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Nowadays, some PROLOG-systems are becoming actual development systems. 
The time has corne when the usage of this language is no longer restricted to a small 
number of AI "laboratories" . The need for a methodology of development for 
PROLOG programs is therefore urgent. Ideally, this methodology should be as close 
as possible to the intuitive approach of PRO LOG programmers. 

As PROLOG is a consequence activities in the field of "Logic Programming", 1t 1s 
interesting to quickly browse through the different methodologies developed in this 
field. 

One trend tries to develop the knowledge and the theories concerning predicate 
logic. Kowalski's work [Kowalski 79] is a good illustration of this trend. But we shall 
see in chapter 1 that programming in PROLOG is different from programming in logic ! 

A second trend is illustrated by Deville's work [Deville 87]. This trend consists 
of separating the logical aspects from the non-logical ones. It tries to reconciliate 
declarative and procedural semantics. It suggests that programming in PROLOG is 
programming in logic but augmented with something else (control information for 
example). So, in the methodology, a first step is only concemed with logical aspects 
and only during the second one, non-logical aspects are taken into account. 

Finally, a third trend gives priority to the procedural aspects of the logic 
programming language. It believes that the gap between the declarative and the 
procedural semantics is so huge that it is simpler to build correct programs by using 
almost exclusively procedural aspects. But the usual procedural semantics founded 
on the search for solutions in a tree (as explained in [Lloyd 84]) is not usable for the 
development of a practical methodology. 

A first methodology based on this third trend has been developed last year at the 
University of Namur [Derroitte 86]. In that work, the procedural semantics of a 
subset of PROLOG (a purely deterministic subset without the eut) is discussed and 
a methodology for proof of correctness is developed. The determinism simplifies the 
problem because no backtracking can occur . 

Our work cornes as an extension of [Derroitte 86] in the sense that we suggest a 
procedural semantics for the whole PROLOG language even in its non-deterministic 
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Introduction 

aspects. The procedural semantics we propose is founded on three algorithms 
presented in chapter 2 ; it is as close as possible to the intuitive approach of 
PROLOG programmers. 

In chapter 1 , we recall some fondamental concepts of logic programming. 
Chapters 3 and 4 establish the equivalence between our semantics and the usual 
one for finite and infinite (respectively) SLD-trees without cuts. Chapter 5 
investigates the problem of cuts. 

Chapter 6 is concemed with possible future researchs towards the elaboration of 
a frame of specification, the introduction of extra-logical features and the problem of 
proofs of correctness. These aspects must be studied in order to conceive a complete 
methodology. 
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1.1 INTRODUCTION: 

The "key idea" of logic programming is that logic can be used as a programming 
language. This was introduced in the early 70's mainly by Kowalski [Kowalski 74] 
and Colmerauer, although Green should also be mentioned [Green 69]. lt cornes as 
consequence of earlier works in the field of automatic theorem-proving and 
particularly of Robinson's landmark paper [Robinson 65] about the resolution 
principle, resolution being an inference rule well-suited to automation on computer. 

Up to now, the PROLOG language has been the major outgrowth of the logic 
programming paradigm. PROLOG is the acronym of PROgramming in LOGic. 

In this chapter, we begin with a review of the syntax of logic programs based on 
the syntax of Hom clauses. We define there some notational and denominational 
conventions. 

Tuen, we tum to the definition of the declarative semantics of logic programs. 
This semantics provides the interpretation of programs at the logical level. 

Next, we examine the procedural semantics which deals with the procedural 
interpretation of Hom clause logic. This interpretation makes Hom clause 
logic very effective as a programming language. We also recall the fondamental 
theorems establishing the equivalence of the two semantics. 

Finally, we show how this procedural semantics can be used for the PRO LOG 
programs but also how some PROLOG features can destroy the equivalence of the 
two semantics. 

Much of this chapter is inspired from earlier works [Deville 87], [Lloyd 84] and 
[Kowalski 79]. 
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Chapter 1 Loglc programmlng 

1.2 SYNTAX: 

This aspect is concemed with the syntactic definition of a first order language. We 
recall only some key definitions. 

1.2. 1 Alphabet : 

First, an alphabet must be defined. It will be used to build the well-formed 
formulas of the language. The alphabet can be subdivised into seven classes of 
symbols: 

• constants 

• variables 

• functions 

• predicates 

• connectives 

• quantifiers 

• punctuation symbols 

Usu.ally, the first four classes vary from alphabet to alphabet, while the others 
remain the same. 

The set of constants is composed of finite strings of characters. The set of 
variables is composed of finite strings of letters and digits preceeded by an 
underscore (convention). The set of variables and constants must be disjoint 

The sets of n-ary functions and n-ary predicates are composed of finite strings of 
letters, digits and special characters ( the set of special characters being { +,

,*,/,=,<,>, •} ) . Each string will be subscripted with <lunction,n> in the n-ary 
function set and with <predicate,n> in the n-ary predicate set 

The set of connectives is { -, , " , v , ➔ , H } . 

The set of quantifiers is { 3 , 'if } . 

The set of punctuation symbols is { ( , ) , ,} . 

We use some notational conventions: 
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Chapter 1 Logic programming 

for readability, we allow the insertion of the underscore (_) anywhere in 
constants and in the middle of variables and fonctions. 

the sets of n-ary predicates and n-ary functions are ail disjoint (because of 
their subscripts). When writing formulas, we drop these subscripts. The 
distinction between fonctions and predicates is clear in every formula. 
Moreover, the arity is also unambiguous. But is the same string stands for a 
predicate and a fonction ( or two predicates or fonctions with different arity ), 
they are conceptually different because of their virtual subscripts. 

1.2.2 First order language : 

We can now define the first order language given by an alphabet: it consists of 
the set of ail well-fonned formulas constructed from the symbols of the alphabet 

The syntax of well-formedformulas (wft) complies to the following rules: 

<wff> ::= <atomic formula> 1 

-,<wwf> 1 

<wwf> A <wwf> 1 

<Wwf>V<Wwf>I 

<Wwf> ➔ <wwf>I 

<wwf>H<Wwf> 

3 <variable> <wwf> 1 

'v <variable> <Wwf> . 

<atomic formula> ::= <predicate> 1 <predicate> ( <list of terms>) 

<list of terms> ::= <term> 1 <term> , <list of terms> 

<term> ::= <constant> 1 <variable> 1 <fonction> 1 

<fonction> ( <list of terms> ) 

Later on, when we speak of a formula, it means a well-formed formula. 

Examples: 

Assume that 
a, b are constants, 
f, g are fonctions, 
p, q are predicates, 
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Chapter 1 

_ x, _y are variables. 

The following are formulas : 

'v _X p(_x) 

'v _x ( 3_y ( p(_x, f(_y)) ➔ q(_x))) 

-, ( 3_x ( p(_x, a)" q(f(a)))) 

Notational conventions: 

- often, F ➔ G will be written as G f- F . 

Logic programming 

- we also write the term •Lh , _t) as [_h 1 _t], and [tl,t2, ... ,tn] for •(tl, •(t2, 
( ... , •(tn,[]) ... ))) when tl, t2, ... , tn are terms. 

- to avoid bracketting as much as possible, we adopt the following order of 
precedence (highest at top) with a left to right associativity rule : 

-,,3,'v 

" 
V 

➔ ,H 

- for some predicates it is also handfull to use an infix notation instead of a 
prefix notation. For instance we write tl=t2 in place of =(tl,t2) where t1 and 
t2 are terms. 

In 'v _ x p(_ x) or 3 _ x p(_ x) , the scope of 'v _ x or 3 _ x, respectively, is p(_ x) . An 
occurrence of a variable immediately following a quantifier or within the scope of a 
quantifier conceming this variable is a bound occurrence. Any other occurrence of a 
variable is free. 

We define a closed formula as a formula with no free occurrence of any 
variable. 

If L is an atomic formula, Land-, Lare literais. L is a positive litera!. -, Lis a 
negative litera!. 

1.2.3 Clause : 

Then, we define a clause as a formula of the form 
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Chapter 1 Loglc programming 

where each Li is a litera! and _ x 1, ... , _ xs are the variables occurring in ( L 1 v.. . v 

Lm) 

A Horn clause is a clause with one or no positive literal. 

We adopt the usual shorthand notation for the clauses, so the clause 

where A1, ... , Ak , B1 , ... , Bm are atomic formulas and _x1, ... ,_xs are ail the 

variables occurring in these atoms, is denoted by 

A 1, ... , Ak is called the consequent and B1, ... ,Bm the antecedent. 

1.2.4 Logic program, program clause, goal clause : 

Now, we can tum to the definition of a logic program : it is a finite set of program 
clauses, a program clause being a Hom clause with one positive literal. 

So, a pro gram clause bas the following form : 

A is called the head ( or consequent ) and B 1 , ... , Bn the body ( or antecedent) 

of the program clause. A program clause with an empty body is also cailed a unit 
clause. 

The set of ail program clauses, of a logic program, with the same predicate in the 
head is called the definition of this predicate. 

A clause with an empty consequent is called a goal clause. It has the form 

and each Bi (i=l ... n) is a subgoal of the goal clause. 
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Chapter 1 Loglc programmlng 

Note: we do not call a goal clause simply a goal ! When we speak of a goal, 
we mean the body of a goal clause, thus (B 1 , ... , Bn) . A goal is then a 

list of subgoals. 

The empty clause ( the clause with empty consequent and empty antecedent ) 

is denoted ◊. 

1.3 DECLARATIVE SEMANT/CS: 

In this section, we briefly discuss the meaning which can be attached to a logic 
program. We do not pay too much attention to this aspect because our work is 
mostly concemed with the procedural interpretation of logic programs. However, 
some key concepts are important. 

The declarative semantics provides an understanding of the program in terms of 
formulas and truth values in first order logic. We do not agree with the assertion 
saying that the declarative semantics of a program provides its specification because 
we think a (easily understandable) specification requires some concepts which can 
not be embraced in a simple way by first order logic. Possibly, the declarative 
semantics can be seen as the translation of the specification, or of some of its 
aspects, under the form of logic formulas. For more details about this question, we 
suggest to consult [Le Chartier 85]. 

1.3. 1 Intuitive presentatlon : 

The quanti.fiers and connectives have the following meanings: 

-, is negation, 

A is conjunction (and), 

v is disjunction ( or), 

➔ is implication and 

H is equivalence. 

So, we can give an intuitive meaning to well-formed formulas : 

'r;/ X p(_x) 
for every _ x , p(_ x) is true 
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Chapter 1 Loglc programming 

3_x ( p(_x, _y)/\ q(_x)) 

there exists an _x such that p(_x,_y) is true and q(_x) is true 

'v _x ( 3_y ( q(_x, _y)/\ -,r{_y}) ➔ p(_x)) 

for every _x, p(_ x) is true if there exists an _y such that 
q(_x,_y) is true and r(_y) is false 

If we regard the general forms of program clauses : 

A~ 

rneans that for each assignment of each variable, if 

B 1, ... ,Bn are all true, then A is true 

rneans that for each assignment of each variable, A is true 

In order to fix the rneaning of a logic program, we must also attach a meaning 

to the constants, the fonctions and the predicates. 

Exarnple : the factorial problem [Kowalski 79] 

This is a typical example in conventional prograrnrning. 

Constant : 0 represents the null integer 

Function: S is an unary fonction S( x) represents the integer 
represented by _ x incremented by one. So S(O) is 1 , 
S(S(O)) is 2, ... 

Predicates : We suppose that we have a predicate tirnes(_x,_y,_z) which 
is defined such that it holds when _x rimes _y is _ z 

Using prograrn clauses, we can write the following affirmation for the 
factorial predicate fact(_ x,_y) 

fact(O, S(O)) ~ 

fact(S(_x), _u) ~ fact(_x,_v), times(S(_x),_v,_u) 

The intuitive rneaning of a goal clause is as follows : if _x1, ... , - ~ are the 

variables occuring in 
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,the complete notation is 

which means that for ail _x 1, ... , -~ , we at least have one Bi (i = 1 ... r) that is 

false. So, we can equivalently write that there does not exist a combination of _ xj (j 

= 1 ... r) such that ail Bi are true. 

This gives the following formula : 

Such a clause is used in a refutation demonstration in order to prove whether a 

combination of values for _x1, .. . , _xr exists, combination such that (B 1 A •.. A Bn), 

the corresponding goal, is true. 

The empty clause is to be understood as contradiction. 

A logic programming system must try to see if the set of program clauses 
completed with the goal clause is inconsistent. Usually, it tries to derive the empty 

clause by using specific inference rules. If the empty clause is derivable, this means 
that we have inconsistency. In this case, the system usually gives the bindings, 
for the variables _ xj (j = 1 ... r) of the goal clause, which produce the 

inconsistency. These bindings are so that (B 1 A ••• A Bn) is true for the values they 

specify. If such bindings do not exist, the empty clause cannot be derived and it 

means that (B 1 A ••• A Bn) can not be true. We also say that (B 1 A . •. A Bn) can not 

hold. 

Ideally, a logic programming system should be a black box for computing 

bindings for the variables appearing in the request; the internai workings of the 
system should be invisible! 

1.3.2 lnterpretation and truth values : 

From a formai point of view, the declarative semantics of a logic program is given 
by the usual semantics of formulas in first order logic. We briefly recall basic 

notions ; for a further study, the reader should better consult [Lloyd 84] . 
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We have seen that a logic program is built using a fi.rst order language. The 
quantifie.rs and connectives have fixed meanings. This is not the case with 
constants, fonctions and predicates. Their meanings are given by an interpretation. 

An interpretation fixes 

the domain of discourse over which the variables range. 

- the assignment of each constant to an element of the domain. 

- the assignment of each fonction to a mapping on the domain. 

- the assignment of each predicate to a truth value (true or false) or, 
equivalently, to a relation on the domain. 

The mechanisms to get the truth values for formulas must also be defined. 

When a formula expresses a true statement in an interpretation, this latest is 
called a mode/ of the formula. 

Fi.rst order logic provides methods for the deduction of theorems in a first order 
theory. A first order theory consists of an alphabet, a first order language, a set of 
axioms and a set of inference rules [Mendelson 79] . The formulas are given by the 
fi.rst order language. The axioms are a designated subset of these formulas. In logic 
programming, the axioms are the program clauses. 

The theorems are in fact the formulas coming as logical consequences of 
the axioms. This means they are true for any interpretation which is a model of all 
the axioms. 

The inference rule used by logic programming systems under consideration is 
the resolution principle introduced by Robinson in 1965 [Robinson 65]. 

1.3.3 Substitution, unification, answer substitution : 

In automatic theorem proving, it suffi.ces to demonstrate logical consequence but 
in logic programming, the aim is to compute bindings for variables appearing in a 
formula. These bindings are such that, when we replace the variables of the formula 
with the values they specify, the formula becomes a logical consequence of the 
axioms (or equivalently of the program). These bindings are the output from the 
running of the program. A declarative unde.rstanding of the output of a program and 
a goal is given by the concept of correct answer substitution. 
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A substitution 8 is a finite set of the forrn {_v1tt1 , ... , _vn/1n} where each ti 

is a terrn distinct from _ vi and the variables _ v 1, ... , _ vn are distinct Each 

element _ v/ti is called a binding for_ vi. When ail the ti are ground terms, we have 

a ground substitution ( a ground terrn being a terrn not containing variables ). 
When ail the ti are variables, we have a variable pure substitution. 

What we will call an expression is either a terrn, a litera! or a conjunction or 
disjunction of literals. A simple expression is either a terrn or an atomic formula. 

If 8 = {_ v 1tt1 , ... , _ vn/tn} is a substitution and E an expression, then E8 is 

the instance of E by 8 . It is obtained by simultaneously replacing each occurrence of 

the variable_ vi in E by the terrn ti (i = 1 ... n). If E8 is ground, then E8 is called a 

ground instance of E. 

Let 8 = {_u1ts 1, ... , _um/sm} and a= {_v1tt1, ... , _vn/tn} be substitutions. The 

composition 8a of 8 and a is the substitution obtained from the set {_u1ts 1a , ... , 

_ um/sm a , _ v 1 /t 1, .. . , _ v n'1n} by deleting any binding _ u/si a 

and deleting any binding v/tj such that vj e {_u1, ... , _um} . 

Example: 

such that U· = s-a 
- 1 1 

8 = {_x/f(_y), _y/_z} , a = {_x/a, _y/b, _z/_y}. Their composition 8a is 

{_x/f(b), _z/_y} and their composition a8 is {_x/a, _y/b} 

The substitution given by the empty set is called the identity substitution and is 

denoted by E . 

We can list the following properties: 

if 8, a and y are substitutions and E an expression then 

• 8E=E8 =8 

• (E0)a = E(0a) 

• (8a)y = 8( ay) 

If E and F are expressions, they are called variants if there exist substitutions 

8 and a such that E = Fa and F = E0 . It is also said that E ( F ) is a variant of F 

page 12 



Chapter 1 

(E ). 

Exarnples: 

p(_x,_y) and p(_ v,_ w) are variants 
q(a) and q(_ x) are not variants 
r(_x,_x) and r(_x,_y) are not variants 

Logic programmlng 

Assuming that E is an expression and V is the set of ail the variables occurring 
in E, a renarning substitution is a variable-pure substitution {_v1t_t1, ... , _vnl-t..-i} 

such that {_v1, ... , _vn} ~ V, the _vi are distinct and (V\{_v1, ... , _vn}) n {_t1, ... , 

-1n} = 0. 

It has been proved that for any of both variants E and F, there exists a 

renarning substitution e ( cr) for E ( F ) such that F = Ee ( E = Fcr ). 

The concept of unifier is fondamental. Unification was first introduced by 
Herbrand and is much used in logic programming systems. The idea is to find a 
substitution for a set of expressions, substitution such that the set of instances of 
these expressions by the substitution is a singleton ( thus, ail instances are 
equivalent ) . For our purpose it is enough to consider non-empty finite sets of 
simple expressions ( terms or atomic formulas ). 

If S is a set of expressions of the form {E1, ... , En} and a substitution, we 

write se for {E1 e , ... , Ene}. 

If se is a singleton, then e is a unifier for S. It is also said that Ei ( i = 1...n ) 

match together via e , which is the matching substitution. 

A unifier e for S is called a most general unifier (MGU) if for each unifier cr of 

S, there exists a substitution y such that cr= 8y. 

A unification algorithm (providing occur check) is presented in [Lloyd 84]. The 
occur check is fondamental but has major drawbacks on efficiency. We can 
illustrate the occur check with the following set of expression S = {_ x, f(_ x)}. 

For algorithms performing occur check, S is not unifiable since _ x appears in 
f(_ x) but other algorithms will unify _ x and f(_ x) and this can cause problems as 
we will see later. 
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If we say that an answer substitution for P u { ~G} is 
variables appearing in G ( not necessarily ail variables ) , we 
following definition of correct answer substitution : 

let P be a program, 
let G be a goal of the form ( B 1, ... , Bn ) and 

let 8 be an answer substitution for Pu { ~G} 

Loglc programmlng 

a substitution for 
can provide the 

8 is a correct answer substitution for P u { ~G} if 'v ((B 1 A ••• A Bn)8) 
is a logical consequence of P . 

This concept captures the intuitive meaning of "correct answer". It provides a 
declarative understanding of the desired output of a program and a goal. 

A logic programming system should also retum the answer "no" if P u { ~G} 
does not lead to inconsistency (thus in the case there is no correct answer 
substitution). 

1.4 PROCEDURAL SEMANT/CS: 

We now tum to the most usual procedural interpretation of Hom clauses. This 
interpretation makes Hom clause logic very effective as a programming language. 

We have seen at the declarative level that the aim of logic programming is to 
compute correct answer substitutions. At the procedural level the counterpart of 
this concept is the concept of computed answer substitution which is defined by 
using a refutation procedure called SLD-resolution. Hereafter, we take over from 
Lloyd [Lloyd 84] the basic definitions and results of some interest for our 

purpose. 

1.4. 1 SLD-resolution : 

A computation rule is a fonction from a set of goals to a set of atomic formulas 
(or atom), such that the value of the fonction for a goal is always an atom, called the 

selected atom, in that goal. 

Let GCi be ~Al , ... , Am, ... , Ak and Ci+l be A~ B1 , ... , Bq and R be a 

computation rule. then GCi+l is derived from GCi and Ci+l using MGU 8i+l via Rif 

page 14 



Chapter 1 Loglc programmlng 

the following conditions hold : 

• Am is the selected atom given by the computation rule R 

• Am8i+l=A8i+l (8i+lisanMGUofAmandA) 

• GCi+l is the goal clause f-(A 1 , ... , Am-l, B1 , ... , Bq, Am+l 

'··· 'Ak)8 i+l 

GCi+ 1 is called a resolvent of GCi and Ci+ 1 . 

