
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Improving the gognitive effectiveness of the KAOS requirements modelling language

Dupriez, Muriel

Award date:
2011

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 17. Apr. 2024

https://researchportal.unamur.be/en/studentTheses/0045566e-0426-4588-81d3-c61347069c8c

Facultés Universitaires Notre-Dame de la Paix, Namur

Faculté d'informatique.

Année académique 2010-2011

Improving the Cognitive Effectiveness

of

the KAOS Requirements Modelling Language.

Muriel Dupriez

Mémoire présenté en vue de l'obtention du grade de master en Sciences Informatiques.

ii

iii

"Computers are magnificent tools for the realisation of our dreams, but no machine can
replace the human spark of spirit, compassion, love, and understanding."

Louis Gerstner

iv

v

Abstract

In this thesis we present the requirements engineering discipline and in particular goal-oriented
modelling languages. They are mostly used to help the stakeholders to express their needs. During
the requirements engineering process, these needs are transformed into goals. Then these goals will
be themselves transformed into requirements that will be fulfilled by the future system. To
facilitate the communication between users and developers, system modellers often use diagrams to
graphically represent goals and requirements. They use this technique because it is commonly
accepted that graphical representations are easier to understand than formal sentences. However, it
is not as trivial as it looks. To be effective, diagrams have to be drawn following specific rules
described in a graphical language evaluation theory called the Physics of Notation. If not, the risk is
that they will become so complex that they fail to reach their aim.

We analyse in particular one goal modelling approach called KAOS. Then, we apply the principles
for an effective communication which is measured by the speed, ease and accuracy with which the
information content is understood. Following these principles the KAOS visual notation is
evaluated, and finally we give some recommendations to improve it. These recommendations will
be of 3 types: for novice users, for users that draw diagrams during a meeting and for software
developers who are building a tool that implements KAOS.

Our recommendations are validated in a running example that consists of an online bookshop store.
Our work leads to improvements to the KAOS visual notation to create more effective goal models.

vi

vii

Résumé

Dans ce mémoire, nous présentons la discipline de l'analyse des exigences et en particulier les
langages orientés buts. Ils sont principalement utilisés pour aider les parties prenantes d’un
nouveau système à exprimer leurs besoins. Durant le processus de l’analyse des exigences, les
besoins sont transformés en buts à atteindre. Ces besoins seront eux-mêmes transformés en
exigences qui devront être remplies par le futur système. Pour faciliter la communication entre les
utilisateurs et les développeurs, les architectes du système utilisent le plus souvent des diagrammes
pour représenter graphiquement les buts et les exigences. Ils utilisent cette technique car il est
communément accepté que les représentations graphiques sont plus faciles à comprendre que du
texte formel. Cependant, ce n’est pas aussi trivial que cela en a l’air. Pour être efficaces, les
diagrammes doivent être dessinés suivant des règles spécifiques décrites dans une théorie
d’évaluation des langages graphiques appelée la « Physics of Notations ». Si ce n'est pas le cas, le
risque est qu'ils deviennent si complexes qu'ils n’atteignent pas leurs buts.

Nous analysons en particulier un langage de modélisation des buts appelé : KAOS. Ensuite, nous
appliquons les principes d’une communication efficace qui peut être mesurée grâce à la vitesse, la
facilité et l’efficacité à laquelle l’information est comprise. Suivant ces principes, la notation
visuelle de KAOS est évaluée, et finalement nous formulerons des recommandations pour
l’améliorer. Ces recommandations sont de 3 types: pour les utilisateurs débutants, pour les
utilisateurs qui dessinent des diagrammes en réunion et pour les développeurs de logiciel qui
implémentent KAOS.

Nos recommandations sont validées grâce à un exemple réel basé sur une librairie en ligne. Notre
travail mène à des améliorations de la notation visuelle de KAOS pour créer des modèles de buts
plus efficaces.

viii

ix

Acknowledgement

I would like to acknowledge the following persons for their support during the elaboration of this
master thesis.

Professor P. Heymans, the supervisor of this work and his assistant N. Genon. They make me
discover the discipline of the requirements engineering further. They also gave me the necessary
support to fix the objectives of my research by providing me with the required documentation, by
guiding the redaction of this text and by following the advancement of my project. Both showed
me the importance of using accurate and precise terms to redact clearly this document and avoid
any confusion.

The head of my service, Paul Marechal who encouraged me during the time of my studies and
especially during the redaction of this thesis.

My colleagues, Chris Retsin, who gave me advices to improve this work, verified the coherence
and the typography.

And finally my family and in particular my husband who supports me in everyday life and
encourages me in the more difficult moments.

x

xi

Table of Contents

Abstract .. v

Résumé ... vii

Acknowledgement ... ix

Table of Contents .. xi

List of Figures .. xvii

List of Tables ... xxi

Chapter 1 Introduction ... 1

1.1 Structure .. 2

1.2 Terminology .. 3

1.3 Text format .. 5

Part I Background ... 7

Chapter 2 Requirements Engineering .. 9

2.1 Introduction to requirements engineering ... 9

2.2 The WHY, the WHAT and the WHO dimensions .. 10

2.3 Categories of statements.. 10

2.4 Categories of requirements.. 11

2.5 Requirements lifecycle: processes, actors and products 12

2.6 Target qualities and defects to avoid ... 14

Chapter 3 Goal-oriented languages .. 17

3.1 What are goals? ... 17

3.2 Where are the goals coming from? ... 18

3.3 The granularity of goals and their relationship with requirements and assumptions
 18

xii

3.4 Goal types and categories .. 20

3.5 The central role of goals in the requirements engineering process 21

3.6 The choice of KAOS ... 23

Chapter 4 Principles of the Physics of Notations Theory 25

4.1 Introduction to graphical notations ... 25

4.2 Principles for Designing Effective Visual Notations .. 27

4.2.1 Principle of Semiotic Clarity ... 28

4.2.2 Principle of Perceptual Discriminability .. 29

4.2.3 Principle of Semantic Transparency .. 31

4.2.4 Principle of Manageable Complexity .. 32

4.2.5 Principle of Cognitive Integration ... 33

4.2.6 Principle of Visual Expressiveness .. 34

4.2.7 Principle of Dual Coding ... 35

4.2.8 Principle of Graphic Economy... 36

4.2.9 Principle of Cognitive Fit... 37

4.3 Interaction among Principles ... 38

Chapter 5 The KAOS Language .. 39

5.1 Introduction ... 39

5.2 Goal Model .. 39

5.3 Agent Model .. 45

5.4 Operation Model ... 48

5.5 Object Model ... 50

5.6 Behaviour Model ... 52

Part II Contribution .. 53

Chapter 6 The KAOS meta-model ... 55

6.1 Goal Model .. 55

6.2 Agent Model .. 57

xiii

6.3 Operation Model ... 57

6.4 Object Model ... 58

6.5 Behaviour Model ... 59

Chapter 7 Applying the Physics of Notations to KAOS 61

7.1 Principle of Semiotic Clarity ... 61

7.1.1 Analysis results .. 61

7.1.2 Recommendations to improve the semiotic clarity .. 63

7.2 Principle of Cognitive Fit .. 66

7.2.1 Analysis results .. 66

7.2.2 Recommendations to improve cognitive fit ... 66

7.3 Principle of Perceptual Discriminability ... 67

7.3.1 Analysis results .. 67

7.3.2 Recommendations to improve the perceptual discriminability 70

7.4 Principle of Semantic Transparency ... 71

7.4.1 Analysis results .. 71

7.4.2 Recommendations to improve the semantic transparency 71

7.5 Principle of Visual Expressiveness ... 73

7.5.1 Analysis results .. 73

7.5.2 Recommendations to improve the visual expressiveness 74

7.6 Principle of Dual Coding... 75

7.6.1 Analysis results .. 75

7.6.2 Recommendations to improve dual coding.. 76

7.7 Principle of Graphic Economy .. 78

7.7.1 Analysis results .. 78

7.7.2 Recommendations to improve graphic economy ... 79

7.8 Principle of Manageable Complexity .. 80

7.8.1 Analysis results .. 80

7.8.2 Recommendations to improve the manageable complexity 81

xiv

7.9 Principle of Cognitive Integration ... 82

7.9.1 Analysis results .. 82

7.9.2 Recommendations to improve the cognitive integration 83

7.10 Summary .. 85

Chapter 8 Recommendations ... 89

8.1 General recommendations ... 90

8.2 Recommendations for language engineers to improve visual notation for novices
 91

8.3 Recommendations for meeting users .. 96

8.4 Recommendations for software developers .. 98

Part III Illustration .. 105

Chapter 9 An illustrative example ... 107

9.1 Context Description... 107

9.1.1 Online discount bookstore ... 107

9.1.2 What are the different activities? ... 107

9.1.3 Who are the different stakeholders? .. 108

9.1.4 How does an order happen? ... 110

9.2 KAOS Analysis ... 110

9.2.1 Goal model ... 111

9.2.2 Agent and operation model .. 112

9.2.3 Object model .. 113

9.2.4 Behaviour model .. 114

9.3 Modified versions of diagrams .. 115

9.4 First Evaluation of Recommendations .. 120

9.5 Limitations .. 120

Part IV Conclusion ... 121

Chapter 10 Conclusion .. 123

10.1 Conclusion ... 123

xv

10.2 Limitations ... 124

10.2.1 Self-criticism about visual notations .. 124

10.2.2 Self-criticism about the author ... 124

10.2.3 Self-criticism about the work ... 124

10.3 Future Works ... 125

Glossary .. 127

Bibliography ... 129

Annex 1: Analysis of the meta-model concepts ... 135

Annex 2: The modules of the running example ... 141

xvi

xvii

List of Figures

Figure 1-1 Thesis structure .. 3

Figure 1-2 The main definitions used in this document and the relationships that exist
between them [Moody, et al., 2010] .. 3

Figure 1-3 The meta-model of KAOS, an example of model and the associated diagram ... 5

Figure 2-1 Spiral model for requirements engineering process [Lamsweerde, 2009] 12

Figure 3-1 Goal statements hierarchical classification [Lamsweerde, 2009] 19

Figure 3-2 Goal categories hierarchical classification [Lamsweerde, 2009] 20

Figure 4-1 The theory of diagrammatic communication [Moody, 2009] 25

Figure 4-2 The visual alphabet [Moody, 2009] ... 26

Figure 4-3 The human graphical information processing [Moody, 2009]........................... 26

Figure 4-4 The 9 principles of the Physics of Notations theory [Moody, 2009] 27

Figure 4-5 The anomalies of the semiotic clarity [Moody, 2009] 28

Figure 4-6 Poor visual distance between Actor, Agent and Role in i* [Moody, et al., 2010]
.. 29

Figure 4-7 Improvement proposition of i* to distinguish actor, agent and role 29

Figure 4-8 Redundant coding: add colour to shapes to increase the visual distance 30

Figure 4-9 Textual differentiation in UML class diagram [Moody, 2009] 30

Figure 4-10 The degrees of semantic transparency [Moody, et al., 2010] 31

Figure 4-11 The only icon which is frequently used is this one which represents the user . 31

Figure 4-12 Hierarchical Structuring in DFDs [Moody] ... 33

Figure 4-13 Duplicate elements are used to describe the meta-model on KAOS in
[Lamsweerde, 2009] .. 33

Figure 4-14 Conceptual information (part A) and perceptual integration (part B) 34

Figure 4-15 Visual expressiveness: differences between primary and secondary notations
[Moody, 2009] ... 35

xviii

Figure 4-16 Example of dual coding using textual information [Moody, 2009] 36

Figure 4-17 Cognitive fit is the result of a three-way interaction between the
representation, task and problem solver [Moody, 2009] ... 37

