
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Visualizing SQL Execution Traces for Program Comprehension

Meurice, Loup

Award date:
2013

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. Mar. 2024

https://researchportal.unamur.be/en/studentTheses/1f16ebd9-92b5-47b6-b0cb-6927eb16afa0

Facultés Universitaires Notre-Dame de la Paix, Namur
Faculté d’Informatique

Année académique 2012–2013

'

&

$

%

Visualizing SQL Execution Traces for Program

Comprehension

Loup Meurice

Mâıtre de stage : Anthony Cleve

Promoteur : (Signature pour approbation du dépôt - REE art. 40)

Mémoire présenté en vue de l’obtention du grade de
Master en Sciences Informatiques.

Abstract

Software maintenance and evolution are important and sensitive activities
becoming ubiquitous nowadays. They constitute complex processes due to
different factors (lack of money/time/documentation or merely a bad pro-
gramming work) but those processes are indispensable to keep software sys-
tems adapted to ever-changing business needs and technological platforms.
Program comprehension is a typical initial phase of software maintenance
and evolution. Indeed, understanding existing software systems is a prelimi-
nary step that is required before making any changes to them. Furthermore,
when understanding data-intensive programs, the communication between
those programs and their database constitutes an important aspect that is
largely unexplored by the program comprehension research community.

This Master’s thesis aims to address this issue by proposing a novel tool-
supported approach that consists in analysing the database manipulation be-
haviour of data-intensive programs. The proposed approach combines the use
of dynamic program analysis and software visualization techniques. Thanks
to our approach, we bring a new way to automatically support data-intensive
program comprehension, with the goal to reduce the costs of this process.

Keywords: dynamic analysis, visualization, SQL, program comprehen-
sion.

Contents

1 Introduction 1
1.1 Software evolution . 1
1.2 Program comprehension . 2
1.3 Data-intensive systems . 4
1.4 SQL statement analysis . 4
1.5 Thesis purposes . 8
1.6 Overview . 8

2 State of the Art 9
2.1 A Systematic Survey of Program Comprehension through Dy-

namic Analysis . 9
2.1.1 Presentation . 9
2.1.2 The proposed tool . 13

2.2 Studying of particular cases 13
2.2.1 Dynamic Program Analysis for Database Reverse En-

gineering . 13
2.2.2 WAFA: Fine-grained Dynamic Analysis of Web Appli-

cations . 14
2.2.3 An approach for mining services in database–oriented

applications . 14
2.2.4 Improving Dynamic Data Analysis with Aspect-Oriented

Programming . 15
2.2.5 Visualizing Dynamic Software System Information through

High-level Models . 15
2.2.6 Recovering High-Level Views of Object-Oriented Ap-

plications from Static and Dynamic Information 16
2.2.7 CodeCity . 16
2.2.8 EXTRAVIS . 17

3 Database Engineering 19
3.1 Database schemas . 21

3.1.1 Conceptual schema . 21
3.1.2 Logical schema . 22
3.1.3 Physical schema . 24
3.1.4 Database code . 24

3.2 ER model subset considered 26
3.3 Schema mapping . 30
3.4 SQL . 32

3.4.1 SQL-DDL . 33
3.4.2 SQL-DML . 34

3.5 Database reverse engineering 35

4 DAViS 37
4.1 Context . 37
4.2 Offline method . 38
4.3 Online method . 41
4.4 Two levels of abstraction . 43

4.4.1 Logical approach . 44
4.4.2 Conceptual approach 45

4.5 The two visualizations . 47
4.5.1 The query visualization 47
4.5.2 The global visualization 48

4.6 The two-phase principle . 48

5 Visualization 51
5.1 Graph-based representation 51
5.2 Global visualization . 54

5.2.1 Thickness pattern . 55
5.2.2 Advantages of the global visualization 55

5.3 Query visualization . 56
5.3.1 Logical approach . 57
5.3.2 Conceptual approach 59

6 Implementation 64
6.1 DB-Main . 64
6.2 JIDBM . 66
6.3 JDBC . 67
6.4 AspectJ . 68
6.5 SQL Parser . 69

6.5.1 SQL hypotheses . 69
6.5.2 Parsed query structures 72

6.6 JUNG . 76

7 Evaluation 77
7.1 Case studies . 77

7.1.1 Webcampus . 77
7.1.2 Rever . 79

7.2 Forces and limitations . 80
7.2.1 Forces . 80
7.2.2 Limitations . 81

7.3 Comparison with the survey 81
7.4 Usage possibilities . 83

8 Conclusion 85
8.1 Summary and contributions 85
8.2 Future directions . 86

Appendices 89

A Additional functionalities 90

B Offline and online methods 93

List of Figures

1.1 The software life cycle according to Boehm. 2
1.2 Simple database with two tables 5
1.3 Example of static SQL : extracting address and date of cus-

tomers placing a particular order. 5
1.4 Common example of dynamic SQL: selecting the name of a

particular customer. 5
1.5 Program instrumentation example - bold line represents the

code modification . 6
1.6 Aspect-based tracing example 7
1.7 API Overloading example - Statement class overloading 7

2.1 Distribution of the attributes in each facet across the summa-
rized articles. The X-axis represents all the attributes classi-
fied by facet and the Y-axis represents the number of articles
affected to each attribute. This graph is extracted from the
report of Delft University. 12

2.2 Logging Aspect . 15

3.1 Relational database building - Process 20
3.2 Customer-Order : conceptual schema 22
3.3 Customer-Order : logical schema 24
3.4 DDL Code - Translation of logical schema 25
3.5 Metaschema of ER model . 26
3.6 Example of compound attribute - ADDRESS 27
3.7 Example of IS-A relationship - CUSTOMER 27
3.8 Example of non-binary relationship type - A customer orders

some products for a particular company. 28
3.9 Compound attribute split into simple attributes - ADDRESS . 28
3.10 Transformation of a supertype into relationship types - CUS-

TOMER . 29

3.11 Transformation of a complex relationship type into binary re-
lationship types - Customer ordering some products for a par-
ticular company. 29

3.12 Metaschema of the ER model subset considered in this thesis. 30
3.13 Correspondence between conceptual and logical schema ex-

pressed by the relational model - Overview 31
3.14 DDL example - Creating table CUSTOMER 33
3.15 DDL example - Deleting column 33
3.16 DML example - Inserting new product 34
3.17 DML example - Selecting CUSTOMER 34
3.18 DML example - Updating product’s stock 34
3.19 DML example - Deleting product 34
3.20 Database reverse engineering process 36

4.1 Program-Database context . 38
4.2 Offline method - First phase 39
4.3 Offline method - Second phase 40
4.4 Offline method - Global view 41
4.5 Online method - Overview . 42
4.6 Summary of DAViS features. 43

5.1 Example of logical visualization based on graph representa-
tion - the arrow represents a foreign key while the dotted line
represents a join relationship. A continuous line represents a
parental (containment) link between a table and its column(s). 53

5.2 Example of conceptual visualization based on graph represen-
tation. 53

5.3 Context applied on a time line. 54
5.4 Thickness pattern . 55
5.5 Statei corresponds to the graph state at time αi. 56
5.6 SQL query selecting the name and price of a particular product. 57
5.7 Query visualization in logical approach - the two phases 58
5.8 Example of SQL query. 58
5.9 Query visualization in logical approach - the two phases 59
5.10 Application domain - entities and relationships 60
5.11 Application domain - clustering of entities of the same nature 60
5.12 Example of SQL query - selecting customers having ordered a

particular product. 63

6.1 Example of our conceptual schema written with DB-Main tool 65

6.2 Example of database querying with JDBC - selecting the ad-
dress of a particular customer 67

6.3 Example of database updating with JDBC - customer deleting 68
6.4 Online method - AspectJ code 69
6.5 Example of managed SQL syntax 71
6.6 Sub-request (IN clause) - Example of managed sub-request:

line 3 and line 5 are both managed sub-requests 71
6.7 Sub-request (IN clause) - Example of unmanaged sub-request

because element (NAME,STOCK) is not mono-component . . 71
6.8 Sub-request (EXISTS clause) - Example 72
6.9 Parsing process . 73
6.10 Java structures of a parsed query - modelling 75

7.1 Logical schema of Webcampus’s database 78
7.2 SQL query - WHEN/THEN/ELSE 79

8.1 Example of undocumented code 87
8.2 Example of redocumented code 88

A.1 DAViS interface . 92

B.1 Offline method - Components 93
B.2 Online method - Components 94

Chapter 1

Introduction

1.1 Software evolution

Nowadays, we live in a society and an economic world that constantly and
rapidly change, which in turn forces the companies to evolve in order to
adapt to their ever-changing environment. Moreover, in order to satisfy the
market requirements, companies are often likely to evolve and maintain their
software systems. Indeed, software systems are omnipresent and they of-
ten constitute the heart of business-critical activities. Software maintenance,
defined as ”the modification of a software product after delivery to correct
faults, to improve performance or other attributes, or to adapt the product
to a changed environment.” [3], is a complex process that is part of software
engineering. Software engineering is the application of a systematic and dis-
ciplined approach allowing the development of a software product. Such an
approach is called the software development process, also known as the soft-
ware development life-cycle(SDLC) [5] [18]. This process describes the tasks
and activities to follow during software development. We can distinguish
three main software development activities (Figure 1.1):

1. System definition: the development process begins with an analysis
aiming to define the requirements of the system.

2. Implementation: this activity regroups the system implementation (code
writing) and testing processes.

3. Maintenance: this activity represents the maintenance and evolution
of the system over time.

One identifies four categories of software maintenance [1]:

1

Figure 1.1: The software life cycle according to Boehm.

- Corrective maintenance: identifying and fixing errors present in a soft-
ware product. It consists in correcting discovered problems.

- Adaptive maintenance: modifying the software in order to satisfy a
changing environment.

- Perfective maintenance: modifying the software product to satisfy new
user requirements.

- Preventive maintenance: modifying the software product to increase
maintainability and reliability. This category of maintenance aims to
prevent eventual problems in the future.

Software systems maintenance and evolution is a complex, time-consuming,
expensive and risky process. One considers that software maintenance rep-
resents on average about 60 percent of the entire software development costs
and it is therefore the most costly phase of the software life cycle [13].

Furthermore, the community is more and more inclined to use the term
software evolution to refer to software maintenance. By simplification, we
will consider in the remaining of this thesis that software evolution and main-
tenance denote the same process.

1.2 Program comprehension

One of the most important processes in software evolution is program un-
derstanding. Indeed, software evolution and maintenance need a preliminary
phase of program comprehension. An in-depth understanding is necessary

2

before maintenance, but this process remains a sensitive and time(money)-
consuming process. Indeed, one considers that more than 50 percent of the
total costs of software maintenance are spent on (program) comprehension.
This process mainly depends on existing program documentation but unfor-
tunately, this documentation is often partial, outdated or simply missing.
Furthermore, a lack of programming competences and important turnover of
programmers make program understanding more difficult.
Therefore, re-documentation and program comprehension are part of soft-
ware evolution and maintenance.

Static analysis A natural way to proceed in the program comprehension
process is by means of static program analysis techniques. This kind of
analysis consists in analyzing the source code of the program in order to
extract static information and derive program properties of interest. Then,
by studying the extracted properties, we can obtain a better understanding
of the program. It allows to study the structure, the dependencies and the
behaviour of the program but without executing it.

Dynamic analysis However, static analysis techniques can be limited be-
cause an important part of information in a program may be generated at
runtime, and thus can be impossible to extract statically by means of source
code inspection. The solution to this problem is to use dynamic program
analysis. This second category of program analysis techniques consists in
analyzing the properties of the running program, i.e., at execution time.
Dynamic analysis allows to mine an exact picture of the program during
its execution. On the one hand it can be more precise than static program
analysis, but on the other hand, it is obviously restricted to some execution
paths of the program.
Dynamic program analysis can be used to extract dynamic information such
as:

- program performance figures

- program memory usage

- runtime errors

- execution workflows

In summary, dynamic program analysis typically aims to analyse information
built at runtime while static analysis handles information extracted from
source code. We can notice that both techniques are complementary for
achieving a complete program understanding process.

3

Visualization The main purpose of program comprehension is to generate
usable information allowing a better vision of the program structure and
behaviour. Different kinds of information can be extracted from this process.
Depending on the kind and the amount of information, it could be interesting
to synthetically present the results obtained by means of a data visualization.
The main goal of data visualization is to communicate information clearly
and effectively through graphical means.

1.3 Data-intensive systems

With the explosion of the Internet and the increasing number of websites,
data became the key-concept around which our society is founded and, conse-
quently software systems are more and more data-intensive. In data-sensitive
systems, the database often occupies a central place and, therefore, the com-
munication between the programs and the database is an important aspect
of the system behaviour.

Therefore, the comprehension of data handling and exchange allows, as
a second stage, to understand the program goals and its actions on the
database. Thus, we can consider that understanding the data-manipulation
behaviour of a program is an important part of data-intensive program com-
prehension and more generally, when reverse engineering data-intensive sys-
tems.

Reverse engineering [6] is the initial phase of the maintenance process that
helps you understand the system before you can make appropriate changes.

1.4 SQL statement analysis

The data exchange between programs and the database is generally per-
formed through SQL1 queries sent by the program. Therefore, by under-
standing this query exchange, we could be able to better comprehend what
the program is doing. SQL is a high-level language that allows programmers
to describe in a declarative way the properties of the data they instruct the
DBMS2 to provide them with [7].

The analysis of SQL statements in application programs is a technique al-
lowing to understand interactions between programs and the database. There
exist two types of SQL statements : static and dynamic SQL.

1SQL: Structured Query Language
2Database Management System

4

In order to illustrate the difference between static and dynamic SQL, let
us take an example of database shown in Figure 1.2.

Figure 1.2: Simple database with two tables

Static SQL is when the SQL statements are ”hard-coded” in the source code
of the program. An example is shown at Figure 1.3.

select ADDRESS, DATE into :ADDR, :DATE
from CUSTOMER C, ORDERS O
where C.NCUST = O.NCUST and NORDER = :IDORD

Figure 1.3: Example of static SQL : extracting address and date of customers
placing a particular order.

In this query, there are one input variable and two output variables. The
input variable IDORD contains the number of an order while the output
variables ADDR and DATE will contain respectively the customer’s address
and the order’s date.

Dynamic SQL is when the SQL statements are built at runtime. An example
is shown at Figure 1.4.