Let P be a program, G a goal and R a computation rule. An SW-derivation of P 

u { f-G} via R consists of a (fmite or infinite) sequence GC0 = f-G, GC1, ... of goal 

clauses, a sequence c1,c2, ... of variants of program clauses of P and a sequence 81, 

e2, ... of MGU's such that each GCi+l is derived from GCi and Ci+l using 8i+l via 

R. 

Each Ci is a suitable variant of the corresponding program clause so that Ci does 

not have any variables which already appear in the derivation up to GCi-l · This can 

be achieved, for example, by subscripting variables in G by O and in Ci by i. This 

process of renaming variables is called standardizing variables apart It is 
necessary, otherwise, for example, we would not be able to unify p(_x) and p(f(_x)) 

in f-p(_ x) and p(f(_ x)) f- . Each Ci is called an input clause of the derivation. 

An SW-refutation of P u { f-G} via R is a fmite SLD-derivation of P u { f-G} 
via R which bas the empty clause as the last goal in the derivation. 

SLD-derivations can be fmite or infmite. A fmite SLD- derivation can be 

successful or failed. A successful SLD- derivation is one that ends in the empty 
clause; so it is a refutation. A failed SLD-derivation is one that ends in a non
empty goal with the property that the selected atom in this goal does not unify with 
the head of any program clause. 

Now, we can give a defmition for the concept of computed answer substitution 
(CAS): 

an R-computed answer substitution for P u { f-G} is the 

substitution obtained by restricting the composition 81 ... en to the variables 
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of G, where 01, ... , en is the sequence of MGU's used in an SID-refutation 

of P u { t-G} via R . 

It has been proved by Clark [Clark 79] that SLD-resolution is sound and 
complete. 

Soundn~: 

this means that if we consider a program P, a goal G and a 

computation rule R, every R-computed answer substitution for Pu { t-G} is 
a correct answer substitution. 

Completeness : 

this means that if we consider a program P, a goal G and a 

computation rule R, for every correct answer substitution cr for P u { t-G}, 

there exists an R-computed answer substitution 0 for P u { t-G} and a 

substitution y such that cr= 0y. 

We can also say that every computed answer substitution is correct and that 
every correct answer substitution is an instance of a computed answer substitution. 
The equivalence of the two semantics is the core of logic programming. A 
fundamental consequence of this equivalence is that to write a logic program, we can 
reason in term of logic; no procedural aspects should intervene in the construction 
process. Therefore, a logic program can be seen as the description of a problem in 
logic. Moreover, given the problem is described in term of relations (predicates), the 
logic program can be used whatever the instantiation of the parameters is (some 
arguments being input datas while the others are output results). This is called 
multidirectionnality [Deville 87] . 

1.4.2 SLD-refutation procedures : 

Now, there are many strategies a system may adopt in its search for a refutation, 
the search space being a certain type of tree, called a SLD-tree. The results 
herebefore allow the building of the SID-tree using one computation rule fixed by 
advance. 

Here follows the definition of a SLD-tree ! 

Let P be a program, G a goal and R a computation rule ; then the SLD-tree for P 
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u {~a} via R is defined as follows : 

• each node of the tree is a goal clause (possibly empty) . 

• the root node is ~a . 

• let ~A1, ... ,Am, ... ,Ak ~1) be anode in the tree and suppose that 

Am is the atom selected by R. Tuen this node has a descendent for 

each input clause A~B 1, ... ,Bq such that Am and A are unifiable. The 

descendent is ~(A1, ... ,Am-l'B1, ... ,Bq,Am+l''"'Ak)8 where 8 is 

the MGU of Am and A. 

• Nodes which are the empty clause have no descendents. 

Each branch of the SLD-tree is a derivation of P u {~a} Branches 
corresponding to successful derivations are called success branches, branches 
corresponding to infinite derivations are called infinite branches and branches 
corresponding to failed derivations are calledfailure branches. 

The next example provides illustration for these concepts : 

let P be the following program : 

p(_x,_z) ~ q(_x,_y), p(_y,_z) 

p(_x,_x) ~ 

q(a,b) ~ 

let G be the following goal : 

~ p(_x, b) 

The first tree (figure 1. 1) is built using the computation rule that selects 
the leftmost atom of the goal, the second (figure 1.2) with the computation 
rule that selects the rightmost atom of the goal. The first tree is finite while 
the second is infinite but both have two success branches corresponding to the 
answers {_x/a} and {_x/b}. 

The annotations of the arcs are the MGU s used. 
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• 
+-- pLx,b) 

+-- qLx,_y),PlY,b) 
◊ 

Lx!a,_y/b} 

+-- p(b,b) 

Lx3/b,_z3/b} 

◊ +-- q(b,_y3),pLY3,b) 

( _x3, _y3, _z3 corne from the standardization ) 

Figure 1.1 
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~ pLx,b) 

~ qLx,_y),PLY,b) ◊ 

~ qLx,_y),ql_y,_y2),pLY2,b) ~ qLx,b) 

/ 
/ 

infinite 

( _x2, _y2, _z2 corne from the standardization ) 

Figure 1.2 

Lx/a} 

◊ 

Loglc programmlng 
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By convention, we denote T(G) the SLD-tree for P u { +.-G} when there is no 
ambiguity over the program P and the computation rule R ! 

A last thing bas to be fixed, it is the strategy the system uses for searching 
SLD-trees. To define this strategy, we must introduce an order between the 
descendents of a node. So, we can speak of a sequence of descendents. Now, there 
are many kinds of search the system might adopt to find success branches and thus 
the corresponding computed answer substitutions. The depth-first search, by 

instance, fully explores the branches passing by the ith descendent of a sequence 

before it explores those passing by the (i+l)th. This strategy is also called the search 
rule. ln the next section the importance of this choice is underlined. 

We call the ;th descendent input clause of anode a the input clause that permits 

to get the i th descendent of a . 

When a descendent d1 appears before a descendent di in the sequence of 

descendents, we say that d1 is more at left than d2 (similarily, d2 is more at right 

than d1). This denominationnal convention is inspired from the graphical 

representation of trees when the ith descendent of a node a is displayed using the ith 

leftmost bound starting at node a. We also say that a branch B1 is located more at 

left than a branch B2 if a being their last common node, B 1 passes by a descendent, 

of a, more at left than the one included in B2. 

The combination of a computation rule with a search rule defines an SLD

refutation procedure. 

But we must not forget the semi-decidability of first order logic which is a first 
major drawback. The problem is that when a goal is not a logical consequence of the 
logic program, the execution of an SLD-refutation procedure rnay never terminate. 
As non-termination is an incorrect behaviour, some programs, correct at the 
declarative level (this means being a good translation of the problem specification in 
terms of logic) , can be unacceptable from a procedural point of view and this does 
not depend on the logic programming system. 
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1.5 PROLOG: 

PROLOG is one of the first attempts that have been made to provide a 
programming language based on logic and more specifically on Hom clause 
logic. It was introduced mainly by Colmerauer whose team built the first 
interpreter [Colmerauer 73]. 

In this work, we refer to standard PROLOG (unless explicitly said different). 
A representative choice for it is the PROLOO language described in by Clocksin 
and Mellish [Clocksin 81]. In most of our examples, we use its syntax and built-in 
procedures. Note however that variables still begin by an underscore rather than 
a capital letter. This corresponds to the BIM _prolog syntax [BIM 86] . 

It is assumed that the reader is familiar with PROLOG and also with the tricky 

concept of backtracking. Let us recall that, in PROLOG, the connectives-, and f- are 
respectively written as ?- and :-. Remember also that PROLOG rules, unlike Hom 
clauses, end by a point 

Working with PROLOG, a programmer should ideally solve a problem by 
building a description of it under the form of Hom clauses, so working at the 
declarative level. But this ideal is far from beeing reached. In fact, there are many 
restrictions to the logical aspect of PROLOO. We mention some of them 
hereafter, relying on [Deville 87] and [Lloyd 84]. 

Let us first recall that the PROLOG interpreters are perforrning an SLD
refutation procedure with selection of the leftmost atom as computation rule. The 
search rule of PROLOG is· to perform a depth first search on SLD-trees where the 

descendents are ordered so that the ith descendent, of a node ex, can be obtained by 

using the ith descendent input clause which is a suitable variant of the ith program 

clause for which the head of a variant is unifiable with the first subgoal of ex . 
PROLOG also provides the possibility of having negated literais in the body of a 
clause. This proves useful in practice. Negation is handled by a failure rule: the 

idea is to derive -,Q if it is impossible to derive Q from the logic program. 

PROLOG also rnakes possible to inclùde extra-logical features in program 
clauses: 

- control information : the eut ( ! ) allows to prune the SLD-tree. 

- input-output primitives : these are necessary; they produce input-output by 
side-effects. 
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assignation mechanism : this is one of the most (if not the most) used 
operation in computer science. In PROLOO, it is implemented as a side 
effect of the is predicate. 

- others : bagof, setof, assert, retract, ... are classical examples. 

These primitives are outside the scope of first-order logic but can be useful in 
practice. 

The use of cuts can have some desastrous consequences. Given the pruning, 
misplaced cuts can lead to incompleteness. Though it is written in the body of 
clauses like an atom, the eut has no logical significance but it is handy to see it as 
an atom that immediately succeeds at the first call and fails on backtracking, 
pruning the SLD-tree in the same time. If the pruned part contains an answer, 
then the eut is unsafe (by opposition to safe) and we get incompleteness. 
Programmers can also use cuts to write program which are not even declaratively 
correct ! 

To illustrate this matter, consider the following example frorn [Lloyd 84): 

rnax(_x,_y,_y) :- _x <=_y,! . 
max(_ x,_y ,_ x). 

max(_x,_y,_z) is intended to be true if and only if _z is the maximum of 
_ x and _y. Procedurally, the semantics of the above program is the 
maximum relation but declaratively, it is sornething else entirely . 

The only advantages of the eut are at efficiency level. 

The negation by f ailure rule is also acceptable frorn the efficiency point of 
view, but in PROLOO, it can lead to unsoundness and incornpleteness . 

Example of unsoundness : 

p(a). 
r(_y) :- not( p(_y)) . 

The goal clause ?- r(b). 
consequence of this logic program. 

Example of incornpleteness : 

q(a) :- not( r(a) ) . 
q(a) :- r(a) . 

succeeds though r(b) is not a logical 
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r(_x) :- r( f(_x) ). 

We obviously have that q(a) is a logical consequence [Lloyd 84]. Though, 

there cannot be a succesful derivation for q(a). ln order to derive --,r(a), 
negation as failure tries to show the impossibility of deriving r(a). But 
here, it has to search an infinite SLD-tree. This is also a consequence of 
the semi- decidability of first-order logic [Deville 87]. This 
incompleteness is independent of the computation and search rules. 

The PROLOG search rule also leads to incompleteness. The following example 
is an illustration of the problem [Lloyd 84]: 

p(a,b). 
p(c,b). 
p(_x,_z) :- p(_x,_y), p(_y,_z). 
p(_x,_y) :- p(_y,_x). 

p(a,c) is a logical consequence of the program but PROLOG will never 
find a refutation for the goal clause ?- p(a,c). because the left most branch of 
the corresponding SLD-tree is infinite. 

Another problem of PROUXi systems is the unification algorithm used which 
not always performs the occur check for efficiency reasons. Without occur check, it 
is possible to unify _x and f(_x) and so, to produce an infinite term f(f(f( ... ))) . 
Normally, they should not unify ! Such a fault can lead to unsoundness as the 
example hereafter shows [Lloyd 84] : 

test :- p(_ x, _ x) . 
p(_y, f(_y)); 

A PROLOG system without occur check would give the answer 
substitution e for the goal (test). It is thus considered as a logical 
consequence of the program but it is quite wrong ! To avoid this problem, 
the unification algorithm must provide occur check. ln the rest of the work, it is 
assumed to be so. 

However, in conclusion, we can claim that programming in PROLOG is not the 
same as programming in logic [Deville 87] and that much characteristics of PROWG 

have to be explained outside the scope of the logic programming paradigm. 
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2. 1 INTRODUCTION : 

In chapter 1, we have seen that some PROLOG features produce a gap 
between the procedural semantics and the declarative semantics. So, 
programmers cannot simply continue reasoning in logic for building a PROLOG 
program. 

A possible solution is to provide to programmers a methodology that tries to 
reconciliate the two semantics so that the logic programming paradigm can be used 
in the construction process of a PROLOG program. Such a methodology has been 
deleloped in [Deville 87]. The basic idea is to construct a logic algorithm in pure 
logic from the specifications, independently of any programming language or 
procedural semantics. Then, the use of derivation rules enables to get a logic 
program in PROLOG from the logic algorithm. 

Our work is humbler and tries to give an accurate but simple (we hope so) way 
of specification of the procedural semantics of PROLOG programs. We think it 
could be useful because in order to achieve program correctness in PROLOG, 
progammers need to reach an accurate knowledge of its procedural aspects. But 
the problem is the difficulty of building correctness proofs using the usual 
procedural semantics of logic programs. Moreover, this semantics can be considered 
as "not suited" because of the PROLOG features coming out of its scope. 

The procedural semantics for PROLOG programs that we propose should 
normally deal with a11 PROLOG particularities and is much inspired of the usually 
intuitive (and informai) understanding of the execution mechanisms of the language. 

So, we begin by a quick recall over this intuitive understanding. Tuen, we 
present some fondamental concepts needed by the three algorithms ESG (Execute 
SubGoal), EG (Execute Goal) and EQ (Execute Question) which are the core of our 

work. 

Note that for the moment, the only extra-logical feature we take into account is 
the eut! 
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2.2 USUAL INTUITIVE UNDERSTANDING: 

The usual intuitive understanding of the procedural interpretation of 
PROWG programs is much inspired from the classical problem-reduction (top
down problem solving) strategy developed in artificial intelligence. 

Consider the goal clause 

with Ai ( i = 1 ... m ) atomic formulas and _ xj ( j = 1 ... n ) the variables appearing in 

it It can be interpreted as follows : 

try to make the goal (A1 , ... , Am) hold 

or, more explicitly, 

try to find _x1, ... , _xn which make the goal (A1 , ... , Am) hold. 

This operation, when it succeeds, provides a substitution 8 such that (A1 , ... , 

~)8 is true. 

A program clause 

A :-A1, ... ,Am. 

with A, ~ ( i = 1 ... m ) atomic formulas, can be interpreted as an entry point of a 

procedure (a procedure being defined by all the program clauses with same functor in 
head). This part of the procedure means : 

to make a subgoal of the form of A hold, 
try to make the goal (A1, ... , Am) hold. 

Given a subgoal B which matches A via a substitution 8, some combination of 

values (for the variables appearing in B) that make B hold can be found by using 8 

and the combinations of values that make (A1 8, ... , Am 8) hold . 
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A unit clause 

A. 

can be also interpreted as an entry point of a procedure but this part of the procedure 
makes the subgoals matching A hold without reducing them to further subgoals. 

H it is impossible to make a subgoal or a goal hold, it is said to fail ! 

Trying to make a goal (A 1 , ... , Am) hold can be decomposed into m steps : 

- try to make A 1 hold . 

- try to make A2 8 l hold . 

where 8i ( i = 1 ... m ) is a substitution defining values for the variables appearing 

in Ai( 0 1 ... 8i_1), values such that it holds. When a subgoal Ai( 0 1 ... 8i_1) 

fails ( i = 1 ... m ), backtracking occurs. H i = 1 , then the goal (A 1, ... , Am) fails. 

ff i > 1, it means to go back to the previous step and to try to make ~-l( 81 ... 8i_2) 

hold but with a new combination of values. So, it means the progression through 
the different steps is not purely sequential ! When a solution has been given, it 
means ail steps have succeeded. In order to find another combination of values 
such that the goal holds, the idea is to act as in backtracking but going back to the 
mth step. 

Trying to make a subgoal hold can also be subdivised in steps. There will be n 
possible steps if there are n program clauses whose heads match the subgoal. To 
each step corresponds one of these clauses. The different steps are ranked 
following the order of appearance in the program of their corresponding clauses. If 
there are n such clauses, it means that, for the subgoal at hand, there are n 

opportunities of entry point to the procedure. H (Ai 1 ... Ai mi) is the body of the ith 

matching clause and 8i is the matching substitution, the n steps can be described 

as follows: 
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try to make the goal (A1 1 , ... , A 1 ml) 81 hold. 

try to make the goal (,\i 1 , ... , ,\i mn> en hold . 

The progression between these steps is as follows when all possible 

combinations of values making (Ai 1 , ... , Ai mi) 8i hold have been found ( or 

equivalently when this goal fails ), the next combination of values for the subgoal 
variables is searched using the next step, thus i+ 1 (if i = n the subgoal f ails) . 

Now, we can see that it is far from being clear and simple. Moreover, we 
have not explained yet the effects of a eut and backtracking has only been 
considered in its very local consequences ! 

We will not try here to explain the full consequences of backtracking 
because from our point of view, it goes far beyond an informai presentation. It might 
be one of the reason why many PROLOG programs are filled with cuts. Novice 
PROWG programmers often abuse of cuts to ensure themselves that no unwanted 
and un- understandable backtracking will occur. 

The eut has in general more localized eff ects and their descriptions are very 
often given in an informai way. Consider the following goal: 

(Al • ··· • Ai-1 • ! • Ai+l •···•Am) · 

The eut can be seen as a subgoal which holds immediately at the first attempt and 
fails for any other attempt to make it hold (thus, on baektraeking). But the eut has 
side effects: when it fails, the whole goal, in whieh it is, fails immediately and so, it 
is impossible to backtrack on Aj ( j = 1 . .. i-1 ) when the eut has been passed. And 

when the eut is encountered while trying to make a subgoal hold, or more precisely 
when trying to make the body of a matching clause hold, then it has for effect that ail 

the following matching clauses will never be considered. 

Our conviction is that the usual intuitive understanding presented here is 
not well-suited for program correctness proofs or prograrn construction and is not 
always easy to "master". We think it is mostly due to its lack of aecuraey and 
clarity. In the following sections, we introduce a definition of the procedural 
semantics which is inspired from the informai interpretation explained 
herebefore but tries to be accurate, complete and, above all, as simple as possible. 
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2.3 PRELIMINARIES : 

In this section, we present definitions and properties of some fundamental 
concepts for our expression of the procedural semantics. 

2.3.1 Context: 

For the moment, it is enough to consider that a context is characterized by a 
program. Later, when introducing input-output built-in procedures, its 

characterization will also include the set of accessible files. 

2.3.2 Array of contextual variables (ACV) : 

An array of contextual variables (ACV) is a finite array of elements _ v/1ï_ ( i = 1, 

n) where the variables _v1, ... , _vn are distinct and where each ti is a term. So, 

an ACV can be written as follows : 

Note: the brackets have not the same meaning than in PROLOG ! 

Each element _ v/½_ is called a binding for_ vi. li V is a ACV, it is called a 

ground ACV if the ti are all ground terms and a variable-pure ACV if the ti are all 

variables. 

This notion is of course very similar to the one of substitution. The main 

differences is that in the ACV Lv1tt1 , ... , _vn/1n], we do not require that ti * _vi ( i 

= 1 ... n) . We introduce it because when trying to understand a PROLOG program, a 
programmer usually reasons with a set of variables which are progressively 
instantiated rather than in terms of substitution compositions. 

In our algorithms, we use variables whose value is an ACV. We call these 
variables VACV (Variable of type Array of Contextual Variables). 

Note: the variables we use in our algorithm are classical variables as m 
Pascal language for example. 

A V ACV being a variable, it can be assigned and its value can evolve in time . 
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We need this notion because we want to consider the evolution of the value for the 
variables having a binding in the array ; this captures the progressive instantiation 
related in the previous paragraph. 

So, ü we adopt a pseudo-pascal syntax, assuming that V and W are VACVs, we 

can write: 

V := [_ v 1tt1 , _ v2tti] ; { assignation of a value to V } 

W := [_ v3tt3 , _ v 4tt4] ; { assignation of a value to w } 

V := W ; { V takes the value of W ; so after execution of 
this instruction, V= L v3tt3 , _ v 4tt4] } 

By convention, a V ACV which has never been assigned, has the empty array ( [] 

) for value. 

Note however that we do not often make the distinction between an ACY and a 

VACV, considering VACYs as ACVs. ln fact, definitions and properties stated 

for ACVs can easily ( and sometimes imn'l.ediately) be extended to VACVs. 

