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Abstract: Gold nanoparticles (GNPs) have been shown to be effective contrast agents for imaging
and emerge as powerful radiosensitizers, constituting a promising theranostic agent for cancer.
Although the radiosensitization effect was initially attributed to a physical mechanism, an increasing
number of studies challenge this mechanistic hypothesis and evidence the importance of oxidative
stress in this process. This work evidences the central role played by thioredoxin reductase (TrxR)
in the GNP-induced radiosensitization. A cell type-dependent reduction in TrxR activity was
measured in five different cell lines incubated with GNPs leading to differences in cell response
to X-ray irradiation. Correlation analyses demonstrated that GNP uptake and TrxR activity
inhibition are associated to a GNP radiosensitization effect. Finally, Kaplan-Meier analyses suggested
that high TrxR expression is correlated to low patient survival in four different types of cancer.
Altogether, these results enable a better understanding of the GNP radiosensitization mechanism,
which remains a mandatory step towards further use in clinic. Moreover, they highlight the potential
application of this new treatment in a personalized medicine context.

Keywords: gold nanoparticles; radiosensitization; thioredoxin reductase; radiation; prognosis;
biochemical mechanism

1. Introduction

Over the past century, radiotherapy has emerged as the main treatment modality for cancer [1].
This powerful technique is based on the induction of lethal cellular damages caused by ionizing
radiation delivered to tumors. Even if successful, this approach is still limited by dose distribution
heterogeneity causing side effects to healthy tissues surrounding the tumor. In this way, the research
on new strategies to achieve a better tumor targeting and enhance the biological effectiveness of
radiation is growing [2,3]. Pushed by the development of nanotechnology, the scientific community
takes advantage of nanoscale materials as sensitizers for therapeutic applications. It was suggested
that the strong difference in energy absorption between high Z nanoparticles and water could be
used to increase the local dose deposition in cells [4–6]. The proof-of-concept was demonstrated
by Hainfeld et al. [7] who evidence that injections of 1.9 nm gold nanoparticles (GNPs) increased
the survival of tumor-bearing mice in combination with 250 kVp X-rays compared to X-rays alone.
Since this pioneering work, the development of new high-Z radiosensitizers (including silver [8,9],
gadolinium [10–12], hafnium [13,14], platinum [15,16], gold [6,17,18] or bismuth [19,20] nanoparticles)
has accelerated and many studies have shown their ability, when injected into the tumor, to amplify

Nanomaterials 2019, 9, 295; doi:10.3390/nano9020295 www.mdpi.com/journal/nanomaterials

http://www.mdpi.com/journal/nanomaterials
http://www.mdpi.com
https://orcid.org/0000-0002-3016-778X
https://orcid.org/0000-0002-9169-1294
http://www.mdpi.com/2079-4991/9/2/295?type=check_update&version=1
http://dx.doi.org/10.3390/nano9020295
http://www.mdpi.com/journal/nanomaterials


Nanomaterials 2019, 9, 295 2 of 13

the X-ray radiation treatment efficacy. While evidencing this potential use as a radiosensitizer, the large
variations in all these experimental settings revealed the high variability of GNP effects according to
different physico-chemical parameters including GNP size, shape and coating agent. Zhang et al. [21]
performed radiosensitization experiments using four distinct polyethylene glycol (PEG)-coated GNP
(5 nm, 12 nm, 27 nm, 46 nm). Although they showed that all GNP sizes caused a decrease in cancer
cell survival after irradiation, they reported a stronger effect using the 12 nm and 27 nm GNPs due to
a more important tumor accumulation. Moreover, other groups demonstrated the influence of coating
agent and GNP shape in the cell uptake process and so, in their involvement in the radiosensitization
effect [22,23].

