
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Extensions to a query system dedicated to a specification database

Geubelle, Bernard

Award date:
1983

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 09. Apr. 2024

https://researchportal.unamur.be/en/studentTheses/ea1a9871-bfb6-45ec-9e76-96305a0d822a

FACULTÉS
UNIVERSITAIRES
N. O. DE LA PAIX
NAMUR

INSTITUT D'INFORMATIQUE

EXTENSIONS TO A GUERY SYSTEM

DEDICATED TO

A SPECIFICATION DATABASE

BERNARD GEUBELLE

Thesis presented in order ta obtain
the rnaster degres in Computer Science

Acadernic year 1982-1983

AJr~s:,e rue Grandgognago, 21, B-5000 NAMUR (Bolglurn) - l:'JJ: 081 - 22 90 65 - Télex 59 .222 FAC NAM -B ·

I would .like to thank professor BODART who
accepted to -conduct this thesis. His criticisms and
advices have highly contributed to the realization of
this thesis.

I am also thankful to professor TEICHROEW and his
team for his welcome in the · 1s00s project of the
University of Michigan. I am ·deeply grateful for the
constant help of professor KANG during my . stay in Ann
Arbor.

Finally, I am also indebted to all the téam of
the ISDOS project in Namur whose advices were valuable
to solve the technica l _problems encountered during the
realization of this thesis.

. CONTENTS

INTRODUCTION 1

CHAPTER 1 BACKGROUND FOR DEVELOPPING A NEW QUERY SYSTEM

1.1 THE DATABASE

1.1.1 Introduction

1.1.2 Life-Cycle Support Systems and Information
Processing Systems

1. 1 . 3 . ISLDM and SEM :· an Implementation of a LSS

1.1.4 Meta Model Supporting the SEM
User-database Content

1.1.5 Example

1.2 QUERY LANGUAGES DEFINITION

1.2.1 Queries and Query Languages

1.2.2 Query Languages Classification

1.2.2.1 Predica t e languages

1.2.2.2 Set Lan guages

1.2.2 ~3 Procedur ality and Other Criteria

3 ·

3

3

6

9

12

16

17

17

19

21

1.3 FUNCTIONAL DESCRIPTION OF THE EXISTING QS VERSION

1.3.1 Introduction

1.3.2 Basic Concepts Definition

1.3.2.1 The set

1.3.2.2 The Cri.terion

1.3.3 Basic Criterion Definition

1.3.4 User Interaction

1.3.5 Command Summary

CHAPTER 2 CRITICAL EVALUATION OF THE EXISTING QS VERSION

2,1 PROBLEM IDENTIFICATION

2,2 EVALUATION CRITERIA

2.2.1 Functional Aspect

2.2.1.1 Language Intrinsic Qualities

2.2.1.2 Function Offered by the QS

2.2.2 Irnplernentation Level

2.3 CRITICAL APPRECIATION IF THE EXISTING VERSION

2.3.1 Functional Aspects

2.3,2 Irnplernentatio n Aspects

22

22

22

23

24

28

29

32

_-34 .

34

34

35

36

37

43

CHAPTER 3 PRESENTING A NEW QUERY SYSTEM

3 .1 INTRODUC'l'ION

3.2 IMPROVEMENTS AND MODIFICATIONS

3.2.l Functional Level

3.2.1,l Criterion Concept Removal

3.2.1.2 Range concept Introduction

3.2.1.2.1 Presentation

3.2.1.2,2 Range Concept Definition

3.2.1.2.3 Range Commana

3.2.1.3 A Database oeaicated to the Query System

3,2.1,3.1 Description

3,2.1.3,2 commands summary

3.2.1.3 . 3.1 DESTROY Commana

3.2.1.3 . 3.2 RESTORE Commana

3.2.1.3.3.2 SAVE Commana

3 . 2 .• 1 . 3 . 3 . 3 SHOW Commana

3 • 2 ·. 1 . 3 . 3 . 4 UNDESTROY Command

3.2.1.4 sets Evaluation From a Subset of the
user-da tabase

3.2.1.4.1 Description

3.2.1.4.2 SET UNIVERSE Commana

3.2 . 1.5 Commen t s Added to a Set

3.2.1.5.1 ~resentation

45

46

46

46

47

51

62

64

3.2.1,5.2 Comment Comrnands

3.2.1.5 . 2,l ADD COMMENT Commana

3,2.1. 5. 2.2 DELETE COMMENT Comma na

3.2.1.5 . 2,3 REPLACE COMMENT Commana

3.2.1.2 . 6 Rule s Introduced in a Basic Criterion
Construction

3,2.1.2.7 Misce llaneous Commands

3.2.1.2 . 7.1 ERASE Commana

3.2.1.2 . 7.2 EXECUTE Commana

3,2.2 Implementatio n Level

3.2.2.l Introd uction

3,2,2.2 Using LANG-PAK to _Describe and use
the Que ry Language

3.2 . 2 ~2.l I ntroduction

3,2,2.2.2 The Language Application Phases ·

3. 2. 2. 2 . 2 .1 The language Defintion Phas·e

3.2.2.2 . 2.2 The Language Use Phase

3.2,2.2,3 ï~e Dark Side of LANG-PAK

3 . 2.2.3 Introducing SNTX to Parse a Target
Languag e Statement

3.2.2.4 . Isolat i ng the Internal Data Structure

3.3 NEW QUERY SYSTEM VERSION EVALUATION

3,3.1 Functional Le vel

3.3.1.1 Language Intrinsic Qualities

3.3.1.2 Functio ns Offered by the Query System

3,3.1.3 System Usage

3.3.2 Implementatio n level

66

67

69

69

70

70

70

75

77

79

80

-80

80

81

82

82

CHAP'rER 4 IMPLEMENTING THE QUERY SYSTEM

4.1 INTRODUCTION

4.2 THE COMPONENT CHAIN IN INTERPRATING A QUERY

4.3 THE COMPONENTS

4.3.l The Parser

4.3.2 The Synthesizer

4.3.3 The Name Selection

4.4 THE QS-DATABASE MANAGER

4.4.1 QS-database General Structure

4.4.2 The Records

4.4.3 The Access-Paths

4.5 TWO ASPECTS OF THE QS REALIZATION

4.5.l Strategy and Planning to Implement the QS

4.5.2 Conventions in Writing the Program

CONCLUSIONS

APPENDIX-1

APPENDIX-2

APPENDIX-3

REFERENCES

84

85

86

86

88

90

93

93

95

97

98

98

99

102

104

109

115

117

INTRODUCTION

Since database management systems have evolved to become a more
common management tool for information ·processing, it is becorning
increasingly important that the vast amount of knowled~e they process
is easily accessible. This tact explains the reason why many people
show a deep interest in developping and analyzing query languages.

A query system has been integrated in the ISDOS pr6ject, a
general software for computer- aided Informations systems design
[PSL.82]. Based on the rnany years experiments of the Query System by
the users and on our pe r sonal experienc.e, we have summarized
C!iticisms about the tool and proposals for improvements.

According to these proposals, a new version of the Query system
is descrîbed in this thesis. Modifications brought to the existing
version concern first the functions offered by the Query System (they
have been doubled), but also the way the tool is irnplernented.

The thesis consists of f our chapters. Initially, we start with
the description of the so f tware environrnent of the Query System. In
addition, a brief overview of query languages in general is
introduced. The first chapter ·describes these two aspects and
concludes by a description of the existing QS version.

Before proposing a new version, the existing one is evaluated. we
point out the causes of non s atisfaction that lead us to propose a new
version. Evaluation criteria are defined and used to evaluate the
existing version in chapter 2 .

Based on this evaluation , a new implernentation i .s proposed and
described in _chapter 3. This new solution is also ev~luated on the
basis of criteria defined in chapter 2.

In chapter 4, we presen t an overview of
P!oposed QS implementation . Its components
realization is discussed in t his chapter.

- 1 -

sorne aspects of the ·
are -described and its

CHAPTER 1:

BACKGROUND FOR DEVELOPPING

A NEW QUERY SYSTEM

- 2 -

1,1·, THE DATABASE

1,1,1, Introduction

Unlike other query systems, the Query system described in
this t~esis is not integrated in a multi-purpose database
management system but belongs to a class of special purpose
systems, those that facilitate ·the software development process.
This specific purpose infallibly conditions the database content.

The objective of this chapter is to specify the database
class to which the Query System (QS) is applicable. However,
before going on, - it will be useful to define the _ context of this
work. Therefore 1 a first step will consist of defining the
software purpose and explaining the methodology adopted to rea.ch
this purpose. A second step will include a more precise
description of the system itself and its architecture. We will
observe the position adopted by the QS inside the software and
the database purpose this QS serves. Thirdly, we will define
the database content by studying the meta-model _on which the
software is based; we should then deduce the set qf questions
which can be answered using the Query System.

This section includes an Information Processing System
example on which will be based all examples troughout this work.

1.1.~. Life-cycle support systems and Informations Processing
Systems.

As introduced in sections 1.1.1, the described Query System
is integrated in a compu:ter-based system for software
development. These computer~based systems are called "Lite-Cycle
Support systems" LSS). As defined in [YUZ0.81], a LSS is "a
computer-based system that supports activities of a . system
departJ~ent in one or more phases of the software l _ife-cycle "
The major functions of a LSS are described as the ability to :

accept syste~ desciption in some predifined notation

maintain a databas e containing the system description_

produce documentati9n and other outputs based on the system
description

perform control functions of life-cycle activities.

- 3 -

The suggested meth odology associated with the LSS to support
software development is decomposed in two phases: the LSS
generation and the LSS usage to describe an Information system.
This methodology is dep i cted in Figure 1.1 .

SPECIFICATIONS LSS
.... -- ~ LSS DOCUMENTATION

OF L SS ·GENE RATOR

,,

S P E C I F I C A T 1.0 . N S

OF IPS
-
~ LSS · -- IPS DOCUMENTATION

''

T'R A N SA C T 1 0 N S - 1 P S -- r IP S OUTPUTS

Figure 1,1 from [YUZ0.81)

A LSS generator is used to develop a specific LSS . . The
specific LSS characteristics are determined by the class of the
problems we want to describe using this LSS. The LSS generator
receives as input the specific LSS description expressed in the
LSS description languag e and generates the corresponding LSS
software ·and its documentation. Basically, the LSS software
consists of :

A language that ~llows
Processing ·systemn whose
the LSS description

the description of Information
class has been predefined during

- A set of tools allowing to maintain the IPS de.finition; that
includes:

a processor f o r LSS language statements. The processor
performs syntactical checks and checks for consistency
against informations introduced in the database about
the _ system we want to describe.

an analyser to parse the content of the data.base that
contains the ~pecific IPS description.

- 4 -

a set of tool s for ùpdating the information in the
database ·.

- .a documentatio n generator.

In turn, the LSS s o ftware is used ta generate Information
Processing . systems (IPS). An IPS is defined in [TEICH. 79] as "·the
subsysterns of the information system in which datais recorded and
processed following a fo:rmal procedure". These IPS can be manual
or computer-based. The term IPS will be · used in this thesis to
refer ta computer- based IPS.

The overall data flow of an LSS is shown in figure 1.2 . The
IPS description is introduced in the LSS processor in a
predefined format, that is, the LSS language defined dur~ng the
previous step. The LSS processor analyzes those statements,
performs checks and upd a tes the LSS database. This da~abase is a
repository of informations describing the IPS; documentation and
othe r reports (such as stimulation) are produced from
informations contained i n the database.

SPECIFICATION

OF IPS

COMMANDS

L·S s·
PROCES SOR

LSS

- D~TA

BASE

- 5 -

DOCUMENTATION , ECT

an implementation of an LSS

The Information System Language Definition Manager/ System
Encyclopedia Manager (ISLDM/SEM) is an LSS generator example.
The Query system described in this thesis is integrated in this
software. The purpose of the Query system ·is to query an
occurence of the LSS. From this specific purpose, we deduce two
underlying consequences: Firstly, the database _content queried by
the Query System always corresponds to · .an IPS description.
Secondly, the Query system will be determined by this content of
the meta-database, namely, the database containing the definition
of the IPS description language. At this point, an overview of
the SEM structure and the related position o_f the Query System in
the overall software will be instructive.

The ISLDM/SEM structure is shown i'n figure 1.3 Following
the methodology explained in the preceeding section, the
ISLDM/SEM is divided into two parts : the LSS definition and the
LSS usage to define a specific IPS.

The first part consists of the specification ~anguage ._
definition. A language designer defines a specific Information
system Description Language (ISDL) or target language, based on
a model defined in the following section (1.1.4). He specifies
this language using ISDLM language. The statements expressed in
this language are analyzed by ISLDM. It checks that the target
language definition is unambiguous, syntactically correct and
_consistent and produces appropriate error messages, warning ,etc.
While it analyzes the s pecific target language ·definition, the
ISLDM updates a database containing the target language
definition. When the language designer is satisfied with his . new
language, the ISLDM produces tables containing the language
description. These tables will be referenced during this new
language usage. The ISLDM also produces some reports, including
the target language user·s manual.

The second part consists of the use of the new target
language. The information system under development is described
using the target language. The set of statements describing the
system are introduced a s text with a standard input device or in
the shape of a diagram o n a graphies terminal. The SEM receives
those statements, analyzes them referencing the target language
definit.ion contained in the tables generated by the · ISLDM. The
SEM als6 updates a j atabase containing the Information system
description. This databa se is called the user-data.base. Every
introduction of new dat ~ in the user-dat abase will be preceded by
checks that will take i nto account the target language definition
but also the current s i t.uation of the database .

- 6 -

We can outl ine tha t the s·EM is totally independent .· frorn · a
specific target langu age The set of functions that the SEM
provides to the user does not change frorn one description
language to another one. The reference to a specific language ~s
achjeved via tables generated during the tatget language
definition phase.

TARGET LANGUAGE

DEFINITION

IN ISLDM LANGUAGE

STATEMENTS IN

TARGET LANGUAGE

META
DATA

8 -ASE

1 S L DM

SEM

USER

DATA

BASE

Figure l,l

- 7-

TARGET

LANGUAGE

TABLES

DIAGNOSTICS

REFERENCE MANUAL

• REPORTS

Among the function s provided by the SEM, and in addition to
the input processor previously described, we can mention the
abili ties to :

initialize the dat abase containing the IPS description,
before introducing t he Information system description.

update this dat.abas e (IP ·: input
processor, RP : replace processor)

processor,

produce reports (FS: formated statement, STR
EP : extended picture

OP delete

structure ,

select abjects in t he database using NS (name seleètion) or
the Query system.

For more informatio ns about these tools, see [YUZO. Bl] .

8

i.i.1. Meta Madel support ing ~he SEM - User Database content.

Analyzing the meta- model on which the SEM software is
based will allow us to describe the content of the database
containing a speci f ic Information system description (or
user- database), na rnely, the main purpose and support of the
Query system. Spec i fying its content, we · shall deterrnine
what to ask fro m the user- DB, narnely, the set of basic
criteria of the QS . Thjs set of selection criteria will be
reduced by the p urpose assigned to the QS : as a matter of.
fact, the QS is on l y _designed to select narnes and output
names list tha t can be used by other tools to produce
reports. The repo r t ing fonction is not realized by the Query
System.

The meta-rnodel supporting the SEM is essentially based
rnodel [CHEN.76], although
The three major concepts
included in this model with

on the Entity/Relationship
different terminology is used.
introduced in the E/R model are
a fourth one added (the constant). Let us describe each
concept in detail.

OBJECT

An abject i s equivalent to the ENTITY notion in
[CHEN.76] . An abject is a" thi ng which can be distinctly
identified" [CHEN.76]. rts perception as abject depends on
the administràtor point of view [BODA.83]. As such, it i s
the smallest unit that may be indi vidually created and
destroyed [YUZO.81]. For instance, the LSS administrator can
define the following abjects a message, a book, a
plane, ... Each abj ect has certain properties associated with
it. Sorne of these properties are comrnon to al.l abjects in
all the LSS; othe r s are introduced by the LSS adrninistrator
and qualify specific abjects.

RELATIONSHIP.

The relationship is an association between two or more
abjects or consta nts, different or not (up to -4). These
components involv e d in the relationship (object_s or
constants are called parts of the relationship and the
nurnber of parts, the degree of the relationship. The
existence of the r e latonship depends on the existence of its
cornponents [BODA. 03] . Each instance of the relationship
has the same degree. It is possible to lirnit the types of
abjects or constants that assume the role of a ~art in a
specific relationship. one may also deterrnine the
connectivity of a relationship, namely, the nurnber of
constants or abj ec t s involved.

- 9 -

PROPERTY

A property is equivalent to the ATTRIBUTE notion in the
E/R rnodel. A property is a _ characteristic or a quality of an
abject or a relationship and ta.kes one or more values or
value sets. We di s tinguish properties cornmon to all abjects
frorn those that are introduced by the LSS administrator. The
first class is called the intrinsic properties. By
definition these properties are predefined. In the
existing model, we identify the following intrinsic
properties

a) For abjects

Object name : Each abject has at least one narne. one
of them, mandatory, is chosen as the main narne for
this abject the basic name. Other names can be
attributed to an abject : the synonyms. Nevertheless,
all the names basic narne and synonyrns) are
identifiers. They are called user-names because they
are given by a user. Their values are assigned
according to the syntactic rules of the LSS language.
[WP279] specifies these rules for the ISLDM language. _

Object ~: Each object in the user-datatbase has ô
or 1 type. The set of all possible values for this
property is system-administrator defined.

Other specific properties Other properties are
introduced for all objects. They are not essential for
the understanding of the system but are useful to
manipulate. These include date-of-last-change (DLC),
i.e., the date of last modification for a specific
object and the number of modification (· each time we
modify an obj e ct in the user-database, its number of
modification is incremented by one).

b) For relationships

relationship _tYQg

degree nu rnber of components intervening in the
relationship

The second se t of _properties are those defined by the
LSS administrator ; they are dependent only on the type of
objects. For each property, the set of legal values is
defined. This set is called the domain of the property.
system-administrato r defined properties for a relationship
are not considered in this model~

- 10 -

CONSTANT

In addition to information about objects, the database
contains constants namely, objects that represent
themselves and have no property. Sorne constants have a
predefined type integer, real nurnbet, string (sting of
characters followi ng rules defined by the LSS language) or
text consists of an arbitrarily long sequence of· lines;
each line is a set of characters). Other constants may be
defined by the LSS administrator they are called
name-constant, namely, a symbolic name· given to a · constant
value. For instance, the property "connectivity" could take
its value in the following set of name-constants { 0-1,
1-N, M-N, 0-N } .

