
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Design and implementation of a database management system based on the entity-
relationship model

Tollenaere, Patrice

Award date:
1983

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 10. Apr. 2024

https://researchportal.unamur.be/en/studentTheses/61e2b8ba-7ece-4fd5-8559-62733fe22d7b

DESIGN AND IMPLEMENTATON
OP A DATABASE MANAGEMENT SYSTEM

BASED ON THE ENTITY-RELATIONSHIP MODEL

PATRICE TOLLENAERE

Thesis presented in order to obtain
the Master · s degree in computer Science

Academic -year 1982-1983

I now wish to acknowledge those people who
supported me in this project. First I would like to
thank Professor F. Bodart of the University of Namur
who ·served as my mentor and thesis sponsor. His
assistance was of great help tome for the completion
of this thesis.

r am also grateful to Professer D. Teichroew of
the University of Michigan who gave me the opportunity
to work in the rsoos project at that university. To
Professer K. Kang of the University of Michigan who
offered me so much support during my term in Michigan,
I also extend my gratitude.

Final thanks go to the rsoos project team in
Namur. Their technical knowledge of the ISDOS project
was of great service tome.

CONTENTS

0 INTRODUCTION : .. l

l INTRODUCTION TO THE ISDOS SOFTWARE

1.1 Introduction 3

1. 2 Life Cycle support system••••.................... 3

l. 2. l. Introduction•................... 3

1.2.2 Life Cycle ... 3

1.2.3 Life Cycle Support System (LSS) Definition •.......•...... 5

1. 2. 4 The LSS Generator•.................................. 5

1.3 Architecture of the ISDOS Software 6

1.4 Information system Language Description Manager (ISLDM) a

1. 4. 1 ISLDM Language ... a

l.4.2 ISLDM System ... 8

1.5 The System Encyclopedia Manager (SEM) 10

1.5.1 command Language Interface (CLI) 11

1.5.2 Language Processors: RP, IP, OP, and the Delete-Object
Processor•.................... 11

1.5.3 The Query system and the Name-Selection Processor 11

1.5.4 Analysis and Display Processor 12

1. 5 . 5 The Database Interface 13

1.6 ADBMS: A Data Base Management System for the ISDOS
Software . .. 14

1.6.1 The Data Description Language: DOL••...••............ 14

1. 6 . 2 ADBMS overview 16

1. 6 . 2 . 1 The Database Tables (DBT)•................ 16

1. 6. 2. 2 The Database File (DBF) 17

1.6.2.3 The Database Control System (DBCS) 17

1. 6. 2. 4 ADBMS Utili ty Programs•...•............... l.8

2 OVERVIEW OF SEM PERFORMANCE

2. l Introduction ..•...............•....•....................... 20

2.2 Performance of the IP and RP Processors 20

2.2.1 Performance of the IP Processors 20

2.2.2 Performance of the RP Processor 23

2. 3 ADBMS Performance•..........................•... 24

2.3.l The DOL for a SEM Data Base 24

2.3.2 Implementation Evaluation 27

2.3.3 Implementation of the Codaysl Model: a synthesis 29

2.3.3.l Location Mode .. 29

2 • 3 • 3 • 2 Set Mode•............•.. 2 9

2.3.3.3 Effect of Storage Structure on Processing Efficiency ... 33

2. 3. 4 Directions for Improvement •. 35

3 LOGICAL VIEW OF AN ENTITY-RELATIONSHIP DATABASE
MANAGEMENT SYSTEM (DBMS)

3. l Introduction•.................................. 37

3.2 The Entity-Relationship Data Model 37

3.3 An E-R Data Definition Language (DOL) ..•................... 41

3 . 3 . l Introduction ... 41

3. 3. 2 Basic Constructs ... 41

3. 3. 3 Description Content•...... 44

3 . 3. 3 . l Notation•........................ 44

3 . 3 . 3 . 2 Special Meanings•..•.............................. 44

3. 3. 3. 3 Enti ty Type section•........................•...... 46

3. 3. 3. 4 Relationship section•....................• 48

3.4 A Data Manipulation Language•.... 49

3. 4. l Introduction 49

3.4.2 Subroutines Description of the DBUSER Level 49

4. 5 DBMS overview•....•............... 85

4. 5. l DBMS Structure Overview•...•....................•.... 85

4.5.l .l The Database Tables (DBT)•. 85

4. 5. l. 2 The Database· Files (DBF)•... 85

4.5.1.3 The Database control system (DBCS) 86

4.5.1 . 4 DBMS Utility Programs 87

4 . 5. 2 DBMS Structure•..•..••....•..•...... 89

4.5.2.l The Database Tables•......... 89

4.5 . 2.2 The Database Entity Type Name Table (ETNTAB) 91

4.5.2.2.l Entity Name Description Block (IEB)•...... 91

4.5.2.3 The Database Relationship Type Name Table (RTNTAB) 92

4.5 . 2.3.l Relationship Description Block (IRB)••.. 92

4.5.2.4 The Database Type Description Table (TYTAB) •...•..•.... 92

4.5.2.4.l Primary Key Description Block (IPKB) 93

4.5.2 . 4.2 Attribute Description Block (IADB) 94

4.5.2.4.3 Value set Description Block (IVSB)•... 95

4.5.2 .4. 4 Allowable Value Description Block (IIRB, ICHB) 98

4.5.2.4.5 secondary Key Description Block (ISKB) 98

4.5.2.4.6 Attribute Part Description Block (IAPB) 99

4.5.2.4.7 Relationship Description Block (IREB) 99

4.5.2.4.8 Entity Related Description Block (IERB) 100

4.5.2.4.9 Character Array NAMES•.•................ 101

4.5.2.4.10 DBT structure as Written by DDLA 102

4.5 . 2.4.11 The 0bject Schema Parameters••................ 102

4. 5 . 2 . 4. 12 NAMES•.......................................•.• 102

4.5.2.5 Dynamic Hashing Tables .•.........•..................... 103

4.5.2.5.l The Database Hashing Tàble for the Primary
Key (HPKTAB) ... 103

4.5.2.5.l.l Primary Key Hashing Description Block (IHPB) 103

4.5.2.5.2 The Database Hashing Table for the secondary Key and
the Relationship (HATTAB) 104

4 IMPLEMENTION OF AN E-R MODEL

4 .1 Introduction•.•......................... 58

4.2 _Presentation of the Prob.lem 58

4.3 Overview of New Hashing Schemes •..... 60

4. 3 .1 Introduction•.•.................. 60

4.3.2 Conventional Hashing Files 60

4.3.3 Linear Hashing With Partial Expansions [Larson 1980) ...•. 63

4. 3. 3 .1 Introduction ... 63

4. 3. 3. 2 Linear Hashing Scheme •...........•.......•............. 64

4.3.3.3 Improvement Proposed by [Larson .1980):
Linear Hashing With Partial Expansions 67

4. 3 . 3 . 3 . 1 Introduction ... 6 7

4.3.3.3.2 Presentation of Linear Hashing With Partial
Expansion-•. 6 7

4. 3 . 3 . 3 . 3 Control Function •.....••..................•.......... 71

4. 3 • 3 . 3 . 4 Performance•......... 71

4.3.4 Dynamic Hashing Scheme for secondary Key Fi.le
[Lloyd, Ramamohanorao and Thom 1983) •••.••..••.•......... 72

4. 3. 4 .1 Introduction • 72

4.3.4.2 Definition of a Partial Match Query•... 72

4.3.4.3 Definition of a Simple Partial-Match Retrieval Scheme
(When the File is Known) Based Purely on Hashing 72

4. 3 . 4. 4 A Descriptor Scheme 7 4

4.3.4.4.1 Descriptor, Page Descriptor, File Descriptor 74

4.3.4.4.2 Constructing a Descriptor•....••........... 74

4.3.4.4.3 Using a Descriptor File•...........•.•.•... 76

4 . 3.4.5 Extension of the Scheme to Dynamic File~ 78

4.3.4.5,1 Presentation of the scheme•...................... 78

4.3 . 4.5.2 Choice Vector .. 79

4. 3. 4. 5. 3 File Descriptor 81

4. 3. 4. 6 Performance .. 81

4.4 How to use These Schemes to store Entities and
Relationships .. 83

4.5.2.5.2.1 Attribute Hashing Description Block (IHSB) 104

4.5.2.5.3 Optimal Parameters Table (OPATAB) 105

4.5.2.5.3 . l The Optimal Header Description Block (IOHB) •.•..... 105

4.5.2.5.3 . 2 The Optimal Parameter Description Block (IOPB) •.... 106

4.5.2 .5.3.3 The Choice Vector Description Block (IOAB) 107

4. 5 . 2. 6 File Organization 107

4. 5 . 2 . 7 Data.base Control Block •. .•....... 110

4.5 . 2.7.1 Identification of a Page•........... 110

4. 5 . 2 . 7 . 2 Data Area•..................... llO

4. 5. 2 . 7 . 3 storage Allocation•................... 111

4.5.2.7 . 4 DBCS Page Management System 111

4.5.2.7.4.l The DBCS Random I/0 Routines (DBHRAN) • 112

4.5 . 2.7.4 . 2 The Page Buffer (BUFPAG) 112

4. 5 . 2 . 7 . 4. 3 The current Page•.......•....•..... 112

4.5.2.7.4.4 Reading a New Page from the DBF into Main Memory ... 113

4.5.2.7 . 5 The Data.base control system (DBCS) • •........ ll4

4.5.3 Implementation Evaluation :•.................... 115

5 CONCLUSION•...• 117

6 BIBLIOGRAPHY•..... 118

Annex l Overview of New Hashing Schemes

Annex 2 Description of the Routines

INTRODUCTION

During the last ten years the demand for computer based
information processing systems has grown steadily. The main reason
for this is that the crisis in software development becomes
increasingly important. Indeed, at the same time as the cost of
hardware has dropped, the cost of software has risen dramatically.
The major reason is that in the majority of cases, the software
development stayed at an artisanal stage.

The main difficulties of such a development were :

the lack of uniformity in writing the specifications and
documentations of applications

impossibility to update documentation manuals

difficulties in consultations of these manuals

lack of control over the specifications

To remedy these problems, a number of tools have been designed which
assist in software design, construction, operation and maintenence.

Among these, the ISDOS project has been developed since 1969 at
the University of Michigan under the supervision of Professor
Teichroew.

The first chapter of this thesis will be dedicated to a brief
presentation of the tools proposed by the ISDOS project.

As the evaluation and amelioration of any software system as
large as the ISDOS project is of prime importance to anyone involved
with the system, we outline in chapter two some levels of software
and associated data structures which are critical for the
performance. Specifically, the the performances of the database
management system provided to handle datas are reviewed.

The different criticisms discussed in chapter two have focused
at t e ntion on the need to change the current database management
system. Among the several possible directions we have chosen one
which employs the Entity-Relationship (E-R) modelas a data model and
which _directly implements a database management system based on this
model. Sorne aspects of the logical view of an E-R database management
system are reviewed in chapter three.

As a database management system is a complex and huge task, we
have limited our reflection only to new methods of direct access of
the records for the database. These methods can at times be very
efficient, but can not be the only support of a database management
system. These methods and the physical structure of the database
management system are proposed in chapter four.

- l -

Chapter 1, INTRODUCTION T0 THE ISDOS SOFTWARE

- 2 -

i . INTRODUCTION TO THE ISDOS SOFTWARE

i.i . Introduction

In the first section are discussed the different concepts
and goals of the ISDOS software. In particular, the notions of
life cycle support system (LSS), LSS generator and LSS processor
will be explained. The second section is concerned with the LSS
generator of the ISDOS project (ISLDM) and the third section
introduces the generalized software (SEM) proposed by the ISOOS
project to implement the LSS processor. Finally the fourth
section presents the data base management system used to manage
the data in the ISDOS software.

i.~. Life Cycle Support System

i.~ .i . Introduction

In the early 7o · s a great number of medium and large
organizations created a new organizational unit called
"systems department". This new department was established to
handle the information processing systems (IPS) i .nside the
organizations.

An IPS was - defined by [Yamamoto 1981] as "the subsystem
of the information system in which datais recorded and
processed following a formal procedure". Two kinds of IPS
may be distinguished : manual and computer based.

Manual are those in which all operations are performed
manually while computer based are those in which some
operations are performed by a computer.

The creation of the systems department allowed
centralized and controlled environment for the
development and operation. The management aspect
development was carefully studied and the concept
cycle" results from such studies.

a more
software
of such
of "life

The concept of "life cycle" is a management concept for
controlling the process of software development and
operation.

There exist many
projects based on the
[Biggs, Birks and Atkins

guidebooks
life cycle

1980].

for managing software
concept [Metzger 1973],

A software life cycle is divided into distinct phases.
The exact breakdown into phases and the terms used to
represent each phase differ from author to author.

- 3 -

The phas es show•: i n fig 1 . 1
[Teichroew, Hershey .-111d Yamamoto 1977]

Syst e m Planning

1 Logical system Design

Physical System Design

construction

were

Test, Convers ion and Installation

Ope ration

Maintenance and Modification

Fig 1 . 1 Software Development Phases

def i ned in

The output of a life cycle phase is often called
documentation or system description. At each phase, the
verification of completeness , consistency and
una.mbiguousness of system description is an important point
because the system description of one phase serves as the
input to the next pha se of the life cycle.

Tools to support the activities involved in the
software life cycle were created . Surveys on the different
tools proposed can h~ found in [Reifer 1975), (Reifer and
Trattner 1977] and [Teichroew, Hersey and Yamamoto 1977].

Among these t ools,
system "(LSS} has been
and _Yamamoto 1977] .

one called "life cycle support
developed lately (Teichroew, Hershey

- 4 -

!-~-~- Life cycle support system (LSS) Definition

The definition given by [Yamamoto 1981} of a life cycle
support system is the following :

"A life cycle support system is a class of computer
based tools for software development that supports the
applications in the systems department in one or more
phases of the life cycle. "

The functions of a LSS are :

accept system description in some predefined notation

- maintain a data base containing the system description

- perform analyses on the system description

- produce documentation and reports based on the system
description

perform control functions of the life cycle activities

To accomplish these functions, a LSS must have a tool
system. The tool system consists of:

the data base that stores the system description that
has been described (the LSS datal:>ase)

the system description language that is used to express
relevant information al:>out an IPS (the LSS language)

the processor that takes the
expressed in the LSS language
base. It also performs analysis
based on information in the
processor).

l -~-1- The LSS Generator

system description
and updates the data

and produces reports
data base (the LSS

To develop Lss · s a specialized computer aided tool has
been built : the LSS generator.

The LSS generator allows the LSS developer to specify
a target LSS in a formal language and automatically generate
as much of the LSS software and documentation as possible.

The LSS generator needs a model of IPS models that is
applical:>le to a wide variety of conceival:>le LSS. This model
is usually called the Meta-Madel. Once the Meta model has
been specified, a targetLSS model may be specified as a
specific instance of the Meta-Madel. In the next section we
will explain the structure of the LSS generator proposed by
the ISDOS project .

- 5 -

1.~. Architecture of the ISDOS Software

The ISDOS software has two important cornponents
Information system Language Description Manager (ISLDM)
System Encyclopedia Manager (SEM). Figure 1.2 shows the
structure of the ISDOS software.

the
and the
general

ISLDM is the name of the ISDos·s LSS generator processor.
ISLDM is composed of the ISLDM language and the ISLDM system.
The ISLDM system has four components :

SEM is
project to
SEM are :

1 . the language processor

2. the documentation producer

3 . the global analyzer

4. the table producer

the generalized software provided by the ISOOS
irnplement the LSS processor. The main components of

1. the Commana Language Interface (CLI)

2. the language processors
Oelete-Object processor

IP, RP, DP and the

3. the extract processor : the Query system and the
Name-Selection processor

4. the analysis and display processor which consists
of three types of reports FS, STR and EP
reports

s. a database interface composed of a Data Management
Interface (DMI) and a META table interface (MTI)

A database management system called ADBMS is provided to
handle the data in the databases of the system.

The next sections describe each of these components.

- 6 -

srecificatlon of a LSS

Language
ProCP990r

Docu'"entat1on
Producer

1n the ISLDH------------i-t•
language

LSS generator
database

statement11.
in the LSS

language ---------t---•

Global
l\na 1.yser

I\DBH 'i

ISLDM

LSS
databa• e

MBHS

Table
Producer

Database Hanagement
Interface (DHI)

Heta Table Interface
(Kl'I)

Language
Processor11

IP , RP , DP

Extract Processor

Query
System

and

Name
Selection

standard
Analyai11

and

Diaplay
Proce1111or• ,

rs . ST. EP

Command Language Interface (CLI)

SEM

rig 1.2 General Structure of the ISOOS Softwara

- 7

Tablell of
the LSS

Documentation
of the LSS

Report li

a.nd

i.~ . Information System Language Description Manager (ISLDM)

ISLDM is the name of the rsoos · s LSS generator processor.
ISLDM is composed of the ISLDM language and the ISLDM system.

~ -~-~- ISLDM Language

The ISLDM language (or META language) is a language for
describing a formal specification of a target LSS. Lss
The META language can express information about an $
according to a model called the META model. It is based on
the observation that there exists a sufficient "conunonality"
with a wide range of LSS to derive a model.

The Meta model chosen by the ISDOS project is the
Entity-Relationship (E-R) model proposed by [Chen 1976]. The
names employed in the META model are different from those
presented by CHEN. CHEN · s model will be briefly reviewed
in chapter three, but for more information the reader is
suggested to refer to the existing literature [Chen 1976],
[Chen 1977], [Sakai 1980] .

The main concepts of the
relationship and property.
of the universe of the
characteristic of an
relationship represents a

E-R model are those of object,
An object is an atomic element

discourse. A property is a
object or a relationship. A

connection among one or more
objects.

The choice of the E-R model was mainly motivated by the
fact that the E-R representation of the world is quite
natural and close to the LSS user·s view .

i.~.~- ISLDM System

ISLDM system accomplishes the functions of language
processing, global analysis, documentation generation. This
system is composed of four main components

l. the language processor

2. the global analyser

3 . the documentation producer

4. the table producer

The person who specifies in the ISLDM language the
components of a target LSS may enter the statements in any
order and change the definition of the LSS as many times as
desired.

The statements are processed by the language processor
which can detect any syntax error and can produce

- 8 -

specificat i on of a LSS

d iagnos tic mes s ag 1 :· ; . Th e global analyser
i ncnnsistencies of ~ more global nature.

detects

The do cument n t:ion producer allows documentation
ge nerat ion f o r the Gss · s users once the Lss · s developer is
s atisfie d with the J-~s definition.

The definiti.011 n f t he LSS is stored in a LSS generator
databa s e t hrough a n1 tabase management system called ADBMS.

Th e LSS proc 0~sor i~ generated according to the
.i nforma tio ns conta ined in the database. The table genera tor
p roduces table s c on t ,l.i ning the de finition of the LSS. These
tab l es a re used b y the generalized software to produce the
LSS p r ocessor.

Fi gure 1 . 3 shows t he structure of the ISLDM language and
s ystem

Language
Proc~ssor

Documen t ation
Producer

in th e ISLOH---------~-
---+----------t~Oiagno,i ic

Hessage11

language 1---------+---t-----------,

LSS generator
data.ba,ie

Global
Ana •.y,ier

IIDBHS

ISLDM

Table
Producer

Fig 1.3 ISLDH system

. - 9 -

Tables of
the LSS

Documentation
of the LSS

Stat.,ment •

SEM is the genera li zed software provided by the rsoos
project to implement t-Jie LSS processor. The main r.:omponents of
SEM are :

1 . the Cornrnand Languag~ Interface (CLI}

2. the language proces ~0rs :
processor

IP,RP,DP and the Delete-Ob j ect

3. the extract processor
selection processors

the Query system and the Name-

4 . the analysis and display processor which consists of three
types of reports : FS, STR and EP reports

s . a Database Management Interface (DMI) and a Meta Table
Interface (MTI)

Figure 1.4 shows the structure of SEM.

oatabase Hanagement
Interface (DHI)

l'..SS

databa• e

'

IWBHS

He t a Table Interface
(Kl'I)

Language
Proceesors

Extract ProcP.s9or standard
Analyei9

Reporte

and

1n th., LSS-------•- •
language -

Qu.,ry
syste• Messages

IP , RP , DP and

Name
Select ion

and

Diaplay
Proceseor• ,

rs ' ST' EP

Comrnand Language Interface (CLI)

SEM
Fig 1.4 SEH system

We are now seeing all these components in detail

- 10 -

i.2.i. command Language Interface (CLI)

Thanks to the CLI, the Lss·s user can have access to
the functions of the LSS processor.

For a specific LSS, a set of LSS processor "macros" are
defined by the ISLDM system that invoke an appropriate
sequence of programs with necesary parameters.

Like this, the LSS processor can be used interactively
by interpreting commands in the LSS conunand language

i.~.~. Language Processors
Processor

RP,IP,DP and the Delete-Object

Language processors are used to update the SEM
database. They take SEM language statements as input.
Checks are made on these statements to preserve the
integrity of the database. Sorne error messages are produced
if an incorrect statement is detected by the processor.

There exist three levels of checking on the statements.
First, a syntactical checking is made on the statements. A

second checking is made on a syntactically correct statement
to know if the statement is allowed or not in the current
context. The third level of checking is a consistency check
against what is already in the data base.

In SEM there are three language processors

1. The Input Processor (IP)

2. The Delete Processor (DP)

3. The Replace Processor (PP).

IP adds the information specified in the input to the
data base. DP deletes the specified information from the
database. RP replaces the information in the database with
the information supplied.

Objects are never deleted from the database by the
language processors because instances of objects ·must be
deleted together with all connections and properties. The
Delete-Object processor checks the existence of an abject
and deletes from the data base.

i.2.~. The Q!!m System and the Name-Selection Processor

Through the extract processors, Query system and Name
Selection, the Lss·s user can select pieces of information
from the database that meet certain user specified criteria.

The Name-Selection (NS) selects names of the objects in

- 11 -

the database according some selection criterion.

The major purpose of the Query system is to answer
various inquiries on the description of an IPS stored in the
database. The main features of the Query system are

the selection criterion can include any legal abject
type and any legal statement

selection criteria can be named and stored for later
use

the set name which satisfy a criterion can be named and
stored

boolean operations (AND,OR,NOT) may be performed on
sets of names

The difference between the Query system and Name
Selection is that Name-Selection may only specify selection
criteria in terms of abject types while the Query system
provides a substantially more powerful facility to select
abjects from the database according to user-defined
criteria.

~-2·~· Analysis and Display Processor

The analysis and display processor consists of two
kinds of reports standard and specialized reports. The
specialized reports are dedicated to a particular LSS. on
the contrary, the standard reports are based on a common
~oftware for all the Lss · s.

In SEM there are three types of standard reports

1. The Formatted statement Reports (FS)

2. The Structure Reports (STR)

3. The Extended Picture Reports (EP)

The Formatted Statements (FS) processor selects all the
statements in the LSS language for each abject specified in
the input. The reports contain the language statements, for
each abject named, that would recreate the database if IP
were applied to the database. The statements are produced in
a predefined order (FS). This means that the user has no
control over the order of, nor the kind of statement to be
produced. If the user wants to have these possibilities he
must use the Selective FS (SFS) report.

The structure Report (STR) presents in the form of
indented lists and matrix a hierarchy associated with one or
more abjects. The user specifies the object types as well as
the relationship types that define the hierarchy. For every
narne given as input a structure is displayed in an indented

- 12 -

list.

The Extended Picture (EP) Report is similar, in
content, to the Structure Report in that it displays
hierarchy . The hierarchy is represented in form of a tree.
The tree is displayed with the root node placed at the left
h and side and extending from left to right .

i-2 ·2 · The Database Interface

The database interface is made of the Data Management
Interface (DMI) and the Meta Table Interface (MTI) .

DMI is the interface between the processor and the LSS
database. All accesses to the LSS database are handled
through this interface. The DMI is not used directly by the
Lss · s users but it is used by the processor programs . The
DMI isolates the low level (implementation level)
organization from the conceptual level (E-R mode!). This
isolation allows the choice of a low level database handler
(database management system) .

The generalized software accesses the tables whenever
it needs information about a particular LSS through the Meta
Table Interface (MTI). MTI hides the physical implementation
details from the upper level components. It is also a
"procedure" interface to the information that characterizes
t he particular LSS .

- 13 -

1,. §_ • ADBMS ~ Database Management System for the ISDOS Software

This section presents the main features of the database
management system used to handle data in the different parts of
the rsoos software. To have a detailed understanding of the data
description language (DOL) and how ADBMS works, the reader is
suggested to consult the following papers [ISDOS 1981a], [ISDOS
1978] .

1,.§..1,. The Data Description Language

ADBMS is transportable general purpose database
management system based upon the CODASYL 1971 DBTG model for
the network database approach [Engles 1971].

The description of the database is known as the scherna.
The schema used is based on the Language Journal of
Development [CDDL 1974].

A schema written in the DDL contains four types of
entries :

1. one schema entry which identifies the scherna

2. one or more areas entries which define the grouping of
records into areas

3. record entries which define record types specifying
details of their data items and data aggregates

4. set entries which define the grouping of record types
into set types

An area in the database allows users to segregate the
pages on which different record types are stored. This will
often improve the search time for these records. Each record
type which is described can be assigned to an area. If no
record types are assigned to specific areas then all the
record types are assumed to be in the same area.

A record in the database is conceptually like a record
in a file, in the sense that it is a collection of data
items. There can be an arbitrary number of records of a
record type stored in the database. The data items and data
aggregates are decribed in a fashion similar to COBOL.

The basic construct of the language is called a set. A
set is an occurence of a named collection of records and
each set type can represent a relationship between two or
more record types as shown in fig 1.5.

- 14 -

CUSTOMER
record

·-

The owner record -type

------ is called CUSTOMER

f-
z
:::J --

-------- The set is called ACCOUNT

1
1

0....----
u
u
<t

TRANSACTION
records

1
. 1

.-é

- -
>--

The member record -type
is called TRANSACTION

Fig 1.5 An occurence of a set (From [MARTIN 1975])

A set type can have one or more record types declared as its
members. Each set must contain one occurence of its owner
record type. A record type may be both an owner and a member
of the same set type.

In the database, each owner record has associated with
it its member records . Each of those members canin turn be
defined to be the owner and/or member of other sets. These
member record instances may not, however be a member of more
than one instance of any set type, althought it may
simultaneously be a member of several different set types.
In the database a s e t is identified by specifying the owner
record.

Each set type has an order specified for its member
records in order to control the sequence of retrieval of the
records and to control the storage of new member records
into the sets· of thdt set type. The set ordering criteria
definition specified in the schema for each set type
determines the logical ordering of the member records in
each set of that set: type.

The physical order of the member records in the
database is ind e pendent of the logical ordering. In
addition, the set o rdering definition for each set type can
be different so 1.hat a record that is member of two
different set types could be subject to retrieval in two
different orders. There exist four ordering criteria :

- 15 -

1. The order may be immaterial. This means that it
makes no difference in what order the member
records are stored or retrieved.

2. The records can be inserted in the order of
storage of records, either FIFO or LIFO.

3 . The records can be inserted immediately prior to
or after a record which is current at the time of
reference.

4. The records can be inserted in ascending or
descending sequence of a key value.

1,2.~- ADBMS Overview

ADBMS is a database management system consisting of
four parts

l. the Database File (DBF) which consists of the data
that is to be accessed

2. the Database Tables (DBT) which is the logical
description of the structure of the database and
is stored in the beginning of the DBF

3 . the Database Control System (DBCS) which consists
of a collection of subroutines to be called from
FORTRAN. This is the actual programmed interface
to the database.

4. the database utility routines which
stand-alone programs. These programs
analyst in creating and rnaintaining a
of databases.

i.2.~-i. The data.base Tables (DBT)

are
aid

three
the

collection

DBT which contains the database tables is
generated by a program named DOLA whose input is a
database description written in the DDL. DBT consists
of three tables (ARETAB, RECTAB and SETTAB), a
character vector of DDL names (NAMES) and some
fullwords of control information. It is placed in the
first pages of the DBF by a program named DBIN whose
input is the output from DOLA.

ARETAB can be viewed as a linear vector containing
area description blacks (ADB) describing the different
areas of the schema.

SETTAB consists of set description blacks (SDB),
owner description blacks (ODB) and member description
blocks (MDB). These three types of control blocks
describe the logical structure of the records in the

- 16 -

database.

RECTAB can be viewed as a linear vector containing
two types of abject schema control blacks, the record
description blacks and the item description blocks
associated.

Each abject in the schema (records,sets ...) is
identified into the character array NAMES.

The information stored in the database is placed
by the DBCS into the DBF. The DBF consists of physical
pages usually defined at a computer installation to be
equal in size to some unit of storage for that
installation.

The DBF is initialized by a program named DBIN
which sets up the first page (more if necessary) to
contain information from the DBT produced by DOLA.
starting at the top of the following page in the DBF,
the remaining pages are initialized for general
database use.

~ -Q•~-~- The Database Control System (DBCS)

The DBCS is a collection of FORTRAN routines which
interface with the user · s program and with the ADBMS
utility programs. They are divided into four groups
classified by functions. These groups are :

1. DBUSER

2 . DBLOW

3 . DBTAB

4 . DBRAND

DBUSER is the highest level of the DBCS system.
The routines contained in DBUSER directly interface
with the user·s programs. The routines give the user
program control over what database is to be accessed,
what information is to be stored, in which sets, etc.
The user·s program does not need to do anything to
insure that the correct database page is accessible, to
locate available database holes for record storage, to
determine t he physical location of a record or an item.

The routines in DBLOW are low level routines used
hy DBUSF.R which do much of the actual work involved in
manipulat ing the data in the database. They find
c o n t r o l blocks, set pointers, compare items, etc.
DBLOW also takes care of much of the page management

- 17 -

facilities needed by DBUSER. DBLOW relies heavily upon
DBTAB and DBRAND to access the database.

DBRAND is used to get database pages in and out of
main memory.

DBTAB is a set of routines which are used by
DBUSER and DBLOW to access the database tables .

i.fr.~.1. ADBMS utility programs

There are three utility programs available for use
with ADBMS . Each is a stand alone program which calls
routine in the DBCS. The programs are the following

1. The Data Description Languaqe Analyser (DOLA)

This program generates the database tables
(DBT) from a DOL. It also produces a FORTRAN
block data subprogram which is used by the
DBCS. In addition a DOL summary is produced
for every record type and set type in the
database.

2. The Database Initialization Program (DBIN)

This program uses the DBT generated by DOLA
to initialize a database (DBF).

3. The Database Summary Program (DBSM)

DBSM produces for a populated database
summary information on the sizes and
percentage utilization of database holes and
records.

- 18 -

Chapter z OVERVIEW OF SEM PERFORMANCE

- 19 -

1, OVERVIEW OF SEM PERFORMANCE

1,l, Introduction

The evaluation and improvement of performance in any
software system as large as SEM is of prime importance to
everyone involved with the system, that is to say, the designers,
implementors, maintainers and users.

Such an evaluation is a very complex task because SEM is
used by several kinds of users with varying degrees of
experience, job volume, performance requirements and computing
resources. In addition SEM must be maintainable and transportable
to a large number of computing environments.

In this chapter an attempt is made to isolate some levels of
software and associated data structure which are critical for the
performances. First is presented an evaluation of the performance
of the IP and RP processors. After, the performance of ADBMS is
studied.

1,1, Performance of the IP and RP Processors

1,1,l, Performance of the IP Processor

IP is the cornmand where the performance problem first
cornes to the user · s attention. A large amount of resources
are used in IP and therefore the major effort in performance
must be directed toward IP. In the next part of this section
we will present conclusions of a study [ISDOS 1981b] about
the performance evaluation of IP.

IP can be viewed as having three logical functions.
First, the SEM input staternents must be parsed and checked
for syntax errors. Then, the logical consistency of the SEM
statements must be checked against the content of the
current SEM database. Finally, the current SEM database must
be updated if no syntax or consistency errors were detected.
Measurements were made at the level of each of these logical
functions.

The first logical function is performed by a module
called SNTX. This module contains the high level software
to perforrn the parsing function. It utilizes also the MTLIB
and DMLIB libraries as interface to the Meta database and
LSS database.

The highest level subroutine in the SNTX module is the
PARSER subroutine. All other subroutines in SNTX are called
by the PARSER.

Ideally, the resources consumed by the PARSER should be
independent of the SEM database size and other physical
constraints. Unfortunately, the current irnplementation of
the PARSER uses the Dynamic Storage subsystem (os)

- 20 -

extensively .

This subsystem is a general dynamic storage system used
by the ISDOS software and whose functions are the following:

allocation and deallocation of storage

storage and retrieval of character strings, logical
values ...

copying of strings or blocks of words from one
dynamically allocated area to another

comparison of strings

searching a dynamically allocated area from a given
word

The use of such a system can cause contention for
memory ,in some cases, depending on the SEM database size
and user work constraints. The figure 2.1 shows that as the
size of a SEM database increases, the average number of
statements by CPU minute decreases in PARSER.

Measurements were made on a file with 7543 PSL
statements (PSL is a language defined at the University of
Michigan for describing IPS). The statements result in a
database of 119 pages (4096 bytes).

More studies should be performed to better isolate the
causes of increasing consumption as the size of the database
increases. In particular, the SNTX module subroutines should
be investigated to find the calls which are causing the
observed increases.

For the two other logical functions, D.Childs has
arrived at the conclusion that there exists a nonlinearily
increasing dependence of IP consistency and updating
functions on the database size as shown in figure 2.2.
Measurements were made on a file with 4419 PSL statements.

