
Chapter 2
Introduction to Epidemic Modeling

2.1 Kermack–McKendrick SIR Epidemic Model

Introduction to epidemic modeling is usually made through one of the first epidemic
models proposed by Kermack and McKendrick in 1927, a model known as the SIR
epidemic model [84].

2.1.1 Deriving the Kermack–McKendrick Epidemic Model

When a disease spreads in a population, it splits the population into nonintersecting
classes. In one of the simplest scenarios, there are three such classes:

• The class of individuals who are healthy but can contract the disease. These are
called susceptible individuals or susceptibles. The size of this class is usually
denoted by S.

• The class of individuals who have contracted the disease and are now sick with it,
called infected individuals. In this model, it is assumed that infected individuals
are also infectious (see Chap. 1 for distinction between infected and infectious
individuals). The size of the class of infectious/infected individuals is denoted by
I.

• The class of individuals who have recovered and cannot contract the disease
again are called removed/recovered individuals. The class of recovered individu-
als is usually denoted by R.

The number of individuals in each of these classes changes with time, that is,
S(t), I(t), and R(t) are functions of time t. The total population size N is the sum of
the sizes of these three classes:

N = S(t)+ I(t)+R(t).
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To formulate a model, we have to make assumptions to simplify reality. The first
assumption for the Kermack–McKendrick model is that infected individuals are also
infectious. The second assumption of the model is that the total population size
remains constant.

Epidemiological models consist of systems of ODEs that describe the dynamics
in each class. One of the simplest models involves the dynamics of susceptible,
infectious, and recovered individuals. The model was first proposed by Kermack
and McKendrick in 1927 [84].

To derive the differential equations, we consider how the classes change over
time. When a susceptible individual enters into contact with an infectious individual,
that susceptible individual becomes infected with a certain probability and moves
from the susceptible class into the infected class. The susceptible population de-
creases in a unit of time by all individuals who become infected in that time. At the
same time, the class of infectives increases by the same number of newly infected
individuals. The number of individuals who become infected per unit of time in
epidemiology is called incidence, and the rate of change of the susceptible class is
given by

S′(t) =−incidence.

How can we represent the incidence? Consider one infectious individual. Assume:

• cN is the number of contacts per unit of time this infectious individual makes.
Here we assume that the number of contacts made by one infectious individual
is proportional to the total population size with per capita contact rate c.

• S
N is the probability that a contact is with a susceptible individual. Thus,

• cN S
N is number of contacts with susceptible individuals that one infectious in-

dividual makes per unit of time. Not every contact with a susceptible individual
necessarily leads to transmission of the disease. Suppose p is the probability that
a contact with a susceptible individual results in transmission. Then,

• pcS is number of susceptible individuals who become infected per unit of time
per infectious individual.

• β SI is the number of individuals who become infected per unit of time (inci-
dence). Here we have set β = pc.

If we define λ (t) = β I, then the number of individuals who become infected per
unit of time is equal to λ (t)S. The function λ (t) is called the force of infection. The
coefficient β is the constant of proportionality called the transmission rate constant.
The number of infected individuals in the population I(t) is called the prevalence of
the disease.

There are different types of incidence depending on the assumption made about
the form of the force of infection. One form is called mass action incidence. With
this form of incidence, we obtain the following differential equation for susceptible
individuals:

S′(t) =−β IS.

The susceptible individuals who become infected move to the class I. Those indi-
viduals who recover or die leave the infected class at constant per capita probability
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per unit of time α , called the recovery rate. That is, αI is the number of infected
individuals per unit of time who recover. So,

I′(t) = β IS−αI.

Individuals who recover leave the infectious class and move to the recovered class

R′(t) = αI.

Thus, the whole model is given by the following system of ODEs:

S′(t) = −β IS,

I′(t) = β IS−αI,

R′(t) = αI. (2.1)

To be well defined mathematically, this system is equipped with given initial condi-
tions S(0), I(0), and R(0).

When we formulate a model, we need to be concerned with the units of the
quantities involved. Units are also helpful when we estimate parameters from data.
The units of both sides of the above equations must be the same. All derivatives have
units number of people per unit of time (why?). Hence, each term on the right-hand
side should have the same units. From the first equation, we see that since I and S
have units number of people, the units of β must be 1/[number of people×unit of
time]. Since β = pc and p is a probability, which has no units, the units of c must
be 1/[number of people×unit of time]. Thus the contact rate cN has units 1/unit of
time. Similarly, from the second equation, we see that the units of α are 1/unit of
time, so the term αI has units number of people/unit of time.

Loosely speaking, a differential equation model such as the model (2.1) is well
posed if through every point (initial condition), there exists a unique solution. Dif-
ferential equation models must be well posed to be mathematically acceptable and
biologically significant. Because the dependent variables in the model denote phys-
ical quantities, for most models in biology and epidemiology, we also require that
solutions that start from positive (nonnegative) initial conditions remain positive
(nonnegative) for all time.