A. Substitution defined by an ACV : 

Let Y be an ACY. 

If Y = [_ v 1 tt1, ... , _ v n/1n] ( n ~ 0 ), 0Y denotes the substitution defined by 

Y and it is obtained from the set {_ v 1 /t 1 , .. . , _ v n/1n} by deleting any binding _ v /ti for 

which _ v i = ti ( i = 1 ... n ) . 

B. Instance of an ACV by a substitution : 

Let V be an ACV, let 0 ={_y1ts1, ... ,_ym/sm} be a substitution 

V 0 denotes the instance of Y by 0 . If V = [_ v 1tt1 , ... , _ v n/tn] then, Y 0 = 

[_v1t(t10) , ... , _vn/(tn0)] 

Of course, the substitution can be a substitution defined by a ACV. 

Note that when we speak about an instance of an expression by an ACY, the 

meaning is the instance of the expression by the substitution defined by an ACV. 
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C. Restriction of a substitution by an ACV : 

Let 8 be a substitution and V be an ACV . 

< 8 >V denotes the restriction of the substitution 8 by the ACV V. This 

restriction is the substitution obtained from 8 by deleting any binding for variables 
which do not appear in V . 

We say a variable appears in V either if it is one of the _ vi or if it appears in at 

least one 1ï_. 

Example: 

8 = {_x1tt1 , _x2tti, _x3tt3} 

V = [_ x1ts1 , _y/ _x2] 

D. Strict restriction of a substitution by an ACV : 

Let 8 be a substitution and V be an ACV. 

« 8 » V denotes the strict restriction of the substitution 8 by the ACV V. This 
restriction is the substitution obtained from by deleting any binding for variables 
there is no binding for in V . 

Example: 

8 = {_x1tt1 , _x2tti, _x3't3} 

V = [_x1ts 1 , _y/_x2] 

E. Proposition 2.1 : 

Proposition : 

let 8 be a substitution and V an ACV 
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if av= e then < e >V=« e »V. 

Proof: 

this cornes immediately from the fact that if av = E , each binding of 
V is of the form _ v/ _ v and so, each variable appearing in V is also concemed 
by a binding in V . 

F. Proposition 2.2: 

Proposition : 

let V and V1 be ACVs 

let 8 = {_y 1 ts1 , ... , _y m/sm} be a substitution 

then ev 1 is equal to the substitution ( ev e ) strictly restricted 

by VI so E>V 1 = 0(V8) = cc ev e )) V . 

Proof: 

we can write that V1 =Lx1lt1 e, ... ,_~/~8]and 

ev l = {_x/ 1i_ 8 , 1 ~ i ~ n: -~ :;t ti 8} 

We proceed in three steps ! 

Step 1 : 

(i=l ... n) 

As _ x/½_ 8 ~ SV l , we know that _ xi = 1i_ 8 . We consider two 

situations : _ xi = ti and _ xi :;t ti . 
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this means that _ x/ ti ~ SV . Therefore, it is only possible to have a 

binding _x/t' i e ( SV 8 ) if there is a binding for _xi in 8 or, 

equivalently, if 3 j (1 ~ j ~ m): _yj =-~and sj-:;; _xi. This is impossible 

because we would have 

this means that _x/ti e ev . So, by definition of substitution 

composition, the binding _ x/t' i e ( ev 8 ) can only be of the form _ x/ ti 

8 ; but such a binding is not retained in ( ev 8 ) as _ xi = ti 8 . 

Step 2: 

As _ x/ ti 8 e E>V 1, we know that _ ~ * ti 8 . So, due to the definitions 

of substitution composition and instantiation of 

immediately that _ x/lj 8 e ( E>V 8 ) . 

Step 3: 

an ACY, we have 

Using modus tollens on the proposition of step 1 and, then, applying 
proposition of step 2, we get 

_ x/t\ e ( 0V 8 ) ⇒ t\ = ti 8 (I) 

So, the thesis follows immediately from step 2, (I) and the fact that the 

bindings in 8 for variables not concerned by any binding of V do not appear in 

the instance of V by 8 . 
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G. Covering : 

If E is an expression, we say that the ACV V covers E if for any variable v 

appearing in E, a binding for this variable exists in V . 

2.3.3 General primitives : 

As the description of the procedural semantics is made using algorithrns, it is 

handy to assume the existence of some general primitives. This clarifies the 
algorithms . 

A. Function REFERENCE_ACV(CL): 

This primitive unary fonction receives as input a clause and returns an ACV 
which contains a binding _ v/ _ v for each variable _ v appearing in the clause received 

in input. 

Example: 

if CL is a clause of the form 

p(_x, 5) :- q(_x, _y), q(_y, 5)., 

the instruction 

V := REFERENCE _ACV(CL) ; 

where Vis an V ACV, has for effect that after execution, 

V= [_x/_x, _y/_y] 

B. Function ST ANDARDIZATION(CL, V) : 

This fonction receives as input a clause CL and an V ACV V and returns a 

variant clause of CL such that it does not contain any variable appearing in V. 

Note that this standardization is not as strong as the one presented in the 

definition of SID-derivation (section 1.4) but it is enough for our version of the 

procedural semantics as it will be proved. 
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C. Fonction MGU(CL, SG, V): 

This function receives as input a clause CL, a subgoal SG and an V ACY V and if 
the head of CL and SG are unifiable, it returns a substitution which is an MGU for 
them. The MGU returned is so that it does not contain any variable appearing in 
V but not in SG. 

Example: 

let V= [_x/f(_y), _z/_z] 
let CL be p(_ w) :- q(_ w,6). 
let SG be p(_ z). 

if we execute the call MGU(CL, SG, V), {_z/_v, _w/_v} is a possible 
result of it, but {_z/_y, _w/_y} is not because _y appears in V. 

This definition of fonction MGU avoids unwanted links that could occur between 
variables! 

Example: 

consider the previous example. If we accept {_ z/ _y , _ w /_y}, as V = 
[_x/f(_y) , _z/_z] , we introduce a link between x and _z without any 
justification. 

2.3.4 Special mechanisms : 

We must explain the execution mechanisms of the algorithms EG and ESG 
because they are fundamental for the understanding of our procedural semantics 
and are not conventionna!. In this section, we introduce the specific concepts. 

The text of these algorithms cannot be executed immediately as the text of a 
common procedure. Before execution, a creation of an incarnation is needed. An 
incarnation of an algorithm is in fact a specific instance of it. lt is then possible to 
have many incarnation of the same algorithm and even, some incarnations can be 
similar to all respect excepted for their respective stamps. A stamp is a unique value 
which is attributed to an incarnation at its creation and which is kept until the 
destruction of the incarnation. 

It is at creation that the calling environment must specify the actual parameters 
once for all. The link between the forma! and actual parameters is done like for a call 
by address if (like in Pascal) a "var" appears before the declaration of the forma! 
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parameter and like a call by value otherwise. This link remains for all the lif e of the 
incarnation created. 

The creation is made by a call to a specific procedure "create" and has the 
following generic form : 

create( algo _ name(parameters) ) 

Destruction of an incarnation is in fact self-destruction. It is performed by calling 
the procedure "selfkill" which makes the execution of the incarnation stop and 
destroys it. The procedure "selfkill" has no parameters. 

During its lifetime, an incarnation can be executed by a call to the procedure 
"execute". A call to "execute" has the following generic form : 

execute( incarn_stamp) 

where incarn _stamp is the stamp of the incarnation to be executed. 

The termination of an execution is done by performing a call to the procedure 
"terminate". This procedure takes one parameter which is the name of a label (usual 
meaning) appearing in the algorithm corresponding to the incarnation being executed. 
With "terminate", the current execution is ended but the incarnation remains in 
life. The label name is in fact memorized in a special remanent variable : entry _pt . 

This variable is used at the start of an execution to determine where to branch. 
There are other remanent variables, depending on the algorithm which is 
incarnated. They will be introduced in the presentation of each algorithm. 

Sorne remanent variables are initialized by the creation operation. The value of 
initialization for these variables is specified with their declaration. The generic forms 
for the declaration of a remanent variable are as follows : 

<variable_ name> : <variable_ type> 

or 

<variable_ name> : <variable_ type> / init := <initialization _ value> 

We end this section with some notational conventions over goals. Our algorithms 

treat goals as lists of subgoals. The empty goal is denoted (). If a goal G is composed 
of a first goal SG followed by a list of subgoals G' then, we can write G = (SG,G') 

but also G = SG,G' . 
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2.4 ALGORITHMS: 

We corne here in the core of our work : the expression of the procedural 
semantics with the three algorithms EQ (Execute Question), EG (Execute 
Goal) and ESG (Execute SubGoal). 

The algorithm EQ is designed for modelling the procedural semantics of a 
goal clause. The algorithm EG ( ESG ) is intended to model the execution of a goal 
(subgoal), this means the successive attempts to make the goal (subgoal) 
hold. 

Each algorithm is presented through the same frame : first, a description of the 
parameters and the remanent variables is provided, then the text of the algorithm 
is given. 

But we begin by a quick outlook at the global variables. 

2.4. 1 Global variables : 

These variables are known and are accessible (consulting and updating) by 
the algorithm EQ and a1l possible incarnations of any of the algorithms EG and 
ESG. 

CX: 

this variable contains the description of the current context and so, the logic 
program. 

failure: 

it is a boolean which is used for conveying the fact of success or failure of 
executions . 

eut: 

this boolean is used is used for conveying information about the encountered 
cuts. 
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2.4.2 Algorlthm EQ : 

(Execute Question or Execution Query) 

The following algorithm provides the modelization of the procedural semantics of a 
query of the form 

?-G. 

where G is a list of subgoals. 

Text: 

EQ 

variables be gin 

end 

V:VACV; 
EO: stamp 

labels begin 

begin 

end. 

next CAS 
end 

V:= REFERENCE_ACV(t-- G); 

EO := create( EG( G , V ) ); 

next_ CAS : execute( EO ) ; 

if failure then print('no') 
else begin 

print( V); 

goto next_ CAS 
end 
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2.4.3 Algorithm EG : 

(Execute Goal) 

Parameters : 

This algorithm has two parameters. The first one must be a goal . The second 
one must be of Y ACY type. So, to create an incarnation of EG, the call to "create" 
must be of the forrn 

create( EG( G , Y ) ) 

where G is a goal and Y a Y ACY . 

Tuen, to execute it, one must use the stamp of the incarnation, returned by the 
creation, as pararneter for a call to "execute". So, no more references to the 
parameters G and Y are needed. 

Text: 

EG( G : goal ; var Y : Y ACY ) 

rernanent variables begin 

labels begin 

end 

end 

entry _pt : string / init := "prem" ; 
Yrem : Y ACY / init := Y ; 
El : stamp; 
E2: stamp 

prem; 
next_empty; 
next_SG_CAS; 
next CAS 
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if G = () then 
begin 

goto @ entcy _pt ; { @ indicates indirection } 

prem : V := Vrem ; 

failure := false ; 
terminate(next_empty); 

next_ empty : failure := true ; 
eut := f alse ; 
selfkill 

end 

if G = (SG,G') then 
begin 

goto @ entcy _pt ; 

prem : V := Vrem ; 
El := ereate( ESG( SG , V ) ) ; 

next_ SG _ CAS : execute( El ) ; 
if failure then selfkill ; 
E2 := ereate( EG( G' , V ) ) ; 

next_ CAS : execute( E2 ) ; 
if not failure then terminate( next CAS ) ; 

else if eut then selfkill 
else goto next_ SG _ CAS 

end 
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2.4.4 Algorlthm ESG : 

(Execute SubGoal) 

Parameters and remanent variables : 

ESG takes two parameters. The first one must be a subgoal . The second one 
must be of YACY type. So, to create an incarnation of ESG, the call to "create" must 
be of the form 

create( ESG( SG , Y ) ) 

where SG is a subgoal and Y a Y ACY . 

Tuen, to execute it, one must use the stamp of the incarnation, retumed by the 
creation, as parameter for a call to "execute" . 

ESG has five remanent variables : Vrem, entry _yt, SG _instance, i and El. El and 
i do not need to be initialized. entry _yt is initialized at creation to "prem" and Vrem to 

Y. SG instance must be initialized to the value of the instance of SG by the 
substitution defined by Y ! 

Text: 

ESG( SG : subgoal ; var Y : Y ACY ) 

remanent variables begin 

local variables begin 

end 

end 

Yrem : Y ACY / init := Y ; 
entry _pt : string / init := "prem" ; 

SG _instance : subgoal / init := SG E>Y ; 
El: stamp; 
i: integer 

Ynew: YACY; 

0 : substitution ; 

CL': clause 
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labels begin 

end 

{ 

prem; 
next_clause; 
next_CAS; 
next trial 

assume that 
SG_instance = predicate(t1 , ... , 1n) 

and that 
[ CL1 = predicate(s1 1 , ... , s1 n> :- G1 , 

... ' 
CLnb cl = predicate(snb cl 1 , ... , snb cl n> :- Gnb cl ] - - - -

is the list of clauses , of the program defined in the context CX, whose head 
is unifiable with SG _instance, provided that the variables appearing in them 
(the clauses) are renamed so they do not correspond to variables appearing in 
SG instance 
} 

if SG instance = "!" then 
begin 

goto @ entry _pt ; 

prem : V := Vrem ; 
failure := false ; 
eut:= true; 
terminate( next trial ) ; 

next_ trial : failure := true ; 
eut:= true; 
selfkill 

end 
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if SG instance ~ "!" then 
begin 

goto @ entcy _pt ; 

prem: i := 1; 

next clause : if i > nb cl then begin 

end; 

failure := truc ; 

eut := false ; 
selfkill 

CL' := STANDARDIZATION( CLi, Vrem) ; 

{ CL' = head(s' i 1 , .. . , s\ n> :- G' i } 

0 : = MGU( CL', SG_instance, Vrem); 

Vnew := REFERENCE_ACV( CL' 0 ) ; 

El := create( EG( G' i 8 , Vnew)); 

next_ CAS : execute( El ) ; 
if failure then begin 

end 

if eut then begin 

end 

eut := f alse ; 

selfkill 

else begin 

end; 

V := Vrem 8 0Vnew; 
eut := f alse ; 
terminate( next_ CAS) 

i := i + 1 ; 

goto next_clause 

end 

page 42 
'I 

1 

1 



Chapter 2 A new procedural semantics for PROLOG 

2.5 Equivalence with the usual procedural semantics : 

We present here the proposition that must hold in order to have the equivalence 
between our procedural sernantics and the usual one founded on SlD-trees and the 
notion of computed answer substitution (CAS). 

2.5. 1 Sequence of answer substitutions : 

To express the equivalence, we take over the concept of sequence of answer 
substitutions from [Deville 87]. Given an SLD-refutation procedure, a logic 

program P and a goal G, the sequence of answer substitutions for Pu { rG} 

is the sequence of computed answer substitutions ( CAS ) for Pu { rG}, derived 
from the success branches eventually reached in the SlD-tree, according to the 
search rule. So, it is clear that corresponding to the sequence of CAS, we can also 
define the sequence of success branches and the sequence of success nodes for 

pu { t-G}. 

We call PROWG-sequence of answer substitutions the sequence of answer 
substitutions that would be computed by a PROLOG interpreter. The 
corresponding sequences of success branches and of success nodes are also called 
PROLOG-sequences. 

In the rest of the work, when we speak of a sequence of answer substitutions, 
success branches or success nodes without indications about the SLD-refutation 
procedure, we assume it is the PROLOG-sequence. 

Example: 

consider the PROLOG program 

p(_x, _z) :- q(_x, _y), p(_y, _z). 

p(_x, _x). 
q(a, b). 

and the goal 

p(_x, b) . 

The PROLOG-sequence of answer substitutions is the fmite sequence 81, 
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02 where 

81 = {_x/a} 

82 = {_x/b} 

A new procedural semantlcs for PROLOG 

2.5.2 Proposition 2.3 (Equivalence): 

Proposition : 

let P be a PROLOG program contained in CX 
let G be a goal 

if S is the PROLOG-sequence of answer substitutions for 

Pu{~G}, 

then 

• the execution of EQ prints a sequence of ACVs 

such that E>Vi is the ith CAS of S. 

• if S is finite, after the printing of the last Vi , the execution of EQ 

ends by printing "no" or endless continues (interpreter follows an 
infinite branch). 

For EG and ESG, we prove in the next chapter some properties needed in 
order to justify the hereabove proposition. But, intuitively, we can give a rough ( 
very rough) idea of what their results are. 

2.5.3 EG: 

if an incarnation EO has been created with the call 

create( EG ( G , V ) ) 
then, 
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execute( EO ) 

is sucb that wben it terminates : 

• the context CX can be cbanged 

• if failure = false, V bas been modified so it is an instance of its 

value as it was at creation of EO. This instance is sucb that G SV 
bolds. The incarnation still lives. 

• if failure = truc and eut = truc then, it is a eut encountered in G 
that is responsible of the failure . The incarnation is destroyed . 

• - if failure = true and eut = false then, the failure is not due to a eut. 
The incarnation is destroyed. 

2.5.4 ESG: 

if an incarnation EO bas been created with the call 

create( ESG ( SG , V ) ) 
then, 

execute( EO ) 

is sucb that wben it terminates : 

• - the context CX can be cbanged 

• - if failure = false, V bas been modified so it is an instance of its 

value as it was at creation of EO. This instance is sucb that SG SV 
bolds. The incarnation still lives. 

• - if failure = true , then the incarnation is destroyed. 

• - if eut= false, then SG * "!". 
• - if eut = true , then SG = " !". 
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3. 1 INTRODUCTION : 

The aim of this chapter is to provide the proof of the equivalence, between 
our procedural semantics and the usual one, when dealing with a program P and a 
goal clause G such that T(G) is finite and does not contain any eut These 
simplifications ease the proof and are lifted in further chapters. 

Before proving that proposition 2.3 (Equivalence) is correct, we begin by the 
expression of properties of the algorithms ESG and EG. These properties are given 
by the following propositions and are the formai translations of the assertions we 
made over ESG and EG at the end of the previous chapter (see section 2.5) . 

3. 1. 1 Proposition 3. 1 : 

Proposition : 

let P be the program contained in CX 

let SG be a subgoal ( SG ~ "I") 
let V O be an ACV covering SG 

let S = e1, , em ( m ;?: O ) be the sequence of answer 

substitutions for P u { ~ SG ev 0} 

if EO is an incarnation of the algorithm ESG created with parameters 

SG and V= Vo' 

then 

• the jth execution ( 1 ~ j ~ m ) of EO ends with 

v = v0 ej, 
failure = false , 
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eut= false and 
the incarnation EO still alive. 

• the (m+ 1 )th execution of EO ends with 
failure = true, 
eut= false and 
the incarnation EO destroyed. 

Equivalence for linlte SLO-trees wlthout culs 

3. 1.2 Proposition 3.2 : 

Proposition : 

let P be the program contained in CX 
let G be a goal 
let V O be an ACV covering G 

let S = e1, ... , em ( m ~ o ) be the sequence of answer 

substitutions for P u { f- G SV 0} 

if EO is an incarnation of the algorithm EG created with parameters 

Gand V= Va' 

then 

• the /h execution ( 1 $ j $ m ) of EO ends with 

v = v0 ej, 
failure = false and 
the incarnation EO still alive. 

• the (m+ 1 )th execution of EO ends with 
failure = true, 
eut= false and 
the incarnation EO destroyed. 

3. 1.3 Remarks 

The proof for these last two propositions is made in three steps. The first step 
demonstrates that proposition 3.1 holds if proposition 3.2 holds. The second step 
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is just the contrary. The third step is needed to lift the vicious circle coming from the 
first two steps . 

In the following sections, we speak of the first marginal execution, the 

second marginal execution, ... , the ith marginal execution of an incarnation. The first 

marginal execution of an incarnation is the execution during which we start 

observation. The (i+l)th marginal execution of this incarnation ( i ~ 1 ) is the first 

execution following its ith marginal execution. 

Our algorithms treat the goals as list of subgoals. lt may happen that this list is 

empty () . In this situation, the SLD-tree for P u { ~ ()} is only composed of the root 

node ~ () . This root node can be seen as a success node because it is the empty 

clause. So, we can say that there is only one CAS, for P u { ~ ()}, which is the 
emtpy substitution . 

3.2 PROOF OF PROPOSITION 3. 1 IF PROPOSITION 3.2 IS 
CORRECT: 

3.2.1 Preliminaries : 

This section recalls some fondamental concepts about the depth-first search 
made by PROLOG in a SLD-tree. These are useful for the understanding of the 
proof. It also fixes some denominational conventions. 

