
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Console operations subsystem concepts in large-scale operating systems

Hazard, Pascal

Award date:
1985

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Apr. 2024

https://researchportal.unamur.be/en/studentTheses/5a3ebf65-d870-41e0-8e9a-472473cd3e24

INSTITUT D'INFORMATIQUE

FNDP NAMUR

CONSOLE OPERATIONS
SUBSYSTEM CONCEPTS

IN LARGE-SCALE
OPERATING SYSTEMS

ANNEE ACADEMIQUE
1984/85

MEMOIRE PRESENTE PAR

Pascal Hazard
EN VUE DE L'OBTENTION

DU DIPLOME DE
LICENCIE ET MAITRE

EN INFORMATIQUE

Acknowledgements

Pirst of all, I would like to thank Mr. Rarnaekers
for having accepted to conduct this thesis.

I am grateful to the personnal of Munich-Perlach
laboratories D ST SP 211 and 212 for the help and
friendship marks they give me during my training a.mong
them.

Special thanks to Mr. Clemens and Mr. Seiler .
Their cooperation allowed me to understand better the
domain of this work .

I am also grateful to Mr. Brison and Mr. Demus to
have so well organized my training.

I would finally thank all the other people
involved with the elaboration of this presentation .

INTRODUCTION I.l

General Introduction

In the first computer generations, the system operating was completed
from one physical console. This kind of devices had (and keeps today)
an important feature: its COST schematically made of two components:

l. HARDWARE: the hardware console configuration often combines many
separated devices; this makes it far more (eigth times) expensive
than an end-user terminal. Purthermore, as some hardware
oriented functions imposes locality (direct connection to the
CPU), consoles cannot be shared between several computer centers
and they represent for each of them an HEAVY PIXED COST.

2. PEOPLE: system operating from consoles requires constant care;
sometimes even during nights and weekends so that the operating
staff must be important (two or three shifts) and as human
resources are expensive ...

With t11e time; the system complexity increasing, the number of
messages reaching the console became too big to allow one human
operator to react to each of them quickly and correctly. A first
reaction consisted to multiply the consoles (and the operators) number
in order to reduce each of them control area. Unfortunatly, the
MULTIPLE CONSOLES CONFIGURATION still strenghtened the economical
problem so that, nowadays, the operating remains faced to the two old
problems: the heavy console fixed cost and the operating complexity.

To reach the system complexity in the future , OPERATING
AUTOMATION seems to be a relatively secure (is complex software more
secure than human?) and surely economical way. The automatic operator
will become an important auxiliary for the human operator . It will
assume all the computerizable clerical tasks and perhaps more
intelligent ones (1) but it will let toits human partner

manual tasks,
not formally expressed communications handling,
complex diagnosis ...

(1) See YES/MVS, a real-time expert system designed to help
operator of large-scale MVS computer systems. Developed recently
by IBM in the OPS5 language, YES/MVS handles the many messages
that occur in scheduling jobs, reallocating system resources and
avoiding bottlenecks in MVS machines .

INTRODUCTION I. 2

In any case, some human operating functions will stay alive; in
some case, their volume will stay important. Therefore, more and more
operations have to be completed from commonplace end-user terminals in
order to reduce the number of consoles to the minimum bound to
hardware locality requirements.

The newly appeared distribution trend puts a new light on the
operating economical problem. on one hand, indeed, the data processing
of many organizations will be widely distributed among small agencies
connected (one to the other or to a central office) by a network. On
the other, manufacturers would wish to adapt their existing large­
scale operating systems to mini-computers.

•rhe operating delays those trends because agencies, working with
mini-computers, cannot assume their own operations. Their employees
have no skill in computer field and even if it was, the hardware cost
is too big to be supported by each little agengy.

Automatic operators in the agencies supervised from one REMOTE
OPERATING CENTER would economically allow the introduction of mini­
computers in so-called "unsophisticated circles" (see tertiary
industries like banks).

As we can see, the operating is at the center of many debates
today. In the future, concepts like CENTRAL OPERATING PROM COMMONPLACE
TERMINALS, AUTOMATIC OPERATING or REMOTE OPERATING will probably be
current. In Siemens operating system 8S2000, a first step in those
directions is completed with a special interface (SCONSOLE applicaton)
allowing some operating functions to be assumed by authorized tasks
(DCAM applications) which may eventually open a dialog with an end­
user terminal (see Omnis [OMNI75]).

Unfortunatly, historical features make the system management, in
general, a nd its operating, in particular, conceptually quite hybride
and sometimes not secure. Purthermore, the design deduced from those
concepts is influenced by their hybridity as well as by years of
maitenance so that people wonder now wether it will be able to be the
basis for t h e 2000 years operating(s). Keeping this question in mind,
the first part of this work intends to study the actual appliances.

I do not intend, however, to analyse weaknesses of today-s
equipment for themselves. Rather, I intend to study possible
alternative approaches to the past development efforts. The thesis of
this presentation is, indeed, that conceptual reguirements should
serve as directional guideline for operating system design and
maintenance. Effectiveness should replace efficiency, even for
operating systems, if we want the system to be reliable and secure and
to allow non disruptive growth (so important in the operating field).
The second section of this work will try to state criticisms about the
current console operations subsystem design, to show how they are
related to conceptual lacks and, finally, to propose new concepts
definitions for console operations subsystem design.

INTRODUCTION I.3

'.rhe general plan of this work is then simple:

1. Section 1: A case Study, Console operations in 8S2OOO

2. Section 2: New Console Operations concepts for large centralized
Computer System.

SECTION 1

A CASE STUDY :

CONSOLE OPERATIONS

IN BS 2000

'l'HE SYS'l'EM 1.1

Chapter 1: Which computer system?

A computer, alone, is nota system. Computer-based information
systems run, indeed, using many different resources such as human,
organisational and technical ones. There are numbers of alternatives
for structuring those resources. They range from a completely
centralized to a distributed system with an almost infinite number of
combinations in between.

For our purpose, the system is defined as based on a LARGE
CENTRALIZED COMPU'l'ER SYS'l'EM to which remote users gain access via a
more or less complex communication network. Our interest relies on
this centralized computer system.

People, software (system and application), the data base and
hardware are the basic cornponents that accornplish the data processing
operations in such systems. Application software and the data base are
very user-oriented, we do not consider them. The three other
cornponents are discussed below.

1. Hardware

A centralized computer system is a closed world, often reduced to
a single room. It is mainly characterized by a large and powerful
CENTRAL PROCESSING UNLT with a high capacity central , memory (in our
case from the 7500 and 7700 series).

MAGNETIC DISKS provide voluminous space for on-line mass storage,
sequential files and temporary data.

MAGNE'ric 'l'APES are frequently used for backup or in batch
environment.

Faster and faster PRINTERS and specialized facilities such as
plotters are also housed at the central site.

CARDS READERS AND PUNCHERS so~etimes Still sleep in a corner.
'l'he whole configuration is moni tored from one or more CONSOLES
Many scattered terminals are connected to this monolith but

controlling such a number of devices places a considerable load on the
central mainfrarne . Hence, a special computer, known as a FRONT-END
PROCESSOR is used for interfacing the hybrid environment to the CPU.

This front-end processor is physically housed
center but it may be visualized logically as
sections.

in the computer
consisting of two

One section faces directly the CPU and performs control-type
functions similar to other I/0 control units. Moreover, being a
computer, it can be used to validate data, to collect performance
informations or to provide informations for fault diagnostic.

'.rhe other section faces the communication network. rt is provided

THE SYSTEM l. 2

the ability for storing a network control program that allows it to
relieve the CPU of the network control task. Indeed, it controls and
adapts, via programmed actions,the attached conununication channels and
terminals or stores data on backing-store for later transmission. (1)

This double nature places the front-end processor sometimes
inside, sometimes outside the computer center. We take the logical
border between the previously defined sections as the border between
the computer center and its environment. Figure 1.1 gives an example
of centralized system hardware configuration.

Contro 1er Magnetic Tape
Devices

Laser Printer

l·iechanical
Printer

Con ollers

r' ront-i::nd

Network control
Console

CPU

Permanent

Floppy Disk
Devices

Central
Console

Disk Devices

CPU oriented section

Cetwork Control section

7 Concentrator /
J,;ultiplexor

Partner Computer -~----ri-i;-.-_ --,--i---.i
(l) The central mainframe remains the foreman. In particular, it
gives the order for the connection or disconnection of the com­
ponents as well as orders for messages transmission or receipt.

THE SYSTEM 1.3

~- The System Software: BS 2000

BS2000 (Betriebsystern 2000) is a large-scale (8MB for version
7,5) operating system derived from the general purpose time-sharing
system TSOS developed during the sixties by RCA.

The study of BS2000 by a layman is made difficult by different
facts; it is indeed

1. An OLD and COMPL.EX system
TSOS was designed before the arising of sofware engineering

principles, on a rnonolithic design. Years or rnaintainance (the version
actually marketted by Siemens is V 7.5) have made B52000 still more
complex. Indeed, consecutive corrections, on one hand; the wish to
create more and more sophisticated services, on the other, have led to
add new appliances in trying circumstances: on a "wobby" initial
design, with respect to strict time imperatives and multiple
compatibility constraints (at the user as well as at the hardware
level).

~. ~ MOVING FIELD
New versions succeed quickly one

sometimes important design changes. so,
begin their development phase. 'I'hey will
extended architecture, dynamically
consoles

to the
by now,
include

loaded

other, involving
versions 8.5 and 9.0

new concepts like
subsystems, logical

~~e following analysis tries to draw up a synthesis about the
operating in BS2000 according to informations collected from many
sources:

Lectures at the Schule Fuer oatentechnik (Siemens Munich).
Development documentation and pieces of code from versions 7.6,
8.0 and 8.5.
Informal conversations with members of the laboratories involved
by operating (DST SP 211 and 212)

'l'HE SYSTEM 1.4

3. People : §.y_st~~ Ma.n~gement in as2000

The managers, well convinced of what people have always repeated
to •them, -narnely that the computer is just a tool- have assigned to
the computer department the sarne finality as to the other organization
sectors. Consequently, they apply toit previously defined management
principles and many theoretical structures are proposed today for the
computer staff.

In practice, however, the computer center is felt as stanger to
the rest of the organization. It is led by its own rules applied by a
cohort of specialists under the manufacturer·s control. rts management
stucture is mainly depending on the interface provided by the
manufacturer and its associated philosophy (or its lack). therefore,
one may speak about system management associated to an operating
system.

In figure 1.2, an organization chart illustrates the management
philosophy associated with BSZ000. The categories shown are
administration, operating, data preparation and hardware maintenance.

MANAGER OF THE 1·

DATA- P-ROCESS ING-­
DEPARTMENT

SYSTEM --
PROGRAMMING

MANAGER OF
THE COMPUTER

CENTER

1 ADMINISTRATION f-

DATA
PREPARATION OPERATIONS

COMPUTER
, OPERATIONS L._ __ . _ __ ___,,

j PERIPHER.AL
j ~~UIPMENT
~ -ERATIONS

Figure 1.2. Categories of jobs li a
typical computer center

APPLICATION
PROGRAMMING

HARDWARE
MAINTENANCE

'l'HE SYSTEM 1.5

3.l. Data Preparation and Hardware Maintenance

Data preparation involves DATA ENTRY EQUIPMENT OPERATORS who
convert data from source documents into computer-readable form.
In more advanced systems, users within the organization perform
data entry without the aid of the operators.

The major part of hardware maintenance is completed by
MANUPAC'fURER 'l'ECHNICAL STAFF in collaboration with the computer
center staff.

'l'hose functions of fer only few interest for our purpose,
they are, therefore, not considered furtherly.

3.2. ~9ministration and Operating

ThP. division of responsabilities between administration and
operating is broadly influenced by historical features.

In the early days of computing, operators had no contact
with the users and almost exclusively manipulated devices. The
computing process was operator-limited; therefore, their work
became quickly efficiency-driven. 'l'hey knew many about devices
but little about software and they relied upon the programming
staff for all technical assistance. This image reaches the height
of its fame with the sophisticated batch (including off-line
operations,SPOOL ...).

With time coming, systems becarne more and more complex. They
are now integreted, pararneterized (PRIOR), multimode (batch, time
sharing, transaction processing) systems with important data
management capabilities and designed to operate on a family of
systems. This process influences the system management in two
trends :

On one hand, rightly or wrongly, the operators have kept
their label of efficient devices manipulators and most of
the newly appeared tasks were carried out by the
administrator.
On the other, the minute by minute control of the system
itself has changea. rt is becarne more complex involving
much system messages and software knowledge than devices
one.

These contradictory trends make the distinction between
administration and operating today quite moving. The following
note found in the "Bedienungsanleitung 8S2000" rnanual [BEDAN75]
illustrates this idea :

"Die Aufgabenteilung zwischen systemverwalter
und Operateur ist nicht starr. Hier ist ein
gewisser Spielraum in der Organisation des
Rechenzentrums vorgesehen. In jedem Fall muB die
zusammearbeit zwischen Systemverwalter und

THE SYSTEM 1.6

Operateur sehr eng sein. " (l.)

However, the fol.lowing will try to state a general
repartition based on the operating session. Therefore, we define
it first and we shall use it, as discriminatory element,to define
roles inside the computer management.

3.3. Operating Session

The session is often related to one execution of the
operating system prograrn. For our purpose, we shall distinguish
this session "sensu stricto" from the extended concept of
operating session. In the following, when we use this extended
concept, we shall specify it explicitly. To define it, let us
consider the life of a given system occurrence as made of two
steps : the system generation and its operating session. Figure
1.3 gives the states chart of a system occurrence life.

l•l•l· system Generation

The operating system is designed to run on any of a
class of machines (7500 or 7700 series) at a variety of
sites with a variety of peripheral configurations possibly
changing in time. It must be configured for each specific
computer site at the given time. Moreover, the system is not
free from errors and, sometimes, it is modified to provide
improvements.

The process which allows to manage this changes is
known as the SYSTEM GENERATION (SYSGEN). To generate a
system, a special prograrn running on another one is used. It
reads from a file the informations concerning the specific
configuration and creates tables. It also selects modules
from a precompiled library and links them together. The
output, stored on a disk, forms a new SYSTEM OCCURRENCE
versions provided by the manufacturer are only official
stakes in those occurrences.

(1) 'I'he reparti tion of duties between system administrator and
operator is not rigid. There is a certain freedom provided in the
organization of the computer center. In any case, the collabora­
tion between system administrator and the operator must be very
strong.

--
éIBRARY &

FIG UR.AT ION
VAILABLE

·,

1
1

1

' (SYST~M
'-------- - ------ DOWN ---HARDWARE --- FAILURES

SOFTWARE _. 1

SHUTDOWN

1

;-_-· ;~:)-s .
PUBIŒS

DISK

·-- --·

STARTUP

DCS
ACTIVATION

1.6 b

7
OPERATING SESSION --i

1

1

1

QUIET SHUTDOWN 1

~ ------ 1 SESSIO~n)
SUSPEND~

-.... ____ 1

FAST STARTUP

DCS • DATA COMMUNICATION SYSTEM
I __ _

1

1

1

1

1
____ _ J

Figure 1.3. States chart of a system occurrence life.

l

THE SYSTEM l. 7

3.3.2. Operating Session

The OPERATING SESSION is defined as the set of tasks
associated with the life of a given system occurrence. The
last one may die for many reasons, namely, hardware or
software failures, configurations changes, policy changes,
relieses from the manufacturer ...

The operating session is just suspended if the system
is stopped quietly, without modifications requirements. The
reasons, generally external to the computer center, corne
namely from

the rest of the organization: hollidays (nights,
weekends), strikes ...
the computer manufacturer: hardware maintenance

l·l•l• The REPPING: pseudo-Generation

As manufacturers cannot afford to provide a new version
of the system for each detected errer, they provide a more
economical mechanism consisting to replace directly pieces
of the object code stored in the virtual mernory. This
correction ope ration, called repping (l) , .is completed
during the STARï'UP taking its inputs frorn so-called REP­
files.

Direct object modification gives a
occurrence without generation. therefore, one
it as a pseudo-generation, dangerous insofar as
gulf between the situation "on paper" and
running system.

new system
rnay consider
it creates a
the actually

(l) 'l'his operation corresponds to the PATCHING in IBM terminolo­
gy.