We denote by N the total population size at time zero N = S(0)+ I(0)+R(0).
Adding all three equations in system (2.1), we obtain N′(t) = S′(t)+ I′(t)+R′(t) =
0. Hence, N(t) is constant and equal to its initial value, N(t) = N. This model is
called the SIR model or SIR system. It is a special type of model called a compart-
mental model, because each letter refers to a “compartment” in which an individual
can reside. Each individual can reside in exactly one compartment and can move
from one compartment to another. Compartmental models are schematically de-
scribed by a diagram often called a flowchart. Each compartment in a flowchart is
represented by a box indexed by the name of the class. Arrows indicate the direction
of movement of individuals between the classes. The movement arrows are typically
labeled by the transition rates (see Fig. 2.1).
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Fig. 2.1 Flowchart of the Kermack–McKendrick SIR epidemic model
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Fig. 2.2 Left: shows the prevalence monotonically decreasing. Right: shows the prevalence first
increasing and then decreasing to zero

2.1.2 Mathematical Properties of the SIR Model

The Kermack–McKendrick epidemic model (2.1) has very distinctive dynamics.
Because S′ < 0 for all t, the number of susceptible individuals is always declining,
independently of the initial condition S(0). Since S(t) is monotone and positive, we
have

lim
t→∞

S(t) = S∞.

The number of recovered individuals also has monotone behavior, independently of
the initial conditions. Since R′ > 0 for all t, the number of recovered individuals is
always increasing. Since the number of recovered is monotone and bounded by N,
we have

lim
t→∞

R(t) = R∞.

On the other hand, the number of infected individuals may be monotonically de-
creasing to zero, or may have nonmonotone behavior by first increasing to some
maximum level, and then decreasing to zero (see Fig. 2.2). The prevalence first starts
increasing if I′(0) = (β S(0)−α)I(0)> 0. Hence, a necessary and sufficient condi-
tion for an initial increase in the number of infecteds is β S(0)−α > 0, or

β S(0)
α

> 1.

This sudden increase in the prevalence and then a decline to zero is a classical model
of an epidemic or outbreak. Threshold conditions for an epidemic to occur are
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common in epidemiology, and we will discuss them in detail later on. To determine
the limits S∞ and R∞, we divide the equation for S and the equation for R. Hence,

dS
dR

=−β
α

S.

Solving, we have

S = S(0)e−
β
α R ≥ S(0)e−

β
α N > 0.

We conclude that S∞ > 0. The quantity S∞ is called the final size of the epidemic.
We see that the epidemic does not end, because all susceptible individuals have
been infected and are now immune. Some individuals always escape a disease—an
observation that was made in practice is also confirmed by the SIR model.

Finally, we show that the epidemic dies out. If

lim
t→∞

I(t) = I∞,

then I∞ = 0. This is evident from the plots in Fig. 2.2, but a mathematical argument
can establish the result for all parameters. To see this, we integrate the first equation
in (2.1):

∫ ∞

0
S′(t)dt = −β

∫ ∞

0
S(t)I(t)dt,

S∞ − S0 = −β
∫ ∞

0
S(t)I(t)dt,

S0 − S∞ = β
∫ ∞

0
S(t)I(t)dt,

S0 − S∞ ≥ β S∞

∫ ∞

0
I(t)dt. (2.2)

The last inequality implies that I(t) is integrable on [0,∞). Hence, limt→∞ I(t) = 0.
The Kermack–McKendrick model is based on several assumptions: (1) There are

no births and deaths in the population. (2) The population is closed, that is, no one
from the outside enters the population, and no one leaves the population, and finally,
(3) All recovered individuals have complete immunity and cannot be infected again.
These assumptions seem very restrictive, but within limits, they can be satisfied. We
will see a specific example in Sect. 2.3. Diseases that lead to permanent immunity
and are well modeled by the SIR epidemic model are most diseases typical of child-
hood years, often called childhood diseases. These include chickenpox, smallpox,
rubella, and mumps.

To solve the system, we first notice that the variable R does not participate in the
first two equations. Thus we can consider only the equations for S and I, which are
coupled, and leave out the equation for R. The variable R can then be obtained in
this model from the relation R = N − S− I:
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S′(t) = −β IS,

I′(t) = β IS−αI. (2.3)

Dividing the two equations, we obtain

I′

S′
=

β SI−αI
−β SI

=−1+
α
β S

.

Separating the variables, we have

I′ =
(
−1+

α
β S

)
S′.

Integrating leads to

I =−S+
α
β

lnS+C,

where C is an arbitrary constant. Thus, the orbits of the solution are given implicitly
by the equation

I+ S− α
β

lnS =C. (2.4)

The Kermack–McKendrick model is equipped with initial conditions: S0 = S(0)
and I0 = I(0). Those are given. We also have that limt→∞ I(t) = 0, while S∞ =
limt→∞ S(t) gives the final number of susceptible individuals after the epidemic is
over. The above equality holds both for (S0, I0) and for (S∞,0). Thus,

I0 + S0 − α
β

lnS0 =C.

Consequently,

I0 + S0 − α
β

lnS0 = S∞ − α
β

lnS∞.

Rearranging terms, we get

I0 + S0 − S∞ =
α
β
(lnS0 − lnS∞).

