
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

A new procedural semantics for prolog

Trinon, Jean-Marc

Award date:
1987

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 25. Apr. 2024

https://researchportal.unamur.be/en/studentTheses/07abbc7f-78dd-4698-8172-ca1352dcdcfb

A NEW PROCEDURAL

SEMANTICS FOR PROLOG

Jean-Marc TRINON

Mémoire présenté en vue de l'obtention du
grade de Licencié et Maître en Informatique.

Promoteur : Baudouin LE CHARLIER

Année Académique 1986-1987

•

•

•

ACKNOWLEDGEMENTS

I am particularly grateful to Mr. Baudouin Le Charlier,
supervisor of this work, for tens of hours of questions, discussions
and argwnents about the material of this work. His guidance and
his advice have greatly improved the quality of the results. I take
this opportunity to offer my deepest thanks .

I would also like to thank Mr. Yves Deville for his useful
comments on earlier drafts.

I take great pleasure in acknowledging Mr. Michel
Vanden Bossche-Marquette and ail the members of BJ M. company
in Everberg. The time I spent there has greatly enhanced my
knowledge of PROWG. Thanks also for allowing me to use their
text processing tools.

I owe a great debt of thanks to my parents for giving me
full support during my university education.

Finally, I wish to send my apologies to ail the people I
have disturbed during the elaboration of this work.

1

1

Î

CONTENTS ... C-1

PROPOSITIONS AND LEMMAS .. P-I

FIGURES ... F-I

INTRODUCTION ... 1

CHAJ>'fER 1 : LOGIC PROGRAMMING ... 3

1.1 Introduction ... 3

1.2 Syntax 4

1.2.1 Alphabet 4

1.2.2 First order language ... 5

1.2.3 Clause ... 6

1.2.4 Logic program, program clause, goal clause 7

1.3 Declarative semantics 8

1.3.1 Intuitive presentation 8

1.3.2 Interpretation and truth values 10

1.3.3 Substitution, unification, answer substitution 11

1.4 Procedural semantics 14

1.4.1 SLD-resolution 14

1.4.2 Sill-refutation procedures ... 16

1.5 PROLOO 21

C-1

Contents

CHAPfER 2 : A NEW PROCEDURAL SEMANTICS FOR PROLOG 24

2.1 Introduction 24

2.2 Usual intuitive understanding 25

2.3 Preliminaries 28

2.3.1 Context 28

2.3.2 Array of con tex tu al variables (ACY) 28

A. Substitution defined by an ACY 29

B. Instance of an ACY by a substitution 29

C. Restriction of a substitution by an ACY 30

D. Strict restriction of a substitution by an ACY 30

E. Proposition 2.1 30

F. Proposition 2.2 31

G. Covering ... 33

2.3.3 General primitives 33

A. Function REFERENCE _ACY(CL) .. 33

B. Function STANDARDIZATION(CL,Y) 33

C. Function MGU(CL,SG,Y) .. 34

2.3.4 Special mechanisrns ... 34

2.4 Algorithms 36

2.4.1 Global variables ... 36

2.4.2 Algorithm EQ .. 37

2.4.3 Algorithm EG .. 38

2.4.4 Algorithm ESG .. 40

2.5 Equivalence with the usual procedural semantics 43

2.5.1 Sequence of answer substitutions 43

2.5.2 Proposition 2.3 (Equivalence) 44

2.5.3 EG 44

2.5.4 ESG 45

C-11

Contents

CHAYI'ER 3 : EQUIVALENCE FOR FINITE SLD-TREES
WITHOUT CUTS ... 46

3.1 Introduction 46

3.1.1 Proposition 3.1 46

3.1.2 Proposition 3.2 47

3.1.3 Rernarks ... 47

3.2 Proof of proposition 3.1 if proposition 3.2 is correct 48

3.2.1 Prelirninaries .. 48

3.2.2 Structure of the proof 50

3.2.3 I..ernrna 3.1 52

3.2.4 I..ernrna 3.2 52

3.2.5 I..ernrna 3.3 57

3.2.6 Proof of proposition 3.1 59

3.3 Proof of proposition 3.2 if proposition 3.1 is correct 59

3.3.1 Prelirninaries 59

A. Sturnp 59

B. Using stump concept in SLD-trees ... 61

C. Proposition 3.3 61

D. Proposition 3.4 ... 63

E. Consequences concerning the CAS ofT(G) 65

F. Graphical representation 65

3.3.2 Structure of the proof 67

3.3.3 I..ernrna 3.4 68

3.3.4 I..ernrna 3.5 71

3.3.5 Proof of proposition 3.2 74

3.4 Lifting circularity 75

3.4.1 depth(T(SG ev o)) = 0 76

3.4.2 depth(T(G 0V o)) = 0 ... 76

3.4.3 depth(T(SG ev o>) = 1 77

C-111

Contents

3.4.4 depth(T(G 0V o)) = 1 ... 77

3.4.5 General case 78

3.5 Proof of proposition 2.3 (Equivalence) ... 79

CHAPfER 4 : EQUIVALENCE FOR INFINITE SLD-TREES
WITH OUT CUTS ... 82

4.1 Introduction ... 82

4.1.1 Proposition 4.1 ... 82

4.2 Subgoal Subtrees (SS) , Subgoal Restricted Subtrees (SRS) 83

4.2.1 SSl ... 84

4.2.2 Graphical representation .. 85

4.2.3 SSj .. 88

4.2.4 Proposition 4.2 ... 91

4.2.5 Proposition 4.3 ... 91

4.3 Structure of the proof .. 93

4.4 Proof for SLD-trees containing one and only one infinite branch 94

4.4.1 I...emma 4.1 ... 94

4.4.2 I...emma 4.2 ... 98

4.4.3 I...emma 4.3 101

4.4.4 Proof of proposition 4.1 ... 104

4.5 SLD-trees with many infinite branches .. 105

CHAPfER 5 : CUTS ... 107

5.1 Introduction ... 107

5.2 Side-effects of eut ... 107

5.3 Two propositions about algorithm ESG ... 110

5.3.1 Proposition 5.1 ... 110

5.3.2 Proposition 5.2 110

C-IV

Contents

5.4 Finite SLD-trees 112

5.4.1 Adaptation of proposition 3.2 .. 112

5.4.2 Adaptation of lemma 3.2 and of its proof 113

5.4.3 Adaptation of lemma 3.3 and of its proof 113

5.4.4 Proposition 5.3 114

5.4.5 Adaptation of lemma 3.4 and of its proof 115

5.4.6 Adaptation of lemma 3.5 and of its proof 116

5.4. 7 Adaptation of the proof for adapted proposition 3.2 117

5.4.8 Adaptation needed for lifting circularity 118

5.4.9 Proof of equivalence .. 118

5.5 lnfinite SI..D-trees 118

CHAYfER 6 : OUTLOOKS ... 119

6.1 Introduction ... 119

6.2 Towards the definition of a frame of specification 119

6.2.1 General form of a specification .. 120

6.2.2 Types .. 121

6.2.3 In-directionnality 122

6.2.4 Preconditions ... 123

6.2.5 Relation .. 123

6.2.6 Out-directionnality ... 123

6.2.7 Postconditions .. 124

6.2.8 Exarnples of specification .. 125

6.3 Towards the introduction of extra-logical features 126

6.4 Towards proofs of correctness ... 129

6.5 The occur check .. 132

CONCLUSION .. 133

REFERENCES ... R-1

C-V

Proposition 2.1 ... 30

Proposition 2.2 ... 31

Proposition 2.3 ... 44

Proposition 3.1 ... 46

Proposition 3.2 ··-··· 47

1.emma 3.1 ··-··· 52

1.emma 3.2 ... 52

1.emma 3.3 ... ; 57

Proposition 3.3 ... 61

Proposition 3.4 .. 63

1.emma 3.4 ... 68

1.emma 3.5 ... 71

Proposition 4.1 ... 82

Proposition 4.2 ... 91

Proposition 4.3 ... 91

1.emma 4.1 .. 94

1.emma 4.2 98

1.emma 4.3 ... 101

Proposition 5 .1 ... 110

Proposition 5.2 ... 110

P-1

Propositions and lemmas

Adaptation of proposition 3.2 .. 112

Adaptation of lemma 3.2 .. 113

Adaptation of lemma 3.3 113

Proposition 5.3 ... 114

Adaptation of lemma 3.4 .. 115

Adaptation of lemma 3.5 .. 116

P-11

Figure 1.1 ... 18

Figure 1.2 19

Figure 3.1 ... 49

Figure 3.2 ... 51

Figure 3.3 ... 60

Figure 3.4 ... 65

Figure 3.5 ... 66

Figure 3.6 ... 67

Figure 3. 7 76

Figure 3.8 ... 76

Figure 3.9 ... 77

Figure 3.10 ... 78

Figure 4.1 ... 86

Figure 4.2 ... 87

Figure 4.3 ... 88

Figure 4.4 88

Figure 4.5 ... 90

Figure 4.6 ... 92

Figure 4. 7 ... 92

Figure 4.8 96

F-1

Figures

Figure 4.9 99

Figure 4.10 ... 102

Figure 4.11 ... 103

Figure 4.12 105

Figure 5.1 109

F-11

- - - - - - --- - - ----

Nowadays, some PROLOG-systems are becoming actual development systems.
The time has corne when the usage of this language is no longer restricted to a small
number of AI "laboratories" . The need for a methodology of development for
PROLOG programs is therefore urgent. Ideally, this methodology should be as close
as possible to the intuitive approach of PRO LOG programmers.

As PROLOG is a consequence activities in the field of "Logic Programming", 1t 1s
interesting to quickly browse through the different methodologies developed in this
field.

One trend tries to develop the knowledge and the theories concerning predicate
logic. Kowalski's work [Kowalski 79] is a good illustration of this trend. But we shall
see in chapter 1 that programming in PROLOG is different from programming in logic !

A second trend is illustrated by Deville's work [Deville 87]. This trend consists
of separating the logical aspects from the non-logical ones. It tries to reconciliate
declarative and procedural semantics. It suggests that programming in PROLOG is
programming in logic but augmented with something else (control information for
example). So, in the methodology, a first step is only concemed with logical aspects
and only during the second one, non-logical aspects are taken into account.

Finally, a third trend gives priority to the procedural aspects of the logic
programming language. It believes that the gap between the declarative and the
procedural semantics is so huge that it is simpler to build correct programs by using
almost exclusively procedural aspects. But the usual procedural semantics founded
on the search for solutions in a tree (as explained in [Lloyd 84]) is not usable for the
development of a practical methodology.

A first methodology based on this third trend has been developed last year at the
University of Namur [Derroitte 86]. In that work, the procedural semantics of a
subset of PROLOG (a purely deterministic subset without the eut) is discussed and
a methodology for proof of correctness is developed. The determinism simplifies the
problem because no backtracking can occur .

Our work cornes as an extension of [Derroitte 86] in the sense that we suggest a
procedural semantics for the whole PROLOG language even in its non-deterministic

page 1

Introduction

aspects. The procedural semantics we propose is founded on three algorithms
presented in chapter 2 ; it is as close as possible to the intuitive approach of
PROLOG programmers.

In chapter 1 , we recall some fondamental concepts of logic programming.
Chapters 3 and 4 establish the equivalence between our semantics and the usual
one for finite and infinite (respectively) SLD-trees without cuts. Chapter 5
investigates the problem of cuts.

Chapter 6 is concemed with possible future researchs towards the elaboration of
a frame of specification, the introduction of extra-logical features and the problem of
proofs of correctness. These aspects must be studied in order to conceive a complete
methodology.

page 2

1.1 INTRODUCTION:

The "key idea" of logic programming is that logic can be used as a programming
language. This was introduced in the early 70's mainly by Kowalski [Kowalski 74]
and Colmerauer, although Green should also be mentioned [Green 69]. lt cornes as
consequence of earlier works in the field of automatic theorem-proving and
particularly of Robinson's landmark paper [Robinson 65] about the resolution
principle, resolution being an inference rule well-suited to automation on computer.

Up to now, the PROLOG language has been the major outgrowth of the logic
programming paradigm. PROLOG is the acronym of PROgramming in LOGic.

In this chapter, we begin with a review of the syntax of logic programs based on
the syntax of Hom clauses. We define there some notational and denominational
conventions.

Tuen, we tum to the definition of the declarative semantics of logic programs.
This semantics provides the interpretation of programs at the logical level.

Next, we examine the procedural semantics which deals with the procedural
interpretation of Hom clause logic. This interpretation makes Hom clause
logic very effective as a programming language. We also recall the fondamental
theorems establishing the equivalence of the two semantics.

Finally, we show how this procedural semantics can be used for the PRO LOG
programs but also how some PROLOG features can destroy the equivalence of the
two semantics.

Much of this chapter is inspired from earlier works [Deville 87], [Lloyd 84] and
[Kowalski 79].

page3

Chapter 1 Loglc programmlng

1.2 SYNTAX:

This aspect is concemed with the syntactic definition of a first order language. We
recall only some key definitions.

1.2. 1 Alphabet :

First, an alphabet must be defined. It will be used to build the well-formed
formulas of the language. The alphabet can be subdivised into seven classes of
symbols:

• constants

• variables

• functions

• predicates

• connectives

• quantifiers

• punctuation symbols

Usu.ally, the first four classes vary from alphabet to alphabet, while the others
remain the same.

The set of constants is composed of finite strings of characters. The set of
variables is composed of finite strings of letters and digits preceeded by an
underscore (convention). The set of variables and constants must be disjoint

The sets of n-ary functions and n-ary predicates are composed of finite strings of
letters, digits and special characters (the set of special characters being { +,

,*,/,=,<,>, •}) . Each string will be subscripted with <lunction,n> in the n-ary
function set and with <predicate,n> in the n-ary predicate set

The set of connectives is { -, , " , v , ➔ , H } .

The set of quantifiers is { 3 , 'if } .

The set of punctuation symbols is { (,) , ,} .

We use some notational conventions:

page4

Chapter 1 Logic programming

for readability, we allow the insertion of the underscore (_) anywhere in
constants and in the middle of variables and fonctions.

the sets of n-ary predicates and n-ary functions are ail disjoint (because of
their subscripts). When writing formulas, we drop these subscripts. The
distinction between fonctions and predicates is clear in every formula.
Moreover, the arity is also unambiguous. But is the same string stands for a
predicate and a fonction (or two predicates or fonctions with different arity),
they are conceptually different because of their virtual subscripts.

1.2.2 First order language :

We can now define the first order language given by an alphabet: it consists of
the set of ail well-fonned formulas constructed from the symbols of the alphabet

The syntax of well-formedformulas (wft) complies to the following rules:

<wff> ::= <atomic formula> 1

-,<wwf> 1

<wwf> A <wwf> 1

<Wwf>V<Wwf>I

<Wwf> ➔ <wwf>I

<wwf>H<Wwf>

3 <variable> <wwf> 1

'v <variable> <Wwf> .

<atomic formula> ::= <predicate> 1 <predicate> (<list of terms>)

<list of terms> ::= <term> 1 <term> , <list of terms>

<term> ::= <constant> 1 <variable> 1 <fonction> 1

<fonction> (<list of terms>)

Later on, when we speak of a formula, it means a well-formed formula.

Examples:

Assume that
a, b are constants,
f, g are fonctions,
p, q are predicates,

pages

Chapter 1

_ x, _y are variables.

The following are formulas :

'v _X p(_x)

'v _x (3_y (p(_x, f(_y)) ➔ q(_x)))

-, (3_x (p(_x, a)" q(f(a))))

Notational conventions:

- often, F ➔ G will be written as G f- F .

Logic programming

- we also write the term •Lh , _t) as [_h 1 _t], and [tl,t2, ... ,tn] for •(tl, •(t2,
(... , •(tn,[]) ...))) when tl, t2, ... , tn are terms.

- to avoid bracketting as much as possible, we adopt the following order of
precedence (highest at top) with a left to right associativity rule :

-,,3,'v

"
V

➔ ,H

- for some predicates it is also handfull to use an infix notation instead of a
prefix notation. For instance we write tl=t2 in place of =(tl,t2) where t1 and
t2 are terms.

In 'v _ x p(_ x) or 3 _ x p(_ x) , the scope of 'v _ x or 3 _ x, respectively, is p(_ x) . An
occurrence of a variable immediately following a quantifier or within the scope of a
quantifier conceming this variable is a bound occurrence. Any other occurrence of a
variable is free.

We define a closed formula as a formula with no free occurrence of any
variable.

If L is an atomic formula, Land-, Lare literais. L is a positive litera!. -, Lis a
negative litera!.

1.2.3 Clause :

Then, we define a clause as a formula of the form

page6

Chapter 1 Loglc programming

where each Li is a litera! and _ x 1, ... , _ xs are the variables occurring in (L 1 v.. . v

Lm)

A Horn clause is a clause with one or no positive literal.

We adopt the usual shorthand notation for the clauses, so the clause

where A1, ... , Ak , B1 , ... , Bm are atomic formulas and _x1, ... ,_xs are ail the

variables occurring in these atoms, is denoted by

A 1, ... , Ak is called the consequent and B1, ... ,Bm the antecedent.

1.2.4 Logic program, program clause, goal clause :

Now, we can tum to the definition of a logic program : it is a finite set of program
clauses, a program clause being a Hom clause with one positive literal.

So, a pro gram clause bas the following form :

A is called the head (or consequent) and B 1 , ... , Bn the body (or antecedent)

of the program clause. A program clause with an empty body is also cailed a unit
clause.

The set of ail program clauses, of a logic program, with the same predicate in the
head is called the definition of this predicate.

A clause with an empty consequent is called a goal clause. It has the form

and each Bi (i=l ... n) is a subgoal of the goal clause.

page 7

Chapter 1 Loglc programmlng

Note: we do not call a goal clause simply a goal ! When we speak of a goal,
we mean the body of a goal clause, thus (B 1 , ... , Bn) . A goal is then a

list of subgoals.

The empty clause (the clause with empty consequent and empty antecedent)

is denoted ◊.

1.3 DECLARATIVE SEMANT/CS:

In this section, we briefly discuss the meaning which can be attached to a logic
program. We do not pay too much attention to this aspect because our work is
mostly concemed with the procedural interpretation of logic programs. However,
some key concepts are important.

The declarative semantics provides an understanding of the program in terms of
formulas and truth values in first order logic. We do not agree with the assertion
saying that the declarative semantics of a program provides its specification because
we think a (easily understandable) specification requires some concepts which can
not be embraced in a simple way by first order logic. Possibly, the declarative
semantics can be seen as the translation of the specification, or of some of its
aspects, under the form of logic formulas. For more details about this question, we
suggest to consult [Le Chartier 85].

1.3. 1 Intuitive presentatlon :

The quanti.fiers and connectives have the following meanings:

-, is negation,

A is conjunction (and),

v is disjunction (or),

➔ is implication and

H is equivalence.

So, we can give an intuitive meaning to well-formed formulas :

'r;/ X p(_x)
for every _ x , p(_ x) is true

pagea

Chapter 1 Loglc programming

3_x (p(_x, _y)/\ q(_x))

there exists an _x such that p(_x,_y) is true and q(_x) is true

'v _x (3_y (q(_x, _y)/\ -,r{_y}) ➔ p(_x))

for every _x, p(_ x) is true if there exists an _y such that
q(_x,_y) is true and r(_y) is false

If we regard the general forms of program clauses :

A~

rneans that for each assignment of each variable, if

B 1, ... ,Bn are all true, then A is true

rneans that for each assignment of each variable, A is true

In order to fix the rneaning of a logic program, we must also attach a meaning

to the constants, the fonctions and the predicates.

Exarnple : the factorial problem [Kowalski 79]

This is a typical example in conventional prograrnrning.

Constant : 0 represents the null integer

Function: S is an unary fonction S(x) represents the integer
represented by _ x incremented by one. So S(O) is 1 ,
S(S(O)) is 2, ...

Predicates : We suppose that we have a predicate tirnes(_x,_y,_z) which
is defined such that it holds when _x rimes _y is _ z

Using prograrn clauses, we can write the following affirmation for the
factorial predicate fact(_ x,_y)

fact(O, S(O)) ~

fact(S(_x), _u) ~ fact(_x,_v), times(S(_x),_v,_u)

The intuitive rneaning of a goal clause is as follows : if _x1, ... , - ~ are the

variables occuring in

page9

1 '

Chapter 1 Loglc programming

,the complete notation is

which means that for ail _x 1, ... , -~ , we at least have one Bi (i = 1 ... r) that is

false. So, we can equivalently write that there does not exist a combination of _ xj (j

= 1 ... r) such that ail Bi are true.

This gives the following formula :

Such a clause is used in a refutation demonstration in order to prove whether a

combination of values for _x1, .. . , _xr exists, combination such that (B 1 A •.. A Bn),

the corresponding goal, is true.

The empty clause is to be understood as contradiction.

A logic programming system must try to see if the set of program clauses
completed with the goal clause is inconsistent. Usually, it tries to derive the empty

clause by using specific inference rules. If the empty clause is derivable, this means
that we have inconsistency. In this case, the system usually gives the bindings,
for the variables _ xj (j = 1 ... r) of the goal clause, which produce the

inconsistency. These bindings are so that (B 1 A ••• A Bn) is true for the values they

specify. If such bindings do not exist, the empty clause cannot be derived and it

means that (B 1 A ••• A Bn) can not be true. We also say that (B 1 A . •. A Bn) can not

hold.

Ideally, a logic programming system should be a black box for computing

bindings for the variables appearing in the request; the internai workings of the
system should be invisible!