THE SYSTEM l. 8

l•i• Administration

The SYSTEM ADMINISTRA.TOR (shortly administrator) is known by
the system
responsability
necessary to
system.

under the TSOS user identifier (USERID). His
consists to implement all the methods and tools
the efficient working and the security of the

In practice,
aggregated with

his role is made of a melting-pot of functions
the time. the principal ones are stated here

after.

3.4.1. Users Administration --- ---
The adminstrator is the first and most privileged user

of the system. As authorizer, he creates other users and
controls their life (rights and priorities), assigns them
projects and the associated rights and sets the accounting.

As "knower", he provides guidance to the · end-users:
documentation, informations about the current state of the
system (hardware and software, particulary the utility
prograrns as editors,compilers ...) or error diagnosis help
(dump analysis).

l•i•~· system Administration and control

All system files are stored under the
userid and he is responsible for providing
to all other partners who can require them
the operators) .

administrator·s
utility prograrns
(in particular,

At the system control level, the operating session
concept previously defined can be used. The scope of the
adrninistrator·s responsabilities, in this field, is, indeed,
everything OUTSIDE THE OPERA.TING SESSION; this rneans

SYS'rEM GENERATION: in respect with the forecast load
and the actual configuration.

MIDDLE TERM POLICY: system and
changes, performance studies.

utility programs

MAINTENANCE: failures diagnosis (dump analysis) and
correction (reps).

SYSTEM TUNING: playing on pararneters (paging area
size,priorities ...)

THE SYSTEM l. 9

]_.~.]_. security

The security is a complex field which we do not intend
to consider in details here. Briefly, the administrator is
the AUTHORIZER at the users·1evel but his functions also
involve the computer center. He generally plans the backup
policies and supervises the operators for instance.

l•i•i• Computer center Master

The previously defined functions are explicit, they are
deduced from commands or service prograrns only available to
the administrator. They also often place him at an informal
key position:

in the computer center: he acts as link between the
users, the operators, the manufacturer·s staff and the
system.
against operators: he often sets
and evaluates their activities.
following degree in the problem
this gives him a skill power.

standards, monitors
Moreover, he is the

handling hierarchy,

According to this key position, nearby but
other partners, the administrator is often
informal but actual computer center manager.

above the
felt as the

3,5. Operating

The scope of the operating is generally restricted to
functions INSIDE THE OPERATING SESSION as previously defined. As
any process, this session has an initialization (STARTUP) and a
termination (SHUTDOWN). In between, the heard is shared by two
parallel activities: those associated with the backup and those
with the session "sensu stricto". The operating is structured in
two parts.

l-~•!• Computer Operations

The COMPUTER OPERATORS (shortly operators) are in
charge to complete STARTUP and SHUTDOWN operations. During
the session, they monitor and control all operations,
communicating with the system through consoles or local
terminals.

Their responsabilities include pure manipulations
aspects as well as some administrative power. Consequently ,
the distinction between the operators and the
administrator · s action possibilities inside the session is
sometimes hard to be determined. The commands repartition
between system partners shown at figure 1.4 illustrates this
problem.

THE SYS'l'EM l.10

1-~-~- Manual Operations

'l'he PERIPHERAL EQUIPMENT OPERATORS assist the computer
operators. They insure an almost continuous computer

. processing by setting-up, operating and unloading peripheral
devices.

Administrator -7
ASR
BCACT

JOIN BIAS BCOAC
SEVER EXEC CANCEL CATEGORY BCENO
SHARE . . ENTER CHANGE- BROAOCAST
SPMGT INTR SERS LOG CHANGE-

PRIORITY NCHOLO CONSLOG
STATUS NCREL CONSOLE

RCARO OAOM
REDIRECT OCSTART
SDVC MESSAGE
SHOW- RF•

SERS LOG RUN
START- SETUP

SERSLDG SHOW-
STOP- CONSLOG

SERS LOG SHUTOOWN
sauc
START- SPOOL

User - TURN

Operator

Fi g ure 1. 4 . Commands re par tition i n BS2000

CONSOLE OPERATIONS CONCEPTS 2.1

Chapter 2: Console Operations Concepts in BS2000

By CONSOLE OPERATIONS one can understand the computer
operations as previously defined unless the utility programs
monitoring 'l'hose utility programs are necessary to the good
operating of the system, they involve mainly

Logical and physical backup (ARCHIVE,FDDRL),
Floppy or hard disk and tapes initialization (VOLINT,INIT),
Memory dumps (SLED,SODA,SLME).

Sorne of them are SELF-LOADED (SLED,SLME). Once the system down
(often after failures), they are loaded and monitored OFF-line from
the console. 'l'heir monitoring is specific insofar as it is not
controlled by the operating system. therefore, we do not consider it.

Sorne others run under BS2000 control but as the generic command
allowing the execution of programs {EXEC) is only provided to users,
they are not available from consoles. 'l'herefore, one may not speaJc
about console operations. The solution generally adopted to provide
utility programs to operators consists to couple to the console a
local terminal from which they work as user :

1. As ADMINIS'l'RATOR : all programs are stored under the TSOS user id.
'l'herefore the simplest solution is to make the operators work
under this userid but it is very dangerous insofar as the
operator holds all authorities controlled by the system.

2. As USER: the operator·s power is reduced but still important .
Moreover, the programs copies can be scattered.

In the following, the console operations will be defined as based on
operating partners exchanging informations in the form of
communications; the communications distribution and the associated
administration are processed by the console operations subsystem as
shown in the figure 2.1. All transfered communications are strored in
a special file for possible future access. This process is called
logging .

The cited concepts will be studied in the following sequence
1. operating partners
2. Operating sources properties
3. Communications
4. Logging

CONSOLE OPERATIONS CONCEPTS

~:iY~'rEM TASKS

USERS

USERS
TASKS

Console
Operations

2.2

PROCES SOR

CONSOLES

AUTHORIZED
APPLICATIONS

Figure 2.1. Console operations subsystem.

CONSOLE OPERATIONS CONCEPTS 2.3

1. Operating Partners

1.1. user

A USER is either the administrator or any person or group
allowed by him to connect himself (itself) to the system and to
use it. A user is identified by a user identifier (USERID), he
acts on the system through a task.

A USER TASK is a sequence of actions on the system required
by a given user, it must begin with the/ LOGON command. A user
task is identified by a task sequence number (TSN). Among those
tasks, only a limited number can be handled simultaneously; in
this set, a task is identified by an internal task number (ITN).

1.2. Operating Sources

In the first computer generations, the operations involved
mainly hardware manipulations and control completed from one
physical console. With the time, as the systems complexity
increases, their tuning and monitoring created new problems on
top of hardware control. The number of messages reaching the
console became then too big to allow one human operator to react
to each of them quickly and correctly.

ï~is bottleneck was suppressed by adding physical consoles
and computer operators in order to reduce each of them own
control area. The multiple consoles configuration introduced,
however, many new difficulties. They were

Economical : each console represents an heavy fixed cost
•rechnical : competence areas definition, especially the
consoles management and defective consoles handling

In the future, console operations automation seems to be a
more economical and relatively secure solution to reach the
system complexity. Multiple "consoles" configuration with cheeper
consoles hardware (end-user terminals) is an other solution. In
BS2000, a first step in those directions is completed by an
interface allowing console operations from a special task which
may eventually open a dialog with an end-user terminal
(transaction processing).

î~e actual operating sources configuration integrates into
its concepts these historical features. Their most important
consequence is that the concept of operator is UNKNOWN by the
system. Moreover, the recognized operating sources configuration
is quite hybrid. One may, indeed, distinguish two completely
different kinds of sources consoles and authorized
applications.

CONSOLE OPERATIONS CONCEPTS 2.4

1-~·1· Console

Any loca~ hardware configuration which can act as
operating source is a console. such a configuration can
include screen, special keyboard, lights and switches panel,
protocol printer, floppy disk deck, micro-processor (SVP) . . .

A console is identified by a MNEMONIC NAME as well as a
CONSOLE NUMBER (theoretically < 24 but, in practice, < 4) .

1.2.2. Authorized Application

An
by the
console
NAME as

1.3. The system

authorized application is a special task authorized
administrator (at the generation) to complete some

operations. It is identified by an AUTHORIZATION
well as by an APPLICATION NUMBER (< 64).

The system software BS20OO is a complex structure; for our
purpose, it is considered as made of SYSTEM TASKS identified by a
TSN or an ITN as user ones. Sorne of those system tasks are
activated automatically during the system ini tialization, they
are called PRE-ALLOCATED TASKS and they have a pseudo-TSN made of
letters.

CONSOLE OPERATIONS CONCEPTS 2.5

2. Operating Sources ?roperties

2.1. consoles

The consoles properties are related to the hardware oriented
functions and the multiple consoles configuration handling.

~-!•!• Hardware oriented Functions

By hardware oriented functions, we mean essentially the
system set-up and the CPU control. They are assumed from the
so-called PHYSICAL MAIN or CENTRAL CONSOLE Unfortunatly,
those concepts mean different things; the following tries to
clear them up.

The hardware oriented functions require some technical
appliances, the global configurations containing them are
marketted by the manufacturer under the label CENTRAL
CONSOLE (3026-2 .. 4 devices for instance). A central console
can become defective; therefore, many computer center
duplicate it. Only one of them, however, can actually assume
the physical functions. This PHYSICAL MAIN CONSOLE is the
set-up console. It remains on duty during the whole session.

Two more sophisticated tools are provided to the
operator; the first, the SERVICE PROCESSOR (shortly SVP) is
an independant micro processor which functions involve the
CPU direct control (even off-line). This processor is often
physically integrated in a central console so that one can
name service processor, by language misuse, the whole
console configuration.

The TELESERVIC~, on the other hand, is a remote
herdware control service provided by the manufacturer. His
teleservice center is connected with the physical main
console through a telephone link. The exchanged informations
are stored, in the computer center, using a specific device
called the î~LESERVICE BUFFER It is considered as a
special console.

~-l•~· Multiple Consoles Configuration Handling

The multiple consoles configuration poses some new
problems like competence distribution and consoles
management or defective states handling. Let us have a look
to how they are actually solved.

CONSOLE OPERATIONS CONCEPTS 2.6

COMPETENCE DISTRIBUTION

The system is functionnaly divided in COMPETENCE FIELDS
which ownership supposes the ability to

receive messages related to the field defined by a so­
called ROUTING CODE
issue relevant commands defined by an
AUTORIZATION CODE .

ISSUE or

By now, authorization and routing are merged and identify a
competence field as described in picture 2.2

(OM i'E.TE.N<.E. FIE.LD.~ Cot111 ANù~ /tUÎl-{.ôR·, 2 Ar 1 0 11.I
(Sta.,"'-th'Ui .'.l.MUF•'-"M.t>"-t 'I loDE~

S)'SîE.H
BIAS, CHANGE-CONSLOG, CATEGORY, R

Ko1v",-ï0(1w:: EXCAT. IHCAT, HRSENO, HRSHOO,
HRSSTA, HRSSTART, SHUTOOWN, STAH

D/\ff.l r.aH t1u :11,rn r,olJ BCACT, BCASP, BCCONP, BCOAC, C
BCOISCON, BCOISP, BCENO , BCIN ,

S'Y.Sf!:t\ lol\JTf.LJL BCLOSE, BCHOO, BCHOFF, BCHON,
BCDUT, BCSWP, BCTIHES, OCSTART

JoBS (o,-J;"/.!OL ENTER, GETJV, NCHOLO , NCREL, SETJV J

TASt<S lnNUJ.'>L CANCEL. INTR, PRIORITY p

D·1~r<S OPE.llAT\1\J:.:,
D

Tfll'f.S ûPl:MnN~
T

U-1NrE(,~ Ali.la Utr.ns soue 0

Vtl N u-u:i•,~ O?t:l!./H\l\lG

(A(i); p .Ul b[{l{,. ~N!) RCARO, RFD I

fi.o rrv &1St<.O:, QyfJ'.A l\t.JG

PE1i"1LLl /1Dt\1N1!.>ïl!Ari.DN SETUP G

~rooL CcrJî~L
sovc. START-SPOOL s

r.1:.1tore: rt.ôllJ 1 7ûf.,HJ1;,,
REDIRECT N

SrOOL

H/\1:.D\rl"Mf: lt~..iïEt11/11JtC. H

S'l~TEM CHANGE-SERSLOG, SHOW-SERSLOG, A
A0r1,tJ, 5i1'J1 nw} START-SERSLOG, STOP-SERS LOG

F11ü /11)/11 ÙI SiM Î\(À'\) u

6E.1Jé:t:.1ll AGOGO, ASR, ASTO P. BRDADCAST, E

LDl1i'HHICL
MESSAGE, RUN, SHOW-CONS LOG ,
STATUS, TURN

t1AiN L(JIJ <;I) lf Fu.--iffioi-i; CONSOLE .
t1E..s~f\U f'lll l\lTED V

Dùi!-41'16 TKE f.rni<.rur

0S1000-Simulation F

f llE.E: fJELI>-> w. x. Y, z

CONSOLE OPERATIONS CONCEPTS 2.7

A COMPETENCE AREA is assigned to each console.
consisting of zero, one or more competence fields, it is
identified by a set of routing codes.

The INTINSIC FONCTIONS of a given console describe all
functions (messages receipt and commands input) associated
toits own competence area.

LOGICAL MAIN CONSOLE

The CONSOLES MANAGEMENT is a special competence field
assigned to one and only one console at a time. This console
is called the LOGICAL MAIN CONSOLE (shortly main console)
(l). It should be identified by the"*" routing code (see
figure 2.l). Unfortunatly, it is not always the case in
practice.

The consoles management, coupled with two other
functions, forms the main console functions, namely

CONSOLES MANAGEMENT: to assign competence field to
consoles, to switch them on or off.
GARBAGE COLLECTION: to receive all relevant messages
that cannot be distributed to other operating sources.
EMERGENCY HANDLING: to receive the emergency messages
and assume special functions necessary to prevent
incoherent states (e.g. when the competence areas
assigned to all consoles are empty).

REPLACEMENT FONCTIONS

'l'he life of a console can be
S'l'ATES 'l'he consoles states can
at the physical level, it can
operable or not (defective).
operator can switch it ON or OFF .

seen as a sequence of
be altered at two levels;

be attached or not and
At the logical level, the

According to an AND combination of those components, a
given console can hold B possible states divided in two
classes: the state AT'l'ACHED & OPERABLE & SWITCHED ON is
called AVAILABLE STATE all others being not available
ones. When a console becomes not available, the system
reliability imposes its competence area to be transfered to
an usable one. In oder to perform this automatically, the

(l) The logi.cal main console has only few links wi th the physical
one described at the 2.l.l. The physical main is fixed at the
STARTUP, it is the set-up console while the logical main can
change during the session (because of the/ ASR MAIN or the/
CONSOLE SWITCH,OFF commands processing or because of a defective
state). The first logical main console is the physical main con­
sole.

CONSOLE OPERATIONS CONCEPTS 2 . 8

operators are given the possibility to defi ne for each
console a SUBSTITUTE CONSOLE (ErsatzKonsole). This console
takes all functions assumed by the not available one. These
functions are called REPLACEMENT FUNCTIONS, they involve
the intrinsic functions of the first console (possibly
including the main console functions) as well as all the
replacement functions perhaps already collected by it.

TELESERVICE BUFFER EXCEPTION

The teleservice buffer is a specific device dedicated
to the remote service processor; therefore, it will never be
used for the dialog between the operator and the system.
Consequently, it can be neither main console nor substitute
console (but it can have such a substitute console).

2.2. Authorized applications

The authorized aplication connects itself to
operations subsystem, acts as operating source
intinsic functions (see competence distribution
disconnects itself. As its lifetime is much

the console
assuming some

2 . l. 2) and
shorter than a

console, it can assume neither main console nor replacement
functions. Furthermore , an authorized application has no explicit
substitute console (l).

(l) The main console and sometimes other "*" routing code con­
soles play implicitly this role.

CONSOLE OPERATIONS CONCEPTS 2.9

l• Communications

As previously defined, a communication is a piece of information
exchanged by operating partners through the console operations
subsystem. BS2000 knows five kinds of communications (Meldungen).

3.1. Messages

1•!•!• Definitions

A MESSAGE is a string of characters sent by any given
operating partner to one or more operating source(s). A
message may be an INFORMATION MESSAGE or a QUESTION .

A question distinguishes itself from an information
message insofar as the sender partner cares for the reply
coming from one of the receiving operating sources.

An information message is identified by a "%" and a
question by a"?" in the string.

l•l•~· Task particularities

system and user task are considered in the same way
with regard to communications exchanges. Consequently, they
share the following particularities.