Therefore,

β
α

=
ln S0

S∞

S0 + I0 − S∞
. (2.5)

We note that since S(t) is a decreasing function, we have S∞ < S0 + I0. The implicit
solution also allows us to compute the maximum number of infected individuals
that is attained. This number occurs when I′ = 0, that is, when

S =
α
β
.
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From

I + S− α
β

lnS = I0 + S0 − α
β

lnS0,

substituting the expression for S and moving all terms but I to the right-hand side
leads to

Imax =−α
β
+

α
β

ln
α
β
+ S0 + I0 − α

β
lnS0. (2.6)

Here Imax is the maximum number of infected individuals reached in the epidemic.
It signifies the maximum severity of the epidemic. If we are able to estimate Imax for
a newly occurring infectious disease, we will know when the number of infections
will begin to decline.

2.2 The Kermack–McKendrick Model: Estimating
Parameters from Data

When we are given specific disease and time series data for it, we can estimate the
parameters of the SIR model and compare the solution of the model with the data.
This section follows the description in [27]. See [27] for a different example.

2.2.1 Estimating the Recovery Rate

For many diseases, information about the mean duration of the exposed period or the
infectious period can easily be obtained. For instance, for influenza, the duration of
the infectious period is 3–7 days with mean 4–5 days. How can that help us estimate
the recovery rate α? To approach that question, let us assume that there is no inflow
in the infectious class and a certain number of individuals I0 have been put in the
infectious class at time zero. Then the differential equation that gives the dynamics
of this class is given by

I′(t) =−αI, I(0) = I0.

This equation can be easily solved. Therefore, the number of people in the infectious
class at time t is given by

I(t) = I0e−αt .

Consequently,

I(t)
I0

= e−αt
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for t ≥ 0 gives the proportion of people who are still infectious at time t, or in
probability language, it gives the probability of being still infectious at time t. We
can compute the fraction of individuals who have left the infectious class,

1− e−αt ,

or in probability terms,

F(t) = 1− e−αt t ≥ 0

is the probability of recovering/leaving the infectious class in the interval [0, t).
Clearly, F(t) is a probability distribution (if defined as zero for t < 0). The prob-
ability density function is f (t) = dF/dt. Consequently,

f (t) = αe−αt .

Note: f (t) = 0 for t < 0. Furthermore, the average time spent in the infectious class
is given by the mean (expected value of a random variable X , denoting time to
exiting the infectious class),

E[X ] =

∫ ∞

−∞
t f (t)dt.

Therefore, computing that integral yields

∫ ∞

−∞
t f (t)dt =

∫ ∞

−∞
tαe−αt dt =

1
α
.

Thus we conclude that

mean time spent in the infectious class = 1
α .

For influenza, we are sick with it for 3–7 days. Say that the mean time spent as
infectious is 5 days. Thus the recovery rate, measured in units of [days]−1, is 1/5.

Estimating the transmission rate β is quite a bit more difficult. Estimating β is
possible for the Kermack–McKendrick model, because that model is relatively sim-
ple. In particular, we can obtain an implicit solution. An implicit solution is rarely
obtainable for epidemic models, and estimating parameters for epidemic models
requires techniques different from the one presented below. We will discuss these
techniques in Chap. 6.
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2.2.2 The SIR Model and Influenza at an English Boarding
School 1978

In January and February 1978, an epidemic of influenza occurred in a boarding
school in the north of England. The boarding school housed a total of 763 boys, all
of whom were at risk during the epidemic. The spring term began on January 10.
The boys returned from their Christmas vacation spent at many different locations in
the world. A boy returning from Hong Kong exhibited elevated temperature during
the period 15–18 January. On January 22, three boys were sick. Table 2.1 gives the
number of boys ill on the nth day beginning January 22 (n = 1).

Table 2.1 Daily number of influenza-infected boys

Day No. infecteda Day No. infected

3 25 9 192
4 75 10 126
5 227 11 71
6 296 12 28
7 258 13 11
8 236 14 7

aData taken from “Influenza in a Boarding School,” British Medical Journal, 4 March 1978

The number of boys who escaped influenza was 19. The average time spent sick
was 5–6 days. However, since boys were isolated in the infirmary, they spent per-
haps about 2 days as infectious. A swab taken from some of the boys revealed that
they were infected with H1N1 influenza A virus. The staff of the boarding school
remained healthy, with only one staff member displaying symptoms of illness.

These data give the following values: S3 = 738, I3 = 25, S∞ = 19.
From the computations above, we have

β
α

=
ln S3

S∞

S3 + I3 − S∞
=

ln 738
19

763− 19
= 0.00491869. (2.7)

We measure time in days. We take t0 = 0 to be January 21. The first datum is
given on January 22, which gives t = 1. We have that tend = 14 is the February 4,
1978.

We take the infective period to be 2.1 days. This value can be obtained as the
best fit as values around 2 days are tried with the procedure below. After we fix the
duration of the infectious period, we compute α as the reciprocal of the time spent
as an infectious individual (infectious period):

α =
1

2.1
= 0.476.

From Eq. (2.7) and using the value for α , we can obtain the value for β :
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β = 0.004918α = 0.004918 ∗ 0.476= 0.002342.