1.3.2 lnterpretation and truth values :

From a formai point of view, the declarative semantics of a logic program is given
by the usual semantics of formulas in first order logic. We briefly recall basic

notions ; for a further study, the reader should better consult [Lloyd 84] .

page 10

Chapter 1 Logk: programming

We have seen that a logic program is built using a fi.rst order language. The
quantifie.rs and connectives have fixed meanings. This is not the case with
constants, fonctions and predicates. Their meanings are given by an interpretation.

An interpretation fixes

the domain of discourse over which the variables range.

- the assignment of each constant to an element of the domain.

- the assignment of each fonction to a mapping on the domain.

- the assignment of each predicate to a truth value (true or false) or,
equivalently, to a relation on the domain.

The mechanisms to get the truth values for formulas must also be defined.

When a formula expresses a true statement in an interpretation, this latest is
called a mode/ of the formula.

Fi.rst order logic provides methods for the deduction of theorems in a first order
theory. A first order theory consists of an alphabet, a first order language, a set of
axioms and a set of inference rules [Mendelson 79] . The formulas are given by the
fi.rst order language. The axioms are a designated subset of these formulas. In logic
programming, the axioms are the program clauses.

The theorems are in fact the formulas coming as logical consequences of
the axioms. This means they are true for any interpretation which is a model of all
the axioms.

The inference rule used by logic programming systems under consideration is
the resolution principle introduced by Robinson in 1965 [Robinson 65].

1.3.3 Substitution, unification, answer substitution :

In automatic theorem proving, it suffi.ces to demonstrate logical consequence but
in logic programming, the aim is to compute bindings for variables appearing in a
formula. These bindings are such that, when we replace the variables of the formula
with the values they specify, the formula becomes a logical consequence of the
axioms (or equivalently of the program). These bindings are the output from the
running of the program. A declarative unde.rstanding of the output of a program and
a goal is given by the concept of correct answer substitution.

page 11

Chapter 1 Loglc programmlng

A substitution 8 is a finite set of the forrn {_v1tt1 , ... , _vn/1n} where each ti

is a terrn distinct from _ vi and the variables _ v 1, ... , _ vn are distinct Each

element _ v/ti is called a binding for_ vi. When ail the ti are ground terms, we have

a ground substitution (a ground terrn being a terrn not containing variables).
When ail the ti are variables, we have a variable pure substitution.

What we will call an expression is either a terrn, a litera! or a conjunction or
disjunction of literals. A simple expression is either a terrn or an atomic formula.

If 8 = {_ v 1tt1 , ... , _ vn/tn} is a substitution and E an expression, then E8 is

the instance of E by 8 . It is obtained by simultaneously replacing each occurrence of

the variable_ vi in E by the terrn ti (i = 1 ... n). If E8 is ground, then E8 is called a

ground instance of E.

Let 8 = {_u1ts 1, ... , _um/sm} and a= {_v1tt1, ... , _vn/tn} be substitutions. The

composition 8a of 8 and a is the substitution obtained from the set {_u1ts 1a , ... ,

_ um/sm a , _ v 1 /t 1, .. . , _ v n'1n} by deleting any binding _ u/si a

and deleting any binding v/tj such that vj e {_u1, ... , _um} .

Example:

such that U· = s-a
- 1 1

8 = {_x/f(_y), _y/_z} , a = {_x/a, _y/b, _z/_y}. Their composition 8a is

{_x/f(b), _z/_y} and their composition a8 is {_x/a, _y/b}

The substitution given by the empty set is called the identity substitution and is

denoted by E .

We can list the following properties:

if 8, a and y are substitutions and E an expression then

• 8E=E8 =8

• (E0)a = E(0a)

• (8a)y = 8(ay)

If E and F are expressions, they are called variants if there exist substitutions

8 and a such that E = Fa and F = E0 . It is also said that E (F) is a variant of F

page 12

Chapter 1

(E).

Exarnples:

p(_x,_y) and p(_ v,_ w) are variants
q(a) and q(_ x) are not variants
r(_x,_x) and r(_x,_y) are not variants

Logic programmlng

Assuming that E is an expression and V is the set of ail the variables occurring
in E, a renarning substitution is a variable-pure substitution {_v1t_t1, ... , _vnl-t..-i}

such that {_v1, ... , _vn} ~ V, the _vi are distinct and (V\{_v1, ... , _vn}) n {_t1, ... ,

-1n} = 0.

It has been proved that for any of both variants E and F, there exists a

renarning substitution e (cr) for E (F) such that F = Ee (E = Fcr).

The concept of unifier is fondamental. Unification was first introduced by
Herbrand and is much used in logic programming systems. The idea is to find a
substitution for a set of expressions, substitution such that the set of instances of
these expressions by the substitution is a singleton (thus, ail instances are
equivalent) . For our purpose it is enough to consider non-empty finite sets of
simple expressions (terms or atomic formulas).

If S is a set of expressions of the form {E1, ... , En} and a substitution, we

write se for {E1 e , ... , Ene}.

If se is a singleton, then e is a unifier for S. It is also said that Ei (i = 1...n)

match together via e , which is the matching substitution.

A unifier e for S is called a most general unifier (MGU) if for each unifier cr of

S, there exists a substitution y such that cr= 8y.

A unification algorithm (providing occur check) is presented in [Lloyd 84]. The
occur check is fondamental but has major drawbacks on efficiency. We can
illustrate the occur check with the following set of expression S = {_ x, f(_ x)}.

For algorithms performing occur check, S is not unifiable since _ x appears in
f(_ x) but other algorithms will unify _ x and f(_ x) and this can cause problems as
we will see later.

page 13

Chapter 1

If we say that an answer substitution for P u { ~G} is
variables appearing in G (not necessarily ail variables) , we
following definition of correct answer substitution :

let P be a program,
let G be a goal of the form (B 1, ... , Bn) and

let 8 be an answer substitution for Pu { ~G}

Loglc programmlng

a substitution for
can provide the

8 is a correct answer substitution for P u { ~G} if 'v ((B 1 A ••• A Bn)8)
is a logical consequence of P .

This concept captures the intuitive meaning of "correct answer". It provides a
declarative understanding of the desired output of a program and a goal.

A logic programming system should also retum the answer "no" if P u { ~G}
does not lead to inconsistency (thus in the case there is no correct answer
substitution).

1.4 PROCEDURAL SEMANT/CS:

We now tum to the most usual procedural interpretation of Hom clauses. This
interpretation makes Hom clause logic very effective as a programming language.

We have seen at the declarative level that the aim of logic programming is to
compute correct answer substitutions. At the procedural level the counterpart of
this concept is the concept of computed answer substitution which is defined by
using a refutation procedure called SLD-resolution. Hereafter, we take over from
Lloyd [Lloyd 84] the basic definitions and results of some interest for our

purpose.

1.4. 1 SLD-resolution :

A computation rule is a fonction from a set of goals to a set of atomic formulas
(or atom), such that the value of the fonction for a goal is always an atom, called the

selected atom, in that goal.

Let GCi be ~Al , ... , Am, ... , Ak and Ci+l be A~ B1 , ... , Bq and R be a

computation rule. then GCi+l is derived from GCi and Ci+l using MGU 8i+l via Rif

page 14

Chapter 1 Loglc programmlng

the following conditions hold :

• Am is the selected atom given by the computation rule R

• Am8i+l=A8i+l (8i+lisanMGUofAmandA)

• GCi+l is the goal clause f-(A 1 , ... , Am-l, B1 , ... , Bq, Am+l

'··· 'Ak)8 i+l

GCi+ 1 is called a resolvent of GCi and Ci+ 1 .

Let P be a program, G a goal and R a computation rule. An SW-derivation of P

u { f-G} via R consists of a (fmite or infinite) sequence GC0 = f-G, GC1, ... of goal

clauses, a sequence c1,c2, ... of variants of program clauses of P and a sequence 81,

e2, ... of MGU's such that each GCi+l is derived from GCi and Ci+l using 8i+l via

R.

Each Ci is a suitable variant of the corresponding program clause so that Ci does

not have any variables which already appear in the derivation up to GCi-l · This can

be achieved, for example, by subscripting variables in G by O and in Ci by i. This

process of renaming variables is called standardizing variables apart It is
necessary, otherwise, for example, we would not be able to unify p(_x) and p(f(_x))

in f-p(_ x) and p(f(_ x)) f- . Each Ci is called an input clause of the derivation.

An SW-refutation of P u { f-G} via R is a fmite SLD-derivation of P u { f-G}
via R which bas the empty clause as the last goal in the derivation.

SLD-derivations can be fmite or infmite. A fmite SLD- derivation can be

successful or failed. A successful SLD- derivation is one that ends in the empty
clause; so it is a refutation. A failed SLD-derivation is one that ends in a non
empty goal with the property that the selected atom in this goal does not unify with
the head of any program clause.

Now, we can give a defmition for the concept of computed answer substitution
(CAS):

an R-computed answer substitution for P u { f-G} is the

substitution obtained by restricting the composition 81 ... en to the variables

page 15

1

1

1 1

Chapter 1 Logic progranvnlng

of G, where 01, ... , en is the sequence of MGU's used in an SID-refutation

of P u { t-G} via R .

It has been proved by Clark [Clark 79] that SLD-resolution is sound and
complete.

Soundn~:

this means that if we consider a program P, a goal G and a

computation rule R, every R-computed answer substitution for Pu { t-G} is
a correct answer substitution.

Completeness :

this means that if we consider a program P, a goal G and a

computation rule R, for every correct answer substitution cr for P u { t-G},

there exists an R-computed answer substitution 0 for P u { t-G} and a

substitution y such that cr= 0y.

We can also say that every computed answer substitution is correct and that
every correct answer substitution is an instance of a computed answer substitution.
The equivalence of the two semantics is the core of logic programming. A
fundamental consequence of this equivalence is that to write a logic program, we can
reason in term of logic; no procedural aspects should intervene in the construction
process. Therefore, a logic program can be seen as the description of a problem in
logic. Moreover, given the problem is described in term of relations (predicates), the
logic program can be used whatever the instantiation of the parameters is (some
arguments being input datas while the others are output results). This is called
multidirectionnality [Deville 87] .

1.4.2 SLD-refutation procedures :

Now, there are many strategies a system may adopt in its search for a refutation,
the search space being a certain type of tree, called a SLD-tree. The results
herebefore allow the building of the SID-tree using one computation rule fixed by
advance.

Here follows the definition of a SLD-tree !

Let P be a program, G a goal and R a computation rule ; then the SLD-tree for P

page 16

Chapter 1 Loglc programming

u {~a} via R is defined as follows :

• each node of the tree is a goal clause (possibly empty) .

• the root node is ~a .

• let ~A1, ... ,Am, ... ,Ak ~1) be anode in the tree and suppose that

Am is the atom selected by R. Tuen this node has a descendent for

each input clause A~B 1, ... ,Bq such that Am and A are unifiable. The

descendent is ~(A1, ... ,Am-l'B1, ... ,Bq,Am+l''"'Ak)8 where 8 is

the MGU of Am and A.

• Nodes which are the empty clause have no descendents.

Each branch of the SLD-tree is a derivation of P u {~a} Branches
corresponding to successful derivations are called success branches, branches
corresponding to infinite derivations are called infinite branches and branches
corresponding to failed derivations are calledfailure branches.

The next example provides illustration for these concepts :

let P be the following program :

p(_x,_z) ~ q(_x,_y), p(_y,_z)

p(_x,_x) ~

q(a,b) ~

let G be the following goal :

~ p(_x, b)

The first tree (figure 1. 1) is built using the computation rule that selects
the leftmost atom of the goal, the second (figure 1.2) with the computation
rule that selects the rightmost atom of the goal. The first tree is finite while
the second is infinite but both have two success branches corresponding to the
answers {_x/a} and {_x/b}.

The annotations of the arcs are the MGU s used.

page 17

• Chapter 1 logic programmlng

•
+-- pLx,b)

+-- qLx,_y),PlY,b)
◊

Lx!a,_y/b}

+-- p(b,b)

Lx3/b,_z3/b}

◊ +-- q(b,_y3),pLY3,b)

(_x3, _y3, _z3 corne from the standardization)

Figure 1.1

page 18

Chapter 1

~ pLx,b)

~ qLx,_y),PLY,b) ◊

~ qLx,_y),ql_y,_y2),pLY2,b) ~ qLx,b)

/
/

infinite

(_x2, _y2, _z2 corne from the standardization)

Figure 1.2

Lx/a}

◊

Loglc programmlng

page 19

Chapter 1 logic programmlng

By convention, we denote T(G) the SLD-tree for P u { +.-G} when there is no
ambiguity over the program P and the computation rule R !

A last thing bas to be fixed, it is the strategy the system uses for searching
SLD-trees. To define this strategy, we must introduce an order between the
descendents of a node. So, we can speak of a sequence of descendents. Now, there
are many kinds of search the system might adopt to find success branches and thus
the corresponding computed answer substitutions. The depth-first search, by

instance, fully explores the branches passing by the ith descendent of a sequence

before it explores those passing by the (i+l)th. This strategy is also called the search
rule. ln the next section the importance of this choice is underlined.

We call the ;th descendent input clause of anode a the input clause that permits

to get the i th descendent of a .

When a descendent d1 appears before a descendent di in the sequence of

descendents, we say that d1 is more at left than d2 (similarily, d2 is more at right

than d1). This denominationnal convention is inspired from the graphical

representation of trees when the ith descendent of a node a is displayed using the ith

leftmost bound starting at node a. We also say that a branch B1 is located more at

left than a branch B2 if a being their last common node, B 1 passes by a descendent,

of a, more at left than the one included in B2.

The combination of a computation rule with a search rule defines an SLD

refutation procedure.

But we must not forget the semi-decidability of first order logic which is a first
major drawback. The problem is that when a goal is not a logical consequence of the
logic program, the execution of an SLD-refutation procedure rnay never terminate.
As non-termination is an incorrect behaviour, some programs, correct at the
declarative level (this means being a good translation of the problem specification in
terms of logic) , can be unacceptable from a procedural point of view and this does
not depend on the logic programming system.

page 20

Chapter 1 Logic programmlng

1.5 PROLOG:

PROLOG is one of the first attempts that have been made to provide a
programming language based on logic and more specifically on Hom clause
logic. It was introduced mainly by Colmerauer whose team built the first
interpreter [Colmerauer 73].

In this work, we refer to standard PROLOG (unless explicitly said different).
A representative choice for it is the PROLOO language described in by Clocksin
and Mellish [Clocksin 81]. In most of our examples, we use its syntax and built-in
procedures. Note however that variables still begin by an underscore rather than
a capital letter. This corresponds to the BIM _prolog syntax [BIM 86] .

It is assumed that the reader is familiar with PROLOG and also with the tricky

concept of backtracking. Let us recall that, in PROLOG, the connectives-, and f- are
respectively written as ?- and :-. Remember also that PROLOG rules, unlike Hom
clauses, end by a point

Working with PROLOG, a programmer should ideally solve a problem by
building a description of it under the form of Hom clauses, so working at the
declarative level. But this ideal is far from beeing reached. In fact, there are many
restrictions to the logical aspect of PROLOO. We mention some of them
hereafter, relying on [Deville 87] and [Lloyd 84].

Let us first recall that the PROLOG interpreters are perforrning an SLD
refutation procedure with selection of the leftmost atom as computation rule. The
search rule of PROLOG is· to perform a depth first search on SLD-trees where the

descendents are ordered so that the ith descendent, of a node ex, can be obtained by

using the ith descendent input clause which is a suitable variant of the ith program

clause for which the head of a variant is unifiable with the first subgoal of ex .
PROLOG also provides the possibility of having negated literais in the body of a
clause. This proves useful in practice. Negation is handled by a failure rule: the

idea is to derive -,Q if it is impossible to derive Q from the logic program.

PROLOG also rnakes possible to inclùde extra-logical features in program
clauses:

- control information : the eut (!) allows to prune the SLD-tree.

- input-output primitives : these are necessary; they produce input-output by
side-effects.

page 21

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 1 Logic programmlng

assignation mechanism : this is one of the most (if not the most) used
operation in computer science. In PROLOO, it is implemented as a side
effect of the is predicate.

- others : bagof, setof, assert, retract, ... are classical examples.

These primitives are outside the scope of first-order logic but can be useful in
practice.

The use of cuts can have some desastrous consequences. Given the pruning,
misplaced cuts can lead to incompleteness. Though it is written in the body of
clauses like an atom, the eut has no logical significance but it is handy to see it as
an atom that immediately succeeds at the first call and fails on backtracking,
pruning the SLD-tree in the same time. If the pruned part contains an answer,
then the eut is unsafe (by opposition to safe) and we get incompleteness.
Programmers can also use cuts to write program which are not even declaratively
correct !

To illustrate this matter, consider the following example frorn [Lloyd 84):

rnax(_x,_y,_y) :- _x <=_y,! .
max(_ x,_y ,_ x).

max(_x,_y,_z) is intended to be true if and only if _z is the maximum of
_ x and _y. Procedurally, the semantics of the above program is the
maximum relation but declaratively, it is sornething else entirely .

The only advantages of the eut are at efficiency level.

The negation by f ailure rule is also acceptable frorn the efficiency point of
view, but in PROLOO, it can lead to unsoundness and incornpleteness .

Example of unsoundness :

p(a).
r(_y) :- not(p(_y)) .

The goal clause ?- r(b).
consequence of this logic program.

Example of incornpleteness :

q(a) :- not(r(a)) .
q(a) :- r(a) .

succeeds though r(b) is not a logical

page 22

Chapter 1 Loglc programmlng

r(_x) :- r(f(_x)).

We obviously have that q(a) is a logical consequence [Lloyd 84]. Though,

there cannot be a succesful derivation for q(a). ln order to derive --,r(a),
negation as failure tries to show the impossibility of deriving r(a). But
here, it has to search an infinite SLD-tree. This is also a consequence of
the semi- decidability of first-order logic [Deville 87]. This
incompleteness is independent of the computation and search rules.

The PROLOG search rule also leads to incompleteness. The following example
is an illustration of the problem [Lloyd 84]:

p(a,b).
p(c,b).
p(_x,_z) :- p(_x,_y), p(_y,_z).
p(_x,_y) :- p(_y,_x).

p(a,c) is a logical consequence of the program but PROLOG will never
find a refutation for the goal clause ?- p(a,c). because the left most branch of
the corresponding SLD-tree is infinite.

Another problem of PROUXi systems is the unification algorithm used which
not always performs the occur check for efficiency reasons. Without occur check, it
is possible to unify _x and f(_x) and so, to produce an infinite term f(f(f(...))) .
Normally, they should not unify ! Such a fault can lead to unsoundness as the
example hereafter shows [Lloyd 84] :

test :- p(_ x, _ x) .
p(_y, f(_y));

A PROLOG system without occur check would give the answer
substitution e for the goal (test). It is thus considered as a logical
consequence of the program but it is quite wrong ! To avoid this problem,
the unification algorithm must provide occur check. ln the rest of the work, it is
assumed to be so.

However, in conclusion, we can claim that programming in PROLOG is not the
same as programming in logic [Deville 87] and that much characteristics of PROWG

have to be explained outside the scope of the logic programming paradigm.

page 23

2. 1 INTRODUCTION :

In chapter 1, we have seen that some PROLOG features produce a gap
between the procedural semantics and the declarative semantics. So,
programmers cannot simply continue reasoning in logic for building a PROLOG
program.

A possible solution is to provide to programmers a methodology that tries to
reconciliate the two semantics so that the logic programming paradigm can be used
in the construction process of a PROLOG program. Such a methodology has been
deleloped in [Deville 87]. The basic idea is to construct a logic algorithm in pure
logic from the specifications, independently of any programming language or
procedural semantics. Then, the use of derivation rules enables to get a logic
program in PROLOG from the logic algorithm.

Our work is humbler and tries to give an accurate but simple (we hope so) way
of specification of the procedural semantics of PROLOG programs. We think it
could be useful because in order to achieve program correctness in PROLOG,
progammers need to reach an accurate knowledge of its procedural aspects. But
the problem is the difficulty of building correctness proofs using the usual
procedural semantics of logic programs. Moreover, this semantics can be considered
as "not suited" because of the PROLOG features coming out of its scope.

The procedural semantics for PROLOG programs that we propose should
normally deal with a11 PROLOG particularities and is much inspired of the usually
intuitive (and informai) understanding of the execution mechanisms of the language.

So, we begin by a quick recall over this intuitive understanding. Tuen, we
present some fondamental concepts needed by the three algorithms ESG (Execute
SubGoal), EG (Execute Goal) and EQ (Execute Question) which are the core of our

work.

Note that for the moment, the only extra-logical feature we take into account is
the eut!

page 24

Chapter 2 A new procedural semantiœ b PROLOG

2.2 USUAL INTUITIVE UNDERSTANDING:

The usual intuitive understanding of the procedural interpretation of
PROWG programs is much inspired from the classical problem-reduction (top
down problem solving) strategy developed in artificial intelligence.

Consider the goal clause

with Ai (i = 1 ... m) atomic formulas and _ xj (j = 1 ... n) the variables appearing in

it It can be interpreted as follows :

try to make the goal (A1 , ... , Am) hold

or, more explicitly,

try to find _x1, ... , _xn which make the goal (A1 , ... , Am) hold.

This operation, when it succeeds, provides a substitution 8 such that (A1 , ... ,

~)8 is true.

A program clause

A :-A1, ... ,Am.

with A, ~ (i = 1 ... m) atomic formulas, can be interpreted as an entry point of a

procedure (a procedure being defined by all the program clauses with same functor in
head). This part of the procedure means :

to make a subgoal of the form of A hold,
try to make the goal (A1, ... , Am) hold.

Given a subgoal B which matches A via a substitution 8, some combination of

values (for the variables appearing in B) that make B hold can be found by using 8

and the combinations of values that make (A1 8, ... , Am 8) hold .

page 25

Chapter 2 A new proceclural semantics tor PROLOG

A unit clause

A.

can be also interpreted as an entry point of a procedure but this part of the procedure
makes the subgoals matching A hold without reducing them to further subgoals.