Figure 4-18 Interactions between principles [Moody, 2009] ... 38

Figure 5-1 A goal and its features .. 40

Figure 5-2 AND-refinement and complete AND-refinement .. 41

Figure 5-3 OR-refinement.. 42

Figure 5-4 Conflict among goals ... 42

Figure 5-5 An obstacle and its features.. 43

Figure 5-6 An obstacle and one of its possible obstruction ... 44

Figure 5-7 Obstacle analysis and goal model elaboration [Lamsweerde, 2009] 45

Figure 5-8 Environment agent and agent ... 46

Figure 5-9 Agent responsibility and performance ... 46

Figure 5-10 Agent capabilities [Lamsweerde, 2009] ... 47

Figure 5-11 Agent dependencies [Lamsweerde, 2009] ... 47

Figure 5-12 Operation signature .. 48

Figure 5-13 Domain pre-conditions of an operation.. 49

Figure 5-14 Required conditions annotating operationalisations .. 49

Figure 5-15 An object and its features ... 51

Figure 6-1 Meta-model of KAOS .. 60

Figure 7-1 The KAOS visual vocabulary .. 62

Figure 7-2 Suggestion of new symbol for expectation .. 64

Figure 7-3 Suggestion to improve the differentiation between AND-refinement and OR-
refinement .. 65

Figure 7-4 A Suggestion of (complete) OR-refinement relationship link 66

Figure 7-5 Use of shapes and textures in the KAOS notation ... 68

Figure 7-6 Elements that do not visually pop out .. 68

Figure 7-7 AND-refinement and OR-refinement are not easily discriminable 69

Figure 7-8 Suggestion of a new shape to represent obstacles .. 70

xix

Figure 7-9 Different icons to represent the different concepts of KAOS. 73

Figure 7-10 Simplified symbols to represent the different KAOS concepts 73

Figure 7-11 3D shapes for goal and domain hypothesis to increase the visual
expressiveness .. 74

Figure 7-12 Add colour to shapes to increase the visual expressiveness 75

Figure 7-13 The intensity of the colour suggests the priority of the goal 75

Figure 7-14 A goal and its annotation.. 76

Figure 7-15 Goal, achieve goal and maintain goal can only be textually differentiated 76

Figure 7-16 Annotations do not need their own visual construct .. 76

Figure 7-17 Dual coding: each link is labelled .. 78

Figure 7-18 Using symbol deficit produces a smaller KAOS visual alphabet 79

Figure 7-19 Add colour to increase visual effectiveness in the aim of improving the
graphic economy .. 80

Figure 7-20 Goal model of the running example, suggestion of modularisation 82

Figure 7-21 Conceptual integration - models used in the system .. 83

Figure 7-22 Cognitive integration for goal model of the running example 84

Figure 7-23 Perceptual integration mechanisms added to the sub-diagram 3.1 85

Figure 8-1 Recommendation to use modularisation .. 92

Figure 8-2 Recommendation to improve cognitive integration at system level 93

Figure 8-3 Improve semantic transparency by adding symbols inside the shapes 94

Figure 8-4 Combine colour and symbol to improve semantic transparency 94

Figure 8-5 Recommendation for meeting users - Increase Semantic transparency by using
colours .. 96

Figure 8-6 Recommendation for meeting users - Increase Semantic transparency by using
+ and - signs ... 96

Figure 8-7 Recommendation for meeting users - Increase Semantic transparency by adding
1 or many times the sign that represents goals ... 97

Figure 8-8 Recommendation to use modularisation .. 99

Figure 8-9 Screenshot of the software that will implement KAOS 100

Figure 8-10 The software offers a view with symbols instead of the abstract figure 101

xx

Figure 8-11 The software offers a view with 3D shapes ... 102

Figure 9-1 The stakeholders of the running example .. 109

Figure 9-2 The order process ... 110

Figure 9-3 Goal model of the system-to-be of the online store 'Oh my book' 111

Figure 9-4 Obstacle model of the system-to-be of the online store 'Oh my book' 112

Figure 9-5 Agent and Operation models of the system-to-be of the online store 'Oh my
book' ... 113

Figure 9-6 Object model of the system-to-be of the online store 'Oh my book' 113

Figure 9-7 Sequence diagram of the order process .. 114

Figure 9-8 State machine diagram of an order ... 114

Figure 9-9 Integration map of the online bookstore system .. 115

Figure 9-10 Integration map at model level ... 116

Figure 9-11 Module 1.1 of the goal model of the running example 117

Figure 9-12 Module 2.1 of the goal model of the running example, it contains goals with
different priority ... 118

Figure 9-13 Module 3.2 of the goal model of the running example, it contains goals with
different priority ... 119

Figure A2-1 Module 1.1 .. 141

Figure A2-2 Module 2.1 .. 141

Figure A2-3 Module 3.1 .. 142

Figure A2-4 Module 4.1 .. 142

Figure A2-5 module 5.1 ... 143

Figure A2-6 Module 2.2 .. 144

Figure A2-7 Module 3.2 .. 144

xxi

List of Tables

Table 3-1 Translation of terms used in requirements engineering languages into terms used
in goal-oriented languages ... 19

Table 3-2 The distribution of the main roles in goal-oriented requirements engineering
language ... 23

Table 5-1 Obstacle types and the obstructed goal types [Lamsweerde, 2009] 44

Table 6-1 Colours used to differentiate the different models in the meta-model 55

Table 6-2 Attributes of the goal meta-class and its subclasses .. 56

Table 6-3 Attributes of the refinement meta-class ... 56

Table 6-4 Attributes of the agent meta-class ... 57

Table 6-5 Attributes of the operation meta-class ... 58

Table 6-6 Attributes of the object meta-class .. 58

Table 6-7 Attributes of the domain description meta-class ... 59

Table 7-1 Semiotic clarity analysis of the KAOS visual notation 62

Table 7-2 Symbols overload analysis of relationships .. 64

Table 7-3 Recommendations grouped by principle of the Physics of Notation 86

Table 8-1 Summary of the general recommendation ... 90

Table 8-2 Summary of the recommendations for language engineers 95

Table 8-3 Summary of the recommendations for meeting users ... 97

Table 8-4 Summary of the recommendations for software developers 103

Table 9-1 Goal standardised names ... 115

Table A1-1 List of semantic constructs and their representation in the goal model 136

Table A1-2 Details of the semiotic equation ... 139

xxii

1

Chapter 1 Introduction

The success of software depends on degree of satisfaction of its users. Indeed, software is generally
built to achieve certain needs expressed by users. And if the developed solution does not help to
achieve the users' jobs, it will not be used. Unfortunately, misunderstandings between software
designers and software users are very frequent. Consequently, developers build software that does
not match the users' requirements.

The goal of the requirements engineering discipline is to reduce the number of inappropriate
software. Its aim is to have a complete understanding of the stakeholders' needs and to address
them at the software development stage. The requirements engineering process is composed of
different steps such as identifying the stakeholders, their needs, their obligations, etc. This
information is collected from different stakeholders who are, somehow or other, concerned with the
future system. The greatest difficulty is to help the stakeholders to express their needs and their
expectations about the new system (system-to-be). Usually, they are not familiar with requirements
engineering. They are specialists in their domain and they know how to perform their work but
they have difficulties to explain it in a more formal way.

To collect this information we have to interview the stakeholders. Requirements engineering
techniques/frameworks can guide the software designers. One of the most well-known frameworks
is UML [OMG_UML, 2011] that includes use case diagrams. Use case diagrams are used to
describe the sequence of operations that the user will have to perform with the new software. Goal
modelling is another technique whose objective is to understand the needs of the stakeholders, to
translate them into goals and finally to model them in a graphical way. One of the advantages of
this technique is to facilitate the communication between stakeholders and system modellers
because graphical representations are generally considered easier to understand than textual
descriptions. This is probably related to the idea that graphical representations are easier to
understand than formal sentences and that they represent only essential information [Petre, 1995].

There are many goal-oriented languages such as i* [Yu, 1997], NFR [Chung, et al., 2000], Tropos
[Bresciani, et al., 2004] and KAOS [Lamsweerde, 2009]. Obviously, each of these languages has
its own syntax and its own semantic. However, all of them will help the system modellers to follow
the different steps of the requirements engineering process. They also share a common goal:
highlight the user requirements in order to develop an appropriate software system.

In this thesis, the focus is on the visual representation of goal diagrams and their understanding by
stakeholders of the system-to-be. Consequently, it is important that these stakeholders correctly
understand diagrams that represent their needs and the goals of the system. The fact that
communication is easier with diagram is largely based on intuitions and slogans like "a picture
worth a thousand words" [Moody, 2006]. But, in reality, diagram quality depends largely on the
skills of the designer. However, Moody explains in [Moody, 2009] that, in practice diagrams may
act "as a barrier rather than an aid to user-developer communication". To help remove this potential
barrier, Moody has formulated 9 principles that form the 'Physics of Notations theory'. This theory
explains how to make diagrams communicate effectively. The 9 principles were elaborated on a
wide range of disciplines like cartography, cognitive integration, communication theory and also
different aspects of psychology.

2

This thesis focuses on the diagram design with a specific goal-oriented modelling language called
"KAOS". KAOS is a language introduced in the 1990's by Dardenne and van Lamsweerde in
[Dardenne, et al., 1993]. It is provided with an abstract and concrete syntax and semantics.

Section 1.1 provides a detailed view of the structure of the document, as well as the relationships
between the different chapters. Section 1.2 describes the terminology we use in this work.

1.1 Structure
This work is divided into 4 parts.

Part I introduces the background of the work. It consists of Chapter 2, that explains what is
requirements engineering, and Chapter 3, that presents what are the existing goal-oriented
languages are and why we have selected KAOS. In Chapter 4, we explain the different semantic
constructs of KAOS and finally Chapter 5 introduces the Physics of Notations theory [Moody,
2009].

Part II focuses on our contribution. In Chapter 6, we present the KAOS meta-model that is used to
apply one of the principles of the Physics of Notations: the semiotic clarity. It consists in verifying
the correspondence between the visual notation of a language and its semantic constructs. Chapter
7 reports on the analysis of KAOS against the Physics of Notations. Finally Chapter 8 suggests
recommendations for KAOS modellers, for using KAOS during a meeting and for software
developers who would like to implement the visual notation of KAOS in a CASE tool.

Part III illustrates of the recommendations suggested in Part II. Chapter 9 introduces a running
example based on an online bookshop store. This chapter is divided into 2 parts: the first one
describes the example and its models with the actual visual representation of KAOS. In the second
part, we represent the same goal model in taking into account the recommendations for the
language engineers (see Chapter 8) that should improve the understanding of novices.

Part IV finally concludes our work and open perspectives of future work.

The complete structure and the flows between the different chapters are summarised in Figure 1-1.

3

Figure 1-1 Thesis structure

1.2 Terminology
Most of the modelling terms used in the following document are usually shared with various
disciplines or domains, but with distinct meanings. In order to avoid misunderstanding, we provide
in this section the definitions for these terms. The definitions are based on documents from
different authors and domains.

We use figure 1-2 as support to define the modelling terms and the links that exist between them.
We start with the definition of model, then we explain its links with the concepts of meta-model
and the diagram. Finally we define the concept of visual representation.

Figure 1-2 The main definitions used in this document and the relationships that exist between them

[Moody, et al., 2010]

Figure 1-3 illustrates, through a concrete example, the differences between these terms. This
example consists of an agent that has to fill the goal ‘PreparePackageQuickly’ and to perform an operation
'PreparePackage'. To fulfil this operation, he needs objects (package and book) that are used as input for the
operation.