Despite the increasing amount of data regarding GNP-induced radiosensitization, it is still
difficult to draw conclusions regarding this radiosensitization effect due to the diversity of parameters
and conditions (nanoparticle size, cell lines, radiation source, administration route, . . . ) used in
literature [2]. This leads to important open questions regarding the mechanism(s) responsible for this
effect, which remains a mandatory step towards the clinical use of metallic radiosensitizers. In this
context, the present work aims at shedding light on non-physical mechanisms responsible for the
GNP-induced radiosensitization based on preliminary results described in our previous study [24].
In the present work, we focused on the effect of homemade 10 nm amino-PEG functionalized GNPs
in five different cell lines (A431 epidermoid carcinoma, A549 lung adenocarcinoma, MDA-MB-231
breast adenocarcinoma, PANC-1 pancreatic epithelioid carcinoma and T98G glioblastoma cell lines).
We evidenced correlations between GNP uptake, residual thioredoxin reductase (TrxR) activity and
radiosensitization effect.

2. Material and Methods

2.1. GNP Synthesis

10 nm amino-PEG functionalized GNPs were synthesized according to reference [24].
Briefly, HAuCl4 (Sigma Aldrich, Overijse, Belgium) and TA-PEG550-OCH3 (Biochempeg Scientific Inc.,
Watertown, MA, USA) were mixed at a 2000:1 Au: PEG molar ratio in deionized water and stirred at room
temperature for 1 h. NaBH4 (Sigma Aldrich) was then added to the mixture under vigorous stirring and the
solution was left stirring for 3 h. Then, TA-PEG400-NH2 (Biochempeg Scientific Inc., Watertown, MA, USA)
was added to the solution for extra passivation. After 3 h of stirring, the colloidal suspension was purified
using a membrane filtration device (Vivaspin, Millipore, Darmstadt, Germany).

GNPs were lyophilized with a freeze-drying system (Alpha 2-4 LD Plus; Analis, Rhisnes, Belgium)
and stored at 4 ◦C for further use. In all experiments, cells were incubated with 50 µg of gold per mL
of medium, which corresponds to 8.22 nM of GNPs.

2.2. Cell Culture

Human lung carcinoma A549 cells were grown in Eagle’s Minimum Essential Medium (MEM
Glutamax; Gibco® by Life Technologies, Merelbeke, Belgium) supplemented with 10% (v/v) fetal
bovine serum (FBS; Gibco® by Life Technologies). Epidermoid carcinoma A431 cells, mammary gland
adenocarcinoma MDA-MB-231 cells, glioblastoma T98G cells and pancreas epithelioid carcinoma
PANC-1 cells were grown in Dulbecco’s Modified Eagle’s medium (DMEM 4.5 g/L glucose; Gibco®

by Life Technologies) supplemented with 10% (v/v) FBS. All cell lines were incubated at 37 ◦C in
a humidified atmosphere incubator containing 5% CO2.

2.3. GNP Uptake

Gold content quantification was performed by atomic absorption spectroscopy (AAS, AA-7000F
from Shimadzu, Kyoto, Japan). After a 24 h incubation with GNPs, the cells were washed twice with
PBS at 37 ◦C and then harvested using trypsin. Detached cells were then washed twice with culture
medium by successive centrifugation. The actual number of cells in each sample was determined using
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a cell counter (Countess Automated Cell Counter, Invitrogen, Merelbeke, Belgium). After the third
centrifugation, the medium was discarded, and the pellets were digested using 2 mL of aqua regia
(37% HCl, 65% HNO3 Sigma-Aldrich) overnight. The gold content was quantified using an atomic
absorption spectrophotometer (AA-7000F from Shimadzu, Kyoto, Japan) by plotting the calibration
curve with known concentrations of a gold standard solution (Merck Chemicals, Overijse, Belgium)
in aqua regia-solubilized cells used for external calibration. Triplicate readings were analyzed for
each sample. The amount of gold detected in the cells was expressed as an gold quantity (pg) per cell.
Using the theoretical mass of a 10 nm GNP (=1.01 × 10−17 g), results were expressed as a number of
GNPs per cell.