The cause
carefully. For
algorithms and
determine the
consumption.

of such a dependence must be studied
this purpose it is necessary to examine IP
ADBMS software and interface (DMI) to

causes of the nonlinear increases in resource

- 21 -

.1.ve1age nw:,.b,er
of Stateioont• per
CPU a.inute

60

45

30

15

Cuaulativ•
CPU second•

30000

25000

20000

15000

10000

5000

0

0

\

30 60 90 120

D&t&ôue Siu (PÂgea 4096 Byte)

Fig 2. 1 Syntactical function

Synt&ctical check

Data.Da•• reference

Upd&tin~ tunction

Syntactica.l check

Dat&baae referenc1

syn~•ctic&l check

50 100 150 200 250

Datùw,ae Si&e (Pagea 4095 Byte)

Fig 2.2 Syntactical, consistency and Updating functions

- 22 -

z.z.z . Performance of the RP Processor

The performance of SEM reports comrnands corne to the
users attention only recently. This is probably due to the
fact that not many reports have been run from large
databases. In the future, more concern about the performance
reports can be expected and thorough studies should be
performed.

Recent measurements on the stucture report processor
(STR) have been made at the University of Namur and have
shown that the greatest part of the CPU time was spent in
the os subsystem (20 % of the CPU time) and the I/0 routines
(25 % of the CPU time).

As the os subsystem performs all the allocations and
deallocations of areas such as the retrieval,the copying and
the comparisom of areas, it is understandable that much time
is spent on the structure report because we must produce a
hierarchy associated with one or more objects and thus
search the entire database . . PP 1 The I/0 routines perform
the transfer of pages from the secondary memory and the main
memory. The time spent in these routines can be anticipated
depending on the database size. In effect the greater the
database is, the greater is the number of page faults and
thus the need for transfer.

Furthermore, the transfer of a page from the secondary
memory to the main memory is a slow operation which is made
slower by the fact that they are performed in using the
format statement of FORTRAN. These statements are
interpreted in FORTRAN and this causes an increase in CPU
time spent. A major improvement would be achieved if these
routines were written in Assembler.

- 23 -

l_._1.1_. The DDL for .9:. SEM })atabase

The DOL [ISDOS 1981c] proposed by l\DBMS is a rather
restricted subset r, f the Codasyl specifications for network
Database Management 0ystem (DBMS). It contains the minimum
of the possibilitir?:1 needed to describe a codasyl database.
The current DDL allo·,.. s one, of course, to de scribe records,
items and sorted s ets, but the majority of the options
proposed by the Database Task Group Report [DBTG 1971] are
not allowed in the current implementation. Section 2,3.3
describes some mechanisms which are commonly in use in most
database management system.

These mechanisms improve greatly the design of a
database because they allow the user to take into account
physical considerations to design a database following the
user·s performance requirernents.

The DDL for a SEM database is given in figure 2.3.
There are twelve different record types and eleven different
set types used in a SEM database 1

ALLINM

r- - - - ------- ------,
'

1 ALI~

8
Fig 2.3 schema of a SEM database

- 24 -

1
1
1
1
1
1
1
1

' - _,

1. NAMREC Record

Each defined SEM name is stored in a NAMREC
record . There are three items in the NAMREC record. The
first contains the coded number which indicates the
object types this record represents. The second is the
character form of the name and the third item is the
sequence number of the update.

2. SYNREC Record

SYNREC contains a synonym defined by the user for
a SEM name. SYNREC has two items. one contains the
coded number of the object type and the second
represents the character representation of the synonym
name.

3. NUBA, NUBB, NUBC and NUBCOM Records

NUBA, NUBB, NUBC and NUBCOM are of a generic type
of records called a nub. The nubs are used because the
database system does not allow many to many
relationships directly. Also the nubs are used to
indicate the type of connection between the objects.
For instance when there is a simple relationship
between two objects, a NUBA record is used.

When the connection is more complicated NUBB and
NUBC records are used. These records contain a RELTYP
item which has a code which designates the type of
relationship the record is being used to represent.

4. INMREC, ENMREC and STRREC Records

INMREC and ENMREC are used whenever an integer
number(INMREC) or a real number(ENMREC) needs to be
stored in the database. They possess two items. one
indicates the object type and the other contains the
value of the number.

STRREC is used whenever a character string needs
to be stored in the database. STRREC contains three
items . One represents the object type, the second is
the representation of the character string itself and
the third item is the number of characters in the
string.

5, COMLIN Record

Whenever a comment entry needs to be stored in the
database, the lines which make up the comment entry are
stored in a COMLIN record .

6. UPDREC Record

The UPDREC record is used to keep track of all
the modifications made to the SEM database. Whenever a
SEM modifier command is used to change the content of
the database, an instance of a UPDREC record is
created. There are four items in a UPDREC record. Two

- 25 -

indicate the data and time of the update,
the numerical code corresponding to the
to update the database and the last
sequence number of the update.

7. PNMREC Record

one indicates
commands used
item is the

The PNMREC record has a single item which contains
the character representation of the name given to the
database.

8 . ALLNAM set

This set is used to locate an object based on its
name. It specifies an alphabetical ordering of all the
basic names and synonyms the user defined.

This set has objects, numbers and character
strings (NAMREC, INMREC, ENMREC and STRYEC records)
as owner and various types of Nubs as members. It is
used to specify the "left hand side" of "simple" and
"complex" connections.

A connection between two records is called
"simple" and only involves a NUBA record between them.
A connection in more than two records is called a
complex connection and requires the use of a NUBA and a
NUBC record.

-10. RELB Set

This set specifies the "right hand side" of
connections between records, objects numbers and
character strings which are the owner and various types
of nubs are members.

This type of set is used when specifying "complex"
connections involving more than two records. This set
relates a particular NUMB record to a NUBC record.

12. ALINE Set

This set specifies the relationship between a
NUBCOM record and its associated COMLIN records.

13. SYNFOR Set

Each name which the user defines as a basic name
can have an arbitrary number of synonyms. synonyms are
stored in SYNREC records. 'I'he relationship between the
basic name and its synonyms is desigated by the set
SYNFOR with the basic name as owner and all the
synonyms as member.

- 26 -

14. ALLUPD Set

This set contains all UPDREC records . . It is a
system set a nrl the members are sorted by the value of
the sequence o f the order.

15 . PNMREC Set

This set contains a single record of the type
PNMREC. If no name has been assigned to the databa se
this set will be empty.

16. ALLINM, ALLEN}1 and · ALLSTR Set

These sets are system sets. The sets ALLINM,
ALLENM and ALLSTR contain the records INMREC, ENMREC
and STRREC respe ctively.

~ .1 .~. Implementation Evaluation

All the sets in ADBMS are implemented as a doubly
linked chainas shown in fig 2.4.

(OWNER RECORD)

1 FIRST LAST NUMBER

1 1

PREVIOUS : OWNER : NEXT PREVIOUS : OWNER : NEXT
1

(MEMBER
~CO®) 11 RECORD)

1 1

PREVIOUS : OWNER : NEXT
1
1 1

(MEMRER RECORD)

Fig 2 . 4 Set implemen t ed with a doubly linked chain

For a set, all the searches are made linearly . The
search algorithm for sorted sets works in the following
manner . The search hegins at the current member of the set,
if there is a c u -crent member, or the first member if the

- 27 -

member currency is nul.

If a current member exists, then a comparison of the
current member · s sort key and the desired member·s sortis
made to determine whether to search forward or backward in
the set. The search continues in the right direction until
either the record is found or it can be determined that the
rnember is not present.

If the current rnember is nul, the search begins with
the first member and continues forward until the member is
found or determined to be rnissing.

Regardless of other performance considerations, we can
predict that this current procedure for searching sorted
sets is inefficient and can cause an overhead in CPU time
and database page faults.

Studies were performed by David Childs [ISDOS 1981b] on
the ADBMS conunands which rnake sequential searches on sorted
sets. These commands are AMSK (add a member to a set based
on key) and FMSK (find a rnember of a set based on key).

AMSK requires a sequential search, based on a logical
sort key, of the members of a given set type instance
defined by the current owner until the correct position in
the sequence of logical sort keys is found for the new
members.

FMSK requires a sequential search based on a logical
sort key, of the members of a given set type instance
defined by the current owner until the designated member is
or is not found.

The results of the studies made show that the CPU time
consumed by FMSK and AMSK on the ALLNAM set during an
execution of the IP command is increasing nonlin~arly. We
can conclude that the searching procedure used by FMSK and
AMSK to search sorted sets is dependent on the database
size. This dependency was expected upon examination _of the
searching algorithm utilized by the two routines.

Furthermore, in certain cases in IP, the ALLNAM set is
searched twice for a single name. The first search is to
determine if the name exists in the database (this is made
by FMSK). If the name is not in the database the ALLNAM set
is searched again with AMSK for the first instance that
sorts after the instance to be inserted so that the new
instance will be inserted at the correct place in the set.
The first task requires on the average N/2 comparisons (N is
the number of member in the set) to search a sorted set. On
the average the second task takes also N/2 comparisons.

David Childs has shown that these routines were
utilized extensively by the IP command so that the resource
consumption dependency of the two routines on the database
is very significant in terms of performance. Thus a part of
the poor performance such as the nonlinear increase in
consumption of CPU tirne, the rapid decrease in the average
number of statements processed per CPU minute and the rapid

- 28 -

increase in CPU time consumed as the number of basic names
increase in the database can be attributed to the search
algorithm .

A major improvement will be achieved in systematicaly
constructing an index table for each of the system owned
s ets, i . e , ALLNAM,ALLSTR, ALLINM,ALLENM.

1-~-~- Implementation of the Codasyl Model s synthesis

The goal of this section is to describe some mechanisms
which are comrnonly proposed by most of the database
management systems.

The current implementation of ADBMS is a rather
restricted subset of the CODASYL specifications for network
DBMS (DBTG 1971]. Consequently the physical design of any
database system is severely limited by the absence of
clauses such as the Location mode and the set mode as they
are defined by the Codasyl Database Task Group report.

In this section we review some mechanisms which are
usually implemented in most Codasyl DBMS and which greatly
improve the design and performance of a database.

1-~-~-~- Location Mode

Location mode is a clause which allows
specifications of the access methods for each record
entry appearing in the schema. In particular, one
useful mechanism is to have the possibility to declare
LOCATION MODE IS CALCULATION.

Thanks to this, retrieval is based on the values
supplied by the program for the data items which are
contained in the record sought and which have been
declared as CALCULATION keys. The DBMS transforms the
values provided into a unique identifier and retrieves
the record on the basis of that identifier .

Many DBMS [Pholas 1974] , [UDS 1977] provide ways
to improve the physical organization and placement of
data. For this purpose, the data description language
may not be used because to do that would destroy the
independence between the logical and physical view of a
database.

Generally , a Storage Structure Language (SSL) is
provi ded which allows to spec i fy physical parameters to
i mprove the physical design of a database.

The set mode c lause is one i mportant part of this
language because it allows one to choose ways to

- 29 -

implement the ::;et concept. For each set type the
designer must choose a trade off between time and
space. This r; election depends heavily on the
characteristics of the processing to be performed.

l\s it cou.l r:l not be forecast at the time the DBMS
was developed, t he schema SSL allows choice, from arnong
several altern,1tives provided by the DBMS, of the
approach to be 0 mployed for any given set type.

In general thr. e e set modes are provided
POINTER ARRAY and LIST .

1 . set oeclared as CHAIN

CHAIN,

For each occurrence of a set declared to have
a mode of CHAIN, a chain of pointers is created
which provides serial access to àll records in the
set occurence. The pointers may or may not be
embedded in the records themselves.

The owner record contains a pointer to the
first member record in the logical sequence
defined. The member records contain a pointer to
the logical next member record unless the optional
clause LINKED TO PRIOR is used. In this case,
additinal links in the reverse direction are also
provided.

In addition, the occurence of any of the
member record types specified for a set may be
declared to be linked ta the owner. This causes
the owner record of the set occurences to be
accessible directly from each of the member record
occurences as illustrated in fig 2.5

1
owner

p R~cord N

'\

,.,

- Member
p Record N

~

,i,

Member -p Record N

t

Fig 2.5 Set declared as CHAIN

- 30 -

If i 11 ilddition the clause ORDER IS SORTED
INDEXED J,. ts been specified for a set to be stored
as chain, .- rn index is created and maintained to
retrieve • ·!le member records directly.

In t h i.s case, the chain of pointers in the
records i ~ used for sequential processing while
directly a ccessed records will be retrieved via
this inde x .

2. set Declar~!d as POINTER ARRAY

A pointer array is the functional equivalent
of a chain. In sets declared as pointer arrays,
member record occurences do not contain pointers
to each other, but however they contain pointers
to their owner record occurences.

Each owner record occurence
with a list of all of its
occurrences as shown in fig 2.6.

O\omer List of ml.

Record Members m2

j \ J\

Member

i°l Record

roi

is associated
member record

~

Member

Record
~

Fig 2.6 set declared as POINTER ARRAY

technique is The miiin advantage of such a
that th0 list of member record
developed for pointer arrays allows
operationn to be performed on the
listed without the necessity of

occurrences
some logical

member records
accessing the

records tl19mselves.

An advantage, for example, is to perform

- 31 -

logical AND and OR operations on the members of
two or more sets occurrences without accessing any
of the member records.

When the mode is POINTER ARRAY for a set, for
each occurrence of the set an array is built
containing a reference to the member records of
the set occurrence. The references in the array
are stored and maintained in the logical order
specified for the set.

3. sets Declared as LIST

When the lists are used as a storage
technique, the set occurrence can be repr·esented
as indicated in fig 2.7

Record

Member Record Member Record Member Record

Member Record Member Record Member Record

Member Record Member Record

Fig 2.7 set declared as LIST

The member records can be considered as
sequentially stored in the logical order specified
by the user. When the memr9r records can not all
reside in one page the participating pages are
connected.

Since the list is treated as a table, an
index is built with the highest ascending or
descending key in each of the participating page.
When we want to retrieve a particular record, the
index is first used to determine in which page the
record resides and after a scan is done through
the page to retrieve the record.

- 32 -

~ . .J. . .J. . .J.. Effect
Efficiency

storage Structure .Q!l Processing

When a user program is running, it executes
storage and access operations on database. The time
required to execute a program will depend heavily on
the type of storage structure. This section gives a
general comparison of the three set modes.

1. POINTER ARRAY

In the case of sequencial retrievals, an
entry of the pointer array will be read for each
record and will be followed by a disk access to
the member record itself.

It is assumed that the pointer array is in
the core. This will be the case when a member
record of the set occurrence has already been
accessed via the set.

For a direct retrieval, the page number of
the part of the pointer array in which the entry
of the sought record must reside, will be
selected. When the proper entry has been found,
the member record will be accessed. For insertions
and deletions, they both require access to the
pointer array and an additional disk access
either to store the member record or to rewrite
the page to be changea.

We can conclude that "MODE IS POINTER ARRAY"
results in fast sequential retrievals and fast
direct retrievals and updates.

2. CHAIN

In the case of sequential retrievals, one
disk access will normally be needed for each
member record (if no other optimization has been
specified for the set). For a direct retrieval we
must distinguish two cases.

If the" SORTED INDEXED option has been
specified for the set, the member record can be
found by means of a sort key table. This table
will be accessed to retrieve the correct entry and
a disk access will then normally be needed for
retrieving the record.

If the" SORTED INDEXED "option has not been
specified, the member record in the chain must be
accessed by processing the chain sequentially.
This will result in many accesses.

For insertions and deletions, two actions
must be distinguished . First, the correct
insertion or deletion point must be determined
within the selected set occurrence and secondly,

- 33 -

r

the new member record must be inserted or deleted.

If the Chain is only SORTED, half the number
of member records must on average be read to find
the required insertion or deletion point. If the
chain is "SORTED INDEXED", the correct insertion
point can be found through the index table which
then be accessed. When the new record is inserted
or deleted, the pointer in the previous (and
sometimes next) record must be updated.

In conclusion we can say that the mode
"CHAIN" will result in fast sequential retrievals
even, faster than for the mode "POINTER ARRAY".
Fast direct retrievals are also available if the
option OROER IS SORTED INDEXED has been specified.
Insertions ,deletions and updates will be slower
than for the mode "POINTER ARRAY ..

3. LIST

As soon as the page in which the list of
member records is known, only one disk access will
be needed if the list is stored in one page.

For direct retrieval of a member record in a
list, the right entry will found via the index.

For insertion or deletion, the position at
which the record must be inserted or deleted
within the selected set occurrence can be found by
direct access to the index if the option OROER IS
SORTED INDEXED has been specified.

When the OROER IS FIRST, LAST, NEXT, PRIOR or·
IMMATERIAL, the currency information determines
the correct insertion or deletion point . Insertion
can cause a number of member records to be
repositioned.

We can conclude that MODE IS LIST offers the
fastest sequential retrieval method. When updating
involves a change of sequence it is slower than
for POINTER ARRAY.

4. Conclusion

Sorne Codasyl DBMS (PHOBAS, UDS) provide a
storage structure language (SSL) which allows
facilities for specifying how data records and set
relationships must be stored physically.

In addition to the possibilities described in
the previous sections , these languages often
provide mechanisms which allow the user to control
the placement of indexed , sort key, search key
table as well as the lists and pointers arrays.
These and other possibilities have not been
decribed in this dissertation because this demands
a much longer discussion .

- 34 -

z.~.~- Directions for Improvement

The performance consideration outlined above must be
the first steps of a much more accurate and thorough study
of all levels of the ISDOS software.

But as changes to SEM software will in general
modifications of all SEM installations, we must
projections for performance improvement, completion
effects on existing software, effects
transportability and maintainability.

require
perform
times,

on the

As far as concern the SEM reports and modifier
commands, it is suggested that one perform a detailed
architecture analysis of all reports and commands, and
evaluate their logical design. This will help to locate
inefficiencies and redundancies.

The extent for resource contention must also be
examined among the SEM subsysterns. For example we have
already seen (in section 2.2.2) that in sorne cases, the os
subsystern and ADBMS contend for memory space.

Irnprovernent in ADBMS would be the most beneficial since
ADBMS is used extensively throughout all of SEM. Different
areas can be investigated to try to rneet this goal. we could
for example replace ADBMS with a commercial DBMS and compare
the performances. We could also implement major
modifications to ADBMS such as hashing procedures, indexed
sequential procedures or other records retrieval rnethods.

Another approach is to say that the informations
processed by SEM are relational rather than network type of
model.

A SEM lansuage is an occurence of a Meta language based
on the E-R model. This leads to poor performance since we
have to provide an E-R interface to the ADBMS network
database.

This function is served by the DM subsystem which
allows the user to access to a target database. All the
subroutines and functions of the DM subsystem work at the
Meta language level in terms of objects, properties and
relationships. Thus the user need never know the actual
physical structure of the database.

One idea would be to use the SEM model (E-R model) as
a èata model and to implement a database management system
based on this rnodel. In opposition to ADBMS, hashing
procedures should be use to improve the performance.

The next chapter is devoted to the description of such
a system.

- 35 -

]., LOGICAL VIEW OF AN ENTITY-RELATIONSHIP MANAGEMENT SYSTEM (DBMS)

2,l, Introduction

The several criticisms of the ADBMS have focused attention
on the need to change the current Database Management System
(DBMS) of the ISDOS software.

One approach that has been selected is to construct an
Entity-Relationship (E-R) DBMS with very high performances. The
system should be required to support large databases and to
involve many database retrievals and updates with fast response
times.

In this chapter we surnrnarize a logical view of an E-R DBMS,
i.e, the E-R model, a data description language (DDL) and a data
manipulation language (DML). The detailed definition and
forrnalization of the E-R model can be found in [Chen 1976],
[Sakai 1980] .

]. .~. The Entity-Relationship Data Madel

1. Entities and Entity set

An entity is a thing which can be distinctly
identified: a student, a course, etc. The definition of an
entity depends only on the perception of the world by the
user.

Entities are classified into different entity sets. A
predicate is associated with each entity set to test whether
an entity belongs to the set. An entity has a set of
attribute values which characterize it.

An entity set can be expressed by the following
notation

E(Al, ,An) where E is the name of the set and each
Ai is an attribute typeto which a value set V(Ai) is
associated.

2. Relationship, Relationship set, Role

A relationship is an association between entities. The
existence of a relationship depends upon the existence of
the entities connected by this relationship. Each
relationship can have attributes.

A relationship set Ri, can be viewed as a mathematical
relation among n entity sets. A relationship set can be
expressed by the following notation :

R(El, ,En; Al , , An) where Ris the name of the
relationship set and Ei and Aj are an entity set and an

- 37 -

attribute type respectively.

Each entity in the relationship plays a specific role.
The role of an entity is the function that this entity
performs in the relationship.

The connectivity of a relationship set represents one
of its essential characteristics and makes part of its
description.

Assume we have a relationship set :

R(El , , . , ,En ; Al, ,An)

the connectivity of R will be defined by the affectation of
minimum and maximum values, Cmin and Cmax respectively, for
each entity Ei which belongs to R.

Cmin (Ei) is the minimum number of times that each
instance of Ei may be implied in an instance of the
relationship R. If Cmin (Ei) = o, one instance of Ei may
exist independently of instances of R. However if Cmin (Ei)
= 1 n, one instance of Ei cannot exist without making
part of 1 ton instances of R.

Cmax(Ei) is the maximum number of times that each
instance of Ei may be implied in an instance of R.

3. Attribute, Value and Value Set

The informations about entities are expressed by means
of attribute values "5" "John", "green" are values.
Values are classified into value sets.

An attribute can be formally defined as a function
which maps from an entity set or a relationship set into a
value set or a cartesian product of value set

f: Ei or Ri v i or Vil X• • • • • Xvin

Fig 3.l illustrates sorne attributes defined on the entity
set ernployee. The attribute Narne maps into value sets
First-Narne and Last-Narne and the attribute student-Number
maps into the value set Student-Number.

4 . Entity Key, Primary Key

A set of attributes called an entity key identify one
entity set. This set is such that the mapping from the
entity set to the corresponding group of value sets is one
to one.

If there are several entity keys, we arbitrarily select
one (the rnost rneaningful) as the identifier of the entity
set . This identifier is called a primary key.

- 38 -

Entity s.-, t

El
(employee)

fl
(EmployPe-no)

f2
(Narne)

Value sets

Vl
(Employee-no)

V2 V3

(First-Name) (Laet-Name)

Fig 3.1 Attributes defined on the entity set student

5. Weak Entity and Relationship

Sometimes, the entities in an entity set cannot be
uniqueJ.y identified by the values of their own attributes.
We must use a relationship to identify these entities.

For example, if we consider two entity sets WORKER and
DEPENDENT (dependent represents the persons which are
supported by the worker) , Let R be the relationship set
that connects the s e two entity sets. This relationship set
indicates the fact that a worker supports the dependent with
which he is reli r:? d on. Dependents are identified by their
names and by the values of the primary key of the employee
supporting them. Derendent is called a weak entity set.

In summary there exist two kinds of entity
relationship types. · If relationships are used
identifying one entity type, it will be called a
entitt . Otherwise, i t will be called a regular entity.

and
for

weak

In the sarne way, if some entities in a relationship are
idP.ntified by othe r relationships ,it will be called a weak
relationship. Otherwise, it is a regular relationship .

- 39 -

6. Inte grity Constraints

Constraints for maintaining data integrity exist. A
constraint is a predicate on an element of the E-R model and
which must be checked during a given peri.od of time .

These constraints limit both the possible instances of
t he elernent of the model and the set of operations that we
can r e alize on it.

The usual constraints of integrity are the following
[Chen 1976]

connectivity of a relationship set

constraints on allowable values for a value set

constraints on permitted
attribute:

values for a certain

All allowable values in a value set are not
permitted for some attributes. For example, the
age of a worker can be limited between 18 and 60.

conditions and time of existence of an entity, an
association or attribute

For simplicity reasons, we have chosen not to implement the
weak entities and relationships. For the same reasons ,
constraints of integrity will be limited. The user can
choose a minimum and maximum value for a value set. He can
also define a set of values for a value set. The
connectivity can also be stated.

- 40 -

~-~- An ~-E Data Definition Language (DOL)

~-~-l- Introduction

An E-R data definition language is explained in this
section. The DDL allows a description of the logical view of
an E-R data model.

Unfortunately, this DOL is not totally independent of
the physical implentation and this for two reasons.

First, at each entity and relationship set are
associated some files (see chap 4).The initial size and the
load factor of the file are parameters which the user can
vary and this for performance reasons. The description of
these parameters are included in the DOL.

Furthermore, the description must be stated in a
certain order. First the entities set and after the
relationships. Inside the description of an entity set, the
primary key must be stated first followed by the secondary
key description and terminated by the attribute part. This
last section contains the items for which a particular
retrieval technique has not been implernented.

we think that these constraints are easily acceptable
because the DBMS is in its prototype stage and has been
constructed to enter the schema of an E-R model, to
implement a nd test the physical level as soon as possible.
When the DBMS is revealed to be efficient, a new DOL more
flexible for the users must be built.

Basic constructs are covered in paragraph 3.3.2 and
description of the DDL can be found in paragraph 3.3.3.

i.i.~. Basic Constructs

1. DDL Primitives

The description of a target database in the DDL is
i n terms of DOL primitives: entity type and
relationship type,

2. DOL Sections

The description for each instance of the
primitives is given in an DDL "section". For example,
if two entity types are to be decribed, two entity
types sections are given.

3. Characters set

The DDL characters set is divided into four
classes (see fig 3.2). Characters in class land 2
are used for forming DOL names; the only difference is

- 41 -

that the characters in class 2 are not allowed as the
first character in a narne . Characters in class 3 are
DOL punctuation symbols that have specific meanings .

4 . DOL Names

A DOL name must begin with a character in class 1
fo l l owe d by zero o r more characters from class 1 and 2.
A DOL name may no t be longer than thirty characters .

5. DOL Numbe rs

There are two types of number allowed in the DOL:
integers and real numbers. Real numbers contain one
(and only one) period as the decimal point. The
maximum value and precision depends on the computing
environment .

6. DOL Strings

A string is a sequence of characters from any
class delimited by primes (·) or double quotes (") on
both sides. The maximum length
included the delimiters at
characters.

7 . Uniqueness of DOL Names

All names for the entity
sets, the attribute sets
unique within their class.

- 42 -

the

sets,
and

of a string (not
ends) is thirty

the relationship
value sets must be ·

CLASS 1

A, B, C, D, E, F, G, H, I,
V, w, X, Y, z (upper case

a, b, c, d, e, f, g, h , i,
v, w, X, y, z (lower case

(exclamation mark)

S (currency sign)

% (percent sign)

@ (at sign)

- (underscore)

CLASS 2

J, K, L, M,
alphabet)

j, k, 1, rn,
alphabet)

0, 1 , 2, 3, 4, 5 , 6, 7, 8, 9 (digits)

+ (plus sign)

- (minus sign)

/ (slash)

< (less than)

> (greater than)

= (equal)

CLASS 3

(semi-colon)

) (parentheses)

CLASS 4:

N, o, P, Q, R, S, T, U,

n, o , p, q, r, s, t, u ,

Any character available in the computing environment that is
not included in class 1, 2 or 3,

Fig 3 . 2 Characters set

- 43 -

d•d•d• Decription Content

2,2,2,1, Notation

Each DDL section is described
3.3.3.3 and 3.3,3.2 . There are
decription :

Purpose

syntax

Usage Rules

separately in
three parts

"Purpose" states what the DDL language section is
to define. "Syntax" shows the prototype for
statements allowed in a DOL section. "Usage rules"
explanations and cornments on the statements.

d•d•d·Z· Special Meanings

Undesrscored Words

section
for each

intended
all the

includes

If the first word of a DOL statement is
underscored then that statement is required for the
DOL section in which it appears, otherwise, it is
optional.

A word in the prototype is printed in upper-case
letters if that word is a DDL keyword and must be
spelled in upper case letters exactly as given.

- Words in Lower-Case Letters

Words printed in lower-case letters and not
within angle brackets call for the language user to
give names to replace these words. The lower-case
words describe what kind of name is to be given.

- Words enclosed in braces ({ J)

When words or phrases are enclosed in braces ({
}), a choice from two or more entries must be made.
The choices are separated by a vertical bar (:)

words Enclosed in Angle Brackets (< >)

Only four words are enclosed in angle brackets (<

- 44 -

>) <integer>, <real>, <string> and <value>.

If <integer> is specified then any integer must
replace <integer>. <real> and <string> are interpreted
in the same way.

<value>
<value> is
depending on

means that the value which must replace
either integer, real or string type

the type defined in a statement above.

semi colon(;)

The semi colon indicates the end
statement.

- 45 -

of each

d •d•d•d• Entity ~ Section

Purpose

To define an entity type and its characteristics.

syntax

ENTITY-TYPE entity-type-name i

PJŒY <integer> <integer> <integer>

ATTRIBUTE attribute-name

VALUE-SET value-set-name {INTEGER
<integer>

RANGE <value> THRU <value>

VALUE-ALL value

SKEY <integer> <integer>

ATTRIBUTE attribute-name

VALUE-SET value-set-name {INTEGER
<integer>

RANGE <Value> THRU <Value>

VALUE-ALL <Value>

ATTRIBUTE PART ;

ATTRIBUTE attribute-name

VALUE-SET value-set-name {INTEGER
<int.eger>

RANGE <Value> THRU <Value>

VALUE-ALL <value> ;

NUMBER

NUMBER

NUMBER

CHAR}

CHAR}

CHAR}

Each entity set is divided into three groups:
primary key, secondary key and attribute part.

The primary key partis used to define a set of
attributes which form a unique identifier for the
entity set. The PKEY statement has three parameters
which indicate some initial parameters for a hashing
file (for the signification of these parameters see
chap 4) : the first represents the initial group size,

- 46 -

the second indicates the number of buckets inside a
group and the third is the load factor of the file.

Each PKEY statement must be followed
more attribute parts . Each attribute part
of one ATTRIBUTE statement and one or more
parts.

by one or
is composed
value set

The ATTRIBUTE statement defines the name of the
attribute and must be followed by one or more value set
parts .

A value set part is cornposed of one VALUE- SET
staternent optionaly followed by a RANGE statement and
one or more VALUE-ALL statement . The RANGE statement
indicates a range for the value set defined. The
VALUE- ALL staternent defines a value allowed for the
value set. These two statements are optional. The
integer at the end of the VALUE-SET statement
indicatess the number of character representing a value
for a value set.

The SKEY statement has also two parameters. The
one indicates the exponent of 2 for the initial number
of pages (see chap 4) and the other is the load factor
for the file .

The SKEY stated the attributes of an entity for
which a special technique is irnplemented to accelerate
the search for these attributes . The rest of the
description of the secondary key is the same than for
the prirnary key.

The ATTRIBUTE PART statement is described in the
same way as the PKEY and SKEY statement. This third
part represents the attributes of the entity for which
no special technique has been i mplernented.

- 47 -

~-~-~-~- Relationship section

Purpose

to define a relationship type and its characteritics.

Syntax

RELATIONSHIP TYPE
<integer> ;

relationship-type-name

ENTITY-RELATED role-name
<integer>

entity-type-name

ATTRIBUTE PART

ATTRIBUTE attribute-name

VALUE-SET value-set-name {INTEGER
<integer>

RANGE <Value> THRU <Value>

NUMBER

<integer>

<integer>

CHAR}

The description of a relationship set is composed
of two parts the description of the entity sets
related and the description of its attribute part. The
attribute part is defined in the same way as for an
entity.

The RELATIONSHIP TYPE statement has two
parameters . The one indicates the exponent of 2 for the
initial number of pages (see chap 4) and the other is
the load factor of the file .

A RELATIONSHIP TYPE statement must be followed by
more than one ENTITY-RELATED statements. The two
integers at the end of one ENTITY RELATED statement
represent the connectivity.

There must be a value specified for the integer
which represents the minimum number of times that an
instance of the entity can be implied in the
relationship.

The second integer must be>= to the first integer
and if no values are specified, this means that there
is no maximum number of times that each instance of the
entity may be implied in an instance of the
relationship .

- 48 -

~-~· A Data Manipulation Language

~ -~ -i. Introduction

A Data Manipulation Language (DDL) must be provided for
the application programrners to manipulate the database via
the E-R model.

The DML is a set of commands for retrievals,
insertions, modifications, and deletions of data items in
the data base. The interface between the application
programs and the database is called the DBUSER level.

The set of commands belonging to this level are
described below.

~-~·Z · Subroutines Description of the DBUSER Level

l. CRENIN

Calling convention:

CALL CRENIN (entyna, bufpar , ptrpar, ierr)

Purpose

to create an entity instance

Description :

An entity whose values are contained in a
buffer is added to the set of the entities
identified by the given entity type name. The
subroutine checks if the primary key already
exists or is acceptable.

If the primary key already exists we can not
insert the entity because a primary key uniquely
identifies an entity. The primary key is not
acceptable means that one of the values of the
primary key does not belong to the range of
allowable values defined for this entity type .

Arguments

NAME USAGE TYPE DESCRIPTION

entyna input char entity type
name

bufpar input char buffer containing
the values of the items

- 49 -

ptrpar input int pointer into bufpar
where the description
of the entity begins

ierr output int return code

2 . CHENIN

Calling Convention :

CALL CHENIN (dbkey, attnam, vsnam, newval, ierr)

Purpose :

change the value of an attribute of an entity

Description

An entity identified by a data base key (a
data base key indicates the location ,i.e, the
page number and a displacement within the page, of
the primary key) is modified in the following way:
the old value of a value set identified by its
name and an attribute type name is replaced by a
new value. If the value set is nota part of the
primary key ,there is no consequence.

otherwise we must change the primary key of
this entity in all the relationships in which the
entity is involved.

Arguments

NAME USAGE TYPE DESCRIPTION

dbkey input int(2) data base key

attnam input char attribute type
name

vsnam input char value set name

newval input char new value

ierr output int return code

3. DELENT

Calling Convention :

CALL DELENT (dbkey, ierr)

- 50 -

Purpose :

delete an entity

Description

An entity identified by a database key is removed
from the database. All relationships involving
this entity are also deleted.