Chapter 2: Requirements
engineering

Chapter 3: Goal-oriented
languages

Chapter 5: Principles of the
Physics of Notations Chapter 4: KAOS

Chapter 6: KAOS metamodel

Chapter 7: KAOS analysis

Chapter 8: Recommendations

Chapter 9: An illustrative example

Chapter 10: Conclusion

Pa
rt

 II

C
on

tr
ib

ut
io

n
Pa

rt
 II

I
Ill

us
tr

at
io

n
Pa

rt
 IV

C

on
cl

us
io

n
Pa

rt
 I

B
ac

kg
ro

un
d

4

Model

Model is a term frequently used in various domains. Below, we gather the definitions that are
meaningful in the requirements engineering domain:

 A model is an abstraction of a physical system, with a certain purpose (in the context of
UML standard) [Selic, 2004]

 A model is a simplification of a system built with an intended goal in mind. The model
should be able to answer questions in place of the actual system [Bezivin, et al., 2001]

 A model is a set of statements about some system under study [Seidewitz, 2003]

We sum up these definitions in the following terms: "a model is an abstract form of a system. It is
independent of the representation that is used to express it (i.e., a same model could be represented
according to different visual notations)".

The model consists of constructs instances and they do not have a specific representation. To
highlight this difference, we have used dashed boxes and dashed lines in the example depicted in
figure 1-3.

Meta-model

A model is built using concepts defined in a meta-model. The meta-model represents the different
meta-concepts of a language and the meta-relationships between them. The meta-concepts may
also be called semantic constructs. They have to be instantiated in order to obtain the construct
instances that composed the model.

The meta-concepts that are represented in figure 1-3 come from KAOS. These meta-concepts
(e.g., Goal, Agent, Operation, Entity and Association) and their meta-relationships (e.g.,
Responsibility, Performance, Input and Link) are represented respectively as UML classes and
UML relationships. Reader interested in the complete KAOS meta-model can refer to Chapter 5.

Diagram or visual representation

A diagram is the symbolisation of a model. When a modeller represents a model concretely, he has
to choose a concrete syntax. There are different kinds of representation: graphical, textual or even
acoustic.

As mentioned by Mackinlay in [Mackinlay, 1986], the term visual representation is a synonym of
a graphical representation. To complete the list of synonyms, visual representations that
symbolises a model is referred to as a diagram.

In [Moody, et al., 2010] the term visual notation is defined in this way: "A visual notation (or
visual language, graphical notation, diagramming notation) consists of a set of graphical symbols,
a set of compositional rules for how to form valid visual sentences, and definitions of their
meanings (visual semantics). The set of symbols (visual vocabulary) and compositional rules
(visual grammar) forms the visual (or concrete) syntax. Graphical symbols are used to symbolise
(perceptually represent) semantic constructs, typically defined by a meta-model. The meanings of
graphical symbols are defined by a mapping to the constructs they represent. "

The term icon is also used as a synonym of graphical symbol but we prefer to consider icons as a
subcategory of symbols. Indeed, a symbol may resemble or not the semantic construct it
symbolises, while an icon should directly suggest its meaning.

5

To complete the discussion on figure 1-2, diagrams contain symbol instances that are used to
symbolise the construct instances. The symbol instances are instances of graphical symbols
defined in the visual notation of the language. As illustrated in figure 1-3 each concept is
"translated" into a specific symbol (e.g., the "OrderPicker" concept is translated into a hexagon with a
sticky man).

Figure 1-3 The meta-model of KAOS, an example of model and the associated diagram

1.3 Text format
For the readability of the text, we have formatted the text on different ways. Words or
expressions are in bold when they are definitions. Words or expressions that belong to the
running example are in this format.

6

7

Part I

Background

8

9

Chapter 2 Requirements Engineering

Requirements engineering is a discipline started in the 1990's [Nuseibeh, et al., 2000] and
nowadays, it is considered as crucial part of software development. It allows avoiding conceptual
errors in software which cost a lot of time and money to be solved. The goal of this disciple is to
understand the problem as a whole and produce documents that will be used to develop the future
software. The explanations that follow are based on [Lamsweerde, 2009], [Heymans, 2006-2007],
[Nuseibeh, et al., 2000] and [Habra, 2009-2010].

2.1 Introduction to requirements engineering
The requirements engineering discipline is used to study the different aspects of a particular
problem in the aim of developing a system. To solve a problem, it has to be clearly understood and
defined. Even if it seems obvious; it is not always easy to figure out the right problem and its
scope. Replying to this question will define what is the problem, who is involved in the
responsibility of solving the problem and why the problem needs to be solved. The solution of the
problem is called the machine.

Jackson in [Jackson, 1995] explains that the machine will be used in an environment that will
interact with it. These interactions (aka. shared phenomenon) have to be taken into account to build
the machine; otherwise it will not fulfil the requirements.

Requirements engineering describes the phenomena of the machine in its environment and the
assumptions that are made about it. In other words, requirements engineering studies the
environment phenomena including those which are shared with the machine. Conversely software
design studies only machine phenomena.

One of the goals of requirements engineering is to model the machine to understand precisely
which needs it has to fulfil and the environment that surrounds it.

During requirements engineering process, engineers will consider 2 versions of a same system:
 the system-as-is, the actual system (before building machine),
 the system-to-be, the future system (after building the machine).

The system-as-is informs us of the objectives, regulating laws, deficiencies and limitations that the
system-to-be will encounter. The system-to-be gives information to build the new software
according to assumptions and the hypothesis on the environment.

The machine that will be developed represents only a part of the system-to-be (it is called the
software-to-be). It includes also other parts that belong to the surrounding world: departments of
the company that will play a role in the system-to-be, devices that work under specific constraints
and conformed to physical laws and finally foreign software that we will have to take into account.

As the environment will certainly evolve, the software-to-be should be developed keeping in mind
that it will have to follow the evolution of the environment sooner or later.

As said before, the requirements engineering process has 3 dimensions: the why, the what and the
who. These 3 dimensions are detailed in the next section.

10

2.2 The WHY, the WHAT and the WHO dimensions
The WHY dimension studies the contextual reasons of building a new (version of the) system (e.g.,
new regulation laws). It defines objectives that decreases or lower the limitations of the system-as-
is and exploits the opportunities (e.g., doing more in less time). These objectives have to be
described precisely and in details, the interactions with the environment will have to be studied
carefully. This part of the process examines the domain in which the problem is situated. The
domain might be complex in terms of concepts, regulating laws, procedures and terminology. Each
part must be thoroughly explored and nothing left at random. Most of the time, objectives can be
satisfied in different ways. These alternatives have to be studied separately to know their respective
pros and cons, and then the most preferable one can be selected. Moreover, objectives can be
defined by different sources that have different points of view and interests which can lead to
conflicting goals. However, at the end, system engineers have to ensure that the set of objectives is
coherent and corresponds to a good compromise between the needs of the different sources.

The WHAT dimension deals with the functional services that the system-to-be should provide to
satisfy the objectives identified in the WHY dimension. These services are based on specific
system assumptions and they have to meet constraints related to performance, security, usability,
interoperability1 and cost. Considering these elements will allow us to build scenarios that will
simulate the system-to-be and to verify that system services, constraints and assumptions are
identified correctly. The traceability between the system objectives and the scenarios must be
described in documentation. It will be used later to check how and by who the objectives are
satisfied. Scenarios have to be formulated in terms and languages that all concerned parties –of the
system-as-is and the system-to-be– will understand. After reading and understanding them, the
concerned parties will give their validation and the development team will be able to start working
on the system.

The WHO dimension establishes the assignment of responsibilities for achieving the objectives,
services and constraints among the components of the system-to-be. The responsibilities can be
assigned to human, devices or software; sometimes there are alternative possibilities that have to be
studied separately. We have to know the pros and the cons for each of them. The responsibilities
will be assigned so that the risk of not achieving important system objectives is as low as possible.
Indeed if a part of the system is not achieved properly, it is the whole system that will not work
properly.

2.3 Categories of statements
During the requirements engineering process, engineers gather, write, analyse, correct and adapt
statements given by the different persons involved in the building of the system-to-be. There are
several kinds of statements: descriptive statements, prescriptive statements, system requirements,
software requirements, domain properties, assumptions and definitions [Lamsweerde, 2009].

In [Lamsweerde, 2009], descriptive statements are defined as "state properties about the system
that hold regardless of how the system behaves" and prescriptive statements are defined as "state
desirable properties about the system that may hold or not depending on how the system behaves".
To differentiate them easily, descriptive statements are generally written in the indicative mood
(e.g., if train doors are open, they are not closed) and prescriptive statements are written in the
optative mood (e.g., train doors shall always remain closed when the train is moving).

1 These elements could correspond to a 4th dimension, called the HOW dimension. This dimension should
describe HOW the requirements have to be fulfilled. Anyway, we will not explain it longer because it is not
mentioned in [Lamsweerde, 2009].

11

The major distinction between descriptive statements and prescriptive statements is that the first
ones cannot be discussed, modified or weakened while the second ones can be discussed, modified
or weakened.

In [Lamsweerde, 2009], system requirements (aka. user requirements) are described as:
"prescriptive statements that are enforced by the software-to-be, sometimes in collaboration with
the other system components and formulated in term of environment phenomena and that can be
stated". They describe the usage of monitored and controlled variables. These variables are numeric
information that the software monitors or controls through input/output devices.

In opposition, software requirements (aka. product requirements, specifications) are defined in
[Lamsweerde, 2009] as prescriptive statements that are enforced solely by the software-to-be and
formulated only in terms of phenomena shared between the software and the environment. They
have to be written in terms of input/output variables of the software because they will be used by
developers.

In [Lamsweerde, 2009], domain properties are "descriptive statements about the problem world.
They correspond to physical laws that cannot be changed (e.g., a car is moving if and only if its
speed is non-null). These properties do not vary regardless of how the system will behave and even
regardless of whether there will be any software-to-be or not".

Assumptions are defined in [Lamsweerde, 2009] as "prescriptive statements that are satisfied by
the environment and are formulated in terms of environmental phenomena” (e.g., a car's measured
speed is non-null if and only if its speed is non-null).

Finally in [Lamsweerde, 2009], definitions are described as "sentences that allow domain concept
and auxiliary terms to be given a precise, complete an agreed meaning that will be used by every
one" (e.g., a patron is any person who manages a company).

All statements emerging from the requirements engineering should be written in the
documentation, then anyone reading the documentation can directly know if a statement is a
requirement, a domain property or a definition.

System requirements have to be translated into software requirements. It is not a simple mapping
between the machine vocabulary and the software one. Domain properties and environmental
assumptions, that can be used to confirm and to validate the correctness of the translation, are
called satisfaction argument. Satisfaction arguments are used to manage the traceability among
requirements and assumptions during the evolution phase of the requirements engineering process.

2.4 Categories of requirements
Requirements can be classified into 2 categories: the functional and the non-functional
requirements.

Functional requirements define the functional needs that the software-to-be has to provide to its
environment. They are a part of the WHAT dimension (e.g., the plane control software shall
control the takeoff and the landing of all the system's planes). These functional needs will be the
result of operations automated by the software. Functional requirements can also divide the work in
units that will be supported by the software. The set of these units is the software-to-be.

Non-functional requirements define constraints on the way that the software-to-be has to satisfy
to fulfil the functional requirements or on the way they should be developed (e.g., plane altimeter
have to be refreshed every second). These constraints can be classified in many groups [Davis,
1993] [Robertson, et al., 1999] [Chung, et al., 2000]:

12

 Quality requirements (aka. quality attributes): based on quality properties that the
functional effects of the software should have. This group can be fined-grained into: safety,
security, reliability, performance and interface requirements.

 Compliance requirements: based on laws, norms or any legal rule.

 Architectural requirements: mandatory structural constraints that have to be applied to the
software-to-be to be compliant with its environment. These requirements can be divided in
distribution constraints and installation constraints.

 Development requirements: informed the developers on the way the software should be
developed (cost, deadline, variability and maintainability).