Let P be a program, SG be a subgoal and V O be an ACV. We consider the 

section of T(SG ev 0) concerning the ith descendent input clause of ~ SG €W O • 

We denote this clause CL' i and its body G' i . CL' i is a variant of a program clause 

that we denote CLi and whose body is Gi . 

In T(SG SV 0) , the root node is ~ SG 01 0 and it bas a descendent 

~ Gi Îi where Îi is a MGU of the head of CL' i and SG 9/ 0 . The tree is 

schematized in figure 3.1 . 
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t- G'. 'Y,· 
1 1 

Figure 3.1 

Now, we consider that T(SG ev 0) contains m success branches or, 

consequently, m CAS ( m ~ 0 ) and that q ( 0 $; q $; m ) branches of these 

success branches are passing by the node t- G' i 'Yi . If 01 , ... , 0m is the 

sequence of answer substitutions for P u { t- SG ev 0} when using a depth-first 

search rule, this sequence is well the PROLOG-sequence of answer substitutions 
because there is no eut. Moreover, in this sequence, the q CAS whose 

corresponding success branches are passing by the node t- G\ 'Yi are 

consecutive or form a subsequence. We can denote this subsequence 0(k+l) , ... , 

e(k+q) where O ~ k ~ m-q , if the k first CAS are corresponding to success 
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branches located more at left than the ones passing by the node ~ G' i 'Yi . 

Given the definitions of SID-trees and CAS, the properties of substitutions 
composition and the rule of depth-first search, we have that the sequence of answer 

subsitutions for Pu{~ G'i 'Yi} contains q CAS 8' 1, ... , 8'q and that 8(k+j) = 

(Yi 8'j) with 1 ~j ~ q. 

3.2.2 Structure of the proof: 

We provide here some guidelines through the proof by roughly explaining the 
contents of the lem.mas and how they are used . 

We consider an incarnation of the algorithm ESG created with SG and V = v 0 . 

Figure 3.2 shows the global aspect of T(SG 0V 0). 

First, let us point that the variable i can be seen as the counter of descendent 
input clauses. Its value indicates which descendent input clause is under 
consideration. Remember that nb _ cl indicates the number of descendent input clauses 

for the node ~ SG 0V o . 

The aim of lemma 3.1 is to show that when an execution of the incarnation 
passes at the point labelled next _ clause with i > nb _ cl, this execution must stop 
immediately withfailure = false because there are no more possible input clauses. 

Lemma 3.2 expresses that when an execution of the incarnation passes at the 

point labelled next _ clause with i ~ nb _ cl , there will be a succession of executions of 
this incarnation before an execution cornes back to that point but with i incremented 

by 1. The jth execution of this succession tenninates with V = v O 8j , 8j being the jth 

CAS, for P u { ~sG ev 0}, such that the corresponding success branch is passing 

by the ith descendent node of ~ SG 0V O . The proof of this lem.ma uses the 

hypothesis that proposition 3.2 is correct , so that it is possible with an incarnation of 

EG to get the CAS of T(G' i Yi) . 
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~ G'. y. 
1 1 ~ G'nb_cl Înb_cl 

Figure 3.2 

Tuen, we use lemma 3.2 in order to prove that given ne, an integer such that 1 $ 

ne $ nb _ cl, there will be a succession of executions of the incarnation before an 

execution passes the point labelled next _ clause with i = ne + 1 . The jth execution of 

this succes~ion terminates with V = V O ej , ej being the jth CAS, for P u { ~SG 

SV 0}, such that the corresponding success branch is passing by one of the first ncth 

descendent nodes of~ SG SV O . This is formalized in lemma 3.3. 

The proof of proposition 3.1 uses lemma 3.3, for ne = nb _ cl, together with lemma 
3.1. 
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3.2.3 Lemms 3. 1 : 

Lemma: 

let P be the program contained in ex 
let SG be a subgoal 
let V O be an AeV covering SG 

let EO be an incarnation of the algorithm ESG created with 
parameters SG and V = V 0 

if a first marginal execution of EO passes at the point labelled 
next_clause in the algorithm, with i = i1 and i1 > nb_cl 

then , this first marginal execution ends with 
failure = true , 
eut = false and 
the incarnation EO destroyed. 

Proof: 

it is immediate by symbolic execution of the "then" part of the alternative 
instruction labelled with ne.xt clause. 

Note: this lemma holds, independently of proposition 3.2 ! 

3.2.4 Lemms 3.2 : 

Lemma : 

let P be the program contained in ex 
let SG be a subgoal 
let V O be an Aev covering SG 

let EO be an incarnation of the algorithm ESG created with 
parameters SG and V = V 0 

if a first marginal execution of EO passes at the point labelled 
next_c/ause in the algorithm, with i = i1 > O and i1 <= nb_ cl and 

page52 



• Chapter3 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

Equivalence for llnlte SLD-trees wlthout cuts 

if e(k+ 1) , ... , e(k+q) ( k ~ O and q ~ o ) is the subsequence of 

answer substitutions for Pu {t-SG ev 0} such that e(k+j) ( 1 s j s q) 

corresponds to a success branch passing by the node derived from 

the root of T(SG E>V 0) and the i1 th descendent input clause of 

t- SG E>V O , then 

• the /h marginal execution of EO ( 1 <= j <= q) ends with 

V= Vo e(k+j) 

entry_pt = next_CAS 
failure = taise 
eut= taise and 
the incarnation EO still alive . 

• the (q+1 )th marginal execution of EO passes at the point 
labelled next_clause with i = i1 + 1 . 

Proof: 

We suppose that figure 3.1 (see section 3.2.1) provides the general form of 

T(SG E>Vo). 

As il <= nb cl, the first marginal execution begins with the execution of 
the following instructions : 

CL':= STANDARDIZATION( CLi, Vrem); 

{1} 

8 := MOU( CL', SG_instance, Vrem) ; 
{2} 

Vnew := REFERENCE_ACV( CL' 8); 
{3} 

in {l} : from the specifications of STANDARDIZATION, we have CL' 

can be considered as the itth input clause (CL'il) because it does not 

have any variable which already appears in f- SG E>V 0. This is also due to 

the fact that v O covers SG and Vrem = v O (because there is no instruction, in 

the algorithm ESG, that changes the value of Vrem) . 
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in {2} : 

8 = Îil · 

0 represents a MGU of the head of CL' il and SG SV O . So, 

in {3} Vnew contains a binding for ail the variables appearing in 

CL' il Îil and 8Vnew = E • AU the bindings of Vnew concem variables 

which do not appear in v O. The value of Vnew here will be denoted VnewO. 

Tuen, the instruction 

El := create( EG( G' i 0 , Vnew ) ) ; 

is executed and we know that G\ = G\1 is the body of CL' il and that 

Note that G' il Îil 8Vnew = G' il Îil because 9VnewO = E • 

By hypothesis, proposition 3.2 holds. This means that , as there are q 

CAS 0' 1, ... , 8'q ( see section 3.2.1) forP u { ~ G'il yil}, we have 

• the jth execution ( 1 ~j ~ q) of El ends with 

Vnew = VnewO 0'j, 

f ail ure = f alse and 
the incarnation El still alive. 

• the (q+l)th execution of El ends with 
f ail ure = true , 
eut = f alse and 
the incarnation El destroyed. 

But, just after creation, the first execution of El occurs ! We distinguish 
two situations : q = 0 and q > 0 . 

Ifq=O: 

this first execution of El ends with 
f ail ure = true , 

eut = f alse and 
the incarnation El destroyed 
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becauseq < 1 . 

So, the next executed instructions in EO are 

i := i + 1 ; 
goto next-clause 

Therefore, we can conclude that the first ( (q+t)th with q = 0 ) 
marginal execution of EO passes to the point labelled next clause with 
i = il+ 1 . 

ffq>O: 

the first execution of El ends with 

Vnew = Vnew0 8' l , 

failure = f alse and 

the incarnation El still alive because 1 ~ q . 

So, the next executed instructions in EO are : 

V := Vrem 8 E>Vnew ; 
eut:= false; 
terminate( next_ CAS ) ; 

It is clear that after this sequence of instructions, we have that the 
execution of EO is ended ( EO not destroyed ) with failure = false , eut = f alse , 
entry _pt= next_ CAS . 

We must still prove that V= Vo 8(k+l) . 

Butwehave 

- Vrem= v0 

- Vnew = Vnew0 8' l 

- Vnew0 covers G' il because it covers CL' il 

- 8Vnewo=E 

(a) 

(b) 

(c) 

(d) 

(e) 
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- 0' 1 is a CAS for T(G' il 'Yil)(f) 

So, we can deduce that 

SVnew = 8(VnewO 0' 1) (by c) 

= « 8Vnew0 0' l »VnewO(by proposition 2.2) 

= < 0' 1 >VnewO (bye and proposition 2.1) 

= 0' 1 (by d, e and f) 

and also that 

V = Vrem 0 SVnew 

=Vo Îil 8 '1 

= Yo 0(k+l) 

(by a and b) 

(see section 3.2.1) 

Now, we have proved the thesis for j = 1 and, as entry _yt = next_ CAS 
at the end of the first marginal execution of EO, we know that the next 
execution, the second ( j = 2 ) marginal one, will begin at the point labelled 

next_CAS. Thus, it will begin by the second execution of the incarnation El of 
EG because the first marginal execution of EO bas performed one and only 
one execution of EL' So, by following an analoguous reasoning for this 

second execution of EO, then for the third one, and so on, we can prove the 

first part of the thesis for any value of j provided that j S q . 

Note : this point should normally be proved using an inductive reasoning in 

order to be fully accurate. We think, however, that the hereabove 
explanations are clear enough to persuade oneself of the correctness 
of proposition 3.1 . If the reader is not at ease with the executions 
mechanisms of EG and ESG, we think it could be useful for him to 
build this recursive proof ! 

Finally, we must still prove that the (q+ l )th marginal execution of EO 

passes at the point labelled next_clause with i =il + 1. 

We know that the qth marginal execution has ended with entry_yt = 

next_CAS and that the next execution of El will be the (q+l)th. So, the 

(q+l)th marginal execution of EO begins by executing the (q+l)th execution of 
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El which ends, by hypothesis, with failure = true , eut = false and the 
incarnation E 1 destroyed . 

Tuen, as failure = true and eut = false, the following instructions are 
executed: 

i := i + 1 ; 
goto next clause 

It is clear that this (q+t)th marginal execution passes at next clause 
with i =il+ 1 

3.2.5 Lemma 3.3 : 

Lemma: 

let P be the program contained in CX 
let SG be a subgoal 
let V O be an ACV covering SG 

let ne be an integer such that Os ne s nb_cl 
let EO be an incarnation of the algorithm ESG created with 
parameters SG and V = V 0 

if e1 , ... , ep ( O s p ) is the subsequence of answer substitutions 

for P u {t- SG ev 0} such that ej ( 1 s j s p ) corresponds to a 

success branch passing by one node t- G'k yk for some k such 

that 1 s k s ne , G'k being the body of the kth descendent input 

clause of t- SG ev O and yk a MGU of the head of this input clause 

and SG ev0, then 

• the jth ( 1 s j s p) execution of EO ends with 

v = v0 ej, 

failure = false , 
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eut= false and 
the incarnation EO still alive . 

• the (p+ 1 )th execution of EO passes at the point labelled 
next_ clause with i = ne + 1 . 

Proof: 

For this proof, we proceed by induction on ne . 

Case 1: ne= 0 

This implies that the sequence of answer substitutions is empty ( p = 0 ). 

Due to the initialization of the remanent variable entry _pt, the first 
execution jumps to the point labelled prem where i is given the value 1. Then, 
it passes at the point labelled next _ clause and we get the thesis. 

Case 2: ne> 0 

By induction hypothesis, we know that if e 1 , ... , eq ( 0 s q s p) is the 

subsequence of answer substitutions for P u { ~ SG E>V 0} such that Sj ( 1 

S j S q ) corresponds to a success branch passing by one of the nodes ~ 

G'k Île ( 1 :s;;ksnc-1 )then 

• the jth ( 1 S j :s;; q ) execution of EO ends with 

v = v0 ej, 

f ai/ure = f alse , 
eut = f alse and 
the incarnation EO still alive. 

• the (q+l)th execution of EO passes at the point labelled 
next clause with i = ne . 

We can also say that the subsequence e(q+l) , ... , e(q+r) ( 0 Sr S p-q ) 

is the subsequence of answer substitutions for P u { ~ SG ev 0} such 

that e(q+j) ( 1 S j Sr ) corresponds to a success branch passing by the 

node derived from the root of T(SG SV 0) and the ncth descendent input 
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clause of r SG 8V O . 

So, if we pickup the (q+t)th execution of EO when it passes at the point 
labelled next_clause, we canuse lemma 3.2 with i = ne in order to deduce that 

• the (q+j)th ( 1 Sj Sr) execution of EO ends with 

V= VO 0(q+j) , 

failure = f alse , 
eut = f alse and 
the incarnation EO still alive. 

• the (q+r+t)th or (p+1)1h execution of EO passes at the point 
labelled next clause with i = ne + 1 . 

3.2.6 Proof of proposition 3.1: 

lt suffices to use lemma 3.3 with ne = nb _ cl and, therefore, p = m to get 
immediately the first part of the thesis. The second one can be obtained by 

application of lemma 3.1 because, by lemma 3.3, we know that the (m+t)th 

execution of EO passes at the point labelled next_clause with i = nb_cl + 1 . 

3.3 PROOF OF PROPOSITION 3.2 IF PROPOSITION 3. 1 IS 
CORRECT: 

3.3. 1 Prellminarles : 

A. Stump: 

Let T and T* be trees 

T* is a stump of T iff 

• T* is composed of a subset of nodes of T and a subset of branch of T . 
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• T and T* have the same root . 

• if a is a node of T* , then the sequence of its descendents in T* is 
either exactly the same than in Tor empty. 

By sequence of descendents, we mean the set of descendents ordered in 
fonction of their position in the tree. We use the usual order going from left to right in 

the graphical representation. 

Example: 

Consider the trees of figure 3.3: T* is a stump of T but S* is not. 

a 

A 
T: 

b C 

~ ~ 
d e f g h 

a 

A 
b C 

T*: 

~ 
d e f 

a 

A 
S*: b C 

1 ~ 
e g h 

Figure 3.3 
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If we call terminal nodes the nodes which have no descendents, it is clear that 
the tree T can be obtained from the tree T"' by grafting prolongations only to the 
terminal nodes of T* . 

B. Using stump concept in SLD-trees : 

Let P be a program, SG be a subgoal, G be a goal such that G = SG, G'. 

Consider T*(G) a tree obtained from T(SG) simply by complying to the following 
rule of construction : 

if a node a in T(SG) has the form +-- Ga , the corresponding node 

in T*(G) has the form +-- Ga , (G' 0a) , where ea is the composition of the 

unification substitutions used in the derivation from root to the node a in 

T(SG). 

C. Proposition 3.3 : 

Proposition : 

r(G) is a stump of T(G) . 

Proof: 

. lt is clear that T(G) and T*(G) have identical roots because G = SG, G' . 

We proceed then by contraposition : 

as the roots are identical, assuming that T"'(G) is not a stump of T(G) 
means that there is a first level ( the root composing level 1 and level i being 
the set of all the descendents of ail the nodes composing level i-1 ) in T"'(G), 
say level n ( n > 1 ), where it is impossible to establish the equivalence 

between the sequence of descendents in T"'(G) of a node a* of the 
previous level with the sequence of descendents of the same node in T(G). 

As level n is the first level where we encounter this impossiblility, it 
means that until level n-1, T*(G) corresponds to the definition of stump for 
T(G). 

Now, we prove that it is impossible to have a such level. 
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The node a* of the level n-1 bas the form +- Ga , (G' 0a) and bas 

been obtained from anode a of T(SG) of the form +- Ga . 

The sequence of descendents of a* in T*(G) is obtained frorn the 

sequence of descendents of a in T(SG). This implies that Ga is not the 

empty goal. Let Ga = SGa , G' a . 

In fonction of the Sl.D-derivation procedure of PROLOO, the sequence 

of descendents for a can be expressed as follows : 

+- (G1, G' a> 81 ' ... '+- (Grn, G' a> em 

where m is the number of program clauses for which the head of a variant 
can be unified with SGa . Gi is the body of the input clause 

corresponding to the ith such program clause and 0i is the MGU of the head of 

the input clause and SGa. 

So, the sequence of descendents for a* has the following form, by 
definition of T*(G) : 

1 Si Sm 

or, equivalently, 

lSiSm (1) 

If we consider the node a* in T(G), we know that it bas the form 

because a* is at level n-1 and as we have seen that 

we can write 

+-Ga, G' 0a = +- SGa, G' a, G' 0a 
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As we consider the same program P than before and as the SLD-
refutation procedure of PROLOG does not change, the sequence of 

descendents for a* in T(G) can be expressed as follows : 

1 Si Sm (II) 

The sequences (1) and (II) are the same. So, it is impossible to have a 
first level for which the definition of sturnp is not respected. Therefore, we 
deduce that T*(G) is a stump of T(G). 

We call T*(G) the first subgoal stump of T(G), T(SG) the restricted first 

subgoal stump and G' the complement of T(SG) with respect to G. When no 
ambiguity is possible, we simply talk about the complement of T(SG). The 
complement of a restricted first subgoal stump is the expression that must be 
added to the expression of the root in order to get the root of the first subgoal 
stump (not restricted). We also say that T(SG) is the restriction of T*(G). 

We have already seen that it is possible to get T(G) from T*(G) by adding 
prolongations to the terminal nodes of T*(G). 

Recall that terminal nodes for an SLD-tree are either success or failure nodes. 
The success (failure) nodes are the last nodes of successful (failed) derivations. 

D. Proposition 3.4 : 

Proposition : 

lt is possible to get T(G) from T*(G) by adding to each of its terminal 
node corresponding to a success node of T(SG) an appropriate 

prolongation. If a* is a such terminal node , a the corresponding 

success node of T(SG) and Sa the substitution defined by the 

success branch, of T(SG), ending in a , the prolongation to add to 

is T(G' Sa). 
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Proof: 

To prove proposition 3.4, we begin to prove that terminal nodes of 
T"'(G) corresponding to failure nodes of T(SG) are also failure nodes for 
T(G). 

Let Cl be a failure node, of T(SG), of the form 

As it is a failure node, we have Gex is not the empty goal and we can write 

that 

This node ex bas no descendents in T(SG) because it is impossible to find 
a clause in the program P for which the head of a variant can be unified with 

SGcx. 

The node ex* of T*(G) corresponding to ex has the form 

or 

The corresponding node in T(G) bas the same form; so, using the same 
SLD-refutation procedure than before, with the same program P, this node 
can only be a failure node. 

Now, let Cl be a success node of T(SG). As a success node is an empty 
goal, the corresponding node in T*(G) bas the form 

~a· e 
Cl 

where ecx is the CAS defined by the success branch, of T(SG), ending in ex 

Therefore, it is clear that the prolongation that must be attached to this 

node is T(G' 0cx) , the SLD-tree for Pu { ~ G' 0cx } . 
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E. Consequences concerning the CAS ofT{G): 

As a corollary of proposition 3.4, each success branch of T(G) must pass by a 
node corresponding to a success node of the restricted first subgoal stump. 

So, as substitutions composition is associative, it cornes immediately that the 

sequence of CAS defined by success branches passing by anode ~ G' ecx can be 

obtained by composing 0cx with each CAS of the sequence of CAS for 

Pu{~ G' 0cx}. 

To get the sequence of answer substitutions for Pu { ~ G} { G = SG, G' ) , we 

can consider one by one the CAS for P u { ~ SG} (in the order defined by the 

sequence) and for each of them (denoted 0 ), take the sequence of their 
compositions with the CAS of the sequence of answer substitutions for 

Pu{~G' 0}. 

F. Grapbical representation : 

We propose here some conventions about the graphical representation of the 
subdivision of a SLD-tree into its first subgoal stump and the needed prolongations. 

Assume that G = SG , G'. If e 1, ... , 0q (q ~ O)is the sequence of answer 

substitutions found in T(SG), we can sketch T(G) as in figure 3.4. 

~a ~a 

T"'(G) 

T(G) 

Figure 3.4 
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Exarnple: 

Consider the following prograrn : 

q(a,b). 
s(b,c). 
p(_x,_z) :- q(_x,_y), p(_y,_z). 
p(_x,_x). 
r(_x,_y) :- q(_x,_y),s(_y,c). 

