
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Concept of virtual machine

Leroy, Patrick

Award date:
1984

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 24. Apr. 2024

https://researchportal.unamur.be/en/studentTheses/2be0336d-90fa-48b1-a83c-8fa2215b9cef

Software deve lopment proj ect fi le PROPOSAL

CONCEPT OF VIRTUAL MACHINE Distribution
Free

- :
'..:

FACULTES UNIVERSITAIRES NOTRE-DAME DE LA PAIX
INSTITUT D'INFORMATIQUE

PREPARED BY :

Sup. doc. nr
Original issue

CONCEPT OF VIRTUAL MACHINE

Mémoire présenté par

Patrick Leroy

en vue de l'obtention
du titre de

: ·~

Licencié et Maître en informatique

Année académique 1983 - 1984

Patrick Leroy

Facultés Universitaires
Notre-Dame de la Paix

PROPOSAL

DATE 1984-08-29
PAGE 1

Software development project fi Le PROPOSAL

CONCEPT OF VIRTUAL MACHINE Distribution
Free

PREPARED BY :

Sup. doc. nr
Original issue

I would Like to thank all those who
have supported me when I most need
encouragement or help, from my promoter
and high school teacher, Mr. Ramaekers;
all the SWN22 team members and especially
the team Leader Mr. de Cocquéau; to my
parents without whom this work would not
have been possible.

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-29
PAGE 2

Software development project fi Le p R 0 p 0 s A L

CONCEPT OF VIRTUAL MACHINE Distribution
Free

FOREWORD

PREPARED BY : Patrick Leroy p R 0 p 0 s A L

Sup. doc. nr Facultés Universitaires DATE 1984-08-29
Original issue Notre-Dame de La Paix PAGE 3

1 Foreword

Software development project fi le

CONCEPT OF VIRTUAL MACHINE

P R O P O S A L

Distribution
Free

This investigation presents a brief State-of-the-Art regarding
Virtual Machines concept and their applications.

Section 2 gives a short history of the third generation
architecture and the concept of dual state archite~ture. It also
introduces the concept of virtual machine.

Section 3 deals with the analysis of some important aspects of
virtual machine such as architecture, main features, types, major
features of virtual machines, formal conditions of virtualization.

Section 4 analyses the implications of virtual machines for the
computing system. These are located in the fields of integrity,
performance and sharing of services.

Section 5 presents the two major applications of virtual
machine system.

In section 6, the aspect of performance degradation is deeply
studied by means of a practical model. That wi Ll result in a
statistic study, based on th~ difference of time requested for the
same instruction realized in a real or virtual machine environment.

PREPARED BY :

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

P R O P O S A L

DATE 1984-08-29
PAGE 4

Software development project fi Le p R 0 p 0 s A L

CONCEPT OF VIRTUAL MAC HINE Distribution
Free

INTRODUCTION

PREPARED BY : Patrick Leroy p R 0 p 0 s A L

Sup. doc. nr Facultés Universitaires DATE 1984-08-29
Ori g inal issue No t re-Dame d e la Paix PAGE 5

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE

2 Introduction

2.1 The third generation architecture

PROPOSAL

Distribution
Free

In the beginning of the 60's, two major innovations were
introduced to improve the performance of a computing system. These
were 1/0 processors and multiprogramming.

As a consequence of the first improvement, computing systems
became multiprocessor configurations where non identical processors
could have access to the main memory of the system. The second
improvement Led to several processes sharing a single central
processor wh i le vying for a common pool of resources.

These two developments caused some problems with regard to the
integrity of the system. For example, an I/0 processor executing a
wrong channel program could damage areas belonging to other
processes or a process executing an "incorrect" procedure of the
system could cause the same troubles. Since abundant experiences
had demonstrated that it is impossible to rely on the correctness of
all software, the multiprogram ming / mul tiprocessing architecture had
to found upon a new approach. This one was c a lled "dual state"
architecture.

PREPARED BY :

Sup. doc. nr
Original iss ue

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-29
PAGE 6

Software deve Lopment project fi Le

CONCEPT OF VIRTUAL MACHINE

2.2 The dual state architecture

PROPOSAL

Distribution
Free

The software was divided into two distinct classes: the first
one containing a smaLL amount of code presumed to be correct caLLed
the privileged soft ware nucleus and the second one containing all
the rest. At the same time, the architecture of the system was
define d in such a way tha t any part of the software which could
interfere with o t her process e s belon gs to th e second cLa s s of
software.

Essentially, the third generation architecture was found upon
two different modes of ~10rking (privi le g ed /non privi leged ,
master/slave, system/user, ••• etc) to aLLow the e xecution of some
critical instructions only in the pr i vi Le g ed mode. These critical
instructions are for exa mple: I/0, mem ory and interrupt management.

Experience has shown that this solution is very powerful on
condition that the privi leg ed nucleus is li mit e d in quantity, stable
in the sense that few chan ges ar e ma d e over Lon g p eriod s of ti me,
and written by s ki lled professional p ro g rammer s .

This new type of arc h itecture has proved its value by fostering
the development of compu t ing systems with true simultaneity of I/0
operations and high overaL L resources uti Li z ation.

But it has also created new types of problems due to the fact
that only the nucleus can access an d control all the functions of
the hardware.

PREPARED BY :

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-29
PAGE 7

Software development project fi Le

CONCEPT OF VIRTUAL MACHINE

P R O P O S A L

Distribution
Free

A first problem is the portabi Lity of a program from an
environment to another • In fact, from a computer to another, the
nucleus can change a lot, even if the hardware of both machines is
qui te simi lar. A user wanting to execute a program fro m one
computing system on ano th er has two solutions to selve his problem:
either he converts his program or he replaces the first machine
nucleus by the second's one. Unfortun ately , none of these two
solutions is very attractive or swift.

A second problem is the impossibi lity to run two distinct
nuclei at the same time. This makes developments and modifications
very difficult because system programmers have to work on a
dedicated machine at their disposal, and ad ditionally , all the
advan tage s of the third generation architecture are Lost.

A final problem is that test and diagnostic software must have
access to and control of all functional capabi Lities of the hardware
and thus cannot be run simultaneously with the privi leged nucleus.
This severely curtai ls the amount of testing and diagnoses that can
be performed without interfering with normal production schedules.

In conclusion, all the major problems caused by this new type
of architecture are due to the fact that it only existed one
interfa~e between the hardware and th e user's programs: the
privi leged sof t ware nucleus.

PREPARED BY :

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de la Paix

P R O P O S A L

DATE 1984-08-29
PAGE 8

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE

2.3 Concept of virtual machine

BARE MACHINE

PROPOSAL

Distribution
Free

- BASIC MACHINE INTERFACE

USERS'
PROGRAMS

PRIVILEGED
SOFTWARE
NUC LEUS

EXTENDED
- MACHINE -

INTERFACE

USERS'
PROGRAMS

Fig. 2.1: conventional extended machine

Figure 2.1 i Llustrates the conventional dual state architecture
which is responsible for the problems that were cited previously.
As can be seen, this system contains only one basic machine
interface and is able ta execute only one privi Leged software
nucleus. On the other hand, it is able to undergo several extended
machine interfaces and therefore several user's programs.

PREPARED BY

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
No t re-Dame de La Paix

PROPOSAL

DATE 1984-08-29
PAGE 9

Software development project fi Le

CONCEPT OF VIRTUAL MACHINE

P R O P O S A L

Distribution
Free

The idea of the virtual machines is to bui Ld a particular
nucleus which can provide several copies of a basic machine
interface instead of several extended machine interfaces.

This would solve all the problems of the third generation
architecture mentioned before. As i LLustrated in figure 2.2, this
particular nucleus is known as a Virtual Machine Monitor or VMM.
This one provides several duplicates of the bare machine known as
virtual machines. Each of the ''additional" basic machine interfaces
can undergo a conventional privi leged software nucleus. This
nucleus wi LL be consider e d by the real machine, through the VMM, as
a user's program. Thus, it wi Ll be loaded in the user's memory
space and executed in a multiprogr amming environment.

The VMM realizes the transparency between the nucleus Loaded in
user's memory and the real machine. That means that the real
machine doesn't know the existence of several privi Leged nuclei
running Like user's programs and that these nuclei have no way of
determining whether they are running on a bare machine or on a
virtual machine system.

WARNING.

Ta avoid confusions, from now on,

- the nucleus running on the virtual machine wi LL be known
as "simulated system".

- the nucleus running on the real machine wi LL be known as
Virtual Machine Monitor (VMM).

PREPARED BY :

Sup. doc. nr
Original i~sue

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

P R O P O S A L

DATE 1984-08-29
PAGE 10

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE

1 . SARE 1
MACHINE

1111111111111111111

PROPOSAL

Distribution
Free

BASIC MACHINE INTERFACE

PRIVILEGED
NUCLEUS 1

-

VIRTUAL
MACHINE
MONITOR

BASIC
MACHINE

INTERFACE

EXTENED

PRIVILEGED
NUCLEUS 2

~
~
~
~

MACHINE -
INTERFACE ŒJ

USER
PRGM
~
~

PREPARED BY

Sup. doc. nr
Original issue

Fig 2.2: Virtual machine configuration.

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-29
PAGE 11

Software deve lopment proj ect fi le

CONCEPT OF VIRTUAL MACHINE

PROPOSAL

Distribution
Free

ANALYSIS OF VIRTUAL MACHINE CONCEPT

PREPARED BY :

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de la Paix

PROPOSAL

DATE 1984-08-29
PAGE 12

Software development project fi le

CONCEPT OF VIRTUAL MACHINE

3 Analysis of virtual machine concept

3.1 Type of virtual machine. ([2],[3],[4])

P R O P O S A L

Distribution
Free

The figure 2.2 doesn't imply that the basic machine interface
supported by the VMM must be identical to the one supported by the
bare ma c hine. When it is the case, the virtual machine is known as
virtual machine of type 1. When the two interfaces are different,
the virtual machine is known as a vir tual machine of type 2. Aside
from this comparatively difference, vir tual machines of the two
types are simi lar in both structure and functions.

3.1.1 Type 1

For this type of machine, as can be seen on figure 2.6,the VMM
runs directly on the bare machine. Thus, the dependance between the
VMM and the hardware is very important. Generally, these machines
provi de the same basic machine interface as the real machine does.

3.1.2 Type 1 bis

This type of machine is a generalisation of the type 1 where a
VMM may run a VMM on its interface and therefore be recursive.

3.1.3 type 2

Here, the VMM runs on the extended machine interface provided
by the the privi leged software nucleus. Thus the VMM has access to
all the faci lities provided by the extention of the instruction set.
That means Less dependance between the hardware and the VM M.

PREPARED BY :

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

P R O P O S A L

DATE 1984-08-29
PAGE 13

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE

3.1.4 Diagrams of the different types

PRIVILEGED
NUCLEUS 1

1

BARE 1

_ MACHINE _
1

BASIC
MACHINE

INTERFACE

PROPOSAL

Distribution
Free

BASIC
MACHINE

INTERFACE

PRIVILEGED
NUCLEUS 2

USER
PRGM

EXTENDED
MACHINE

INTERFACE ~
~

PREPARED BY

Sup. doc. nr
Original issue

Fig 3.1: virtual machine of type 1.

Patrick Leroy

Facultés Universitaires
Notre-Da me de La Paix

PROPOSAL

DATE 1984-08-29
PAGE 14

Software deve Lopment proj ect fi Le PROPOSAL

CONCEPT OF VIRTUAL MACHINE Distribution
Free

BASIC
MACHINE

INTERFACE

BARE
MACHINE

VMM 1

1 VIRT. MACH.1 1
BASIC r r I r I r r 1 1 1 1 1 1 1

MACHINE -
INTERFACE

VMM 2 PRIVILEGED
NUCLEUS 1

BASIC MACHINE INTERFACE EXTENDED MACHINE INTERFACE

PRIVILEG.
NUCLEU S 2

USER
PRGM

PRIVILEG.
NUCLEUS 3

USER
PRGM

~~
~ ~

~
~

EXTENDED
MACHINE
INTERFACE

Fig 3.2: virtual machine of type 1 bis.

PREPARED BY

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Un i versitaires
Notre-Dame de la Paix

PROPOSAL

DATE 1984-08-29
PAGE 1 5

EXTENDED
MACHINE

INTERFACE

Software deve lopment proj ect fi le

CONCEPT OF VIRTUAL MACHINE

BASIC
MACHINE

INTERFACE

BARE
MACHINE

PRIVILEGED
NUCLEUS 1

BASIC
MACHINE

INTERFACE

VMM

PRIVILEGED
NUCLEUS 2

PROPOSAL

Distribution
Free

EXTENDED
MACHINE

INTERFACE ~
~
~
~

PREPARED BY

Sup. doc. nr
Original issue

Fig 3.3: virtual machine of type 2

Patrick Leroy

Facultés Universitaires
Notre-Dame de la Paix

PROPOSAL

DATE 1984-08-29
PAGE 1 6

Software development project fi Le

CONCEPT OF VIRTUAL MACHINE

3.1.5 Comparison between type 1 and type 2

3.1.5.1 Performance

PROPOSAL

Distribution
Free

On the point of vue of performance, the type 1 is superior
because of the fact that the VMM runs directly on the hardware of
the real machine and can thus simulate the privi leged instructions
by means of the microcode. In the type 2, all the privi leged
instructions are simulated by software and thus require the
execution of 250 to 400 supplementary instructions.

3.1.5.2 Resources

For both types, all the software resources are supplied by the
different virtual machines, whereas the hardware resources are
supplied by the VMM which also realizes the time sharing between the
different virtual machine.

3.1.5.3 Cost of implementation

Virtual machines of type 2 offer some implementation
advantages: indeed the VMM which runs on the extended machine
interface can take profit of the extended machine's instruction
repertoire and can be, therefore, easier to construct than VMMs
running directly on a bare machine.

PREPARED BY :

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-29
PAGE 17

Software deve Lopment project fi Le

CONCEPT OF VIRTUAL MACHINE

3.2 Major features of virtual machine concept

PROPOSAL

Distribution
Free

In the way of working, the differences between a conventional
computer system and a virtuaL machine system are generaLLy Located
in the areas of privi Leged instructions execution, virtual
addressing and I/O's performing.

3.2.1 Simulation of privi Leged instructions. ([4] , [6] , [8])

The most significant aspect of virtual machine monitor is the
way in which programs are e xecuted. The VMM doesn't execute them
instruction by instruction but aLLow t hem to run di rectly on the
host system for much of the ti me. However, the VMM wi L L trap the
critical instructions to treat them int er pretively in order to
insure the integrity of the system.

In the third generation architecture, an attempt to execute a
privi Leged instruction in non privi Leged mode causes a interrupt
which Leads ta an abnormal termination of the running program.

For the virtual machine, the principle is quite different. As
seen before, the privi Leged software nucleus running under the VMM
is considered by the host system as a user progra m. This nucleus,
as aLL the operating systems, contains a Lot of privi Leged
instructions and thus wi LL causes a Lot of interrupts. These
interrupts work as tri gge rs, for the VMM , to si mu La te the privi Leged
instructions. In tact, an interrupt causes a change of the host
system state from the user to the s yste m mode. The analysis of the
interrupt by the system wi LL Lea d to the conclusion that it is an
attempt by the simulated system to execute a priv i Leged instruction.
Then, the VMM receives the control in the privi Leged state in order
to simulate, by means of its routines, th e privi Leged instruction
wanted by the simulated system. After the simulation, the control
is returned ta the simulated system and the state of the hast system
is shifted ta the user's one . Thi s mechanism is i Llustrated in
figure 3.4.

PREPARED BY :

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-29
PAGE 18

Software deve lopment proj ect fi le

CONCEPT OF VIRTUAL MACHINE

PROPOSAL

Distribution
Fr e e

Virtual machine

privi leged
instruction

VMM in privi leged state

interrupt

NO interrupt issued
by a virt. mach.?

YES

abnorma l end
caused by the
host system

NO this machine YES
~--runs in priv --

state?

abnorma l end
caused by the
simulated syst

simulation
of the priv
i nstruction

Fig 3.4: simulation of privi leged instructions.

PREPARED BY :

Sup. doc. nr
Original issue

Patrick Leroy

Facultês Universitaires
Notre-Dame de la Paix

PROPOSAL

DATE 1984-08-29
PAGE 19

Software development project fi Le

CONCEPT OF VIRTUAL MACHINE

3.2.2 Double virtual addressing. ([4] , [6])

PROPOSAL

Distribution
Free

All the modern operating systems use virtual memory and, as the
virtual machine runs under a simulated privi Leged software nucleus
which also use virtual memory, the computing system works with three
levels of addressing:

- Level 1: real address of the host system.

- Level 2: real address of the simulated system.
These addresses are virtual for the host system
because the simulated system is contained in
its user memory.
These addresses are called "simple virtual addresses".

- Level 3: virtual address of the simulated system. These addresses
are called "double virtual addresses" because they
need two translations to become real addresses for
the hast syst em .

The address-mapping schematic diagram and associated tables are
illustrated in figure 3.5.

In order to execute programs, the central processing unit (CPU)
must access instruct i ons and data by means of addresses of the first
Level. Thus, all the virtual addresses (double and simple) must be
translated into real a dd resses. This double translation would
degrade too much the performance of the system if it must be applied
each time the central processing unit (CPU) must access data or
intructions · in central memory. To avoid this, the system must be
able to translate the third Level directly into the first. In order
to achieve this, it exists t wo methods: the dual paging method and
the V=D(M) method. Both a re dynamical.

PREPARED BY :

Sup. doc. nr
Original issue

Patr·ick Leroy

Facultés Universitaires
Notre-Dame de la Paix

PROPOSAL

DATE 1984-08-29
PAGE 20

Software deve lopment proj ect fi le

CONCEPT OF VIRTUAL MACHINE

First Level
(rea L storage
of real camp)

VMM

simul syst

t

Second Level
Creal storage
of virt mach)

simul syst

t

PROPOSAL

Distribution
Free

Third Level
Cvirt storage
of virt mach)

si mu L syst

Address translation
using tables of the
hast system.

Address translation
using tables of the
simulated system.

Fig. 3.5: schematic diagram of address translation

PREPARED BY :

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-29
PAGE 21

Software development project fi Le

CONCEPT OF VIRTUAL MACHINE

3.2.2.1 Dual paging method

P R O P O S A L

Distribution
Free

This method uses the classical dynamical address translation
feature of the host system i llustrated in figure 3.6. Each virtual
address may be decomposed in 3 fields: a segment number, a page
number within the segment and a Location within the page. The
segment number determines an entry in the segment table which
contains the address of the page table corresponding to the segment.
The page table is accessed and the page number determines an entry
in this table. This entry gives the real page address where the
correct page can be found in real memory.

For the double virtual address translations, a special segment
table (cal Led the "shadow table") is bui Lt during the initial
program Loading (IPL) of the simulated system. This table is bui Ld
as follows:

Control Page table base
Shadow table -

8F 0 0 0 0 0 0 0 0 0 0

8F 0 0 0 0 0 0 0 0 0 0

1 8F 1 0 0 0 0 0 0 0 0 0 0 1

1. The translation table is initialised with X'8F' in the
first byte of each segment table entry meaning that all
the segments exist but are not in main memory.

2. When the control is given to the simulated system, the
hardware register STAR is loaded with the address of the
shadow table.
At the beginning of the simulated system execution, the
first double virtuaL address wi LL give a paging queue
interrupt since the shadow table is empty. It is the
paging queue simulation which completes the shadow table
by the way i Llustrated in figure 3.7.

PREPARED BY :

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

P R O P O S A L

DATE 1984-08-29
PAGE 22

Software deve lopment proj ect fi le

CONCEPT OF VIRTUAL MACHINE

STAR

ITransl. table! O 1

''---~ ~---'/

y
1 l

PROPOSAL

Distribution
Free

Vi rtua L address

Segment table

1 STB !segment!-- - ControllPTBI •

STAR
STB
PTB

I1
1

PTB 1 Page 1°01--
l

!Real Page Number 1 Location

segment table address register
segment table base
page table base

.____J_
Page table

11 IReal page

~+
Real address

Fig 3.6: dynamical address translation feature

PRE_PARED BY :

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-29
PAGE 23

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE

Paging queue interrupt--
on double virtuaL adr l

NO

Convertion of the double virtuaL
address into simple virtuaL

address by means of the
si mu La t e d sys t em mechan i sms

Set the simple virtuaL address
page resident to avoid the that

the host syst. flushes the p age out

Convertion of the simple virtuaL
address into real address by means

of the hast system's mechanis m

page table associated to the

requf~s_t_m_e_m_o_r_y ______ s_e_g_m_e_n_tjt::~• exists'

PREPARED BY :

Sup. doc. nr
Original issue

CompLete the shadow table entry
for the double virtual address

Restart the instruction of the
simulated system

Figure 3.7.

