
the more the disorder. B TMHMM results, prediction transmembrane domain and helices. C. Results of the HMMER domain 
prediction.  
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In fact, CCNA_02471 is even  filtered out by the selected E value threshold and is only found after 

removing the threshold constraint (Table 2). 

These data suggest that several similar protein complexes co-exist in C. crescentus, each 

encoded by a different operon. However, no operon clearly stands out as the best homolog of the 

cusABCEc one. The best match for each of the proteins were further examined through bioinformatics 

predictions. 

ii. Structures & Domains 

 

CusA 

CCNA_02473 was chosen as the CusA ortholog in C. crescentus. The CCNA_02473 protein 

sequence possesses numerous α-helices and β-strands (Fig. 27 A) as well as twelve transmembrane 

helices (TMH), as predicted by TMHMM 2.0 (Fig. 27 B). An ACR-like domain was also predicted (Fig. 

27 C). ARC domains are derived from the AcrB/ArcD/ArcF protein family, whose members are known 

to be membrane proteins, involved in the export of a broad range of substrates. These predictions 

are perfectly in line with what is known for CusAEc, which is also predicted to have 12 TMH and an 

ACR domain. 

   

  



 

Fig. 28: Structure and domain prediction for CCNA_01261 (CusB). A. Result of the Foundation analysis. Secondary structure 
are represented along with their sequence position on the horizontal axis. Α-helices are represented in fushia and β-strands 
in cyan. The wiggly line in beneath the secondary structure represents disorder. The further away from the horizontal axis, 
the more the disorder. B TMHMM results, prediction transmembrane domain and helices. C. Results of the HMMER domain 
prediction. 
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CusB 

 CCNA_01261 was chosen as the CusB candidate. The protein seems to be mostly 

composed of β-strands, with a few clusters of α-helices in the first half of the sequence (Fig. 28 A). A 

TMH domain is predicted in the N-terminus region (Fig. 28 B). A HlyD domain is predicted, which 

corresponds to the barrel-sandwich domain of CusB (Fig. 28 C). These predictions support the 

hypothesis that CCNA_01261 could indeed be a functional homolog of CusBEc. 

 

CusC 

CCNA_00849 is predicted as a CusCEc homolog. The secondary structure of the protein seems 

mostly composed of α-helices but very few β-strands (Fig. 29 A) No transmembrane region was 

predicted (Fig. 29 B), which is similar to the CusCEc predictions. Two outer membrane efflux protein 

domains are predicted (Fig. 29 C).  These data suggest a role of CCNA_00849 as an outer membrane 

protein, and reinforces the hypothesis of a functional homology between CCNA_00849 and CusCEc. 

 

  



 

Fig. 29: Structure and domain prediction for CCNA_00849 (CusC). A. Result of the Foundation analysis. Secondary structure 
are represented along with their sequence position on the horizontal axis. Α-helices are represented in fushia and β-strands 
in cyan. The wiggly line in beneath the secondary structure represents disorder. The further away from the horizontal axis, 
the more the disorder. B TMHMM results, prediction transmembrane domain and helices. C. Results of the HMMER domain 
prediction. 

 

Fig. 30: Growth profiles of WT, ΔAB, ΔcopA, ΔcusA, ΔcusB, ΔcusC and ΔAB/pAB strains subjected to a moderate Cu stress 
(1.16 mM CuSO4 in HIGG medium)  (mean, relative standard deviation between 0.0087 and 0.1413, biological replicates = 
3, technical replicates = 2) (Lawarée et al. 2016) 
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b. Impact of the Cus System on Cu resistance of C. crescentus 
 

To evaluate the importance of the Cus system in C. crescentus resistance to Cu, cusA, cusB 

and cusC disruption mutants were obtained in the context of Emeline Lawaree’s thesis by inserting a 

mini-transposon in the middle of each respective gene sequence (Fig. 26 D). Growth curves 

measurements under a moderate Cu stress condition were performed (Lawarée et al. 2016). 

Surprisingly, none of the three single mutants were more sensitive to the Cu stress than the WT 

strain (Fig. 30). 

These results suggest that the CusABC system is not crucial for C. crescentus to handle Cu 

stress under these conditions, and that it is less preeminent than the Pco system. This observation 

contrasts with what is known in E. coli, where Cue and Cus are considered as the first lines of defense 

and the Pco system acts when the formers are overwhelmed (Outten et al. 2001; Rensing & Grass 

2003).  

A genetic screen performed in the lab support these results. A mini-Tn5 transposon has been 

employed to generate, by conjugation, a library of mutants. The mutants are plated both on a Cu-

containing medium and a control medium and screened for Cu sensitivity.  Sensitive mutants are 

then sequenced from the transposon to identify the transposon insertion site and therefore a 

candidate gene potentially involved in Cu resistance or homeostasis. Despite over 45,000 clones 

screened (theoretically close to the statistical saturation), none of the Cus orthologs candidate genes 

were recovered in the screen. This suggests that, if the mini-Tn5 was inserted in their sequence, it did 

not generate a mutant more sensitive to a moderate Cu stress. However, the genetic screen 

highlighted the implication of the CCNA_00851 gene located in the same operon as our cusC 

candidate (CCNA_00849, part of a three genes operon) (Fig. S3). It may indicate that, while the 

operon could be involved in Cu resistance, CusC function could be redundant. In this case, a single 

knockout would fail to highlight this effect, as no Cu sensitive phenotype would emerge. 

In the context of protein characterization, qPCR experiments have been conducted and the 

transcription of several genes in the presence and absence of a moderate Cu stress has been 

monitored. Inducibility upon Cu sensing could argue in favor of a role in Cu resistance. The 

transcription of cusA, cusB, cusC, cusR and cusS has been monitored, as well as the 16S control. A 

first sample of a WT culture of C. crescentus was collected before Cu stress (T0). Then, the culture 

was mixed with 1.16 mM of CuSO4  (HIGG medium, equivalent to a 175 µM condition in PYE) and 

samples were collected after 15 minutes (T15), 30 minutes (T30) and 60 minutes (T60). Samples were 

treated according to the established protocol. 



 

Fig. 31: qPCR performed on cusA, cusB, cusC, cusR and cusS. Results expressed in relative fold changes compared to the T0 
control condition and calculated as 2

–ΔΔCt
. (biological replicates = 3, technical replicates ≥ 6). P value for CusA T15, T30 T60 = 

0.0731; 0.0302; and 0.0265, respectively. The 16sRNA was used as control. 
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The cells were lysed, the RNA was extracted and treated with DNAse. The purified RNA was 

subsequently reverse-transcribed and the resulting cDNA was subjected to qPCR. Target mRNA levels 

were compared to the T0 control condition without CuSO4. mRNA fold changes between conditions 

were calculated following the ∆∆Ct method. 

Surprisingly, cusA seems to be strongly induced by the CuSO4, while the expression of the 

other cus genes does not show any  significant difference compared to the T0 control (no matter the 

time condition) (Fig. 31).While the T15 19-fold increase is not statistically significant (p = 0.0731; 

likely due to the high standard deviations measured), the 13-fold T30 increase and 11-fold T60 

increase are (p = 0.0302 and 0.0265, respectively). This suggests a rapid induction of the cusA gene. 

This induction might result in a massive increase of the CusA protein level in the cell, possibly helping 

the bacterium to fight a Cu stress. 

3. Evolution and Phylogeny of Cu Resistance system 
 

 The results described above highlight the role of the Pco and Cus system in Cu resistance. It 

points out that Cu resistance systems that have been demonstrated as crucial in one species may not 

be as important in another species (e.g., the Cus system in E. coli and C. crescentus). Therefore, the 

conservation of such systems may be driven by natural selection and environemental pressure. In 

this context, we chose to investigate the evolution and phylogeny of the Pco and Cus system in the 

alphaproteobacteria class.  

 a.  Alphaproteobacteria are formidable in their diversity. 
 

The Alphaproteobacteria bacterial class belongs to the proteobacteria phylum.  

Alphaproteobacteria harbor an astonishing diversity of lifestyles, comprising pathogenic bacteria, 

symbionts, commensal bacteria, or free-living organisms (Pini et al. 2011; Curtis & Brun 2014). They 

live in a broad range of environments, from soil to fresh and sea water, and from plant roots to 

mammals (Pini et al. 2011).  

Several studies drew attention to a possible link between the conservation of specific subsets 

of genes by a bacterium and its lifestyle, or the environment in which it lives. In the 

alphaproteobacteria, it was found that plant-associated bacteria (would it be by symbiosis or free-

living association) tend to 
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 have larger genomes, and are likely to share a particular common set of genes, despite 

sometimes a rather large phylogenic distance (Pini et al. 2011). In Enterobacteria, belonging to the 

Gammaproteobacteria class, the “Copper Homeostasis And Silver Resistance Island” (CHASRI) is 

suggested to have spread across species in response to increased metal stress in the environment 

(Staehlin et al. 2016). The actinobacterium Frankia has been reported to accumulate more metal 

resistance systems to increase its chances to enter the roots of plants growing on contaminated soils 

(Furnholm & Tisa 2014). In addition, murine macrophages have been demonstrated to accumulate 

Cu when infected with Salmonella enterica. Conversely, S. enterica fights this stress by expressing the 

MCO CueO (Achard et al. 2012). This reinforces the natural idea that the constraint introduced by the 

environment or lifestyle could drive the conservation and spread of specific sets of genes.   

For this reason, we analyzed the conservation of the Pco and Cus system in the 

alphaproteobacteria and tried to determine whether there was a correlation between the 

conservation of Cu resistance systems and bacterial lifestyle or environments, as well as the mobility 

of bacteria. These criteria were chosen as they fit with several examples of ecological pressure 

described in the literature. Both the lifestyle and environment will modulate the frequency at which 

you may face a metal stress. Motility was taken into account owing to the fact it may influence the 

conservation of metal resistance systems, too. It was demonstrated in C. crescentus that the SW 

cells, motile, were not expressing the PcoAB system, while the ST and PD cells, sessile (and therefore 

unable to flee a Cu stress), were expressing it (Lawarée et al. 2016).  

  



 

 

Fig. 32: Schematic representation of the workflow. The small circle indicates the proteomes of the different species, 
assemble into a single big database. The arrow represent the different step of the workflow, with the different tools or 
plateforms used. 
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b. Conservation of Pco and Cus system in the Alphaproteobacteria 
 

i. General conservation across the alphaproteobacteria - The Pco system 

does not seem as well conserved as the Cus system 

 

To achieve this in silico analysis, a semi-automated pipeline was established. The general idea 

of the workflow was to (i) search orthologs of the proteins of interest in the proteomes of the 

alphaproteobacteria, (ii) extract the name of the species that conserved at least one homologous 

protein, determine whether the homologs are carried on a plasmid or on the chromosome, and 

annotate its lifestyle, environment and motility, (iii) analyse the correlation between the 

conservation and the different annotations (iii’) perform an alignment of the AA sequence of the 

proteins, and build a phylogenetic tree (Fig. 32). This workflow would therefore try to trace the 

evolution of the Pco/Cus system and correlate the presence or absence of homologs with bacterial 

lifestyle, environment or motility. 

The NCBI Entrez E-Utilities suite was used to assemble and download the database needed 

for the initial blast search. NCBI provides freely accessible data that can be retrieved from their 

servers. The proteome of all referenced alphaproteobacteria was fetched. Proteomes belonging to 

undefined species or strains were filtered out. 

The resulting database contained more than 5 million protein sequences, belonging to 1274 

species or strains. However, as one of the goals was to assess the conservation rate of the various 

proteins of interest, it was necessary to curate this database to remove as much artificial bias as 

possible. The most characterized genus naturally tend to have a higher number of sequenced strains, 

and many different well studies species. This overrepresentation could tip the balance and artificially 

inflate the conservation rate of the proteins for which these genus have homolog for. Therefore, 

synonymous entries were first removed (e.g., C. crescentus and C. vibrioides), and we limited the 

number of species to one per genus. This restricted database comprises 206 genus/species entries. 

It served as the basis for ortholog search through the BLAST+2.4.0 package. The PcoAEc, 

PcoBEc, PcoCEc, PcoDEc, PcoEEc, CusAEc, CusBEc and CusCEc AA sequences were used as a query. PcoR 

and PcoS were excluded from the search, as they were likely to have many homologs unrelated to Cu 

resistance owing to their widespread structure.  Each search generated a file containing the AA 

sequences of all the potential orthologs in FASTA format. The accession numbers of the proteins 

were extracted by a custom PERL script, and were automatically compared with a database 

containing all the proteins annotated as having a plasmidic origin. 



 

Fig. 33: Conservation of the Pco and Cus proteins in the alphaproteobacteria. The PcoEc and CusEC AA sequence were used 
as a query for the BLAST ortholog search. Percentages indicate what proportion of the 206 species presents in the curated 
database possess at least one homolog for the protein of interest.  
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This permitted the classification of the homologs according to their origin, chromosomal or 

plasmidic. Additionally, the blast results were sorted to exclude candidates that did not meet certain 

criteria (e.g., e value threshold or AA length threshold). The names of the different species were 

extracted. For comparison purpose, the same search was conducted on the non-curated database of 

1274 species. 

A second database was then established manually. For each of the 206 species comprised in 

the curated database, information about its lifestyle, the environment from which it has been 

isolated, and its motility were annotated.   

Among these 206 species, it appears that the conservation of the different proteins presents 

important variations. The Cus system seems overall relatively well conserved. 97% of the species 

contained in the database possess at least one homolog to CusA (Fig. 33). CusB and CusC seem 

slightly less conserved, with respectively 67% and 68% of conservation (Fig. 33). The close 

conservation rates between CusB and CusC may suggest that both work together as it is the case in E. 

coli, while the higher conservation level of CusA might indicate that CusA alone could be of use for 

some species. 

The conservation of the Pco system is less homogenous. PcoA is the most conserved, with 

around 68% of the 206 selected species possessing at least one PcoA homolog (Fig. 33). It is worth 

noting that, because CueO is a paralog of PcoA, we had to rule out false positives. Species that did 

possess a PcoA homolog that was also found as a CueO homolog were investigated more thoroughly 

and counted as negative if the homology score for CueO was higher than for PcoA. PcoB is apparently 

less conserved, with only 27% of conservation across the 206 alphaproteobacterial species (Fig. 33). 

This is somewhat surprising considering its crucial role in C. crescentus, where a ∆pcoB mutant is as 

sensitive to Cu stress as the ∆pcoAB mutant, hinting toward an important role for both the PcoA and 

PcoB proteins. PcoC displays a 35% conservation rate, while PcoD seems to be present in only 16% of 

the selected strains. 

PcoEEc is the only one for which no homolog was not found at all in the alphaproteobacteria 

class, at least with our parameters. PcoE is found neither in the 206 selected species nor in the 1274 

complete database. Outside of the additional PcoRS tandem, this would make the Pco system a 4-

protein system in the alphaproteobacteria.  



 

Fig. 34: Distribution of species according to the amount of Pco homologs conserved. The 206 species are categorized 
according to their conservation of the Pco proteins and the different possible conservation combinations. 

 

 

Fig. 35: Reminder of the predicted function for PcoA, PcoB, PcoC and PcoD. PcoA is a periplasmic MCO that detoxifies the 
periplasm by oxidizing Cu

+
 into Cu

2+
. PcoB is predicted to be an export system in the OM, driving Cu outside the cell. PcoC is 

thought to be a Cu-binding protein that delivers Cu cations to either PcoA or PcoD. PcoD is predicted to be a Cu importer in 
the IM. 
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It is worth mentioning that, aside for PcoC, these results do not differ much from the 

conservation rate obtained when the search is performed on the total database containing the 1274 

species/strains (65%; 23%; 21% and 13% for PcoA, PcoB, PcoC, and PcoD, respectively).  

 

ii. Interdependency – PcoA and CusA may be able to work without their 

comrades-in-arm. 

 

 Following these observations, we sought to assess the interdependency of the proteins. If 

PcoA orthologs can be found alone in some species, without orthologs for the other Pco proteins, is 

the reverse also true? Can PcoB, PcoC or PcoD be found without PcoA? 

 The conservation data were therefore further analyzed. Among the alphaproteobacteria, we 

quantified the segregation of the genes to determine whether some particular subsets were more 

conserved than others. Only 8% of the 206 species possess homologs for the 4 proteins of the Pco 

system (PcoABCD, as PcoE is notably absent of all the alphaprotebacteria tested) (Fig. 34). 13% 

percent conserved 3 of the 4 proteins. Among these 13%, 41% of them possess the PcoABC 

combination, 55% the PcoACB combination, and only 4% the PcoABD arrangement. The PcoBCD 

subset was not found (Fig. 34). This seems to underline the importance of PcoA for the system. While 

several combinations were possible, all of the ones that were found contained PcoA. Subsets without 

PcoA do not seem advantageous for the cells, as it does not appear to exist or at least was not 

conserved enough to be detected by the ortholog search.  

28% of the 206 selected species have been found to hold homologs for 2 of the 4 Pco 

proteins. Among them, 48% contain PcoAB, akin to C. crescentus. 50% conserved PcoAC, and only 2% 

were found to possess PcoAD. The remaining three combinations (PcoBC, PcoBD, and PcoCD) were 

not present in the results (Fig. 34). This once again seems to stress the importance of PcoA.  

In 32% percent of the 206 species, only one of the four proteins could be detected. In those 

cases, PcoA is without surprise overwhelmingly present, with a 97% conservation rate among this 

category. 3% seems to have conserved PcoC only, without the three other actors (Fig. 34).  

The very variable level of conservation may make sense, as the prediction function for these 

Pco proteins could suggest relative independence between PcoA, PcoB, and PcoD (Fig. 35). The PcoC 

protein, however, is thought to either interact with PcoA or PcoD. Based on our result, the PcoA 

interaction seems more likely, as there are very few cases where a PcoC homolog is found without 

PcoA, while plenty of species seems to possess a PcoC homolog without PcoD.  



 

Fig. 36: Distribution of species according the amount of Cus homologs conserved. The 206 species are categorized 
according to their conservation of the Cus proteins and the different possible conservation combinations. 

  



101 
 

A majority (54%) of the 206 species retained the three Cus proteins (Fig. 36). 26% conserved 

2 of the 3 proteins. In these species, among the three possible associations (CusAB, CusAC and 

CusBC), only CusBC is not represented. The CusAB and CusAC associations display a conservation rate 

of 47% and 53%, respectively. Finally, among the 18% of the 206 species that conserved only one Cus 

protein, the overwhelming majority (94%) kept CusA. CusB and CusC alone represents only 3% each 

(Fig. 36). This could indicate that CusA is able to have a function on its own, maybe as an IM 

transporter exporting substrate to the periplasm, or maybe an unrelated function, while CusB and 

CusC are unlikely to be functional if not paired with CusA. 

These conservation results were superimposed with the database containing information 

about motility, lifestyle, and environment (Fig. S4). Several fuzzy correspondence analyses (FCA), 

followed by co-inertia analyses, were conducted. The FCA were performed via the Ade4 R package, 

with the Duality Diagram functions (dudi functions). 

These analyses are descriptive tools. A Correspondence Analysis (CA) serves to find, in a 

table, association patterns between the row labels (e.g., the organisms) and the columns labels (e.g., 

the traits).   

The CA will compute Expected Values (EV = row average * column average / total average) 

and Residuals Values (RV = actual value of the table cell – expected value). Positive residual values 

tend to indicate a correlation, while a negative value indicates an anti-correlation (Bock 2015). 

However, it is important to keep in mind that, because the population average is used to calculate 

the residual value, the result will always be relative to the population.  For instance, if all the 

organisms share a trait in the table, the residual value is likely to be close to 0, despite being indeed a 

characteristic associated with the organism.  

 

  



 

Fig. 37: Mock-up table of a dataset for CA. The data presented here are made up and represent a fictive example of a 

dataset that can be computed by CA. The rows are the values for the different organisms (called the row labels), while the 

columns are the different traits (column labels). 

 

Fig. 38: Mock-up of the kind of scatterplot resulting from the CA. This example suggests that the organism 1 and the trait 1 
present a strong correlation, at least stronger than the relation between the organism 2 and the trait 2. They are further 
away from the barycenter, indicating they a stronger distinction from the background noise. The proximity and smaller 
angle between the two elements reinforce this suggestion of correlation.  
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In the example presented in Fig. 37, the RV for the Trait 2 of the organism n°4 equals 57, 

which indicate a relatively strong correlation between this organism and this trait. As the actual value 

was high (99) and above the values of the other organisms, this was expected. More surprisingly, the 

residual value for the Trait 3 of the same organism is -7, which would mean an anti-correlation. Yet, 

the actual value is still high (90), but due to the population average, this trait does not stand out for 

this organism. 

Once computed, these residual values will be presented on a scatterplot. This scatterplot is a 

planar representation of the multidimensional analysis. Three elements are important to interpret 

the plot.  

The barycenter of the graph indicates a relative neutrality. The further away an element is 

from this center, the more this element will stand out from the rest of the dataset (Fig. 38). Traits 

shared by an overwhelming majority of the population, or traits shared uniformly in various groups 

without a strong correlation, tend to remain close to the origin, akin to background noises.  

The proximity of two different elements (one row label and one column label) suggests a 

correlation. The closer they are, the more associated they are likely to be (Fig. 38). If a row label (e.g., 

the organism name) and a trait are on the opposite part of the plot, they may be anticorrelated.  