Generally a requirement cannot belong to both categories at the same time. But, sometimes the
boundary between them is very fuzzy and the requirement may be shared by the 2 categories (e.g.,
in a library software system, security requirements are non-functional requirements because
stakeholders do not care about it, conversely in a firewall software system, security requirements
are functional requirements because they are asked by stakeholders).

2.5 Requirements lifecycle: processes, actors and products
Actors of the requirement lifecycle are called stakeholders. This is a group or a person affected by
the system-to-be and who may influence how the new system will be built and they play a very
important role in the requirements engineering process. Stakeholders can be: managers of the
company, future users and legal authorities. System-as-is stakeholders can be different from the
system-to-be stakeholders because the new system will probably involve different persons. They
are also responsible of the acceptance of the system-to-be.

The requirements engineering process consists of several activities that concern different products
and actors. It is composed of 4 activities: (i) domain understanding & requirements elicitation
activity, (ii) evaluation & agreement activity, (iii) specification & documentation activity and (iv)
validation & verification. These activities are realised by system engineers and stakeholders.

The previous activities are called phases of the requirements engineering process. The output of
one phase is generally used as input for the next phase. These phases are rarely performed
sequentially. They are so intertwined that they overlap each other and that, sometimes,
backtracking is needed. According to this view, the requirements engineering process can be seen
as iteration on successive increments as described by the spiral model [Boehm, 1988]. This model
involves that when a complete iteration of the steps is done, another one can started. The spiral
model and the 4 phases are represented in figure 2-1.

Figure 2-1 Spiral model for requirements engineering process [Lamsweerde, 2009]

13

1. The domain understanding & requirements elicitation activity

As soon as the stakeholders are defined, system engineers can start to study the system-as-is to
understand how it works. This step is called the domain understanding. Its goal is to situate the
domain in which the problem is rooted and what the roots of the problem are. This analysis
includes learning of: the system-as-is organisation (organization, strategic objectives, business
policies, roles played by the different units and the dependencies among them) and the system-as-is
scope (the objectives, the involved parts and the concepts on which it relies) and finally the
strengths and the weaknesses of the system-as-is seen by the stakeholders. This set of activities will
produce a first draft proposal that describes the contextual aspects. It is also very useful to write a
glossary of terms that contains the definitions of key concepts that everybody will agree. Thanks to
this exercise, system engineers will understand the different points of view of the stakeholders
(e.g., user view, developer view, manager view).

During the second part of this activity, stakeholders and system engineers will have to collaborate
to make a list of the requirements of the system-to-be as well as the assumptions that will be used
to build the latest. This list will allow them to study the weakness of the system-as-is and to
improve the domain understanding. Requirements elicitation is one of the most important activities
of the requirements engineering process.

Requirements of the system-to-be will have to meet the following objectives [Lamsweerde, 2009]:

 respect the organisational and technical constraints,
 improve the system-as-is,
 take into account new technologies and market conditions,
 evaluate alternatives of which processes can be automated and which should be left under

the responsibility of the environment,
 describe scenarios with interaction between the software-to-be and its environment,
 take into account domain properties and assumptions about the environment that are

necessary for the software-to-be.

The requirements and assumptions list of the system-to-be will be added to the first draft done
during domain understanding step. This document will be used for the evaluation and agreement
activity.

2. The evaluation & agreement activity

During the evaluation and agreement activity, considered decisions are taken, based on the
elicitation requirements activity. Conflicting requirements have to be identified and resolved, the
alternative options have to be evaluated and compared and if necessary a priority has to be given to
requirements. Negotiations about these elements may be required to reach a consensus.

At the end of these 2 first steps, an agreement about requirements and assumptions of the system-
to-be has to be found by all stakeholders of the project.

3. The specification & documentation activity

In the specification and documentation activity, the aim is to detail, structure and document the
agreed characteristics of the system-to-be. These characteristics are documented, in what we call
"the requirements document". This document contains also satisfaction arguments, a description of
likely variants and revision, acceptance test data and cost figures. If some parts of the document
concern specific parties (such as users or developers), they have to be written in an understandable
form by this audience to receive their validation (i.e., documents have to be written with a
formalism adapted to the readers).

14

4. The validation & verification activity

In the validation and verification activity, specifications have to be validated by stakeholders. If
there are inadequacies between specifications and the stakeholder wishes, they have to be identified
and solved before the software requirements are transmitted to the developers. This step offers a
quality assurance for the software-to-be.

After this activity, a document that contains the consolidated requirements will be produced. A
prototype for requirements validation and additional test data can also be produced to verify if the
system-to-be meets the requirements. This last step allows building the model that will be used to
communicate with the client and managing the project.

2.6 Target qualities and defects to avoid
Writing a good requirements document is not easy but it is crucial in order to build a software-to-be
that will encounter a maximum of the stakeholder's needs. The way to reach this goal is long and
full of traps. Below the main qualities of requirements are described followed by the most critical
requirement errors and flaws.

Requirements qualities [Habra, 2009-2010] [IEEE-STD830, 1998]

Correctness: every requirement has to be asked by stakeholders.

Completeness: requirements, assumptions and domain properties have to be sufficient to ensure
that the system-to-be will satisfy its objectives. The specification of the requirements has to be
detailed enough for software development.

Unambiguous: requirements cannot have another interpretation.

Consistent: there can not be any conflicts between the requirements. There are many types of
conflicts (e.g., about the behaviour of the system or the definitions of the vocabulary).

Verifiable: it should be possible to test if a requirement is fulfilled or not. In other words, a test to
verify the requirement should be done.

Comprehensible: requirements have to be written in a language understandable by the stakeholders.

Modifiable: requirements have to be written in a style and structurally allowing any change in
requirements to be reflected in a way that is simple, complete and consistent.

Traceable: requirements have to be written to facilitate references in the design document and test
document.

Traced: the source of the requirements should be easily found.

Independent: requirements have to be independent of any architecture, algorithm or code.

Requirement errors and flaws

The 4 more critical kinds of errors are:

Omission: will result in the software failing to implement an unstated critical requirement, or
failing to take into account an unstated critical assumption or domain property.

Contradiction: the requirement will solve the problem in an incompatible way.

Inadequacy: the requirement will not solve the problem in the most adequate way.

15

Ambiguity: the requirement can be interpreted in different ways.

These errors/flaws are the opposite of what a good requirement should be. Requirement should
NOT be: immeasurable, overspecified, unfeasible, unintelligible, poorly structured, poorly
modifiable, opaque.

They should not contain noise and forward references.

Now that the requirements engineering background is set, we will present the most common goal-
oriented languages.

16

17

Chapter 3 Goal-oriented languages

The requirements engineering approach has shown some inadequacies. They are mainly situated at
requirements level [DeMarco, 1978] [Ross, 1977] [Rumbaugh, et al., 1991] that focuses only on
processes and data and do not take into account the aim of the system-to-be. The links between
requirements and high level objectives cannot be done easily. To fill this gap, in goal-oriented
requirements engineering languages, systems will be represented in terms of goals. Goals have to
be reached to build a system that corresponds to the users' needs. Goal-oriented models will help to
reason about systems in terms of the WHY and WHO dimensions of requirements engineering
process. Like the previous chapter, this chapter is based on [Lamsweerde, 2009].

3.1 What are goals?
Goals-oriented requirements engineering implies that goals are used for the different steps of the
requirements engineering process (elicitation, evaluation, negotiation, elaboration, structuring,
documentation, analysis and evolution). We will now define 2 main terms used in goal-oriented
requirements engineering process: goal and agent.

There are many manners to define the term goal. Van Lamsweerde in [Lamsweerde, 2009] defines
it as "an objective that the system should achieve through cooperation of agents in the software-to-
be in the environment. As a consequence, goals must be formulated in terms of actions (aka.
operations) that will be shared among system agents; such actions will be realised by some agents
and monitored by others". Anton [Anton, et al., 1994] states that goals are "high-level objectives of
the business, organization or system; they capture the reasons why a system is needed and guide
decisions at various levels within the enterprise." In practice goals are prescriptive statements like
requirements (in opposition to domain properties that are descriptive). In fact, requirements
"implement" goals much the same way as programs implement design specification [Lamsweerde,
et al., 2003].

An agent is an active component of the system, playing a specific role in the satisfaction of the
goals [Lamsweerde, 2009]. The set of system agents defines the scope of the system (a part of this
scope will be the software-to-be). There are different types of system agents:

 human agents that play specific roles (operators or end-users),
 devices such as measurement instruments (sensors) or communication media,
 piece of existing software components such as foreign components in an open system,
 piece of new software components that will be used in the software-to-be.

A system agent can be an existing piece of software or a new piece of software. The term 'system'
may refer to the system-as-is or the system-to-be.

18

3.2 Where are the goals coming from?
It is not an easy task to identify the goals. Some of them state explicitly as system objectives during
goal elicitation but they are more often implicit and we need to 'extract' them from the preliminary
document and from other pieces of information given by the stakeholders. Some goals come from
the complaints about the system-as-is and others can be deduced from interviews done with
stakeholders. They are formulated as sentences that are formed by keywords such as 'has to', 'shall',
'in order to' or 'so that'.

When goals are explicitly stated as system objectives, we have to ask 'HOW' questions to refine
them into finer-grained goals and make them more explicit. In the requirements engineering
process, the sooner a goal is defined and validated, the better.

3.3 The granularity of goals and their relationship with
requirements and assumptions

In [Lamsweerde, 2009], goals can be stated at different levels of abstraction:

 at higher levels, there are general goals (aka. coarser-grained goals). They describe general
objectives that have to be reached by the system-to-be (e.g., the plane speed shall be
increased by 50%),

 at lower levels, there are specific goals (aka. finer-grained goals). They describe technical
objectives that the software-to-be will have to fulfil (e.g., plane altimeter has to be
refreshed every second).

As there are many levels and many granularities, modellers should create a specification-
structuring mechanism based on contribution links among goals. This mechanism will help the
stakeholders to evaluate the refinement of a goal. A coarser-grained goal can be refined into finer-
grained goals. The set of these finer-grained goals will be used to reach the coarser-grained goal.
The mechanism of refinement can be applied in the opposite way; in this case finer-grained goals
can be abstracted towards coarser-grained goals.

The more a goal is refined, the better it is because the responsibility of the goal will be divided into
many agents. Moreover the tasks that will be realised by these agents will be defined more
precisely and more accurately.

When goals are refined at their maximum, they can be of 2 types. In [Lamsweerde, 2009],

 requirement is defined as "a goal under the responsibility of a single agent of the
software-to-be",

 expectation is defined as "a goal under the responsibility of a single agent in the
environment of the software-to-be".

In goal-oriented languages, the different terms are expressed as statements that can be of different
types. In the table 3-1, the different terms of Chapter 2 (i.e., system requirements, software
requirements, domain properties and assumptions) are translated in terms of statements.

19

Table 3-1 Translation of terms used in requirements engineering languages into terms used in goal-

oriented languages

Requirements engineering languages Goal-oriented languages
System requirement - goal described by a prescriptive statement

under the responsibility of multi-agent
System requirement that needs a single
software agent to be fulfilled

- Requirement

Software requirement - Requirement
Domain property - Descriptive statement about the environment. It

should be independent of the behaviour of the
system (still called domain property)

Assumptions - Prescriptive for environment agent (aka.
expectation)
- Descriptive for other agents

Environment assumptions - Expectations (if it will be satisfied by a single
environment agent)
- Domain hypotheses (descriptive statements
satisfied by the environment and subject to
change).

Figure 3-1 describes the different types of statement in a hierarchical way. It is clear, there are 2
kinds of statement: prescriptive and descriptive. The prescriptive statements can be realised either
by multi-agent (aka. multi-agent goal) or by a single-agent (aka. single-agent goal). In this last
case, the goal can be called a requirement (if fulfilled by a software agent) or an expectation (if
fulfilled by an environment agent). Among the descriptive statements, we can distinguish the
domain properties and the domain hypothesis.