Patrick Leroy

Facultés Universitaires
Notre-Da me de La Paix

PROPOSAL

Distribu t ion
Fr e e

P R O P O S A L

DATE 1984-08-29
PAGE 24

Software development project fi Le

CONCEPT OF VIRTUAL MACHINE

3.2.2.2 V=D(M) method

P R O P O S A L

Distribution
Free

The V=D(M) method is intended to reduce overheads (associated
with the generation and the management of the shadow table) and to
remove the shadow table area. The VMM gives each virtual machine a
contiguous real memory area of the real machine whi Le the real
storage of the virtual machine is controlled in collaboration by the
simulated system and the VMM.

In this method, the shadow table is removed.A contiguous area
(from n tom) is aLLocated to a virtual machine (the Length of the
simulated system is L), this is i Llustrated in the figure 3.8. The
translation of the third Level to the first one is performed as
follows:

- the third Level address is translate into a second
Level address by means of the tables of the simulated
system.

- if the second Level address is < l
then first Level address = second Level address + m

- when the second Level address is ~ m+L
then first Level address = second Level address

This translation is made each time the CPU must access
instructions or data by means of a double virtual address. If it
must access instructions or data by means of a simple virtual
address, only the second part of the translation explained above is
performed.

PREPARED BY :

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

P R O P O S A L

DATE 1984-08-29
PAGE 25

0

m

m+l

n

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE

First Level
(real storage
of real comp)

VMM

simulated
system

user
region

0

l

m+L

n

Second Leve L
Creal storage
of virt mach)

simulated
system

not
us ed

user
re g ion

not
us e d

0

L

PROPOSAL

Distribution
Free

Third Level
(virt storage
of virt mach)

simulated
system

user
region

Figure 3.8: address translation for V=D(M) method

PREPARED BY :

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-29
PAGE 26

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE

3.2.3 I/0 simulation. ([2],[6])

PROPOSAL

Distribution
Free

Since I/0 instructions are privi Leged, an attempt to execute
I/0 by software on a virtual machine causes an interrupt trapped by
the VMM.

At this point, the VMM is able to translate device and memory
addresses before issuing an I/0 instruction on behalf of the v i rtual
machine. When I/0 completion i nterrupt returns to the VMM, it is
reflected back to the appropriate virtual ma chin e.

The translation of an 1/0 instruction uses tables bui lt at the
initialisation of the virtual machine. Special commands are used to
define virtual devices attached to a virtual ma chine and their real
counterparts. All those informations are stored in tables. These
ones indicate not only the existance of each I/0 element but also
the status of the element (e.g. busy or free) and the real har dwa re
component to which it corres ponds .

Thus, when a virtual machine issues an I/0 instruction, the VMM
must first determine that the I/0 a ddress is valid in the virtual
machine's I/0 structure and that the element composing the virtual
I/0 path (channel, control unit, device) are free. The VMM must
then mark the virtual path busy an d bui Ld an equivalent I/0 task for
the real hardware. The real pa th may , of course, be busy, and if
so, the task must be deferred unti L the real path be comes free.
Then, the VMM can iss ue the real I/0 instruction corr esponding to
the virtual one. When the I/0 task is completed, the VM M must
reflect this tact in the tables describing the virtual machine's I/0
structure and simulate the inte rru pt (end of I/0) , including the
updating of the virtual ma chi ne 's channel s tatu s word.

A side benefit of the VMM software intervention is the abi lity
to map I/0 requests for a device into another or to provide a
virtual machine wit h special devices which have no real counterpart.

PREPARED BY :

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-29
PAGE 27

Software deve Lopment proj ect fi Le PROPOSAL

CONCEPT OF VIRTUAL MACHINE Distribution
Free

3.3 Format requirements for virtualization ([?])

Virtual machine systems have been implemented on a limited
number of third generation computer systems. From previous
empirical studies, it is known that certain third generation
computer syste ms cannot suppor t a vir tual machine system. J.
Popeck and R. Goldberg used fo r mal techniques to deri ve precise
suf fi cient conditions to test whether an arc hitecture can support
virtual machines or not. Those conditions are expres sed through
three theorems.

Before introducing these theorems, it would be appropriate to
define some notions that wi LL be used .

Privi Leged instruction: an instruction is privi Leged if, and
only if, its execution in the privi Leged state doesn't
bring out an interrupt, though it wi LL in the non
privi Leged state.

Sensitive instruction: we can define two types of sensitive
instruction,the control and the behaviour.

Contrat Sensitive instruction: an instruction is contrat
sensitive if its execution attempts to change the
amount of resources avai Lable, or affects the processor
mode without accessing informations contained in the
me mory.
example: - on the PDP-1O, JRST 1 which is a return to

user mode.

Behaviour sensitive instruction: an instruction is behaviour
sensitive if the effect of its execution depends
on the value of the relocation-bound regis ter ,
i.e. upon its Location in real memory or upon the
current mode.
example: - for SIEMENS, LBF (Load bit field) which

Loads bits in different registers following
the current mode.

PREPARED BY ·

Sup. doc. nr
Original issue

- for DEC on th e PDP-11/45, MFPI (move from
previous instruction space), this instruction
forms its effective address fro m informations
which depend on the current mode .

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-29
PAGE 28

Software development project fi le

CONCEPT OF VIRTUAL MACHINE

3.3.1 Basic condition

P R O P O S A L

Distribution
Free

Theorem 1: For any conventional third generation computer, a virtual
machine monitor may be constructed if the set of sensitive
instructions for that computer is a subset of the privi Leged
instructions.

This theorem gives a very easy and sufficient condition to
guarantee the virtualization of a computer of the third generation
architecture.

The necessity for the set of sensitive instructions ta be a
subset of the privi leged instructions is that the VMM must trap
these instructions in order to be able ta simulate them. For
example, let 's take a sensitive instruction depending on the current
mode. If it won't be a privi Leged instruction, it would be executed
directly by the real machine. As the simulated system is considered
by the real machine as a user program, the current mode would always
be the user's one and as the sensitive instruction could be issued
by the simulated system, it won't be correctly execu t ed. So, aLL
the sensitive instructions are to be trapped a nd thus must belong ta
the set of privi leged instructions.

PREPARED BY :

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

P R O P O S A L

DATE 1984-08-29
PAGE 29

Software development project fi le

CONCEPT OF VIRTUAL MACHINE

3.3.2 Recursive virtualization condition

P R O P O S A L

Distribution
Free

Theorem 2: A conventional third generation computer is recursively
virtualizable if it is virtualizable and if a VMM
without any timing dependencies can be constructed for it.

This theorem is nearly evident as a VMM provides by definition
an environment in which running programs wi ll have identical effects
to the ones shown when running on the bare machine. Thus, it is
possible to bui ld a VMM running on the basic interface provided by
another VMM as it is possible to bui ld a VMM running on a bare
machine (cfr. theorem 1). The only constraint is the time
dependency. If the VMMs inbeded are time dependend, the recursive
virtualization won't be possible because of the comsuption of time
made by each of them. Another constraint, acting as a limit on the
depth of recursion (number of nested VMMs), is the space avai Lable
in the machine (since each VMM takes up place, which is quite
reasonnable).

PREPARED BY :

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de la Paix

P R O P O S A L

DATE 1984-08-29
PAGE 30

Software development project fi Le

CONCEPT OF VIRTUAL MACHINE

3.3.3 Hybrid virtual machines condition

P R O P O S A L

Distribution
Free

Theorem 3: A hybrid virtua l machine monitor can be constructed
for any conventional third generation machine in which
the set of use r sensitive instructions is a subset
of the privi Leged instructions .

In order to discuss this theorem, it is first necessary to
specify what is an hybrid virtual machine monitor (HVMM). Its
structure is almost identical to a VMM , but more instructions are
interpreted rather than being directly executed.

So, the only instructions which can cause problems are the user
sensit i ve instructions (sensitive instructions executed in the user
mode), that is why they must be long to the set of p riv i Leged
instructions in order to be trapped and s i mulated by the HVMM to
insure their correct execution .

Thus, as more insructions are interpreted , a HVMM is Less
efficient than a VMM. But, as it exists very few third generation
architecture which are virtu alizable , a HVMM is more actual third
generation architecture qualify. For example, the PDP-10 can hast a
HVMM, although it cannot hast a VMM .

PREPARED BY :

Sup. doc. nr
Orig i nal issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de la Paix

P R O P O S A L

DATE 1984-08-29
PAGE 31

Software development project t; Le p R 0 p 0 s A L

CONCEPT OF VIRTUAL MACHINE Distribution
Free

IMPLICATIONS FOR THE COMPUTING SYSTEM

PREPARED BY : Patrick Leroy p R 0 p 0 s A L

Sup. doc. nr Facultés Universitaires DATE 1984-08-29
Original issue Notre-Dame de La Paix PAGE 32

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE

4 Implications for the computing system

PROPOSAL

Distribution
Free

We are now going to examine the major implications of virtual
machine organization for the computing system. These implications
are generaLLy knowm as an increase of integrity, a degradation of
performance and a special way of sharing data and services.

4.1 Integrity

Operating system integrity may be said to exist when an
operating system functions correctly under aLL circumstances. It is
helpfull for better understanding to divide the concept of integrity
into three related concepts: reliabi Lity, security and avai Labi Lity.

By reliabi Lity, we mean the abi lity of the operating system to
continue to supply usefull service in spite of all abnormal software
conditions, whether accidental or malicious. That is, we expect the
operating system to be able to prevent "crashes".

By security, we mean the abi Lity of the operating system to
maintain control of the system resources and thereby prevent users
from accidentally or maliciously accessing or modifying unauthorized
information.

By avai labi lity, we mean the fraction of time that a system is
available for operation [20].

PREPARED BY :

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

P R O P O S A L

DATE 1984-08-29
PAGE 33

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE

4.1.1 Reliability and security ([14J,[15J,[16],[17J)

PROPOSAL

Distri but ion
Fr ee

4.1.1.1 Hierarchical approach to system integrity by usin g virtual
machines

There has been considerable research and nu merous attempts to
develop "perfect" software ranging from hiring cl ever program mers,
to hav i ng every program p roo f r e a d by t wo or t hr ee p rog r amm ers, to
for mal theore m prov i n g . None of th e s e a pp roc he s have bee n
completely succ e ss f ul for p roj e ct s as l a r ge as a ge n e r a l p urpose
opera t ing syste m. Under t he se c i rcu mst ance s, t h e re a r e a t l e a s t two
things that can be don e : t ry to de v e lo p as muc h sec u r it y a n d
reli ab i Li ty as possi ble , and min im iz e the impa c t of a ma l f unc t ion.
Numer ous com p ut e r sci ent i sts ha ve obser v ed t hat it i s po s sib le to
s impli fy the d e si gn o f a n op e rati n g system and impr ove its
relia bi Lity a nd s ecurit y by a caref ul deco mposi t ion , s epa rating the
most crit i cal f un ct i ons fr om th e su c cess iv ely l ess cr itica l
functi ons as well as sep ar ating syste m-wi d e fu nctions from
us e r-r ela t e d functi on s. This app r och has be en called " hier archical
mo du l arit y" .

Figure 4.1 i llustrates a c onven t ional two- Le vel ope rating
syste m with the coe xist en ce of mu l tiple p ro grams . Such a s ys t em is
susce ptible to a s e c u ri ty v i ol at ion i f a s ingle ha r dwar e or so ftware
failure were to o cc u r . On e f a c t o r cont r ibuting to the d i fficu lty of
vali da t ion entire oper at ing sy s tem i s that user pr ograms in t e r fac e
is realized thro ugh h undred s of pa r am e te r i z ed e n t r ie s (s upe r vis er
calls, program int e rr uptions , I/0 r equests , I /0 inter r upt i on s ,
etc •••). Th e re i s p res ently n o way to systematically v a l idat e the
correct funct i onin g of the operat i ng system for all possible
para meters for a ll en tries . In fa c t , most syste ms tend to be h i ghly
vuner a ble to i nv a lid p ar amete r s .

PREPARED BY :

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notr e -Dam e de La Pai x

PROPOSAL

DATE 1984-08-29
PAGE 34

Software development project fi Le

CONCEPT OF VIRTUAL MACHINE

P R O P O S A L

Distribution
Free

Referring again to figure 4.1, we can see some of the factors
contributing to the problem. In order to provide sufficient
functionality to be effect iv e for a large and heterogeneous
collection of user program s and application subsystems, the
operating system must be quite comprehensive an d , thus, more
vulnerable to errer. Furthermore, as depicted in figure 4.1, there
is not more protection between programs of different application
subsystems (e .g. P11 and P21) than between prog rams of a sing le
applica tion subsystem Ce.g. P11 and P12) . The reliabi Lity and
security of such conventional operat i ng sys te ms are sufficiently
weak that the mi litary has strict reg ula tions that appear to forbid
the use of same information system for both "secret'' a nd " top
secret" use, even thou gh using separate systems is more costly.

Figure 4.2 i Llustrates the virtual machine approach to a
physically shared system. This struc tu re has numerous advantages.
If we define Pr(Prg m) to be the probabi Lity that a given run of a
program Prgm wi ll cause a security violation to occur, equations (1)

and (2) below are expected to hold:

(1) Pr(Prgm I OS(n)) < Pr(Prgm I OS(m)) for n<m

(2) Pr(OS I VMM(k)) < Pr(Prgm I OS(m)) for k<m

with - OS(i) refering to a conventional two-level operating
system designed to support i user programs

- VMM(i) refering to a v i rtual machine monitor designed
to support i virtual machines

- Pr(Prgm I OS(n)) = probabi lity that a given run of the
program Prgm under the OS(n) wi ll cause a security
violation.

PREPARED BY :

Sup. doc. nr
_Original issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

P R O P O S A L

DATE 1984-08-29
PAGE 35

Software deve lopment proj ect fi le

CONCEPT OF VIRTUAL MACHINE

Explanation of (1) and (2).

PROPOSAL

Distribution
Free

< 1) - The pro b ab i li t y of system fa i lu r e tends t o i n cr e as e w i th
the Load on the operating system Ci .e. the number of requests, the
variety of functions, the frequency of request, etc •••). In
particular, a monoprogramming system, OS(1), tends to be much
simpler and more reliabl e than a multiprogramming system.
Furthermore, the m-degree mul tipro g rammin g syste m often requires
intricate alterations to s upp or t the special nee ds of the m users,
especially if mis Large.

(2) - The operating system, OS, on a particular virtual machine
has the same relationship to a VMM(k) as a user program, Prgm, has
to a conventional multiprogramming operating syst em , OS(n). In
accordance with the same ratio as in equation (1), the smaller the
degree of multiprogra mmi ng Ci .e. k<m), the smaller the probabi lity
of a security violation. Furthermore, as a VMM tends to be shorter,
simpler, and eas ie r to debugg than a conventional mu ltiprog ramming
system, even if k=m, the VMM is Less error-prone.

PREPARED BY :

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-29
PAGE 36

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE

PROPOSAL

Distribution
Free

If we assume that the events represented by the equations (1)
and (2) are independent, we can define the probabi Lity of a program
Prgm on one virtual machine vioLating another program on another
virtual machine as:

(3) Pr(Prgm j OS(n) 1 VMM(k)) = Pr(Prgm j OS(n)) * Pr(OS j VMM(k))

Based on the inequalities of equations (1) and (2) and the
dependency in equation (3), we arrive at the conclusion:

(4) Pr(Prgm j OS(n) j VMM(k)) << Pr(Prgm j OS(m)) for n,k<m

Pr(Prgm I OS(n) 1 VMM(k)) is the probabi Lity of the
simultaneous security fai Lure of Prgm's operating system and the
virtual machine monitor. If a single operating system fai Ls, the
VMM isolates this fai Lure from the other virtual machines. If the
VMM fai Ls, it exposes information of other virtual machines to the
operating system of one virtual machine. But, i f this operating
system functions correctly, it won ' t take a dv antages of the security
breach. This assumes that the designers of the individual operating
system are not in collusion with malicious users, which seems to be
a reasonable hypothesis.

We are here particulary concerned about overall security and
reliabi Lity, that is, the probabi Lity of a security fai Lure due to
any program in the system. This situation can be computed by:

(5) Pr(Prgm11,Prgm12, •••• ,Prgm33)
= Pr(Prgm11) * (1-Pr(prgm12)) *
+ <1-Pr(Prgm11)) * Pr(Pr gm 12) *
+ ••••••

* (1-Pr(Prgm33))
* (1-Pr(Prgm33))

+ (1-Pr(Prgm11)) * (1-Pr(Prgm12)) * * Pr(Prgm33)

By merging equations (4) and (5) we can conclude that:

(6) Pr(Prgm11,Prgm12, •••••• ,Prgm33 1 OS(n) 1 VMM(k))
<< Pr(Prgm11,Prgm12, •••••• Prgm33 1 OS(m)) for n,k<m

PREPARED BY :

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-29
PAGE 37

Software development project fi Le

CONCEPT OF VIRTUAL MACHINE

P R O P O S A L

Distribution
Free

That is, the security and the reliabi Lity in a virtual machine
environment is very much better than in a conventional
multiprogramming operating system. This conclusion, as noted
earlier, depends upon the probabi Listic independence of security
failures. That is what we are going to examine no w.

Equations (3) and (4) are based upon the independence of two
events: a security fai Lure in Prgm's operating system (OS), and a
security fai Lure in the virtual machine monitor (VMM). This
hypothesis is reasonable as considering the ma ny sources of
accidental security fai Lure. In the case of an attempt to
deliberately violate security, the penetrator wou l d usually try to
subvert the OS first and then, having taken the control of the OS,
attempt to subvert th e VMM .

PREPARED BY :

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

P R O P O S A L

DATE 1984-08-29
PAGE 38

Software development project fi Le p R 0 p 0 s A L

CONCEPT OF VIRTUAL MACHINE Distribution
Free

Common operating system

P11 P12 P21 P22 P31 P32 P33

\

Application Application Application
Subsystem Subsystem Subsystem

1 2 3

Fig 4.1: Hierarchically structured operating system

Virtual machine monitor

Operating Operating Operating
System System System

' 1 2 3

P11 P12 P21 P22 P31 P32 P33

\ \

Application Application Application
Subsystem Subsyste m Subsystem

1 2 3

Fig. 4.2: Virtual machine three-Level system

PREPARED BY . Patrick Leroy p R 0 p 0 s A L -

Sup. doc. nr Facultés Universitaires DATE 1984-08-29
Original issue Notre-Dame de la Paix PAGE 39

Software development project fi Le

CONCEPT OF VIRTUAL MACHINE

4.1.1.2 Redundant security mechanisms

P R O P O S A L

Distribution
Free

Aside from the benefits of hierarchical approach to computer
system integrity, virtual machine concept can minimizes the danger
of penetration the OS and the VM M by using redundant security
mechanisms.

Let's take for example the store of jewels in a safe. One may
think that his jewels are more s ecu re if he stores the first safe in
another one. But the foolish man mig ht Cso he won't forget) use the
same combinaison for both safes. If a burglar figures out how to
open the first safe Ceither accidently or maliciously), he wi LL find
it easy to open the inside safe. However, if two d ifferent Locki ng
mechanisms and combinaisons are used, then the jewels are more
secure as the burglar must break th e mechanisms of bath safes .

Thus, to be the more secure as possible, the OS and the VMM
must use different and redundant security mechanisms.

PREPARED BY :

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de la Paix

P R O P O S A L

DATE 1984-08-29
PAGE 40

Software deve Lopment project fi Le

CONCEPT OF VIRTUAL MACHINE

4.1.2 Availabi _Lity ([14])

PROPOSAL

Distribution
Free

Avai Labi Lity has been defined as the fraction of time that a
system is avai Lable for operation [10]. In the case of
multiprogramming systems, this definition has to be modified to
reflect the tact that a system may be only parti a Lly avai Lable for
operation. That is, at any given time, a system may not be able to
support the maximum Level of multiprogramming which could be
supported if all components were functionning properly. To reflect
this, we define the i-degree of avai Labi Lity (A(i)) as the fraction
of time that a system can support i Levels of multiprogramming
(0~ i ~n) •

The foLLowing section examines the avai Labi Lity of two
equivalent systems:

1) OS-n: a multiprogrammed operating system which can support n
independent user programs.

2) VMM/OS-1: a virtual machine system which can undergo n copies
of a monoprogrammed operating system (OS-1).