Arguments

NAME

dbkey

ierr

4. RETENT

USAGE

input

output

Calling Convention :

TYPE

int(2)

int

DESCRIPTION

database key

return code

GALL RETENT (entnam ,pkey ,dbkey ,ierr)

Purpose

to retrieve an entity

Description:

An entity identified by its primary key and its
type is searched for in the database.The database
key locating the entity is given as output. If
the entity is nor found then the database key is =
o.

Arguments

NAME USAGE TYPE DESCRIPTION

entnam input char entity type
name

pkey input char primary key

dbkey input int(2) database key

ierr output int return code

- 5l. -

5. RETVEN

Calling Convention :

CALL RETVEN (dbkey,attnam,vsnam,value,ierr)

Purpose

to retrieve a value from an entity

Description :

The value item of an entity identified by a
database key is retrieved and put into an integer
array value. The item to retrieve is identified by
an attribute name and a value set name.

Arguments

NAME USAGE TYPE DESCRIPTION

dbkey input int(2) database key

attnam input char attribute type
name

vsnam input char value set name

ierr output int return code

6 . RETVRE

Calling Convention:

CALL RETVRE (dbkey,attnam,vsnam,value,ierr)

Purpose

to retrieve a value of an attribute
relationship

Description :

of a

The value item of a relationship identified by a
database key is retrieved and put into an integer
array value. The item to retrieve is identified by
an attribute name and a value set name.

- 52 -

Arguments

NAME USAGE TYPE DESCRIPTION

dbkey input int(2) database key

attnam input char attribute type
name

vsnam input char value set na.me

ierr output int return code

7. CREREL

Calling Convention:

CALL CREREL (relnam,bufpar,ptrpar,ierr)

Purpose

to create a relationship

Description :

A relationship is created.
primary keys and the
relationship.

Arguments

NAME USAGE TYPE

relnam input char

bufpar input char

ptrbuf input int

ierr output int

- 53 -

Bufpar contains the
attri.butes of the

DESCRIPTION

relationship type
name

buffer containing
the values for
the relationship

pointer to the bufpar
where the
description begins

return code

8. CHREAT

Calling Convention :

CALL CHREAT (dbkey,attnam,vsnam,newval,ierr)

Purpose :

change the value of a relationship attribute

Description

A relationship identified by a database key is
modified in the following way the old value of a
value set is identified by its name and an
attribute name is replaced by the new value.

Arguments

NAME USAGE TYPE DESCRIPTION

dbkey input int(2) database key

attnam input char attribute type
name

vsnam input char value set name

newval input char new value

ierr output int return code

9. DELREL

Calling convention :

CALL DELREL (dbkey,ierr)

Purpose

to delete a relationship

Description:

A relationship instance identified by a database
key is removed from the database.

- 54 -

Arguments

NAME

dbkey

ierr

10. RETREL

USAGE

input

output

Calling Convention :

TYPE DESCRIPTION

int(2) database key

int return code

CALL RETREL (relnam ,pklist,dbklis,ierr)

Purpose :

retrieve a relationship instance

Description:

Given a relationship type name,and a list of
primary keys which are related by this
relationship (the name of the role precedes each
primary key),this subroutine returns a list of
database keys which correspond to the primary keys
stated as inputs.

Arguments

NAME USAGE TYPE DESCRIPTION

relnam input char relationship type
name

pklist input char primary key list

dbklis output int database key list

ierr output int return code

- SS -

J.J.. IDOP

Calling Convention :

IDOP (liobuf ,use,ierr)

Purpose

open a database

Description

The integer function IDOP is used to
database. Liodbf designates the logical
to which the database is attached. If
specified "O" then the database is only
read operations.

Arguments

NAME USAGE TYPE DESCRIPTION

open a
I/O unit
use is

open for

liobuf

use

input

input

output

int

int

logical I/O n\.Ullber

read/write flag

ierr int return code

J.2. DCLOSE

Calling convention :

DCLOSE (ierr)

Purpose

close the current database

Description :

the current database is closed

Arguments

NAME USAGE TYPE DESCRIPTION

ierr output int return code

- 56 -

Chapter ~ IMPLEMENTATION OF AN E-R MODEL

- 57 -

.1:, IMPLEMENTATION OF AN ~-B, MODEL

~.i. Introduction

There are two important problems to solve in order to
provide an efficient access to the data structure.

First, the problem of dynamic files is a critical point for
the usefulness of a system. Dynamic means that the size of the
file may grow and shrink rapidly as the file undergoes insertions
and deletions.

The second problem that arises is finding efficient
techniques in terms of access to the data in the database. In
particular, the number of page faults is a critical point for the
efficiency of a system.

In the next section are presented the requirements of access
to the data in the database as well as the addressing techniques
that are available nowadays to provide efficient access to the
data.Among these techniques, we have chosen two which seem to
provide good performance. These techniques will be explained in
section 4.3. We will outline in section 4.4 what are the
advantages and the disadvantages of these techniques.

section 4.5 will be dedicated to the description of the data base
management system.

1.z. Presentation of the Problem

For the entities, we must be able to insert an entity
instance, retrieve, and change the values of an entity. The
problem is that you can retrieve one entity either by stating
the value of a primary key or by stating the values of certain
attributes. Typically, this is a multiple key retrieval problem.

For the relationships one must be able to retrieve an entire
relationship by specifying some values of the primary keys that
this relationship relates and/or by specifying some values of the
attributes.

Usually, one key is used to uniquely identify records and is
referred to as the primary key while the other keys are referred
to as secondary keys. In most multiple key files today, the
prime key determines the physical positioning of the records just
as it does with most single key files.The secondary key
addressing method is generally a technique which does not depend
on the physical position of the record.

Overview of the classical techniques employed in the
multiple key r etr ieval schemes [MARTIN 1975]

Single Cha ins

Single chains or rings through all items with a
key kj have slow retrieval performance, but the index

- 58 -

size is small.

Multi-List Orqanization

Multiple chains or rings through items with key kj
have faster retrieval, but the index is many times
larger.

Secondary Inverted List

This classical file organization has a number of
defects. Normally, if the secondary indices can be
examined rapidly, the inverted list organization gives
the fastest response to real-time inquiries because no
chains have to be followed. on the other hand, the
indices can be enormous and the organization of the
indices themselves becomes a major file problem.

This file organization also has the unfortunate
property that the more fields that are specified in a
query, the larger the amourit of work that is needed to
answer a query (more lists have to be intersected).

Furthermore, it is not appropriate for dynamic
files because of the expense of updating inverted
indices. Due to the complex nature of the maintenance
operations, most inverted file systems are updated
off-line and, if possible, not too frequently.

The periodic updates require the time-consuming
process of sorting and reconstructing the tables.

Associative Memories

Associative memories would probably become one of
the most powerful organizations that will change
s torage structure drastically in the future.

Héwever, until now, hardware associative
large enough for database use have not been
for most systems.

memories
available

Software associative memories (file storage with
properties similar to associative memories and using
software techniques) are slow, clurnsy, and often
error-prone compared with their hardware equivalent.

The multiple key retrieval scheme is cornrnonly implemented by
techniques that do not provide good average performance when
there are many records in the system.

The main reason is that these techniques generally use an
index file to r e trieve records by a secondary key. The size of
the index can be very large, s ometimes larger than the size of
t he main f i l e itse lf. If the time to access a record is, in
ave rage , accep t able , t he maintenance algorithm can be complicated
in the case of many inse r t ions and deletions.

Many of the difficulties that arise in maintaining a

- 59 -

database are a result of periodic reorganization of the records.
Furthermore, files are becoming much larger as computer
applications grow and storage costs drop. With very large files,
periodic reshuffling of the records is time consuming and costly.

As the current techniques do not seem to provide sufficient
performance, we have chosen to solve these problems by the
employment of new hashing techniques that have recently appeared
in the literature (see [Larson 1980), [Litwin 1980), [Litwin
1978), [Lloyd and Ramamohanorao to be published].

Among these techniques, the Larson
handle the retrieval of an entity
scheme has good performance in terms of
retrievals. The only disadvantage is
stored in the order of a sort key.

scheme has been chosen to
via its primary key. This
insertions, deletions and
that the entities are not

Unfortunately, this scheme is only a primary key scheme and
does not allow the existence of secondary keys. so we use an
other scheme [Lloyd and Ramamohanorao 1982) to store secondary
keys. This scheme is suitable for secondary keys and allows the
retrieval a set of items which have a specified value.

We have chosen to implement only the direct access method in
the DBMS. Though the methods decribed below possess good
performances, they can not be sufficient in a real DBMS which
normally provides some other mechanisms to access the data
(indexed sequential, chain, lists ...). This limitation has
been introduced because the other methods can not be investigated
in this thesis .

1,2, overview of New Hashing Schemes

~.2 .i. Introduction

Recently, there appeared in
schemes which intend to provide
which grow and shrink rapidly.

the literature hashing
high performance for files

Among these schemes two are reviewed in parts 2 and 3
of this section. The first scheme is suitable for files with
a single key and the second is suitable for multiple keys
retrieval files.
The first part of this section recalls some principles of
the conventional hashing files.

1.2.z. Conventional Hashing Files

Hashing is an ingenious and useful form of address
c alculation technique. A simple pseudo-random function
called hashing function (H) converts the item of a record
(called the primary key) into a near random number and this

- 60 -

number is used to determine where the records are stored.

The records are stored in places called buckets. A
bucket can hold one or more records and the set of buckets
is called the address space of the file.

The record is inserted into the bucket H(c) (where c is
the primary key), unless the bucket is already full. The
search for c always starts with an access to the bucket
H(c) . If the bucket is full when c should be stored, a
"collision" occurs.

A collision resolution method, which stores c in a
bucket M such that M H(c), is then applied. The record c
then becomes an overflow record and the bucket M is called
an overflow bucket for c. The overflow records are often
handled by a method called "bucket chaining"

Bucket chaining is the method in which overflow records
are stored by linking one or more overflow buckets from a
separate storage area to an overflowing bucket. Each
overflowing bucket has its own separate chain of overflow
buckets.

A search for an overflow record requires at least two
accesses. If all collisions are resolved only by overflow
records creations, as it was assumed recently, access
performance rapidly deteriorates when primary buckets become
full.

Fig 4,1 shows a conventional hashing file where the
records are handled by bucket chaining.

providing, in practice, the
a file. Theoretical analysis

to a hash table is independent of
but depends on the four factors

Hashing is recognized as
fastest random access to
indicates that access time
the number of records ,
listed below.The factors
following :

affecting efficiency are the

1. the bucket size

2 .

3 .

4.

the load factor, i.e, the number
stored in home buckets divided by
number of records that could be
them

the hashing function used

the method of handling overflows

- 61 -

of records
the maximum
stored in

Hom<' buckets

Hashing routines

~
Key K l

Key K 2

Key K 3

Key K 4

Key K 5 .
"

.
~

Overflow bucket s

. . -. .

t=..
, -·

~~

~
IJ l

...
-r Chain addre SS

'

Chain address

Fig 4.1 conventional Hasning scneme ·

- 62 -

In contrast to the fast O(l) access time, hashing is
burdened with two disadvantages that prevent its use in many
applications

Hashing does not allow sequential processing of a file
according to the natural order of the key (sequential
processing requires a O(n * lnn) operation which
makes the fast random access useless).

Traditional hash files are not extendibles and their
sizes are tied to the hash function used which often
must be redefined.

Thus, if the file grows by a large factor or if the
records distribution over the available storage space
is not uniform, the number of overflow records grows
and the record retrieval time increases considerably.

A high estimate of the number of records implies a
costly rehashing operation (new hash function, table
size, relocation of all records, etc.). Shrinkage of
the file or a low estimation of the number of records
implies under-utilized storage space.

If one can design adaptable hashing schemes that remain
balanced as pages are added and deleted, the suitability of
hashing for secondary storage devices would be greatly enhanced.

During the seventies, new file organizations which are based
on hashing and which overcome the second disadvantage of
conventional hashing were presented. These schernes are suitable
for files whose size may grow and shrink rapidly. Their main
characteristic is that the storage space allocated to the file
can be increased and reduced without reorganizing the whole file.

These schemes are called "dynamic hashing schernes". The rest
of this section presents two of these "dynami c hashing schemes".

~-~-~ - Line ar Hashing with Partial Expansions [Larson 1980]

~.2.2.~ . Introduction

Linear hashing with partial expansions [Larson
1980] is a generalisation of the Linear hashing scheme
developed by [Litwin 1980]. In paragraph 4.2.3.2 a
brief review of the scheme proposed by Litwin is
presented. Paragraph 4.2.3.3 contains a description of
the improvement introduced by Larson.

- 63 -

1-~-~-z. Linear Hashing Scheme

In linear hashing, we have as starting point a
traditional hash file where overflow records are
handled by bucket chaining (see 4.2.2).

Assume that the insertion of a record with a key s
leads to a collision and no records already stored in
the bucket H(s) could becorne overflow records. The
record rnay then be stored in a prirnary bucket only if a
new hashing function is chosen. The new function that
we shall then call a · should assign new addresses to
sorne of the records hashed with Hon H(s) and the file
should be reorganized in consequence. If H = a· for
all other records , the reorganizing needs to rnove only
a few records and so may be performed dynamically.

The new function is called the dynamic hashing
function. The modification to the hashing function is
called a split address. The rnoving of sorne records of a
bucket into a new bucket which has been added to the
file is called a splitting.

The idea in Linear hashing is to use the splits in
order to avoid the accumulation of overflow records and
the splits are typically perforrned during some
insertions.

Linear hashing allows a gradual increase in the
storage space by splitting the home buckets in an
orderly fashion : first bucket o, then bucket land so
on.

If mis the address of a collision and n the
address of a split to be performed in the course of the
resolution of thi~ collision, the values of m are
random while those of n are predefined (n =/ rn).

We assume that a pointer P keeps track of which
bucket is the next to be split. For the first N
collisions, the buckets are pointed in the linear order
0,1,2, . .. N-1 where N is the original size of the file.

The size of the file doubles when all the
original buckets have been split. In this case the
pointer is reset to o and the process can starts again.

Fig 4.2 shows a Linear file at different stages of
the splitting process (N = 5)

The file size becomes progressively larger,
including the buckets N+l, N+2, ... 2N-l one after
another. A record to be inserted undergoes a split
usually not when it leads to the collision, but with
some dolay. The delay corresponds to the number of
buckets which have to be pointed while the pointer
travels up, from the address indicated in the moment of

- 64 -

1 1 :~J
ot 1 2 3 4 5

SP

(a) At an initial s~age (number of buckets~s)

1 1 I~~]
0 1 t 2 3 4 5 6

SP

(b) After one split

.

1 l 1 1 r1J
0 1 2 3t 4 5 6 7 8

SP

(C) After three split:;:

0 t 1 2 3 4 5 6 7 8 9

SP

(d) After the doubling of the file size

Fig 4.2 Linear Hashing file

- 65 -

,, -,
1
1 -

__ ..,

10

collision to the address of this collision.

With this mechanism, no matter what the address of
the first collision is, let it be ml., LH performs the
first split using Hl and for the address o. The
records from the buckets o are randomly distributed
between bucket o and a new bucket N, while, unless
ml=O, an overflow record is created for the bucket ml.

The second collision, no matter what its address
is, mz for example, leads to an analogous result,
except that first it splits for the address 1 and
appends the bucket N+l. Next, it may constitute the
delayed split for the first collision, suppressing
therefore the corresponding overflow record. This
process continues for each of the N first collisions,
thus moving the pointer step by step up to the bucket
N-1. Sooner or later, the pointer points to each m and
the splits, despite being delayed, move most of the
overflow records to the primary bucket. We may
therefore reasonably expect that, for any m, only a
few overflow records exist.

It results from the above principles that first,
the address space increases linearly and is as large as
needed. Next, for any number of insertions, most of
overflows records are moved to the primary buckets by
the delayed splits.

After the splitting of a bucket, it should be
possible to locate all the records which were moved to
a new bucket without having to access the old bucket.
The difficulty in this scheme is to find an algorithm
which allows one to determine which records have to
remain in the old bucket and which records must be
transferred to the new bucket.

This algorithm must be such that approximately
half the records are moved to the new bucket. The
reader will find further information about this
a lgo r ithm in in the appendix to this chapter.

The important point is that given the key of a
record it is always possible to access the home buckets
of a record without accessing any other bucket. If the
record is not in the home bucket, it must be on the
overflow chain emanating from the home bucket.

- 66 -

.r
ot

1

SP

1 .].],l . Im r rovc men l_ Pro posed QY [Larson 1980)
H.J.shing with !: 1>, tial Expansions

,1.1.1.1 ._1. Int_n)duct ion

Linear

Gene r .illy, the best performances a. r e achieved
in hash jng techniques when the records are
d .istribut r., I as uniformly as possible among the
buckets in the file.

Unfot t unately, the record distribution of
Linear hashing does not reach this goal because
the load factor of a bucket already split is only
half the load factor of a bucket not yet split.

The idea of Larson is to achieve an even
greater l oad in doubling the file size in a series
of partial expansions.

1 ,1 ,l ,l -~- Pre s entation of Linear Hashinq With Partial
Expansion

In this scheme, the difference with linear
hashing i8 due to the fact that the doubling of
the file ~ize is done in a series of partial
expansions.

Initially the file consists of no~ N buckets
logically subdivised into N groups of no buckets
each, no , ~ 1, N >= 1. A group i consits of the
buckets (i, N + i, ZN+ i, , (no-1) N + i)
with i = 0, 1, ,N-1.

Fig 4.3 shows a file at an initial stage with N =
3 and no •0 3.

r-. - . - . 1 •· - ·- . - . 7 r--= -----,.. --r- - - - ·., .

1 1 (f t j : l

4, * '<' ~ ~ ~~ ~
1 1 I 1 1
2 3 4 5 6 7 8

Fig 4.3 Linear Hashing file with partial expansions
(N-3 and nOm3) at an initial stage

- 67 -

group o contains the buckets (0,3,6)

group l contains the buckets (l,4,7)

group 2 contains the buckets (2,5,8)

A full expansion results in a doubling of the
file size and is accornplished by a sequence of no
partial expansions increasing the size of each
group to no+ 1, no+ 2 , , 2n0 respectively.

A partial expansion is carried out stepwise
by adding one bucket to each group always in a
predefined order group 0, group l, ... , group N
* 2 exp L - 1. Each complete partial expansion
increases the file size by N * 2 exp L buckets.

The nurnber of full expansions which have been
accomplished is indicated by a variable L. The
smallest file size on level Lis no* N * 2 exp L
buckets and the buckets (j, N 2 exp L + j, 2 * N 2

exp 1 + j , , (no-1) * N * 2 exp 1 + j)
with j = o, 1, ,N * 2 * exp L - l forms N * 2
exp L group of buckets.

Fig 4.4 shows a linear hashing file with two
partial expansions (no= 2). The nUinber of groups
is 3 (N = 3).

In the example represented by the figure 4.4,
the doubling of the file size is done in two
steps; the first expansion increases the file size
to 1.5 times the original size,

while the second expansion increases it to twice
the original size.

We start with a file of 6 buckets, logically
subdivided into 3 pairs of buckets, where the
pairs are (j,j+N) j=0,1,2.

When new storage is needed, according to some
rule , the file is expanded by one bucket, bucket
6, and part of the record in bucket o and bucket 3
are moved to bucket 6. When more space is
required, the pair (1,4) is expanded.

When the last pair (2,5) has been expanded,
the file size has increased from 6 to 9.
Thereafter the second expansion starts, the only
differences being that now 3 groups of 3 buckets
are considered (0,3,6), (1,4,7), (2,5,8),

When the second partial expansion has been
completed, the initial file size has doubled from
6 to 12.

- 68 -

~7,

1 1
t-, __ J

0 1 '2 3 4 5 6

(a) At the initial stage

l
------.,---+--~-~-1--,--,
~0---1-1--'-2--+3-_._4 __ 5_-r~--:7--J

(b) After one split

I

1 1 1 1 1
0 1 2 3 4 5 6 1

(C) After one partial expansion

1
0 1 2 3 4 5 6 7

l.

1

.. ,
1
1

- -.l
8 9

1 []
8 9 10 11 12

(d) After two partial expansions (doubling of the file)

Fig 4.4 Linear Hashing with parti a l expansions at different stages

- 69 -

However, we do not wish to continue expanding
groups of four buckets, then five ... We want to
come back to groups of two buckets (j, j+6) j =
0,1,2,3,4,5 (figure 4.3) .
If this were not the case, the cost of expanding a
group would steadily increase and it would soon
become prohibitively large.

Another important point is that when a group
o f buckets is expanding , it should not be
necessary to r ear range records among the old
buckets. We must simply scan through the old
bucket and collect only the records which are to
be reallocated to the new bucket.
In this way, the expansion can be
scan, and no jumping back and forth
The solution for this last point is
and uses the rejection technique.

made in one
is necessary.
quite simple

The rejection technique assumes that H(K) =
(hl(K), h2(K), h3(K) ..) is a sequence of hashing
functions, where each hi hashes uniformly and
independently over {0,1,2 , .. . n-1}.
Furthermore, we suppose that a fixed set of
records is to be stored in a file consisting of
only m· < m buckets. To find the address of a
record with a certain key K, we compute the
numbers ... hl(K), h2(K) ... and takes as the address
of the record the first number which is a valid
address, i.e, which is less than m among the
buckets 0,1, ... m· -1.
Once the file i s extended by one bucket, m·, and
the address of every record in the set in
recomputed, the same hashing functions hl,h2, ...
a re used , but this time any number less than m· +1
i s a valid address. When t he number of buckets
pass from m· -1 tom · , t he address of some of the
records has changed tom·

Example: if m=4 and m· =2, we consider the
s equences

H(11)=(1, 3, 2 , . . .) , H(12)=(2, 3, 0, .. .) ,
H(13)=(3, 1, 2, ...) , and H(14)=(3, 2, 1, ...)

If the file has 2 buckets, the records will
be assigned to bucket 1,0,1,1, but if m· is
increased to 3, the addresses of the records
are 1,2,1 and 2. In this case, records 2 and
4 must be moved to the new bucket. If m·=4,
the addresses are 1,2 , 3 and 3. This time
record 3 and record 4 must be moved.

If you want to r educe t he size of the file by one
bucket, the new addresses are computed for the
recorns l ocated i n the bucket which is to be
deleted a nd t he records are inserted into their
new bucket . No other records have to be moved.

- 70 -

1,J.J.J.J. Control Function

Larson suggests that the expansion of the
file should be controlled solely by the load
factor When a record has been inserted into the
file, load factor is checked and if it is higher
than some fixed threshold w, 0<W<l, the file is
expanded by one bucket. This implies that we have
a central function that keeps track of the nurnber
of records in the file and the number of overflow
buckets.

This control function seems optimal because
when we use Linear hashing with partial expansion,
there is always a trade-off between storage
utilization and the expected length of successful
searches.

The higher the storage utilization is, the
longer the searches are expected ta be. Both
factors cannot be controlled simultaneously.
Larson suggests that we first control the storage
utilization by requiring that it should always be
>= the threshold, but once this threshold has
been. reached, we minimize the time of searches by
keeping the storage utilization as close ta the
threshold as possible.

1,J.J.J,1, Performance

A detailed performance analysis can be found
in [Larsen 1980] The analysis reveals tbat an
average search length in the range of l.l-1.2
accessses can be achieved with the same
parameters.

Furthermore, we can say that the expected
number of accesses required to insert a record
also includes accesses required to physically
store a record and to update the record counter,
the accesses required to rearrange records in the
old bucket reach between 4.37 and 6,37 accesses
for load storage as high as 85%-90% and a bucket
size of 50 records. The choice of two partial
expansions seems to be a good compromise.

In surnrnary, Linear hashing with partial
expansions offers a new and simple technique for
organizing dynamic files. Retrieval of a record
is very fast by any standard and files have a
constant storage utilization up to 0.90 with
excelle nt performance. The performances
deteriorate r apidly if the storage utilization is
further increased.

- 71 -

~ -~-~. pynamic Hashing Scheme for secondary Key File [Lloyd,
Ramamohanorao and Thom 1983]

~-d•~·1• Introduction

The scheme presented in the section above has the
disadvantage of letting the user access a record only
by means of a primary key.

In the case of secondary keys (we want to find the
location of a record via keys which do not uniquely
identify one record), the pure hashing schemes are not
very efficient. To solve this problem, we will
describe a partial match retrieval scheme based on hash
functions and descriptors See [Lloyd 1980], [Lloyd and
Ramamohanorao 1982], [Lloyd, Ramamohanorao and Thom
1983] , [Pfaltz, Berman and Cagley 1980].

~ -2 -~-~- Definition of~ Partial Match Q.y_gn

Each record in the file consists of a number of
fields (secondary keys) which may be specified in a
query .

Assume that there are K fields fl, ,fk which
may be s pecified in the query. Then a partial-match
query is a specification of the value of one or more of
the fields fl, ... ,fk. An answer to a query is a
listing of all records in the file which have the
s pec if i ed values for the specified fields.

1 ,d,1•d· Descr i ption o f ~ Simple Partial-Match Retrieval
Scheme (When the File is Known) Based Purely on Hashing

The records of the file are contained in a number
of p a ges . We suppose first that t he file is static and
consists of 2 exp(d) pages. (d is a fixed, non
negative integer). The pages are numbered o, l, ... 2
exp(d)-1.

There are K hashing functions hi, the ith function
mapping from the key space of the field fi to the set
of the str i ngs of di bits where each di is a non
negat i ve integer and dl+ ... + dk = d.

The page in which a particular record is to be
stor e d i s computed as follows . Each field fi is hashed
t o a st ring of d i bi t s . The s tring resulting from the
c o nca t enation o f t hese s t r ings (in o rde r) gives the
page numb~r.

7he hash i n9
d is tn.bute t he

fu nc t i o ns s ho u ld be chosen to
records a s e ve nly as possible amongst

- 72 -

the pages.

The problem at this stage is to minimize the
average number of home pages which have to be accessed
to answer a query.

Let Q be a query, so that Q in 1,2, .. . ,k. We
de note by the probability that the query is
s pec i f ied. The P~ · s for a particular system are
de t e rmined by the use made of that system.

The n the average cost of a query is :

A,,, r PQ (Jï'2d; î
Gl ,{ ~ Q

The optimization problem is thus to find dl, ... ,dk
that min1.mize the objective function A and satisfy dl
+ ... + dk = d.

As such, it is too simplistic because another
difficulty arises with the key space of each field.

For example, often fie.las have rather small key
spaces, and thus must be allocated only one or two
bits. Constraints of the form di <= dmax naturally
arise where 2 exp(dmax) i s the number of values that a
particular field can take. For example, sex can have
only t wo value s and thus no more than one bit should be
all ocat e d to 1.t.

On the other hand, if the field fl has a large key
s pac e of 2 exp(cl) values, the optimization problem
a ssigns dl bits to fl with cl>>dl. A pure hashing
sche me cannot cape with it because the total number of
bits, d, allocated is determined by the size of the
file space and there are a number of fields competing
f o r bits.

As the numbAr of bits allocated to fl is severely
limited, the hash function will map many different
values o f the same field in the same bit string. A
large amo unt of information i s lost in this case. One
s uggest i on is to use a s mall, simplified, descriptor
f i l e, b u i l t o n top o f a h ash i ng scheme, sa that before
any page is accessed, a ch eck o n its descriptor is
made. A s che me usi ng d e sc r ipt ors was developed by
[P f altz , Berman and cagley 1980] .We briefly review this
s cheme.

- 73 -

~-2 -~-~ - ~ Descriptor Scheme

~ -~ -~-~ -~- Desciptor, Page Descriptor, File Descriptor

At each file is associated a descriptor file.
This decriptor file is composed of a set of
descriptors pages.

A descriptor page is
where each descriptor is
main file. A descriptor
w bits (fixed length).

a set of descriptors
related to a page of the

is simply a bit string of

Each record R in the data file has a
descriptor Dr associated with it. This descriptor
is de rived from the values (Vl , V2, .. . ,Vk) of the k
at t r ibutes o f t he r ecord R.

F i g 4.5 shows the basic s cheme of a file and its
associate d descriptor file .

~ -2-~ -~-~ - Construc t ing ~ Descriptor

One possibility in constructing the
descriptor is to employ the method of disjoint
coding [Pfaltz, Berman and cagley 1980].

Disjoint c oding begins by dividing each
descriptor into F disjo i nt fields (each record has
F at t ributes). Each field Fj consists of Wj bits
a nd t h e sum of all values Wj from j=l to j=f is
equal to W.

Each of t he att ributes has an associated
t ransformation Tj which maps from the key space of
F j to the subset of bit strings of length Wj.

To describe a record R, these transformations
a re applied to each of t h e attribute values of R
a nd the Tj(vj)th bits in Wj is set to 1 while the
r emainder Wj-1 b its are set to o.

Each de s criptor will have exactly F bits set
to 1 . In a partial-match query, attribute values
are s pe cified for only a subset of the attributes.
If Q<=F is such a subset , th~ query descriptor is
built in the same way as the record descriptor.

The transformation Tj is applied to the
a ttr ibute value Vj to determi ne which bit in Wj(Q)
is set to 1 . If al l t h e poss ible values are not
spe cifi e d in the query , the bi ts corresponding to
t h e fie l ds not specifi ed are set t o o.

- 7 4 -

0
1
2

•

descriptor
file

descriptor

F'ig 4. 5

0

1

2

/

•

•

•

file

Basic scheme

- 75 -

home page

As the descriptor of Dr and Q have been
constructed using the same transformation, we can
make the following propositions

If R satis fies the partial match query, then
Q <= Dr .

If Q is no t a part of Dr, then R does not
s atis fy the partial match query.

If Q is a part of Dr, then R may or may not
satisfy the query.

"Q is a part of Dr" means that every bit
position which is lin Q is also-a lin Dr, and"
Q is nota part of Dr" means that there is at
least one bit position which is lin Q and o in
Dr. With these propositions, we can construct a
descriptor file which allows us to check if an
information is contained in a page and thus access
this page only if we are sure that we can find the
i nformation in this page.

In the scheme proposed by [Lloyd,
Ramamohanorao and Thom 1983] ,a page descriptor is
c onstructed by applying the logical function OR to
the descriptors of the records contained in the
pages of the main file and any overflow page.

1,1,1,1 -1, Using ~ Descriptor File

The descriptor file is used as follows. Let
Q be a query. Using the hash function Hi on the
s p ec ified fields, a set of addresses of pages
which can c ontain records in the answer to the
query is generated.

However, before these pages are accessed, we
check the descripto r file. Corresponding to Q,
the r e is an a ssoc iat ed query descriptor (with the
s ame s t ructure as a page descriptor), which is
obtained by transforming the fields specified in Q
us ing the Ti · s and making up the remainder of the
query description with o · s in the bit positions
corresponding to the unspecified fields.

Then before accessing a page, we compare
query descriptor with the descriptor for
page. If the query descriptor has al in a
position where the page has o, then the
c annot possibly c ontain a record in the answer
Q a nd h e nce , the page does not have to
acces s e d.

the
that
bit

page
to
be

The advantage of desc r i ptors is that they can
add more knowledge abou t records actually present
in the file. Wh e n a record i s added to or deleted
from a page, the descriptor must be updated.

- 76 -

f 1 f_
,::

1
0010 CO 10 I 1001
0001 1100 ,0101
0010 0001 1001
0001 0010

1 1010
1

0100 0010 : 1100
0100 1000 0110
0010 0000 : 1001
0001 0010 0110

Descriptor file

/

~s sume that we have a record type with
t·.wo Fields and that a query was maùe o n t he
firs l field of this record type with the
va lur· Vl.

[f only one bit is allocated to this
fic l rl t-.hen t h e h ashing f11nction can h a s h to
the :·:,)t. of adùresses beginn .ing by J. o r o. I f
we a n: ;ume t hat t he hashing functi o n hashes to
l t111 ~11 th e set of home pages to be searched
witho ut the desc r i p tor file is the following

pag0 s 100, 101, 110, 111.

Suppose the query Q gives the query
descr i.ptor 001000000000. Page 100, which has
a de ~~ riptor 010000101100 does not have to be
acce :;:;ed, since it has a o in a bit position
wher c the query descriptor has a 1. on the
othe t hand, it will be necessary to access
page 110 with descriptor 001000001001.

/

I
/

,,
/

r1

0010
0000

I

0000
0000

I

0001

0000
0010

1000
0100
0000

: 0001
I 1001

I 0100
I O 100
1 0001
1

Pzgell

000

001

/
/ 0010 0000 10001 010

~ --
--

'
\ "

\ '
\

\

'

\

d=3

0000 ooc 1 I 1000

0001 0000 I 0010
0000 0010 1 1000

1

0000 0010 1 0100
010C 0000 11000

0000 1000 I 0010
OlCO 0000 1 0100

1

0010 0000 1 0001
0010 0000 r1000

1

0000 0010 10010
0001 0000 1 0100

Mëin FilE:

k=-7.

It h ,1 :; to he noted that
are shown in the
expl ;i nation purpose.

- 77 -

011

100

101

110

11 1

Wl=8 w2 ~1 w ,12

record descriptors
main file only for

0 1 2

1

\
•

. _1_ .·1- ~- P.xt e n~ion (t:hg Sçheme to Dynamic Files

sp

• • •
r

\ q
.•

The p :trtical-match retrieval scheme described
i n the ,..,,~ ction above is only suitable for static
files, bu l· it is ea::;y to extend it to dynamic
files by utilizing the l i near hashing sche me
di::;cussed narlier. The scheme used here is linear
hashing.

A Lin e ar Hashing file is shown at a typical
stage in its existence in fig 4.6

split pointer

M-11 --;-- ,------T-7----
, 1 • • • 1 1
1 1 1 1

---1- -'--- -- --L- - J... ____ _

Fig 4.6 Typical stage of a Linear Hashing scheme

The file i s currently stored in M pages, numbered
from O up to M- 1. Sorne pages have short overflow
chains containing records that would not fit in to
the home pages.