2.4. X-ray Irradiation

48 h before irradiation, 5 × 104 cells were seeded as 50 µL drops in 24-well plates and placed in an
incubator at 37 ◦C with 5% CO2. 2 h after seeding, the wells were filled with corresponding medium
and placed in the incubator overnight. The medium was then removed and the wells were filled with
medium + 10% FBS without (control cells) or with 50 µg Au·mL−1 of GNPs and incubated at 37 ◦C
until irradiation (24 h of incubation). Prior to irradiation, the medium was discarded from the wells,
the plate was rinsed with PBS and filled with CO2-independent medium (Gibco® by Life Technologies)
without FBS. The cell monolayer was irradiated with a homogenous X-ray beam produced by an
X-Rad 225 XL (PXi Precision X-ray, North Branford, CT, USA) at 225 kV. The dose rate was fixed to
3 Gy·min−1 and the dose to 2 Gy.

2.5. Clonogenic Assay

Immediately after irradiation, the cells were detached using 0.25% trypsin and counted. In order
to obtain countable colony numbers, the cells were seeded in 6-well plates containing medium
supplemented with 10% FBS, penicillin/streptomycin and incubated at 37 ◦C. In parallel, cells were
also seeded in separate dishes. 2 h after seeding, they were fixed with 4% paraformaldehyde
(Merck Chemicals) for 10 min and washed with PBS 3 times. The cells attached to the dish were counted
manually under an optical microscope to obtain the precise number of cells seeded. Eleven days
post-irradiation, the colonies were stained with violet crystal in 2% ethanol. The number of visible
colonies (containing 50 or more cells) was considered to represent the surviving cells, which were
counted manually. The plating efficiency (PE) was calculated by dividing the number of colonies by the
initial numbers of seeded cells. The survival fraction was obtained as the PE ratio for irradiated cells to
the PE for control cells. The control cells underwent the same procedure except the irradiation step.
At least three independent experiments were performed and the errors were evaluated as standard
error of mean (SEM). In order to quantify the GNP ability to enhance cell death, the amplification
factor (AF) was calculated as previously described [6].

2.6. TrxR Activity Assay

The TrxR activity was measured with a commercially available kit (Sigma Aldrich). The assay
is based on the catalytic reduction of 5,5′-dithiobis(2-nitrobenzoic) acid to 5-thio-2-nitrobenzoic acid
by TrxR. This reduction generates a yellow colored product. Its absorbance is measurable at 412 nm
by spectrophotometry. The cells were incubated 24h with or without 50 µg Au.mL−1 of GNPs before
to being detached with 0.25% trypsin. The cells were pelleted by centrifugation (1000 rpm, 5 min,
4 ◦C) and the medium was discarded. The pellet was resuspended in a homemade lysis buffer
(9% w/w sucrose; 5% v/v aprotinin (Sigma-Aldrich), in deionized water) and disrupted by a dounce
homogenizer. Then, the TrxR activity was measured according to the manufacturer’s instructions.
The linear increase in absorbance at 412 nm was measured during 10 min using a spectrophotometer
(Ultrospec 8000; GE Healthcare, Chicago, IL, USA). The TrxR activity rate was calculated from the
slope of absorbance at 412 nm versus time. Data are plotted as mean absorbance values normalized by
the total protein in the sample.
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2.7. Patient Survival Analysis

The online SurvExpress gene expression database (http://bioinformatica.mty.itesm.mx:8080/
Biomatec/SurvivaX.jsp) [25] was used for the analysis of overall survival in different cancer types
(1296 samples in total). Patients were classified into two risk groups according to their TXNRD1 gene
expression. The median in gene expression was used as the cutoff. The association between TXNRD1
expression and overall patient survival was assessed by using the Kaplan-Meier method and the
significance was analyzed using the log-rank test. p < 0.05 was considered to indicate a statistically
significant difference.