As the user-database contains informations about those
concep~s, we may deduce the different ways to retrieve
informations from the user-database using the Query system.
The purpose of the Query system is to select object names
from the user-dat abase, either to control the database
consistency or for further outputs. Properties and
relationships are c onsidered as "attributes" about objects
retrieved by the Query System and are used by other tools to
output reports.

As an illustra tion, here follows some basic Criteria we
may use to select objects from the user-database. These
criteria are basic in regards to more complex criteria we
may build from lhose basic criteria by using relational
operators. abjects may be selected from:

an intrinsic property:

does the object have a specific basic name?

Does it possess any synonym? .

does it possess a specific synonym?
(given its value)

is the object typed? not typed?

does it have a specific object type?

!!. I,SS-adminüJ t rator defined pro.perty :

does it possess a specific property?

does it possess a specific property with a given
value?

- 11 -

~ relationshiQ in which they could be involved :

Is the abject involved in a specific relationship
?

Is it involved with other abjects, or a list of
other abjects playing their specific roles?

We can outline the need for tools for generalizing
namely, tools allowing to avoid to specify a part of the
query . It is worth-while for:

abject names basic names or synonyms

example : names beginning with "A"

names involved in a relationship, since the degree is
constant

the values for the properties

examples : 12 THRU 24, <= 12, ...

It would be also convenient to combine basic -criteria
or to specify as part of a query a set of abjects selected ·
from another criterion.

example :

which objects are involved in a specific relationship
with other objects that have at least one synonym?

Other tools often proposed by existing query systems suçh as
the average, the maximum, the minimum of properties values
are not useful in the context of the Query System described
in this thesis.

!,! . .2_. Exarnple

The purpose of the following example is twofold · : to all'Ow a
better understanding o f this chapter and to support all the
examples given throughout this work. More complete examples can
be found in [PSL.82] and [DSL.82].

The first step in using this software will consist of the
specifiçation language definition. Annex-1 contains the Target
Language definition usi .. ng the ISLDM language. Figure 1. 4 presents
the concepts interven i ng in this language. abjects are depicted
by a rectangular box. 1~1: lationshi.ps are represented by a diamond

- 12 -

shaped box wi th their p a rts -connected by arcs. The connectivity
is _given on the arc. Spe cific properties of each concept (abjects
and relationships) are quoted in the box describing the .abject.
The precise definition o f each objec~ is contained in Annex-1.

From the Target La nguage definition, we may deduct its
syntax:

Properties comrnon to eac h object-iY.Qg_

SYNONYMS ARE synonym-name (,synonym-name)

DESCRIPTION;
comment entry

PROCESS section

DEFINE PROCESS process-name

PRIORITY HIGH

LOW

MIDDLE

NONE

PERFORMING-TIME integer;

ON TERMINATION TRIGGERS process-name

TRIGGERED BY TERMINATION OF process-name

GENERATES integer TIMES message-name [IF condition-name]

CONDITION section

DEFINE CONDITION condition-name

PROBABILITY real-number

- 13 -

MESSAGE section

DEFINE MESSAGE message-name ;

GENERATED integer TIMES BY process~name IF condition-name

RECEIVED BY

l
process-name 1
int.erface-nam~

GENERATED BY ~nterface-name

INTERFACE section

DEFINE INTERFACE interface-name

RECEIVES message-name ·;

GENERATES message-name

once the target language is defined,
describe a specific information system.
conc~pts for description could give :

DEFINE PROCESS Book-requisition

SYNONYMS req-ord

DESCRIPTION;

it may be
Using one

used to
of these

a person requests for a specific book by sending
a loan requisition to the library specifying the
book t i tle and its number;

GENERATES . l requisition-order IF title-in-file ;

PRIORITY LOW;

PERFORMING-TIME 15 ;

ON TE.RMI NATION TRIGGERS book-retrieval

- 14 -

.0 -N

T R IGOERS

O·N

0 -N
RECEPTION

1-N

0 -N
ENERATION

ON

PROCESS

PR IORITY
PERFORMING·

TIME
PROCEDURE

MESSAGE

INTE RFACE

- 15 -

0 -N

0 - N
RECEPTIO

0 -N

CONDITION

O · N
,- ------1PROBABILIT Y

1,I,1, oueries and~ Languages

By opting for the database to organize his datal the user
decides to associate with his informations · a structure ·that could
be relatively intricate. One of the main objectives of organizing

. a large quantity of ·da.ta by choosing a database management system
is to be able to retrieve any subset of data by specifying the
conditions these data must satisfy in order to be selected from
the database. The user specifies these conditions using queries.
A guery in the context of information . retrieval is a request for
sorne ·;informations from the database. These questions are stated
in a predefined language called the ™KY language~

The program which a llows the retrieval of informations from
the d a tabase according to queries i.s named the ouery system. The
QS analyzes a query expr essed in the query language, selects from
the database data s a tisfying the conditions expressed in the
queries and output ·this data in a way that can be easily
understood by the user. Unlike the Query System described in this
thesis, most Query Syste m encountered in the litterature allow
the user to retrieve data but also to modify, to insert and to
delete them.

The query language s are -generally dedicated to be used
indèpendently of a procedural programi.ng language. The lack of
technical knowledges on th_e part of potential users incites QS.
designers to the user-friendliness of those system: the req.ùest
expression is facilitat e d by using syntaxes looking as . much as
possible to "natural ~· expressions. (SEQUEL (CHAM. 76]) by
allowing th user to express his queri~s by giving examples (QBE
[ZLOO. 80]); by allowing a step by step experirnent : what the
user knows about the language is just what he needs; by adding
graphie interfaces (table representation · in QBE or graphie
representation of objec t s in spatial Management of Data [HER0.80]
). As summary, two golden rules must be followed in designing
Query System: ease-of- use and ease-of- learn.

Not all question Cern be· expressed wi thin a query languag-e
we distinguish open questions from closed ones. Open questions,
such as "what do you kn ow about compute.rs 7" have no clear-cut
answer. With respect to a database, a complete answer may be a
durp of all data. Open questions are therefore excludeà frorn the
query langûages. On t he contrary, closed questions have clear
and, gi.ven a database, unique answers. For example, "Does XYZ
rnake computers ?" or "What are the models made by XYZ ?" are
closed questions. The i i rst one is a "yes-no" question, the
second one, a "list" q u c! stion. Those questions can be interprated
according to a specific database.

- 16 -

l,2,.l_ . . ~ Language classiflcation ..

A first cla$sifica t ion could be based on the data model on
which those languages a r e based : a query language is designed in
a different way if it is based on the relational model,
hierarchical model or network model. Even ïf this 'tact plays an
important role in the q uery language design, it does not ' settle a
classification element by itself.

Another classifica tion could be based on the way the
information is manipulated : in fact, two different approaches
allow the user to ·expres s his queries. The first one, named set
languages allow h i rn to state in some algebraic form the rules
which relate a new set o f data to exiSting ones. The second one
requires a user to state the Conditions which need to be met for
an abject from an exist i ng set to belong to a new one : they are
the languages based on predicates. Let us determine the
characteristics of the s e two query languages classes and settle
which class the Query Language described in this thesis belongs
to.

l-1,1,l, Predicate lanquages

The predicate languages allow , the user to express the
condition an abject must satisfy in order to be selected, based
on the predicate calculus. By referericing this well-known
symbolism used in other contexts, it allows to avoid a new
semantical definition g i ven to these expressions.

A predicate , in the context of information retrieval could
·be seen as an express i on taking the value "true" or "false" for
each · element from the da tabase. A predicate identifies a set of
ïndividuals who have a cert'ain property. The property is
expres sed by a relation between attributes and values or between
attributes.

Example :

The predicat.e AGE = 18 identifies people whose
attribute · ag~ · possess the value · 1s· .

A predicate can be expressed in a mathematical-like form or
close to "natural" expressions. For memory, following elements
can be used i n a predic a te :

- 17 -

boolean operators

example : (SEX = ' MALE ') AND (AGE>= 21)

quanti f l.ers SOME , ALL

examples

select d epartements in which some woman is working

select s tudents whose grades are "A" in all
courses

functions that calc ulate new values from existing attribute
values (sum, minimum, maximum, average, ...)

exampJe :

select employe es who earn more than their departement
average.

implication, even i f it is redundant

Three modifications are necessary to tz:ansform the applied
calculus into a query language : give an interpretation toits
free variables, namely, the variables not preceded by a
quantifier; define the particular predicates available and link
the universe of the calc ulus to a specific database.

Most of the time, a predicate is embedded in a more complete
expression to forma q uery. A question in the predicate language
can be decomposed as :

<target- list> <prGdicate> <order- expression-list>

where :

<target- list> : de f ines the information types we want to be
selected from the database.

· example name and age of a persan

- 18 -

<order-expression-list> : allows ·to specify the order in
which selected data must appear

example selec t customers by city;
products by inc.reasing number.

The predicate languages are the most cornmon ones. Among the
most well-known ones, we can mention SEQUEL [CHAM.76], QBE
[ZL00,80], QUEL [STON.78] and FQL [PIR0.74] .

~.z,z.z. Set languages

The set languages allow the user to state in some algebraic
form the · rules which relate a new temporary set of data to the
existing sets. A language belonging to this class consists of a
collection of operators. They are

Union :

The union of two sets A and Bis the set of all abjects belonging
to A or Bor both.

example

A== customers who have already ordered today

B = customers who have still something to pay

A LJ B == customers who have ordered · toc;iay or who· have still
son~thing to pay.

Intersection

The intersection of two sets A and B is the set of abjects
belonging to A and B.

example

A persans who are customers

B persans who are suppliers

AnB = persans who are customers and suppliers

- 19 -

Difference

The difference between t wo sets A ·and Bis the set of abjects
be l onging to A but not t o B.

exarnple

A persans who are cus t omers

B = persons who are suppliers

A, B = persans who are c ustomers but not suppliers.

Complement

The complement of set Ais the ·set of objects that do not belong
to A.

example

A= persons whose sex i s "male"

-A= persans whose sex . i s "fernale"

Cartesian product

A* B = set of objects which are built by a concatenation of an
abject belonging to A and one belonging to B.

example :

A= product numbers

B customer numbers

A* B = set of tuples built by taking a product . number and a
customer number .

The number of opera tors is settled by the usage assigned
the specific query lan guage. Moreover, operators specific to
data model can be introd uced (for instance, projection or
operator for the relational model).

to
the

join

The set languages c lass is not the most common one. TABLET
[STEM . 78] constitutes a n example. The Query Language described i n
this thesis. belongs to t his family.

- 20 -

i.z,Z,1, Procedurality and other criteria

To compare these two languages classes in terms of
simplicity or extensio n possibility is not easy and m~aningful
because these criteria can only be evaluated agairist a specific
language. However, we cah compare them from a procedual aspect.

A non-procedural query, according to Date [DATE.77], p 84,
"states merely what the result of the query is, not how to obtain
it". There is no doubt that a set language is more procedural
because it "specifies a step-by-step method for achieving a
result" [WELT.81]. The query expression specifies in which order
the operators must be applied to the existing sets and in which
order those sets must b e created . . on the other hand, a language
b~sed on the predicate c alculus is less procedural.

Pe~ple assert that the procedtirality is prejudicial in order
to facilitate the use of the language because the user looses
time to choose the best way to state his query. At the other
hand, studies comparing a more procedural language, TABLET wi th a _·
more non-procedural one, SQL, [WELT. 81] and [REIS. 81] try to
prove that "people more often write difficult queries using a
procedural query language than they do using a non procedural
query language" [WELT.81]. As far as we are concerned, the
language ease- of-use must be based more on its syntax,its
interface with the us er, its step-by- step learning or its
execution speed than its procedural aspect.

- 21 -

1,1, FUNCTIONAL DESCRIPTION OF THE EXISTING Qâ VERSION

1,1,1, Introduction

We have established in chapter 1.1.3 the position of the
Query system in the gene ral software. We have defined its purpose
: to supply a list of user-names that satisfy a specified
criterion. such a list may among other possibilities be produced
in a format that can be directly used as input to other SEM
commands. Besides the selection function, the current QS version
supplies a set of tools that facilitate the selection. The
purpose of this sect i on is to present . an overview oi the
fu _nctions of the existi ng Query system implementation (selection
functions and other f unctions). Initially, we define the two
main concepts used in this QS : the sP.t and the criterion. Next,
we li s t the poss i ble basic criteria ·which can be used in the
build i ng of a more compl e te criterion. Final l y, we give a summary
of the commands available in the existing QS version.

l,i .~ . Bas i c c oncept de f initions

A. De finition

the
A set is defined as a collection of objects
user- database. The selected objects must

selected from
satisfy · the

criterion defining the set. A name can be assigned to a set if
the usage justifies th i s name. This name identifies the set from
other ones.

B. Usage

To lista
belonging

set, namely, to output the list of abjects
to the s et; the list can be obtained by invoquing

the set-name or by giving its definition (a set-name is not
manda tory in this usage).

To be referenced 1 11 building other sets : in this case, it
is ne c e ssary to ide ntify the set by using a name.

c. Specification

The set definition is j ntroduced by using a criterion.

- 22 -

1,1,Z,Z, Criterion

A. Definition

The criterion def i nes a set · : it express the conditions an
abject must satisfy i n order to be selected from the user­
database. A name can be given to a criterion, - depending on its
usage.

B. usage

to define a set; no criterion-name is mandatory.

to be used in the definition of a set or another criterion;
in this case, a cr i terion- narne is mandatory.

c. Specification

a criterion is spec ified as a logical expression where

the operators are :

AND : intersec tion

OR :union

NOT: cornplerne nt

the operators are :

a basic criterion as defined in section 1.3.3

a set-narne

an other crite rion name

parenthesis can be used to modify or to emphasize the
operators priority rules.

exarnples :

if C2 and C3 are names of criteria previously defined, a new
criterion named Cl can be defined as

Cl C2 OR C3 ;

Cl C2 AND (BN = A?) ·;

Cl =(BN = A ?) AND NOT HAS SYNONYMS . ;

since [BN =A?] and [HAS SYNONYMS] are basic criteria defined in
section 1.3,3 .

- 23 -

1.1.1. Basic criterion definition

The list of basic c riteria is presented in this section. A
natural English formulation of the inquiry will be given followed
by its translation in Query Language. The basic criteria are
gathered by the object of the inquiry. This list corresponds to
the list of possible qu e ries given in section 1.1.4 .

A. possession of name

A.l Ooes the basic name have a specified form?

BN < match-stri~g >

where <match-str i ng> is any user-name in whole or in part with
question-mark(s) used to mark unspecified parts of the name

examples :

BN book-retrieval-in-library

BN = book-retrieval-?

BN ? - retrieval-?

A.2 Does the object possess synonyms?

HAS SYNONYMS

A.3 Does the abject possess at least one synonym of a specified .
form ?

SN <match-string>

B. Possession of a date of last change

· B-1 Does the object date of last change lie within a . specified
range?

DLC crange-specifier> cdate>

- 24 -

where

exarnple

crange- specifier> is in (=, <, >, c=, >=)

<date> has the following format

(MM-DD- YY or MM-DD-YYYY)

DLC < 02 - 27-1982 ·

any abject that has been changea before
feb r uary the 27th 1982.

B.2 Does the object · s date of last change occur before (after)
a specified change sequence number?

example

MAXC cinteger>

MINC = cinteger>

MAXC = 3 ;

any object which change sequence number is
lowe r or equal than 3.

C.Possession of a type

C.l

C.2

C.3

Does the abject have a type?

B
Is the abject without a type ?

1
UNTY~ED

Does the object h ave

ctype-name >

exarnple :

PROCESS

a specified type. ?

this narne is defined in the
target-language .

any. a bject which type is "PROCESS",

- 25 -

o. Possession of the various properties defined in the target-language

D.l Does the abject have a specified property?

HAS <prop erty- name>

example :

HAS CONNECTIVITY

this name is defined in the
target-1.anguage

any abject that possess a connectivity.

D.2 Does the abject have a specified property with a specified
property- value ?

HAS <prope rty-name> . WITH <property-value>

exarnple

HAS PROBABILITY WITH 0.25 ;

any abj e ct that has a probability of 0.25 .

E. Possession of textua l comments

E.l Does the abject have a textual comment of a specified
type?

HAS <text ual-comrnernt-name>

example :

HAS DESC I PTION ;

this name is defined
in the target-language

any abjec t that possess a description.

E.2 Does the abject have any textual comments?

HA5 TEXT 1

- 26 -

F. Involvement in relation occurences

F.l Is the abject involved in no relation?

ISÔLATEO

F.2 Is the abject involved in a specified relationship
with specified abjects?

where

<object-designation> <Statement-form>

<statement-form> is constructed by taking
any legal ~tatement from the target-language
and substituting an <object-designation>
wherever an abject-na.me may appear.

<object-designation> must be one of the
following :

- a user-name

- any of the above basic criteria (from
A. to E.

- a pre-defined set-name

- one of the above preceded by the symbol
.,~.,or by "NOT" : those symbols are used
to. signify the complement

ex : NOT PROCESS = any abject
which type is not PROCESS

- the symbol " . 1 ·~ to refer to any abject in
the user-database

- the symbol "?" that refers to those abjects
in t he user-database we are. looking for on
and only one question-mark must be used in
any criterion of type (F.2) .

examples :

? RECE I VED BY Book-reader;

any abject received by a "Book-reader".

NOT (INTERFACE) RECEIVES? ;

any abject received -by something else than ~n
interface.