From Eq. (2.6) for the Imax, we can estimate the maximum number of infectives
during the epidemic. First, notice that α/β = 203.306. Thus,

Imax =−203.306+ 203.306ln203.306+ 738+25−203.306ln738 = 298.

Notice that the data give the maximum number of infective individuals as 296. We
illustrate the fit between the model and the data in Fig. 2.3.

4 6 8 10 12 14
t

50

100

150

200

250

300
I( t )

Fig. 2.3 English boarding school influenza epidemic: agreement between Kermack–McKendrick
SIR epidemic model and data

2.3 A Simple SIS Epidemic Model

We want to relax the assumption for permanent immunity after recovery to model
diseases that can infect us repeatedly, such as influenza. We may assume in the sim-
plest scenario that individuals who recover become immediately susceptible again.
Thus, individuals who are susceptible may become infected (and infectious) and
then recover into being susceptible again. The model is described with the flowchart
in Fig. 2.4.

The model takes the form

S′(t) = −β IS+αI,

I′(t) = β IS−αI. (2.8)

System (2.8) is called an SIS epidemic model and is perhaps the simplest model in
mathematical epidemiology. Here, if N = S+ I and we add the two equations, we
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Fig. 2.4 Flowchart of a simple SIS epidemic model

again obtain N′ = 0. Hence the total population size is N, where N is a constant
in time. The system is equipped with initial conditions S(0) and I(0), so that N =
S(0)+ I(0).

2.3.1 Reducing the SIS Model to a Logistic Equation

Because the total population size is constant and known, the system (2.8) can be
reduced to a single equation. This technique is commonly used for the reduction of
the dimension of an epidemiological model. We express S as S=N−I and substitute
it in the second equation. The resulting equation is a variant of the logistic equation:

I′(t) = β I(N − I)−αI. (2.9)

We rewrite this equation in the form of a logistic equation,

I′(t) = rI

(
1− I

K

)
,

where r = β N −α and K = r/β . To see this, first factor out I and then r = β N −
α . The logistic equation is one of the classical models in population dynamics. It
typically models the total population size of a population of individuals. We will use
it later on for models in which the total population size does not remain constant.
The parameter r is often referred to as the growth rate. We can see that r can be
positive or negative, so we consider two cases.

r < 0 If the growth rate is negative, r < 0, then the number of infected individ-
uals I(t) tends to 0 as t → ∞. To see this, notice that if r < 0, then K < 0.
Hence,

I′(t)≤ rI(t).

The solutions of this simple differential inequality are I(t) = I(0)ert , and
they approach zero for r < 0. This implies that if r < 0, the disease grad-
ually disappears from the population on its own.

r > 0 The logistic equation can be solved, and in this case, we need to solve it to
have an explicit expression for I(t). The logistic equation is a differential
equation of separable type. It is solved by a method called separation of
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variables. To separate the variables I and t, we move all terms that contain
I to the left-hand side of the equation, and all terms that contain t, namely
dt, to the right-hand side:

1

I
(
1− I

K

)dt = rdt.

Notice that while dividing by
(
1− I

K

)
, we have assumed that I(t) �= K.

But I(t) = K is a solution of the original logistic equation. On the other
hand, I = K is not a solution of the derived equation above, so it will have
to be artificially added to the solution set.
Using partial fraction decomposition, we can integrate both sides of that
equation: ∫ (

1
I
+

1
K − I

)
dI = r

∫
1dt.

Hence,

ln
I

|K − I| = rt +C,

where C is an arbitrary constant of integration, and the absolute value in
the logarithm is necessary, since we can compute logarithms only of pos-
itive values, but we do not know whether K − I is positive. To determine
C, we use the initial conditions. Assuming that the initial conditions are
given at 0, we have

ln
I(0)

|K − I(0)| =C.

Replacing C with the above expression, we obtain

ln
I

|K − I| − ln
I(0)

|K − I(0)| = rt.

Hence,

ln
I|K − I(0)|
I(0)|K − I| = rt.

The absolute values above can be disregarded, since K − I(0) and K − I
have the same sign: they are both positive or both negative. Taking an
exponent, we obtain

I
K − I

=
I(0)

K − I(0)
ert .

Finally, we solve for I to obtain an explicit solution for I(t) in terms of the
initial conditions, r and K:

I(t) =
KBert

1+Bert ,
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where B = I(0)/(K − I(0)). We see from this that

lim
t→∞

I(t) = K,

and the disease remains in the population indefinitely.

The threshold condition r > 0 can be rewritten as R0 > 1, where

R0 =
β N
α

is called basic reproduction number of the disease. Mathematically, the reproduction
number plays the role of a threshold value for the dynamics of the system and the
disease. If R0 > 1, the disease remains in the population, and the number of infect-
eds stabilizes around K. In this case, we say that the disease has become endemic
in the population. This implies that the simple SIS model is a model of endemic dis-
ease. If R0 < 1, the number of infecteds gradually declines to zero, and the disease
disappears from the population.

Epidemiologically, the reproduction number gives the number of
secondary cases one infectious individual will produce in a population
consisting only of susceptible individuals.