Figure 3-1 Goal statements hierarchical classification [Lamsweerde, 2009]

Statement

Prescriptive Descriptive

ExpectationRequirement

Domain hypothesisDomain propertySingle-agent goalMulti-agent goal

20

3.4 Goal types and categories
Goals can be classified along 2 dimensions: types and categories. The type of a goal depends if it
fulfils a goal intended in the system behaviours or if it is a preference among alternative
behaviours. The category of a goal is its functional or non-functional properties under a single
abstraction, in other words it depends if it describes a functionality or a quality constraint.

Types of goals

There are 2 main types of goals: behavioural goals and soft goals. They do not overlap, i.e., a goal
is either a behavioural goal or a soft goal but, in any case, not both at the same time.

Behavioural goals describe the behaviour of the system-to-be with declarative statements. The
behavioural goal set of a system implicitly defines a maximal set of acceptable system behaviours.
Behavioural goals can always be described in a clear-cut sense that will allow determining if a goal
is satisfied or not. Behavioural goals can be classified into 3 subtypes: achieve goals, maintain
goals and its opposite avoid goals. Achieve goals are defined in [Lamsweerde, 2009] as
"prescribed intended behaviours where a target condition must sooner or later hold whenever some
other condition holds in the current system state". To recognize this type of goal, the goal name
will be preceded by Achieve [TargetCondition]. Maintain goal is defined in [Lamsweerde, 2009] as "a goal
that prescribes intended behaviours where a 'good' condition must always hold (possibly under
some other condition on the current state)". The name of this type of goal will be preceded by
Maintain [GoodCondition] or its dual variant Avoid [BadCondition].

Soft goals are preferences among the different alternatives of system behaviours. A soft goal can
not be written in a clear-cut sense but we might say that the system behaviour will be better reached
by some alternatives and less by others. They are used as criteria for selecting one system option
among many alternatives. Like Achieve and Maintain goals, their labels can be preceded by one of the
following pattern: Improve [TargetCondition], Increase [TargetQuantity], Reduce [TargetQuantity], Maximize [ObjectiveFunction],
Minimize [ObjectiveFunction].

Categories of goals

Goals can also be classified into 2 categories: functional or non-functional according to their
purpose. Functional goals state as purpose underlying a system service (e.g., payments must be
secure). A non-functional goal describes a quality or constraint during the development of the
system-to-be (e.g., the system must be cheap and efficient). Each of these categories can be refined
into subcategories as shown on figure 3-2. And conversely to goal types, goal categories can
overlap.

Figure 3-2 Goal categories hierarchical classification [Lamsweerde, 2009]

21

Main functional goal categories are:

 Satisfaction goal that fulfils agent requests.

 Information goal that sends data to agents to inform them about the system state.

 Stimulus-response goal that describes an action that occurs when a specific event happens.

Main non-functional goal categories are:

 Accuracy goal that needs to know the state of variables controlled by the software to
translate accurately the state of the corresponding quantities controlled by environment
agent.

 Security goal that describes the different types of agent protections against unexpected
behaviours (those can be malicious or accidental).

 Performance goal that describes the expected performance of the system-to-be.

 Cost goal that defines the budget of the stakeholder to build the system-to-be.

 Other non-functional goal types that have the same description as in section 2.4.

Difference between goal types and goal categories

As said before, types and categories are 2 orthogonal dimensions to classify goals (i.e., each goal
can be classified in the 2 dimension). These 2 dimensions are completely independent: to find the
type of goal, we have to consider the semantic of the goal (does it satisfy system behaviour in a
clear-cut sense or not?) and to find its category, we have to balance its pragmatic sense (does it
describe a functionality of the system-to-be or a quality of a constraint?). Then, we should not
confuse soft goals with the non-functional goal.

3.5 The central role of goals in the requirements engineering
process

There are multiple reasons described in [Lamsweerde, 2009] and [Lapouchnian, 2005] for goals
being so important in the requirements engineering process:

 Goal refinement provides an intuitive mechanism for structuring hierarchically complex
specifications. Goals may be refined into sub-goals until they reach software requirements
or expectations. When the set of sub-goals is fulfilled, its parent is also fulfilled.

 Goals provide rationale for requirements. When a goal is unclear, we can browse the goal
refinement diagrams to find the goals to which it contributes and in the same time explain
the requirement and its rationale to the stakeholders.

 Conversely we can identify which requirements have to be fulfilled to reach a specific goal.
When a goal appears during the elicitation or evaluation phases of the requirements
engineering process, we can study the different ways to achieve it and find which
requirements are needed to contribute to this goal.

 Goals provide an accurate criterion to check the completeness of requirements. A set of
requirements matches completely with a set of goals if and only if all the goals are satisfied
when all the requirements are satisfied and if environment assumptions and domain
properties are taken into account.

 Goals provide an accurate criterion to check the pertinence of requirements. A requirement
is pertinent if it satisfy at least one goal in a set of goals.

22

 Goals provide bases to do risk analysis. A risk is defined as a lack of completion of some
objective. Risks can be identified as obstacles that will have to be overcome to fulfil the
goal. Modellers can draw risk trees using the refinement method. Then, during the
evaluation and agreement activity, stakeholders will have to find goals that will prevent or
reduce the occurrence of the identified risks.

 Goals can be used to manage conflicts among requirements. Conflicts between
requirements are generally the consequence of conflicts between the underpinning goals to
which the requirements are dedicated. Conflicting goals are expressed by stakeholders that
have different points of view and concerns. To resolve goal conflict, we need to detect
them, study the different possibilities of resolution, select the best one based on soft goals
and diffuse the resolution until the requirement level.

 Goals are used to delimit the scope of the system. The system scope is specified by a set of
goals that has to be fulfilled by the collaboration of 'good' agents. 'Bad' agents prevent to
reach some of these goals. The set of 'good' and 'bad' agents delimits the scope of the
system.

 Goals are used as basis for reasoning about alternative possibilities. A goal diagram can be
refined into many alternative combinations of sub-goals which will define different
possibilities to reach the main goal. Doing this will allow studying different solutions by
assigning the responsibility of the goals between alternative agents. Incidental or malicious
menaces of a goal can be avoided with alternative goals. Conflicts among goals can be
resolved through alternative resolution goals. These alternative goals will allow making
different system designs.

 Goals are used to keep the traceability. We do not need any extra mechanism to find the
chains of satisfaction arguments as they are available in the goal-oriented requirements
engineering process. The traceability can be seen from top-down level and conversely.

 Goals are useful for evolution of the system-to-be. When the system is built, a goal is
fulfilled by requirements that are selected during the evaluation phase but the requirement
can evolve towards another way of achieving the same goal. The same reasoning can be
done about sub-goals of a goal. Sub-goals can evolve to fulfil the main goal but the higher
level is the goal, the more it is stable through successive revisions. Even if a system is
reviewed many times, it will generally reuse a common set of higher-level goals while the
lower-level ones will change.

Finally, as said in [Lamsweerde, 2009]: "we can say that requirements 'implement' goals much the
same way as programs implement design specifications. Without a specification, we cannot
develop the correct program that meets the specification. Without goals, we cannot engineer
complete, consistent, pertinent and adequate requirements that meet them."

23

3.6 The choice of KAOS
In [Lapouchnian, 2005], the best known goal-oriented languages are enumerated: Non-Functional
Requirements (NFR) framework, i*/Tropos, KAOS and Goal-Based Requirements Analysis
Method (GBRAM).

The NRF framework is described in [Chung, et al., 2000]. It focuses on the modelling and
analysis of non-functional requirements. The goal of the framework is to elicit NFR of the system-
to-be, decompose them and if possible identifying the NFR operations, manage conflict between
NFR, prioritise them and highlight the dependencies between them. This framework suggests using
3 types of soft goals:

 NFR soft goals that have to be taken into account in the system-to-be.

 operationalising soft goals can be considered as software requirements and have to satisfy
the NFR soft goals.

 claim soft goals that pinpoint the justification for soft goal refinements or soft goals
prioritisation.

In [Yu, 1997], i*/Tropos is defined as an agent-oriented modelling framework. This framework
has many goals: requirements engineering, business process reengineering, organizational impact
analysis and finally software process modelling. The main role in this model is given to agents. It
defines agents as concrete actors, system or human, with specific capacities. Each actor plays a
specific role that defines his responsibilities. In this language, there are 2 models:

 the strategic dependency model that shows the dependencies between the different agents.

 the strategic rationale model is used to explore the justification of the process in the
system-to-be.

Tropos is based on i* and it is a requirements-driven agent-oriented development methodology
[Castro, et al., 2002]. It is used for the development of agent-based systems. The added value of
this language is a formal specification language called Formal Tropos [Fuxman, et al., 2001].

KAOS methodology is a goal-oriented requirements engineering approach that uses many formal
analysis techniques. In [Lamsweerde, et al., 2003], it is described as a multi-model framework that
uses different levels of expression and reasoning: a semi-formal language is used to communicate
with stakeholders while a formal language is used to do accurate reasoning. KAOS offers different
views of a system as it will be explained in Chapter 5.

And finally the GBRAM method described in [Anton, 1996], [Anton, 1997] is based on goals
which are identified and abstracted from various sources of information
Table 3-2 The distribution of the main roles in goal-oriented requirements engineering language

Goal-oriented requirements
engineering languages

Main roles Languages

NRF Soft goals
i*/Tropos Agents

Tropos Agents Formal language
KAOS Multi roles Semi-formal as well as

formal languages
GBRAM Goals

We have chosen to study KAOS which is the richer method due to the fact that it analyses the
system under different views. A description of the semantics and the syntax of KAOS are given in
Chapter 5. Then we have elaborated and discussed its meta-model in Chapter 6.

24

25

Chapter 4 Principles of the Physics of Notations

Theory

In this chapter, we will introduce the different concepts of the graphical communication, and then
we describe the 9 principles of the Physics of Notations explained in [Moody, 2009]. These
principles will help us to identify design flaws of software engineering notations and help us to
give practical suggestions for improving them. They will be applied to the KAOS visual notation in
the Chapter 7.

4.1 Introduction to graphical notations
Thanks to graphical notations, software designers can communicate effectively with end users and
customers. It is often easier to explain technical information and precise descriptions with a schema
to non-technical persons [Avison, et al., 2003]. They are also very useful to improve the internal
communication between the development team members as well as a mean to support for design
and problem solving. But, if graphical notations are really useful and powerful, they have to be
used perspicaciously; otherwise their usage can be counterproductive [Cheng, et al., 2001].

The communication theory

Moody in [Moody, 2009] explains the communication theory on this way: “A diagram creator
(source) encodes information (message) in the form of a diagram (signal) and sends it to the
diagram user (receiver). This one will decode the signal. The diagram is encoded using a visual
notation (code). The channel (medium) is the physical form in which the diagram is represented
(e.g., paper, whiteboard or computer screen). Noise represents any variations of the signal which
can interfere with communication. The communication effectiveness is the difference between the
attended message and the received message. The bigger the difference, the smaller the
effectiveness”. Figure 4-1 illustrates the main concepts of the diagrammatic communication theory.

Figure 4-1 The theory of diagrammatic communication [Moody, 2009]

Following this theory, communication has 2 complementary processes: encoding (expression) and
decoding (interpretation). To optimize the communication process, we have to work on both sides.

The graphic design space (encoding Side)

The graphic design space is composed
the information (see figure 4-2
space. They are divided in 2 subgroups: planar variables and retinal variables.

Figure 4-2 The visual alphabet

Each of these variables has a set of values (limited for the shape value, unlimited in the other
cases). Each value of a variable
visual notation. Then, the combination of the values of the variables creates
possibilities. This set can be used
representations. However some
some are more suitable than other to describe data. For example, colour can be used to encode
nominal data but not ordinal or ratio
1989].