QUERY = ”select NAME from CUSTOMER where NCUST = :v1”;
exec SQL prepare Q from :QUERY;
exec SQL execute Q into :NAME using :CNUM;

Figure 1.4: Common example of dynamic SQL: selecting the name of a par-
ticular customer.

5

This query takes a customer’s number as input (variable v1) and extracts
the customer’s name in the variable CNUM.

Typically, the programs build each query as a character string, then ask the
DBMS to prepare the query and finally execute it. [7]

Static SQL statements can be simply extracted by parsing the source
code but more and more systems use dynamic SQL. Thus, code parsing
is insufficient and other techniques to extract SQL queries at runtime are
required.
Cleve et al. [7] listed different techniques allowing to extract SQL statements
built during the program execution :

1. Program instrumentation : modification of the source code to catch
each SQL statement. This technique requires program modification
and recompilation. Figure 1.5 shows an example of program instru-
mentation.

(1) Connection conn = DriverManager.getConnection(URL, Login, Password);
(2) String ID = ”D123”;
(3) String query = ”select ADDRESS from CUSTOMER where NCUST = ?”;
(4) PreparedStatement state = conn.prepareStatement(query);
(5) state.setString(1, ID);
(6) ResultSet result = state.executeQuery();
(7) Logger.getQueryResult(result);
(8) result.next();

Figure 1.5: Program instrumentation example - bold line represents the code
modification

2. Aspect-based tracing : an aspect can be considered as a kind of trigger.
This trigger is launched when a SQL query is executed. This technique
only requires code recompilation. Figure 1.6 represents an example of
aspect allowing to log the executed SQL queries.

6

(1) pointcut queryExecution(String query):
(2) call(* java.sql.Statement.executeQuery(String)) && args(query);
(3) before(String query): queryExecution(query){
(4) Logger.getQuery(query); //logging the current SQL query
(5) }

Figure 1.6: Aspect-based tracing example

3. API3 Overloading : Technique consisting in overloading the API exe-
cuting SQL queries. An example of API overloading is shown at Fig-
ure 1.7.

(1) public class Statement{
(2) java.sql.Statement statement;
(3) public ResultSet executeQuery(String query) {
(4) Logger.getQuery(query); //logging the current SQL query
(5) return statement.executeQuery(query);
(6) }
(7) }

Figure 1.7: API Overloading example - Statement class overloading

4. API substitution : If the API executing SQL queries is open-source,
we can modify the API source code in order to catch queries.

5. DBMS logs : when a SQL query is sent to the database, the former is
stored into DBMS logs. One can then simply extract all queries from
the logs.

6. Tracing stored procedures : A SQL procedure is a sequence of SQL
queries stored into the DBMS. We can modify the program code by
replacing each SQL query with an equivalent SQL procedure enriched
with tracing facilities.

Each technique has its own merits and drawbacks. Cleve et al. established
a list (see Table 1.1). The retained criteria are the availability of the query
results, the need for code modification and for recompilation.

3API : Application Programming Interface

7

Techniques Results availability Code modification Code recompilation

Instrumentation yes yes yes
Aspect yes no yes
API Overloading yes yes yes
API Substitution yes no yes
DBMS logs no no no
Stored procedures yes yes yes

Table 1.1: Comparison of SQL trace capturing techniques

1.5 Thesis purposes

We can observe that program comprehension is not a trivial process but the
interactions between the program and the database can be considered as a
good approximation of what a data-intensive program is doing. These inter-
actions are materialized by SQL queries sent by the program. Nevertheless,
more and more programs utilize dynamic SQL statements built only during
program execution, i.e., at runtime.
This thesis proposes a new approach allowing to analyse SQL queries cap-
tured at runtime in order to make program comprehension easier. The analy-
sis will be performed by visualizing dynamically their impact on the database.

More generally, the thesis purpose is to propose a new tool-based approach
allowing to automatically support data-intensive program comprehension in
order, as a second stage, to ease software system evolution.

1.6 Overview

Chapter 2 presents the state of the art related to program comprehension and
visualization. This chapter attempts to give an overview of the activities from
the research community pertaining to this area. Chapter 3 tries to summarize
the theoretical concepts of database engineering we reuse in our approach.
Chapter 4 and 5 present in detail our tool-supported approach. Chapter 6
presents the technological choices made for the tool’s implementation. In
Chapter 7, we try to assess the forces and limitations of our tool and we
list a few usage possibilities. Finally, Chapter 8 concludes this thesis by
discussing the future perspectives.

8

Chapter 2

State of the Art

Program comprehension is a crucial process in software maintenance/evolution
that is necessary in order to sufficiently understand the program before its
modification. This activity has received the attention from the research com-
munity, particularly over the last decade. Program understanding requires
the analysis of such artefacts as source code and documentation but it is
not sufficient to get a complete view of the program/system. Indeed, ana-
lyzing the program behaviour at runtime can provide additional information
pertaining to what the program is doing in specific execution scenarios. As
explained above, this kind of analysis is called dynamic program analysis.

2.1 A Systematic Survey of Program Com-

prehension through Dynamic Analysis

2.1.1 Presentation

Dynamic program analysis is a largery explored research topic in the soft-
ware reengineering community. This is why a survey [9] was established
in order to summarize the most relevant existing literature about dynamic
analysis in the context of program comprehension. This survey considered
research results that have been published between July 1999 and June 2008.
It aimed to extract and select relevant works about this area by means of
explicit selection criteria.
The authors selected 4,795 articles published at all relevant venues (jour-
nals/conferences). Then they applied their selection criteria on that first
selection. This resulted in a final list that comprises 172 articles published
in 14 different venues.
After this selection phase, the authors have defined a list of facets in order

9

to classify all the selected articles. There are four retained facets :

• The activity describes what is being performed or contributed

• The target reflects the type of programming language(s) or platform(s)
to which the approach is shown to be applicable

• The method describes the dynamic analysis methods that are used in
conducting the activity

• The evaluation outlines the manner(s) in which the approach is vali-
dated

For each facet, a set of attributes are defined (see Table 2.1).

10

Facet Attribute Description

Activity survey a survey or comparative evaluation of existing approaches that fulfil a
common goal.

design/arch. the recovery of high-level designs or architectures.

views the reconstruction of specific views, e.g., UML sequence diagrams.

features the analysis of features, concepts, or concerns, or relating these to source
code.

trace analysis the understanding or compaction of execution traces.

behaviour the analysis of a system’s behaviour or communications, e.g., protocol or
state machine recovery.

general gaining a general, non-specific knowledge of a program.

Target legacy legacy software, if classified as such by the author(s).

procedural programs written in procedural languages.

oo programs written in object-oriented languages, with such features as late
binding and polymorphism.

threads multithreaded systems.

web web applications.

distributed distributed systems.

Method vis. (std.) standard, widely used visualization techniques, e.g., graphs or UML.

vis. (adv.) advanced visualization techniques, e.g. polymetric views or information
murals.

slicing dynamic slicing techniques.

filtering filtering techniques or selective tracing, e.g., utility filtering.

metrics the use of metrics.

static information obtained through static analysis, e.g., from source code or
documentation.

patt. det. algorithms for the detection of design patterns or recurrent patterns.

compr./summ. compression, summarization, and clustering techniques.

heuristics the use of heuristics, e.g., probabilistic ranking or sampling.

fca formal concept analysis.

querying querying techniques.

online online analysis, as opposed to post mortem (trace) analysis.

mult. traces the analysis or comparison of multiple traces.

Evaluation preliminary evaluations of a preliminary nature, e.g., toy examples.

regular evaluations on medium-/large-scale open source systems (10K+LOC) or
traces (100K+ events).

industrial evaluations on industrial systems.

comparison comparisons of the authors’ approach with existing solutions.

human subj. the involvement of human subjects, i.e., controlled experiments & ques-
tionnaires.

quantitative assessments of quantitative aspects, e.g., speed, recall, or trace reduction
rate.

unknown/none no evaluation, or evaluations on systems of unspecified size or complexity.

Table 2.1: Facets and attributes
11

For the same facet, several attributes can be combined. By applying this
analysis grid to each article, the authors of the survey have obtained the
results presented in Figure 2.1.

Figure 2.1: Distribution of the attributes in each facet across the summarized
articles. The X-axis represents all the attributes classified by facet and the
Y-axis represents the number of articles affected to each attribute. This
graph is extracted from the report of Delft University.

Activity : We can notice that for the first facet, activity, the view attribute
is the most frequent. It is not surprising because program comprehension
handles a large amount of information and thus, the reconstruction of specific
views seems to be a natural activity.
On the other hand, survey is the least frequent activity (this has motivated
the authors to do the survey).

Target : It is quite surprising to observe that web applications is the least
frequent target. Indeed, web applications are ubiquitous nowadays. Further-
more, we can also notice that legacy systems are rarely chosen as target while
these systems often require a (costly) reverse engineering process in order for

12

the evolution needs to be satisfied.
In contrast, object-oriented systems are becoming more popular target sys-
tems in the domain of dynamic program analysis.

Method : Visualization is the most popular method. Indeed, systems deal
with a large amount of information and visualization techniques seem to be
natural and intuitive to easily summarize and thus, quickly understand the
behaviour of a program at runtime.
Nevertheless, we can also notice that online dynamic analysis is almost never
used in the area.

2.1.2 The proposed tool

Through this thesis, a new tool will be introduced to the reader. Indeed,
as previously explained, communication between database and the programs
is an important aspect when trying to understand data-intensive programs.
By analysing the results of this large-scale survey (Figure 2.1), we can notice
that there is no article dealing with database/program interactions anal-
ysis. Moreover, we can also derive from this survey that the literature
about database-program communication analysis is very poor: it appears
as a largely unexplored area. Thus, this observation is one reason that moti-
vated us to implement a new dynamic program analysis tool based on SQL
queries analysis.

2.2 Studying of particular cases

Before the detailed description of the tool, it is quite important to study
some interesting articles (from the survey but also from other venues) about
program dynamic analysis. The selected articles have been retained because
they target some same goals than the proposed tool or because they use some
techniques that have inspired the tool.
For each articles, we have made an in-depth description.

2.2.1 Dynamic Program Analysis for Database Reverse
Engineering

This article [8] tackles the issue of database and program evolution. In-
deed, such processes should be supported by the database documentation.
Nevertheless, this documentation is often inaccurate or even missing. There-
fore, database redocumentation is sometimes needed before program and

13

database evolution. This process typically consists in recovering some im-
plicit database constructs and constraints. This activity requires the analysis
of the database code but also other artefacts like the source code of the pro-
grams accessing to the target database.
In this context, the authors introduce automated dynamic program analysis
techniques facilitating the database redocumentation and more precisely, the
recovery of implicit database constructs and constraints. Those techniques
are based on the analysis of the dependencies in SQL execution traces.

Dynamic analysis of SQL execution traces and the elicitation of some im-
plicit database constraints (Section 5.2.2) are two concerns tackled by the
thesis.

2.2.2 WAFA: Fine-grained Dynamic Analysis of Web
Applications

WAFA [4] is an approach aiming to analyse and detect most web applica-
tion security vulnerabilities (e.g. SQL injections, broken access control, ...)
by studying database interactions.
This approach uses both static and dynamic program analysis. In particu-
lar, WAFA captures the original SQL statements source but also the SQL
execution instances in order to compare both. It obviously needs static and
dynamic analysis. Furthermore, WAFA captures other dynamic information
like cookies, HTTP variables.

We can easily relate WAFA to the tool proposed in this thesis through
the SQL statements capture. Indeed, the tool mainly aims to extract SQL
queries created at runtime to analyse and visualize them.

2.2.3 An approach for mining services in database–oriented
applications

It proposes an approach using dynamic program analysis that aims to ex-
tract SQL queries at runtime and cluster them in order to identify application
features in data-intensive programs. We search to export those identified fea-
tures as services [12].
As the previous approach, it can be related to our proposed tool through
SQL queries capture and analysis.

14

The two first presented approaches consider database interactions under-
standing as main component to ease reverse-engineering process. As previ-
ously explained, SQL statements analysis is pretty rare in the literature.

2.2.4 Improving Dynamic Data Analysis with Aspect-
Oriented Programming

As discussed above, program static analysis is generally insufficient to ob-
tain a complete comprehension of a program. So, this approach [14] aims
to detail a particular way to dynamically analyse a program : The Aspect-
Oriented Programming (AOP). AOP has already been introduced in Sec-
tion 1.4. We can compare an aspect to a trigger that is activated when a
precise phenomenon occurs. In order terms, an aspect is a code executed in
addition to the program; an aspect is automatically launched when a defined
part of program is executed. For example, if a particular method in the pro-
gram is called during the execution, the aspect is activated.
A traditional use of AOP is logging action. In Figure 2.2, we defined an
aspect launched when the method AddCustomer() is called at runtime. This
aspect is a simple log tracing AddCustomer() method.

Aspect Logger {
void AddCustomer(Customer cust) {
logger.info(”Adding customer...”); }
}

Figure 2.2: Logging Aspect

The selected article presents an approach based on aspect-oriented pro-
gramming used for the reverse engineering process. AOP is used to obtain
traces of a program’s execution and this article shows AOP eases and reduces
time necessary to obtain this information.

It is interesting to select this article because AOP techniques were kept by
our tool (in particular for SQL query extraction).

2.2.5 Visualizing Dynamic Software System Informa-
tion through High-level Models

This approach [22] does not handle SQL queries but studies interactions
in a (object-oriented) program. It allows to analyse and visualize these inter-

15

actions: allocation/deallocation of objects, communication between methods
(method calls), . . .
Two aspects of this project are interesting:

• Visualizing communications in the program: it allows to translate
technical information into an intuitive visualization. Moreover, our
proposed tool is also based on studying of program communication
(through SQL queries exchanges).

• This project allows also to abstract the process by choosing a high-level
model: the software engineer can choose a high-level structural view to
use as the basis for visualization by stating the names of the abstract
entities. An entity may, for example, represent a system’s component.
Thus, a mapping between concrete and abstract entities is needed to
obtain this high-level view.
We will see later that one of our tool’s advantages is the opportunity
to abstract the process by choosing a high-level representation allowing
to deeper understand the meaning of SQL queries.

2.2.6 Recovering High-Level Views of Object-Oriented
Applications from Static and Dynamic Informa-
tion

This approach [20] aims to study static and dynamic information in a pro-
gram in order to extract some high-level views (e.g. state diagram, class
diagram, . . .). We can find a link between this project and our project : in-
deed, it allows to extract high-level representations like Entity-Relationship
model (ER model). We will detail ER model in Secion 3.1.1.