Let Av(i) be the i-degree of avai Labi Lity of VMM/OS-1 (O:Si:Sn)
and An(i) be the i-degree of availability of os-n (O :S i :S n).

Note: In the foLLowing, we will assume that time betl~een
fai Lures and fai Lures recovery time are exponentiaLLy
distributed.

PREPARED BY :

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-29
PAGE 41

Software deve Lopment project fi Le

CONCEPT OF VIRTUAL MACHINE

Analysis of Av(i)

PROPOSAL

Distribution
Free

First, note that the VMM/OS-1 configuration will be able to
support, user processes (1~i~n) if and only if the VMM is
functioning and exactly, os-1 are also functioning (the remaining
n-i OS-1 's are undergoing recovery operati ons). VMM/OS-1 wi L L not
be able to support any user processes if t he VMM is functioning and
aLL n OS-1 are down, or if the VMM itseLf is down.

We have further assume that aLL the times are exponentially
distributed.

Let 1/a = mean time between an OS-1 software fai Lure

1/b = mean recovery time for an OS-1 fai Lure

1/c = mean time between a VMM software fai Lure

1/d = mean recovery time for a VMM fai Lure.

The system can thus be regarded as a continious time Markov
process having the foLLowing 2n states:
{Q,1,2, ••• ,n,0',1 ',2', ••• ,n'}

state ,: i working copies of os-1 and n-i copies of OS-1
undergoing recovery operation.

state i '· system was in state i and a VMM software fai Lure
occured.

Le t P. an ci P;' be t h e p r o b a b i L i t i e s t h a t t h e s y s t e m i s i n s t a t e i
and i' for1 O~ i~n. The rat e s of transition are as follows:

state i to i+1

state ; to ; -1

state , to ; 1

state ; ' to ,

= (n-i) bP-
1

= ; a p.
1

= C p i

= ci p i'

The entire system is ciescribed in figure 4.3.

PREPARED BY :

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-29
PAGE 42

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE

•
C

d

a î l nb

•
C

d

2a î l Cn-1)b

[J
C

d

3a î l <n-2)b

. .

. .
< n-1) a î l 2b

EJ
C

d

na î l b

•
C

d

Fig 4.3: state transition diagram.

PREPARED BY · Patrick Leroy

Sup. doc. nr
Original issue

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

Distribution
Free

G
[]

G

B

•
PROPOSAL

DATE 1984-08-29
PAGE 43

Software deve lopment project fi le

CONCEPT OF VIRTUAL MACHINE

The balance equations then become:

- dP ., = cP .
1 l

(O~i ~n)

PROPOSAL

Distribution
Free

- (ai + (n-i)b + c)p.
1

= (n-i+1)bP. + (i+1)aP. + dP . .-
1-'1 1 t1. (1~i ~~-1)

- (nb+c)P0 = aP -1. + dP
0

'

- (na+c)Pn = bP n·~ + dP n'

The normalizing condition is:
n

- r P.
i =O ,

n
+ r p . .,

i '=O
1

= 1

By solving the above equations, we have:
(the resolution is given in Appendix 1)

d i
p. = -- C

1 d+c n

C

P., = - p.
1 d 1

PREPARED BY :

Sup. doc. nr
Original issue

[-b] i [-a]n-i
a+b a+b

O~i~n

O~i~n

Patrick Leroy

Facult~s Universitaires
Notre-Dame de la Paix

PROPOSAL

DATE 1984-08-29
PAGE 44

Software deve Lopment project fi Le

CONCEPT OF VIRTUAL MACHINE

PROPOSAL

Distribution
Free

If the VMM is considered as a separate entity, its avai Labi Lity
can be expressed as:

d
Av = --

c+d

Si mi Lary, the avai Labi Lity of each os-1 can be expressed as:

b
A1 = --

a+b

Thus, ~ can be written in terms of Av and A1 as:
l

p.
1

i
= Av C

n

The degree of avai Lability of VMM/OS-1 configuration can then
be written as:

Av1(i) = p .
1

= Av

Av1(0) = p

= Av

PREPARED BY :

Sup. doc. nr
Original issue

i i
C A1

n

n
+ L p

i '=O

[1-A1]n

[] n-i
1-A 1 1~i~n

+ 1 - Av

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-29
PAGE 45

Software deve Lopment project fi Le

CONCEPT OF VIRTUAL MACHINE

Analysis of An(i)

PROPOSAL

Distribution
Free

The os-n configuration has only two possible states: all n
levels are avai lable for operation or no Level is avai Lable.
Assuming the time between two OS-n fai Lures as exponentionally
distributed with mean of 1/e and the recovery time with mean 1/f,
the de gr e e of av ai La b i L i t y for O S-n are as f o L Lo w s :

An< a) = e / e +f

An (i) = 0

An(n) = f/e+f

1:Si:Sn-1

Since os-n can only be in one of two states, fully avai lable or
fully unavai lable, the absolute avai labi lity wi LL be defined as:

An = f/e+f

PREPARED BY :

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

P R O P O S A L

DATE 1984-08-29
PAGE 46

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE

Utility function

PROPOSAL

Distribution
Free

When comparing VMM/OS-1 with OS-n, it is necessary to consider
not only the degrees of avai labi lity of the two systems but also the
relative value associated with each degree. For e xample, in some
cases, it may be absolut e ly essential to support n levels of
multiprogramming at all ti mes; support n-1 or fewer levels may be
regarded as totally unacceptable. In such cases, the relative value
of the two systems ma y be assessed by simply comparing Av1(n) and
An (n) •

In the more general case, there wi ll be a set of value U(1),
U(2), ••• , U(n) associated with the capacity to s upport O, 1, 2, ••• ,
n levels of multiprog ram ming. The function U(i) i s referred to as a
utility function an d exp resses t he r e l a tiv e val ue of each d egree of
availability in some particular ap plic a tion. In this case, the
overall value of th e VMM /O S- 1 sys t e m ma y be d e f i ne d as t he e xpe cted
utility:

n
I U(i) Av1(i)

; =O

Simi Lary, the expected uti lity of the OS-n system may be
defined as:

n
I U (i) An Ci)

i =O

Consider any Linear uti Lity function defined on {0,1,2, ••• ,n}.
That is, assume U(i) = K i/n for K>O. Since the range of each
fini te uti lity function can be transfor med into the interval [Q,1],
these linear uti lity functions all have the canon ic at form

U l < i) = i /n

PREPARED BY :

Sup. doc. nr
Original issue

O~i ~n

Patrick Leroy

Facultés Universitaires
Notre-Dame de la Paix

PROPOSAL

DATE 1984-08-29
PAGE 47

Software development project fi Le

CONCEPT OF VIRTUAL MACHINE

PROPOSAL

Distribution
Free

Comparing the expected uti Lity of two system using an arbitrary
linear uti lity function is cleary equivalent to comparing expected
uti lity using the function Ul. Uti lizing this remark, we can now
prove the following theorem.

Theorem: If Av A1 ~ An and the utlity function is linear,
then the expected uti Lity of the VMM/OS-1 system
is greater than or equal to the expected uti lity
of the os-n s ystem .

Proof: the expected uti lity of the VMM/OS-1 system is:

n
r Av1(i) Ul(i) = Av1(0) Ul(O) +

; =O
n
L

; =1

,
Av C

n

i [] n -i
A1 1-A1 . U L < i)

n
= Av1(0) 0 + r

,
Av C

n

n-1
= Av A1 r

; =1

= Av A1

; =1

n-1 ,
C A1

;

; /n

[]
n-1-i

1-A1

The exp e c te d ut i Li t y of the O s-n system i s :

n
r An< i) U L (i) = An (O) U L (o) + An< n) u L < n)

i =O
= An (0) 0 + An (n) 1

= An

Since Av A1 ~ An, the expected utility of the VMM/OS-1 is
greater than or equal to the expected uti Lity of the os-n system.

PREPARED BY :

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-29
PAGE 48

Software deve Lopment project fi Le

CONCEPT OF VIRTUAL MACHINE

PROPOSAL

Distribution
Free

To interpret this theorem, note that A1 is the fraction of time
that OS-1 is avai Lable if it were running on a bare machine and that
Avis the fraction of ti me that the virtual machines supported by
the VMM are themselves avai Lable. Thus, AvA1 is the fraction of
time that each OS._1 running under the VMM is avai lable for user
processing. Since the VM M/ OS-1 has approximatively ths same
comple xi ty as OS-n, one might expect AvA1 to be roughly comparable
to An. However, there are a numb er of reasons to belie v e that AvA1
will be significantly greater than An.

First, VMM/OS-1 is modular, thus the VMM and OS-1 can be
developed independently and checked out individually on a bare
machine.

Secondly, os-1 is less complex than os-n since os-1 is a
monoprogrammed operating system. Thus, the mean time between two
software fai lures should be substantially greater in OS-1 than in
OS-n. ln addition, the expected recovery time should be less in
os-1 than in os-n because of the difference of complexity and the
fact that the VMM is able to react to a fai Lure without the
intervention of the ope rator.

Finatly, VMM/OS-1 system is potentially more secure and better
able to preserve privacy of each user (this aspect is discussed more
comprehensively in the preceding section: 4.1.1). Thus, there
should be fewer fai lures caused by successful (or unsuccessful)
attempts to "break" the security of the system.

In summary, AvA1 may be well significantly greater than An • in
many actual systems, and thus VMM/OS-1 system may be distincly be
preferable to os-n when the two systems are evaluated on the basis
of a linear uti Lity function.

PREPARED BY :

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-29
PAGE 49

Software deve lopment proj ect fi le PROPOSAL

CONCEPT OF VIRTUAL MACHINE Distribution
Free

Corollary: Consider any uti lity function U for which
U(i) ~ Ul(i), U(O) = 0 and U(n) = 1.
If AvA1 ~ An, the expected uti lity of the
VMM/OS-1 system is greater than or equal
t o t h e exp e c t e d ut i li t y of t h e o s-n s y s t e m •

Proof: Since U(i) ~ Ul(i), the expected uti Lity of the
VMM/OS-1 system under U is great er than or equal
to the expected uti Lity of VMM/OS-1 under UL.
However, The expected uti Lity of os-n under UL
is equal to the expected uti Lity of OS-n under
UL since U(O)=Ul(O)=O and U(n)=Ul(n)=1.
Applying the preceding theorem, the
corollary follows immediately.

As a consequence of the corollary, the theorem is extended to
include a Large class of utility functions. Figure 4.4 illustrates
a representative fami ly of uti Lity functions te which the results of
the theorem is now applicable.

Uti lity

1

0 1

PREPARED BY

Sup. doc. nr
Original issue

2

U l (i)

3 n-1 n

Fig 4.4: Utility functions

Patrick Leroy

Facultés Universitaires
Notre-Dame de la Paix

Number
of user
proccesses

PROPOSAL

DATE 1984-08-29
PAGE 50

Software development project fi le

CONCEPT OF VIRTUAL MACHINE

4.2 Performance ([18],[19])

P R O P O S A L

Distribution
Free

Performance degradation is the major desadvantage of virtual
machine systems. This degradation is due to the overheads
introduced by the VMM. The main sources of overheads are :

- Privi Leged instructions: VMM spends a Large amount of time
to si mu Late the privi Leg ed instructions (cfr 3.3.1).

- Maintaining the status of the virtual machines: the scratch
pad memory of each virtual machine has to be simulated
in order to maintain their virtual processor state.
Instead of using the real scratchpad memory o f the
computer, the VMM uses an area of the central memory
to save the state of each vi rtua l machine. When the
control is given to a v ir tual machine by hte VMM, this
one loads the real scratchpad mem ory of the computer
with the information contained in the area of the central
memory.

- Paging within the virtual machines: if the simulated
system works with virtual memory, the VMM has to work
with three Levels of addressing. So ftware techniques
are used to translate double virtual addresses into
simple virtual addresses and finaLLy into real addre sses
(cfr 3.3.2).

- Addressing a device: all the 1/0 operations issued by a
virtual machine are to be translated in order to
be executable (cfr 3.3.3).

ALL these sources of overheads may be minimized by using
microcode. Fr equent sequences of instructions such as simulation of
privileged instruct i ons, Loading and storing of the virtual
scratchpad memory, translation of double virtual addresses may be
quicked by using microcode instead of using software technique s.

A concrete case of performance degradation is studied in
section 6 by means of a practical model.

PREPARED BY ·

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notre-D ame de La Paix

P R O P O S A L

DATE 1984-08-29
PAGE 51

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE

4.3 Sharing data and services [5]

PROPOSAL

Distribution
Free

ALL time sharing systems offer their users software resources
as weLL as a share of the hardware resources. In the conventionnal
third generation architecture, the management of software and
hardware resources are integrated and performed by the operating
system of the host system. One consequence of the integration is
that the sharing of resources among independant users is
faci Litated.

In a virtual machine system, things are quite different. The
software resources are suppLied by the simuLated system components
whi Le the hardware reso urces are supplied by the VMM.
UnfortunateLy, the VM M "knows" about the other users of the system
but is ignorant of the user's f i Le structure; whi Le the simulated
system 11 kno1iis 11 about the user's fi Le structure but is ignorant of
the other users of the system. The division of Labor in a virtuaL
machine system, wh ich prov ed ta be an advantage as far as i ntegrity
is concerned, proves to be a di s ad vanta ge when it cornes to the
important service of sharin g fi Le s .

The VMM, which manages the virtuaL resources of aLL the users,
can be used to i mp lement modes of sharing among virtual machines.
This mode of shar i ng may be thought of as the sh a ring of hardware
realized by the VMM an d have been impl ement ed for the main storage
(shared segments) and for the auxi Liary storage (shared mini-disk).
Mini-disks are v i rtual disks which differ from rea l disks only in
that may have fewer cylinders than a physical disk. They are shared
among several users and the sharing may be initiated by the users
themselves. Mini-dis ks are own ed by users and the owner may speci fy
passwords to g i ve other use rs various degr e e s of access (r ead -only,
read-write, etc •••) .

But the abi Lity to read from or to write to a mini-disk is
Limited in value as the contents and the Location of the fi les it
contains are net known by the simulated systems. One standard
method of resolving this difficulty is to store a di rectory of the
disk contents at a fixed Location on the disk itself. Then, t he
simulated system must first read the directory into its memory
before it can access the fi le on the disk.

PREPARED BY :

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-29
PAGE 52

Software development project fi Le p R 0 p 0 s A L

CONCEPT OF VIRTUAL MACHINE Distribution
Free

'

APPLICATIONS OF VIRTUAL MACHINES

PREPARED BY : Patrick Leroy p R 0 p 0 s A L

Sup. doc. nr Facultés Universitaires DATE 1984-08-29
Original issue Notre-Dame de La Paix PAGE 53

Software development project fi le

CONCEPT OF VIRTUAL MACHINE

5 Applications of virtual machines ([2],[4],[SJ,[6])

P R O P O S A L

Distribution
Free

There are two main areas of application of virtual machines:
the area of development,testing and measurement of operating systems
and the area of general purpose, conversational and time-sharing
(multi-environment).

5.1 Development, testing and measurement of operating systems

With a conventional third generation architecture computer, the
deve~opment and testing of a new operating system require the use of
a dedicated machine. This makes continued development and
modification of the privi leged nucleus difficult since system
programmers often have to work odd hours (generally du ring the
night) in order to have a dedicated mach ine.

With a virtual machine system, the problem of the dedicated
machine is solved. As it is possible to run several operating
systems at the same time, the development and testing of a new
operating become as easy as loading and ru nning a user program on a
conventional computer.

In addition, as the simulated system is considered through the
VMM as a user program, the faci Lities provided by debbuging and
performance tools are avai lable. These advantages should be of
great interest for the conceptors of operating systems when thinking
to the difficulties met during the conception of a new operating
system.

PREPARED BY :

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

P R O P O S A L

DATE 1984-08-29
PAGE 54

Software deve Lopment project fi Le

CONCEPT OF VIRTUAL MACHINE

5.2 MuLti-environment

PROPOSAL

Distribution
Free

Betore the appearence ot virtuaL machines, the migration tram
an oLd operating system reLease to a new one caused a big probLem,
all the programs had to be converted.

Now, with a virtual machine system, it is possible to run
concurrently the old and the new release for an extended period ot
time to alow the users to convert their programs. In addition, when
most users programs are finaLLy converted, it is sti LL possible to
run the old release for pro g rams which run so infrequently that the
conversion is not justified.

Figure 5.1 i Llustrates how the shitt trom an old release to a
new one can be accompLished using virtual machine techniques. As
time advances, the relative percentage ot users running under the
new release increases ti LL it just remains the permanently
unconverted users programs r unning under the old release.

NEW
RELEASE

OLD
RELEASE

SYSTEM
PROGRAM MERS

PRODUCTION
USERS

NEW RELEASE
SEING TESTED

CONVERTED
PRODUCTION

USERS

UNCONVERTED
PRODUCTIO N

USERS

NEW RELEASE
I N INSTALATION

CONVERTED
PRODUCTION

USERS

PERMANENTELY
UNCONVERTED

NEW RELEASE
INSTALLED

TIME

Fig. 5.1: Virtual machine support for multiple releases
of an operating system.

PREPARED BY :

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notre- Dame de la Paix

PROPOSAL

DATE 1984-08-29
PAGE 55

Software development project fi Le p R 0 p 0 s A L

CONCEPT OF VIRTUAL MACHINE Di stribution
Free

-

PERFORMANCE OF SIEMENS SIM7000

'

PREPARED BY : Patrick Leroy p R 0 p 0 s A L

Sup. doc. nr Facultés Universitaires DATE 1984-08-29
Original issue Notre-Dame de La Paix PAGE 56

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE

6 Performance of Siemens SIM7000

6.1 SIM7000 of SIEMENS ([21],[22],[23],[24])

6.1.1 Origin of SIM7000

PROPOSAL

Distribution
Free

The origin of SIM7000 goes back to the year 1973, when it has
been stated that BS2000 would be the most economic and promising
operating system. The most important problem which arisen was the
partial incompatibi Lity with the BS2000 predecessor: BS1000. A Lot
of solutions have been studied in order to aLLeviate the "trauma" of
migration; for example: mac ro solution, conversion system,
cons'truction of BS1000/BS2000 interface, etc ••• There was something
that all methods agreed: the efforts made for conversion and
compatibility were successful in a certain percentage which is
comfortable but not total. This tact has been establ i shed in
practice, most of the methods neglected the aspect of data
co mpatibi lity.

The best solution would be the one which could reach a 100%
compatibi Lity for both software and data. This tota l compatibi lity
can be found in virtual machine principles. Vir tua l machines
simulates, by means of software routines, the hardware/software
interface, so that an operating system works in a virtual machin e
just like it would do in a real machine. The total compatibi lity is
reached with virtual machines and even no change in the simulated
system is necessary.

The basic goal of SIM7000 was thus to allow the coexistence
between a hast BS2000 system and one or mo re s imulat ed BS1000/BS2000
system on one installation and thereby, support the transition from
one operating system to another (BS1000 --> 8S2000) and the
coexistence of two different operating systems (BS2000 version 6 and
8S2000 version 7 for instance).

PREPARED BY :

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

D'A TE 1984-08-29
PAGE 57

Software developmént project fi le

CONCEPT OF VIRTUAL MACHINE

6.1.2 Introduction to SIM7000

P R O P O S A L

Distribution
Free

SIM7000 allows the simulation of the operating systems BS1000,
BS2000 or any other self-Loading programs on the extended machine
interface provided by BS2000 running on the SIEMENS computers 4004,
7760, 7551, and 7755 central unit.

Peripherical devices may be assigned dynamically to either the
simulated system or the hast system by the SIM7000 virtual machine.
The unit record devices (card reader, puncher, printer) assigned to
the simulated system may be mapped to the hast BS2000 SAM or ISAM
files and thus served via hast BS2000 SPOOL functions. The
simulated console can be represented by the BS2000 console or by a
terminal.

During execution under SIM7000, the simulated system and its
user tasks can be tested using the BS2000 interactive debbuging aids
(IDA and AID).

Error handling is performed by the simulated system execpt for
the machine errer category (power fai Lures, machine checks).

6.1.3 Architecture of SIM7000

SIM7000 is a virtual machine monitor of type 2. The VMM is a
part of BS2000 and thus can take profit of the already existing
management of memory, I/0, and CPU. The figure 6.1 shows how
SIM?OOO is implemented on the conventional third architecture of the
SIEMENS computers.