? GENERATED I TIMES BY I IF I ;

any ob J ect that possess the quoted sentence

- 27 -

1.J.~. User interaction

The existing QS implementation explicitly brings to light
the distinction betwee n the criterion and the set, concepts
defined in section .1.3.2 . Moreover, commands specific to these
two notions are available (CRITERION command for the criterion
and SET command for the set). These criteria and sets of user­
names satisfying a criterion can be named and stored for later
use.

By distinguishing the two concepts, we can formulate the
question in ·two different ways

list the names of objects which satisfy a specifiè criterion
(LI ST command) .

check if a list of abjects satisfies a given criterion
(CHECK command)_.

The output furn:i,.shed by the QS rnay be expressed in · two forrns

A report,in a specific format with the set-narne,the text of
the criterion defining the set and the list of ·objects
satisfying the criterion.

A report,in the shape of a file that can be used again by
other SEM cornmands. This file contains a list of user-names,
one narne on each line.

Two modes of operat ion . a ·re possible for using the QS
interactive way or batch mode with user -absent. In the first way,
the cornmands are typed _ i n one by one frorn the user·s input
device, and the user will be consulted for errer correction. ·rn
the batch mode, the commands are read from the input streams and
if any etror is dete cted, the Query system itself will decide
whether to atternpt a pla usible correction, .continue assuming that
the error has only local effects or abort.

example

a false name- specificat i on for LIST command will have as effect
to request for a meaningful specification in interactive mode; if
the· command is entered in batch mode, the comrnand is ignored.

- 28 -

> LIST Sl;
name Sl i -s not defined be fore.
enter replacement.

> SETl

1-~-~. Commana Sumrnary

Functions of the Query system are available via cornrnands.
These commands allow the user to define sets and criteria, output ·
results and mànipulate those abjects. We procede to give the narne
and the purpose of each command. For further informations about
the syntax of the comrnands or about examples, see [TMl19] and
[WP456] .

A. Set and criterion definition

command-name

SET

CRITERION

READ

purpose

to select a set of abjects from
the user-database and name the
selected set.

to .name a criterion and to
refer to the criterion by the
name in the later comrnands.

to read a list of object-names or
a criterion from a file.

- 29 -

B. _ Result outputs

CHECK

LIST

PUNCH

to check if a s~t of abjects
satisfy the criterion and list
informations. Three parts ·of
information are generated by the
command : summary information,
satisfied list and unsatisfied
li.st.

to display a set of objects
which satisfy a criterion.

to punch out a list of
object-names or a criterion
to a file.

C. Set and criterion ma nipulation

CHANGE

DISPLAY

EXPLAIN

D. Others

STOP

to change user-defined set-name
or criterion-name

to display a previously defined
criterion or to rnake a list of
.set-names or criterion-names
_de f ined so far

to make an explanatory comment on
the cornmand spe_cified

to terrninate the session
with the Query System.

- 30 -

CHAPTER - 2 : -

CRITICAL EVALUATION · OF .

THE · EXISTING OS VERS10N

- 31 -

l,!. PROBLEM IDENTIFICATION

The observation of ISDOS users and its Query system in
particular leads us to the following conclusions : the users fail
to utilize the Query System as often as hoped by designers.
Besides, they omit to use the tools provided in the Query System
to facilitate a further _ interpretation of the queries. Let us try
to clarify the reasons of this misuse by investigating. the
problem first from ·the user·s point of view - and then from the
designer·s vi-ew point.

Let us try to outl i ne the causes for user scepticism t;:owards
the Query System under its present version, Fou~ main causes can
be brought to light. Their importance vary from one user to
another. Therefore, they are presented without any s·pecific
classification.

The first cause concerns the performance obtained in ·
executing a query. The user must be qui te patient to wait · for the·
answer ta a query. While this tool is designed to be ' used
preferably in an interactive mode, the Query system does not
allow, for instance, the user ta execute consistency tests in an
interactive mode becàuse of the time it takes ta run these tests.

A second reason is that all the work perforrned during Query
System session is irremediably lost once this session terminates
even though the user needs to ask the same queries after
mod.ifying the user-dat abase , or simply wants ta interrupt the
session and ta continue it later without having at first to
reintroduce what he has done before.

The third reason d eals with tools available i~ the exist~ng
version. Sorne of them ~re needed and fail (e.~., there is no way
ta select the abjects whose type is "condition" and whose
probability is greater than 0,900). other tools would facilitate
the sets manipulation.

Finally, the memory space that can be used during a session
is predefined (installation dependent). If the QS spreads in
time, we can easily rea r:h this space limit, even though some sets
or criteria built durin ij this session are now useful. They could
be removed and -the y wou 1 d allow ta f ind back the space the y used.

- 32 -

Besides, there is an added difficulty in using correctly SET
and CRITERION notions and distinguishing the ·differences between
these two concepts. Sorne syntactic rules seern to be misunderstoo4
and need modifications or a better explanation (user~s manual) .

In trying to improve the present version of the Query
system, it · is appropriate to locate the source of these problems.
Most of them are located in the Query System itself and can be
solved by modifying this part of the software. However, if we
want to . decrease the tirne needed _ to interprate a query, modifying
the Query System does not salve the entire problern: other parts
of the software used by the Query System must also be taken into
account. Arnong them, we can mention the user-database manager:
its organisation requires toscan sequentialy the entire user­
database for most of the queries evaluation. We also think about
the errer messages subsystem: because of its implementation, the
user realizes that he has made a mistake, not thanks to the error
message displayed on the screen but because he has to wait for an
answcr from the system longer than usual.

Be fore suggesting improvements t6 the ·existing version of
the Query Sytem, a critical appreciation of the existing
implementation will be helpful. This evaluation will be realizea ·
on the basis of the criteria previously defined. section 2.2
contains these criteria. They will also be used to evaluate the
new implementation proposed for the Query System.

- 33 -

1,l, EVALUATION CRITERIA

The criteria listed underneath will
evaluate the Query System in its environment
the chapter 1. The s e criteria relate to the
possibilities it provides but also
implementation. These two aspects will
discussed in the following section.

Z,Z,l, Functional aspect

i.~.1.1. Language I ntrinsic oualities

[Cl] language user-friendliness

This criterion comprises four aspects

allow us to
as specified in
tool and the

to the too1 · s
be successively

1. In our context, a database query system is above all
composed of. · keywords. The se keywords should express .­
simple concept s, significant for the user.

2. Tools should be integrated in the Query System in order
to facilita -te the expression ·of the query. Many
implementations can be designed to achieve this purpose

a "HELP" cornrnand explaining the purpose of the
cornmand and i t s syntax; a set of menus presenting all
the alternatives proposed to the user and a way to
select them (numbers, joystick, ..).

3. The query l a nguage should be consistent with the
existing lang uages from other parts of the general
software. In our case, we are refering to the Target
Language and to cornrnands languages available in the
Input Processor, and in report tools (FS, EP, ..). With
regard ta these languages, the choice of keywords in
the query language must be consistent with those of
these languag e s.

4. The query language should allow an easy formulation of
the queries. That includes, in cas~ of intricate
r e quests, a me chanism which allows the user ta split up
h i s queries i n many other ones easier ta interprate.

[C2] Intrinsic de finition of the basic concepts and n2!l
redundancy

The definition of the basic concepts (criterion, set
and range) s hould be independent from the context in

- 34 -

which they are used. 'The se basic concepts shoudn ~ t be
semanticaly redundant.

z.z.i,z. Functions offered ~ the Ouery System

[C3] Comrnands fu ionality

The purpose of the functions offered in the system is to
facilitate the basic concepts manipulation in constructing
queries and in presenting the results. These commands should
be ' simple and non redundant. Their numbers and purposes will
depend on the user requirements and on the applications to
which this tool is intended.

z.z.i.~. System Us a ge

[C4] Q.11 response time

the time needed to execute a command or to interpr a
query must be "short enough" to save the interactive aspect
of the tool.

[C5] usage in different modes

The system could be used in interactive mode but also in
batch mode. A dialogue with _the user could be provided but
must be supplied by a decision taken by the program itself
in batch mode.

[C6] Queries classificat ion

In the context o f specification database, the queries
classification is often helpful. Indeed, the user often
wants to gather in a same classa set of queries dealing
with a same aspe ct of the Information Processing system
described using the target language. For instance, we could
gath.er queries tl1at deal with the model consistency. This ·
class of queries i s defined once for all and called each
time we want to ch ~ck the con~istency of a model.

- 35 -

[c7] Functional integi-ation in the software

In the context of a software for computer aided Information
~ystem design, this criterion comprises three aspects

Integration of the specific tools they should
manipulate the same data, name1y, the description of
the Information system.

Independence of the tools
be used separatly.

they should be designed to

coinplementarity of the tools : the results of a tool
should be easily communicated to another tool without
any interfacing problem.

~.~.~. Implementation a s pect

[ce] program maintenabüity

The program must be easily modifiable by adding new commands
or new basic concepts. Therefore, the two following :
principles are essential : the program modularization and
the independence between the program and its internal data
structure : every functional modification can have important
repercussions on this structure and indirectly on the entire
pro_gram if the program and the internal data structure do
not cornrnunicate via an interface.

[C9] independence towards supported languages

The tool must be independent from the languages it supports.
A syntactical modi f ication should have no consequence on tDe
prograrn itself. Th .i s aspect is perfectly achieved for the
general software (and then the Query system) with regard to
the target language but it must also be verified for the
Query System and its Query Language the part of the
program that interprates the requests expressed in the Query
Language must be as independent as possible from the other
parts of the progra m.

[ClO] Integration in th~ software during the implementation

The integration within the general èoftware is also
important a modularization can be achieved between many
tools in the softwa re; a part of a specific tool can be
integrated in another tool to facilitate the maintenance.

- 36 -

l,1, CRITICAL APPRECIATION OF' THE EXISTING VERSION

Let us use each cr i t erion described above to evaluate the
existing version of the Query System. References between square
brackets refer to the corresponding criterion in part 2.2 .

I,1,!, Functional aspect

[Cl] language user-friendliness

l. Once we consider the Query System purpose and the set
of selection classifications (properties and involvment
in relati-onship), the syntax for the basic criteria
have been chosen in a significant way, To express them,
the keyword notation has been chosen (such . as SQL)
rather than the posit.io'nal notation (such as SQUARE) .
However, we c a nnot say that the language is user­
f r iendly indeed, it requires the user to know the
target language in detail even if its implementation
fail to facilit~te it~ expression. (four corners .
rules).

example

in the DSL language
SYNCHRONIZATION-POINT
event, the que ry is :

[DSL.82], to identify any
that is not contributed by any

SET Sl= SYNCHRONIZATION- POINT AND NOT

([? CONTRIBUTED BY GENERATION OF 1] OR

[? CONTRI BUTED BY GENERATION OF 1 IF NOT l] OR

[? CONTRI BUTED BY TERMINAT ION OF 1] . OR

[? CONTRI BUTED BY TERMINAT ION OF 1 IF NOT 1] OR

[? CONTRIBUTED BY INCEPTION OF 1] OR

[? CONTRIBUTED BY INCEPTION OF IF NOT 1] OR

[? CONTRIBUTED BY REALIZATION OF 1] OR

[? CONTRI BUTED BY REALIZATION OF IF NOT l]

even though t h e user would like to express his query as

- 37 -

SET Sl; SYNCHRONIZATION-POINT AND

NOT[? CONTRIBUTED BY l] ;

whatever are the statements occuring in this question.

2. A HELP command is available in the existing. QS version.
rt provides either a list of all the existing commands
or ·detailed explanatory comment.s about a specific
command. These comments .allow the user · to understand
the comrnand purpose -and to- f ino back i ts syntax.

3. The existing Query Language is consistent with the
other languages of the general software : The Target
Language is integrated in the Query Language within th~
queries expression.

4. The mechanism of decomposing an intricate query into
many other ones easier to interprate is one of the
basic principles on which the Query System is based.
This mechanism is realized in many query languages by
introducing the "variable" notion. In the Query
Language, it is introduced with the SET andCRITERION
concepts. Its usage may even be stimulated in casé of ·
intricate queries.

[C2] Intrinsic definition of the basic concepts
redundancy

No meaningful difference exists between the SET and
CRITERION notions. Moreover, the explicit distinction
between these two notions introduces some confusion for the
user. This distinction was only justified• because it allowed
us to use many times the same part of a criterion in .the
definitions of sets or other criteria. Since a set-name may
be used in constructing other criteria, the CRITERION
cornrnand and the underlying concept may be removed from the
Query Language without any loss of functional capacity of
the Query System.

[C3] cornrnands functionality

There is no way to settle the ideal set of. commands because
its number varie s from one user to an9ther. On the other
hand, a high number of commands would be prejudicial to . the
understanding and the mastering of the tool. However, we
propose to introduc e the following commands that allow

- 38 -

to save and to restore sets frorn a session until
another one starts in a special purpose database.

to specify a set of values for a property or a constant
interven1ng in a statement.

to control the extent to which the queries evaluation
is done. According to the wishes of the user, the query
can be evaluated from the entire database or a subset
of this database.

to document the sets definitions and to facilitate
their interpre tation by other users.

to delete unuseful sets and to retrieve the space they
ernploy.

· to execute commands contained in a file.

to use control structures in the command definition. As
proposed by Kang [TM427], the following structures may
be introduced :

1) FOR EACH <Variable> of <Set-narne> DO

queries;
END;

2) DO UNTIL <Condition>;

queries;

END;

3) IF <Condition> DO

queries;

END;

where the following operands may be used as <Condition>

39

1) CARO <set~name > (> 1 < >= 1 <= 1 <>

(< inte ger> 1 · CARO < set- name>

returns c a rdinality of a set.

2) <attribute- name > (> 1 < 1. <= 1 >= · 1 <>

<value >

this last possibility is only justified in the case of an
integration of the Query Language in a host language.

[C4] Q.ê. response time

The ~xecution time of a query is in our opinion, one of the
weakest aspect of the existing QS_ version. This time rapidly
increases with the increase in the user-database dimension
because most of the queries evaluations require in the existing
version a complete scanning of the user-database.

[es] Usage in different mode s

In the existing version , commands may be introduced .. either in
interactive mode or in batch mode. If the second mode is chosen,
in case of reaction by t he user in the interactive mode, the ·
program itself will decide if it is convenient to attempt a
plausible correction, to continue with the assumptîon that the
error has only local eff ects or abort the comrnand.

Example

in interactive mode

> LIST b ooks
name 'books · is not defined before
enter r eplacememt. ·

> Books
too rna.ny errors.

in batch mode

> LIST b Doks;
cornmand ignored.

- 40 -

[CG] Queries classification

In the existing version, there is no way to classify queries. The
three following impleme ntations can be realized c~).

1. Onder the shape of an external file containing queries and
other cornmands; b y calling the file name, we will execute
all the cornmands contained in this file. However, this
implementation ·is more a way to facilitate the queries
introduction than a real classification .

. 2. A new concept named CLASS is introduced. A class is defined
as a set of queries built by the user. Instead of
manipulating indivi dually the queries, the user will · refer
to the class.A class is defined using the following cornmand :

CLASS <Class-narne> (CONTAINS -] <list- of-set-names>

'l'hé class can be saved in a special purpose database it
can be restored fro m it and listed.

example :

SET Sl UNTYPED

SET S2 ISOLATED;

SET S3 MESSAGE AND NOT (7 RECEIVED BY 1);

A class named "CONSISTENCY" will be built; it will contain
these three queries that check the rnodel consistency

CLASS CONSISTENCY CONTAINS Sl,S2,S3;

3. A pseudo-macro can be defined and possibly parametrized.

example :

we could define a set of macros to evaluate the · model
congistency. 'l'h~S L! macros are def ined once for all, "pre­
compiled" and saved . They can be called by specifying the
abject- type under ~Jtudy (parameter "obj·-type"-).

(.,,.) A comm and I o clùs s j fy que ries al ready exists
i n l h e os L/ r >'.; A v e r s i on in th e un ive r s j t y o f Na nni r

--- 41 -

MACRO CONSI STENCY (obj - type);

SET Sl = ' obj-type · AND ISOLATED;

LIST Sl;

SET S 2 = · obj-type· AND UNTYPED;

LIST S 2;

IF (· obj-type · = MESSAGE)

SET S3 =NOT(? RECEIVED BY 1);

LIST S3;

FI;

END;

This last implementation has two additional advantages : a macro
can be parameterized and can include control structures. However, ­
at our opinion, this last solution is tao comprehensive ana ·
intricate in this specific context.

[C7] Functional integration i n the software

Let us inspect the threè aspects of this criterion :

1. The .tools are integrated : all the tools are working on the
same database containing the described Information system:
the user- database .

2. The tools can be
purposes and can
spec i fic purpose.

used
be

separatly They
used autonornously

have specific
to achieve this

3, As the report func t ion and the database update are not
integrated in the Query System, the result of a name
selection using th e QS needs to be tran~mi tted to other
tools. · The transmission is achieved via a file ·containing
the list of user- names. No modification need to be · done to
cornrnunicate this 1ist from the QS to another tool .

- 42 -

z.1.1. Implementation a s pect

[ca] proqram malntenahiJ ity

The program must be designed in such a way that any
functional extens ion may be realized without major
modification~ of the existing program. · The moouralized
design is one of the basic implementation concepts. of the
rsoos software and of the Query system in
particùlar.nowever , in the existing version, the
independ e nce between the program itself and its internal
structure is not s ufficiently realized : every modification ·
of ·this structure will have repercussions in the · entire
program. For instance, the following modification will
require other modi f ications in a11· the subroutines that
access the internal data structure :

the definition of all the sets are contained in a
unique list i n the existing version; we want to divide
this list in s maller ones (one for - each set) to use
efficiently the memory space.

This aspect is e ven more important if we forsee new
extensions while a first implementation _is proposed.

[C9] independence towards - supported lanquages

From a logical 9oint of view, there is no connection between
the query language and the program that answers to the
queries expressed in the language. Those two parts can be
designed autonomously and can cornmunicat"e via an interface . .
Thereby, no syntac t ical modification will have repercussions
on the prograrn itself. In the existing version, the
syntactical analyse r could be easily isolated from· the rest
of the program but every syntactical modification requires
to update tables a nd black data containing the language
definition. We ne ed to find a better way to create and
modify this language.