H it is impossible to make a subgoal or a goal hold, it is said to fail !

Trying to make a goal (A 1 , ... , Am) hold can be decomposed into m steps :

- try to make A 1 hold .

- try to make A2 8 l hold .

where 8i (i = 1 ... m) is a substitution defining values for the variables appearing

in Ai(0 1 ... 8i_1), values such that it holds. When a subgoal Ai(0 1 ... 8i_1)

fails (i = 1 ... m), backtracking occurs. H i = 1 , then the goal (A 1, ... , Am) fails.

ff i > 1, it means to go back to the previous step and to try to make ~-l(81 ... 8i_2)

hold but with a new combination of values. So, it means the progression through
the different steps is not purely sequential ! When a solution has been given, it
means ail steps have succeeded. In order to find another combination of values
such that the goal holds, the idea is to act as in backtracking but going back to the
mth step.

Trying to make a subgoal hold can also be subdivised in steps. There will be n
possible steps if there are n program clauses whose heads match the subgoal. To
each step corresponds one of these clauses. The different steps are ranked
following the order of appearance in the program of their corresponding clauses. If
there are n such clauses, it means that, for the subgoal at hand, there are n

opportunities of entry point to the procedure. H (Ai 1 ... Ai mi) is the body of the ith

matching clause and 8i is the matching substitution, the n steps can be described

as follows:

page 26

Chapter2 A new procedural semantlcs for PROLOG

try to make the goal (A1 1 , ... , A 1 ml) 81 hold.

try to make the goal (,\i 1 , ... , ,\i mn> en hold .

The progression between these steps is as follows when all possible

combinations of values making (Ai 1 , ... , Ai mi) 8i hold have been found (or

equivalently when this goal fails), the next combination of values for the subgoal
variables is searched using the next step, thus i+ 1 (if i = n the subgoal f ails) .

Now, we can see that it is far from being clear and simple. Moreover, we
have not explained yet the effects of a eut and backtracking has only been
considered in its very local consequences !

We will not try here to explain the full consequences of backtracking
because from our point of view, it goes far beyond an informai presentation. It might
be one of the reason why many PROLOG programs are filled with cuts. Novice
PROWG programmers often abuse of cuts to ensure themselves that no unwanted
and un- understandable backtracking will occur.

The eut has in general more localized eff ects and their descriptions are very
often given in an informai way. Consider the following goal:

(Al • ··· • Ai-1 • ! • Ai+l •···•Am) ·

The eut can be seen as a subgoal which holds immediately at the first attempt and
fails for any other attempt to make it hold (thus, on baektraeking). But the eut has
side effects: when it fails, the whole goal, in whieh it is, fails immediately and so, it
is impossible to backtrack on Aj (j = 1 . .. i-1) when the eut has been passed. And

when the eut is encountered while trying to make a subgoal hold, or more precisely
when trying to make the body of a matching clause hold, then it has for effect that ail

the following matching clauses will never be considered.

Our conviction is that the usual intuitive understanding presented here is
not well-suited for program correctness proofs or prograrn construction and is not
always easy to "master". We think it is mostly due to its lack of aecuraey and
clarity. In the following sections, we introduce a definition of the procedural
semantics which is inspired from the informai interpretation explained
herebefore but tries to be accurate, complete and, above all, as simple as possible.

page 27

Chapter 2 A new procedural semantics for PROLOG

2.3 PRELIMINARIES :

In this section, we present definitions and properties of some fundamental
concepts for our expression of the procedural semantics.

2.3.1 Context:

For the moment, it is enough to consider that a context is characterized by a
program. Later, when introducing input-output built-in procedures, its

characterization will also include the set of accessible files.

2.3.2 Array of contextual variables (ACV) :

An array of contextual variables (ACV) is a finite array of elements _ v/1ï_ (i = 1,

n) where the variables _v1, ... , _vn are distinct and where each ti is a term. So,

an ACV can be written as follows :

Note: the brackets have not the same meaning than in PROLOG !

Each element _ v/½_ is called a binding for_ vi. li V is a ACV, it is called a

ground ACV if the ti are all ground terms and a variable-pure ACV if the ti are all

variables.

This notion is of course very similar to the one of substitution. The main

differences is that in the ACV Lv1tt1 , ... , _vn/1n], we do not require that ti * _vi (i

= 1 ... n) . We introduce it because when trying to understand a PROLOG program, a
programmer usually reasons with a set of variables which are progressively
instantiated rather than in terms of substitution compositions.

In our algorithms, we use variables whose value is an ACV. We call these
variables VACV (Variable of type Array of Contextual Variables).

Note: the variables we use in our algorithm are classical variables as m
Pascal language for example.

A V ACV being a variable, it can be assigned and its value can evolve in time .

page 28

Chapter 2 A new procedural semantics k>r PROLOG

We need this notion because we want to consider the evolution of the value for the
variables having a binding in the array ; this captures the progressive instantiation
related in the previous paragraph.

So, ü we adopt a pseudo-pascal syntax, assuming that V and W are VACVs, we

can write:

V := [_ v 1tt1 , _ v2tti] ; { assignation of a value to V }

W := [_ v3tt3 , _ v 4tt4] ; { assignation of a value to w }

V := W ; { V takes the value of W ; so after execution of
this instruction, V= L v3tt3 , _ v 4tt4] }

By convention, a V ACV which has never been assigned, has the empty array ([]

) for value.

Note however that we do not often make the distinction between an ACY and a

VACV, considering VACYs as ACVs. ln fact, definitions and properties stated

for ACVs can easily (and sometimes imn'l.ediately) be extended to VACVs.

A. Substitution defined by an ACV :

Let Y be an ACY.

If Y = [_ v 1 tt1, ... , _ v n/1n] (n ~ 0), 0Y denotes the substitution defined by

Y and it is obtained from the set {_ v 1 /t 1 , .. . , _ v n/1n} by deleting any binding _ v /ti for

which _ v i = ti (i = 1 ... n) .

B. Instance of an ACV by a substitution :

Let V be an ACV, let 0 ={_y1ts1, ... ,_ym/sm} be a substitution

V 0 denotes the instance of Y by 0 . If V = [_ v 1tt1 , ... , _ v n/tn] then, Y 0 =

[_v1t(t10) , ... , _vn/(tn0)]

Of course, the substitution can be a substitution defined by a ACV.

Note that when we speak about an instance of an expression by an ACY, the

meaning is the instance of the expression by the substitution defined by an ACV.

page 29

Chapter2 A new proœdural semantics k>r PROLOG

C. Restriction of a substitution by an ACV :

Let 8 be a substitution and V be an ACV .

< 8 >V denotes the restriction of the substitution 8 by the ACV V. This

restriction is the substitution obtained from 8 by deleting any binding for variables
which do not appear in V .

We say a variable appears in V either if it is one of the _ vi or if it appears in at

least one 1ï_.

Example:

8 = {_x1tt1 , _x2tti, _x3tt3}

V = [_ x1ts1 , _y/ _x2]

D. Strict restriction of a substitution by an ACV :

Let 8 be a substitution and V be an ACV.

« 8 » V denotes the strict restriction of the substitution 8 by the ACV V. This
restriction is the substitution obtained from by deleting any binding for variables
there is no binding for in V .

Example:

8 = {_x1tt1 , _x2tti, _x3't3}

V = [_x1ts 1 , _y/_x2]

E. Proposition 2.1 :

Proposition :

let 8 be a substitution and V an ACV

page 30

Chapter 2 A new procedural semantics tor PROLOG

if av= e then < e >V=« e »V.

Proof:

this cornes immediately from the fact that if av = E , each binding of
V is of the form _ v/ _ v and so, each variable appearing in V is also concemed
by a binding in V .

F. Proposition 2.2:

Proposition :

let V and V1 be ACVs

let 8 = {_y 1 ts1 , ... , _y m/sm} be a substitution

then ev 1 is equal to the substitution (ev e) strictly restricted

by VI so E>V 1 = 0(V8) = cc ev e)) V .

Proof:

we can write that V1 =Lx1lt1 e, ... ,_~/~8]and

ev l = {_x/ 1i_ 8 , 1 ~ i ~ n: -~ :;t ti 8}

We proceed in three steps !

Step 1 :

(i=l ... n)

As _ x/½_ 8 ~ SV l , we know that _ xi = 1i_ 8 . We consider two

situations : _ xi = ti and _ xi :;t ti .

page 31

• Chapter 2

•

•

•

•

•

•

•

•

•

•

A new procedural semantics tor PROLOG

this means that _ x/ ti ~ SV . Therefore, it is only possible to have a

binding _x/t' i e (SV 8) if there is a binding for _xi in 8 or,

equivalently, if 3 j (1 ~ j ~ m): _yj =-~and sj-:;; _xi. This is impossible

because we would have

this means that _x/ti e ev . So, by definition of substitution

composition, the binding _ x/t' i e (ev 8) can only be of the form _ x/ ti

8 ; but such a binding is not retained in (ev 8) as _ xi = ti 8 .

Step 2:

As _ x/ ti 8 e E>V 1, we know that _ ~ * ti 8 . So, due to the definitions

of substitution composition and instantiation of

immediately that _ x/lj 8 e (E>V 8) .

Step 3:

an ACY, we have

Using modus tollens on the proposition of step 1 and, then, applying
proposition of step 2, we get

_ x/t\ e (0V 8) ⇒ t\ = ti 8 (I)

So, the thesis follows immediately from step 2, (I) and the fact that the

bindings in 8 for variables not concerned by any binding of V do not appear in

the instance of V by 8 .

page 32

•

•

•

•

Chapter2 A new procedural semantics for PROLOG

G. Covering :

If E is an expression, we say that the ACV V covers E if for any variable v

appearing in E, a binding for this variable exists in V .

2.3.3 General primitives :

As the description of the procedural semantics is made using algorithrns, it is

handy to assume the existence of some general primitives. This clarifies the
algorithms .

A. Function REFERENCE_ACV(CL):

This primitive unary fonction receives as input a clause and returns an ACV
which contains a binding _ v/ _ v for each variable _ v appearing in the clause received

in input.

Example:

if CL is a clause of the form

p(_x, 5) :- q(_x, _y), q(_y, 5).,

the instruction

V := REFERENCE _ACV(CL) ;

where Vis an V ACV, has for effect that after execution,

V= [_x/_x, _y/_y]

B. Function ST ANDARDIZATION(CL, V) :

This fonction receives as input a clause CL and an V ACV V and returns a

variant clause of CL such that it does not contain any variable appearing in V.

Note that this standardization is not as strong as the one presented in the

definition of SID-derivation (section 1.4) but it is enough for our version of the

procedural semantics as it will be proved.

page 33

• Chapter 2 A new procedural semantics tor PROLOG

C. Fonction MGU(CL, SG, V):

This function receives as input a clause CL, a subgoal SG and an V ACY V and if
the head of CL and SG are unifiable, it returns a substitution which is an MGU for
them. The MGU returned is so that it does not contain any variable appearing in
V but not in SG.

Example:

let V= [_x/f(_y), _z/_z]
let CL be p(_ w) :- q(_ w,6).
let SG be p(_ z).

if we execute the call MGU(CL, SG, V), {_z/_v, _w/_v} is a possible
result of it, but {_z/_y, _w/_y} is not because _y appears in V.

This definition of fonction MGU avoids unwanted links that could occur between
variables!

Example:

consider the previous example. If we accept {_ z/ _y , _ w /_y}, as V =
[_x/f(_y) , _z/_z] , we introduce a link between x and _z without any
justification.

2.3.4 Special mechanisms :

We must explain the execution mechanisms of the algorithms EG and ESG
because they are fundamental for the understanding of our procedural semantics
and are not conventionna!. In this section, we introduce the specific concepts.

The text of these algorithms cannot be executed immediately as the text of a
common procedure. Before execution, a creation of an incarnation is needed. An
incarnation of an algorithm is in fact a specific instance of it. lt is then possible to
have many incarnation of the same algorithm and even, some incarnations can be
similar to all respect excepted for their respective stamps. A stamp is a unique value
which is attributed to an incarnation at its creation and which is kept until the
destruction of the incarnation.

It is at creation that the calling environment must specify the actual parameters
once for all. The link between the forma! and actual parameters is done like for a call
by address if (like in Pascal) a "var" appears before the declaration of the forma!

page 34

•

•

Chapter2 A new proœdural semantics for PROLOG

parameter and like a call by value otherwise. This link remains for all the lif e of the
incarnation created.

The creation is made by a call to a specific procedure "create" and has the
following generic form :

create(algo _ name(parameters))

Destruction of an incarnation is in fact self-destruction. It is performed by calling
the procedure "selfkill" which makes the execution of the incarnation stop and
destroys it. The procedure "selfkill" has no parameters.

During its lifetime, an incarnation can be executed by a call to the procedure
"execute". A call to "execute" has the following generic form :

execute(incarn_stamp)

where incarn _stamp is the stamp of the incarnation to be executed.

The termination of an execution is done by performing a call to the procedure
"terminate". This procedure takes one parameter which is the name of a label (usual
meaning) appearing in the algorithm corresponding to the incarnation being executed.
With "terminate", the current execution is ended but the incarnation remains in
life. The label name is in fact memorized in a special remanent variable : entry _pt .

This variable is used at the start of an execution to determine where to branch.
There are other remanent variables, depending on the algorithm which is
incarnated. They will be introduced in the presentation of each algorithm.

Sorne remanent variables are initialized by the creation operation. The value of
initialization for these variables is specified with their declaration. The generic forms
for the declaration of a remanent variable are as follows :

<variable_ name> : <variable_ type>

or

<variable_ name> : <variable_ type> / init := <initialization _ value>

We end this section with some notational conventions over goals. Our algorithms

treat goals as lists of subgoals. The empty goal is denoted (). If a goal G is composed
of a first goal SG followed by a list of subgoals G' then, we can write G = (SG,G')

but also G = SG,G' .

page 35

Chapter 2 A new procedural semantics for PROLOG

2.4 ALGORITHMS:

We corne here in the core of our work : the expression of the procedural
semantics with the three algorithms EQ (Execute Question), EG (Execute
Goal) and ESG (Execute SubGoal).

The algorithm EQ is designed for modelling the procedural semantics of a
goal clause. The algorithm EG (ESG) is intended to model the execution of a goal
(subgoal), this means the successive attempts to make the goal (subgoal)
hold.

Each algorithm is presented through the same frame : first, a description of the
parameters and the remanent variables is provided, then the text of the algorithm
is given.

But we begin by a quick outlook at the global variables.

2.4. 1 Global variables :

These variables are known and are accessible (consulting and updating) by
the algorithm EQ and a1l possible incarnations of any of the algorithms EG and
ESG.

CX:

this variable contains the description of the current context and so, the logic
program.

failure:

it is a boolean which is used for conveying the fact of success or failure of
executions .

eut:

this boolean is used is used for conveying information about the encountered
cuts.

page 36

Chapter 2 A new procedural semantics for PROLOG

2.4.2 Algorlthm EQ :

(Execute Question or Execution Query)

The following algorithm provides the modelization of the procedural semantics of a
query of the form

?-G.

where G is a list of subgoals.

Text:

EQ

variables be gin

end

V:VACV;
EO: stamp

labels begin

begin

end.

next CAS
end

V:= REFERENCE_ACV(t-- G);

EO := create(EG(G , V));

next_ CAS : execute(EO) ;

if failure then print('no')
else begin

print(V);

goto next_ CAS
end

page 37

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 2 A new procedural semantlcs tor PROLOG

2.4.3 Algorithm EG :

(Execute Goal)

Parameters :

This algorithm has two parameters. The first one must be a goal . The second
one must be of Y ACY type. So, to create an incarnation of EG, the call to "create"
must be of the forrn

create(EG(G , Y))

where G is a goal and Y a Y ACY .

Tuen, to execute it, one must use the stamp of the incarnation, returned by the
creation, as pararneter for a call to "execute". So, no more references to the
parameters G and Y are needed.

Text:

EG(G : goal ; var Y : Y ACY)

rernanent variables begin

labels begin

end

end

entry _pt : string / init := "prem" ;
Yrem : Y ACY / init := Y ;
El : stamp;
E2: stamp

prem;
next_empty;
next_SG_CAS;
next CAS

page38

..._

• Chapter2

•

•

•

•

•

•

•

•

•

•

•

A new procedural semantics tor PROLOG

if G = () then
begin

goto @ entcy _pt ; { @ indicates indirection }

prem : V := Vrem ;

failure := false ;
terminate(next_empty);

next_ empty : failure := true ;
eut := f alse ;
selfkill

end

if G = (SG,G') then
begin

goto @ entcy _pt ;

prem : V := Vrem ;
El := ereate(ESG(SG , V)) ;

next_ SG _ CAS : execute(El) ;
if failure then selfkill ;
E2 := ereate(EG(G' , V)) ;

next_ CAS : execute(E2) ;
if not failure then terminate(next CAS) ;

else if eut then selfkill
else goto next_ SG _ CAS

end

page 39

•

•

•

•

Chapter 2 A new procedural semantlcs tor PROLOG

2.4.4 Algorlthm ESG :

(Execute SubGoal)

Parameters and remanent variables :

ESG takes two parameters. The first one must be a subgoal . The second one
must be of YACY type. So, to create an incarnation of ESG, the call to "create" must
be of the form

create(ESG(SG , Y))

where SG is a subgoal and Y a Y ACY .

Tuen, to execute it, one must use the stamp of the incarnation, retumed by the
creation, as parameter for a call to "execute" .

ESG has five remanent variables : Vrem, entry _yt, SG _instance, i and El. El and
i do not need to be initialized. entry _yt is initialized at creation to "prem" and Vrem to

Y. SG instance must be initialized to the value of the instance of SG by the
substitution defined by Y !

Text:

ESG(SG : subgoal ; var Y : Y ACY)

remanent variables begin

local variables begin

end

end

Yrem : Y ACY / init := Y ;
entry _pt : string / init := "prem" ;

SG _instance : subgoal / init := SG E>Y ;
El: stamp;
i: integer

Ynew: YACY;

0 : substitution ;

CL': clause

page40

Chapter 2 A new procedural semantics for PROLOG

labels begin

end

{

prem;
next_clause;
next_CAS;
next trial

assume that
SG_instance = predicate(t1 , ... , 1n)

and that
[CL1 = predicate(s1 1 , ... , s1 n> :- G1 ,

... '
CLnb cl = predicate(snb cl 1 , ... , snb cl n> :- Gnb cl] - - - -

is the list of clauses , of the program defined in the context CX, whose head
is unifiable with SG _instance, provided that the variables appearing in them
(the clauses) are renamed so they do not correspond to variables appearing in
SG instance
}

if SG instance = "!" then
begin

goto @ entry _pt ;

prem : V := Vrem ;
failure := false ;
eut:= true;
terminate(next trial) ;

next_ trial : failure := true ;
eut:= true;
selfkill

end

page 41

Chapter 2 A new procedural semantlcs k>r PROLOG

if SG instance ~ "!" then
begin

goto @ entcy _pt ;

prem: i := 1;

next clause : if i > nb cl then begin

end;

failure := truc ;

eut := false ;
selfkill

CL' := STANDARDIZATION(CLi, Vrem) ;

{ CL' = head(s' i 1 , .. . , s\ n> :- G' i }

0 : = MGU(CL', SG_instance, Vrem);

Vnew := REFERENCE_ACV(CL' 0) ;

El := create(EG(G' i 8 , Vnew));

next_ CAS : execute(El) ;
if failure then begin

end

if eut then begin

end

eut := f alse ;

selfkill

else begin

end;

V := Vrem 8 0Vnew;
eut := f alse ;
terminate(next_ CAS)

i := i + 1 ;

goto next_clause

end

page 42
'I

1

1

Chapter 2 A new procedural semantics for PROLOG

2.5 Equivalence with the usual procedural semantics :

We present here the proposition that must hold in order to have the equivalence
between our procedural sernantics and the usual one founded on SlD-trees and the
notion of computed answer substitution (CAS).

2.5. 1 Sequence of answer substitutions :

To express the equivalence, we take over the concept of sequence of answer
substitutions from [Deville 87]. Given an SLD-refutation procedure, a logic

program P and a goal G, the sequence of answer substitutions for Pu { rG}

is the sequence of computed answer substitutions (CAS) for Pu { rG}, derived
from the success branches eventually reached in the SlD-tree, according to the
search rule. So, it is clear that corresponding to the sequence of CAS, we can also
define the sequence of success branches and the sequence of success nodes for

pu { t-G}.

We call PROWG-sequence of answer substitutions the sequence of answer
substitutions that would be computed by a PROLOG interpreter. The
corresponding sequences of success branches and of success nodes are also called
PROLOG-sequences.

In the rest of the work, when we speak of a sequence of answer substitutions,
success branches or success nodes without indications about the SLD-refutation
procedure, we assume it is the PROLOG-sequence.

Example:

consider the PROLOG program

p(_x, _z) :- q(_x, _y), p(_y, _z).

p(_x, _x).
q(a, b).

and the goal

p(_x, b) .

The PROLOG-sequence of answer substitutions is the fmite sequence 81,

page 43

Chapter 2

02 where

81 = {_x/a}

82 = {_x/b}

A new procedural semantlcs for PROLOG

2.5.2 Proposition 2.3 (Equivalence):

Proposition :

let P be a PROLOG program contained in CX
let G be a goal

if S is the PROLOG-sequence of answer substitutions for

Pu{~G},

then

• the execution of EQ prints a sequence of ACVs

such that E>Vi is the ith CAS of S.

• if S is finite, after the printing of the last Vi , the execution of EQ

ends by printing "no" or endless continues (interpreter follows an
infinite branch).