2.2.7 CodeCity

CodeCIty [23, 24, 25] is a 3D visualization tool supporting the analysis of
large object-oriented software systems. This tool introduces a novel approach
by using a city metaphor: it depicts classes as buildings and packages as
districts of a “software city”. This metaphor-based visualization provides a
natural environment allowing a user to easily explore the structures of the
analysed system. Other visual properties are used in the city metaphor:

- The number of methods represents the building height

- The number of attributes denotes the base size of the building

16

- . . .

Such a representation allows us to analyse and detect possible design dishar-
monies as, for instance, classes with a high number of methods, a class with
few attributes and many methods, In summary, CodeCity supports
(among others) the identification of sensitive classes and packages that are
crucial for comprehension and maintenance.

2.2.8 EXTRAVIS

This article [10] tackles a major issue of dynamic analysis: the scalability.
Indeed, execution traces contains huge amounts of data and are not easily
understood. The solution proposed by the authors is a novel tool-based
approach allowing to visualize execution traces in an intuitive way. This tool,
called EXTRAVIS, offers two synchronized views for analysing execution
traces:

- A circular bundle view that proposes a detailed visualization of the
system’s structural entities and their interrelationships. It projects the
system’s entities (e.g. classes and packages) as well as their dynamic
calling on a circle.

- A massive sequence consisting of a sequence diagram that provides an
interactive overview of the trace.

The combination of the two views permits an easier comprehension of large
execution traces. EXTRAVIS aims at three main goals:

1. Exploratory program comprehension: providing an overview of
how the system works.

2. Feature detection: detecting the features present in the trace.

3. Feature comprehension: understanding how the detected features
are implemented.

Conclusions of the State of the Art Through this chapter, we have
briefly summarized the state of the art in the use of dynamic analysis for
program comprehension, based on an existing survey.

We firstly show, with some statistics, that a lot of existing works that
deal with dynamic program analysis focus on the analysis of inter-program
communication (method calls, class dependencies, etc). But we noticed that

17

almost none of them address the analysis of program-database communica-
tion, especially through SQL execution trace analysis (and visualization).
We can therefore conclude that the tool-supported approach proposed in
this thesis covers an largely unexplored area and introduces an novel way to
understand data-intensive programs.

18

Chapter 3

Database Engineering

Before introducing in detail our visualization tool, it is important to relate
this subject with database engineering. Database engineering is the whole
process leading to the design of the database. This process relies on1 a
disciplined approach divided into several phases. In this chapter, we will
first describe in detail the database engineering process and then, we will
emphasize the different concepts related to our dynamic program analysis
approach and tool.

It is important to emphasize that we assume that the database used by the
programs we will analyse is a relational database. A relational database
is a collection of data items organized in tables in order to make data access
easier [15].
Figure 3.1 gives an abstract representation of the database engineering pro-
cess. During this process different database schemas are produced. A database
schema represents a model, i.e., an abstract formal representation of a given
application domain. Such a model allows to better understand this appli-
cation domain and to build an operational database allowing to store and
manipulate information about it. There exist different types of database
schemas, belonging different levels of abstraction. The first schema pro-
duced during the process is the most abstract (platform-independent) while
the last one is the most concrete (platform-specific) and exactly specifies the
actual database structures.
Let us now describe each phase of the database building process.

Requirement analysis The requirements analysis phase, also known as
conceptual analysis, consists in collecting the user requirements about the

1or let say, should rely on...

19

Figure 3.1: Relational database building - Process

application domain under consideration. With this requirements collection,
the database engineer will product the conceptual schema of the future
database. A conceptual schema extracts pertinent concepts of the domain
of application from the user requirements, which are typically expressed in
natural language.

Logical design The second phase, called logical design, consists in extract-
ing the logical schema of the future database from the conceptual schema
obtained so far. This logical schema describes more concretely the database
structures, the relationships between these structures and the integrity con-
straints. It complies with a given logical model that is compatible with a
given database paradigm.

Physical design The physical design phase consists in designing a physi-
cal schema. A physical schema is obtained by enriching the logical schema
with technical constructs needed to make the future database efficient and
robust (e.g., indexes and physical dbspaces).

Coding phase Finally the coding phase consists in translating the phys-
ical schema into the executable database code. The generated code will be
compatible with the particular DBMS and will allow to define and create the
database structures.

20

In summary, we observe that the database engineering process, similarly
to the software engineering process, relies on a disciplined approach to model
and design a database, from requirements analysis to coding.

3.1 Database schemas

A database schema is a schema expressed in a formal language that de-
scribes the database structure and explains the data organization. A schema
defines also the relationships between the different data types. Furthermore,
database schemas allow to define some integrity constraints and conditions
on data ensuring the database integrity.

During this process, we observed that different database schemas are pro-
duced. Each schema has a level of abstraction lower than the schema from
which it is derived. Indeed, each new produced schema is more technical
and the final purpose is to automatically generate the database code from
the most technical schema of the process. Now, we are going to study the
database building process with a simple example by describing the schema
obtained at each phase.

3.1.1 Conceptual schema

A conceptual schema is usually expressed in a high-level formalism, typi-
cally the Entity-Relationship model (ER model). The ER model is a graph-
ical language describing the database in an abstract way. It defines three
main types of concepts [15]:

- Entity types : we consider the application domain is composed of con-
crete and abstract entities. Each entity belongs to a class, called entity
type.

- Relationship types : There exist some relationships between entity type
instances. Each relationship belongs to a class, called relationship type
in the conceptual schema.

- Attributes : each entity (or relationship) belonging to a same class may
have common characteristics. Such a characteristic is called attribute.
Entity and relationship types may own some attributes.

Let us now assume that we must design a database for a company selling
products to their customers. Figure 3.2 represents the conceptual schema
obtained after the requirements analysis step.

21

Figure 3.2: Customer-Order : conceptual schema

In this schema, one can see the entity types customer, order and product.
We can also observe the relationship type place between customer and order,
expressing the fact that a customer may place orders, and the relationship
type detail defining the fact that an order is detailed by some products.
The entity types may have attributes; for instance, each customer has a
customer number, a name, an address, a phone number, a category and has
an account. Each ordered product is characterised by a quantity (attribute
quantity of the relationship type detail).

3.1.2 Logical schema

A logical schema is expressed in a particular formalism, called a logical
model, depending on DBMS. For example, the family of relational DBMS2 is
concerned by a particular logical model that is called the relational model.
The relational model is a graphical language describing with a better pre-
cision the database structures, the relationships between structures and in-
tegrity constraints to respect for ensuring the database integrity.
It is important to note that, in this thesis, we consider programs that ma-
nipulate a relational database. Therefore, in the remaining of this thesis, we
only focus on the relational model.

The relational model defines two main types of concepts [15]

2Oracle, Microsoft SQL Server, MySQL, DB2, PostgreSQL, Sybase, ...

22

- Tables: a database is an organized as a collection of tables. A table
contains a collection of rows.

- Columns: each row contains a set of values. A value has a given type
and the set of values of that type represents the column. Each table
has one or several columns.

A logical schema may also define some constraints over the data stored in
the tables. The most frequent constraints are the table identifiers and the
foreign keys.
An identifier defines a uniqueness constraint. If a column (or a set of
columns) is declared as the identifier (a.k.a primary key) of a table, then
the latter cannot contain two distinct rows having the same value for that
column (or set of columns).
A foreign key defines a referential constraint. The foreign key identifies a
column (or set of columns) in one table (called referencing table) that refers
to a column (or set of columns) in another table (called referenced table). If
a set of columns of a table A is declared foreign key to a set of columns of a
table B, then for each row of A, it exists one row of B such as the values of
the referencing columns refers to the values of the referenced columns.

We can now define a relational schema as follows:
A schema is relational if it respects the following constraints [15]

1. the schema contains entity types, called tables.

2. each table has at least one column.

3. a column is single-valued and atomic; the column is optional or manda-
tory.

4. The table identifiers and foreign keys are the only data integrity con-
straints expressed in the schema.

The logical schema obtained by the logical design phase is illustrated by
Figure 3.3.

This logical schema includes four tables customer, orders, detail and prod-
uct.
Each table has several columns. For instance, a product has a number, a
name, a price and a stock quantity.
Each table has also an identifier, respectively a customer number (NCUST),
an order number (NORDER), a detail identifier (couple of columns NORDER
and NPRO) and a product number (NPRO).

23

Figure 3.3: Customer-Order : logical schema

Three referential constraints (foreign keys) are declared. Each order refers
to a customer, each detail refers to an order and to a product.

3.1.3 Physical schema

As previously explained, a physical schema is very similar to its corre-
sponding logical schema. The only transformation consists in adding some
technical schema constructs allowing to improve the efficiency and robustness
of the future database. In this thesis, the formalism used for specifying the
physical schema is also the relational model.
In our example, the physical phase consists only in declaring an index for
each table identifier and for each foreign key. These indexes will allow a
faster access to data.

3.1.4 Database code

The coding phase aims to generate the database code that translates the
physical schema. The produced code is written in the DBMS-specific data
definition language. Since we assume that our future database is relational,
we chose SQL-DDL3 as DBMS language.
The generated code defines the database structures. We can find the SQL-
DDL code produced through the coding phase at Figure 3.4.

3Structure Query Language - Data Definition Language

24

(1) create table CUSTOMER (
(2) NCUST numeric(6) not null,
(3) NAME varchar(30) not null,
(4) ADDRESS varchar(30) not null,
(5) PHONE numeric(12) not null,
(6) CAT varchar(2) not null,
(7) ACCOUNT numeric(12) not null,
(8) constraint ID CUSTOMER ID primary key (NCUST));
(9)
(10) create table detail (
(11) NORDER numeric(6) not null,
(12) NPRO numeric(6) not null,
(13) QUANTITY numeric(6) not null,
(14) constraint ID detail ID primary key (NPRO, NORDER));
(15)
(16) create table ORDERS (
(17) NORDER numeric(6) not null,
(18) DATE date not null,
(19) NCUST numeric(6) not null,
(20) constraint ID ORDERS ID primary key (NORDER));
(21)
(22) create table PRODUCT (
(23) NPRO numeric(6) not null,
(24) NAME varchar(20) not null,
(25) PRICE numeric(4,2) not null,
(26) STOCK numeric(5) not null,
(27) constraint ID PRODUCT ID primary key (NPRO));
(28)
(29) alter table detail add constraint REF detai PRODU
(30) foreign key (NPRO)
(31) references PRODUCT;
(32)
(33) alter table detail add constraint REF detai ORDERS FK
(34) foreign key (NORDER)
(35) references ORDERS;
(36)
(37) alter table ORDERS add constraint REF ORDERS CUSTO FK
(38) foreign key (NCUST)
(39) references CUSTOMER;

Figure 3.4: DDL Code - Translation of logical schema

25

3.2 ER model subset considered

We previously explained that the conceptual schema is expressed in a par-
ticular formalism called the Entity-Relationship model (ER model). We in-
troduced at Figure 3.5 a metaschema of the ER model .

Figure 3.5: Metaschema of ER model

A conceptual schema describes the database application domain. The
domain is composed of concrete/abstract entities belonging to a class. These
classes are called entity types. In the domain, there exist some relationships
between entity types. These relationships are called relationship type.
Besides, an entity/relationship type may own some characteristics; these
characteristics are called attribute. An attribute is either a simple at-
tribute or a compound attribute. A simple attribute is an atomic attribute
while a compound attribute is composed of other attributes. An example of
compound attribute is shown at Figure 3.6.

26

Figure 3.6: Example of compound attribute - ADDRESS

Furthermore, the ER model allows to represent a hierarchy of entity types:
indeed, in a conceptual schema, several entity types may own a same super-
type (entity type parent). The hierarchical relationship between an entity
type and its parent is called an is-a relationship. In Figure 3.7, we can see
an example of is-a relationship defining two different kinds of customer.

Figure 3.7: Example of IS-A relationship - CUSTOMER

However, given the potential complexity of an arbitrary ER schema, and
considerinf the exploratory nature of this thesis work, we decided to make
some working assumptions in order to restrict ourselves to a given subset of
the ER model. These assumptions are composed of three main rules :

1. Simple attributes: our first conceptual assumption concerns attributes.
Indeed, we assume each attribute is simple.

27

2. No is-a relationship: we assume there is no is-a relationship in the
conceptual schema.

3. Binary relationship types : we assume each relationship type is binary.
It means each relationship type is only between two entity types (not
necessarily different because cyclic relationship type may exist). In Fig-
ure 3.2, the relationship types place and detail are binary. An example
of non-binary relationship type is shown in Figure 3.8.

Figure 3.8: Example of non-binary relationship type - A customer orders
some products for a particular company.

After making these three assumptions, we have to prove that the expres-
siveness of ER model subset is not reduced. In other words, we have to show
that any ER construct that we exclude can be translated into valid constructs
in our ER model subset.

1. Simple attributes: a compound attribute can be easily split into simple
attributes (as shown in Figure 3.9).

Figure 3.9: Compound attribute split into simple attributes - ADDRESS

28

2. No is-a relationship: an is-a relationship can be translated into binary
relationship type(s). This transformation is illustrated in Figure 3.10.

Figure 3.10: Transformation of a supertype into relationship types - CUS-
TOMER

3. Binary relationship types: a technique to avoid complex (non-binary)
relationship types is to transform each complex relationship type R
into an entity type ER and to add a binary relationship type between
ER and each entity type initially attached to R. This transformation
rule is illustrated in Figure 3.11.

Figure 3.11: Transformation of a complex relationship type into binary rela-
tionship types - Customer ordering some products for a particular company.

29

Thus, we can conclude that our three assumptions does reduce the ER
model syntax but not its expressiveness; indeed, one can easily find syntactic
alternatives to the schema constructs we decided to exclude. From now on,
we will only consider the ER model subset summarized by Figure 3.12. This
subset is obtained by making our three assumptions.

Figure 3.12: Metaschema of the ER model subset considered in this thesis.