The file also has a split pointer which
indicates the next page to be split. This page is
numbered ~p. Note that the page to be split is
.independe11 t of where co 1.lisions occur. The split
pointer m•::ves in a very systematic way, first page
o, then p ,11e 1 , ... splitting each page in turn.

When page 2 exp(d-1) splits, the Split
pointer r~turns to page o.
:::plit poi 1,t:e r will go up to
the file doubles during
r;pli t poi 11 •·. er. d is now a
depth of l·he file.

On the next run, the
2(exp(d+l))-1. Thus,
a complete run of the
variable called the

The ~: plitting policy employed here is to

- 78 -

split after every L insertions into the file. L
is called the load control and must be carefully
chosen to maintain a desired load factor.

When the page sp is split, the following
occurs

For each record
any associated
hash address is

in the page sp, and for
overflow records, a new

computed.

For each such record, the new address
will either be sp (the old address) or
M=SP+2 exp(d). A new page, numbered M,
is then appended to the end of the file
and the records with hash address M are
put into this page.

Since pages split in this very systematic
way, the need for a directory is obviated.
Furthermore, even though the file may have grown
and the record moved since it was first inserted,
i t is still possible to calculate directly the
home page of any record in the f i le.

The important part of the extension is the
choice of the hash funct ion. A more complicated
way of constructing the hash f unct i on is needed
because the file is no longer static.

For each Fi, we have a hash function Hi
mapping from the key space of Fi to bit strings
o f an suitably length , We now no longer
c o ncatenate the st r ings Hi(Vi) as before, but we
comput e the new address with what we call the
" cho i c e vector"

~ -1 -~ -~-~ - Choice Vector

We
is and
rec ord.

are now explaining what a "choice · vector"
how t o use it t o c ompute the address of a

Aft er , we will see from where it cornes.

A" choice vector " contains numbers (Il, I2
,) which are integers between 1 and K.
Each integer indicates which field is taken into
account to c ompute the address of a record. Let us
see with an example how this "choice vector is
used

Example

As sume the choice vector is (4,5, 4 , 3,2,3 .. .)
a nd K=6.
The right- most bi t of the bit string forming
t he addre ss is the first bit in the string
H4(V4), t he second from right is the first
bit in the string HS(VS), the third is the
s econd bit in the string H4(V4), and so on.

- 79 -

In general, the ith bit from right in the bit
string formi ng the address will be the first
so far unused bit in the string Him (Vim). In
this case, the record is said to hash to an
interlaced bit string.

This c hoice vect o r c ornes from the
opt1m1 zatio n proble rn. The problem is to minimize :

s uhject t o[d,· .. d where each di is a non negative
i n t e ger .

[Lloyd, Ramamohanorao and Thom 1983) proposed
in their paper an algo rithm which compu tes the
optimal number of bits and the optimal Di and Wi
at each depth.

This algorithrn is not used in the current
s ystem because i t is cornplex and not sufficiently
e xplained in the paper. We use a rather simpler
way to compute the optimal bits. We say that there
a r e three levels o f probability that a query was
made o n a specified value of a item: high, middle
and low. we alloc a te bits proportionally to these
p r obabili t i es . Fo r e xample if four bits must be
alloca ted betwe en 2 i t e ms declared as having a
h igh and l ow p r obability respectively, then 3 bits
will be a lloc a ted to t he first and 1 to the second
respective ly .

What can happen is that a particular fie1a · s
a llocation c f bits in the optimal solution atone
depth can be highe r than its allocation at the
ne xt highest depth.

This i mplies removing a bit from t he middle
o f a hash address whe n the depth changes, but in
t his c ase we c an avoid a complete reorganization
o f the file during the change in depth to handle
this.

Thus, the allocation of di values, as the
depth increases, should have the following
property : If di bits are allocated to a field fi
at depth di and di' at depth d + 1, then di<=
di . . This property is called the monotonicity
property.

The algorithm
Ramamohanorao and Thom
"choice vector" .

- 80 -

provided
1983]

in [Lloyd,
computes also the

1,2,1-~•2· File Descriptor

The descriptor file grows and contracts in
parallel with the linear hashing file. However,
no matter what the depth of the linear hashing
file, the descriptor size is a constant w bits.

The construction and the information
appearing in the descriptor are similar to those
of section 4.3.4.4. Maintenance of a descriptor
is also easy and is made in parallel with the
maintenance of the LH file. Fig 4.7 shows a Linear
hashing scheme and its descriptor file .

.1 .].. ,1. §.. Pe r fo .t mance

The descriptor of a page must be updated whenever
a r eco rd is inserted into a linear hashing file. This
invo lves c omputing the descriptor of the record and
applying the logical function OR to the old descriptor
assoc i ated to the page where the new record has been
inserted and the new descriptor.

If a r e cord is deleted the cost is slightly more
expc nsive bec~use the descriptor must be recomputed.

The c 0st of maintaining the descriptor file for an
ins ert ion o r deletion is 2 disk accesses : one to read
t h e descriptor , and o ne to write it. For a split, the
cost is 4 disk accesses : one to read the descriptor,
o ne to read the page and two to write the two new
,le s cr iptors .

- 81 -

0
1
2

sp

M-1

•

•

r-
1---t
1 1
1

1
1

t 1
1' 1

: ' 1
1 1
1 1
t 1
1 I

descriptor file

0

1

2

sp

M-1

/'
[_.-/

.l-/
,,

•
•
•

1

'- --1
1 1

~-...1
1 1

1 1 • 1
I 1
1 •
1
1 •

LH file

D

Pig 4 . 7 Linear Hashing scheme and descriptor file

- 82 -

_1._1 . How l: rJ rJ:~~ Th E:•se Scheme s .!;__Q SI.ore · Entities and Relationships

The fir.st scheme (see section 4 . 3 . 3)
p erforma nc e for files wi th primary keys. So all
of one e nt i ty set will b '' s t ored in one file
handled by the scheme of Larson.

presènts good
the primary keys

which will be

'I'he secondary keys ;ind the attribute part will be stored in
another file and will be handled by the second technique
presen t:ed above. The rel 0 !:ion between t he primary key and the
secondary keys is illustr·ed by the figure below :

Primary Key file secondary Key file

PKEY PT-1-------

SKEYS PT'--

Fig 4.8 Relatibnship between a primary key file and its
corresponding secondary keys

In this way with a prima r y key, you can access via a pointer all
the other ùttributes o f the entity. If you have accessed one
secondary key you can al s o accessits primary key.

The relationships a re also implemented following the second
scheme. M1en we want to re trieve one relationship we give all the
primary keys of the enti t ies implied in this relationship and
thanks to the second scheme the relationship can easily be
retrieved. We can also The following figure illustrates this
process.

- 83 -

H (PK 1, PK 2, PK 3) • PK l IPK 2 1 PK 31 ATT

Fig 4.9 Relationship file

Even if this second 3Cheme provid~s good performance, it
seems that a combinatio n of .these techniques and pointers would
be more efficient especi .J lly for queries of the type : we want to
have all the relationships in which an entity is implied. In this
case, once the primary key has easily (thanks to the first
scheme) been retrieved , we followed the chain of pointers to
have all Lhe instance of the relationship which have this entity
relied on.The second sch r:- me will be used only to store and delete
the relationship. The fol lowing figure illustrates this process.

We have chosen to i rn plement only the two first schemes. The
sr.heme with the pointer~ must be studied much more deeply before
being impJemented. In pa1t iculnr, we must verify that the update
of the pointers is nof: too high a price to pay to improve the
re t rieval performance.

- 84 -

PKEY1 PKEY 2

PK1 1 1 PT R

PK2 1 1 PTR

REL 1

C
PK1

PK2 ,_

I'\
(

PK1

~
i~

..
PK1I P K2I

C
,-

PK1

PK2

Pig 4.10 Combination of schemes

2 •2· DBMS Overview

~-~ -~- DBMS structure Overview

The Database management system that we want to build
consists o f four parts :

1. t he database files (DBF), which consist of the data
t hat is to be accessed

2. the database tables (DBT), which contain the logical
description of the structure of the database and is
stored in the beginning o f the DBF

3. the database control system (DBCS) which consists of a
collection o f s ubroutines that can be called from
FORTRAN This is the actual programrned interface to the
database.

4 . The database utility routines which aid the analyst in
creating and maintaining a collection of databases

~ -2,1.1. The Database Tables (DBT)

The Database Tables (DBT)
program named DOLA whose
descript i o n written in the Data
(DDL) .

are generated by a
input is a database
Description Language

The DBT consists of six description tables
(ETNTAB, RTNTAB, TYDTAB, HPKTAB, HATTAB,OPATAB) and a
character vector of DDL names (f'TAMES). They are placed
i n the first pages of the DBF by DOLA .

.1.2.1.~. The Databa se Files (DBF)

The info rmatio n stor e d in the database is placed
by the DBCS into the DBF.

With e a ch entity type is associated two files .
o ne contains the primary key of each instance of the
entity type and a pointer to the secondary key related
t o the primary key.The second file contains the
secondary key of each instance of the entity type and a
pointer to the primary key related to the secondary
key. Finally there is a descriptor file associated with
each secondary key file. With each relationship set is
associated 2 fil es: a file which contains all the
re l at i onships and a descriplor file. The DBF consists
of p hy3ica l pages whi ch d e pe nd on the computer
insta.1.latio n . The D13F a re initialized by DOLA.

- 85 -

~-2•1•1• The Database Control System (DBCS)

The DBCS is a collection of Fortran routines which
interface with the user·s program and with the DBMS
utility programs. They are divided into five groups,
classified by function. The five groups are :

1. DBHUSE

2. DBHLOW

3. DBHTAB

4. DBHRAN

5. DBHLIB

The DBHUSE routines are the only routines that directly
i nterface with the user · s program.

The DBHLOW routines are the lower level routines used
by DBHUSE to access the database; they also contain the
programs for the database storage allocation system and
for the database management system.

DBHTAB is a collection of Fortran integer functions
block fields, and Fortran
the control block fields.

by DBHUSE in referenci~g the

which return control
update

used
s ubroutines which
They are heavily
database tables.

DEHRAN cons ists of random input/output routines used by
DBHUSE and DBHLOW to transfer pages of the database
between main memory a nd the DBF .

DBHLIB consists of routines which allow one to
manipulate the buffer in which are sto-ed the pages of
the DBF. These routines can store and retrieve strings,
logic al value, words and halfwords. They can also
c ompare s t rings and words. They are used by DBHLOW and
DBHRAN.

1·~-1-~- DBMS Utility Programs

There must be two utility programs available for
use with DBMS. Each must be a stand-alone program
which calls routines of the DBCS. The programs are

l . The Data Description Language Analyzer (DOLA)

This program generates the database tables
(DBT) from a DOL and put it into an initial
database. It also produces a Fortran block data
source subprogram which is used by the DBCS.

2 . The Da tabase Summa ry Program (DSUM)

This program must ge nerate statistics on
nunilier of instances of each entity
relat i o nship type s as also statistics on the

- 86 -

the
and

load

o f each file.

The figure 4.12 shows the structure of the system.

- 87 -

DDL7
1 DOLA

D BT

Fig 4 . 11 Generation of tables by DOLA

app.LLc.at.io.n program 1

DBHUSE

D B H LO W

DBHRAN DBHLI B DBHTA B

CORE
TABLES

Fig 4.12 General structure of the system

- 88 -

~-2-~- DBMS Structure

~-2,I-~- The Database Tables (DBT)

The database tables contain the
the structure of the database.
description tables : ETNTAB, RTNTAB,
HATTAB, OPATAB.

description of
There

TYDTAB,
are six

HPKTAB,

The first three tables listed above are tables
which describe the logical description of the database.
The last three tables contain parameters which are used
to handle files in the data base. They will be
explained later.

The following figure represents
between the entity type names table
type description table (TYDTAB)
description of the entity types.

the relationship
(ETNTAB) and the
containing the

The rela.tionship between the relationship type
name table (RTNTAB) and the type description table
(RTDTAB) has exactly the same structure as the above
figure.

To obtain any information about an entity type,
the name of this entity type is hashed in the table
containing all the entity type names.

If the name in the table does not correspond to the
ent ity type name passed, then we access the overflow
area to find the right name. If the name is right, we
access, via a pointer, the description of this entity
t ype in the type description table (TYDTAB) and we can
get any information concerning this entity. If the name
is not right we follow the overflows chain until we
have f0und the right name or the chain of pointers is
terminated. The same method is used to access the
i nformation concerning a relationship type.

- 89 -

H (person) -

Entity type
name

~

overflow TYDTAB
area pointer

--

1,

ETNTA B

TYDTAB

1 •
1

Person description

part

-

Fig 4.13 Relationship between the ETNTAB and the TYDTAB

- 90 -

1

1,.2.z.z. The Database Entity ~ Name Table (ETNTAB)

The database entity type narne table is made up of
entity narne description block (IEB) . There is one IEB
for every entity type described in the DOL.

i•.2.•~-~-~- Entity Name Description Block (IEB)

An IEB consists of seven contiguous full
words of information to describe an entity type
narne in the database. The six first words are
used to store the entity type narne (which has a
maximum of 30 characters). The next halfword is a
pointer in the type description table which
corresponds to the description of the entity type
in the ETNTAB table. The second half word is an
index in the overflow area in cases where two
names hash ta the same address in the table.

+------------------------------------+
0 1

+ ---- +
1 1 entity type 1

+-----------------------------------+
2 1 narne I IETYNA

+
3 1

+
1

+--------------------- .--------------+
4 1

+
5 1

+

+-----------------+-------------- ---+
6 1 IPEBDE I IPEBOV 1

IETYNA

IPEBDE

IPEBOV

+-----------------+------------------+
Size Description

6 words Entity Type Narne
(30 characters)

Halfword Pointer to the description
of an entity type in the
description table

Halfword Pointer ta the overflow
area of the ETNTAB table

- 91 -

1 • .2.l_.J. The Database Relationship ~ Name Table (RTNTAB)

Like the entity type name table, the relationship
type name description table is made of relationship
name description blacks (IRE) which have the same
configuration as an IEB; only the field names (IRTYNA,
IPRBDE , IPREOV) are differe nt .

.1•.2 •~·~·~· Relatio nship Description Black (IRE)

An IRE consists of seven contiguous fullwords
o f information to describe a relationship type
name i n the database and its associated pointers.
The structure and the information are the same as
f or an IEB.

IRTYNA

IPREDE

IPREOV

Size Description

6 words Relationship type name
(30 characters)

Halfword Pointer to the relationship
description table

Halfword Pointer to the overflow
area of the RTNTAB table

.1 . .2.~.,1. The Database ~ Description Table (TYDTAB)

The database type desc ription table (TYDTAB) is
made up o f primary k e y de scription blocks (IPKB),
s e c ondary desc ription b l acks (ISKB) attribute part
descr i p t i ons b l acks (IAPB), relations hip description
blacks (IREB), attr ibute desc ription blacks (IADB),
value set descr iption blacks (IVSB) , allowable value
description b l nr.k '. l (ITRB o r ICHB), and relationship
part descriptio n bl,Jd:s (IERB).

Tt111 r e is o ne IPKB, ISKB, IAPB for each entity
descrihed in the DDL . There is one IREB for each
r elations hip described in the DOL. For every attribute
assoc iated wi th an entity type or a relationship there
is a n IADB. Each IADB is followed by one or more IVSB
which decribe the value set type belonging to this
attribute. Each IVSB can be followed in turn of one or
more IIRE or ICHB. These blacks decribe the values
allowed f o r e ach va l ue set. If all the values are
possib l e lha n the re is no IIRE or ICHB black.

The IPKB, I SKB, IAPB, IADB , IVSB, IIRE, ICHB,
IRF.B, IERB a r e s t ored i n the order in which they appear
.i. n the DOL.

Fo r e ach entity there is first one IPKB. This
IPKB is f o llowed by one or more IADB, IVSB, IIRE, or

- 92 -

ICHB . Following the IADB, IVSB, IIRB, or ICHB for one
IPKB, there is an ISKB which is the secondary key
description block. This ISKB is itself followed by one
or more IADB, IVSB, IIRB, or ICHB in the same way as
for an IPKB.

After the description of the secondary key there
is the description of the attributes and value sets in
the same way as for the primary key.

Following the secondary key description partis an
IADP desciption block. This block describes the part of
the entity (attributes) for which no special techniques
have been implemented. The attributes and value sets
are described in the same way as before.

For a relationship type there is one IREB followed
by some IERB. After the relationship part I there is
o ne IAPB followed by one or more IADB, IVSB IIRB,
ICHB as for an entity type.

Tnside the TYDTAB table, the user can access
either t he primary key description, the secondary
description or the attribute part description. The
user can also access the next attribute description of
an attribute description and the nerl value set
description of a value set description. For this
purpose , the length of each description is given in
IPKB , TSKB, IAPB, IADB, IVSB .

~.2.~.~.i. Primary Key Description Block (IPKB)

An IPKB consists of two contiguous fullwords
o f information used to describe one primary key
description par.tin the database. The physical
structure of an IPKB is the following :

+-----------------+------------------+
0 IPKBLD IPKBNA

+-----------------+------------------+
1 1 IPKBNA I IPKBLP 1

+-----------------+ +

Thexe are four halfword integers of
contained in an IPKB.

storage

IPKBLD

IPKBNA

Size Description

Halfword Length of the description of a
primary key (words)

Halfword Number of attribute for the
primary key

- 93 -

IPKBID

IPKBLP

Halfword Index of the entity
description

Halfword Length of the primary key
on a page

IPKBLD is the length in words of the description
of a primary key. This length is equal to the
following expression

number of attributes for the
the length of each of
description part.

primary key *
the attribute

IPKBNA is the number of attributes for the primary
key . IPKBID is the sequence number of the
description of an entity type in the table. For
example if an entity type had been inserted after
six other entity types IPKBID will have the
sequence number 7. IPKBLP gives the length in
words of a prirnary key. This sequence number is
used to access the parameters in the hashing
tables.

~-2-Z-~-z. Attribute Description Block (IADB)

One IADB consists of two contiguous fullwords
o f information used to describe one attribute type
in the database. The following diagram describes
the physical structure of an IADB :

+-----------------+ -----+
0 1 IADBDL 1 IADBNP 1

l IADBNP IADBVS
+ +

There are two half-word integers of storage
contained in IADB. The following table describes
the meaning of each storage location

Description

IADBDL Halfword Length of the description
of an attribute (words)

IADBNL Halfword Length of an attribute
name (BYTES)

IADBNP Halfword Attribute name pointer

IADBVS Halfword Number of value set

IADBDL represents the length of the description of

- 94 -

IERBMI

IERBMA

Halfword

Halfword

Minimum number of
instances

Maximum number of
i nstances

IERBNP repre sents the poi nter into the character
array NAMES, where all the role na.mes of the
e ntit i e s r elated by this relat i onship are stored.
I ERBNL is t he role-name l e ngth.

type description
descriptions are
to one of the

IERBPD is a po i nter into the
table where all the entity type
s t ored. Th i s entity corresponds
entity types a ssociated to t his relationship.

IERBMI , IERBMA r epre s e nt respectively the
mini mum a nd t h e maximum numbe r of occurrences a
pa r tic ular e ntity t ype in a relat i onshi p type.
IEREPC i s t he probabi lity that the entity is
s pec ified i n a q ue ry.

~ .2,Z ,1, 2 , Cha r acte r Array NAMES

The four th table that is generated from a DOL
i s a charac ter array where the names of the all
t h e att ributes, value sets, a llowable values ,and
role s are stored. The array is used by the
database routines when searching the database for
a par tic ular t ype .

The i ndex i nto the t able is not kept in one
plac e ; rather . e ach IADB, I VSB, ICHB , IERE has a
name po i nte r field a nd a na.me length field. The
name poi nte r i s t he d isplacement (in bytes) into
NAMES where t h e nillne b e g i ns, a nd the name length
f ield h as the 11al ue o f t he name length (also in
bytes) .

The fol l owi ng table i l lustrates the same
t ypes tha t a r e s t o red in NAMES , and where the name
point e r a nd l e ngths are s t ored.

Na.me

Attr i b ut e
Value set
Allowab le value
Role

Type Name

IADBNP
IVSBNP
ICHBNP
IERBNP

- 101 -

Pointer
Name

IADBNL
IVSBNL
ICHBNL
IERBNL

Length
Where Stored

IADB
IVSB
ICHB
IERB

~-2-~-~.10. DBT Structure as Written .hY DOLA

This section will describe the physical order
of the database control blacks, as written into
the first page of the DBF by DOLA. There are
eight logical records of table information

1. The abject schema parameters

2. ETNTAB

3 . RTNTAB

4. TYDTAB

5 . HATTAB

6. NAMES

7 . HPKTAB

8. 0PATAB

±,2.~.±.ll. The Object Scherna Parameters

There are a certain number of parameters
which must be contained in the first line of the
DBT .

The abject schema parameters, as written into
the DBF, are: ETNLEN(ICRNDB) the length in words
of ETNTAB, TYDLEN(ICRNDB) the length in words of
TYDTAB , HPKTAB (ICRNDB) the length in words of
HPKTAB , HATLEN(I CRNDB) the length in words of
HATTAB, NAMLEN(ICRNBD) the length in words of
NAMES, OPALEN(ICRNDB) the length in words of
OPATAB ,RTNLEN (ICRNDB) the length in words of
RTN'l'AB; PAGIND index in the first page where
ETN'l'AB begins ;UUFDAT the date that DOLA was
e>:ecuted to produce the DBT ; BUFTIM t he time that
DDLA was executed to produce the DBT.

The names of all the abjects described in the
DDL, except for t he entity type and relationship
type names, are stored in the array NAMES.

That is to say: t he name of the attribute
type , value set type, and allowable values.

The names are stored in the order found in
the DDL, except when an attribute , value-set, or
al l owable value is desc ribed which has the same
nclffie as a previous attribute, value-set, or
allowabl e value. In t his case, only the first

- 102 -

instance of the name is stored, and the pointer
for the duplicate name will point to the first
occurrence of the name.

1,2-~·2· Dynamic Hashing Tables

For the primary key, secondary key and the
relationship file, we must have tables to store and
update the different parameters of each file in the
database.

~-~-Z -~·1• The Database Hashing Table for the Primary
Key (HPKTAB)

The hashing schemes used to handle the
primary key file are explained in section 4.3.3.
To s tore the information needed to manage these
schemes, we have constructed the HPKTAB table.
The database hashing table for the primary key is
made of primary key description hashing blacks
IHPB. The re is one IHPB black by entity type.
The IHPB a r e put in the table in the order of the
enti ty type description (TYDTAB). The first IHPB
corresponds to the first entity type described in
TYDTAB and so o n . . .

1 . 2 . z_.2_,1,1, Primary Key Hashing Description
(IHPB)

one IHPB consists of three contiguous
fullwords of information used to describe the
current st,te and the initial parameters of a
primary key file .. PP 1 The physical str_ucture of
an IHPB is the following :

+--------+--------+
0 1 IHPBDE I IHPBSP 1

+
1 1 IHPBIB

+
IHPBNG 1

+--------+--------+
2 1 IHPBNB I IHPBLF 1

+--------+--------+

The following table represents the meaning of each
storage location.

IHPBDE

IHPBSP

Halfword

Halfword

- 103 -

Description

Depth of a file

Split pointer for
a file

IHPBIB

IHPBNG

IHPBNB

IHPBLF

Halfword

Halfword

Halfword

Halfword

Initial nurnber of bucket

Initial number of group

Nurnber of bucket in a group
not yet expanded

Load factor

IHPBDE represents the number
expansions the file has
IHPBDE = O) and IHPBSP is
representing the next page to

of completed full
undergone (initially

the split pointer
be split.

IHPBNG represents the initial number of
groups in a file and IHPBIB indicates the initial
number of buckets in a group.

IHPBNB is the number of buckets in a group
not yet expanded during a partial expansion.
(initially IHPBNB = IHPBIB). IHPBLF represents the
desired load factor of the file.

~ -2 -~ -2-~- The Database Hashing Table for the secondary
Key and the Relationship (HATTAB)

This table is made
hashing description block
IHSB for each secondary
relationship file. They
they appear in the DDL.

up of the attribute
IHSB. There exists an

key file and each
are stored in the order

~-2•1•2•1•~· Attribute Hashing Description Block (IHSB)

one IHSB consists of three contiguous
fullwords of information used to describe the
current state and the initial pararneters of a
secondary key or relationship file. The physical
structure of an IHSB is the following:

+--------+--------+
0 1 IHSBDE 1 · IHSBNP 1

+
l IHSBSP IHSBNI 1

+--------+
2 IHSBLF I unused 1

+--------+--------+

The following table represents the meaning of each
storage location:

Description

- 104 -

IHSBDE Halfword Depth of the file

IHSBNP Halfword Number of pages
for this file

IHSBSP Halfword Split pointer

IHSBNI Halfword Initial number of
page

IHSBLF Halfword Load factor

IHSBDE represents the depth of the file
number of expansions the file has
IHSBNP represents the current number of
the file.

,i.e, the
undergone.
pages of

IHSBSP represents the split pointer (the next
page to split). IHSBNI is the exponent of 2 to
reach an initial number of pages. For exarnple if
we want to have an initial file of eight pages
then IHSBNI = 3 because 2 EXP 3 = 8. IHSBLF is a
desired load fact o r for the file.

1-2-~-2-l. Optimal Pararneters Table (OPATAB)

The optimal parameters table is used to store
a ll the optimal parameters to manage the secondary
key files and the relationship files in a way
described in section 4.3.

The optimal parameters table is made up of
t he optimal paramet ers description block IOPB and
t he optimal header description block IOHB.

In the OPATAB table, there is one IOHB
c o r re sponding to each secondary key relationship
de fi ned. For e ach IOHB there are (number of fields

* maximum depth of the file) IOPB. After each
IOPB there is the choice vector (see section
4 . 3 . 4 . 5.2) which is comprised of a set of IOABCV
blacks.

1-2-~-2-1.i. The Optimal Header
(IOHB)

Description

One IOHB consists of one contiguous fullword
of information used to describe the optimal
parameters needed to compute the address of a
record type and its associated descriptor in an
optimal way.

The physical structure of an IOHB is as follows:

- 105 -

1.

+-------+--------+
0 1 IOHBNF I IOHBMD 1

+--------+-------+

The following table represents the meaning of each
storage location.

IOHBNF

IOHBMD

Halfword

Halfword

Descr i ption

Nurnber of field

Level of the file

One IOHBNF represents the nurnber of fields of a
secondary key or a relationship. IOHBMD
represents the level of the file, i.e., the
maximum nurnber of expansions in a fi l e.

~-2·~·2 ·2-~- The optimal Pararneter Description Black
(IOPB)

One IOPB consists of one contiguous fullword
of information used to describe the optimal
pararneters of a file . There is an IOPB for each
field of the file.

The physical structure of an IOPB is the
following:

+--------+-----+
0 1 IOPBDI I IOPBWI 1

+--------+--------+

The following table represents the meaning of each
storage locat i on .

Fi eld Narne Siz e Description

IOBPDI Halfword Nurnber of optimal
bits for a file

IOPBWI Halfword Nurnber of optimal bits
for a descriptor

IOPBDI represents the optimal nurnber of bits
allocated to a field at a particular level of the
file. IOPBWI represents the nurnber of optimal bits
for a field of a descriptor file. This field is
t he s ame that t he field of IOPBDI.

- 106 -

~-2•~·2•d•d• The Choice Vector Description Block (IOAB)

One IOAB consists of one contiguous fullword
of information used to describe the part of a
choice vector. It is necessary to rernember that
the choice vectorisa set of numbers whereby each
number represents the field to take into account
when cornputing the address of the entire record.

The physical structure of an IOAB is as follows:

+--------+-------+
0 1 IOABCV 1

+

IOABCV is an integer between o and the number of
fields of a secondary key or relationship.

~-~-~-~. File Organization

There are four kinds of files in the DBMS; a
primary key file, a secondary key file, a relationship
file and a descriptor file. Each secondary key and
relationship file is associated with a descriptor file.
There are as rnany primary key files and secondary key
files as there are entity types.

Each prirnary key in a primary key file is
associated with the address (within page no. and
displacement on the page) of the corresponding
secondary key and attribute part in a secondary key
file. Each secondary key and attribute part is, in
turn, associated with its primary key. The primary key
files are handled using the techniques defined in
section 4.3.3 and 4.3.4 and relationship files are
handled usi~g the techniques defined in section 4.3.4.

The following figure represents the files organization
for one entity type.

- 107 -

. 1

overflow area .
,

11

Primary Key fi.le

secondary Key fi.le

Page #1

Page #2
• SKEY + ATTI 1 ., -

PICey
1

part 1 (

Page #3

Page #4

1

J.
oescriptor for P#l

Descriptor for P#2

Oescripto~ for P#3

Descriptor fi.le

~ig 4.14 File organization for an entity type

- 108 -

The following figure represents the file organization
for one relatic nship type.

à overflow area -,

Relationship file

Page #1

Page #2

ile Descriptor t·

PKeys part I ATT part 1
De script or fo r P#l

~ . Descriptor for P#2

' -,,
Page #4 Descriptor for P#3

Fig 4.15 File organization for a relationship type

- 109 -

~-2·Z•2• Database control block

As informations are stored in the database, it is
structured by the DBCS into physical record and is
stored in the DBF. This section describes the
structures of the physical records which appear in the
DBF.

~-2,z,2.~. Identification of~ Page

The DBF consists of a certain number of
physical pages (4096 bytes each) which belong to a
certain page type. A particular page in DBF is
identified by the type of the file (descriptor,
primaty key, secondary key ,relationship), the
instance number of a file type (for example if
there are eight primary keys defined than there
will be eight primary key files and we must
identify each of these files) and the sequence
number of a page in a particular file. One way to
solve this problem of identification would be to
have the address on one word where the first
halfword would be used to identify the file and
the second halfword would be used to identify the
page number.

Unfortunately this leads to very high numbers
(th ough less than the highest integer permitted)
which are not always accepted by the file handler.
Theoretically any integer could identify a
record(page) in a random file but in reality this
is not the case.

So we have segregated the DBF in rows of 1.000
pages: 450 pages are reserved for the primary key
file, 450 for the secondary key file and 100 for
the associated descriptor file. If it is a
relat ionsh i p file then 900 pages are reserved for
t he relationship file and 100 for its descriptor
f i l e.

Later, this possibility of truly dynamic files
must be added.

Each page can be seen as a table because all
the records on a page have the same length. With
each record on a page is associated 3 words. The
first two words indicate the address (page# and
displacement) in an overflow a rea. The t hird word
indicates if the r ecor d is used or not. In
addition, the p r ima r y key r ecord and the secondary
key record ha ve two wo r ds a s s oc i ated with them
which indicate t h e addr ess o f the corresponding

- 110 -

s e condary or primary key

~ -2 -~ -2-2 - Storage Allocation

When the DBCS searches a page to store any
record t ype, it first computes the addresses where
t h is type of data will be inserted.

once the address is computed, we can read the
page in which to insert this record. The page
number is formed by the concatenation of the
number which represents the file type and the
index for this page.

We thus access to the location of the record
inside this page. We first check if the data area
is not present at this address or in the
associated overflow pages. If not, we can insert
the data area either in the main page or in an
overflow page. If yes, we do not insert the data
area.

To add a record to an overflow area, we must
find a pointer equal to o in the chain of pointers
and then find the next available place, insert the
record, and update the pointer.

This means that we need a current overflow
address which indicates the page number and the
displacement in the page from which the
information can be retrieved. If the number of
insertions and deletions is higher than a certain
load factor (normally the page size) , then we get
one or more pages and we redistribute some records
from a certain page to pages that we have
obtained.

~ -2- ~-2-~ - DBCS Page Management System

Many computer installations limit the number
of pages in main memory that a program may use at
any particular time. Since the size of the
database can be many times this limit, the DBCS
contains a set of routines which will control
which pages in the database are kept in main
memory. If a page is needed that is not in main
memory at this time, the DBCS will go to the DBF
and read in the page.

- 111 -

~-2-Z-2-~-~- The DBCS Random I/Q Routines (DBHRAN)

The basis of the page management system is a
set of random input, output routines contained in
the DBHRAN These routines can read selected pages
of the database into main memory and, in their
proper sequence, write them out again into the
specified DBF.

~-~-Z-2-~,z. The Page Buffer (BUFPAG)

The database pages, when in main memory, are
kept in a single one-dimensional integer array
called BUFPAG. BUFPAG is dimensioned to a value
equal to page size (in words) multiplied by the
maximum number of pages allowed in main memory at
one time or MPICUR.

The DBCS flags one of the pages in main
memory as the "current page." The page number of
the current page is kept in an integer fullword
named CURPNO; several DBCS routines reference the
current page rather than specify one particular
page.

Associated with CURPNO is a fullword integer
variable, PHICUR. PHICUR is a pointer to the
beginning of the current page. Because the
current page may be in one of several places in
BUFPAG, a displacement into the current page is
not necessarily the same as the displacement of
the same location in the BUFPAG vector.

The following diagram gives an example of a
database at a particular point execution of a user
program. MPICOR for this example is four pages,
and page size is 1024 words per page. This
i rnplie s that page is dime.nsioned to 4096. There
are four database pages in main memory: pages 17,
2, 9, and 6. NPICOR, the number of database pages
in main memory, has a value of 4. Page 9 is the
current page, which is sequentially the third page
in main memory. NCUR, the sequence number of the
current page in main memory is then 3. PHICUR,
the pointer into BUFPAG for CURPNO is 2048 (this
is numerically equal to (NCUR-1) * PAGESIZE).

- 112 -

1

1

1 .