For EG and ESG, we prove in the next chapter some properties needed in
order to justify the hereabove proposition. But, intuitively, we can give a rough (
very rough) idea of what their results are.

2.5.3 EG:

if an incarnation EO has been created with the call

create(EG (G , V))
then,

page 44

•

•

•

Chapter 2 A new proœdural semantics for PROLOG

execute(EO)

is sucb that wben it terminates :

• the context CX can be cbanged

• if failure = false, V bas been modified so it is an instance of its

value as it was at creation of EO. This instance is sucb that G SV
bolds. The incarnation still lives.

• if failure = truc and eut = truc then, it is a eut encountered in G
that is responsible of the failure . The incarnation is destroyed .

• - if failure = true and eut = false then, the failure is not due to a eut.
The incarnation is destroyed.

2.5.4 ESG:

if an incarnation EO bas been created with the call

create(ESG (SG , V))
then,

execute(EO)

is sucb that wben it terminates :

• - the context CX can be cbanged

• - if failure = false, V bas been modified so it is an instance of its

value as it was at creation of EO. This instance is sucb that SG SV
bolds. The incarnation still lives.

• - if failure = true , then the incarnation is destroyed.

• - if eut= false, then SG * "!".
• - if eut = true , then SG = " !".

page 45

•
- -- . ---------------

3. 1 INTRODUCTION :

The aim of this chapter is to provide the proof of the equivalence, between
our procedural semantics and the usual one, when dealing with a program P and a
goal clause G such that T(G) is finite and does not contain any eut These
simplifications ease the proof and are lifted in further chapters.

Before proving that proposition 2.3 (Equivalence) is correct, we begin by the
expression of properties of the algorithms ESG and EG. These properties are given
by the following propositions and are the formai translations of the assertions we
made over ESG and EG at the end of the previous chapter (see section 2.5) .

3. 1. 1 Proposition 3. 1 :

Proposition :

let P be the program contained in CX

let SG be a subgoal (SG ~ "I")
let V O be an ACV covering SG

let S = e1, , em (m ;?: O) be the sequence of answer

substitutions for P u { ~ SG ev 0}

if EO is an incarnation of the algorithm ESG created with parameters

SG and V= Vo'

then

• the jth execution (1 ~ j ~ m) of EO ends with

v = v0 ej,
failure = false ,

page 46

•

•

•

Chapter 3

eut= false and
the incarnation EO still alive.

• the (m+ 1)th execution of EO ends with
failure = true,
eut= false and
the incarnation EO destroyed.

Equivalence for linlte SLO-trees wlthout culs

3. 1.2 Proposition 3.2 :

Proposition :

let P be the program contained in CX
let G be a goal
let V O be an ACV covering G

let S = e1, ... , em (m ~ o) be the sequence of answer

substitutions for P u { f- G SV 0}

if EO is an incarnation of the algorithm EG created with parameters

Gand V= Va'

then

• the /h execution (1 $ j $ m) of EO ends with

v = v0 ej,
failure = false and
the incarnation EO still alive.

• the (m+ 1)th execution of EO ends with
failure = true,
eut= false and
the incarnation EO destroyed.

3. 1.3 Remarks

The proof for these last two propositions is made in three steps. The first step
demonstrates that proposition 3.1 holds if proposition 3.2 holds. The second step

page 47

•

•

•

•

•

•

•

•

•

•

•

Chapter 3 Equivalence for finlte SLD-trees wlthout cuts

is just the contrary. The third step is needed to lift the vicious circle coming from the
first two steps .

In the following sections, we speak of the first marginal execution, the

second marginal execution, ... , the ith marginal execution of an incarnation. The first

marginal execution of an incarnation is the execution during which we start

observation. The (i+l)th marginal execution of this incarnation (i ~ 1) is the first

execution following its ith marginal execution.

Our algorithms treat the goals as list of subgoals. lt may happen that this list is

empty () . In this situation, the SLD-tree for P u { ~ ()} is only composed of the root

node ~ () . This root node can be seen as a success node because it is the empty

clause. So, we can say that there is only one CAS, for P u { ~ ()}, which is the
emtpy substitution .

3.2 PROOF OF PROPOSITION 3. 1 IF PROPOSITION 3.2 IS
CORRECT:

3.2.1 Preliminaries :

This section recalls some fondamental concepts about the depth-first search
made by PROLOG in a SLD-tree. These are useful for the understanding of the
proof. It also fixes some denominational conventions.

Let P be a program, SG be a subgoal and V O be an ACV. We consider the

section of T(SG ev 0) concerning the ith descendent input clause of ~ SG €W O •

We denote this clause CL' i and its body G' i . CL' i is a variant of a program clause

that we denote CLi and whose body is Gi .

In T(SG SV 0) , the root node is ~ SG 01 0 and it bas a descendent

~ Gi Îi where Îi is a MGU of the head of CL' i and SG 9/ 0 . The tree is

schematized in figure 3.1 .

page 48

Chapter 3 Equivalence for finlte SLO-trees wlthout c:uts

t- G'. 'Y,·
1 1

Figure 3.1

Now, we consider that T(SG ev 0) contains m success branches or,

consequently, m CAS (m ~ 0) and that q (0 $; q $; m) branches of these

success branches are passing by the node t- G' i 'Yi . If 01 , ... , 0m is the

sequence of answer substitutions for P u { t- SG ev 0} when using a depth-first

search rule, this sequence is well the PROLOG-sequence of answer substitutions
because there is no eut. Moreover, in this sequence, the q CAS whose

corresponding success branches are passing by the node t- G\ 'Yi are

consecutive or form a subsequence. We can denote this subsequence 0(k+l) , ... ,

e(k+q) where O ~ k ~ m-q , if the k first CAS are corresponding to success

page 49

•

•

•

•

•

•

•

•

•

•

•

•

Chapter3 Equivalence for finlte SLO-trees without cuts

branches located more at left than the ones passing by the node ~ G' i 'Yi .

Given the definitions of SID-trees and CAS, the properties of substitutions
composition and the rule of depth-first search, we have that the sequence of answer

subsitutions for Pu{~ G'i 'Yi} contains q CAS 8' 1, ... , 8'q and that 8(k+j) =

(Yi 8'j) with 1 ~j ~ q.

3.2.2 Structure of the proof:

We provide here some guidelines through the proof by roughly explaining the
contents of the lem.mas and how they are used .

We consider an incarnation of the algorithm ESG created with SG and V = v 0 .

Figure 3.2 shows the global aspect of T(SG 0V 0).

First, let us point that the variable i can be seen as the counter of descendent
input clauses. Its value indicates which descendent input clause is under
consideration. Remember that nb _ cl indicates the number of descendent input clauses

for the node ~ SG 0V o .

The aim of lemma 3.1 is to show that when an execution of the incarnation
passes at the point labelled next _ clause with i > nb _ cl, this execution must stop
immediately withfailure = false because there are no more possible input clauses.

Lemma 3.2 expresses that when an execution of the incarnation passes at the

point labelled next _ clause with i ~ nb _ cl , there will be a succession of executions of
this incarnation before an execution cornes back to that point but with i incremented

by 1. The jth execution of this succession tenninates with V = v O 8j , 8j being the jth

CAS, for P u { ~sG ev 0}, such that the corresponding success branch is passing

by the ith descendent node of ~ SG 0V O . The proof of this lem.ma uses the

hypothesis that proposition 3.2 is correct , so that it is possible with an incarnation of

EG to get the CAS of T(G' i Yi) .

page 50

Chapter3 Equivalence for flnite SLD-trees wlthout c:uts

~ G'. y.
1 1 ~ G'nb_cl Înb_cl

Figure 3.2

Tuen, we use lemma 3.2 in order to prove that given ne, an integer such that 1 $

ne $ nb _ cl, there will be a succession of executions of the incarnation before an

execution passes the point labelled next _ clause with i = ne + 1 . The jth execution of

this succes~ion terminates with V = V O ej , ej being the jth CAS, for P u { ~SG

SV 0}, such that the corresponding success branch is passing by one of the first ncth

descendent nodes of~ SG SV O . This is formalized in lemma 3.3.

The proof of proposition 3.1 uses lemma 3.3, for ne = nb _ cl, together with lemma
3.1.

page 51

Chapter3 Equivalence for ftnlte SLD-trees wi1hout c:uts

3.2.3 Lemms 3. 1 :

Lemma:

let P be the program contained in ex
let SG be a subgoal
let V O be an AeV covering SG

let EO be an incarnation of the algorithm ESG created with
parameters SG and V = V 0

if a first marginal execution of EO passes at the point labelled
next_clause in the algorithm, with i = i1 and i1 > nb_cl

then , this first marginal execution ends with
failure = true ,
eut = false and
the incarnation EO destroyed.

Proof:

it is immediate by symbolic execution of the "then" part of the alternative
instruction labelled with ne.xt clause.

Note: this lemma holds, independently of proposition 3.2 !

3.2.4 Lemms 3.2 :

Lemma :

let P be the program contained in ex
let SG be a subgoal
let V O be an Aev covering SG

let EO be an incarnation of the algorithm ESG created with
parameters SG and V = V 0

if a first marginal execution of EO passes at the point labelled
next_c/ause in the algorithm, with i = i1 > O and i1 <= nb_ cl and

page52

• Chapter3

•

•

•

•

•

•

•

•

•

•

•

Equivalence for llnlte SLD-trees wlthout cuts

if e(k+ 1) , ... , e(k+q) (k ~ O and q ~ o) is the subsequence of

answer substitutions for Pu {t-SG ev 0} such that e(k+j) (1 s j s q)

corresponds to a success branch passing by the node derived from

the root of T(SG E>V 0) and the i1 th descendent input clause of

t- SG E>V O , then

• the /h marginal execution of EO (1 <= j <= q) ends with

V= Vo e(k+j)

entry_pt = next_CAS
failure = taise
eut= taise and
the incarnation EO still alive .

• the (q+1)th marginal execution of EO passes at the point
labelled next_clause with i = i1 + 1 .

Proof:

We suppose that figure 3.1 (see section 3.2.1) provides the general form of

T(SG E>Vo).

As il <= nb cl, the first marginal execution begins with the execution of
the following instructions :

CL':= STANDARDIZATION(CLi, Vrem);

{1}

8 := MOU(CL', SG_instance, Vrem) ;
{2}

Vnew := REFERENCE_ACV(CL' 8);
{3}

in {l} : from the specifications of STANDARDIZATION, we have CL'

can be considered as the itth input clause (CL'il) because it does not

have any variable which already appears in f- SG E>V 0. This is also due to

the fact that v O covers SG and Vrem = v O (because there is no instruction, in

the algorithm ESG, that changes the value of Vrem) .

page 53

•
Chapter 3

•

•

•

•

•

•

•

•

•

•

•

Equivalence for finlte SLO-trees without c:uts

in {2} :

8 = Îil ·

0 represents a MGU of the head of CL' il and SG SV O . So,

in {3} Vnew contains a binding for ail the variables appearing in

CL' il Îil and 8Vnew = E • AU the bindings of Vnew concem variables

which do not appear in v O. The value of Vnew here will be denoted VnewO.

Tuen, the instruction

El := create(EG(G' i 0 , Vnew)) ;

is executed and we know that G\ = G\1 is the body of CL' il and that

Note that G' il Îil 8Vnew = G' il Îil because 9VnewO = E •

By hypothesis, proposition 3.2 holds. This means that , as there are q

CAS 0' 1, ... , 8'q (see section 3.2.1) forP u { ~ G'il yil}, we have

• the jth execution (1 ~j ~ q) of El ends with

Vnew = VnewO 0'j,

f ail ure = f alse and
the incarnation El still alive.

• the (q+l)th execution of El ends with
f ail ure = true ,
eut = f alse and
the incarnation El destroyed.

But, just after creation, the first execution of El occurs ! We distinguish
two situations : q = 0 and q > 0 .

Ifq=O:

this first execution of El ends with
f ail ure = true ,

eut = f alse and
the incarnation El destroyed

page 54

• Chapter 3

•

•

•

•

•

•

•

•

•

•

•

Equivalence for flnlte SLO-trees wilhout c:uts

becauseq < 1 .

So, the next executed instructions in EO are

i := i + 1 ;
goto next-clause

Therefore, we can conclude that the first ((q+t)th with q = 0)
marginal execution of EO passes to the point labelled next clause with
i = il+ 1 .

ffq>O:

the first execution of El ends with

Vnew = Vnew0 8' l ,

failure = f alse and

the incarnation El still alive because 1 ~ q .

So, the next executed instructions in EO are :

V := Vrem 8 E>Vnew ;
eut:= false;
terminate(next_ CAS) ;

It is clear that after this sequence of instructions, we have that the
execution of EO is ended (EO not destroyed) with failure = false , eut = f alse ,
entry _pt= next_ CAS .

We must still prove that V= Vo 8(k+l) .

Butwehave

- Vrem= v0

- Vnew = Vnew0 8' l

- Vnew0 covers G' il because it covers CL' il

- 8Vnewo=E

(a)

(b)

(c)

(d)

(e)

page 55

Chapter3

•

•

Equivalence for llnlte SLO-trees without culs

- 0' 1 is a CAS for T(G' il 'Yil)(f)

So, we can deduce that

SVnew = 8(VnewO 0' 1) (by c)

= « 8Vnew0 0' l »VnewO(by proposition 2.2)

= < 0' 1 >VnewO (bye and proposition 2.1)

= 0' 1 (by d, e and f)

and also that

V = Vrem 0 SVnew

=Vo Îil 8 '1

= Yo 0(k+l)

(by a and b)

(see section 3.2.1)

Now, we have proved the thesis for j = 1 and, as entry _yt = next_ CAS
at the end of the first marginal execution of EO, we know that the next
execution, the second (j = 2) marginal one, will begin at the point labelled

next_CAS. Thus, it will begin by the second execution of the incarnation El of
EG because the first marginal execution of EO bas performed one and only
one execution of EL' So, by following an analoguous reasoning for this

second execution of EO, then for the third one, and so on, we can prove the

first part of the thesis for any value of j provided that j S q .

Note : this point should normally be proved using an inductive reasoning in

order to be fully accurate. We think, however, that the hereabove
explanations are clear enough to persuade oneself of the correctness
of proposition 3.1 . If the reader is not at ease with the executions
mechanisms of EG and ESG, we think it could be useful for him to
build this recursive proof !

Finally, we must still prove that the (q+ l)th marginal execution of EO

passes at the point labelled next_clause with i =il + 1.

We know that the qth marginal execution has ended with entry_yt =

next_CAS and that the next execution of El will be the (q+l)th. So, the

(q+l)th marginal execution of EO begins by executing the (q+l)th execution of

page 56

•

•

•

•

•

•

•

•

'•
1
1

•

•

Chapter3 Equivalence for flnlte SLD-trees without culs

El which ends, by hypothesis, with failure = true , eut = false and the
incarnation E 1 destroyed .

Tuen, as failure = true and eut = false, the following instructions are
executed:

i := i + 1 ;
goto next clause

It is clear that this (q+t)th marginal execution passes at next clause
with i =il+ 1

3.2.5 Lemma 3.3 :

Lemma:

let P be the program contained in CX
let SG be a subgoal
let V O be an ACV covering SG

let ne be an integer such that Os ne s nb_cl
let EO be an incarnation of the algorithm ESG created with
parameters SG and V = V 0

if e1 , ... , ep (O s p) is the subsequence of answer substitutions

for P u {t- SG ev 0} such that ej (1 s j s p) corresponds to a

success branch passing by one node t- G'k yk for some k such

that 1 s k s ne , G'k being the body of the kth descendent input

clause of t- SG ev O and yk a MGU of the head of this input clause

and SG ev0, then

• the jth (1 s j s p) execution of EO ends with

v = v0 ej,

failure = false ,

page 57

Chapter3 Equivalence for finite SLD-trees wlthout a.ils

eut= false and
the incarnation EO still alive .

• the (p+ 1)th execution of EO passes at the point labelled
next_ clause with i = ne + 1 .

Proof:

For this proof, we proceed by induction on ne .

Case 1: ne= 0

This implies that the sequence of answer substitutions is empty (p = 0).

Due to the initialization of the remanent variable entry _pt, the first
execution jumps to the point labelled prem where i is given the value 1. Then,
it passes at the point labelled next _ clause and we get the thesis.

Case 2: ne> 0

By induction hypothesis, we know that if e 1 , ... , eq (0 s q s p) is the

subsequence of answer substitutions for P u { ~ SG E>V 0} such that Sj (1

S j S q) corresponds to a success branch passing by one of the nodes ~

G'k Île (1 :s;;ksnc-1)then

• the jth (1 S j :s;; q) execution of EO ends with

v = v0 ej,

f ai/ure = f alse ,
eut = f alse and
the incarnation EO still alive.

• the (q+l)th execution of EO passes at the point labelled
next clause with i = ne .

We can also say that the subsequence e(q+l) , ... , e(q+r) (0 Sr S p-q)

is the subsequence of answer substitutions for P u { ~ SG ev 0} such

that e(q+j) (1 S j Sr) corresponds to a success branch passing by the

node derived from the root of T(SG SV 0) and the ncth descendent input

page 58

Chapter3 Equivalence for finlte SLO-trees wlthout cuts

clause of r SG 8V O .

So, if we pickup the (q+t)th execution of EO when it passes at the point
labelled next_clause, we canuse lemma 3.2 with i = ne in order to deduce that

• the (q+j)th (1 Sj Sr) execution of EO ends with

V= VO 0(q+j) ,

failure = f alse ,
eut = f alse and
the incarnation EO still alive.

• the (q+r+t)th or (p+1)1h execution of EO passes at the point
labelled next clause with i = ne + 1 .

3.2.6 Proof of proposition 3.1:

lt suffices to use lemma 3.3 with ne = nb _ cl and, therefore, p = m to get
immediately the first part of the thesis. The second one can be obtained by

application of lemma 3.1 because, by lemma 3.3, we know that the (m+t)th

execution of EO passes at the point labelled next_clause with i = nb_cl + 1 .

3.3 PROOF OF PROPOSITION 3.2 IF PROPOSITION 3. 1 IS
CORRECT:

3.3. 1 Prellminarles :

A. Stump:

Let T and T* be trees

T* is a stump of T iff

• T* is composed of a subset of nodes of T and a subset of branch of T .

page 59

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 3 Equivalence for finlte SLO-trees wilhout c:uts

• T and T* have the same root .

• if a is a node of T* , then the sequence of its descendents in T* is
either exactly the same than in Tor empty.

By sequence of descendents, we mean the set of descendents ordered in
fonction of their position in the tree. We use the usual order going from left to right in

the graphical representation.

Example:

Consider the trees of figure 3.3: T* is a stump of T but S* is not.

a

A
T:

b C

~ ~
d e f g h

a

A
b C

T*:

~
d e f

a

A
S*: b C

1 ~
e g h

Figure 3.3

page 60

Chapter3 Equivalence for finlte SLO-trees without cuts

If we call terminal nodes the nodes which have no descendents, it is clear that
the tree T can be obtained from the tree T"' by grafting prolongations only to the
terminal nodes of T* .

B. Using stump concept in SLD-trees :

Let P be a program, SG be a subgoal, G be a goal such that G = SG, G'.

Consider T*(G) a tree obtained from T(SG) simply by complying to the following
rule of construction :

if a node a in T(SG) has the form +-- Ga , the corresponding node

in T*(G) has the form +-- Ga , (G' 0a) , where ea is the composition of the

unification substitutions used in the derivation from root to the node a in

T(SG).

C. Proposition 3.3 :

Proposition :

r(G) is a stump of T(G) .

Proof:

. lt is clear that T(G) and T*(G) have identical roots because G = SG, G' .

We proceed then by contraposition :

as the roots are identical, assuming that T"'(G) is not a stump of T(G)
means that there is a first level (the root composing level 1 and level i being
the set of all the descendents of ail the nodes composing level i-1) in T"'(G),
say level n (n > 1), where it is impossible to establish the equivalence

between the sequence of descendents in T"'(G) of a node a* of the
previous level with the sequence of descendents of the same node in T(G).

As level n is the first level where we encounter this impossiblility, it
means that until level n-1, T*(G) corresponds to the definition of stump for
T(G).

Now, we prove that it is impossible to have a such level.

page 61

Chapter3 Equivalence for finite SLO-trees without culs

The node a* of the level n-1 bas the form +- Ga , (G' 0a) and bas

been obtained from anode a of T(SG) of the form +- Ga .

The sequence of descendents of a* in T*(G) is obtained frorn the

sequence of descendents of a in T(SG). This implies that Ga is not the

empty goal. Let Ga = SGa , G' a .

In fonction of the Sl.D-derivation procedure of PROLOO, the sequence

of descendents for a can be expressed as follows :

+- (G1, G' a> 81 ' ... '+- (Grn, G' a> em

where m is the number of program clauses for which the head of a variant
can be unified with SGa . Gi is the body of the input clause

corresponding to the ith such program clause and 0i is the MGU of the head of

the input clause and SGa.

So, the sequence of descendents for a* has the following form, by
definition of T*(G) :

1 Si Sm

or, equivalently,

lSiSm (1)

If we consider the node a* in T(G), we know that it bas the form

because a* is at level n-1 and as we have seen that

we can write

+-Ga, G' 0a = +- SGa, G' a, G' 0a

page 62

Chapter3 Equivalence for llnlte SLO-trees without cuts

As we consider the same program P than before and as the SLD-
refutation procedure of PROLOG does not change, the sequence of

descendents for a* in T(G) can be expressed as follows :

1 Si Sm (II)

The sequences (1) and (II) are the same. So, it is impossible to have a
first level for which the definition of sturnp is not respected. Therefore, we
deduce that T*(G) is a stump of T(G).