3.3 Schema mapping

In the database engineering process, we observe that the logical schema
produced during the logical design phase is based on the conceptual schema
obtained during the requirements analysis step. Consequently, there is a
direct link between the conceptual and logical schema elements. Indeed, in
this thesis we can consider the logical design phase as the translation of an
ER schema into a relational schema and more precisely, as the translation of
conceptual objects into relational objects. Therefore, there exists a so-called
mapping between the conceptual and logical schemas. This correspondence
is summarized and illustrated in Figure 3.13. This Figure establishes the
correspondence between the three main conceptual objects (entity types,
relationship types and attributes) and the three main logical objects (tables,
columns and foreign keys) described in Section 3.1.1 and 3.1.2.

We can actually summarize Figure 3.13 with the following list of propo-
sitions.

1. An entity type maps to a table.

2. A relationship type maps to either a table or a foreign key.

30

Figure 3.13: Correspondence between conceptual and logical schema ex-
pressed by the relational model - Overview

3. An attribute maps to a column.

4. A column maps to an attribute.

5. A table maps to either an entity type or a relationship type.

6. A foreign key maps to either a relationship type or nothing; indeed, a
foreign key may have no conceptual mapping.

If we get back to our previous example and analyze the correspondence
between the conceptual schema (Figure 3.2) and the logical schema (Fig-
ure 3.3), we obtain the following mapping table:

31

Conceptual object Logical object

1 CUSTOMER CUSTOMER
1.1 -NCUST CUSTOMER(NCUST)

” ORDERS(NCUST)
1.2 -NAME CUSTOMER(NAME)
1.3 -ADDRESS CUSTOMER(ADDRESS)
1.4 -PHONE CUSTOMER(PHONE)
1.5 -CAT CUSTOMER(CAT)
1.6 -ACCOUNT CUSTOMER(ACCOUNT)
2 place ORDERS-ref:NCUST
3 ORDER ORDERS
3.1 -NORDER ORDERS(NORDER)

” detail(NORDER)
3.2 -DATE ORDERS(DATE)
4 detail detail
4.1 -QUANTITY detail(QUANTITY)
5 PRODUCT PRODUCT
5.1 -NPRO detail(NPRO)

” PRODUCT(NPRO)
5.2 -NAME PRODUCT(NAME)
5.3 -PRICE PRODUCT(PRICE)
5.4 -STOCK PRODUCT(STOCK)

Table 3.1: Example of correspondence between logical and conceptual
schemas

This table is composed of two columns: the first one lists all the concep-
tual objects (entity type, relationship type and attribute), the second one
lists all the logical objects (table, column and foreign key) matching to each
conceptual object.

Through this section, we showed that the logical design allows to keep a
traceability link between the conceptual and logical schemas, called schema
mapping.

3.4 SQL

SQL is a high-level language designed for managing data stored in a re-
lational database. It allows programmers to define the data structures of a

32

database but also to manipulate data stored in that database. SQL is indeed
divided into two specific sub-languages:

1. defining data structure : SQL-DDL

2. manipulating data : SQL-DML4

3.4.1 SQL-DDL

SQL-DDL is a language allowing programmers to define data structures
and constraints. SQL-DDL is the database code resulting from the coding
phase of the database engineering process. That phase consists of a direct
translation of the physical schema into executable DDL code allowing to
create database structures.
SQL-DDL proposes two main types of operations :

• Creating operation : aiming to create database objects (table, column,
index, ...). Figure 3.14 shows an example of DDL code that creates a
table of customers.

(1) create table CUSTOMER (
(2) NCUST numeric(6) not null,
(3) NAME varchar(30) not null,
(4) ADDRESS varchar(30) not null,
(5) PHONE numeric(12) not null,
(6) CAT varchar(2) not null,
(7) ACCOUNT numeric(12) not null,
(8) constraint ID CUSTOMER ID primary key (NCUST));

Figure 3.14: DDL example - Creating table CUSTOMER

• Updating/Deleting operation : aiming to update or delete database
objects (database, table, column, index, ...). Figure 3.15 illustrates an
example of DDL code deleting a table.

(1) ALTER TABLE CUSTOMER DROP COLUMN CAT;

Figure 3.15: DDL example - Deleting column

4DML : Data Manipulation Language

33

3.4.2 SQL-DML

SQL-DML is a language allowing programmers to insert/extract/update/delete
data in a database. SQL-DML proposes four main types of operations:

• Inserting operation : used in order to insert data in database. An
example of inserting operation is shown at Figure 3.16.

(1) INSERT INTO PRODUCT VALUES (’PRO5600’, ’Wood plank’,
’50.25’, ’1000’);

Figure 3.16: DML example - Inserting new product

• Selecting operation : used in order to extract data. An example is
shown at Figure 3.17.

(1) SELECT NCUST FROM CUSTOMER WHERE NAME = ’Dupont’;

Figure 3.17: DML example - Selecting CUSTOMER

• Updating operation : used in order to update data. Figure 3.18 illus-
trates an example of updating operation.

(1)UPDATE PRODUCT SET STOCK = 500 WHERE NPRO =
’PRO5600’;

Figure 3.18: DML example - Updating product’s stock

• Deleting operation : used in order to delete data. An example is shown
at Figure 3.19.

(1) DELETE FROM PRODUCT WHERE NPRO = ’PRO5600’;

Figure 3.19: DML example - Deleting product

34

As previously explained, the thesis purpose is to introduce a tool able to
ease the comprehension of data-intensive programs through the analysis of
SQL execution traces. However, DDL operations correspond to technical
operations (creating/modifying data structures). This is the reason why, in
the context of this thesis, we have no particular interest in the analysis of
data structure modification operations.
Therefore, we will only focus on SQL-DML operations and particularly on
select, insert, update and delete queries. All other type of SQL queries
will not be considered in this thesis.

3.5 Database reverse engineering

During its life, a database is usually faced with evolution; the developers
often have to make changes to their database structures and constraints in
order to adapt the database to ever-changing needs. However, such changes
are not always trivial and can represent a complex task. Indeed, many ex-
isting (legacy) databases have not been designed in a disciplined way and
sometimes, no systematic database engineering process was followed during
the design phase. Therefore, it is common to encounter databases that are
poorly/not documented. Even worse, it is not rare that the DDL code actu-
ally constitutes the only available documentation of the database.
The recovery of missing database schemas, and in particular of the conceptual
schema, is called database reverse engineering. The database reverse en-
gineering is globally considered as the extraction of conceptual schema from
the DDL code. This process is illustrated by Figure 3.20.
The database reverse engineering process is composed of three successive
steps:

1. Physical extraction: this phase aims to produce the physical schema
from the DDL code. The physical extraction produces an raw physical
schema, that contains all the explicit constructs present in the DDL
code but does not include potentially implicit database constructs like,
for example, undeclared foreign keys.

2. Logical reconstruction: this phase aims to produce a refined logical
schema from the physical schema by analysing additional artifacts such
as programs source code. For instance, implicit schema constructs can
be recovered by analysing additional SQL code (SQL procedures, trig-
gers, . . .), program code using the database,

3. Conceptualization: this final step produces the database conceptual
schema from the refined logical schema.

35

Figure 3.20: Database reverse engineering process

36

Chapter 4

DAViS

4.1 Context

Nowadays, more and more software systems are data-intensive and there-
fore depend on data exchange. Data-intensive systems focus on communica-
tion between the programs and their database. Let us remind that program
evolution/maintenance, in particular program comprehension, is our major
issue. Thus, in such systems, program-database interactions represent one
important aspect and therefore, understanding the database manipulation
behaviour of the programs is central when trying to gain an in-depth un-
derstanding of those programs. The communication between database and
programs is generally performed through SQL queries sent by the programs.

Therefore, our idea to implement a tool, that would help to program com-
prehension, appeared; more generally, this tool would allow to analyse and
understand the queries sent to the database. Our goal is here to propose a
tool enabling (1) to capture SQL traces and (2) to visualize those traces in
order to understand their impact on the database. This is why we decided
to call this tool DAViS because it supports program comprehension through
Dynamic Analysis and Visualization of SQL traces.

The context targeted by DAViS is a traditional program-database context
in which communication between both is performed through SQL query/results
exchange. Such a context is illustrated by Figure 4.1.

37

Figure 4.1: Program-Database context

The main objective of DAViS is to analyse the SQL queries sent by a
client program and to provide a higher-level language allowing to translate
the traces into a dynamic visualization.
However, our tool can be used in two different scenarios :

1. Offline method

2. Online method

4.2 Offline method

The offline method consists in two different phases executed at different
times:

1. Trace capture phase : this first step aims to collect SQL queries gener-
ated during program execution. Once those queries are collected, they
are stored into any storage space (e.g., a file, a database, ...). This step
is represented by Figure 4.2.

38

Figure 4.2: Offline method - First phase

We must notice that this step is not managed by the tool. In other
words, this phase has to be performed by the engineer himself. Different
techniques to intercept a query are explained in detail in Section 1.4.
The user is free to choose her favourite technique.

2. Visualization phase : this second step, fully covered by DAViS, aims
to get the traces previously stored into a storage space and to visualize
their impacts on the database. The visualization consists in extracting
pertinent technical information from a SQL trace, translating it into a
graphical language and displaying the results in an intuitive way.
But first, we need to parse the query in order to extract relevatn data.
We can consider query parsing as the transformation of the query into
another format (usable by the tool) that only contains significant in-
formation.

Once the query is parsed, the visualization process requires two inputs :

- The parsed SQL query

- The database schema(s) describing the data organization of the target
database.

Indeed, a matching between schema and information parsed from SQL query
is computed and the process output results in a dynamic visualization of the

39

query behavior. The database schema is used as a visualization model.
This second step is illustrated by Figure 4.3.

Figure 4.3: Offline method - Second phase

This method is called offline because the program execution and the vi-
sualization process are two separated processes that are executed at different
times. The whole offline method is summarized by Figure 4.4.

40

Figure 4.4: Offline method - Global view

4.3 Online method

The online method, also called on-the-fly method, consists in two phases
executed at the same time: during the execution of the client program. These
two phases are similar to the offline method. The online method is illustrated
by Figure 4.5.

41

Figure 4.5: Online method - Overview

1. Query interception phase : this first step aims to collect SQL queries
generated by the program at runtime. The difference with the offline
method is that once intercepted, the query is not stored into a storage
space but directly processed in order to be visualized.
(1) In contrast with the offline method, the interception process is com-
pletely managed by the tool by means of aspects. This programming
technique does not require any modification of the program source code.
(2) Once intercepted, the query is parsed (the parsing process is the
same as in the offline method) and transformed into a format usable
by the tool.

2. Visualization phase : this step is exactly the same as in the offline
method; it takes the database schema and the parsed query as inputs
in order to visualize the matching between both (3).

To conclude, we can see that the online method allows to control and
visualize in real time the SQL queries generated by the client-program while
the offline method processes queries in differed time.

Each method has its own advantages. Indeed, the offline method allows to
filter the queries we want to handle while the online method offers a real time
control and analysis about actions on the database. Therefore, we can also
say that the advantages of one method are the disadvantages of the other
one.

42

We can synthesize DAViS by building a diagram modelling the different
proposed features. This diagram, illustrated in Figure 4.6, is based on a part
of the feature model’s syntax but does not totally respect all its principles;
indeed, we can see our diagram is not really a tree because some nodes have
more than one parent.

Up to now, we introduced the online and offline methods. We now de-
scribes every feature of this diagram. Each feature represents a functionality
of DAViS.

Figure 4.6: Summary of DAViS features.

4.4 Two levels of abstraction

In previous chapters, we saw two different possible modelling ways during
the database design process: the logical and conceptual schema.

On the one hand, we observed the conceptual schema allows to define
and describe the abstract concepts from the application domain. It permits
to detail the domain by extracting the high-level items and by classifying
these items by means of concepts (entity/relationship types). Thus, we can

43

consider a conceptual schema as an abstract representation/translation of
the domain (described by the user).
Once the conceptual standards are acquired, the application domain can be
understood by reading the conceptual schema of the database.

On the other hand, the logical schema is generated from the conceptual
schema. It consists in translating the conceptual objects into logical objects
understandable by a DBMS. Nevertheless, a logical schema will always be
less intuitive and more technical than the corresponding conceptual schema.
Thus, a logical schema is often insufficient to precisely understand the do-
main.

It appears that conceptual and logical schemas constitute two different lev-
els of abstraction (respectively, an abstract and a technical level) on which an
analysis of the communication between a program and a database is possible.
By these two levels of abstraction, we have two representation models. We
can define a representation model as a model on which we visualize a SQL
query in order to understand its impact on the database. That is why we can
developed two approaches according to which a SQL query can be visualized:
the logical and the conceptual visualization approaches.

4.4.1 Logical approach

The logical approach aims to extract SQL objects from a SQL query and
then to translate these SQL objects into corresponding logical objects. Thus,
in this approach, the database logical schema is used as representation model.

However, SQL is a complex language with a lot of different versions. Due
to this complexity, it is very difficult to fully cover the SQL language with
our tool. Thus, we had to make a choice about the SQL limits accepted
by DAViS. So, we limited the visualization to SQL-92. As explained in
Section 3.4.2, our visualization tool manages only CRUD1 operations. In
SQL-92 queries, the CRUD operations owns three main types of object :

1. table

2. column

3. foreign key

NB: further SQL syntax assumptions are discussed in the Section 6.5.1.

1CRUD : Create, Update, Read, Delete

44

As already explained, the logical schema is a technical model of the database.
It contains logical objects understandable by a DBMS. In other words, we can
consider the logical schema as a graphical representation of the DDL code.
Indeed, each SQL object can be translated into a logical object. Therefore,
the rules for matching a SQL object to a logical object rely on one-to-one
mappings.
The matching rules for each object type are described in Table 4.1.

SQL-92 object Logical object
1 Table Table
2 Column Column
3 Foreign key Foreign key

Table 4.1: Matching rules between SQL object and logical object

The first rule expresses that a table present in a SQL query corresponds
to a table of the logical schema. The second rule says that a column present
in a SQL query corresponds to a column of the logical schema. The third rule
means that a foreign key present in a SQL query corresponds to a foreign
key of the logical schema.

We illustrate these three rules through a simple example of SQL query. Let us
assume we use the logical model depicted at Figure 3.3. Given the following
SQL query:

select NCUST from CUSTOMER;

We can extract two objects : NCUST and CUSTOMER. The latter is
a SQL table and represents a logical table. While the former is SQL col-
umn and represents a logical column but represents also the foreign key of
CUSTOMER and thus, NCUST represents both a column and a foreign key.

To conclude, we can say that the main goal of the logical approach is
to analyse the communication (SQL queries) between a program and its
database by using the logical database schema as representation model.
Therefore, we see that this approach allows to logically understand the
program-database communication.