To see this interpretation in the formula for R0, notice that the number of new
cases per unit of time produced by all infectious individuals is given by the inci-
dence β SI. If there is only one infectious individual, we have I = 1, and the number
of secondary cases produced by one infectious individual will be β S. If the entire
population consists of susceptible individuals, we have S = N. Hence, the number
of secondary cases one infectious individuals will produce in a unit of time is β N.
Since one infectious individual remains infectious for 1/α time units, the number
of secondary cases it will produce during its lifespan is R0 = β N/α .

2.3.2 Qualitative Analysis of the Logistic Equation

The information we derived about the behavior of the solutions was obtained from
the explicit solution. Many single-equation models in biology cannot be solved ex-
plicitly. We need tools to deduce the properties of the solutions directly from the
differential equation. These tools can readily be extended to systems of equations.

From the explicit solution of the logistic equation, we saw that in the long run,
the disease will become endemic and persist in the population if R0 > 1. We also
learned that in the long run, the number of infected individuals in the population
will be approximately K = (β N −α)/β . Furthermore, if R0 < 1, the disease will
die out. Ideally, we would like to be able to obtain such results without having to
solve the equation explicitly.
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A nonlinear differential equation model with constant coefficients typically has
time-independent solutions, that is, solutions that are constant in time. Such solu-
tions are called equilibrium points. Equilibrium points play an important role in the
long-term behavior of the solutions. They are easy to find from the differential equa-
tion even if we don’t know the explicit solution, since their derivative with respect
to time is zero. Thus, for the equation dI

dt = f (I), the equilibria are the solutions of
the equation f (I) = 0. We set the right-hand side of Eq. (2.9) equal to zero:

β I(N − I)−αI = 0.

This equation has two solutions, I∗1 = 0 and I∗2 = K, which give the two equilib-
rium points. The equilibrium I∗1 always exists. In the mathematical epidemiology
literature, the equilibrium I∗1 is referred to as a disease-free equilibrium, since the
disease is not present in the population, and the entire population is susceptible.
The equilibrium I∗2 exists only if R0 > 1. The equilibrium I∗2 is called an endemic
equilibrium, since the disease is present in the population.

In the case R0 > 1, both I1(t) = 0 and I2(t) = K are solutions to Eq. (2.9). Since
the model is well posed, no other solution can cross them. So solutions that start in
the interval (0,K) stay in that interval for all time:

0 < I(0)< K =⇒ 0 < I(t)< K.

Furthermore, solutions that start from a value above K stay above K:

I(0)> K =⇒ I(t)> K.

If 0 < I(t) < K, then f (I) > 0, which means that dI
dt > 0. This means that the so-

lutions in that interval are increasing functions of time. Since I(t) is increasing and
bounded, it follows that I(t) converges to a finite limit as t → ∞. To deduce the
behavior of the derivative, we use the following corollary.

Corollary 2.1 (Thieme [151]). Assume that f (t) converges as t → ∞. Assume also
that f ′(t) is uniformly continuous. Then f ′(t)→ 0 as t → ∞.

It can be shown (see (2.10) below) that the second derivative d2I
dt2 is continuous

and bounded. Hence, the corollary above implies that I′(t)→ 0 and the limit of I(t),
say L, satisfies the equilibrium equation f (L) = 0. This implies that L = 0 or L = K.
Since I(t) is positive and increasing, we have I(t)→ K as t → ∞. If I(0)> K, then
I(t) > K for all t. Thus, dI

dt < 0, and I(t) is decreasing and bounded below by K.
Similar reasoning as above implies that I(t)→ K.

We can further investigate the concavity of the solutions by looking at the second
derivative:

d2I
dt2 = r

(
1− 2I

K

)
dI
dt

= r2
(

1− 2I
K

)
I

(
1− I

K

)
. (2.10)

For solutions in the interval 0 < I(t)< K, the second derivative changes sign when
I(t) crosses the horizontal line y = K

2 . Thus, for values of t such that I(t) < K
2 , the



2.3 A Simple SIS Epidemic Model 23

5 10 15 20 25 30
t

50

100

150

200

250

300

350

I(t)

Fig. 2.5 Solutions to the logistic equation (2.9) converge to the endemic equilibrium

second derivative of I is positive, and I(t) is concave up. For values of t for which
I(t) > K

2 , the second derivative of I is negative, and I(t) is concave down. This is

illustrated in Fig. 2.5. For solutions for which I(t)> K, the second derivative d2I
dt2 is

positive. Consequently, I(t) is decreasing and concave up.

2.3.3 General Techniques for Local Analysis of Single-Equation
Models

We saw that if R0 < 1, then all solutions of Eq. (2.9) approach the unique equi-
librium I∗ = 0. That is, all solutions converge to zero, I(t) → 0, for every initial
condition I(0)> 0. In this case, we say that the disease-free equilibrium is globally
stable. In the case R0 > 1, there are two equilibria: the disease-free I∗1 = 0 and the
endemic equilibrium I∗2 = K. We see that all solutions that start from I(0)> 0 move
away from the disease-free equilibrium. Hence, the disease-free equilibrium in this
case is unstable. At the same time, all solutions that start from I(0)> 0 approach the
endemic equilibrium I∗2 = K. In this case, we call the endemic equilibrium globally
stable.