We call T*(G) the first subgoal stump of T(G), T(SG) the restricted first

subgoal stump and G' the complement of T(SG) with respect to G. When no
ambiguity is possible, we simply talk about the complement of T(SG). The
complement of a restricted first subgoal stump is the expression that must be
added to the expression of the root in order to get the root of the first subgoal
stump (not restricted). We also say that T(SG) is the restriction of T*(G).

We have already seen that it is possible to get T(G) from T*(G) by adding
prolongations to the terminal nodes of T*(G).

Recall that terminal nodes for an SLD-tree are either success or failure nodes.
The success (failure) nodes are the last nodes of successful (failed) derivations.

D. Proposition 3.4 :

Proposition :

lt is possible to get T(G) from T*(G) by adding to each of its terminal
node corresponding to a success node of T(SG) an appropriate

prolongation. If a* is a such terminal node , a the corresponding

success node of T(SG) and Sa the substitution defined by the

success branch, of T(SG), ending in a , the prolongation to add to

is T(G' Sa).

page63

Chapter3 Equivalence for flnite SLD-trees wlthout c:uts

Proof:

To prove proposition 3.4, we begin to prove that terminal nodes of
T"'(G) corresponding to failure nodes of T(SG) are also failure nodes for
T(G).

Let Cl be a failure node, of T(SG), of the form

As it is a failure node, we have Gex is not the empty goal and we can write

that

This node ex bas no descendents in T(SG) because it is impossible to find
a clause in the program P for which the head of a variant can be unified with

SGcx.

The node ex* of T*(G) corresponding to ex has the form

or

The corresponding node in T(G) bas the same form; so, using the same
SLD-refutation procedure than before, with the same program P, this node
can only be a failure node.

Now, let Cl be a success node of T(SG). As a success node is an empty
goal, the corresponding node in T*(G) bas the form

~a· e
Cl

where ecx is the CAS defined by the success branch, of T(SG), ending in ex

Therefore, it is clear that the prolongation that must be attached to this

node is T(G' 0cx) , the SLD-tree for Pu { ~ G' 0cx } .

page 64

Chapter3 Equivalence for finlte SLD-trees wlthout cuts

E. Consequences concerning the CAS ofT{G):

As a corollary of proposition 3.4, each success branch of T(G) must pass by a
node corresponding to a success node of the restricted first subgoal stump.

So, as substitutions composition is associative, it cornes immediately that the

sequence of CAS defined by success branches passing by anode ~ G' ecx can be

obtained by composing 0cx with each CAS of the sequence of CAS for

Pu{~ G' 0cx}.

To get the sequence of answer substitutions for Pu { ~ G} { G = SG, G') , we

can consider one by one the CAS for P u { ~ SG} (in the order defined by the

sequence) and for each of them (denoted 0), take the sequence of their
compositions with the CAS of the sequence of answer substitutions for

Pu{~G' 0}.

F. Grapbical representation :

We propose here some conventions about the graphical representation of the
subdivision of a SLD-tree into its first subgoal stump and the needed prolongations.

Assume that G = SG , G'. If e 1, ... , 0q (q ~ O)is the sequence of answer

substitutions found in T(SG), we can sketch T(G) as in figure 3.4.

~a ~a

T"'(G)

T(G)

Figure 3.4

page 65

Chapter3

Exarnple:

Consider the following prograrn :

q(a,b).
s(b,c).
p(_x,_z) :- q(_x,_y), p(_y,_z).
p(_x,_x).
r(_x,_y) :- q(_x,_y),s(_y,c).

Equivalence for finlte SLD-trees wlthout c:uts

Figure 3.5 provides the sketch of T(G) for G = p(_ x,b) , r(_ x,b) .

t- p(_x,b),r(_x,b)

t- p(b,b),r(a,b)

t- q(b,_y4),p(_y4,b),r(a,b) t- r(a,b)

t- s(b,c)

◊

figure 3.5

page66

Chapter3 Equivalence for finlte SLD-trees without c:uts

3.3.2 Structure of the proof:

It is easy to proof the correctness of proposition 3.2 when G = () ! A quick glance
at the algorithm is already persuasive. The case of G = () is used in our proof as the
minimal case for an induction on the number of subgoals composing the goal.

The induction grounds on two lemmas ! We consider an incarnation of EG created
with G and V = V O . G = SG,G' is composed of n subgoals and we assume

proposition 3.2 has been proved for goals of less than n subgoals. To understand the
aim of these lemmas, the reader should better keep in mind the following illustration :

t- a ev0
t-G ev0

T*(G 0Vo)

T(G 0Vo)

Figure 3.6

Lemma 3.4 expresses that if an execution of an incarnation EO passes at the point

where an incarnation E2 of EG is created and if V = V O 0 then, there will be a

succession of executions of the incarnation EO before an execution passes at the

point labelled next _SG _ CAS . The jth execution of this succession is so that it ends

with V = v O 0 0'j , 0'j being the jth CAS of the sequence of answer substitutions for

Pu{t-G' 0Vo0}.

Tuen, we use this lemma and proposition 3.1 in order to prove that given i, an

integer such that 1 S i S p, there will be a succession of q executions (q ~ 0) of the

page 67

•

•

•

•

•

•

•

•

•

•

•

Chapter 3 Equivalence for flnlte SLD-trees wlthout cuts

incarnation before an execution passes at the point labelled next_ SG _ CAS with the

(p+t)th execution of the incarnation El to execute. The jth execution of this

succession terminates with V= V O 8j , 8j being the jth CAS for Pu { +- G SV 0}.

Proposition 3.2 is easily deduced from this lemma and the characteristics (see

proposition 3.1) of the (p+t)th execution of the incarnation El .

3.3.3 Lemma 3.4 :

We begin to recall the algorithm EG for non-empty goals and we add a label L
that is used in the lemma :

if G = (SG,G') then
begin

goto @ entry _pt ;

prem : V := Vrem ;
El := create(ESG(SG , V)) ;

next_ SG _ CAS : execute(El) ;
if failure then selfkill ;

L: E2 := create(EG(G' , V)) ;

next_ CAS : execute(E2) ;
if not failure then terminate(next_ CAS) ;

else if eut then selfkill
else goto next_ SG _ CAS

end

Lemma:

let P be the program contained in CX

let G = SG, G' be a goal composed of n subgoals (n ~1)
let V O be an ACV covering G

let EO be an incarnation of the algorithm EG created with parameters

Gand V= Vo

page 68

• Chapter 3

•

•

•

•

•

•

•

•

•

•

•

Equivalence for llnlte SLD-trees wtthout culs

if algorithm EG respects proposition 3.2 for goals containing less
than n subgoals and if a first marginal execution passes at the point

labelled L with V = V 1 = v O 0 (0 being a substitution) and if 01,

... , eq (q 2!: O) is the sequence of answer substitutions for

Pu{~ G' E>V1}, then

• the /h (1 s j s q) marginal execution of EO ends with

V = V 1 ej = V O 0 ej ,

entry_pt = next_CAS,
failure = false and
the incarnation EO still alive .

• the /h (1 s j s q) marginal execution of EO has performed the /h
execution of the incarnation E2 and has not performed any
execution of the incarnation E1 .

Proof:

• the (q+ 1)th marginal execution of EO passes at the point
labelled next_SG_CAS and the incarnation E2 is destroyed .

The execution begins with a creation of an incarnation of EG

E2 := create(EG(G' , V))

with V = V 1 (V 1 covers G' because it is an instance of V O , V O which

covers G) .

By hypothesis, we can assert that

• the j th (1 S j S q) execution of E2 ends with

v = v 1 ej = v O e ej ,
f ai/ure = f alse and
the incarnation E2 still alive .

• the (q+l)th execution of E2 ends with

f ail ure = true ,

eut = false and
the incarnation E2 destroyed .

page 69

Chapter 3 Equivalence for finlte SLD-trees wlthout culs

Tuen, we proceed by induction on the successive marginal executions
ofEO.

Case 1 : first marginal execution

lfq=O:

The first execution of E2, performed just after its creation, ends with
f ai/ure = true , eut = false and the incarnation E2 destroyed .

So, the first marginal execution of EO jumps to the point labelled
next _ SG _ CAS and we get the thesis .

If q >= 1:

The first execution of E2, performed just after its creation, ends with

V=Vl 81 =Vo 8 81 ,

/ai/ure = f alse and
the incarnation E2 still alive;

As /ai/ure = false, the execution of EO executes
terminate(next_ CAS)

so, it ends with

V= V l 81 = v O 8 8 1 ,

/ai/ure = f alse ,
entry _pt = next_ CAS and
the incarnation EO still alive.

Moreover, E2 still lives and this first marginal execution of EO has
proceeded to the first execution of it . We also have that no execution of
the incarnation El occurred.

Case 2 : j th marginal execution if it is allright up to (j-l)th (j-1 ~ q)

By induction hypothesis, we have that the jth marginal execution jumps

at the point labelled next _ CAS and perf orms the jth execution of the

incarnation E2 .

page 70

Chapter 3 Equivalence for finlte SLD-trees wlthout cuts

If j=q+l:

We can assert that this jth execution of E2 ends with
f ai/ure = truc ,

eut = f alse and
the incarnation E2 destroyed.

So, the jth marginal execution of EO jumps to the point labelled
next _ SG _ CAS and we get the thesis .

If j <= q:

The jth execution of E2, performed just after its creation, ends with

V = V 1 ej = V o 8 ej ,

f ai/ure = f alse and
the incarnation E2 still alive ;

As /ai/ure = false, the execution of EO executes
terminate(next_ CAS)

so, it ends with

V = V 1 ej = V O 8 ej ,

/ai/ure = f alse ,
entry_pt = next_CAS and
the incarnation EO still alive.

Moreover, E2 still lives and this first marginal execution of EO has
proceeded to the first execution of it . We also have that no execution of
the incarnation El occurred.

3.3.4 Lemma 3.5 :

Lemma:

let P be the program contained in CX

let G = SG, G' be a goal composed of n subgoals (n ~ 1)
let V O be an ACV covering G

let SN = s1 , ... , sp (p ~ O) be the sequence of success nodes of

page 71

Chapter 3 Equivalence for finlte SLO-troos without ruts

T(SG eV0)

let i be an integer such that O ~ i ~ p
let EO be an incarnation of algorithm EG created with parameters G
and V= v0

if algorithm EG respects proposition 3.2 for goals containing less

than n subgoals and if S = e1, ... , eq is the sequence of CAS for P

u {~ G ev 0} such that, for each of them, the corresponding

success branch passes by one of the nodes of the T*(G ev 0)

corresponding to one of the first i (O ~ i ~ p) success nodes of SN,
then

• the jth (1 ~ j ~ q) execution of EO ends with

v = v0 ej,
failure = false and
the incarnation EO still alive .

• the (q+ 1)th execution of EO passes at the point labelled
next_SG_CAS and the next execution of the incarnation E1 will

be the (i+ 1)th one .

Proof:

We proceed by induction on i.

Case 1 : i = 0

As entry_pt is initialized to prem and Vrem to v0 at creation, the first

execution jumps to the point labelled prem and executes

El := create(ESG(SG , V))

with V = V O (V O covers SG because it covers G).

Tuen, it passes at the point labelled next _ SG _ CAS and the next execution
of El will be the first one. This provides the thesis because for i = 0, we have

q=O.

page 72

ï

Chapter 3 Equivalence for finite SLD-trees without cuts

Case 2: i ~ 1 if it is allright up to (i-1) < p

The q CAS 81 , ... , 8q can be subdivised as follows:

- 81, ... , 8ql (0 ~ ql ~ q) the sequence of CAS for Pu { ~ G ev 0}

such that, for each of them, the corresponding success branch

passes by one of the nodes of the T"'(G SV 0) corresponding to one of

the first (i-1) (1 ~ i ~ p) success nodes of T(SG 0V 0) .

- 8(ql+l) , ... , 8(ql+q2) (ql+q2 = q) the sequence of CAS for P u

{ ~ G 0V 0} such that, for each of them, the corresponding success

branch passes by the node of T*(G ev 0) corresponding to the ith

success node of T(SG 0V o) . (D

By induction hypothesis, we get that

• the j th (1 ~ j ~ ql) execution ofEO ends with

v = v0 0j,

failure = f alse and
the incarnation EO still alive.

• the (ql+l)th execution passes at the point labelled
next SG CAS and the last execution of the incarnation El wi1l be the

ith one.

Now, at the point labelled next_SG_CAS, this (ql+l)th execution of EO

performs the ith execution of El which ends with

V=Vo Îi•

f ai/ure = f alse and
the incarnation El still alive ,

Îi being the ith CAS of the sequence of answer substitutions for

P u { ~ SG SV ol , by proposition 3.1 .

As failure = false , this (ql+l)th execution of EO arrives at the point

labelled L (see lemma 3.4) with V = V O 'Yi .

page 73

, .=-

Chapter 3 Equivalence for finlte SLD-trees without ruts

From (1) and from the developments we have made in section 3.3.1, we
deduce that

e(ql+k)= Îi e·k (1 SkSq2)

where 8' k denotes the kth CAS of T(G' SV O 'Yi) which is the prolongation to

add to the terminal node of T*(G SV 0) corresponding to the ith success node

of T(SG ev o> .

We also have, at this point,

G' SV= G' «8Vo 'Yi»Vo (by proposition 2.2)

G' SV = G' ev O 'Yi

(by the the fact that 'Yi is a CAS for P u { ~ SG SV ol and

also the fact that v O covers G' because it covers G).

Now, we can use lemma 3.4 and also the fact that one more execution
of El occurred to get the thesis.

3.3.5 Proof of proposition 3.2 :

We proceed by induction on the number of subgoals composing the goal G .

Case 1 : 0 subgoal

It is immediate by using symbolic execution and the specifications of
initialization of the remanent variables .

Case 2 : n (n > 0) subgoals and proposition 3.2 holds for goals of less than n
subgoals.

Assume G = SG , G' .

Assume also that there are p CAS (p ~ 0) for P u { ~ SG SV 0}, we can

use lemma 3.5 with i = p and q = m to get the first part of the thesis. The

second part cornes from the fact that the (m+l)th execution of EO passes at

page 74

•

•

•

•

•

•

•

•

•

•

Chapter3 Equivalence for finlte SLD-trees wlthout culs

the point labelled next_SG_CAS and proceeds to the (p+t)th execution of
El (see lemma 3.5). We know (proposition 3.1) that this execution of El
ends with

f ail ure = true ,
eut = f alse and
the incarnation El destroyed .

Asfailure = true, this (m+l)th execution of EO performs selfkill .

3.4 LIFTING CIRCULARITY:

Up to now, we have proved that proposition 3.1 is right if proposition 3.2 is
so and vice versa. To lift the resulting circularity, we should give a simultaneous
proof of propositions 3.1 and 3.2 . We do not give it here but we provide a detailed
description of the way to follow to get this proof !

We assume the context CX contains the program P.

The depth of a SLD-tree is the length of its longest derivation (successful or
failed) . If T is a SLD-tree, its depth is denoted depth(T).

What bas to be shown is that 'v'n e N:

• n = depth(T(SG ev 0)) => proposition 3.1 holds for SG and V= v O .

• n = depth(T(G ev 0)) => proposition 3.2 holds for G and V = V O .

We use the induction principle on the depth of the trees.

We consider that the minimal cases concem Sill-trees of depth :S 1. These
cases are discussed hereafter .

page 75

•

•

•

•

•

•

•

•

•

•

Chapter3 Equivalence for finite SLO-trees wilhout culs

3.4. 1 depth(T(SG 0 V r}) = 0 :

The SLD-tree has the following form ::

t- SG ev0

Figure 3.7

It is impossible to find an input clause, so nb _ cl = 0 and there is no CAS !

The correctness of proposition 3.1 in this case can be proved by using lemma
3.1 which does not rely on the correctness of proposition 3.2 when nb _ cl = 0 .

3.4.2 depth(T(G E> V r}) = 0 :

The SLD-tree has the form :

t-G E>Vo

Figure 3.8

If G is not the empty goal, we can write that G = SG , G' . We also know that

there is no CAS for Pu { t- G E>V 0}. So, if G = SG , G' , its restricted first subgoal

stump is only composed of the root t- SG E>V O .

page 76

•

•

•

•

•

•

•

•

•

•

•

Chapter3 Equivalence for finlte SLD-trees without culs

The depth of this stump is also O and there is no CAS for P u { ~ SG ev 0}. By
(I), we know that proposition 3.1 is respected for SG and V = V O , so, we can

take over lem.ma 3.5 to derive proposition 3.2 for SLD-trees of depth = 0 .

If G is the empty goal, the proof of proposition 3.2 remains the same .

3.4.3 depth(T(SG E> V (1) = 1 :

The SI.D-tree has the following form

~sG ev0

~ G'. 'Y,·
1 1 ~ G' nb_cl 'Ynb_cl

Figure 3.9

where G' i is the body of the ith descendent input clause of ~ SG E>V O and 'Yi a

MGU of its head and SG SV o·

Now, as depth(T(SG ev0)) = 1 , we have depth(T(G'i 'Yi))= O. Proposition

3.2 which holds for goals whose SLD-trees are of depth = 0 can be used .

3.4.4 depth(T{G E> V (1) = 1 :

As depth is 1, Gis not the empty goal. Assume G = SG,G'.

pagen

Chapter3 Equivalence for finite SLD-trees without ruts

The SLD-tree has the forrn:

~ (SG,G') ev 0

Figure 3.10

where G' i is the body of the ith descendent input clause of ~ G ev O and 'Yi a MGU

of its head and SG SV o·

We can deduce that the tree is equal toits first subgoal stump whose restriction
bas the forrn presented at figure 3.9.

The depth of this restriction is also 1 ! So, we have that proposition 3.1 holds
for SG and V = V O . It is then possible to prove that proposition 3.2 holds because

when using, in the proof, the fact that proposition 3.1 must hold , it is enough to

assume it holds for trees of depth ::;; 1 !

3.4.5 General case :

Now that we have shown how to cope with minimal cases, we consider the
general case

Assuming that propositions 3.1 and 3.2 are correct for SLD-trees of

depth = n ::;; n-1 , we have that

• n = depth(T(SG 9V 0)) ==> proposition 3.1 holds for SG and V = V O .

page 78

Chapter 3 Equivalence for finite SLD-trees wllhout culs

• n = depth(T(G SV 0)) ~ proposition 3.2 holds for G and V = V O .

The correctness of proposition 3.1 for trees of depth n has to be established

first ! This is due to the fact that it is enough to assume that proposition 3.2 holds
for SI.D-trees of depth (n-1) in this case . lt is so because, when an incarnation of

ESG uses an incarnation of EG, this latest concems a subpart of T(SG E>V 0) and the

root of this subpart is a descendent of the root node of T(SG E>V 0).

Now, if proposition 3.1 holds for SLD-trees of depth n , we can prove that

proposition 3.2 also holds for such SLD-trees because when an incarnation of EG

uses an incarnation of ESG, it is for the first subgoal of the goal. So, the incarnation

of ESG is concemed with T(SG E>V 0) . But, this tree is the restriction of the first

subgoal stump of T(G E>V 0) and therefore, its depth is S n !

3.5 PROOF OF PROPOSITION 2.3 (Equivalence):

The beginning of the execution of EQ consists of the following
instructions :

V:= REFERENCE_ACV(~ G);
{l}

EO := create(EG(G , V)) ;
{2}

In {1}, we have that V= v O which covers Gand ev O = E.

In {2}, we can deduce from proposition 3.2 that

• the j th (1 S j Sm) execution of EO ends with

v = v0 ej,

f ai/ure = f alse and
the incarnation EO still alive.

• the (m+l)th execution of EO ends with
failure = true ,

eut = f alse and

the incarnation EO destroyed .

page 79

•

•

•

•

•

•

•

•

1

•

•

•

•

Chapter 3 Equivalence for flnlte SLD-trees without ruts

After creation, the first execution of EO takes place .

Ifm = 0:

this execution of EO ends with failure = true , so, the execution of EQ
prints "no" and ends immediately .

If m ~ 1:

this execution of EO ends with V = v O 81 , failure = false and the

incarnation EO still alive . So, the execution of EQ continues by printing
V. But we have, when Vis printed, that

- ev0 = e. (a)

- V O covers G . (b)

81 is a CAS for P u { t- G ev 0} and thus a substitution for

variables appearing in G. (c)

From these assertions, we can deduce that

ev = «ev0 e1»v0

= <01>Vo

= 01

(by proposition 2.2)

(by a and proposition 2.1)

(by a, b and c)

After the printing , the execution of EQ jumps to the point labelled
next CAS .

Now, assuming that proposition 2.3 is correct up to the (j- l)th CAS of S

(1 < j < m) and that after printing the (j-l)th ACV, the execution of EQ
jumps at the point labelled next _ CAS and also that the last execution of EO

was the (j-l)th, we can prove that proposition 2.3 is also correct up to the jth

CAS of S.

The execution of EQ passing at the point labelled next _ CAS performs the

jth execution of EO .

page 80

Chapter 3 Equivalence for finlte SLO-trees without culs

If j = m+l :

this execution of EO ends with /ai/ure = truc , so, the execution of EQ
prints "no" and ends immediately.

If jSm:

this execution of EO ends with V = V O 0j , /ai/ure = false and the

incarnation EO still alive . So, the execution of EQ continues by printing
V. But we have, when Vis printed, that

- 9Vo = E. (a)

- V O covers G . (b)

0j is a CAS for P u { ~ G SV 0} and thus a substitution for

variables appearing in G . (c)

From these assertions, we can deduce that

ev = « ev0 etvo

= <0fVo

= ej

(by proposition 2.2)

(by a and proposition 2.1)

(by a, b and c)

After the printing , the execution of EQ jumps to the point labelled
next CAS.