Even if each variable has an infinite number of variations, when
representation, the difference between them has to be significant for the understanding of the
diagram user.

In a diagram, there are the primary
official syntax of the visual notation of a language. T
visual variables not formally described in the language. The secondary notation is mostly used to
reinforce the meaning [Moody, 2009]

The human information processing (Decoding S

Diagrams have to be optimally
The perceptual process is automatic, very fast and executed in parallel
cognitive process that is a slow
illustrates how the human graphical information process
phases:

Figure 4-3 The human graphical information p

26

ncoding Side)

composed of 8 visual variables [Bertin, 1983] to encode graphically
2). These variables are called the dimensions of

subgroups: planar variables and retinal variables.

lphabet [Moody, 2009]

has a set of values (limited for the shape value, unlimited in the other
cases). Each value of a variable can be combined with other values of other variable

combination of the values of the variables creates
can be used as an alphabet by notation designers to create graphical

some variables are more suitable to encode some type of
some are more suitable than other to describe data. For example, colour can be used to encode

l data but not ordinal or ratio data because this is not psychologically ordered

ch variable has an infinite number of variations, when they are used in a graphic
representation, the difference between them has to be significant for the understanding of the

the primary and the secondary notations. The primary notation
e visual notation of a language. The secondary notation

visual variables not formally described in the language. The secondary notation is mostly used to
[Moody, 2009].

rocessing (Decoding Side)

Diagrams have to be optimally designed to be processed as well as possible by the human mind.
The perceptual process is automatic, very fast and executed in parallel in opposition of

a slow process requiring conscious control of attention.
the human graphical information process when decoding a message. It happens in

human graphical information processing [Moody, 2009]

A

to encode graphically
). These variables are called the dimensions of the graphic design

has a set of values (limited for the shape value, unlimited in the other
of other variables to create any

 an unlimited set of
by notation designers to create graphical

type of information,
some are more suitable than other to describe data. For example, colour can be used to encode

data because this is not psychologically ordered [Kosslyn,

are used in a graphic
representation, the difference between them has to be significant for the understanding of the

primary notation is the
 refers to the use of

visual variables not formally described in the language. The secondary notation is mostly used to

as well as possible by the human mind.
in opposition of the

control of attention. Figure 4-3
a message. It happens in 2

B

27

 Figure 4-3 part A describes the perceptual processing (seeing) which is decomposed in:
o Perceptual discrimination: features of the retinal image (colour, shape, etc) are detected

by specialised feature detectors. Based on this, the diagram is parsed into discrete elements
and separated from the background [Palmer, et al., 1994]

o Perceptual configuration: following ergonomic laws, the elements are grouped into
perceptual units. The construction of these units is based on visual characteristics of the
elements.

 Figure 4-3 part B describes the cognitive processing (understanding) which is decomposed in:
o Working memory: this is a storage area which reflects the current focus of attention. This

is used for active processing and to synchronise rapid perceptual process with slower
cognitive processes. However it has very limited capacity and duration. It is a known
bottleneck in graphical information processing [Kosslyn, 1989] [Lohse, 1997].

o Long term memory: to be understood, information from the diagram must be integrated
with prior knowledge stored in long term memory. Long term memory is a permanent
storage area which has unlimited capacity and duration but is relatively slow [Kosslyn,
1985].

4.2 Principles for Designing Effective Visual Notations
In [Moody, 2009], Moody presents the 9 principles he defined to build "good" diagrams (i.e.,
diagrams that communicate effectively). The communication (or cognitive) effectiveness of a
diagram depends on the speed, accuracy and ease required to understand the information presented
in this diagram [Moody, 2009].

This section defines the set of principles for designing cognitively effective visual notations. Figure
4-4 represents each principle by a hexagon. The set of all principles represents a honeycomb. This
structure has been chosen because it is modular, supports modifications and extensions.

Figure 4-4 The 9 principles of the Physics of Notations theory [Moody, 2009]

The 9 principles are: semiotic clarity, perceptual discriminability, semantic transparency,
complexity management, cognitive integration, visual expressiveness, dual coding, graphic
economy and cognitive fit.

These principles are desirable and measurable properties of a visual notation. It means that a visual
notation will be cognitively effective if these principles are respected. In the following sections we
will describe them in a more detailed way.

28

4.2.1 Principle of Semiotic Clarity

The principle of semiotic clarity means that there should be a one-to-one correspondence between
semantic constructs and graphical symbols.

According to Goodman's theory of symbols [Goodman, 1968], a notation satisfies the requirements
of a notational system, if there is a one-to-one correspondence between symbols and their referent
concepts. Notational languages have to follow the principle of semiotic clarity to be more accurate
(by eliminating symbol overload), expressive (by eliminating symbol deficit) and parsimonious (by
eliminating symbol redundancy and excess). If they do not respect it, one or many anomalies can
occur. Figure 4-5 illustrates the different types of anomalies.

Figure 4-5 The anomalies of the semiotic clarity [Moody, 2009]

Symbol deficit occurs when there are semantic constructs that are not represented by any graphical
symbol. This anomaly is not necessarily a problem because it reduces the number of signs on a
graphic and it can be useful for the clarity.

Symbol redundancy occurs when multiple graphical symbols can be used to represent the same
semantic construct. This phenomenon is called synograph (the graphical equivalent of synonyms).
When drawing a diagram, the writer can choose the sign it will use to represent a particular
semantic construct. Consequently the reader will have to keep in mind all the different
representations of this construct to understand the diagram. And, in the worst case, a designer could
use the different graphical representations of a semantic construct on a diagram. It will confuse
completely the reader who can not understand why different graphical representations have the
same meaning.

Symbol overload occurs when different constructs can be represented by the same graphical
symbol. These are called homographs (the graphical equivalent of homonyms). According to
Goodman [Goodman, 1968], this is the worst type of anomaly as it leads to ambiguity and
misinterpretation.

Symbol excess occurs when graphical symbols are included in the visual notation of a language
and they do not correspond to any semantic construct. It increases the graphic complexity and the
reader does not know the meaning of the introduced symbol. It has to guess it.

To evaluate the semiotic clarity of a language, we have to proceed to a mapping between the
concepts of the meta-model of the language and its visual vocabulary (the set of the symbols used
in the language). Each semantic construct should be represented by a symbol and conversely.

29

4.2.2 Principle of Perceptual Discriminability

Perceptual discriminability is defined in [Moody, 2009] as “the ease and accuracy with which
graphical symbols can be differentiated from each other”. This relates to the first phase of human
visual information processing: perceptual discrimination (see figure 4-3).

Perceptual discriminability depends on these characteristics: visual distance, primacy of shapes, the
perceptual popout, the redundant coding, the textual differentiation and the visual semantic
congruence.

Visual distance

The discriminability between symbols is determined by their visual distance. According to Moody
in [Moody, 2009]: “It is measured by the number of visual variables on which they differ and the
size of these differences”. The more differences there are, the easier it is to distinguish 2 symbols.
If the differences are too subtle, interpretation errors can occur.

For example, in i* diagrams, it is difficult to differentiate symbols used for actor, agent and role.
They use both a circle (one visual variable) as the basic symbol which is not enough (figure 4-6)
[Moody, et al., 2010].

Figure 4-6 Poor visual distance between Actor, Agent and Role in i* [Moody, et al., 2010]

Primacy of shape

Shapes play the first role in diagrams. It is the primary basis on which we classify the objects in the
real world [Moody, 2009]. That is why the shape is the visual variable we mainly use to
differentiate between symbols.

In the i* language, it would be easier to distinguish actor, agent and role if they have a different
shapes as proposed in figure 4-7.

Figure 4-7 Improvement proposition of i* to distinguish actor, agent and role

30

Perceptual popout

According to the feature integration theory, visual elements with unique values for at least one
visual variable can be detected pre-attentively and in parallel across the visual field [Quinlan, 2003]
[Treisman, et al., 1980]. Such elements appear to "pop out" from the drawing without effort.
Elements that use many combination values (conjunctions) required serial search which is much
slower and decrease the cognitive effectiveness.

Redundant coding

Moody [Moody, 2009] defines redundant coding as “using multiple visual variables to increase
the visual distance between the symbols”. This technique is used to improve cognitive effectiveness
and reduce errors. In other words, redundant coding is representing information with different
visual variables to give the reader many possibilities to access to the information (some visual
variables are not easy to understand by certain user -e.g., colour-blind cannot interpret colours). In
figure 4-8, we have added some colours to the shapes of actor, agent and role which increase the
visual distance between the symbols and now it is more cognitively effective.

Figure 4-8 Redundant coding: add colour to shapes to increase the visual distance

Textual differentiation

Software engineering sometimes relies on text to distinguish symbols. Symbols that differ only on
textual characteristics are technically homograph, as they have zero visual distance (Semiotic
clarity) [Moody, 2009].

This kind of differentiation is commonly used but it is cognitively inefficient because the person
who will decode the graphic has to read the text to differentiate the symbol what is a very slow
process.

In UML class diagrams, there are many examples of textual differentiation. In figure 4-9, the
relationship type "substitute" and "import" can only be distinguished by their textual labels.

Figure 4-9 Textual differentiation in UML class diagram [Moody, 2009]

Visual-semantic congruence [Moody]

In general, the visual distance between symbols should be congruent to the semantic distance
between the constructs they represent: constructs which are very different in meaning (large
semantic distance) should have very different symbols (large visual distance), while constructs
which are similar in meaning should have similar symbols.

31

4.2.3 Principle of Semantic Transparency

Semantic transparency involves the use of graphical representations whose appearance suggests
their meanings.

As presented in figure 4-7, while the perceptual discrimination implies that symbols have to be
different from each other to be recognised, semantic transparency involves that symbols should
give a cue to their meanings. Using semantically transparent symbols has 2 advantages. Firstly, it
decreases the cognitive load because users can use mnemonics to remind their meaning and
secondly, they are easier to learn.

Figure 4-10 illustrates the degree of association between form and content. If the meaning of the
concept can be inferred from the appearance of the form, it is positive. A novice reader could easily
guess the meaning of the symbol. If the form has been chosen arbitrary and has no particular
meaning, then the symbol is said to be semantically opaque. The reader will have to be informed
of the signification of the symbol (e.g., rectangles in ER diagrams). And, in the worst case, the
reader could understand a different or an opposite meaning because the symbol has not been well
chosen. This case is called semantic perversity. Between semantic immediacy and semantic
perversity, there are different degrees of opacity. Opaque symbols are more or less an aid to the
memory but in all cases they require prior explanations.

Figure 4-10 The degrees of semantic transparency [Moody, et al., 2010]

Icons (perceptual resemblance)

Icons are symbols that perceptually resemble the concepts they represent [Peirce, 1998]. They
increase the cognitive effectiveness and help beginners to understand easily a visual notation. They
make diagrams more visually appealing: people prefer real objects to abstract shapes [Petre, 1995]
[Bar, et al., 2006].

Icons are very often used in cartography but rarely in software engineering visual notations. Most
of the software engineering visual notations use nearly always abstract shapes. The only icon
frequently seen is the sticky figure that means 'users' (illustrated in figure 4-11).

Figure 4-11 The only icon which is frequently used is this one which represents the user

32

Semantically transparent relationship

The concept of the semantic transparency can also be applied to relationships. The position of the
symbols on the paper can also influence the reader to an interpretation of the relationship. For
example, left-to-right arrangement of objects suggests causality or sequence while placing objects
inside other objects suggests class membership [Moody, 2009].

4.2.4 Principle of Manageable Complexity

Manageable complexity is the principle that allows presenting large amounts of information
without overloading the human mind [Moody, 2009]. This principle includes explicit complexity
management mechanisms. Unlike textual representations, which can extend over as many pages as
required, diagrams become difficult to comprehend, navigate and edit once they exceed a certain
size [Citrin, 1996].