Equivalence for finlte SLD-trees wlthout c:uts 

Figure 3.5 provides the sketch of T(G) for G = p(_ x,b) , r(_ x,b) . 

t- p(_x,b),r(_x,b) 

t- p(b,b),r(a,b) 

t- q(b,_y4),p(_y4,b),r(a,b) t- r(a,b) 

t- s(b,c) 

◊ 

figure 3.5 
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3.3.2 Structure of the proof: 

It is easy to proof the correctness of proposition 3.2 when G = () ! A quick glance 
at the algorithm is already persuasive. The case of G = () is used in our proof as the 
minimal case for an induction on the number of subgoals composing the goal. 

The induction grounds on two lemmas ! We consider an incarnation of EG created 
with G and V = V O . G = SG,G' is composed of n subgoals and we assume 

proposition 3.2 has been proved for goals of less than n subgoals. To understand the 
aim of these lemmas, the reader should better keep in mind the following illustration : 

t- a ev0 
t-G ev0 

T*(G 0Vo) 

T(G 0Vo) 

Figure 3.6 

Lemma 3.4 expresses that if an execution of an incarnation EO passes at the point 

where an incarnation E2 of EG is created and if V = V O 0 then, there will be a 

succession of executions of the incarnation EO before an execution passes at the 

point labelled next _SG _ CAS . The jth execution of this succession is so that it ends 

with V = v O 0 0'j , 0'j being the jth CAS of the sequence of answer substitutions for 

Pu{t-G' 0Vo0}. 

Tuen, we use this lemma and proposition 3.1 in order to prove that given i, an 

integer such that 1 S i S p, there will be a succession of q executions (q ~ 0) of the 
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incarnation before an execution passes at the point labelled next_ SG _ CAS with the 

(p+t)th execution of the incarnation El to execute. The jth execution of this 

succession terminates with V= V O 8j , 8j being the jth CAS for Pu { +- G SV 0}. 

Proposition 3.2 is easily deduced from this lemma and the characteristics (see 

proposition 3.1) of the (p+t)th execution of the incarnation El . 

3.3.3 Lemma 3.4 : 

We begin to recall the algorithm EG for non-empty goals and we add a label L 
that is used in the lemma : 

if G = (SG,G') then 
begin 

goto @ entry _pt ; 

prem : V := Vrem ; 
El := create( ESG( SG , V ) ) ; 

next_ SG _ CAS : execute( El ) ; 
if failure then selfkill ; 

L: E2 := create( EG( G' , V ) ) ; 

next_ CAS : execute( E2 ) ; 
if not failure then terminate( next_ CAS ) ; 

else if eut then selfkill 
else goto next_ SG _ CAS 

end 

Lemma: 

let P be the program contained in CX 

let G = SG, G' be a goal composed of n subgoals ( n ~1 ) 
let V O be an ACV covering G 

let EO be an incarnation of the algorithm EG created with parameters 

Gand V= Vo 
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if algorithm EG respects proposition 3.2 for goals containing less 
than n subgoals and if a first marginal execution passes at the point 

labelled L with V = V 1 = v O 0 ( 0 being a substitution ) and if 01, 

... , eq ( q 2!: O ) is the sequence of answer substitutions for 

Pu{~ G' E>V1}, then 

• the /h ( 1 s j s q) marginal execution of EO ends with 

V = V 1 ej = V O 0 ej , 

entry_pt = next_CAS, 
failure = false and 
the incarnation EO still alive . 

• the /h ( 1 s j s q ) marginal execution of EO has performed the /h 
execution of the incarnation E2 and has not performed any 
execution of the incarnation E1 . 

Proof: 

• the (q+ 1 )th marginal execution of EO passes at the point 
labelled next_SG_CAS and the incarnation E2 is destroyed . 

The execution begins with a creation of an incarnation of EG 

E2 := create( EG( G' , V ) ) 

with V = V 1 ( V 1 covers G' because it is an instance of V O , V O which 

covers G) . 

By hypothesis, we can assert that 

• the j th ( 1 S j S q ) execution of E2 ends with 

v = v 1 ej = v O e ej , 
f ai/ure = f alse and 
the incarnation E2 still alive . 

• the (q+l)th execution of E2 ends with 

f ail ure = true , 

eut = false and 
the incarnation E2 destroyed . 
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Tuen, we proceed by induction on the successive marginal executions 
ofEO. 

Case 1 : first marginal execution 

lfq=O: 

The first execution of E2, performed just after its creation, ends with 
f ai/ure = true , eut = false and the incarnation E2 destroyed . 

So, the first marginal execution of EO jumps to the point labelled 
next _ SG _ CAS and we get the thesis . 

If q >= 1: 

The first execution of E2, performed just after its creation, ends with 

V=Vl 81 =Vo 8 81 , 

/ai/ure = f alse and 
the incarnation E2 still alive; 

As /ai/ure = false, the execution of EO executes 
terminate(next_ CAS) 

so, it ends with 

V= V l 81 = v O 8 8 1 , 

/ai/ure = f alse , 
entry _pt = next_ CAS and 
the incarnation EO still alive. 

Moreover, E2 still lives and this first marginal execution of EO has 
proceeded to the first execution of it . We also have that no execution of 
the incarnation El occurred. 

Case 2 : j th marginal execution if it is allright up to (j-l)th (j-1 ~ q) 

By induction hypothesis, we have that the jth marginal execution jumps 

at the point labelled next _ CAS and perf orms the jth execution of the 

incarnation E2 . 
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If j=q+l: 

We can assert that this jth execution of E2 ends with 
f ai/ure = truc , 

eut = f alse and 
the incarnation E2 destroyed. 

So, the jth marginal execution of EO jumps to the point labelled 
next _ SG _ CAS and we get the thesis . 

If j <= q: 

The jth execution of E2, performed just after its creation, ends with 

V = V 1 ej = V o 8 ej , 

f ai/ure = f alse and 
the incarnation E2 still alive ; 

As /ai/ure = false, the execution of EO executes 
terminate(next_ CAS) 

so, it ends with 

V = V 1 ej = V O 8 ej , 

/ai/ure = f alse , 
entry_pt = next_CAS and 
the incarnation EO still alive. 

Moreover, E2 still lives and this first marginal execution of EO has 
proceeded to the first execution of it . We also have that no execution of 
the incarnation El occurred. 

3.3.4 Lemma 3.5 : 

Lemma: 

let P be the program contained in CX 

let G = SG, G' be a goal composed of n subgoals ( n ~ 1 ) 
let V O be an ACV covering G 

let SN = s1 , ... , sp ( p ~ O ) be the sequence of success nodes of 
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T(SG eV0) 

let i be an integer such that O ~ i ~ p 
let EO be an incarnation of algorithm EG created with parameters G 
and V= v0 

if algorithm EG respects proposition 3.2 for goals containing less 

than n subgoals and if S = e1, ... , eq is the sequence of CAS for P 

u {~ G ev 0} such that, for each of them, the corresponding 

success branch passes by one of the nodes of the T*(G ev 0) 

corresponding to one of the first i ( O ~ i ~ p ) success nodes of SN, 
then 

• the jth ( 1 ~ j ~ q ) execution of EO ends with 

v = v0 ej, 
failure = false and 
the incarnation EO still alive . 

• the (q+ 1 )th execution of EO passes at the point labelled 
next_SG_CAS and the next execution of the incarnation E1 will 

be the (i+ 1 )th one . 

Proof: 

We proceed by induction on i. 

Case 1 : i = 0 

As entry_pt is initialized to prem and Vrem to v0 at creation, the first 

execution jumps to the point labelled prem and executes 

El := create( ESG( SG , V ) ) 

with V = V O ( V O covers SG because it covers G ). 

Tuen, it passes at the point labelled next _ SG _ CAS and the next execution 
of El will be the first one. This provides the thesis because for i = 0, we have 

q=O. 
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Case 2: i ~ 1 if it is allright up to (i-1) < p 

The q CAS 81 , ... , 8q can be subdivised as follows: 

- 81, ... , 8ql ( 0 ~ ql ~ q) the sequence of CAS for Pu { ~ G ev 0} 

such that, for each of them, the corresponding success branch 

passes by one of the nodes of the T"'(G SV 0) corresponding to one of 

the first (i-1) ( 1 ~ i ~ p) success nodes of T(SG 0V 0) . 

- 8(ql+l) , ... , 8(ql+q2) ( ql+q2 = q) the sequence of CAS for P u 

{ ~ G 0V 0} such that, for each of them, the corresponding success 

branch passes by the node of T*(G ev 0) corresponding to the ith 

success node of T(SG 0V o) . (D 

By induction hypothesis, we get that 

• the j th ( 1 ~ j ~ ql) execution ofEO ends with 

v = v0 0j, 

failure = f alse and 
the incarnation EO still alive. 

• the (ql+l)th execution passes at the point labelled 
next SG CAS and the last execution of the incarnation El wi1l be the 

ith one. 

Now, at the point labelled next_SG_CAS, this (ql+l)th execution of EO 

performs the ith execution of El which ends with 

V=Vo Îi• 

f ai/ure = f alse and 
the incarnation El still alive , 

Îi being the ith CAS of the sequence of answer substitutions for 

P u { ~ SG SV ol , by proposition 3.1 . 

As failure = false , this (ql+l)th execution of EO arrives at the point 

labelled L ( see lemma 3.4 ) with V = V O 'Yi . 

page 73 



, .=-

Chapter 3 Equivalence for finlte SLD-trees without ruts 

From (1) and from the developments we have made in section 3.3.1, we 
deduce that 

e(ql+k)= Îi e·k ( 1 SkSq2) 

where 8' k denotes the kth CAS of T(G' SV O 'Yi) which is the prolongation to 

add to the terminal node of T*(G SV 0) corresponding to the ith success node 

of T(SG ev o> . 

We also have, at this point, 

G' SV= G' «8Vo 'Yi»Vo (by proposition 2.2) 

G' SV = G' ev O 'Yi 

(by the the fact that 'Yi is a CAS for P u { ~ SG SV ol and 

also the fact that v O covers G' because it covers G). 

Now, we can use lemma 3.4 and also the fact that one more execution 
of El occurred to get the thesis. 

3.3.5 Proof of proposition 3.2 : 

We proceed by induction on the number of subgoals composing the goal G . 

Case 1 : 0 subgoal 

It is immediate by using symbolic execution and the specifications of 
initialization of the remanent variables . 

Case 2 : n ( n > 0 ) subgoals and proposition 3.2 holds for goals of less than n 
subgoals. 

Assume G = SG , G' . 

Assume also that there are p CAS ( p ~ 0 ) for P u { ~ SG SV 0}, we can 

use lemma 3.5 with i = p and q = m to get the first part of the thesis. The 

second part cornes from the fact that the (m+l)th execution of EO passes at 
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the point labelled next_SG_CAS and proceeds to the (p+t)th execution of 
El ( see lemma 3.5 ). We know (proposition 3.1) that this execution of El 
ends with 

f ail ure = true , 
eut = f alse and 
the incarnation El destroyed . 

Asfailure = true, this (m+l)th execution of EO performs selfkill . 

3.4 LIFTING CIRCULARITY: 

Up to now, we have proved that proposition 3.1 is right if proposition 3.2 is 
so and vice versa. To lift the resulting circularity, we should give a simultaneous 
proof of propositions 3.1 and 3.2 . We do not give it here but we provide a detailed 
description of the way to follow to get this proof ! 

We assume the context CX contains the program P. 

The depth of a SLD-tree is the length of its longest derivation (successful or 
failed) . If T is a SLD-tree, its depth is denoted depth(T). 

What bas to be shown is that 'v'n e N: 

• n = depth(T(SG ev 0)) => proposition 3.1 holds for SG and V= v O . 

• n = depth(T(G ev 0)) => proposition 3.2 holds for G and V = V O . 

We use the induction principle on the depth of the trees. 

We consider that the minimal cases concem Sill-trees of depth :S 1. These 
cases are discussed hereafter . 
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3.4. 1 depth( T(SG 0 V r}) = 0 : 

The SLD-tree has the following form :: 

t- SG ev0 

Figure 3.7 

It is impossible to find an input clause, so nb _ cl = 0 and there is no CAS ! 

The correctness of proposition 3.1 in this case can be proved by using lemma 
3.1 which does not rely on the correctness of proposition 3.2 when nb _ cl = 0 . 

3.4.2 depth( T(G E> V r} ) = 0 : 

The SLD-tree has the form : 

t-G E>Vo 

Figure 3.8 

If G is not the empty goal, we can write that G = SG , G' . We also know that 

there is no CAS for Pu { t- G E>V 0}. So, if G = SG , G' , its restricted first subgoal 

stump is only composed of the root t- SG E>V O . 
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The depth of this stump is also O and there is no CAS for P u { ~ SG ev 0}. By 
(I), we know that proposition 3.1 is respected for SG and V = V O , so, we can 

take over lem.ma 3.5 to derive proposition 3.2 for SLD-trees of depth = 0 . 

If G is the empty goal, the proof of proposition 3.2 remains the same . 

3.4.3 depth( T(SG E> V (1) = 1 : 

The SI.D-tree has the following form 

~sG ev0 

~ G'. 'Y,· 
1 1 ~ G' nb_cl 'Ynb_cl 

Figure 3.9 

where G' i is the body of the ith descendent input clause of ~ SG E>V O and 'Yi a 

MGU of its head and SG SV o· 

Now, as depth( T(SG ev0)) = 1 , we have depth( T(G'i 'Yi))= O. Proposition 

3.2 which holds for goals whose SLD-trees are of depth = 0 can be used . 

3.4.4 depth( T{G E> V (1) = 1 : 

As depth is 1, Gis not the empty goal. Assume G = SG,G'. 
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The SLD-tree has the forrn: 

~ (SG,G') ev 0 

Figure 3.10 

where G' i is the body of the ith descendent input clause of ~ G ev O and 'Yi a MGU 

of its head and SG SV o· 

We can deduce that the tree is equal toits first subgoal stump whose restriction 
bas the forrn presented at figure 3.9. 

The depth of this restriction is also 1 ! So, we have that proposition 3.1 holds 
for SG and V = V O . It is then possible to prove that proposition 3.2 holds because 

when using, in the proof, the fact that proposition 3.1 must hold , it is enough to 

assume it holds for trees of depth ::;; 1 ! 

3.4.5 General case : 

Now that we have shown how to cope with minimal cases, we consider the 
general case 

Assuming that propositions 3.1 and 3.2 are correct for SLD-trees of 

depth = n ::;; n-1 , we have that 

• n = depth(T(SG 9V 0)) ==> proposition 3.1 holds for SG and V = V O . 
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• n = depth(T(G SV 0)) ~ proposition 3.2 holds for G and V = V O . 

The correctness of proposition 3.1 for trees of depth n has to be established 

first ! This is due to the fact that it is enough to assume that proposition 3.2 holds 
for SI.D-trees of depth (n-1) in this case . lt is so because, when an incarnation of 

ESG uses an incarnation of EG, this latest concems a subpart of T(SG E>V 0) and the 

root of this subpart is a descendent of the root node of T(SG E>V 0). 

Now, if proposition 3.1 holds for SLD-trees of depth n , we can prove that 

proposition 3.2 also holds for such SLD-trees because when an incarnation of EG 

uses an incarnation of ESG, it is for the first subgoal of the goal. So, the incarnation 

of ESG is concemed with T(SG E>V 0) . But, this tree is the restriction of the first 

subgoal stump of T(G E>V 0) and therefore, its depth is S n ! 

3.5 PROOF OF PROPOSITION 2.3 (Equivalence): 

The beginning of the execution of EQ consists of the following 
instructions : 

V:= REFERENCE_ACV(~ G); 
{l} 

EO := create( EG( G , V ) ) ; 
{2} 

In {1}, we have that V= v O which covers Gand ev O = E. 

In {2}, we can deduce from proposition 3.2 that 

• the j th ( 1 S j Sm ) execution of EO ends with 

v = v0 ej, 

f ai/ure = f alse and 
the incarnation EO still alive. 

• the (m+l)th execution of EO ends with 
failure = true , 

eut = f alse and 

the incarnation EO destroyed . 
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After creation, the first execution of EO takes place . 

Ifm = 0: 

this execution of EO ends with failure = true , so, the execution of EQ 
prints "no" and ends immediately . 

If m ~ 1: 

this execution of EO ends with V = v O 81 , failure = false and the 

incarnation EO still alive . So, the execution of EQ continues by printing 
V. But we have, when Vis printed, that 

- ev0 = e. (a) 

- V O covers G . (b) 

81 is a CAS for P u { t- G ev 0} and thus a substitution for 

variables appearing in G. (c) 

From these assertions, we can deduce that 

ev = «ev0 e1»v0 

= <01>Vo 

= 01 

( by proposition 2.2 ) 

( by a and proposition 2.1) 

( by a, b and c ) 

After the printing , the execution of EQ jumps to the point labelled 
next CAS . 

Now, assuming that proposition 2.3 is correct up to the (j- l)th CAS of S 

( 1 < j < m ) and that after printing the (j-l)th ACV, the execution of EQ 
jumps at the point labelled next _ CAS and also that the last execution of EO 

was the (j-l)th, we can prove that proposition 2.3 is also correct up to the jth 

CAS of S. 

The execution of EQ passing at the point labelled next _ CAS performs the 

jth execution of EO . 
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If j = m+l : 

this execution of EO ends with /ai/ure = truc , so, the execution of EQ 
prints "no" and ends immediately. 

If jSm: 

this execution of EO ends with V = V O 0j , /ai/ure = false and the 

incarnation EO still alive . So, the execution of EQ continues by printing 
V. But we have, when Vis printed, that 

- 9Vo = E. (a) 

- V O covers G . (b) 

0j is a CAS for P u { ~ G SV 0} and thus a substitution for 

variables appearing in G . (c) 

From these assertions, we can deduce that 

ev = « ev0 etvo 

= <0fVo 

= ej 

( by proposition 2.2 ) 

( by a and proposition 2.1) 

( by a, b and c ) 

After the printing , the execution of EQ jumps to the point labelled 
next CAS. 

The last execution of EO was also the jth one. 

So, we have proved the equivalence of our expression of the procedural 
semantics and the usual one based on SLD-trees when dealing with finite SLD
trees where no eut appears. 
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4. 1 INTRODUCTION : 

In chapter 3, the proof of the equivalence uses the induction principle on the 
depth of SLD-trees. Therefore, this proof cannot hold for infinite SLD-trees. In 

this part of the work, we show how to deal with them. 

In this case, the PROLOG-sequence of CAS, denoted S in proposition 2.3 
(equivalence), contains all the CAS whose success branches are located more 
at left in the SLD-tree than the leftmost infinite branch. It is clear that this 
sequence can be finite or infinite ! If it is finite, it means that the search, after 
having found the last CAS, goes desperately seeking for another one along the 
infinite branch . 

The proof of proposition 2.3 for finite SLD-trees shows that the algorithm EQ 
relies completely on the algorithm EG. In the case of infmite SLD-trees, we can 
take over the same reasoning, provided we can assert the following proposition 
(derived from proposition 3.2) about the algorithm EG . 

4. 1. 1 Proposition 4. 1 : 

Proposition : 

let P be the program contained in CX 
let G be a goal 
let V O be an ACV covering G 

let S be the sequence of answer substitutions for Pu {f- G E>V0} 

let T(G eV 
0

) contain at least one infinite branch 

let EO be an incarnation of the algorithm EG created with parameters 
Gand V= Vo 
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if S is a finite sequence of m CAS, 01, ... , 8m , then 

• the jth execution of EO ( 1 ~ i ~ m ) ends with 

v = v0 0j, 

failure = false and 
the incarnation EO still alive . 

• the (m+ 1 )th execution of EO never ends . 

if Sis an infinite sequence of CAS, 01, 02, 03, ... , then 

• the jth execution of EO ( j > 0 ) ends with 

v = v0 ej, 
failure = false and 
the incarnation EO still alive . 

To prove this proposition, we need some new concepts that are presented in 
the next section. Then, two propositions about these concepts are presented before 
we focus on the proof for SLD-trees containing one and only one infinite branch 
because it is far more easier to understand than the proof for any infinite SLD
tree ! Finally, we show how to deal with SLD-trees containing more than one 
infinite branch. 

4.2 SUBGOAL SUBTREES (SS), SUBGOAL RESTRICTED 
SUBTREES (SRS) : 

In this section, we assume that 

- P is a program. 

- G = SG1 , ... , SGn (n:::: 1) is a goal of n subgoals. 

We divide T(G) into specific subparts which receive the generic denomination 
of Subgoal Subtrees ( SS ). These subparts are composed of a subset of the nodes 
of T(G) and a subset of its branches. Ail the subparts we consider have the 
following characteristics : 
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• they are trees . 