The last execution of EO was also the jth one.

So, we have proved the equivalence of our expression of the procedural
semantics and the usual one based on SLD-trees when dealing with finite SLD
trees where no eut appears.

page 81

-- ~ ----

•

•

•

•

•

•

•

•

•

•

•

4. 1 INTRODUCTION :

In chapter 3, the proof of the equivalence uses the induction principle on the
depth of SLD-trees. Therefore, this proof cannot hold for infinite SLD-trees. In

this part of the work, we show how to deal with them.

In this case, the PROLOG-sequence of CAS, denoted S in proposition 2.3
(equivalence), contains all the CAS whose success branches are located more
at left in the SLD-tree than the leftmost infinite branch. It is clear that this
sequence can be finite or infinite ! If it is finite, it means that the search, after
having found the last CAS, goes desperately seeking for another one along the
infinite branch .

The proof of proposition 2.3 for finite SLD-trees shows that the algorithm EQ
relies completely on the algorithm EG. In the case of infmite SLD-trees, we can
take over the same reasoning, provided we can assert the following proposition
(derived from proposition 3.2) about the algorithm EG .

4. 1. 1 Proposition 4. 1 :

Proposition :

let P be the program contained in CX
let G be a goal
let V O be an ACV covering G

let S be the sequence of answer substitutions for Pu {f- G E>V0}

let T(G eV
0

) contain at least one infinite branch

let EO be an incarnation of the algorithm EG created with parameters
Gand V= Vo

page 82

- -- -- - - - - - - - - -

Chapter4 Equivalence for lnflnlte SLD-trees without culs

if S is a finite sequence of m CAS, 01, ... , 8m , then

• the jth execution of EO (1 ~ i ~ m) ends with

v = v0 0j,

failure = false and
the incarnation EO still alive .

• the (m+ 1)th execution of EO never ends .

if Sis an infinite sequence of CAS, 01, 02, 03, ... , then

• the jth execution of EO (j > 0) ends with

v = v0 ej,
failure = false and
the incarnation EO still alive .

To prove this proposition, we need some new concepts that are presented in
the next section. Then, two propositions about these concepts are presented before
we focus on the proof for SLD-trees containing one and only one infinite branch
because it is far more easier to understand than the proof for any infinite SLD
tree ! Finally, we show how to deal with SLD-trees containing more than one
infinite branch.

4.2 SUBGOAL SUBTREES (SS), SUBGOAL RESTRICTED
SUBTREES (SRS) :

In this section, we assume that

- P is a program.

- G = SG1 , ... , SGn (n:::: 1) is a goal of n subgoals.

We divide T(G) into specific subparts which receive the generic denomination
of Subgoal Subtrees (SS). These subparts are composed of a subset of the nodes
of T(G) and a subset of its branches. Ail the subparts we consider have the
following characteristics :

page 83

Chapter4 Equivalence for lnfinlte SLD-trees without ruts

• they are trees .

• if a subpart contains a node a which belongs to T(G) (where be bas

descendents) then it contains either ail the descendents of a appearing
in T(G), or none of them.

We can immediately see the similarity with the concept of stump (see section
3.3.1). This is normal, because these subdivisions of an SLD-tree are defined by
using this concept.

We distinguish the SS of the first degree (SSl), of the second degree (SS2), ...

We begin to define the SSl.

4.2.1 SS1:

If G is composed of n subgoals, there can be n classes, n levels of SS 1 x !

At the fi.rst level, there is only one First Subgoal Subtree of degree 1 for T(G),
lSSl(G), it is in fact the first subgoal stump of T(G) : T*(G). Corresponding to
this lSSl, we have a First Subgoal Restricted Subtree of degree 1 for T(G),
lSRSl(G), which is the restriction of the first subgoal stump.

The complement C of the lSRSl(G) is the expression to add to its root in order
to get the root of the corresponding lSSl(G). Here, we have C = SG2 , ... , SGn .

To complete a lSRSl(G) is to perform the treatment that pennits to get the
lSSl(G) from the lSRSl(G) and its complement (see section 3.3.1).

From section 3.3.1 , we know that we can get T(G) simply by adding
prolongations to the nodes of its lSSl corresponding to success nodes of the
lSRSl(G). These terminal nodes of the lSSl are called the grafting nodes of the
lSSl(G).

Each prolongation bas a root of the form

~ce
or

where 8 is the CAS defined by the success branch of the lSRSl(G) ending at the
success node corresponding to the grafting node, of the lSSl(G), on which the

page 84

Chapter4 Equivalence for lnfinlte SLD-trees wlthout c:uts

prolongation is fastened . This substitution is called a First Subgoal Grafting
Substitution of degree 1 for T(G), lSGSl(G). Each prolongation is called a First
Subgoal Prolongation of degree 1 for T(G), lSPl(G) .

Now, we can recursively define the ith level : lh Subgoal Subtrees of degree 1 for

T(G) (iSSl(G)), lh Subgoal Restricted Subtrees of degree 1 for T(G) (iSRSl(G)

), lh Subgoal Grafting Substitutions of degree 1 for T(G) (iSGSl(G)) and lh
subgoal Prolongations of degree 1 for T(G) (iSPl(G)) with 2 ~ i ~ n.

An iSSl(G) is the first subgoal stump of an (i-l)SPl(G) and the
corresponding iSRSl(G) is the restriction of this first subgoal stump. So, an

iSRSl(G) is a SLD-tree for P u { ~ SGi cr } where cr is the (i-l)SGSl(G)

corresponding to the grafting node on which the (i-l)SPl(G) is fastened. The
complement of an iSRSl(G) has the form

(SG(i+l), ... , SGn) cr

Equivalently, we have that an iSSl(G) is the lSSl((SGi, . .. ,SGn) cr) of an (i

l)SPl(G) and an iSRSl(G) is the lSRSl((SGi, . .. ,SGn) cr) of an (i-l)SPl(G).

An iSPl(G) is a lSPl((SGi••··•SGn) cr) of an (i-l)SPl(G). Each iSPl(G) is a

SLD-tree for Pu { ~ (SG(i+l) , ... , SGn) cr y} where cr is the (i-l)SGSl(G)

corresponding to the •grafting node the (i-l)SPl(G) , containing the iSPl(G), is

fastened on and y is the CAS defined by the success node of the iSRSl(G)
corresponding to the grafting node, of the iSSl(G), the iSPl(G) is fastened on.

cry is an iSGSl(G) ; it is in fact the composition of the unification substitutions
defined along the branch going from the root of T(G) to a grafting point of the
iSSl(G).

Note that , by convention, we say T(G) is the OSPl(G). When no ambiguity is
possible, we drop the subscripts and simply speak of iSSl , iSRSl, iSGSl and iSPl !

4.2.2 Graphlcal representation :

The graphical representation of the concepts we present in the previous
subsection is an "inductive" application of what we explain in section 3.3.1 .

page 85

Chapter4 Equivalence for lnllnlte SLD-trees wlthout culs

Figure 4.1 provides the sketches for T(G) and its subdivision in lSSl, lSPl
,2SS 1 and 2SP1. It is easy to imagine the following subdivisions into higher levels
SSl and SPl,.

A ... 1SS1

2SS1

~G

A 0SP1

A
A

Figure 4.1

1SP1

2SP1

page 86

Chapter4 Equivalence for lnflnlte SLD-trees wlthout culs

Example:

Consider the goal clause (p(_x,b) , r(_x,b) , t(_x,b)) with the following
program

p(_x,_z) :- q(_x,_y), q(_y,_z).
p(_x,_x). q(a,b).
r(_ x,_y) :- s(_ x,_y).
s(a,b).
t(a,b).

Here is the resulting SLD-tree where l SSl, lSPl, 2SS1 and 2SP1 are
shown:

+- p(b,b),r(a,b),t(a,b)

q(b,_y4) ,p(_y4,b) ,r(a,b) ,t(a,b)

+- t a,b

Figure 4.2

page 87

Chapter4 Equivalence for lnfinite SLD-trees without cuts

But we need some more conventions for reprseentation of SS and SP with infinite
branches! These are illustrated in figure 4.3 .

infinite SP infinite SS

Figure 4.3

Note however that we do not represent the SS which are composed only of their
rootnode !

4.2.3 SSj:

Now, we turn to the definition of the jth degree SS and SRS. Formally, this

should be recursive, defining jth degree SS and SRS from the (j-l)th degree SRS.
However, for simplicity , we do not provide here a formally accurate and general
definition ; in fact, it is enough to have a good idea of the mechanism and we think

a way to achieve this is to show how to define the second degree SS and SRS,

starting from SRS 1.

Note: we do not define prolongations and grafting substitutions of a
degree superior to 1 !

If we consider an iSRS 1, it bas the fonn gi ven at the following figure :

~ SG. 'Y·
1 1

~G·.e·.
J J

~
Figure 4.4

page88

Chapter4 Equivalence for lnfinlte SLO-trees wlthout culs

Where O'j is the body of the jth descendent input clause and 8'j a MOU of the

head of this input clause and SOi 'Yi .

Let O'j = SO' l, ... , SO'p .

T(O'j 8'j) can be subdivised into first degree subparts. The SRSl for T(O'j

8'j) are SRS2 for T(O). But a SSl for T(O'j 8'j) is NOT a SS2 for T(O).

Consider a kSRSl for T(O'j 8'/ it is the SLD-tree for Pu {t- SO'k y'k}

where y'k is the (k-l)S0S1 for T(O'j 8'j) associated to the grafting node which

corresponds to the root node of the kSSl for T(O'j 8'j) whose restriction is the
kSRS 1 at hand.

We know that the complement for the iSRSl for T(O) has the form

(SO(i+l), ... , SOn) 'Yi = C

and that the complement of the kSRSl for T(O'j 'j) has the form

If we complete with C' the kSRSl for T(O'j 8'j), we get the corresponding

kSSl for T(O'j 8'j) which is a subtree of T(O'j 8) and therefore a subtree of the

iSRS 1 for T(O). From section 3.3.1 , we know that when we complete this iSRS 1

with C, the expression that we add to the expression of the node t- O'j 8'j is

C 0'j and the one to the expression of the grafting node corresponding to the root of

thekSSl forT(O'j 8'j) is C 0'j y'k.

So, if we complete the kSRSl for T(O'j 0'j), which is a kSRS2 for T(O), with

the expression (C' , C 8'j y'k) , we get a subtree of T(O) and it is this subtree

which is a kSS2 for T(O) ! The expression (C' , C 8'j y' k) is called the second

degree complement of the kSRS2 while C' is the first degree complement.

Using the same reasoning , it is possible to define SSj and SRSj from SRS.1
of SRS(j-1) . To get an SSj from its corresponding SRSj, we must complete this

page 89

Chapter4 Equivalence tor inllnlte SLD-trees wtthout culs

last one with a jth degree complement which can be obtained from the first degree

complement of SRSj and a proper instance of the (j-l)th degree complement of the
SRS(j-1) .

Example:

We can take over the example already treated in figure 4.2 . Figure 4.5
shows one of the lSSl subdivised into 1SS2 and 1SP2 ..

t- pLx,b),rLx,b),tLx,b)

t- qLx,_y),PlY,b),rLx,b),tLx,b) t- r(b,b),t(b,b)

q(b,_y4),plY4,b),r(a,b),t{a,b)

Figure 4.5

page 90

Chapter4 Equivalence for lnfinlte SLO-troos wfthout culs

4.2.4 Proposition 4.2 :

Proposition :

let P be a program
let G be a goal

if T(G) is infinite , each infinite branch reaches at least one infinite
SS1 (T(G)) (this means it passes by the root of the SS). If it reaches
many infinite SS1 (T(G)), only one of them includes the rest of the
infinite branch, starting at its root.

Proof:

For each infinite branch, we have that if there is no such SSl(f(G)),
it is impossible for the branch to be infinite because the number of
subgoals in a goal is finite and therefore, we cannot have an infinity of
SSl(T(G)) levels!

lt is also clear that there can only be one such SSl(T(G)) because the
SS 1 (T(G)) are disjoint.

4.2.5 Proposition 4.3 :

Proposition :

let P be a program
let G be a goal

if T(G) is infinite and if B is an infinite branch of T(G), the sequence
of infinite SS reached by B and such that each of them contains
the rest of B starting at its root is an infinite sequence. Moreover,

the jth infinite SS of the sequence is of degree j for T(G).

Proof:

By propos1t.1on 4.2, we know B reaches only one infinite SSl(T(G))
and which includes the rest of B, starting at its root It is also the first
infini te SS it crosses because SS of higher degrees are included in SS 1 and

page 91

Chapter4 Equivalence for lnfinite SLD-trees wlthout a.ils

can not be reached yet !

Now, assuming B reaches a /h infinite SS which includes the rest of B

starting at its root and which is of degree j, does it reach a (j+ t)th such SS of
degree (j+l)?

We denote S this /h SS and RS its restriction !

S has the forrn given at figure 4.6, where C denotes the jth degree
complement of RS and B' the rest of B , starting at the root of S.

~sG,C

~ (G'. , C) 0'.
1 1

1--··- B'

Figure 4.6

RS has the forrn given in figure 4. 7, where RB' denotes the branch which
becomes B', without its first arc, when we complete RS.

~sG

~ G'. e·.
1 1

.................. RB'

Figure 4.7

page 92

Chapter 4 Equivalence for lnfinlte SLD-trees wlthout ruts

ln T(G\ 0' i), the SLD-tree for P u { +- G\ 0\}, RB' is an infinite

branch. From proposition 4.2, we know RB' reaches only one infinite

SSl(T(G\ 0\)) which includes the rest of RB', starting at its root It is also

the first infinite SS, for T(G' i 0' i), it crosses because SS of higher degree for

T(G' i 0' i) are included in SS 1 (T(G' i 0' i)) and can not be reached yet !

We can associate a SS(j+l) for T(G) to the restriction of this SSl for

T(G' i 0' i) and it is clear that this SS(j+ 1) is the next one of the sequence of

infmite SS for T(G) reached by B and such that each SS of the sequence
includes the rest of B, starting at its root .

4.3 STRUCTURE OF THE PROOF:

We begin to prove proposition 4.1 for SLD-trees containing one and only one
infmite branch. The reason is that it is far more easier to understand ! For SLD-trees
containing more tllan one infinite branch, we only suggest tlle reasonings.

In the case of SLD-trees with only one infinite branch, we first show three
lemmas. Lemma 4.1 assert that for an incarnation of the algorithm EG created witll

parameters G and V = V O (such tllat T(G 0V 0) contains one infmite branch) , there

will be a succession of executions of this incarnation before an execution creates an
incarnation of the algorithm ESG whose aim is to provide the CAS of the first infinite
SS reached by tlle infmite branch (by proposition 4.3, this SS is of degree 1)and which

contains the rest of tlle infinite branch, starting at its root. The jth execution of this

succession ends witll V = V O ej , ej being tlle jth CAS for P u { +- G 9V 0} such

that its corresponding succes branch is more at left tllat any branch passing by tlle
root of the first infinite SS reached by the infinite branch.

This first lemma corresponds in fact to the minimal case of lemma 4.3 which

claims the same thing but for the kth (k ~ 1) infmite SS reached by the infinite
branch. But in order to prove lemma 4.3, the general case of tlle induction we make on
k requires another lemma (lemma 4.2). In lemma 4.2, we show that if lemma 4.3 is
correct up to (k-1), for an incarnation of algoritllm ESG created with parameters SG

page93

Chapter4 Equivalence for lnfinlte SLO-trees wlthout culs

and V = v O (such that T(SG ev 0) contains one infinite branch), there will be a

succession of executions of this incarnation before an cxecution creates an

incarnation of the algorithm ESG whose aim is to provide the CAS of the kth infinite
SS reached by the infinite branch (by proposition 4.3, this SS is of degree k)and which

contains the rest of the infinite branch, starting at its root. The jth execution of this

succession ends with V = V O 0j , 0j being the jth CAS for P u { ~ SG SV ol such

that its corresponding succes branch is more at left that any branch passing by the

root of the kth infinite SS reached by the infinite branch.

The proof for proposition 4.1 simply uses lemma 4.3 and proposition 4.3 .

4.4 PROOF FOR SLD-TREES CONTAINING ONE AND ONLY
ONE INFINITE BRANCH:

4.4. 1 Lemma 4. 1 :

Lemma:

let P be the progam contained in CX

let G = SG1 , ... , SGn be a goal (n ~ 1)
let V O be an ACV covering G

let EO be an incarnation of algorithm EG created with parameters G
and V= v0

assume that

- T(G eV 0) contains one and only one infinite branch, B .

- s•, a kSS1 (T(G ev 0)), is the first SS of the sequence of infinite

SS reached by B and such that each of these SS includes the
rest of B, starting at its root.

- s· is the 1 SS1 for R which is thus a (k-1)SP1 for T(G SVo)-

- the root of Ris ~(SGk, ... , SGn) SV0 Îk-1 , 'Yk-1 being the

page 94

Chapter 4 Equivalence for lnflnlte SLD-trees without cuts

(k-1)SGS1 corresponding to the node on which Ris fastened.

- S is the restriction of S* and is therefore a kSRS1 which is the

SLD-tree for P u { f- SGk SV o 'Yk-1} .

if e1 , .. . , ep (p ~ O) is the sequence of answer substitutions

defined by success branches located more at left than any branch
passing by the root of S*, then

• the jth execution of EO (1 s j s p) ends with

v = v0 ej,
failure = false and
the incarnation EO still alive.

• du ring the (p+ 1)th execution of EO, a first execution of an

incarnation 11 of EG, created with (SGk, ... , SGn) and V= v 0

Proof:

yk_1 occurs. During this first execution, an incarnation 12 of the

algorithm ESG is created with SGk and V = V O yk_ 1 and then,

this execution of 11 passes at the point labelled next_SG_CAS.

We use induction on k .

Case 1: k = 1

This means S* is the lSSl(T(G E>V0)) and R is the OSSl(T(G 0V0))

which is T(G SV 0) itself. So, we can deduce that p = 0 ! It is clear that the

incarnation Il is in fact EO and that during the first execution of EO an
incarnation 12 is created with SGk and V = V 0. This provides the thesis

because 'Yo = E

page95

Chapter4

•

Case 2: k > 1 , assuming it is true up to (k-1)

Sketch of T(G E>V o) :

Figure 4.8

Equivalence for lnfinlte SLD-trees without culs

B

lSSl

lSPl

We know that the lSSl is finite (T(SG1 ev 0) is fmite). We denote

a 1, ... , am the terminal nodes, of this lSSl, which correspond to success

nodes of the restriction 1 SRS 1 . We denote the corresponding CAS O' 1, .. . ,

am. These CAS are lSGSl !

Now, we can assume that 81 , ... , 8pl (0 ~ pl ~ p) is the sequence of

answer substitutions such that for each of them, the respective success

branch passes by one of the nodes a 1 , ... , ai-l and that 8pl+l , ... ,

8pl+p2 (0 ~ p2 ~ p-pl) is the sequence of answer substitutions passing by

the node ai but still more at left than any branch passing by the root node of
S*.

We also have that the lSPl grafted to one of the first (i-1) grafting

page 96

Chapter4 Equivalence for infinlte SLD-trees wlthout a.ils

nodes (cx1, ... , cxi-l) of the lSSl are finite SLD-trees. It is clear that the

lSPl grafted to the ith grafting node of the l SSl is the SLD-tree for P u
{ t- (SG2 , ... , SGn) ev O cri} and it contains an infini te branch B' which

corresponds to the rest of B, starting at its root node. But in this SLD-tree ,
the first SS crossed by B' is a (k-l)SSl with respect to (SG2 , ... , SGn)

0Vo cri (1).

Considering these remarks, we can use lemma 3.5 up to (i-1) to deduce
that

• the j th execution of EO (1 ~ j ~ pl) ends with

v = v0 ej,
failure = f alse and
the incarnation EO still alive.

• the (pl+t)th execution of EO passes at the point labelled

ne.xt SG CAS and the last execution of the incarnation El wil the ith

one.

But the incarnation El bas been created with SG1 and V = v 0. So, by

proposition 3.1, the ith execution that takes place at the point labelled
ne.xt SG CAS ends with

V= Vo cri'

f ai/ure = f alse and
the incarnation El still alive.

So, the execution continues by creating an incarnation E2 of the algorithm

EG with (SG2 , ... , SGn) and V = V O cri . But for this incarnation, lemma

4.1 is correct (due to (1)). Thus, it suffices to take over the same
reasoning than for lemma 3.4 but using the induction hypothesis over
lemma 4.1 rather than the assumption of correctness of proposition 3.2 for
goals containing less than n subgoals in order to get the thesis !

page 97

Chapter4 Equivalence for lnfinlte SLD-trees wi1hout ruts

4.4.2 Lemma 4.2 :

Lemma:

let P be the program contained in CX
let SG be a subgoal
let V O be an ACV covering SG

let EO be an incarnation of algorithm ESG created with parameters
SG and V= Vo

assume that

- T(SG ev 0) contains one infinite branch B.

- S* is the kth infinite SS, reached by B, which includes the rest of
B, starting at its root node .

- S, the restriction of S*, is the SLD-tree for Pu{~ SG' y}.

- lemma 4.3 is true up to the (k-1)th infinite SS reached by an
infinite branch and such that it includes the rest of this infinite
bran ch, starti ng at its root.

if 01 , ... , ep (p ~ 0) is the sequence of answer substitutions for P

u {~ SG evO} such that each of them is defined by a success

branch located more at left than any branch passing by the root
node of S* , then

• the jth execution of EO (1 ~ j ~ p) ends with

v = v0 ej,
failure = taise and
the incarnation EO still alive.