+-------------------+
1 1

1

oatabase page 17

+--------------------+
1 Database page 2 1

Database page 9

Database page 6

+

CURPNO = l
NCUR = 3

PHICUR = 2048
NPICOR = 4
MPICOR = 4
PAGESIZ= 1024

Dimension of page
= 4096 (words)

<--PHICUR

Absolute displacement in
BUFPAG = Displacement in

the current Page+
PHICUR

When the current page changes, CURPNO and NCUR are
changed, and PHICUR is recalculated. This means
that the DBCS can always reference the correct
location given the displacement on the current
page.

1-~-~-2-1•1• Reading~ New Page from the DBF into Main
Memory

There is a particular algorithm used to read
a page into main memory from the database. The
DBCS first checks to see if we have the desired
page in the core already. If so, the DBCS sets it
to be the current page and returns. If the DBCS
does not find the desired page, it then has two
alternatives to try in order to obtain a new
current page.

First the DBCS checks to see if NPICOR is
equal to MPICOR. If so, there is no room in
BUFPAG for a new database page and we must select
a new page and be overwritten.

To do this the DBCS, utilizes a table named
PREF and a counter named NDBKF. PREF must be
dimensioned to be at the least the value of
MPICOR. Each time the current page is reset,
NDBKF is incremented and stored in the location in

- 113 -

PREF that is associated with the page reference
number in main memory. In this way, the page in
main memory which corresponds to the lowest value
in PREF is the page that was least recently
referenced. This is the page that the DBCS
s elects to be r e move d. Si nc e all the other pages
in main rnemory have been refere nced more recently,
they no r mal l y h~v e a grea te r c hance of being
re f erP.nccd than o f being r e move d. Before removing
the page , t h e oncs c h ecks to see if that page was
rnodified . TE so, the o ld page in rewritten into
i n t h e DBF . I f the old page was not modified
since be ing read i n, it does not need to be
written ou t into the DBF. The new page which is
read i n r eplaces the old page, and becomes the
c urrent page.

If NPICOR < MPICOR, it rneans that there is
stil l r oom in the page for a new database page.
The NPICOR is incrernented by one, and the new page
becornes the current page.

~-2·~•1•2· The Database Control system (DBCS)

The DBCS is a set of FORTRAN routines which
are used by the user · s program to access a
database . The routines are divided into the five
following groups clarified roughly by function.

1. DBHUSE

These routines are the highest level
routines that interface directly with
the user·s program.

2. DBHLOW

These are the low-level routines used by
DBHUSE. They do most of the actual
"work" of the DBCS.

3, DBHTAB

These routines are used by DBHUSE and
DBHLOW to access the database tables and
control blacks.

4. DBHRAN

These are the DBCS random I/0 routines
which are used to open, read from, write
onto, rewrite onto, and close the DBF.

- 114 -

All these routines will be described in
annexe 2.

~-2•d• Implementation Evaluation

The ISDOS project has adopted conventions of
programrning for all the software that is developed inside
the project [ISDOS 1979a],

[ISDOS 1979b]

The goal of these conventions is to provide facilities
for the development, maintenance and portability of the
software. The main characteristics of these conventions are
the following :

An Extended Fortran language has been developed. This
language mainly allows the declaration of a character
variable, the substitution of narned constant and the
substitution of relational and boolean operators.

Each routine
de scr i ption
pararneters.

must contain as
of their purposes

heading a brief
and input/output

One and only one "return" is allowed in each
s ubroutine. "Return" is always preceded by the label
"900" .

All the labels must be ordered.

The conunent lines are highly reconunended.

Up 1,ntil now, only a part of the system has been
implemented and tested. The main reason is that the
d i ffere nt levels of such a complex system as a database
ma nageme n t system are h i ghly i nt e grated. This means that the
system c an be tested with e ff iciency only if the majority of
t he r o ut i nes i n t he d iffe rent levels of the system have been
written. The list. be low is the description of what has
a lready b ee n done and what is to be done :

DOLA prograrn has been implemented and tested. This
prograrn reads the description of a database, constructs
the tables and inserts an initial database.

DBHLIB library has been implernented and tested. These
routines in this library control the operations inside
the buffer BUFPAG . Particulary, they store and retrieve
character st r ings, logical values, words and
hal f words. The y also perforrn operations of comparisons.

DBHRAN l e vel (I/0 routines) have been also implemented
and tested.

- 115 -

DBHTAB level has also been implernented and tested.

In DBHLOW only the following routines have been tested
the other routines of this level have been constructed
but not yet tested.

l. IDPAGE routine
2. REPAGE routine
3. WHPAGE routine
4. NEPAGE routine
5 . DBHTFI routine
6. DBHERR routine

DBHUSE leve 1 hasnot been yet irnplernented

- 116 -

CONCLUSION

The goal of this thesis was to isolate some levels of the ISDOS
software which are critical for its performance and try to improve as
muchas possible these points.

In a first phase, we studied the components of the ISDOS software
and we tried to evaluate their performance. The database management
system (ADBMS) is revealed to be one of the most important points of
the system. We outlined the cases in which its performance decreases
considerably. Some solutions are possible to remedy this situation.

One approach is to say that the informations processed by SEM are
a relational(E-R) rather than network type (ADBMS) of model. This
leads to poor performance since we have to provide an E-R interface to
ADBMS. Thus one solution would be to replace the actual database
management system by an E-R database management system.

As the design and the implementation of such a system is a huge
task we lirnited our reflection to direct access techniques. These
techniques are based on new hashing techniques which have recently
appeared in the literature. They often offer better performance than
conventional hashing but can not alone support a database management
system.

The design of a system was proposed in chapters 3 and 4. The
implementation has not yet been achieved and the next step of the work
will be to cornplete it. Next an evaluation of the performances must be
performed to know if for éertain these techniques are more efficient
than the classical ones, and if so, in which cases.

Annex l gives an overview of the new hashing techniques that have
recently appeared and annex 2 describes the routines which must be
implemented for the system.

Thought working in a project whose goal .is to help in maintaining
the documentation of the information systems, we do not have used (for
time reason) the tools proposed to describe our system.

- 1l.7 -

BIBLI0GRAPHY

[Biggs, Birks, and Atkins 1980]

Charles L. Biggs, Evan G. Birks, and William Atkins, Manaqinq the
Systems Development Process ,Touche Ross Management series,
Prentice-Hall, 1980.

[CDDL 1974]

National Bureau of Standard Handbooks 113, C0DASYL Data
Description Lanquaqe Journal of Development, u.s. Department of
commerce, National Bureau of standards, Washington D.C., 1974.

[Chen 1976]

Peter P. Chen, "The entity-relationship model - toward a unified
view of data", ACM Transactions on Database systems , Vol. 1, no.
1 (March 1976), pp. 9-36.

[Chen 1977]

Peter P. Chen, "The entity-relationship model - a basis for the
enterprise view of data", Proceedinqs, National Computer
conference, 1977, Vol. 46, pp. 77

[DBTG 1971]

CODAYSL Data Base Task Group Report, April 1971,
Correspondence: Chairman, C0DAYSL Data Base Task Group, P.0. Box
124, Monroeville, Pennsylvania, 15146.

[Engles 1971]

R.W. Engles, "An Analysis of the April 1971 Data Base Task Group
Report", Proc. ACM SIGFIDET Workshop on Data Description, Access
and Control, 1971.

[ISDOS 1978]

ISDOS Project, ADBMS Proqram Loqic Manual, Version D3.Q ISDOS
Ref. # 7830-0193-0, Department of Industrial and operations
Engieering, the University of Michigan, Ann Arbor, Michigan,
48109, January 1978.

[ISD0S 1979a]

E.A. Hershey III, Y. Yamamoto, E. Chikosky, and D. Mielta, ISDOS
Project, ISDOS Software Conventions ISDOS Ref. # 267,
Department of Industrial and 0perations Engineering, the
University of Michigan, Ann Arbor, Michigan, 48109, July, 1979.

- 118 -

[ISOOS 1979b]

E.A Hershey III, Y. Yamanoto, E. Chikosky and D. Mielta, ISOOS
Project, Extended Fortran (EF) ,ISOOS Ref.# 265, Department of
Industrial and Operations Engineering, the University of
Michigan, Ann Arbor, Michigan, 48109, July, 1979.

[ISDOS 1981a]

ISOOS Project, .a, oatabase Management system (ADBMS) Based YQQ!l

DBTG 71 ISOOS Ref.# 81D32-0191-1, Department of Industrial and
Operations Engineering, The University of Michigan, Ann Arbor,
Michigan, 48109, Pebruary 1981.

[ISOOS 1981b]

ISOOS Project, Technical Memorandum 379, Department of Industrial
and operations Engineering, the University of Michigan, Ann
Arbor, Michigan, 48109, september 18, 1981.

[ISOOS 1981c]

ISOOS Project, The structure and contents of g PSA Data Base
ISOOS Ref. # 81A52-0273-l, Department of Industrial and
Operations Engineering, the University of Michigan, Ann Arbor,
Michigan, 48109, January 1981.

[Larson 1980]

P. Larson, "Linear Hashing With Partial Expansions", Proceedings,
Sixth International Conference on Very Large oatabases, 1980,
pp. 224-2 32.

[Litwin 1978)

Witold Litwin, "Virtual Hashing A Dynamically Changing
Hashing", Proc. Fourth Conference on very Large Data Bases, West
Berlin, September, 1978, pp. 517-523.

[Litwin 1980]

Witold Litwin, "A New Tool for File and Table Addressing", Proc.
on Very Large Databases, Montreal, 1980, pp.212-224.

[Lloyd 1980]

John W. Lloyd, Optimal Partial-Match Retrieval, BIT 20, 1980, pp.
406-413.

[Lloyd and Ramamohanorao to be published]

John W. Lloyd and K. Ramamohanorao, "Dynamic Hashing Schemes",
Department of Computer Science, the University of Melbourne, to
be published.

- 119 -

[Lloyd and Ramamanoroa 1982]

John w. Lloyd and K. Ramamohanorao, "Partial-Match Retrieval for
Dynamic Files, BIT" ,Department of Computer Science, the
University of Melbourne, BIT 22 (1978), pp. 150-168.

[Lloyd, Ramamohanorao and Thom 1983]

John W. Lloyd, K. Ramamohanorao, and James A. Thom, "Partial
Match Retrieval Using Hashing and Descriptors", Department of
computer Science, the University of Melbourne, to appear in ACM
Transactions on Data Base Systems, 1983.

[Martin 1975]

James Martin, computer Data Base 0rganization
1975

Prentice Hall,

[Metzger 1973]

Phillip W. Metzger, Managing g Programming Project
Hall, 1973.

[Pfaltz, Berman and cagley 1980]

Prentice-

John L. Pfaltz, William J. Berman and Edgar M. cagley, "Partial
Match Retrieval . Using Indexed Descriptor Files", Communications
of the ACM, Vol. 23, No. 9, september, 1980.

[Pholas 1974]

Data systems Pholas schema DDL and SSL.

[Reifer 1975]

Donald J Reifer, Interim Report on Aids Inventory Project
SAMS0-TR-75-184, July 16, 1975.

[Reifer and Trattner 1977]

Donald J. Reifer and Stephen Trattner, "A Glossary of software
tools and techniques", ~omputer (IEEE Computer Society), July
1977, Reprinted in [Miller 1979].

[Sakai 1980]

Hirotaka Sakai, "Entity-Relationship Approach to the conceptual
Schema Design", Hitachi Institute of Technology, Hitachi, LTD.,
Tokyo, Japan, 1980.

[Teichroew, Hershey and Yamamoto 1977]

- 120 -

Daniel Teichroew, Ernest A Hershey 111, and Yuzo Yamamoto,
"Computer-aided software development", Software Reliability,
Infotech International LTD . , Maidenhead, Berkshire, England,
1977, Part 2, pp.299-366.

[UDS 1977]

Universal Database Management system, Schema DOL and SSL,
Reference Manual.

[Yamamoto l.981.]

Yuzo Yamamoto, "An Approach to the Generation of Software Life
cycle support systems", Ph.D. dissertation, the University of
Michigan, l.981..

- l.21. -

ANNEX 1 overvièw of new hashing schemes

Table of Contents

ABSTRACT .. 3

1. Introduction•..................................... 4

2. Hashing Schemes Using an Index ...•.........•........•.......• 6

2.1 Extendible Hashing Scheme [Fagin 1979]•......•......•. 6

2. 1 .1 Introduction .. 6

2.1.2 Extendible Hash Tables Principle 6

2.1.3 A Particular Extendible Hashing scheme 7

2.1.4 Finding, Inserting, and Deleting Records 9

2 . 1. s Performance•............................. 9

2.2 Dynamic Hashing Scheme [Lloyd, Ramamohanorao and Thom 1983],
[Scholl 1981] ... 10

2 . 2 . 1 Presentation of the Scheme · .. 10

2.2.2 Dynamic Hashing scheme With Deferred Spl.itting 13

2. 3 Linear Splitting•...... 16

2. 3. 1 File Structure ...•......•......•...•...•...•....•.......•. 16

3. Virtual Hashing Schemes [Aho 1979] [Litwin 1978] 19

3.1 First Virtual Hashing Scheme 19

3 .1.1 Presentation of the scheme•....... 19

3.1.2 Performance Consideration 21

3.2 Improvement of Virtual Hashing: Linear (Virtual)
Hashing•........................... 2.1

3. 3 Introduction .. 21

3.4 Presentation of the Scheme 21

3.4.l Performance Consideration •..•.•.....•.........•...•••.•... 25

3. 4. 2 Control Functions 25

4. Linear Hashing With Partial Expansions [Larson 1980] 26

- l -

4 .1 Introduction•.•............•......... 26

4.2 Presentation of Linear Hashing With Partial
Expansion•......•..................... 26

4. 3 Control Function•..................... 29

4. 4 Performance•.•.................................. 30

5. Variation of Larson and Litwin·s Scheme
[Lloyd and Ramamohanrao to be published] 30

5 .1 Introduction•................... 30

5.2 Dynamic Hashing Scheme With Round-Up Pages 30

6. Dynamic Hashing Scheme for Secondary Key File
[Lloyd, Bamamohanorao and Thom 1983] .••.....•.•.............. 32

6 .1 Introduction•........... 32

6.2 Definition of a Partial Match Query 32

6.3 Description of a Simple Partial-Match Retrieval
scheme When the File is Known) Based Purely on
Hashing ... 32

6. 4 A oescriptor Scheme•.................... 33

6.5 Extension of the Scheme to Dynamic Files 38

6.5.1 Presentation of the Scheme 38

6. 5. 2 Choice Vector•.............................. 39

6. ti . 3 File Descriptor ... 40

6. 6 Performance ... 40

- 2 -

ABSTRAC'T

This paper gives an overview of new hashing techniques which allow an
address space to grow or shrink dynamically. A file or table based on
these techniques may support any number of insertions and deletions
without access or memory load performance distortion. This paper is
not intended to include the mathematical development of these
techniques, nor is it intended to present the algorithms or a complete
performance analysis. The aforementioned information that has been
excluded from this paper may be found in the references cited in the
bibliography .

- 3 -

_l. INTRODUCTION

Hashing is an ingenious and useful form of address calculation
technique. A simple pseudo-random function called hashing function
(H) converts the item of a record (called the primary key) into a near
random number and this number is used to determine where the record
is stored.

The records are stored in places called buckets. A bucket can
hold one or more records and the set of buckets is called the address
space of the file.

The record is inserted into the bucket H(c) (where c is the
primary key), unless the bucket is already full. The search for c
always starts with a access to the bucket H(c). If the bucket is full
when c should be stored, a "collision" occurs.

A collision resolution method, which stores c in a bucket M such
that M =/ H(c), is then applied. The record c then becomes an
overflow record and the bucket Mis called an overflow bucket for c.
The overflow records are often handled by a method called "bucket
chaining"

Bucket chaining is the . method by which overflow records are
stored by linking one or more overflow buckets from a separate storage
area to an overflowing bucket. Each overflowing bucket has its own
separate chain of overflow buckets.

A search for an overflow record requires at least two accesses .
If all collisions are resolved only by overflow records creations, as
it was assumed recently, access performance rapidly deteriorates when
primary buckets become full.

Fig 1.1 shows a conventional hashing file where the records are
handled by bucket chaining.

Hashing is recognized as providing, in practice, the fastest
random access to a file. Theoretical analysis indicates that access
time to a hash table is independent of the number of records, but
depends on the four factors listed below [MARTIN 1975).

The factors affecting efficiency are the following:

1. the bucket size

2. the load factor,
buckets divided
stored in them

i.e,
by

the number of records stored in home
the maximum number of records that could be

3. the hashing function used

4. the method of handling overflows

- 4 -

Home buckets

Hashing routines

~
Key K 1.

Key K 2

Key K 3

.
Key K 4

Key K 5
~ ,

. ,

overflow bucket s

. . -. .
.

~
.
,I -

"-·

' ~

~

• Chain addr ess

l

Chain address

Fig 1. 1. conventional. Hashing scheme·

In contrast to the fast 0(1) access tiine, hashing is burdened
with two disadvantages that prevent its use in many applications

Hashing does not support sequential processing of a file
according to the natural order of the key (sequential processing
requires an o (n x ln n) operation which makes the fast random
access useless.

Traditional hash files are not extendibles and their sizes are
tied to the hash function used which often must be redefined.

Thus, if the file grows by a large factor or
distribution over the available storage space is
number of overflow records grows and the time
record increases considerably.

if the records
not uniform, the
to retrieve a

A high estimate of the number of records implies a costly
rehashing operation (new hash function, table size, relocation of
all records, etc.), Shrinkage of the file or a low estimation of
the number of records implies under-utilized storage space.

If one can design adaptable hashing schemes that remain balanced
as pages are added and deleted, the suitability of hashing for
secondary storage devices would be greatly enhanced.

During the seventies, new file organizations which are based on
hashing and which overcome the second disadvantage of conventional
hashing were presented. These schemes are suitable for files whose
size may grow and shrink rapidly. Their main characteristic is that
the storage space allocated to the file can be increased and reduced
without reorganizing the whole file.

These schemes are called "dynamic hashing schemes" and can be
divided into two types

1. those making use of some kind of index whose size varies
with the file size

2. those without an index

The first types of schemes developed were: virtual hashing by W.
Litwin [Litwin 1978], dynamic hashing by P. Larson [Larsen 1978], and
extendible hashing by R. Fagin [Fagin 1979]. so far there has been
only one scheme of the second type, called linear (virtual) hashing
and which was developed by W. Litwin [Litwin 1980] and P. Larson
[Larson 1980]. These hashing schemes are reviewed in the following
sections.

- 5 -

.?_. fll\::iH ING ~<J_IEMES US ING l\N 1. ! ! 'JF.X

~ -1., Extendible llashing Schemr~ (Fagin 1979}

Key

Space

s

l-!-!- Inlruùuction

Extendible hasl1 i ng is a new access techn i que in which
l he user is guar:1 nteed no more than two page faul ts to
locate the data assnciated with a given unique identifier or
a key. Unlike con -,1 entional hashing, extendible hashing has
a dyna.mic structure that grows and shrinks gracefully with
the data.base size . This approach solves the problem of
making hash tables that are extendible.

l -!-l - Extendible Hash T;:i.bles Principle

h

If we consider a hash table as a directory with an
address space A and each entry of the directory painting to
a bucket of fixed s .i ze (figure 2.1) , we will see that this
traditional picture has the disadvantage of not having the
capabili ty of making the file extendible. If a bucket
overflows because t: 1)0 many keys K arrive with H(k) equal to
an address w, there i.s no alternative to rehashing.

Address

Space

A 1

..

..

•

•

•
•

•

i 1 i K : h (K) = Constant i

Hash

Function

.-....._,,,-

Fig 2.1 Hashing into a directory

we shall now sll 1Jw that if we separate the hash address
spilce from the di l r!ctory address space, hash tables can be
made extenùible.

The hash functi()n maps the key space son to a large
address space A. A p;:irtition T splits A into m blacks; each

- 6 -

Key

Space

s

h

Hash
Fu net ion

block h.::i.:. one buckPI allocated for its use and the directory
i mplP.mc nts l he r.orr •::;ponùence between blocks and buckets. If
t h e partit i on T is d'"! fined by m + l. boundaries WO ,Wl
, , wm, the t,ucket Li contains all keys k with W(i-1)
<= H(k) < Wi. In tl1 .is scheme, if a bucket overflows, we are
a ble to change the l•~rtition by shifting orie boundary Wi and
ni l oca ting only tho ~-~ keys that are affected by this shift.
Furthe rmore, H does not need to be changed (see figure 2.2).

A 1
a

0

• • K : o <h(Kl<a
• o- '

----a

a • •
1 ~

r~·- M-·1:: 1

Fig 2.2 Hashing into a large address space

We have tlrns m-1de the hash table extendible by varing a
partition T on a large address space A, while keeping the
hash function uncha1 1ged .

l_ . _1 . l_. ~ Particular Exte tJ.<1ible Hashing Scheme

Ass ume that we are given a fixed hash function H. If K
is a key, then we call F = H(k) the pseudo-key associated
with K. We choose p s eudo-keys to be of fixed l ength , such as
3 7. bi t s. We must c hoose the hash function so that whatever
the distribution of the keys, we can expect that the
pseudo-keys will b e distributed nearly uniformly: half t he
pseudo-keys have fir s t bit o, a quarter start with bits 01
and so on as figure 2.3 demonstrates.

- 7 -

Directory Leaf Pages

Depth d

000 pointer

001

3 h(~) =00 · ··

010

011
h(~) = 010 ·

100

101

110 h(~) = 011 · • ·
111

• h(-)=1

Fig 2 . 3 An extendible hashing scheme_

The file is structured into two levels
pages.

directory and leaf

l. Directory

The directory has a header in which a value called
"the depth of the directory" is stored. After the
header, there are pointers to a leaf page.

The pointers are built as follows. The first
pointer points to a leaf page which contains all keys K
for which the pseudo-key F " = B(k) starts with D
consecutive zeros.

This pointer is followed by a pointer for all keys
whose pseudo-keys begin with D bits o 01 and so on
until the pointers for all keys whose pseudo-keys begin
with D consecutive 1.

Thus, the depth D indicates the number of bits of
the pseudo-keys which are taken into account to locate
the pointer to a leaf page. For example, there are 2
exp(3) pointers not necessarily distinct in figure 2.3

Each leaf page has a header that contains a local
depth o · for the leaf page. Local depth means that this
leaf page contains all keys (and associated

- 8 -

information) whose pseudo-keys begin with the same o·
bits.

Iri the example of figure 2.1, local depth 1 means
that this leaf page contains not only all keys whose
pseudo-keys begin with 100, but also all keys whose
pseudo-keys begin with a 1. The depth of a leaf page is
<= to the depth of the directory.

Z-~-~- Finding. Inserting and Deleting Records

1. Finding ~ record

we must calculate H(k), where K is the key of the
record we want, and find its first D bits. Do a simple
address computation to find the location in the
directory of the pointer that corresponds to the D-bit
prefix, and follow this pointer to find a leaf page.

2. Inserting g record

If a leaf page is finally overfilled, we split
this page into two leaf pages, each with depth = o· +
1. All keys whose pseudo-key begins with the o·
pseudo-key + o are on the first new leaf page. All
other keys whose pseudo-key begins with the o· pseudo
key + 1 are on the other page.

If a leaf
of the leaf
directory, the
increases, and

page is overfilled and
page already equals
directory doubles in
the leaf page splits.

3. Deleting ~ Record

the local depth
the depth of the
size, its depth

When a leaf page becomes underfilled because of
de let ions ,the corresponding block is merged with its
buddy (if the latter has enough room) . The buddy is the
page which begins with the same o·-1 bits as the
underfilled page.

Z-~·2· Performance

If there are so many keys that the directory is in
secondary storage, it can be streamed into main memory in
large blacks since the directory is stored contiguously.

If there are a few million keys when the directory
doubles and if the secondary storage device has a data
transferral rate of approximately a million bytes per second
(IBM 3330 disk), the time involved in doubling the directory
is less than a second if there were 400 keys per leaf page.

The leaf pages can be organized as usual hash tables

- 9 -

with any standard collision resolution technique such as
open addressing or chaining, as long as it stores colliding
keys within the same page.

There is

one page fault in locating the appropriate directory
page

at most one page fault in obtaining the appropriate
leaf page

No more than two page faults are necessary to locate a
key and its associated information. In many cases, the
directory will be so small that it can be kept resident in
main memory, i.e., if the page size is 4K bytes, keys are 7
bytes .long, and a pointer to page is 3 bytes long, and after
one million have been inserted, the directory can be
expected to be the size of 3 pages . The storage allocation
provided by this scheme is approximatively equal to ln 2 =
69.

~-~· Dynamic Hashinq Scheme [Larson 1978], [Scholl 1981]

~.~.~. Presentation Qf the Scheme

This scheme was presented by Larson [Larson 1978] and
was refined by Scholl [Scholl 1981]. The dynamic hashing
scheme is based on the same principle as the extendible
hashing scheme, but the implementation is different.

Thanks to the dynamic hash function, a bucket is
associated with the given unique record · s key K and the
bucket·s location is identified by searching through one
index whose size shrinks according to the data volume.
Therefore, only one access to the secondary storage is
necessary (if the index is available in the core).If the
file grows steadily the index will be partly stored in
secondary storage (2 accesses in this case).

An initial hashing function ,Ho, distributes the
records among M initial index entries . The dynamic hashing
index is implemented by means of a tree structure which
grows and shrinks more smoothly than the extendible hashing
index, but the index nodes are larger than those of the
extendible hashing index entry. Each leaf of the tree
contains a pointer to a bucket.

When a bucket overflows, the corresponding index leaf
becomes an internal node to which two new leaves are
appended, the left leaf pointing towards the original
bucket, and the right leaf pointing towards a new bucket.

When the brother buckets are underfilled , they are
merged into one bucket and the corresponding index leaves
are deleted , their father now pointing towards the resulting

- 10 -

bucket.

With each record · s key k is associated a unique path
when scanning down the tree as follows:H(k), where His any
hash function, is the seed for a pseudo-random generator
which, when successively called, returns a binary sequence
which uniquely determines the path through the three until a
leaf is reached.

The index grows with time to a forest of M trees.Each
index entry is either an internal node (TAG=O) which
contains pointers to his father and sons, or an external
node (TAG=l) which contains, in addition to the pointer to
its father, a pointer to a bucket in the data file (BKT) and
the number of records actually stored in the bucket (RCDS)
(see Figure 2.4),

The performance of this scheme is nearly the same as in
extendible hashing excepted that the index nodes are larger
than that of the extendible hashing.

- 11 -

level 0 X
··A· level I Indu

y] y]~ level 2

---- --- --------i--~~---'f----
2 3

F\
ÇJ20

- -------f-------------------- --
__ ! 1 2 1

TAG j FATHER

LEFT I RIGHT

internai node:

TAG=O

r-----,
1 3 1 L. ______ .,

TAG I FATHER

RCRDS I BK. T

extcrnal node :

TAG=I

Fig 2.4 Dynamic Bashing scheme

- 12 -

5

, • .,., 0

level 1

21

r----,
1 5 1

'------'

data
fila

Inde•

date
file

z.z.z. Dynamic Hashing Scheme With Deferred Splitting

Scholl [Scholl 1981] , in his first scheme, introduced
the idea of systematical.ly splitting pages, not necessarily
when the collisions occured.

The idea is
deferred until B
this bucket.

that the splitting of any bucket is
x b records (B>l) have been addressed to

First consider the case where B<=2. When trying to
insert a record into the primary bucket j which already
contains b records, a new "overflow" bucket is allocated
(bucket f) and chained to bucket j. The new record is
inserted into this overflow bucket and any other record
candidate to be inserted into bucket j will be inserted into
the overflow bucket until the latter contains (B-l)b
records .

When trying to insert a new record into a bucket whose
overflow bucket already contains (B-l)b records, splitting
occurs exactly as the dynamic hashing, a new bucket, say L,
is allocated, and the Bb+l records are distributed between
bucket i and bucket j. Bucket F is freed and the index
updated (see figure 2.5).

In the second case, if B > 2 when the first overflow
bucket is full, another overflow bucket is allocated and
chained to the first one and so on until Bb records have
been inserted (see figure 2.6).

the index
level r in

toward two

For all values of B, when splitting occurs,
is updated; that is, the former external. node (of
the tree) becomes an internal node pointing
external nodes (its sons) of level r+l in the
them pointing towards a chain of one or

tree, each of
more buckets

records are
and a new

containing the records . Then the Bb+l
distributed among the original chain of buckets
chain.

In the worst case, the number of accesses to recording
storage required to find a record actually stored in the
file (if the index is available in main memory) i s equal to
B. For the index size, the expected number of internal and
external nodes are given by the following approximations.

It is shown in Larsen [Larson 1978] that when the
number of records, N, is large, because of the close
connection with trees [Knuth 1973] in the case of dynamic
hashing, the expected number of internal. and external nodes
are given by the following expressions .

Dynamic hashing

E(internal nodes) = (N/b*ln2) - M
E(external nodes) = N/b*ln2

Dynamic hashing with deferred splitting

E(internal nodes) = (N/B*b*ln2) - M

- 13 -

E(extern~ l no d e s) = N/B*b*ln~

N i s t he numbe 1 of records actually stored in the file
at a given timt'.

M i s the numbe• of index entries.

The index ë> ize of dynarnic h a shing wi th defe rred
s plj_t t ing is élf 'Proximately decreased by a fa.c to r o f B .

Other exi s l· ing improvements :

If a bucket j has overflowed, instead of
allocating a s eparate overflow bucket to bucket j, we
allocate the s econd half of bucket k as an overflow
area for buck e t j , but this leads to conside ~able
storage utilization improvement at the expense of
inc reased comp lexity in bucket management, while the
index size is 11t1changed by the above modification (see
fig 2. 7)

k

f?i b records

(a) B < 2

k

/\

(b) Just after the split k is freed

Fig 2,5 Deferred splitting Bc2

- 14 -

/\

B < 2

,\

(c) B > 2

/\

(d) B > 2

Fig2.6 Dynamic Hashing scheme with deferred splitting

- 15 -

(a)

(a) Before splitting of bucket

J\ k

m

J\

J\

n

(b)

(b) After the splitting of bucket j, k is freed

- 1 "1 k

m

- IAI

(c)

(c) k is not freed

Pig 2;7 Dynamic Bashing with deferred splitting one overflow
bucket is shared by two primary buckets

1-1· Linear ~plilting

l ,1,1, File Structure

•

4. Introduction

Linear splittin1 is the second scheme proposed by
Scho ll [Scholl 19n1]. In this technique, splitting is
performed every y x h insertions , and the bucket to be split
is not necessarily the one in which the last insertion
occurred. Comparetl with the above schemes, this new
teèhnique provides a smaller index size and higher storage
utilizat ion while the access cost degradation is not
dramatic.

5. Prescntation of the Scheme

An ini t ial fun c tion Ho associates the record · s key K
with one among M lists, say L. We assocj_ate k with a unique
entry E in the Lth l ist . E contains a pointer BKJ to the
secondary storage bucket where the record is to be stored,
see figure 2. 8

M

L = HofK)

E BKT •
Fig 2,8 Linear splitting index structure

The initial inrl ex is composed of M cells (each list has
only one cell), M buckets being initially allocated to the
file . After Y x b r ecords have been inserted in the Lth
bucket denoted by rn (Yb records hashed to cell r.), buc k e t
Bl is s pl i t into tw, , buckets and the records are d in tribu ted
between BI and a ne ~ buckct 82 whos e a ddresses are contained
in two new cells, L(?.) anù L(3), appended to the Lt h list,

- 16 -

initially composed of one cell, L(l), L(l) is deleted.

After Yb new insertions Blis split once more into two
buckets, Bl and B3 whose addresses are contained in L(4) and
L(S) appended to the Lth index list and L(2) is deleted.
After Yb new insertions, B2 is in turn split into two
buckets, B2 and B4, L(3) is deleted, and L(6) and L(7) are
appended, which point towards B2 and B4 respectively.

Eventually, as the file grows , any buckets may overflow
before they are, in turn, split. Then, the overflow records
are stored in one or more overflow buckets. When splitting
occurs, one or more new buckets are allocated, while one or
more buckets (in the initial chain) are possibly freed.

If the file shrinks, two buckets are merged, the
records are gathered into buckets (into one or more overflow
buckets), and the index is updated (see figure 2.9).

6. Performance

The file structure with a linear splitting technique
may support a much larger number of records than with
dynamic hashing before the index overflows on secondary
storage. If Y=2.l, retrieval of a record takes on the
average 1 . 8 accesses to secondary storage with linear
splitting while with the same Nmax number of records, the
dynamic hashing index is mostly stored in secondary storage
and retrieval of a record may be slowed down considerably .

In summary, as the number of records actually stored in
the file steadily increases, linear splitting net only
improves storage utilization, but also uses an index smaller
in size wh1le the access cost degradation is not dramatic
and in some cases linear splitting may provide better access
performance.

- 17 -

Br---;
t:= ___ : .
1 = 1

B, B2

i <lb records

7 b records . just belore B,' split

(a)

~---:---: 7 b records, alter B,' split

t ------ ·
1 = 1

27b records , belore B1' split

1 = 1

EJ
8 , B2j B,

H ;·:',_ a ·-1 27 b records , alter B,' split

t ---

= 2
(b)

B, B2 B3 B,

b-3Zt;;:tjj __ : __ : __ : ___ : 3 7b records. alter B2 ' split

= 2

r = 3

.
1

1 = 1

fLJ-~
B, B2 B3 B.f B, B, B, Ba

fi:Ff11L:J!:~l~~i
t

1=4

77b records , belore 8,s split

(c)

- 18 -

J. Virtual Hashing schemes (Hashing Schemes Which Do Not use
Any Kind of Index)

The virtual hashing (VH) schemes proposed by Litwin [Litwin 1978]
are similar to extendible hashing, but do not employ any index.
Retrieval of a record may then require only one access to secondary
storage.