PREPARED BY :

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

.PROPOS AL

DATE 1984-08-29
PAGE 58

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE

~
~

PREPARED BY

Sup. doc. nr
Original issue

1 M~~:~NE 1
11111111111111111

BS2000

SIM?OOO

11111111111

1 ~~~~ 1

1 Il 1 1 1 1 1 1 1 1

1 ~~~~ 1

BS2OOO
V 1 • 6

USER
PRGM

Fig. 6.1: configuration of SIM?OOO.

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

Distri but ion
Free

BS1OOO

PROPOSAL

DATE 1984-08-29
PAGE 59

Software development project fi Le

CONCEPT OF VIRTUAL MACHINE

6.2 Performance study

6.2.1 Content

P R O P O S A L

Distribution
Free

In order to quantify the degradation of performance for SIM7000
of SIEMENS, a special tool has been bui Lt. This tool is a
self-Loading program, that is, a program able to be Loaded with IPL
procedure and to run on a bare machine (without any operating
system). This program measures the exec ution time of privi Leged
instructions. It wi ll be executed two t imes. First on a bare
machine, without any operating system. This meas ure wi LL give the
real execution time taken by each privi Leged instr uction.
Secondely, on the same machine but managed by BS2000 + SIM7000.
This measure wi ll give the real execution time taken by the
simulation of each privi Leged instruction. These two measures wi ll
be co mpa red to quantify the degradation of performance.

6.2.2 Presentation of the tool

Written in SIEMENS assembler, this tool contains two parts.
The first one is the initialisation of the hardware registers and
the second one is the measure of the privi Leged instructions. The
complete text of the self-loading program may be found in the annex
named "Modules of measurements" joined to this document. Each part
of this program wi ll be there largely explained and commented.

PREPARED BY :

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de la Paix

P R O P O S A L

DATE 1984-08-29
PAGE 60

Software devetopment project fi te

CONCEPT OF VIRTUAL MACHINE

6.2.3 Presentation of the hardware

PROPOSAL

Distribution
Free

The measurements have been done on the SIEMENS computer
exclusivety dedicated for tests and Located at the SIEMENS center of
Namur. The figure 6.2 shows the part of the configuration of this
machine used by the setf-loading program.

1

1

3150-02 PS 3465

7-738 - 571 (central unit) :

3150-02 (card reader) . .

PS 3465 (magnetic disk) :

MB 3554 (magnetic tape) :

7.738 - 571
+ BS2000

1

MB 3554

2MB of central memory
CPU of 620 KOPS

1000 cards / minute

capacity of 144 MB
806 KB / second

1 600 bpi
308 KB / second

Fig. 6.2: configuration of the hardware

MB 3554

The first magnetic tape is used by the IPL procedure and
contains the object of the self-Loading program, the second one is
used to measure the time taken by operations of reading and writting
on a tape. The magnetic disk and the card reader are also used for
measurements.

PREPARED BY ·

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de la Paix

PROPOSAL

DATE 1984-08-29
PAGE 61

Software development project fi le

CONCEPT OF VIRTUAL MACHINE

6.2.4 Different parts of the measurements

PROPOSAL

Distribution
Free

Before going on, we must distinghuish two different kinds of
privileged instructions that · are,for the first one, generally
related with the control registers of the computer and the second
one is concerned with the input/output privi Leged instructions.
These two kinds of privi liged instruction s wi ll be here examined
separately because of the evident d i fferences of functionnality.

6.2.4.1 Results of the measurements of the system control instructions

Pri V. instr

PC
LSP(1 WORD)
LSP(16 WORDS)
LSP(ALL CONTEXT)
SSP(1 WORD)
SSP(16 WORDS)
SSP(ALL CONTEXT)
LSAL
SSAL
STIF
TSR
STID
STNU
LDWR
LDHR
STWR
STHR
TDV
STIO

PREPARED BY :

Sup. doc. nr
Original issue

real time simul. time
in

Fig.

millisec in millisec

0.01264 0.57718
0.00727 0.51742
0.01137 0.69317
0.02 486 0.96788
0.00722 0.38301
0.01617 0.45 828
0.03597 0.88127
0.01408 0.45793
0.00622 0.36414
0.00664 0.33256
0.00715 0.39963
0.00639 0.33600
0.00582 0.39607
0.00621 0.40244
0.00624 0-40250
0.00717 0.40112
0.0 0751 0.40178
0.02246 0.41536
0.01010 0.34164

6.3: ta ble of results.

Patrick Leroy

Facultés Universitaires
Notre-Dame de la Paix

si mu L. - real
*100

real

4466
7017
5996
3793
5204
2734
2350
3152
57 54
4908
5489
5158
6705
6380
6350
5494
5249
1750
3282

PROPOSAL

DATE 1984-08-29
PAGE 62

Software deve lopment project fi le

CONCEPT OF VIRTUAL MACHINE

PROPOSAL

Distribution
Free

Looking at the results of the measurements (given in fig.
6.3), we can see that a privi Leged instruction can take from 17 to
70 times more in a virtual machine system than in a real
environment. This could seem huge, but it must be balanced by the
fact that all the privi Leged instructions are only a smalt part of
an operating system and that the normal instructions take the same
time in both environment. That's why we have tried to find a
ponderation to those measurements.

6.2.4.2 Ponderation

The ponderation must take into account the fact that the
privileged instruction are only a small part of an operating system.
To quantify this quota, it has been decided to modify the code of
the Siemens' VMM, SIM?OOO. Reffering to section 3.2.1, an attempt
to execute a privi leged instruction in a virtual machine system
causes an interruption. The state of the virtual machine is
analysed and if the privi leged instruction is authorized, it is
simulated by the VMM. Thus, to quantify the number of privi Leged
instructions being executed, we add a counter system in all the
simulation routines of the VMM. Thus, whi le running, the modified
VMM wi ll count the number of each type of privi Leged instruction
being executed. But to be complete, we must also count the total
number of instructions, privi leged or not, that are executed. This
has been quite a Little bit more difficult. for this, we use the
mechanism of the debbuging system of BS2000. Thi s one generates,
when set on, an interr uption each time an instruction is executed.
It is this interruption that allows to trace, instruction by
instruction, the execution of a program. We set the debbuging
system on, but instea d of trac ing all the instructions, we simply
add one in a counter and bypass the tracing mode. Thus, as the
debbuging system genera tes an interruption for all the instructions,
we get the total number of instructions executed by the simulated
system. ALL the counters are given in the fig. 6.4.

PREPARED BY :

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-29
PAGE 63

Software deve Lopment project fi Le

CONCEPT OF VIRTUAL MACHINE

Pri V. instr Number of Number(inst)
instructions
executed Total number

PC 1 1 232 0.009346
LSP(1 WORD)

] LSP(16 WORDS) 4568 0.003806
LSP(ALL CONTEXT)
SSP(1 WORD)

] SSP(16 WORDS) 5308 0.004433
SSP(ALL CONTEXT)
LSA L 0 0
SSAL 0 0
STIF 3917 0.003264
TSR 0 0
STID 2 0.000001
STNU 0 0
LDWR 0 0
LDHR 0 0
STWR 0 0
STHR 0 0
TDV 20 0.00001 6
STIO 3199 0.00266 5

=

PROPOSAL

Distribution
Fr e e

ratio

with total number of executed instructions= 1 199 256

PREPARED BY :

Sup. doc. nr
Original issue

fig. 6.4: table of ratio.

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-29
PAGE 64

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE

6.2.4.3 Statistical study

PROPOSAL

Distribution
Free

As the ratio (given in fig 6.4) gives the proportion of
privileged instructions among aLL the instructions, we may multiply
this one by the percentage of degradation (given in fig. 6.3) to
obtain a relative degradation of each privi Leged instruction. This
relative degradation is given in fig 6.5.

Privileged degradation relative
instructions (in %) ratio degradation

(in%)

PC 4466 0.009346 41. 73
LSP(1 WORD) 7017
LSP(16 WORDS) 5996 0.003806 21. 32
LSP(ALL CONTEXT) 3793
SSP(1 WORD) 5204
SSP(16 WORDS) 2734 0.004433 15.20
SSP(ALL CONTEXT) 2350
LSAL 3152 o o
SSAL 5754 0 0
STIF 4908 0.003264 1 6. 01
TSR 5489 0 0
STID 5158 0.000001 0.01
STNU 6705 0 0
LDWR 6380 0 0
LDHR 6350 0 0
STWR 5494 0 0
STHR 524 9 0 0
TDV 1750 0.000016 0.02
STIO 32 82 0.002665 8.74

fig. 6.5: table of relative degradation

PREPARED BY :

Sup. doc. nr
Original issue

Patrick Leroy

Facultês Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-29
PAGE 65

•

Software development project fi le

CONCEPT OF VIRTUAL MACHINE

PROPOSAL

Distribution
Free

The relative degradation gives the percentage of degradation
for each privi Leged instruction. For example, we can say that all
the PC instruct i ons of the simulated system degrade the performance
of about 41 %.

Computing of th~ statistica l data:

1
Mean degradation =

15
t rel. degradation

1 5 i =1

= 6.86 %

15
total degradation = r relative degradation

i =1

PREPARED BY :

Sup. doc. nr
Original issue

= 103.03 /o

Patrick Leroy

Facultés Universitaires
Notre-Dame de la Paix

,

,

PROPOSAL

DATE 1984-08-29
PAGE 6 6

Software deve Lopment project fi Le

CONCEPT OF VIRTUAL MACHINE

6.2.4.4 Criticism of the ponderation

PROPOSAL

Distribution
Free

The simulated system measured was a BS1000 V1.52. It is one of
the versions of BS1000 for which SIM7000 was designed when BS2000
appeared. This version has one main characteristic: it does not use
the virtual memory system (that is why some privi Leged instructions
are not used). Execpt this, it is interresting to measure this
operating system as it is sti LL used by customers under SIM?OOO.

One of the possible extension to this work would be to realize
the same measures, but for a BS2000 operatin g system which use the
virtual memory system.

6.2.4.5 Conclusion of the privi Leged instruction measures

The relative degradation of 103.03 % for the privi Leged
instructions is quite acceptable when thinking to the advantages of
simulating a BS1000 operating system under a BS2000 + SIM?OOO
operating system.

PREPARED BY :

Sup. doc. nr
Ori gi na L issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-29
PAGE 67

Software deve lopment proj ect fi le

CONCEPT OF VIRTUAL MACHINE

6.2.4.6 Results of the input/output instructions

Pr i v. in s t r

SDV (WRITE 2KB
ON TAPE)

SDV (READ 2KB
ON TAPE

SDV (WRITE 2KB
ON DISK)

SDV (READ 2KB
ON DISK

SDV (CONSOLE)
SDV (READ A

CARO)

PAGING

real time
in mi llisec

7.88772

8.32652

16.23138

15 .98359

40.67227

68.98408

22-46381

simul. time
in mi Lli sec

15.51715

19.19182

26.14445

26.09564

324.02337

84.69609

37.78466

Fig 6.6: table of results

6.2.4.7 Statistical study

PROPOSAL

Distribution
Free

simul. - real

real

97

94

61

63

697

23

68

*100

For the I/0 operations, as can be seen in figure 6.6, the
degradation of performance is ranged from 61 to 97 % for the
magnetic units. The card reader and the console are special cases
which will be examined f urther. He re, it has been impossible to
compute a ponderation for each ty p e o f 1/0 operat i ons. But, as all
the I/O operations are i nit a ted by t he sa me pr i vi l eg ed instruction
(SDV: start device), it has been pos s ible to quan tif y the number of
SDV executed the same way we quan t ify the num be r of each privi Leged
instruction executed (cfr 6.2.4.2).

PREPARED BY ·

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-29
PAGE 68

Software deve lopment project fi le

CONCEPT OF VIRTUAL MACHINE

Computing of the statistical data:

1 7
Mean degradation = -- t

7 i =1
degradation

= 157.6 %

Total degradation =
7
t degradation

i =1

= 11 03 %

Total number of SDV executed = 6 569

total number of SDV
Ratio of SDV =

i

total number of instruc.

PROPOSAL

i

= 0.0054

Distribution
Free

Relative degradation of I/0 operation = Ratio of SDV *
total degradation

= 6.037 ¼

For the I/O's on console, the degradation may seem important
(697%), but the two units used for the measurements were different,
For the measurement of the real system, we used the real console of
the system, that is to say a fast unit connected on afast line. For
the mesurements of the simulated system, we used a normal ter mi nal,
that is to say a relatively slow unit conn ected on a slow line
(compared to the one used for the console of the system).

For the card reader, the degradation may seem small (23%), but
as a card reader is a slow unit, the time taken by the VMM for the
conversion of the I/0 operation is small in comparison with the time
taken by the physical and mechanical operation on the card reader.

PREPARED BY :

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-29
PAGE 69

Software deve Lopment project fi Le

CONCEPT OF VIRTUAL MACHINE

PROPOSAL

Distribution
Free

6.2.4.8 Conclusion for the I/0 operation measurements

A relative degradation of 6.037 % for all the I/0 operation
realized when simulating a BS1000 under BS2000 + SIM7000 instead of
running it on a bare machine is relatively Low. This quite
comprehensible because it does not use virt ual memory system and
there are no ove theads due to paging operations. Mor eover, all the
I/0 operations measured by the self-Loading are simple ones . For
the I/0 operations realized by a conventional operating systems,
they more complex and thus may take much time to be translated by
the VMM in order to be executable. Thus, the degradation for the
I/0 operations may be a Little bit mor e important than 6 %.

PREPARED BY :

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-29
PAGE 70

Software development project fi Le p R 0 p 0 s A L

CONCEPT OF VIRTUAL MACHINE Distribution
Free

.

CONCLUSION

PREPARED BY : Patrick Leroy p R 0 p 0 s A L

Sup. doc. nr Facultés Universitaires DATE 1984-08-29
Original issue Notre-Dame de la Paix PAGE 71

Software development project fi le

CONCEPT OF VIRTUAL MACHINE

7 Conclusion

PROPOSAL

Distribution
Free

Virtual machine systems were theoretically developed to correct
some of the shortcomings of the typical third generation
architectures and multi-programming operating systems. After being,
for a certain number of years academic curiosities, they are now
seen as cost-effective techniques for organizing computer systems to
provide system flexibi lity and support for certain unique
applications. Constant researches are made to improve I/0 control
mechanisms, sharing resources among virt ua l machines and formulation
of resources allocation policies in order to provide efficient
virtual machine operations.

On the standpoint of performance, it seems that complex
operating systems wi LL always run somewhat more slowly in a virtual
machine system than in its real counterpart. This resulting
throughput degradation must be carefully weighed against the
benefits obtaine d through the use of virtual machine systems.

Virtual machine systems have several implications for overall
system reliabi lity. Perhaps the most impo rtant one is the
extremelly high degree of is olation that a VMM provides for each
virtual machine running under its central. A software fai Lure in
one virtual machine wi ll not affect the functioning of the other
independant virtu a l machines , even if the f ai Lure results from an
errer in simulated system code. Thus , the VMM can Localize, control
and isolate the impact of simulated systems ' errors just the same
way a conventional multi-programming system does it for the users'
program errors. This is due to the fact that the virtual machine
systems are three-level hierarchically structur ed instead of two
levels generally found in convent i onal operating syst ems .
Furthermore, by using redun dan t security mechanisms, a high degree
of reliability is attainable.

Avai Labi Li ty may be a Lso used as a i nd i cat or of re Li abi L ty when
comparing two equiv alent systems: o s-n and VMM/OS-1. After having
characterized the overaLL value of the systems in terms of a uti lity
function defined on all the possible degrees of avai Lalbi Lity, we
haver demonstrated a number of conditions under which vir tual
machine systems would be superior to com pa rable mult i-programming
systems organized in the conventionaL manner .

PREPARED BY :

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-29
PAGE 72

Software deveLopment project fi Le

CONCEPT OF VIRTUAL MACHINE

P R O P O S A L

Distribution
Free

Another advantage of virtual machine system is its great
versatti Lity and flexabi Lity due to the fact that it is possible to
run two distinct nuclei on the same hardware at the same time. This
can aLLeviate the new release "trauma" by permitting system
generation and schooling of the new release simultaneously with
production uses of the old release. It also allows the development
of anew operating system whi Le the old one is used for production
schedule.

Virtual machine systems also provide the abi Lity ta work with a
virtual configuration which can be quite different from the reaL
one. As all the I/0 operation issued by the simulated system are
translated and converted, it is possible to map 1/0 from a device to
another.

A Last advantage of virtual machine systems is the possibi lity
for any terminals in the configuration to become the console of the
simulated system and for the users ta beco me the operator of its
system.

In conclusion, virtual machine systems have some important
advantages for special applications but these ones may be severely
curtai Ls when th i nking to the degradation of performance when
running in a virtual environment.

PREPARED BY :

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de la Paix

P R O P O S A L

DATE 1984-08-29
PAGE 73

Software deveLopment project fi Le p R 0 p 0 s A L

CONCEPT OF VIRTUAL MACHINE Distribution
Free

APPENDIX

PREPARED BY : Patrick Leroy p R 0 p 0 s A L

Sup. doc. nr Facultés Universitaires DATE 1984-08-29
Original issue Notre-Dame de la Paix PAGE 74

Software development project fi le

CONCEPT OF VIRTUAL MACHINE

8 Appendix 1

Balance equations:

(1) dP., = cP .
, 1

PROPOSAL

Distribution
Free

(O:Si:Sn)

(2) (ai+(n-i)b+c)P. = (n-i+1)bP .
1

+(i+1)aP . ,. +dP .,
l lt lt..,_ 1

(1 ~ i t, n-1)

(3) (nb + c)P = aP + dP J
() 'l. ()

(4) (na + c)Pn = bP n--1 + dP l"lJ

Solving of these equations:
C

(1) dP ., = cP ·
1 1

===> p ., = -- p . (O:Si:Sn)
1

d
1

nb
(1) and (3) ===> p = -- P o .,_

a

(1),(2) and i=1 ===> (a+(n-1)b)P-t = nbP
0

+ 2aPz..

2.

PREPARED BY :

Sup. doc. nr
Original issue

(an b / a + n (n -1) b / a) P
0

= n b P
O

+ 2 a P 2.

1 n(n-1)b
pl. =

2a
(nb +

2
n(n-1) b

p =
2

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

a~

2

- nb) P
0

PROPOSAL

DATE 1984-08-29
PAGE 75

Software deve lopment project f i le

CONCEPT OF VIRTUAL MACHINE

n (n-1)
(1),(2) and i=2 ===> (2a+(n-2)b)

2

b

'-
b

--
2

a

PROPOSAL

p

Distribu t ion
Fre e

=
0

n(n-1)b -- Po + 3a P
3 a

3
n (n-1) (n-2) b

6 a)

==========> P.
1

,
= C

(4) ===>

PREPARED BY :

Sup. doc. nr
Ori g inal issue

n
P

0
= 1/n b/a Pn -'1. = 1/n b/a C

n-1

Patrick Leroy

Facultés Universitaires
Notre-Dame d e la Paix

(1~i~n-1)

PROPOSAL

DATE 1984-08-29
PAGE 7 6

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE

Computing of P0 :

The normalizing condition is:

n
+ :t
i '=O

p,, = 1 ,

By spliting the different sums, we have:

n-1
P + r
0

i =1

n-1
P+P+P , +r
1 ri 0 ; '=1

p., + p / = 1
1 n

As P;, = c/d P; (equation (1)), we have:

n-1 n-1
P + r P. + P + c /d P + c /d r P. + c Id P = 1
0 i =1 , 0 0 ; =1 1 I")

By replacing

n-1 ;
p + r C

0
; =1 n

C

P
0

(1 + -
d

C

Po (1 + -
d

C

Po (1 + -
d

d
Po = --

c+d

PREPARED BY :

Sup. doc. nr
Original issue

[~] i
a

) (

) (

) (

(

a

P. and p in function of Po ; , n

[~] n
C C n-1 ,

Po + p + - Po + - r C
0

a d d ; =1 n

n-1 i
1 + r C [-b Ji + [~] n)

n
r

i =O

1

a

+

; =1 n a a

+

b

i
[~] i C) = 1

n a

b n
-) = 1
a

n
)

Patrick Leroy

Facultés Universitaires
Notre-Dame de la Paix

=

P R O P O S A L

Distribution
Free

we have:

[~];
a

1

p +
0

PROPOSAL

DATE 1984-08-29
PAGE 77

Software deve lopment proj ect fi le

CONCEPT OF VIRTUAL MACHINE

Computing of p. , and Pa:

i
[~Ji

d a n
P. = C -- (--) ,

c +d a+b n a

i d b a
= C -- -- --

n c+d (a +b) (a +b)

, d b i

[
b] n-i

= C --
[a+b]

--
n c+d a+b

[~]n
d

[
a

]n p = -- --n c+d a+b a

d

[
b

]n = -- --
c+d a+b

In conclusion, we have:

d i b i

[
a] n-i - P. = -- C

[a+b]
--,

c+d a+b n

C

- p., = -- p . ,
d

1

PREPARED BY : Patrick Leroy

Sup. doc. nr
Original issue

Facultés Universitaires
Notre-Dame de la Paix

PROPOSAL

O~i~n

O~i~n

Distribution
Free

PROPOSAL

DATE 1984-08-29
PAGE 78

1

Software development project fi Le p R 0 p 0 s A L

CONCEPT OF VIRTUAL MACHINE Distribution
Free

'
BIBLIOGRAPHY

1

PREPARED BY : Patrick Leroy p R 0 p 0 s A L

Sup. doc. nr Facultés Universitaires DATE 1984-08-29
Original issue Notre-Dame de La Paix PAGE 79

Software deve lopment proj ect fi le

CONCEPT OF VIRTUAL MACHINE

9 Bibliography

General discussions and surveys.