[ClO] Integration in t hg_ software during the implementation

The syntactical an d semantical analysis for a staternent is
already provided in the Input Processor (IP), another part
of the general software. This analyzer is called "SNTX" .
Eventhough the rps · s purpose differs from the purpos~- of the
Query Sys t e m (the IP is designe d to int r oduce objects
de finitions in tl ie user- databa se), SNTX can be modified and ·
integrated in the Qu"ery System.

- 43 -

CHAPTER · 3:

PRESENTING A NEW

·_ QUERY SYSTEM .-

- 44 -

2,1, INTRODUCTION

Given the remarks formulated in the last chapter as regards
to the unsuitability of the existing version of the Q1,rery system,
a new solution is proposed and described in this chapter. In so
doing, we shall try ta meet as muchas possible the objections
formulated in the preceeding chapter. It should be noticed that
the proposed version constitutes only a partial one among others.

A new version is re·qui°red because of the need for functional
improvements, namely, a lack of tools and a bad comprehens-ion by
the user of the basic concepts. The solution described in this
chapter will answer mainly to these criticisms. rts improvements
will be realized by additional commands but also by proposing a
methodology in constructing a query. We also took advantage of
the opportunity to i.mprove the_ implementation aspect of the Query
System.

This chapter will begin with the list of improvements and
modifica.tions introduced in the new version. This version will
also he evaluated in this chapter, basing on the criteria defined
in section 2.2 .

- 45 -

~-1• IMPROVEMENTS AND MODIFI CATIONS

~.l,l, Functional level

~-Z,l,l, Criterion Concept Removal

In the existing version of the Query . system, the SET and
CRITERION concepts are implemented by specific comrnands even
though there is no semantic difference between the two notions
the criterion is nothing else but the express-ion that allows to
specify the properties that abjects must satisfy in order to be
selected from the user-database.

Associating a specific cornmand to the criterion has only one
advantage : to avoid to duplicate or to reintroduce a part of the
set definition. As it i s possible to define a set from other sets
previously defined, the possibility to create a hierarchy of sets
still remains; using this hierarchy, we can avoid a multiple
introduction of the sane parts of the criteria.

In the new QS version proposed in this chapter, the command
that allowed to define a criterion is removed (CRITERION command
). Henceforth,the criterion concept will never exist , anymore
independently of the s e t notion : it won · t be possible to name a
criterion. As summary, the following concepts will be associated
to a set in the new version :

A criterion, namely, the set definition; it express the
condition that the abjects must satisfy to be selected from
the user-database .

A list of object- na mes satisfying the criterion.

Possibly comrnent s lines that help · the criterion
comprehension or that specify the universe in which this
criterion was evaluated (see section 3.2.l.5) .

Because of the removal of the _ criterion as an independent
concept, some modifica tions are introduced . in command~ syntax (
without rnodifying thei~ purposes). A comprehensive _description
of these commands can h e found in [IM47]

~ 46 -

1.1.1.1. Range Concept Introduction

~-~-1-~•1• Pre s entation

In -the existing ve r sion of the Query System, there .is no way
to specify a set of values for a property or a constant that
occurs in a staternent. This constraint is not realy restrictive
when the values taken by these properties or constants are
integers or name-constants : we can enurnerate the values, even if
this method is tedious. Nevertheless, if those values are real

. nurnbers or strings, the nee'a for a new cornrnand is still mor.e
justified because there is no way to express queries .with these
types of values. The two following examples illustrate requests
in which a sequence of integers and of real numbers occurs
respectively :

Select process that generate between 1 and 10 messages.

select conditions whose probability is greater than Q.850

With the introduc tion of the range comrnand
underlying concept, this problem is solved.

~-~-1-l,l, Range Concept Defintion

A. Definition

and the

A range is a set o f constant values; a name is assigned to
this set, identifying this range among other ranges.

B. Usage

To introduce a cons traint on constants contained in t~e
user- database. Whereve r a constant rnay occur in a query, it can
be subtituted with a range. Mainly, this could happen in the . two
following cases :

a value for a prope rty

examples

PROBABILITY Q.15 .

PRIORITY LOW

- 47 -

Constants occuring i n a statement

example :

GENERATES i TIMES msg-1 IF cond-1

The _queries expressed above can be solved in the following
way

"Select conditions whose probability is greater than Q.950"

a) a range is set whose values are greater than 0.950
(using RANGE command) :

RANGE Rl = GT 0,950;

b) the query is expressed by substituting the range- 'name ' Rl' with
the constant

SET Sl HAS PROBABILITY Rl

"Select process tha t generate between .!. and lO messages"

a) a range is set whose values are included between land 10

RANGE R2 = 1 THRU 10

b) the query is expressed by substituting the range-name 'R2' with
the constant

SET S2 = ? GENERATES R2 TIMES BY I IF 1]

Commands available fo r the manipulation of sets are
available for the range (DIS PLAY,ERASE,SAVE, . . .) .

c. Specification

Using RANGE command.

1,I,1,I-1, Ra nge command

A. Purpose

also

To define a new range, namely, a set of values that can be finite
or infinite.

- 48 - .

B . . Syntax

RANGE <range-name> (<range-specification> · 1

"{" <set-of....:v_alues> "}"

where :
<range-name> is a string of maximum 30 characters following ISDOS
conventions. The · name is identifier. between the range-names and
the set-names defined so far dùring the current QS session.

<set-of-values> is a list of values chosen between the following
types integer, real number, string between single quotes or
<name-constant> .