OUTSTANDING MESSAGES COUNTER

In order to prevent system disturbances (memory space
saturation) because of a task sending too many messages, an
OUTSTANDING MESSAGES COUNTER associated to each task stores
the number of messages which distribution was asked but not
yet completed. If this counter reaches a fixed limit L {L=l6
for common tasks,more for some privileged ones but never
unlimited), the sending task is suspended {PENDED) waiting
for the unblocking.

WAl'.r 1-'0R REPLY -----

'.rhe question asking by a task is a pure synchronous
phenomenon. The task is, indeed, suspended until the
c9rresponding reply cornes. Now, this reply often depends on
a human factor; therefore,it may never corne and the
"Cinderella" task will sleep for a long time. To prevent
such a situation, two appliances are provided to the
operator :

The PRO'l'ECTED LINES on the console screen where opened
questions may be logged

CONSOLE OPERATIONS CONCEPTS 2.l.O

The/ STATUS MSG COMMAND which allows him to know which
questions are still outstanding and to which of them he
may reply.

Unfortunatly, these mechanisms do not reduce completely the
deadlock risks.

TASK TERMINATION

A task may be normally terminated only if the
associated outstanding messages counter is equal to zero.
Otherwise, the task is put IN PASSLOOP, that is to say that
it remains in the loop until the condition (here, OMC=O) is
reached.

A task may also be aborted using one of the available
/CANCEL COMMANDS between

the operator /CANCEL command with or without KILL
parameter,
the end-user /CANCEL command. For our purpose, it is
equivalent to the operator·s one without kill
parameter.

If the outstanding messages counter is equal to zero,
ANY /CANCEL command is processed. The task is aborted.
Otherwise, a /CANCEL command without kill parameter is
rejected and a message "MESSAGE OUTSTANDING" sent back to
the issuer although a/ CANCEL KILL command is processed,
killing the task.

l•±•l• Destination

A message destination is identified by a mnemonic name
an authorization name or a routing code . Mnemonic and
authorization nanes identify a single destination operating
source. As defined at the 2.l..2, a routing code identifies a
competence field. such fields may be assigned to one or more
operating sources; therefore, a routing code specifies a set
of destinations.

3.l..4. Content - - -

Messages are divided in two categories: standard or
system messages and non standard messages.

standard or system messages are stored in several
special worfiles, each under the control of a given system
component or utility program. Those system modules send them
during the session; therefore one may speak about SYSTEM
MESSAGES .

The output,however, may be requested by any task (user
as well as system) calling the appropriate macro ((S)MSG(7))
so that it becomes difficult to still consider them as

CONSOLE OPERATIONS CONCEPTS 2 . 11

system messages and the name STANDARD MESSAGES seems to be
more accurate insofar as they are built according to the
same formation rules which divide its content in four parts:

l·~· Replies

l. MESSAGE KEY : specifies the involved component and
identifies

2. MESSAGES ATTRIBUTES used for system internal
processing control

3. MESSAGE TEXT: gives the message meaning in a given
human language and often contains variable parts called
INSERTS . Their number, position and contents are not
formally defined.

4. COMMENT TEXT

Non standard messages are made of free text .

Replies are divided in two categories: normal and spec.idl
ones.

l-~•l• Normal Replies

A NORMAL REPLY (shortly reply) is an string of
characters sent from an authorized operating source to a
partner if it is related to a question sent by this given
partner. A reply is identified by a"" in the string.

~-~-~- Special Replies

A SPECAL REPLY is a piece of information sent by the
VOLUMES HANDLER to signal a private volume mountage
completion. The private volumes handling involves two
asynchronous events: the mountage completion and the volume
explicit request from a task. As soon as the volumes handler
knows about a correct volume mountage completion, it tries
to signal this event to the requesting task. Two different
situation rnay occur:

the operator (at
the actual task
to a not yet

If the volume mountage was asked to
the human level), it can preceed
request. Then, the reply is an answer
asked question.
If the volume is not mounted when the task needs it,
the requesting task is suspended and the operator
receive an explicit mountage request.

CONSOLE OPERATIONS CONCEPTS 2.12

3.3. · Commands

A COMMAND is a string of characters sent to a special task
called command processor task. its source can be

an authorized operating source,
a COMMAND FILE (RUN file): in this case, commands are sent
one after the other with, for each,the reflection of the
original operating source in order to allow authorization
checks.

Commands are identified by a "/" in the string, theyare
divided in two categories: normal and special ones.

i•i•~· Normal Commands

NORMAL COMMANDS are standardly defined and provided b
the manufacturer. Their command processor tasks are systems
tasks linked at the generation and loaded with the system
during the STARTUP. we call them NORMAL COMMAND PROCESSORS .

3.3.2. Special commands

SPECIAL COMMANDS are very computer site depending. If
they are also defined by the administrator at the system
generation, their processors, the SPECIAL COMMAND PROCESSORS
are dynamically connected to the system.

3.4. Additionnal Terminology

In order to clarify the following descriptions, two new
arbitrary concepts are added

1. CURRENT FLOW COMMUNICATION: all kinds of communications
previously defined.

2. NORMAL FLOW COMMUNICATION: any current flow communication
unless special replies.

3.5. Rejection communication

A REJECTION COMMUNICATION (REJ-Meldung) is a string of
characters sent by the console operations subsystem to the sender
partner of an incorrect current flow communication

3.6. Emergency Messages

An EMERGENCY MESSAGE is a special message (information or
question} output to the main console (at a physical level) when
the standard message interface cannot be used. For instance, in
case of

inexisting messages handler (STARTUP),
internal messages handler failure,

CONSOLE OPERATIONS CONCEPTS 2.13

critical resources failures (e.g. memory management),
console queue jam ...

_1. Logging

All communications exchanged by the operators at the system
consoles and their partners during the session, namely

all current flow communications without taking possible syntax or
semantic errors into account,
rejection communication,
emergency messages, if possible. (sometimes, the emergengy
situation prevent it)

are logged in a special file named SYS.CONSLOG.ID-DATA. It can be
accessed later using the /TURN commandas desril>ed in figure 2.3.

COIIJ.SoLE

,--------------· D I
/TURN 1 t1 f.SS/IGI: HE.SS/h:)E. Î.lffl\l'Ma:,,À 1

F0 4
1 RE.PL"t Qoé.':>TiOl\i 1

Cot1MMD REPLY 1
1
1

1 ... ~
LoGbi~b ' ~ ,

i= i LE. ' , "'

~ft., 0.\L'la.X~ ~u.bs~!.tu""-

PROCESSES 3.1

Chapitre 3: console Operations Subsystem Processes Description

The CONSOLE OPERATIONS SUBSYSTEM is functionally divided in two
parts: the most important one can be compared to a MAIL SYSTEM. It
consists, indeed, to receive communications from several sources, to
identify their nature, to check them and, finally, to distribute them
to the right partner(s) and log them.

In front of these continuous functions, the console
subsystem assumes, more contingently, some administrative
actual opera.ting sources hybridity separates them in

REPLACE CONSOLE HANDLING and
AUTHORIZED APLLICATIONS ADMINISTRATION

operations
duties. The

In the following, the processes are analysed in more details. Our
interest relies here on the functional aspects (independant from the
actual implementation); therefore, we use the "Modèle de la Dynamique
des Traitements" (Model of the Dynamics of Processing) proposed by F.

Bodart [BODA83]. For more, see Appendix l

PROCESSES 3.2

l. Mail Processing

•rhe communications are processed by the "mail system" in the form
of a frame (information and control parts) called STORAGE QUEUE ENTRY
(shortly SQE).

The processes chart presented at figure 3.1 shows how the mail
functions are completed by four processes:

- NORMAL FLOW COMMUNICATION RECEIPT
- SPECIAL REPLY RECEIPT
- EMERGENCY MESSAGE HANDLING
- SQE DIS'rRIBUTIONS

Let us review them

NORMAL FLOW

COMMUNICAT
RECEIPT

REJECTED
SQE

CONSOLE
DEFECTIVE

SPECIAL
REPLY

RECEIPT

SQE TO BE
DISTRIBUTED

SQE
DIS'l'RIBUTION

EMERGENCY
MESSAGE
HANDLING

EMERGENCY
JVI TB

LOGGED

SQE
RE L:2:ASED

Figure 3.1. Mail processing.

PROCES SES 3.4

1. COMMUNICATION INITIATION

This function creates
communication source. It
possibilities:

the SQE and
be longs to

deterrnines the
the following

TASKS: users, systems or command processor tasks
OPERATING SOURCES: console or authorized application

If the source is a task, the associated OUTSTANDING
MESSAGES COUNTER is incremented by one. If this counter
reaches the fixed lirnit L, the task is suspended (PENDED).

If the source is a physical console, a LOCK is
activated so that no further I/0 can be completed from this
input console before its current input acknowledgement.

2. COMMAND CHECKS

Four questions are asked about the command candidate:
Should it be a comrnand'? (partial syntax check)
Does this comrnand exist? (existence check)
Is the issuer authorized to use it? (authorization
check)
Is the command processor available (availability check)

PARTIAL SYNTAX CHECK

The command syntax is the following one :

< command > ::=<hl>/ <hl> < opcode > 1
<bl> / <bl> < opcode > @ < operands list >.

@=one and only one blank

If the check UNTIL BEFORE THE OPERANDS LIST is unsucceful,
an error is signalled (TEXT NOT RECOGNIZED).

EXISTENCE CHECK

If the operation code does not correspond to a command
name declared at the generation, the command is rejected
(COMMAND NO'r POUND). This operation code can be abbreviated
since there can not be arnbiguities with other operator·s
command.

AUrHORIZATION CHECK

An authorized application may issue a command only if
the command issue-code is assigned toit .

A console may issue it if
the command issue-code is assigned toit

PROCES SES 3.3

1.1. Normal Flow Communication Receipt

In figure 3.2, a processes chart is presented that
illustrates this receipt. The numbers in this figure are keyed
to the following descriptions.

•

NORHAL (5)
HEPLY

CIIJ::CKS

COMMUNICAT
INITIA'rION

(1)

COMM~ND
cm;cK~

(2)

RECEIPT
ACK
(6)

IDEN'l'IFIEH
EX'l'HACTION

(j)

MESSAGE
DESTINATION (4) .

BUILDING

*ID.CHAR• "•"
or " ~~ u
or "'/11

Figure 3.2. Normal flow communication reccipt.

1
1

PROCES SES 3.5

it is the substitute console of a not available one to
which the command issue-code is assigned.
in version 8.0, it is the main console and no more
physical consoles may issue it
in version 8.5, it is the main console and the command
is /ASR

If the check is unsuccessful, the command is rejected
(COMMAND NOT ALLOWED) (l)

AVAILABILITY CHECK ---

If the command processor is not available, the command
is rejected (COMMAND NOT AVAILABLE).

3 . IDENTIFIER EXTRACTION

This function determines the nature of the non-comrnand
communication trying to find the identifier character. If it
is impossible, an errer is detected (TEX'.r NOT RECOG"NIZED).

4. MESSAGE DESTINATION BUILDING

The destination identifier is a mnemonic name or an
authorization name for a single destination and a routing
code for a group.

FOR A ROUTING CODE

A routing code specifies a set of operating sources.
Let us call Sl this original set. If the routing code is
unknown by the system, a new set S2 is created using the "li'"
routing code. If this "li'" routing code itself is unknown, a
new set is created S3 = { main console } . The resulting set
id divided in two separately handled subsets.

The original applications subset is modified according
to the so-called filtering rules .

The original consoles subset (SSl} is modified first
(in S52} according to the filtering rules and, later, (in
SS3) using the replace console handling informations .

(1) As exception to this rule, the command /CONSOLE and the com­
rnands /ASR DELETE, /ASR AOD or /ASR PRIMARY for other sources
theoretically only allowed from the main console, are allowed
here frorn all "w" routing code sources but rejected later by the
cornmand processor.

PROCESSES 3.6

FOR~ SINGLE DESTINATION

If the destination is incorrect, the error is detected
(DESTINATION NOT FOUND).

otherwise, the mnemonic name is used
destination taking a possible replace console
account. The authorization name identifies
destination application.

FILTERING RULES

to build the
handling into
the actual

Questions are always sent while the information
messages sending is bound by two conditions:

the operating source wishes to receive it, it can,
indeed want to ignore ALL information messages (see
/ASR command).
its weight is greater than a level fixed by the
destination operating source which can, indeed, ignore
all not relevant messages (see /ASR cornmand)

5. NORMAL REPLIES CHECKS

Four questions are asked about the reply candidate:
Is it syntactically correct? (syntax check)
Should it be a reply? (destination check)
Does it reply to an outstanding question? (matching
check)
Is the sender authorized to reply? (authorization
check)

SYNTAX CHECK

The reply syntax is the following one :

<reply> : := <BL> <commun data> " . " <text>
<Commun data> ::= <destination> <BL> 1

<destination> "-" <seq nber> <BL> 1
<destination>"-" <P> <seq nber> <BL>

<destination> : := "(" <MN> ")"
<auth name>
<TSN>
<task letter> .

If no syntax error (TEXT NOT RECOGNIZED) is detected,
the destination is checked.

DESTINATION CHECK

If the reply destination is a routing code, the reply
is rejected (NO MATCH FOR REPLY). Otherwise, the matching is
tried .

PROCES SES 3.7

MATCHING

A reply has to be matched with an outstanding question,
that means that a question is searched in the WAITING FOR
REPLY QUEUE such as its destination is the origin of the
reply. If the reply contains a sequence number, it must be
correleted to the question one.

If the matching fails (NO MATCH FOR REPLY), the reply
is rejected. Otherwise, the authority is checked .

AUTHORIZATION CHECK

user tasks are not allowed to reply. It may happen that
non authorized applications manage to build a connection to
the subsystem, their replies are rejected (USER NOT ALLOWED
TO REPLY).

A console may reply if
it is one of the question destinations
it is the replace console of a no more available one
which was allowed to reply
it is the main console and no physical consoles can
reply anymore because all authorized console are not
available or all consoles have lost those competence
(see /ASR cornmand [BEDI75]) (1)

If the authority check is unsuccessful, the errer is
detected (USER NOT ALLOWED 'l'O REPLY or TEHPORARELY ONLY MAIN
CONSOLE ALLOWED TO REPLY). Otherwise, the reply processing
is terminated.

6, RECEIPT ACKNOWLEDGEMENT

If an errer was detected previously, a negative
acknowledgement must be sent back to the issuer. Therefore,
a rejection communication is created. Its format is REJ#
<text> where the text belongs to those described between
brackets here before. This rejection takes the place of the
original communication as SQE TO BE DISTRIBUTED while this
last one is time stamped to be logged.

(l) A console which has lost all its competence area can receive
only messages which destination is its mnemonic name and cannot
issue any command.

PROCES SES 3.8

A time starnp is added to the SQE to be distributed. If the
communication is

a question: it is enqueued on the waiting for reply
queue
a reply: the corresponding question is dequeued from
the waiting for reply queue (1)

~-~· Special Reply Receipt

As soon as the VOLUME HANDLER knows about a correct private
vqlume mountage completion, it sents a response from task
specifying the destination task, a return task and the replied
text. Figure 3.3 illustrates this special reply receipt. The
numbers in this figure are keyed to the following descriptions.

l. SPECIAL REPLY MATCHING
The special reply matching is the sarne

reply one described in this chapter at the
volume mountage preceeds its request by a
speak about a reply to a not yet asked
course, no matching is possible.

2. SPECIAL REPLY SQE BUILDING

as the normal
1. l pt 6 . If the

task, one can
question and, of

~~e SQE is built and its destination determined.

3. SPECIAL REPLY REJECTION
If the matching failed or no

the return task is triggered.
special reply again until success
memory space) or ... shutdown.

memory space is available,
It will try to send the

(question arrived or free

(1) This implicitly implies that only the first reply to a ques­
tion is ta.ken into account.

PROCESSES

1·2· Emergency Messages Processing

In emergency situation, a special
takes a message out of a resident
console operations subsystem with
destination.

3.9

system module (ECEMGMSG)
buffer and sends it to the

the main console as

If the main console
HANDLING is triggered in
is retried. If an answer
chained to the question.

is defective, the REPLACE CONSOLE
order to find a new one and the output
has been required, i t i s directly

The emergency situation can prevent the message logging (by
resources lack or system failures); then, the message track is
lost. Othewise, an EMERGENCY MESSAGE 'l'O BE LOGGED is created with
a "E" before the text part in order to allow further
identification.