The angle between two elements, i.e. formed if two lines were traced from these elements 

to the barycenter, is also indicative of an association (Fig. 38). The smaller the angle, the stronger the 

association. On the contrary, a 90° angle means there is no correlation, while a 180° would mean a 

perfect anticorrelation. 

Despite all the information given by the (F)CA, it remains a descriptive tool. It is simply used 

to have a better view on relationships that could exist within a table. In any case, any correlation 

should be verified with the raw data, as RV can sometimes be counterintuitive. Besides, in the case of 

where a trait is only shared by a small percentage of the population, it may under- or overestimate 

the strength of a correlation, due the the small size of the sample (Husson & Josse 2014).  

 



 

Fig. 39: Correlation of the conservation of the Pco and Cus proteins with the motility, the environment, and lifestyle as 
per the CA. The distance from the origin indicates a specificity, a small distance between elements from the different 
categories suggests an association and the angle between two elements formed by abstract line to the center indicate the 
strength of the correlation. Total inertia of the analysis = 57%. 

 

Fig. 40: Repartition of the environment for several categories of alphaproteobacteria. The top left quadrant indicates the 
reparation of the environmental niches for the 206 alphaproteobacteria of the database. The top right quadrant is the same 
repartition for all the alphaproteobacteria possessing at least one PcoC homolog, and the bottom left quadrant is for the 
ones possessing at least one PcoD homolog. The aquatic environment is color-coded in blue, the soil and sediment category 
in red, the plant environment in green, and the fraction of bacteria isolated on or in other organisms is depicted in violet. 
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Several FCA were conducted, correlating both the species and their environment (water, soil 

and sediment, plants or in other living organisms), lifestyle (pathogen, symbiont, free-living, or other) 

and motility (motile or non-motile), but also the conservation of the Pco and Cus system (Fig. 39, 42 

and 44). In addition, a co-inertia analysis was performed. The co-inertia analysis was originally 

developed to study species-environment relationships, and aims to detect correlations between two 

tables of values (Dolédec & Chessel 2006). This allowed us to get an additional qualitative assessment 

of the correlations found, in this case between the different proteins of the Pco and Cus system, and 

the table containing information about the environment and the lifestyle. 

The first analysis was done with the different Pco and Cus proteins independently from each 

other (Fig. 39). The correlation between these proteins, the species, and their motility (in blue), their 

environment (in orange) and lifestyle (in green) was assessed. The total inertia of the analysis was 

57%, which was deemed acceptable. PcoC seems to stand out and appear to be slightly correlated 

with plants  environment, and possibly the symbiotic lifestyle. The CA also suggest an association 

between the PcoD and the “Soil or sediment” environment. No effect of the motility was apparent. 

The co-inertia analysis reinforced these results, indicating a relatively high correlation value (0.8061) 

for PcoD and the Soil/Sediment environment, and a moderate positive value for PcoC and the plants 

(0.3056). We therefore went back to the raw data and plotted a comparison between the repartition 

of the environments for the general alphaproteobacteria population (n = 206 species) and the 

environment occupied by species that had at least one protein homologous for PcoC or PcoD (Fig. 

40). 

The PcoC correlation is not striking (18% isolated from a plant, instead of 12% in the general 

population). Nonetheless, if we run the reverse search, looking at all the species annotated as 

symbionts in the database, it appears that 69% of them possess at least PcoC (Fig. 41), while the 

conservation rate for PcoC is otherwise only half as high (35%) (Fig. 33). For PcoD, the correlation 

with soils or sediment seems more prominent. 45% of the alphaproteobacteria possessing at least 

one homolog of PcoD were isolated in the ground, compared to only 26% in the general population 

(Fig. 40). 

   



 

Fig. 41: Repartition of symbionts according to their conservation of PcoC. Symbiotic alphaproteobacteria that possess at 
least one homolog for the PcoC protein or a combination containing PcoC are color-coded in blue, those who do not are in 
red. 

 

Fig. 42: Correlation of the conservation of the different Pco proteins subsets with the motility, the environment, and 
lifestyle as per the CA The distance from the origin indicate a specificity, a small distance between elements from the 
different categories suggests an association and the angle between two elements formed by abstract line to the center 
indicate the strength of the correlation. Total inertia of the analysis = 50.5%. 
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However, analyzing all the proteins independently may introduce background noise that 

would drag everything closer to the barycenter. As most of the alphaproteobacteria conserved a 

homolog of CusA (Fig. 33) and a majority of them also possess homologs for PcoA, CusB, and CusC 

(Fig. 33), these proteins are likely to stay relatively close to the origin of the plot. This may be the 

case here for PcoA, CusB, and CusC. CusA seems dragged toward the top of the plot, possibly 

attracted by the “others” lifestyle category, which contains very few species, and which correlation 

strength may therefore be overestimated by the CA. 

Another CA was thus performed, this time with a clusterization of the conservation 

categories. We grouped the different combinations of the Pco system (PcoABCD, PcoABC, PcoACD, 

PcoAB, PcoAC, PcoAD, and PcoA) and tried to evaluate their respective associations with the lifestyle 

and environment as previously (Fig. 42).   

 This time, stronger associations appear to arise. While the motility still does not seem to be 

associated with a particular trait, the protein groups may be more specific to some environments or 

lifestyles. Bacteria that have conserved the four proteins (PcoABCD) seem to express a strong 

correlation with the soil/sediment environment (Fig. 42). PcoABC appears to be strongly associated 

with the symbiotic lifestyle, and possibly with the “plants” environmental category. PcoACD is 

suggested to be paired with the pathogenic lifestyle and, logically, would be found on or in other 

organisms (Fig. 42). The co-inertia analysis supported these observations, with a positive correlation 

value of 1.1542; 2.8129; 0.6219; 2.2600 and 0.2074, respectively. 

The raw data, however, only partially supported these correlation results. The PcoABCD 

correlation seems to hold true, as a vast majority (67%) of the species which conserved PcoABCD 

indeed have been isolated from soils or sediment, compared to only 26% of the general population 

of the alphaproteobacteria (Fig. 43 A).  



 

Fig. 43 Repartition of alphaproteobacteria according to their environment or lifestyle. A) The top row displays the 
repartition of the alphaproteobacteria according to their environmental niche. Left quadrant indicates the reparation of the 
206 alphaproteobacteria of the database. The right quadrant is the same repartition for all the alphaproteobacteria the 
PcoABCD protein combination. B) The bottom row displays the segregation of homologs according to the lifestyle of the 
bacteria — left quadrant the proteins group for the 206 alphaproteobacteria of the database. Right quadrant is the same 
analysis for the pathogens only. 

 

Fig. 44: Correlation of the conservation of the different Cus proteins subsets with the motility, the environment, and 
lifestyle as per the CA. The distance from the origin indicates a specificity, a small distance between elements from the 
different categories suggests an association and the angle between two elements formed by abstract line to the center 
indicate the strength of the correlation. Total inertia of the analysis = 88.37%. 
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The PcoACD association with pathogens is also partially found in the raw data. While the  

PcoACD combination represents only 7% of the alphaproteobacteria, it is found in nearly ¼ of the 

pathogens of this class (Fig. 43 B). However, nearly half of the pathogen do not possess any Pco 

homolog. This may indicate a fracture in the pathogen group, where two different clusters would not 

have the same need regarding Cu resistance. 

A third CA was performed, similarly to the one done with the Pco proteins group, although 

this time with the different grouping for the Cus system (Fig. 44).  

Although two correlations seem to stands out (CusA with the pathogens category and CusAC 

with free-living one), the co-inertia value are slightly more moderate than for the Pco analysis 

(0.6091 and 0.1257143). Besides, going back to the raw data does not provide much more hindsight 

on this correlation, possibly due to the ubiquist properties of CusA. 97% of the alphaproteobacteria 

appears to have at least one CusA homolog (Fig. 33), which makes difficult for a category to stand out 

based on its conservation. 

While some of these correlations seem interesting, it is still unknown if they are based on 

simple phylogeny or if they are due to an evolutive pressure that would have driven the bacteria to 

acquire and keep these resistance mechanisms due to their lifestyle. For instance, a strong 

correlation between the PcoABCD system and bacteria living in soil or sediment have been 

suggested. It would be interesting to know whether these bacteria are phylogenetically close to each 

other (in which case the conservation of PcoABCD may be irrelevant to their environment), or 

whether the evolutive distance between them is important. The latter may suggest that the four 

PcoABCD proteins are important to optimize the evolutive fitness when living in the soil or 

sediments. 

To answer this question, we aimed to superimpose the CA data to a phylogenetic tree of the 

206 alphaproteobacteria. To build this tree, the 30S ribosomal protein S1 was selected as its basis. 

The 30sS1 sequences of the 206 species were aligned with Clustal Omega. Clustal Omega is a 

command-line based software able to align multiple protein sequences. The resulting file needed to 

be curated, in order to remove the mostly non-conserved region that would bring on the table more 

noise than actual information. This reduction of the signal-to-noise ratio is important to build a 

phylogenetic tree as accurate as possible. Curating the alignment can be done manually via a 

software like Jalview, or via automated tools. If done manually, this critical step requires at the very 

least a rough knowledge of the protein of interest. It is valuable to know where the important 

regions of the sequence are located. This will reduce the risk of removing a poorly conserved region 

that is essential for a certain number of organisms present in the alignment (Castresana 2000).  



 

Fig. 45: Phylogenetic tree of the 206 species of alphaproteobacteria contained in the database. The tree was constructed 
with PhyML, using BIONJ starting tree with NNI improvement, and an aLRT SH-like statistical test for branch support. 
Pathogens are highlighted in dark red, symbionts in dark green. The light, semi-transparent boxes highlight various Pco 
proteins grouping. Bacteria having conserved PcoABCD are highlighted in light purple, the PcoACD subset is shown in light 
blue, and the PcoABC combination is in light green. 
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This kind of information, useful for the editing process, can be acquired experimentally or 

predicted by various bioinformatics tools. Here, we used several of them, including Foundation, 

Biocyc,   HHPred, SignalP, or HMMER. The curated alignment was sent to PhyML, which is described 

as a “fast but accurate algorithm” to build a phylogenetic tree (Guindon & Gascuel 2003). The 

parameters utilized were an AIC selection with a BIONJ starting tree with NNI improvement and an 

aLRT SH-like statistical test for branch support. The resulting tree can be seen in Fig. 45. The tree 

appears conform to trees already published in the literature (Williams et al. 2007), although a small  

group of Rhodobacteraceae seems misplaced. The tree has been annotated, with the pathogens 

highlighted in dark red, and the symbionts in dark green (Fig. 45). Pathogens look mostly spread in 

two clusters, one in the Rhizobiales order, and the other in the rickettsiales. Symbionts are more 

evenly spread. We superimposed on the tree the 3 Pco conservation subsets that gave a strong 

correlation in the previous analysis. The PcoABCD (in light purple) seems mostly clustered in one part 

of the tree (Fig. 45). This support the hypothesis that the tree is phylogenetically correct.  However, 

that also suggests this PcoABCD conservation may not be related to the lifestyle, but would rather be 

a product of an unrelated evolutive process. Indeed, soils and sediment bacteria are spread rather 

homogeneously in the tree. The important cluster of soil bacteria possessing PcoABCD may over-

represent the correlation between the environment and the Pco system. 

 Similarly, the PcoACD subset (light blue), correlated with the pathogen in the FCA, is mostly 

present in the Rhizobiales order (Fig. 45). While it is indeed present in a number of Rhizobiales 

pathogens, this particular grouping is not present in pathogens of other orders, such as the 

Rickettsiales pathogens. This may indicate that the pathogenic lifestyle does not especially require 

PcoACD as the CA could have suggested. However, it might also simply indicate the two orders face 

slightly different selective pressure, and that the Rhizobiales may encounter Cu or Ag stresses more 

frequently than the Rickettsiales during their infectious cycle. 

The PcoABC subset (in light green), correlated with the symbiotics bacteria and bacteria isolated 

from plants, is more homogenously distributed (Fig. 45), which may means the PcoABC combinations 

is relatively important for such lifestyle and environment.  
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RESULTS – Part II  
 

  



 

Fig. 46: Conservation of the TmrP protein of C. crescentus in E. coli. Double-headed arrows indicate a reciprocal best 
match. One-way arrows indicate that the first protein find the second as best match in blast.. 

 

Fig. 47: First hypothetical work model for TrmP. The PcoAB system is likely to manage Cu cations (depicted here blue 
spheres) entering the cell from the extracellular environment. However, Cytoplasmic Cu may need to be exported to the 
periplasm for detoxification and export. However, experimental data suggest that CopA might not fill this role in C. 
crescentus. Therefore, our first hypothesis was for another protein, here the TmrP permease, to perform this Cu transport. 
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TmrP – An uncharacterized protein 
involved in metal resistance 

 

After the characterization of the Pco system in C. crescentus, several questions were still 

pending. One of them concerned the way Cu is transported from the cytoplasm to the periplasm. 

What is feeding the Pco system with Cu? PcoA and PcoB are likely to regulate the excess Cu that 

enters the cell from the extracellular space. The cytoplasmic Cu level needs to be regulated as well. 

Ions may be driven to the periplasm by a specific protein to alleviate the risk of DNA damage. In E. 

coli, the P1B- ATPase CopA is reported to fulfill this role. This IM protein works in tandem with CueO 

(and therefore, possibly with the CueO paralog PcoAEc), driving excess Cu from the cytoplasm to the 

periplasm for detoxification. 

 However, in C. crescentus, the reported CopA homolog does not seem to be crucial for Cu 

resistance. The disruption of the gene does not seem to increase the Cu sensitivity of the resulting 

mutant cells (Fig. 30). Functional homologues were then sought.  

 The previously described genetic screen (Fig. S3) revealed several genes likely involved in C. 

crescentus Cu resistance, such as CCNA_02327 annotated as a gene coding for an ABC Transporter 

permease protein, hereafter referred to as “TmrP” (For Transition metals resistance Permease). TmrP 

candidate was identified nine times in the screen. Interestingly, the tmrP gene only encodes the 

permease part of the transporter, and the gene encoding the ATPase domain is not neighboring it. As 

ABC Transporters are generally localized in the IM, we first hypothesized it could play the role of 

CopA in C. crescentus and characterized this candidate further (Fig. 47). 



 

Fig. 48: Structure and domain prediction for CCNA_02327 (TmrP). A. Result of the Foundation analysis. Secondary structure 
are represented along with their sequence position on the horizontal axis. α-helices are represented in fushia and β-strands 
in cyan. The wiggly line in beneath the secondary structure represents disorder. The further away from the horizontal axis, 
the more the disorder. B1 TMHMM results, prediction transmembrane domain and helices. B2 I-Tasser tertiary structure 
prediction results. C. Results of the HMMER domain prediction. D. Results of the COACH prediction, predicting eventual 
binding sites and ligands. 
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a. Bioinformatics – establishing an hypothetical model 

i. Homologs research from E. coli sequences 

 

When blasting the TmrP protein sequence of C. crescentus as a query against the E. coli 

proteome, the best resulting match is the poorly characterized YadH ABC transporter protein. 

Interestingly, the reverse search, using the YadH protein sequence as the query against the C. 

crescentus proteome, does not return TmrP as the best match, but rather the uncharacterized 

CCNA_03482 ABC transporter permease, which has not been found in the genetic screen. However, 

CCNA_03482 still bears striking similarities with TmrP. Both proteins are reciprocal best matches 

within the C. crescentus proteome (Fig. 46).  

 

ii. Structure and domains 

 

TmrP displays classic ABC Transporter features in the structure prediction. It seems mostly 

composed of α-helices and is predicted to possess 6 transmembrane helices (Fig. 48 A and 48 B1), 

which is quite standard for an ABC transporter permease (ter Beek et al. 2014).  

Domain predictions suggest the presence of a large ABC-2 type transporter domain (Fig. 48 C). 

Although Type 2 ABC transporters are most often described as importers (ter Beek et al. 2014), 

several well characterized exporters possess type-2 like sequences such as NodJ, which is part of the 

NodIJ complex exporting the nodulation inducers in some plant symbionts, like Rhizobium 

leguminosarum or Bradyrhizobium japonicum (Fath & Kolter 1993) (Fig. S5). In silico protein-ligand 

binding site prediction performed by both COACH and TM-SITE indicates several potential ligand, 

although with poor confidence score. Both plateform predict GSH as a potential ligand (Fig. 48 D) 

 

  



 

Fig. 49: Growth profiles of the WT strains under various metal stresses in PYE medium. From A to G are the growth curves 
for CuSO4, AgNO3, CdSO4, FeSO4, ZnSO4, NiSO4, MnSO4, respectively. (Biological replicate = 3 for each metal; technical 
replicates for each biological replicate = 3 for CuSO4, CdSO4, AgNO3, FeSO4 and 2 for ZnSO4, NiSO4, MnSO4). Relative 
standard deviation between 6e-03 and 0.172. 
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b. TmrP is a system involved in metal resistance 
 

The implication of TmrP in metal resistance has first been tested through growth curves 

experiments.  A clean ∆tmrP knockout strain has been obtained by allelic replacement. In parallel, a 

second strain, harboring a replicative pMR10 plasmid carrying a copy of the tmrP gene under the 

control of the Lac promoter (∆tmrP pMR10 tmrP), was engineered.  

Moderate stress levels were determined for each of the metal salts (Fig. 49). The stresses 

increased in a dose-dependent manner, hindering the growth of C. crescentus either by reducing the 

growth rate or by elongating the lag phase before the growth start (Fig. 49). “Moderate stresses” 

were defined as concentrations to which the growth of the strain of interest is negatively impacted 

but still ongoing. The selected metal concentrations for CuSO4, AgNO3, CdSO4, FeSO4, ZnSO4, NiSO4, 

and MnSO4 were 150µM, 6µM, 6µM, 500µM, 50µM, 200µM, and 400µM, respectively. 

The different genetic backgrounds were tested in the presence of 150 µM of CuSO4. The 

∆tmrP strain exhibits an increased sensitivity to Cu compared to the WT strain (Fig. 50A). We sought 

to assess the specificity of this system. The Pco system was shown to be specific to Cu (Lawarée et al. 

2016). If TmrP is indeed working alongside the Pco system as hypothesized, then perhaps it might 

have the same Cu specificity. We therefore tested the sensitivity of the strains to several TM in the 

form of ZnSO4, NiSO4, FeSO4, MnSO4, CdSO4 and AgNO3. 

The ∆tmrP mutant does not display any increased growth delay or defect compared to the 

WT cells upon ZnSO4, NiSO4, FeSO4 or MnSO4 exposure (Fig. 50 D to 50 G). Interestingly, the ∆tmrP 

mutant seems more sensitive to CdSO4 and AgNO3 than the WT cells (Fig. 50 B and 50 C). In each of 

these case, the ∆tmrP pMR10 tmrP restored the WT phenotype. In addition, the complemented 

strain may slightly increase the resistance to NiSO4 (Fig. 50 E). While the growth rate seems similar, 

the plateau phase reaches a slightly higher O.D. 

These data suggest that TmrP is not entirely specific to Cu, and is involved in the resistance 

against at least three different TM stresses, suggesting that TmrP does not mirror the function of the 

Cu-specific CopA transporter in E. coli (Futai et al. 2004). However, TmrP could be a non specific IM 

metal transporter feeding the periplasmic Pco system with Cu ions. In order to test this hypothesis, 

TmrP was further characterized for its function and localization. 

 

 



 

Fig. 50: Growth profiles of the WT, ∆tmrP and ∆tmrP pMR10 TmrP strains under various metal stresses in PYE medium. 
From A to G are the growth curves for CuSO4, AgNO3, CdSO4, FeSO4, ZnSO4, NiSO4, MnSO4 in 150µM, 6µM, 6µM, 500µM, 
50µM, 200µM, 400µM, respectively. (Biological replicate = 3 for each metal; technical replicates for each biological 
replicate = 3 for CuSO4, CdSO4, AgNO3, FeSO4 and 2 for ZnSO4, NiSO4, MnSO4). Relative standard deviation between 4e-04 
and 0.154. 
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c. Biochemical characterization of TmrP: localization and function 
 

  i. TmrP localizes in the IM 

 

In order to establish whether TmrP  is indeed an IM protein, a membrane fractionation assay 

has been performed, similarly to the experiment realized with PcoB. This experiment aims to isolate 

the IM from the OM. An immunodetection is carried out as a follow-through, to detect in which 

cellular fraction the protein is located.    

However, as no antibodies for TmrP were available, a tagged strain was designed. The 

mCherry fluorescent tag was amplified by PCR from a reference strain and fused to the N-terminus of 

the tmrP gene sequence. This fusion was integrated in a pMR10 replicative plasmid and placed under 

the control of the strong Lac promoter. The vector was sent by electroporation in a ∆tmrP 

background, creating a mCherry-TmrP fusion that was used to perform the fractionation assay and 

the immunodetection. 

The Cytoplasm, IM and OM fractions of the WT and the mCherry-TmrP strains have been 

isolated, and the immunodetection has been carried out. The mCherry-TmrP was localized in the IM 

(Fig. 51A), strengthening the hypothesis of a IM permease. 

 Fluorescence microscopy has also been performed with the mCherry-TmrP strain. The 

fluorescence reveals a faint peripheral halo, as well as bright fluorescent spots (Fig. 51 B). The halo 

likely marks the position of one of the two membranes, possibly the IM where mCherry-TmrP is 

supposed to localize. We currently have no conclusive explanation for the cytoplasmic spots. While 

they may be part of the natural expression of the protein, they could also indicate protein clustering.  