• du ring the (p+ 1)th execution, an incarnation 11 of ESG is

created with SG' and V= V 1 such that ev 1 = y.

page98

• Chapter4

1--

Equivalence for lnflnlte SLO-trees without culs

Proof:

We suppose that T(SG ev 0) has the form :

............................ B'

Figure 4.9

Where Gil is the body of the il th descendent input clause, 8' il a MGU

of the head of this input clause and SG ev 0, and B' is the rest of B, starting

at the node ~ Gil 8' il .

From the definitions of SS, we can deduce that the SRSl(T(Gil 8'il)) are

SRS2(T(SG SV 0)). Following this reasoning, it is easy to see that

SRSg(T(Gil 8' il)) are SRS(g+l)(T(SG E>V 0)) ! So, to the SS(k-l)(T(Gil

8'i1)), it corresponds a SSk(T(SG E>V0)) whlch can be obtained when we

complete T(Gil 8' il) with C 8' il where C is the first degree complement of

the lSRSl(T(SG SV 0)). But we can see that the lSRSl(T(SG E>V 0)) is in

fact also the lSSl(T(SG E>V 0)) itself, so we have that C is the empty

expression.

The first infinite SS reached by B and such that it includes the rest of B,

starting at its root, is the 1 SS 1 (T(SG SV 0)). As B' is the rest of B starting

at node ~ Gil 8' il , we have that the (k-l)th infinite SS for T(Gil 8' il)

page99

Chapl91'4 Equivalence for lnftnfle SLO-trees without c:uts

reached by B' and such that it includes the rest of B ', starting at its root

node, is a SS(k-l)(f(Gil 0'il)) (proposition 4.3). This SS(k-l)(f(Gil

0' il) is therefore equivalent to the kth infinite SS, reached by B, which

includes the rest of B, starting at its root node. We have that the

corresponding SRS(k-l)(T(Gil 0' il) is the SLD-tree for Pu { +- SG' y}.

As theSLD-treesforPu{+-G1 0' 1}, ... ,Pu{+-G(il-1)0'(il-l)}

are finite, we canuse lemma 3.3 and deduce that if 01 , ... , 0pl (0 S pl S p)

is the sequence of answer substitutions for P u { +- SG ev 0} such that

ej (1 S j S pl) is defined by a success branch passing by one of the nodes

+- G1 0' 1 , ... , +- G(il-l) 0' (il-l), then

• the jth (1 Sj S pl) execution ofEO ends with

v = v0 ej,

•

/ai/ure = f alse and
the incarnation EO still alive.

the (p+l)th execution
next clause with i = il .

of EO passes at the point labelled

Now, this means that we have p2 (0 S p2 S p-pl) CAS e(pl+l)•

0 (p 1 +p2) for P u { +- SG 0V ol which form the sequence of CAS

defined by success branches which passes by the node +- Oil 0' il but are

sti.11 located more at left than any branch passing by the root of S* !

So, given the hereabove remarks, by using, in place of proposition

3.2, lemma 4.3 for the (k-l)th SS, reached by B', which includes the rest
of B' starting at its root, we can proceed to the same reasoning than for
lemma 3.2 in order to deduce that

• the jth execution of EO (pl+l Sj S p) ends with

v = v0 ej,

/ai/ure = f alse and
the incarnation EO still alive.

page 100

Chapter4 Equivalence for lnfinlte SLD-trees without cuts

• during the (p+l)th execution, an incarnation Il of ESG is created

with SG' and V = V l such that 9V 1 = y .

4.4.3 Lemma 4.3 :

Lemma:

let P be the program contained in CX

let G = SG1 , ... , SGn be a goal (n ~ 1)

let V O be an ACV covering G

let EO be an incarnation of algorithm EG created with parameters G
and V= vO

assume that

- T(G ev 0) contains one infinite branch B.

- s• is the kth (k ~ 1)infinite SS, reached by B, which includes the
rest of B, starting at its root node.

- S, the restriction of s•, is the SLD-tree for Pu{~ SG' y}.

If 01 , ... , 8P is the sequence of answer substitutions for P u {~

G ev 0} such that each of them is defined by a success branch

located more at left than any branch passing by the root node of s• ,
then

• the jth execution of EO (1 ~ j ~ p) ends with

v = v0 ej,
fai/ure = taise and
the incarnation EO still alive .

• du ring the (p+ 1)th execution, an incarnation 11 of ESG is

created with SG' and V= V 1 such that ev 1 = y.

page 101

Chapter4 Equivalence for lnllnlte SLD-trees without culs

Proof:

We proceed by induction on k .

Case 1: k = 1.

S* is of degree 1 (proposition 4.3). In this situation, lemma 4.1 provides
immediately the thesis .

Case 2: k > 1 ifitis true up to (k-1).

If the first infinite SS, reached by B, which includes the rest of B, starting at

its root, is the lSSl(T(G SV 0)):

Sketch of T(G ev 0) :

Figure 4.10

lSSl

lSPl

Ail the prolongations fastened on its grafting nodes are fmite SID
trees. So, with the same reasoning than for lemma 3.5 but using lemma
4.2 in place of proposition 3.1, we can deduce the thesis.

If the first infinite S~, reached by B, which includes the rest of B, starting at

its root, is a gSSl(T(G ev 0)) (g > 1) , assuming the proof for lemma 4.3

has been given when the first infinite SS is a (g-l)SSl(T(G ev 0)):

page 102

Chapter 4

Sketch of T(G SV o) :

Figure 4.11

Equivalence for lnfinite SLO-trees wlthout cuts

........... ·--.......... B

lSSl

lSPl

We know that the lSSl is fmite (the SLD-tree for P u { ~ SG1

ev 0} is finite). We denote a 1 , ... , am the terminal nodes, of this

lSSl, which correspond to success nodes of the restriction lSRSl . We

denote the corresponding CAS o-1, ... , om. These CAS are lSGSl !

Now, we can assume that e 1 , ... , epl (0 S pl S p) is the

sequence of answer substitutions such that for each of them, the

respective success branch passes by one of the nodes a 1 , ... , a(i-l)

and that e(pl+l) , ... , e(pl+p2) (0 s p2 s p-pl) is the sequence of

answer substitutions passing by the node ai but still more at left than any

branch passing by the root node of S*.

We also have that the lSPl grafted to one of the fii-st (i-~l) grafting
nodes of the lSSl are fmite SLD-trees. It is clear that the lSPl grafted

to the ith grafting node of the lSSl is the SLD-tree for P u { ~ (SG2 ,

, SGn) ev O oi} and it contains an infinite branch B' which

corresponds to the rest of B, starting at its root node. But in this SLD
tree, the first SS crossed by B' is a (k-l)SSl.

page 103

Chapter4 Equivalence for infinite SLD-trees without c:uts

Given these remarks, we can use lemma 3.5 up to (i-1) to deduce
that

• the /h execution of EO (1 ~ j ~ p 1) ends with

v = v0 ej,
failure = f alse and
the incarnation EO still alive .

• the (pl+l)th execution of EO passes at the point labelled
next SG CAS and the last execution of the incarnation El was the (i-

l)th one.

But the incarnation El has been created with SG1 and V = v 0. So, by

proposition 3.1, the ith execution that takes place at the point labelled
next SG CAS ends with

V= VO en,
failure = f alse and
the incarnation El still alive.

So, the execution continues by creating an incarnation E2 of the

algorithm EG with (SG2 , ... , SGn) and V = V O ai . But for this

incarnation, lemma 4.1 is correct . Thus, it suffices to take over the
same reasoning than for lemma 3.4 but using the induction hypothesis
over lemma 4.3 rather than the assumption of correctness of proposition
3.2 for goals containing less than n subgoals in order to get the thesis !

4.4.4 Proof of proposition 4. 1:

It cornes straighûorward from lemma 4.3 and proposition 4.3 . There is
an infinity of infinite SS reached by the infinite branch and lemma 4.3 is true for
any value of k .

page 104

Chapter 4 Equivalence for lnfinlte SLD-trees wlthout ruts

4.5 SLD-TREES WITH MANY INFINITE BRANCHES :

We do not provide a full proof for these SLD-trees. The reason is that it would be
very long and a little bit tedious and we think it is convincing enough to underline
the main points of the reasoning.

If the number of infinite branches is finite, it could proceed by induction over
the number of infinite branches ! The reasoning should be quite the same than for
SLD-trees with one infinite branch but centering on the leftmost infinite branch.
However attention must be focused on a specific situation which is illustrated
hereafter in the case of the proof for an SLD-tree with 2 infinite branches.

The problem is when the leftmost infinite branch B reaches a SS, S*, which is
infinite but which does not include the rest of B, starting at its root !

Schematization of the restriction of S* :

+- SG' i

1 8'nb_cl

........................... 8'

figure 4.12

Where Gil is the body of the ilth descendent input clause, 0' il a MGU of SG' y'

and the head of this input clause , and B' is an infinite branch of T(Gil 8 ' il) which

corresponds to the rest of the second infinite branch when the restriction is
completed.

In this situation, we have that the leftmost infmite branch and the other

page 105

Chapter4 Equivalence for lnflnlte SLD-trees wlthout a.its

infinite branch follow the same way until the root node of S*. So, it means that the
section, of the leftmost infinite branch, which is included in S* corresponds to a
success branch of its restriction.

But, the restriction of S* contains only one infinite branch; so, when a such SS is
encountered by the leftmost infinite branch, the use of proposition 3.1 must be

replaced by the use of the induction hypothesis .

If there is an infinity of infinite branches, the reasoning should probably be based
on the transfinites.

page 106

5.1 INTRODUCTION :

The last thing we must prove is that our algorithms treat the cuts (!) in a right
way !

Remember the eut is a widely used control facility of PROLOG. It is an extra
logical primitive having side-effects which can be described in terms of pruning in the
SLD-tree. The next section recalls how this pruning occurs.

Then, we provide two propositions about algorithm ESG before we present how
to fit the proof of equivalence for finite SLD-trees in order to take the eut into
account. Finally, we turn to the problem of infini te SLD-trees.

5.2 SIDE-EFFECTS OF CUT:

If we ignore these side-effects, we can see the eut as a 0-ary predicate defined
by the following fact :

!.

This means that it always succeeds one and only one time or in other words,

the SLD-tree for Pu { ~ !} contains one and only one CAS, CAS which in fact is

the empty substitution E . So, under this hypothesis, if GC is a goal obtained from a
goal G simply by introducing cut(s) between some of the subgoals of G, we have that

T(G) and T(GC) are different but their sequence of CAS are the same because E is
a left and right idendity for substitution composition.

But, due to the side-effects of cuts, the PROLOG-sequence can become
different . We can imagine that the PROLOG sequence is still a depth first search
sequence of CAS but of a cutted SW-tree which is the SLD-tree where the pruning
effects of cuts have been shown by deleting some of its parts.

page 107

Chapter 5 Cuts

To explain the pruning defined by a eut, we assume that there is a mechanism
which permits us to uniquely name each eut. This can be done in rnuch the same way
than standardization of variables as it is explained in [Lloyd 84] : each eut is
subscripted so that it becomes different from an other cuts of the clause where it
appears but also frorn an other cuts already encountered in the derivation process.

Now, given a eut, we consider the node where it appears in the first place of the
sequence of subgoals, the node where it appears for the first tirne and the parent
node (if it exists) of this last one.

When the first node where the eut appears in the SLD-tree is the root (this node
having no parent), the pruned part of the tree is composed of ail the branches located
more at right than the ones passing by the node where the eut appears in the first
place of the sequence of subgoals.

When the first node where the eut appears is not the root, this node has a parent

node that we call ex . The pruned part consists of an the ends of branches, starting at

ex, and which are located more at right than the ends of branch, also starting at ex
but passing by the node where the eut appears in the first place of the sequence of
subgoals.

To clarify this, consider the following program fragment tak:en from [Lloyd 84]:

A :-B, C.

B :- D, ! , E.

D.

where A, B, C , D and E are atoms.

Part of the SLD-tree for the goal clause"?- A." is shown in the next figure:

page 108

Chapter 5 Cuts

(-A

~ pruned part

······
(-8, C

Figure 5.1

Note that if we eonsider the pruning for every eut appearing in the SLD-tree, it
ean happen that we get overlapping effects. This means that a eut implies the pruning
of a part which is contained in a part pruned by another eut !

page 109

Chapter 5 Cuts

5.3 TWO PROPOSITIONS ABOUT ALGORITHM ESG :

5.3. 1 Proposition 5. 1 :

Proposition :

let P be a program contained in the context CX
let Vo be an ACV

let EO be an incarnation of algorithm ESG created with parameters
SG = ! and V = V O

• the first execution of EO ends with

V=VoE =Vo,

failure = false ,
eut = true and
the incarnation EO still alive.

• the second execution of EO ends with
failure = true ,
eut= true and
the incarnation EO destroyed .

Proof:

It cornes immediately from a symbolic execution of the algorithm ESG .

5.3.2 Proposition 5.2 :

Proposition :

any execution of an incarnation of the algorithm ESG that has
been created with a subgoal different of the eut ends with eut =

false.

page 110

Chapter 5 Cuts

Proof:

Let us begin by recalling the algorithm ESG when the subgoal is not the
eut, showing the possible exit points of an execution :

if SG instance * " !" then
begin

goto @ entry _pt ;

prem: i := 1;

next clause : if i > nb cl then begin

end;

failure := truc ;

eut := f alse ;

F@elHtkdifüt@I

CL' := STANDARDIZATION(CLi, Vrem);

{ CL' = head(s ' i 1 , ... , s ' in> :- G' i }

8 : = MGU(CL' , SG_instance , Vrem);

Vnew := REFERENCE_ ACV(CL' 8) ;

El := create(EG(G' i 8 , Vnew)) ;

next_ CAS : execute(El) ;
if failure then begin

end

if eut then begin

eut := false ;

1::;$.~$.:p~);i@tîl

end

else begin

end;

V := Vrem 8 E>Vnew;
eut := f alse ;

i := i + 1 ;

goto next_ clause

end

page 111

Chapter 5

As all the exit points are preceeded by the instruction

eut:= false

we immediately get the thesis !

5.4 FIN/TE SLD-TREES :

Cuts

We can keep most of the proof that has been developped in chapter 3. We
consider in this section the needed adaptations for propositions, lemmas and their
proofs ! We also add a new proposition (proposition 5.3) .

When we say that a eut (when it appears in the root node or, when it is not in
the root, in one of the descendents of the root) stops the search of CAS, we mean

that there is anode a , in the cutted SLD-tree, where this eut appears in first place of
the list of subgoals. The pruning effects of this eut can be seen as a forced
terrnination of the search for CAS within the branches located more at right than

those passing by the sarne node a in the SLD-tree.

5.4. 1 Adaptation of proposition 3.2 :

The second part of the thesis must be changed ! It becomes :

• if a eut appearing in G stops the search of CAS for P u {~ G

ev0}

then, the (m+ 1)th execution of EO ends with
failure = true ,
eut= true and
the incarnation EO destroyed .

else, the (m+ 1)th execution of EO ends with
failure = true ,
eut= false and
the incarnation EO destroyed .

page 112

Chapter 5 Cuts

5.4.2 Adaptation of lemma 3.2 and of lts proof:

Here also, the second part of the thesis must be splitted into two parts :

• if a eut appearing for the first time in the i1 th descendent of ~sG
ev O stops the search of CAS

then, the (q+ 1)th marginal execution of EO ends with
failure = true ,
eut= false and
the incarnation EO destroyed .

else, the (q+ 1)th marginal execution of EO passes at the
point labelled nexLclause with i = i1 + 1 .

In the proof, modifications must be brought to the second case, when we
consider G' il is not the empty goal. Now, we use the hypothesis of correctness for

the adapted proposition 3.2 . If a eut appearing for the first time in the il th

descendent of ~ SG 0V 0, thus in ~ G' il Îil, stops the search of CAS, we know

from the adapted proposition 3.2 that the (q+l)th execution of El ends with
f ai/ure = true ,
eut = true and
the incarnation EO destroyed .

So, in this situation, a symbolic execution of the instructions coming after this

(q+ 1)th execution of El provides the thesis !

If no eut stops the search of CAS, the proof remains the same.

5.4.3 Adaptation of lemma 3.3 and of its proof:

The second part of the thesis is splitted into two parts :

• if a eut appearing in one of the G'k (1 ~ k ~ ne) stops the
search for CAS

then, the (p+ 1)th execution of EO ends with
failure = true ,
eut= false and

page 113

Chapter 5 Cuts

the incarnation EO destroyed .

else, the (p+ 1)th execution of EO passes at the point labelled
next_clause with i =ne+ 1 .

Case 1 of the proof remains the same provided we use the adaptation of
lemma3.2 !

For case 2, if no eut stops the search for CAS, the proof given in chapter 3 is still

valid. If a eut appearing in G' h (1 S h S nc-1) stops the search for CAS, it means

that the PROLOG subsequence of CAS passing by one of the nodes +-- G' 1 y1 , ... ,

+-- G'h Îh• is in fact e 1, ... , ep due to the side-effects of the eut (the

branches passing by the descendents +-- G' (h+l) Î(h+ l) , ... , +-- G'nb_cl Înb_cl

are included in the pruned part). Considering the ncth (ne > h) descendent of+-

SG ev O does not change anything because we know that the (p+l)th execution

ends with
f ail ure = true ,

eut = false and
the incarnation EO destroyed .

So, we get the thesis .

Still for case 2, if the eut that stops the search of CAS appears in G' ne• we can

say there can not be any eut appearing in one of the nodes +-- G ' 1 'Yt , ... , +-- G' (nc-l)

Î(nc- l) which stops the eut. So, to get the thesis, it suffices to use the

induction hypothesis and the adaptation of lemma 3.2 .

5.4.4 Proposition 5.3 :

Proposition :

an execution of an incarnation EO of EG can not end with eut = true
if no eut appears in the goal G received as parameter at creation.

Proof:

We proceed by induction on the nurnber of subgoals composing G.

page 114

ChapterS Cuts

Case 1 : 0 subgoal .

A symbolic execution is enough.

Case 2 : n (n ~ 1)subgoals assuming it is true for (n- 1) subgoals .

As we have seen in proposition 5.2, eut is never true after an execution
of an incarnation of ESG for a subgoal different from !, even if a eut

appearing in one of the input clauses for SG SV O stops the search for CAS

within the SLD-tree for P u { f- SG ev 0}. So, after execution of El (the

incarnation of ESG created during the first execution of EO, with SG = first
subgoal of G), if failure = true, a selfkill occurs and the execution of the
incarnation EO ends with eut= false because SG, the first subgoal of G, is
not the eut. This covers one of the three possible exit points !

The two other exit points corne in the tests following the execution
of E2, an incarnation of EG created with G' which contains less than n
subgoals . So, it never ends with eut = true because G' contains no eut It is
clear that only one of these two exit points can be reached in this situation
and that eut = f alse.

5.4.5 Adaptation of lemma 3.4 and of lts proof:

First, we must assume that the adapted proposition 3.3 holds for the algorithm
EG when treating goals of less than n subgoals.

Tuen, the third part of the thesis must be splitted into two subparts :

• if a eut appearing in G' stops the search for CAS

then, the (q+ 1)th marginal execution of EO ends with
failure = true ,
eut= true and
the incarnation EO destroyed .

else, the (q+ 1)th marginal execution of EO passes at the
point labelled next_SG_CAS and the incarnation E2 is
destroyed.

page 115

Chapter 5 Cuts

The frame of the proof given in chapter 3 is still correct provided we use the
hypothesis of correction over the adapted proposition 3.2 . However, when j = q+l,

we must consider a new situation when the (q+t)th execution ofE2 ends with
f ai/ure = true ,

eut = true and

the incarnation E2 destroyed .
When this occurs, a symbolic execution of the instructions following this last
execution of E2 easily provides the thesis, due to the value of eut.

5.4.6 Adaptation of lemma 3.5 and of lts proof:

First, we must assume that the algorithm EG respects the adapted proposition
3.2 for goals containing less that n subgoals.

Tuen, the last part of the thesis must be splitted into two parts:

Note:

• if a eut appearing in G' stops the search for CAS

then, the (q+ 1)th execution of EO ends with
failure = true ,
eut= true and
the incarnation EO destroyed .

else, the (q+ 1)th execution of
labelled next_SG_CAS and

EO passes at the point
the next execution of the

incarnation E1 will be the (i+ 1)th one .

recall that we consider the PROLOO-sequence of success nodes of

T(SG ev 0). Recall also that proposition 3.1 ta1k about the PROLOG-

sequence ! So, CAS for the first subgoal stump and which correspond
to success nodes appearing in a pruned part of this stump are ignored

by the incarnation, of ESG, El . If 8 is a such CAS, it means that the

prolongation T(G' ev O 8) is never considered by algorithm EG. So ,

possible answer substitutions for P u { ~ G ev 0} corresponding to

success branches ending in this prolongation are not considered. This
is a correct behaviour in order to treat side-eff ects of cuts.

In the proof, the first case remains the same, provided we use the adapted

lemrna 3.4.

page 116

•

- -----

Chapter 5 Cuts

For the second case, the proof given in chapter 3 holds when no eut stops the

search of CAS. If a eut stops the search of CAS for P u { +- G' SV 0 'Y il} (1 ~

il ~ p), it means no such eut appears in the SLD-trees for P u { +- G' ev 0 y1} ,

.. . , Pu{+- G' ev0 'Y(il-l)}. So, if i ~ il, the proof of the second case is still

valid when using the adapted propositions and lemmas. But if i > il, the PROWG

subsequence of answer substitutions for P u { +- G SV 0} such that, for each of

them, the corresponding success branch passes by one of the grafting nodes of the
first subgoal stump is an empty subsequence (this is due to the pruning of the tree by
the eut). Recall that these grafting nodes are the nodes of the first subgoal stump

corresponding to the jth PROLOG success node of the restricted first subgoal
stump . In this case, we can also say that for i = j 1, we already have that

• the ith execution of EO ends with

v = v0 ei,
f ai/ure = f alse and
the incarnation E0 still alive.