SPECIA L
REPLY (1)
MATCHING

* MATCHI NG OK ?

y
N

~PEC . fiEPLY SPECIAL
SQE (2) HEPLY (:;)
BUILDING REJ EC TION

Figure :; , :;, Spec ia l reply rec eipt .

PROCES SES 3.10

1.4. SQE distribution

In figure 3.4, a processes chart illustrates the SQE­
distributions. The numbers in this figure are keyed to the
following descriptions.

LOGGING
(2)

SQE (1)
SENDING

DISTRIB,;
TERM,

(4)

DISTRIB,
TERMINATION

(5)

TRANSPORT
ACK

TRANSPORT
TO CONSOLE (3)
EVALUATION

TRANSPORT 1
TERMINATED

Figure 3.4. SQE distribution.

PROCES SES 3 . 11

l. SQE SENDING

the SQE to be distributed is sent to the finally
obtained destination which can be

a single operating source (console or authorized
application)
an operating source(s) set
a task (user, system, normal and special command
processor tasks)

2. LOGGING

3. TRANSPORT TO CONSOLE EVALUATION

SQE transport must be acknowledged by all consoles but
only by consoles. For each negative acknowledgement
provided by a console, a CONSOLE DEFECTIVE event is created.
To be successfully terminated, a SQE transport must reach
some conditions:

For a question, at least one positive ACK must come
back from destination physical consoles

For an information message, a positive ACK is necessary
only if the console subset given by the filtering rules
is not empty.

new destination
original set and
informations and

the transport is

If the transport is not successful, a
is created with the main console as
according to the replace console handling
the transport is retried. Otherwise,
terminated

4 . DISTRIBUTION TERMINATEO

The synchronization point is completed if the logging
is terminated in case of emergency message or rejected
communication and if the logging and the transport are
terminated for all other SQEs .

5. DISTRIBUTION TERMINATION

If the source was a task, its associated OUTSTANDING
MESSAGES COUNTER must be decrementd by one . Finally, the SQE
must be destroyed.

PROCESSES

2. Replace Console Handling

supplied only for physical consoles, it involves
replace console assignment
replace console handling
replace console informations access

2.l. Replace console assignment

3.l2

As defined previously, operators are given the possibility
to define for each console a REPLACE or SUBSTITUTE CONSOLE (a
console being allowed to be its own replace console) used when
the primary one is no more available. The substitute console are
defned at the system generation either by the administrator or,
if he does not make it, by an internal algorithm. They may also
be modified during the session from the main console using the
/CONSOLE DEFINE command.

One can represent the current replacement situation by a
graph
G = {C,R) where

C = {consoles}
R = { ri= (Cl,C2) such as

Cl E C,

~
1 >__J

C2 E C
and C2 is the replace console of Cl .

•
c6--------'c7
A

V
c8<-------c9

A CONSOLE REPLACE PATH is the set of console(s) possibly
connected using ri relations. such a path contains always a cycle
(which makes the mapping easier).

PROCESSES 3.13

2.2. Replace Console Handling

'l'he replace console handling is triggered by consoles state
changes from or to the available state. As these changes can be
cornbined, an already inoperable declared console can be switched
off and the replace console handling triggered twice.

2.2.1. Available to not available ---

A console can be declared
defective event and switched
SWITCH,OFI-' command processing.

l•l•!•! • Console defective event

defective
off during

by a
the

console
/CONSOLE

Its source may be an I/0 failure detection during
the SQE transport or a busy state greater than three
minutes. Each 20 seconds interval, indeed, a special
timer interrupt occurs, the consoles state is checked.
If a console is 10 consecutive times in busy state, it
is declared defective.

~'he ACfUAL REPLACE CONSOLE SEARCH is triggered. If
a new main console had to be found, the message "E902
MAIN CONSOLE INOPERABLE. REPLACED BY THIS ONE" is sent
to all "1<" operating sources. That means that several
sources can think they are the new main console (even
authorized applications!) but,of course, there is only
one main console. If a new auxiliary console has been
found, the message "E903 CONSOLE <Ki> INOPERABLE" is
sent to all "1<" routing code operating sources but no
explicit message gives the actual replace console of
the defective one.

~-~•!•~· Console switch off

~'he available consoles nurnber has to be at least
one, if it should no more be the case after the
/CONSOLE SWITCH,OFF command processing, it is rejected
with the message "E650 THIS CONSOLE IS THE LAST
OPERABLE CONSOLE IN THE SYSTEM. /CONSOLE CMD REJECTED".

Since version 8.5, the main console is no more
allowed to be switched off so that the previous
condition is secured and only the second step of the
ACTUAL REPLACE CONSOLE SEARCH is necessary. The message
"E652 CONSOLE <Ki> GETS ALL FUNCTIONS OF CONSOLE <Kj>"
is sent to the actual replace console.

PROCES SES

1·1 •±•1· Actual replace Console Search

It is made in two steps:

3.14

1. Trial to find an available main console organized
in emergency levels:

the main console is available
scan of the main console replace console path
scan of other replace console paths
forced by system switch on of an operable
switched off console
pool of all consoles in order to take the
first operable again one as main console

2. trial to find a replace console for the auxiliary
one if necessary:

scan of the auxiliary console replace console
path
take the main console as replace one

2.2.2. Not available to available

The available again console takes
and possible replacement functions
functions are not restituted .

back its intrinsic
but the main console -- ---

1-~-~-~. Defective to operable again

This may be triggered, implicitly,
arrival from a formerly defective
explicitly, signalling that the console
again .

~-~·~•?• Switch off to on

by an input
console or,
is operable

The /CONSOLE SWI'l'CH,ON command issued from the
main console can involve a console either operable or
not. It is normally not possible to check it reading in
tables; then, it is useful to perform a physical test
I/0 in order to consder as available again only the
operable consoles.

2.2.3. Main Console special Features

The only way to replace the available main console by
an other one (since the main console functions are notre­
set at the come-back from not available state) consists in
issuing the /ASR MAIN command from an auxiliary console.
This command processing is bound to the main console
operator agreement.

If he agrees, the source console takes the main console
and the "'lt" issue code (if it did not have them earlier)
functions. The old main loses its main console functions and

PROCESSES 3 .1.5

the """" routing code one unless it had them before becoming
main. Otherwise, the command is rejected.

l•l• Replace Console Information Access

The /CONSOLE HELP command allow a console to know which
console is its actual (perhaps not the "on paper" defined one)
replace console.

PROCESSES 3.16

3. Authorized Applications Administration

The console operations subsystem manages the authorized
applications connections and diconnections. During the connection
handshaking, the patner·s nature and its authority must be checked. A
connection break must be recorded. Those functions belong to a more
general set of administrative functions highly depending on the
physical architecture. we depict them in the next chapter.

-- --- ------------- ---- -------,

ARCHI'l'ECTURE 4.1

Chapter 4. Console Operations subsystem

ARCHITECTURE

A general description of the physical architecture is ~iven at
the figure 4.1. ~1he UCON-task (universal console task) can be
considered as the CENTRAL NODE of the console operations subsystem;
the main function of its module NBROUTE consists, indeed, to complete
the functionalities formerly defined. In addition to these mail system
logical functions, NBROUTE assumes some more "sources oriented" ones:

physical console I/0 handling
DCAM-applications handling

The single input interface of NBROUTE is a
(l) called ROUTING BOURSE . Events pended on
communications coming from

1. l\. TASK

two chambers
this bourse

bourse
signal

All tasks, users, system or normal command processor tasks
are considered in the same way. The module ECTYP running under
their TSN, controls the message, builds an SQE , transmits its
address to NBROUTE and pends the task.

If the communication source is the NKV-task (from the volume
handler NDM), NBROUTE has to build the SQE.

2. A DCAM APPLICATION

Authorized applications and special command processors are
DCAM applications. They communicate with the system with letters
NBROUTE receives the letter announcement and builds the SQE.

3. A CONSOLE

A console I/0 involves two partners. NBROUTE is the logical
partner, while the physical one is made of two parts : the UCON­
task module NBCONS and the KTT-task (console driver task) which
assumes screen control, device failure handling, physical I/0
start. NBROUTE receives the message from the consoles and builds
the SQE.

(1) BOURSES are a special synchronization appliance provided in
BS2000. For more, see Appendix 2

ARCHITECTURE 4. 2

The SQEs are stored in class 3 memory (resident and dynamically
allocated) due to physical I/0 features. Their length may be at most
255 bytes in which 52 bytes are reserved for administration so that
the real information part length may be at most round 200 bytes.

~~e physical architecture is articulated upon four directions:
NORMAL COMMANDS PROCESSING
PHYSICAL CONSOLE HANDLING
DCAM APPLICATIONS HANDLING
LOGGING

OPR-task

<

1 ECCLP <

1 l
V V

comn:and
proccssor proccssor

t:sks r o,odules

-U-C-ON_I --t-as-k--<~ , __ __, .__~_!;_~_s_,
t'13ROUTE

C$COi~SOLE)

spccial
coh,1rtand

A -IDCAM--- ->
1-
v

NBCONS

<lDCAM

CLOG-task

PAN
V

c ___ ,

l logging
fi le

$>:cr
tDSTATUS

V

~~TRL 1

!,~
consoles

.:md
tclcsc r-vicc­

buffcr

V·---

DCAM
applications

A---'
1 v·-~,

C Terminal)j

L 12
COMMAND OOURSE
ROUTING BOURSE __________________ _;

3 LOGGING BOURSE
4 : · KTT OOURSE

Figure 4.1. General Architecture

- ------------ ----------------- ------------ ---------------

ARCHITECTURE 4.3

l. Normal Comrnands Processing

NBROUTE checks the comrnand as previously described and sends it
to the OPR-task (operator task) using the COMMAND BOURSE interface.

The OPR-task main module ECCLP
receives the SQE address and stores it in a standard NBROUTE
pointer (AOOPCMD2) so that NBROUTE keeps the SQE track for
possible further handling. As comrnand are processed one after the
other, there is no crash risk.
prepares the syntax checker (ISP) parameters list
activates the appropriate processor module (using BALR and taking
the programming language, assembler or SPL, into account) or
processes itself the comrnand (e . g. the /TURN command [BEDI75]).

The OPR-task processor module (ECCLP or an other one)
checks the operands syntax
processes itself the comrnand possibly exchanging informations
with the command issuer using the ECTYP interface. The message
destination may be a routing code (by rule only for the OPR-task
but ...); then, NBROUTE builds the correct destination
accessingthe command SQE (using ADOPCMD2) .

In some cases, it should be dangerous
interface from the OPR-task; then, the
creates an auxiliary task ($CREA), triggers
informations and gives the control back to
was completed.

(DEADLOCK) to use ECTYP
OPR-task processor module

it, gives it the necessary
ECCLP as if the processing

In other cases, the command processing is to be completed by an
already created and triggered task (UCON,BCAM ..); then, the OPR-module
sends it the necessary informations and gives the control back to
ECCLP as i.f the processing was completed.

As the OPR-task cannot transfer the original SQE to an other task
(paging error), it gives them copies (generally data oriented
parameters lists).

In some last cases, the command must be rejected while correct
because of an other instance of that command is in progress and two
parallel processings would threaten the system consistence. It is the
case with the /TCJRN, /ASR MAIN and /CHANGE-CONSLOG commands.

When the processing is completed or assumed as such and the still
outst anding messages distributed or rejected, ECCLP tries to release
the SQE (if the logging is done).

ARCHITECTURE

~- Physical Console Handling

2.1. Consoles Input and output

4.4

Each I/0 is based on a chain structure between the two
partners described in the intoduction of this chapter. The
communication from the physical to the logical partner uses the
current UCON input interface: the routing bourse. The
communication in the other direction involves the triggering of
NBCONS using the BALR interface so that, normally, NBROUTE does
not have to communicate directly with the .KTT-task .

As consoles are protected by a hardware lock, the I/Os are
completed one after the other and only one input buffer is
necessary for normal communications. As output has many sources
and only few destination consoles, an output queue is necessary.
In version 8.5, this logical queue is divided in three parts:

the OUTPUT QUEUE controlled by NBCONS
the OUTPUT ORDERS from NBCONS pended on the KTT-BOURSE
the SCREEN IMAGE BUPPER handled by the KTT-task

2.1.1. Input from Console

An input from console causes an interrupt called
"A'l'TENTION INTERRUPT". rts exact source (AUPRUP key ...)
depends on the hardware interface. The interrupt analyser
(P3) triggers (BALR) the DJCTRL that pends an AI order on
the KTT- bourse.

The KTT-task, reaching the AI order in its bourse,
first activate a hardware lock on the input console so that
no further I/0 can be completed before the input
acknowledgement from NBROUTE. After this, it starts the
physical I/0 with the appropriate ccws and the SXCP macro-s
depending on the hardware interface (CPCP-KCON,CPCP­
DCON,CFCS). The physical I/0 may be a complex sequence of
physical actions (one ccw processing); during their
completion, some events (hardware failures, CANCEL key
pressure, time out, no ETX) may cause input abort with
return message in format"*** <text> ". For easiness, let
us consider the physical I/0 as an ATOMIC action.

After I/0 completion, the DJCTRL is triggered by an
other interrupt called "TERMINATION INTERRUPT" and sends a
TI order to the KTT-bourse.

The K'l'T-task reaching this order, analyses the I/0
result (device status: SDSTATUS). If it detects a failure,
it sends a "CONSOLE DEPEC'fIVE" return code to UCON, clears
the defective console SCREEN IMAGE BUPPER and sends a
negative acknowledgement "I/0 UNSUCCESSFUL" tor each SQE of
this buffer. Finally, it resets the harware lock.

ARCHI'l'EC'l'URE 4.5

Later, it will send a negative acknowledgement for all
messages output orders involving this console which were
pending on the KTT-bourse at the defective state definition
as well as for all SQE in the sa.me situation in the NBCONS
output queue.

If the input was correct, the KTT-task sends an "INPUT
ARRIVED" event to UCON.

NI3ROUTE, reaching the "INPUT ARRIVED" event, builds an
SQE, checks it as previously defined. If it accepts the
input, the acknowledgement, an "ACTION FREE" order is sent
back to NBCONS. If it reject it the negative acknowledgement
is coupled to the rejection communication.

The acknowledgement, after transit by NBCONS, reaches
the K'l'T-task which resets the hardware lock on the console
and sends the possible rejection communication .

Unfortunalely, the chain structure is only partly
respected for commands input, the free acting of the input
console happens, indeed, BEFORE the command processing
completion so that two commands can be in progress at the
sa.me time; furthermore, the second one processing can pass
beyond the first one and the commands processing
communications can then be mixed. this, of course does not
simplify the operator·s work.

Such conunand processing communication does not contain
acknowledgement, they are

a command check result (from OPR-task or a command
processor module)
a question (from a command processing task)
a command processing result

sent using the normal interface ECTYP without REJ-format .

In version 8.5, no more distinction is made at the
physical level between ON and OFF console (the switch is
exclusively logical) so that input from a switched off
console may reach the UCON-task and NBROUTE has to reject
the input with an explicit rejection communication .

~-l•~· Output to console

NBROU'rE builds a distribution mask (implementation of
the set described earlier in chapter 3). For each pointed
console, NBROUTE calls NBCONS with the order "SEND TO
CONSOLE".

NBCONS pends the SQE on the OUTPUT QUEUE and

ARCHITEC'l'URE 4.6

reverberates each output order on the KTT-bourse.

The KTT-task, reaching an "OUTPUT 'l'O CONSOLE" order,
tries to store the output in the SCREEN IMAGE BUFPER. If
this last one is full, it sends the appropriate return code
to the ROUTING-bourse for NBCONS. Oepending on the screen
update mode (time interval, roll-up or manual), it waits or
not for output triggering events. When they occur (if
necessary), it sets the hardware lock and starts the
physical I/0 giving orders to the DJCTRL. Once again, let us
consider this physical I/0 as an atomic action.

The "'l'ERMINA'l'ION INTERRUPT" handled by the DJCTRL,
reaches the KTT-task which analyses the I/0 result (device
status). If it detects an error, it reacts as in the case of
an input error. Otherwise, it sends a positive
acknowledgement "I/0 SUCCESSPUL" for the invoved SQE to UCON
and resets the hardware lock.

In case of /CONSOLE SWITCH ,OFF Commana processed by
NBROUTE, it may happen that messages previously sent have
not yet been physically distributed. To prevent messages
loss (or at least long delay), NBROUTE has to ask explicitly
to NBCONS to send it back the logically lost messages. To do
so, it calls NBCONS with action "CLEAR CONSOLE QUEUE" and
NBCONS reverbate the order to the KTT-task.