2.8. Statistical Analysis

All experiments were repeated at least three times on separate days. A one-way analysis of
variance (ANOVA) was performed using Origin 8 (OriginLab, Northampton, MA, USA) in order to
compare the differences between groups. The number of asterisks in the figures indicates the level of
statistical significance as follows: * p < 0.05, ** p < 0.01, *** p < 0.001.

3. Results

3.1. GNP Uptake

To assess the GNP uptake in each cell type after a 24 h incubation, AAS measurements were
performed. As illustrated in Figure 1, a gold content of 0.51 ± 0.07, 0.71 ± 0.18, 0.84 ± 0.17, 0.97 ± 0.08
and 2.0 ± 0.4 pg Au/cell was measured for PANC-1, A431, MDA-MB-231, T98G and A549 cells
respectively, revealing a cell type-dependent uptake. Moreover, no significant toxicity was observed in
any studied cell lines (Figure S1).
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Figure 1. Cellular uptake of 10 nm GNPs in different cancer cell lines. Cells were incubated during
24 h with 50 µg·mL−1 of GNPs and the gold content was assessed by atomic absorption spectroscopy.
Results are expressed as means ± SD for three independent experiments.

3.2. GNPs Decrease the TrxR Activity in Different Cell Lines

The enzymatic activity of TrxR was evaluated in the different cell lines incubated with or without
50 µg·mL−1 of GNPs during 24 h. As shown in Figure 2, a decrease in TrxR activity was observed
in all the cell lines when incubated with GNPs. Moreover, results demonstrated that the level of
this enzymatic inhibition is cell type-dependent with a 49 ± 7%, 64 ± 5%, 75 ± 4% and 88 ± 7% of
residual TrxR activity for A431, T98G, MDA-MB-231 and PANC-1 cells respectively. However, one-way
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ANOVA (Tukey test) evidenced that this inhibition was not significant for PANC-1 and MDA-MB-231
cells. It must be noted that a 28± 3% residual activity was previously measured in A549 cells incubated
with the same GNPs [24].
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Figure 2. TrxR activity in cells incubated with or without 50 µg Au·mL−1 GNPs during 24 h.
The activity was measured by the absorption at 412 nm over time in cell lysate of (A) A431, (B) PANC-1,
(C) MDA-MB-231 and (D) T98G. Data are plotted as mean values of absorbance normalized by the total
protein content ± S.D. of 3 independent experiments. Slopes of these TrxR activity curves were used
to calculate the TrxR activity rate in (E) A431, (F) PANC-1, (G) MDA-MB-231 and (H) T98G cell lines.
Data are plotted as mean values ± S.D. of 3 independent experiments. All results were statistically
analyzed using a one-way ANOVA (Tukey test, * p < 0.05, *** p < 0.001, N.S. = not significant).

3.3. GNPs Enhance the Cell Death upon Irradiation

The five cancer cell lines were pre-incubated during 24 h with or without 50 µg·mL−1 of GNPs
prior to be irradiated using 225 kVp X-rays. Cell survival fractions were assessed by standard
clonogenic assays. As shown in Figure 3, survival fraction decreased in all cell lines when they were
pre-incubated with GNPs. To quantify this decrease in survival fraction, we calculated the amplification
factor (AF) which indicates the enhanced proportion of dead cells in the presence of GNPs compared
with irradiation alone for a given dose. At 2 Gy, a clinically relevant dose per fraction, a 13 ± 4%,
23 ± 1%, 7 ± 4%, 14 ± 3% and 2 ± 1% AF was calculated for, respectively, A431, A549, MDA-MB-231,
T98G and PANC-1 cells.
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Figure 3. GNPs enhance cell death upon irradiation. Survival fractions were determined by colony
forming assay for cells pre-incubated with 50 µg·mL−1 GNPs. After a 24 h incubation with GNPs,
cells were irradiated with 225 kVp X-rays. Results are expressed as mean values of at least three
independent experiments± SEM. Data were statistically analyzed using a one-way ANOVA (Tukey test,
* p < 0.05, ** p < 0.01; ** p < 0.001).