4.4.2 Conceptual approach

The conceptual approach aims to extract SQL objects from a SQL query
and then, to translate these SQL objects into corresponding conceptual

45

objects. In this approach, the database conceptual schema is used as repre-
sentation model. Therefore, we need to establish the different matching rules
enabling this conceptual translation.
However, given the previous one-to-one matching rules between SQL objects
and logical objects, defining matching rules between SQL objects and con-
ceptual objects can be seen as the definition of matching rules between logical
objects and conceptual objects. Thus, the conceptual approach can be con-
sidered as the translation of logical objects into corresponding conceptual
objects.

The different rules are expressed in Table 4.2 and are directly extracted
from Figure 3.13.

Logical object Conceptual object
1 Table Entity type

Relationship type
2 Column Attribute
3 Foreign key Relationship type

nothing

Table 4.2: Matching rules between logical objects and conceptual objects

1. First rule : a table can be translated into two possible conceptual
objects: an entity type or a relationship type.
If we consider the matching between the logical schema of Figure 3.3
and the conceptual schema of Figure 3.2), we notice that table detail
matches to relationship type detail, while table CUSTOMER matches
to entity type CUSTOMER.

2. Second rule : a column is translated into an attribute.
Illustration: each column of the logical schema (Figure 3.3) corresponds
to an attribute of the conceptual schema (Figure 3.2).

3. Third rule : a foreign key does not always correspond to a conceptual
object. A foreign key corresponds either to a relationship type or to
nothing.
For instance, in Figure 3.3, the foreign key of table ORDERS corre-
sponds to the relationship type place of Figure 3.2 while the foreign
key (NPRO) of the table detail has no direct conceptual counterpart.

Matching between logical and conceptual schema Up to now, we
observe that the conceptual approach uses the conceptual schema as repre-

46

sentation model. This approach consists in translating logical objects into
conceptual objects. Thus, in addition to the conceptual schema, this ap-
proach needs the logical schema as input, but also the mapping between
both schemas. This point is discussed in Section 3.3. The translation of logi-
cal objects into conceptual objects is allowed by the correspondence between
the two schemas.

Database reverse-engineering phase Since the conceptual approach re-
quires the database conceptual schema, a database reverse-engineering pro-
cess might be necessary if the conceptual schema is missing. It would consist
in retrieving the conceptual schema from the logical one (see Section 3.5).

To summarize the conceptual approach, we can say that the main pur-
pose is to analyse the communication (SQL queries) between program and
database by using the conceptual schema as representation model. Thus,
we see that this approach allows to conceptually understand the program-
database communication.

In this section, we introduced the logical and conceptual approaches im-
plemented by our visualization tool, DAViS. Each approach consists in visu-
alizing a SQL query by using a particular representation model on which the
visualization is based. The logical approach considers the logical schema as
representation model while the conceptual approach considers the conceptual
schema. Indeed, the logical approach proposes a technical visualization based
on the logical schema, while the conceptual approach proposes an abstract
visualization based on conceptual schema. The first one allows a compre-
hension of the technical impacts on the database whereas the second one
proposes an abstract and high-level comprehension.

4.5 The two visualizations

In Figure 4.6, we can also observe that DAViS implements two kinds of
visualization: the global visualization and the query visualizations. We now
describe the purposes of each of them.

4.5.1 The query visualization

The query visualization aims to visualize the impact of one SQL query on
the database. It consists in analysing a given query in order to comprehend

47

its behaviour. The query visualization eases program comprehension by sep-
arately analysing each query sent to the database. In summary, it aims to
represent the meaning of a single query.

4.5.2 The global visualization

While the query visualization focuses on the comprehension of a given query,
the global visualization targets the understanding of the global impact of a set
of queries, typically corresponding to an entire program execution scenario.
Indeed, since each query has its own impact on the database, we visualize
the sum of these impacts.

As shown by Figure 4.6, the logical approach proposes the two visualiza-
tions, whilst the conceptual approach does not support global visualization.
Indeed, since the main purpose of the logical approach is to observe the
technical impacts of a SQL query on the database, the logical approach pro-
poses the two visualizations: analysing the global impact of an execution
scenario with the global visualization and separately analysing the impact
of each SQL query of this execution scenario. However, since the high-level
comprehension of SQL queries is the main aim of the conceptual approach,
we decided the conceptual approach will only propose the query visualiza-
tion. However, it would be technically possible to support global visulization
using a conceptual approach too.

4.6 The two-phase principle

As explained in Section 3.4.2, DAViS focuses only on DML queries and
thus CRUD operations. A SQL query can be divided into two parts:

1. The first part contains all the selection conditions of the query.

2. The second part contains the query result.

Here we present a simple example of query aiming to select all the prod-
ucts ordered by the customer ’1245’ :

(1) select NPRO
(2) from detail D, ORDERS O
(3) where D.NORDER = O.NORDER
(4) and O.NCUST = ’1245’;

48

We notice that there are two selection conditions: a condition joining the
details of table ’detail’ with the orders of table ’ORDERS’ (3) and a condi-
tion on the customer (4), while the query result represents the selection of
product numbers (1).

However, it is important to notice that an insert query does not have any
selection condition: such a query only consists of new inserted values. Only
select, update and delete queries may have selection conditions.
Regarding the result, each query type has its own category:

- Insert query: the result is represented by the inserted values.

- Update query: the result is represented by the updated values.

- Select query: the result is represented by the selected values.

- Delete query: the result is represented by deleted lines of database.

Therefore, we can split the query comprehension process into two phases:
firstly, understanding the selection conditions of the query (selection con-
dition phase) and secondly, understanding the results of the query (output
phase). Furthermore, we can apply the two-phase principle on the query visu-
alization (Section 4.5.1); indeed, the query visualization proposed by DAViS
is divided in two steps:

1. First, visualizing the selection condition phase. This phase is optional;
indeed, some queries do not have selection conditions.

2. Second, visualizing the output phase.

To conclude the two-phase principle, we observe that a SQL query is di-
vided in two parts: the selection conditions and the query result. Thus,
we noticed that the decomposition of the query visualization allows a better
comprehension: first, we visualize the selection conditions and second, we
visualize the query result.

We can summarise this chapter by the following table:
The first column lists all the features of the Figure 4.6, while the second

one describes the main purpose of each feature.

49

Feature Purpose
DAViS Understanding the communication between

the programs and the database
Offline method Understanding the SQL queries stored in a

storage space
Online method Understanding the SQL queries sent by the

program at runtime
Logical approach Understanding the SQL queries by using

the logical schema as representation model,
leading to a technical comprehension of the
queries.

Conceptual approach Understanding the SQL queries by using
conceptual schema as representation model,
leading to a high-level comprehension of the
queries.

Query visualization Visualizing the impact of a given SQL query
on the database.

Global visualization Visualizing the global impact of a set of SQL
queries on the database.

Selection condition
phase

Visualizing the selection conditions of a given
query.

Output phase Visualizing the result of a given query.

Table 4.3: Purpose of each feature

50

Chapter 5

Visualization

In the previous chapter, we have detailed the theoretical principles of
DAViS. In this chapter, we describe the properties of the visualizations im-
plemented by our tool and we illustrate them by means of a few examples.

5.1 Graph-based representation

In the graph theory, a graph is a set of points such as some points are
connected by one or several links. These links may be oriented and, in this
case, the graph is called oriented graph. A point is called node (or vertex)
while a link between nodes is called edge.

We previously explained the logical and conceptual approaches use database
schemas (logical/conceptual schemas) as representation model in order to vi-
sualize the SQL queries. Moreover, the (logical or conceptual) representation
model consists of a graph-based representation: a node represents an object
and an edge represents a relationship between two objects (represented by
the nodes it connects). The two visualization approaches define their own
category of nodes and edges.

Logical approach The logical approach has two kinds of nodes and four
kinds of edges.

- Nodes: tables and columns

- Edges:

1. Relationship between a table and its column: this relationship
merely represents a parental link (containment).

51

2. Foreign key: it represents a foreign key between two tables.

3. Conjunction relationship: it represents a relationship between two
tables. Two tables are joint if they are present in the same query.

4. Join: it represents a relationship between several columns. A
join is used to couple two or more tables, based on relationships
between several columns of these tables. We can see an example
of join in the Section 4.6.

Conceptual approach The conceptual approach has three kinds of nodes
and two kinds of edges.

- Nodes:

1. Entity type

2. Relationship type: despite its name, a relationship type is consid-
ered as a node.

3. Attribute

- Edges:

1. Relationship between an entity/relationship type and its attribute:
this relationship merely represents a parental (containment) link.

2. Relationship between an entity type and a relationship type: this
relationship means that an entity type plays a role in a relationship
type.

Through Figures 5.1 and 5.2, one can observe an example of logical and
conceptual visualizations.

52

Figure 5.1: Example of logical visualization based on graph representation -
the arrow represents a foreign key while the dotted line represents a join rela-
tionship. A continuous line represents a parental (containment) link between
a table and its column(s).

Figure 5.2: Example of conceptual visualization based on graph representa-
tion.

NB: In the logical and conceptual approaches, all parental edges (table-
column and entity/relationship type-attribute) are based on a circular shape:
the parent is at the center and its children form a circle around it. This
pattern is an implementation choice but it may be replaced by the pattern
”container” in which all children would be placed inside the parent.

53

5.2 Global visualization

The global visualization consists in visualizing the global impacts of a set
of SQL queries on the database. Let us consider the following context:

Figure 5.3: Context applied on a time line.

This context represents a scenario where a program sends successively
n+1 queries to a database. The first query is sent at time α0, the second at
time α1 and so on. We want to analyse the global impact of this scenario by
using the global visualization.

Usage frequency A SQL query contains some logical objects, such as
columns and tables, but also creates some relationships between objects such
as join and conjunction relationships. Thus, one can observe that a query
contains some logical nodes and edges defined by the logical approach, as
explained in Section 5.1.
We decided to attach a property to each object and relationship: a usage
frequency. The usage frequency represents the number of queries in which
the object/relationship appears. Therefore, we can define a function return-
ing the usage frequency of an element at a given time, as follows:

Given O, the set of logical objects, and R, the set of relationships,
∀x ∈ {O ∪R},∀i ∈ {0, ..., n},
the function freqi(x) denotes the frequency of x at time αi such as:
freqi(x) = freqi−1(x) + δx(queryi), with δA(B) =1 if A ∈ B, otherwise 0.
And thus, recursively, we obtain: 0 ≤ freqi(x) =

∑i
j=0 δx(queryj) ≤ (n+ 1)

This recursive formula shows the frequency of an element may evolve in a
given time interval.
This is the reason why DAViS gives the possibility to visualize the frequency
of each element at time αi∈{0,...,n}. Thanks to this feature, DAViS allows to
precisely analyse the frequency evolution.

54

5.2.1 Thickness pattern

The frequency visualization is enabled by the thickness pattern. The
thickness pattern is based on the following principle: the higher the frequency,
the thicker the graph component. Therefore, it constitutes a graphical prin-
ciple allowing to detect the most ”requested” logical objects/relationships.
An example of global visualization is presented in Figure 5.4. The figure
shows the global visualization of a set of queries.

Figure 5.4: Thickness pattern

In this example, we immediatly notice the most requested logical nodes.
Indeed, the tables product, detail and the column product[npro] have the
highest frequencies.

5.2.2 Advantages of the global visualization

Detection of major graph components The global visualization allows
to easily detect the main/sensitive logical nodes involved in a given set of
queries. The detection of (over)sensitive nodes can indicate a system prob-
lem. For instance, if after the analysis of the queries sent by a program to
a database, we notice that a table is excessively requested, this could be an
indication of a database design problem. Let us imagine, for instance, a God

55

table, that contains hundreds of (unrelated) columns, and used by almost all
programs.

Detection of implicit relationships In most legacy databases, some in-
tegrity constraints can be implicit : they do exist, yet they have not been
explicitly declared in the DDL code. For instance, some legacy database
management systems do not allow the explicit declaration of foreign keys
and thus, during the database reverse-engineering process, the recovery of
such constraints is required, and it is a complex problem. Nevertheless,
DAViS proposes a solution to this issue. Indeed, thanks to the presence of
join/conjunction relationships, it permits to facilitate the recovery of im-
plicit foreign keys. Let us assume there is no declared foreign key between
two tables A and B but, after visualizing a scenario, we detect a significant
(high-frequency) join relationship between both tables, then it might indicate
there exists an implicit foreign key between A and B.

Frequency evolution As we described below, DAViS implements a func-
tionality permitting to analyse the frequency evolution of each graphical
component. Since the global visualization consists of a graph-based repre-
sentation, the purpose of this functionality is to study the graph evolution;
indeed, according to αi, the displayed graph owns a specific state statei and
thus, one can summarize the graph evolution by Figure 5.5.

Figure 5.5: Statei corresponds to the graph state at time αi.

The global visualization allows to observe the final state but also each
intermediate state in order to analyse the evolution.

5.3 Query visualization

In the previous section, we described the global visualization proposed
by DAViS. It provides a support for understanding the global impacts of a
program execution scenario that sends a set of SQL queries to the database.
Nevertheless, we observe that the global visualization allows neither to under-
stand the impact of a given query nor to comprehend its meaning. Therefore,
DAViS proposes a second visualization method, the query visualization.

56

5.3.1 Logical approach

The purpose of the query visualization, by using the logical schema as
representation model, is to visualize a given query in order to logically un-
derstand what this query means.
To achieve this, DAViS uses a two-phase principle (see Section 4.6) for visu-
alizing a given query. It consists of two steps:

1. First, it visualizes selection condition phase of the query.

2. Second, it visualizes the query result (output phase).

We now show a simple example of query visualization, using the logical
approach.
Let consider the SQL query shown at Figure 5.6.

(1) select NAME, PRICE from PRODUCT
(2) where NPRO = ’1234’;

Figure 5.6: SQL query selecting the name and price of a particular product.

This query aims to select the name and price of a particular product:

- Line 2 selects the product ’1234’ and thus, constitutes the selection
condition phase.

- Line 1 returns the name and price of the selected product and thus,
constitutes the output phase.

The logical query visualization of this query is illustrated in Figure 5.7, show-
ing the two consecutive phases. It results in an animated and dynamic visu-
alization.