<range-specification> is one of the _following possibilities

{

~~~;~~~HA~ ~T GT l { 
LOWER-EQUAL I LE 
GREATER-EQUAL I GE 

r!:1~~:~ue ] 
string between 
single quotes 

l EQUAL I EQ 
. NON-EQUAL I NE l 

l integer } 
-real~number 

string 

! 

'I'HRU 

- 49 -

integer 

l real- number 
string between 
single quotes 

<name-qonstant> 

! integer l 
real~number 
string 



c. restrictions 

D~ 

If ·THRu· option is chos en, tne two values must possess the same 
type; the first one mus t be greater than the second one. 

If the range is defined as a <Set-of-values>, the type of the 
values can be mixed. Those names must be separated by a comma. 

Examples 

RANGE R2 34 THRU 4 5 i 

RANGE R3 0.7.5 THRU 0.90 

RANGE R4 = LT .· book· 

RANGE R5 EQUAL HIGH ; 

RANGE RG { HIGH,MI DDLE } 

- 50 



_1.z.1.1. ~ Database Dedicated to the~ System 

.1,~.~-1-~. De s cription 

In the existing version of the Query system, all - the work 
carried out during a session is irrernediably lost at the end of 
the session. This is one of the main reasons for the user non 
satisfaction. By introducing .a database dedicated to the Query 
s~stem (QS-DB), we meet thts criticism. 

If a user plans t~ introduce the same query during a further 
session, he rnay reque s t the . Query system to save the set in the 
QS~DB. At this moment, the· following ele~ents will be saved: 

The set definj_tion entered . by · the user, nameley, its 
criterion. 

The parsed expression of· the query saving it will _ avoid a 
new interpretation of the query when this ·set is restored 
from the QS-DB. The parsed expression is also saved for a 
range. 

Possible cornrnents about the set (see part 3.2.1.5). 

D~ring a further session, the saved sets and ranges can be 
restored in the current session and can be used just as other 
abjects a~ they were defined during this session. 

Selected object-names are not saved in the QS-DB even if 
they constitute a part of the set we must keep the two 
databases (user-database and QS-DB) independent from each other 
because the user-database content can change during two QS­
sessions. Therefore, the list of abjects satisfying an indentica1 · 
criterion could change between two QS-sessions. When the set is 
restored, it will be ag~in evaluated .basing on the current user­
database. 

·, 
A set may apply other sets or ranges within its definition. 

When a specific set is saved, all the abjects it needs to be 
evaluated can be automa t ically saved with it (-RELATED- option in 
SA VE command ) . 

Not all abject mod i fications inside the QS-DB are allowed 
-(as · rename a set or chùnge its defin i tion). An abject rnay only de 
destroyed in the aggre g~ te. If the use r wants to modify an 
abject, he must first · restore it ïn the current session (if 
useful), modify it in the current session, -delete the ol~ 
definition from the QS- DB and save the new one in the QS~DB. 

- 5 1 -



Cornmands . allowing t o save objects (SAVE cornrnand), to restore 
objects (RESTORE comma nd) , to display their definitions (SHOW 
command), and to dest roy or undestroy abjects (DESTROY and 
UNDESTROY commands) a r.e available and described below. Only the 
functional description i s discussed. Technical specifications can 
be found in [IM47]. 

1.z.i.1 .z. Commands Summary 

1,Z,l,1, .?.. ,l, DESTROY Cornmand 

A. Purpose 

To erase and rernove sets and ranges from the QS- DB. These 
sets and ranges are only logically destroyed, namely, the user 
can relocate them by us i ng the 'UNDESTRoY · . cornmand. The ranges 
and sets are physically destroyed at the end of the current 
session of the Query Sys tem. 

B. Syntax 

DESTROY <range-or-set-narnes- list> [RELATED] 

c. Description 

If "RELATED" is spe cified, all the sets which reference the 
listed sets will be destroyed, narnely, all the sets that directly 
or indirectly need the listed abjects to be · evaluated are 

. destroyed. A success message will be displayed for each object 
deleted from the QS-DB. 

D. Example 

QS-DB cont ents----~ 

Sl S2 OR S3 

S3 S5 OR S6 

S4 S3 OR S7 

- 52 -



The situation can be visualized as 

Sl S4 

/ ~ / ~ 
S2 S3 S7 

/ ~ 
S5 S6 

> DESTR0Y S5 RELATED; 
sets S5,S3,Sl,S4 destroyed frorn the QS~DB. 

> DESTROY S5 ; 
set S5 destroyed from the QS-DB. 

> DESTROY Sl RELATED; 
set Sl destroyed from the QS-DB. 

1.~.i.1.t.~. Restore Commana 

A. Purpose 

Ta restore the information about the saved sets and ranges 
frorn the QS-OB to the current QS session. Even though a QS-DB is 
attached for the session, the sets and ranges priviously saved in 
the QS-DB may not be referenced unless they are restored for the 
current session. After restoring, the sets and ranges still 
remain in the QS-DB. 

Since no user-name s list is saved in the QS-DB, the 
restored sets are eva luated basing on the current universe, 
namely, the current user- database if no universe is cu!rently 
specified or the univer s e if - it is currently defined. 

B. Format 

(REST0RE I REST} ( <Set-and-range-narnes-list> 1 ALL ) 

[RELATED] 

- 53 -



.c. Description 

If ·ALL. is used, all the sets and ranges which do not 
already exist in the current session are restored from the QS-DB 
to the current session. 

If ·RELATEo· is specified, all the sets and ranges which are 
referenced by the sets listed in the command and which do not 
already exist in the current session will be automatically 
restored from the QS- DB . 

A set can be restored only if ~11 the sets and ranges 
necessary for its evaluation already exist in the current 
session. If "RELATED" option is specified, the program itself 
will settle the restoring order. In the case where the user does 
it by himself, he must verify first that these abjects already 
exist in the current session ( by using the DISPLAY command in 
the current session and the SHOW conwand in the QS- DB ). 

example 

QS-D8--------. 

Sl = S2 OR S3 

S2 

S3 

It is not possible to restore S1 alone because S1 

needs S2 and S3 to be evaluated; as S3 is not 
defined in the current session, the user must 
first restore S3 before restoring Sl or he may 
ask : "RESTORE Sl RELATED". 

As sets and ranges names must be unique in .the current 
session, two definition s of the same object cannot simultaneously 
exist in the current se s sion. A clash might arise if the user 
wants to restore an abj e ct whose definition already exists in the 
current session. The basic priciple underlying this system 
behaviour is that for any definition of the set to be deleted, we 
must be able to retriev (~ it. The refore, the {?Xisting definition 
1s preseived in the cu r rent session and the definitidn contained 
in the QS- DB won · t be r8stored. A warning will be displayed to 
point out this clash . However, if other sets reference the set 
under study, t he exist jng dP.finition will be used to evaluate 
these sets. 

- 54 -



Example 

current session QS-DB-------~ 

S2 = PROCESS S2 MESSAGE ; 

Sl = S2 OR S3 ; 

S3 BN = B? 

> RESTORE Sl RELATED; 
warning - set S2 is currently defined in the · 

current~DB; cannot be restored. 
set S3 restored in the current-DB. 
set Sl restored in the current-DB. 

Sl will be evaluated with the existing S2 definition 
(S2 = PROCESS); the following situation will be found 

current session QS-DB--------

S2 PROCESS S2 MESSAGE; 

S3 BN = B? 51 S2 OR S3 ; 

Sl S2 OR S3 ; 53 BN B? 

If a set definition contains the reference to a user-name 
that does not belong anymore to the user-database, the set won·t 
be restored and with it , all the sets that need this set to be 
evaluated. A message will be displayed, mentioning the 
unappropriate user.-name and the list of user-names that cannot be 
restored. The same c a se could also happen for constants in a 

. range definition. 

- 55 -



D. Examples 

The chronogical sequence is as follows 

current session 

1 

QS-0B 

Sl MESSAGE ; 

S2 Sl AND (BN = B?) i 

S5 = [? RECEIVED BY l ] 

S6 = S7 

S8 TYPED 

> RETORE S5; 
set S5 restored in the current-DB. 

current session-------- _QS-DB 

S5 = [? RECEIVED BY l] No modification 

> RES.TORE S2 . RELATED ; 
sets Sl,S2 restored in the current-DB. 

current session QS-DB 

S5 [? RECEIVED BY 1 ] ; [o modification 

Sl MESSAGE ; 

S2 Sl AND (BN = B7) 

- 56 -



> RESTORE 56,S8 RELATED; 
warning - S6 needs definition of other 

objects - cannot be restored. 
set SB restored in the current-DB. 

current session QS-DB 

S5 = [? RECEIVED BY 1 ] No modification 

Sl = MESSAGE ; 

S2 = Sl AND (BN B?) 

SB TYPED ; 

A. Purpose 

To save sets and ranges in a database dedicated to the Query 
System. After being saved in the QS-DB, the objects ( sets and 
ranges ) still remain in the current QS-session. Nothing is saved 
automatically in the QS-DB. Only abjects saved in the QS-DB can 
be restored during a further QS session. 

B. syntax 

SAVE ( <range-or-se t-names-list> 1 ALL ) [RELATED] 

c. Description 

· If "ALL" is specified, all the sets or ranges existing · in 
the current session are saved in the QS-DB if they do not already 
exist in this database. 

If ."RELATED" is use d, all the sets and ranges referenced • by 
the sets listed in the c ommand will be automatically saved. 

The sets defined a s a list of user-names cannot be saved in 
the QS-DB because -UH-:: ir definitions are tao dependent on the 
current situation of .the user- database. 

- 57 -



The set and range .na mes are ide·ntifiers within the QS-DB. A 
warning message will b e displayed if duplicates are introduced. 
If the user wants to change the abject definition, he must first 
delete the old one · from t he QS - DB and then save· the new one. 

D. Exam'ples 

The chronological sequenc e i.s as follows 

current sess ion-------

Sl = MESSAGE 

S2 = Sl AND (BN = B?) 

S3 Sl AND ( HAS TEXT) 

S4 TYPED ; 

> SAVE S4; 

r 

set S 4 saved in QS - DB. 

current sess i on------~ QS- DB-----~----, 

No modification 1 S4 ~ TYPED 

> SAVE S2 RELATED; 
set s Sl,S2 saved in QS- DB. 

current sess j on QS- DB 

1 No modifi c a tion S4 TYPED i 

Sl MESSAGE 

S2 Sl AND (BN B? ) 

- 58 -



> SAVE S3 RELATED; 
warning - set Sl already exists in QS~DB -

cannot be saved. 
set S3 saved in QS-DB. 

current session----. QS-DB---------'----~ 

No modification 54 = TYPED; 

S1 MESSAGE; 

52 Sl AND (BN = B?} 

53 51 AND ( HAS TEXT )· 

A. Pur,:,ose 

To display the definition of a set or of a range contained 
in the QS-DB, or to rnake the list of all the ranges-narnes,all the 
set-narnes,all the sets definitions or all the ranges definitions. 

B. Syntax 

SHOW 

<set-na.me> 

<range-name> 

{ SE'r-NAMES I SN } 

{CRITERIA I CRTA} 

{RANGE-NAMES I RN} 

-RANGES 

- 59 -



c. De.scription 

If a <set-name> is specified, the output is 
<set-name > ,set-definition>. 

If 'SET-NAMES' is s pecified, the output is .the list of all 
set-names previously s aved and not destroyed , classified by 
alphabetic order. 

If 'CRITERIA" is specified, the output is the list of the 
set-names followed by their definitions; they .are classified by 
alphabetic order. 

I'f 'RANGE-NAMES ' i s introduced, the qutput is the list of 
all range-names currently defined in the QS- DB, classified by 
alphabetic order . 

If "RANGES" is spec ified, the output is the list of all 
range-nàmes followed by their definitions; they ·are classified by 
alphabetic order . 

D. Examples 

SHOW set-1; 

SHOW CRTA; 

SHOW RANGE-NAMES 

~-~-l-~ -~-~. UNDESTROY Command 

A. Purpose 

to retrieve sets or ranges previously removed using 
DESTROY coinmand ) from t he QS-DB during the current QS-session. 

B. Syntax 

{ UNDESTROY I UNDES } < set-or- range-names-lis.t > [ RELATED] 

c. Description 

If "RELATED" is s pecified, all the sets that reference the 
abjects listed in the command are also undestroyed and can be 
referenced again ( the s ame mechanism as in DESTROY command ) . 

- 60. -



If a new definition is entered between the DESTROY and the 
UNDESTROY commands, und e stroying this set . is not legal. 

example : 

If the following seq uence is introduced 

> SET Sl = PROCESS 

> SAVE Sl 

> DESTROY Sl 

> SET Sl = MESSAGE 

> SAVE Sl; 

> UNDESTROY Sl; 
warning - set Sl was not previously destroyed. 

D. Examples 

QS-DB---------i 

Sl S2 or S3 

S3 = S5 or S6 

S4 S3 or S7 

where all these sets were priviously destroyed . 
The situation can be visualized as : 

Sl S4 

/ 
S2 
~/~ 

53 . S7 

/~ 
S5 S6 

> UNDESTROY S2,S7 ; 
sets S2 , S7 undestroyed from QS-DB. 

> UNDESTROY S5 RELATED; 
sets S5 ,S3,Sl,S4 undestroyed from QS- DB. 

- 61 _:_ 



_J.z_._!._1. sets Evaluation From s! Subset of the User-database 

~.~.1.~.1. Description 

In the current version of the Query System, queries are 
evaluated basing on the entire user-data);>ase, even if the user 
wants to control _the extent to which the evaluation is performed. 
The 'SET UNIVERSE' command allows the user to specify the 
universe in which the queries will be _ evaluated, namely, a 
specific part of the user-database. The default universe is set 
to the entire user-database at the beginning of the session or 
resét during the session by using the 

The definition of a universe is useful when many consecutive 
queries can be expressed on the same subset of the user-database. 
In this case, it is advisable to define a universe instead of 
conjuncting the universe definition with the set definition · 
because the time needed to run the queries decreases 
substantially. However, this solution could introduce some 
confusion because when the user lists the set, he has to remember 

· the universe in which the set was evaluated. The universe can be 
recalled by adding cbmments to the set. 

A universe is defined using a criterion as in the definition 
of a set. the user may find back the specification of the current 
universe using the 

We proceed to the description of the command which allows 
the definition of a ·subset of the user-database. 

~.z,l._1,z_. SE~ UNIVERSE Command 

A. Purpose 

To limit the subse t in which the evàluation of the following 
queries are made. 

B. Syntax 

{ SET UNIVERSE I SE 'r UNIV} ( DB 1 <criterion> ) 

- 62 -



c. Description 

If "DB" is specifie d, the universe is set to the entire 
user-database. 

The criterion has the same definition as that used to 
describe a SET ( see section 1.3.3 ). The criterion defining a 
universe is always evaluated basing on the · entire use-r-database 
regardless of the current universe. 

D. Example 

-~ -

> SET UNIVERSE = PROCESS 

following que ries will be evaluated basing on the 
subset of abjects whose type is process. 

> SET Sl HAS PRIORITY HIGH ; 

> SET S2 = [? TRIGGERED . BY book-requisition] 

these two queries only concern the process; therefore, 
there is no need to evaluate them basing on the entire 
user-database. They are sernantically . equivalent to · the 
following queries : 

> SET Sl PROCESS AND HAS PRIORITY HIGH; 

> SET .S2 PROCESS AND [ ·? TRIGGERED_ BY book-requisition 

- 63 -



1.i.1.~. Comments Added to s set 

1.i.1.~.1. Pr e sentation 

A set can be define d as a hierarchy of other sets. Its 
definition can then become difficult to interprete. Moreover, the 
universe in which the sets are evaluated can ch~nge from one 
evaluation to the other. If a specific universe is defined, it is 
useful to remember it by explaining the set with some comments. 
These reasons induce us to allow the user ta add some comment 
lines ta a set. 

These lines constitute a part of the set. They are displayed 
with its definition ( DISPLAY command ) or with the list of 
user- names ( LIST command ). The comments are also saved and 
restored with the set in the QS- DB. 

Three commands allow respectively to add, to remove, or ta 
modify comments of a set ( respective'ly ADD COMMENT, DELETE 
COMMENT and REPLACE COMMENT commands ). No comment may be added ­
to a ~ange. These comrnands may only be used with sets contained 
in the current session, but not with those contained in the QS~ 
DB. Here follows their descriptions . 

1,Z,!,2.z. Comment Commands 

.1-~-1.-~-~-J.. ADD COMMENT Command 

A. · Purpose 

Ta add textual comment lines to the named set. 

B. Syntax 

ADD {COMMENT I CMT} [FOR] < set-name > 

- 64 -



1.i.1.2 ,l ,l, DELETE COMMENT Commana 

A. Purpose 

textual comments e x isting for the named set are deleted. 

B. Syntax 

{ DELETE I DEL} . { COMMENT I CMT} [ F~OM] < set-name > 

l,l,!-~- l -1- REPLACE COMMENT Commana 

A. Purpose 

To replace the current textual comments· for the named set 
with new ones. 

B. Syntax 

{REPLACE I REPL} {COMMENT I CMT} [FOR] <Set-name> 

- 65 -



]..l.1,§., Ruies Introduced in .ê: Basic Criterion Construction 

The existing QS version allowed a user to define an 
intricate query by spe cifying only one expression. By using the 
nested queries, the user can avoid the splitting of a query into 
a hierarchy of other queries easier to interprete. using such a 
decomposition methodology is justified in case of intricate 
requests even if this mechanism reinforces the procedural aspect 
of the language. 

To facilitate user interpretation of the expression, we 
suggest the adoption of a step-by-step methodology in defining 
queries by removing the possibility to imbricate queries. 
Therefore, it won·t be possible to introduce a basic criterioh 
inside a statement. The basic criterion will be defined first as 
an independent set; t he name of the created set will then be 
specified in the stateme nt instead of· the basic criterion. 

Example : 

In the existing version, . the query "select 
messages which are generated by pr·ocess which 

i.:.. possess no description" is expressed as : 

SET Sl NOT HAS DESCRIPTION GENERATES I TIMES? IF 1 

In the new version, it will be expressed as 

SET Sl = NOT (HAS DESCRIPTION) ; 

SET S2 = [ Sl GENERATES I TIMES? IF 1 

The object designation occuring in a statement are now 
chosen in the following list 

user-name : book, reader, 

set-name : Sl, SET- 1, 

"I" to · aesignate ·anything · 

"?" to designate what must be selected 

range-name when it makes sense : a constant is supposed to 
be used at this pl a ce in the statement : Rl, RANGE-1, 

- 66 -



~-~-1-1, Miscellane ous Commands 

Two other commands have been added to facilitate the set and 
the range manipulation. They are described below and are· designed 
to complete the fàcilities offered by the system to respo.nd ta 
issues relative to users non satisfaction. 

A. Purpose 

To remove set or r a nge names and associated data from the 
current session, not f r om the QS-DB. The sets and ranges may not 
be referenced during the current session; they may be restored if 
they were saved before in the QS-DB ( by using the RESTORE 
command ). 

B. Syntax 

ERASE <list-of-objects> (RELATED] 

c. Description 

If "RELATED" is spe cified, all the sets which reference the 
erased sets and ranges will be also destroyed ( a range cannot 
,reference another range ) . 

D. Example 

Current session-----

Sl = S2 OR S3 

S3 S6 

S4 S3 OR S5 

:- 67 -



the situat ion can be visualized as 

Sl S4 

S2/ ~3/ ~5 

/ 
S6 · 

> ERASE S5 ; 
set S5 erased from the current-DB. 

> ERASE S6 RELATED 
sets S6,S3,Sl,S4 erased from the current-DB. 

~.z.~.7.z. EXECUTE Comrnand 

A. Purpose 

To execute queries or other comrnands contained in· · a file 
whose name is specif i ed in the command. The program executes 
those commands from the first one until the last one. An echo 
will display these comrnands on the screen; commands - with 
syntactical or semant~ca l errors will be ignored. 

B. Syntax 

1 · { EXECUTE I EXEC } [ FROM] < fi le-name > 

- 68 ~ 



~.z.z. Implementation Level 

l•Î•Î•l• Introduct~on 

This section will restrict itself to present 
differences between the existing QS version and the new 
an implementation view point. A more complete desription 
new version implementat i on is given in chapter 4. 

the main 
one from 
of the 

The new Qs · structure is shown in Figure 3.1 Two 
autonomeous analyzers are integrated in the Query system. The 