PROPOSAL

Distribution
Free

[1] R.P. Goldberg, "Architecture of Virtual Machines",
Honeywell Information System Inc,
Bi llerica, Massachusetts, 1973.

[2] R.P. Goldberg, "Survey of Virtual Machine Research",
Honeywell Information System Inc,

Bi llerica, Massachusetts, 1974.

[3] R.P. Goldberg, "Virtual Machine: Semantics and Examples",
IEEE Computer Society Conference,
Boston, Massachusetts, 1971.

[4] Piperakis, "Virtual Machine: Analysis of Aspects and Applications"
Siemens Munich, Software Development Project,
vol 8,chap 40, sect 24, 1977.

[5] J.D. Bagley, "Sharing Data and Services in a Virtual Machine",
Operating System Review, vol 9 nro 5,1975.

[6] R.P. Parme Lee, T.I. Peterson, c.c. Ti Lleman, D.J. Hattfield,
"Virtual Storage and Virtual Machines",
IBM System Journal, nro 2, 1972.

[7] G. Popeck, R. Goldberg, "Formal requirements for virtualizable
third generation architectures",
Commun ic ations of the ACM, vol 17, nro 7, july 1974

[8] K. Fuchi, H. Tanaka and T. Yuba, "A program simulator by
partial interpretation",
Second sy mpo s ium on Operating System Principles,
Princeton Univer sity, Oct. 1969.

[9] R.J. Srodawa, L.A. Bates, "An efficient virtual
machine implementation"

PREPARED BY :

Sup. doc. nr
Original issue

Wayne State University
Detroit, Michigan , 48202

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-29
PAGE 80

Software d-eve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE

PROPOSAL

Distribution
Fr e e

[10] J.P. Buzen, O. Gagliardi, "The evolution of virtual
machine architecture"
HoneyweLL Information Systems Inc.
Bi L Lerca, Massachusetts, 1973

[11] R.A. Meyer, I.H. Seawright, "A virtual machine time
sharing syste m"
IBM System Journal, nro 9, 1970

[12] R.J. Creasy, "The origin of the VM/370 time-sharing system"
IBM Journal of Research, vol 25, nro 5, 1981

[13] IBM, "Virtual machine faci Lity /370: introduction"
Or-der nro GCZ0-1800-9

[14] J.P. Buzen, P.P. Chen, R.P. Goldberg, "Virtual Machine
techniques for improving system reliabi Lity",
HoneyweLL Information system Inc,
Bi Ller i ca, Mass a chusett s , 1973.

[15] J.J. Donovan, S.E. Madnick, "Hierarchical approach
to computer integrity"
IBM System Journal, nro 2, 1975

[16] C.R. Attanasio, "Penetrating an operating system:
a study of VM/370 inte g rity"
IB M System Journal, nro 1, 1976

[17] C.R. Attanasio, "Virtua l central storage - security
measure in VM/370"
I BM System Journal, nro 1, 1979

[18] P. Calloway, "Performance consideration for the use
of v i rtual machine capabi Lities"
IBM Tho ma s J . Watson Research Center
Yorktown Hei ghts, Ne w Yor k 10598

[19] C.J. Young, "Extended architecture and hypervisor performance"
Proc. AC M SIGARCH-S I GOPS
Wor kshop on virtual c omp uter system
Cambrid ge, 1973

[20] I. Barzovsky, "Re l iabi lity theory and practice",
Prentice-HaLL, 1961.

PREPARED BY :

Sup. doc. nr
Original issue

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-29
PAGE 81

Software deve Lopment proj ect fi le

CONCEPT OF VIRTUAL MACHINE

Siemens SIM?OOO.

[21] SIEMENS, "BS200 Introduction"
General documentation D14/4387/101

[22] D TS, "Common functional characteristics 11

Siemens AG A26219-Y3-V1-3-7659
1982

PROPOSAL

Distribution
Free

[23] SWN22 Team, 11 SIM?OOO: permanent user description"
Software development project
vol 29, chap 52, sect 21, 1983

[24] SWN22 Team, "Permanent design description of the
SIM?OOO product"

PREPARED BY :

Sup. doc. nr
Original issue

Soft wa re development project
vol 29, chap 61, sect 20, 1983

Patrick Leroy

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-29
PAGE 82

Software development project fi le p R 0 p 0 s A L

CONCEPT OF VIRTUAL MACHINE Distribution
Free

TABLE OF CONTENTS

PREPARED BY : Patrick Leroy p R 0 p 0 s A L

Sup. doc. nr Facultés Universitaires DATE 1984-08-29
Original issue Notre-Dame de la Paix PAGE 83

Software development project fi le p R 0 p 0 s A L

CONCEPT OF VIRTUAL MACHINE Distribution
Free

TABLE OF CONTENTS

1 Foreword .4
2 Introduction . • 6

2.1 The third generation architecture • 6
2.2 The dual state architecture7
2.3 Con c ept of virtual machine9

3 Analysis of virtual machine concept 13
3.1 Type of virtual mach i ne. ([2],[3],[4]) 13

3 . 1 -1 Type 1 . 13
3 .1. 2 Type 1 bis . 13
3 . 1 • 3 type 2 . 13
3 .1. 4 Diagrams of the different types 1 4
3 -1 • 5 Comparison between type 1 and type 2 17

3.1 . 5.1 Performance . 17
3 . 1 . 5.2 Re sources . 17
3.1.5.3 Cast of implementation 17

3 . 2 Major features of virtual machine concept 1 8
3 . 2.1 Simulation of privi leged instructions. ([4] , [6] , [8]) . 1 8
3.2.2 Double virtual addressing. ([4],[6]) 20

3.2.2.1 Dual paging method 22
3.2.2.2 V=D(M) method 25

3.2.3 I/O simulation. ([2],[6]) 27
3.3 Forma l requirements for virtualization ([7]) 28

3 . 3.1 Basic condition . 29
3.3 . 2 Recurs i ve virtualization condition 30
3 . 3.3 Hybrid vir t ual machines condition 31

4 Implications for the computing system 33
4-1 Integrity . 33

4 .1 .1 Reliability and security < [1 4] , [1 5 J , [1 6] , [1 7]) 34
4-1-1-1 Hierarch i cal approach ta system integrity by

using virtual machines 34
4 -1-1 - 2 Redundant security mechanisms 40

4-1 • 2 Avai l a bi Lity C [1 4]) 41
4 - 2 Perf ormanc e C [1 8] , [1 9 J) 51
4.3 Sharing d at a an d s e rvices [5] 52

5 Applications o f virt u a l machines C [2] ,[4] ,[5] ,[6]) 54
5 . 1 Deve lopm e nt, tes t ing and measurement of operating systems . 54
5 . 2 Multi-environ ment . 55

6 Performance of Siem e ns SIM7000 57
6.1 SIM7000 of SIE MENS ([21],[22],[23],[24]) 57

6 .1 .1 Orig i n o f SIM7000 57
6 .1 • 2 Introduc t i on t o SIM7000 58
6 .1 • 3 Arch it e c tu re o f SIM 7000 5 8

PREPARED BY : Patrick Leroy p R 0 p 0 s A L

Sup. doc . nr Facultés Universitaires DATE 1984-08-29
Original issue No t re-Dame de la Paix PAGE 84

Software development project fi le p R 0 p 0 s A L

CONCEPT OF VIRTUAL MACHINE Di s tri bution
Fr ee

6.2 Performance study . 60
6.2.1 Content . 60
6.2.2 Presentation of the tool 60
6.2.3 Presentation of the hardware 61
6.2.4 Different parts of the measurements 62

6.2.4-1 Results of the measurements of the system
control instructions 62

6-2-4-2 Ponderation . 63
6-2-4-3 St a t i s t i Ca l study 65
6.2.4.4 Criticism of the ponde ration 67
6.2.4.5 Concl usion of the privi leged instruction

measures . 67
6.2.4.6 Results of the input/output instructions 68
6.2.4.7 St a t i s t i Ca L study 68
6-2-4.8 Conclusion for the 1/0 operation measurements . . . 70

7 Conclusion . 72
8 Appendix 1 . " . . 75
9 Bibliography . 80

PREPARED BY : Patrick Leroy p R 0 p 0 s A L

Sup. doc. nr Facultés Universitaires DATE 1984-08-29
Original issue Notre-Dame de La Pai X PAGE 85

Software deve Lopment project fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

PROPOSAL

Distribution
Free

FACULTES UNIVERSITAIRES NOTRE-DAME DE LA PAIX
INSTITUT D'INFORMATIQUE

PREPARED BY :

Sup. doc. nr.
Original issue

CONCEPT OF VIRTUAL MACHINE

MODULES OF MEASUREMENTS

Mémoire présenté par

Patrick Leroy

en vue de L'obtention
du titre de

Licencié et Maître en informatique

Année académique 1983 - 1984

Leroy Patrick

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-28
PAGE 1

1

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

1 Introduction

PROPOSAL

Distribution
Free

This paper describes the special tool used to measure the
degradation of performance of SIM7000 of SIEMENS. This tool is a
self-loading program written in SIEMENS assembler. That is, it is
Loaded by the IPL procedure of the machine from a peripherical unit
(a tape or a disk for instance). This program may be d ecomposed
i~to two different parts: the initialisation of the hardware and the
program of measurement itself. These two parts are here presented
and commented.

Here, we wi ll just present the written code in its minimal
form, that is to say without any abject code, litterals, flags and
addresses. If the reader wants to get more information about this
code, he wi Ll find co mplements of information in the assembler
l i sting joined to this docu ment.

PREPARED BY :

Sup. doc. nr.
Original issue

Leroy Patrick

Facultés Universitaires
Notre-Dame de la Paix

PROPOSAL

DATE 1984-08-28
PAGE 2

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2 Initialisation of the hardware

PROPOSAL

Distribution
Free

As the program is a self-Loading program and runs without any
operating system, the first operation to dois to initialize all the
hardware registers. These registers are cal Led processor uti Lity
registers. They are storage Locations which are invisible to the
progra mmer but are used by the CPU for various operations. They are
generally known as pcount er, interrupt mask register, interrupt
status register, segment table address register, etc •••

Warning: the SIEMENS computer works with 4 different states
instead of 2 f or the other machines (privi Leged and user
state). This 4 states are cal Led P1, P2, P3 and P4.

P1: user state

P2: interruptible privi Leged state

P3: uninterruptible privi Leged state

P4: uninterruptible privi Leged state reserved for
power fai Lur e and machine checks.

All this 4 states have their own scratchpad memory
which must be initialized.

PREPARED BY :

Sup. doc. nr.
Original issue

Leroy Patrick

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-28
PAGE 3

Software deve lopment proj ect fi le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

PROPOSAL

2.1.1 Code of the initialisation

Distribution
Free

* * LOAD SUBSYSTEM SCRATCH PAD
* --------------------------
* THIS SECTION RUNNING IN P1 & P3 STATES CONTAINS
* INITIALISATION OF THE HARDWARE REGISTERS.
* THE SCRATCH PAD IS INITIALIZED AS FOLLOW:

*
*
*
*

P1 PCR = P1CLEAR
PZ PCR = PZ
P3 PCR = P3CLEAR

*
*
*

THE *
*
*
*
*
*
*
* *

*
* USING *,O
LEPVM CCPU

F CAL
FCAL
LSP
LSP
LSP
LSP
LSP
LSP
PC

*
* IMR ISR & PCR
*

DC
P3LOADO DC
P3LOAD1 DC

DC
P1LOADO DC
P1LOAD1 DC

DC
P2LOAD1 DC

DC
P2LOADO DC

DS

PREPARED BY :

Sup. doc. nr.
Original issue

EXIOCBIT,$XLCPC LOAD C PU CONTROL REGISTER
IFRSAVE,$XSTIF SAVE IFR
CPUID,$XSTID SAVE CPU-IDENTIFIER
$XP3IMRC1,0),P3LOADO INITIALIZE P3-IMR 1 & z
$P3ISRCZ,O),P3LOAD1 INITIALIZE P3-ISR & P3-PCR
$P1ISRC2,0),P1LOAD1 INITIALIZE P1-ISR & P1-PCR
$P2ISR(2,0),P2LOAD1 INITIALIZE P2-ISR & P2-PCR
$XP2IMRC1,0),P2LOADO INITIALIZE P2-I MR 1 & z
$XP1IMR(1,0),P1LOADO
P1CLEAR,$P3 ENTER IN P3 STATE

VA LUES

OF
X'0000001300000007' ONLY P4 INTERRUPTS ALLOWED
XL4'00'
AL4(P3CLEAR)
X'FFFEFE1FFFFFFFFF' ALMOST ALL INTERRUPTS ALLOWED
XL4'00'
AL4(P1 CLEAR)
XL4'00'
AL4CP2)
X'FFFEFE1FFFFFFFFF' ALMOST ALL INTERRUPTS ALLOWED
0D

Leroy Patrick PROPOSAL

Facultés Universitaires
Notre-Dame de La Paix

DATE 1984-08-28
PAGE 4

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

EXIOCBIT DC
IFRSAVE DS
CPUID DS

X'4OOOOOOOAOOOOOOO'
D
D

PROPOSAL

Distribution
Free

* THE FOLLOWING PC STATEMENTS RUN ALTERNALY IN P1 & P3 IN
* ORDER TO RESET THE P1-ISR

* P3CLEAR

P1CLEAR

P3ADR

P3INIT

EQU
PC
EQU
LSP
PC
DS
DC
DC
PC

PREPARED BY :

Sup. doc. nr.
Original issue

* P3CLEAR,$P1

* $P3ISR(2,O),P3ADR
P1 CLEAR,$P3
OF
XL4'OO'
AL4(P3INIT)
P3ROUTIN,$P2

Leroy Patrick

Facultés Universitaires
Notre-Dame de La Paix

EN $P2 AT P2

PROPOSAL

DATE 1984-08-28
PAGE 5

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2.2 Bootstrap procedure

PROPOSAL

Distribution
Free

After the initialition of the hardware, we must read the rest
of the self-Loading program on the tape. This is due to the fact
that the IPL procedure read just the first block on the tape, store
it in main memory at the real address O and give the control at this
address. Here, we also find the code of the introduction of the CUU
(channel and unit number) of all the unit used by the self-loading
prog ram. This introduction is realized throu g ht the console of the
system.

PREPARED BY :

Sup. doc. nr.
Original issue

Leroy Patrick

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-28
PAGE 6

Software deve lopment proj ect fi le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2.2.1 Code of the procedure

P R O P O S A L

Distribution
Free

* BOOTSTRAP PROCEDURE: LOAD THE 2ND BLOCK *
* ---------------------------------------
* THIS SECTION TURNS IN P2 STATE IN ORDER TO:
* 1) LOAD THE SECOND BLOCK FROM TAP E
* 2) ENTER THE CUU OF THE USED UNITS
*

*
*
*
*
*

*
P2 LA

LA
XR

LOOPCUU LA
MVC
BAL
PACK
CVB
STH
LA
LA
BCT
LA
LA
LH
SDV
IDL

CONTBOOT B

*

R2,4
R3,CARACT
R4,R4
R1 1,CUUCCW
MSGCUU +1 O(4),O(R3)
R14, IN OUT
STA RTI ME,CUU
R1 O, ST AR TIME
R1O, DEVIC EAD(R4)
R3,4 CR 3)
R4, 2 CR 4)
R2 ,LOO PCUU
R1 1, BO OTCCW
R1 , 1 2
R12, IPL DVAD
OCR 12)
0
PC

CCW TO READ FROM CONSOLE

CONVERSION OF CUU INTO
BINARY

CCW TO READ THE 2ND BLOCK
FROM THE TAPE

* DATA OF THE MAIN ROUTINE

* STARTIME DS
ENDTIME DS
CARACT DC

DC
DC
DC

DEVICEAD DS
IPLDVAD DS
DISKDVAD DS
TAPEDVAD DS

PREPARED BY :

Sup. doc. nr.
Original issue

D
D
C'IPL '
C'DISK'
C'TAPE'
C'CARD'
OH
H
H
H

Leroy Patrick

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-28
PAGE 7

Software development project fi Le p R 0 p 0 s A L

CONCEPT OF VIRTUAL MACHINE Distribution
MODULES OF MEASUREMENTS Free

CARDDVAD DS H
cuuccw ccw X'03',MSGCUU,X'40',X'23'
ccw X'05',CUU,X'20',X'04'
BOOTCCW ccw X' 05 ',X' 1 000', X' 20', X' 1000'
cuu DS F
MSGCUU DC X'15',C'? cuu OF IPL ? (DEC. IN 4 CHAR!!)'

PREPARED BY : Leroy Patrick p R 0 p 0 s A L

Sup. doc. nr. Facultés Universitaires DATE 1984-08-28
Original issue Notre-Dame de La Paix PAGE 8

Software deve Lopment project fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2.3 Instruction PC (Program Control)

PROPOSAL

Distribution
Free

This instruction specifies the termination of program execution
in the current processor state and the initiation of an other state
specified in the instruction. The current processor state is
desactived and its pcounter is initialized with the ad d ress
spec i fied in th e instruction and the ne w processor st a te is actived
at the address specifie d by its pcounter.

2.3.1 Example

Let's suppose we are in P3 state and that we want to execute

PC ADR1,$P2

That wi Ll cause:

- activation of the state P2

- save of the P3 pcounter in the scratchpad of P3 state
the current state

- branch to the address contained in the P2 pcounter
of the P2 scratchpad memory

PREPARED BY :

Sup. doc. nr.
Original issue

Leroy Patrick

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-28
PAGE 9

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2.3.2 Code of the measurement

PROPOSAL

Distribution
Free

**
* MEASURE OF PC INSTRUCTION *
**
*
* PC

LOOP

RET

*

XR
LA
LSP
STCK
PC
BAL
BCT
LSP
MVC
BAL
B

R8,R8
R9,100
$XP3PCR,=A(P3PC) LOAD P3PCR WITH A(P3PC)
STARTIME STORE THE TIME
RET,$P3 PC INSTR TO BE MEASURED
R14,COMPTA BRANCH AT P3PCR IN
R9,LOOP P3 STATE AND LOAD
$XP3PCR,=A(P3ROUTIN) P2PCR WITH A(RET)
MSG+24(18),=C' PC INSTRUCTIONS '
R14,CONVERT
LSP1

*
P3PC STCK ENDTIME STORE THE TIME

PC P3PC,$P2 BRANCH AT P2PCR IN P2 STATE
AND LOAD P3PCR WITH A(P3PC)

PREPARED BY :

Sup. doc. nr.
Original issue

Leroy Patrick

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DA TE 1984-08-28
PAGE 10

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2.4 Instruction LSP (Load Status of Program)

PROPOSAL

Distribution
Free

This instruction Loads the CPU registers from a field Located
in main storage. This instruction has a Lot of subfunctions which
allow to Load almost any f iel d o f the scratchpad memory. Here, we
wiLL just measure 3 of the m: t he Loading of one word, the Loading of
the general registers an d the loadin g of all the context of one
program.

2.4.1 Example

Let's suppose we want to execute

LSP $XP3PCR,=A(P3ROUTIN)

That will cause:

- the Load of the P3 pcounter in the P3 scratchpad
memory with the address of P3ROUTIN.