I•±·2· Attach and Detach

Formerly, the
defective/operable

console physical state involved the
component but also the attached/detached

one . In version 8.5, the scope of these concepts is reduced.
The Nucleus Device Management (NDM), processing the /DETACH
or /ATTACH devices configuration modification commands,
signals "CONSOLE A'l'TACHED" OR "CONSOLE DETACHED" event to
the KTT-bourse. KTT simulates then "CONSOLE DEFECTIVE" or
"CONSOLE OPERABLE AGAIN" events to the ROUTING-bourse so
that NBRD~rE does not care anymore for those physical states
changes.

ARCH ITEC'l'URE 4.7

l· DCAM Applications Handling

3.1. General Administration

l•l•l• SCONSOLE Application handling

.$CONSOLE is a

SYSTEM (then it begins with $)

BCAM APPLICATION: a BCAM application may be seen as a
mail boxes pool by which a task or a group of tasks
(often also called application by language misuse)
makes it know by the Data Communication system (1).
Its creation called OPENING is completed by the PRIMARY
TASK, linking other secondary tasks is called ENABLING
of the application.

PREDEFINED DURING BCAM RESOURCES DEFINITION: meaning
that

1. the application is implicitly opened by the BCAM­
task that will announce events concerning it even
if it is not yet enabled.

2. An authorization key can be specified in order to
protect the appl ication against not authorized
enabling.

3. The application is not bounded by limitations
which are defined for current applications

l·l·l·l• BCAM ready Handling

As soon as BCAM is available after the /DCSTRART
command processing, it signals a "BCAM READY" event to
NBROUTE which opens an application with the following
characteristics:

APPLICATION NAME = .$CONSOLE

TRANSPORT AC~OWLE[)(,"EMENT = NO
A letter sentis bounded to an immediate BCAM

access check and, after assumed to be correctly
transfered.

GRADE OF SERVIC'E = BASIC
The set of transport services and functions

available for future connections is basic.

(1) The Siemens Data communication system is called TRANSDATA.
For more, see Appendix 3.

ARCHITECTURE 4.8

Particularly, the maximal letter length depends on
this grade of service.

QUALITY OF SERVICE= NORMAL
The recovery from data transfer

errors is not provided.
related

1•1•1·~• BCAM Shutdown Handling

The BCAM shutdown because of failures or /BCEND
command processing causes a "BCAM SHUTDOWN" event to be
announced to NBROUTE. NBROUTE breaks logically ALL
connections, closes the $CONSOLE application (SDESABAP)
and sends an error message to the console.

1•!•~· Connections to $CONSOLE

A CONNECTION is a logical path between two TRANSDATA
transport partners. One of these partners must be an
application, the other can be a terminal, an application or
any logical equivalent (e.g. in BSlOOO).

The connection building is bound to the following
protocol: the calling partner requests a connection. It
sends a REQCON order and a connection letter that reach (or
not) the other partner. The called partner receiving a
connection request can accept or reject it. The possible
connection confirm is also accompagned by a connection
Jetter. In case of called partner silence after a given
timeout interval, BCAM rejects the connection. The caller
receive then the acknowledgement for its connection request.

After this handshakking, the partners exchange letters
or telegrams until the connection break. This connection
break can be implicit (BCAM shutdown, application disabling)
or explicit (the connection close is unilateral) .

~-l·~•l• Connection Request

A "CONNECTION REQUEST" event sent by BCAM to UCON
triggers NBROUTE that receives the CONNECTION LE'ITER
(SRECLET) and checks

l. PARTNER NATURE: it must be
Terminals can be used for
application as interface but a
authorized partner.

an application .
operating with an
terminal is not an

2. CONNECTION LET'I'ER SYNTAX: using ISP syntax machine
with the encryptor if necessary (encryptted
connection password).

ARCHI'rECTURE 4.9

3. PAR'rNER AUTHORI'l'Y: connections to SCONSOLE are
only allowed to applications which names were
defined at the system generation.

If the checks are successful, NBROUTE accepts the
connection. It sends a welcome letter, records the
connection and sends the appropriate message to the
consoles . otherwise, it rejects the connection request
without message sending to the consoles .

1·±•~·~· Connection Break

Reaching a "CONNECTION BREAK" event coming from
BCAM, NBROUTE records it without message sending to the
consoles.

ARCHI'l'ECTURE 4.10

3.2. Letters Handling

The data exchanged by TRANSDATA partners in a connection can
be organized in LET'l'ERS or in TELEGRAMS ;the $CONSOLE interface
uses only letters. Their maximal length is 255 bytes (see grade
of service = basic) from which 52 are used for administration.
The longer messages are truncated.

3.3. Input from DCAM applications

The letter arrival is announced by a "LETTER ARRIVED" event
queued on the ROUTING-bourse. NBROUTE tries to receive the letter
(SRECLET) and analyses the return code provided by BCAM. It
distinguishes three groups :

l. the return code is "OI<AY" or "LETTER LENGTHER"; then, the
input is correctly terminated.

2. the return code is "TRY LATER"; then, NBROUTE waits one
second and retries to receive the letter. After five
successive '"l'RY LATER" return code, it simulates a permanent
error.

3. the return code takes one of the possible other values;
then, NBROUTE assumes a permanent error

In permanent error case, NBROUTE assumes the letter lost but
does not signal any defective state for the sending application.

Note that he sender continues its work asynchronously
without waiting for the acknowlwdgement from NBROUTE.

3.4. Output to DCAM applications

Letters destination may be given by a routing code
(communications) or an authorization name (communications and
special commands). NBROUTE tries to send the letter (SSENDLET) to
its destination(s). For each letter sent, it checks the return
code provided by BCAM,it distinguishes three groups:

1. the return code is "OI<AY"
successful send.

then, NBROUTE assumes a

2. the return code is "TRY LATER"; then NBROUTE waits one
second (PASS) and retries. After four unsuccssful retrials,
it simulates a permanent error

3. the return code belongs to the other possible values; then,
NBROUTE assumes a permanent error.

ARCHITECTURE

In permanent
communication to
handling) if its
forgets the output

4.l.l

error case, NBROUTE tries to send the
the main console (implicit simple replacement
destination was an authorization name and
otherwise.

ARCHITECTURE 4.12

~. Logging

4.1. Initializations

The first bal:>y·s cries of a new system are processed by a
STARTUP module using the emergency messages interface as the
normal messages handler does not yet exist. Thosse messages are
logged, in a given format, in a logging buffer (length 12KB).

When the UCON-task is activated by E2STARTU, it
NON PREALLOCA'rED logging task (TSN = CLOG) and
interface: the logging bourse.

creates a
its input

The further operating communications are stored by the
CLOG-task in the logging butter according to an other format. As
soon as the Data Management System (DVS) is availal:>le, CLOG

opens a dynamically expanding file (access PAM) called
SYS.CONSLOG.YY.MM.00.###,SS
signals the event to the consoles
transfers there the buffer content
reaching CLOG during this time stay
bourse)
frees the logging buffer memory space

4.2. Normal Logging

(the communications
queued on the logging

CLOG stores directly the further communications in the file.
Between two accesses, the logging file stays opened, this is time
sparing but not so secure.

4.3. Logging Pile Changes

During a session, there may be at most 98 logging file
changes bound to the /CHANGE-CONSLOG command processing or file
crashes (DVS) handling.

If less than 98 changes were already completed during the
current session, the change is completed in three steps:

l. The old file is closed after time stamp addition. The
associated message (E657)is sent t the consoles and the old
file name is stored in a special file named
"SYSCONSLOG.TRANSP.###".

2. A new logging file is opened and the associated message
(E040) sent to the consoles. The two first logged messages
correspond to the closing of the old and the opening of the
new logging file. (E657 and E040)

3. The old file is converted to a SAM (sequential access) file
to allow further access.

ARCHITECTURE 4.13

If 98 changes were already completed, a /CHANGE-CONSLOG
command processing is rejected. At this moment, if a Data
Management System (files) failure occurs, this event is announced
to the CLOG-task which sends the appropriate message to the
console, stops the logging and only releases the further SQEs.

1·1· Logging File Informations

The operator can issue
/SBOW-CONSLOG command to know the current logging file name.
/TURN command (one at a time) to read in the current logging
file .

Those conunands are processed by CLOG-task modules.

1 -~ · System Shutdown

The CLOG-task can be told about a shutdown in progress .
'I'hen, simulating its completion, it legs in the logging file the
shutdown message (E557), closes this file as described in the
first step of the file change and sends the associated message
(E657) to the consoles.

This last message logging and the SAM conversion can be
completed during the next STARTUP if the operating system version
is the same.

~-~· Logging Task Crash

If, fo any reason, the CLOG-task terminates abnormally, its
partners (ECTYP, UCON,OPR) are not informed and no restart is
provided since CLOG is nota preallocated task. The further SQEs
are released neither by the crashed loggingtask nor by its
partners since logging is not completed. Therefore, the system
turns slowly bu surely to a memory class 3 space shortage that
finally leads to a system crash .

SECTION 2:

NEW CONSOLE OPERATIONS

CONCEPTS FOR LARGE

CENTRALIZED COMPUTER

SYSTEMS

In order to prepare the future, know about the past.
This should be a proverb for information system developer.
Let us apply it in the following according to this
sequence:

1. Concepts Evaluation

2. Design Criticisms

3. Requirements Compilation

4. Introduction of new concepts

EVALUATION 5 • 1

Chapter 5 Concepts Evaluation

One can find in the following a private approach to
describe the dissatisfaction causes in the current console
opera tions subsystem. It sta tes the CONCEPTUAL ___ LEVEL lacks
of the current solution trying to show their double signi­
ficance

1. At the user level

More and more, it is necessary to approach as
finely as possible aggregate requirements from users.
Existing users first since they know rather well the
strong and weak points of the current products. They
constitute all of the manufacturers current rental
base and about two thirds of their total market for
new sales. Possible future users in a second time
since gaining new customers is something very hard
on the compute r market.

Consequently, it is interesting to f inJ and mod~
fy appliances that are not optimal (from use~friendli
ness to crash problems) for some "virtual user" .

2. At the system level

It is well known that earlier an e r ror occurs in
the software development process, more important are
its consequences on the final product. Our interest
relies here to study the consequences of conceptual
lacks on the current design with regard to qualities
often stated for large-scale software final products
such as

- RELIABILITY: effectiveness, robustness, avai­
lability, ability to test or verify and to
diagnose.

- MAINTENABILITY: ability to modify, extend
or contract the product considering that the
repping policy is not the most appropriate way
to change software.

- SECURITY: protection of data and prog rams.

- EFFICIENCY: at a g lobal level.

EVALUATION 5.2

l• System Management

The development of the system management interface
has followed in the past generations a random path marked
out with serendities and technical constraints more than
organizationnal requirements. Its resulting division in
system administration and operating is characterized by a
polarization of power and competence.

The administrator centralizes, indeed, many duties
which scope stetches from technical questions like system
control OUTSIDE the operating session (see chapter1, 3 .4.2
page 1.8) to pure administrative ones like accounting. To
complete them, the administrator should be a super (and
expansive) multi-skilled individual. In practice, however,
he is often more limited and his technical duties often
overshadow the user guidance ones. In this way, the current
management division contributes to the bad image of the
computer center through the organization. The communica­
tion gap between computer experts and the line management
follows even a growing trend with technical progress, crea­
ting sometimes important problems.

As opposed to this administrator felt as the nerve
center of the computer system, the operators tasks are sub­
qualified. Their bands-on standardized nature does not in­
creasesthe motivation inside the computer room. Further­
more, this subqualification should be coupled in a more or
less nearby future with a disqualification process redu­
cing to an irreductible level the peripheral devices opera­
tors number if the trend toward devices manipulations sim­
plification keeps going on.

In practice, if the tasks distribution is not alwa ys
so contrasted, it is often paid by a lack of clarity and
control possibilities.

~. Console Operations

The current console operations do not involve utility
programs execution although they are necessary to the good
working of the system. Operators are then allowed to work
on the system as user and sometimes even as administrator
from a local terminal. Consequently, an operator with some
knowledge of software and/or hardware and "trapdoors" or
weaknesses is invariably placed in a unique position of
control. More simply, the temptation to play with the sys­
tem (under the TSOS userid if allowed) during his idle
times is sometimes too big for the operator. Clumsinesses
can then lead to catastrophic situations.

EVALUATlON 5.3

The special NDCATOP interface, used to give the con­
sole operator the possibility to issue certain system ad­
ministrator commands, does not solve this problem since
the /EXEC command is not allowed.

2• Operating Sources

The current operating sources concepts stay based on
an exclusively LOCAL operating philosophy. Since the au­
thorities control was copleted at human level in the com­
puter room, the system did not have to distinguish among
operators and it could so assign rights to the devices.

In a future remote operating philosophy (at least from
remote terminals), it seems not secure enough to still
keep consoles as authorities distribution subj e cts since
human visual control disappears. The local/remote transpa­
rency should stretche this requirement to all opera ting
forms.

The console operations subsystem is characterized by
operating source dependance inside and independa nc e outside.

From one hand, indeed, it is spangled with hardware
appliances which reappear here and there introducing excep­
tions like the teleservice buffer. Authorized applications
follow a specific path (without replacement handling ..).

From the other hand, all inputs, whatever source they
corne from, are bound to the same format so that authorized
applications authors have to put TEXT ORIENTED statements
in their (assembler) programs. This should not simplify the
future development of automatic operators.

±· Competence Distribution

The competence distribution as previously described
(see page 2.5) merges together ROUTING and AUTHORI ZA TION
codes. This correla tion is not optimal. J\1oreover, the 11

:1(,
11

routing code is not always consistent.

±•1· Competence Area

The current competence area plays two parts. The
first one is the AUTHORI ZATION AREA : the maximal and
theoretical competence area assigned by a key indivi­
dual (authorizer). As the messages flow is sometimes
too important, an operator can reduce it by tuning a
WORKING COMPETENCE AREA. This two-fold nature of the
area is illustrated~the possible actions on it.

EVALUATION 5 .4

±•1•1• Main Console~ Authorization
The main console operator is a kind of authorizer

for operators. He uses

- /CONSOLE SWITCH command to begin or terminate
the work from a given ~onsole.

- /ASR (DELETE, ADD, PRIMARY) command to modify
other operating sources competence area.

±-1-~- All Operating Sources : Flow Control

This tuning can involve

- the two sets : with the /ASR (DELETE, ADD or
PRIMARY) command, an operating source can modi­
fy its ~ competence field. It can extend its
area to a more important than the one allowed
by the main console (?)

- the messages set: all questions, replies and
single destination information messages must be
received while other information messages can
be filtered. The/ ASR INF!NOINF comma nd acts
on the whole flow but it is also possible to
fixa weight under which messages are not deli­
vered.

A clear distinction between authorization and
flow control, specific commands for authorization by
the main console and a powerful and integreted tool
for the flow control should be improvements in future
solutions

±-~•The"*" Routing Code

The 11 -K-' 1 routing code concept is inconsistent.
Theoretically, it is assigned to an only to the main
console. In practice, however, any opering source may
be assigned it at the system generation or using the
/ASR ADD command. Sorne icattered tests try to correct
this problem but they are not transparent.

EVALUATION 5.5

~- Messages

One can raise the following notes about messages
reaching the operating sources :

1. Real destination uneasy to find
2. Correlation messages/initiating event sometimes

uneasy
3. Messages hybridity
4. Standard messages freedom

2·1· Messages real Destination

A priori, the question or information message
sender has few means to anticipate clearly the actual
destination of his communication. One can see here the
critical influence of the coding on the functional
level:

1. It seems difficult to give the operator func­
tional rules allowing him to understand the
system behaviour.

2. Any coding change (even procedures inversion)
should be catastrophic. (in the best case,
functional specifications changes; in the
worst, errors)

3. There are hidden implications. For instance,
a console can receive messages even if it does
not want them (see control flow) since the
filtering is made before the replace console
handling.

A posteriori, the authorized application sender
receives no acknowledgement. The console sender recei­
ves an acknowledgement from the console operations sub­
system {NBROUTE) but no one from the actual receiver(s)

2·~· Correlation messages/initiating Event

The same message corresponds sometimes to quite
different situations (e.g. REJ7 USER NOT ALLOWED TO
REPLY)

The concept of messages set associated to an event
does not exist, this is mainly perceptible in

- the replace console handling : astate change
triggers several actions, an isolated message is
sent for each action (sometimes to different
partners)

EVALUATION 5.6

the commands processing : as commands processors
send command processing communications separate­
ly, those one can be mixed with the other commu­
nications.