This could be due to the potential overexpression of the mCherry-TmrP fusion protein, which could 

trigger the formation of inclusion bodies. The cytoplasmic spots do not systematically localize at the 

same intracellular location. Preliminary 1 hour timelapse experiments failed to highlight any 

movement of these spots. Further experiments and longer observations may gather additional data 

about the nature of these fluorescents spots.  

Taken together, these findings support the model of TmrP acting as an IM permease, part of 

an ABC transporter complex. However, these data do not provide any information about the 

permease substrate. 

  



 

Fig. 51: A. Expression level of PcoB in the cytoplasm (Cyto), inner membrane (IM) and outer membrane (OM). CckA and 
RsaF were used as inner membrane (IM) and outer membrane (OM) controls, respectively. B. Picture of the mCherry-TmrP 
strain under fluorescence microscopy. 

 

 

Fig. 52: ICP-OES Cu concentration measurement. Cu concentration in the different cellular fractions of WT and ∆tmrP 
strain. Total Cu measure on cell lysate is in blue, Cu mesure from cytoplasmic fraction is colored in red and Cu measured in 
the periplasmic fraction is colored in green. (Biological replicates = 3; technical replicates = 3). Differences between WT and 
∆tmrP for their respective fraction at the 0.05 α level are not significant. (Respectively p = 0.9571; p = 0.2710 and p = 0.5211 
for the Total comparison, cytoplasmic comparison and periplasmic comparison) 
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ii. TmrP may export cysteine toward the periplasm 

 

 Despite the bioinformatic analysis and the preliminary characterization, little is known about 

the cognate substrate of the TmrP. Our working model is that TmrP transports Cu, Ag and Cd from 

the cytoplasm to the periplasm where they could be detoxified and/or expelled out of the cell. By 

combining the previously described fractionation assay and Inductively Coupled Plasma - Optical 

Emission Spectrometry (ICP-OES), we were able to quantify the Cu concentration in periplasmic and 

cytoplasmic fractions of different genetic backgrounds. A “total fraction” condition, consisting of 

whole cell lysate, was also sampled. 

Surprisingly, no statistically significant differences in the Cu concentrations could be 

highlighted between the periplasms of WT and the ∆tmrP strains (p value = 0.5211) (Fig. 52). 

Similarly, no statistical differences could be measured between their respective cytoplasm (p value = 

0.2710) or total fractions (p = 0.9571). Two other preliminary experiments have been performed, 

trying to measure Ag and Cd in a similar fashion. Akin to the results obtain with Cu, neither the Ag 

nor the Cd concentration seemed to vary in the different cellular fractions between the WT and the 

∆tmrP strains. However, the Ag and Cd results should be treated with caution, as they are 

preliminary (biological replicate = 2). Taken together, these data therefore do not support the 

proposed model according to which TmrP would export Cu cations from the cytoplasm to the 

periplasm.  

TmrP thus seemingly does not transport metals, but could perhaps provides protection 

against Cu, Cd and Ag stress via another fashion.  

The genetic screen performed in the laboratory suggests the involvement of a cysteine 

synthase gene (CCNA_01493) in the Cu resistance (Fig. S3), since transposon insertion in the 

CCNA_01493 gene increases Cu sensitivity relative to the WT strain. This sensitivity has been 

confirmed by growth curves experiments (Fig. 53). 

 



 

Fig. 53: Growth profiles of the WT, ∆tmrP and ∆CCNA_01493 strains under a 200 µM CuSO4 stress in PYE medium. The 
control conditions without Cu are depicted in black, dark grey or dashed dark grey. (Biological replicate = 2 for each metal; 
technical replicates for each biological replicate = 2). Relative standard deviation between 0.0015 and 0.087. 

 

 

Fig. 54: Quantification of cysteine in different cellular fractions by a colorimetric technique in three different strains  (WT, 
∆tmrP and ∆tmrP pMR10 tmrP). The Cys content of the total, cytoplasmic (Cyto) and periplasmic (Peri) are estimated, and 
normalized by the WT values for comparison purpose (Biological replicates = 6 for WT and ∆tmrP and n = 3 for ∆tmrP 
pMR10 tmrP. Technical replicates = 3). One-sample t-tests were conducted, comparing the ∆tmrP and ∆tmrP pMR10 tmrP 
strains to a known mean of 100 (the normalized WT background value). P values for ∆tmrP total, cyto and peri fractions = 
0.2389; 0.000012 and 0.0002, respectively. P value for ∆tmrP pMR10 tmrP total, cyto and peri fractions = 0.3867; 1 and 
0.5928. 
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Cysteine (Cys) is a soluble amino acid, characterized by a thiol side chain. Highly reactive Cys 

serves both structural and functional purposes in many proteins (Ohtsu et al. 2010). Cys is also the 

key to the “oxidative folding” of a protein. The thiol of two Cys residues of a polypeptide can indeed 

form a disulfide bond, stabilizing the protein in a certain conformation (Holyoake et al. 2015).  

Cys is also the precursor of various molecules, such as glutathione or cystine (product of Cys 

disulfide bond-mediated dimerization) and a component of metallothioneins (Masip et al. 2006; 

Hamer 1986). These molecules play a role in dampening the metal toxicity (Cfr. introduction – Metal 

dedicated resistance system). Morover, the sulfhydryl (-SH) group of the Cys can react with H2O2, a 

potential byproduct of some metal stress, in a redox reaction, as it was observed in yeasts (Hohmann 

& Mager 2003). This reaction catalyzes the formation of cystine and H2O, thus reducing the ROS 

concentration in the cell (Ohtsu et al. 2010):  

H2O2 + 2 L-cysteine --> 2H2O + L-cystine 

In E. coli, the YdeD transporter has been shown to be involved in the defense against H2O2 

stress by translocating Cys from the cytoplasm to the periplasm (Ohtsu et al. 2010). The YecS 

importer, in turn, imports the resulting cystine back to the cytoplasm to regenerate the Cys pool 

(Ohtsu et al. 2015). In E. coli the CydDC ABC Transporter complex was demonstrated to export Cys 

and glutathione and seems to be required for Cytochrome assembly (Pittman et al. 2005; Pittman et 

al. 2002; Shepherd 2015; Holyoake et al. 2015; Cruz-ramos et al. 2004).  

Considering Cys could thus counters the toxic byproducts of metal stresses or metals 

themselves, we hypothesized that TmrP could be involved in Cys transport from the cytoplasm to the 

periplasm in order to detoxify periplasmic Cu. Experiments were then performed to assess the ability 

of TmrP to transport Cys. While Cys-containing molecules are therefore known to help resist against 

a metal stress and Cys known to bind Cu, the eventuality Cys alone could provide resistance against 

metal in bacteria is less studied. 

 

 

  



 

Fig. 55: Quantification of motility by a swarming motility assay. The motility of each genetic background has been 
estimated by measuring the size of the dispersion halo (M2G 0.25% agar). Measurements have been normalized by the WT 
value for comparison purpose. Biological replicates = 3. P values for ∆tmrP, ∆tmrP pMR10 tmrP and CCNA_01493 mutant 
backgrounds = 0.0160; 0.0155 and 0.0218, respectively. 

 

Fig. 56: Scan of the motility halo for one of the replicate of the motility assay. From A to D, halo for the WT, ∆tmrP, ∆tmrP 
pMR10 tmrP and CCNA_01493mutant background respectively. 
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Cys concentration can be determined via a colorimetric method involving ninhydrin 

(Gaitonde 1967). Under acidic condition, Ninhydrin reacts with L-Cys and turns the sample pink that 

can be quantified by measuring the O.D. 560 nm with a spectrophotometer (Gaitonde 1967; Ohtsu et al. 

2010). This reaction has been reported to be quite specific to L-Cys. Ninhydrin will not react, under 

these conditions, with Cys-bearing complexes such as Cystine or Gluthathione, nor with other AA 

such as Proline or Citrulline (Gaitonde 1967). This protocol was used in combination with the 

fractionation assay to assess the presence of Cys in the periplasmic and cytoplasmic fractions of 

different genetic backgrounds. The WT, ∆tmrP and ∆tmrP pMR10 tmrP strains were tested. The 

∆tmrP strain seems to accumulate 40% more Cys in the cytoplasm than the WT (Fig. 54). Conversely, 

it has roughly 40% less Cys in the periplasm. These differences are statistically significant (One-

sample t-test; p = 0.000012 and 0.0002, respectively). The ∆tmrP pMR10 tmrP complement the 

phenotype, restoring WT level of Cys in both fractions. This result argues in favor of the cystein 

exporter model. TmrP would be anchored in the IM and transport Cys from the cytoplasm towards 

the periplasm. 

Periplasmic Cys has been reported as crucial for proper motility in E. coli (Pittman et al. 

2002). Mutation in the CydDC ABC Cys exporter would reduce Cys amount in the periplasm and 

trigger motility defects. As it may trigger similar effects in C. crescentus, we performed a motility 

assay. The ∆tmrP strains exhibited a 32% decrease in swarming motility (calculated from the size of 

the swarming halo, cfr. Fig. 56 for an example of halo pictures) compared to WT (Fig. 55). This 

difference is stastically significant (One-sample t-test, p value = 0.0160) The ∆tmrP pMR10 tmrP 

strain exhibits a near-complete restoration of the WT phenotype (92% of the WT motility). An 

additional genetic background was tested. Alternatively, the CCNA_01493 knockout strain (knockout 

by disruption of a Cys synthase gene) displayed an intermediate phenotype with a 24% decrease 

compared to WT. However, it should be noted that CCNA_01493 possess a paralog. The CCNA_03740 

gene encodes for a second Cys synthase, which may explain why the CCNA_01493 knockout strain 

only results in an intermediate phenotype in the motility assay. 

These results tend to corroborate those from the Cys assay, and support the hypothesis that 

TmrP exports Cys to the periplasm of C. crescentus. 

 

 



 

Fig. 57: Proposed model for the chelation of Cu
2+

 by Cys (Baker & Czarnecki-maulden 1987). 

 

 

 

Fig. 58: Impact of metals on the absorbance of AA. Difference between the absorbance of AA alone and AA with metals, 
with the controls subtracted. Range of read from 201nm to 998nm. From A. to E.: 500 µM of L-Cys, L-Met, L-His, L-Ala or L-
Pro, respectively, each one in when placed in contact with 50 µM of either CuSO4, CdSO4, AgNO3, FeSO4, ZnSO4 or NiSO4  
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iii. Cysteine is involved in metal resistance 

 

In eukaryotes, Cys was proposed to chelate heavy metals and trace elements, limiting the 

amount of free ions able to damage the cell (Baker & Czarnecki-maulden 1987). In the case of Cu, this 

would be done by 2 Cys binding to Cu2+ through their sulfhydryl group (Fig. 57) Cys was shown to 

bind Cu in vitro. The affinity of Cu for Cys thiol group was investigated by Mass Spectrometry (Wu et 

al. 2010). Cu+ cations were shown to react with the –SH or –SO3H group.  Additionally, the formation 

of Cys-Cu complexes was evidenced by Spectrometry, Electro Spin Resonance (ESR) and Nuclear 

Magnetic Resonance (NMR) (Rigo et al. 2004). 

In order to assess the involvement of Cys in metal resistance, we first tried to assess the 

ability of Cys and several other AA (Met, His, Ala and Pro) to bind TM directly. Using a spectrometry-

based protocol, we measured the absorbance of 50 µM of CuSO4, CdSO4, AgNO3, FeSO4, ZnSO4 and 

NiSO4 before (“T0” condition) and 5 minutes after they were mixed with 500 µM of L-Cys, L-Met, L-

His, L-Ala or L-Pro (“T5” condition). A plate reader scanned and recorded the absorbance from 201 

nm to 998 nM in the different conditions. All 6 tested metallic salts had a maximum absorption peak 

in the UV range (225 nm, 220 nm, 230 nm, 200 nm, 200 nm and 200 nm, respectively). The raw 

absorbance reads can be plotted, showing the differences between the T0 and T5 conditions (e.g., 

Fig. S6). However, to highlight the changes, the controls (the blank, AA and metal absorbance values) 

were subtracted from the T5 condition, so that the plotted curve only represent the effect the AAs 

had on the metals (Fig. 58 and Fig. S6).     

When mixed with 0.5 mM L-Cysteine, the absorbances for CuSO4, AgNO3 and CdSO4 

increased drastically, while the absorbances for FeSO4, ZnSO4 and NiSO4 seemed less impacted (Fig. 

58 A). The CuSO4 absorbance peak was slightly displaced to the right, now reaching its maximum at 

245 nm (instead of 225 nm), and creating a right-sided shoulder on the curves (Fig. 58 A and Fig S5). 

The 245nm absorbance increased two-fold. A similar, albeit slightly weaker effect was observed for 

CuCl2 and CdSO4 (Fig. 58 A). The AgNO3 condition also followed a similar trend (Fig. 58 A). Although 

the absorbance peak stayed at 230 nm like the T0 condition, the absorbance was increased and a 

shoulder can be observed on the right side of the slope (Fig. 48 A and Fig. S6). The FeSO4, ZnSO4, and 

NiSO4 did not seem to react as strongly with Cys, although we cannot rule out the possibility that an 

effect would exist outside the recorded range, e.g., below 201 nm. 

   



 

Fig. 59: Impact of AA on the absorbance of AA. Difference between the absorbance of metal alone and metals with AA, 
with the controls subtracted. Range of read from 201nm to 998nm. From A. to F.: 50 µM of CuSO4, CdSO4, AgNO3, FeSO4, 
ZnSO4 and NiSO4, respectively, each one in when placed in contact with 500 µM of either of L-Cys, L-Met, L-His, L-Ala or L-
Pro 

 

 

Fig. 60: qPCR performed on TmrP. The results is expressed in relative fold changes compared to the SW condition and 
calculated as 2

–ΔΔCt
. (biological replicates = 3, technical replicates 3). P value for the ST condition = 0.0851. The 16sRNA was 

used as control. 
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The experiment was also done with other AAs. CuSO4 seems to react with every one of them, 

although in a lesser way than with L-Cys (Fig 58 A to E and Fig. 59 A). L-Met also seems prone to 

chelate metals. Outside of CuSO4, L-Met also appears to bind AgNO3, FeSO4, and ZnSO4 (Fig. 58 B). 

This is in line with the literature, as Met has been shown to bind a broad range of TM (Osman & 

Cavet 2008; Hilal et al. 2016; Bampidis et al. 2018; Deepak et al. 2017). The other tested AA do not 

highlight a strong interaction with the tested metals other than Cu, although a slight effect can be 

seen for some, for instance L-His with AgNO3. In any case, the differences are milder than with Cys 

(Fig. 58 C to E). The changes in the peak of absorbance of AgNO3 with L-Cys, for instance, is 5 times 

stronger than the changes with L-Met or L-His (Fig 59 B).  

These data support the idea that Cys could chelate Cu2+, Cd2+ and Ag+ but not Fe2+, Ni2+ or 

Zn2+. This is consistent with the role of TmrP in resistance against Cu, Cd and Ag. However, Cys may 

also have a more indirect effect through redox reaction, handling ROS and toxic by-products of metal 

excess. 

iv. TmrP might more expressed in the ST cells than in the SW cells. 

 

 As the SW cells of C. crescentus can flee a stress (Lawarée et al. 2016), it may be less essential 

for them to possess numerous resistance and detoxification mechanisms, as it could be more costly 

energetically speaking. It has been demonstrated that there is very little PcoA and PcoB proteins 

present in the SW, while the number of transcript and protein increase drastically in the ST and PD 

cells, sessile (Lawarée et al. 2016). To investigate if a similar distribution applies to TmrP, we 

conducted qPCR experiment during the cell cycle.  

 A WT culture was synchronized. It was sampled a first time during the G1 SW phase, and a 

second time right before the G2 phase, when cells are in ST phase. Cells were lysed and RNA 

extracted, treated with DNAse and reverse-transcribed for qPCR. The tmrP mRNA level in the ST was 

compared to SW mRNA level. mRNA fold changes between conditions were calculated following the 

∆∆Ct method (Fig. 60). Despite a 8 fold change mean, the results is not quite statistically significant (p 

= 0.0851), possibly due the relatively low number of technical replicates (n=3) and/or biological 

replicates (n = 3).  

 More experiment would be needed to confirm or disprove this trend. Immunodetection 

could also be used to assess the protein level rather than the mRNA level. 
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Discussion 
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Impact of the Pco and Cus system on C. 
crescentus resistance to Cu 

 

The periplasm of Gram-negative bacteria is likely to represent an important line of defense 

against exogenous metal stress. Therefore, identifying periplasmic resistance systems is of utmost 

interest to acquire a better understanding of the molecular mechanisms at play in these bacteria. In 

C. crescentus, we showed that a functional Pco system detoxifies and exports Cu outside the cell. 

However, the Cus system could not be confirmed as having the same Cu export function than it has 

in E. coli.  

1. The role of PcoA and PcoB 
 

Unsurprisingly, experimental data confirmed that PcoA is a periplasmic MCO. However, we 

also managed to shed some light on the function of PcoB, still poorly characterized even in the E. coli 

model. The experiments conducted on a ∆pcoB background hinted toward a role of efflux pump in C. 

crescentus. A fractionation assay successfully localized PcoB in the OM. However, albeit these data 

are consistent with the in silico predictions, several questions remain. Importantly, the way PcoB 

would be energized remains elusive. No ATPase domains are predicted in PcoB. As the periplasmic Cu 

concentration is often higher than the extracellular Cu concentration (Lawarée et al. 2016), a 

gradient-based may be possible. However, it could be argued that the Cu measured in this 

experiment is the total amount of Cu and not the free Cu that would contribute to the gradient. 

Hence, the presence and direction of an eventual gradient is unknown. It is not impossible however 

that the intrinsic physiochemical properties of PcoB would allow the export of Cu cations through 

PcoB without a third-party source of energy (Argüello, personal communication). Besides, the 

crystallization of PcoB may provide some additional clues about the energization question, although 

crystal structures of membrane proteins are usually difficult to obtain. The first  crystallization 

attempts of PcoB, performed in collaboration with the chemistry department, proved unsuccessful. 

The ability for PcoB to bind Cu could, however, be tested in vitro, for instance via Microscale 

Thermophoresis (MST). MST is a fluorescence-based technique that can be used to measure the 

interaction between a known biomolecule and a ligand (Jerabek-willemsen et al. 2014). This 

technique could reinforce the hypothesis that PcoB is indeed a Cu efflux pump. 



 

  



137 
 

Another question that remains unanswered so far is the interaction between PcoA and PcoB. 

We tried to assess this interaction with a co-immunoprecipitation experiment but were unable to 

highlight any interaction in our test conditions. However, it may not be that surprising. As PcoB 

seems to be able to function alone (Fig. 25), one could argue it does not interact with PcoA. 

However, crystallization could once again bring further information on the issue. 

2. The dynamic between the Pco and Cus system of C. crescentus 

seem peculiar 
 

 The Pco system appears crucial for C. crescentus resistance to Cu, while the Cus system does 

not seems to have much impact on it. Disruption mutants for the different Cus actors indeed did not 

increase Cu sensitivity in the tested condition (Fig. 30). This is a bit surprising considering it goes 

against what was known so far in the E. coli model. In E. coli, it had been reported that the Cue and 

Cus systems were acting as the first and second line of defense (Osman & Cavet 2008). The Pco 

system would be an auxiliary system, stepping in if the other 2 were overwhelmed by the Cu stress 

(Osman & Cavet 2008). The Caulobacter case would therefore be rather peculiar, although some 

counterarguments have to be taken in account. 

 The proteins we labeled as the different Cus orthologs were selected via an in silico analysis, 

picking the best match from each Blast search. However, this led to the selection of proteins that are 

encoded by genes in three different operons, which is rather odd. In E. coli, the Cus complex is 

encoded by a single group of three genes, controlled by the same promoter. This may hint toward 

one or multiple duplications in C. crescentus, where the three operons would be paralogs. The 

duplications would create redundancy and would explain why no Cu sensitive phenotype was 

detected in the single-mutant growth curves experiments. This hypothesis also fits the results of the 

genetic screen performed by the group, where none of the genes encoding for the chosen proteins 

were found. Interestingly, the protein chosen as the CusA ortholog was still induced by a moderate 

Cu stress, and a gene (CCNA_0851) in operon with our cusC candidate was highlighted by the genetic 

screen (Fig. S3). This suggests that their two respective operons may still be involved in Cu resistance. 

 It would be interesting to engineer multi-knockout strains where all the 3 operons are 

impaired, for instance by excising all the orthologous genes for cusB or cusC. This could bring new 

information about the function of the Cus system in C. crescentus, and its importance for metal 

resistance. In addition, we could try growth curves experiments with other metals, like AgNO3, as the 

Cus system in E. coli was shown to be not completely specific to Cu. 
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3. Evolution and Conservation of the Pco and Cus systems 
 

a. Variation of conservation 
 

The conservation of the Pco and Cus proteins varies. Both PcoA and CusA are the most 

conserved protein of their respective system. While C. crescentus needs both PcoA and PcoB to resist 

Cu in the conditions we tested, it is not farfetched to imagine that PcoA alone could be sufficient in 

some other species, or at least to imagine a system where the Cu ions detoxified by PcoA would be 

exported by another efflux system than PcoB. This would be similar to the Cue system, where no 

protein dedicated to the export of the Cu cations detoxified by CueO has been described. 