3.4. Correlation between Cell Response to Radiation, TrxR Activity and GNP Uptake

To better understand the relationship between survival fractions, gold content in cells and the
GNP-induced TrxR inhibition, correlation studies were performed. Results highlighted a strong
correlation between GNP uptake and the amount of inhibited TrxR (Figure 4A, Pearson’s r = 0.991),
between the AF at 2 Gy and the residual level of TrxR activity (Figure 4B, Pearson’s r = −0.978) and
between the AF at 2 Gy and the GNP uptake (Figure 4C, Pearson’s r = 0.872).
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Figure 4. Correlation analysis showing the relation between (A) the amount of inhibited TrxR in
cells and gold content; (B) the AF at 2 Gy and the residual TrxR activity level at irradiation time;
(C) the AF at 2 Gy and the GNPs uptake. Data are presented as means of at least three independent
experiments± SEM (for AF) or ± SD (for TrxR activity and GNP uptake). 1 = A431 cells; 2 = A549 cells;
3 = MDA-MB-231 cells; 4 = PANC-1 cells; 5 = T98G cells; 6 = A549 cells invalidated for TrxR [24].

3.5. TXNRD1 Is an Unfavorable Prognostic Factor

To investigate the possible involvement of TXNRD1 (gene coding for TrxR) expression in patient
survival, we retrospectively analyzed microarray datasets of different types of cancer. A total
of 1,296 samples with TXNRD1 status from five datasets were taken into account in this study.
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Five independent clinical cohort datasets were used: GSE-42669 [26] and GSE-30219 [27] cohorts
for glioblastoma and lung adenocarcinoma respectively, TCGA-BRCA and TCGA-HNSC cohorts
for invasive breast and squamous cell carcinomas respectively as well as PACA-AU for pancreatic
ductal adenocarcinoma. The characteristics of these different cohorts are described in Table 1.
Using SurvExpress tools, overall patient survival was analyzed according to TXNRD1 mRNA
expression. Figure 5 shows the Kaplan-Meier curves for different cancer types while a box plot
across the groups is shown in Figure S2. The results showed that high expression of TXNRD1 gene
was significantly associated with poor overall patient survival in brain, breast, lung and head & neck.
The effect was the most pronounced for lung adenocarcinoma, for which the median survival time
decreased from 102 months (low TXNRD1 expression) to 44 months (high TXNRD1 expression).
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Figure 5. Kaplan-Meier analysis for overall patient survival according to TXRND1 mRNA expression in
(A) brain (GSE42669), (B) breast (TCGA-BRCA), (C) head & neck (TCGA-HNSC), (D) lung (GSE 30219)
and (E) pancreas (PACA-AU) cancer datasets. Green and red curves mean low and high TXNRD1
expression groups respectively. Log-rank equal curves p-values were calculated using the SurvExpress
tools and were considered to be significant when p < 0.05.

Table 1. Overall characteristics of the five datasets used in this study.

Organ Cancer Type Number of Patients
Median Survival Time (Months)

Database
Low TXNRD1 Expression High TXNRD1 Expression

Brain Glioblastoma 58 27 16 GSE 42669 [26]
Breast Invasive carcinoma 502 142 92 TCGA-BRCA

Head & Neck Squamous cell carcinoma 283 66 27 TCGA-HNSC
Lung Adenocarcinoma 264 102 44 GSE 30219 [27]

Pancreas Ductal adenocarcinoma 189 26 19 PACA-AU
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4. Discussion