first one, call LANG-PAK, performs the le~ical analysis of the 
statements expressed in the Query Language .. The second one, SNTX, 
achieves the analysis of the statements expressed in the target 
language. These two aspects of the implementation are described 
helow. A third one is also discussed; it concerns the internal 
data structure. 

COMMAND INTERPRETOR 

LANG-PAK 

os 
SNTX 

I INTERNAL DATA STRUCTURE 1 

Qâ Program Structure. 

--:- 69 -



J..z.z.z. Using LANG-PAK to Describe and Use the Qillrry 
Language 

1.z.i.z,l, Introduction 

LANG-PAI< is an interactive language design system wpich aids 
a language designer in designing and implementing simple 
interactive computing languages. By using this soft~ar~, . we 
achieve the two phases of a language definition : LANG-PAK allows 
a "fast" and "comfortable" definition of a · simple command 
language and facilitates any further language .modification 
[HEIN.7~] . Comfortable construction because no program needs to 
be written to perfonn the lexical analysis of the described 
language; ease of modification because the language design 
methodology allows · the redefinition of a part of . the language 
whatever is the system application step _ we are performing. 
Moreover, using the LANG-PAK software ~· allows the designer ·to 
achieve the target language lexical analyzer independently of the 
rest of the QS-program. 

We are not going to insist on the tool portability aspect 
and ease-of-use possibilities. Let us point out that a ve~sion in 
FORTRAN is provided in [HEIN.75] . Its installation requires only 
few hours to program the system-dependent subroutines . 

..:.· 

we describe LANG-PAK by following the different steps in 
defining and using a cormnand . language. Afterwards, we evaluate 
this software and point out its limitations and the modifications 
introduced to the basic version in order to implement our Query 
Language. 

1,Z,Z,Z,Z, The Language Application Phases 

The design of a language using LANG-PAI< is devided in two 
phases the language definition and its practice. These two 
steps are realized according to an .identical principle in LANG­
PAK : ., bath of them are supported by a meta-language, and the same. 
program is used to realize these two phases (Figure 3.1). 

J_.~.z.z.~.~. The Language Definition Phase 

Àt first, we need to define the grammar of the target · 
language, namely, the command language we want to describe. 
During this phase, we i ntroduce the langua_ge definition us~ng the 
LANG- PAK meta·- language. The final purpose of this phase is to 
generate the tables con t aining the g-ramrnar. These tables . are 
çalled the gramrnar lexJcon. 

- 70 -



The definition is p e rformed using the meta-language. The 
meta-language provided in this software is highly similar to the 
BNF notation. The main d'i fference with the - BNF notation is due to 
the fact that the left recursivity is removed by introducing the 
limitated repetition c o ncept. Table 3,3 contains the meta­
language elements used i n the Query language definition. 

LANGUAGE 
f SPECIFICATIO~ 

STATEMENTS IN 
TARGET LANGUAGE 

META­
LANGUAGE 

DEFINITION 

PH.ASE 

GRAMMAR 
LEXICON 

APPLICATION 

PHASE 

PARSED 

EXPRESSION 

Figure _1.~ Usinq LANCi-PAK in ~ language application 

- 71 -



- -~- - •. . 

Meta language element definition of element 

( .. ) 

I 

N 

V 

S( •• ) 

EOS 

;, .... _ 

A non- null terminal symbol sequence 
enolosed in quotes called · a · literal 
whose integer attributes are contained 
in parentheses. 

Any member of the terminal word ·set 
integer. 

Any member of the terminal word set 
number. 

Any rnernber of a language designer 
defined set of terminal words. 

Any member of _the terminal word set 
string which is followed in the input 
symbol sequence by a member of one of 
the terminationbreak sets. 

Parse machine ~nstruction to test for 
end of symbol sequence. 

( ... ) (i j) A repeating specification to be iterated 
at least i times but not more than j 
where (j >= i >= O) and (j > O) 

exclusive OR 

& conjunctive AND 
-.~ . 

< ••••• > a language specification type 

Table .1,.1 Elements of the Meta-language used in the Q!d definition 

In the Query LangL1age definition, most of the language 
reserved words are defined as "literals". They are isolated by 
the LANG-PAK parser and translated into internal code. It is tne 
case for : 

command names ( SET, HELP, SAVE, .. 

reserved words in the basic criterion 
( BN=, TYPED, PROPERTY, • • ) 

- 72 -



options in .command s ( PRESENTATION, BASIC, . , 

logical operators ( _NOT,AND,OR ) 

abject-type names, user-names,set-names and range-names are 
defined as "string" and are analyzed in the QS-program itself 
because they reference _respectively the meta-database, the user­
database and the current session. 

Example 

The SAVE command whose syntax is 

SAVE name [, name] [ RELATED] 

is defined as 

·<save-crnd> = "SAVE"(lOO) <name-list> ( "RELATED"(lO) ) (0 1) 

<name-list> = ( <first-name> · ) (O 9) <last-name> 

<first-name> = S(",") U Il , 

dast-name> = s ( "RELATED" .y 

The reserved words. are defined as literals : ·sAVE. and 
· RELATEo· . Their attributes are."respectively 100 and 10 

set-names are defined as strings. We need to defîne in 
a different way the first names and the last one 
because their ends of strings are specific. 

The entire definition of the Query Language in the LANG-PAK 
meta-definition can be found in 1\nnex-2. 

In order to help the language adjustment, LANG-PAK provides 
the user with some tools and possibilities. As an illustration, 
the user may test the definition just entered by using sorne 
examples : sincP. each b.lock of language specification types (LST) 
is autonomP-011s, the user can test a part of the language without 
havi~g to introduce the entire definition. For iri~tance, we could 
already enter a statcment using SAVE command without finishing 
the language definit ion; hownver~ we need to introduce the four 
LST given in the exampl e to test the SAVE command because they 
all are used in it s definition and constitute a LST black. 
Another too] provided in LANG-PAK. is called the "TRACE" cornmand. 
Tt al.lows to follow t.he LANG-PAK parser when it analyzes a 
statement and tacilitatun the error location in the definition . 

- 7) -



At the end of this phase, the grammar lexicon is saved into 
an external file. This file is used to communicate between the 
two phases. Wi lh this mr~thod, any target language modification is 
easily pcrforrned it is ,.·suff,icient" to introduce another 
definition and save it in the file. 

1.,1,1,1,1,1, The Language Us§. Phase 

During the second phase, we use . the target language itself : 
staternents expressed in target language are parsed. after reading 
the grarnrnar lexicon frorn a file, the parser wil1 detennine if a 
staternent is syntactically consistent. In this case, it will 
produce a parsed expression. Table 3,4 contains meta-language 
terminai elernents translation into internal code. 

Type 

Ihteger 

Real 
number 

String 

Literal 

Meta-language 
representation 

I 

N 

S{ .. ) 

n • • • Il ( • • ) 

translation 
code 

1 

2 

3 

5 

Arguments 

value of integer 

value of real 
number 

length of string 
symbol seguence in 
EBCDIC code 

Nurnber of attributes 
List of attributes 

Meta-language terminal elernents translation 

- 74 -



The QS-program itself has then ta use the internal code ta 
understand the command i.ntroduced by the user. 

Example 

Following the SAVE command definition, the statement 

"SAVE Sl,Rl RELATED ." 

will be translated as ; 

token type translation 

-----------

· sAVE literal 5 1 100 

Sl string 3 2 226 241 

literal null translation 

Rl string 3 2 217 241 

RELATED literal 5 1 40 

The same program realizes the second phase. However, tools 
whose purpose is to help the language design çan be rernoved. This 
subroutine subset is integrated in the QS-program itself. 

This software invo l ves limits and defects in its design. 
Sorne improvements are proposed in this chapter. on is already 
realized in the version we implernented. 

The class of langua ges which can be described using LANG-PAK 
constitutes a first limitation of · this software ; the targe{ 
language must be simple, namely, it must possess a restr:i,cted 

· syntax and a few production rules. A language l .ike the Query 
Language is already tao_ complex. Even though . the Query System 
seems to be e.a,sy to describe, we were forced to add ta the 
language some additional signs which add nothing to the language 
sernantic they are the square brackets "[ .. ]" ta delirnit the 
statements and the .brace s " { .. } " ta specify a set of user-names. 

- 75 -



We mentioned the independ~nce between the syntactical 
analyzer and the QS- prog ram itself as one of the greatest benefit 
in using LANG- PAK. Howev e r, there exist some limitations to this 
independence : the inter face, narnely, the parsed expression must 
keep the same structure whatever the forrn of the language. _Any 

. further modification o f the target l a nguage will be achieved 
within these limits. 

Sorne expressions c a nnot be expressed_ with the meta- language 
because in the list of break ·characters for a string, the meta­
language int r oduces an e valuation order, even if this order is 
not signif i cant. A ne w lexical analyzer should be implemented , · 
based on the TOKEN c o ncept, i.e., a string ending by any 
character contained in a predefined list. 

During . an exclusive enumeration of ·1 i terals, LANG-PAK also 
introduces an evaluation order, even i f the user wants that the 
more suitable literal i s chosen. 

Examp]e 

Following the definition : 

<a>= ( "DISP"(llO) 1 "DISPLAY"(llO) S 

the input comrnand "DISPLAY SET-1" will be decomposed as 

DISP literal attribute = 110 

LAY SET-1 string length = 9 

even though the r esult is supposed to be : 

DISPLAY literal attribute = 110 

SET-1 string length = 5 

When a statement i s introduced, the basic LANG-PAK version 
allowed the user to d e vide a comrnand in many lines by using the 
continuation sign " - ". This version has been modified because it 
seems us to be more s uitable in the Query Language to continue 
the introduction until a break- sign is introduced. Henceforth, 
the user will define in the beginning of the LANG-PAK session the 
break-signs set. Any fu r ther introduction will continue until one 
of these break-signs i s matched. 

- 76 -



~.~,l,1, Introducing SNTX to Parse ~ 

statement 
Target Language 

A part of the Query system syntactical and semantical 
analyzer performs the analysis of the statements expressed in 
target language. Since there was no general parser for the target 
language statements when _the initial version was implemented, the 
parser of the Query System performs all the above~mentioned 
parsing. Therefore, the structure of the Query system becomes 
very complex. Since the general parser, called SNTX, is now 
available in the ISDOS project, the Query System should utilize 
this parser for the parsing of description language state~ent. By 
utilizing the SNTX parser, the structure of the Query System will 
become much more simple and the target language parsing scheme 
may be standardized throughout ISDOS software. 

SNTX cannot be integrated in the Query system without some 
modifications, since this analyzer was designed to parse Input 
Processor statements. Here follows the list of modifications 
introduced in the form of an interface to integrate SNTX in the 
Query System. 

The final purpose of these two parsers ( in the IP and in 
the QS ) are basically different, even_ if the parsing itself is 
similar. In the IP, new statements are introduced in the user­
database after having checked that these - statements are 
syntacticaly and semanticaly constistant. In. the Query system, 
the same checkings are performed but here, to select frorn the 
user-database abjects which are involved in the relationship 
expressed in the statement. This part of SNTX has to be rnodified. 

The list of element s occuring in a staternent are specific 
in - the IP, elements are either user-narnes or list of user-names. 
In the QS, they are : 

the question mark 
the exclamation point 
the user-narne 
the set- narne 
the range-narne 

We rernoved the possibility to specify abject-type names as 
element in the Query System -because an identical name can be used 
as abject-type and keyword; therefore, ambiguity is introduced in 
SNTX. 

- 77 -



Example 

The two followi ng statements belong to the target language 

(1) SUBPARTS PROCESS [ARE] process-name 

( 2) SUBPARTS [ARE] narne ; 

If the query is expressed as .. ? SUBPARTS PROCESS fi the 
SNTX parser cannot identify the object-type because the 
same narne is · used as keyword in the statement (1) . 

This ambiguity restrict s the Query Language possibilities. The 
query expressed in the . exarnple can still be stated but by 
constr~cting first another set containing all the objects whose 
type is "PROCESS". 

example : 

The query" find all the messages received by any interface" was 
expressed in the old version as : 

SET Sl =? RECEIVED BY INTERFACE 

In the ne_w version, it will be expressed as 

SET Sl INTERFACE 

SET S2 . [ ? RECEIVED BY Sl ] 

Every statement in the IP references to a block-heaae·r. In 
the QS, this block-header is. replaced by the first . element ( 
front-end corner ). 

example 

In the rnput Processor, we find 

DEFINE PROCESS P l ; 

ON TERMINAT I ON TRIGGERS P2 

- 78 -



1.2_.2_._1. Isolatinq _the Interna! Data Structure Enhances · Q.â 

Modifiability 

In programs like the QS, any answer to a question from the 
user requires at least one access to the Internal Data Structure 
(IDS), namely the structure containing- informations about 
created sets and ranges cluring a QS session. rt would be 
desastrous if any IDS modification had consequential effects ih 
the entire program, whatever the reason for introducing this 
modification ( a new conce~t introduction, performances 
increasing, ... ), 

This fact leads us to isolate the IDS from the rest of 
program. In the new QS version, a set of subroutines 
constitute the interface between the QS and the IDS. In this 
any IDS modification _will induce changes 6.nly within 
interface. 

the 
will 
way, 

the 

The IDS interface is built as a set of low-level subroutines 
manipulating the basic notions ( set and range ). As an 
illustration, we mention the subroutines whose purpose is : 

to create a set 
to get the set definition 
to delete a set 
to add cornments to a set 
to che6k if a set is ~efined 

The same suhroutines also exist to manipulate ranges. 

- 79 -



1-1• NEW QUERY SYSTEM VERSION EVALUATION 

1.1.1. Functional level 

References between squ~re brackets refer to criteria defined 
in chapter 2. 

~-~•±•±• Language Intrinsic oualities [Cl] - [c2] 

The following remarks and criticisms can be formulated with 
respect to the new version 

1 ·. The expression of the criterion is the same as in the 
existing version. 

2. the criterion notion is removed and with it, the ambiguity 
it introduced to the user. The CHECK comrnand does not make 
sense anymore without the criterion concept. However, it can 
be - achieved by using the SET notion : 

Example 

To check if the user-names list L satisfies 
a criterion C, the following sequence is 
introduced. 

SET Sl L; 

SET S2 . C 

SET S3 Sl AND S2 

S3 will contain user-names which satisfy the 
criterion c. 

SET S4 Sl AND NOT (S2) 

S4 will contain user-names which do not 
satisfy the criterion c. 

CHECK command can be removed 
functionnality. 

- 80 -

without the lost of 



3. The RANGE concept manipulation and its usage is similar to 
these for the SET concept. The insertion in a statement is 
achieved in the · same way. 

4. Sorne command names have been modified because the new name 
is more significant : 

EXPLAIN becomes HELP 

CHANGE becomes RENAME 

5. special characters have been added even if they have no 
semantical justification; they are introduced for the 
implementa~ion reasons ( square brackets · to delimitate a 
statement and braces to delimitate a user-names list )·. 

6. We decided to duplicate some command names if they are used 
in the current session or in the QS-DB instead of 
introducing a new parameter . The experience has shown that 
it is ea.sier to remember those names th~fo to lengthen the 
cornmand. It is the case for 

QS-0B current QS session 

SHOW -----> DISPLAY 

DESTROY. ----> ERASE 

To display the universe, we used the DISPLAY command. 
Introducing a new command was not justified in this case. 

~.~.i.~. Functions Offered !!Y The~ System [C3] 

1. The number of commands offered in the Query system has been 
doubled. They respond to a _ user need. However, a command 
which allows to classify queries is still misiing and should 
be implemented to increase the facilities proposed by the 
Query System. 

2. SET UNIVERSE comm-a nd has been introduced to ·improve the 
execution time. However, this command constitutes no direct 
answer to the problem and it can introduced some confusion 
to the user Indeed, the user needs to rernember the 
universe in which his queries were evaluated. 

- 81 -



1.1.~.1. System Usage [C4] -> [c7] 

The execution time is still the aspect that needs to be 
improved. Introducing SNTX as analyzer for a statement slightly 
decreased the execution time but not in a significant way. Sorne 
proposals will be forrnulated in chapter 4 to improve this aspect. 

2.2.~. Implementation Level [ce]-> (c10] 

Problerns pointed out in (ce], [C9] 
solved. The new Query System structure 
Figure 3.1 . 

- 82 -

and [c10] have been 
can be visualized in 



CHAPTER 4: 

IMPLEMENTING 

THE OUERY SYSTEM 

- 83 -



1-l• INTRODUCTION 

Few books and articles give an overview of the 
implementation aspect in describing a database query system. This 
chapter restricts ·itself to outline the implementation level of 
the Query system. It seems tous that discussing this asp~ct is 
useful to complete th~ Qùery System description. 

The Query System general approach will be illustrated 
through an analogy between the Query system described in this 
thesis and an operating system. Both of them comprise sorne 
components which ·are relatively autonornous : as an operating ·. 
syste-m comprises a compiler, a linker, an editor, etc., we can 
isola te from the Query system speci.f ic components. However, as a 
program in source language mus~ undergo a sequence of 
transformations in order to be exécuted (compile, link,save and 
run), a query expressed in the Query Language will s~ccessively 
pass through specific s t eps to be interpreted. 

We begin this chapter by drawing the steps in analyzing a 
query and their chain. Then, we analyze·· in detail each of these 
steps by critici.zing if necessary their current irnplementation. 
Finally, we present a de tailed description of a last component of 
the Query System, the QS-database manager by describing the 
database · structure. we· will conclude this chapter by revi_ewing 
two aspects of the QS realization. 

- 84 -



_1,l, THE COMPONENT CHAIN IN INTERPRATING ~ OUERY 

A query expressed in the Query Language must undergo three 
steps in order to be interpreted. Figure 4.1 describes the 
chronological trend of events. 

During a first step, the query will be matched against the 
syntactic and semantic rules describing the query language. The 
query isdecomposed by isolating the language keywords This 
series of keywords will be checked basing on the language 
definition. Moreover, some arguments iri the query must be 
analyzed depending on the context in which the query is stated : 
sets and ranges defined so far and current state of the user­
database. The semantic analysis will take this context into 
account. 

on recipt of an expression 
syntacticaly and semanticaly 