For many models, even models given by a single equation, we may not be able to
solve the equation(s) explicitly or perform detailed analysis of the behavior of the
solutions. In addition, if there are multiple endemic equilibria, there may not be a
globally stable equilibrium. In these cases, the concept of a locally stable equilib-
rium is an applicable and useful tool. Loosely speaking, an equilibrium is locally
asymptotically stable if solutions that start close to the equilibrium approach that
equilibrium as t → ∞. Stability of a nonlinear system can often be inferred from the
stability of a corresponding linear system obtained through the process of lineariza-
tion. For a general differential equation
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x′(t) = f (x), (2.11)

x∗ is an equilibrium if and only if f (x∗) = 0. The idea of the linearization is to
shift the equilibrium to zero. Thus, we denote by u(t) = x(t)− x∗ the perturbation
that gives the deviation of a solution of (2.11) from an equilibrium. Solutions of
(2.11) starting from a neighborhood of x∗ approach x∗ if u(t) approaches zero. The
perturbation u(t) is assumed small. Notice that u(t) can be positive or negative, even
if x(t)> 0. We have x(t) = u(t)+x∗. We replace x(t) with its equal in the differential
equation and expand f around x∗ in a Taylor series, assuming that f is sufficiently
differentiable:

u′(t) = f (x∗)+ f ′(x∗)u(t)+
f ′′(ξ )

2!
(u(t))2,

where ξ is between x∗ and x∗ + u(t). Assuming that f has two continuous deriva-
tives, the second derivative f ′′ is bounded, and the last term in the expansion with
(u(t))2 is small and can be neglected. Since x∗ is an equilibrium, we also have
f (x∗) = 0. Thus, the equation for the perturbations becomes

u′(t) = f ′(x∗)u(t). (2.12)

This is the linearized equation of the nonlinear equation (2.11). This equation is
linear in the dependent variable u(t). The quantity f ′(x∗) is a given known constant.
If we define λ = f ′(x∗) then the linearized equation becomes

u′(t) = λ u(t),

whose solution is u(t) = u(0)eλ t . These solutions approach ∞ or −∞ exponentially,
depending on u(0), if λ > 0 and approach zero if λ < 0. Thus, if λ < 0, then
u(t) → 0. Hence, x(t)− x∗ → 0 or x(t) → x∗ as t → ∞. We conclude that solu-
tions of (2.11) that start from an initial condition that is sufficiently close to the
equilibrium converge to this equilibrium if λ < 0. In this case, the equilibrium x∗
is called locally asymptotically stable. If λ > 0, then |u(t)| → ∞, and x(t) moves
away from the equilibrium x∗. In this case, the equilibrium x∗ is called unstable.
We summarize this result in the following theorem.

Theorem 2.1. An equilibrium x∗ of the differential equation x′(t) = f (x) is locally
asymptotically stable if f ′(x∗)< 0 and is unstable if f ′(x∗)> 0.

This theorem does not tell us anything about the stability of the equilibrium x∗ if
f ′(x∗) = 0. An equilibrium for which f ′(x∗) �= 0 is called hyperbolic. If f ′(x∗) = 0,
the equilibrium is called nonhyperbolic.

We apply Theorem 2.1 to the logistic version of Eq. (2.9). If R0 < 1, we found
only one equilibrium I∗1 = 0. If R0 > 1, we found two equilibria: I∗1 = 0 and I∗2 = K.
We compute the derivative of f (I),

f ′(I∗) = r

(
1− I∗

K

)
− r

K
I∗,
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and its value of each equilibrium,

f ′(0) = r f ′(K) =−r.

We conclude that if R0 < 1, the disease-free equilibrium is locally asymptotically
stable. If R0 > 1, the disease-free equilibrium is unstable, while the endemic equi-
librium is locally asymptotically stable.

The problem of determining equilibria and their stability has a very elegant
graphical solution. For the equation x′ = f (x), if we plot the function f (x) as a
function of x, then the places where f (x) intersects the x-axis give the equilibria.
The stability of each equilibrium can then be read off the graph from the slope of
the graph as it passes through the equilibrium. If the slope of the tangent line to the
graph at the point of the equilibrium is positive, then that equilibrium is unstable;
if the slope of the tangent is negative, then that equilibrium is locally stable. If the
slope of the tangent to the graph at the equilibrium is zero, then the stability of that
equilibrium cannot be inferred from the graph. To illustrate this concept, consider
the equation x′ = f (x), where f (x) is plotted in Fig. 2.6. The equilibria and their
stability are explained in the figure caption.
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Fig. 2.6 Graph of the function f (x). Figure shows that equilibria are x∗1 = 0, x∗2 = 5, and x∗3 = 8.5.
The equilibrium x∗1 is locally stable because the slope of the tangent to x∗1 is negative. The slope
of the tangent to x∗2 is zero, so its stability cannot be determined from the graph. Equilibrium x∗3 is
unstable, since the slope of the tangent to x∗3 is positive