J.~. First Virtual Hashing scheme

J.~.~. Presentation of the Scheme

Assume that the insertion of a record with a key s
leads to a collision and no records already stored in the
bucket H(s) could become overflow record. The record may
then be stored in its primary bucket only if a new hashing
function is chosen.

The new function we shall then call a- should assign
new addresses to some of the records hashed with Hon H(S)
and the file should be reorganized in consequence. If H=H

for all other records, the reorganizing needs to move only a
few records and so may be performed dynamically.

The new function is called the dynamic hashing
function. The modification to the hashing function is
called a "split address". The idea in virtual hashing is to
use the splits in order to avoid the accumulation of
overflow records and the splits are typically performed
during some insertions. All splits result from . the
application of split functions. The basic split functions
are defined as below.

Ifs is the key space, let ho: s -> {o,i, ... N-1} to be
the function that is used to load the file. The functions
hl, h2, following requirements :

hi: S -> {0,1, ... 2 exp(i) N-1}

For any s, either :

hi(S) = h(i-l)(S) (l)

or

hi(S) • h(i-l)(S) + 2 exp(i-1) N (2)

For this, we suppose that each hi (i=O,l, ...) hashes
randomly. This means that the probability that sis mapped
by hi to a given address is l/2exp(i)N. This also means
that (1) and (2) are equiprobable events.

The idea of this split is illustrated by the following
example

we suppose that a file Fis created with the hashing by

- 19 -

i.t

,-

11
>r
1e

split and is a dynamic hashing function.

Figure (b) shows what has happened to the file. No
records other than those hashed to o have been moved. The
addresses of approximately half the number of the records
have been changea and it comes from (1) (2) that all these
records had the same new address (which is 100 in the
example).

The reorganization is made by applying hl as the split
function and we have performed the split for the address o.
The hashing function h results from the splits and is a
dynamic hashing function.

In contrast to what could be accomplished if a
classical hashing were used, the split has resolved the
collision without creating an overflow record and without
access performance degradation.

d·~ ·Z· Performance Consideration

Litwin has shown that a record may be found typically
in one access while the load during insertions oscillates
between 45 % and 90 % and is 67.5 % on average.He showed
also that the average load during insertions may be always
greater than 63% and almost always greater than 85% if we
accept that the average successful search requires 1.6
accesses .

d•Z· Irnprovement of Virtual Hashing

2,2, Introduction

Linear (Virtual) Hashinq

The natural idea in the previous scheme is to split the
bucket which undergoes the collision, but split addresses must
then be random and this must lead to dynamic hashing functions
using tables.

Dynarnic hashing functions which do not need tables may be
obtained only if the split addresses are chosen in a predefined
order instead of splitting the bucket which undergoes the
collision. The idea of performing splits in some predefined
order is the basis of a new kind of Virtual Hashing technique
which is called "linear hashing" [Litwin 1980].

d•~· Presentation of the Scheme

Linear hashing (see fig 3.2) increases the storage space
gradually by splitting the primary buckets in an orderly fashion:
first bucket o, then bucket 1, ...

If mis the address of a collision and n the address of a
split to be performed in the course of the resolution of this
collision, the values of m are random while those of n are
predefined (n =/ m). we assume that the new record is stored as

- 21 -

1 1 1

.t.,
1 __ J

ot 1 2 3 4 5

SP

(a) At an initial stage (number of buckets•S)

1 l~J
0 1 t 2 3 4 5 6

SP

(b) After one split

1 1 1 1 1 1 1
• [·--1
-··

0 1 2 3t 4 5 6 7 8

SP

(C) After three splits

'' I 7
1
1 -

__ .,

0 t 1 2 3 4 5 6 7 8 9 10

SP

(d) After the doubling of the file size

- 23 -

overflow record by a usual classic collision resolution method
such as chaining for example.

Next, we assume that a pointer P keeps track of which bucket
is the next to be split. For the first N collisions, the buckets
are pointed in the linear order 0,1,2, .. . N-1 and all splits use
hl.

(2) (see section 3.1) implies then that the file becomes
progressively larger, including the buckets N+l, N+2, . .. 2N-l one
after another. A record to be inserted undergoes a split usually
not when it leads to the collision, but with some delay. The
delay corresponds to the number of buckets which have to be
pointed while the pointer travels up, from the address indicated
in the moment of collision to the address of this collision.

With this mechanism, no matter what the address is of the
first collision, let it be ml, LH performs the first split using
Hl and for the address o. The records from the buckets o are
randomly distributed between bucket o and a new bucket N, while,
unless ml=O, an overflow record is created for the bucket ml.

The second collision, no matter what its address is, m2 for
example, leads to an analogous result, except that first it
splits for the address 1 and appends the bucket N+l. Next, it
may constitute the delayed split for the first collision,
suppressing therefore the corresponding overflow record. This
process continues for each of the N first collisions, thus moving
the pointer step by step up to the bucket N-1. Sooner or later,
the pointer points to each m and the splits, despite being
delayed, move most of the overflow records to the primary bucket.

we may therefore reasonably expect that, for any m < N, only
a few overflow records exist. After N collisions, we have H =
Hl.

The function hi :

S --> {O,l, ... 2 exp(i) N-1}

implies then that, instead of the hashing on N addresses, we now
hash on 2N addresses. The 2 conditions (1), (2) imply that h2
has on the hashing with hl, the action analogous to that of hl on
the hashing with hzho, except that it hashes on 4N addresses.

we therefore assume that n=O again, now that we split with
h2, and that the upper bound on n is 2N-l. For further
insertions, we use h3, h4, ... hj, while the pointer travels each
time from o to 2 exp(j-1).

It results from the above principles that first,the address
space increases linearly and is as large as needed. Next,for any
number of insertions, most of the overflow records are moved to
the primary buckets by the delayed splits.

- 24 -

d •~ -~ - Performance Consideration

The choice of file parameters may lead to a mean nwnber
of accesses per successful search close to l while the load
stays close to 60%.

It may also lead to a load staying equal to 90% while
the successful search requires 1.35 accesses in the average.

d •~ ·Z · Control Functions

we must have rules for deciding when the splitting of
the next bucket is to take place . several alternatives are
possible . Litwin has investigated two strategies called
"uncontrolled" and "controlled splitting".

Uncontrolled means that the next bucket is split
whenever an inserted record is placed in an overflow bucket.

Controlled splitting allows
only when a record is placed in
storage utilization is above some
e.g, 75%.

splitting to take place
an overflow bucket and the
predetermined threshold,

This leads to considerable differences in performance .
Uncontrolled splitting results in low storage utilization
(e.g . 60%) and fast retrieval. By controlled splitting,
better storage utilization can be achieved, but retrieval is
slowed down.Performance figures based on simulations can be
found in [Litwin 1980].

- 25 -

1 . !. In t r où1 1r_: t_:_i g Q

Li near h ilshing will1 partial e xpansions

Larse n l Lilr son 1980] i s a generalization
ùevelo peù by W. Litwin.

presented by P.
of linear hashing

In l1 ashing techniqu r, :-;,
records are distribute,.l
buckets in the file.

the best performances are achieved if
as uniformly as possible among the

Unfortunately, the r.ecord distribution of linear hashing
does not reach this goal because the load factor of a bucket
already split is only half the load factor of a bucket not yet
split. This new technique tries to remedy this disadvantage and
thus increase the perfbrm~nce of the file.

1-1• Presentation of Linear Ha shing With Partial Expansion

In this scheme, the difference with linear hashing is due to
the fact that the doub .1 ing of the file size is done in a series
of partiùl expansions.

Initially the file c onsists of no * N buckeis logically
subdivised into N group3 of no buckets each, no>= 1, N >= 1. A
group i consists of the buckets (i, N + i, ZN+ i , , (n0-1)
N + i) with i = 0 ,1, ,N-1. Fig 4.1 shows a file at an
initial stage with N • 3 and no= 2.

of

SP

Fig 41.1

r-- . - . - . -,- . - ·- . - . 7 r-~- -- - -j - - i- - -- - -.,

1 l ! J ! i i
,:,1 * ~Î 1 ~ 1 w l J I~~ 1

1 2 3 4 5 6 7 8

Linear Hashing file with partial expansions
(N-3 and n0=3) at an initial stage

- 26 -

A full expansion results in a doubling of the file size and is
accomplished by a sequence of no partial expansions increasing
the size of each group to no+ 1, no+ 2 , , 2no respectively.

A partial expansion is carried out stepwise by adding one
bucket to each group always in a predefined order: group o,
group 1, ... , group N * 2 exp L 1. Each complete partial
expansion increases the file size by N * 2 exp L buckets.

The number of full expansions which have been accomplished is
indicated by a variable L. The smallest file size on level Lis
no* N * 2 exp L buckets and the buckets (j, N 2 exp L + j, 2 * N
2 exp 1 + j , , (no-1) * N * 2 exp 1 + j) with j x o,
l, ,N * 2 * exp L - 1 forms N * 2 exp L group of buckets.

Fig 4.2 shows
expansions (no= 2).

a linear hashing file with two partial
The number of groups is 3 (N = 3).

In the example represented by the figure 4.2, the doubling
of the file size is done in two steps; the first expansion
increases the file size to 1.5 times the original size, while the
second expansion increases it to twice the original size.

we start with a file of 6 buckets, logically subdivided into
3 pairs of buckets, where the pairs are (j,j+N) vj=0,1,2.

When new storage is needed, according to some rule, the file
is expanded by one bucket, bucket 6, and part of the record in
bucket o and bucket N are moved to bucket 6. When more space is
required, the pair (1,4) is expanded.

When the last pair (2,5) bas been expanded, the file size
has increased from 6 to 9. Thereafter the second expansion
starts, the only difference being that now 3 groups of 3 buckets
are considered (0,3,6), (1,4,7), (2,5,8).

When the second partial expansion bas been completed, the
file size bas doubled from 6 to 12.

However, we do not wish to continue expanding groups of four
buckets, then five... we want to corne back to groups of two
buckets (j, j+6) j = 0,1,2,3,4,5 (figure 1.3). If this were not
the case, the cost of expanding a group would steadily increase
and it would soon become prohibitively large.

Another important point is that when a group of buckets is
expanding, it should not be necessary to rearrange records among
the old buckets. we must simply scan through the old buckets and
collect only the records which are to be reallocated tp the new
bucket. In this way, the expansion can be made in one scan, and
no jumping back and forth is necessary. The solution for this
last point is quite simple and uses the rejection technique.

The rejection technique assumes that H(K) = (hl(K), h2(K),
h3(K) ..) is a sequence of hashing functions, where each hi hashes
uniformly and independently over {0,1,2, ... n-1}.
Furthermore, we suppose that a fixed set of records is to be
stored in a file consisting of only m·<m buckets. To find the
address of a record with a certain key K, we compute the
numbers ... hl(K), h2(K) ... and takes as the address of the

- 27 -

l

~~I ~1-.J
0 1 2 3 4 5 6

(a) At the initial stage

l

1 1 1 l
1
1

' --~
0 1 2 3 4 5 6 7

(b) After one split

1 I' J,.

1 1 1 1 1-1 1
0 1 2 3 4 5 6 7 8 9

(C) After one partial expansion

...... 1____.___.__....____.__,ll---'--.....J....__,Ji....-.L.-.........,__JI ~~~]
0 1 2 3 4 5 6 7 8 9 10 11 12

(d) After two partial expansions (doubling of the file)

F I G 4.2

- 28 -

record the first number which is a valid address,i.e , which is
les~ than m· among the buckets 0,1, . .. m·-1.
Once _the file is extended by one bucket, m· , and the address of
every record in the set in recomputed, the same hashing functions
hl,h2, ... are used, but this time any number less than m·+1 is a
valid address. When the number of buckets pass from m· -1 tom· ,
the address of some of the records bas changed tom· :

Example: if m=4 and m· =2, we consider the sequences

H(11)=(l, 3, 2, ...) , H(12)=(2, 3, 0, ...) , H(13)'"'(3, l, 2, , , .) , and
H(l4)=(3 , 2,l, ...)

If the file bas 2 buckets, the records will be assigned to
bucket l,O,l,l, but if m· is increased to 3, the addresses
of the records are 1,2,1 and 2. In this case, records 2 and
4 must be moved to the new bucket. If m· =4, the addresses
are l,2 , 3 and 3. This time record 3 and record 4 must be
moved.

If you want to reduce the size of the file by one bucket, the new
addresses are computed for the records located in the bucket
which is to be deleted and the records are inserted into their
new bucket. No other records have to be moved.

~-d· Control Function

Larson suggests that the expansion of the file should be
controlled solely by the overall storage utilization (including
the number of overflow buckets in use). When a record bas been
inserted into the file, storage utilization is checked and if it
is higher than some fixed threshold w, O<W<1, the file is
expanded ~Y one bucket . This implies that we have a control
function that keeps track of . the number of records in the file
and the number of overflow buckets .

This control function seems optimal because when we use
linear hashing with partial expansion, there is always a trade
off between . storage utilization and the expected length of
successful searches.

The higher the storage utilization is , the longer the
searches are expected to be. Both factors cannot be controlled
simultaneously. Larsen suggests that we first control the
storage utilization by requiring that it should always be>= than
the threshold, but once this threshold has been reached, we
1IU.nim1ze the time of searches by keeping the storage utilization
as close to the threshold as possible.

- 29 -

~-~· Performance

A detailed performance analysis can be found in [Larson
1982] The analysis reveals that an average search length in the
range of 1.1-1.2 accessses can be achieved with the same
parameters.

Furthermore, we can say that the expected number of accesses
required to insert a record, also including accesses required to
physically store a record and to update the record counter, the
accesses required to rearrange records in the old bucket, reach
between 4.37 and 6.37 accesses for load storage as high as
85%-90% and a bucket size of 50 records. The choice of two
partial expansions seems to be a good compromise.

In summary, linear hashing with partial expansions offers a
new and simple technique for organizing dynam.ic files. Retrieval
of a record is very fast by any standard and files have a
constant storage utilization up to 0.90 with excellent
performance. The performances deteriorate rapidly if the storage
utilization is further increased.

2· variation of Larson and Litwin·~ Scheme [Lloyd and Ramamohanorao to
be published]

2-~· Introduction

Recently, two variations of the schemes presented above
appeared in [Lloyd and Ramamohanorao to be published]. These
schemes seem to be the most powerful dynamic hashing schemes up
to now. They have certain performance advantages over earlier
schemes because they implement the ideas of Larson and Litwin in
a simpler way.

2,Z, Dynamic Hashing Scheme With Round-YQ Pages

As the file grows, it goes through a series of expansions.
At the beginning of such an expansion (see Figure 5.1.a) the file
consists of certain home pages plus their associated overflow
pages. Each home page has its own, possil>ly void, chain of
overflow pages, which contain records that would not fit into the
home page.

The home pages are divided into s groups of g pages. s is
the current segment size. gis a parameter, characteristic of
the file, called the group size. The home pages are indexed by
0,1 , . .. ,gs-1. The g home pages indexed by j, j+s, ... , j+(g-l)S
together forma group of buddy pages (j=0,l, .. S-1). Litwin · s
scheme can be obtained by pulling g=1.

To add a new home page, we need a pointer called
pointer, SP, which indicates the next group of buddy
split. At the start of an expansion, SP points to
group of g buddy pages indexed by o,s, .. . , (g-1)5,

the split
pages to be
the first

After exactly L insertions, this group is split and an extra

- 30 -

home page is appended to the end of the fiie. Then, the records
in the home pages o,s, ... (g-l)S plus the records in the overflow
pages associated with these home pages are redistributed,
according to a certain hash function, amongst the g+l home pages
o , s, .. gs.

If the hash function is effective, we can expect overflow
chains for these home pages to be reduced, and, perhaps,
disappear. The split pointer is then moved forward to the next
group of buddy pages 1, S+l, . .. (g-l}S+l. When the split
pointer moves to the last group of buddy pages s-1, ... 25-1 and
these pages are split, the split pointer will return to the
beginning of the file (so that SP=O}. During the expansion, the
file grew from gs home pages to (g+l}S home pages and exactly SL
records were inserted.

However, what we would like is to divide the current file
into groups of g buddy pages and enlarge the segment size. The
problem in this scheme is that the current file size in terms of
home pages will not generally be divisible by ~. To make it
possible, we append if necessary, r extra home pages to the end
of the file, where o <= r < g. The extra pages added are called
round-up pages.

Larson·s method of splitting a group of buddies is more
complicated because the file goes through a series of partial
expansions which together constitute a full expansion.

In each partial expansion the group size is different and
thus the effect on this is to give variable performance during
full expansions. In keeping the group size constant, this leads
to more uniform performance.

The only complication in this scheme is that we need round-up
pages, but the number of round-up pages added in each is bound by
a small constant which is certainly negligible compared with the
file size. This scheme is the natural generalization of Litwin·s
scheme.

- 31 -

§. Dynamic Hashing Scheme for secondary Key File [Lloyd, Ramamohanorao
and Thom 1983]

§.~. Introduction

The scheme presented in the section above has the
disadvantage of letting the user access a record only by means of
a primary key.

In the case of secondary keys (we want to know how the
location of a record via keys which do not uniquely identify one
record), the pure hashing schemes are not very efficient. To
solve this problem, we will describe a partial match retrieval
scheme based on hash functions and descriptors. See [Lloyd and
Ramamohanorao to be published], [Lloyd 1980], [Lloyd and
Ramamohanorao 1982], and [Lloyd, Ramamohanorao and Thom 1983].

§,Z, Definition .o.f ~ Partial Match~

Each record in the file consists of a number of fields
(secondary keys) which may be specified in a query.

Assume that there are K fields fl, ,fn which may be
specified in the query. Then a partial-match query is a
specification of the value of one or more of the fields
fl, ... , fk. An answer to a query is a listing of all records in
the file which have the specified values for the specified
fields.

§.~. Description of~ Simple Partial-Match Retrieval Scheme (When the
File is I<nown) Based Purely Q!l Hashinq

The records of the file are contained in a number of pages.
we suppose first that the file is static and consists of 2 exp(d)
pages; (d is a fixed, non-negative integer). The pages are
numbered 0,1, ... 2 exp(d)-1.

There are K hashing functions hi, the ith function mapping
from the key space of the field fi to the set of the strings of
di bits, where each di is a non-negative integer and dl+ ... + dk
= d.

The page in which a particular record is to be stored is
computed as follows. Each field fi is hashed to a string of di
bits. The string resulting from the concatenation of these
strings (in order) gives the page number.

The hashing functions should be chosen to distribute the
records as evenly as possible amongst the pages.

The problem at this stage is to minimize the average number
of home pages which have to be accessed to answer a query.

Let Q be a query, so that Q is included in 1,2, ... ,k. we
denote by PQ the probability that the query Q is specified.
Thus, P =land P(Q)>=0 for all Q. The P -s for a particular

- 32 -

system are determined by the use made of that system.

Then the average cost of a query is :

A =

The optimization problem is thus to find dl, ... ,dk that minimize
the objective function A and satisfy dl+ ... + dk = d.

Like this, it is too simplistic because another difficulty
arises with the key space of each field.

For example , often fields have rather small key spaces, and
thus must be allocated only one or two bits. Constraints of the
form di<= dmax naturally arise where 2 exp(dmax) is the number
of values that a particular field can take. For example, sex can
have only two values and thus no more than one bit should be
allocated toit.

On the other hand, if the field fl has a large key space of
2 exp(Cl) values, the optimization problem assigns dl bits to fl
with Cl> >dl. A pure hashing scheme cannot cope with it because
t he total number of bits , d , allocated is determined by the size
of t h e f i l e s p a ce and there are a number of fields cornpeting for
bit s .

As the number of bits allocated to fl is severely limited,
t.h e has h function will map many different values of the same
field in the same bit string. A large amount of information is
l ost in this case. One suggestion is to use a small, simplified,
descriptor file, built on top of a hashing scheme, so that before
a ny page is accessed, a check on its descriptor is made. A scheme
using des criptors was developed [Lloyd- and Ramamohanorao to be
published]. We briefly review this scheme.

~-~· a Descriptor Scheme

1 . Desciptor, Page Descriptor, File Descriptor

At each file is associated a descriptor file. This decriptor
file is composed of a set of descriptors page.

A descriptor page is a set of descriptors
descriptor is related to a page of the main file.
is simply a bit string of W bits (fixed length).

where each
A descriptor

Each record R in the data file has a descriptor Dr
associated with it. This descriptor is derived from the values
(Vl , VZ , ... , Vf) of the F attributes of the record R. Fig 6.1
shows a basic scheme of a file and its descriptor.

- 33 -

0
1
2

descriptor
file

clescriptor

Fig 6,1

0

1

2

/

•

•

•

-

file

Basic scheme

- 34 -

home page

2. Constructing g Descriptor

one possi.bility in constructing the descriptor is to employ
the method of disjoint coding.

Disjoint coding begins by dividing each descriptor into F
disjoint fields (each record has F attri.butes). Each field Fj
consists of Wj bits and the sum of all values Wj from j=l to j=f
is equal to W.

Each of the attri.butes has an associated transformation Tj
which maps from the key space of Fj to the subset of bit strings
of length Wj.

To descri.be a record R, these transformations are applied to
each of the attri.bute values of Rand the Tj(vj)th bits in Wj is
set to 1 while the remainder Wj-1 bits are set to o.

Each descriptor will have exactly F bits set to 1. In a
partial-match query, attri.bute values are specified for only a
subset of the attri.butes. If Q<=F is such a subset, the query
descriptor is built in the same way as the record descriptor.

The transformation Tj is applied to the attri.bute value Vj
to determine which bit in Wj(Q) is set to 1. If all the possible
values are not specified in the query, the bits corresponding to
the fields not specified are set to o.

AS the descriptor of Dr and Q has been constructed using the
same transformation, we can make the following propositions

If R satisfies the partial match query, then Q <= Dr.

If Q is nota part of Dr, then R does not satisfy the
partial match query.

If Q is a part of Dr, then R may or may not satisfy the
query.

"Q is a part of Dr" means that every bit position which is 1
in Q is also a 1 in Dr, and "Q is nota part of Dr" means that
there is at least one bit position which is 1 in Q and o in Dr.
With these propositions, we can construct a descriptor file which
allows us to check if an information is contained in a page and
thus access this page only if we are sure that we can find the
information in this page.

In the scheme proposed by [Lloyd and Ramamohanorao 1982] ,a
page descriptor is constructed by applying the logical function
OR to the descriptors of the records contained in the pages of
the main file and any overflow page.

3. Using g Descriptor File

The descriptor file is used as follows. Let Q be a query.
Using the hash function Hi on the specified fields, a set of
addresses of pages which can contain records in the answer to the

- 35 -

2. Constructing ~ Descriptor

One possibility in constructing the descriptor is to employ
the method of disjoint coding.

Disjoint coding begins by dividing each descriptor into F
disjoint fields (each record has F attributes). Each field Fj
consists of Wj bits and the sum of all values Wj from j=l to j=f
is equal to w.

Each of the attributes has an associated transformation Tj
which maps from the key space of Fj to the subset of bit strings
of length Wj.

To describe a record R, these transformations are applied to
each of the attribute values of Rand the Tj(vj)th bits in Wj is
set to l while the remainder Wj-l bits are set to o.

Each descriptor will have exactly F bits set to l. In a
partial-match query, attribute values are specified for only a
subset of the attributes. If Q<=F is such a subset, the query
descriptor is built in the same way as the record descriptor.

The transformation Tj is applied to the attribute value Vj
to determine which bit in Wj(Q) is set to l. If all the possible
values are not s pecified in the query, the bits corresponding to
the field s not specified are set to o.

As t he descriptor of Dr and Q has been constructed using the
s ame transformation, we can make the following propositions

If R satisfies the partial match query, then Q <= Dr.

If Q is nota part of Dr , then R does not satisfy the
partial match q uery.

If Q is a part of Dr, then R may or may not satisfy the
query.

"Q is a part of Dr" means that every bit position which is 1
i n Q is also a 1 in Dr, and "Q is nota part of Dr" means that
there is at least one bit position which is lin Q and o in Dr.
With these propos itions , we can construct a descriptor file which
allows us to check if an information is contained in a page and
thus access this page only if we are sure that we can find the
information in this page.

In the scheme proposed by [Lloyd and Ramamohanorao 1982] ,a
page descriptor is constructed by applying the logical function
OR t o the descriptors of the records contained in the pages of
the main file and any overflow page.

3 . Us i ng ~ Descriptor File

The descriptor file is used as follows. Let Q be a query.
Using the hash function Hi on the specified fields , a set of
addresses of pages which can contain records in the answer to the

- 35 -

query is generated.

However, before these pages are accessed, we check the
descriptor file. Corresponding to Q, there is an associated
query descriptor (with the same structure as a page descriptor),
which is obtained by transforming the fields specified in Q using
the Ti · s and making up the remainder of the query description
wit h o·s in the bit pos itions corresponding to the unspecified
fields.

Then before accessing a page, we compare the query
descript or with the descriptor for that page. If the query
descriptor has a 1 in a bit position where the page has o, then
the page cannot possibly contain a record in the answer to Q and
hence, the page does not have to be accessed.

The advantage of descriptors is that they can add more
knowledge about records actually present in the file. When a
record is added to or deleted from a page, the descriptor must be
updated.

- 36 -

E xëunp] 8:

f 1

001 o· 00 lO
0001 1100
0010 0001
0001 0010

0100 0010
0100 1000
0010 0000
0001 0010

l\:,sume that we have a record type with two fields and
\:h;i_t a query w :1:~ made on the first field of this record
type wi th the ·. ,llue Vl.

If only ow~ bit is allocated to this field then
the hilshing r,mction can hash to the set of addresses
br.ginning by 1 o r o. If we assume that the hashing
[unction hash ~3 to 1 then the set of home pages to be
searchP.d witho11 ': the descriptor file is the following :
pages 100, 101 . 110, 111.

Suppose tha query Q gives the query descriptor
001000000000. Page 100, which has a descriptor
010000101100 does not have to be accessed, since it has
a O i.n a bit position where the query descriptor i1as a
J.. On the othe r hand, it will be necessary to access
page 110 with rlr.scriptor 001000001001.

f_
C:

: 1001
i0101

1001
l 1010 ,.

: 1100
0110

1
1001

1
0110

I

/
/

I ,,
/

/
/

I

,

-

......

......

'

r1
0010
0000

0000
0000
0001

0010
0000

0001
0000

0000
0100

0000
0100

0000 : 0001
0010 I 1001

1000 I O 100

0100 I 0100
0000 I 0001

1

0000 1 000-i
0001 I 1000

0000 I 0010
0010 1 1000

1

0010 10100
0000 11000

1000 I 0010
0000 10100

1

Pzgefl

000

001

010

011

100

101

Descriptor file \ "
\ ' ' 0010 0000 1 0001 110

\ 0010 0000 r1000
\ 1

\ 0000 0010 10010 111
0001 0000 10100

Mëin Filt:

k=2 d2=2 Wl=8 W2=4 W=l2

It has to be nol :cd that record descriptors are shown in
the main file <ir ,ly for explanation purposes.

- 37 -

~-2· Extension of the Scheme to Dynamic Files

2 -2 -~- Presentation of the Scheme

The partical-match retrieval scherne described in the
section above is only suitable for static files, but it is
easy to extend it to dynamic files by utilizing the linear
hashing scheme discussed earlier. The scheme used here is
linear hashing.

A Linear Hashing file is shown at a typical stage in
its existence in fig 6.2 . The file is currently stored
in M pages, nurnbered frorn o up to M-1. Sorne pages have
short overflow chains çontaining records that would not fit
into the home pages.

The file also has a split pointer which indicates the
next page to be split. This page is nurnbered sp. Note that
the page to be split is selected independently from where
the collisions occur. The split pointer moves in a very
systematic way, first page o, then page 1, ... splitting each
page in turn.

When page 2 exp(d-1) splits, the split pointer returns
to page o. On the next run, the split pointer will go up to
2(exp(d+l))-1. Thus, the file doubles during a complete run
of the split pointer . dis now a variable called the depth
o f the file.

The splitting policy ernployed here is to split after
every L insertions into the file. Lis called the load
control and must be carefully chosen to rnaintain a desired
load factor.

,_

When the page spis split, the following occurs :

For each record in the page sp, and for any
associated overflow records , a new hash address is
computed.

For each such record, the new address will either
be sp (the old address) or M=SP+2 exp(d). A new
page, nurnbered M, is then appended to the end of
the file and the records with hash address Mare
put into this page.

Since
need for
though the
since it
calcula te
file.

pages split in this very systematic way, the
a directory is obviated. Furtherrnore, even
file may have grown and the record moved
was first inserted, it is still possible to

directly the home page of any record in the

The important part of the extension is the choice
of the hash function. A more complicated way of
constructing the hash function is needed because the
file is no longer static.

For each Fi, we have a hash function Hi mapping

- 38 -

split pointer

0 l 2 sp

• • •
1 r

- - :- - 7- - - - - - T - 7 - - - -
1 l • • • 1 1
1 1 1 1

__ ..J. __ 1 ___ -- --'--L---- -

\ \
•

Fig 6~ Typical stage of a Linear Hashing scheme

from the key space of Fi to bit strings of an suitably
length. We now no longer concatenate the strings
Hi(Vi) as before, but we compute the new address with
what we called the" choice vector"

§.~.~- Choice Vector

we are now explaining what a "choice vector"
how to use it to compute the address of a record.
will see from where it cornes.

is and
After we

A choice vector contains numbers (Il, I2
,) which are integers between 1 and K. Each integer
indicates which field is taken into account to compute the
address of a record. Let see with an example how this
"choice vector" is used :

Example

Assume the choice vector is (4,5,4,3,2,3 ...) and vK=6.
The right-most bit of the bit string forming the
address is the first bit in the string H4(V4), the
second from right is the first bit in the string
H5(V5), the third is the second bit in the string
H4(V4), and so on.
In general, the ith bit from right in the bit string
forming the address will be the first so far unused bit
in the string Him (Vim). In this case, the record is
said to hash to an interlaced bit string.

This choice vector cornes from the optimization problem.
The problem is to minimize

subject to ;_ 1where each di is a non negative integer.

[Lloyd and Ramamohanorao 1982] proposed in their paper
an algorithm which computes the optimal number of bits, and
the optimal Di and Wi at each depth.

What can happen is that a particular field - s allocation
of bits in the optimal solution atone depth can be higher
than its allocation at the next highest depth.

This implies removing a bit from the middle of a hash
address when the depth changes, but in this case we can
avoid a complete reorganization of the file during the
change in depth to handle this.

Thus , the allocation of di values, a s the depth
i ncre ases , s hould have the following property

If di bits are allocated to a field fiat depth
di and di - at depth d + 1, then di<= di - .

- 39 -

This property is called the monotonicity property.

The algorithm provided in [Lloyd and Rarnamohanorao
1982] computes also the "choice vector".

&·2·d· File Descriptor

The descriptor file grows and contracts in parallel
with the linear hashing file. However, no matter what the
depth of the linear hashing file, the descriptor size is a
constant w bits.

The construction and the information appearing in the
descriptor are similar to those of section 6.4. Maintenance
of a descriptor is also easy and is made in parallel with
the maintenance of the LH file. Fig 6.3 shows a Linear
hashing file with its descriptor file.

~-2· Performance

The descriptor of a page must be updated whenever a record
is inserted into a linear hashing file. This involves computing
the descriptor of the record and applying the logical function OR
to the old descriptor and the new descriptor associated to the
page where the new record has been inserted and the new
descriptor.

If a record is deleted the cost is slightly more expensive
because the descriptor must be recomputed.

The cost of maintaining the descriptor file for an insertion
or deletion is 2 disk accesses: one to read the descriptor, and
one to write it. For a split, the cost is 4 disk accesses: one
to read the descriptor, one to read the page, and two to write
the two new descriptors.

- 40 -

0
1
2

sp

~1-1

•

•

•

r-i
1---i
1 1
1 1 1
' . 1
1 • 1

: • 1
1 1
1 1

' 1
' 1

descriptor file

0

1

2

sp

M-1

•

•
•

r ~

J._/

____ ,
1 1 - --,
1 1

~-...J
1 1

1 1 • 1
1 1
1 •
1
1 •

LH file

D

P'ig 6.3 Linear Hashing scheme and descriptor file

- 41 -

]_. REFERENCES

[Aho 1979]

Aho, A.V. and J.O. Ullman. "Optimal Partial-Match Retrieval When
Fields are Independently · Specified," ACM Transactions on Data
Base systems, Vol. 4, No. 2, June 1979, pp. 168-179.

[Fagin 1979]

Fagin, Ronald (IBM Research Laboratory), Jurg Nievergelt
(Institut Informatik), Nicholas Pippenger (IBM T.J. Watson
Research Center), and H. Raymond strong (IBM _Research
Laboratory) . "Extendible Hashing A Fast Access Method for
Dynamic Files," in ACM Transactions on Data Base systems, Vol.
4, No. 3, September 1979, pp. 315-344.

[Knuth 1973]

Knuth, D.E. The Art of Computer Prograrnming, Vol. 3: Sorting and
searching. Addison-Wesley, Reading, MA, 1973.

[Larson 1978]

Larson, P. "Dynamic Hashing," BIT 18 (1978), pp. 184-201.

[Larson 1980]

Larson, P. "Linear Hashing
Proceedings, 6th International
Databases, 1980, pp. 224-232.

[Litwin 1980]

With Partial
Conference on

Expansions,"
Very Large

Litwin, Witold.
Proceedings on
212-224.

"A New Tool for File and Table Addressing," in
Very Large Databases, Montreal, 1980, pp.

[Litwin 1978]

Litwin, Witold. "Virtual Hashing: A Dynamically Changing
Hashing," Proc. 4th Conference on Very Large Data Bases, West
Berlin, Sept. 1978, pp. 517-523.