57

Figure 5.7: Query visualization in logical approach - the two phases

To summarize the logical approach, one can notice that the logical ap-
proach can serve as a means to obtain statistical information (global visual-
ization) but also as a means to understand the meaning of a given SQL query
(the query visualization). However, the query visualization only provides a
logical understanding. Indeed, it uses the logical schema as representation
model with its logical objects. Such a representation model is technical and
low-level and does not allow the user to deeply and concretely understand
what a SQL query really means in terms of application domain objects. One
can conclude that the logical approach does not fully support an in-depth
understanding of the data manipulation behaviour of a running program.
We can show an example illustrating the weakness of the logical approach.
Let us consider the SQL query shown at Figure 5.8. This query aims to select
all the customers who have ordered the product ’1234’.

(1) select O.NCUST
(2) from ORDERS O, detail D
(3) where O.NORDER = D.NORDER
(4) and D.NPRO = ’1234’;

Figure 5.8: Example of SQL query.

58

Figure 5.9 represents the resulting logical query visualization. The selec-
tion condition phase shows a join (line 3) between the two columns NORDER
(illustrated by the dotted edge) and the selection of the product ’1234’ (line
4). The result phase represents the selection of column NCUST.

Figure 5.9: Query visualization in logical approach - the two phases

We notice that this visualization is far from intuitive: it does not offer a
natural and easy way to understand the exact meaning of this query.
This is exactly why we decided to implement the conceptual approach: in
order to reach a complete and high-level comprehension.

5.3.2 Conceptual approach

Since the purpose of the conceptual approach is to separately study each
query of an execution scenario, it only proposes the query visualization, as
shown in Figure 4.6. The conceptual approach uses the conceptual schema
as representation model. Indeed, a conceptual schema is more abstract and
it offers a representation of the database domain that is more intuitive than
the logical schema.

When a database engineer wants to design a database, he or she must
describe the application domain.
The latter is made of concrete and abstract entities. There exist some rela-
tionships between those entities. Figure 5.10 gives a graphical representation
of an application domain.

59

Figure 5.10: Application domain - entities and relationships

Then, the database engineer produces a conceptual schema in order to
classify the entities. Each entity belongs to a class called entity type and
thus, all the entities being of the same nature belongs to the same entity
type.
Figure 5.11 shows the clustering of entities according to our conceptual
schema described in Section 3.2.

Figure 5.11: Application domain - clustering of entities of the same nature

Furthermore, a DML-SQL query can be seen as an extraction or modi-
fication of some entities of the domain. Therefore, we can consider a SQL

60

query as an extraction or modification of some instances of one or sev-
eral entity type(s).
Let us illustrate this observation by reusing our example of Figure 5.8: one
observes that this query targets only one family of entities, namely the cus-
tomers. However, the query does not target the whole set of customers but
only the subset of customers having ordered the product ’1234’.

As previously explained, the query visualization uses the two-phase princi-
ple by displaying (1) the selection condition phase and (2) the output phase.
In the conceptual approach, the goal of the first phase is to graphically show
the subset of entity type instances involved in the query, while the second
phase allows to understand the query result.
To achieve the goal of the first phase, DAViS defines two graphical patterns.

The target pattern The target pattern consists in detecting the entity
type(s) targeted by the query and displaying the corresponding conceptual
component(s) larger than the other ones. This allows to graphically highlight
the main entity type(s) involved in the query.

The subset pattern Once the entity types involved in the query are
defined, the subset pattern consists in detecting the subset of entity type
instances that is targeted by the query and in highlighting this subset by
making it bold.

Let us show an example of these two patterns by reusing our example query
of Figure 5.8. We illustrate the two phases of the conceptual query visual-
ization in Figure 5.12. The entities targeted by the query are the customers
and, as one can see, the entity type CUSTOMER is graphically larger than
the other components (target pattern).
Moreover, the bold components (ORDER, detail, NPRO) denote the subset
of customers involved in the query (subset pattern).
Without having read the query, and even without any knowledge of SQL,
the user is now able to easily understand its meaning. Indeed, the selection
condition phase could be translated as follows: ”the visualized query targets
the customers having placed orders detailing the product ’1234’”.
Concerning the output phase, it simply represents the selection of the cus-
tomer’s number (NCUST).

In conclusion, thanks to the graphical language defined by the conceptual
approach, DAViS provides a support for understanding the precise meaning

61

of a given query in terms of application domain (conceptual) objects.

62

Figure 5.12: Example of SQL query - selecting customers having ordered a particular product.

63

Chapter 6

Implementation

In this chapter, we discuss the technological choices we made when imple-
menting DAViS.

6.1 DB-Main

The DB-Main [11] CASE tool1 is a tool dedicated to the database engi-
neering domain. It constitutes a tool support for executing all the steps of
the database design process (Figure 3.1: requirement analysis, logical de-
sign, physical design and coding). Moreover, DB-Main provides support for
reverse engineering and program understanding.

In particular, DB-Main can be used as database modelling tool. For
instance, a database can be modelled by a logical/conceptual schema written
with DB-Main. Figure 6.1 shows an example of usage of DB-Main.

Schema matching As previously explained, the conceptual approach can
be considered as a translation of logical objects into conceptual objects.
Therefore, this process requires the database logical schema, the conceptual
schema but also the mapping between both. This schema mapping aspect is
discussed at Section 3.3.
DB-Main proposes an answer to this mapping problem. Indeed, it defines
a mapping meta-property according to which each (logical or conceptual)
objects has its own mapping identifier. The logical and conceptual objects
having the same mapping identifier map to each other. And thus, thanks to
this mapping meta-property, DB-Main permits to establish a mapping be-
tween the logical and conceptual schemas.

1CASE tool: Computer-Aided Software Engineering tool

64

Figure 6.1: Example of our conceptual schema written with DB-Main tool

At Figure 3.1, we have established the correspondence between our logical
and conceptual schemas. From now on, we are able to implement this corre-
spondence with the mapping meta-property defined by DB-Main. Table 6.1
shows the detailed schema mapping.

65

Conceptual object Logical object Mapping
identifier

1 CUSTOMER CUSTOMER 982
1.1 -NCUST CUSTOMER(NCUST) 968

” ORDERS(NCUST) 968
1.2 -NAME CUSTOMER(NAME) 964
1.3 -ADDRESS CUSTOMER(ADDRESS) 988
1.4 -PHONE CUSTOMER(PHONE) 948
1.5 -CAT CUSTOMER(CAT) 986
1.6 -ACCOUNT CUSTOMER(ACCOUNT) 976
2 place ORDERS-ref:NCUST 960
3 ORDER ORDERS 978
3.1 -NORDER ORDERS(NORDER) 966

” detail(NORDER) 966
3.2 -DATE ORDERS(DATE) 974
4 detail detail 972
4.1 -QUANTITY detail(QUANTITY) 952
5 PRODUCT PRODUCT 954
5.1 -NPRO detail(NPRO) 962

” PRODUCT(NPRO) 962
5.2 -NAME PRODUCT(NAME) 970
5.3 -PRICE PRODUCT(PRICE) 958
5.4 -STOCK PRODUCT(STOCK) 950

Table 6.1: Example of mapping between the logical and conceptual schemas

This table is composed of 3 columns: the first one lists all the conceptual
objects (entity type, relationship type and attribute); the second one lists all
the logical objects (table, column and foreign key) that map to each concep-
tual object; the last one indicates the corresponding mapping identifier.

6.2 JIDBM

JIDBM2 is an interface offered by DB-Main. It consists of a Java API
allowing to access the DB-Main schemas in order to read and write them. It
is composed of a set of classes written in the Java programming language.
Therefore, JIDBM allows the development of Java applications (plug-ins)
manipulating DB-Main schemas.

2Java Interface for DB-Main

66

We decided to use DB-Main as database schema modelling tool. DB-Main
schemas will be used as inputs for our tool (see Figures 4.4 and 4.5). Thanks
to this opportunity to write plugin applications, we decided to implement
DAViS as a DB-Main plug-in by using the JIDBM API for accessing the
schemas.
JIDBM is one of the reasons why Java was chosen for implementing the tool.

Java Java is an object-oriented programming language. The main advan-
tage of Java is that any Java application can run on any Java Virtual Machine
(JVM). JVM is an abstract layer that proposes an interface between the pro-
gram and the operating system. With this particularity, a Java program
is portable and can work on different operating systems (Windows, Linux,
MacOS, ...).

6.3 JDBC

JDBC3 is an API for the Java programming language that defines how to
access a database. It provides methods for querying and updating data in a
database. JDBC is mainly implemented for relational databases.
The class Statement provides two main methods allowing to query and up-
date data :

• Querying : Statement.executeQuery(query)

• Updating : Statement.executeUpdate(query)

Figures 6.2 and 6.3 present an example of querying and updating with
JDBC.

(1) Connection conn = DriverManager.getConnection(URL, Login, Password);
(2) String ID = ”D123”;
(3) String query = ”select ADDRESS from CUSTOMER where NCUST = ?”;
(4) PreparedStatement state = conn.prepareStatement(query);
(5) state.setString(1, ID);
(6) ResultSet result = state.executeQuery();
(7) result.next();
(8) System.out.println(result.getInt(1));

Figure 6.2: Example of database querying with JDBC - selecting the address
of a particular customer

3JDBC : Java Database Connectivity

67

(1) Connection conn = DriverManager.getConnection(URL, Login, Password);
(2) String ID = ”D123”;
(3) String query = ”delete from CUSTOMER where NCUST = ?”;
(4) PreparedStatement state = conn.prepareStatement(query);
(5) state.setString(1, ID);
(6) state.executeUpdate();

Figure 6.3: Example of database updating with JDBC - customer deleting

6.4 AspectJ

As detailed in Section 4.3, the online method aims to capture each SQL
query sent by the program to the database and visualize them in real time.
A first technique would be to modify the program source code so that each
query is captured at runtime before being sent to the database. But such
a code modification may be considered as a complex and unrealistic process
in most cases. In order to face this problem, we introduced in Section 1.4
the use of aspects. This technique allows to trace/extract each SQL query at
runtime by adding some behaviour to the program without any source code
modification.
This solution seems to be the most convenient technique to satisfy our needs.
That is why we chose the aspect-based tracing for implementing the DAViS
online method.

AspectJ [26] is an aspect-oriented extension created for the Java program-
ming language. For implementing the online method, we decided to retain
AspectJ in order to extract SQL queries produced at runtime and handle
them in real time.
Furthermore, as the aspect-oriented technique does not necessitate any code
modification but only a code recompilation, all you need to do is to add a
piece of code to the program.
Figure 6.4 shows an example of aspect allowing to capture the SQL queries
sent by the program.

68

(1) pointcut queryExecution(String query):
(2) call(* java.sql.Statement.execute*(String)) && args(query);
(3) before(String query): queryExecution(query){
(4) MyGraph graph = getGraph(); //retrieving the current visualization
graph
(5) Request req = getRequest(query);//parsing the SQL query
(6) graph.visRequest(req); //visualizing the parsed query
(7) }

Figure 6.4: Online method - AspectJ code

At line 2, we define a pointcut every time a method Statement.execute*(String
str) is called. This grammar covers the methods executeQuery and execute-
Update (based on JDBC syntax). At line 5, we retrieve the query to send
and we parse it. At line 6, we visualize the parsed query.

6.5 SQL Parser

Both offline and online methods (illustrated by Figures 4.4 and 4.5) visu-
alize a program execution scenario and more precisely the SQL queries in-
volved in this scenario. Nevertheless, the captured queries have to be parsed
before they can be visualized. In our context, a parsed SQL query is a SQL
query translated into a Java structure containing relevant information and
exploitable by our visualization tool. Thus, this chapter aims to introduce
the parser integrated into DAViS. But before describing the Java structures
of a parsed query, we have to list our working hypotheses regarding the SQL
syntax.

6.5.1 SQL hypotheses

SQL is a high-level language designed for managing data in a relational
database management systems. SQL consists of a data definition language
(DDL) and a data manipulation language (DML). SQL became a standard of
the International Organization for Standards (ISO) in 1987 [2]. Since then,
the standard has evolved several times with added features. Up to now, there
exist different revisions of SQL standard. One can directly notice SQL has
a wide range and it would be very complicated to implement a visualization
tool able to manage all SQL versions. This is why we had to delimit the SQL
grammar subset covered by DAViS.

69

SQL-92 One of the main SQL versions is SQL-92 (also called SQL2), the
third revision. As already explained in Section 4.4.1, we decided to restrict
ourselves to this version. Indeed, the following revision is SQL:1999 (also
called SQL3) and this version introduces a significant number of extensions,
in comparison to SQL2, such as triggers, SQL procedures and some new
object extensions [15]. For instance, some new complex data types appeared
in SQL3 (not allowed by SQL2) such as row and array types. Moreover,
SQL3 allows users to define their own data types. One can note major
changes compared with SQL2 that would be manageable with difficulty by
our parser. In brief, our parser only manages a subset of the SQL2 grammar.

CRUD operations In summary, SQL is a language consisting of two sub-
languages: DDL allowing to define database structures and DML allowing
to manipulate data. Since the DAViS purpose is to understand the impact
of SQL queries, we limited SQL to the DML part and thus, to the data
manipulation operators. Therefore, DAViS is limited to four types of queries:
select, update, delete and insert, in other words the CRUD operations. Any
other type of query will not be parsed (and thus visualized) and will be
considered as an unparsed query.

Managed and unmanaged SQL operators It is important to notice
that we present DAViS as a prototype visualization tool. This means that
this tool does not deal with the whole SQL2 syntax. The managed syntax
denotes what DAViS is able to parse and visualize, while the unmanaged
syntax denotes what DAViS is able to parse BUT does not visualize.
Let us distinguish the managed from the unmanaged syntax by establishing
a non-exhaustive list containing only the important points:

1. Where clause: select, delete and update queries may have a where
clause defining the query selection conditions.

a. Unary and binary operators: a where clause may contains several
unary and binary operators. Such operators are managed by the
parser. For instance, +,−,×, :, <,>,≤,≥,=, <>, like, is null, is
not null are managed.

b. Composition of expressions: a where clause may be composed
of several expressions. The compositions of expressions with the
operators OR and AND are managed by the parser.
Figure 6.5 shows an example of compositions of expressions and
operators managed by the parser.