The perceptual and the cognitive abilities of humans are limited. This it the reason why it is
difficult to manage a large amount of information. These limitations are:

 Perceptual limits: the ability to discriminate the different diagram elements increase
quadrically with diagram size [Patrignani, 2003]

 Cognitive limits: The working memory capacity can understand a limited number of
diagram elements at a time (7 plus or minus 2 elements) [Miller, 1956]. If there are more
elements, a state of cognitive overload ensues and the comprehension degrades rapidly.

To reduce the complexity, there are 2 techniques: modularisation and hierarchical structuring.
Moreover, we will also explain why designers should avoid having duplicate elements on their
diagrams.

Modularisation (decomposition)

The most effective way of reducing complexity of large systems is to divide them into smaller
subsystems, sub-diagrams or modules: this is called modularisation [Baldwin, et al., 2000] or
decomposition [Simon, 1996]. Each module, to be cognitively manageable, should contain 7 plus
or minus 2 elements [Miller, 1956].

Modularisation requires the existence of specific semantic constructs: either a general "module"
constructs (e.g., packages in UML class diagram) or recursively defined (decomposable) constructs
in the notation itself (e.g., state charts in UML activity diagram) [Moody, 2009]. But for the clarity
of the diagram, the designer has to build a general "map" to make a link between each sub-diagram
(see section 4.2.5 principle of cognitive integration) and some graphical conventions have to be
defined.

Hierarchical structuring

Repeated application of modularisation will result in a hierarchy of diagrams at different levels of
abstraction, with the number of levels depending on the complexity of the underlying model
[Moody, 2009]. Elements at the top of the diagram are decomposed into sub-elements that will
detail the first one following the principle of recursive decomposition. Data Flow Diagram (DFDs)
uses this technique as demonstrated figure 4-12, the top element "Order system" is decomposed at
the next level into sub-elements called "Check Credit", "Fill Order" and "Generate Invoice" (level
0). Then the element ‘Fill Order’ is himself decomposed at the next level into ‘Check inventory’,
‘Fill order’ and ‘Create backorder’.

33

Figure 4-12 Hierarchical Structuring in DFDs [Moody]

Avoid duplicate elements

In practice, duplicate elements are often used to reduce line crossings on complex diagrams
[Moody]. Some designers do it by themselves and invent methods to reduce the complexity of the
diagram. For example, in figure 4-13, Axel van Lamsweerde uses dashed lines for duplicate
elements (e.g., "Event" and "Agent") in its meta-model of KAOS realised according the UML class
diagram notation. In the whole diagram of the meta-model, this construction simplifies the
understanding of the reader by reducing the number of crossing lines. But once again, it means that
there are as many solutions as designers.

Moreover, this technique tackles the symptom of the problem rather than the cause, it would be
better to modularise the initial diagram.

Figure 4-13 Duplicate elements are used to describe the meta-model on KAOS in [Lamsweerde, 2009]

4.2.5 Principle of Cognitive Integration

The principle of cognitive integration is used when a system is represented by multiple diagrams.
This increases the cognitive load of the reader to integrate the information from the different
diagrams. The reader needs to keep track of where he is. To solve this problem, Kim et al. [Hahn,
et al., 1996] [Kim, et al., 2000] have developed a theory for multi-diagram representations called
'cognitive integration of diagram'. This theory includes 2 mechanisms to represent multi-diagram
representations in a cognitively effective manner: the conceptual integration and the perceptual
integration.

ObjectModel

Object
Name
Def

InstanceOf

AgentEventEntityAssociation

34

Conceptual integration mechanism enables the reader to integrate information distributed across
different diagrams into a coherent mental representation of the system. However if this technique is
largely used in cartography, it is not often used in software engineering languages.

This technique consists of a summary of the different sub-diagrams represented in a general one.
Each sub-diagram contains contextual information showing its relationships to adjacent sub-
diagrams, which is done by including all related elements from other sub-diagrams as foreign
element [Moody, 2009]. Figure 4-14 part A shows a map of Liege [TECLiege, 2010] divided in
rectangles. Some rectangles are identified by a number which references a more detailed map
(figure 4-14 part B).

Figure 4-14 Conceptual information (part A) and perceptual integration (part B)

The map of the city of Liege divided in subparts (part A) and a part of the map with its relationship

with other parts of the main map and the navigational cues (part B)

Conceptual information will allow top-down understanding as well as bottom-up understanding.
The number inside each part of the main map helps the user to find the corresponding sub-map
(top-down) and the number in each sub-maps (the number in the bottom right corner) helps the user
can locate this piece of map on the main map (bottom up).

Perceptual integration provides perceptual cues to assist navigation and transitions between
diagrams. It is composed of elements that help the user. These could be: clear labelling of
diagrams, hierarchical numbering and locator maps [Lynch, 1960].

The map in figure 4-14 part B contains arrows that allow making links with other sub-maps. The
arrow on the right refers to part 2 of the main map while the descending arrow refers to the part 3.

Both of these mechanisms can be applied equally to diagrams of the same type (homogeneous
integration) and diagrams of different types (heterogeneous integration).

4.2.6 Principle of Visual Expressiveness

Visual expressiveness is the number of different visual variables used in a visual notation and the
range of values used for each: this measure the utilisation of the graphic design space [Moody,
2009]. The goal of this principle is to use the different visual variables on the best way to improve
cognitive effectiveness. Combination of these variables is used to exploit multiple, parallel
channels of communication. Thanks to them, the reader can simplify the problem solving by
separating the different parts of the problem in his mind [Cheng, 2004].

A B

3

2

35

The concept of visual expressiveness divides the variables into 2 categories:

 Information carrying variables: this information has a specific meaning and is used to
encode information. These variables define the primary notation.

 Free variables: these variables do not have a meaning defined formally. These variables
can be used by the modeller to create the secondary notation.

Figure 4-15 defines the concept of visual expressiveness. As explained in the section 4.1, there are
8 visual variables (see figure 4-2): horizontal position, vertical position, shape, size, colour, value,
orientation and texture. Then the visual expressiveness can vary from 0 to 8. If it is equal to 0, it
means that no visual variable is used and there is no visual representation. If it is equal to 8, all
variables are used and the draw is certainly saturated. Between these 2 extremities, the degree of
visual freedom is equal to the number of free variables and varies inversely with visual
effectiveness.

Figure 4-15 Visual expressiveness: differences between primary and secondary notations [Moody,

2009]

As explained in section 4.1, the choice of visual variables to use in a notation should not be
arbitrary but should be based on the nature of the information to be represented [Bertin, 1983]. In
other words, it means that some variables are more suitable to encode certain types of information.
For example, colour can only be used for nominal data as it is not psychology ordered [Kosslyn,
1989].

Colour and spatial location are the most powerful visual variable because they are highly
cognitively effective. The human visual system is highly sensitive to colour and can quickly and
accurately distinguish between different colours [Mackinlay, 1986] [Winn, 1993] and spatial
location can be used to encode all types of information [Moody, 2009]. But, even if there are
effective, there are nearly not used in software engineering visual notations.

Another misuse of the visual variables is that software engineering notations use only a small part
of the design visual space which is though unlimited. In example, modellers use mainly
quadrilateral shapes: rectangle, parallelogram, diamond, and square. Nevertheless, studies have
shown that curved shapes, 3 dimensional shapes and mimetic shapes are preferred by users [Bar, et
al., 2006].

4.2.7 Principle of Dual Coding

Principle of dual coding goes against the principle of perceptual discriminability and visual
expressiveness that advice not using textual information. However, text has its place in information
encoding and it is not mutually exclusive with graphical information. Using both to encode the
information is more effective than use them separately. When information is presented graphically
and textually, representation of this information is encoded in separate verbal and visual systems
within working memory and referential connections between the two are strengthened [Moody,
2009].

There are 2 ways to do dual coding: using annotations and adding textual information.

36

Annotations play the same role as comments in software programs. They improve the
understanding of the diagram. When diagrams are annotated, they are more self-explaining and by
consequence more readable for the user. If diagram documentations are placed on another
document, it can cause problems of cognitive interpretation. In conclusion, textual information will
facilitate the interpretation of the graphic.

Figure 4-16 represents a relationship link between 2 elements (in an imaginary visual
representation). Textual information has been added to give more information about the
cardinality of this relationship link. Without it, we can only say that this is a relation one-to-many.
With it, we can say that the relation is one from 3 to 15. In this case, the encoded information gives
more information.

Figure 4-16 Example of dual coding using textual information [Moody, 2009]

4.2.8 Principle of Graphic Economy

Graphic complexity is defined by the number of different symbol types in a notation. It is the size
of its visual vocabulary [Nordbotten, et al., 1999]. It is different from the diagrammatic complexity
(see principle of Complexity Management), as it is applied at the syntax level and not at the
diagram level [Moody, et al., 2010].

If the symbol number in the visual notation is huge, mnemonic and facilities have to be offered to
novice users. A legend can be supplied but if it is frequently referenced, the user will spend a lot of
time to understand the diagram.

The human ability to discriminate between perceptually distinct alternatives is around 6 categories
[Miller, 1956]: this defines an effective upper limit for graphic complexity. In most of software
engineering languages, this limit is exceeded. In visual notations, symbol numbers grow quickly
because designers always add new symbols to increase the semantic expressiveness: each new
construct requires a new symbol. Anyway the 2 most common languages (DFD and ER) follow the
recommendation of Miller and this is maybe one of the reason why there are so popular.

Moody [Moody, 2009] describes 3 strategies to deal with graphic complexity:

1. Reduce semantic complexity: usually the number of semantic constructs is proportional to the
graphic complexity (following the principle of semiotic clarity). To reduce it, the notation can offer
different views of the problem. These different views are represented by different diagrams. UML
uses this technique, its meta-model is divided into different diagram types (e.g., class diagram, use
case diagram, component diagram, sequence diagram and object diagram)

2. Introduce symbol deficit: graphic complexity can be reduced by introducing graphic deficit. It
implies not to show all information on the graph and to write them textually in documentation.
Diagrams are done to study high-level abstractions of problems rather than fully detailed
specifications. Designers have to find the right balance between textual, graphical encoding and
information that can be specified off diagram.

3. Increase visual expressiveness: increasing human discrimination can be done by increasing the
number of visual variables that are used in the notation. Indeed the limit of 6 categories only
applies if a single visual variable is used (which is true for most software engineering notations,
which use shape as the sole information-carrying variable) [Moody, 2009].

37

4.2.9 Principle of Cognitive Fit

Most requirements engineering notations use the same visual notation for all readers and all usages.
The cognitive fit theory, which is widely accepted in the computer scientist domain and used in
many steps of software engineering, suggests that one single visual representation for all purpose is
inappropriate [Shaft, et al., 2006] [Vessey, 1991] [Vessey, et al., 1992]. According to this theory,
the visual notation of a language should be adapted to the form of representation, tasks
characteristics and problem solver skills for which it is intended. Figure 4-17 represent the
principle of cognitive fit as the middle between these 3 points.

Figure 4-17 Cognitive fit is the result of a three-way interaction between the representation, task and

problem solver [Moody, 2009]

Usually, in most technical domains, graphical designs are used by experts. They know the meaning
of each symbol and they frequently read them. But in software engineering, visual notations are
used by both technical experts and business experts. Designers could use the "small common
denominator" between them to build visual notations that could increase the cognitive effectiveness
but it is rejected by the cognitive load theory. Visual notations for the novices should use clearly
distinguishable symbols (perceptual discriminability), mnemonic conventions (perceptual
immediacy), clarifying text (dual coding) and simplified visual vocabularies (graphic economy)
[Moody, 2009]. However if notations are optimised for novices, their effectiveness may be reduced
for experts and vice versa.