[Lloyd 1980]

Lloyd, John W. Optimal Partial-Match Retrieval, BIT 20, 1980,
pp. 406-413.

[Lloyd and Ramamohanorao to be published]

- 42 -

Lloyd, John w. and K. Ramamohanorao. "Dynamic Hashing Schemes,"
Department of Computer Science, University of Melbourne, to be
published.

O:,loyd and Ramamohanorao 1982]

Lloyd, John W. and K. Ramamohanorao. "Partial-Match Retrieval
for Dynamic Files, BIT," Department of Computer science,
University of Melbo urne, BIT 22 (1982), pp. 150-168.

[Lloyd, Ramamohanorao and Thorn 1983]

Lloyd, John W. , K. Ramamohanorao, and James A. Thom. "Partial
Match Retrieval Using Hashing and Descriptors," Dept. of
Computer Science , University of Melbourne, to appear in ACM
Transactions on Data Base Systems, 1983 .

[Martin 1975]

Martin, James. Computer Data Base Organization, Prentice Hall .

[Scholl 1981]

Scholl, Michel. "New File Organizations Based on Dynamic
Hashing," in ACM Transactions on Data Base Systems, Vol. 6, No.
l, March 1981 , pp. 194-211.

- 43 -

ANNEX 2 Description of subroutines

.J,. DBHUSE

These routines are the highest level routines that interface
directly with the user · s program.

1. CRENIN

Calling Convention :

CALL CRENIN (entyna, bufpar, ptrpar, ierr)

Purpose

to create an entity instance

Description :

buffer is
by the given
primary key

An entity whose values are contained in a
added to the set of the entities identified
entity type name. The subroutine checks if the
already exists or is acceptable.

If the primary key already exists we can not insert the
entity because a primary key uniquely identifies an entity.
The primary key is not acceptable means that one of the
values of the primary key does not belong to the range of
allowable values defined for this entity type.

Arguments

NAME USAGE

entyna input

bufpar input

ptrpar input

ierr output

2. CHENIN

Calling Convention :

TYPE

char

char

int

int

DESCRIPTION

entity type
name

buffer containing
the values of the items

pointer into bufpar
where the description
of the entity begins

return code

CALL CHENIN (dbkey, attnam, vsnam, newval , ierr)

Purpose :

change the value of an attribute of an entity

- 1 -

Description :

An entity identified by à data base key (a data base
key indicates the location ,i.e , the page number and a
displacement within the page, of the primary key) is
modified in the following way: the old value of a value set
i dentified by its name and an attribute type name is
r eplaced by a new value . If the value set is nota part of
t he primary k ey ,there is no consequence .

0therwise we must change the primary key of this entity
i n all the relationships in which the entity is involved.

Arguments

NAME USAGE TYPE DESCRIPTION

dbkey input int(2) data base key

attnam input char attribute type
name

vsnam input char value set name

newval input char new value

ierr output int return code

3. DELENT

Calling Convention :

CALL DELENT (dbkey, ierr)

Pu r po se :

delete an entity

Des cr i ption

An entity identified by a database key is rernoved from the
database. All relationships involving this entity are also
deleted.

Arguments

NAME USAGE

dbkey i nput

ierr output

TYPE

int(2)

int

- 2 -

DESCRIPTION

database key

return code

4. RETENT

calling Convention:

CALL RETENT (entnam ,pkey ,dbkey ,ierr)

Purpose

to retrieve an entity

Description :

An entity identified by its primary key and its type is
searched for in the database.The database key locating the
entity is given as output. If the entity is not found then
the database key is = o.

Arguments

NAME USAGE TYPE DESCRIPTION

entnam input char entity type

name

pkey input char primary key

dbkey input int(2) database key

ierr output int return code

5. RETVEN

Calling Convention :

CALL RETVEN (dbkey,attnam , vsnarn,value,ierr)

Purpose

to retrieve a value from an entity

Description :

The value item of an entity identified by a database key is
retrieved and put into an integer array value. The item to
retrieve is identified by an attribute name and a value set
name.

Arguments

NAME USAGE TYPE DESCRIPTION

dbkey input int(2) database key

- 3 -

attnam

vsnam

ierr

6. RETVRE

input

input

output

Calling Convention :

char

char

int

attribute type
name

value set name

return code

CALL RETVRE (dbkey,attnam,vsnam,value,ierr)

Purpose

to retrieve a value of an attribute of a relationship

Description :

The value item of a
key is retrieved
item to retrieve is
value set name.

Arguments

NAME USAGE

dbkey input

attnam input

vsnam input

ierr output

7. CREREL

Calling Convention:

relationship identified by a database
and put into an integer array value. The
identified by an attribute name and a

TYPE DESCRIPTION

int(2) database key

char attribute type
name

char value set name

int return code

CALL CREREL (relnam,bufpar,ptrpar,ierr)

Purpose

to create a relationship

Description :

A relationship is created. Bufpar contains the primary keys
and the attributes of the relationship .

- 4 -

Arguments

NAME USAGE TYPE DESCRIPTION

relnarn input char relationship type

name

bufpar input char buffer containing
the values for
the relationship

ptrbuf input int pointer to the bufpar
where the
description begins

ierr output int return code

8. CHREAT

Calling Convention :

CALL CHREAT (dbkey,attnam,vsnarn,newval,ierr)

Purpose :

change the value of a relationship attribute

Description

A relationship identified by a database key is modified in
the following way the old value of a value set is
identified by its narne and an attribute name is replaced by
the new value.

Arguments

NAME USAGE TYPE DESCRIPTION

dbkey input int(2) database key

attnarn input char attribute type
name

vsnam input char value set name

newval input char new value

ierr output int return code

9. DELREL

- 5 -

Calling Convention :

CALL DELREL (dbkey,ierr)

Purpose

to delete a relationship

Description :

A relationship instance identified by a database key is
removed from the database.

Arguments

NAME USAGE TYPE DESCRIPTION

dbkey input int(2) database key

ierr output int return code

10. RETREL

Calling Convention :

CALL RETREL (relnam ,pklist,dbklis,ierr)

Purpose :

retrieve a relationship instance

Description :

Given a relationship type name,and a list of primary keys
which are related by this relationship (the name of the role
precedes each prirnary key) , this subroutine returns a list
of database keys which corres pond to the primary keys stated
a s inputs.

Arguments

NAME USAGE

relnam input

pklist input

dbklis output

ierr output

TYPE

char

char

int

int

- 6 -

DESCRIPTION

relationship type
name

primary key list

database key list

return code

11. IDOP

calling Convention :

IDOP (liobuf ,use,ierr)

Purpose

open a database

Description

The integer function IDOP is used to open a database. Liodbf
designates the logical I/0 unit to which the database is
attached. If use is specified "O" then the database is only
open for read operations.

Arguments

NAME USAGE

liobuf input

input

output

use

ierr

12 . DCLOSE

calling Convention :

DCLOSE (ierr)

Purpose

TYPE

int

int

int

close the current database

Description :

DESCRIPTION

logical I/0 number

read/write flag

return code

the current database is closed

Arguments

NAME USAGE TYPE DESCRIPTION

ierr output int return code

- 7 -

l., DBHLOW

These routines are the low level routines used by DBUSER. They do
most of the actual work of the DBMS. In this part, we only describe
the routines corresponding to the management of the entities. As the
secondary key part is also managed wit h a technique used for the
secondary keys of an entity they are similar to certain routines
described below.

13 . IDPAGE

CALLING CONVENTION:

I = IDPAGE(INDCUR,TYPE,OVDES,NOPAGE)

PURPOSE :

A number identifying a page is returned. This number is computed
by combining the kind of file, the type of the page, the index
of the description of an object type and the page nurnber in a
file

ARGUMENTS

NAME USAGE TYPE DESCRIPTION

INDCUR INPUT INTEGER Index of the description
of an object type

TYPE INPUT INTEGER Kind of file

OVDES INPUT INTEGER Type of a page

NOPAGE INPUT INTEGER Page number

IDPAGE INPUT INTEGER Nurnber identifying
the page

14. cvcs

CALLING CONVENTION:

CALL CVCS(BUFNAM,PTRNAM,LENNAM,INTNUM,IERR)

PURPOSE :

convert a character string to a integer

ARGUMENTS

DESCRIPTION

- 8 -

BUFN.AM INPUT

PTRN.AM INPUT

LENN.AM INPUT

INTNUM OUTPUT

IERR OUTPUT

15. GETPAG

CALLING CONVENTION

CALL GETPAG

PURPOSE :

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

Find a free page in BUFPAG

ARGUMENTS

16. WHPAGE

CALLING CONVENTION

CALL WHPAGE

PURPOSE :

Array where the
character form of
the name is

Pointer into BUFNAM
where the narne start

Lenght of narne

number representing
the name

Error code

Write the current page (if it has been modified)

ARGUMENTS

17. NEPAGE

CALLING CONVENTION:

CALL NEPAGE(PAGADD,IERR)

PURPOSE :

DESCRIPTION

- 9 -

Get and initialize a new page

ARGUMENTS

PAGADD INPUT

Ierr INPUT

18. CVENBU

CALLING CONVENTION :

INTEGER

INTEGER

DESCRIPTION

Address of the new
page

Error code

CALL CVENBU(BUFTCO,PTRBUF,LENSTG,IERR)

PURPOSE :

Convert
buffer

the integer,real,character pararneter of BUFTCO.This
contains all the parameters stated for an entity instance

ARGUMENTS

NAME USAGE TYPE DESCRIPTION

BUFTCO INPUT CHAR Buffer containing
the parameters

PTRBUF INPUT INTEGER Where to start

LENSTG INPUT INTEGER Length of string

IERR INPUT INTEGER Error code

19. CVPAEN

CALLING CONVENTION :

CALL CVPAEN(BUFTCO,BUFCON,PTRBUF,NBRATT,IERR)

PURPOSE :

Convert the character form of a part of an entity (either the
primary key, the secondary key part and the attribute part) .

ARGUMENTS

DESCRIPTION

- 10 -

BUFTCO INPUT CHAR Array where the char form
of the description of .an entity is .

BUFCON OUTPUT CHAR Array where the convert form of the
description of an entity is.

PTRBUF I/0 INTEGER Pointer into BUFTCO where the
desciption of the part begins and ends .

NBRATT INPUT INTEGER

IERR OUTPUT INTEGER

20 . CHECKI

CALLING CONVENTION :

CALL CHECKI(NUM,IERR)

PURPOSE :

Number of attribute

Error code

Check if an integer value belongs to those defined

ARGUMENTS

NUM

IERR

INPUT

OUTPUT

21. CHECKE

CALLING CONVENTION :

INTEGER

INTEGER

CALL CHECK(ENUM,IERR)

PURPOSE :

DESCRIPTION

Number to check

Error code

Check if an integer value belongs to those defined

ARGUMENTS

DESCRIPTION

ENUM INPUT REAL Number to check

IERR OUTPUT INTEGER Error c ode

22 . CHECKC

- 11 -

for the part

CALLING CONVENTION :

CALL CHECKC(STRARR,STRSTA,IERR)

PURPOSE :

Check if a character string is right

ARGUMENTS

DESCRIPTION

STRARR INPUT

STRSTA INPUT

CHAR

INTEGER

Character string to check

Where to start

IERR OUTPUT INTEGER Error code

23. CHEEPK

CALLING CONVENTION:

CALL CHEEPK(BUFSTR,ADDPKE,ADDSKE,EXIST)

PURPOSE :

Check the existence of the primary key in core

ARGUMENTS

NAME USAGE TYPE DESCRIPTION

BUFSTR INPUT CHAR Buffer containing
primary key

the

ADDPKE I/O INTEGER Address of the primary

ADDSKE OUTPUT INTEGER

EXIST OUTPUT LOGICAL

24. INSIŒY

CALLING CONVENTION:

CALL IN SKEY(ADDSKE, IERR)

PURPOSE :

key

Address of the secondary
key (if it exists)

Say if the primary key
exists or not

Insert the secondary key in core .The secondary key is contained
in a common CURPAR which contains the current entity and

- 12 -

relationship.

ARGUMENTS

NAME

ADDSIŒ

IERR

INPUT

OUTPUT

25. INPKAD

CALLING CONVENTION :

INTEGER

INTEGER

CALL INPKAD(ADDSIŒ,ADDPKE)

PURPOSE :

DESCRIPTION

Address of the secondary key

Error code

Insert the prirnary key address related to a secondary key

ARGUMENTS

ADDSIŒ

ADDPIŒ

INPUT

INPUT

26. INSKAD

CALLING CONVENTION :

INTEGER

INTEGER

CALL INSKAD(ADDPIŒ,ADDSIŒ)

PURPOSE :

DESCRIPTION

Address of the secondary key

Address of the prirnary key

Insert the secondary key address related to a prirnary key.

ARGUMENTS

ADDPIŒ

ADDSIŒ

INPUT

INPUT

27. UPDESC

INTEGER

INTEGER

DESCRIPTION

Address of the prirnary key

Address of the secondary key

- J.3 -

CALLING CONVENTION:

CALL UPDESC(ARRAY,ADDARR)

PURPOSE :

Update the descriptor of a page when a new record has been
inserted.

ARGUMENTS

ARRAY INPUT CHAR

ADDARR INPUT INTEGER

28 . CODESC

CALLING CONVENTION :

CALL CODESC(ARRAY, DESCR)

PURPOSE :

DESCRIPTION

Character array containing the
record for the computation of
the descriptor

Address of the record

Compute the descriptor of an array

ARGUMENTS

DESCRIPTION

ARRAY INPUT CHAR Array containing
the fiels of a record

DESCR OUTPUT INTEGER Descriptor

29 . COADES

CALLING CONVENTION:

CALL COADES(ADDSlŒ,ADDESC)

PURPOSE :

Compute the address of the descriptor

ARGUMENTS

DESCRIPTION

- 14 -

ADDSKE INPUT INTEGER

ADDESC OUTPUT INTEGER

30. CASKEY

CALLING CONVENTION :

CALL CADSKEY(ADDARR)

PURPOSE :

Address of the
secondary key

Address of the descriptor

Compute the address of the current secondary key

ARGUMENTS

ADDARR OUTPUT

31. SPSKEY

CALLING CONVENTION

CALL SPSKEY

PURPOSE :

INTEGER

DESCRIPTION

Addres of the secondary key
in core

Make the split of a page of the current secondary key file

ARGUMENTS

DESCRIPTION

none

32. SPLREC

CALLING CONVENTION:

CALL SPLREC(BUFPAR, ADDBUF)

PURPOSE :

Transfert a record on a splitted page

ARGUMENTS :

- 15 -

BUFPAR

ADDBUF

INPUT

OUTPUT

33. UPDEPA

CALLING CONVENTION:

CALL UPDEPA(ADDPAG)

PURPOSE :

CHAR

INTEGER

DESCRIPTION

Record to transfert

Address where to insert

Update the descriptor of a page which bas split

ARGUMENTS

ADDPAG INPUT INTEGER

34. INPIŒY

CALLING CONVENTION :

CALL INPIŒY(PKADD, IERR)

PURPOSE :

DESCRIPTION

Address of the page

Insert a new primary key in the database

ARGUMENTS

PKADD

IERR

INPUT

OUTPUT

35 . CAPIŒY

CALLING CONVENTION :

CALL CAPKEY(ADDPKE)

PURPOSE :

INTEGER

INTEGER

DESCRIPTION

Address of the prirnary key

Errer code

- 16 -

Compute the address of the current primary key

ARGUMENTS

ADDPKE OUTPUT

36. SPPJŒY

CALLING CONVENTION

CALL SPPJŒY

PURPOSE :

DESCRIPTION

INTEGER Address of the primary key

Split the current primary key file

ARGUMENTS

none

37. RANGEN

CALLING CONVENTION:

CALL RANGEN(INTNUM)

PURPOSE :

Generate a row of random number
INTNUM

ARGUMENTS

INTNUM INPUT INTEGER

38. DBHTFI

CALLING CONVENTION:

CALL DBHTFI(RETCOD)

DESCRIPTION

this row is determined by

DESCRIPTION

Number which determined the
row to be generated .

- 17 -

PURPOSE :

Extract the data base tables from the data base

ARGUMENTS

RETCOD OUTPUT INTEGER

39. DBHERR

CALLING CONVENTION :

CALL DBHERR(RTNNAM, IERR)

PURPOSE :

Handle database errors

ARGUMENTS

RTNAM

IERR

INPUT

INPUT

40 . INIPAR

CALLING CONVENTION:

CHAR

INTEGER

CALL INIPAR(PTRTAB,TYPE)

PURPOSE :

DESCRIPTION

Return code

DESCRIPTION

Routine Name

Errer number

Initialize the current pararneter

ARGUMENTS

PTRTAB INPUT

TYPE INPUT

INTEGER

INTEGER

DESCRIPTION

Pointer into the type
description table

Integer to say if the current
pa rame t e r is a n entity (1) o r a
re l ationship (2)

- 18 -

}. DBHTAB library

DBHTAB is a collection of Fortran integer funct i ons which return
control bloc k fields , and Fortran subroutines which update the control
b lock f ields . They are heavily use d b y DBHLOW and DBHUSE in
re ferencing t he database t abl e s

41 . IETYNA

CALLING conventio n

I = IETYNA (BUFNAM , PTRNAM , LENNAM)

PUR.POSE :

I n t e ger function which returns the value of the pointer into the
TYDTAB description table .

ARGUMENTS :

NAME USAGE TYPE DESCRIPTION

BUFNAM INPUT CHAR buffer containing
the entity type name

PTRNAM INPUT INTEGER pointer where the name
begins in BUFNAM

LENNAM INPUT INTEGER length of the entity
type name

IETYNA OUTPUT INTEGER pointer to the description
of the entity into TYDTAB

42. IRTYNA

CALLING convention

I = IRTYNA (BUFNAM, PTRNAM , LENNAM)

PUR.POSE :

Integer function which returns the value of the pointer into the
TYDTAB description table .This pointer points to the the
beg i nning of the description
of a relationship

ARGUMENTS :

BUFNAM INPUT CHAR

DESCRIPTION

buffer containing
the entity type name

- 19 -

PTRNAM INPUT INTEGER pointer where the name
begins in BUFNAM

LENNAM INPUT INTEGER length of the entity
type name

IRTYNA OUTPUT INTEGER pointer to the description
of the relationship into TYDTAB

IPEBDE

CALLING convention :

I = IPEBDE (IPEBPT)

PURPOSE :

Integer function which returns the value of the pointer into the
TYDTAB description table from the entity type name identified by
the IPB pointer .

ARGUMENTS :

IPBPTR INPUT INTEGER

IPEBDE OUTPUT INTEGER

IPRBDE

CALLING convention :

I = IPRBDE (IPRBPT)

PURPOSE :

DESCRIPTION

IPB pointer ta a entity
type control block

entity description pointer

Integer function which returns the value of the pointer into the
TYDTAB description table from the relationship type name
description identified by the IPB pointer

ARGUMENTS :

IPBPTR INPUT

IPEBDE OUTPUT

IPEBOV

INTEGER

INTEGER

DESCRIPTION

IPB pointer ta a relationship
type control block

entity description pointer

- 20 -

CALLING convention :

I = IPEBOV (IPRBPT)

PURPOSE :

Integer function which returns the value of the pointer into the
overflow space of the ETNTAB .

ARGUMENTS :

IPBPTR INPUT INTEGER

IPEBOV OUTPUT INTEGER

IPRBOV

CALLING convention :

I = IPRBOV (IPRBPT)

PURPOSE :

DESCRIPTION

IPB pointer to a entity
type control black

overflow pointer

Integer function which returns the value of the pointer into the
overflow space of the RTNTAB .

ARGUMENTS :

IPBPTR INPUT INTEGER

IPRBOV OUTPUT INTEGER

43 . IPKBLD

CALLING convention

I = IPKBLD (IPKBPT)

PURPOSE :

DESCRIPTION

IPB pointer to a relationship
type control· black

overflow pointer

Integer function which returns the value of the primary key
description length from the IPKB identified by the IPKB pointer .

ARGUMENTS :

DESCRIPTION

- 21 -

IPKBPT INPUT INTEGER

IPKBLD OUTPUT INTEGER

44. IPKBNA

CALLING convention

I = IPKBNA (IPKBPT)

PURPOSE :

IPKB pointer to a primary key
type control block

description length of the
primary key type

Integer function which returns the value of the number of
attribute from the IPKB identified by the IPKB pointer

ARGUMENTS :

NAME USAGE TYPE

IPKBPT INPUT INTEGER

IPKBNA OUTPUT INTEGER

45. IPKBLP

CALLING convention

I = IPKBLP (IPKBPT)

PURPOSE :

DESCRIPTION

IPKB pointer to a primary key
type control block

number of attribute of
a primary key type

Integer function which returns the value of the primary key
length from the IPKB identified by the IPKB pointer

ARGUMENTS :

NAME USAGE TYPE DESCRIPTION

IPKBPT INPUT INTEGER IPKB pointer to a primary key
type control block

IPKBLP OUTPUT INTEGER length of the primary key
on a page

- 22 -

46. ISKBLD

CALLING convention

I = ISKBLD (ISKBPT)

PURPOSE :

Integer function which returns the value of the secondary key
description length from the ISKB identified by the ISKB pointer .

ARGUMENTS :

ISKBPT INPUT INTEGER

ISKBLD OUTPUT INTEGER

47. ISKBNA

CALLING convention

I = ISKBNA (ISKBPT)

PURPOSE :

DESCRIPTION

ISKB pointer to a secondary key
type control block

de.scription length of a
secondary key type

Integer function which returns the value of the number of
attribute from the ISKB identified by the ISKB pointer

ARGUMENTS :

ISKBPT INPUT INTEGER

ISKBNA OUTPUT INTEGER

48. ISKBLP

CALLING convention

I = ISKBLP (ISKBPT)

PURPOSE :

DESCRIPTION

ISKB pointer to a secondary key
type control block

number of attribute of
secondary key type

- 23 -

Integer function which returns the value of the secondary key
length from the ISKB identified by the ISKB pointer .

ARGUMENTS :

NAME USAGE TYPE

ISKBPT INPUT INTEGER

ISKBLP OUTPUT INTEGER

49. IAPBLD

CALLING convention

I = IAPBLD (IAPBPT)

PURPOSE :

DESCRIPTION

ISKB pointer to a secondary key
type c ontrol block

length of the secondary key
on a page

Integer function which returns the value of the attribute part
description length from the IAPB identified by the IAPB pointer .

ARGUMENTS :

IAPBPT INPUT INTEGER

IAPBLD OUTPUT INTEGER

50 . IAPBNA

CALLI NG convention

I = I APBNA (IAPBPT)

PURPOSE :

DESCRIPTION

IAPB pointer to an attribute part
type c ontrol block

description length of the
a ttribut e part type

Integer function which returns the value of the number of
attribute from the IAPB identified by the IAPB pointer

ARGUMENTS :

IAPBPT INPUT INTEGER

DESCRIPTION

IAPB pointer to a attribute part
type control block

- 24 -

IAPBNA OUTPUT INTEGER

51. IAPBLP

CALLING c onve nt ion

I = IAPBLP (IAPBPT)

PURPOSE :

number of attribute of
a attribute part type

Integer function which returns the value of the attribute part
length from the IAPB identified by the IAPB pointer .

ARGUMENTS :

NAME USAGE TYPE

IAPBPT INPUT INTEGER

IAPBLP OUTPUT INTEGER

52 . 53 . IAPBLD

CALLING c onvention

I = IAPBLD (IAPBPT)

PURPOSE :

DESCRIPTION

IAPB pointer to a attribute part
type control block

length of the attribute part
on a page

I n teger function which returns the value of the attribute part
de s cription length from the IAPB i d e nti f i ed by the IAPB pointer.

ARGUMENTS :

IAPBPT INPUT

IAPBLD OUTPUT

5 4 . I APBNA

CALLING convention

INTEGER

INTEGER

DESCRIPTION

IAPB pointer to an attribute part
type control block

description length of the
attribute part type

- 25 -

I = IAPBNA (IAPBPT)

PURPOSE :

Integer function which returns the value of the number of
attribute from the IAPB identified by the IAPB pointer

ARGUMENTS :

NAME USAGE TYPE DESCRIPTION

IAPBPT INPUT INTEGER IAPB pointer to a attribute part
type control block

IAPBNA OUTPUT INTEGER number of attribute of
a attribute part type

55. IADBDL

CALLING convention

I = IADBDL (IADBPT)

PURPOSE :

I nteger function which returns the value of the description
length from the IADB identified by the IADB pointer .

ARGUMENTS :

NAME USAGE TYPE

IADBPT INPUT INTEGER

IADBDL OUTPUT INTEGER

56. IADBNL

CALLING convention

I = IADBNL (IADBPT)

PURPOSE :

DESCRIPTION

!ADB pointer to a attribute
type control block

length of the attribute
on a page

Integer function which returns the value of the attribute name
length from the IADB identified by the IADB po i nter .

ARGUMENTS :

DESCRIPTION

- 26 -

IADBPT INPUT INTEGER

IADBNL OUTPUT INTEGER

57. IADBNP

CALLING convention

I = IADBNP (IADBPT)

PUR.POSE :

IADB pointer to a attribute
type control block

attribute name length

Integer -function which returns the value of the pointer into
NAMES frorn the IADB identified by the IADB pointer

ARGUMENTS :

IADBPT INPUT INTEGER

IADBNP OUTPUT INTEGER

58 . IADBVS

CALLING convention

I = IADBVS (IADBPT)

PURI'OSE :

DESCRIPTION

IADB pointer to a attribute
type control black

pointer name

Integer function which returns the number of value set frorn the
IADB identified by the IADB pointer .

ARGUMENTS

IADBPT IVSUT INTEGER

IADBVS OUTPUT INTEGER

59. IVSBTY

CALLING conve ntion

I = IVSBTY (IVSBPT)

PUR.POSE :

DESCRIPTION

IADB pointer to a attribute
type control block

nurnber of value sP.t

- 27 -

Integer function which returns the type of value set
IVSB identified by the IVSB pointer .

ARGUMENTS

IVSBPT I NPUT INTEGER

IVSBTY OUTPUT INTEGER

60 , IVSBNP

CALLING conve ntion

I = IVSBNP (IVSBPT)

PURPOSE :

DESCRIPTION

IVSB po i nter to a value
s e t c ont rol b l o c k

value set type

from the

In t eger function which returns the name pointer of value set
from the IVSB identified by the IVSB pointer .

ARGUMENTS

IVSBPT INPUT INTEGER

IVSBNP OUTPUT INTEGER

61. IVSBNL

CALLING conve ntion

I = I VSBNL (IVSBPT)

PURPOSE :

DESCRIPTION

IVSB pointer to a value
set c ontrol block

name pointer

Integer function which returns the name length of a value set
from the IVSB identified by the IVSB pointer .

ARGUMENTS

IVSBPT INPUT

IVSBNL OUTPUT

INTEGER

INTEGER

DESCRIPTION

IVSB po i nter to a value
s e t c ontrol block

value set name length

- 28 -

62 . IVSBMD

CALLING convention

I = IVSBMD (IVSBPT)

PURPOSE :

Integer function which returns the modifier value of value set
from the IVSB identified by the IVSB pointer .

ARGUMENTS

IVSBPT INPUT INTEGER

IVSBMD OUTPUT INTEGER

63. IVSBNV

CALLING convention

I = IVSBNV (IVSBPT)

PURPOSE :

DESCRIPTION

IVSB pointer to a value
set control block

value set modifier value

Integer function which returns the number of value allowed from
the IVSB identified by the IVSB pointer .

ARGUMENTS :

IVSBPT INPUT INTEGER

IVSBNV OUTPUT INTEGER

64. IVSBMI

CALLING convention

I = IVSBMI (IVSBPT)

PURPOSE :

DESCRIPTION

IVSB pointer to a value
set control black

number of value allowed

Integer function which returns a minimum value (if integer type)
from the IVSB identified by the IVSB pointer .

ARGUMENTS

DESCRIPTION

- 29 -

IVSBPT INPUT INTEGER

IVSBMI OUTPUT INTEGER

65 . IVSBMA

CALLING convention

I = IVSBMA (IVSBPT)

PURPOSE :

IVSB pointer to a value
set control black

minimum value for a value set

Integer function which returns the maximum value from the IVSB
identified by the IVSB pointer

ARGUMENTS :

NAME USAGE TYPE

IVSBPT INPUT INTEGER

IVSBMA OUTPUT INTEGER

66. IVSBIL

CALLING convention

I = IVSBIL (IVSBPT)

PURPOSE :

DESCRIPTION

IVSB pointer to a value
set control block

maximum value for a value
set

Integer function which returns the minimum character length (if
character type)frorn the IVSB identified by the IVSB pointer .

ARGUMENTS :

IVSBPT INPUT INTEGER

IVSBIL OUTPUT INTEGER

67. IVSBAL

CALLING conve ntion

I = IVSBAL (IVSBPT)

DESCRIPTION

IVSB pointer to a value
set control block

minimum character length

- 30 -

PURPOSE :

Integer function which
the IVSB identified by

ARGUMENTS :

NAME USAGE TYPE

IVSBPT INPUT INTEGER

IVSBAL OUTPUT INTEGER

68. IVSBAP

CALLING convention

I = IVSBAP (IVSBPT)

PURPOSE :

returns the maximum character lenght from
the IVSB pointer

DESCRIPTION

IVSB pointer to a value
set control block

maximum character length

Integer function which returns the maximum character string
pointer from the IVSB identified by the IVSB pointer .

ARGUMENTS :

IVSBPT INPUT INTEGER

IVSBAP OUTPUT INTEGER

69 . IVSBDS

CALLING convention

I = IVSBDS (IVSBPT)

PURPOSE :

DESCRIPTION

IVSB pointer to a value
set control block -

character string pointe~

Integer function which returns the displacement of value set in
the data area from the IVSB identified by the IVSB pointer .

ARGUMENTS :

IVSBPT INPUT

IVSBDS OUTPUT

INTEGER

INTEGER

DESCRIPTION

IVSB p o inter to a value
set control block

displacement of the value set

- 31 -

70 . IIRBAV

CALLING convention

I = IIRBAV (IIRBPT)

PURPOSE :

Integer function which returns an allowable (integer or real
type) value of a value set from an IIRB i dentified by the IIRB
pointer

ARGUMENTS :

IIRBPT INPUT INTEGER

DESCRIPTION

IIRB pointer to an allowable
value control block

IIRBAV OUTPUT INTEGER an allowable value

71. ICHBNL

CALLING convention

I = ICHBNL (ICHBPT)

PURPOSE :

Integer function
(character type)
ICHB pointer

ARGUMENTS

which returns an allowable value lenght
of a value set from an ICHB identified by the

DESCRIPTION

ICHBPT INPUT INTEGER ICHB pointer to an allowable
value (character) control block

ICHBNL OUTPUT INTEGER a allowable character length

72. ICHBNP

CALLING convention

I = ICHBNP (ICHBPT)

PURPOSE :

Inte ger function
(chharacter type)
ICHB pointer.

which returns an allowable value pointer
of a value set from an ICHB identified by the

- 32 -

ARGUMENTS :

ICHBPT INPUT INTEGER

ICHBNP OUTPUT INTEGER

73. IREBLD

CALLING convention

I = IREBLD (IREBPT)

PURPOSE :

DESCRIPTION

ICHB pointer to an allowable
value (character) control block

a allowable c haracter pointer

Integer function which returns the description lenght
IREB identified by the IREB pointer .

ARGUMENTS

IREBPT INPUT INTEGER

DESCRIPTION

IREB pointer to a relationship
control block

frorn an

IREBLD OUTPUT INTEGER the relationship description length

74. IREBLR

CALLING convention

I = IREBLR (IREBPT)

PURPOSE :

Integer function which returns the lenght frorn an IREB identified
by the IREB pointer .

ARGUMENTS :

IREBPT INPUT

IREBLR OUTPUT

75. IREBNR

INTEGER

INTEGER

DESCRIPTION

IREB pointer to a relationship
control block

the relationship length

- 33 -

CALLING convention :

I = IREBNR (IREBPT)

PURPOSE :

Integer function which returns the number of entity related from
an IREB identified by the IREB pointer .

ARGUMENTS :

IREBPT INPUT INTEGER

IREBNR OUTPUT INTEGER

76. IREBID

CALLING convention

I = IREBID (IREBPT)

PURPOSE :

DESCRIPTION

IREB pointer to a relationship
control block

number of entity related

Integer function which returns the sequence number of the
description from an IREB identified by the IREB pointer

ARGUMENTS :

IREBPT INPUT INTEGER

IREBID OUTPUT INTEGER

77. IERBNP

CALLING convention

I = IERBNP (IERBPT)

PURPOSE :

DESCRIPTION

IREB pointer to a relationship
control block

sequence number

Integer function which returns the role narne pointer
IERB identified by the IERB pointer .

ARGUMENTS

DESCRIPTION

- 34 -

from an

IERBPT INPUT INTEGER

IERBNP OUTPUT INTEGER

78. IERBNL

CALLING convention

I = IERBNL (IERBPT)

PURPOSE :

IERB pointer to an entity related
control block

role name pointer

Integer function which returns the role name length from an IERB
identified by the IERB pointer

ARGUMENTS :

IERBPT INPUT INTEGER

IERBNL OUTPUT INTEGER

79. IERBPD

· CALLING convention

I = IERBPD (IERBPT)

PURPOSE :

DESCRIPTION

IERB pointer to an entity related
control block

role name length

Integer function which returns the entity description pointer
from an IERB identified by the IERB pointer

ARGUMENTS

IERBPT INPUT INTEGER

IERBPD OUTPUT INTEGER

80. IERBMI

CALLING convention

I = IERBMI (IERBPT)

PURPOSE :

DESCRIPTION

IERB pointer to an entity related
control block

entity de~cription pointer

- 35 -

Integer function which returns the minimum connectivity
IERB identified by the IERB pointer .

from an

ARGUMENTS

IERBPT INPUT INTEGER

IERBMI OUTPUT INTEGER

81. IERBMA

CALLING convention

I = IERBMA (IERBPT)

PURPOSE :

DESCRIPTION

IERB pointer to an entity related
control block

connectivity minimum

Integer function which returns the maximum connectivity from an
IERB identified by the IERB pointer .