PREPARED BY :

Sup. doc. nr.
Original issue

Leroy Patrick

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-28
PAG E 11

Software deve Lopment proj ect fi Le PROPOSAL

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREM~ NTS

2.4.2 code of the measurement

Distribution
Free

* MEASURE OF LSP INSTRUCTION *

*
* LSP1 XR

LA
LLSP1 STCK

LSP
STCK
BAL
BCT
MVC
BAL
B

*
*
LSP16 XR

LA
SSP

LLSP16 STCK
LSP
STCK
BAL
BCT
MVC
BAL
B

*
* LSPALL XR

LA
SSP

LLSPALL STCK
LSP
STCK
BAL
BCT
MVC
BAL

PREPARED BY :

Sup. doc. nr.
Original issue

R8,R8
R9,1OO
STARTIME STORE THE TIME
$XP3PCR,=A(P3ROUTIN) LOAD 1 WORD OF THE SCRPD
ENDTI ME STORE THE TI ME
R1 4,COMPTA
R9,LLSP1
MSG+24(18),=C'LSP (, 1 WORD) '
R1 4,CONVERT
LSP16

R8,R8
R9,1OO
$XP3GR,CONTEX
STARTIME STORE THE TIME
$XP3GR,CONTEX LOA D 1 6 REG OF THE SCRPD
ENDTI ME STORE THE TI ME
R14,CO MPTA
R9,LLSP16
MSG+2 4 (18),=C'LSP (1 6 WO RD S) '
R1 4,CONV ERT
LSPALL

R8,R8
R9,1OO
$XP3PCTX,CONTEX
STARTIME STORE THE TIME
$XP3PCTX,CONTEX LOAD ALL THE CONTEXT
ENDTIME STORE THE TIME
R14,CO MPTA
R9,LLSPALL
MSG+24(18),=C'LSP (ALL CONTEXT) '
R1 4 ,CONV ERT

Leroy Patrick PROPOSAL

Facultés Universitaires
Notre-Dame de la Paix

DATE 1984-08-28
PAGE 12

Software development project fi Le p R 0 p 0 S A L

CONCEPT OF VIRTUAL MACHINE Distribution
MODULES OF MEASUREMENTS Free

B SSP1

*
* DATA OF LSP MEASURE

*
DS OD

CONTEX DS 48F

PREPARED BY : Leroy Patrick p R 0 p 0 S A L

Sup. doc. nr. Facultés Universitaires DATE 1984-08-28
Original issue Notre-Dame de La Paix PAGE 13

Software development project fi le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2.s instruction SSP (Store Status of Program)

PROPOSAL

Distribution
Free

This instruction stores the CPU registers into a field located
in main storage. This instruction has a Lot of subfunctions which
allow to store almost any field of the scratchpad memory. Here, we
will just measure 3 of the m: the storing of one word, the storing of
the general registers and the storing of aLL the context of one
program.

2.s.1 Example

Let's suppose we want to execute

SSP $XP2PCR,SAVEP2PC

That wi l l cause

- the store of the P2 pcounter of the P2 scratchpad
memory into the word named SAVEP2PC

PREPARED BY :

Sup. doc. nr.
Original issue

Leroy Patrick

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-28
PAGE 14

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

PROPOSAL

2.5.2 Code of the measurement

Distribution
Free

* MEASURE OF SSP INSTRUCTION *

*
SSP1

LSSP1

*
*
SSP16

LSSP16

*
* SSPALL

LSSPALL

DS
XR
LA
STCK
SSP
STCK
BAL
BCT
MVC
BAL
B

OH
R8,R8
R9,100
STARTIME
$XP2PCR,CONTEX
ENDTIME
R14,COMPTA
R9,LSSP1
MSG+24(18),=C'SSP
R14,CONVERT
SSP16

XR R8,R8
LA R9,100
STCK STARTIME
SSP
STCK
BAL
BCT
MVC
BAL
8

XR
LA
STCK
SSP
STCK

$XP2GR,CONTEX
ENDTIME
R14,COMPTA
R9,LSSP1 6
MSG+24(18) ,=C'SSP
R14,CONVERT
SSPALL

R8,R8
R9,100
STARTIME
$XP2P CTX,CONTEX
ENDTIME

BAL R14,COMPTA
BCT R9,LSSPALL

STORE THE TIME
STORE 1 WORD
STORE THE TIME

(1 WO RD) '

STORE THE TIME
STORE P2 REGISTERS
STORE THE TIME

(16 WORDS) '

STORE THE TIME
STORE ALL THE CONTEXT
STORE THE TIME

MVC MSG+24(18) ,=C'SSP (ALL CONTEXT) '
BAL R14,CONVERT
B LSAL

PREPARED BY : Leroy Patrick PROPOSAL

Sup. doc. nr.
Original issue

Facultés Universitaires
Notre-Dame de la Paix

DATE 1984-08-28
PAGE 15

Software deve Lopment project fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2.6 Instruction FCAL (Function Call)

PROPOSAL

Distribution
Free

This instruction has several special fuctions covered by the
same operation code. The special function to be performed is
specified in the instruction itself. We wi LL here examine the
principal functions covered by this instruction.

2.6.1 Subfunction LSAL (Load Segment Table and Address Length)

This instruction loads the segment table address register
(STAR) together with the segment table Length register from a word
Located in main storage.

2.6.1.1 Example

Let's suppose we want to execute

FCAL ADRSTAR,$XLSAL

That wi L L cause:

- the load of the harware regisetr STAR with
the address and trhe length contained in
the word ADRSTAR Located in main storage

PREPARED BY :

- $XLSAL is a special code which aLLows
to specify the speciaL subfunction of
FCAL to be performed.

Leroy Patrick

Sup. doc. nr.
Original issue

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-28
PAGE 16

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

PROPOSAL

Distribution
Free

2.6.1.2 Code of the measurement

* MEASURE OF LSAL INSTRUCTION *

* o·s OH
LSAL XR

LA
LOOPLSAL FCAL

STCK
F CAL
STCK
BAL
BCT
MVC
BAL
B

* * DATA OF LSAL

* DS
AHLSAL DC
FWLSAL DS

PREPARED BY :

Sup. doc. nr.
Original issue

R8,R8
R9,100
AHLSAL,$XSSAL STORE THE ACTUAL STAR
STARTIME STORE THE TIME
AHLSAL,$XLSAL LOAD TH E STAR WITH AHLSAL
ENDTI ME STORE THE TI ME
R14,CO MPTA
R9,LOOPLSAL
MSG+24C18),=C'LSAL INSTRUCTIONS '
R14,CO NVERT
SSAL

MEA SURE

' OH
AL2(FWLSAU
F

Leroy Patrick PROPOSAL

Facultés Universitaires
Notre-Dame de La Paix

DATE 1984-08-28
PAGE 17

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

PROPOSAL

Distribution
Free

2.6.2 Subfunction SSAL (Store Segment table Address and Length)

This instruction stores the segment table address register
(STAR) together with the segment table Length into a word Located in
main storage.

2.6.2.1 Example

Let's suppose we want to execute:

FCAL ADRSTAR,$XSSAL

That wi L L cause:

- the store of the actual address of the segment
table and Lengt h into the word ADRSTAR located
into the main memory.

- $XSSAL is a code which allows to specifie the
special subfunction of FCAL to be performed.

PREPARED BY :

Sup. doc. nr.
Original issue

Leroy Patrick

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-28
PAGE 1 8

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2.6.2.2 Code of the measurement

PROPOSAL

Distribution
Free

* MEASURE OF SSAL INSTRUCTION *

*

DS
SSAL XR

LA
LOO PSSA L STCK

F CAL
STCK
BAL
BCT
MVC
BAL
B

* * DATA OF SSAL

*
DS

AHSSAL DC
F W S SA L DS

PREPAREO BY :

Sup. doc. nr.
Original issue

OH
R8,R8
R9,100
STARTIME STORE THE TIME
AHSSAL,$XSSAL STORE SEG. TABLE ADR
ENDTIME STORE THE TIME
R14,COMPTA
R9,LOOPSSAL
MSG+24(18),=C' SSAL INSTRUCTIONS '
R14,CONVERT
STIF

MEASURE

OH
AL 2(FWSSAL)
F

Leroy Patrick

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-28
PAGE 19

Software development project fi le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

PROPOSAL

Distribution
Free

2.6.3 Subfunction STIF (Store Interrupt Flag register)

This instruction stores the interrupt f Lag register of the CPU
executing the instruction STIF into a double word Located in main
storage. The content of the interrupt flag re g ister remains
unchanged.

2.6.3.1 Example

Let's suppose we want to execute:

F CAL STSTIF,$XSTIF

That wi l l cause:

- the store of the interrupt flag register
into the double word STSTIF Located in the
main memory.

- $XSTIF is a code which allows to specify the
special subfunction of FCAL to be p erformed.

PREPARED BY :

Sup. doc. nr.
Original issue

Leroy Patrick

Facultés Universitaires
Notre-Dame de la Paix

PROPOSAL

DATE 1984-08-28
PAGE 20

Software deve lopment proj ect fi le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2.6.3.2 Code of the measurement

PROPOSAL

Distribution
Free

* MEASURE OF STIF INSTRUCTION ·*

* STIF XR

LA
LOOPSTIF STCK

F CAL
STCK
BAL
BCT
MVC
BAL
B

* * DATA OF STIF

*
STSTIF DS

PREPARED BY :

Sup. doc. nr.
Original issue

R8,R8
R9,1OO
STARTIME STORE THE
STSTIF,$XSTIF STORE THE
ENDTIME STORE THE
R14,COMPTA
R9,LOOPSTIF
MSG+24(18),=C'STIF INSTRUCTIONS '
R14,CONVERT
TSR

MEASURE

D

Leroy Patrick

Facultés Universitaires
Notre-Dame de la Paix

TIME
IFR IN STSTIF
TIME

PROPOSAL

DATE 1984-08-28
PAGE 21

Software deve Lopment project fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2.6.4 Subfunction TSR (Test and Set Real)

PROPOSAL

Distribution
Free

This instruction tests and sets a byte Located in main storage.
The address specified for the byte must be the real one. The byte
is read and bit O of this byte is used to set the code condition.
Then X'FF' is stored into t he by t e. The code condition is set as
f o L L ow s:

condition code:

0 - bit 0 of the byte was 0
1 - bit 1 of the byte was 1
2 - no t us e d
3 - not used

2.6.4.1 Example

Let's suppose we want to execute:

FCAL BYTETSR,$XTSR

Th a t w i L L cause :

- the test of the byte BYTETSR Located in the main
memory, the test is done following the rules
e xposed just before.

- $XTSR is a code which allows to specifie the
special subfunction of FCAL to be p e rformed.

PREPARED BY :

Sup. doc. nr.
Original issue

Leroy Patrick

Facu l tés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-28
PAGE 22

Software deve lopment proj ect fi le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2.6.4.2 Code of the measurement

PROPOSAL

Distribution
Free

* MEASURE OF TSR INSTRUCTION *

*
* TSR

LOOPTSR

*

XR
LA
STCK
FCAL
STCK
BAL
BCT
MVC
BAL
B

R8,R8
R9,100
STARTIME
BYTETSR,$XTSR
ENDTIME
R14,COMPTA
R9,LOOPTSR
MSG+24C18),=C'TSR
R1 4,CONVERT
STID

STORE THE TIME
SET AND TEST BYTETSR
STORE THE TIME

INSTRUCTIONS '

* DATA OF TSR MEASURE

* BYTETSR DC

PREPARED BY :

Sup. doc. nr.
Original issue

B'OOOOOOOO'

Leroy Patrick

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-28
PAGE 23

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2.6.5 Subfunction STID (Store CPU Identification)

PROPOSAL

Distribution
Free

This instruction stores the CPU identification of the CPU
executing the STID instruction into a double word located in main
storage.

2.6.5.1 Example

Let's suppose we want to execute:

F CAL

That will cause:

STSTID,$XSTID

- the store of the CPU identifier into the
double word STSTID located into the main
memory.

- $XSTID is a code which allows to specify the
special subfunction of FCAL to be performed.

PREPARED BY :

Sup. doc. nr.
Original issue

Leroy Patrick

Facultés Universitaires
Notre-Dame de la Paix

PROPOSAL

DATE 1984-08-28
PAGE 24

Software deve lopment proj ect fi le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2.6.S.2 Code of the measurement

PROPOSAL

Distribution
Free

* MEASURE OF STID INSTRUCTION *

*
STID XR

LA
LOOPSTID STCK

F CAL
STCK
BAL
BCT
MVC
BAL
B

*
* DATA OF STID
*
STSTID DS

PREPARED BY :

Sup. doc. nr.
Original issue

R8,R8
R9,1OO
ST ARTIME STORE THE
STSTID,$XSTID STORE THE
ENDTIME STORE THE
R14,COMPTA
R9,LOOPSTID
MSG+24(18) ,=C'STID INSTRUCTIONS '
R14,CONVERT
STNU

MEASURE

D

Leroy Patrick

Facultés Universitaires
Notre-Dame de La Paix

TIME
C PU IDENT
TIME

PROPOSAL

DATE 1984-08-28
PAGE 25

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASURE MENTS

2.6.6 Subfunction STNU (Store CPU Number)

PROPOSAL

Distribution
Free

This instruction stores the content of the CPU number into one
byte Located in the main s t orage. The CPU number is a one byte
field defined dur i ng installat i on of a multi-processor confi g uration
to uniquely identify each CPU in the configur a t i on. The nu mbe r wi LL
be binary encoded.

2.6.6.1 Example

Let's suppose we want to execute:

FCAL

That wi L L cause:

STSTNU,$XSTNU

- the store of the CPU number into the byte
STSTNU Located in the main memory.

- $XSTNU is a code which aLLows to specify the
special subfunction of FCAL to be p e rformed.

PREPARED BY :

Sup. doc. nr.
Original issue

Leroy Patrick

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-28
PAGE 26

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2.6.6.2 Code of the measurement

PROPOSAL

Distribution
Free

* MEASURE OF STNU INSTRUCTION *

*
STNU

LOOPSTNU

* * DATA OF

* STSTNU

DS
XR
LA
STCK
F CAL
STCK
BAL
BCT
MVC
BAL
B

STNU

DS

PREPARED BY :

Sup. doc. nr.
Origina l issue

OH
R8,R8
R9,100
STARTIME STORE THE
STSTNU,$XSTNU STORE CPU
ENDTI ME STORE TH E
R14,CO MPTA
R9,LOOPSTNU
MSG+2 4 (18),=C'STNU INSTRUCTIONS '
R14,C ONVERT
LD ~JR

MEA SURE

CL 1

Leroy Patrick

Facultés Universitaires
Notre-Dame de La Paix

TIME
NUMBER
TIME

PROPOSAL

DATE 1984-08-28
PAG E 27

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2.6.7 Subfunction LDWR (Load Word Real)

PROPOSAL

Distribution
Free

This instruction loads a word into a general register specified
in the instruction from the main storage area designated by a real
word oriented address contained in an other general register also
specified in the instruction.

2.6.7.1 Example

Let's suppose we want to execute:

F CAL 16*R11+R10,$XLDWR

Th a t w i L L cause :

- the Load into register 11 of the word located
at the real address specified by the register 10.

- $XLDWR is a code which allows to specify the
special subfunction of FCAL to be performed.

PREPARED BY :

Sup. doc. nr.
Original issue

Leroy Patrick

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-28
PAGE 28

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2.6.7.2 Code of the measurement

PROPOSAL

Distribution
Free

* MEASURE OF LDWR INSTRUCTION *

*
* LDWR

LOOPLDWR

* * DATA OF

* WORDLDWR

XR
LA
LA
STCK
F CAL
STCK
BAL
BCT
MVC
BAL
B

LDWR

DS

PREPARED BY :

Sup. doc. nr.
Original issue

R8,R8
R9,100
R10, WORDLDWR
STARTIME STORE THE
16*R 1 1 +R10,$XLDWR LOAD WORD
ENDTI ME STO RE TH E
R1 4 ,CO MPTA
R9,LOOPLD WR
MSG+24(18),=C'LDWR INSTRUCTIONS 1

R14,CO NVERT
LD HR

MEASURE

F

Leroy Patrick

Facultés Universitaires
Notre-Dame de la Paix

TIME
IN R11 FROM R10
TIME

PROPOSAL

DATE 1984-08-28
PAGE 29

Software deve lopment proj ect fi le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASURE MENTS

2.6.8 Subfunction LDHR (Load Halfword Real)

PROPOSAL

Distribution
Free

This instruction loads a halfword into bits 16-31 of a general
register specifed in the instruction from a real halfword oriented
address contained in an other general register also specified in the
instruction. Bi ts 0-15 of the firs t general register are set to
zeros.

2.6.8.1 Example

Let's suppose we want to execute:

F CAL

That wi l l cause:

16*R11+R10,$XLDHR

- the load into the register 11 of the halfword
located at the real address specifed by the
register 10.

- $XLDHR is a code which allows to specify the
special subfunction of FCAL to be performed.

PREPARED BY :

Sup. doc. nr.
Original issue

Leroy Patrick

Facultés Universitaires
Notre-Dame de la Paix

PROPOSAL

DATE 1984-08-28
PAGE 30

Software deve lopment proj ect fi le PROPOSAL

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASURE MENTS

2.6.8.2 Code of the measurement

Distribution
Fr e e

* MEASURE OF LDHR INSTRUCTION *

*
* LDHR

LOOPLDHR

*

XR
LA
LA
STCK
F CAL
STCK
BAL
BCT
MVC
BAL
B

* DATA OF LDHR

* HALFLDHR DS H

PREPARED BY :

Sup. doc. nr.
Original issue

R8,R8
R9,100
R10,HALFLDHR
STARTIME
16*R11+R10,$XLDHR
ENDTIME

STORE THE TIME
LOAD HALF IN R10 FROM R11
STORE THE TI ME

R14,CO MPTA
R9,LOOPLDHR
MSG+24(18),=C'LDHR
R14,CONVERT

INSTRUCTIONS '

STWR

Leroy Patrick

Facultés Universitaires
Notre-Dame de la Paix

PROPOSAL

DATE 1984-08-28
PAGE 31

1 •

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2.6.9 Subfunction STWR (Store Ward Real)

PROPOSAL

Distribution
Free

This instruction stores a word from the general register
specified in the instruction into the main storage area designated
by the real word oriented address contains in an other general
register also specified in the instruction. The contents of the
general registers are unchang ed.

2.6.9.1 Example

Let's suppose we want to execute:

F CAL 16*R11+R10,$XSTWR

That wi L L cause:

- the store of the register 11 into a word Located
at the real address specified by the register 10.

- $XSTWR is a code which allows to specify the
special subfunction of FCAL to be performed.

PREPARED BY :

Sup. doc. nr.
Original issue

Leroy Patrick

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-28
PAGE 32

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2.6.9.2 Code of the measurement

PROPOSAL

Distribution
Free

* MEASURE OF STWR INSTRUCTION *

*
*
STWR XR

LA
LA

LOOPSTWR STCK
F CAL
STCK
BAL
BCT
MVC
BAL
B

* * DATA OF SHJR

*

R8,R8
R9,1OO
R1O,WORDSTWR
STARTIME
16*R11+R1O,$XSTWR
ENDTIME
R14,CO MPTA
R9,LOOPSTWR
MSG+24C18),=C'STWR
R14,CONVERT
ST HR

MEASURE

STORE THE TIME
STORE WORD FROM R1O TO R11
STORE THE TIME

INSTRUCTIONS '

WORDSTWR DS F

PREPARED BY :

Sup. doc. nr.
Original issue

Leroy Patrick

Facultés Universitaires
Notre-Dame de la Paix

PROPOSAL

DATE 1984-08-28
PAGE 33

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2-6-10 Subfunction STHR (Store Halfword Real)

PROPOSAL

Distribution
Free

This instruction stores bits 16-31 of a general register
specified in the instruction into the main storage area designated
by the real halfword oriented address contained in an other general
register also specified in the instruction. The contents of the
general registers remain unchang ed.

2.6.10.1 Example

Let's suppose we want to execute:

FCAL 16*R11+R10,$XSTHR

That wi L L cause:

- the store of the register 11 into ~ halfword
Located in main memory at the real address
specified by hte register 10.

- $XSTHR is a code which allows to specify the
special subfunction of FCAL ta be performed.