2.4 An SIS Epidemic Model with Saturating Treatment

We illustrate the concepts of the previous section on an SIS model with saturating
treatment/recovery rate. Suppose that in model (2.8), the per capita recovery rate
α depends on treatment. In this case, we may assume that treatment resources are
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limited and the per capita treatment rate α is not constant, but is decreasing with
the number of infected individuals. A reasonably simple form of such a function
would be

α(I) =
α

1+ I
,

where the constant α is the treatment/recovery rate when there are few infectives.
We use this function in model (2.8) to obtain the following SIS model with saturat-
ing treatment:

S′(t) = −β IS+
αI

1+ I
,

I′(t) = β IS− αI
1+ I

. (2.13)

System (2.13) is called an SIS epidemic model with saturating treatment. Here, if
N = S+ I and we add the two equations, we again obtain N′ = 0. Hence the total
population size is N, where N is a constant in time. The system is equipped with
initial conditions S(0) and I(0), so that N = S(0)+ I(0).

2.4.1 Reducing the SIS Model with Saturating Treatment
to a Single Equation

Since the total population size in model (2.13) is a given constant, we may write
S(t) = N − I(t) and substitute it in the second equation of system (2.13). Therefore,
we obtain a single equation in the number of infected individuals:

I′(t) = β I(N − I)− αI
1+ I

. (2.14)

In principle, Eq. (2.14) is a separable equation and can be solved. However, to il-
lustrate common methodologies, we will try to investigate the properties of this
equation without solving it. First, we look for the equilibria. We denote by f (I) the
right-hand side:

f (I) = β I(N − I)− αI
1+ I

.

To find the equilibria, we set f (I) = 0. Clearly, I∗1 = 0 is an equilibrium. This gives
the disease-free equilibrium of the equation. To look for endemic equilibria, we
cancel one I and we rewrite the equation f (I) = 0 as an equality of two functions:

β (N − I) =
α

1+ I
.

This equation can be rewritten as a quadratic equation, which can have zero, one,
or two positive roots. We will investigate graphically the options and the conditions
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for each to occur. We rewrite the above equation as

(N − I)(1+ I) =
α
β
. (2.15)

Let g(I) = (N − I)(1+ I). Then g(I) is a parabola that opens downward. Clearly,

g(0) = N. The right-hand side of the above equation is y =
α
β

and can be graphed

as a horizontal line.

• If g(0) = N >
α
β

, then Eq. (2.15) always has a unique positive solution I∗2 . Then

the system (2.13) has one endemic equilibrium. We define the reproduction num-
ber of the system as

R0 =
β N
α

.

Hence, if R0 > 1, there is a unique endemic equilibrium. We illustrate this situ-
ation in Fig. 2.7.
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Fig. 2.7 Graph of the function g(I) and the horizontal line y =
α
β

. The figure shows the existence

of a unique intersection for positive I, giving a unique positive equilibrium

• If g(0) = N <
α
β

, then Eq. (2.15) has either two or zero solutions. In this case,

R0 < 1.

To specify additional conditions so that Eq. (2.15) has two positive solutions, we
must notice that we need two things to happen:
(1) The maximum of the parabola must be to the right of the y-axis. The parabola
intersects the x-axis at the points N and −1. Hence, its maximum occurs at their
average,

Im =
N − 1

2
> 0.
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This poses the requirement that N > 1. (2) The line y =
α
β

must lie below the

maximum of the parabola. That is, we must have

(N − Im)(1+ Im)>
α
β
. (2.16)

Therefore, if R0 < 1, N > 1, and condition (2.16) are satisfied, then the sys-
tem (2.13) has two endemic equilibria I∗11 and I∗12; otherwise, it has no endemic
equilibria. We illustrate these two situations in Fig. 2.8.
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Fig. 2.8 Graph of the function g(I) and the horizontal line y =
α
β

. Left: the existence of two

intersections for positive I, giving two positive equilibria. Right: no intersections of the function

g(I) and the horizontal line y =
α
β

. Thus, there are no positive equilibria

2.4.2 Bistability

To decide the stability of equilibria, we have to derive the sign of f ′(I∗) for each
equilibrium I∗. That may not be an easy task to do analytically. Fortunately, the
stability of the equilibria can be read off the graph of the function f (I) for each
of the three cases above. If R0 < 1 and there are no nontrivial equilibria, then all
solutions of Eq. (2.15) are attracted by the disease-free equilibrium. So the disease-
free equilibrium is globally stable in this case. For each of the other two cases, we
graph the function f (I) in Fig. 2.9. Looking at Fig. 2.9, we see that in the case R0 >
1 (left figure), we have f ′(0) > 0. Hence, the disease-free equilibrium is unstable.
Furthermore, f ′(I∗2 ) < 0. Hence, the endemic equilibrium is locally stable. We can
argue, as we did in the case of the logistic equation, that the equilibrium is globally
stable. In the case R0 < 1, there are three equilibria: I∗1 = 0, I∗11 < I∗12. For solutions
I(t) that start from I(0) = I0 satisfying 0 < I0 < I∗11, we have 0 < I(t) < I∗11 for all
t. Furthermore, f (I) < 0 for such solutions (the graph of f (I) is below the x-axis),
so that dI

dt < 0. Hence, I(t) is decreasing and limt→∞ I(t) = 0. For solutions I(t)
that start from I(0) = I0 satisfying I∗11 < I0 < I∗12, we have I∗11 < I(t)< I∗12 for all t.
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Fig. 2.9 Graph of the function f (I). Left: the case R0 > 1 and the existence of two intersections
for nonnegative I, giving two nonnegative equilibria. Right: the case R0 < 1 and three intersections
of the function f (I) and the x-axis, giving three nonnegative equilibria. Stabilities explained in text