• if a subpart contains a node a which belongs to T(G) (where be bas 

descendents) then it contains either ail the descendents of a appearing 
in T(G), or none of them. 

We can immediately see the similarity with the concept of stump (see section 
3.3.1). This is normal, because these subdivisions of an SLD-tree are defined by 
using this concept. 

We distinguish the SS of the first degree (SSl), of the second degree (SS2), ... 

We begin to define the SSl. 

4.2.1 SS1: 

If G is composed of n subgoals, there can be n classes, n levels of SS 1 x ! 

At the fi.rst level, there is only one First Subgoal Subtree of degree 1 for T(G), 
lSSl(G), it is in fact the first subgoal stump of T(G) : T*(G). Corresponding to 
this lSSl, we have a First Subgoal Restricted Subtree of degree 1 for T(G), 
lSRSl(G), which is the restriction of the first subgoal stump. 

The complement C of the lSRSl(G) is the expression to add to its root in order 
to get the root of the corresponding lSSl(G). Here, we have C = SG2 , ... , SGn . 

To complete a lSRSl(G) is to perform the treatment that pennits to get the 
lSSl(G) from the lSRSl(G) and its complement (see section 3.3.1). 

From section 3.3.1 , we know that we can get T(G) simply by adding 
prolongations to the nodes of its lSSl corresponding to success nodes of the 
lSRSl(G). These terminal nodes of the lSSl are called the grafting nodes of the 
lSSl(G). 

Each prolongation bas a root of the form 

~ce 
or 

where 8 is the CAS defined by the success branch of the lSRSl(G) ending at the 
success node corresponding to the grafting node, of the lSSl(G), on which the 
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prolongation is fastened . This substitution is called a First Subgoal Grafting 
Substitution of degree 1 for T(G), lSGSl(G). Each prolongation is called a First 
Subgoal Prolongation of degree 1 for T(G), lSPl(G) . 

Now, we can recursively define the ith level : lh Subgoal Subtrees of degree 1 for 

T(G) ( iSSl(G) ), lh Subgoal Restricted Subtrees of degree 1 for T(G) ( iSRSl(G) 

), lh Subgoal Grafting Substitutions of degree 1 for T(G) ( iSGSl(G) ) and lh 
subgoal Prolongations of degree 1 for T(G) ( iSPl(G) ) with 2 ~ i ~ n. 

An iSSl(G) is the first subgoal stump of an (i-l)SPl(G) and the 
corresponding iSRSl(G) is the restriction of this first subgoal stump. So, an 

iSRSl(G) is a SLD-tree for P u { ~ SGi cr } where cr is the (i-l)SGSl(G) 

corresponding to the grafting node on which the (i-l)SPl(G) is fastened. The 
complement of an iSRSl(G) has the form 

( SG(i+l), ... , SGn) cr 

Equivalently, we have that an iSSl(G) is the lSSl((SGi, . .. ,SGn) cr ) of an (i

l)SPl(G) and an iSRSl(G) is the lSRSl((SGi, . .. ,SGn) cr) of an (i-l)SPl(G). 

An iSPl(G) is a lSPl((SGi••··•SGn) cr ) of an (i-l)SPl(G). Each iSPl(G) is a 

SLD-tree for Pu { ~ (SG(i+l) , ... , SGn ) cr y} where cr is the (i-l)SGSl(G) 

corresponding to the •grafting node the (i-l)SPl(G) , containing the iSPl(G), is 

fastened on and y is the CAS defined by the success node of the iSRSl(G) 
corresponding to the grafting node, of the iSSl(G), the iSPl(G) is fastened on. 

cry is an iSGSl(G) ; it is in fact the composition of the unification substitutions 
defined along the branch going from the root of T(G) to a grafting point of the 
iSSl(G). 

Note that , by convention, we say T(G) is the OSPl(G). When no ambiguity is 
possible, we drop the subscripts and simply speak of iSSl , iSRSl, iSGSl and iSPl ! 

4.2.2 Graphlcal representation : 

The graphical representation of the concepts we present in the previous 
subsection is an "inductive" application of what we explain in section 3.3.1 . 
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Figure 4.1 provides the sketches for T(G) and its subdivision in lSSl, lSPl 
,2SS 1 and 2SP1. It is easy to imagine the following subdivisions into higher levels 
SSl and SPl,. 

A ... 1SS1 

2SS1 

~G 

A 0SP1 

A 
A 

Figure 4.1 

1SP1 

2SP1 
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Example: 

Consider the goal clause (p(_x,b) , r(_x,b) , t(_x,b)) with the following 
program 

p(_x,_z) :- q(_x,_y), q(_y,_z). 
p(_x,_x). q(a,b). 
r(_ x,_y) :- s(_ x,_y). 
s(a,b). 
t(a,b). 

Here is the resulting SLD-tree where l SSl, lSPl, 2SS1 and 2SP1 are 
shown: 

+- p(b,b),r(a,b),t(a,b) 

q(b,_y4) ,p(_y4,b) ,r(a,b) ,t(a,b) 

+- t a,b 

Figure 4.2 
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But we need some more conventions for reprseentation of SS and SP with infinite 
branches! These are illustrated in figure 4.3 . 

infinite SP infinite SS 

Figure 4.3 

Note however that we do not represent the SS which are composed only of their 
rootnode ! 

4.2.3 SSj: 

Now, we turn to the definition of the jth degree SS and SRS. Formally, this 

should be recursive, defining jth degree SS and SRS from the (j-l)th degree SRS. 
However, for simplicity , we do not provide here a formally accurate and general 
definition ; in fact, it is enough to have a good idea of the mechanism and we think 

a way to achieve this is to show how to define the second degree SS and SRS, 

starting from SRS 1. 

Note: we do not define prolongations and grafting substitutions of a 
degree superior to 1 ! 

If we consider an iSRS 1, it bas the fonn gi ven at the following figure : 

~ SG. 'Y· 
1 1 

~G·.e·. 
J J 

~ 
Figure 4.4 

page88 



Chapter4 Equivalence for lnfinlte SLO-trees wlthout culs 

Where O'j is the body of the jth descendent input clause and 8'j a MOU of the 

head of this input clause and SOi 'Yi . 

Let O'j = SO' l, ... , SO'p . 

T(O'j 8'j) can be subdivised into first degree subparts. The SRSl for T(O'j 

8'j) are SRS2 for T(O). But a SSl for T(O'j 8'j) is NOT a SS2 for T(O). 

Consider a kSRSl for T(O'j 8'/ it is the SLD-tree for Pu {t- SO'k y'k} 

where y'k is the (k-l)S0S1 for T(O'j 8'j) associated to the grafting node which 

corresponds to the root node of the kSSl for T(O'j 8'j) whose restriction is the 
kSRS 1 at hand. 

We know that the complement for the iSRSl for T(O) has the form 

( SO(i+l), ... , SOn) 'Yi = C 

and that the complement of the kSRSl for T(O'j 'j) has the form 

If we complete with C' the kSRSl for T(O'j 8'j), we get the corresponding 

kSSl for T(O'j 8'j) which is a subtree of T(O'j 8) and therefore a subtree of the 

iSRS 1 for T(O). From section 3.3.1 , we know that when we complete this iSRS 1 

with C, the expression that we add to the expression of the node t- O'j 8'j is 

C 0'j and the one to the expression of the grafting node corresponding to the root of 

thekSSl forT(O'j 8'j) is C 0'j y'k. 

So, if we complete the kSRSl for T(O'j 0'j), which is a kSRS2 for T(O), with 

the expression (C' , C 8'j y'k) , we get a subtree of T(O) and it is this subtree 

which is a kSS2 for T(O) ! The expression (C' , C 8'j y' k) is called the second 

degree complement of the kSRS2 while C' is the first degree complement. 

Using the same reasoning , it is possible to define SSj and SRSj from SRS.1 
of SRS(j-1) . To get an SSj from its corresponding SRSj, we must complete this 
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last one with a jth degree complement which can be obtained from the first degree 

complement of SRSj and a proper instance of the (j-l)th degree complement of the 
SRS(j-1) . 

Example: 

We can take over the example already treated in figure 4.2 . Figure 4.5 
shows one of the lSSl subdivised into 1SS2 and 1SP2 .. 

t- pLx,b),rLx,b),tLx,b) 

t- qLx,_y),PlY,b),rLx,b),tLx,b) t- r(b,b),t(b,b) 

q(b,_y4),plY4,b),r(a,b),t{a,b) 

Figure 4.5 
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4.2.4 Proposition 4.2 : 

Proposition : 

let P be a program 
let G be a goal 

if T(G) is infinite , each infinite branch reaches at least one infinite 
SS1 (T(G)) (this means it passes by the root of the SS). If it reaches 
many infinite SS1 (T(G)), only one of them includes the rest of the 
infinite branch, starting at its root. 

Proof: 

For each infinite branch, we have that if there is no such SSl(f(G)), 
it is impossible for the branch to be infinite because the number of 
subgoals in a goal is finite and therefore, we cannot have an infinity of 
SSl(T(G)) levels! 

lt is also clear that there can only be one such SSl(T(G)) because the 
SS 1 (T(G)) are disjoint. 

4.2.5 Proposition 4.3 : 

Proposition : 

let P be a program 
let G be a goal 

if T(G) is infinite and if B is an infinite branch of T(G), the sequence 
of infinite SS reached by B and such that each of them contains 
the rest of B starting at its root is an infinite sequence. Moreover, 

the jth infinite SS of the sequence is of degree j for T(G). 

Proof: 

By propos1t.1on 4.2, we know B reaches only one infinite SSl(T(G)) 
and which includes the rest of B, starting at its root It is also the first 
infini te SS it crosses because SS of higher degrees are included in SS 1 and 
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can not be reached yet ! 

Now, assuming B reaches a /h infinite SS which includes the rest of B 

starting at its root and which is of degree j, does it reach a (j+ t)th such SS of 
degree (j+l)? 

We denote S this /h SS and RS its restriction ! 

S has the forrn given at figure 4.6, where C denotes the jth degree 
complement of RS and B' the rest of B , starting at the root of S. 

~sG,C 

~ ( G'. , C) 0'. 
1 1 

1--··- B' 

Figure 4.6 

RS has the forrn given in figure 4. 7, where RB' denotes the branch which 
becomes B', without its first arc, when we complete RS. 

~sG 

~ G'. e·. 
1 1 

.................. RB' 

Figure 4.7 
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ln T(G\ 0' i), the SLD-tree for P u { +- G\ 0\}, RB' is an infinite 

branch. From proposition 4.2, we know RB' reaches only one infinite 

SSl(T(G\ 0\)) which includes the rest of RB', starting at its root It is also 

the first infinite SS, for T(G' i 0' i), it crosses because SS of higher degree for 

T(G' i 0' i) are included in SS 1 (T(G' i 0' i)) and can not be reached yet ! 

We can associate a SS(j+l) for T(G) to the restriction of this SSl for 

T(G' i 0' i) and it is clear that this SS(j+ 1) is the next one of the sequence of 

infmite SS for T(G) reached by B and such that each SS of the sequence 
includes the rest of B, starting at its root . 

4.3 STRUCTURE OF THE PROOF: 

We begin to prove proposition 4.1 for SLD-trees containing one and only one 
infmite branch. The reason is that it is far more easier to understand ! For SLD-trees 
containing more tllan one infinite branch, we only suggest tlle reasonings. 

In the case of SLD-trees with only one infinite branch, we first show three 
lemmas. Lemma 4.1 assert that for an incarnation of the algorithm EG created witll 

parameters G and V = V O (such tllat T(G 0V 0) contains one infmite branch) , there 

will be a succession of executions of this incarnation before an execution creates an 
incarnation of the algorithm ESG whose aim is to provide the CAS of the first infinite 
SS reached by tlle infmite branch (by proposition 4.3, this SS is of degree 1 )and which 

contains the rest of tlle infinite branch, starting at its root. The jth execution of this 

succession ends witll V = V O ej , ej being tlle jth CAS for P u { +- G 9V 0} such 

that its corresponding succes branch is more at left tllat any branch passing by tlle 
root of the first infinite SS reached by the infinite branch. 

This first lemma corresponds in fact to the minimal case of lemma 4.3 which 

claims the same thing but for the kth ( k ~ 1 ) infmite SS reached by the infinite 
branch. But in order to prove lemma 4.3, the general case of tlle induction we make on 
k requires another lemma (lemma 4.2). In lemma 4.2, we show that if lemma 4.3 is 
correct up to (k-1), for an incarnation of algoritllm ESG created with parameters SG 
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and V = v O (such that T(SG ev 0) contains one infinite branch), there will be a 

succession of executions of this incarnation before an cxecution creates an 

incarnation of the algorithm ESG whose aim is to provide the CAS of the kth infinite 
SS reached by the infinite branch (by proposition 4.3, this SS is of degree k)and which 

contains the rest of the infinite branch, starting at its root. The jth execution of this 

succession ends with V = V O 0j , 0j being the jth CAS for P u { ~ SG SV ol such 

that its corresponding succes branch is more at left that any branch passing by the 

root of the kth infinite SS reached by the infinite branch. 

The proof for proposition 4.1 simply uses lemma 4.3 and proposition 4.3 . 

4.4 PROOF FOR SLD-TREES CONTAINING ONE AND ONLY 
ONE INFINITE BRANCH: 

4.4. 1 Lemma 4. 1 : 

Lemma: 

let P be the progam contained in CX 

let G = SG1 , ... , SGn be a goal (n ~ 1) 
let V O be an ACV covering G 

let EO be an incarnation of algorithm EG created with parameters G 
and V= v0 

assume that 

- T(G eV 0) contains one and only one infinite branch, B . 

- s•, a kSS1 (T(G ev 0)), is the first SS of the sequence of infinite 

SS reached by B and such that each of these SS includes the 
rest of B, starting at its root. 

- s· is the 1 SS1 for R which is thus a (k-1 )SP1 for T(G SVo)-

- the root of Ris ~(SGk, ... , SGn) SV0 Îk-1 , 'Yk-1 being the 
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(k-1 )SGS1 corresponding to the node on which Ris fastened. 

- S is the restriction of S* and is therefore a kSRS1 which is the 

SLD-tree for P u { f- SGk SV o 'Yk-1} . 

if e1 , .. . , ep (p ~ O) is the sequence of answer substitutions 

defined by success branches located more at left than any branch 
passing by the root of S*, then 

• the jth execution of EO ( 1 s j s p ) ends with 

v = v0 ej, 
failure = false and 
the incarnation EO still alive. 

• du ring the (p+ 1 )th execution of EO, a first execution of an 

incarnation 11 of EG, created with (SGk, ... , SGn) and V= v 0 

Proof: 

yk_1 occurs. During this first execution, an incarnation 12 of the 

algorithm ESG is created with SGk and V = V O yk_ 1 and then, 

this execution of 11 passes at the point labelled next_SG_CAS. 

We use induction on k . 

Case 1: k = 1 

This means S* is the lSSl(T(G E>V0)) and R is the OSSl(T(G 0V0)) 

which is T(G SV 0) itself. So, we can deduce that p = 0 ! It is clear that the 

incarnation Il is in fact EO and that during the first execution of EO an 
incarnation 12 is created with SGk and V = V 0. This provides the thesis 

because 'Yo = E 

page95 



Chapter4 

• 

Case 2: k > 1 , assuming it is true up to (k-1) 

Sketch of T(G E>V o) : 

Figure 4.8 

Equivalence for lnfinlte SLD-trees without culs 

B 

lSSl 

lSPl 

We know that the lSSl is finite ( T(SG1 ev 0) is fmite ). We denote 

a 1, ... , am the terminal nodes, of this lSSl, which correspond to success 

nodes of the restriction 1 SRS 1 . We denote the corresponding CAS O' 1, .. . , 

am. These CAS are lSGSl ! 

Now, we can assume that 81 , ... , 8pl ( 0 ~ pl ~ p) is the sequence of 

answer substitutions such that for each of them, the respective success 

branch passes by one of the nodes a 1 , ... , ai-l and that 8pl+l , ... , 

8pl+p2 ( 0 ~ p2 ~ p-pl ) is the sequence of answer substitutions passing by 

the node ai but still more at left than any branch passing by the root node of 
S*. 

We also have that the lSPl grafted to one of the first (i-1) grafting 
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nodes ( cx1, ... , cxi-l ) of the lSSl are finite SLD-trees. It is clear that the 

lSPl grafted to the ith grafting node of the l SSl is the SLD-tree for P u 
{ t- (SG2 , ... , SGn) ev O cri} and it contains an infini te branch B' which 

corresponds to the rest of B, starting at its root node. But in this SLD-tree , 
the first SS crossed by B' is a (k-l)SSl with respect to (SG2 , ... , SGn) 

0Vo cri (1). 

Considering these remarks, we can use lemma 3.5 up to (i-1) to deduce 
that 

• the j th execution of EO ( 1 ~ j ~ pl ) ends with 

v = v0 ej, 
failure = f alse and 
the incarnation EO still alive. 

• the (pl+t)th execution of EO passes at the point labelled 

ne.xt SG CAS and the last execution of the incarnation El wil the ith 

one. 

But the incarnation El bas been created with SG1 and V = v 0. So, by 

proposition 3.1, the ith execution that takes place at the point labelled 
ne.xt SG CAS ends with 

V= Vo cri' 

f ai/ure = f alse and 
the incarnation El still alive. 

So, the execution continues by creating an incarnation E2 of the algorithm 

EG with (SG2 , ... , SGn) and V = V O cri . But for this incarnation, lemma 

4.1 is correct ( due to (1) ). Thus, it suffices to take over the same 
reasoning than for lemma 3.4 but using the induction hypothesis over 
lemma 4.1 rather than the assumption of correctness of proposition 3.2 for 
goals containing less than n subgoals in order to get the thesis ! 
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4.4.2 Lemma 4.2 : 

Lemma: 

let P be the program contained in CX 
let SG be a subgoal 
let V O be an ACV covering SG 

let EO be an incarnation of algorithm ESG created with parameters 
SG and V= Vo 

assume that 

- T(SG ev 0) contains one infinite branch B. 

- S* is the kth infinite SS, reached by B, which includes the rest of 
B, starting at its root node . 

- S, the restriction of S*, is the SLD-tree for Pu{~ SG' y}. 

- lemma 4.3 is true up to the (k-1 )th infinite SS reached by an 
infinite branch and such that it includes the rest of this infinite 
bran ch, starti ng at its root. 

if 01 , ... , ep (p ~ 0) is the sequence of answer substitutions for P 

u {~ SG evO} such that each of them is defined by a success 

branch located more at left than any branch passing by the root 
node of S* , then 

• the jth execution of EO ( 1 ~ j ~ p ) ends with 

v = v0 ej, 
failure = taise and 
the incarnation EO still alive. 

• du ring the (p+ 1 )th execution, an incarnation 11 of ESG is 

created with SG' and V= V 1 such that ev 1 = y. 
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Proof: 

We suppose that T(SG ev 0) has the form : 

............................ B' 

Figure 4.9 

Where Gil is the body of the il th descendent input clause, 8' il a MGU 

of the head of this input clause and SG ev 0, and B' is the rest of B, starting 

at the node ~ Gil 8' il . 

From the definitions of SS, we can deduce that the SRSl(T(Gil 8'il)) are 

SRS2(T(SG SV 0) ). Following this reasoning, it is easy to see that 

SRSg(T(Gil 8' il)) are SRS(g+l)(T(SG E>V 0)) ! So, to the SS(k-l)(T(Gil 

8'i1)), it corresponds a SSk(T(SG E>V0)) whlch can be obtained when we 

complete T(Gil 8' il) with C 8' il where C is the first degree complement of 

the lSRSl(T(SG SV 0)). But we can see that the lSRSl(T(SG E>V 0)) is in 

fact also the lSSl(T(SG E>V 0)) itself, so we have that C is the empty 

expression. 

The first infinite SS reached by B and such that it includes the rest of B, 

starting at its root, is the 1 SS 1 (T(SG SV 0)). As B' is the rest of B starting 

at node ~ Gil 8' il , we have that the (k-l)th infinite SS for T(Gil 8' il) 
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reached by B' and such that it includes the rest of B ', starting at its root 

node, is a SS(k-l)(f(Gil 0'il)) (proposition 4.3). This SS(k-l)(f(Gil 

0' il) is therefore equivalent to the kth infinite SS, reached by B, which 

includes the rest of B, starting at its root node. We have that the 

corresponding SRS(k-l)(T(Gil 0' il) is the SLD-tree for Pu { +- SG' y}. 