Interestingly, our analyses might provide hindsight about a long-lasting question, which is the 

role of PcoC. PcoC is poorly characterized in E. coli. It is predicted as a Cu-binding protein that would 

interact with either PcoD or PcoA. Conservation data indicated that when a PcoC homolog is 

conserved, PcoA is nearly always present. However, the presence of PcoD does not seem mandatory. 

This suggest an interaction with PcoA rather than with PcoD. Co-immunoprecipitation or two-hybrids 

experiments may bring a more definitive closure to the subject.  

CusA is more conserved than CusB or CusC. Akin to the hypothesis formulated for PcoA, 

maybe CusA could act independently of CusB and CusC in some bacteria. CusA might then function as 

a Cu-binding protein, or as a IM transporter, binding Cu cations in the cytoplasm and exporting them 

to the periplasm. This hypothesis is partially supported by the fact CusA has been shown to remain 

functional in absence of CusC in E. coli (Franke et al. 2003). While CusF and CusC were needed to 

provide complete and optimal resistance to Cu, CusA and CusB alone were sufficient to provide 

protection against a lesser Cu stress (Franke et al. 2003). This is a bit puzzling considering CusB had 

initially been described only as a relay bridging CusA to CusC, and helping to channel the ions through 

the periplasm. However, it also has been later described as accepting ions from the CusF chaperone. 

Recent developments put emphasis on the latter function, suggesting it may be CusB primary role, 

and stating that the metal relay hypothesis may be wrong (Chacón et al. 2014). Beside, CusB also has 

been reported as acting as a “switch” for CusA, allowing it to accept ions from CusF (Chacón et al. 

2014; Delmar et al. 2015). This function may not be needed in the eventuality of CusA acting solely as 

an IM transporter. 
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However, there is another important point to consider. The blast search does not 

discriminate between orthologs and paralogs, and does not give any solid information about the 

function. Although we often tend to assume that two homologous proteins share the same role, the 

function of a protein may very well have slowly drifted over time. This can explain why some 

homologs of proteins usually belonging to a multipartite complex are found isolated in the genome. 

For instance, it has been reported that, in S. meliloti, a “CusA-like” protein is present. This 

CusA-like protein is necessary not only to increase metal resistance in both S. meliloti and its host 

after symbiosis, but also to help symbiosis in the first place (Lu et al. 2017). A plant infected by a 

∆cusA-like strain exhibits a lower number of nodules, and difficulties to grow even on 

uncontaminated soils (Lu et al. 2017). This CusA-like protein was described to have a 97% identity 

with the regular Cu/Ag exporting CusA of S. meliloti, and is thought to have emerged from a 

duplication event. It was found to be slightly truncated (Lu et al. 2017; Fagorzi et al. 2018). The gene 

encoding for this CusA-like protein is part of a four genes operon, comprising copG, the cusA-like 

gene, a fixH-like gene, and gene coding for a protein of unknown function (Fagorzi et al. 2018). 

While this particular finding may not have influenced our results here (as all the symbionts 

but one possess the whole CusABC complex), it highlights the importance of discriminating between 

the protein of interest and eventual paralogs that would have drifted away from the original 

function. Besides, as the CusA-like protein is still reported to be important for Cu resistance, it could 

suggest it can work outside the CusABC complex and again explain why some species only possess 

CusA and not CusB and CusC.  

It would therefore be necessary to run additional in silico analysis to ensure that the 

homologs found in the 206 species of alphaproteobacteria are indeed orthologs of the genes of 

interest and not homologs with a different function. We may also need to revise the thresholds 

selected, and set up stricter e value or  AA length similarity filters. 

b. Pathogenesis correlation 
 

The correlation with pathogenesis also raises questions. The nutritional immunity strategy 

described in the literature would lead to think that pathogens do not need Cu resistance systems as 

much as other bacteria, as the host cell would try to deprive them of Cu (Braymer & Giedroc 2014; 

Espart et al. 2015). However, the strategy described in murine macrophages in case of salmonella 

infection is to increase the Cu concentration at infection site (Achard et al. 2012), which would argue 

in favor of a strong need for Cu resistance system for pathogens.  
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The pathogens in the alphaproteobacteria seem to be generally split into two clusters, one in 

the rhizobiales, and one in the rickettsiales (Fig. 45). As the rickettsiales seem largely deficient in Pco 

homologs, it would be interesting to analyze what are the differences with the rhizobiales pathogens. 

Both seem to share some similarities in term of hosts (several rhizobiales and rickettsiales both infect 

mammalians cells, for instance) but maybe the mean of infection, the subcellular replication niche, or 

mechanisms to avoid immune system detection are different. This could leads to different reaction of 

the immune system, maybe avoiding the Cu stress strategy of defense. If Rhizobiales are more likely 

to face toxic Cu concentration from the host, then it would make sense for this group to keep Pco 

proteins homologs. Rickettsiales are however known for their surprisingly small genome, and for 

their ability to escape the immune system (Merhej et al. 2011). This may be part of the explanation 

to why they seemingly do not require Pco homologs. 

c. More information could be extracted from the in silico data 

More information could be annotated on the phylogenetic tree. The origin of the homologs 

(whether they are encoded by a gene carried on a plasmid or a chromosome) could be mapped, as 

well as the environment. Additionally, it would be interesting to find a way to discriminate between a 

vertical transmission, inherited from a common ancestor, and homologs acquired by horizontal gene 

transfer (HGT). Detecting HGT events is known to be challenging (Adato et al. 2015; Trappe et al. 

2016). Several detection methods exist. The phylogeny-based approach constructs the phylogeny 

lineage of the gene of interest, and compares it to a phylogenetic tree built with a reference gene 

(Adato et al. 2015). The comparison between the 2 may highlight HGT events. However, this 

approach is highly dependent on the target itself, as some genes may be not suited to infer a reliable 

tree, making the comparison difficult. The composition-based approach relies on detecting anomalies 

at the sequence level (changes in codon bias, GC content, etc.) to infer HGT events. This is not always 

perfect, as it would fail to detect HGT between species sharing roughly the same composition 

characteristics (Adato et al. 2015) . HGT events also can, in some cases, be detected by the traces 

they left, as some specific sequences or patterns can sometime be found flanking the inserted 

element (Cuecas et al. 2017).  

Synteny-based search could also be performed. By looking at the positions of genes and their 

genomic environment, species-to-species divergences may be highlighted. Synteny-based 

comparison tools have been shown to work reliably and are freely available (Adato et al. 2015). In 

our analysis, however, these techniques would be difficult to set up. Most of them require to work 

on the nucleotides sequences, while our database is composed of AA sequences. The phylogeny-

based approach could be attempted, as it can be performed with proteins instead of genes.  
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Characterization of the TmrP protein 

 

We suggested a function for a uncharacterized ABC Transporter permease of C. crescentus. 

TmrP has been shown to be an IM protein involved in Cu, Cd and Ag resistance. Experiments imply 

that it exports Cys to the periplasm, which could provide resistance to these metals. Spectrometry 

also indicates that Cys could bind Cu, Cd, and Ag directly, but not the others tested metals.  

This suggests that the observed effect on metal resistance may be due, at least partially, to 

direct chelation.  

Direct binding of metal by Cys was demonstrated already (Wu et al. 2010; Rigo et al. 2004). 

While this chelation was proposed to play a role against metal toxicity in general (Rigo et al. 2004), it 

was not linked to an in vivo case in a particular bacteria.  However, MT are shown to chelate similar 

metals (Cd, Ag, Cu, but also Zn, Hg or As) in vivo and are composed of up to 30% of Cys. MT and the 

Cys transported by TmrP are therefore likely to play a similar role. Indirect roles of Cys in metal 

resistance are also known, for instance via the formation of GSH. GSH has been shown to chelate 

metals, but is also likely, due to its antioxidant effect, to neutralize the ROS created by metal stress. 

The Cys exported by TmrP might be used for other processes in the periplasm, too.  

However, as with Cu, Cys can rapidly become toxic as its concentration increases. The toxicity 

likely comes from the –SH group, highly reactive (Guédon & Martin-Verstraete 2006). Cys production 

and export therefore need to be tightly regulated. In E. coli, the CysB transcriptional regulator 

controls Cys synthesis. CysB is a multi-target activator, regulating positively many Cys-related genes. 

The cysB gene possesses two homologs in C. crescentus. Interestingly, both of them (CCNA_03625 

and CCNA_01174) are found in the genetic screen done by the team, suggesting a relation to Cu 

resistance.  

In addition, transcriptomic data provided by Laurens Maertens indicated that the expression 

of both tmrP and CCNA_01493, the Cys synthase identified in the genetic screen, may be induced by 

Cu. However, CCNA_03187, a homolog of ydeD, is not. In E. coli, ydeD encodes for a L-Cys transporter 

required for H2O2 tolerance (Ohtsu et al. 2010). However, these high-throughput transcriptomic data 

could be confirmed and expanded. For instance, in addition to the response to Cu, the induction by 

Cd and Ag stresses could be tested. Besides, we could test the inducibility at the protein level 

through the immunodetection of a tagged strain. 
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1. TmrP might react with other metals 
 

 These results shape a hypothesis where Cu (and potentially other metals) stresses may 

induce the expression of Cys synthases and Cys exporters. The efflux of Cys toward the periplasm 

would temporarily increase, allowing for periplasm detoxification by metal chelation. However, a 

question remains: Why does this putative chelation effect was only observed with 3 metals so far? 

Why would TmrP (or rather, the Cys it exports) confer resistance against Cu, Ag, Cd, but not the other 

metal we tested?  

Although Cu, Ag and Cd are often cited together when it comes to resistance systems 

(Culotta & Scott 2013), Zn is generally considered in the same category. Yet, Zn resistance was not 

shown to be potentiated by Tmrp. Why?It might be related to atomic orbitals and the size of these 

atom nucleus. 

The electronic configuration of Cu is [Ar]4s1 3d10. Thefore, the configuration of Cu2+ is 

[Ar]4s0 3d9, as the 4s subshell electron is removed first (flowing the “highest n” rule), then the one 

on 3d subshell. The configuration for Ag is [Ar]5s1 4d10. Ag+ is therefore [Ar]5s0 4d10. The 

configuration for Cd is [Kr]5s2 4d10, resulting thus for Cd2+ in [Kr] 5s0 4d10.  

Cd and Ag have a similar electronic configuration. They are both in the 5th period of the 

periodic table, and both their respective ionic forms end up in a 4d10 configuration. Cu, however, is 

in 3d9. Both 4d10 and 3d9 configurations tend to react with sulfhydryl groups, as the reaction would 

be energetically favorable.  

Curiously, Zn2+ ions also are in a 4d9 configuration, like Cu, and yet, do not appear to react 

with Cys in our condition. This might be explained by the nucleus size. Zn nucleus is smaller, and 

therefore the electrons spread around it are closer together than they would be if they were around 

a bigger nucleus, like the Cu nucleus. This proximity makes the disruption of the electron interactions 

harder. It may therefore take more energy to do so, or require an dedicated enzymatic process.  

This hypothesis could be partially verified by testing other metals. According to this model, 

TmrP should confer resistance to Hg and Au as well. This could be tested by growth curves 

experiments. 
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2. The TmrP ATPase has yet to be identified, and the complex could 

interact with other proteins 
 

As mentioned, the tmrP gene only encodes for the permease domain of the ABC transporter 

complex, and the gene encoding for the ATPase domains remains elusive so far. However, two 

potential candidates were identified, CCNA_00188 and CCNA_03681. Both are annotated as genes 

encoding for ABC transporter ATP-binding proteins. Besides, both are not predicted to be in operon 

with a neighboring permease. CCNA_00188 have been found several time among the hits of the 

genetic screen done by the group, and is in silico analysis predict its protein could be interacting with 

TmrP. CCNA_03681 has not been found in the genetic screen yet, but preliminary mass spectrometry 

data (data not shown) suggested it could be in interaction with TmrP as well. 

We engineered disruption strains for the genes encoding these two proteins. If one of these two 

proteins interacts with TmrP, then the mutant strain may present the same phenotype to Cu, Cd and 

Ag stress than the ∆tmrP. We are currently performing the growth curves measurements for these 

mutants in presence of the metals already tested with the ∆tmrP. 

As a prospect, we also plan to check their interaction by an immunoprecipitation assay. In 

addition, we also would like to test the interaction of the TmrP with CCNA_01493,  the Cys synthase 

found in the results of the genetic screen. However, it should be noted that the precise site of 

interaction is not known, and we ignore if CCNA_01493 would be interact with the ATPase domain or 

with the cytoplasmic part of the permase domain. 

3. Is TmrP unique? 
 

One of the questions that remains to be answered is how common this system would be. Is 

Cys export a widespread strategy to face transition metal stress? Is this another particularity of C. 

crescentus? We intend to answer this question by conduction bioinformatics analyses and estimate if 

we can extrapolate this system to other alphaproteobacteria. 

  



 

 

  



151 
 

 

 

 

 

 

 

Experimental 

procedures 

  



 

  



153 
 

Bioinformatics 

1. Ortholog search 
 

Ortholog searches were performed with the NCBI BLAST+ 2.4.0 command-line package, with 

an E value threshold of 9e-16. The “blastp” command was used on a database composed of 

proteomes of alphaproteobacteria recovered on NCBI via the Entrez utility. The “–num_descriptions 

9999” and “-num_alignments 9999” were added as additional parameters. 

2. Predictive tools 
 

Various platforms and service were employed to make in silico predictions about the 

different Pco and Cus proteins, as well as the ABCT protein. The tools or website used were 

Foundation (http://www.pvcbacteria.org/foundation/prg/foundation_01.cgi), Biocyc 

(http://biocyc.org),   HHPred, PatternSearch, HHOMP, Quick2D  which all can be found in the MPI 

bioinformatic toolkit (https://toolkit.tuebingen.mpg.de). SignalP 

(http://www.cbs.dtu.dk/services/SignalP/),   HMMER (https://www.ebi.ac.uk/Tools/hmmer/) and I-

Tasser (https://zhanglab.ccmb.med.umich.edu/I-TASSER/).  These services were used according to 

their respective guidelines. 

3. Phylogenetic Tree 
 

 Alignments of the sequence were made via the command-line based version of Clustal 

Omega and the curation the resulting alignment was performed with Jalview 

(http://www.jalview.org). The phylogenetic tree was assembled via PhyML. The parameters used 

were an AIC selection, a BIONJ starting tree with NNI improvement and an aLRT SH-like statistical test 

for branch support. The visualization and annotation of the tree were done via the iTOL (interactive 

tree of life - http://itol.embl.de) online tool.   
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Strains, plasmids and growth 
conditions 

 

The C. crescentus NA1000 WT strain was grown at 30°C, under moderate shaking, in Peptone 

Yeast Extract (PYE) medium (Poindexter 1981) with 5 μg/ml kanamycin, 5 μg/ml Nalidixic acid, and/or 

CuSO4.5H2O when required. Cultures in exponential phases were used for all experiments. Plasmids 

were mobilized from a DH10B E. coli strain into C. crescentus by triparental mating conjugation 

(Glazebrook & Walker 1991). The strains and plasmids are listed in Tables 3 and 4. The growth curves 

experiments on the Cus mutants were conducted by E. Lawarée and performed in Hutner base-

Imidazole-buffered-Glucose-Glutamate (HIGG) minimal medium. Cysteine assays were performed in 

M2G (M2 minimal salts with a glucose carbon source, as detailed in (Hottes et al. 2004)). 

Synchronization experiments were performed according to (Evinger & Agabian 1977). 

  



Table 3: Table of the strains used for the experiments presented in this work 

Strains Relevant genotype or description 

CB15 Wild-type strain of C. crescentus 

WT CB15N (NA1000) synchronizable variant strain of CB15 

ΔAB Knockout strain for pcoAB genes 

ΔAB EV Knockout strain for pcoAB genes carrying an empty pMR10 KanR 

ΔAB/pAB 
Knockout strain for pcoAB genes carrying a copy of pcoAB of the pMR10 under 
control of the lac promoter; KanR 

ΔABpA 
Knockout strain for pcoAB gene carrying a copy of pcoA on the pMR10 under 
control of the lac promoter; KanR 

ΔABpB 
Knockout strain for pcoAB genes carrying a copy of pcoB on the pMR10 under 
control of the lac promoter; KanR 

ΔA Knockout strain for pcoA gene 

ΔA EV Knockout strain for pcoA genes carrying an empty pMR10 ;KanR 

ΔApAB 
Knockout strain for pcoA gene carrying a copy of pcoAB on the pMR10 under 
control of the lac promoter; KanR 

ΔApA 
Knockout strain for pcoA gene carrying a copy of pcoA on the pMR10 under 
control of the lac promoter; KanR 

ΔB Knockout strain for pcoB gene 

ΔB EV Knockout strain for pcoB genes carrying an empty pMR10; KanR 

Δtmrp Knockout strain for tmrp gene 

Δtmrp/ptmrp 
Knockout strain for tmrp gene carrying a copy tmrp on the pMR10  under control 
of the lac promoter 

mCherry-tmrP 
Knockout strain for tmrp gene carrying a copy of mCherry-tagged tmrp on the 
pMR10  under control of the lac promoter 

dCCNA_001493 
Mini-TN5 disruption knockout for the CCNA_001493 gene encoding for a cysteine 
synthase 

dCCNA_02473 
Mini-TN5 disruption knockout for the CCNA_02473 gene encoding for a CusA 
homolog 

dCCNA_01261 
Mini-TN5 disruption knockout for the CCNA_001261 gene encoding for a CusB 
homolog 

dCCNA_00849 
Mini-TN5 disruption knockout for the CCNA_00849 gene encoding for a CusC 
homolog 

dCusR Mini-TN5 disruption knockout for a gene encoding for a CusR homolog 

dCusS Mini-TN5 disruption knockout for a gene encoding for a CusS homolog 

DH10B DH10B E. coli strain used for transformation and conjugation 

S17-1 E. coli strain RP4-2, Tc::Mu, KM-Tn7, for plasmid mobilization 
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1. Construction of clean knockout mutants 
 

The respective upstream and downstream regions (500 bp each) of the target genes were 

amplified by PCR from the NA1000 genomic DNA (The respective primer sequences are listed in Table 

4). The up- and downstream PCR products were cloned separately into a pSK-oriT plasmid linearized 

by the EcoRV from Roche with the SuRE/Cut Buffer System. Each insert was then excised from the 

plasmid by using restriction enzymes and cloned together into a pNPTS138 plasmid restricted with 

the 5’ restriction enzyme from the upstream insert and 3’ enzyme from the downstream one. The 

ligation product was transformed in DH10B E. coli strain. A triparental mating was performed 

between the DH10B E. coli strain (now carrying the pNPTS138 with the flanking region of the target 

gene), an E. coli Helper strain and the NA1000 strain. The pNPTS138 integrative vector carries genes 

coding for kanamycin resistance and sucrose sensitivity. The plasmid is unable to replicate in C. 

crescentus. A first selection for kanamycin-resistant clones was conducted to select for bacteria that 

have integrated the plasmid in their genome by homologous recombination. The second 

recombination event was selected by growing kanamycin-resistant clones overnight in PYE medium 

and then plating bacteria on PYE plates containing 3% sucrose. The loss of the plasmid therefore 

resulted in either a clean knockout for the target gene or a wild-type strain. A last PCR was 

performed to determine the genotype of each clone and the strain was sequenced to ensure the lack 

of mutation. 

2. Construction of complementation strain 
 

The genomic sequence of the target gene was amplified from the NA1000 by PCR. The was 

inserted into an EcoRV-linearized pSK-oriT vector. The insert was then excised using restriction 

enzyme and ligated into a replicative pMR10 plasmid, previously restricted with the same enzymes. 

Via triparental mating, the resulting plasmid was then introduced into a C. crescentus, mutated for 

the target gene (clean knockout or disruption knockout). The clones containing the pMR10-carrying 

gene were checked by a diagnostic and sequenced  

  



 

Table 4: Table of the primers used for the various genetic constructions presented in this work 

Primer name  5' to 3' primer sequence 

Am_02327_ER1_F GAATTCGAGGGAGCCGCGCGGCCCGACAGG 

Am_02327_Xba1_R TCTAGACGGCGGATCTCACGCTGGTAGAGC 

Av_02327_XbaA_F GCTCTAGACTCGATCGCGATCGGCGTCG 

Av_02327_BamH1_R CGGGATCCATCCGGTAGATATTGGAGACG 

AmontpcoAFEcorI CGGAATTCCGCAGCGCTACTCCGCCACGAT 

AmontpcoARXbaI GCTCTAGAGCCTTGGGTATCACGCGAGCCA 

AvalpcoAFXbaI GCTCTAGAGCAGCCCGGCGACTGGGCCTTC 

AvalpcoARHindIII CCCAAGCTTGGGGGCCTTCAGGCCCTCCAGCT 

AmontpcoBFEcoRI CGGAATTCGCCTCTATCCGCCCAAGGAC 

AmontpcoBRXbaI GCTCTAGAGCCCTGTGATGGGCGTGCGG 

AvalpcoBFXbaI GCTCTAGAATGTCGGCGTGGTGCGCGAG 

AvalpcoBRHindIII CCCAAGCTTAGCTGCGCGAAGGTCGTCTC 

pPcoAFEcoRI CGGAATTCCAGGCGGGCTTGCCGTCCAG 

PcoARSacI  CGAGCTCTCACGCGGCGGCTCCATCGA 

pPcoARNcoI CATGCCATGGTTGGGTATCACGCGAGCCAT 

pcoBFNcoI CATGCCATGGACGAGCCCGGCGACTGGGCC 

mCherry_F_Nt_H3 CCCAAGCTTATGGTGAGCAAGGGC 

mChe_R_Nt_EcoRI GAGAATTCTCTTGTACAGCTCGTCC 

ABCT_F_MchNT_EcI AGAATTCTCATGAGAGACACGGCCGAGAGC 

ABCT_R_MchNT_SPI CACTAGTTCAGCTCTTGAGACGGTAACCG 

ABCT_F_MchCt_H3 CCCAAGCTTATGAGAGACACGGCCGAGAGC 

ABCT_R_MchCt_EcI GAGAATTCTGCTCTTGAGACGGTAACCG 

mCherry_F_Ct_EcI AGAATTCTCATGGTGAGCAAGGGCGAGG 

mChe_R_Ct_SPEI GACTAGTTTACTTGTACAGCTCGTCCATGC 
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Protocols 

1. Growth curve measurements 
 

C. crescentus cultures were collected in exponential growth phase (O.D. 660 nm of 0) and 

diluted in PYE medium to a final O.D. 660 nm of 0.05. Bacteria were inoculated in 96-well plates with 

appropriate CuSO4, ZnSO4, CdSO4, AgNO3, FeSO4, NiSO4 or MnSO4 concentrations if needed. Bacteria 

were then grown for 24 h at 30°C under continuous shaking in an Epoch 2 Microplate 

Spectrophotometer from BioTek. The absorbance at O.D. 600 nm was measured every 10 min. 