PREPARED BY :

Sup. doc. nr.
Original issue

Leroy Patrick

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-28
PAGE 34

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2.6.10.2 Code of the measurement

PROPOSAL

Distribution
Free

* MEASURE OF STHR INSTRUCTION *

*
* STHR XR

LA
LA

LOOPSTHR STCK

*

F CAL
STCK
BAL
BCT
MVC
BAL
B

R8,R8
R9,100
R10,HALFSTHR
STARTIME
16*R11+R10,$XSTHR
ENDTIME
R14,COMPTA
R9,LOOPSTHR

STORE THE TIME
STORE HALF FROM R10 TO R11
STORE THE TIME

MSG+24(18) ,=C'STHR INSTRUCTIONS '
R14,CONVERT
STIO

* DATA OF STHR MEASURE

* HALFSTHR DS H

PREPARED BY :

Sup. doc. nr.
Original issue

Leroy Patrick

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-28
PAGE 35

Software development project fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2.6.11 Subfunction STIO (Store I/0 Status)

PROPOSAL

Distribution
Free

This instruction store the four words of the I/o status
information in main memory at an address which must be word aligned.
The four words contain succesively the CAR (Channel Address
Register), the CCRZ (Channel Command Regis ter 2), the CCR1 (Channel
Command Register 1) and the DSR (Devi ce Status Register).

2.6.11.1 Example

Let's suppose we want to execute:

FCAL STSTIO,$XSTIO

Th a t w i L L c au se :

- the store of the I/0 status into 4 words
Located in the main memory at the address
STSTIO.

- SXSTIO is code which allows to specify the
special subfunction of FCAL to be performed.

PREPARED BY :

Sup. doc. nr.
Original issue

Leroy Patrick

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-28
PAGE 36

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2.6.11.2 Code of the measurement

PROPOSAL

Distribution
Free

* MEASURE OF STIO INSTRUCTION *

*
* STIO XR

LA
LOOPSTIO STCK

F CAL
STCK
BAL
BCT
MVC
BAL
B

* * DATA OF STIO

* FWSTIO DS

PREPARED BY :

Sup. doc. nr.
Original issue

R8,R8
R9,100
STARTIME STORE
FWSTIO,$XSTIO STORE
ENDTIME STORE
R14,COMPTA •
R9,LOOPSTIO
MSG+2 4(18),=C'STIO INSTRUCTIONS
R1 4 ,C ONVERT
TDV

MEA SURE

4F

Leroy Patrick

Facultés Universitaires
Notre-Dame de La ~aix

THE TIME
THE I/0 STATUS
THE TIME

'

PROPOSAL

DATE 1984-08-28
PAGE 37

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASURE MENTS

2.7 Instruction TDV (Test Device)

PROPOSAL

Distribution
Free

The data path specified in the instruction is checked wether it
could be initiated by a SDV or not. If there is any condition in
the I/0 components which could prevent the success of command
initiating, the instruct ion is terminated with a condition code
different from O an d rep ens e infor ma t ion is given in regi s ter 12.
If command init i ating wo uld succ e ed, the ins t ruction t e rmina t es with
a condition code equ al to o.

2.7.1 Example

Let's suppose we want to execute :

TDV O(R12)

That wi L L cause:

- the analyse of the data path specified by
the register 12

- the postionement of the condition code
f ollowing the result of the check.

PREPARED BY :

Sup. doc. nr.
Original issue

Leroy Patrick

Facultés Universitaires
Notre-Da me de La Paix

PROPOSAL

DATE 1984-08-28
PAGE 3 8

Software deve Lopment project fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2.7.2 Code of the measurement

PROPOSAL

Distribution
Free

* MEASURE OF TDV INSTRUCTION *

*
* TDV XR

LA
LOO PTDV LH

STCK
TDV
STCK
BAL
BCT
MVC
BAL
B

PREPARED BY :

Sup. doc. nr.
Original issue

R8,R8
R9,100
R12,CONSDVAD CONSDVAD = CUU OF THE CONSOLE
STARTIME STORE THE TIME
O(R12) TEST CO NSOLE CHANNEL
ENDTI ME STORE THE TI ME
R14,CO MPTA
R9,LOOPTDV
MSG+24(18),=C'TDV INSTRUCTIONS '
Rî4,CONVERT
SDV

Leroy Patrick

Facultés Universitaires
Notre-Dame d e La Paix

PROPOSAL

DATE 1984-08-28
PAGE 39

Software deve Lopment project fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2.8 Input/output instruction

PROPOSAL

Distribution
Free

For Siemens computer, all the I/0 operations are done with the
same instruction, SDV (Start Device). This instruction uses two
operands, the CAW (Channel Address Word) and the CCW (Channel
Command Word). The CAW must contain the channel number (C) and the
unit number (UU) in the form CUU. The CCW is a do uble word
containing the 1/0 command to be executed in the form of CMD, ADR,
CHAIN, LENGTH.

CMD: I/0 command code

ADR: address of data

CHAIN: code of chaining several CCW

LENGTH: Length of the data

For the SDV to be executed correctly, the register 12 must
contain the CAW and the register 11 must contain the address of the
CCW chain to be executed.

2.8.1 Input/output on console

The CAW of the console is equal to 000
The CCW is equal ta

X'03',TESTMSG,X'20',X'11'

with: X'03' = write command
TESTMSG = address of the message to write
X'20' = no chain command

PREPARED BY :

Sup. doc. nr.
Original issue

X'11 • = Len gt h of the message in hexadecimal

Leroy Patrick

Facultés Universitaires
Notre-D a me de La Paix

PROPOSAL

DATE 1984-08-28
PAGE 40

Software deve Lopment project fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2.8.1.1 Code of the measurement

PROPOSAL

Distribution
Free

* MEASURE OF SDV (WRITE ON CONSOLE) *

*
*
SDV XR

LA
LA

LOOPSDV LA
LH
STCK
SDV
IDL

CONTIN XR
MVC
BAL
BCT
MVC
BAL
B

* * DATA OF SDV

* TESTCCW ccw
TESTMSG DC

PREPARED BY :

Sup. doc. nr.
Original issue

R8,R8
R9,100
R11,TESTCCW CCW TO WRITE ON CONSOLE
R 1, 1
R12,CONSDVAD CONSDVAD = cuu OF CONSOLE
STARTIME STORE THE TIME
O(R12)
0
R1, R1
ENDTIME(8),SAVETIME
R14,COMPTA
R9,LO OPSDV
MSG+2 4 (18),=C'SDV ON CONSOLE
R14,C ONV ERT
SDV TAPEW

MEASURE

X'03',TESTMSG,X'20',X'11'
X'15',C' MEASURE OF 1 SDV'

Leroy Patrick

Facultés Universitaires
Notre-Dame de La Paix

•

PROPOSAL

DATE 1984-08-28
PAGE 41

Software deve lopment proj ect fi le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2.8.2 Input/output on tape

2.8.2.1 Write on tape

PROPOSAL

Distribution
Free

The CAW of tape is equal to TAPEDVAD which is asked at the
begining of the program.

The CCW is equal to

X'03',X'1800',X'20',X'800'

with X'03' = command code for write

X'1800' = real address of I/0 buffer

X'20' = no chain command

X'800' = length of I/0 buffer in hexadecimal (2 Kb)

PREPARED BY :

Sup. doc. nr.
Original issue

Leroy Patrick

Facultés Universitaires
Notre-Dame de la Paix

PROPOSAL

DATE 1984-08-28
PAGE 42

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2.8.2.1.1 Code of the measurement

PROPOSAL

Distribution
Free

* MEASURE OF SDV (WRITE ON TAPE) *

*
*
SDVTAPEW XR

LA
LA
LA
LH
SDV
BC
IDL

CONTAPMA LA
LA
LH
ST
LH
STCK
SDV
BC
IDL

CONTAPEW MVC
BAL
BCT
MVC
BAL
B

*
* DATA OF SDV

*
TAPECCWR ccw
TINITCCW ccw

DS

PREPARED BY :

Sup. doc. nr.
Original issue

R8,R8
R9,100
R1,2
R11,TINITCCW CWW OF INITIALISATION ON TAPE
R12,TAPEDVAD TAPEDVAD = CUU OF TAPE
O(R12)
7,FIN
0
R11,TAPECCWW CCW TO WRITE ON TAPE
R1,3
R12,=H'6160' 6160 = A(I/0 BUFFER + 1 6)
R9,0(R12) STORE RECORD NUM
R12,TAPEDVAD
STARTIME STORE THE TIME
O(R12)
7,FIN
0
ENDTIME(8),SAVETIME
R14,COMPTA
R9,CONTAPMA
MSG+24(18)~=C'WRITE 2 KB ON TAPE'
R14,CONVERT
SDVTAPER

(WRITE ON TAPE)

X'O3',X'18OO',X'2O',X'8OO'
X'07',BOT,X'20',X'01'
OD

Leroy Patrick

Facultés Universitaires
Notre-Dame de La Paix

INTO I/0 BUFFER

PROPOSAL

DATE 1984-08-28
PAGE 43

Software deve Lopment project fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASURE MENTS

2.a.2.2 Read on tape

The CCW is equal to

X'05',X'1800',X'20',X'800'

with X'05' = command code for read

PROPOSAL

Distribution
Free

X'1800' = address of the I/0 buffer

PREPARED BY :

Sup. doc. nr.
Original issue

X'20' = no command chaining

X'BOO' = Length of I/0 buffer

Leroy Patrick

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DA TE 1984-08-28
PAGE 44

Software deve lopment proj ect fi le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2.8.2.2.1 Code of the measurement

PROPOSAL

Distribution
Free

* MEASURE OF SDV (READ ON TAPE) *

*
*
SDVTAPER XR

LA
LA
LA
LH
SDV
BC
IDL

CONTTPM LA
LA
LH
STCK
SDV
BC
IDL

CONTAPER MVC
BAL
BCT
MVC
BAL
B

* * DATA OF SDV

* TAPECCWR ccw
TINICCWR ccw

PREPARED BY :

Sup. doc. nr.
Original issue

R8,R8
R9,100
R1,5
R11,TINICCWR CCW TO REWIND
R12,TAPEDVAD
O(R12)
?,FIN
0
R11,TAPECCWR CCW TO REA D ON
R1,6
R12,TAPEDVAD
STARTIME STORE THE TIME
O(R12)
?,FIN
0
ENDTIME(8),SAVETIME
R14,COMPTA
R9,CONTTPM
MSG+ 24(1 8),=C'READ 2 KB ON TAPE
R14,CONVERT
SDVDISKW

(READ ON TAPE)

X'05',X'1800',X'20',X'800'
X'07',BOT,X'20',X'01'

Leroy Patrick

Facultés Universitaires
Notre-Dame de la Paix

'

THE TAPE

TAPE

PROPOSAL

DATE 1984-08-28
PAGE 45

Software deve lopment proj ect fi le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2.8.3 Input/output on disk

2.8.3.1 Write on disk

PROPOSAL

Distribution
Free

The CAW o f the disk is equal t o DISKDVAD which is asked
at the console at the begining of the program.

The CC W i s e qua l t o

X'27 ', MMCCHHR,X'40',X'06 '
X'53',MMCCHHR+2,X'40',X'05'
X'09',SEARCHW,X'40',X'OO'
X'A3',X'1800',X'20',X'800'

with: X' 27' = command code for seek on disk

X'53' =

X'09' =

X'A3' =

MMCCHHR

PREPARED BY :

Sup. doc. nr.
Original issue

=

"

"

"

7
MM
cc
HH

R

" for search on disk

" for tic on disk

" for write on disk

bytes to define the address
for magasin
for cylinders
for heads
for records

Leroy Patrick

Facultés Universitaires
Notre-Dame de la Paix

on disk

PROPOSAL

DATE 1984-08-28
PAGE 46

Software deve lopment proj ect fi le PROPOSAL

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

Distribution
Free

2.8.3.1.1 Code of the measurement

* MEASURE OF SDV (WRITE ON DISK) *

*
* :S DVDISKW XR

DISKWRT

CONTDISW

XR
XR
MVC
LA
CH
BNL
LA
LA
LH
ST
LH
STCK
·SDV
IDL
MVC
BAL
IC
AH
STC
CH
BH

R8,R8
R2,R2
R9,R9
MMCCHHR(?),=X'00000001000001'
R9,1(R9)
R9,=H'101'
ENDWDISK
R1,7
R11 ,DISKCCWW
R12,=H'6160'
R9,0(R12)
R12,DISKDVAD
STARTIME
O(R12)

CCW FOR WRITE ON DISK
6160 = A(I/0 BUFFER +
STORE RECORD NUM INTO
DISKDVAD = CUU OF DISK
STORE THE TI ME

0
ENDTIME(8),SAVETIME
R14,COMPTA
R2,MMCCHHR+6
R2,=H'1'
R2,MMCCHHR+6
R2,=H'8'
INCRHH

INCREMENTATION OF THE
RECORD NUMBER

1 6)
I/0 BUFFER

B DISKWRT

* INCRHH

*

IC
AH
STC
MVC
CH
BH
B

PREPARED BY :

Sup. doc. nr.
Original issue

R2,MMCCHHR+5
R 2, =H '1 '
R2,MMCCHHR+5
MMCCHHR+6(1),=X'01'
R2,=H'8 '
INCRCC
DISKWRT

Leroy Patrick

INCREMENTATION OF THE
HEAD NUMBER

PROPOSAL

Facultés Universitaires
Notre-Dame de La Paix

DATE 1984-08-28
PAGE 47

Software deve lopment proj ect fi le

INCRCC

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

IC R2,MMCCHHR+3
AH R2,=H'1'

PROPOSAL

Distribution
Free

STC R2,MMCCHHR+3 INCREMENTATION OF THE
MVC MMCCHHR+4(3),=X '000001' CYLINDER
B DISKWRT

* ENDWDISK MVC MSG+24(18),=C'WRITE 2 KB ON DISK'
BAL R14,CONVERT
B SDVDISKR

* * DATA OF SDV (WRITE ON DISK)

* DISKCCIJW CCW
SEARCHW CCW

ccw
ccw

MMCCHHR DS

PREPARED BY :

Sup. doc. nr.
Original issue

X'27',MMCCHHR,X'40',X'06'
X'53',MMCCHHR+2,X'40',X'05'
X'09',SEARCHW,X'40',X'00'
X'A3',X'1800',X'20',X'800'
CL?

Leroy Patrick

Facultés Universitaires
Notre-Dame de la Paix

NUMBER

PROPOSAL

DATE 1984-08-28
PAGE 48

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2.8.3.2 Read on disk

PROPOSAL

Distribution
Free

The CAW and THE CCW are just the same as those used for write
on disk but the command code A3 is replaced by the command code AS
to read on disk.

2.8.3.2.1 Code of the measurement

* MEASURE OF SDV (READ ON DISK) *

*
* SDVDISKR XR

XR
XR
MVC

DISKRD LA

R2,R2
R8,R8
R9,R9
MMCCHHR(?),=X'00000001000001'
R9,1(R9)

CH R9,=H'101'
BNL ENDRDISK
LA
LA
LH
STCK
SDV
IDL

CONTDISR MVC

*

BAL
IC
AH
STC
CH
BH
B

PREPARED BY :

Sup. doc. nr.
Original issue

R1, 8
R11,DISKCCWR
R12,DISKDVAD
STARTI ME
O(R12)
0
ENDTIME(8),SAVETIME
R14,COMPTA
R2,MMCCHHR+6
R2,=H'1'
R2,MMCCHHR+6
R2,=H'8'
INCRHHR
DISKRD

Leroy Patrick

CCW TO READ ON DISK

INCREMENTATION OF THE
RECORD NUMBER

PROPOSAL

Facultés Universitaires
Notre-Dame de La Paix

DATE 1984-08-28
PAGE 49

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

INCRHHR IC R2,MMCCHHR+5
AH R2,=H'1'

PROPOSAL

Distribution
Free

STC R2,MMCCHHR+5 INCREMENTATION OF THE
MVC MMCCHHR+6(1),= X'01' HEAD NUMBER
CH R2,=H'8'
BH INCRCCR
B DISKRD

*
INCRCCR IC R2,MMCCHHR+3

AH R2,=H'1' INCREMENTATION OF THE
MVC MMCCHHR+4(3),=X'000001' CYLINDER
B DISKRD

* ENDRDISK MVC MSG+24(18),=C'READ 2 KB ON
BAL R14,CONVERT
B SDVCARD

* * DATA OF SDV (READ ON DISK)

* DISKCCWR CCW
SEARCHR CCW

X'27',MMCCHHR,X'40',X'06'
X'53',MMCCHHR+2,X'40',X'05'

CCW X'09',SEARCHR,X'40',X'OO'
CCW X'A5',X'1800',X'20',X'800'

PREPARED BY : Leroy Patrick

DISK

Sup. doc. nr.
Original issue

Facultés Universitaires
Notre-Dame de La Paix

'

NUMBER

PROPOSAL

DATE 1984-08-28
PAGE 50

Software deve Lopment project fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASURE MENTS

2.8.4 Input on card reader

PROPOSAL

Distribution
Free

The CAW of the card reader is equal to CARDDVAD which is
asked at the console at the begining of the program.

The CCW is equal to

X'05',CARDBUFF,X'20',X'50'

with X'OS' = command code for read a card

CARDBUFF = address of the buffer

X'20' = no command chain

X'SO' = length of a card in hexadecimal

PREPARED BY : Leroy Patrick PROPOS AL

Sup. doc. nr.
Original issue

Facult~s Univeraitaires
Notre-Dame de La Paix

DATE 1984-08-28
PAGE 51

Software deve lopment proj ect fi le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASURE MENTS

2.8.4.1 Code of the measurement

PROPOSAL

Distribution
Free

* MEASURE OF SDV (READ A CARD) *

*
* SDVCARD XR

LA
CARDRD LA

LA
LH
STCK
SDV
IDL

CONTCARD MVC
BAL
BCT
MVC
BAL
B

* * DATA OF SDV

* CARDCCW CCW
CARDBUFF DS

PREPARED BY :

Sup. doc. nr.
Original issue

R8,R8
R9,100
R1,9
R11,CARDCCW
R12,CARDDVAD

CCW TO READ A CARD
CARDDVAD = CUU OF READER

ST ARTIME
O(R12)
0
ENDTIME(8),SAVETIME
R14,COMPTA
R9,CARDRD
MSG+24(1 8),=C'READ 1 CARD 80 CAR'
R14,CONVERT
PAGI NG

(READ A CAR D)

X'05',CARDBUFF,X'20',X'50'
CL80

Leroy Patrick

Facultés Universitaires
Notre-Da me de la Paix

PROPOSAL

DATE 1984-08-28
PAGE 52

Software deve topment proj ect fi te

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2.9 Operation of paging

2.9.1 Exptanation

PROPOSAL

Distribution
Free

The concept of virtuat memory is imptemented on the BS2000
system by use of a technique catted "paging". Paging is the
transfert of 4096-bytes btocks (pages) of programs between the
auxi tiary storage device and main memory as they are needed for
processing.

Here, to measure the time taken by an operation of paging, this
one has programmed in P3 state and reatized fottowing the generat
principats of paging operation and we force the operation to occur
by executing an operation of move in a page not present in main
memory.

PREPARED BY :

Sup. doc. nr.
Original issue

Leroy Patrick

Facultés Universitaires
Notre-Dame de ta Paix

PROPOSAL

DATE 1984-08-28
PAGE 53

Software deve lopment proj ect fi le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2.9.2 Code of the measurement

PROPOSAL

Distribution
Free

* MEASURE OF PAGING *

*
*
PAGING

* PAGINIT

*

XR
LA
LSP

R8,R8
R9,50
$XP3PCR,=A(PAGINIT)

LSP $P3R14,=F'20'
PC CONTPAG,$P3

L R5,=A(X'40000')
FCAL ADRSTAR,$LBTP
PC P3ROUTIN,$P2

CONTPAG LA R10,2
R13,=A(X'2000')
R9,50

PAGING02 L
LA

PAGINGSO STCK

*

MVC
STCK
BAL
A
BCT
BCT
MVC
BAL
B

STARTIME
0(16,R13) ,TEST
ENDTIME
R14 ,CO MPTA
R13,=A(X'800')
R9,PAGING50
R10,PAGING0 2
MSG+24(18l,= C'PAGING
R14,CONVERT
FIN

* DATA OF PAGING ME ASURE

*
ADRSTAR

STAR

TEST

DS
DC
DS
DC
DC
DC

PREPARED BY :

OF
ALZ(STAR)
OF
XL2'1000'
XL2'1000'
C'TEST TEST TEST'

Leroy Patrick

SET VIRTUAL ADRESS ON

START WITH PAGE 5

INSTRUC. WHICH CAUSE PAGING

INCREMENTATION OF 1 PAGE
LOOP OF 50 PAGES
LOOP OF 2 * (50 PAGES)

OPERATIONS '

PROPOSAL

Sup. doc. nr.
Original issue

Facultés Universitaires
Notre-Dame de la Paix

DATE 1984-08-28
PAGE 54

Software deve lopment proj ect fi le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2.10 Conversion routine

PROPOSAL

Distribution
Free

This routine is used to convertr the time used by 100
instructions in a printable form and to print it on the console of
the system.