This problem is augmented by the communication maximum
size limitation. Pictures from the /STATUS comma nd
processing, for insta nce, must be divided in several
messages. Sent separately, they are mixed with the nor­
mal communications flow.

2•2• Messages Hybridity

The messages reaching a given operating sourc e can
have different formats mainly depending on their source
and they are described in different reference manuals.
The following picture tries to g ive an overview about
them.

recipient l format
i

id.

W.T.

source

KTT

re f .
rnanual

[BEDI75] console (*** <TEXT>

1
1-------··-···-· ·--- ··--· -----·---····-· -

R.C. a~th. app.

1

data orien.

REJ. < TEXT > REJ. UCON
1- ·- . l. _,______ __ l. --·--·· ·- - ------

BCAM [D CAM? q

[_:i3EDI7 ~

all
NB

NB (TE, IN.)* ! and
J 1 IN.

1 J

SYSTEM
or USERS
(S) MSG (7)

[SYS M7 ~
inser­
ts?

- -----------------·1 ·--•·•·- -·· ·--- ------·-··-·-- - ······· ·•- ···-·· --··-··· .,.

1

SYSTEM
<TEXT > W .T. j or USERS

1 , TYPE(IO) 1
! 1 1

none

- -----·-·- ··••·•••- •- ·--- -· -- -· · .. -··· -- ··· ----· ·-- -· ---- ·--- -·----·--·- ·· -·------ - - . ··-··· . ·-· .. ' -·- - - ··- .

id. = identifier
W.T. = whole the messag e
R .C. = return code (see (FRIESO])
TE = part of message text
IN . = insert
NBJ = standard message number

Such an hybridity is not so user-friendly for the
bu.man operator. Coupled with the inserts problem (their
number, position and content is defined formally nowhere)
it reduces the automatic operators possibilities.

EVALUATION 5.7

2·±· Standard Messages Freedom

Nothing identifies standard messages sent by
system modules from standard messages sent by users
or free messages with exactly the same format as
standard ones. Consequently, when the human operator
receives a critical message such as ''SYSTEM FAILURE.
PLEASE COMPLETE SHUTDOWN", he has to check carefully
its source to prevent stupid jokes. But what about
an automatic operator?

6. Commands

The lack of commands completion acnowledgement impo­
ses sometimes the operator to have faith in the system (an
automatic operator too ?).

No acknowledgement is provided for commands issued
from authorized applications. The acnowledgement to conso­
le cornes after partial checks in order to process normal
and special commands in the same way as long as possible.
(since special commands operands are not defined at the
system generation). Since then, they are regarded as com­
pleted so that several cornmands issued from the sarne con­
sole can be in progress in parallel. This poses synchro­
nization problems if the result of the second command de­
pends on the first one completion. Furthermore, the mixing
of the commands processing communications is not so user­
friendly.

7. Special Replies

Replies from tasks are considered by now as excep­
tions. The provided interface, testifying it, can be im­
proved.

In the future, if the actual trends toward parameteri­
zation (PRIOR), system self-control and -tuning and on-line
diagnosis possibilities keep going on, requests to the res
ponsible modules should be commonplace. Consequently, re­
plies from tasks conceptualization deserves to be got to
the root

§. Replace Console Handling

The replace console handling is triggered by consoles
state changes at the two - logical and physical - levels.
The actual association is perhaps not optimal.

EVALUATION 5. 8

At the physical level, not available states involve
the situation of the device (defective or not attached)
without anticipating the operator's willingness. In gene­
ral, the device failure interrupts the work of the opera­
tor (this allows often its identification) who wishes to
continue it from an other console. The replace console
handling is adapted to complete this transfer.

At the logical level, however, the console switch off
seems to be related to the termination of an operator's
work. The transfer of competences is then motivated more
by system reliability requirements than the operator's
willingness to continue his work. This device independa nt
break seems to belong to the same family as the disconnec­
tion for an authorized application. The replace console
handling provides a tool to insure the system reliability
but it seems

- EXPENSIVE: the actual replace console search is
sometimes expensive and it is not
necessary if the operator duties are
assumed from other sources.

- UNFAVORABLE TO CONSISTENCY: it encourages the trend
toward duties scattering while we think
that consistency (control unicity or
explicit concurrency handling) is an im­
portant feature in multiple consoles and
rernote configuration. As concurrency
between operators seerns to be difficult
to control, we propose to reduce it. (1)

(1) This problern is only theoretical in the current
situation sine~ operating is local and the consoles actual
number remains little (4).

DESIGN CRITICISMS

Chapter 6 : Design Criticisms

By care for completeness, we state in the following
criticisms involving only design decisions.

1. Bourses

Communications (specially commands) are delayed in
several (perhaps not always necessary) bourses :

- ROUTING bourse
- COMMAND bourse
- KTT bourse
- LOGGING bourse
- Command Processor Tasks bourses

2. ECTYP interface

The use of the same (ECTYP) interface suspending all
communication sending tasks in the same way reduces some
system tasks (OPR) availability and increases the deadlock
risks.

}. $CONSOLE Interface Problems

Are listed here after the most significa nt problems
involving the $CONSOLE application.

l•l• The Special Commands Problem

Special commands processor tasks are DCAM appli­
cations. The command transfer in their direction is
completed exactly in the same way as single destina­
tion communications sent to authorized applications.
That means that

1. In PERMANENT ERROR case, the command is sent
to the main console. The q ueetion now for the opera­
tor is how to react to this event.

2. A special command sentis assumed to be
correctly received. If it is not so, nobody knows it.

DESIGN CRITICISMS 6.2

}._g_. The "SHORTAGE OF RESOURCES" Problem

Two (limited) BCAM buffers are dedicated to each
connection (one by partner) as the partners may be in
different host computers. They are used to store let­
ters until their announcement receipt. In sending, the
letter is kept in the sender associated buffer for
possible retries. (see DATA LINK LAYER procedures like
HDLC •.•). In receiving, the letters (possibly many if
there are partner's failures (cycle ••)) stay in the
buffer until receipt.

If the buffer associated with the UCON task be­
cornes full, all attempts to send letters are rejected
with the return code "Shortage of Resources". The
problem now is how to react in such situation.

If the full state is bound to a particularly im­
portant flow between the partners, it will be solved
with the time.

Let us consider an other situation. When the UCON
task receives a letter announcement, it makes maximum
5 attempts to access the letter after wich it considers
as lost the letter that starves in the BCAM buffer.
There are two possibilities :

1. The BCAM task releases the memory space after
a given time-out and the "Shortage" problem is only
temporar.

2. The letter stays starving in the buffer. As
such situation can repeat itself, the associated buffer
becomes slowly but surely full only with those garbage
letters. At this moment, the "Shortage" state is per­
manent. No more communications may be sent the applica­
tion which can be considered as dead and all the futu­
re messages are lost. The only way to corne back to a
normal situation is to issue a /SHUTDOWN command and a
new startup.

3-l• Deadlock Problems

The IBCAM [FRIE8OJ macro's used to administrate
the $CONSOLE interface are first processed by several
modules running under the caller task TSN. Let us call
them the IBCAM modules.

DESIGN CRITICISMS

This ones "pend" the appropriate orders on the
BCAM task bourses. The calling task is suspended
according to the synchronous use of the bourses.

6.3

The UCON task is bound to the same rules; when it
issues an IBCAM macro, it is pended and,since then, all
ECTYP uses become dangerous. For instance, if BCAM asks
a question at this moment, it is also pended waiting
for UCON processing and the system reaches a deadlock
state. This is also the case if BCAM shuts down when a
UCON call for an IBCAM macro is in progress.

4. Logging Task Crash

If, for any reason, the CLOG-task terminates abnormal­
ly, its partners (UCON, OPR) are not informed and no restart
is provided since CLOG is nota preallocated t a sk. The fur­
ther SQEs are neither logged nor released (since logging is
not completed). Therefore, the system turns slowly but sure­
ly to a memory class 3 space shortage that finally leads to
a system crash.

RE~UIREMENTS 7 • 1

Chapter 7 Requirements Compilation

People often state ease of use, reliability, servicea­
bility and nondisruptive growth as main qualities for a
piece of software. We make them ours for the console opera­
tians subsystem but primary influences such as anticipated
user requirements and operating philosophy trends lead us to
the adoption of some more specific objectives such as

- Clear management functions distribution allowing some
flexibility but showing explicitly the powers trusts.

- A commands language providing consisten access to all
control programs and utility functions necessary to the ope­
rating.

- High levels of device independance provided to o~era­
tors including screens formats, communications formats (text
or data oriented) and local/remote transparency.

- High levels of integrity and authorization facilities
with minimal corresponding overhead.

- Clear matching between the console operations sub­
system and the operated system (effectiveness).

In order to eliminate potential problems of design mis­
match, it seems interesting (if not necessary) to impose
NO COMPATIBILITY CONSTRAINTS with previous solutions. Al­
though we understand the commercial impact of the compati­
bility argument, we persevere because

- A new console operations subsystem involves only few
specialized individuals in the organizations and does not
disqualify the expensive software investments (by opposition
with the user level changes). Furthermore, the new solution
should be more user-friendly so that the immediate negative
impact of uncompatibility is no so important.

- The operating philosophy is changing now from a local
hands-on interactive nature to a mixed nature local/remote
human/automatic. If the console operations subsystem does
not follow this trend, perhaps changing completely, it may
well be either 6ld-fashioned or unmaitenable in some years.

REQUIREMENTS 7.2

Conseouently, the money lost immediately could be an invest­
ment which benefits will be great in some years.

- It is more motivating to develop properly and maintain
a new piece of software than to maitain an old "tricky" one.

The extensive capabilities described for a new sub­
system are made possible in the "no compatibility constraints
paradigm" by the definition of navel concepts, their traduc­
tion in an advanced design and a new implementation of sys­
tem components, software and perhaps hardware. The following
chapter introduces some new concepts allowing to fulfill the
first step of this process.

1 1
1

CONCEPTS 8.1

Chapter 8 : Introduction of new Concepts

1. The initial Concept~ the Mail System

Schematically, the console operations subsystem can be
seen as an electronic mail system. It connects, indeed, one
to the others different kinds of partners :

- Operators

- Users

The system in which we distinguish
- normal system tasks
- normal commands processor tasks
- special commands processor t a sks
- tasks authorized to reply

The opera t or duties are completed inside a so-called
operator session which can be initiated either directly
using a special command or from another session renuesting
a utility program execution or a command file processing
"in background". It is eventually interrupted either expli
citly to allow the operator to actas user or implicitly
by the execution request for a utility program if the ope­
rator want to monitor it interactively. It is terminated
either because of an explicit command or the special duty
termination (EXEC or RUN).

Each operator is defined a profile which describes hi
his rights. His actual working ~ depends on his profile
as well as on his willingness (flow control) and the pro­
perties of the console he is working from.

The session is made of conversations c a lled transac­
tions between an operator and one or more other pa rtner(s).
A transaction is a semantically coherent set of informa­
tions wich smallest piece is called communication

- information message
- question
- reply
- command
- acnowledgement

Sorne conversations occur in special conditions arid
have to be handled in priority. Let us call them emergen­
U transactions

CONCEPTS 8.2

2. The night-light console concept

This initial concept is not always compatible with
the reality. Sorne harware requirements such as setup, cpu
control and devices manipulations impose human presence
inside the computer room. Furthermore, if today's systems
are no more operator-bound, some situations require still
fast reactions.

To reach these problems, we define a night-li ght
console wich must be a local console. The associated ope­
rator session is equal to the system one, it can not be
interrupted (from which its name). Its operator acts as

- garbage collecter or watch dog: he has no person­
nal rights but collects all those left by operators out of
sessions. In problem case, he may react or warn a more
specialized operator.

- hardware monitor: specialized in hardware guestion
he assumes the startup, some emergency situations (shut­
down because of hardware failures), physical I/O retries
requests, self-loaded programs monitoring, cpu tests ...

This concept is not optimal with regard to the first
kind of functions but, if the system self-control trend
developes, the number of such cases can be reduced and a
ringing watch-dog (beep machine) could be suffisant .

,2.. Opera tor

We distinguish three kinds of operators

.2.•l• System Manager

His duties combine the system control duties of
the administrator to the computer operator ones as th
they were d cscribed in the current solution. Further­
more, he is the a uthorizer for possible specialized
opera tors.

,2..g. Specialized Operators

They are perpheral devices operator specialized
in some given system fields. Their number and the
number of consoles they work from depend on the com­
puter system size .

.L.•.2.· "Night-light" Ouerator

They are specia lized in harware questions

CONCEPTS 8.3

_1. Profile

The profile defines for each operator

- a competence area: it defines the set of messages
of interest for the operator and
can remain based on the routing
code concept as previously des­
cribed

- a command ~ it defines the set of authorized
commands. This set is independent
of the first one. Such a defini
tion requires a fine and granular
commands structure (a tree with
nodes as marks for instance).

- a utility ~

2· Operator Session

it defines the set of available
utility programs.

There are two kinds of operator sessions

1. Special purpose one : They are triggered from an
other session to complete some specific tasks (utility
program or commands file) and are not involved by the
current communications flow.

2. General purpose session.

6. Logical Console

Inside the session, the operator is known by the sys­
tem via a logical console. Without anticipating its physi­
cal features, it is defined by the following logical fea­
tures :

1. Identifiers

- mnemonic name
- number

2. Commands Area

Area reserved to the commands transactions;
commands in input and processing communications in
output.

2.• . Messages Area

Divided in an outstanding questions area a nd a
messages area.

_1. Logging Area

Used to keep track of all communic a tions recei­
ved by this console in their chronological sequence.

All these areas are optional. If they are not defi­
ned, the corresponding duties are not allowed from the
console (independently of the physical ability)

CONCEPTS

1• Transactions

A transaction is a conversat i on between partners
among which there is an operator. We distinguish diffe­
rent kinds of transactions

l•l• Commands Transaction

8.4

The commands transaction is initiated by a
command sent by the operator to a command processor
task. It is abnormally terminated by a negative
acknowledgement from the system (syntax, authoriza­
tion checks ...) or a negative receipt acnowledge­
me~t: ·from the processor (time out, other critical
command in progress .•).

If the command reaches the processor task, the
second part of the transaction begins. It is materia­
lized by an information message chain called command
processing communications chain. This can contain a
question, then a question-reply transaction is con­
tained in the other one. The command processing
communication chain is finally terminated by a com­
mand completion acknowledgement.

1.g. Question-reply Transaction

A question is received in a first time by the
console operations subsystem (with acknowledgement)
and in a second one by the operator (with ack.).

The operator can answer it sending back a reply
chain or reverberating it to the authorized task. Thi
This task will eventually send the reply chain. The
end of the reply chain is also the end of the transac
tion.

1·2• Messages transaction

A messages transaction is made of a messages
chain in one direction and the corresponding receipt

acknowledgement in the other.

7-1· Emergency Transaction

An emegency transaction is a messages transaction
or a question-reply one pr ocessed with bigger priori­
ties.

1

CONCEPTS

.§.. Messages

It is made of two part the head and the body

- nu.rober

- source identifier

- time

- destination identifier : routing code or

- weight

- secret?

- message nature ack .
standard
free

- number of parameters

- list of parameters

- text

2· Messages Filtering

mnemonic name or
operator identifier

It is based on the routing codes and/or the messages
weight.

8.5

CONCLUSION C. 1

Conclusion

Often neglected in the last generations, the system
operating stands today at a crossroads. From one hand, indeed
it is still highly influenced by the batch opèrating para­
digm as its hands-on interactive nature can testify. There­
fore, its delay with regard to user-level appliances seems
to be very important. From the other hand, operating should
evolve quickly in the nearby future led by user requirements
(see the introduction of the computer in unsophysticated cir~
cles). Sorne authorities state that those rapid progresses
will be coupled with the operating splitting in different
forms : CENTRAL OPERA.TING FROM COMMONPLACE TERMINALS, AUTO­
MATIC AND REMOTE OPERA.TING •..

The hypothesis of this work was that the current console
operations subsystem does not provided guarentëes to serve as
reliable root for the future building of the operating "tree"
because of conceptual lacks. The first section supported this
hypothesis by a case study.