2. Membrane fractionation assays 
 

The inner and outer membrane fractions of C. crescentus were harvested by 

ultracentrifugation after Sodium Lauryl Sarconisate (SLS) and Sodium Carbonate treatment as 

described in (Cao et al. 2012). 400 ml of cell culture were grown in PYE at 30°C to an O.D.660 of 0.4. 

Bacteria were centrifuged for 10 min at 4000 x g at 4°C, and washed 3 times in 50 ml of 50 mM (pH 8) 

Ammonium bicarbonate (AmBic). Cells were finally resuspended in 5 ml AmBic and sonicated on ice 

(20 rounds of 5 seconds sonication at maximum intensity). The lysate was centrifuged for 20 min at 

12,000 x g at 4°C and the pellet containing the unbroken cells and debris was discarded. The 

supernatant was then ultracentrifuged for 40 min at 100,000 x g in order to dissociate the 

cytoplasmic fraction (supernatant) from the total membrane fraction (pellet). The pellet was then 

resuspended in 1 ml of 1% Sodium Lauryl Sarconisate and centrifuged for another 40 min at 100,000 

x g and 4°C. The subsequent supernatant contains the solubilized inner membrane (SIM). The pellet 

containing the outer membrane (OM) fraction was washed in 1 ml of 2.5 M NaBr and incubated for 

30 min on ice. It was then ultracentrifuged for 40 min at 100,000 x g at 4°C. The supernatant was 

discarded and the pellet was incubated for 1 h in 1 ml of 100 mM Na2CO3 for further enrichment of 

the outer membrane fraction, before being spun again for 40 min at 100,000 x g at 4°C. The various 

fractions collected were as samples for immunodetection experiments. 
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3. Immunodetection (Western blotting)  
 

Exponentially growing cells were pelleted and resuspended in SDS-PAGE loading buffer. 

Boiled protein samples were then resolved on 12% sodium dodecyl sulfate-polyacrylamide gels and 

electrotransferred to Nitrocellulose membranes. Nitrocellulose membranes were probed with 

polyclonal rabbit anti-PcoA (1:5000), anti-PcoB (1:1000), anti-dsRed (1:5000), anti-CtrA (1:5000), anti-

CckA (1:5000), anti-RsaF (1:5000) or anti-DivK (1:1000) antibodies. Polyclonal goat antirabbit 

immunoglobulins/HRP secondary antibody is used at 1:5000 (DAKO). 

4. Fluorescence microscopy 
 

Cells in exponential growth phase were immobilized on 1.5% agarose M2G pads. 

Fluorescence microscopy was performed using a Zeiss Axio Imager.Z1 microscope equipped with a 

Zeiss 100X/1.3 Oil Ph3 objective and appropriate filter sets. Images were collected with a Hamamatsu 

C11440 digital camera. All image capture and processing were performed with the Zen Pro 2012 

software (blue version). 

5. Oxidase assay 
 

The oxidase activity of PcoA and PcoB was assessed in vitro by measuring their oxygen 

consumption rate with an oxygraph (Hansatech Instruments Ltd) when mixed with a Cu+ substrate as 

described for CueO in (Achard et al., 2010). Briefly, 50 μg of recombinant PcoAHis or PcoB-His are 

resuspended in 700 μL of 0.1 M sodium acetate buffer (pH 5.5), loaded in the Oxygraph sensor cell 

and supplemented with 1 mM CuSO4 in order to fill the labile copper ligation site. Three min later, 

500 μM solubilized Tetrakis(acetonitrile)copper(I) hexafluorophosphate ([Cu(CH3CN)4]PF6, Sigma 

Aldrich) substrate are added as a caged source of Cu+. The oxygen consumption is recorded with the 

Oxygraph for 30 min, and the data are then plotted. Bovine Serine Albumin (50 μg) was used as a 

negative control. 
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6. Cellular fractionation for Cysteine assays and ICP-OES 
 

C. crescentus cultures (30 ml) are grown up to exponential phase (O.D.660 nm = 0.4). A 5 

minute Cu treatement is done if necessary. The cultures are split in two sample of 15ml each and 

centrifuged for 5 min at 8000 x g at 4°C. The resulting pellet is resuspended in 15 ml of PFA 2% and 

incubated on ice for 20 min for fixation. The cells are then centrifuged and washed 3 times (5 min at 

8000 x g at 4°C and washed in 5 ml of Cold Wash Buffer (10 mM Tris-HCl, pH 6.8 + 100 µM EDTA). 

After the third wash, the supernatant is discarded. One of the 2 pellet is resuspended in 2 ml of 

HNO3 1M – this will be the total fraction. The other pellet is mixed with 3 ml of Zwittergent 0.25%. 

The resulting mix was incubated for 10 minutes at room temperature and centrifuged for 15 min at 

19,000 x g. The supernatant, containing the periplasmic components, was separated from the 

cytoplasmic pellet.  

For Cysteine assays: The periplasmic fraction is kept as is. The cytoplasmic fraction is 

resuspended in 2 ml of ZW buffer. The sample are kept overnight at 4°C. The total and cytoplasmic 

fractions are then lysed via French Press, and all fractions are centrifuged a last time (5 min at 6000 x 

g). The supernatant is then processed as described in pt. 7. 

For ICP-OES analyses: The periplasmic fraction is mixed with HNO3 10M for a final 

concentration of HNO3 1M. The cytoplasmic fraction is resuspended in 2 ml HNO3 1M. The sample 

are kept overnight at 4°C. The total fraction is then lysed via French Press, and all fractions are 

centrifuged a last time (5 min at 6000 x g). Inductively coupled plasma - optical emission 

spectrometry measurement were conducted on Total, periplasmic and cytoplasmic fractions. 

7. Cysteine Assay 
 

Quantification of Cys in different samples was assessed through a colorimetric method. C. 

crescentus cultures were grown in M2G to exponential phase (60 ml; O.D.660 nm = 0.4). A fractionation 

assay was conducted as described above (cfr. Cellular fractionation for ICP-OES) to recover the total, 

periplasmic and cytoplasmic fraction of the different strains. The nihydrin colorimetric assay was 

then performed according to the protocol described in (Gaitonde 1967). 
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8. Motility Assay 
 

C. crescentus cultures were grown in M2G to exponential phase (5 ml; O.D.660 nm = 0.4). The 

cultures were then diluted to 0.5 and inoculated with sterile toothpicks on a M2G swarming plates 

(M2G + 0.25% agar). The plates were incubated at 30°C for 3 days, then scanned. The area of the 

motility halos were then measured via the analyze/measure function of ImageJ.  

9. Absorbance peak 
 

The Epoch 2 Microplate Spectrophotometer from BioTek was used to measure the 

absorbance of 50 µM of CuSO4, CdSO4, AgNO3, FeSO4, ZnSO4 and NiSO4 in water, and in solutions 

containing 500 µM of L-Cys, L-Met, L-His, L-Ala, or L-Pro. The mix was prepared and injected into the 

wells of a 96-wells plate and placed in the microplate reader after 5 minutes. The wavescan function 

was employed. The absorbance of each well from 201 nm to 998 nm was recorded. 

10. qPCR 
 

Bacteria (50 ml) cultivated in HIGG at 30 °C (OD660 = 0.4) were collected by centrifugation. 

The recovered pellet was washed twice in sterile PBS and finally resuspended in 100 μl of 10% SDS 

and 20 μl proteinase K (proteinase K, recombinant, PCR Grade, Roche). The resuspended pellet was 

incubated for 1 h at 37 °C under mild shaking. A guanidinium thiocyanate-phenol-chloroform 

extraction was then conducted with TriPure Isolation Reagent (Roche), as described in the protocol 

available on the manufacturer’s website. RNA (2 μg) was treated for 30 min with DNAse I (Thermo 

Scientific) at 37 °C followed by DNAse I inactivation with 50 mM EDTA for 10 min at 65 °C. The RNA 

was then reverse transcribed with Superscript II reverse transcriptase (Invitrogen) with hexamer 

random primers as described by the manufacturer. A condition without reverse transcriptase was 

also conducted in parallel as a negative control. cDNA (0.3 μg) was then mixed with SybrGreen mix 

(FastStart Universal SYBR Green Master (Rox); Roche) and the appropriate primers sets and 

subjected to qPCR in a LightCycler96 (Roche). A total of 45 three-step cycles were performed as 

follows: 95 °C for 10 s, 60 °C for 10 s and 72 °C for 10 s. Melting curves were then performed to 

assess primer specificity. Target mRNAfold change was calculated as 2–ΔΔCt, where 16S RNA was 

used as the reference gene. 
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Fig. S1: Quick2D prediction for PcoA: The query sequence is run through several tools at once. Under the AA_Query line 
(the input AA sequence) are listed, line by line, the results for the different algorithms. The first four line indicate the 
secondary structures ( β-strands in Blue E; α-helices in pink H). The last three tools are disorder prediction, and marks a 
yellow D at the position of predicted disorders. 
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Fig. S2: Quick2D prediction for PcoB: The query sequence is run through several tools at once. Under the AA_Query line 
(the input AA sequence) are listed, line by line, the results for the different algorithms. The first four line indicate the 
secondary structures (β-strands in Blue E; α-helices with pink H). The last three tools are disorder prediction, and marks a 
yellow D at the position of predicted disorders. 

 

  



 

  



205 
 

 

Fig. S3: Results of the transposon-based genetic screen performed by the group. The mutants displaying higher Cu 
sensitivity were sequenced. The genes identified as mutated are listed in the first column. The second column list how 
many time this gene was found during the screening process, and the third column list the predicted function. 
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Fig. S4: Database containing the annotation of motility, environement and lifestyle of the 206 alphaproteobacteria 
species along with their conservation data A high-resolution picture of the database will be provided in a separate file. 
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Fig. S4: Domain prediction for NodJ An ABC-2 type domain is predicted, similarly to the domain predicted for TmrP 

 

 

 

Fig. S5: Example of superposition of the absorbance curves – The blue ligne is the metal absorbance 
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Chapter 23

Functional Diversity of Bacterial Strategies
to Cope With Metal Toxicity
Sébastien Gillet, Emeline Lawarée and Jean-Yves Matroule
Molecular Biology Research Unit, NAmur Research Institute for LIfe Sciences (NARILIS)—Institute of Life, Earth, Environment (ILEE), University of

Namur, Namur, Belgium

23.1 THE METALS

In the bacterial world, the great diversity of morphologies and physiological processes allowed bacteria to relentlessly

adapt to a large number of environmental changes during the course of evolution. For instance, bacteria are often able

to cope with an increase of concentration of specific metals in their environment, irrespective of their lifestyle, resulting

in the onset of different survival strategies.

23.1.1 Metals Classification

Metals are ubiquitous in the environment, where their abundance may undergo important variations. Aluminum (Al),

iron (Fe), or sodium (Na) are widely distributed, constituting 7.96%, 4.32%, and 2.36% of the earth continental crust,

respectively (Wedepohl, 1995). Other metals such as silver (Ag) and cadmium (Cd) are considered as trace elements

and accounts for only a fraction of 1% of the crust (Wedepohl, 1995). The classification of various metal elements has

been the subject of a large debate, resulting in many blurred notions, such as “heavy metals,” “trace metals,” or “transi-

tion metals” (Hawkes, 1997). TMs, like Fe, copper (Cu), and nickel (Ni), encompass metal elements found in the

d-block of the periodic table, ranging from group 3 to 11 and from period 4 to 7 (Fig. 23.1). They are mostly character-

ized by their electron shell and their redox properties. Group 12 elements, such as zinc (Zn), Cd, or mercury (Hg), are

defined as “posttransitional metals” (Cotton et al., 1999). While technically not included in the transition metals group,

they display similar biochemical properties as transition metals, which has led some authors to consider them as such.

transition metals will be the focal point of this chapter and will be referred to as metals here below.

23.1.2 Metals and Bacteria—Coexisting for Better or Worse

23.1.2.1 There Would Be No Life Without Metal

Metals are essential to life. They are involved in many cellular processes, ranging from respiration to muscle contrac-

tion and nucleic acid stabilization. It is estimated that metalloproteins represent approximately 30% of the bacterial pro-

teome (Waldron and Robinson, 2009). One of the major functions of metals is their role as essential cofactors. For

instance, manganese (Mn) protects the cell against reactive oxygen species (ROS), as an obligate cofactor for certain

types of catalase, peroxidase, and superoxide dismutase (SOD) (Horsburgh et al., 2002). SOD catalyzes the dismutation

of two superoxide anions (OU2
2 ) into O2 and the less reactive H2O2, which will be subsequently converted into H20 by

the peroxidase and the catalase (Becker and Skaar, 2014). Mn is essential in photosynthetic bacteria as well, where

H2O oxidation relies on a Mn metalloenzyme (Horsburgh et al., 2002). In Escherichia coli, Mn is also the catalytic fac-

tor of several exopeptidases, such as the aminopeptidase P (APPro), which possesses a binuclear Mn core. APPro pro-

teins are conserved in the three domains of life (Graham and Guss, 2008) and are thought to have various biological

functions, such as peptide degradation and proline recycling. APPro were also shown to be involved in the degradation
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of organophosphate compounds (Graham and Guss, 2008). In eukaryotes, they play a role in hormones maturation and

activity regulation (Graham et al., 2006; Graham and Guss, 2008; Peng et al., 2017; Yocum and Pecoraro, 1999).

Similarly to Mn, Cu and Zn play a role in ROS detoxification through a structural and catalytic function in SOD,

respectively. Cu/Zn SOD are very common in eukaryotes but are also conserved in bacteria, such as SodC in E. coli

(Osman and Cavet, 2008).

Cu also serves as a catalytic cofactor for other enzymes, such as amino oxidases, NADH dehydrogenase-2, and cyto-

chrome C oxidase, the latter being critical in cellular respiration (Festa and Thiele, 2011).

The interaction of metal ions with specific amino acids often ensures the proper conformation of metalloproteins

(Festa and Thiele, 2011). Zn fingers are a prime example of metal-mediated structural motifs, where Zn stabilizes the

protein in a certain fold. Zn fingers-containing proteins are often involved in transcription, DNA recognition, and apo-

ptosis regulation (Laity et al., 2001).

In a similar way, Fe takes part in the electron transfer chain and in some cytochrome complexes, such as the succi-

nate dehydrogenase (Failla, 2003). In addition, Fe displays a strong affinity for sulfides, enabling the formation of

iron�sulfur (Fe�S) clusters. Fe�S clusters are so ubiquitous and abundant that they are sometimes regarded as one of

the most prevalent prosthetic group and one of the very first catalyst in life (Beinert, 2000; Fontecave and Ollagnier-de-

Choudens, 2008). Owing Fe crucial role in many cellular functions, Fe deprivation is often triggered by the host as a

first-line of defense upon pathogen infection (Becker and Skaar, 2014). In order to adapt to this defense strategy, the

causative agent of the Lyme disease Borrelia burgdorferi evolved by replacing Fe by Mn in its metalloproteins

(Horsburgh et al., 2002). To overcome potential Fe limitation, bacteria also developed complex strategies. For instance,

the small Fe-scavenging siderophores display a high affinity for Fe21 or Fe31 and are secreted in the extracellular space

upon Fe starvation by several bacterial species. In Gram-negative bacteria, Fe-bound siderophores then bind TonB-

dependent receptors at the bacterial surface allowing Fe to enter the cell. In Gram-positive bacteria, siderophores can

bind directly to specific ATP-binding cassette (ABC) transporters anchored in the cytoplasmic membrane (Andrews

et al., 2003; Benson and Rivera, 2013; Chandrangsu et al., 2017).

23.1.2.2 “The Dose Makes the Poison”—When Metals Turn Toxic

Despite their essential role in cellular processes, metals often turn toxic when their cellular concentration exceeds a

specific threshold.

23.1.2.2.1 Mismetallation

Metals cytotoxicity mainly relies on their ability to compete with other metals and to cause mismetallation. In this con-

text, the Irving�William series ranks transition metals according to the relative stability of the complexes they can

form (Festa and Thiele, 2011; Waldron and Robinson, 2009), such that metals at the top of the series (like Cu) exhibit a

higher affinity for a specific ligand, even at low concentration.

FIGURE 23.1 Periodic table of elements. The transi-

tion and posttransition metals, located from period 4

to 7 and from group 3 to 12, are colored in turquoise.

Modified from a public domain image created by

Offnfopt, uploaded on Wikemedia Commons.
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Mismetallation may alter the conformation and therefore the function of a metalloprotein (Chandrangsu et al.,

2017). In E. coli, Zn21 was shown to decrease the activity of ribulose-3-phosphate 5-epimerase (RPE) by replacing the

cognate Fe21 cofactor in the enzyme (Imlay, 2014). Whether this effect is due to the high affinity of Zn for the ligand

(preventing it from being released fast enough) or due to a structural alteration is not clear yet. This mismetallation is

cytotoxic considering the role of RPE in sugar conversion (Imlay, 2014). When Streptococcus pneumoniae is subjected

to a Zn stress, Zn21 competes with Mn21 within the Mn21 PsaA importer. Although PsaA still retains a higher affinity

for Mn21, Zn21 binding seems significantly more stable, which may clog the importer and prevent further Mn import

(McDevitt et al., 2011).

Mismetallation seems to be a widespread mechanism of toxicity. It has been observed in all three domains of life

and has been reported with ions not listed in the Irving�William series, such as Cu1 (Chandrangsu et al., 2017), Ag1

(Das, 2017), Pb21 (Fullmer et al., 1985), and Cd21 (Hossain et al., 2012). Pb21 displaces Ca21 in calmodulin, disrupt-

ing cellular signaling in animal cells (Fullmer et al., 1985). A similar effect is observed in plants, where Ca21 ions

bound to calmodulin are displaced by Cd21 (Hossain et al., 2012). Cd was also reported to bind sulfhydryl groups and

to displace cognate metal cofactors from various metalloproteins including transcription factors (Kim et al., 2007).

Because of its high affinity for thiolate, Cu1 is proposed to disrupt Fe�S clusters (Dupont et al., 2011). In E. coli, it

has been suggested that Cu1 damages Fe�S cluster dehydratases by displacing Fe atoms from the cluster, leading to

the inactivation of the enzyme (Macomber and Imlay, 2009).

23.1.2.2.2 Oxidation of Cellular Substrates

Metals can also promote the generation of ROS leading to an oxidative stress. Fe21 is a well-known catalyst of the

Fenton reaction converting H2O2 into the highly toxic hydroxyl radical (OH�) that potentially oxidizes DNA, lipids, and

proteins (Winterbourn, 1995). Cd21 is thought to induce lipid peroxidation when it interacts with cell membranes (Rani

et al., 2014). Cu1 is also able to catalyze a Fenton-like reaction in vitro (Rensing and Grass, 2003; Santo et al., 2008),

although the in vivo relevance of this process is still under debate due to the lack of evidence of Cu-induced ROS DNA

damage (Macomber et al., 2007). Cu is also able to generate other kinds of ROS, at least in vitro, such as nitric oxides

through the oxidation of S-nitrosothiol compounds (Achard et al., 2012; Gordge et al., 1995). Cd mismetallation can

also indirectly promote oxidative stress by triggering the release of free Fe from various proteins, such as ferritins,

which may in turn be involved in a Fenton reaction (Rani et al., 2014)

Fe21 1H2O2-Fe31 1HO�1OH2

In addition to ROS generation, Cu can potentially induce the formation of undesired disulfide bonds between two

thiol groups (Hiniker et al., 2005). These disulfide bonds may impair protein conformation and lead to its inactivation,

as it was shown with β-galactosidase (Hiniker et al., 2005; Tian et al., 2000).

Recent studies revealed that dry Cu surfaces have a strong bactericide or bacteriostatic potential, although the

mechanisms underlying this toxicity have not been completely elucidated yet. It is proposed that dissolved Cu ions may

enter the cells and induce the toxic mechanisms described above (Molteni et al., 2010). In addition, dry Cu has been

reported to promote a rapid loss of the membrane integrity referred to as contact killing (Grass et al., 2011; Santo et al.,

2010; Santo et al., 2008).