PREPARED BY :

Sup. doc. nr.
Original issue

Leroy Patrick

Facultés Universitaires
Notre-Dame de la Paix

PROPOSAL

DATE 1984-08-28
PAGE 55

Software deve lopment proj ect fi le PROPOSAL

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2.10.1 Code of the routine

Distribution
Free

*
*
*
*

THIS P2 ROUTINE IS ACTIVED FOR CONVERSION OF THE
EXECUTION TIME OF 100 MEASURED INSTRUCTIONS AND DISPLAY
THE RESULT ON CONSOLE.

- PRECONDITION: R8 = EXECUTION TIME TO CONVERT

*
*
*
*

*
* CONVERT

* * DATA

*
MSG
TIMEOUT

MASK
MSGCCW
SAVEADR

OF

CVD
MVC
ED
LA
BAL
BR

THE

DC
DS
DC
DC
ccw
DS

PREPARED BY :

Sup. doc. nr.
Original iss_ue

R8,ENDTIME
TIMEOUT(14),MASK
TIMEOUT(14),ENDTIME+2
R11,MSGCCW
R14,INOUT
R14

CONVERT ROUTINE

CONVERT THE TIME IN DEC.
CONVERT THE TIME IN
PRINTABLE FORM
CCW TO WRITE ON CONSOLE

X'15',C' EXECUTION TIME OF 100 INSTRUCTIONS ·'
XL 14
C' SEC. 1

X'4020202021206B2020204B202020'
X'03',MSG,X'20',X'3E'
F

Leroy Patrick

Facultés Universitaires
Notre-Dame de la Paix

PROPOSAL

DATE 1984-08-28
PAGE 5 6

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2.11 Comptabilisation routine

PROPOSAL

Distribution
Free

This routine is used to compute the time taken by one
instruction The two double words STARTIME and ENDTIME contain the
value of the clock at the begining and at the end of the instruction
to measure. These two values are substracted and added to register
8 containing the cumuml.

PREPARED BY :

Sup. doc. nr.
Original issue

Leroy Patrick

Facultês Universitaires
Notre-Dame de la Paix

PROPOSAL

DATE 1984-08-28
PAGE 57

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

PROPOSAL

2.11.1 Code of the routine

Distribution
Free

*
*
*
*
*

THIS P2 ROUTINE CONVERT THE TIME OF ONE MEASURED
. INSTRUCTION AND ADD TO R8

- PRECONDITION: CALLED BY BAL R14,COMPTA

*
*
*
*
*

*
* COMPTA LM

LM
SRDL
SRDL
SR
AR
BR

PREPARED BY :

Sup. doc. nr.
Original issue

R4,R5,STARTIME
R6,R7,ENDTIME
R4,12
R6,12
R7,R5
R8,R7
14

Leroy Patrick

CONVERT THE TIME
OF ONE MEASURED
INSTRUCTIO N INTO BINARY
AND ADD IT TO R8 WHICH
CONTAINS THE CU MUL OF THE
EXECUT I ON TI ME
RE TURN

PROPOSAL

Facultés Universitaires
Notre-Dame de La Paix

DATE 1984-08-28
PAGE 58

Software development project fi le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

f'

2.12 Interupt analyse routine

PROPOSAL

Distribution
Free

This routine is actived by any occurence of an interruption in
the system. It analyses the cause of the interruption, treat it
completely and reactivate at the correct address the P2 code to be
executed. Here, only two causes of interruption are analysed and
treated, all the other are rejected and caused an abnormal end to
occur. These two causes are the end of I/0 and the paging
interruption.

PREPARED BY :

Sup. doc. nr.
Original issue

Leroy Patrick

Facultés Universitaires
Notre-Dame de la Paix

PROPOSAL

DATE 1984-08-28
PAGE 5 9

Software deve Lopment proj ect fi Le PROPOSAL

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

Distribution
Free

2.12.1 Code of the routine

*
*
*
*
*

THIS P3 ROUTINE IS ONLY ACTIVED BY INTERRUPTIONS

- INTERRUPT WEIGHT = FROM 24 TO 3C ==> END OF 1/0

*
*
*
*
*

4C ==> PAGI NG

*
* P3ROUTIN STCK

C
BE
MVC
C
BL
MVC
C
BH
F CAL
MVC
TM
BNO
MVC
SSP
L
MH
L
BR

TESTSDVO LSP
B

TESTSDV1 LSP
B

TESTSDV2 LSP
B

TESTSDV3 LSP
B

TESTSDV4 LSP
B

TESTSDVS LSP
B

PREPARED BY :

Sup. doc. nr.
Original issue

SAVETIME
R15,=A(X'4C')
PAGQUEUE

PAGING INTERRUPT?
YES,BRA NCH TO ANALYZE OF PAGI

INTMSG+1 ?(14) ,=C' IW < 24 1 1

R15,= A(X'24')
ERRINT
I NTMSG+1?(14),=C' IW > 3C ! !
R15,= A(X'3C')
ERRINT
SAVESTIO,$XSTIO
I NTMS G+17(14),=C'I/O STA >< 48'
SAVE STI0+15,X'48'
ERRI NT
I NTMSG+1 ?(14) ,=C' TAKE A DUMP ~ ~ '
$P2R1,REG1

END I/0 INTERUPT?

NO, BRANCH TO ERRO
ROUTINE
SAVE I/0 STATUS

I/0 NORMAL END?
NO,BR AN CH TO ERROR

R7,REG1
R7,= H'4'
R11,TA BBR(R7)
R11

R1 = SWITHCH TO RETURN
AT THE CORRECT PLACE IN P2

$XP2PCR,=A(CONT)
RETU RN
$XP2PCR,=A(CONTIN)
RETUR N
$XP2PCR,=A(CONTAPMA)
R ETU RN
$X P2 PC R,=A(CONTAPEW)
RETU RN
$ XP2P CR,=A(SDVTAPER)
RE TUR N
$ XP 2 PCR,=A(CONTTPM)
R ET U RN

Leroy Patrick

Facultés Un i versitaires
Notre-Da me de la Paix

RETURN IN P2 BY
MEANS OF A TABLE
OF ADDRESSES

PROPOSAL

DATE 1984-08-28
PAGE 60

Software deve lopment proj ect fi le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

TESTSDV6 LSP $XP2PCR,=A(CONTAPER)
B RETURN

TESTSDV? LSP $XP2PCR,=A(CONTDISW)
B RETURN

TESTSDV8 LSP $XP2PCR,=A(CONTDISR)
B RETURN

TESTSDV9 LSP $XP2PCR,=A(CONTCARD)
B RETURN

WRITVIRT B SAUTWRT
READVIRT B SAUT RD
READBOOT LSP $XP2PCR,=A(CONTBOOT)

B RETURN
SDVTM LSP $XP2PCR,=A(CONTAPMA)

B RETURN
SDVTMRD LSP $XP2PCR,=A(CONTTPM)

B RETURN

*

PROPOSAL

Distribution
Free

R ETU RN PC P3ROUTIN,$P2 RETURN TO $P2 AT P2 PCR

PREPARED BY :

Sup. doc. nr.
Original issue

Leroy Patrick

Facultés Universitaires
Notre-Dame de la Paix

PROPOSAL

DATE 1984-08-28
PAGE 61

Software development project fi le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

PAGQU EUE SSP $XP2ERCR,SAVEERCR
SSP $XP2PCR,SAVEP2PC
ST R14,SAVECPT
XR R12,R12
L R13,SAVEERCR
SLL R13,19
SLDL R12,8
SRL R13,27
STM R12,R13,SEGNUM
LH R7,PRESENT
CH R7,=H'0'
BE SAUTWRT
LM R12,R13,0LDSEG
BAL R14,PTENTREE
MVC 0C2,R7),=H'0'
LSP $XP 2PCR,=A(PAGEWRT)
PC P3R0UTIN,$P2

* PAGEWRT LA R11,DISKCOJW
LH R12,DISKDVAD
LA R1, 1 0
SDV 0CR12)
IDL 0

* SAUTWRT MVC MM CCHHR(2),=X'0000'
LM R12,R13,SEGNUM
LR R7,R12
MH R7,=H'32'
AR R7,R13
MVC MMC CH HR+2(2),=X'0001'
CH R7,=H'72'
BNH SAUTCC2
SH R7,=H'72 '
MVC MMCCHHR+ 2(2),=X'0002'

PR0P0SAL

Distribution
Free

C0MPUTING OF THE SEGMENT
AND PAGE NUMBER MISSIN

R12 = SEGMENT NUMBER
R13 = PAGE NUMBER

SAVE THE PAGE?

NO

REWRITE OF THE PAGE

REWRITE OF THE PAGE

COMPUTING OF THE MMCCHHR

SAUTCC2 MV C MMCCHHR+4 (3),=X'000000'
XR
LR
D
STC
AH
STC
LSP
MVC
L

PREPARED BY :

Sup. doc. nr.
Original issue

R14,R14
R15,R7
R14 ,=F'8'
R15,MMC CHHR+5
R14 ,=H '1'
R14,MMCCHH R+6
$XP2PCR,=A(PAGERD)
PRESENT(2),=H'1'
R14,SAVECPT

Leroy Patrick

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-28
PAGE 62

Software development project fi le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

BCT R14,SAUTINCR
LA R14,20
LH R15,SEARCHW+18
A R15,=A(X'800')
STH R15,SEARCHW+18
STH R15,SEARCHR+18
LH R15,PAGENUM
AH R15,=H'1'
STH R15,PAGENUM

SAUTINCR PC P3ROUTIN,$P2

* PAGERD LA R11,DISKCCWR
LH R12,DISKDVAD
LA R1, 11
SDV O(R12)
IDL 0

* SAUTRD LM R12,R13,SEGNUM
STM R12,R13,0LDSEG
BAL R14,PTENTREE
MVC 0(2,R?) ,PAGENUM
L R11,SAVEP2PC
LR R12,R11
SRL R12,30
SLL R12 , 1
SLR R11 ,R12
ST R11,SAVEP2PC
LSP $XP2PCR, SAVEP2PC
PC P3ROUTIN,$P2

* IERRINT LSP $XP2PCR,=A(ERREUR)
PC P3ROUTIN,$P2

* E·R R EU R LA R11,INTCCW
BAL R14,INOUT
B FIN

*
PTENTREE MH R12,=H'4'

AH R12,=H'4096'
L R7,0(R12)
SLL R7,8
SRL R7,8
MH R13,=H'2'
AR R7,R13

PREPARED BY : Leroy Patrick

READ OF THE

COMPUTING OF

PROPOSAL

Distribution
Free

PAGE

THE P2 PCOUNTER
TO RESTART THE INSTRUCTION
WHICH CAUSED AN PAGING

RESTART OF THE INSTRUCTION

CCW TO WRITE AN ERROR MESSAGE
ON CONSOLE

COMPUTING OF THE ENTRY IN
SEGMENT AND PAGE TABLES

PROPOSAL

Sup. doc. nr.
Original issue

Facultés Universitaires
Notre-Dame de la Paix

DATE 1984-08-28
PAGE 63

Software deve Lopment project fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

BR R14

*
* DATA OF P3ROUTINE

* SAVETIME DS D
SAVEERCR DS F
SAVESTIO DS 4F
SAVEP2PC DS F
SEGNUM DS 2F
OLDSEG DS 2F
TA BBR DC A(TE STSDVO)

DC A(TESTSDV1)
DC A(TESTSDV2)
DC A(TESTSDV3)
DC A(TESTSDV4)
DC A(TESTSDVS)
DC A(TESTSD V6)

PROPOSAL

Distribution
Free

DC A(TESTSD V?) TABLE OF ADDRESS OF RETURN
DC
DC
DC
DC
DC
DC
DC

REG1 DS
SAVECPT DS
PRESENT DC
PAGENUM DC
INTCCW ccw
INTMSG DC

PREPARED BY :

Sup. doc. nr.
Original issue

A(TESTSDV8)
A(T ESTSDV 9)
A(W RITV IR T)
A(READ VI RT)
A(R EA DBOOT)
A(SDVT M)
A(SDVT MR D)
F
F
H ' O'
H'8195' 8195 = X'2003'
X'O3',INTMSG,X '2O' ,X'2O'
X'15',C' INTERRUPT ERROR , TAKE A

Leroy Patrick

Facultés Universitaires
Notre-Dame de la Paix

DUMP! ! '

PROPOSAL

DATE 1984-08-28
PAGE 64

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2.13 Input/output routine

PROPOSAL

Distribution
Free

This routine is used to read or to write any data to or from
the console of the system. Before calling it, the register 11 must
contain the address of the CCW to be executed.

PREPARED BY :

Sup. doc. nr.
Original issue

Leroy Patrick

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-28
PAGE 65

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2.13.1 Code of the routine

PROPOSAL

Distribution
Free

*
*
*
*

THIS P2 ROUTINE IS ACTIVED WHEN AN I/0 ON CONSO *
IS DESIRED. *

- PRECONDITION: R11 CONTAINS THE CCW CHAIN ADRESS *
CALLED BY BAL R14,INOUT *

*
* INOUT

CONT

* * DATA OF

*
CONSDVAD

LH
XR
SDV
BC
IDL
BR

INOUT

DC

PREPARED BY :

Sup. doc. nr.
Original issue

R12,CONSDVAD CONSDVAD
R1, R1
O(Rî2)
7,FIN
0
R14

ROUTINE

H'O'

Leroy Patrick

Facultés Universitaires
Notre-Dame de La Paix

= cuu OF CONSOLE

PROPOSAL

DATE 1984-08-28
PAGE 66

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2.14 termination routine

PROPOSAL

Distribution
Free

This routine is used to stop the execution of the program. in
fact, the program is pended in P3 state which is not interruptable,
so that the program is waiting indefinitely.

PREPARED BY :

Sup. doc. nr.
Original issue

Leroy Patrick

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-28
PAGE 67

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2.14.1 Code of the routine

PROPOSAL

Distribution
Free

* THIS P2ROUTINE IS ACTIVED WHEREVER IT IS DESIRE *
* TO STOP THE EXECUTION OF THE PROGRAM.(NORMAL OR *
* ABNORMAL END) *

*
* FIN

P3 STOP

LSP
PC
IDL

PREPARED BY :

Sup. doc. nr.
Original issue

$P3PCR,=A(P3STOP)
PC,$P3
0

Leroy Patrick

TASK PENDED IN P3 WHICH
UNINTERRUPTABLE

PROPOSAL

Facultés Universitaires
Notre-Dame de La Paix

DATE 1984-08-28
PAGE 68

Software deve Lopment proj ect fi Le

CONCEPT OF VIRTUAL MACHINE
MODULES OF MEASUREMENTS

2-15 I/0 buffer and translation table

PROPOSAL

Distribution
Free

The I/0 buffer has the address X'1800' (in hexadecimal) and has
a Length of 2048 bytes. The translation table used by the paging
operation has 32 entry points containing each the address of the
page table corresponding t o this entry.

* * I/0 BUFFER OF 2K AND TRANSLATION TABLE

*
ORG LEPVM+X'1000' 256 WORDS ALIGNEMENT!!
SEGTAB DC x•co•

DC AL3(PAGTAB1)

PAGTAB1

PAGTAB2
PAGTAB3

IOBUFFER

DC
DC
DC
DC
DS
DC
DC
DC
DC
DC
DC
DC
ORG
DC
DC
DS

PREPARED BY :

Sup. doc. nr.
Original issue

X'CO'
AL3(PAGTAB2)
X'CO'
AL3(PAGTAB3)
29 F
X'2000'
X'2001'
X'2002'
X'2003'
28H'O '
32H'O '
32H'O'
LEPV M+X'1800'
C'I/0 BUFFER OF 2K'
240C' 1

7CL256

Leroy Patrick

Facultés Universitaires
Notre-Dame de La Paix

PROPOSAL

DATE 1984-08-28
PAGE 69

Software development project fi Le p R 0 p 0 s A L

CONCEPT OF VIRTUAL MACHINE Distribution
MODULES OF MEASURE MENTS Free

TABLE OF CONTENTS

1 Introduction . -2
2 Initialisation of the hardware3

2 -1 .1 Code of the initialisation4
2.2 Bootstrap procedure . • 6

2-2-1 Code of the procedure . -7
2.3 Instruction PC (Program Cont r o L)9

2-3-1 Example .9
2.3.2 Code of the measurement 10

2-4 Instruction LSP (Load Status of Program) 1 1
2-4-1 Example . 11
2-4-2 code of the measurement 12

2-5 inst ru ction SSP (Store Status of Program) 14
2.5.1 Example - - - - - . 14
2-5-2 Code of the measurement . . . - - - - - . - . - - - . . 15

2-6 Instruction F CAL (Fu nction Ca L L) 1 6
2.6.1 Subfunction LS AL (Load Segment Table and Address

Lengt h) - 1 6
2.6.1.1 Example - 1 6
2.6.1.2 Code of the measurement 17

2.6.2 Su bfunction SS AL (Store Segment table Address and
Length) - - . . - . - . . . - 1 8

2.6.2. 1 Example . - . 18
2.6.2-2 Code of the measurement 19

2-6-3 Su bfunction STIF (Store Interrupt Flag register) . . . 20
2.6.3. 1 Exa mple . 20
2.6.3.2 Code o f th e measurement 21

2-6-4 Su b fu nc tion TSR (Test and Set Real) 22
2-6-4-1 Example . . . - . - 22
2.6.4. 2 Code o f the measurement 23

2.6.5 Su b f unc ti on STID (Store CPU Identification) 24
2-6 - 5 - 1 Exam p l e . 24
2.6.5.2 Co d e of the measurement 25

2.6.6 Subf unc tion STNU (Store C PU Number) 26
2.6 . 6 . 1 Exam p l e - 26
2-6- 6 - 2 Code of t he measurement 27

2.6.7 Su b f unc ti on LD WR (Load Word Real) 28
2.6.7. 1 Exampl e . 28
2.6.7-2 Code of th e measurement 29

2.6. 8 Su b f un ction LDH R (Load Halfword Real) 30
2.6.8.1 Exampl e . 30
2.6.8.2 Cod e of th e measurement 31

2.6.9 Sub f unct i on SH/ R (Store Word Real) 32

PREPARED BY . Leroy Patrick p R 0 p 0 s A L .

Sup. doc. nr. Facul t és Universitaires DATE 1984-08-28
Original issue Notre-Dame de La Paix PAGE 70

Software deveLopment project fi Le p R 0 p 0 s A L

CONCEPT OF VIRTUAL MACHINE Distribution
MODULES OF MEASUREMENTS Free

2.6.9.1 ExampLe . 32
2.6.9.2 Code of the measurement 33

2.6.10 Subfunction STHR (Store HaLfword Re a L) 34
2.6.10.1 Example . 34
2.6.10.2 Code of the measurement 35

2.6.11 Subfunction STIO (Store I/0 Status) 36
2.6.11-1 Example . 36
2.6.11-2 Code of the measurement 37

2.7 Instruction TDV (Test Devi ce) 38
2.7.1 ExampLe . 38
2.7.2 Code of the measurement 39

2.8 Input/output instruction - - - - - - 40
2.8.1 Input/output on console . - - - - - - . . . - . 40

2.8.1. 1 Code of the measurement 41
2.8.2 Input /output on tape - . . - - - . . 42

2.8.2.1 Write on tape - 42
2·.8.2.1.1 Code of the measurement - 43

2-8-2-2 Read on tape - 44
2.s.·2.2.1 Code of the measurement - - - - - - 45

2.8.3 Input/output on disk . - - - - . . - - . . 46
2-8-3.1 Write on di s k - 46
2.8.3.1. 1 Code of the measurement 47

2.8.3.2 Read on disk 49
2-8-3.2. 1 Code o f the measurement - . . . 49

2.8.4 Input on card reader - . 51
2-8-4-1 Code of the measurement - 52

2.9 Ope ration of paging . 53
2.9.1 Explanation . 53
2-9-2 Co de of the measurement 54

2.10 Conversion rou t ine . 55
2.10.1 Code of the routine - 56

' 2.11 Comptabi Li sati on routine 57
2.11.1 Code of the routine - 58

2.12 Interupt analyse routine 59
2.12.1 Code of the routine 60

2.13 Input /output routine 65
2-13.1 Code of the routine - 66

2.14 termina ti on routine . 67
2.14.1 Code of the routine - - . 68

2-15 I/0 butter and translation table 69

PREPARED BY : Leroy Patrick p R 0 p 0 s A L

Sup. doc. nr. Facultés Universitaires DATE 1984-08-28
Original issue Notre-Dame de la Paix PAGE 71