For the past several decades, oncology has been shifting towards a personalized medicine
approach where the treatment selection for each cancer patient is becoming individualized [28].
This medical field is rapidly evolving driven by networks such as “The Cancer Genome Atlas” (TCGA)
or “Gene Expression Omnibus” (GEO) that enable to catalogue genetic changes in key genes associated
to cancer. These datasets permit the scientific community to identify new potential biomarkers and
therapeutic targets [28,29]. In this study, Kaplan-Meier survival plots generated from cohort data
demonstrated that higher expression of TXNRD1 gene is significantly correlated with poor survival
outcome, identifying this gene as an unfavorable prognostic factor for cancer patients. The protein
encoded by TXNRD1 belongs to the pyridine nucleotide-disulfide oxidoreductase family and is
a member of the thioredoxin (Trx) system. This system is a major redox regulator and comprises
an oxido-reductase enzyme (TrxR) which catalyzes the reduction of oxidized Trx by coupling with
the oxidation of NADPH to NADP+ [30]. Since TrxR is also involved in tumor growth and DNA
replication [31,32], it is not surprising that TXNRD1 overexpression has been evidenced in many
aggressive tumors [30,33]. Moreover, breast cancer resistance to docetaxel has been demonstrated in
tumor expressing high mRNA TrxR level [34,35].

In the context of personalized medicine, a therapeutic strategy to treat overexpressing TXNRD1
tumors could involve the use of Trx system inhibitors such as auranofin. Several studies have shown
the ability of auranofin to trigger ROS overproduction and apoptosis in different cell lines [36–38] and
to exert an antitumor activity in mice bearing breast or lung xenografts [38,39]. These works paved the
way to ongoing lung cancer [40], leukemia [41] or ovarian cancer [42] clinical trials. Although auranofin
was already FDA approved for the treatment of rheumatoid arthritis, its use is associated to cytotoxicity
in vitro as demonstrated by Wang et al. (IC50 values of 19 and 11 µM for 4T1 and EMT6 cells
respectively) [38]. One less toxic alternative could be GNPs. This study reported a cell type-dependent
TrxR inhibition that may be explained by differences in cell capacity to internalize GNPs as well as in
basal TrxR expression in each cell line. Indeed, we showed that even if we measured a similar gold
content in A431 and MDA-MB-231 cells, we observed differences in TrxR inhibition (49% of residual
TrxR activity level in A431 cells versus 75% in MDA-MB-231 cells). These differences may be due
to a lower TrxR expression in A431 cells compared to MDA-MB-231 cells as suggested by activity
measurement in Figure 2 (0.026 versus 0.066 A.U./min. µg of protein for A431 and MDA-MB-231 cells
respectively).