Consequently, the thesis claims for the use of conceptual
requirements as directional guideline for the console opera­
tions subsystem design an future maitenance. The second sec­
tion identified the old-fashioned or weak concepts and pro­
posed to replace them by new ones without taking compatibi­
lity constraints into account. This choice for freedom is
assumed as an investment (perhaps expensive) which should
pay back benefits in the long term.

An important step is completed insofar as the console
operations subsystem problem is circumscribed and some ideas
of solution provided but it is just a little step since the
new concepts must be refined and faced with the real system
life in order to result in a good design and, f ina lly, in an
operationnal implementation. The console operations subsystem
is on the road but its travel is still long.

AHdVH-901'"111111

ADSB84

ARIT80

BEDI75

BENE75

BIRD75

CLEM80

CLEM90

DCAM70a

DCAM70b

DEM075

Manual :
"ADS (Transdata PDN). Benutzerhandbuch V1 .1A"
Siemens, Munich, 1984

I. Arita:
"Intelligent Console. A universal User interface
of a Computer System"
Faculty of Engineering, Kyushu University,
Fukuoka 1980

Manual:
"BS2000 Bedienunganleitung V7.6A"
Siemens, Munich, 1984

Hr. Benedickt :
"Ersatzkonsolbehandlung"
BS2000 V7.5. 22-52-4212
Siemens, Munich

R.A. Bird, L.A. Hofmann
"System Management"
IBM System Journal, Vol 19, No 1, 1980, 140-159

E. Clemens, K. Gallasch:
"Filterung von Konsolmeldungen"
Bs2000 va.o. 043-52-0920
Siemens, Munich

E. Clemens :
"Logische Konsole"
BS2000 V9.0. 043-41-2015
Siemens, Munich

Manual:
11 Transdata BS2000 DCAM Programmschnittstellen V7.0"
Siemens, Munich, 1982

Manual:
"Transdata BS2000 DCAM Makroaufrufe V7.0"
Siemens, Munich, 1982

Ph. Demoulin:
"L'Informatique : une Entreprise à gérer"
Institut d'Informatique, Namur, 1975

1
DEMU84

DEVE80

EINF75

FINE83

FRIE80

GALL85

HENR78

KASE80

KATZ80

M. Demus :
"Vorschlag für die Struktur eines einheitlichen
Administration-Konceptes für BS2000"
BS2000. 43-36-748
Siemens, Munich, 1984

Manual:
"Developers Handbook"
BS2000 V8.0. 500-52-99
Siemens, Munich

Manual:
"BS2000 Einführung in die Systembedienung.
Benutzerhandbuch V?.5A"

Siemens, Munich, 1984

L. H. Fine :
"Computer Security. A Handbook for Management"
Heinemann, London, 1983

Dr. Friedl
"DCM IBCAM. BCAM-user interface"
BS2000 V8.0. 554-52-61
Siemens, Munich, 1983

K. Gallasch, A. Seiler:
"CFCS-3 Konsoleinstellung
BS2000 V8.5. 043-52-1020
Siemens, Munich

G. G. Henry:

Kommandos"

"Introduction to IBM System 38 Architecture"
IBM System/38. Technical Developments.
IBM Products Design and Development.
General Systems Division.

Hr. Kasek:
"Nucleus Device Management (NDM)"
BS2000 V8.0. 022-52-21
Siemens, Munich

H. Katzan:
"Operating Systems: a pragmatic Approach"
Van Nostrand Reinhold company, New York, 1980

KIND81

LEAC80

LIU 84

MORG79

OMNI75

RIMK90

RAMA82

SEIL85

SEVP82

R. Kinderlehrer:
"Handbook for Data Center Management"
Q.E.D. Information Service, Inc.
Welleslay, ~assachussetts, 1981

J. R. Leach, R. D. Campenni:
"A Sidestream approach using a small processor
as a Tool for Managing Communications Systems"

IBM System Journal, Vol 19, No 1, 1980, 120-139

T.S. Liu:
"Maintenance processors for Mainframe Computers"
IEEE Spectrum, feb. 1984, 36-42

L. Morgan:
"Managing on-line Data Communications Systems"
NCC Publications, Manchester, 1979

Manual:
"Transdata BS2000 Omnis Benutzerhandbuch V4.1"
Siemens, Munich, 1983

J. Rimkus :
"Verfuegbarkeit des Operatortasks"
BS2000 V9.0. 043-41-2016
Siemens, Munich, 1984

J. Ramaekers :
11 Systemes d'Exploitation"
Notes de cours.
Institut d'Informatique, Namur, 1982

A. Seiler:
"CFCS-3 Konsolbedienung in V8.5"
BS2000 V8.5. 043-42-1020
Siemens, Munich

Manual:
"Service Processor, TELESERVICE

Siemens Systems 7500
Siemens Systems 7700

Beschreibung"
Siemens, Munich, 1982

l

SYGE75

SYSM76

TRAN96

UBER75

VERD83

Manual:
"BS2000 Systemgenerierung Beschreibung V7.5A"
Siemens, Munich, 1984

Manual:
11 BS2000 V7.6A Systemmeldungen"
Siemens, Munich, 1984

Manual:
"Siemens-System TRANSDATA 9600.

Allgemeine Beschreibung"
Siemens, Munich, 1983

Manual:
11 BS2000 Systemüberwachung V?.5"
Siemens, Munich, 1984

E. Verdier:
11 La Bureautique"
La Découverte, Paris, 1983

Lectures notes from

BS20P

BS2SV

TN-BS2

BS2000 Systembedienung
03.12.84 - 14.12.84

BS2000 Systemverwaltung
2 6. 11 • 84 - 30. 11. 84

Teilnehmerbetrieb im BS2000
29.10.84 - 31.10.84

Models extracted from

BODA83 F. Bodart, Y. Pigneur:
"Conception assistée des Applications informatiques.
1. Etude d'Opportunité et analyse conceptuelle."

Masson, Paris, 1983

S3CllUN3ddV

Appendix 1 Model of the dynamics of processing

Le modèle de la dynamique repose sur deux concepets de base:
le processus et l'évènement.

Un processus est l'exécution d'une procédure de traitement de
l'information dont la progression peut itre représentée, · à des points
dans le temps, par son état (état déclenché, actif ou terminé).

Un évènement correspond à un changement d'état du système
d'information localisé dans le temps et dans l'espace.
Un évènement est dit externe s'il correspond à l'apparition d'un
message qui déclenche un processus du S.I.
Un évènement est dit interne s'il correspond à un changement d'état
interne au S. I.

Nous allons décrire à présent différentes structures dynamiques que
nous rencontrerons dans le modèle dynamique de notre système
d'information.

- structure séquentielle classique

Ml.

L./,,,,--

Pl.

P2.

L'apparition du message Ml. (évènement externe) déclenche le
processus Pl. La terminaison du processus Pl (évènement
interne) déclenche le processus P2.

- structure de synchronisation

Ml. Pl.

+----Cl.

P2.

L'apparition du message Ml. (évènement externe) contribue au
point de synchronisation Sl. (mécanisme de coordination
d'évènements). La terminaison du proces~us Pl (évènement
interne) contribue également au point de · synchronisation Sl~

Au point de synchronisation Sl. est associée une condition Cl.
Le prédicat de cette condition est une combinaison logique
des évènements qui contribuent au point de ·synchronisation
Sl. Lorsque le prédicat est vérifié, la condition est
réalisée et provoque la réalisation du point de
synchronisation Sl. La réalisation du point de
synchronisation Sl. (évènement interne) déclenche le
processus P2.

- structure d'éclatement

Pl.

V----1 >----F

P2. Sl.

La terminaison du processus Pl. (évènement interne) déclenche
le processus P2 si la condition Cl. est vraie ou contribue au
point de synchronisation Sl si la condition Cl. est fauss~.

- structure itérative

Pl.

Le processus Pl. est déclenché autant de fois que la valeur
de l'attribut Al. L'attribut Al. représente dans notre
système d'information un volume de documents.

Appendix 2 TRANSDATA

Fernstapelbetrieb (RBP) T eilnehmerbetrieb (RTIO) T eilhaberbetrieb (DCAM,UTM)

RBAM
(Remote
Batch
Access
Method)

TIAM
Terminal
Interactive
Access
Method)

VTSU
(Virtual
Terminal
Support)

DCAM
(Data
Communication
Access
Method)

TRANSDATADCM -----­
(Data Communication Methods)

Basis Zugriffsmethode im BS 2000
BCAM
(Basis Communication Access Method)

7
1

1

1

L_

UTM
(Universeller
T ransaktions­
Monitor)

1

- - - - - - - _J

Schnittstellen
zu einem weiteren
Verarbeitungsrechner
über eine Daten­
austauschsteuerung

Schnittstelle
zum Datenüber­
tragungsvorrechner
Modell 968x

TRANSDATA

Schnittstelle
zu lokal
angeschlossenen
Datenstationen
über Mehrfachsteuerung 8170

general architecture

A
Administration:

Administrator.

Administrationsplatz
(administration console)

Administrationssteuerung
(administration manager)

Administrationszentrum
(administration center)

Aufforderung zum Aufbau
einer Verbindung
(connection request)

B
Befehl
(instruction)

Benutzerservice
(user service)

D
[DCAM-] Anwendung
([DCAM] application)

[DCAM-J
Anwendungsprogramm
([DCAM] application program)

[DCAM-J
Datenübermittlungsfunktion
([DCAM] data transmision
function)

[DCAM-] Ereignis
([DCAM] event)

[DCAM-J Existenzfunktion
([DCAM] existence function)

[DCAM-J
Namen-Zuweisungsfunktion
([DCAM] name assignment
function)

Ouerverweise sind durch K ursivdruck gekennzeichnet

(TRANSDATA -J Administration

(TRANSDATA-J Administrator

Einrichtung, den den Menschen ais Administrator mit dem Admini­
strationszentrum verbindet.

lnstanz im Verarbeitungs- und Kommumkationsrechner, die die
Auftriige des Administrationszentrums ausführt und diesem Be­
triebsereignisse meldet.

Partner des Administrators.
Es steuert den Betriebsablauf durch Auftriige an dieAdministrations­
steuerungen.

Forderung eines Kommumkationspartners an das Datenkommuntka­
tionssystem, die logische Verbindung zu einem anderen K ommunika­
tionspartner aufzubauen.

(OIN 44300)

Dienstleistungen für einen der beiden Kommunikationspartner, die
Nachrichten übermitteln. Der Benutzerservice setzt sich aus Sta­
tions- und Portservice zusammen, die auf den jeweiligen Kommun,~
kationspartner bezogen sind.

Kommunikationsanwendung, die von mindestens einem DCAM­
Anwendungsprogramm gesteuert wird. Sie wird in einem oder
mehreren DCAM-Prozessen erzeugt.

Benutzerprogramm, das die Dienste der Zugriffsmethode DCAM
benutzt. Es steuert die DCAM-Anwendung.

Durch Befehle und Meldungen ausgedrückte DCAM-Funktionen,
die im Zusammenhang mit Senden und Empfangen von Nachrichten
und Quittungen stehen.

Eines aus einer Reihe von DCAM-spezifischen Ereignissen, die zur
Koordin ierung bestimmter Vorgiinge im Datenkommunikationssy­
stem verwendet werden. Es trifft vom Programmablauf zeitlich
entkoppelt ein (= asynchron eintretendes Ereignis).

Durch Befehle und Meldungen ausgedrückte DCAM-Funktionen,
die im Zusammenhang mit der Erzeugung und Aufléisung von
DCAM-Anwendungen stehen.

Durch Befehle bzw. Kommandos ausgedrückte DCAM-Funktionen,
die es dem Benutzer erlauben, die Benutzerprogramme unabhangig
von aktuellen Parameterwerten wie DCAM-Anwendungsname,
Partnername usw. zu erstellen.

[DCAM-J ProzeB
([DCAM] task)

[DCAM-J Statusfunktion
([DCAM] status function)

[DCAM-J Steuerblockfunktion
([DCAM) control block function)

[DCAM-J Verbindungsfunktion
([DCAM] connection function)

[DCAM-J Verteilcode
([DCAM] distribution code)

Dialognachricht
(dialog message)

Dialogschritt
(dialog step)

Daten

Datenfernverarbeitungssystem
= DFV-System
(teleprocessing system)

Datenflul!steuerung
(data flow control)

Datenkommunikationssystem
(data communication system)

Datenquelle
(data source)

Datensenke
(data sink)

Datenstation
(terminal)

Datenstationsbenutzer
(terminal user)

Ein ProzeB, der durch einen expliziten DCAM-Aufruf eine DCAM­
Anwendung eroffnet hat (Primarproze/3) bzw. sich einer bestehenden
DCAM-Anwendung bekannt gemacht hat (Sekundarprozel1).

Durch einen Befehl ausgedrückte DCAM-Funktionen, durch die
eine DCAM-Anwendung Information über sich und über
K dmmunikationspartner erfragen kann .

Befehle der DCAM-Schnittstelle, die zur Er2eugung sowie der
Manipulation von Steuerblocken dienen. Alle DCAM-Makroaufrufe
beziehen sich auf diese Steuerblocke.

Durch Befehle und M eldungen ausgedrückte DCAM-Funktio­
nen, die im Zusammenhang mit Aufbau und Abbau von
logischen Verbindungen stehen.

lnnerhalb einer Eingabenachricht eine definierte Zeichenfolge mit
der für die Verteilung der Nachricht innerhalb einer DCAM­
Anwendung besorgt wird; die Codeposition in der Nachricht ist
beliebig, ihre Lange begrenzt.

Nachricht, die eine Antwort erfordert oder eine Antwort ist.

Die erste Nachricht ist bei UTM die Anfrage eines TRANSDA TA­
K ommumkationspartners. Da mit beginnt er einen Vorgang oder setzt
ihn fort.

Teil eines Vorgangs. Er beginnt mit einer Dialognachricht an
einen TRANSDATA -Kommunikationspartner und endet mit des­
sen Antwort.

{D/N44300)

Gesamtheit eines Systems mit Datenverarbeitung und Datenkom­
munikation.

Kapazitatssteuerung auf dem Weg der Nachricht durch das
Datenübertragungsnetz.

Komplexe Einrichtung aus Hardware- und Softwareprodukten, die
es zwei oder mehreren Kommumkationspartnern ermoglicht, unter
Beachtung bestimmter Regeln Daten auszutauschen.

(DIN44302)

(DIN44302)

(DIN44302)

Mensch, der eine Datenstation benutzt, um mit einem TRANSDATA ­
K ommunikationspartner Daten auszutauschen.

Datenstationsrechner
(terminal computer)

Datenübermittlung
(data communication)

Datenübertragungsnetz
(data transmission network)

Datenübertragungsvorrechner
(local communication computer;
front end processor)

Datenverarbeitungssystem
(data processing system)

Digitales Rechensystem
(digital data processing system)

E
ExpreBnachricht
(express message)

F
Format -Datenstation
(format terminal)

Freilaufende Nachricht
(unsolicited message)

K
Knotenservice
(node service)

[Kommunikations-]
Anwendung
([communication] application)

[Kommunikations-J
Anwendungsprogramm
([communication]
application program)

Kommunikationspartner:

[Kommuniktions-] Protokoll
([communication] protocol)

Kommunikationsrechner
(communication computer)

Kommunikationszugriffssystem
(communication access system)

Kommunikationsrechner, an den Datenstationen angeschlossen sind.
ln ihm laufen Kommunikationsanwendungsprogramme zur Daten­
stationssteuerung und Datenverarbeitung ab.

(DIN44302)

Summe der Hardware- und Softwareeinrichtungen, die die physika­
lische Übertragung der Daten von der Datenquelle zur Datensenke
ermôglicht.

Kommumkationsrechner, der direkt am E/ A-Kanal des
Verarbeitungsrechners angeschlossen ist.

(DIN443CXJJ

(DIN443CXJJ

Nachricht begrenzter Lange an eine DCAM-Anwendung oder an eine
Datenstation, die mit hôherer Prioritat ais Normalnachrichten
übermittelt und zugestellt wird.

Typ einer logischen Datenstation. Die Datenstruktur wird durch
Felder mit unterschiedlichen Eigenschaften gebildet.

Nachricht, die keine Antwort erfordert und keine Antwort ist.

Sendet sie ein Datenstationsbenutzer an ein Anwendungsteilpro-­
gramm, erhalt er eine Standardquittung von UTM. Sendet sie ein
anderer TRANSDATA -Kommunikationspartner, entfallt die Stan­
dardquittung von UTM.