23.2 METAL-DEDICATED RESISTANCE SYSTEMS

Even though many metals share the same mechanisms of toxicity, bacteria evolved metal-and cellular compartment-

specific defense strategies, indicating that a fine tuning of metal homeostasis is required for each metal in each cellular

compartment to maintain bacterial fitness.

23.2.1 Extracellular Space—Dealing With an Invasive Friend

When the extracellular concentration of a given metal increases, the first “checkpoint” consists in limiting the entry of

the metal in order to maintain a proper cellular metal homeostasis and to avoid cellular damage. A straightforward

mean to handle this stress is to downregulate the expression of metal importers.

In Bacillus subtilis, Zn is sensed by the zinc uptake regulator (Zur) protein. When intracellular Zn

concentration increases, the dimeric protein Zur binds DNA and represses the Zur regulon involved in Zn uptake
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(Chandrangsu et al., 2017). A paralogous system exists for the Fe uptake regulation, where the ferric uptake regulator

(Fur) protein represses Fe acquisition genes in a similar way. These regulators are conserved in many bacterial classes.

For instance, the actinobacterium Frankia genome encodes the Fur, Zur, nickel uptake regulator (Nur), manganese

uptake regulator (Mur), and Co-Fur proteins that regulate Fe, Zn, Ni, Mn, and Co import, respectively (Furnholm and

Tisa, 2014).

In B. subtilis, the primary MgtE-dependent Mg import relies on a magnesium-sensitive riboswitch (Dann et al.,

2007; Wakeman et al., 2014). Indeed, Mg21 induces a conformational change of the mgtE mRNA, which promotes its

compaction and the inactivation of an antiterminator structure, causing mgtE transcription arrest.

Chelation or precipitation of the soluble metal ions in the extracellular medium is another means to limit metal

entry. In Saccharomyces cerevisiae, the SLF1 protein biomineralizes Cu at the surface of the yeast cells by converting

CuSO4 (soluble Cu21) into CuS (insoluble Cu1), increasing the yeast Cu tolerance (Yu et al., 1996). A similar strategy

is observed in Cu-exposed Pseudomonas aeruginosa biofilms, where brown Cu-containing precipitates can be found in

the extracellular space, indicating a role of the biofilm in Cu chelation and cell protection (Harrison et al., 2005).

23.2.2 Intracellular Space—Keeping the Place Safe

Unlike Gram-positive bacteria which display one single lipid membrane, the cytoplasm of Gram-negative bacteria is

isolated from the extracellular medium by the periplasm, which is delimited by the inner membrane (cytoplasmic side)

and the outer membrane (extracellular side). The periplasm and the cytoplasm harbor distinct physiological activities

under oxidative and reducing conditions, respectively, implying that metal toxicity will vary relative to the cellular

compartment. Therefore, several strategies have been developed through evolution to cope with cellular metal stress,

ranging from metal export to detoxification of metal ions or toxic by-products.

23.2.2.1 Efflux

The most common strategy to regulate metal homeostasis consists in decreasing cellular metal concentration with the

use of efflux pumps. Several types of efflux pumps have been characterized in bacteria.

23.2.2.1.1 ATPases

P1b-type ATPases (also known as E1�E2 ATPases) pumps are typical metal exporters and are conserved in many organ-

isms, from bacteria to eukaryotes. These transporters use ATP hydrolysis as a source of energy to translocate a substrate

across the cytoplasmic membrane. They typically contain six to eight transmembrane (TM) domains constituting the

translocation channel. Three additional domains facing the cytoplasm are involved in ATP binding and hydrolysis,

energy transduction, and regulation of the system (Fig. 23.2) (Argüello et al., 2011; Inesi et al., 2014). Cognate P1B-

type ATPase have been identified for the specific transport of Cu1, Fe21, Zn21, and Co21 (Culotta and Scott, 2013;

FIGURE 23.2 P1B-type ATPase contain six to eight transmem-

brane domains (TMD). These TMD forms the main translocation

channel. Three additional domains are facing the cytoplasm: the

phosphoryl domain (P, in green), the catalytic activation domain

(A, in blue), and the ATP-binding domain (N, in red). OM, outer

membrane; IM, inner membrane.
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Guan et al., 2015). In B. subtilis, Fe21 export is mediated by the PfeT ATPase (Guan et al., 2015). In E. coli, Zn21 and

Cu1 are transported from the cytoplasm to the periplasm by the ZntA and CopA P1b-type ATPases, respectively

(Rensing et al., 1997). CopA homologs have been found in many bacterial species, including B. subtilis, Sinorhizobium

meliloti, Legionella pneumophila, and Enterococcus hirae (Argüello et al., 2013; Multhaup et al., 2001; Patel et al.,

2014; Porcheron et al., 2013). Interestingly, E. hirae CopA was first reported to be a Cu importer, although the evidence

sustaining the uptake function remain indirect (Odermatt et al. 1993; Solioz and Stoyanov 2003). The export function

would then be carried out by another ATPase, CopB (Odermatt et al., 1993). It is interesting to note that CopA does not

bind free soluble Cu ions directly, which would be highly toxic in the cytoplasm, but is rather relying on a dedicated

transporter (see Section 23.2.3.1). Owing to their physicochemical properties, Cd21, Pb21, and Ag1 likely use noncog-

nate ATPase (Argüello et al., 2011).

23.2.2.1.2 HME-RND

The resistance-nodulation-division (RND) transporters superfamily includes the heavy metal efflux (HME)-RND fam-

ily, which is involved in metal homeostasis in several Gram-negative bacteria. An HME-RND transporter is typically a

tripartite complex where the RND protein, generally anchored in the inner membrane, is linked to an outer membrane

channel protein (OMP) via a periplasmic membrane fusion protein (MFP) (Fig. 23.3) (Nies, 2003; Valencia et al.,

2013).

In E. coli, the CusABC pump mediates Cu efflux from the cytoplasm or the periplasm to the extracellular space

(Osman and Cavet, 2008). The integral inner membrane CusA binds cytoplasmic Cu and feeds the CusC OMP via the

periplasmic CusB MFP, which can also directly bind periplasmic Cu21. While RND complexes share a common struc-

ture in Gram-negative bacteria, they diverge enough to accommodate for different metals. For instance, in

Pseudomonas putida, the CzcCBA system confers increased resistance against Zn21, Cd21, and Pb21 (Leedjärv et al.,

2008). In Caulobacter crescentus, the CzrCBA and NczCBA systems are involved in Cd and Zn, and Ni and Co efflux,

respectively (Valencia et al., 2013). A similar system also exists in Helicobacter pylori, where CznABC mediates Cd,

Zn, and Ni homeostasis. A tight regulation of cellular metal homeostasis is particularly important in the success of H.

pylori infection (Stähler et al., 2006). In Cupriavidus metallidurans, the CzcCBA system confers higher resistance to

Co, Cd, Zn, and Ni (Nies, 2003).

23.2.2.1.3 Cation Diffusion Facilitator

The third major type of bacterial efflux pumps is the cation diffusion facilitators (CDF) family. These membrane metal-

loproteins are classically composed of six transmembrane helices, two of which possess metal-binding sites. The third

TM domain usually acts as a hydrophobic gate. A histidine-rich loop (IL-2) between the fourth and the fifth TM domain

has a metal selectivity purpose (Fig. 23.4) (Kolaj-Robin et al., 2015). CDF mostly transport Zn21, Co21, Cd21, Ni21,

FIGURE 23.3 Classic structure of the HME-RND transporter

family. The complex articulate itself around a RND protein (RND,

in blue, anchored in the inner membrane), a periplasmic MFP (in

red), and an OMP (in green). Metal ions (blue octagons) are deliv-

ered either from the periplasm or directly from the cytoplasm.

OM, outer membrane; IM, inner membrane; HME, heavy metal

efflux; RND, resistance-nodulation-division; MFP, membrane

fusion protein; OMP, outer membrane channel protein.
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and Fe21 ions by diffusion along gradients (Higuchi et al., 2009; Nies, 2003). In E. coli, ZitB and YiiP antiporters

export Zn21 against H1 (Chao and Fu, 2004; Wei and Fu, 2005). This system is conserved across a large number of

bacteria, including extremophiles such as the hyperthermophilic bacterium Thermotoga maritima (Higuchi et al., 2009).

In B. subtilis, MneP and MneS CDF proteins are controlled by the Mn sensor and regulator MntR (Huang et al.,

2017). MneP and mneS mutants exhibit an increased Mn sensitivity and accumulate 12 times more Mn ions than the

wild-type strain (Huang et al., 2017).

23.2.2.1.4 ABC Transporters

The ABC transporters family is the most conserved transport system in living organisms (Higgins, 2001; Jones and

George, 2004). ABC transporters are generally composed of (1) a TM domain anchored in the cytoplasmic membrane

and acting as a permease and (2) a cytoplasmic nucleotide-binding domain featuring an ABC (Fig. 23.5). ABC transpor-

ters ensures the transport of a wide variety of substrates such as sugars, amino acids, and metals (Fath and Kolter,

1993). In E. coli, YbbP and YbbA have been reported as two subunits of a putative metal exporting ABC system

(Moussatova et al., 2008). Even though ABC metal exporters turn out to be less prevalent in bacteria than in the other

domains of life, yet they are crucial in metal extrusion in many microorganisms, including unicellular fungi and algae.

In S. cerevisiae, Yor1 is proposed to transport Cd-bound glutathione (GSH) across the plasma membrane in order to

maintain a proper cellular Cd concentration (Culotta and Scott, 2013). In addition, the Fe-specific Atm1 ABC trans-

porter was identified in the S. cerevisiae mitochondrial inner membrane, where it would protect mitochondrial DNA

from Fe-induced oxidative damage by regulating mitochondrial Fe homeostasis. Accordingly, Atm1 mutants accumulate

up to 30 times more mitochondrial Fe than the wild-type strain (Chloupková et al., 2003; Radisky et al., 1999; Schueck

et al., 2001). In Arabidopsis thaliana, the ABC transporter AtPDR8 is upregulated in the presence of both Cd and Pb

and provides an increased resistance to both metals (Kim et al., 2007).

23.2.2.1.5 Others Transport Systems

Several efflux systems do not belong to any of the aforementioned categories. Yet, they play an important role in metal

homeostasis. For instance, the Fe integral inner membrane MbfA exporter has been identified in the Gram-negative bac-

teria Bradyrhizobium japonicum (Sankari and O’Brian, 2014). Interestingly, mbfa gene expression is induced by Fe

only, suggesting that its function may be specific to this metal (Sankari and O’Brian, 2014).

In E. coli, the expression of the RcnA inner membrane Ni/Co pump, previously known as YhoM, is induced by Ni

and Co. Accordingly, a rcnA mutant exhibits an increased sensitivity to Ni and Co by accumulating nearly twice more

Ni than the wild-type strain. RncA overexpression leads to a drastic decrease of the cellular Ni concentration below the

FIGURE 23.4 CDF are usually composed of six transmembrane

helices (or TM domain). The second and fifth TM domain, depicted

in green, comprise metal binding sites. The third helix, in pink,

serves as a hydrophobic gate. The histidine-rich loop (IL-2, in dark

red, linking the fourth and fifth TM domain) has a metal selectivity

purpose. OM, outer membrane; IM, inner membrane; CDF, cation

diffusion facilitators.
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wild-type level. However, RncA does not harbor any typical genetic signature from other known efflux system, suggest-

ing that it belongs to a novel family (Bleriot et al., 2011; Rodrigue and Effantin, 2005).

Nonspecific multidrug efflux pumps have been shown to mediate the export of a broad variety of compounds and

molecules, including metals (Blanco et al., 2016). Various bioinformatics tools facilitate the prediction of potential peri-

plasmic export proteins and outer membrane efflux proteins based on sequence homology, without, however, predicting

their substrate (Johnson and Church, 1999).

23.2.2.2 Storage and Detoxification

Owing to their cytotoxicity, free metals ions must remain scarce in the intracellular bacterial space. In eukaryotic cells,

free Zn21 concentration is in the picomolar range (Maret, 2015). In bacteria, free Cu is estimated at less than one atom/

cell, which is in agreement with the extreme sensitivity of the CueR sensor within the zeptomolar range (Changela

et al., 2003). In order to maintain such a low amount of free metal ions and to limit metal-associated damages, bacteria

evolved molecules such as chelators, scavenging proteins, and chaperones, displaying a strong affinity for metals.

23.2.2.2.1 Metallochaperones

Chaperones are small cytoplasmic or periplasmic proteins acting as metal carriers. Chaperones not only isolate toxic

free metal ions, but they also ensure their correct delivery to their cognate protein targets (Bagai et al., 2008; Harrison

et al., 1999; Waldron and Robinson, 2009). In the periplasm of E. coli, CusF binds Cu1 ions and delivers them for

export to CusB within the CusABC RND efflux pump (Bagai et al., 2008). MerP binds Hg21 cations and transfers them

to the inner membrane MerT transporter, which feeds the cytoplasmic MerA mercuric reductase for Hg21 detoxification

into Hg0 (Das, 2017; Moore et al., 1990). Some chaperones provide protection against multiple metals. The periplasmic

Zn chaperone ZinT binds not only Zn but also Co, Cd, and Hg (Colaço et al., 2016; Kershaw et al., 2007). Despite

some contradictory results about ZinT function, zinT expression seems to rely on the Zn-specific regulator Zur. ZinT

chaperone would deliver Zn to the ZnuABC inner-membrane Zn importer, therefore playing an important role under Zn

starvation as well. ZinT expression is also upregulated upon periplasmic Cd stress (Colaço et al., 2016). In addition,

ZinT binds a wide array of metals and increases the resistance against Cd, Co, and Hg. It was even hypothesized that

ZinT can deliver Co21 ions to the previously described Ni/Co pump RcnA/B (Colaço et al., 2016).

In B. subtilis, Cu1 ions are delivered to the CopA P1b-type ATPase by the CopZ chaperone (Radford et al., 2003).

CopZ binds Cu1 via a typical MxCxxC binding domain (Cobine et al., 2002). This conserved domain is present in the

majority of bacterial Cu chaperones identified so far (Harrison et al., 1999). Most of these metallochaperones display a

βαββαβ (“open-faced β sandwich”) folding (Harrison et al., 1999; Pontel et al., 2015). E. hirae CopZ is a cytoplasmic

FIGURE 23.5 Schematic representation of an ABC transporter. The

transmembrane domains (in light blue) are anchored in the cyto-

plasmic membrane, where they serve as permeases. The cytoplasmic

NBD (in green) featuring an ATP-binding cassette, uses the energy of

ATP hydrolysis to modify the conformation of the complex to allow

the transportation of substrates. OM, outer membrane; IM, inner mem-

brane; NBD, nucleotide-binding domain.
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chaperone that delivers Cu1 ions to the CopY repressor, triggering its release from the cop operon promoter and allow-

ing cop transcription. CopZ therefore acts as an indirect activator of the cop operon (Cobine et al., 1999; Cobine et al.,

2002) In E. coli, no CopZ homolog has been identified. However, a 2017 study demonstrated that the CopA mRNA is

translated into a chaperone protein through a ribosomal frameshifting (Meydan et al., 2017). The copA gene therefore

encodes both the ATPase and its chaperone, highlighting the amazing optimization potential of bacterial genomes.

23.2.2.2.2 Metallothioneins

Metallothioneins (MTs) are small cytoplasmic or periplasmic proteins binding metals via thiolate bounds within cyste-

ine residues (Hamer, 1986). While their main biological function is still a matter of debate, they have been shown to

bind Zn, Cu, Hg, Cd, As, or Ag (Chandrangsu et al., 2017; Culotta and Scott, 2013; Peer et al., 2006). Unlike metallo-

chaperones, MT do not play a role in directed metal transport. MTs are found in eukaryotes and bacteria and often

exhibit a “buffer-like” function to limit the toxicity of free metal ions. In Synechococcus species, the Smta MT has

been shown to bind not only Zn21 but also possibly other ions, as its expression is also induced by Cu21 and Cd21

(Borkow and Gabbay, 2005; Bruins et al., 2000; Culotta and Scott, 2013). In Providencia vermicola, the MT BmtA

sequesters Pb in the periplasm, leading to increased Pb resistance (Sharma et al., 2017).

23.2.2.2.3 Glutathione

GSH is a thiol compound produced by many organisms, including certain bacteria. In E. coli, it is synthesized in a two-

step reaction from three amino acid precursors: Glu, Cys, and Gly (Masip et al., 2006). This reaction is catalyzed by

GshA and GshB. GSH has a broad range of biological functions, including protection against various stresses, such as

pH variation, osmotic shock, or toxic products (Masip et al., 2006; Montoya, 2013; Potter et al., 2012; Wang and

Ballatori, 1998). As an antioxidant, GSH plays a critical role in the defense against ROS (Potter et al., 2012). In E. coli,

GSH protects against H2O2-induced oxidative stress (Masip et al., 2006).

Many Gram-positive bacteria, such as Streptococcus mutans, are lacking the GSH synthesis pathway (Sherrill and

Fahey, 1998; Vergauwen et al., 2013). It was shown that S. mutans imports GSH from the environment through two

ABC transporters: TcyBC and GshT, a solute-binding protein possessing a high affinity for GSH (Vergauwen et al.,

2013). A homologous system is present in the Gram-positive S. pneumoniae, where extracellular GSH is imported by

the GshT ABC transporter (Potter et al., 2012). A S. pneumoniae GshT mutant is unable to grow properly when chal-

lenged with toxic Cu, Zn, or Cd concentrations (Potter et al., 2012). In Novosphingobium aromaticivorans, an Atm1-

like ABC exporter has been associated with GSH transport in the context of heavy metals detoxification (Lee et al.,

2014).

GSH mercaptides are also known to binds metals, such as Cu, Cr, or Zn, via nonenzymatic reactions, providing a

chelating effect and preventing the potential toxicity of free metal ions (Helbig et al., 2008; Ballatori, 1994; Wang and

Ballatori, 1998).

The GSH oligomer phytochelatin is mainly present in plants where it sequesters various metal ions. It is also an

important means of metal detoxification for numerous microorganisms such as unicellular algae or fungi (Helbig et al.,

2008). In Schizosaccharomyces pombe, Cd21-bound phytochelatin is translocated into a vacuolar compartment by the

hmt1-encoded ABC transporter, thereby isolating the toxic metal from valuable cellular material (Ortiz et al., 1992;

Ortiz et al., 1995).

23.2.2.2.4 Ferritins

Dedicated resistance systems can limit metal toxicity by combining sequestration with an oxidoreduction reaction.

Ferritin, bacterioferritin, and ferritin-like proteins are multimeric proteins involved in the storage and detoxification of

free Fe ions (Carrondo, 2003; Das, 2017). Ferritin proteins are conserved among most living organisms, from bacteria

to mammals, underlying their utmost importance in the regulation of cellular Fe distribution and availability. Ferritin is

composed of 24 subunits forming a spherical shape that can hold up to 4500 Fe atoms and therefore acts as a Fe buffer

and storage under both Fe starvation and excess. In addition, ferritin uses O2 to oxidize Fe21 ions at the ferroxidase cat-

alytic site within each ferritin subunit (Andrews et al., 2003). The soluble Fe21 cations are thus stored in the less toxic

Fe31 ferrihydrite minerals (He et al., 2016) and can remobilize Fe21 ions upon Fe starvation (Andrews et al., 2003;

Pulliainen et al., 2005).

Dps proteins (DNA-binding proteins for starved cells) are Fe detoxification proteins, similar to ferritins in the sense

they also form roughly spherical shapes that encapsulate Fe ions (Andrews et al., 2003). They are sometimes referred to

as ferritin-like proteins, although they are composed of only 12 subunits, limiting the number of bound Fe ions (about
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500). Yet, Dps proteins are primarily involved in DNA protection against ROS during stationary phase (Almiron et al.,

1992). Dps Fe-binding ability was demonstrated much later (Zhao et al., 2002).

23.2.2.2.5 Multicopper Oxidases

Multicopper oxidases (MCOs) use Cu ions as cofactors to oxidize a broad range of substrates (Komori and Higuchi,

2015; Solomon et al., 1996). Classically, MCOs harbor three Cu-binding sites. The mononuclear T1 Cu site accepts

electrons and transfer them to a trinuclear cluster, which is composed of a mononuclear T2 Cu site and a binuclear T3

Cu center, binding and reducing O2 (Galli et al., 2004; Solomon et al., 1996). Specific MCOs are involved in metal

resistance by using the metal as a substrate (Butterfield et al., 2013; Solomon et al., 2008). In E. coli, the periplasmic

MCO CueO oxidizes Cu1 into the less toxic Cu21 by using O2 as a final acceptor (Grass and Rensing, 2001). Cu1 oxi-

dation will therefore result in a four electrons reduction of O2 into two H2O molecules (Djoko et al., 2010; Grass and

Rensing, 2001). Near the T1 Cu site, CueO also displays a methionine-rich region binding a labile Cu ion in the context

of a phenol oxidase activity (Cortes Castrillona et al., 2015; Djoko et al., 2010; Roberts et al., 2003).

Cu-oxidizing MCOs tend to be conserved, although small structural and functional variations can be observed. For

instance, the Rhodobacter capsulatus CutO MCO provides Cu tolerance, despite the lack of an extra methionine-rich

region (Wiethaus et al., 2006).