check if the combination of 
(parenthesis rules). It then 
postfixed Polish notation. 

in which each basic criterion is 
consistent, the synthesizer will 
basic criteria makes sense 
transforms the expression into · 

Finally, the set of objects satisfying the criterion will be 
selected from the · current uni verse ( entire user-databas_e or 

. subset of this database if a universe is currently defined). 

Errors can be detected during the two first steps. In this 
case, an errer message is displayed on the screen and the query 
analysis is interrupted. 

- 85 -



_1.l_. THE COMPONENTS 

PARSER 

SYNTHESIZER 

NAME · 

SELECTION 

Figure _1 • .!_ 

~-l.•1• The Parser 

ERHORS 

ERRORS 

The purpose of thi.s component is to check if a query 
expressed using the Query Language is .. syntacticaly and 
semanticaly consistent. These two checks are performed 
seque·ntialy. This cutting out is due to the use of an exterrial 
software to perform the syntactic analysis. 

- 86 -



On recipt of the query as expressed by the user, the parser 
isolates the keywords from the query and checks its consistency 
with regardsto the Query Language definition. These checks are 
achieved by the LANG-PAK software, described in part 3.2.2.1. As 
specified before, the LANG- PAK analyzer isolates the · following 
eJements 

the command name (SET,LIST,RENAME, ... ) 

reserved keywords (BN=, TYPED,PROPERTY, ... ) 

logical operators (NOT,AND,OR) 

parenthesis. 

other arguments are isolated as "strings" and transrnitte~ to the 
semantic analyzer. for further checks. The staternents of the 
rneta-language are also isolated as "strings" and analyzed by 
calling SNTX (see part 3.2.2.2). 

In case of syntactic error, a message is displayed and any 
further analysis of this query is cancelled. The message 
displayed on the screen has always the same format, whatever is 
the syntactic error. More explicit informations could be provided 
to the user about the error type but in order to realize this, · 
the error must be intercepted inside LANG-PAi< and this is rather 
difficult to achieve~ 

Finally, the query is parsed with regards to its context, 
namely, the user-database and the sets and ranges currently 
defined. Any element not isolated as keyword during the syntactic 
analysis is checked by the semantic part of the parse·r. Examples 
are presented below; they describe semantic checks performed from 
a query: 

Examplè 

> SET set-1 = (DLC <= 07/17/1983) AND[? GENERATED BY pro-1]; 

set-1 this name may not be already assigned to a set or a range 
currently defined. 

07/17/1983 1 <= month c= 12 
1 c= day c= 31 

? GENERATED BY pro-1 

one and only one question mark used in each staternent 

the degree of the relationship (here : 2) must be 
in the range s specified in the meta-language 

-·pro-1· must reference to an object in the user-database 

- 87 -



The parsing of a statement is achieved by SNTX. Fu-rther 
checks must be perforrned because the parts in a statement may 
have specific values when they are used in the Query Language 
( set-name, range- name, · ? • , · 1 · ) . 

Each semantic and semantic inconsistency is pointed out to 
the user: the inappropriate partis displayed and the reason of 
its inconsistency is explained. Every command syntacticaly or 
semanticaly inconsistent is ignored. 

~-1-~- the Synthesizer 

On recipt of the definition of a new set judged _syntacticaly 
~nd sernanticaly consis tent, the synthesizer translates the query 
expression in postfixed Polish notation. It should be noted that, 
in this lang~age, the logical operators are : AND (intersection), 
OR (union) and NOT (complement). Parenthesis may be used to 
clarify the expression or to modify the operàtors priority rules . 

Examp_le 

S = (( Cl AND C2) OR C3) AND (C4 OR C5) 

Where Ci are bas i c criteria, s will be translated 
as : 

S = Cl C2 AND C3 OR C4 C5 OR AND 

Two basic rules are followed : 

1. All operators have the same priority; if no parenthesis are 
. used, the expression is evaluated from left to right. 

2. If no parenthesis are used, NOT- operator refers to the 
nearest argument. 

one errer can be de tected at this level. It concerns the 
parenthesis the numher of the left parenthesis must equal the 
nurnber of right paren l:hesis. The final query expression is 
produced as output of this step: the parsed stack. It will be 
used to select abjects f rom the use·r-database during the· name­
selection. 

- 88 -



., 

? 
1 :- 0 

READ ( NEXT) 

NEXT • 0 ..,."'----. 

y 

i • 0 

STACJ< [ i] • 

.. ( .. 

N 

V 

OUTPUT ( NEXT) 

STAC1<[i] • 

"NOT" 

V 

N 

OUTPUT ( STACK ( i ] ) 

l 
i :• i - 1 

RI GHT OUTPUT ( STACJ< [ i] ) 
PARENTHESIS 
MlSSING i :- i - l 

Figure ,1.l_ 

1-ceri -

i · - i + 1 

1 
STACK [ i ) : • NEXT 

- 89 -

OUTPUT ( STACK [-i ] ) 

1 
i :• i - l 

i 1• i + l 

1 
STACK(i) · • NEXT 

OPERATOR 

OUTPUT (STACJ<[i]) 

1 
i :• i - l 

,. STACK [ i] -
-----.---1 

LEPT 
PARENTEŒSIS 
MISSING 

.. ( .. 
1., 

i ·- i - 1 

1v 

OUTPUT ( STACK [ i ] ) 
1 

i :• i =- l 



~-l•l• The name selection 

A. The current algorithm 

Receiving the parsed stack, this component of the . Query 
System selects abjects satisfying . the criterion described in the 
parsed stack from the current universe (entire user-database or 
specific universe if currently defined). In the existing version, 
one checks if each abject satisfies the criterion, namely, we go 
over all the parsed stack for each abject of the universe. 

example 

the set Sl is defined as 

s1 ·= (Cl AND C2) OR C3 

where Ci -are basic criteria as defined in part 1.3.3. Sl will be 
translated by the synthetizer as : 

Sl = Cl C2 AND C3 OR 

For each abject Ai belonging to the universe, one will check if 
it satisfies Cl, then C2; then execute the logical ' AND-, 
evaluate Cl and execute the logi~al · oR· to get the -final answer. 

B. Criticism of ·this Implementation 

Sorne authors have already analyzed the problem of selection 
optimisation. Indeed, they have rightly understood that the 
selection has a main impact on the response time. The Query 
System described in this thesis is also concerned by this problem 
: its performance is still badly decreased because of the name 
selection implementation. For its defense, we can mention the 
following fact : every proposed optimisation we found in the 
litterature to improve the response time_ ( [ASTR. 75], [KIM. 82] or 
[YA0.79] ) requires a database organization allowing direct 
access to data _giving many access keys. This possibility is 
missing in the existing situation of the project. 

C. Proposals to Improve the Name Selection. 

Based on these observations, two new evaluation metnods are 
proposed. The first _one is based on the existing possibilities to 
access the user-databas e , the other one assumes a multiple-keys 
access. 

- 90 -



These two solutions are based on a binary tree built from 
the criterion : its leave~ repr~sent the basic criteria, the nodes 
are the boolean operators 

Example 

S = ((Cl AND C2) OR C3) AND (C4 OR CS) 

where Ci are basic criteria. The corresponding binary tree is 

AND 

/~ 
OR OR 

/ \ / \ 
AND C3 . C4 es 

/ \ 
C 1 C 2 

Figure !,.1 

At this level, two solutions are considered : 

1. we cannot avoid to scan entirely the universe in the 
existing circumstances. However, we can perceptibly reduce 
the evaluation time by using the binary tree and the 
properties of the logical ' AND ' and ·oR· when the 
expression is ·c1 AND c2·, if Cl is false, the entire 
expression will have the same result in any cases. In the 
same way, for · c1 OR c2 · , if Clis true, the expression will 
always be true. In these cases, the evaluation of the second 
basic criterion is redundant. 

The algorithm can still be improved by ordering the basic 
criteria depending on their supposed evaluation time : 
indeed, it is more time-consuming to evaluate · ? RECEIVES l 

than 'MESSAGE'. By ordering the basic criteria, the less 
time-consuming ones are evaluated first and if some criteria 
evaluation is not required, the evaluation time will 
decrease. 

2. The second solution seems to be faster to evaluate 
separatly each leaf of the tree, namely, select objects 
satisfying the basic criteria corresponding to the leaves. 
Afterwards, the program executes the intersection or the 
union of these subsets by proceeding from the leaves towards 
the root. 

- 91 -



example , 

fol_lowing the situat ion dèpicted in Figure · 4. 3, we obtain 
the following sequence of instructions : 

evaluate Cl -> get list Ll 

evaluate C2 --> L2 

Ll AND L2 --> L3 

evaluate C3 --> L4 

L3 OR L4 --> L5 

evaluate C4 --> L6 

evaluate C5 --> L7 

L6 OR L7 --> LB 

L5 AND LB --> L9 

This method also permits us to avoid to scan entirely 
the universe by only selecting objects in accordance 
with the basic criteria. However, . this method is 
inadaptable in the existing situation the access 
method to the user-database does not allow the 
selection of objects ori the basis of their dates-of­
last-change or a part of their basic names. 

- 92 -



~.~. THE ~-DATABASE MANAGE R 

The purpose of the QS-database manager is to interface the 
QS-database with the QS . program itself. Let us analyze the 
database structure and see how the QS-database manager uses this 
structure to perform i t s functions. 

~-~·~ · Q§_-database Gene ral Structure 

The QS- database i s implemented using ABDMS version D3.2 
. ABDMS is a transportable general- purpose dà.tabase management 
system based upon the CODASYL 1971 DBTG model for the netw9rk 
database approach, a s extended or restrected due to user 
requirements and ISDOS experience with ABDMS operation. More 
informations on this DBMS can be found in [WP191] . 

Figure 4.4 gives t he general structure of the QS-database . 
Object types are dep i cted by a rectangular box. Their names are 
located in the boxes. Access paths are represented by an arrow, 
joining the abject types owner and member. Their .naines and 
connectivities are also mentioned. The structure description in 

DBMS/DDL can be found in Appendix-3. 

- 93 -



NUB 

MATCH 

MATPAR 

SYSTEM SETOBJ PARSED 
ALLSET 

I 
T.YPSET DELSET LINPAR 

COMMEN 

LINCOM 

EXPRES _I 

LINEX P 

- 94 -



1,1,I, The Records 

SET0BJ 

This record represents either the logical entity "SET" or 
the logical entity "RANGE" defined in the Query System. Each 

·object is identified by its name (item NAMSET), Two other 
items . are associatea ·to the SET0BJ: its type, i.e., set or 
range (item TYPSET) and a "destroy" indicator (item DELSET) 

it allows the user to check if · the object was destroyed 
during the current session. Those objects are only 
physically destroyed at the end of the session. 

EXPRES 

An expression is associated to each set and range, nainely, 
the definition as it was specified by the user. The 
expression is decomposed into several lines (each line has 
at most 80 characters). An occurence of the EXPRES record­
type corresponds to each .line. 

COMMEN 

Comments can be associated to a set. An occurence of the 
C0MMEN record-type contains a : comment line (at most 80 
characters). Many lines can be associated to a set. A range 
may not possess any comment. 

PARSED 

MATCH 

A parsed stack . is associated to each set and range _(see 
4.3.2). Each element from the stack is an integer and 
corresponds to an occurence of the PARSED record-type. 

The set or range de finition could possess a reference to 
objects contained in the user-database indeed, by 
specifying a user-name, a constant or a part of user-name 
(using BN 6r SN=), the user constructs a dependency of 
the QS-database on the user-database. This · aependency could 
become harmful beca use abjects referenced in a query defined 
during . a previous ~;e ssion can be removed from the user­
database _between Lhe QS - sessjon. Because of that, no answer 

- 95 -



S2 

can be provided to such a query. Therefore, those . abjects 
database-keys cannot be recorded in the QS-database. The 
abjects will be recorded in their character forrns. An 
occurence of MATCH record-type is assigned to each match­
string, i.e., name . of an abject contained in the user­
database. 

The NUB allows to record the hie.rarchy existing between sets 
and ranges. Indeed, a set can reference other sets or ranges 
within its definition. In the same way, it can be referenced 
by other sets . . An occurence of NUB record-type is created 
each tirne a relationship between two sets exists. 

Example 

Sl 52 AND S3 If Sl is defined as 
and s1 as 54 = 53 OR SS where Si are set-narnes 

the relationship between these sets can be visualized in 
figure 4.5 . 

REFD 

51 5 4 

/\/\ 
S2 53 S5 

Figure 1_ • .2_ 

NUB occurences are created and linked to the 
sets. Figure 4.6 shows the created nubs. 
Sl,S2,S3,S4 and S5 are occurences of SETOBJ 
record-type. s1 · and S2 identify NUBl,Sl and 
S3 identify NUB2, ... Specifi.c access- paths 
link the sets to the nubs : S2 and S3 are 
referenced sets (access-path REFD); Sl 
references other sets (access-path : REFS). 

S1 S3 S4 

REFS REFS REFD REFD REF5 REF5 

NUB1 NUB2 NUB3 

- 96 -

NUB4 

S 5 



1.1.1. The Access-paths 

· ALLSET 

It allows to access to the sets and ranges. ALLSET is sorted · 
by alphabetic or.der of the item NAMSET. 

ALLEXP 

It allows from a set or a range to get its expression. 
ALLÈXP is sorted by creation order. 

ALLCOM 

It allows from a set to get its comment lines de.scribing . 
this set. ALLCOM is sorted by creation order. 

ALLCOM 

It allows . from a set to get i ts ·comment lines describing 
this set. ALLCOM is sorted by creation order. 

ALLMAT 

It allows, from a set or . a range, to access to match-strings 
contained in their definitions. ALLMAT is sorted. by creation 
order. 

From a set, to get all the sets and ranges that the set 
references within i ts definition. 

Allows from a set o r a range to get all the . objects that 
reference the given set or range 

example 

from fi~ure 4.6, we start at Sl to · find the sets it 
references. Using REPS, we find back NUBl and NUB2; then, by 
using REFD, we find S2 and S3. 

- 97 -



~.~. TWO ASPECTS OF THE~ REALIZATION 

rrwo a s pects of the Query System realization are 
discussed in this sec tion. The first one concerns the strategy 

· adopted in implementing the Query system and its consequences on 
the tests performed on it. The second one describes the 
conventions. used in c oding the QS program. Adopting these 
conventions will facilitate a further understanding of the 
program. 

~ .2,l- strategy and Planning to · rmplement the Q.â 

During the QS implementation, the coding strategy and the 
testing strategy aLcl combined. We used the incremental 
impleme·ntation method at the main phases le-vel : eàch of them was 
achieved independently of the others; afterwards, they were 
i ntegrated two by two l e ading to the global program. 

The order in which the phases were realized is as follows 

1. internal data structure 

2. QS-database manager 

3. synthesizer 

4. parser 

5. name selection 

6. range builder 

7. set and range manipulat i on 

Adopting this strategy t o implement the QS leads us to express 
the following criticisms. 

Two facts can be derived from the reading of this list : the low level 
modules have been impleme nted first ( phases ( 1) and ( 2) ) ·. As these 
two phases support the other ones, it was logi cal to implement them 
first. secondly, the codi ng of the phases involved in the query 
evaluation ( phases 3, 4 and 5 have not been achieved in the 
chronological order of app lication ( see part 4.2 ). As these tbree 

- phases are autonom ous, the i mplementation order didn·t see to be of 
any import ance once the i nterface between them is defined. Let us 
inspect these two aspects, ba sed on our personal experience. 

- 98 -



The choice to implement the low-level modules first has some 
consequences on the way the s e modules are tested. Indeed, this choice 
requires to build a driver- module to test these low-level modules. The 
input must be prepared wi thin this module; this operation is time­
consuming and tedious. Mo r eover, by testing these low-level 
subroutines, we get the i mpression that · some of these tests are 
unuseful because we do not take into account the conditions in which 
those modules are going to be called. Finally, no concrete result can 
be shown to the user t narnely, the persan who expressed functional 
requirernents. Therefore, the low-level modules are often 
unsufficiently tested. 

The structure of the inter'face between the phases (3), (4) and 
(5) was defined before we c oded these three phases . we found out that 
defining the output of a pha s e before really coding it is illusive 
because these outputs are still deterrninated at this low level. By 
designing the interface bet:or e a11, · we have to choose between drawing 
a unappropriate structure or performing feed-backs to modify phases 
already coded and tested. The refore, we should propose to irnplement 
these phases in chronological order (namely, (4), (3) ·and then (5) ). 
Moreover, by adopting this chronological strategy, we should benefit 
the sequence to get their outputs as ~nputs for the following phases. 
Thereby, the tests will be f acilitated. 

~.~.~. Convent i ons in Wr iting the Program 

Conventions have b e en adopted to translate the algorithrn 
into programming language. The purpose of these conventions Îs 
threefold. firstly, to facilitate the maintenance : by coding the 
subroutines according to the sa.me structure, the rnaintener ( · 
often different from the designer in the rsoos project · ) can 
easier draw the headlines of ·the module. secondly, these 
conve.ntions insure the ·program portability. Finally, their rnake 
easier the program development for the designer himself. 

Instead of listing all the conventions adopted in the ISDOS­
project, we wil1 draw the main ones from an example extracted 

· from the QS program. The exhaustive list can be found in 
[WP267] • 

- 99 ~ 



SUBAOUTINE DBCHCK (NA1v1E ,DBKEY ,IRC) 

C 

C GIVEN THE NAME Of AN OBJECT, CHECK IF IT IS ALREADY . 

C DEFINED IN THE QS-08 

C 

•CHAR ,NAME( 1) 

INTEGER DBKEY ,IRC 

C 

C NAME -> CHAR NAME TO BE CHECKED 

C DBKEY <- DBKEY DBKEY OF THE OBJECT O IF NONE 

C IRC <- RETURN CODE 

C 

•CHAR,NAMEF(30) · 

INTEGER IRET 

c ................. ... ................. ........ ...... .. 
C 

CALL FFM (#ALLSET# ,IRET) 

C 

C LOOP UNTIL FOUND OR EOF 

C 

10 CONTINUE 

IF ( IRET == -1 ) GOTO 600 

IF ( IRET <> 0 ) GOTO 800 

CALL GFM (#NAMSET# ,IALLSET# ,NAMEF ,IRET) 

IF ( LSCOMP (NAME, 1 ,NAMEF, 1 ,30) ) GOTO 500 

CALL FNM (#ALLSET# ,IAET) 

GOTO 10 

C 

C NAME FOUND GET KEY 

C 

500 CONTINUE 

CALL (GKM (#ALLSET# ,DBKEY ,IRET) 

IF ( IRET <> 0 ) GOTO 800 

_IRC = 0 

GOTO 900 

C 

C NAME NOT f OUND 

C 

C 

600 CONTINUE 

DBKEY = O 

IRC = O 

GOTO 900 

C ERROR 

C 

800 CONTINUE 

IRC = 1 . 

GOTO 900 

C 

C All DONE 

C 

900 CONTINUE 

AETURN 

END 

Figure 1,1 

- 100 -



As illustrated in Figure 4.7, the following conventions have 
been respected 

Coding in Extended Fortran 

E.F. is a language designed in the rsoos · project 
[WP265]. As ·shown in the example, it includes the 
declaration of character variable storage (*CHAR), the 
substitution of relational and boolean operators ( <> , 

& , ==, ·~ ), the substitution of named constants 
#NAMSET#, #ALLSET# ), ... 

The standardization of subroutines heading : 

rt must contain a brief description of the subroutine 
purpose and the description of the input and output 
parameters. 

The standardization of the subroutines termination 

One and only one "RETURN" is allowed in each 
subroutine; it is always preceded by the label "900". 

Incitement to introduce comment lines 

Labels : 

They · must be ordered. specific values are assigned to 
error cases. 

- 101 -



CONCLUSIONS 

The purpose of the thesis was to evaluate and improve the 