Furthermore, f (I) > 0 for such solutions (the graph of f (I) is above the x-axis), so
that dI

dt > 0. Hence, I(t) is increasing and limt→∞ I(t) = I∗12. For solutions I(t) that
start from I(0) = I0 satisfying I∗12 < I0, we have I∗12 < I(t) for all t. Furthermore,
f (I) < 0 for such solutions (the graph of f (I) is below the x-axis), so that dI

dt < 0.
Hence, I(t) is decreasing and limt→∞ I(t) = I∗12. We notice that depending on the
initial conditions, we have solutions that converge to the disease-free equilibrium
and solutions that converge to the endemic equilibrium. Such a situation is called
bistability. In this case, there is no globally stable equilibrium. The region 0 <
I0 < I∗11 is called a domain of attraction of the disease-free equilibrium. The region
I∗11 < I0 is called a domain of attraction of the endemic equilibrium.

Problems

2.1. Show that the model (2.1) is well posed.

2.2. Use a computer algebra system to graph the solutions (2.4).

2.3. The simplest model of malaria assumes that the mosquito population is at equi-
librium and models the proportion of the infected humans I with the following equa-
tion:

I′ =
αβ I

αI + r
(1− I)− μI,

where r is the natural death rate of mosquitoes, μ is the death rate of humans, β is
the transmission rate from infected mosquitoes to susceptible humans, and α is the
transmission rate from humans to mosquitoes.

(a) Compute the reproduction number of malaria.
(b) Find the equilibria of the model and their stabilities.
(c) Use a computer algebra system to graph several solutions.
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2.4. Consider the model of malaria in Problem 2.3 and assume that saturating treat-
ment is applied:

I′ =
αβ I

αI + r
(1− I)− μI− γI

A+ I
,

where r is the natural death rate of mosquitoes, μ is the death rate of humans, β
is the transmission rate from infected mosquitoes to susceptible humans, α is the
transmission rate from humans to mosquitoes, γ is the treatment rate, and A is the
half-saturation constant.

(a) Compute the reproduction number of malaria with saturating treatment.
(b) Find the equilibria of the model and the conditions for their existence.
(c) Find the stabilities of the equilibria.
(d) Use a computer algebra system to graph several solutions.

2.5. Consider the SIS model with constant population size N and saturating inci-
dence in the size of the susceptibles:

S′(t) = − β IS
1+σS

+αI,

I′(t) =
β IS

1+σS
−αI. (2.17)

(a) Reduce the SIS model to a single equation.
(b) Determine the threshold condition for the existence of endemic equilibria.
(c) Use a computer algebra system to plot the solutions of (2.17) for N = 100, β =

0.5, σ = 0.01, α = 0.05.

2.6. Consider the SIS model with constant population size N:

S′(t) = − β I pS
1+σ Iq +αI,

I′(t) =
β I pS

1+σ Iq −αI. (2.18)

(a) Reduce the SIS model to a single equation.
(b) For the case p< 1, q= p−1, determine the threshold condition for the existence

of endemic equilibria.
(c) For the case p > 1, p = q, determine the threshold condition for the existence of

endemic equilibria.

2.7. Plague in Eyam [27]
The Derbyshire village of Eyam, England, suffered an outbreak of bubonic plague
in 1665–1666. The source of that plague was believed to be the Great Plague of
London. The village is best known for being the “plague village” that chose to iso-
late itself when the plague was discovered there in August 1665 rather than let the
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infection spread. Detailed records were preserved. The initial population of Eyam
was 350. In mid-May 1666, nine months after the beginning of the epidemic, there
were 254 susceptibles and 7 infectives. The data about the epidemic in the remain-
ing months are given in Table 2.2. The infective period of the bubonic plague is 11
days.

(a) Estimate α
(b) Use the implicit solution of the SIR model to estimate β .
(c) Plot S and I alongside the data. Do they fit?

2.8. A first-order differential equation is given by x′(t) = f (x), where f (x) is defined
by Fig. 2.10.

(a) Determine the equilibria of the model x′ = f (x).
(b) Determine the local stabilities of the equilibria of the model x′ = f (x).
(c) Graph the solutions x(t) of the model x′ = f (x) as a function of time.
(d) What is the limit

lim
t→∞

x(t)

if x(0) = 15? What about if x(0) = 1?

Table 2.2 Number of susceptible and infected individuals during the Great Plague of Eyam

Date 1666 No. susceptible No. infected

Mid-May 254 7
July 3/4 235 14.5
July 19 201 22
August 3/4 153.5 29
August 19 121 21
September 3/4 108 8
September 19 97 8
October 3/4 Unknown Unknown
October 20 83 0
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Fig. 2.10 Graph of the function f (x)
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