As theSLD-treesforPu{+-G1 0' 1}, ... ,Pu{+-G(il-1)0'(il-l)} 

are finite, we canuse lemma 3.3 and deduce that if 01 , ... , 0pl ( 0 S pl S p) 

is the sequence of answer substitutions for P u { +- SG ev 0} such that 

ej ( 1 S j S pl ) is defined by a success branch passing by one of the nodes 

+- G1 0' 1 , ... , +- G(il-l) 0' (il-l), then 

• the jth ( 1 Sj S pl) execution ofEO ends with 

v = v0 ej, 

• 

/ai/ure = f alse and 
the incarnation EO still alive. 

the (p+l)th execution 
next clause with i = il . 

of EO passes at the point labelled 

Now, this means that we have p2 ( 0 S p2 S p-pl ) CAS e(pl+l)• 

0 (p 1 +p2) for P u { +- SG 0V ol which form the sequence of CAS 

defined by success branches which passes by the node +- Oil 0' il but are 

sti.11 located more at left than any branch passing by the root of S* ! 

So, given the hereabove remarks, by using, in place of proposition 

3.2, lemma 4.3 for the (k-l)th SS, reached by B', which includes the rest 
of B' starting at its root, we can proceed to the same reasoning than for 
lemma 3.2 in order to deduce that 

• the jth execution of EO ( pl+l Sj S p) ends with 

v = v0 ej, 

/ai/ure = f alse and 
the incarnation EO still alive. 
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• during the (p+l)th execution, an incarnation Il of ESG is created 

with SG' and V = V l such that 9V 1 = y . 

4.4.3 Lemma 4.3 : 

Lemma: 

let P be the program contained in CX 

let G = SG1 , ... , SGn be a goal ( n ~ 1 ) 

let V O be an ACV covering G 

let EO be an incarnation of algorithm EG created with parameters G 
and V= vO 

assume that 

- T(G ev 0) contains one infinite branch B. 

- s• is the kth ( k ~ 1 )infinite SS, reached by B, which includes the 
rest of B, starting at its root node. 

- S, the restriction of s•, is the SLD-tree for Pu{~ SG' y}. 

If 01 , ... , 8P is the sequence of answer substitutions for P u {~ 

G ev 0} such that each of them is defined by a success branch 

located more at left than any branch passing by the root node of s• , 
then 

• the jth execution of EO ( 1 ~ j ~ p ) ends with 

v = v0 ej, 
fai/ure = taise and 
the incarnation EO still alive . 

• du ring the (p+ 1 )th execution, an incarnation 11 of ESG is 

created with SG' and V= V 1 such that ev 1 = y. 
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Proof: 

We proceed by induction on k . 

Case 1: k = 1. 

S* is of degree 1 (proposition 4.3). In this situation, lemma 4.1 provides 
immediately the thesis . 

Case 2: k > 1 ifitis true up to (k-1). 

If the first infinite SS, reached by B, which includes the rest of B, starting at 

its root, is the lSSl(T(G SV 0)): 

Sketch of T(G ev 0) : 

Figure 4.10 

lSSl 

lSPl 

Ail the prolongations fastened on its grafting nodes are fmite SID
trees. So, with the same reasoning than for lemma 3.5 but using lemma 
4.2 in place of proposition 3.1, we can deduce the thesis. 

If the first infinite S~, reached by B, which includes the rest of B, starting at 

its root, is a gSSl(T(G ev 0)) ( g > 1 ) , assuming the proof for lemma 4.3 

has been given when the first infinite SS is a (g-l)SSl(T(G ev 0)): 
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Sketch of T(G SV o) : 

Figure 4.11 

Equivalence for lnfinite SLO-trees wlthout cuts 

........... ·--.......... B 

lSSl 

lSPl 

We know that the lSSl is fmite ( the SLD-tree for P u { ~ SG1 

ev 0} is finite ). We denote a 1 , ... , am the terminal nodes, of this 

lSSl, which correspond to success nodes of the restriction lSRSl . We 

denote the corresponding CAS o-1, ... , om. These CAS are lSGSl ! 

Now, we can assume that e 1 , ... , epl ( 0 S pl S p ) is the 

sequence of answer substitutions such that for each of them, the 

respective success branch passes by one of the nodes a 1 , ... , a(i-l) 

and that e(pl+l) , ... , e(pl+p2) ( 0 s p2 s p-pl ) is the sequence of 

answer substitutions passing by the node ai but still more at left than any 

branch passing by the root node of S*. 

We also have that the lSPl grafted to one of the fii-st (i-~l) grafting 
nodes of the lSSl are fmite SLD-trees. It is clear that the lSPl grafted 

to the ith grafting node of the lSSl is the SLD-tree for P u { ~ (SG2 , 

, SGn) ev O oi} and it contains an infinite branch B' which 

corresponds to the rest of B, starting at its root node. But in this SLD
tree, the first SS crossed by B' is a (k-l)SSl. 
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Given these remarks, we can use lemma 3.5 up to (i-1) to deduce 
that 

• the /h execution of EO ( 1 ~ j ~ p 1 ) ends with 

v = v0 ej, 
failure = f alse and 
the incarnation EO still alive . 

• the (pl+l)th execution of EO passes at the point labelled 
next SG CAS and the last execution of the incarnation El was the (i-

l)th one. 

But the incarnation El has been created with SG1 and V = v 0. So, by 

proposition 3.1, the ith execution that takes place at the point labelled 
next SG CAS ends with 

V= VO en, 
failure = f alse and 
the incarnation El still alive. 

So, the execution continues by creating an incarnation E2 of the 

algorithm EG with (SG2 , ... , SGn) and V = V O ai . But for this 

incarnation, lemma 4.1 is correct . Thus, it suffices to take over the 
same reasoning than for lemma 3.4 but using the induction hypothesis 
over lemma 4.3 rather than the assumption of correctness of proposition 
3.2 for goals containing less than n subgoals in order to get the thesis ! 

4.4.4 Proof of proposition 4. 1: 

It cornes straighûorward from lemma 4.3 and proposition 4.3 . There is 
an infinity of infinite SS reached by the infinite branch and lemma 4.3 is true for 
any value of k . 
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4.5 SLD-TREES WITH MANY INFINITE BRANCHES : 

We do not provide a full proof for these SLD-trees. The reason is that it would be 
very long and a little bit tedious and we think it is convincing enough to underline 
the main points of the reasoning. 

If the number of infinite branches is finite, it could proceed by induction over 
the number of infinite branches ! The reasoning should be quite the same than for 
SLD-trees with one infinite branch but centering on the leftmost infinite branch. 
However attention must be focused on a specific situation which is illustrated 
hereafter in the case of the proof for an SLD-tree with 2 infinite branches. 

The problem is when the leftmost infinite branch B reaches a SS, S*, which is 
infinite but which does not include the rest of B, starting at its root ! 

Schematization of the restriction of S* : 

+- SG' i 

1 8'nb_cl 

........................... 8' 

figure 4.12 

Where Gil is the body of the ilth descendent input clause, 0' il a MGU of SG' y' 

and the head of this input clause , and B' is an infinite branch of T(Gil 8 ' il) which 

corresponds to the rest of the second infinite branch when the restriction is 
completed. 

In this situation, we have that the leftmost infmite branch and the other 
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infinite branch follow the same way until the root node of S*. So, it means that the 
section, of the leftmost infinite branch, which is included in S* corresponds to a 
success branch of its restriction. 

But, the restriction of S* contains only one infinite branch; so, when a such SS is 
encountered by the leftmost infinite branch, the use of proposition 3.1 must be 

replaced by the use of the induction hypothesis . 

If there is an infinity of infinite branches, the reasoning should probably be based 
on the transfinites. 
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The last thing we must prove is that our algorithms treat the cuts ( ! ) in a right 
way ! 

Remember the eut is a widely used control facility of PROLOG. It is an extra
logical primitive having side-effects which can be described in terms of pruning in the 
SLD-tree. The next section recalls how this pruning occurs. 

Then, we provide two propositions about algorithm ESG before we present how 
to fit the proof of equivalence for finite SLD-trees in order to take the eut into 
account. Finally, we turn to the problem of infini te SLD-trees. 

5.2 SIDE-EFFECTS OF CUT: 

If we ignore these side-effects, we can see the eut as a 0-ary predicate defined 
by the following fact : 

!. 

This means that it always succeeds one and only one time or in other words, 

the SLD-tree for Pu { ~ !} contains one and only one CAS, CAS which in fact is 

the empty substitution E . So, under this hypothesis, if GC is a goal obtained from a 
goal G simply by introducing cut(s) between some of the subgoals of G, we have that 

T(G) and T(GC) are different but their sequence of CAS are the same because E is 
a left and right idendity for substitution composition. 

But, due to the side-effects of cuts, the PROLOG-sequence can become 
different . We can imagine that the PROLOG sequence is still a depth first search 
sequence of CAS but of a cutted SW-tree which is the SLD-tree where the pruning 
effects of cuts have been shown by deleting some of its parts. 
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To explain the pruning defined by a eut, we assume that there is a mechanism 
which permits us to uniquely name each eut. This can be done in rnuch the same way 
than standardization of variables as it is explained in [Lloyd 84] : each eut is 
subscripted so that it becomes different from an other cuts of the clause where it 
appears but also frorn an other cuts already encountered in the derivation process. 

Now, given a eut, we consider the node where it appears in the first place of the 
sequence of subgoals, the node where it appears for the first tirne and the parent 
node (if it exists) of this last one. 

When the first node where the eut appears in the SLD-tree is the root (this node 
having no parent), the pruned part of the tree is composed of ail the branches located 
more at right than the ones passing by the node where the eut appears in the first 
place of the sequence of subgoals. 

When the first node where the eut appears is not the root, this node has a parent 

node that we call ex . The pruned part consists of an the ends of branches, starting at 

ex, and which are located more at right than the ends of branch, also starting at ex 
but passing by the node where the eut appears in the first place of the sequence of 
subgoals. 

To clarify this, consider the following program fragment tak:en from [Lloyd 84]: 

A :-B, C. 

B :- D, ! , E. 

D. 

where A, B, C , D and E are atoms. 

Part of the SLD-tree for the goal clause"?- A." is shown in the next figure: 
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(-A 

~ pruned part 

······ 
(-8, C 

Figure 5.1 

Note that if we eonsider the pruning for every eut appearing in the SLD-tree, it 
ean happen that we get overlapping effects. This means that a eut implies the pruning 
of a part which is contained in a part pruned by another eut ! 
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5.3 TWO PROPOSITIONS ABOUT ALGORITHM ESG : 

5.3. 1 Proposition 5. 1 : 

Proposition : 

let P be a program contained in the context CX 
let Vo be an ACV 

let EO be an incarnation of algorithm ESG created with parameters 
SG = ! and V = V O 

• the first execution of EO ends with 

V=VoE =Vo, 

failure = false , 
eut = true and 
the incarnation EO still alive. 

• the second execution of EO ends with 
failure = true , 
eut= true and 
the incarnation EO destroyed . 

Proof: 

It cornes immediately from a symbolic execution of the algorithm ESG . 

5.3.2 Proposition 5.2 : 

Proposition : 

any execution of an incarnation of the algorithm ESG that has 
been created with a subgoal different of the eut ends with eut = 

false. 
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Proof: 

Let us begin by recalling the algorithm ESG when the subgoal is not the 
eut, showing the possible exit points of an execution : 

if SG instance * " !" then 
begin 

goto @ entry _pt ; 

prem: i := 1; 

next clause : if i > nb cl then begin 

end; 

failure := truc ; 

eut := f alse ; 

F@elHtkdifüt@I 

CL' := STANDARDIZATION( CLi, Vrem); 

{ CL' = head(s ' i 1 , ... , s ' in> :- G' i } 

8 : = MGU( CL' , SG_instance , Vrem); 

Vnew := REFERENCE_ ACV( CL' 8 ) ; 

El := create( EG( G' i 8 , Vnew ) ) ; 

next_ CAS : execute( El ) ; 
if failure then begin 

end 

if eut then begin 

eut := false ; 

1::;$.~$.:p~);i@tîl 

end 

else begin 

end; 

V := Vrem 8 E>Vnew; 
eut := f alse ; 

i := i + 1 ; 

goto next_ clause 

end 
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As all the exit points are preceeded by the instruction 

eut:= false 

we immediately get the thesis ! 

5.4 FIN/TE SLD-TREES : 

Cuts 

We can keep most of the proof that has been developped in chapter 3. We 
consider in this section the needed adaptations for propositions, lemmas and their 
proofs ! We also add a new proposition (proposition 5.3) . 

When we say that a eut (when it appears in the root node or, when it is not in 
the root, in one of the descendents of the root) stops the search of CAS, we mean 

that there is anode a , in the cutted SLD-tree, where this eut appears in first place of 
the list of subgoals. The pruning effects of this eut can be seen as a forced 
terrnination of the search for CAS within the branches located more at right than 

those passing by the sarne node a in the SLD-tree. 

5.4. 1 Adaptation of proposition 3.2 : 

The second part of the thesis must be changed ! It becomes : 

• if a eut appearing in G stops the search of CAS for P u {~ G 

ev0} 

then, the (m+ 1 )th execution of EO ends with 
failure = true , 
eut= true and 
the incarnation EO destroyed . 

else, the (m+ 1 )th execution of EO ends with 
failure = true , 
eut= false and 
the incarnation EO destroyed . 
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5.4.2 Adaptation of lemma 3.2 and of lts proof: 

Here also, the second part of the thesis must be splitted into two parts : 

• if a eut appearing for the first time in the i1 th descendent of ~sG 
ev O stops the search of CAS 

then, the (q+ 1 )th marginal execution of EO ends with 
failure = true , 
eut= false and 
the incarnation EO destroyed . 

else, the (q+ 1 )th marginal execution of EO passes at the 
point labelled nexLclause with i = i1 + 1 . 

In the proof, modifications must be brought to the second case, when we 
consider G' il is not the empty goal. Now, we use the hypothesis of correctness for 

the adapted proposition 3.2 . If a eut appearing for the first time in the il th 

descendent of ~ SG 0V 0, thus in ~ G' il Îil, stops the search of CAS, we know 

from the adapted proposition 3.2 that the (q+l)th execution of El ends with 
f ai/ure = true , 
eut = true and 
the incarnation EO destroyed . 

So, in this situation, a symbolic execution of the instructions coming after this 

(q+ 1 )th execution of El provides the thesis ! 

If no eut stops the search of CAS, the proof remains the same. 

5.4.3 Adaptation of lemma 3.3 and of its proof: 

The second part of the thesis is splitted into two parts : 

• if a eut appearing in one of the G'k ( 1 ~ k ~ ne ) stops the 
search for CAS 

then, the (p+ 1 )th execution of EO ends with 
failure = true , 
eut= false and 
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the incarnation EO destroyed . 

else, the (p+ 1 )th execution of EO passes at the point labelled 
next_clause with i =ne+ 1 . 

Case 1 of the proof remains the same provided we use the adaptation of 
lemma3.2 ! 

For case 2, if no eut stops the search for CAS, the proof given in chapter 3 is still 

valid. If a eut appearing in G' h ( 1 S h S nc-1 ) stops the search for CAS, it means 

that the PROLOG subsequence of CAS passing by one of the nodes +-- G' 1 y1 , ... , 

+-- G'h Îh• is in fact e 1, ... , ep due to the side-effects of the eut ( the 

branches passing by the descendents +-- G' (h+l) Î(h+ l ) , ... , +-- G'nb_cl Înb_cl 

are included in the pruned part ). Considering the ncth ( ne > h ) descendent of+-

SG ev O does not change anything because we know that the (p+l)th execution 

ends with 
f ail ure = true , 

eut = false and 
the incarnation EO destroyed . 

So, we get the thesis . 

Still for case 2, if the eut that stops the search of CAS appears in G' ne• we can 

say there can not be any eut appearing in one of the nodes +-- G ' 1 'Yt , ... , +-- G' (nc-l) 

Î(nc- l) which stops the eut. So, to get the thesis, it suffices to use the 

induction hypothesis and the adaptation of lemma 3.2 . 

5.4.4 Proposition 5.3 : 

Proposition : 

an execution of an incarnation EO of EG can not end with eut = true 
if no eut appears in the goal G received as parameter at creation. 

Proof: 

We proceed by induction on the nurnber of subgoals composing G. 
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Case 1 : 0 subgoal . 

A symbolic execution is enough. 

Case 2 : n ( n ~ 1 )subgoals assuming it is true for (n- 1) subgoals . 

As we have seen in proposition 5.2, eut is never true after an execution 
of an incarnation of ESG for a subgoal different from !, even if a eut 

appearing in one of the input clauses for SG SV O stops the search for CAS 

within the SLD-tree for P u { f- SG ev 0}. So, after execution of El (the 

incarnation of ESG created during the first execution of EO, with SG = first 
subgoal of G), if failure = true, a selfkill occurs and the execution of the 
incarnation EO ends with eut= false because SG, the first subgoal of G, is 
not the eut. This covers one of the three possible exit points ! 

The two other exit points corne in the tests following the execution 
of E2, an incarnation of EG created with G' which contains less than n 
subgoals . So, it never ends with eut = true because G' contains no eut It is 
clear that only one of these two exit points can be reached in this situation 
and that eut = f alse. 

5.4.5 Adaptation of lemma 3.4 and of lts proof: 

First, we must assume that the adapted proposition 3.3 holds for the algorithm 
EG when treating goals of less than n subgoals. 

Tuen, the third part of the thesis must be splitted into two subparts : 

• if a eut appearing in G' stops the search for CAS 

then, the (q+ 1 )th marginal execution of EO ends with 
failure = true , 
eut= true and 
the incarnation EO destroyed . 

else, the (q+ 1 )th marginal execution of EO passes at the 
point labelled next_SG_CAS and the incarnation E2 is 
destroyed. 
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The frame of the proof given in chapter 3 is still correct provided we use the 
hypothesis of correction over the adapted proposition 3.2 . However, when j = q+l, 

we must consider a new situation when the (q+t)th execution ofE2 ends with 
f ai/ure = true , 

eut = true and 

the incarnation E2 destroyed . 
When this occurs, a symbolic execution of the instructions following this last 
execution of E2 easily provides the thesis, due to the value of eut. 

5.4.6 Adaptation of lemma 3.5 and of lts proof: 

First, we must assume that the algorithm EG respects the adapted proposition 
3.2 for goals containing less that n subgoals. 

Tuen, the last part of the thesis must be splitted into two parts: 

Note: 

• if a eut appearing in G' stops the search for CAS 

then, the (q+ 1 )th execution of EO ends with 
failure = true , 
eut= true and 
the incarnation EO destroyed . 

else, the (q+ 1 )th execution of 
labelled next_SG_CAS and 

EO passes at the point 
the next execution of the 

incarnation E1 will be the (i+ 1 )th one . 

recall that we consider the PROLOO-sequence of success nodes of 

T(SG ev 0). Recall also that proposition 3.1 ta1k about the PROLOG-

sequence ! So, CAS for the first subgoal stump and which correspond 
to success nodes appearing in a pruned part of this stump are ignored 

by the incarnation, of ESG, El . If 8 is a such CAS, it means that the 

prolongation T(G' ev O 8 ) is never considered by algorithm EG. So , 

possible answer substitutions for P u { ~ G ev 0} corresponding to 

success branches ending in this prolongation are not considered. This 
is a correct behaviour in order to treat side-eff ects of cuts. 

In the proof, the first case remains the same, provided we use the adapted 

lemrna 3.4. 
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For the second case, the proof given in chapter 3 holds when no eut stops the 

search of CAS. If a eut stops the search of CAS for P u { +- G' SV 0 'Y il} ( 1 ~ 

il ~ p ), it means no such eut appears in the SLD-trees for P u { +- G' ev 0 y1} , 

.. . , Pu{+- G' ev0 'Y(il-l)}. So, if i ~ il, the proof of the second case is still 

valid when using the adapted propositions and lemmas. But if i > il, the PROWG 

subsequence of answer substitutions for P u { +- G SV 0} such that, for each of 

them, the corresponding success branch passes by one of the grafting nodes of the 
first subgoal stump is an empty subsequence (this is due to the pruning of the tree by 
the eut). Recall that these grafting nodes are the nodes of the first subgoal stump 

corresponding to the jth PROLOG success node of the restricted first subgoal 
stump . In this case, we can also say that for i = j 1, we already have that 

• the ith execution of EO ends with 

v = v0 ei, 
f ai/ure = f alse and 
the incarnation E0 still alive. 

• the (q+l)th execution of E0 ends with 
f ai/ure = true , 
eut = true and 
the incarnation E0 destroyed . 

These conclusions remains true for i > il because E0 is destroyed. 