70

(1) select NPRO
(2) from PRODUCT
(3) where (NORDER = 2
(4) and QUANTITY < 3)
(5) or NAME like ’%WOOD%’

Figure 6.5: Example of managed SQL syntax

c. Sub-request: a sub-request is an embedded request present in a
where clause. A sub-request may, in turn, contain a sub-request.
There exist two ways to build a sub-request:

- (NOT -)IN clause: this kind of sub-request is managed by the
parser. However, the sub-request has to be mono-component.
Figure 6.6 presents an example of managed sub-requests, while
Figure 6.7 shows an unmanaged case.

(1) select *
(2) from PRODUCT
(3) where NPRO IN (select D.NPRO
(4) from detail D)
(5) and NAME NOT IN (”PRO1”,”PRO2”)

Figure 6.6: Sub-request (IN clause) - Example of managed sub-request: line
3 and line 5 are both managed sub-requests

(1) select *
(2) from PRODUCT
(3) where (NAME,STOCK) IN ((”PRO1”,20), (”PRO2”,15))

Figure 6.7: Sub-request (IN clause) - Example of unmanaged sub-request
because element (NAME,STOCK) is not mono-component

- (NOT -)EXISTS clause: this kind of sub-request is not man-
aged by the parser. We present an example of unmanaged
EXISTS clause at Figure 6.8.

71

(1) select *
(2) from PRODUCT
(3) where EXISTS (select * from detail D
(4) where D.NPRO = NPRO)

Figure 6.8: Sub-request (EXISTS clause) - Example

2. Set operators: the set operators (except, intersect union, union all,
any, for all, . . .) are not managed by the parser.

3. Aggregative functions: no aggregative function is managed by the
parser. For instance: count(), sum(), max(), min(), . . .

4. Other pre-existing SQL functions: some pre-existing SQL functions are
not managed by the parser. Example: substring(), trim(), . . .

5. Explicit join operators: join operators having the form

join [tables] on [join conidition]

are managed by the parser. The set of managed join operators includes
[right/left][inner/outer] joins.

(1) select *
(2) from PRODUCT P right outer join detail D
(3) on (P.NPRO = D.NPRO)

Example of explicit join operator

6. Other operators: some other operators are not managed by the parser
like distinct, order by, group by, having, . . .

6.5.2 Parsed query structures

Given all our hypotheses about SQL parsing, a customized parser is re-
quired. That is why we decided to build our own SQL parser using a parsing
Java API. The chosen Java API is JSqlParser [16]. JSqlParser parses a
SQL query and translates it into a hierarchy of Java classes. The generated
hierarchy can then be navigated. Thus, our customized parser can be seen as
a tool extracting pertinent data from the hierarchy obtained by JSqlParser.
Then, once extracted, data are stored into predefined Java structures. This

72

process is summarized by Figure 6.9. However, the DAViS users can freely
bring their own SQL parser and replace the current parser with another one.
The only constraint is to respect the predefined Java structures into which
parsed data will be stored.

Figure 6.9: Parsing process

In this section, we introduce an overview of the Java structures into which
the parsed query is stored. This object represents a recursive structure and
is implemented as a Java Arraylist. To avoid a technical description of the
Java structures, we decided to design a model describing the Java object (see
Figure 6.10).
Our customized parser and its Java structures have mainly been thought
and designed by Nesrine Noughi, teaching assistant and PhD student at
University of Namur4.

Parsed query It represents the parsed query. There exist three main types
of query: an Invalid query, an Insert query and a Where clause query.

Invalid query It represents an invalid query. An invalid query can appear
in two cases:

1. Unparsed query: the parser cannot parse the query either if there is a
syntax error or if the query is not a CRUD operation.

2. No relevant information: an invalid query may be a query without
relevant information. For instance, if the query contains only columns
and tables that are not present in the logical schema.

Insert query It represents an inserting query. An inserting query consists
in putting new values (Inserted values) in a table (table name). It inserts a
new value (new value) for each column (column).

4http://www.unamur.be/universite/personnes/page view/01008459/

73

Where clause query Deleting query (Delete query), updating query (Up-
date query) and selecting query (Selecting query) belong to this category,
namely every query type that might have a where clause (Where clause).

Delete query It represents a deleting query. It consists in removing some
lines of a table (table name).

Update query It represents an updating query. It consists in updating
some columns (Updated values) of a table (table name). Each updated col-
umn (column) receives a new value (new value).

Select query It represents a selecting query. This query type consists
in extracting some columns (Selected column). A selecting query also has a
from clause with tables (From table). Moreover, this query type may have an
explicit join operator (Join). A join between two tables (table1 and table2)
may have a special type (right/left inner/outer) and owns a join condition
(join condition) on two columns.

Where clause It represents a where clause. A where clause may contain
several expressions with unary/binary operators (Expression) and may have
several sub-request.

Subrequest It represents a mono-component sub-request. A sub-request
has a type (IN or NOT IN type) and is based on the matching between
a source column (source column) and a set of values. This set of values is
extracted from a selecting query (Select query) containing only one selected
column (in order to satisfy the condition of mono-component sub-request).
We notice that a sub-request has a recursive definition.

74

Figure 6.10: Java structures of a parsed query - modelling

75

6.6 JUNG

JUNG5 is a Java API that provides a common and extensible language for
the visualization of data that can be represented as a graph or network [17].
This API is designed to support a variety of representations of entities and
their relationships, such as directed and undirected graphs. JUNG facilitates
the creation of tools allowing to visualize complex data sets and easily explore
data networks .
Furthermore, users can easily use one of the predefined layout algorithms, or
use their own custom layouts.

We decided to choose JUNG as visualization API. Thanks to it, we are
able to implement a graph-based representation and dynamically visualize
complex data sets.

5Java Universal Network/Graph

76

Chapter 7

Evaluation

In this chapter, we present the global evaluation of our DAViS visualization
tool, as well as its usage possibilities.

7.1 Case studies

During the implementation phase of DAViS, we had the opportunity to eval-
uate our tool by studying two concrete cases.

7.1.1 Webcampus

In order to evaluate our approach, we experimented the case of Webcam-
pus [21], an e-learning application used at the University of Namur. Web-
campus is a platform allowing teachers to offer learning stuff on the web.
Webcampus is written in PHP and uses a MySQL database. The database
contains 33 tables, 198 columns and 37 foreign keys. Thanks to our col-
laboration with Jean-Roch Meurisse, the administrator of Webcampus, the
database logical schema as well as the SQL traces generated by 14 execution
scenarios were available to us. These 14 scenarios denotes the most typical
operations performed by Webcampus users. For each scenario, the generated
SQL traces are stored into a file. We had a total of about 10,000 SQL queries
to visualize with DAViS.
By studying this case study and visualizing SQL traces generated by real
execution scenarios, we corrected and improved our visualization tool.
Figure 7.1 shows the overview of the Webcampus logical schema.

77

Figure 7.1: Logical schema of Webcampus’s database

Table 7.1 presents some statistics pertaining to the collected queries.
The 14 scenarios contains 10,192 queries. However, 5,026 queries are out-
of-schema (no logical object is in the logical schema) and 157 cannot be
parsed. Therefore there are only 5,009 queries the user can visualize:

- 4,828 selecting queries

- 29 deleting queries

- 3 updating queries

- 149 inserting queries

We observe DAViS is able to parse 98 percent of the queries. The majority
of the unparsed queries is due to either the presence of SQL functions our
tool cannot parse (e.g. ISNULL(), IFNULL(), FOUND-ROWS(), . . .) or a
non-CRUD operation (e.g. a creating query).

78

total of queries 10192
unparsed queries 157
out-of-schema queries 5026
selecting queries 4828
deleting queries 29
updating queries 3
inserting queries 149

Table 7.1: Webcampus - Overview

7.1.2 Rever

Rever [19] is spin-off company of the database engineering lab of the Uni-
versity of Namur. Rever brings model driven data engineering solutions to
companies. In particular, the DB-Main CASE tool has been developed and is
still currently maintained by Rever. We had the opportunity to collaborate
with Rever. Rever is interested in integrating DAViS in a future project. A
senior consultant of the company has tested the tool on a logical schema of
about hundred tables, and with a SQL execution trace 1,584 queries. Thanks
to this collaboration, we detected some technical problems and added a few
features recommended by Rever.

Table 7.2 presents statistics about the collected queries. We observe 76
percent of the queries are successfully parsed. The majority of unparsed
queries is due to a SQL syntax not considered by our tool. Figure 7.2 shows
an example of SQL query not covered by the parser.

WHEN T.TYPE=’X’ THEN NULL WHEN T.TYPE=’N’
THEN ’SYNONYM’ ELSE TT.TABLE TYPE END
IN (’TABLE’) ORDER BY 4,1,2,3

Figure 7.2: SQL query - WHEN/THEN/ELSE

79

total of queries 1584
errors 376
out-of-schema queries 1042
selecting queries 151
deleting queries 1
updating queries 12
inserting queries 2

Table 7.2: Rever - Overview

7.2 Forces and limitations

Through this thesis, DAViS has been presented to the reader. In this section,
we proposes a synthetic view of the forces and limitations present in the
current version of this tool.

7.2.1 Forces

Through the different chapters, we have seen that DAViS supports two main
approaches: the logical approach allowing to obtain a logical understanding
of an execution scenario and the conceptual approach providing a concep-
tual comprehension.
The former uses the database logical schema as representation model for
the visualization and aims to extract technical information pertaining to the
visualized scenario:

1. Detection of major logical objects: DAViS is a support for detecting
the most requested logical nodes (tables and columns), each of them
with some statistical information such as their usage frequency in the
scenario.

2. Detection of implicit relationships: as explained, most legacy databases
cannot explicitly declare some integrity constraints; indeed, it is not
rare to encounter a database without explicit foreign key but implicitly
existing. The recovery of implicit foreign keys is a complex process.
DAViS allows to detect the join and conjunction relationships be-
tween tables and thus, offers a support for the detection of implicit
foreign keys.

3. Evolution analysis: our visualization tool has a functionality that pro-
poses users to analyse the evolution of the displayed graph. It allows to

80

study the evolution of the usage frequency of nodes and relationships
during a scenario.

The conceptual approach uses the database conceptual schema as represen-
tation model for the visualization and offers a support for conceptually
understanding the meaning of a given query. The conceptual approach pro-
poses a graphical language for visualizing and comprehending queries.

7.2.2 Limitations

We are aware that DAViS is only a first prototype. This is why we present
here a list of the limitations of the current version as well as possible im-
provements for future versions:

• SQL limitations: since there exist different SQL versions, we made the
choice to limit our parser to SQL-92. Moreover, we use a customized
parser that does not cover all the SQL-92 syntax. In Section 6.5, we
define the subset of SQL-92 managed by our parser. A future ver-
sion would consist in covering the whole SQL-92 and thus, adding new
visualization patterns.

• Conceptual schema: in Section 3.2, we made some assumptions pertain-
ing to the subset of the ER model considered by our tool. We showed
that the conceptual expressiveness was not impacted by those assump-
tions but however, it might be interesting to permit other conceptual
constructions in the conceptual approach, such as an is-a relationships,
ternary relationship types and compound attributes.

• Memory: as explained in Section 5.2.2, the global visualization allows to
observe each intermediate graph state. Therefore, we store each inter-
mediate state in memory. Nevertheless, when the graph has very high
number of nodes and edges, DAViS is likely to be memory-consuming.

• Slowness: DAViS may encounter problems of slowness when the dis-
played graph is composed of a very high number of nodes. Indeed, the
displaying and the positioning of each node is calculated whenever the
graph is updated. Thus, the graph updating may be a slow process
depending on the number of nodes.

7.3 Comparison with the survey

Let us remind that we introduced in Section 2.1 a survey established by
Delft University summarizing the existing literature about the use of dynamic

81

analysis in the context of program comprehension. This study defines a list of
facets in order to classify all the articles: the activity, the target, the method
and the evaluation. Since we have now presented DAViS in detail, we can
now apply the same evaluation grid (the four facets) on our tool. Table 7.3
shows the grid applied on DAViS.

Facet Attribute
1 Activity Views

Trace analysis
Behaviour

2 Target All systems
3 Method Vis. (std.)

Online

Table 7.3: Comparison with survey

Let us analyse the comparison:

1. Activity:

- Views: we saw that DAViS proposes the reconstruction of spe-
cific views about the database (logical and conceptual schemas as
representation model).

- Behaviour: DAViS aims at analysing the communication between
a program and its database, i.e., the data manipulation behaviour
of the program.

- Trace analysis: the tool mainly cares about the trace analysis
by understanding the SQL traces generated at runtime by the
program.

2. Target: we observe DAViS is able to target all kinds of data-intensive
systems generating SQL traces.

3. Method:

- Visualization: we propose a dynamic visualization of the interac-
tions between a program and its database through a graph-based
representation.

- Online: in Section 4, we define two contexts targeted by DAViS,
namely the offline and online methods. We saw that the latter
allows to visualize the SQL queries in real time.

82

In Section 4, the graph (Figure 2.1) synthesizes results obtained by the
survey.
The graph shows the trace analysis is poorly exploited by the research com-
munity. But DAViS tries to cover this point by analysing the communication
between the program and the database (SQL queries analysis) in order to
ease program understanding.
About the targeted systems, this tool is able to deal with any system that
communicates with a database by producing SQL queries. Thus, DAViS is
suitable for all data-intensive systems and in particular, for legacy systems
and web applications, rarely targeted.
Concerning the used methods, our tool provides both an offline and online
analysis of the communication between the program and the database. The
survey shows the online analysis is the least used method.
To conclude this comparison, we introduce in this thesis, a novel tool explor-
ing some yet almost unexplored areas like trace analysis applied to legacy
systems and web applications (more generally on data-intensive systems) and
allowing to analyse SQL traces generated at runtime. Thus, this tool covers
a few unexplored areas. This is why we can consider that this thesis pro-
poses an original way to ease program maintenance/evolution by supporting
data-intensive program comprehension.

7.4 Usage possibilities

We now discuss the usage possibilities of DAViS:

1. Program understanding: in the introduction, we highlight the high
costs related to software systems evolution. Indeed, our main purpose
is to reduce those costs by providing support to data-intensive program
comprehension. The first usage possibility offered by DAViS is to sup-
port the understanding of the database manipulation behaviour of a
program.

2. Program debugging: DAViS can also serve as a program debugger. It
would indeed allow to check the program correctness by analysing its
execution, and in particular the behaviour of the SQL queries sent by
the program.

3. Database monitoring: DAViS might allow a real-time monitoring of a
database. For instance, it could control online the impact of the queries
received by the database, the frequency of access to each table, etc.
Such a tool could be useful, for instance, for database administrators.