Dienstleistungen für die Behandlung von Nachrichten von und zu
Prozessorknoten.

lnstanz zur Verarbeitung von Daten, die zwischen Kommunikations­
partnern ausgetauscht werden.

Verarbeitungsvorschrift zur Steuerung der Kommumkationsanwen-­
dung. Sie benutzt die Schnittstellen eines Kommumkations-Zugriffs­
systems.

{TRANSDATA -/ Kommumkationspartner

Beschreibung der Übergabebedingungen und Übergabeformate
zwischen gleichartigen funktionalen Schichten im Datenkommuni­
kationssystem (Benutzerservice, Transportservice, Netzservice).

Rechner zum Aufbau von Datenfemverarbeitungssystemen.

Menge der Software-Komponenten .:? ines Betriebssystems, die den
Anwendungen Schnittstellen zur K0mmunikation bieten.

L
logische Datenstation
(virtual terminal)

logische Verbindung
(virtual connection)

M
mehrfach benutzbare DCAM­
Anwendung
(sharable OCAM application)

N
Nachricht
(message)

Modellvorstellung einer Datenstation, deren Funktionen auf die
physikalischen Eigenschaften unterschiedlicher Datenstationen ab­
gebildet werden.

Zuordnung zweier Kommunikationspartner, die es ihnen ermôglicht,
Daten miteinander auszutauschen.

DCAM-Anwendung, die von mehreren DCAM-Prozessen gleichzeitig
benutzt werden kann.

(DIN44300)

Netzknotenrechner Kommunikationsrechner, der nicht direkt an einen Verar-
(remote communication compu- beitungsrechner angekoppelt ist und dessen Aufgabe auf die
ter; remote front end processor) Oatenkommunikation beschrankt ist.

Netzservice
(link service)

p
[PON-) Anwendung
([PON] application)

Port
(port)

Portservice
(port service)

PrimllrprozeB
(primary task)

Programm
(program)

Prozessorknoten
(processor node)

R
Rechner
(computer)

Region
(region)

Oienstleistungen. die sich aus Knotenservice und aus dem Portser­
vice zusammensetzen, der auf andere Prozessorknoten bezogen ist.

Kommumkationsanwendung im Kommumkationsrechner, die die
Schnittstellen des Kommumkationszugr;ffssystems im TRANSOA­
T A PON benutzt.

Einrichtung für den Oatentransfer zwischen einem Prozessorknoten
und seiner Umgebung.

Oienstleistungen zum Transfer von Daten zwischen einem Prozes­
sorknoten und seiner Umgebung (Kommunikationsanwendungen,
Nahperipherie-Gerate, Datenstationen, andere Prozessorknoten).

ProzeB, der eine DCAM-Anwendung erôffnet und deren Charakteri­
stika bestimmt.

(DIN44300)

Netzweit andressierbare lnstanz im Verarbeitungs- oder Kommuni­
kationsrechner, in der die Leistungen des Transportservices erbracht
werden.

(DIN44300)

Teilgebiet des Datenkommunikationssystems. Sie enthalt einen oder
mehrere Prozessorknoten, die zum Zwecke der Adressierung aus der
Sict-.t des Transportservices zusammengefaBt sind.

s
SekundarprozeB
(secondary task)

Station
(station)

Stationsservice
(station service)

T
Transaktion:

[Transaktions] Anwendung
([transaction] application)

[Transaktions]
Anwendungsprogramm
([transaction] application
program)

[Transaktions] Auftrag
([transaction] job)

Transaktionscode= TAC
(transaction code)

[Transaktions] Sitzung
([transaction] session)

T ransaktionssystem
(transaction system)

[TRANSDATA-] Administra­
tion
([TRANSDATA) administration)

[TRANS DATA-] Administrator
([TRANSDATA) administrator)

[TRANSDATA-]
Kommunikationspartner
([TRANSDATA] communication
partner)

Transportquittung
(transport acknowledgement)

Transportservice
(transport service)

Proze/3. der sich an eine geëffnete DCAM-Anwendung anschlieBt
und deren Betriebsmittel mitbenutzt.

Aus der Sicht des Transportservices netzweit adressierbare Ends tel­
le des Datenkommumkationssystems.

Dienstleistungen für die Vereinfachung der Datenübermittlung
durch Behandlung der Nachrichten von und zu Kommumkationspart­
nern.

Vorgang

Kommumkationspartner. an den Transaktionsauftrage gerichtet wer­
den und der die gewünschten Vorgange abwickelt.

Verarbeitungsvorschrift. um die Anwendung zu steuern.
Es benutzt die Programmschnittstelle des Transaktionssystems.

Anweisung an die Anwendung, einen Vorgang durchzuführen.

Information, um einen Vorgang zu steuern.
Bei UTM dient der TAC dazu, die Anwendungsteilprogramme
anzusteuern.

Zeitraum, in dem ein K ommunikationspartner Auftrage erteilen kann.
Er ist begrenzt durch Zuteilung und Rückgabe bestimmter Befug­
nisse.

Menge der Softwarekomponenten. die die Schnittstellen der
Anwendung zur Umwelt bilden. Es steuert und überwacht Vorgan­
ge. Es bedient sich der Leistungen des Betriebssystems, insbeson­
dere des Kommunikationszugdffssystems und Datenbanksystems.

lnbetriebnahme, Steuerung und Verwaltung der TRANSDATA­
Komponenten eines Datenfernverarbeitungssystems.

Mensch oder Programm, dem die Administration obliegt.

lnstanzen, die /ogische Verbindungen unterhalten und Daten mit­
einander austauschen.

Meldung über AbschluB oder Abbruch einer Datenübermittlung.

Dienstleistungen für den Datenaustausch zwischen Kommumka­
tionspartnern. EF veranlaBt und kontrolliert den Transport der
Nachrichten durch das Datenübertragungsnetz und verwaltet logi­
sche Verbindungen.

u
[UTM-J AnschluBprogramm
([UTM] linkage program)

[UTMJ Anwendung
(UTM application)

[UTM-J Anwendungspro-
gramm
([UTM] application program)

[UTM-J Anwendungs
Teilprogramm
([UTM] application

UTM-Datenstation
(UTM terminal)

[UTM-] Dialogschritt
l[UTM] dialog step)

[UTM-J Transaktion:

[UTM-J Transaktions Auftrag
([UTM] transaction job)

[UTM-J Transaktions Sitzung
([UTM] transaction session)

[UTM-] Vorgang=[UTM-]
Transaktion
([UTMJ transaction

UTM-Anwendungsteilprogramm, das vom System bereitgestellt
wird. Der Benutzer definiert lediglich seinen Umfang. Es schliel5t das
Anwendungsprogramm an den UTM an. Jedes Anwendungspro­
gramm entMlt ein solches Programm.

Kommunikationspartner. an den Datenstationsbenutzer, UTM-An­
wendungen und andere TRANSDATA-Kommunikationspartner
Transaktionsauftrage richten kônnen. Die Anwendung wickelt die
gewünschten Vorgange ab. Sie wird generiert und durch das
Anwendungsprogramm gesteuert.

Verarbeitungsvorschrift, um die UTM-Anwendung zu steuern. Es
benutzt die UTM-Programmschnittstelle und besteht aus dem
UTM-Anschlu/3programm und den Teilprogrammen des Benutzers.

Abgeschlossener Teil eines UTM-Anwenderteilprogramms, der ein
Teilprogramm einer Anwendung bearbeitet. Es wird durch den
Transactionscode adressiert. UTM startet das Teilprogramm, wenn
dafür eine Nachricht vorliegt. Ein Teilprogramm führt hôchstens
einen Dialogschritt aus.

Datenstation. die durch ihren Namen existiert. Sie entsteht bei der
Generierung der UTM-Anwendung und entkoppelt sie vom Daten­
übertragungsnetz: Eine UTM-Datenstation kann für mehrere physi­
kalische Datenstationen stehen.
Mehrere UTM-Datenstationen kônnen für eine physikalische Da­
tenstation stehen. Eine UTM-Datenstation kann für einen bel iebigen
TRANSDATA -Kommunikationspartner stehen. Die Zuordnung kann
wahrend des Betriebs per Administrationskommando geandert
werden.

Teil eines Vorgangs. Er beginnt mit einer Dialognachricht, die
vom Datenstationsbenutzer oder einem anderen TRANSDA TA­
Kommunikationspartner einer Anwendung gesch ickt wird. Er
endet mit der Antwort der Anwendung.

UTM-Vorgang

Anweisung an eine UTM-Anwendung, einen Vorgang durchzu­
führen. Er enthalt einen Transaktionscode und ggf. zu
verarbeitende Daten. Er wird von Datenstationsbenutzern, von
UTM-Tei/programmen derselben oder einer anderen Anwen­
dung oder von anderen TRANSDA TA -Kommumkationspartnern
erteilt.

Zeitraum, in dem ein Datenstationsbenutzer. eine andere UTM­
Anwendung oder ein TRANSDATA-Kommumkationspartner einer
UTM-Anwendung bestimmte Auftrage erteilen kann. Er beginnt,
wenn die. Befugnis dazu erteilt wird. Er endet mit Rückgabe dieser
Befugnis.

Abarbeitung eines in sich geschlossenen Auftrags durch die
Anwendung,die dazu eines oder mehrere Teilprogramme benutzen
kann. Er kann aus einem oder mehreren Dialogschritten bestehen.
Die Betriebsmittel, wie Speicher usw., sind ihm zugeordnet.

Appendix 3: The Bourse Mechanism

Modern operating systems are mostly organized as pa­
rallel processes. Consequently, concurrency is a domina­
ting aspect of the structure and understanding of an ope­
rating system.

In the BS2000 system, a PROCESS is the smallest sub­
ject able to execute instructions. TASKS are the subjects
for the distribution of system resources (memory, CPU .•).
The schedule of each task is defined by an ordered chain
of processes with the top one as being currently executed.
The length of the chain (at least one process) can be in­
creased or decreased by attaching or detaching processes
at or from the top.

When a problem is solved by more than one process,
a well defined relation (and data flow) between those pro­
cesses has to be established. The bourse mechanism provi­
des a tool for mutual exclusion, serialization and syn­
chronization of processes. The objects controlled by the
bourse are REQUESTS for specific processes.

1. MUTUAL EXCLUSION

The mutual exclusion of requests for processes is re­
alized by a CHAMBER of the bourse which may be occupied on­
ly by one request at a time.

"Everydaylife" exart.ple of mutual exclusion: only one
carat a time is admitted to the "chamber" of the car wash
station.

2. SERIALIZATION

The serialization of requests for admission to a
chamber is processed by the enqueuing call. It works with
specified priorities of the requests (zero default) and
FIFO or LIFO enqueuing discipline among same priorities.

"Everydaylife" example of serialization: cars in a
queue before the car wash station.

3. SYNCHRONIZATION

A bourse with more than one chamber additionally1 pro­
vides a tool for synchronization between requests for dif­
ferent chambers of the same bourse. Admittance to the cham
bers is granted only if there are requests "ready to enter
before both of the chambers. Expulsion is synchonized simi
larly.

"Everydaylife" example of synchronization: a taxi
stand with one queue for the cabs and another one for the
customers. The stand is "busy" only if and when the both
queues are not empty. The business is handled between the
queues headers (cab driver and customer). After they corne
to an agreement, they dequeue and let their successors, if
any, handle their business.

4. DATA EXCHANGE EY A TWO-CHAMBER BOURSE

Requests synchronized by a two-chamber bourse may ad­
ditionally have a synchronized data flow from the announ­
cer of the request to the processing requested for the
other chamber.

TABLE OF CONTENTS

GENERAL INTRODUCTION

SECTION 1 A CASE STUDY: CONSOLE OPERATIONS IN BS2OOO

CHAPTER 1 WHICH COMPUTER SYSTEM?

CHAPTER 2

1. Hardware

2. The System Software : BS2OOO

3. People : System Management in BS2OOO

3.1. Data Preparation and Hardware
.Maitenance

3.2. Administration and Operating

3.3. Operating Session
3.3.1 System Generation
3.3.2 Operating Session
3.3.3 The Repping: pseudo-

Generation

3.4. Administration
3.4.1 Users Administration
3.4.2 System Administration and

Control
3.4.3 Security

, 3.4.4 Computer Center .Master

3.5. Operating
3.5.1 Computer Operations
3.5.2 Manual Operations

CONSOLE OPERATIONS CONCEPTS IN BS2OOO

1. Operating Partners

1.1. User

1.2. Operating Sources
1. 2 .1 Console
1.2.2 Authorized Applications

1.3. The System

2. Operating Sources Properties

2.1. Consoles
2.1.1 Hardware oriented Functions
2.1.2 Multiple Consoles Congigu­

ration Handling

2.2. Authorized Applications

CHAPTER 3

3. Communications

3.1. Messages
3.1.1 Definitions
3.1.2 Tasks Particularities
3.1.3 Destination
3.1.4 Content

3.2. Replies
3.2.1 Normal Replies
3.2.2 Special Replies

3.3. Commands
3.3. ·1 Normal Commands
3.3.2 Special Uommands

3.4. Additionnal Terminology

5.,. Rejection Communications

3.6. Emergency Messages

4. Logging

CONSOLE OPERAT~ONS SUBSYSTEM:
PROCESSES DESCRIPTION

1. Mail Processing

1.·1. Normal Flow Communication Receipt

1.2. Special Reply Receipt

i.3. Emergency Message Processing

1.4. SQE Distribution

2. Replace Console Handling

2.1. Replace Console Assignment

2.2. Replace Console Handling
2.2.1. Available to not available

2.2.1.1 Console defective
Event

2.2.1.2 Console switch off
2.2.1.3 Actual replace

Console Search
2.2.2. Not available to available

2.2.2.1 Defective to ope­
rable again

2.2.2.2 Switch off to on
2.2.3. ~ain Console special

Features

2.3. Replace Console Informations
Access

3. Authorized Applications Administration

CHAPTER 4 CONSOLE OPERATIONS SUBSYSTEM: ARCHITECTURE

1. Normal Command Processing

2. Physical Console Handling

2.1. Consoles input and output
2.1.1 Input fron Console
2.1.2 Output to Console

2.2. Attach and Detach

3. DCAM Applications Handling

3.1. General Administration
J.1.1. SCONSOLE Application Hand ­

ling
3.1.1.1 BCAM ready Handling
3.1.1.2 BCAM shutdown

Handling
3.1.2. Connections to SCONSOLE

3.1.2.1 Connection Request
3.1.2.2 Connection Break

3.2. Letters Handling

3.3. Input from DCAM Applications

3.4. Output to DCAM Applications

4. Logging

4.1. Initializations

4.2. Normal Logging

4.3. Logging File Change

4.4. Logging File Informations

4.5. System Shutdown

4.6. Logging ~ask Crash

SECTION 2

CHAPTER 5

CHAPTER 6

CHAPTER 7

NEW CONSOLE OPERATIONS CONCEPTS FOR LARGE
CENTRALIZED COMPUTER SYSTEM

CONCEPTS EVALUATION

1. System Management

2. Console Operations

3. Operating Sources

4. Competence Distribution
4.1. Competence Area

4.1.1 Main Console : authorization
4.1.2 All Operating sources : Flow

Control

4.2. The"*" Routing Code

5. Messages

5.1. Messages real Destination

5.2. Correlation Messages/initiating Event
5.3. Messages hybridity
5.4. Standard Messages Freedom

6. Commands

7. Special Replies

8. Replace Console Handling

DESIGN CRITICISMS

1 . Bourses

2. ECTYP Interface

3. SCONSOLE Interface Problems

3.1. The special Commands Problem

3.2. The"SHORTAGE OF RESOURC ES" Problem
3.3. Deadlock Problems

4. Lôgging Task crash

REQUIREMENTS COMPILATION

CHAPTER 8

CONCLUSION

BIBLIOGRAPHY

APPENDICES

INTRODUCTION OF NEW CONCEPTS

1. The initial Concept : the Mail System

2. The night-light console concept

3. Operator

3.1 System Manager

3.2 Specialized Operators

3.3 "night-light" operator

4. Profile

5. Operator Session

6. Logical Console

7. Transactions

7.1 Commands Transaction

7.2 Question-reply Transaction

7.3 Messages Transaction

7.4 Emergency Transaction

8. Messages

8. 1 HEAD

8.2 BODY

9. Messages Filtering

1. The model of the dynamics of processing

2. TRANSDATA

3. The bourse Mechanism

TABLE OF CONTENTS