23.2.2.2.6 Other Detoxification Systems

MerA is a mercuric iron reductase dedicated to the detoxification of the deleterious Hg21 ions into the volatile and

near-inert Hg0 in the cytoplasm of many bacteria (Moore et al., 1990). This system is conserved in various Gram-

negative and Gram-positive bacteria such as E. coli, B. subtilis, Bacillus thuringiensis, and P. aeruginosa (Barkay et al.,

2003; Das, 2017; Moore et al., 1990; Schiering et al., 1991).

Some metal reductases are coupled to efflux systems in order to provide their protective effect. For instance, the

ArsC arsenate reductase turns the pentavalent As51 (arsenate) into the trivalent As31 (arsenite). Arsenate is an analog

of phosphate that impairs phosphorylations in metabolic reactions. Arsenate also prevents ATP synthesis by inhibiting

oxidative phosphorylations (Tamaki and Frankenberger, 1992). Arsenite is, however, regarded as more toxic than arse-

nate, owing to its ability to bind thiol groups (Kaur et al., 2009; Kaur et al., 2011; Silver and Misra, 1984; Tamaki and

Frankenberger, 1992). Nevertheless, the reduction of arsenate into arsenite is necessary for As homeostasis considering

the specificity of the ArsA and ArsB exporters for arsenite (Bruins et al., 2000). Interestingly, in some bacteria such as

certain Bacillus alcaligenes, or Pseudomonas species, As31 is oxidized into the less toxic As51 (Osborne and Ehrlich,

1976; Tamaki and Frankenberger, 1992; Turner, 1949).

23.3 METAL RESISTANCE ASSOCIATED WITH PHENOTYPIC PLASTICITY

23.3.1 Biofilm

A biofilm is a complex microbial aggregate attached to inert or living surfaces and enclosed in an extracellular matrix

composed of proteins, amyloid fibers, exopolysaccharides, and extracellular DNA (Flemming and Wingender, 2010;

Watnick and Kolter, 2000). In natural habitats, biofilm is the prevalent microbial lifestyle and provides multiple advan-

tages to the matrix-embedded microorganisms. For instance, the extracellular polymeric matrix not only captures and

concentrates environmental nutrients but also acts as a protective barrier against environmental challenges or antimicro-

bial factors (Serra and Hengge, 2014; Watnick and Kolter, 2000).

When P. aeruginosa biofilms are subjected to Cu21 stress, brown Cu precipitates accumulate in the extracellular

space, suggesting that the matrix chelates and aggregates Cu ions, increasing metal resistance (Harrison et al., 2005).

Increased resistance of biofilms to other metals such as Pb, Co, Ni, and Zn has also been described, likely resulting

from metal ions binding to the polymeric matrix (Harrison et al., 2005; Teitzel and Parsek, 2003).

23.3.2 Persister Cells

Persistence is a typical example of phenotypic heterogeneity within a genetically homogenous population. Persister cells

are metabolically less active cells, akin to a “dormancy” state. The remaining metabolic activities are mostly focused

on energy production (Radzikowski et al., 2016). Persisters have been shown to catabolize carbon sources and perform

cellular respiration (Amato et al., 2014; Mok et al., 2015; Orman and Brynildsen, 2013). Persister cells appear in a con-

stant and stochastic manner or following an environmental stress, where the persisters rate can reach 1% in biofilm or
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in stationary phase (Gefen and Balaban, 2009; Wu et al., 2012). The presence of persister cells in microbial populations

ensures that a small subpopulation can survive to stress conditions, where a phenotypically homogeneous population

would be eradicated (Fruci and Poole, 2012). Interestingly, this dormancy state protects them from toxic compounds

acting preferentially on growing bacteria (Lewis, 2010).

In P. aeruginosa, planktonic persisters exhibit an increased resistance to Cu, Ni, and Co stresses, although the pre-

cise underlying molecular mechanisms remain to be elucidated (Harrison et al., 2005). In E. coli, metals-induced ROS

have been shown to induce a decrease of membrane potential, leading to a reduced metabolic activity and an increased

persisters level in the population (Wang et al., 2017). The decrease of membrane potential might be mediated by the

SOS response, which was shown to activate the expression of tisB in E. coli, leading to the disruption of the proton

motive force and the decrease of intracellular ATP level (Dörr et al., 2010). Owing to their ability to trigger ROS pro-

duction, some metals could therefore induce an SOS response leading to the generation of persister cells more prone to

survive under metal stress.

23.3.3 Bet-Hedging

Stochasticity is inherent to most biological processes. From transcription to protein assembly and bistability of specific

systems, random variations are inevitable (Raj and van Oudenaarden, 2008; Veening et al., 2008). In addition, the distri-

bution of cellular material upon cell division might not reach a perfect 1:1 ratio between the incipient progenies result-

ing in random phenotypic variations within the bacterial population, irrespective of environmental cues (Raj and van

Oudenaarden, 2008; Seger and Brockmann, 1987). This phenotypic plasticity relates to a bet-hedging strategy providing

rapid Darwinian adaptation to a changing environment. Because no genetic change is involved, this strategy is regarded

as more flexible, and reversible at the population scale. The trade-off of this stochasticity is a partial loss of fitness in

the population, sometimes leading to adverse effects or suboptimal conditions (Raj and van Oudenaarden, 2008;

Veening et al., 2008). Bet-hedging has been observed in various bacterial species. In S. meliloti, polyhydroxybutyrates

(PHB) are not equally distributed between the siblings. The old pole tends to retain more PHB in a stochastic way. This

leads to variations of PHB levels among the clonal population. Bacteria with a high-level of PHB are more likely to be

metabolically dormant, akin to persisters, and better resist to stress (Ratcliff and Denison, 2011).

A recent study on Zn resistance in E. coli demonstrated stochastic cell-to-cell fluctuations of the ZntA exporter

(Takahashi et al., 2015). Because ZntA is very sensitive and because free cellular Zn must remain very scarce, the

slightest variation in the amount of ZntA may be crucial for one bacterium relative to its counterparts within the clonal

population. Therefore, some bacteria will be “primed” to respond to certain stress conditions, such as an increase in Zn

concentration, despite being suboptimal otherwise (Takahashi et al., 2015).

23.3.4 Sporulation

In response to environmental changes, some bacteria, such as Bacillus spp. or Clostridium spp., undergo sporulation in

order to generate the so-called metabolically inactive dormant spores (Leggett et al., 2012; Tan and Ramamurthi,

2014). In B. subtilis, sporulation results from a transcriptional reprogramming of more than 500 genes (Schultz et al.,

2009). When favorable growth conditions are restored, spores germinate and resume their vegetative cell cycle.

The stress resistance capacity of a spore mostly resides in its structure, featuring inwards an exosporium, a spore

coat, an outer membrane, a cortex, a germ cell wall, and an inner membrane before reaching the core, which contains

the bacterial chromosome, RNA, ribosomes, and most of the bacterial enzymes. The spore coat, composed of a series

of thin and concentric layers, acts as a “sieve” excluding large toxic molecules but remains permeable to small mole-

cules, such as those triggering spore germination (McKenney and Eichenberger, 2012; Nicholson et al., 2000). The

spore coat also provides a good protection against bacteriophages and oxidizing agents, UV radiation, ozone, and perox-

inite (Genest et al., 2002; Laaberki and Dworkin, 2008; Riesenman and Nicholson, 2000). The cortex is mostly consti-

tuted of peptidoglycan and maintains the spore in a partially dehydrated state, allowing a high resistance to heat

(Beaman and Gerhardt, 1986; Imae and Strominger, 1976).

In Clostridium difficile, dormant spores are less sensitive to Cu stress than the vegetative form (Wheeldon et al.,

2008). Similarly, Bacillus anthracis endospores were proven to better resist to contact-killing with a Cu surface than

the vegetative cells (Bleichert et al., 2014). Albeit still unknown, the mechanisms underlying this resistance might be

related to the structure of the spore itself and to spore-specific proteins. In Bacillus species, the exosporium contains

metal-oxidizing enzymes such as the MCO that catalyze the two-step Mn oxidation (Mn21 to Mn41), resulting in Mn

mineralization and encrustation in the outer layer (Butterfield et al., 2013). The structure of B. subtilis spore makes it
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more resistant than the vegetative form to metal by-products such as ROS (Zuber, 2009). Indeed, the spore coat acts as

a first-line barrier to limit the entry of peroxides. Moreover, the poor hydration of the core is unfavorable to ROS gener-

ation (Zuber, 2009).

It is currently unclear whether sporulation is induced upon metal stress, although it is well established that metals

are required for this process (Kojetin et al., 2005). Surprisingly, in Clostridium tyrobutyricum, Streptomyces spp.,

B. subtilis, and Pasteuria penetrans, high Zn21 and Cu21concentrations reduce the sporulation rate (Kojetin et al.,

2005; Majzlik et al., 2011; Mato Rodriguez and Alatossava, 2010).

23.3.5 Fructification

Morphological and developmental changes also constitute a means of coping with local metal stress. The Glomereaceae

fungi family members extend their presymbiotic hyphae and expand their extraradical mycelium when exposed to high

Cd and Pb concentrations, reaching less metal concentrated areas (Pawlowska and Charvat, 2004). Similar avoidance

strategies have been highlighted in other fungi and even in plants, such as Filipendula ulmaria. In F. ulmaria, growth

inhibition of the roots near Cd-rich soil layers is compensated by an increase in the growth rate of deeper roots, further

away from the stress (Balsberg, 2013; Tyler et al., 1989).

23.4 CASE STUDY: CAULOBACTER CRESCENTUS BIMODAL STRATEGY

The oligotrophic alphaproteobacterium C. crescentus constitutes a striking example of functional diversity. Its cell cycle

culminates with an asymmetrical cell division yielding two morphologically and physiologically distinct progenies, one

flagellated swarmer (SW) cell and one sessile stalked (ST) cell. This phenotypic discrepancy implies that both cell types

will tackle metal stress by using distinct strategies.

23.4.1 Caulobacter crescentus Cell Cycle

The SW cell is limited to the G1 phase and is therefore unable to replicate its DNA. In the context of a differentiation

process, the SW cell will loosely attach to a surface, shed its flagellum, retract its pili, and synthesize a stalk at the

same pole. The resulting ST cell is now strongly bound to the surface via a polysaccharidic holdfast located at the tip

of the stalk and immediately starts chromosome replication (S phase). After completion of DNA replication, the grow-

ing ST cell enters the G2 phase and turns into a predivisional (PD) cell that will grow a new flagellum at the pole oppo-

site to the stalk. The PD cell will then undergo an asymmetrical cell division yielding a new SW cell and a ST cell,

immediately starting a new round of DNA replication (Fig. 23.6) (Curtis and Brun, 2010).

The presence of a capsule around the ST and PD cells allows the isolation of a SW cell population by centrifugation

in a silicate gradient and therefore the monitoring of the different stages of the cell cycle within a synchronized cell

population (Kirkpatrick and Viollier, 2012; Schrader and Shapiro, 2015).

23.4.2 SW Cell Defense Strategy Against Cu

In the early 20th century, Walter Bradford Cannon coined the “fight or flight” response as a physiological process initi-

ated in mammals subjected to a threat (Cannon, 1932).

In C. crescentus, the SW cells have been proposed to seek optimal environments before initiating DNA replication

(England et al., 2010). We demonstrated that upon Cu stress, SW cells accumulate a high amount of cellular Cu and

actively flee from the Cu source within minutes (Lawarée et al., 2016). Briefly, a SW cells population was isolated by

centrifugation and loaded into a microfluidic chamber where they could swim freely. At opposite sides of the chamber,

a control and a Cu-containing agarose plug had been cast prior the injection of the cells. The dynamics of the SW cells

was then monitored for 25 minutes by time-lapse microscopy within two fields located in the vicinity of both plugs and

quantified. SW cells population decreases by about 50% next to the Cu plug, whereas the number of SW cells located

near the control plug remains stable, accounting for a SW cell-specific “flight-like” response. We also showed that an

artificial decrease of Cu concentration within the SW cells impairs their flight, suggesting that their chemotactic

response relies on high levels of cellular Cu. Preliminary results suggest that this flight response also takes place when

the SW cells are exposed to Zn and Cd. This indicates that the motile form of C. crescentus is able to sense a local

increase of metal concentration in its environment and actively responds to it (Fig. 23.6).
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23.4.3 Cu Detoxification by the ST Cell-Specific PcoAB System

The irreversible binding of the ST cell to a substrate implies that this cell type will have to initiate efficient protection

mechanisms to maintain a proper Cu homeostasis in the presence of toxic Cu concentrations. We have shown that the

pcoAB operon is upregulated during the SW�ST transition until cell division. pcoAB operon encodes an efficient Cu

detoxification/efflux system composed of the PcoA and PcoB proteins. PcoA displays a classical periplasmic MCO

activity, similar to the previously described CueO. It was then proposed to detoxify the periplasm by oxidizing Cu1

into the less toxic Cu21. PcoB is located in the outer membrane where it acts as an efflux pump (Fig. 23.6).

Accordingly, upon Cu stress, a pcoAB mutant accumulates up to 2.5 times more cellular Cu than the wild type strain,

drastically impairing its growth (Lawarée et al., 2016).

Unlike the plasmid-encoded PcoABCDRSE system initially discovered in an E. coli strain isolated from feces of

pigs fed with Cu (Osman and Cavet, 2008; Tetaz and Luke, 1983), the PcoAB system is not inducible in C. crescentus.

This discrepancy together with the fact that only PcoA and PcoB are conserved in C. crescentus suggest a divergent evolu-

tion in the composition and the regulation of these homologous systems, likely due to the distinct bacterial lifestyles.

C. crescentus intrinsic dimorphism thereby provides a bimodal strategy involving a negative chemotactic response

and a ready-to-use Cu detoxification system to increase the chances to survive in a toxic environment.

23.5 CONCLUSION

Bacteria have evolved a broad diversity of mechanisms to overcome the challenges associated with metal duality. The

combination of metal influx/efflux systems and the production of metal-binding molecules to maintain a proper metal

homeostasis allowed bacteria to colonize various hostile environments. Horizontal gene transfers favored the propaga-

tion of these metal defense strategies similarly to antibiotics resistance. In the latter context, various bacterial species

also evolved combined antibiotic and metal resistance systems by sharing specific regulators or efflux pumps to cope

with toxic metals and antibiotics, attesting the amazing resilience and adaptation ability of the microbial world.

FIGURE 23.6 Bimodal defense strategy of Caulobacter crescentus to Cu stress. Caulobacter crescentus asymmetrical cell cycle culminates with the

generation of a motile SW cell and a sessile ST cell. Upon Cu stress, the SW cell engages a negative chemotactic response, whereas the ST cell and

the resulting PD cell rely on a ready-to-use PcoAB detoxification/efflux system to ensure their survival. SW, swarmer; ST, stalked; PD, predivisional.
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Caulobacter crescentus intrinsic dimorphism provides
a prompt bimodal response to copper stress
Emeline Lawarée1, Sébastien Gillet1, Gwennaëlle Louis1, Françoise Tilquin1, Sophie Le Blastier1,
Pierre Cambier2 and Jean-Yves Matroule1*

Stress response to fluctuating environments often implies
a time-consuming reprogramming of gene expression. In
bacteria, the so-called bet hedging strategy, which promotes
phenotypic stochasticity within a cell population, is the only
fast stress response described so far1. Here, we show that
Caulobacter crescentus asymmetrical cell division allows an
immediate bimodal response to a toxic metals-rich environment
by allocating specific defence strategies to morphologically and
functionally distinct siblings. In this context, a motile swarmer
cell favours negative chemotaxis to flee from a copper source,
whereas a sessile stalked sibling engages a ready-to-use PcoAB
copper homeostasis system, providing evidence of a prompt
stress response through intrinsic bacterial dimorphism.

To maintain their fitness, all living organisms must adapt as
quickly as possible to sudden changes in their environment. In
animals, the bimodal fight-or-flight response triggers drastic physio-
logical changes that prime the individual for fighting or fleeing2. In
bacteria, bet hedging provides a prompt response to fluctuating
environments by promoting a stochastic phenotypic diversity
within the cell population. This strategy contrasts with time-
consuming stress responses such as sporulation in Bacillus and
heterocysts formation in Anabaena.

Here, we show that the Caulobacter crescentus intrinsic cell
dimorphism, resulting from an asymmetrical cell division
(Supplementary Fig. 1), prompts the morphologically and function-
ally distinct swarmer (SW) and stalked (ST) siblings for an immedi-
ate bimodal response to a toxic Cu-rich environment. In relation to bet
hedging, this original strategy saves the significant gene reprogramming
underlying classical stress responses.

In most living organisms, Cu is a cofactor for key metallo-
enzymes3, yet it becomes toxic at high concentrations, as are frequently
encountered by free-living, symbiotic and pathogenic bacteria.
Cu duality therefore implies a tight regulation of its intracellular
homeostasis3. To determine the cellular Cu homeostasis in isolated
C. crescentus motile SW cells and sessile ST cells, we developed a
method combining atomic absorption spectrometry (AAS) with flow
cytometer cell counting to provide a more relevant approach than
conventional methods based on protein normalization. Interestingly,
under moderate Cu stress conditions (see Supplementary Information),
there is a clear discrepancy between Cu concentrations in the
SW cell (9.4 mM) and the ST cell (2.8 mM) (Fig. 1a), arguing for
a cell type-specific regulation of Cu homeostasis. Remarkably,
this difference is only observed under toxic Cu conditions
(Supplementary Fig. 2). As previously described4, the cellular
Cu concentration exceeds the extracellular Cu concentration (even
under optimal conditions). This might result from Cu complexation
by cellular chaperones and chelators in order to limit Cu toxicity
and to store Cu ions for further use5. Complexed Cu would not

account for the Cu osmotic balance, thereby maintaining Cu influx
in spite of a high cellular Cu concentration6.

The prototypical Escherichia coli Cu homeostasis Cue, Cus and
Pco systems are conserved in C. crescentus (Supplementary
Table 1)7. However, the C. crescentus chromosome-encoded PcoA
and PcoB are the sole conserved members of the E. coli plasmid-
encoded Pco system (Supplementary Table 1). When monitoring
the growth of cueR, copA, cusR, cusA, cusB, cusC and pcoAB
mutants undermoderate Cu stress, only the pcoABmutant (ΔAB) exhi-
bits a higher Cu sensitivity than the wild-type (WT) strain (Fig. 1b).
Ectopic overexpression of pcoAB in the pcoAB mutant (ΔAB/pAB)
(Supplementary Fig. 3) restores theWT phenotype (Fig. 1b), indicating
that PcoA and/or PcoB take(s) part in the Cu stress response. In
addition, disruption of the cue and cus regulons in the ΔAB strain
does not potentiate its Cu sensitivity (Supplementary Fig. 4), suggesting
that the PcoAB system predominates in C. crescentus.

Given the inducibility of the Cu homeostasis network in E. coli8–10,
we sought to monitor the expression of the PcoAB system under
moderate Cu stress. Interestingly, Cu does not significantly affect
the pcoB mRNA level, which is used as a hallmark of pcoAB
operon transcription (Supplementary Fig. 5a). This observation is
supported by the steady-state level of PcoA and PcoB proteins
under the same conditions (Supplementary Fig. 5b), suggesting
that the PcoAB system is expressed in a Cu-independent manner.

A transcriptomic analysis performed throughout the C. crescentus
cell cycle suggests that the pcoAB operon is expressed during
SW-to-ST cell differentiation (see Supplementary Fig. 1 for more
information on C. crescentus differentiation)11. Consistent with
this observation, our study shows a preferential accumulation of
pcoB mRNA (Fig. 1c) and PcoA and PcoB proteins (Fig. 1d) in
the ST cell, irrespective of Cu treatment (Supplementary Fig. 6).
Proteolysis of the CtrA master regulator, which occurs during
SW-to-ST cell differentiation, together with subsequent firing of
ctrA gene transcription in the early ST cell, are used as indicators
of cell cycle progression12. This ST cell-specific expression of
PcoA and PcoB may therefore explain the discrepancy of
Cu accumulation between the SW and ST cells (Fig. 1a). Accordingly,
Cu-treated ΔAB ST cells exhibit a significant (2.5×) increase in cel-
lular Cu concentration (Fig. 1a), which is associated with a low and
constant level of cells replicating their chromosome (S phase),
indicative of a blockage of DNA replication (Fig. 1e and
Supplementary Fig. 7b). In addition, Cu triggers a ΔAB cell
growth defect but no cell death (Supplementary Fig. 8), suggesting
a bacteriostatic effect of Cu under our experimental conditions. In
the ΔAB/pAB strain, Cu homeostasis together with DNA replication
and growth are fully restored, and even potentiated (Fig. 1a,b,e and
Supplementary Fig. 7a,c). Collectively, these data argue for a
Cu detoxification response initiated by the Cu-exposed ST cell,
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which enrols a ready-to-use Cu homeostasis PcoAB system to lower
the cellular Cu concentration to a level compatible with DNA repli-
cation. This implies that the ST cell adhesive properties are main-
tained in spite of the Cu. Here, we show that moderate Cu stress
does not prevent ST cells attaching to a surface; nor does it trigger
ST cell detachment (Fig. 1f).