• the (q+l)th execution of E0 ends with
f ai/ure = true ,
eut = true and
the incarnation E0 destroyed .

These conclusions remains true for i > il because E0 is destroyed.

5.4.7 Adaptation of the proof for adapted proposition 3.2:

In fact the proof remains similar to the one developed in chapter 3 but it uses the
adapted propositions and lemmas and a special case must be considered when the
first subgoal is the eut and that no other eut has stopped the search . In this case, the
(q+l)th execution of E0 must end with

failure = true,
eut = true and
the incarnation E0 destroyed.

It is easy to deduce that by using proposition 5.1 after adapted lemma 3.5 .

page 117

Chapter 5 Cuts

5.4.8 Adaptation needed for lifting clrcularlty :

We only need to add new minimal cases :

- depth(T(SG ev 0)) = 1 and SG = ! :

this case is covered by proposition 5.1 .

- clepth(T(G 8V o)) = 1 and G = SG , G' with SG = ! and G' = () :

this case is covered by the adaptation of lemrna 3.5 .

5.4.9 Proof of equivalence :

It does not need adaptations but we must use now the adapted lemmas and
propositions !

5.5 INFINITE SLD-TREES :

Proposition 4.1 can not hold anymore !

Why?

Simply because the SLD-tree can be infinite but the sequence of answer

substitutions finite and such that the (m+l)th execution of EO well ends because
the infini te branch is in fact pruned by a eut !

So, the trick here is to use the same concepts and the same demonstrations
but working on the cutted SLD-trees rather than on complete SLD-trees. This can
work because we are in state to deduce from the previous section that our
algorithms can compute the sequence of CAS for cutted SLD-trees when they are

fmite !

page 118

6.1 INTRODUCTION :

Now that we have proved the equivalence between our procedural
semantics and the usual one, we quickly give some ideas over possible future
works using the concepts we have introduced.

In the next section, we examine the problem of the specification of logic
procedures. The introduction of extra-logical features of PROLOG in our procedural
semantics is briefly treated in section 6.3 before we tum to the question of the
proof of correctness for PROLOG programs and the question of the occur check .

6.2 TOWARDS THE DEFINITION OF A FRAME OF
SPECIFICATION :

The aim is not to provide a full discussion of this matter ; for a global study about
specification, the reader should consult [Le Charlier 85]. We only see how some
features of our procedural semantics can be used to specify accurately PROLOG
procedures. The frame of specification that we introduce should facilitate reasoning
when constructing and proving procedures. It is partly inspired from the work of
Deville [Deville 87] which provides a good overview of the specification problem in
logic programming. From our point of view, the changes we introduce to this frame
allows to deal with a larger number of situations. However, we must admit that the
logical aspects of a procedure fade.

Recall that a PROLOG procedure p of arity n is a sequence of program
clauses having the same principal functor p, with arity n, in the head of each of these
clauses.

Note: We do not pretend that the hereafter described frame of
specification is the best there can be. We also think that it must not
be perceived as a strait-jacket, this means it should be adapted if

necessary !

page 119

Chapler6

6.2. 1 Genersl form of a speclflcstlon :

We imagine the following form :

procedure_name(par 1 , ... , par n)

Uses:

<1>

<i> Types

<ffi>

ln-directionnality
Preconditions
[Relation]
Out-directionnality
Postconditions

Outlooks

The specification is aimed to provide informations about an incarnation of

algorithm ESG created with SG = procedure _narne(t1 , ... , tn) (where 1ï_ , 1 S i S n ,

is the ith argument) and V = v O . So, normally, we should speak in terms of

executions of this incarnation but , by conventiion, we rather speak about executions

of the subgoal SG SV O . This enables to be closer to the intuitive understanding.

When we say that an execution of the subgoal succeeds (fails) , it rneans that the
corresponding execution of the incarnation of ESG ends with /ai/ure = false (true).

Bach successful execution ends with V = V O 0 , where 0 is a CAS for P u { ~ SG

ev 0} (if P is the prograrn defined in the context CX).

This general form allows the description of each of the m possible uses of the
procedure. A possible use describes the effects of the execution(s) of the incarnation
(of the subgoal) if some conditions hold at the creation of the incarnation of ESG
(equivalently, just before the first execution of the subgoal) . These conditions are
described through the subdivisions types , in-directionnality and preconditions. Note
that the possible uses must be mutually exclusive in order to avoid ambiguity. The
effects of execution(s) are described through types , relation , out-directionnality and
postconditions .

page 120

Chapter6 Outlooks

par 1 , . . . , par n are the parameters of the of the procedure. If we consider the

subgoal SG ev O , we have that pari = ti ev . Thus, its value evolves in time as V

evolves. Just before the first execution of the subgoal, we have pari = ti ev O . After a

successful execution ending with V= v O 8 , pari= ti ev O 8 due to proposition 2.2

and the fact that V O covers SG . In fact, par 1 , ... , par n can be seen as boxes which

retain the value of the actual parameters .

6.2.2 Types :

This passage is greatly inspired from [Deville 87] !

The content of the Types subdivision has the following general form:

let par 1 be a type1

par 2 be a type2

where typei is the name of a type , a type being a set of ground elements (eg :

integers, lists, trees, ...) .

We now define the set type\ as the set of terms (ground or not ground)

which have a ground instance belonging to typei. More formally, let T be a term,

T e type\ <=> 3 8 : T 8 e typei

Examples:

2 e integer,

[a,b] e list,

_ x e integer*,

[a 1 _x] e list*.

(variables begin with an underscore)

The type of parameters has actually two different meanings. First, if pari is not

page 121

Chapter6 Oullooks

a ground terrn (see section 6.2.3) just before the first execution , it gives
inf orrnation on the type of that parameter after a successful execution of the subgoal :

pari e type\ . Second, types are preconditions to parameters. Just before the first

execution of the subgoal, there must exist a substitution y such that, pari y e

type*i for at least one possible use . These preconditions are called types

preconditions.

If these preconditions are not fulfilled for at least one possible use, we adopt the
convention that the effect of execution is undefined. Another convention could be
that the execution fails. But this would imply explicit type checking in the
irnplernentation.

6.2.3 ln-directionnality :

The in-directionnality describes a forrn for each pari . We retain three possible

forrns: ground, free and partial . These forms are the ones used in BIM _ Prolog
manual [BIM 86]

A parameter is said to be ground when it does not contain any variable. It is said
to be free when it is only composed of variables for which bindings in V are of the
forrn _ v/ _ v and for which there is no binding of the forrn _y/_ v in V. It is said to be
partial if it is not ground and not free.

An in-directionnality is noted as

where

mi,_.!:{} (1::;;i::;;n)

~ ~ {ground,free,partial} (1 ::;; i ::;; n)

For readability convenience, we denote each singleton {f} as f. We also define
any as {ground,free,partial}.

We say that parameters par 1 , . . . , par n satisfy an in-directionnality

in(rn1, ... , ~)

page 122

Chapter6 Outlooks

iff, just before the first execution of the subgoal, each pari has one of the form of the

set Il\ . If the parameters do not satisfy to an in-directionnality of a possible use,

this use is impossible for the inputs at band. So, an in-directionnality consists of
preconditions for a possible use. These preconditions are called/onn preconditions.

If these preconditions are not fulfilled for at least one possible use, we adopt the
same convention than for types preconditions.

6.2.4 Preconditions :

This subdivision is used to describe other preconditions than type or form
preconditions. These can be described in forma! language but not necessarily.

Note that the preconditions for a possible use consists of the combination of
those preconditions , the types preconditions and the form preconditions. This
combination form what we call the use preconditions. If it is impossible to find a use
for which the use preconditions hold, we adopt the convention that the effect of
execution is undefined.

6.2.5 Relation :

This subdivision specifies a relation between the parameters. The aim of the
procedure is to determine if this relation holds for the parameters. By relation, we
mean a set of ground n-tuples <a1,a2, ... , ~>. If the relation is not a simple

one, some appropriate concepts as well as the relation itself must be defined
accurately (possibly outside the specification).

This subdivision is optionnal . In fact, it should be used for procedure having a
useful interpretation at the declarative level.

6.2.6 Out-directionnality:

The out-directionnality describes the form (see section 6.2.3 for the possible
forms) of each pari after a successful execution and the possible number of

successful executions when the parameters comply to the use precondit:ions just
before the first execution . The possible number of successful executions is
specified by a lower and upper bound . The following values have been chosen for

the lower and upper bound : a positive integer, infinite (00) and a finite but

page 123

Chapter 6

unknown positive integer (denoted by *).

An out-directionnality is noted as

where

~ ;t{} (1 Si Sn)

~ !:: {ground,free,partial} (1 S i S n)

Min e Nu { oo } (N being the set of positive integers)

Max E Nu{*,oo}

Outlooks

The meaning of the lower and upper bound to the number of successful
executions requires perhaps some enlightment for the * value. It is useless as
possible lower bound because it would be equivalent to a lower bound with value O.
As an upper bound, the value * means that the number of successful execution is
fmite. For instance, <2-*> means the number of successful execution is greater or
equal to 2 but fmite ! Note also that the actual number of executions is one greater
than the upper bound if it is finite and the last execution fails . So, if the lower bound
is 0, it means the first execution can fail.

It is obvious that these numbers provide information over the number of CAS for

P u { f- SG SV 0} because it is equal to the number of successful execution .

6.2. 7 Postconditions :

Here are specified other postconditions than those expressed via the types,
relation and out-directionnality subdivisions. Specific characterization of the number
of successful executions or of the results of each execution is are examples of what
can be found here. For instance, if we know there can be more than 1 successful

execution, we can specify that the jth execution ends with V = V O ej and provide

some properties (usually depending on i) for ej or for the parameters .

The combination of these postconditions with the ones expressed via types,
relation and out-directionnality forms what we call the use postconditions .

page 124

Chapter6 Outlooks

6.2.8 Exsmples of speclflcstlon :

Note: When some use preconditions and/or use postconditions are valid for
any use, they can be specified just before the beginning of the
enurneration of possible uses !

erase(x , list , list erased) - .

Types:
let x be a terrn

List and List erased be lists

Relation:
the procedure deterrnines whether x is an element of List and
List erased is List without the first occurrence of x in it .

Uses:

<1>

ln-directionnality :
in(any, ground, any)

Out-directionnality :
out(ground , ground , ground) <Ü-*>

<2>

ln-directionnality :
in(ground , free , ground)

Precondition :

x ~ List erased

Out-directionnality :
out(ground , ground , ground) <Ü-*>

Postcondition:

after the jth execution, x appears in jth position in List

page 125

Chapter6

append(listJ , list2, list_res)

Types:

let listl , list2 and list_res be lists

Relation:

Outlooks

the procedure determines whether list_res is the concatenation of listl
and list2.

Uses:

<1>

In-directionnality :
in(ground, ground, any)

Out-directionnality :
out(ground , ground , ground) <0-1 >

In-directionnality:
in(free , free , ground)

Out-directionnality :
out(ground, ground, ground) <m-m>

Postcondition :

m = (number of elements of List _res + 1)

after the jth execution, listl is composed of the first (j-1) elements
of List res and list2 of the rest

6.3 TOWARDS THE INTRODUCTION OF EXTRA-LOG/CAL
FEATURES:

The specification frame can also be used to specify the PROLOG built-ins, but
some adaptations are needed because a lot of them cover extra-logical features (ie
files, output devices) and work by side-effects. So, we must introduce a new
type of preconditions : environment preconditions. These are described in a first
new subdivision of the frame which is called pre-environment .

To express these preconditions, some concepts must be accurately defined. For
instance, if we consider the built-ins working on ASCII files, we must define how to

page 126

Chapter6 Outlooks

characterized each file
[Derroitte 86].

To do this, we can take over some ideas developed in

A file is characterized by

a logical name and a physical name.

a status : open in reading, writing or extending mode
closed (logical name undefined)

a content : sequence of ASCil characters.

an available content: suffix of the content (defined if open in reading mode).

We also define the current character of a file as the first character of its
available content. We extend the characterization of the context so it includes the
informations about the open files.

Now, a context is characterized by:

aprogram.

a set of open files of different logical names and of different physical names.

Now, the specification of side-effects that occur during some executions can be
done in a second new subdivision: post-environment.

But we can use our procedural semantics in order to achieve an accurate
specification of all the side-effects that can occur. If Min and Max are the bounds for
the number of successful executions and if we create an incarnation EO of ESG with
SG = procedure_name(t1 , ... , tn) and V= v0 (V0 covering SG), we can say there

will be at least (Min+l) executions of EO (if Min is finite) and at most (Max+l)
executions of EO (if Max is finite). It is possible with our frame to specify the side
effects for each of these executions if we want.

The possibility to specify the side-effects for each execution, coupled with the
easiness to express tricky combinations of preconditions allows a powerful and
accurate expression.for the specification.

Note that for pure side-effects procedures, the expression of a relation can be
omitted as such procedures have no logical meaning.

The two new subdivisions pre-environment and post-environment can be used to
specify any procedure which can cause side-eff ects.

page 127

------------------------------------- ~

Chapter6

Examples:

fclose(logical _ name)

Types:
let logical _ name be an atom

Uses:

In-directionnality :
in(ground)

Out-directionnality :
out(ground) < 1-1 >

Post-environment :

Outlooks

the file referred by the logical name logical_name is closed.
This means it is removed from the context !

getO(logical _ name , ascii _code)

Types:

Uses:

<1>

let logical_name be an atom
ascii _ code be an integer

In-directionnality :
in(ground , any)

Pre-environment:
there is a file of logical name logical _ name with a non-empty
available content

Out-directionnality :
out(ground , ground) <l>-1 >

Post-environment:
the current character of the file logical_name is removed from its
available content. If ascii _ code is not ground just before the first
execution, it has , after the first execution, the value of the ascii
code of the removed character. If it is ground, the execution

page 128

Chapter6 Outlooks

succeeds if ascii_code is equal to the ascii code of the removed
character

<2>

In-directionnality :
in(any)

Pre-environment :
there is not any file of logical name logical _ name with a non-empty
available content .

Out-directionnality :
out(any) <0-0>

6.4 TOWARDS PROOFS OF CORRECTNESS:

To illustrate this matter, let us take the (classical) example of the append
procedure ! We want it to comply to the specification given in section 6.2 . We
propose the following text :

append(□ , _ list , _list) .
append(Lxl 1 _restl], _list2, Lxl 1 _rest3]) :

append(_ restl , _list2 , _rest3) .

Hereafter, we provide a proof for the second possible use specified .. However,
we think the proof given here is still too much link:ed to the text of our algorithms. So,
future works should investigate this matter.

Let V be a V ACV of value V O containing bindings _ x/ _x and _y/ _y but not

containing any other binding with _x or/and _y in its left part. So we can say that

variables _x and _y are free with respect to V. Let t be a term such that t E>V = t

ev O = [e1 , . . . , en] where ei (1 Si Sn) are terms.

The subgoal p(_x,_y,t) ev, with V = v 0, may be executed (n+2) times. We can

prove that the j th execution of this subgoal (1 S j Sn+ 1) ends with
f ail ure = f alse ,

_x= [el, ... , ei-1],

_y = [ei , .. . , en] and

the other bindings of V unchanged.

page 129

Chapter6 Outlooks

The (n+2)th execution ends withfailure = true .

The proof proceeds by induction on n .

The creation of an incarnation EO of ESG with SG = appendL x , _y , t) and V =

v Ois so that Vrem is initialized to v O.

Case 1 : n = 0 , so t ev o = = []

The only program clause whose head is unifiable with SG ev O is the first

clause of the definition of append. So we can say that nb _ cl = 1. Let 8 be the

MGU, we have 8 = {_x /[],_y/[]}.

So, it is easy to see that the the first execution of the incarnation EO
passes at the point labelled ne:xt _ clause with i = 1. But we have that G 1 (

body of the first append clause whose head matches SG SV 0) is the empty

goal so, we can deduce from lemma 3.2 that this first execution of EO ends

with /ai/ure = false and V = V O 0 and that the second execution passes at

the point labelled next_clause with i = 2 . As 0 = {_x / [] , _y / []}, we have
after the first execution _x = [] and _y = □. Now, as 2 > nb_cl, we have that
the second execution ends withfailure = true (by lemma 3.1).

Case 2 : n > 0 if it is ok up to n-1

We have t SV O = [e1 , ... , en] .

Now, the two append clauses have their head unifiable with SG 0V O . So,

nb cl= 2.

We still have that the first execution of EO passes at the point labelled
ne:xt_clause with i = 1 . But we have that G1 (body of the first append clause

whose head matches SG ev 0) is the empty goal so, we can deduce from

lem.ma 3.2 that this first execution of EO ends with failure = false and V = VO

0 and that the second execution passes at the point labelled next_ clause with

i = 2 . We have after the first execution _x = [] and _y = O because 8 is the

MGU of SG SV O and the head of the first clause and so, 8 = {_ x / [] , _y / D}.

page 130

Chapter6 Outlooks

Now, as 2 = nb_cl , the second execution continues and when it creates
the incarnation El , it is easy to sec that we have

8 = { _x / [e1 1 _restl], _y I _list2, _xl / el , _rest3 / [e2 , . . . , en]},

Vnew = [_restl/_restl, _list2/_list2].
So, the incarnation El is created for G = append(_restl , _list2 , [e2 ,

en]). But, the kth (1 ~ k ~ n) execution of this goal ends with

/ai/ure = f alse ,

V=VO 8k

. . . '

and in 8k , we have that _restl = [e2 , ... , ct-il and _list2 = Cct , ... , en].

The (n+l)th execution of this goal ends with /ai/ure = true and eut = false .
These are consequences of the induction hypothesis over the subgoal SG =
append(_restl, _list2, [e2 , ... , en]).

Now, it is easy to sec that the j th (2 ~ j ~ n+ 1) execution of EO ends with
f ai/ure = f alse ,

_x = [e1,···•ei-l],

_y = [ei , . . . , en] and

the other bindings of V unchanged.

The (n+2)th execution of EO passes at the point labelled next_clause with i =
3 > nb_cl; so this execution ends immediately withfailure = true .

We think that some work is needed in order to develop a terminology which is
usable for correctness proofs but which much less relies on the text of our algorithms.
Moreover, in our example, we do not deal with a clause body composed of many
subgoals. This simplifies of course many things !

However, if it happens that a clause body is of the form

some more steps are necded in order to get the results of an execution of the goal

(B 1 , . . . , Bm)8 where 8 is the MGU of SG SV O and of the head of the

corresponding clause. To do this, it should be possible to prove assertions that are
true after the execution of the first subgoal and then, after the second subgoal and so
on.

page 131

Chapter 6 Outlooks

6.5 THE OCCUR CHECK:

For simplicity, we have supposed that the unification algorithm performs the occur
check. However, many PROLOG systems provide it only as an explicit option, due to

performance considerations.

In order to take account of this particularity, we only have to change the
specification of the MGU fonction (see section 2.3.3). H necessary, we think it should
also be possible to deal with the occur check problem when specifying procedures.

page 132

•

•

•

•

•

•

•

•

•

•

Our new procedural semantics for PROUX, is based on three simple algorithms .
We think it is clearer than the usual procedural semantics which is explained in
tenns of search in a SLD-tree . From our point of view, it is also free of any
ambiguity .

We proved that our semantics is equivalent to the usual one because they result
in the same CAS in the same order ..

A major advantage of our semantics is that it does not use the fuzzy concept of
backtracking. This concept is often not well understood and this leads to carelessly

built programs. Normally, our semantics should allow a programmer to fully
understand how PROLOG procedures and programs are executed. This should enable
him to improve the quality of his work.

However, we must admit that the logical aspects are not very stressed. But the
focus we adopt on the operational aspects allows us to easily integrate the extra
logical features of PROLOG. From a practical point of view, it can be very interesting
because professional PRO LOG environments, like the BIM _ Prolog [BIM 86] for
instance, provide a lot of extra-logical features (database interface, windowing and
graphies, ...).

Now, some work is needed in order to develop the specification issue but also to
investigate the field of proofs of correctness of PROUX, programs. All this work
should ideally go towards the elaboration of a methodology for PROUX,
programming. But remember that a methodology does not solve the problem itself;
the solving of the problem remains the programmer's role .

page 133

•

•

Referenœs

[Kowalski 74]
KOWALSKI R.A.: Predicate Logic as a Programming ùznguage. IFIP
74, pp 569-574.

[Kowalski 79]
KOWALSKI R.A. : Logic for Problem Solving. Artificial Intelligence
Series, North-Bolland, Amsterdam 1979.

[Kowalski 82]
KOWALSKI R.A.: Logic as a Computer ùznguage. In [Clark 82], pp 3-
18.

[Le Charlier 85]

[Leroy 75]

[Leroy 78]

[Lloyd 84]

LE CHARLIER B. : Réflexions sur le Problème de la Correction des

Programmes. Thèse de Doctorat, Université de Namur 1985.

LEROY H. : ùz Fiabilité des Programmes. Presses Universitaires de
Namur, 1975.

LEROY H. : ùz Fiabilité des Programmes. Ecole d'été de l' AFCET,
Notes de cours, 1978.

LLOYD J.W. : Foundations of Logic Programming. Springer-Verlag,
1984.

[Mendelson 79]
MENDELSON E. : Introduction to Mathematical Logic . Van
Nostrand, Princeton 1979.

[Robinson 65]
ROBINSON J.A. : A Machine-Oriented Logic Based on the Resolution
Principle. J.ACM 12(1), January 1965, pp23-41.

[Winston 84]
WINSTON P.H.: Artificial Intelligence. Addison Wesley 1984.

R-11