Our work highlighted a cell-dependent radiosensitization effect with 225 kVp X-ray photons
enabling to eradicate up to 23% more cells (in case of A549 cells) at 2 Gy compared to irradiation
without GNPs. Although various works evidenced the GNP ability to enhance the biological
effectiveness of radiation [6,24,43,44], the mechanism responsible for this effect remains poorly
understood. Currently, two theories have been suggested. On one hand, a physico-chemical
mechanism coming from the difference in energy absorption between gold and the surrounding
soft tissues enables a dose enhancement in cells containing GNPs [5]. The interaction between
the ionizing particles and high Z atoms can lead to the emission of low-energy electrons (LEE)
from the nanoparticle [11,45] and the production of ROS [46,47]. This “ballistic” approach which
predicts that the cell response would be directly correlated to the gold content, requires a direct
interaction between the incident beam and the GNPs. However, a growing amount of simulation
works evidenced that the number of hits in a cell containing GNPs is very low, especially in case of
charged particles [48,49]. Consequently, the calculated physical enhancement effects of GNPs are very
low compared to the radiosensitization effect observed in in vitro studies. Moreover, various studies
have reported significant radiosensitization effect with megavoltage X-rays where little or no increase
in overall dose deposition would be expected according to the theory [50–52]. This suggests that
other mechanisms have greater contribution than physical interaction to the radiosensitization
effect [48,49,53,54]. On the other hand, we previously demonstrated the involvement of the Trx
system in GNP-induced radiosensitzation, suggesting a biological mechanism [24]. We performed an
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invalidation of the TrxR expression in A549 cells using siRNA technology leading to a residual 15%
TrxR protein level. These invalidated A549 cells were irradiated without GNPs, evidencing a significant
radiosensitization effect (AF of 30% at 2 Gy) [24]. Therefore, we suggested a new mechanism: following
cell uptake through a receptor-mediated endocytosis, endosomes containing GNPs fuse with lysosomes.
By decreasing pH inside the vesicle, lysosomes trigger a GNP degradation leading to the release of
gold ions, well-known TrxR inhibitors. This inhibition induces various dysfunctions of pathways
leading to a cytoplasmic ROS accumulation, a decrease in ATP production and DNA damage repair
alterations. Irradiation of these weakened cells will cause DNA damage and an extra oxidative stress
in cells with limited ATP stocks and detoxification systems [24]. Although this link between TrxR
and GNP-induced radiosensitization was previously hypothesized to explain lung carcinoma cells
radiosensitization, the present study validated it in four other cell lines. Indeed, correlation analyses
(Figure 4) demonstrated that the radiosensitization effect is strongly correlated to the residual TrxR
level. The aforementioned suggested mechanism is in agreement with an increasing number of works
that have started to take nanoparticle impacts on cellular processes into account. By comparing a large
amount of studies describing GNP-induced radiosensitization, Butterworth et al. [54] concluded that
oxidative stress plays a central role in the radiosensitization effect. This hypothesis was confirmed by
various groups which evidenced a reduction in radiosensitization effect when DMSO, a ROS scavenger
was present upon irradiation [6,15,55,56]. Recently, protein disulphide isomerase, an enzyme catalyzing
the formation and breakage of disulfide bonds in cysteine residues, was suspected to be a key mediator
of the cellular response to GNPs [57]. Interestingly, some studies have showed that oxide nanoparticles
have the ability to decrease DNA repair efficiency without any ROS production enhancement, on the
opposite effect to metallic NPs [58,59]. This highlights the need to consider biological impacts of
nanoparticles in further studies in order to rationalize reported differences in literature and to progress
in our global understanding of the phenomenon.

It must be noted that all the results in this work are based on in vitro cell culture studies.
Hence, this experimental set up displays some limitations. We evidenced that the TrxR inhibition
increases with the gold uptake in the cells. However, the GNP delivery to tumors in vivo at similar
concentrations is much more challenging. This will require tumor cell targeting strategies such as GNP
surface modifications with antibodies [60]. Moreover, in vivo studies are required to investigate if
similar metabolic changes occur in tumor than the ones described in cells, when GNPs are injected
into mice. Lastly, irradiations of cell monolayers performed in this study may not accurately represent
the 3-dimensional in vivo setting.

5. Conclusions

This work highlights the importance of nanoparticle - cell interactions to fully understand the
radiosensitization mechanism. It evidences that the implication of TrxR, previously reported in
GNP-induced lung cancer cell radiosensitization, seemingly confirmed in other cancer types since
a good correlation between cell response to radiation and residual TrxR activity level is highlighted.
Overall, this would suggest that GNPs play a radiosensitizer role by weakening detoxification
system in addition to the radioenhancer role widely described in literature. To progress in the
development of nanotechnology for oncology applications, the capacity of nanomaterials to inhibit
the thiol-reductases protein family (such as TrxR) and their impact on antioxidants need to be
assessed. A deep understanding of the mechanism responsible for this enhancement effect still
remains a mandatory step towards the optimized clinical use of nanomaterials as radiosensitizers.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/2/295/s1,
Figure S1: Toxicity of GNPs across the cell lines. All cells were incubated 24 h with 50 µg/mL GNPs prior the
clonogenic assay. Results were reported as mean plating efficiency ± SEM, Figure S2: Box plot of TXNRD1
expression levels in (A) brain (GSE42669), (B) breast (TCGA-BRCA), (C) head & neck (TCGA-HNSC), (D) lung
(GSE 30219) and (E) pancreas (PACA-AU) tumors.
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