In E. coli, the Pco system supports the Cue and Cus systems in
Cu resistance12 but has remained poorly characterized so far. To

identify the respective functions of C. crescentus PcoA and PcoB,
we generated single pcoA (ΔA) and pcoB (ΔB) knockouts, which
display similar Cu sensitivity to the ΔAB mutant (Fig. 2a). The
ΔB/pB strain features a WT-like Cu tolerance (Fig. 2a). In contrast,
the ΔA/pA strain is not complemented (Fig. 2a), suggesting a polar
effect of pcoA invalidation on PcoB production (Fig. 2b). Consistent
with this hypothesis, the transformation of pAB into the ΔAmutant
restores both PcoA and PcoB expression together with Cu tolerance
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Figure 1 | Cu detoxification response in Cu-treated ST cells. a, Cellular Cu concentration in SW and ST cells subjected to a moderate (1.16 mM) Cu stress.
pcoAB knockout strain and the corresponding completed strain are abbreviated to ΔAB and ΔAB/pAB, respectively (mean ± s.d., biological replicates = 3,
technical replicates = 3). b, Growth profiles of WT, ΔAB, ΔcueR, ΔcopA, ΔcusR, ΔcusA, ΔcusB, ΔcusC and ΔAB/pAB strains subjected to a moderate (1.16 mM)
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at a similar extent to the ΔAB/pAB and ΔB/pAB strains (Fig. 2a).
Neither pA nor pB alone are able to sustain Cu tolerance in the
ΔAB genetic background, suggesting that both PcoA and PcoB
cooperate to maintain a proper Cu homeostasis.

PcoB contains a high proportion of histidines in its N-terminal
region and is predicted to form a β-barrel in the outer membrane

(Swiss-Model, Biozentrum). In accordance with this prediction,
PcoB is found in the outer membrane (OM), but not in the inner
membrane (IM) (Fig. 2c). MreB, CckA and RsaF are used as cyto-
plasmic, IM and OM controls, respectively14–16. Interestingly, the
cellular Cu concentration of the ΔB and ΔA/pA strains is similar to
the Cu level measured in the ΔAB mutant (Fig. 2d), indicating that
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the absence of PcoB results in an enhanced cellular Cu accumulation.
Alternatively, PcoB overexpression in the ΔAB/pB strain, which is
expected to mimic a clean single ΔA mutant without polar effects on
pcoB, restores the cellular Cu concentration to the ΔAB/pAB strain
level (Fig. 2d). Collectively, these data argue for a role of PcoB as
a Cu efflux pump. Remarkably, the ΔAB/pB strain remains sensitive
to Cu in spite of the low cellular Cu level (Fig. 2a,d), suggesting that

the PcoB-mediated Cu efflux is not sufficient to compensate for the
lack of PcoA in ΔAB/pB cells.

Owing to thePcoAhomology to the periplasmicE. coliCueOmulti-
copper oxidase (MCO) (Supplementary Table 1)17, we sought to
investigate its ability to oxidize Cu+ into Cu2+ and to catalyse a four-
electron reduction of O2 into H2O. Within a few seconds of adding
a Cu+ substrate, recombinant PcoA-His triggers a strong decrease in

0

20

40

60

80

100

0 20 40 60 80 100
0

2

4

6

8

10

12

14

5 20 40 60 80

c

Time (min)

+ Cu

C
el

lu
la

r [
C

u]
 (m

M
)

d

C
el

ls
 in

 1n
 p

ha
se

 (%
)

0

20

40

60

80

100

C
el

ls
 in

 1n
 p

ha
se

 (%
)

Control
+ Cu

WT

+ Cu

Time (min)
0 20 40 60 80 100

Time (min)

Control
+ Cu

+ Cu

ΔAB/pABWT ΔAB/pABΔAB

30

50

70

90

110

0 5 10 15 20 25

C
el

ls
 p

er
 fi

el
d 

(%
)

Time (min)

0 5 10 15 20 25

a

WT (control, + Cu)

Time (h)

Control
+ Cu

b

ΔAB/pAB (control, + Cu)

0.8

0.6

0.4

0.2

0

O
D

60
0n

m

0

2

4

6

8

10

12

14

0 20 40 60 80
Time (min)

Control

+ Cu

e f

C
el

lu
la

r [
C

u]
 (m

M
)

Time (min)

+ Cu

WT ΔAB/pAB

0

20

40

60

80

100

0 20 40 60 80 100

C
el

ls
 w

ith
 1 

fo
cu

s 
D

na
N

-m
C

FP
 (%

) 
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O2 concentration, which stabilizes after 9min far below the calibration
baseline (Fig. 2e). Conversely, the slow and weak decrease in O2
concentration observed with the control buffer, a BSA solution and
PcoB-His probably results from a slight Cu+ self-oxidation. In accord-
ancewith its oxidase activity and its homology toE. coliCueO, PcoA is
mainly found in the periplasmic fraction (Fig. 2f). PstS-mcherry and
MreB are used as periplasmic and cytoplasmic controls, respectively.

Together, our data suggest that in a ST cell subjected to moderate
Cu stress, PcoA oxidizes toxic Cu+ to less toxic Cu2+ (ref. 3), which
is in turn transferred to the outer membrane PcoB efflux pump,
thereby contributing to Cu detoxification in the growing ST cells.

The faint PcoAB level detected in the SW cell (Fig. 1d) leads to an
important accumulation of cellular Cu in these cells (Fig. 1a). One
may hypothesize that in this context, the SW cell will prioritize the
escape towards a Cu-free environment. To test this hypothesis, we
adapted a live chemotaxis imaging assay to visualize Cu-stressed
SW cell dynamics over 25 min after 1.16 mM Cu exposure
(Supplementary Fig. 9). Consistent with our hypothesis, the
SW cell population decreases by about 50% next to the Cu plug,
while the number of SW cells located near the control plug
remains stable (Fig. 3a), suggesting a SW cell-specific escape
response. Once they have reached a more appropriate ecological
niche, Cu-loaded SW cells presumably resume their normal develop-
mental programme. This hypothesis is supported by the typical
growth profile (Fig. 3b) and cell cycle progression (Supplementary
Fig. 10) of SW cells exposed to Cu for 5 min and then inoculated
in fresh culture medium. This latter observation probably results
from the decrease in cellular Cu concentration by PcoAB during
SW-to-ST cell differentiation (Fig. 3c).

One may question the biological significance of maintaining
such a high and potentially toxic Cu concentration in the SW cell
before initiating the PcoAB-dependent Cu homeostasis. We
propose that a high cellular Cu level acts as an internal cue to
trigger a negative chemotactic response. In agreement with this
hypothesis, we show that the artificial decrease in the Cu level

mediated by overexpression of PcoAB in the SW cells (Fig. 3c) strongly
impacts bacterial escape, because 80% of the ΔAB/pAB SW cells
remain in the vicinity of the Cu plug when challenged in the live
chemotaxis imaging assay (Fig. 3a).

When the SW cell is confined to a Cu-rich environment (for
example, in a culture tube), polar localization of the SW-to-ST cell
differentiation markers PleC-meGFP and SpmX-mcherry is delayed
(40 min) (Supplementary Fig. 11). The lag in SW cell differentiation
is accompanied by a 40 min extension of the G1/S transition (Fig. 3d
and Supplementary Fig. 12a). Using the β-sliding clamp DnaN-mCFP
fluorescent fusion as a landmark of DNA pol III positioning18,19, we
notice a similar delay in the timing of localization of DnaN-mCFP at
the stalked pole where DNA replication initiates (Fig. 3e). This obser-
vation suggests that Cu stress affects entry into the S phase by impeding
DNA polymerase III recruitment to the replication origin.

Interestingly, the G1/S transition takes place when the cellular
Cu concentration matches the Cu level measured in the Cu-treated
ST cells (Figs 1a and 3f), suggesting that the extension of the cell
cycle results from a delayed Cu homeostasis and the onset of
Cu detoxification. Consistent with this hypothesis, PcoAB expression is
initiated 20min later under Cu stress (Supplementary Fig. 6a). In addition,
constitutive overexpression of PcoAB in the ΔAB/pAB SW cells and
its associated enhanced Cu homeostasis restores a typical cell cycle
progression in a Cu-rich environment (Fig. 3d,f and Supplementary
Fig. 12). One may hypothesize that Cu impacts cell cycle pro-
gression through (1) Cu2+-mediated thiol group oxidation or
metal displacement from metal binding sites in the periplasm3,20

and/or (2) Cu+-mediated Fe displacement from Fe–S clusters in the
cytoplasm21. These alterations may therefore impede the function of
key proteins involved in cellular processes such as transcription,
translation and DNA replication22.

Finally, preliminary experiments show that toxic concentrations
of Zn and Cd trigger a negative chemotaxis response in SW cells
(Supplementary Fig. 13a) without affecting the adhesive properties
of ST cells (Supplementary Fig. 13b). This suggests that the
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C. crescentus bimodal response may be extrapolated to other toxic
trace elements, even though the underlying molecular mechanisms
are probably different.

Cell dimorphism resulting from an asymmetrical cell division is
widespread among the very diverse alpha-proteobacteria class, which
encompasses intracellular mammalian pathogens (for example,
Brucella spp.), plant pathogens (for example, Agrobacterium spp.),
plant symbionts (for example, Rhizobium spp.) and free-living bacteria
(for example, C. crescentus)23. However, the keystone of this peculiar
conserved feature has remained quite puzzling so far. A recent study
demonstrated that the Brucella abortus infectious form is restrained
to the progenies (1n cells), suggesting a key role of specific cell cycle
stages in pathogenicity24. However, the contribution of cell dimorph-
ism in theBrucella infection process remains unknown. Our study pro-
vides new insights into the bacterial stress response by demonstrating
how intrinsic dimorphism primes bacteria for an immediate bimodal
response to a heavy metal stress (Fig. 4).

Methods
Strains, plasmids and growth conditions. C. crescentus was grown at 30 °C in
Hutner base imidazole-buffered glucose glutamate (HIGG) minimal medium25 with
5 μg ml−1 kanamycin, 25 µg ml−1 spectinomycin, 5 µg ml−1 streptomycin and/or
CuSO4.5H2O when required. Exponentially growing cultures were used for all
experiments. Plasmids were mobilized from E. coli strain S17-1 into C. crescentus by
conjugation26. Strains and plasmids are listed in Supplementary Table 2, and the
strategies for their construction are available upon request. When appropriate,
synchronized populations were obtained as described in ref. 27.

Growth curve measurements. Bacterial cultures (triplicates for each condition) in
the exponential growth phase were diluted in HIGG medium to a final optical
density at 660 nm (OD660nm) of 0.05 and inoculated in 96-well plates. Bacteria were
then grown for 24 h at 30 °C under continuous shaking in a BioTek ELx808
absorbance reader, where OD600nm was measured every 15 min. Different
CuSO4.5H2O concentrations were added when appropriate.

Atomic absorption spectrometry. Cells were fixed for 20 min at 4 °C in
2% paraformaldehyde and then washed three times with an ice-cold wash buffer
(10 mM Tris-HCl, pH 6.8, 100 μMEDTA). The pelleted cells were lysed under 2.4 kbar
in 1 MHNO3 using a cell disrupter (Cell Disruption System, one shot model, Constant).
IntracellularCuwasmeasuredusing a ShimadzuAtomicAbsorption Spectrophotometer
AA-7000F. Cellular Cu concentration was calculated as the (total Cu)/(number of
cells × cell volume) ratio. SW, ST and predivisional cell volumes were 0.408, 0.46 and
0.634 µm3, respectively. The average cell volume in the mixed population was 0.5 µm3.
A total of 2 × 109 to 10 × 109 bacteria were counted for each condition.

Reverse transcription quantitative polymerase chain reaction. Bacteria (50 ml)
cultivated in HIGG at 30 °C (OD660 = 0.4) were collected by centrifugation. The
recovered pellet was washed twice in sterile PBS and finally resuspended in 100 µl of
10% SDS and 20 µl proteinase K (proteinase K, recombinant, PCR Grade, Roche).
The resuspended pellet was incubated for 1 h at 37 °C under mild shaking. A
guanidinium thiocyanate-phenol-chloroform extraction was then conducted with
TriPure Isolation Reagent (Roche), as described in the protocol available on the
manufacturer’s website (https://lifescience.roche.com/wcsstore/
RASCatalogAssetStore/Articles/NAPI_Manual_page_156-163.pdf ).

RNA (2 µg) was treated for 30 min with DNAse I (Thermo Scientific) at 37 °C
followed by DNAse I inactivation with 50 mM EDTA for 10 min at 65 °C. The RNA
was then reverse transcribed with Superscript II reverse transcriptase (Invitrogen)
with hexamer random primers as described by the manufacturer. A condition
without reverse transcriptase was also conducted in parallel as a negative control.

cDNA (0.3 µg) was then mixed with SybrGreen mix (FastStart Universal SYBR
Green Master (Rox); Roche) and the appropriate primers sets (concentrations
available upon request) and subjected to qPCR in a LightCycler96 (Roche). A total of
45 three-step cycles were performed as follows: 95 °C for 10 s, 60 °C for 10 s and 72 °C
for 10 s. Melting curves were then performed to assess primer specificity. Target
mRNA fold changewas calculated as 2–ΔΔCt, where 16SARNwas used as the reference
gene. Each biological replicate was analysed in at least six technical replicates.

Flow cytometry
Cell counting. Bacteria were fixed for 20 min at 4 °C with 2% paraformaldehyde.
Fixed cells were diluted 1:100 in a phosphate buffered saline solution and counted
with a BD FACSVerse flow cytometer. Data were analysed with the BD FACSuite
V1.0.5 software.

DNA quantification. Exponentially growing cells were fixed with cold 70% (vol/vol)
ethanol as described previously28. Fixed cells were incubated for 30 min in

fluorescence-activated cell sorting (FACS) staining buffer pH 7.2 (10 mM Tris-HCl,
pH 6.8, 1 mM EDTA, 50 mM Na citrate and 0.01% TritonX-100) supplemented with
20 mg ml−1 RnaseA. DNA was then labelled by washing the cells in FACS staining
buffer pH 7.2 supplemented with 0.2 µM Sytox Green (Life Technologies). Labelled
cells were analysed on a BD FACSCalibur flow cytometer. The data were analysed with
the CellQuest Pro software. A total of 5 × 104 bacteria were analysed for each condition.

Bacterial cell counting. Exponentially growing bacteria were treated for 8 h with
different CuSO4 concentrations at 30 °C under continuous shaking. Bacteria were then
collected and serially diluted in HIGGmedium. Avolume of 20 μl of each dilution was
plated on HIGG agar. After 48 h incubation at 30 °C, the total bacterial charge was
estimated by counting colony forming units. To ensure the statistical validity of the
results, the experiment was repeated three times (biological triplicate). Each biological
replicate was inoculated on three different HIGG agar plates (technical replicate).

Bacterial live/dead assay. Exponentially growing cells were incubated for 8 h with
the appropriate amount of CuSO4. Bacteria were then diluted in 0.85% NaCl and
stained with the LIVE/DEAD BacLight bacterial viability kit (Molecular Probes)
according to the manufacturer’s protocol. The percentage of live or dead bacteria was
determined by fluorescence microscopy.

Antibodies production and western blotting. Exponentially growing cells were
pelleted and resuspended in SDS–polyacrylamide gel electrophoresis (PAGE)
loading buffer. Boiled protein samples were then resolved on 12% SDS–polyacrylamide
gels and electrotransferred to polyvinylidene difluoride (PVDF) membrane. PVDF
membranes were probed with polyclonal rabbit anti-PcoA (1:5,000), anti-PcoB
(1:1,000), anti-CtrA (1:5,000) and anti-MreB (1:10,000) antibodies. Polyclonal goat
anti-rabbit immunoglobulins/horseradish peroxidase secondary antibody was used
at 1:10,000 (DAKO).

Attachment/detachment assay. For the attachment assay, exponentially growing
CB15 cells were incubated for 15 min with appropriate Cu concentrations. Cells were
then inoculated for 2 h in a 96-well plate at 30 °C under continuous shaking. Cell
attachment to the polystyrene surface was quantified as described in ref. 29. For the
detachment assay, exponentially growing CB15 cells were grown overnight in a
96-well plate at 30 °C under continuous shaking. Appropriate Cu concentrations
were then added on cells for 15 min. Cell detachment from the polystyrene surface
was quantified as described in ref. 29.

Cellular fractionation
Inner and outer membrane fractions. The inner and outer membrane fractions of
C. crescentus were collected by ultracentrifugation after sodium lauryl sarconisate
and sodium carbonate treatment, as described in ref. 30.

Cell cultures (300 ml) were grown in HIGG at 30 °C to an OD660 of 0.5. Bacteria
were centrifuged for 10 min at 4,000g at 4 °C, and washed three times in 50 ml of
50 mM (pH 8) ammonium bicarbonate. Cells were finally resuspended in 5 ml
ammonium bicarbonate and sonicated on ice (20 rounds of 5 s sonication at
maximum intensity). The lysate was centrifuged for 20 min at 12,000g at 4 °C, and the
pellet containing the unbroken cells and debris was discarded. The supernatant was
then ultracentrifuged for 40 min at 100,000g to dissociate the cytoplasmic fraction
(supernatant) from the total membrane fraction (pellet). The cytoplasmic fraction was
stored at −20 °C. The pellet was then resuspended in 1 ml of 1% sodium lauryl
sarconisate and centrifuged for another 40 min at 100,000g and 4 °C. The subsequent
supernatant containing the solubilized inner membrane was concentrated with a
speedvac and stored at −20 °C. The pellet containing the outer membrane fractionwas
washed in 1 ml of 2.5 M NaBr and incubated for 30 min on ice. This was then
ultracentrifuged for 40min at 100,000g at 4 °C. The supernatant was discarded and the
pellet was incubated for 1 h in 1 ml of 100 mM Na2CO3 for further enrichment of the
outer membrane fraction, before being spun again for 40 min at 100,000g at 4 °C. The
resulting pellet was resuspended in SDS–PAGE loading buffer and stored at −20 °C.

Periplasmic fraction. Bacterial cultures (10 ml;OD660 = 0.4)were centrifuged for 5min
at 3,500g. The resulting pellet was washed twice in 1 ml filtrated PBS, resuspended in
1 ml resuspension buffer (RS) buffer (0.2 MTris-HCl, pH 7.6) and then incubated with
another 1 ml RS buffer containing 1 M sucrose and 0.25% of Zwittergent 3. The
resultingmixwas incubated for 10min at room temperature and centrifuged for 15min
at 7,000g. The supernatant, containing the periplasmic components, was separated
from the cytoplasmic pellet. A portion (280 µl) of the periplasmic fraction was mixed
with 80 µl Laemmli buffer 5× and 40 µl of 1 M dithiothreitol (DTT). The cytoplasmic
pellet was resuspended in 70 µl H2O, 20 µl 5× Laemmli buffer and 10 µl 1 M DTT.

Oxidase assay. The oxidase activity of PcoA and PcoB was assessed in vitro by
measuring their oxygen consumption rate with an oxygraph (Hansatech Instruments)
when mixed with a Cu+ substrate as described for CueO in ref. 31. Briefly, 50 µg
recombinant PcoA-His or PcoB-His were resuspended in 700 µl of 0.1 M sodium
acetate buffer (pH 5.5), loaded in the Oxygraph sensor cell and supplemented with
1 mMCuSO4 in order to fill the labile copper ligation site. Three minute later, 500 µM
solubilized Tetrakis(acetonitrile)copper(I) hexafluorophosphate ([Cu(CH3CN)4]PF6,
Sigma Aldrich) substrate were added as a caged source of Cu+, thereby limiting Cu+
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self-oxidation. Oxygen consumption was recorded with the Oxygraph for 30 min and
the data were then plotted. BSA (50 µg) was used as a negative control.

Live chemotaxis imaging. Live chemotaxis imaging was adapted from the ‘plug
assay’ designed in Emonet’s laboratory (Yale University). Briefly, chemotaxis devices
were made by casting solubilized 10:1 polydimethylsiloxane (PDMS Slygard 184,
Dow Corning) in a small glass pot (d = 50 mm, h = 30 mm; glassware from Lenz
Laborglass Instrument) where coverslips had previously been placed in order to
mould the future bacterial chambers. After a degassing phase, the mixed PDMS was
heated for 1 h at 70 °C. Unmoulded PDMS devices were then mounted on a
microscopy glass slide. The slide and the PDMS cube were washed successively with
acetone (only the slide), isopropanol and methanol and rinsed with milli-Q water.
Both components were blown dry between each wash. Three inlets and one outlet
channels were drilled in the PDMS, which was then firmly pressed against the slide
to seal the device. Melted 1.5% agarose H2O (10 μl) with or without 1.16 mM Cu
was loaded into the chamber through both external inlet channels to generate the
plugs. Isolated SW cells (150 μl, OD660 nm = 0.01) were in turn injected into the
bacterial chamber through the central inlet channel (Supplementary Fig. 9a).

Images were collected every minute for 25 min in one focal plan (near the liquid
surface) in the vicinity of the Cu or the control plug with a Zen Observer Z.1 inverted
microscope equipped with a Zeiss ×20/0.4 Ph2 objective equipped with a Zeiss
Axiocam 506 mono digital camera. All image capture and processing was performed
with the Zen Pro lite software (blue version).

Quantitative analysis of time-lapse images was performed with MATLAB
software (MathWorks) (Supplementary Fig. 9b).

Fluorescence microscopy. Cells in the exponential growth phase were immobilized
on 1% agarose HIGG pads. Fluorescence microscopy was performed using a Zeiss
Axio Imager.Z1 microscope equipped with a Zeiss ×100/1.3 oil Ph3 objective and
appropriate filter sets. Images were collected with a Hamamatsu C11440 digital
camera. All image capture and processing was performed with Zen Pro 2012
software (blue version).
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