ARGUMENTS

IERBPT INPUT INTEGER

IERBMA OUTPUT INTEGER

82. IERBPC

CALLING conve nt ion

I = IERBPC (IERBPT)

PURPOSE :

DESCRIPTION

IERB pointer to an entity related
control block

maximum connectivity

Integer function which returns the probability that the IERB
identified by the IERB pointer is implied in a query .

ARGUMENTS :

NAME USAGE TYPE DESCRIPTION

IERBPT INPUT INTEGER IERB pointer to an entity related
control block

IERBPC OUTPUT INTEGER probability that the entity
is implied in a query

- 36 -

83. IHPBDE

CALLING convention

I = IHPBDE

PURPOSE :

Integer function which returns the depth of a primary key file
identified by the current index in the table HPKTAB .

ARGUMENTS

none

84. IHPBSP

CALLING convention

I = IHPBSP

PURPOSE :

Integer function which returns the value of the split pointer of
a primary key file identified by the current index in the table
HPKTAB

ARGUMENTS

none

85. IHPBIB

CALLING convention

I = IHPBIB

PURPOSE :

Integer function which returns the initial number of bucket of a
primary key file identified by the current index in the table
HPKTAB

ARGUMENTS

none

86. IHPBNG

CALLING convention

I = IHPBNG

PURPOSE :

Integer function which returns the number of groups of a prirnary
key file identified by the current index in the table HPKTAB .

- 37 -

ARGUMENTS

none

87. IHPBNB

CALLING convention

I = IHPBNB

PURPOSE :

Integer function which returns the current number of buckets not
yet expanded for a primary key file identified by the current
index in the table HPKTAB .

ARGUMENTS

none

88. IHPBNB

CALLING convention

I = IHPBNB

PURPOSE :

Integer function w~ich returns the current number of buckets not
yet expanded for a primary key file identified by the current
index in the table HPKTAB .

ARGUMENTS

none

89. IHSBDE

CALLING convention

I = IHSBDE

PURPOSE i

Integer function which returns the current depth of a secondary
Key file identified by the current index in the table HATTAB.

ARGUMENTS

none

90. IHSBNP

CALLING convention

I = IHSBNP

- 38 -

PURPOSE :

Integer function which returns the current number of pages of a
secondary key file identified by the current index in the table
HATTAB

ARGUMENTS

none

91. IHSBSP

CALLING convention

I = IHSBSP

PURPOSE :

Integer function which returns the current split pointer of a
primary key file identified by the current index in the table
HATTAB

ARGUMENTS

none

92. IHSBNI

CALLING convention

I = IHSBNI

PURPOSE :

Integer function which returns the initial number of pages of a
secondary key file identified by the current index in the table
HATTAB

ARGUMENTS

none

93. IOHBNF

CALLING convention

I = IOHBNF

PURPOSE :

Integer function which returns the
secondary key or relationship file
index in the table OPATAB .

ARGUMENTS

none

- 39 -

number of fields of a
identified by the current

94. IOHBMD

CALLING convention

I = IOHBMD

PURPOSE :

Integer function which returns the maximum of a secondary key or
relationship file identified by the current index in the table
OPATAB

ARGUMENTS

none

95. IOPBDI

CALLING convention

I = IOPBDI (I)

PURPOSE :

Integer function which returns the number of bits allocated to a
field (identified by I) of a secondary key or relationship file
identified by the current index in the table OPATAB .

ARGUMENTS :

I

IOPDDI

INPUT

OUTPUT

96. IOPBWI

CALLING convention

INTEGER

INTEGER

I = IOPBWI (I)

PURPOSE :

DESCRIPTION

index of field

optimal number of bits

Integer function which returns the number of bits to allocated
to a descriptor field (identified by I) of a secondary key or
relationship file identified by the current index in the table
OPATAB

ARGUMENTS :

DESCRIPTION

I INPUT INTEGER index of field

- 40 -

IOPBWI OUTPUT INTEGER

97. IOABCV

CALLING convention

I = IOABCV (I)

PURPOSE :

optimal number of bits
for a descriptor field

Integer function which returns the choice vector pointer
(identified by I) of a secondary key or relationship file
identified by the current index in the table OPATAB .

ARGUMENTS :

DESCRIPTION

I INPUT INTEGER index of choice vector

IOABCV OUTPUT INTEGER choice vector pointer

98. SETYNA

CALLING convention

I = SETYNA (BUFNAM, PTRNAM , LENNAM)

PURPOSE :

put the entity type name contain in BUFNAM into the ETNTAB .

ARGUMENTS :

NAME USAGE TYPE DESCRIPTION

BUFNAM INPUT CHAR buffer containing
the entity type name

PTRNAM INPUT INTEGER pointer where the name
begins in BUFNAM

LENNAM INPUT INTEGER length of the entity
type name

IERR OUTPUT INTEGER Error code

99. SRTYNA

CALLING convention

I = SRTYNA (BUFNAM, PTRNAM , LENNAM, IERR)

- 41 -

PURPOSE

put the relationship type name contained in BUFNAM into the
RETYNA

ARGUMENTS :

NAME USAGE TYPE DESCRIPTI ON

BUFNAM INPUT CHAR buffer containing
the entity type name

PTRNAM INPUT INTEGER pointer where the name
begins in BUFNAM

LENNAM INPUT INTEGER l e ngth of the entity
type name

IERR OUTPUT INTEGER Errer code

SPEBDE

CALLING c onventio n :

SPEEDE (SPEBPT, BDE)

PURPOSE ' :

SET the value of the pointer into the TYDTAB description table
from the entity type name identified by the IPB pointer .

ARGUMENTS

DESCRIPTION

IPBPTR INPUT INTEGER IPB pointer to a entity
type control black

BDE INPUT INTEGER

IPRBDE

CALLING convention :

SPRBDE (SPRBPT , SPR)

PURPOSE :

pointer to the TYDTAB

Set the value o f t he p o inte r i nt o the TYDTAB
from the r elationship type name descrip tion
IPB pointer

ARGUMENTS :

- 42 -

description table
i d e nti f ied by the

IPBPTR INPUT INTEGER

BOE OUTPUT INTEGER

SPEBOV

CALLING convention :

SPEBOV (SPRBPT, BOV)

PURPOSE :

DESCRIPTION

IPB pointer to a relationship
type control block

entity description pointer

Set the value of the pointer into the overflow space of the
ETNTAB table .

ARGUMENTS :

IPBPTR INPUT INTEGER

BOV INPUT INTEGER

SPRBOV

CALLING convention :

CALL SPRBOV (SPRBPT)

PURPOSE :

DESCRIPTION

IPB pointer to a entity
type control block

overflow pointer

Set the value of the pointer into the overflow space of the
RTNTAB

ARGUMENTS :

IPBPTR INPUT

BOV INPUT

100 . SPKBLD

CALLING convention

INTEGER

INTEGER

DESCRIPTION

IPB pointer to a relationship
type central black

averflaw pointer

- 43 -

CALL SPKBLD (IPKBPT, BLD)

PURPOSE :

Set the value of the primary key description length from the IPKB
identified by the IPKB pointer .

ARGUMENTS :

DESCRIPTION

IPKBPT INPUT INTEGER IPKB pointer to a primary key
type control block

BLD INPUT

101. SPKBNA

CALLING convention

INTEGER description length of the
primary key type

CALL SPKBNA (IPKBPT, BNA)

PURPOSE :

Set the value of the number of attribute from the IPKB identified
by the IPKB pointer.

ARGUMENTS :

NAME USAGE TYPE DESCRIPTION

IPKBPT INPUT INTEGER IPKB pointer to a primary
type control block

BNA INPUT INTEGER number of attribute of

102. SPKBLP

CALLING convention

CALL SPKBLP (IPKBPT, BLP)

PURPOSE :

a primary key type

key

set the value of the primary key length frorn the IPKB identified
by the IPKB pointer .

ARGUMENTS :

- 44 -

NAME USAGE TYPE DESCRIPTION

IPKBPT INPUT INTEGER IPKB pointer to a prirnary key
type control

BLP INPUT INTEGER length of the

103. SSKBLD

CALLING convention

CALL SSKBLD (ISKBPT, BLD)

PURPOSE :

on a page

block

prirnary key

set the value of the secondary key description length frorn the
ISKB identified by the ISKB pointer.

ARGUMENTS

NAME USAGE TYPE

ISKBPT INPUT INTEGER

BLD INPUT INTEGER

104. SSKBNA

CALLING convention

CALL SSKBNA (ISKBPT)

PURPOSE :

DESCRIPTION

ISKB pointer to a secondary key
type control block

description length of a
secondary key type

set the value of the number of attribute from the ISKB identified
by the ISKB pointer .

ARGUMENTS :

NAME USAGE TYPE DESCRIPTION

ISKBPT INPUT INTEGER ISKB pointer to a secondary key
type control block

BNA INPUT INTEGER number of attribute of
secondary key type

- 45 -

105. CALL SSKBLP

CALLING convention

SSKBLP (ISKBPT, BLP)

PURPOSE :

set the value of the secondary key length frorn the ISKB
identified by the ISKB pointer .

ARGUMENTS :

ISKBPT INPUT INTEGER

DESCRIPTION

ISKB pointer to a secondary key
type control block

BLP INPUT INTEGER length of the secondary key
on a page

106. SAPBLD

CALLING convention

CALL SAPBLD (IAPBPT, BLD)

PURPOSE :

Set the value of the attribute part description length frorn the
IAPB identified by the IAPB pointer

ARGUMENTS

NAME USAGE TYPE DESCRIPTION

IAPBPT INPUT INTEGER IAPB pointer to an attribute part
type control black

BLD INPUT INTEGER description length of the

107 . SAPBNA

CALLING convention

CALL SAPBNA (IAPBPT, ENA)

PURPOSE :

attribute part type

set the value of the nurnber of attribute frorn the IAPB identified
by the IAPB pointer.

- 46 -

ARGUMENTS :

IAPBPT INPUT

BNA INPUT

108. SAPBLP

CALLING convention

INTEGER

INTEGER

DESCRIPTION

IAPB pointer to a attribute part
type control block

nwnber of attribute of
a attribute part type

CALL SAPBLP (IAPBPT , BLP)

PURPOSE :

Set the value of the attribute part length from the IAPB
identified by the IAPB pointer.

ARGUMENTS :

IAPBPT INPUT

SAPBLP INPUT

109. 110 . SAPBLD

CALLING convention

INTEGER

INTEGER

DESCRIPTION

IAPB pointer to a attribute part
type control block

length of the attribute part
on a page

CALL SAPBLD (IAPBPT, BLD)

PURPOSE:

set the value of the attribute part description length from the
IAPB identified by the IAPB pointer

ARGUMENTS

IAPBPT INPUT

BLD INPUT

INTEGER

INTEGER

DESCRIPTION

IAPB pointer to an attribute part
type control block

desc ription length of the
attribute part type

- 47 -

lll. SAPBNA

CALLING convention

CALL SAPBNA (IAPBPT, ENA)

PURPOSE :

Set the value of the number of attribute from the IAPB identified
by the IAPB pointer .

ARGUMENTS :

NAME USAGE TYPE DESCRIPTION

IAPBPT INPUT INTEGER IAPB pointer to a attribute part
type control block

ENA INPUT INTEGER number of attribute of
a attribute part type

112. SADBDL

CALLING convention

CALL SADBDL (.IADBPT)

PURPOSE :

Set the value of the description length from the IADB identified
by the IADB pointer.

ARGUMENTS :

NAME USAGE TYPE DESCRIPTION

IADBPT INPUT INTEGER IADB pointer to a attribute
type c ontrol b l ock

BOL INPUT INTEGER length of the attribute
on a page

113, SADBNL

CALLING convention

CALL SADBNL (IADBPT, BNL)

PURPOSE :

Set the value of the attribute name length from the IADB
i dentified by the IADB pointer .

ARGUMENTS :

- 48 -

NAME USAGE TYPE DESCRIPTION

IADBPT I NPUT INTEGER IADB pointer to a attribute
type control black

BNL INPUT INTEGER attribute name length

114 . SADBNP

CALLING convention

CALL SADBNP (IADBPT, BNP)

PURPOSE :

Set the value of the pointer into NAMES from the IADB identified
by the IADB pointer .

ARGUMENTS :

IADBPT INPUT

BNP INPUT

115. SADBVS

CALLING convention

INTEGER

INTEGER

DESCRIPTION

IADB pointer to a attribute
type control black

pointer name

CALL SADBVS (IADBPT, BVS)

PURPOSE :

set the number of value set from the IADB i dentified by the IADB
pointer

ARGUMENTS :

IADBP'!' IVSUT

BVS INPUT

116 . SVSBTY

CALLING c onvention

INTEGER

INTEGER

DESCRIPTION

IADB pointer to a attribute
type control black

number of value set

- 49 -

1
1

CALL SVSBTY (IVSBPT, BTY)

PURPOSE :

Set the type of value set from the IVSB identified by the IVSB
pointer

ARGUMENTS :

IVSBPT INPUT

BTY INPUT

117 . SVSBNP

CALLING convention

INTEGER

INTEGER

DESCRIPTION

IVSB pointer to a value
set control block

value set type

CALL SVSBNP (IVSBPT , BNP)

PURPOSE :

set the name pointer of value set from the IVSB identified by
the IVSB pointer .

ARGUMENTS :

IVSBPT INPUT INTEGER

DESCRIPTION

IVSB pointer to a value
set control l ,lock

BNP INPUT INTEGER name pointer

118. SVSBNL

CALLING convention

CALL SVSBNL (IVSBPT, BNL)

PURPOSE :

set the name length of a value set from the IVSB identified by
the IVSB pointer.

ARGUMENTS :

IVSBPT INPUT INTEGER

DESCRIPTION

IVSB pointer to a value
set control block

- 50 -

BNL INPUT INTEGER value set name length

119. SVSBMD

CALLING convention

CALL SVSBMD (I VSBPT, BMD)

PURPOSE :

set the modifi er value of value set from the IVSB i dentified by
the IVSB pointer

ARGUMENTS :

IVSBPT INPUT INTEGER

DESCRIPTION

IVSB pointer to a value
set control block

BMD INPUT INTEGER value set modifier value

120. SVSBNV

CALLING convention

CALL SVSBNV (IVSBPT, ENV)

PURPOSE :

Set the number of value allowed from the IVSB identified by the
IVSB pointer

ARGUMENTS

IVSBPT INPUT INTEGER

DESCRIPTION

IVSB pointer to a value
set control block

SVSBNV INPUT INTEGER number of value allowed

121. SVSBMI

CALLING convention

CALL SVSBMI (IVSBPT, BMI)

PURPOSE :

Set a minimum value (if integer type) from the IVSB identified
by the IVSB pointer

- 51 -

ARGUMENTS :

IVSBPT INPUT INTEGER

DESCRIPTION

IVSB pointer to a value
set control block

BMI INPUT INTEGER minimum value for a value set

122. SVSBMA

CALLING convention

CALL SVSBMA (IVSBPT, BMA)

PURPOSE :

set the maximum value frorn the IVSB identified by the IVSB
pointer

ARGUMENTS :

NAME USAGE TYPE DESCRIPTION

IVSBPT INPUT INTEGER IVSB pointer to a value
set control block

BMA INPUT INTEGER maximum value for a value

123. SVSBIL

CALLING convention

CALL SVSBIL (IVSBPT, BIL)

PURPOSE :

set

set the minimum character length (if character type)from the IVSB
identified by the IVSB pointer.

ARGUMENTS :

IVSBPT INPUT

BIL INPUT

124. SVSBAL

INTEGER

DESCRIPTION

IVSB pointer to a value
set control block

INTEGER minimum character length

- 52 -

CALLING convention :

CALL SVSBAL (IVSBPT, BAL)

PUR.POSE :

set the maximum character lenght from the IVSB identified by the
IVSB pointer

ARGUMENTS

IVSBPT INPUT INTEGER

DESCRIPTION

IVSB pointer to a value
set control block

BAL INPUT INTEGER maximum character length

125. SVSBAP

CALLING convention

CALL SVSBAP (IVSBPT , BAP)

PUR.POSE:

set the maximum character string pointer from the IVSB identified
by the IVSB pointer .

ARGUMENTS :

IVSBPT INPUT INTEGER

DESCRIPTION

IVSB pointer to a value
set control block

BAP INPUT INTEGER character string pointer

126. SVSBDS

CALLING convention

CALL SVSBDS (IVSBPT, BOS)

PUR.POSE :

set the displacement of value set in the data area from the IVSB
identified by the IVSB pointer .

ARGUMENTS :

DESCRIPTION

- 53 -

IVSBPT INPUT INTEGER IVSB pointer to a value
set control block

BOS INPUT INTEGER displacement of the value set

127. SIRBAV

CALLING convention

CALL SIRBAV (IIRBPT , BAY)

PURPOSE :

Set an allowable (integer or real type) value of a value set
from an IIRB identified by the IIRB pointer .

ARGUMENTS

IIRBPT INPUT INTEGER

DESCRIPTION

IIRB pointer to an allowable
value control block

BAV INPUT INTEGER an allowable value

128. SCHBNL

CALLING convention

CALL SCHBNL (ICHBPT, BNL)

PURPOSE :

set an allowable value lenght (character type) of a value set
from an ICHB identified by the ICHB pointer .

ARGUMENTS

ICHBPT INPUT INTEGER

DESCRIPTION

ICHB pointer to an allowable
value (character) contro.l block

BNL INPUT INTEGER a allowable character length

129. SCHBNP

CALLING convention

CALL SCHBNP (ICHBPT, BNP)

PURPOSE :

- 54 -

setan allowable value pointer (chharacter type) of a value set
from an ICHB identified by the ICHB pointer .

ARGUMENTS

NAME USAGE TYPE DESCRIPTION

ICHBPT INPUT INTEGER ICHB pointer to an allowable
value (character) control black

BNP INPUT INTEGER a allowable character pointer

130, SREBLD

CALLING convention

CALL SREBLD (IREBPT, BLD)

PURPOSE :

set the description lenght from an IREB identified by the IREB
pointer

ARGUMENTS :

IREBPT INPUT

BLD INPUT

131. SREBLR

CALLING convention

INTEGER

INTEGER

DESCRIPTION

IREB pointer to a relationship
control black

the relationship description length

CALL SREBLR (IREBPT, BLR)

PURPOSE :

Set the lenght from an IREB identified by the IREB pointer.

ARGUMENTS :

IREBPT INPUT

BLR INPUT

INTEGER

INTEGER

DESCRIPTION

IREB pointer to a relationship
control black

the relationship length

- 55 -

132. SREBNR

CALLING convention

CALL SREBNR (IREBPT, BNR}

PURPOSE :

set the number of entity related from an IREB identified by the
IREB pointer

ARGUMENTS

IREBPT INPUT INTEGER

DESCRIPTION

IREB pointer to a relationship
control black

BNR INPUT INTEGER number of entity related

133. SREBID

CALLING convention

CALL SREBID (IREBPT, BIO)

PURPOSE :

Set the sequence number of the description
identified by the IREB pointer

ARGUMENTS :

DESCRIPTION

from an IREB

IREBPT INPUT INTEGER IREB pointer to a relationship
central black

BIO INPUT INTEGER sequence number

134. SERBNP

CALLING convention

CALL SERBNP (IERBPT , BNP)

PURPOSE :

Set the role name pointer from an IERB identified by the IERB
pointer

ARGUMENTS :

DESCRIPTION

- 56 -

IERBPT INPUT INTEGER IERB pointer to an entity related
control block

BNP INPUT INTEGER role name pointer

135 . SERBNL

CALLING convention

CALL SERBNL (IERBPT, BNL)

PURPOSE :

Set the role name length from an IERB identified by the IERB
pointer

ARGUMENTS :

IERBPT INPUT INTEGER

DESCRIPTION

IERB pointer to an entity related
control block

BNL INPUT INTEGER role name length

136. SERBPD

CALLING convention

CALL SERBPD (IERBPT, BPD)

PURPOSE :

Set the entity description pointer frorn an IERB identified by
the IERB pointer .

ARGUMENTS :

NAME USAGE TYPE DESCRIPTION

IERBPT INPUT INTEGER IERB pointer to an entity related
control black

BPD INPUT INTEGER entity description pointer

137 . SERBMI

CALLING convention

CALL SERBMI (IERBPT, BMI)

PURPOSE :

- 57 -

set the minimum connectivity
IERB pointer

from an IERB identified by the

ARGUMENTS

IERBPT INPUT

BMI INPUT

138. SERBMA

CALLING convention

INTEGER

INTEGER

DESCRIPTION

IERB pointer to an entity related
control black

connectivity minimum

CALL SERBMA (IERBPT, BMA)

PURPOSE :

set the maximum connectivity from an IERB identified by the IERB
pointer

ARGUMENTS :

IERBPT INPUT

BMA INPUT

139. SERBPC

CALLING convention

INTEGER

INTEGER

DESCRIPTION

IERB pointer to an entity related
control black

maximum connectivity

CALL SERBPC (IERBPT, BPC)

PURPOSE :

Set the probability that the IERB identified by the IERB pointer
is implied in a query.

ARGUMENTS :

IERBPT INPUT INTEGER

BPC INPUT INTEGER

DESCRIPTION

IERB pointer to an entity related
control black

probability that the entity
is implied in a query

- 58 -

l40. SHPBDE

CALLING convention

CALL SHPBDE (BDE)

PURPOSE :

set the depth of a primary key file identified by the current
index in the table HPKTAB .

ARGUMENTS :

BDE INPUT INTEGER
l4l. SHPBSP

CALLING convention

CALL SHPBSP (BSP)

PURPOSE :

DESCRIPTION

number of depth

set the value of the split pointer of a primary key file
identified by the current index in the table HPKTAB .

ARGUMENTS :

BSP INPUT INTEGER

l42 . SHPBIB

CALLING convention

CALL SHPBIB (BID)

PURPOSE :

DESCRIPTION

split pointer

Set the initial number of bucket of a primary key file
identified by the current index in the table HPKTAB

ARGUMENTS : NAME DESCRIPTION

BID INPUT INTEGER initial number of buckets

143 . NHPBNG

CALLING convention

CALL SHPBNG(BNG)

- 59 -

PURPOSE :

set the number of groups of a primary key file identified by the
current index in the table HPKTAB .

ARGUMENTS

BNG INPUT

144. SHPBNB

CALLING convention

CALL SHPBNB(BNB)

PURPOSE :

DESCRIPTION

INTEGER number of groups

set the current number of buckets not yet expanded for a primary
key file identified by the current index in the table HPKTAB.

ARGUMENTS

BNB INPUT

145. SHSBDE

CALLING convention

CALL SHSBDE(BDE)

PURPOSE :

INTEGER

DESCRIPTION

Number of buckets not
yet expanded

Set the current depth of a secondary Key file identified by the
current index in the table HA'ITAB .

ARGUMENTS

BOE INPUT

146. SHSBNP

CALLING convention

CALL SHSBNP(BNP)

PURPOSE :

DESCRIPTION

INTEGER depth of a secondary file

set the current number of pages of a secondary key file

- 60 -

identified by the current index in the table HATTAB .

ARGUMENTS

147. SHSBSP

CALLING convention

CALL SHSBSP(BSP)

PURPOSE :

DESCRIPTION

INTEGER Nwnber of~

set the current split pointer of a primary key file identified by
the current index in the table HATTAB .

ARGUMENTS

DESCRIPTION

BSP INPUT INTEGER split pointer

148, SHSBNI

CALLING convention

CALL SHSBNI(BNI}

PURPOSE :

Set the initial number of pages of a secondary key file
identified by the current index in the table HATTAB . .

ARGUMENTS

DESCRIPTION

BNI INPUT INTEGER Initial nwnber of pages

149. SOHBNF

CALLING convention

SOHBNF(BNF}

PURPOSE :

Se t t he number of fields of a secondary key or relationship file
identified by the current index in the table OPATAB .

ARGUMENTS :

- 61 -

- ------- - ------------ --- --- - ---- --- ---- - ---- ------7

BNF INPUT

150 . SOHBMD

CALLING convention

CALL SOHBMD(BMD)

PURPOSE :

DESCRIPTION

INTEGER number of field

set the maximum of a secondary key or relationship file
identified by the current index in the table OPATAB .

ARGUMENTS

NA.ME

BMD

151. SOPBDI

USAGE

INPUT

CALLING convention

CALL SOPBDI (I , BDI)

PURPOSE :

TYPE

INTEGER

DESCRIPTION

maximum depth

set the number of bits allocated ta a field (identified by I) of
a secondary key or relationship file identified by the current
index in the table OPATAB .

ARGUMENTS :

I

BDI

INPUT

INPUT

152, SOPBWI

CALLING con~ention

INTEGER

INTEGER

CALL SOPBWI (I , BWI)

PURPOSE :

DESCRIPTION

index of field

optimal number of bits

set the number of bits ta allocated ta a descriptor field
(identified by I) of a secondary key or relationship file
identified by the current index in the table OPATAB .

ARGUMENTS :

- 62 -

I

BWI

INPUT

INPUT

153 . SOABCV

CALLING convention

INTEGE.R

INTEGER

CALL SOABCV (I , BCV)

PURPOSE :

DESCRIPTION

index of field

optimal nurnber of bits
for a descriptor field

Set the choice vector pointer (identified by I) of a secondary
key or relationship file identified by the current index in the
table OPATAB

ARGUMENTS :

I

BCV

INPUT

INPUT

INTEGER

INTEGER

DESCRIPTION

index of choice vector

choice vector pointer

- 63 -

,1. DBHRAN

DBHRAN consists of random input/output routines used by DBHUSE
and DBHLOW to transfer pages of the database between the main memory
and the DBF'.

RANDCL

CALLING CONVENTIONS :

CALL RANDCL (FDESG)

PURPOSE

To close a file opened for random I/0

ARGUMENTS

FDESG INPUT

RANDOP

CALLING CONVENTIONS :

INTEGER

DESCRIPTION

FILE designator
returned by RANDOP

CALL RANDOP (LIONUM, FDESG, IRC)

PURPOSE

To open a file for random I/0

ARGUMENTS NAME USAGE TYPE DESCRIPTION

LIONUM INPUT INTEGER Logical I/0 unit number
to use for the DBF

FDESG OUTPUT INTEGER FILE designator
other DBRAND routines

IRC OUTPUT INTEGER Return code

RANDRD

CALLING CONVENTIONS :

CALL RANDRD (FDESG,PAGNO,BUFFER)

- 64 -

PURPOSE :

Read a given page from a random I/O file into a given buffer

ARGUMENTS NAME USAGE TYPE DESCRIPTION

FDESG INPUT INTEGER FILE designator
returned by RANDOP

PAGENO INPUT INTEGER Page number to read

BUFFER OUTPUT INTEGER Array dimentioned to
the page size into
which the page is
read

154. RANDOQ

CALLING CONVENTIONS :

CALL RANOOQ (LIONUM,FDESG,IRC)

PURPOSE :

Open a random file

ARGUMENTS NAME USAGE TYPE DESCRIPTION

LIONUM INPUT INTEGER Logical I/O number

FDESG INPUT INTEGER FILE designator
returned by RANDOP

IRC OUTPUT INTEGER Error Code

RANDRW

CALLING CONVENTIONS :

CALL RANDRW (FDESG,PAGENO,BUFFER)

PURPOSE :

Rewrite a given page into a random I/O file from a buffer. This
page is assumed to exist in the DBP.

ARGUMENTS DESCRIPTION

- 65 -

FDESG INPUT INTEGER FILE designator
returned by RANOOP

PAGENO INPUT INTEGER Page number to be
rewritten

BUFFER INPUT INTEGER Array dimentioned to the page
size from which the page is
rewritten

155, RANDWT

CALLING CONVENTIONS :

CALL RANDWT (FDESG ,PAGENO,BUFFER,IRC)

PURPOSE :

Write a given page into. a random I/0 file from a buffer. This
page is a new page being added to the DBF

ARGUMENTS NAME USAGE TYPE DESCRIPTION

FDESG INPUT INTEGER FILE designator
r eturned by RANDOP

PAGENO INPUT INTEGER Page number to be
written

BUFFER INPUT INTEGER Array dimentioned to the page size
from which the page is written

IRC OUTPUT INTEGER Return code

- 66 -

~- DBHLIB

DBHLIB consists of routines which allow one to manipulate the
buffer in which are stored the pages of the DBF. These routines can
store and retrieve strings,logical value, words and halfwords. They
can also compare strings and words . They are used by DBHLOW and
DBHRAN.

156 . DBGETA

CALLING CONVENTION:
CALL DBGETA(DBID,CDISP,BUF,PTR,LEN)

PURPOSE :
obtain a character string from BUFPAG

ARGUMENTS

NAME USAGE TYPE DESCRIPTION

DBID INPUT DBWORD Pointer into BUFPAG

CDISP INPUT INTEGER Character DISP where to
start in BUFPAG

BUF I/0 CHAR Where to return
string

PTR INPUT INTEGER Where to start in BUF

LEN INPUT INTEGER Number of ch~racters

157. DBGETV

CALLING CONVENTION:
CALL DBGETV (DBID,WDISP,NVEC,VEC)

PURPOSE :
Obtain a vector from BUFPAG

ARGUMENTS

DESCRIPTION

DBID

WDISP

INPUT

INPUT

INTEGER

INTEGER

- 67 -

Pointer into BUFPAG

where to start in BUFPAG

NVEC INPUT

VEC OUTPUT

DBGETW

CALLING CONVENTION:

INTEGER

WORD

Number of words
to obtain

Where to put values
frorn BUFPAG

CALL DBGETW(DBID,WDISP,VAL)

PURPOSE :
Obtain value of a word from allocated BUFPAG

ARGUMENTS

NAME USAGE TYPE DESCRIPTION

DBID INPUT INTEGER Pointer into BUFPAG

WDISP INPUT INTEGER dis placement in words

VAL I/0 INTEGER Value obtained
frorn BUFPAG

158 . DBPTLW

CALLING CONVENTION:
Call DBPTLW(DBID,WDISP,LVALUE)

PURPOSE :
Put something in left half of word

ARGUMENTS

NAME USAGE TYPE DESCRIPTION

DBID INPUT INTEGER Pointer into BUFPAG

WDISP INPUT INTEGER displacernent into BUFPAG

LVALUE INPUT INTEGER Val ue to put i nto
le ft half

159. DBPUTA

- 68 -

CALLING CONVENTION :
CALL DBPUTA(DB1D,CDISP,BUF,PTR,LEN)

PURPOSE :
Put character string into BUFPAG

ARGUMENTS

NAME USAGE TYPE DESCRIPTION

DBID INPUT INTEGER Pointer into BUFPAG

CDISP INPUT INTEGER Dis placement into BUFPAG (char)

BUF INPUT CHAR Where to get string

PTR INPUT INTEGER Where to start in BUF

LEN INPUT INTEGER Number of characters

160. DBPUTV

CALLING CONVENTION:
CALL DBPUTV(DBID,WDISP,NVEC,VEC)

PURPOSE :
Put vector into BUFPAG

ARGUMENTS

NAME USAGE TYPE DESCRIPTION

DBID INPUT INTEGER Pointer into BUFPAG

WDISP INPUT INTEGER Dis placement into BUFPAG

NVEC INPUT INTEGER Number of words to put in

VEC INPUT WORD Where to get values to put
in BUFPAG

161. DBPUTW

CALLING CONVENTION:
CALL DBPUTW(DBID,WDISP,VAL)

PURPOSE

- 69 -

Change the value of a word in BUFPAG

ARGUMENTS

NAME USAGE TYPE DESCRIPTION

DBID INPUT INTEGER Pointer into BUFPAG

WDISP INPUT INTEGER Displacement into BUFPAG

VAL INPUT INTEGER Value to put in BUFPAG

J.62. IDBCMA

CALLING CONVENTION:
I = IDBCMA(DBID,CDISP,BUF,PTR,LEN)

PURPOSE :
Compare character string with a string into BUFPAG

ARGUMENTS

NAME USAGE TYPE DESCRIPTION

DBID INPUT INTEGER Pointer into BUFPAG

CDISP INPUT INTEGER Dis placement into BUFPAG (char)

BOF INPUT CHAR string to compare

PTR INPUT INTEGER Where to start in BUF

LEN INPUT . INTEGER Nurnber of characters

163. IDBFND

CALLING CONVENTION:
I = IDBCMA(DBID,WDISPS,WDISPE,IVAL)

PURPùSE :
Find a word in BUFPAG

ARGUMENTS

DESCRIPTION

DBID INPUT INTEGER Pointer into BUFPAG

- 70 -

WDISPS

WDISPE

IVAL

INPUT

INPUT

INPUT

164, IDBGET

CALLING CONVENTION:

INTEGER

INTEGER

INTEGER

I = IDBCMA(DBID,WDISP)

PURPOSE :

Integer where to start

Integer where to end

Integer value to look for

Obtain a value of a word in BUFPAG

ARGUMENTS

DBID

WDISP

INPUT

INPUT

165, LDBGET

CALLING CONVENTION:

INTEGER

INTEGER

I = LDBCMA(DBID,WDISP)

PURPOSE :

DESCRIPTION

Pointer into BUFPAG

Integer displacement (words)

Obtain a logical value of a word in BU?PAG

ARGUMENTS

DBID

WDISP

INPUT

INPUT

INTEGER

INTEGER

DESCRIPTION

Pointer into BUFPAG

Integer displacement (words)

- 71 -

,