existing version of the Query system, a part of the SEM softwar e 
developped under the rsoos p r oject. A new version is proposed and 
described. With regards to t he previous one, the new version improves 
first the functionalities offe-red in the Query System the 
possibilities for · the querie s expression have been extended with the 
introduction of the RANGE command and the underlying concept; 
functions geared towards f acilitating the manipulation of sets and 
ranges have been doubled. The se new features have been introduced to 
respond to needs expressed by the ISDOS software users. Finally, the 
implementation aspect was als o reviewed and enhanced. By introducing 
two· autonomous par sers and by isolating the internal data structure, 
the structure of the Query Sy stem is simplified and its maintenance is 
facilitated .-

However, the proposed ve rs.ion could and should still be improved. 
Further realizations should concern first the irnplernentation level : 
the selection of user-names on the basis of the criterion peeds to be 
improved if we want to b e nefit from the new functions. Indeed, the · 
user will hesitate to use the tool if it stays slow and hence 
desagreeable to use. From a functional view point, a mechanism to 
classify the que ries is stil l required and should be implemented to 
cornplete the functions offere d by the Query System. 

This work was our fi r st experience in software engineering 
covering the entire development life-cycle of a project from the 
requirements to the operation. Its frarnework was a large software 
engineeri ng project with t earns working in Michigan and in Namur. 
Hereunder, we present an eva l uation of this f i rst experiencè. 

In developping the Q1 ~ery System, we have pointed out the 
following positive aspects: 

The project modularity i s one of its major strong point. Its 
advantages are three fold Firstly, ·it allows a fast 
understanding of the ge neral software and facilitates the first · 
approach of its struc ture. Secondly, one does not have to 
acquire a detailed know l edge of the entire project to be able to 
function effectively. Finaily, the coding aspect is minimiied : 
this is reduced to a sequence of calls to . low-level subroutines. 

The use of the Extended Fortran Highly facilitates 
maintenance, improves the program legibility 
portability. 

- 102 -

the software 
and ensures its 



. The conventions adopted within the ISDOS project also facilitate 
the maintenance and t he program development for the designer 
himself. 

Last but not the least, the environment we benefit in the 
University of Michigan to develop our tool and the contrast with 
our own university shows how important it is to work in a good 
environment and points out the consequences of this factor on the 
results. 

Sorne · aspects could still ' be· improved. · we mentioned the 
conventions within the project as a main .·benefit of the ISDOS 
software .. However, the design of the Query system shows the need for 
extending these conventions. They are justified by the number of 
persons working in the project and the rela.tively short time they 
spend on it. These conventions should propose a strate·gy to 
standardize the test procedure conducted in the project to improve the · 
software reliability. Moreover, the need for a standardized 
documentation is essential: most of the time, the only document is 
the code itself. Therefore, conventions should require the designer to 
describe the main structure of his tool, the algorithms _and the data 
structure . . The computer scientists in general and in this software . in 
particular have access to a tool to manage their documentations but 
they are reluctant to use them in their every day work. 

The development of the Query system has s.hown us the preponderant 
role of the project manager, even if our student · s status was 
particular. His function is to propose a schedule, to establish the 
work plan for the entire project, to coordinate the different persans 
involved and to distribute ·the ressources. However, such a frarnework 
shoulan · t be too constraining on the designer because this could push 
him to rush through the design phases to produce intermediate results 
as fast as possible. This situation might be detrimental to the 
eventual end-product. 

- 103 -



APPENDIX-1 

The following appendix gives the definition of the example . 
descibed in section . I.1.5 in ISLDM language. Further informations 
about this language can be found in [WP279] . 

- 104 -



..!_. OBJECTS 

OBJECT PROCESS; 
SYNONYMS FROC 
DOCUMENTATION 
Allows to describe a process, namely, an. action performed by 
the system; 
CODE NMPROC 30 ; 

OBJECT MESSAGE; 
SYNONYMS MSG 
DOCUMENTATION; 
Allows to describe a message type interchanged between an 
INTERFACE and a PROCESS or between two PROCESS 
CODE NMMSG 31 ; ; 

OBJECT INTERFACE; 
DOCUMENTATION 
Entity coming from the organization or from the environment 
the Information system interacts with by exchanging MESSAGES 
CODE NMCOND 32 ; 

i. TEXTS 

TEXT DESCRIPTION; 
APPLIES ALL; 
CODE CTDES 40 

TEXT PROCEDURE 
APPLIES PROCESS 
CODE CTPROC 41; 

l_. VALUE-RANGE 

VALUE-RANGE ANYINTEGER 
VALUES NUMBER; 

- 105 -



_1. PROPERTIES 

PROPERTY PRIORITY; 
APPLIES PROÇESS 
DOCUMENTATION; 
Define the priori t y level this process benefits. Na.me-constants ai 
used for its value ; 
VALUES HIGH,LOW,MIDDLE,NONE 
CODE PPPRIO 101 ; 

PROPERTY PERFORMING-TIME 
APPLIES PROCESS; 
DOCUMENTATION; 
This is the time needed to execute the •described process. The tim 
is counted in mili-seconds 
VALUE INTEGER; 
CODE PPPFTI 102 ; 

PROPERTY PROBABILITY 
APPLIES CONDITION 
DOCUMENTATION; 
This is . the probability that the process will generate the · messag( 
VALUE REAL; 
CODE PPPROB 103 

2 -· NAME-CONSTANTS 

NAME-CONSTANT HIGH 

NAME-CONSTANT LOW 

NAME-CONSTANT MIDDLE 

NAME-CONSTANT NONE 

- 106 -



_§, RELATIONSHIPS 

***** ON TERMINATION TRIGGERS ***** 

RELATION tgrs-term-rel; 
PARTS triggor-part, triggered-part ; 
DOCUMENTATION; 
The relationship express that on termination, a process 
can trigger another one; 
COMBINATION triggor-part PROCESS WITH triggered-part PROCESS 
CONNECTIVITY MANY triggor-part, triggered-part; 
CODE RTTGS 301; 
CONNECTION-TYPE ' Sl ; 
STORED triggor-part 1 

triggered-part 2 

STATEMENT tgrs-smt i 

USED triggor-part, trgs-term- rel 
FORM ON TERMINATION TRIGGERS triggered-part 

STATEMENT tgred-smt; 
.USED trigge~ed-part, trgs-term-rel 
FORM TRIGGERED BY TERMINATION OF triggor~part ' ; 

***** GENERATES IF***..,._* 

RELATION gnts-rel; 
PARTS gnts-proc-part, gnts-msg-part, gnts-cond-part, 

gnts-number-part; 
COMBINATION gnts-proc-part PROCESS 

WITH gnts-msg-part MESSAGE 
WITH gnts-cond-part CONDITION· 
WITH gnts-number-part VALUE-FOR ANYINTEGER i 

CONNECTIVITY MAlj'( gnts-proc-p.art, gnts-msg-part 
ONE gnts-cond-part, gnts-number-part i . 

CONNECTION-TYPE P3 ; 
CODE 302 ; 

STORED gnts-proc-part 3 , 
gnts-msg-part 4 , · 
gnts-cond-part 1 , 
gnts-number-part 2 

. STATEMENT ·-gnts-smt ; 
USED gnts-proc-par t gnts-rel; 
FORM GENERATES gnts-number- part TIMES gnts-msg-part IF 

gnts - cond-pa rt; 

STATEMENT gnted-smt .; 
USED gnts-msg-part gnts rel . ; 
FORM GENE~TED gnts-number-part TIMES BY gnts proc-part IF . 

gnts-cond-pa rt ; 

- 107 -



1t1e1e * 1r RECEIVES 1e *w 1r1c 

RELATION rcvs-rel ; 
PARTS rcvs-msg-part, rcvs-receiver-part; 
COMBINATION rcvs-msg-part MESSAGE .· 

WITH r .cvs-re ceiver-part PROCESS, INTERFACE i 

CONNECTIVITY MANY rcvs-msg-part, rcvs-receiver-part; · 
CONNECTION-TYPE Sl ; 
CODE RTRCVS 303 ; 

STORED rcvs-msg-part 1, 
rcvs-receiver-part 2 

STATEMENT rcvd-smt 
USED rcvs-rns:g-part · rcvs-rel 
FORM RECEIVED BY rcvs-receiver-part 

STATEMENT rcvs-smt; 
USED rcvs-receiver-part rcvs-rel . ; 
FORM RECEIVES rcvs-rnsg-part; 

1rxx1ex GENERATES***** 

RELATION gen-rel; 
PARTS generts-part, genertd-part; 
COMBINATION generts-part · INTERFACE 

WITH genertd~part MESSAGE 
CONNECTIVITY MANY generts-part, gene·rtd-part 
CONNECTION-TYPE Sl ; 
CODE RTGENE 30.4 ; 

STORED generts-part 1 
genertd-part 2 

STATEMENT gens-smt i 

USED genets-part, gen-rel; 
FORM GENERATES genetd-part 

STATEMENT gend-s~t 
USED genertd-part, gen-rel; 
FORM GENERATED BY generts- part 

- 108 -



APPENDIX - 2 

Here follows the definition of the Query Language using the 
LANG-PAK meta-language. The definition of the elements contained in 
this meta-language can be found in table 3 . 3 . 

- 109 -



High level que r y definition 

<query> ( <Univ-smt> 1 <ren- smt> 1 <Comrnent-smt> 1 <displ-smt> 1 
<del- srnt> 1 <show- smt> 1 <exec-smt> 1 <hlp- srnt> 1 
<list-smt> 1 <punch-smt> l <read- srnt> 1 <range-smt> 
<let- smt> 1 <db-srnt> J <stop- srnt> ) EOS ; 

SET command de f inition 

< let-smt> = ( •·•LET"( 220) 1 "SET"( 220) ) S( "=" V ) " = " <let-body> 

<"let-body> = ( " { "( 3) <user- list> ")" 1 <Criterion> ) ; 

<user-list> = ( <first-user-name> (O 9) <last- user- name> 

< first-user-name > = S( ", " ) 11
, " 

< last-user-:name > = S( "} " V ) 

RENAME command definition 

<rèn-smt> = ( "RENAME"( 240) "RNM"( 240) ) S("TO BE" V) 
( "TO BE" ) ( 0 l ) <set-na.me> 

Comment command definition 

<Comrnent-smt> - ( "DELETE"( 290) 1 "DEL"( 290) 1 "AOD"( 300) l 
"REPLACE"( 310) 1 "REPL"( 310) . ) ( "COMMENT" 

( "FROM" 1 " f'OR" ) ( 0 1) <set- na.me> 

- 110 -

"CMT") 



Criterion definition 

<Criterion> = ( "( "( 1) ) ( o 1) ( <relational-part>) ( o 99) 

( "("(l) ) (O 1) (<not-sign>) (o 1) ( "("(l) ) (O 1) 

( "["(19) <inv-in-rel> ., ·]"(20) <m-type-of-query> ) 
( 

11
)

11 (2) ) (0 3) ; 

<relational-part> = ( "("(l) ) (0 1) ( <not-sign> ) (0 1) 

( "("(l) ) (0 1) ( "("(19) <inv-in-rel> "]"(20) 1 
<m-type-of-query> ) ( ")"( 2) ) ( o 2) <relational-operator> 

<m-type-of-query> · = ( "("(l) )('0 1) <type-of-query> ( ")"(2) ) (0 1) 

<type-of-query> = ("BN"(66) "=" <match-string> 1 "SN"(67) "-" <match- string> 
"RAS SYNONYMS"( 68) 1 "DLC"( 69) <0peraton <range-spec-date> 1 

"MAXC"( 70) "=" I 1 "MINC"( 71) "=" I 1 "TYPED"( 72) 
"UNTYPED"(73) l "RAS TEXT"(74) l "RAS PROPERTY"(75) 
"ISOLATED"( 76) l "RAS"( 80) <textual-comrnent-name> l <type-name> 
( · ")"(2) ) (0 2) 

<inv-in-rel> 

<not-sign> = 

S( "] Il ) 

"NOT"( 7) 

<relational-operator> 

<operator> = ( "="( 12) 
">"(11) ) i 

("AND"(5) 1 "&"(5) 1 "OR"(6) "1"(6) ) 

"<="(13) 1 ">="(14) 1 "<>"(15) 1 "<"(10) 

<set-name> = <isdos-name> 

<range-spec-date> = I ("/") (O l) I ("/") (O 1) I 

<textual-comrnent-name> 

<ppty-value> = .( N l I 

S("(" V) (")"(2) 1 <ppty-value> ) (O 1) 

S( V) ) ; 

<statement> S(V) 

<type-na.me>= S(")" V) 

<user-na.me> <isdos-name> 

<match-string>= <isdos-name > 

<isdos-name> = S(":" " .. , "=" "1" "AND" "OR" "NOT" "( Il Il)" " { .. "}" V) 

- 111 -



SHOW command definition 

<Show-smt> = ( "SHOW"( 400) ) ( "SET-NAMES"( 62) 1 "RANGES"( 79) J ."RN"( 78) 

"_RANGE-NAMES"( 78} 1 "SN"( 62) 1 "CRITERIA"( 63} 1 "CRTA"( 63} 1 
<set-name> ) 

DISPLAY command definition 

<displ-srnt> = ( "DISPLAY"( 200) 1 "DISPL"( 200) ) ( "SET- NAMES"( 62) 

"UNIVERSE"( 77} 1 "SN"( 62) 1 "CRITERIA" ( 63) 1 "CRTA"( 63) 

"UNIV"( 77) "RN"( 78) J "RANGES"( 79) 1 "RANGE-NA.MES"( 78) 

< set- name > ) 

DESTROY, UNDESTROY and ERASE commands definition 

<del-srnt> = ( "DESTROY"( 320) "UNDESTROY"( 380) "UNDES"( 380) 
"ERASE"( 210) ) <Set- list> 

EXECUTE comma nd definition 

<exec-smt> ( "EXECUTE"( 270) 1 "( "EXEC"( 270) ) ( "FROM") ( 0 l) ( S) ( 0 l) 

LIST command definition 

< list- smt> = "LIST"( 230) ( S "( "-" V ) l S 

< let-body> ) ( o 1) ( <arg>) ( o 1) 
( " = " < let- body> 

<arg> = ("PRESENTATION"(58) 1 PRSNT"(58) ) ("BASIC"(64) 
"SYNONYM(65) ) 

- 112 -



SET UNIVERSE command definition 

<Univ-srnt> = "SET" ("UNIVERSE"(250) 

( "DB"( 52) 1 <let-body> ) 

"UNIV"(250) ) "=" 

READ cornmand definition 

<read-smt> = "READ"( 280) <Set-name> ( "FROM"( 777) ) ( 0 l) ( S) ( 0 l) 

PUNCH staternent definition 

<punch-smt> = "PUNCH"(360) ( <first-set-name>) (O 9) <last-set-narne> 
( "0N"(777) - S("N0EMPTY" "EMPTY" V ) ) (O· l) ("EMPTY"(59) l 
"N0EMPTY"(G0) ) (0 l) 

<first-set-name> = S(",") 

<last-set-name> = S(V) 

" " , 

RANGE cornmand definition 

<range-smt> = "RANGE"( 410) <range-narne> "=" ( <list-value-ra> 
<Compare> l <Compare-1> l <two-borders> ) . 

< list-value-ra> = " { " ( B ) < list-r > "} " 

<Compare> = ( "LOWER-THAN"( 10) l "LT"( 10) l "GREATER-THAN"•( ll) 1 "GT"( 11) 
"LOWER-EQUAL"(l3) l "LE"(l3) l "GREATER-EQUAL"(l4) 1 "GE"(l4) l 
"EQUAL"( 12) l "EQ"( 12) 1 "NON-EQUAL"( 15) 1 "NE''( 15) )· ( N I I 1 . 
"'"(122) S("'") ., . ., ) 

<Compare-l> = ( "EQUAL"( 12) 1 "EQ"( 12) 1 "NON-EQUAL"( 15) 1 "NE"( 15) ) S ; 

< two-borders > ( N I I 1 " · " ( 122 ) S( " · ;, ) " · " ) "THRU" ( N l I 1 " · " ( 122 ) 
S( " - Il ) ) 

<list-r> = · (<value-r>) (0 9) <last-value-r> 

<Value-r> = ( N 1 "'"(122) S("'") .. . .. 1 S(",") ) ",· " 

<last-value-r> = ( N 1 "'"(122) S("'") ..... 1 S("}" V) ) 

<range-name> = S("=" V) 

- 113 -



SAVE and RESTORE commands definition 

<db-smt> = ( "RESTORE"( 370) t ' 'REST"( 370) t "SAVE"( 330) ) ( "ALL"( 5l) 1 
<set-list> ) 

<set- list> = ( <first- set-name> ) (o 9) <last- set:-:-- name> ("RELATED"(54)) 

( 0 1) 

STOP comma nd definition 

<Stop- smt> = "STOP"( 260) . 

HELP command definition 

<hlp-snt> "HELP"( 350) ( <Command>) ( 0 l) 

<Command> ( "DISPLAY"( 200) t "DSPL"( 200) t "ERASE"( 210) t "LET"( 220) 1 
"LIST"(230) t "RENAME"(240) t "RNM"(240) 1 "SET UNIVERSE"(250) 1 

"SET UNIV"(250) J "RANGE"(410} 1 "STOP"(260) 1 "DELETE COMMENT"(290) t 

"DEL COMMENT'.'(290) 1 " DEL CMT"(290) 1 "DELETE CMT"(290) t 

"ADD COMMENT"(300} 1 "AOD CM'f"(300} I "REPLACE COMMENT"(310) 

"REPLACE CMT"( 310) 1 "REPL COMMENT"( 3_10) 1 "REPL CMT"( 310) . J 

"EXECUTE"( 270) l "EXEC ''.( 270) 1 <Com-next> ) 

<Com- next> = ( "READ"( 280 ) . 1 "PUNCH"( 360) 1 "SAVE"( 330) l "RESTORE''( 370) 
"REST"(370) 1 "DESTROY"(320) 1 "SET"(220} l "SHOW"(400) ) i 

READ command definition 

<read - smt> "READ"(280) <Se t-name> ("FROM"(777) ) (0 1) (S) (0 1) 

- 114 -



APPENDIX --3 

Here follows the description of the QS-database expressed in the 
DDL of ADBMS. Further informations on ADBMS can be found in (WP191]. 

1 Records 

RECORD SETOBJ 
ITEM NAMESET CHAR 30 

ITEM DELSET INTEG 16 

ITEM TYPSET INTEG 16 

RECORD EXPRES 
ITEM LINEXP CHAR 80 

RECORD COMMEN 
ITE-M LINCOM CHAR 80 

RECORD PARSED 
ITEM LINPAR INTEG _16 

RECORD MATCH 
ITEM MATPAR CHAR 80 

. RECORD NUB 

- 115 -



SET ALLSET S0RTED NAMSET 
0WNER SYSTEM 
MEMBER SET0BJ 

SET ALLEXP FIF0 
0WNER SET0BJ 
MEMBER EXPRES 

SET ALLC0M FIF0 
OWNER SET0BJ 
MEMBER C0MMEN 

SET ALLPAR FIF0 
0WNER SET0BJ 
MEMBER P ARSED 

SET REFD FIF0 
0WNER SET0BJ 
MEMBER NUB 

SET REFS FIF0 
0WNER SET0BJ 
MEMBER NUB 

SET ALLMAT FIF0 
0WNER SETOBJ 
MEMBER MATCH 

- 116 -



REFERENCES 

[ASTR.75] M.M. Astrahan, D.D. Chamberlin 
"Irnplernentation of a Structured English Query Language 
Communications of the ACM, Vol 18 Nr 10, Oct 1975. 

[ATZE,81] P. Atzeni and P.P, Chen 
"Cornpleteness of query languages for the Entity-Re,lationship 
model" 
Entity-Relationship Approach to Information Modeling and 
Analysis, E.R. Institute, 1981. 

[BODA,83] F. Bodart, Y. Pigneur 
"Conception Assistee des 
Premiere Partie 1 · etugg 
Conceptuelle", 

Applications Informatiques. 
g_· Opportuni te -· et 1 · Analyse 

Ed. Masson, Paris. Expected, 

[BUNE.82] P.Bunernan, R.E. Frankel, R. Nikhil, 
"An Implementation Technique for Database Query Languages ", 
ACM Transactions on Database systems, Vol 7, Nr 2,June 1982. 

[CHAM.76] D.D.Chamberlin and all 
"SEQUEL 2 A unified Approach to Data Definition, 

Manipulation and control ". 
IBM research Dvlpt 20, Nov 1976, pp 560-575. 

[CHEN.76] P.P. Chen 
"The Entity-Relationship rnodel - Toward a unified view · of 
data", 
ACM Transactions on Database Systems, Vol 1, Nr 1, March 
1976. 

[DATE.77] C.J. Date 
"An Introduction .t.Q Database Systems" ( 2nd Ed. ) , 
Addison- Wesley Reading, Mass., 1977. 

- 117 -



( DSL. 82] "DSL : manue 1 de re ferences" 
Institut d · Informatique, Facultes de Namur, 1982. 

[GHOS.77] S.P. Ghosh 
"Data Base Organization for Data Management", 
Academic Press, New York, 1977. 

[HEIN.75] L.E. Heindel, J.T. Roberto 
"LANG-PAK, An Interactive Language Design system" 
Elsevier Publishing Company, Inc. New York, 1975. 

[ HERO , 8 0 ] C . F . He rot , · 
"Spacial Management of Data", 
ACM Transactions on Database Systems, Vol 5, Nr 4, Dec 1980, 
pp 493-514. 

[HUTT.79] A.T.P. Hutt, 
"~ Relational Database Management System", 
Wiley and sons, Hampshire, 1979. 

[IM47] B. Geubelle, 
· .,~ Query System for the System Encyclopedia Manager", 
ISDOS Interna! Memorandum Nr 47, 1982. 

[KIM. 8 2 ] W. Kim, 
"On Optimizing an SQL-like Nested Query", 
ACM ·Transactions on oatabase Systems, Vol 7, Nr 3, Sept 
1982. 

[PIR0.74] A. Pirotte, P. Wodon, 
"~ Comprehensive Formal ~ Language for the Relational 
Database : FOL" 
MBLE Research Laboratory Report R283, Dec 1974. 

[PIR0.75] A.Pirotte 
"Comparaison de langages g·interrogation de bases de donnees 
relationnelles" 
Technical note NlOO, · Ecole a·Ete de 1· AFCET, Rabat, July 
1975. 

- 118 -



( PSL. 82] "PSL / PSA user · ~ re ference Manual version .2 .~", 
nr ref 171, ISDOS project, University of Michigan, July 82. 

[REIS.al] P. Reisner 
"Hurnan Factor stud i es of oatabase Query Languages a Survey 
and Assessement", 
ACM Computing surveys, Vol 13, Nr 1, March 1981. 

(ROSE.BO] D.J. Rosenkrantz, H. B. Hunt 
"Processing Conjunc tive Predicates and Queries", 
Proceedings on Very Large Data Bases, 6th conference, Oct 
1980. 

(STEM.78] o.w. stemple, c. Welty, M. Becker, W.Mayfield, 
"Tablet : The Algebra Based Language For Enguiring of 
Tables", 
Technical Report 79/19, Computer and Information Science 
Dept, Univ Massachussetts, Nov 1978. 

(STON.76] M. stonebra.ker, E . wong, P. Kreps, G. He~d 
"The Design and Implementation of INGRES", 
ACM Transactions on oatabase systems, Vol 1, Nr 3, Sept 
1976. 

(TEICH. 79] ·. D. Teichroew, P. Macasovic, E. A. Hersley, Y. Yamamoto, 
"Application of the Entity- Relationship Approach to 
Information Processing Systems Modelling" 
Proceedings, International Conference on Entity- Relationship 
Approach to System Analyzis and Design, Dec 10-12, 1979, Los 
Angeles, pp 23-51. 

[TH119] D. Marcellus, K.C. Kang 
"~ ouery system fo r Generalizied Analyzer Gl.Q", 
ISDOS Technical Memorandum 119, Sept 1978. 

[TM427] K.C. Ka_ng 
"Suggested irnprovernents of the~ System", 
ISDOS Technical Memorandum 427, April 1982. 

- 119 - · 



[WELT.81] C. Wel~y, O. Stemple 
"Human . Factor Comparison of a · Procedural and a 
procedural Query Language" 

Non-

ACM Transactions o~ Database ~stems, Vol 6, Nr 4, Dec 1981. 

[WP191] "li oatabase Management system (ADBMS) based upon DBTG 71", 
ISDOS Working Paper Nr 191, ISDOS Project, Ann Arbor, MI, 
Feb 1981. 

[WP265] E.A. Hershey III, Y. Yamamoto, . E. Chikosky, O. Mielta, 
"Extended FORTRAN (EF)", 
ISDOS Working Paper Nr 265, ISDOS Project, Ann Arbor, MI, 
July 1979. 

[WP267] E.A. Hershey III, Y. Yamamoto, E. Chikosky, D. Mi~lta, 
"ISDOS Software Conventions", • 
ISDOS Working Pape r Nr 267, ISDOS Project, Ann Arbor, MI, 
July 1979. 

[WP279] "Information System Language Definition System Language 
User · .ê_ Manual Version Ml._l", 
ISOOS Working paper Nr 279, ISDOS Project, Ann Arbor, MI, . 
Feb 1980. 

[WP456] "System Encyclopedia Manager ( SEM) ouery system User- _;i 
Manual", 
ISDOS Working paper Nr 456, ISDOS Project, Ann Arbor, MI, 
Jan 1983. 

[YA0.79] S.B. Yao 
"Optimization of Query Evaluation Algorithms", 
ACM Transactions on oatabase systems, Vol 4, Nr 2, June 
1979. 

[YOUR.79] E. Yourdon, L.L. Constantine, 
"Structured Design", 
Prentice-Hall, NewJ ersey, 1979. 

- 120 -



[YUZ0.81) Y. Yamamoto 
"An Approach to the Generalization of ·software Life cycle 
Support Systems", 
Ph,D. Thesis, The University of Michigan, 1981, 

[ZL00.80) M.M. Zloof, 
"Query by Example", 
ACM Computing Surveys, Vol 13, Nr 1, March 1980. 

- 121 -