83

4. Logical reconstruction: in Section 3.5, we introduced database reverse
engineering. A particular phase consists in reconstructing the logical
schema from the database source code and other artefacts. Such an ac-
tivity is far from being straightforward. Thanks to its logical approach,
DAViS also constitutes a support for recovering some implicit integrity
constraints and thus, for refining the logical schema (e.g., the recovery
of implicit foreign keys).

84

Chapter 8

Conclusion

8.1 Summary and contributions

In Chapter 1, we introduced the purpose of this thesis; we saw that soft-
ware maintenance and evolution constitute a time-consuming and expensive
processes. In particular, we observed that program comprehension repre-
sented more than 50 percent of the total costs of maintenance. Program
comprehension is a complex activity, but we noticed that the analysis of the
communication between the program and the database may be a good angle
for understanding what a data-intensive program is doing. In the case of a
relational database, this communication is materialized by the SQL queries
sent by the program. However, we saw that more and more data-intensive
programs use dynamic SQL statements, i.e., queries that are build at run-
time.
Therefore, the aim of this thesis was to propose a novel tool-supported ap-
proach consisting in dynamically analysing the SQL queries sent by the pro-
gram in order to ease program understanding, and transitively, to ease soft-
ware system evolution.
In Chapter 2, we summarized the state of the art related to program com-
prehension through dynamic analysis. We showed that almost none of the
existing works focus on the analysis of the program-database communication.
Chapter 3 gave an overview of database engineering, that constitutes the con-
ceptual background of our work. We described all the phases for designing
a database. During the database engineering process, we saw that different
database schemas are produced: in particular, the logical and conceptual
schemas.
Chapter 4 introduced our tool, DAViS, to the reader by presenting its theo-
retical principles:

85

• Dual context: DAViS can be used both in offline or online usage sce-
narios. The former allows an offline visualization of an execution sce-
nario: firstly, the user collects SQL queries generated during program
execution and secondly, visualize them with DAViS. The latter consists
in collecting and visualizing SQL queries in real time, during program
execution.

• Logical and conceptual approaches: DAViS offers a graph-based visu-
alization and proposes two possible representation models: either the
logical schema or the conceptual schema. The former allows to under-
stand the technical impact of the SQL queries on the database while
the latter permits a more abstract comprehension.

• The global and query visualizations: DAViS provides the user with the
opportunity to visualize the global impact of a set of queries on the
database or to analyse a particular query. The global visualization al-
lows to obtain statistical information whereas the query visualization
supports the comprehension of one given query. The combination of
both visualizations is required to obtain an in-depth understanding of
the data manipulation behaviour of a given program in a given execu-
tion scenario.

Chapters 5 and 6 gave a technical description of our visualization tool as well
as an illustrating example of its usage.
Finally, Chapter 7 presented the global evaluation of DAViS; we used the
tool in two practical cases (Webcampus and Rever) and obtained promising
results. However, it is important to notice that our visualization tool still has
to be formally evaluated through a more systematic experiment involving real
users, in order to measure to what extent it can actually ease data-intensive
program comprehension.

In conclusion, we presented, in this Master’s thesis, a novel tool-supported
approach supporting program comprehension in general, and in particular,
the comprehension of the communication between application programs and
their database, with the general objective to reduce the costs of data-intensive
software evolution.

8.2 Future directions

Obviously, this Master’s thesis only constitutes as an humble starting point
for further research developments. We anticipate two possible future direc-
tions in this domain:

86

• Paraphrasing and automatic redocumentation: with the conceptual ap-
proach, DAViS proposes a support for conceptually understanding the
precise meaning of a given query. Therefore, we could easily imag-
ine to add a functionality making query paraphrasing possible; the
query paraphrasing would consist in generating a sentence expressing
the meaning of the query in natural language. Thus, we could imagine
an automated program redocumentation process. Figure 8.1 represents
an example of a Java method whose the documentation is missing and
Figure 8.2 shows the method after automatic redocumentation. Al-
ternatively, such a paraphrasing could also be used on-the-fly, to help
developers and users to easily understand what a program is doing
on the database at runtime in certain execution conditions. The ap-
plication of such techniques in the context of debugging or customer
acceptance tests look promising.

public void doIt(int Num){

Connection conn = DriverManager.getConnection(url,login,pwd);
String query = ”select O.NCUST”+

”from ORDERS O, detail D”+
”where O.NORDER = D.NORDER”+
”and D.NPRO = ?;”;

PreparedStatement state = conn.prepareStatement(query);
state.setString(1, Num);
ResultSet result = state.executeQuery();

....

}

Figure 8.1: Example of undocumented code

87

public void doIt(int Num){

Connection conn = DriverManager.getConnection(url,login,pwd);
String query = ”select O.NCUST”+

”from ORDERS O, detail D”+
”where O.NORDER = D.NORDER”+
”and D.NPRO = ?;”;

PreparedStatement state = conn.prepareStatement(query);
state.setString(1, Num);
/**
∗ Selecting the customers having ordered a particular product.
∗/
ResultSet result = state.executeQuery();

....

}

Figure 8.2: Example of redocumented code

• Program workflow extraction: an enhancement of our dynamic analysis
approach would consist of a new feature allowing to extract and visual-
ize the behaviour of a data-intensive system from several SQL execution
traces that all correspond to the same business process. The idea, cur-
rently under investigation, would be to extract a workflow describing
the successive data manipulation events, possibly with sequential, it-
erative and choice operators. Such a feature would be a good support
for understanding and redocumenting the complete data-manipulation
behaviour of a data-intensive program, not only of one of its execution
scenario as we do in this thesis.

88

Appendices

89

Appendix A

Additional functionalities

DAViS proposes some additional functionalities. Figure A.1 shows the graph-
ical user interface of DAViS.

1. Logical schema: allowing to reach the logical approach. The logical
schema is used as representation model.

2. Conceptual schema: allowing to reach the conceptual approach. The
conceptual schema is used as representation model. This feature is
optional and depends on the availability of the conceptual schema.

3. Main view: representing the graph-based visualization.

4. Main view panel: this panel permits to filter information the user
does not wish to visualize in the main view such as the foreign keys,
the attributes/columns, the conjunction and join relationships.

5. Satellite view: representing a simplified view allowing the user to
obtain an overview of the visualization.

6. Satellite view panel: this panel permits to filter information the user
does not wish to visualize in the satellite view. The main and satellite
views can be complementary: the users may display the most important
information on the main view while the satellite view displays secondary
information.

7. List of queries: this panel contains all the SQL queries to visualize.
The user can easily navigate through the queries.

8. Query description: panel describing the current query.

90

9. Graph evolution: feature allowing to analyse the frequency evolution
by successively displaying each intermediate graph (see Section 5.2.2).

10. Visualizing one query: feature permitting to visualize the current
query in order to understand its impacts on the database (see Sec-
tion 5.3).

11. Previous query: selecting the previous query.

12. Next query: selecting the next query.

13. Showing unparsed query: the user can extract the details of each
query the tool cannot parse.

14. Exporting graph PNG: allowing to export the current displayed
graph as an image.

15. Injection into DB-Main: the user can inject the results of the visu-
alization into the source database schema.

91

Figure A.1: DAViS interface

92

Appendix B

Offline and online methods

Figure B.1 represents the execution of the offline method.

Figure B.1: Offline method - Components

DAViS takes an XML file as input. This file contains the SQL queries to
visualize. DAViS accesses to the database logical (mandatory) and concep-
tual (optional) schemas thanks to the JIDBM interface (see Section 6.2).

Figure B.2 represents the execution of the online method.

93

Figure B.2: Online method - Components

DAViS does not take an XML file anymore as input but the queries gener-
ated at runtime. These queries are captured thanks to AspectJ (Section 6.4).
DAViS accesses to the database logical (mandatory) and conceptual (op-
tional) schemas thanks to the JIDBM interface.

94

Bibliography

[1] Software Engineering - Software Life Cycle Processes. ISO/IEC
14764:2006.

[2] Information Technology - Database Languages - SQL. ISO/IEC 9075-1,
1987.

[3] Ieee standard for software maintenance. IEEE Std 1219-1993, pages
1–45, 1993.

[4] M. Alalfi, J.R. Cordy, , and T.R. Dean. WAFA: Fine-grained dynamic
analysis of web applications. In Proc. of the 11th International Sympo-
sium on Web Systems Evolution (WSE’2009), pages 41–50. IEEE Com-
puter Society, 2009.

[5] Barry William Boehm. A spiral model of software development and en-
hancement. In ACM SIGSOFT Software Engineering Notes, volume 11,
pages 14–24, 1986.

[6] Elliot J. Chikofsky and James H. Cross. Reverse engineering and design
recovery: A taxonomy. IEEE Software, 7(1):13–17, 1990.

[7] Anthony Cleve, Jean-Roch Meurisse, and Jean-Luc Hainaut. Database
semantics recovery through analysis of dynamic SQL statements. Jour-
nal on Data Semantics, 15:130–157, 2011.

[8] Anthony Cleve, Nesrine Noughi, and Jean-Luc Hainaut. Dynamic pro-
gram analysis for database reverse engineering. In Ralf Lämmel, João
Saraiva, and Joost Visser, editors, Generative and Transformational
Techniques in Software Engineering, volume 7680 of Lecture Notes in
Computer Science, pages 297–321. Springer, 2013.

[9] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and
R. Koschke. A systematic survey of program comprehension through
dynamic analysis. IEEE Transactions on Software Engineering (TSE),
35(5):684–702, 2009.

95

[10] Bas Cornelissen, Danny Holten, Andy Zaidman, Leon Moonen, Jarke J.
van Wijk, and Arie van Deursen. Understanding execution traces using
massive sequence and circular bundle views. In Proceedings of the 15th
IEEE International Conference on Program Comprehension, ICPC ’07,
pages 49–58, Washington, DC, USA, 2007. IEEE Computer Society.

[11] DB-MAIN. The DB-MAIN official website. http://www.db-main.be,
2006.

[12] Concettina Del Grosso, Massimiliano Di Penta, and Ignacio Garćıa
Rodŕıguez de Guzmán. An approach for mining services in database
oriented applications. In Proceedings of the 11th European Conference
on Software Maintenance and Reengineering (CSMR 2007), pages 287–
296. IEEE Computer Society, 2007.

[13] Robert L. Glass. Frequently forgotten fundamental facts about software
engineering. IEEE Software, 18(3):112–111, May 2001.

[14] Thomas Gschwind and Johann Oberleitner. Improving dynamic data
analysis with aspect-oriented programming. In Proceedings of the Sev-
enth European Conference on Software Maintenance and Reengineering,
CSMR ’03, pages 259–, Washington, DC, USA, 2003. IEEE Computer
Society.

[15] J-L H. Hainaut. Bases de données - Concepts, utilisation et
développement. Dunod, 1st edition, 2009.

[16] JSqlParser. http://jsqlparser.sourceforge.net/.

[17] JUNG. http://jung.sourceforge.net/, 2003.

[18] M.M. Lehman. Programs, life cycles, and laws of software evolution.
Proceedings of the IEEE, 68(9):1060–1076, 1980.

[19] Rever. http://www.rever-sa.com/.

[20] Tamar Richner and Stéphane Ducasse. Recovering high-level views of
object-oriented applications from static and dynamic information. In
Proceedings ICSM’99 (International Conference on Software Mainte-
nance, pages 13–22. IEEE, 1999.

[21] University of Namur. http://webcampus.fundp.ac.be/, 2001.

96

[22] Robert J. Walker, Gail C. Murphy, Bjorn Freeman-Benson, Darin
Wright, Darin Swanson, and Jeremy Isaak. Visualizing dynamic soft-
ware system information through high-level models. In Proceedings of
the 13th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, OOPSLA ’98, pages 271–283, New
York, NY, USA, 1998. ACM.

[23] Richard Wettel and Michele Lanza. Visualizing software systems as
cities. In Jonathan I. Maletic, Alexandru Telea, and Andrian Marcus,
editors, VISSOFT, pages 92–99. IEEE Computer Society, 2007.

[24] Richard Wettel and Michele Lanza. Codecity: 3d visualization of large-
scale software. In Companion of the 30th international conference on
Software engineering, ICSE Companion ’08, pages 921–922, New York,
NY, USA, 2008. ACM.

[25] Richard Wettel, Michele Lanza, and Romain Robbes. Software systems
as cities: a controlled experiment. In Proceedings of the 33rd Interna-
tional Conference on Software Engineering, ICSE ’11, pages 551–560,
New York, NY, USA, 2011. ACM.

[26] Xerox PARC. AspectJ. http://www.eclipse.org/aspectj/, 2001.

97

	Introduction
	Software evolution
	Program comprehension
	Data-intensive systems
	SQL statement analysis
	Thesis purposes
	Overview

	State of the Art
	A Systematic Survey of Program Comprehension through Dynamic Analysis
	Presentation
	The proposed tool

	Studying of particular cases
	Dynamic Program Analysis for Database Reverse Engineering
	WAFA: Fine-grained Dynamic Analysis of Web Applications
	An approach for mining services in database–oriented applications
	Improving Dynamic Data Analysis with Aspect-Oriented Programming
	Visualizing Dynamic Software System Information through High-level Models
	Recovering High-Level Views of Object-Oriented Applications from Static and Dynamic Information
	CodeCity
	EXTRAVIS

	Database Engineering
	Database schemas
	Conceptual schema
	Logical schema
	Physical schema
	Database code

	ER model subset considered
	Schema mapping
	SQL
	SQL-DDL
	SQL-DML

	Database reverse engineering

	DAViS
	Context
	Offline method
	Online method
	Two levels of abstraction
	Logical approach
	Conceptual approach

	The two visualizations
	The query visualization
	The global visualization

	The two-phase principle

	Visualization
	Graph-based representation
	Global visualization
	Thickness pattern
	Advantages of the global visualization

	Query visualization
	Logical approach
	Conceptual approach

	Implementation
	DB-Main
	JIDBM
	JDBC
	AspectJ
	SQL Parser
	SQL hypotheses
	Parsed query structures

	JUNG

	Evaluation
	Case studies
	Webcampus
	Rever

	Forces and limitations
	Forces
	Limitations

	Comparison with the survey
	Usage possibilities

	Conclusion
	Summary and contributions
	Future directions

	Appendices
	Additional functionalities
	Offline and online methods