5.4.7 Adaptation of the proof for adapted proposition 3.2: 

In fact the proof remains similar to the one developed in chapter 3 but it uses the 
adapted propositions and lemmas and a special case must be considered when the 
first subgoal is the eut and that no other eut has stopped the search . In this case, the 
(q+l)th execution of E0 must end with 

failure = true, 
eut = true and 
the incarnation E0 destroyed. 

It is easy to deduce that by using proposition 5.1 after adapted lemma 3.5 . 
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5.4.8 Adaptation needed for lifting clrcularlty : 

We only need to add new minimal cases : 

- depth( T( SG ev 0)) = 1 and SG = ! : 

this case is covered by proposition 5.1 . 

- clepth( T( G 8V o) ) = 1 and G = SG , G' with SG = ! and G' = () : 

this case is covered by the adaptation of lemrna 3.5 . 

5.4.9 Proof of equivalence : 

It does not need adaptations but we must use now the adapted lemmas and 
propositions ! 

5.5 INFINITE SLD-TREES : 

Proposition 4.1 can not hold anymore ! 

Why? 

Simply because the SLD-tree can be infinite but the sequence of answer 

substitutions finite and such that the (m+l)th execution of EO well ends because 
the infini te branch is in fact pruned by a eut ! 

So, the trick here is to use the same concepts and the same demonstrations 
but working on the cutted SLD-trees rather than on complete SLD-trees. This can 
work because we are in state to deduce from the previous section that our 
algorithms can compute the sequence of CAS for cutted SLD-trees when they are 

fmite ! 
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Now that we have proved the equivalence between our procedural 
semantics and the usual one, we quickly give some ideas over possible future 
works using the concepts we have introduced. 

In the next section, we examine the problem of the specification of logic 
procedures. The introduction of extra-logical features of PROLOG in our procedural 
semantics is briefly treated in section 6.3 before we tum to the question of the 
proof of correctness for PROLOG programs and the question of the occur check . 

6.2 TOWARDS THE DEFINITION OF A FRAME OF 
SPECIFICATION : 

The aim is not to provide a full discussion of this matter ; for a global study about 
specification, the reader should consult [Le Charlier 85]. We only see how some 
features of our procedural semantics can be used to specify accurately PROLOG 
procedures. The frame of specification that we introduce should facilitate reasoning 
when constructing and proving procedures. It is partly inspired from the work of 
Deville [Deville 87] which provides a good overview of the specification problem in 
logic programming. From our point of view, the changes we introduce to this frame 
allows to deal with a larger number of situations. However, we must admit that the 
logical aspects of a procedure fade. 

Recall that a PROLOG procedure p of arity n is a sequence of program 
clauses having the same principal functor p, with arity n, in the head of each of these 
clauses. 

Note: We do not pretend that the hereafter described frame of 
specification is the best there can be. We also think that it must not 
be perceived as a strait-jacket, this means it should be adapted if 

necessary ! 
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6.2. 1 Genersl form of a speclflcstlon : 

We imagine the following form : 

procedure_name(par 1 , ... , par n) 

Uses: 

<1> 

<i> Types 

<ffi> 

ln-directionnality 
Preconditions 
[Relation] 
Out-directionnality 
Postconditions 

Outlooks 

The specification is aimed to provide informations about an incarnation of 

algorithm ESG created with SG = procedure _narne(t1 , ... , tn) (where 1ï_ , 1 S i S n , 

is the ith argument) and V = v O . So, normally, we should speak in terms of 

executions of this incarnation but , by conventiion, we rather speak about executions 

of the subgoal SG SV O . This enables to be closer to the intuitive understanding. 

When we say that an execution of the subgoal succeeds (fails) , it rneans that the 
corresponding execution of the incarnation of ESG ends with /ai/ure = false (true). 

Bach successful execution ends with V = V O 0 , where 0 is a CAS for P u { ~ SG 

ev 0} (if P is the prograrn defined in the context CX). 

This general form allows the description of each of the m possible uses of the 
procedure. A possible use describes the effects of the execution(s) of the incarnation 
(of the subgoal) if some conditions hold at the creation of the incarnation of ESG 
(equivalently, just before the first execution of the subgoal ) . These conditions are 
described through the subdivisions types , in-directionnality and preconditions. Note 
that the possible uses must be mutually exclusive in order to avoid ambiguity. The 
effects of execution(s) are described through types , relation , out-directionnality and 
postconditions . 
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par 1 , . . . , par n are the parameters of the of the procedure. If we consider the 

subgoal SG ev O , we have that pari = ti ev . Thus, its value evolves in time as V 

evolves. Just before the first execution of the subgoal, we have pari = ti ev O . After a 

successful execution ending with V= v O 8 , pari= ti ev O 8 due to proposition 2.2 

and the fact that V O covers SG . In fact, par 1 , ... , par n can be seen as boxes which 

retain the value of the actual parameters . 

6.2.2 Types : 

This passage is greatly inspired from [Deville 87] ! 

The content of the Types subdivision has the following general form: 

let par 1 be a type1 

par 2 be a type2 

where typei is the name of a type , a type being a set of ground elements (eg : 

integers, lists, trees, ... ) . 

We now define the set type\ as the set of terms (ground or not ground) 

which have a ground instance belonging to typei. More formally, let T be a term, 

T e type\ <=> 3 8 : T 8 e typei 

Examples: 

2 e integer, 

[a,b] e list, 

_ x e integer*, 

[a 1 _x] e list*. 

(variables begin with an underscore) 

The type of parameters has actually two different meanings. First, if pari is not 
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a ground terrn (see section 6.2.3) just before the first execution , it gives 
inf orrnation on the type of that parameter after a successful execution of the subgoal : 

pari e type\ . Second, types are preconditions to parameters. Just before the first 

execution of the subgoal, there must exist a substitution y such that, pari y e 

type*i for at least one possible use . These preconditions are called types 

preconditions. 

If these preconditions are not fulfilled for at least one possible use, we adopt the 
convention that the effect of execution is undefined. Another convention could be 
that the execution fails. But this would imply explicit type checking in the 
irnplernentation. 

6.2.3 ln-directionnality : 

The in-directionnality describes a forrn for each pari . We retain three possible 

forrns: ground, free and partial . These forms are the ones used in BIM _ Prolog 
manual [BIM 86] 

A parameter is said to be ground when it does not contain any variable. It is said 
to be free when it is only composed of variables for which bindings in V are of the 
forrn _ v/ _ v and for which there is no binding of the forrn _y/_ v in V. It is said to be 
partial if it is not ground and not free. 

An in-directionnality is noted as 

where 

mi,_.!:{} (1::;;i::;;n) 

~ ~ {ground,free,partial} ( 1 ::;; i ::;; n ) 

For readability convenience, we denote each singleton {f} as f. We also define 
any as {ground,free,partial}. 

We say that parameters par 1 , . . . , par n satisfy an in-directionnality 

in(rn1, ... , ~) 
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iff, just before the first execution of the subgoal, each pari has one of the form of the 

set Il\ . If the parameters do not satisfy to an in-directionnality of a possible use, 

this use is impossible for the inputs at band. So, an in-directionnality consists of 
preconditions for a possible use. These preconditions are called/onn preconditions. 

If these preconditions are not fulfilled for at least one possible use, we adopt the 
same convention than for types preconditions. 

6.2.4 Preconditions : 

This subdivision is used to describe other preconditions than type or form 
preconditions. These can be described in forma! language but not necessarily. 

Note that the preconditions for a possible use consists of the combination of 
those preconditions , the types preconditions and the form preconditions. This 
combination form what we call the use preconditions. If it is impossible to find a use 
for which the use preconditions hold, we adopt the convention that the effect of 
execution is undefined. 

6.2.5 Relation : 

This subdivision specifies a relation between the parameters. The aim of the 
procedure is to determine if this relation holds for the parameters. By relation, we 
mean a set of ground n-tuples <a1,a2, ... , ~>. If the relation is not a simple 

one, some appropriate concepts as well as the relation itself must be defined 
accurately (possibly outside the specification). 

This subdivision is optionnal . In fact, it should be used for procedure having a 
useful interpretation at the declarative level. 

6.2.6 Out-directionnality: 

The out-directionnality describes the form (see section 6.2.3 for the possible 
forms) of each pari after a successful execution and the possible number of 

successful executions when the parameters comply to the use precondit:ions just 
before the first execution . The possible number of successful executions is 
specified by a lower and upper bound . The following values have been chosen for 

the lower and upper bound : a positive integer, infinite ( 00 ) and a finite but 

page 123 



Chapter 6 

unknown positive integer (denoted by *). 

An out-directionnality is noted as 

where 

~ ;t{} ( 1 Si Sn) 

~ !:: {ground,free,partial} ( 1 S i S n ) 

Min e Nu { oo } (N being the set of positive integers) 

Max E Nu{*,oo} 

Outlooks 

The meaning of the lower and upper bound to the number of successful 
executions requires perhaps some enlightment for the * value. It is useless as 
possible lower bound because it would be equivalent to a lower bound with value O. 
As an upper bound, the value * means that the number of successful execution is 
fmite. For instance, <2-*> means the number of successful execution is greater or 
equal to 2 but fmite ! Note also that the actual number of executions is one greater 
than the upper bound if it is finite and the last execution fails . So, if the lower bound 
is 0, it means the first execution can fail. 

It is obvious that these numbers provide information over the number of CAS for 

P u { f- SG SV 0} because it is equal to the number of successful execution . 

6.2. 7 Postconditions : 

Here are specified other postconditions than those expressed via the types, 
relation and out-directionnality subdivisions. Specific characterization of the number 
of successful executions or of the results of each execution is are examples of what 
can be found here. For instance, if we know there can be more than 1 successful 

execution, we can specify that the jth execution ends with V = V O ej and provide 

some properties (usually depending on i) for ej or for the parameters . 

The combination of these postconditions with the ones expressed via types, 
relation and out-directionnality forms what we call the use postconditions . 
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6.2.8 Exsmples of speclflcstlon : 

Note: When some use preconditions and/or use postconditions are valid for 
any use, they can be specified just before the beginning of the 
enurneration of possible uses ! 

erase(x , list , list erased) - . 

Types: 
let x be a terrn 

List and List erased be lists 

Relation: 
the procedure deterrnines whether x is an element of List and 
List erased is List without the first occurrence of x in it . 

Uses: 

<1> 

ln-directionnality : 
in(any, ground, any) 

Out-directionnality : 
out(ground , ground , ground) <Ü-*> 

<2> 

ln-directionnality : 
in(ground , free , ground) 

Precondition : 

x ~ List erased 

Out-directionnality : 
out(ground , ground , ground) <Ü-*> 

Postcondition: 

after the jth execution, x appears in jth position in List 
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append(listJ , list2, list_res) 

Types: 

let listl , list2 and list_res be lists 

Relation: 

Outlooks 

the procedure determines whether list_res is the concatenation of listl 
and list2. 

Uses: 

<1> 

In-directionnality : 
in(ground, ground, any) 

Out-directionnality : 
out(ground , ground , ground) <0-1 > 

In-directionnality: 
in(free , free , ground) 

Out-directionnality : 
out(ground, ground, ground) <m-m> 

Postcondition : 

m = ( number of elements of List _res + 1 ) 

after the jth execution, listl is composed of the first (j-1) elements 
of List res and list2 of the rest 

6.3 TOWARDS THE INTRODUCTION OF EXTRA-LOG/CAL 
FEATURES: 

The specification frame can also be used to specify the PROLOG built-ins, but 
some adaptations are needed because a lot of them cover extra-logical features (ie 
files, output devices) and work by side-effects. So, we must introduce a new 
type of preconditions : environment preconditions. These are described in a first 
new subdivision of the frame which is called pre-environment . 

To express these preconditions, some concepts must be accurately defined. For 
instance, if we consider the built-ins working on ASCII files, we must define how to 
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characterized each file 
[Derroitte 86]. 

To do this, we can take over some ideas developed in 

A file is characterized by 

a logical name and a physical name. 

a status : open in reading, writing or extending mode 
closed (logical name undefined) 

a content : sequence of ASCil characters. 

an available content: suffix of the content (defined if open in reading mode). 

We also define the current character of a file as the first character of its 
available content. We extend the characterization of the context so it includes the 
informations about the open files. 

Now, a context is characterized by: 

aprogram. 

a set of open files of different logical names and of different physical names. 

Now, the specification of side-effects that occur during some executions can be 
done in a second new subdivision: post-environment. 

But we can use our procedural semantics in order to achieve an accurate 
specification of all the side-effects that can occur. If Min and Max are the bounds for 
the number of successful executions and if we create an incarnation EO of ESG with 
SG = procedure_name(t1 , ... , tn) and V= v0 (V0 covering SG), we can say there 

will be at least (Min+l) executions of EO (if Min is finite) and at most (Max+l) 
executions of EO (if Max is finite). It is possible with our frame to specify the side
effects for each of these executions if we want. 

The possibility to specify the side-effects for each execution, coupled with the 
easiness to express tricky combinations of preconditions allows a powerful and 
accurate expression.for the specification. 

Note that for pure side-effects procedures, the expression of a relation can be 
omitted as such procedures have no logical meaning. 

The two new subdivisions pre-environment and post-environment can be used to 
specify any procedure which can cause side-eff ects. 
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Examples: 

fclose(logical _ name) 

Types: 
let logical _ name be an atom 

Uses: 

In-directionnality : 
in(ground) 

Out-directionnality : 
out(ground) < 1-1 > 

Post-environment : 

Outlooks 

the file referred by the logical name logical_name is closed. 
This means it is removed from the context ! 

getO(logical _ name , ascii _code) 

Types: 

Uses: 

<1> 

let logical_name be an atom 
ascii _ code be an integer 

In-directionnality : 
in(ground , any) 

Pre-environment: 
there is a file of logical name logical _ name with a non-empty 
available content 

Out-directionnality : 
out(ground , ground) <l>-1 > 

Post-environment: 
the current character of the file logical_name is removed from its 
available content. If ascii _ code is not ground just before the first 
execution, it has , after the first execution, the value of the ascii 
code of the removed character. If it is ground, the execution 
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succeeds if ascii_code is equal to the ascii code of the removed 
character 

<2> 

In-directionnality : 
in(any) 

Pre-environment : 
there is not any file of logical name logical _ name with a non-empty 
available content . 

Out-directionnality : 
out(any) <0-0> 

6.4 TOWARDS PROOFS OF CORRECTNESS: 

To illustrate this matter, let us take the (classical) example of the append 
procedure ! We want it to comply to the specification given in section 6.2 . We 
propose the following text : 

append(□ , _ list , _list) . 
append(Lxl 1 _restl], _list2, Lxl 1 _rest3]) :

append(_ restl , _list2 , _rest3) . 

Hereafter, we provide a proof for the second possible use specified .. However, 
we think the proof given here is still too much link:ed to the text of our algorithms. So, 
future works should investigate this matter. 

Let V be a V ACV of value V O containing bindings _ x/ _x and _y/ _y but not 

containing any other binding with _x or/and _y in its left part. So we can say that 

variables _x and _y are free with respect to V. Let t be a term such that t E>V = t 

ev O = [e1 , . . . , en] where ei ( 1 Si Sn) are terms. 

The subgoal p(_x,_y,t) ev, with V = v 0, may be executed (n+2) times. We can 

prove that the j th execution of this subgoal ( 1 S j Sn+ 1) ends with 
f ail ure = f alse , 

_x= [el, ... , ei-1], 

_y = [ ei , .. . , en] and 

the other bindings of V unchanged. 
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The (n+2)th execution ends withfailure = true . 

The proof proceeds by induction on n . 

The creation of an incarnation EO of ESG with SG = appendL x , _y , t) and V = 

v Ois so that Vrem is initialized to v O. 

Case 1 : n = 0 , so t ev o = = [] 

The only program clause whose head is unifiable with SG ev O is the first 

clause of the definition of append. So we can say that nb _ cl = 1. Let 8 be the 

MGU, we have 8 = {_x /[],_y/[]}. 

So, it is easy to see that the the first execution of the incarnation EO 
passes at the point labelled ne:xt _ clause with i = 1. But we have that G 1 ( 

body of the first append clause whose head matches SG SV 0) is the empty 

goal so, we can deduce from lemma 3.2 that this first execution of EO ends 

with /ai/ure = false and V = V O 0 and that the second execution passes at 

the point labelled next_clause with i = 2 . As 0 = {_x / [] , _y / []}, we have 
after the first execution _x = [] and _y = □. Now, as 2 > nb_cl, we have that 
the second execution ends withfailure = true (by lemma 3.1). 

Case 2 : n > 0 if it is ok up to n-1 

We have t SV O = [e1 , ... , en] . 

Now, the two append clauses have their head unifiable with SG 0V O . So, 

nb cl= 2. 

We still have that the first execution of EO passes at the point labelled 
ne:xt_clause with i = 1 . But we have that G1 ( body of the first append clause 

whose head matches SG ev 0) is the empty goal so, we can deduce from 

lem.ma 3.2 that this first execution of EO ends with failure = false and V = VO 

0 and that the second execution passes at the point labelled next_ clause with 

i = 2 . We have after the first execution _x = [] and _y = O because 8 is the 

MGU of SG SV O and the head of the first clause and so, 8 = {_ x / [] , _y / D}. 
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Now, as 2 = nb_cl , the second execution continues and when it creates 
the incarnation El , it is easy to sec that we have 

8 = { _x / [e1 1 _restl], _y I _list2, _xl / el , _rest3 / [e2 , . . . , en]}, 

Vnew = [_restl/_restl, _list2/_list2 ]. 
So, the incarnation El is created for G = append(_restl , _list2 , [e2 , 

en]). But, the kth ( 1 ~ k ~ n ) execution of this goal ends with 

/ai/ure = f alse , 

V=VO 8k 

. . . ' 

and in 8k , we have that _restl = [e2 , ... , ct-il and _list2 = Cct , ... , en]. 

The (n+l)th execution of this goal ends with /ai/ure = true and eut = false . 
These are consequences of the induction hypothesis over the subgoal SG = 
append(_restl, _list2, [e2 , ... , en]). 

Now, it is easy to sec that the j th ( 2 ~ j ~ n+ 1 ) execution of EO ends with 
f ai/ure = f alse , 

_x = [e1,···•ei-l], 

_y = [ ei , . . . , en] and 

the other bindings of V unchanged. 

The (n+2)th execution of EO passes at the point labelled next_clause with i = 
3 > nb_cl; so this execution ends immediately withfailure = true . 

We think that some work is needed in order to develop a terminology which is 
usable for correctness proofs but which much less relies on the text of our algorithms. 
Moreover, in our example, we do not deal with a clause body composed of many 
subgoals. This simplifies of course many things ! 

However, if it happens that a clause body is of the form 

some more steps are necded in order to get the results of an execution of the goal 

(B 1 , . . . , Bm)8 where 8 is the MGU of SG SV O and of the head of the 

corresponding clause. To do this, it should be possible to prove assertions that are 
true after the execution of the first subgoal and then, after the second subgoal and so 
on. 
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6.5 THE OCCUR CHECK: 

For simplicity, we have supposed that the unification algorithm performs the occur 
check. However, many PROLOG systems provide it only as an explicit option, due to 

performance considerations. 

In order to take account of this particularity, we only have to change the 
specification of the MGU fonction (see section 2.3.3). H necessary, we think it should 
also be possible to deal with the occur check problem when specifying procedures. 
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Our new procedural semantics for PROUX, is based on three simple algorithms . 
We think it is clearer than the usual procedural semantics which is explained in 
tenns of search in a SLD-tree . From our point of view, it is also free of any 
ambiguity . 

We proved that our semantics is equivalent to the usual one because they result 
in the same CAS in the same order .. 

A major advantage of our semantics is that it does not use the fuzzy concept of 
backtracking. This concept is often not well understood and this leads to carelessly 

built programs. Normally, our semantics should allow a programmer to fully 
understand how PROLOG procedures and programs are executed. This should enable 
him to improve the quality of his work. 

However, we must admit that the logical aspects are not very stressed. But the 
focus we adopt on the operational aspects allows us to easily integrate the extra
logical features of PROLOG. From a practical point of view, it can be very interesting 
because professional PRO LOG environments, like the BIM _ Prolog [BIM 86] for 
instance, provide a lot of extra-logical features (database interface, windowing and 
graphies, ... ). 

Now, some work is needed in order to develop the specification issue but also to 
investigate the field of proofs of correctness of PROUX, programs. All this work 
should ideally go towards the elaboration of a methodology for PROUX, 
programming. But remember that a methodology does not solve the problem itself; 
the solving of the problem remains the programmer's role . 
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