Software engineering visual notations are usually monolinguist; it means that the same symbols are
used for all users. Differences can be found in only 2 visual languages: ORM [Halpin, 2005] and
Oracle data Modelling [Barker, 1990]. They have specific designs for end users that allow them to
clearly explain some concepts.

38

4.3 Interaction among Principles
Figure 4-18 summarises the interactions among the visual notation design principles. These
interactions are not symmetrical. Visual notation designers should exploit maximally interactions
that will have synergies between them and find the best compromise between principles that
interact against each other.

Figure 4-18 Interactions between principles [Moody, 2009]

- Semiotic clarity could have positive or negative effects on graphic economy. Symbol excess and
redundancy increase the number of symbols (decrease of the graphic economy but increase graphic
complexity) while overload and deficit reduce it (increase of the graphic economy but decrease
graphic complexity) [Moody, 2009].

- Graphic economy reinforces the cognitive fit, the perceptual discriminability and the complexity
management but it decrease the visual expressiveness if the number of symbols is decreased.

- Perceptual discriminability increases the cognitive fit and the visual expressiveness because it
uses more visual variables.

- Dual coding reinforces cognitive fit.

- Visual expressiveness decreases graphic economy and improves the perceptual discriminability. It
is due to the fact that this principle suggests using more symbols, many visual variables and a
greater range of values to draw the diagrams.

- Complexity management improve cognitive fit but increase the number of graphical symbol, thus
it disadvantages the graphic economy.

- Cognitive integration improves the complexity management but increases graphic complexity
because symbols or diagram types are added to create links between them. Finally it creates excess
symbol anomalies which are against the principle of semiotic clarity.

- Improving the principle of semantic transparency will also improve the principle of perceptual
discriminability but it will advantage and disadvantage the principle of cognitive fit.

39

Chapter 5 The KAOS Language

5.1 Introduction
In this chapter, we will explain the different semantic constructs of the KAOS language and their
visual notations. The described version of KAOS is this one presented in [Lamsweerde, 2009]. But
we have to keep in mind that there could be other versions, in particular of the visual notation (e.g.,
Objectiver [Objectiver, 2007], a requirements engineering software that implements some parts of
the KAOS visual notation). Figures in this chapter are drawn with a diagram creation software
(e.g., Dia [Dia, 2011] or MS Visio) because we did not find any software that follows exactly the
visual notation described in [Lamsweerde, 2009].

KAOS belongs to the goal-oriented requirements engineering methods described in Chapter 3. Like
all of these methods, it is based on goals expressed by stakeholders.

KAOS stands for Knowledge Acquisition in autOmated Specification or Keep All Objects Satisfied
[KAOS, 2010]. This methodology helps analysts to build requirements models based on documents
described by stakeholders or based on interviews given by stakeholders. After elaborating the
requirements model, analysts will be able to produce requirements documents from KAOS models.
KAOS offers many views of a system in term of WHO and WHY dimensions. The HOW
dimension is also approached. This language uses semi-formal and formal expressions depending
on the needs: semi-formal for modelling and structuring goals and formal when reasoning has to be
more accurate.

KAOS is comprised of 5 models that are linked to each other: goal model, agent model, operation
model, object model and behaviour model. These 5 models cover the whole system and not only
the software part of it. They are described in the following sections. However, we will not describe
in details the 2 last ones borrowed from the UML language.

The figures used in this chapter are based on a running example that describes an online bookstore
(the example is more detailed in Chapter 9).

5.2 Goal Model
The goal model covers the WHY-dimension of a system. It contains goals that are prescriptive
statements and can be functional or non-functional (see Chapter 3). Each goal will contribute to
fulfil requirements expressed by the stakeholders and help to define requirements for the software-
to-be. One of the advantages of this model is it will help stakeholders to choose between different
alternatives, they can also see possible conflicts among goals. The second advantage is to show the
whole system and not only the part of the system we need to build (i.e., the software-to-be).

The goal model allows seeing inter-model relationships such as responsibility links between goals
and system agent, obstruction links between goals and obstacles, reference links from goals to
conceptual objects or operationalisation links between goals and system operations.

40

Goals can be high-level or lower level. High level goals refer to strategic objectives that the system
should fulfil, lower-level goals represent technical prescriptions.

A goal is represented by a parallelogram. Inside it, there is the goal's name, possibly prefixed by its
type.

A goal has always a name and a specification. These 2 characteristics are mandatory:

 Name: unique in the whole system model.

 Specification (Spec)2: explains in natural language the behaviour in terms of phenomena
that are monitorable and controllable in the system.

There are also optional features like:

 Type: indicates which class of prescribed or preferred behaviour the goal refers to. There
are 3 goal types :

o Maintain: behavioural goal with a specification pattern: [if CurrentCondition
then] always GoodCondition.

o Achieve: behavioural goal with a specification pattern: [if CurrentCondition then]
sooner-or-later TargetCondition.

o Soft goal: evaluating alternative.

 Category: indicates the taxonomic category of the goal.

 Source: gives the origin(s) of the goal (e.g., a stakeholder).

 Priority: allows the user to prioritise the goal for comparison with competing goals.

 Fit criterion (FitCriterion): annotates a soft goal, allows an evaluation of the alternative
options against it.

 Formal specification (FormalSpec): annotates a behavioural goal to formalize its
informal specification.

Figure 5-1 represents a goal called 'EfficientSystem' and the features of this goal such as the definition,
the type, the priority and the fit criterion.

Figure 5-1 A goal and its features

2 The word in parenthesis represents the short name of the characteristics. This short name is used in diagram,
in annotations and in the meta-model in Chapter 6.

41

Goal refinement

The goal model is represented by a refinement graph showing how higher-level goals are refined
into lower-level goals and conversely. Goals can be refined on 2 ways: either by an AND-
refinement or by an OR-refinement. The graph is thus an AND/OR graph, and can also be called
goal diagram.

An AND-refinement link relates a goal to a set of sub-goals. Each of them contributes to satisfy
the parent goal and all sub-goals are to be satisfied for satisfying the parent goal. This refinement
link is represented by a small circle connecting the main goal and its sub-goals. The main goal is
the target of the link.

An AND-refinement link is complete if the goal set of the AND-refinement is sufficient to fulfil
the parent goal. In other words, a goal is completely refined if and only if all sub-goals of the
AND-refinement are sufficient to satisfy the main goal. To represent it, the small circle of the
relationship is coloured in black.

In an AND-refinement of a goal G, a sub-goal may itself be AND-refined, and so on recursively. G
is thus the parent of a tree, the leaves of the tree are goals that cannot be refined. They represent
software requirements or environment assumptions. Assumptions are generally prescriptive
statements that are satisfied by the environment and are formulated in terms of environmental
phenomena.

All leaf goals are needed to fulfil the parent goal. Leaf goals can be differentiated from the other
goals by their bold border. They have to be under the responsibility of a single software agent (as
requirements) or a single environment agent (as expectations or assumptions).

Figure 5-2 depicts a goal diagram where the goal 'SystemMeetsMaximumFunctionalRequirements' is refined into 3
sub-goals: 'SecurePayment', 'SellBooksAtBestPrice' and ‘HighAvailability’. The goal 'SellBooksAtBestPrice' is itself refined
into 3 other sub-goals: 'SellALotOfBooks', 'GoodInventoryManagement' and 'RobustOnlineStore'. These 3 sub-goals are
sufficient to fulfil their parent goal. In this case, the refinement is said 'complete' that is graphically
represented by the black circle on the refinement relationship link.

Figure 5-2 AND-refinement and complete AND-refinement

A goal can be satisfied in different ways, i.e., by different groups of AND-refined goals. Each
AND-refinement is called an alternative refinement. A group of AND-refinements attached to the
same parent is called an OR-refinement.

42

A refinement has the following features that can be documented by annotations:

 Name: gives a unique identifier to a refinement to avoid confusion.

 System reference (SysRef): indicates which alternative is chosen for a version of the
system.

 Tactic: explains how a refinement was found.

Figure 5-3 depicts an example of an OR-refinement. The goal 'EasyToUseSystem' can be achieved if the
goal 'HelpUserByPhone' is fulfilled or if the goal 'HelpUserByMail' is fulfilled. One of them is sufficient to
fulfil the parent goal. In [Lamsweerde, 2009], there is no particular symbol to express that a goal is
OR-refined.

Figure 5-3 OR-refinement

Conflicts among goals

Sub-goals can contribute positively to a goal but, at the same time, they can also be opposed to
another goal. Another possibility of conflict is when we have a boundary condition; it occurs
when statements are not satisfied together under some condition. It happens in particular
combination of circumstances that makes the statements strongly conflicting when it becomes true.
It implies that under some boundary conditions, some goals become logically inconsistent in the
considered domain. It often happens when the goals come from different sources.

Graphically a conflict between goals is represented by a link with a 'flash' icon on it.

Figure 5-4 shows that the goal 'RobustOnlineStore' is used to fulfil the goal 'SellBooksAtBestPrice' but it is in
conflict with the goal 'CheapSystem' which is necessary to fulfil the parent goal
'SystemMeetsMaximumNonFunctionalRequirements'.

Figure 5-4 Conflict among goals

Obstacles

An ideal system should behave as expected. But this is not the case in the real world because there
are always a lot of risks and unexpected events that can lead to loose the satisfaction of some
objectives. These risks and unexpected events are called obstacles, they have to be studied in the
goal model and thwarted as much as possible. The first step is to identify them and, in a second
step, we have to find goals to prevent that they happen.

43

An obstacle will usually avoid that an assertion will be satisfied but it can also avoid that a domain
property or a hypothesis will be satisfied.

Graphically, an obstacle is represented by a 'reverse' parallelogram (a left-oriented parallelogram)
labelled by its name.

An obstacle always has a name and a specification (these characteristics are mandatory):

 Name: unique in the whole system model.

 Specification (Spec): explains in natural language the behaviour in terms of phenomena
that are monitorable and controllable in the system.

The boundary condition from where the obstacle occurs has optional features like:

 Category: indicates the taxonomic category of the obstacle.

 Likelihood: estimates how likely the situation captured by the obstacle condition is. This
estimation is used for risk assessment.

 Criticality: estimates how severe are the consequences of the situation captured by the
obstacle condition are (e.g., catastrophic, severe, moderate, low).

 Formal specification (FormalSpec): annotates an obstacle to formalize its formal
specification.

Figure 5-5 represents the obstacle 'BookNotDeliveredQuickly' and its characteristics: the name, the
definition, the category, the likelihood and the criticality.

Figure 5-5 An obstacle and its features

Like goals, obstacles are organised in a graph that are called the obstacle diagram. The root of this
tree is the assertion not G (where G is the goal that we want to study); it is the root obstacle; it is
linked to the goal G by an obstruction link. The latter can be refined in an OR-refinement tree or in
an AND-refinement tree. The leaves of the tree are elementary obstacles whose satisfiability,
likelihood and resolution can be determined easily.

Figure 5-6 shows that the goal 'QuickDelivery' could be prevented by the obstacle 'BookNotDeliveredQuickly'.

44

Figure 5-6 An obstacle and one of its possible obstruction

There are many categories of obstacles that obstruct some categories of goals as described in the
table 5-1.

Table 5-1 Obstacle types and the obstructed goal types [Lamsweerde, 2009]

Obstacle Goal obstructed

hazard safety

threat

 disclosure

 corruption

 denial-of-service

security

 confidentiality

 integrity

 availability

dissatisfaction

 nonSatisfaction

 partialSatisfaction

 tooLateSatisfaction

satisfaction

misInformation

 nonInformation

 wrongInformation

 tooLateInformation

information

unusability usability

45

Obstacle analysis and goal model elaboration

Figure 5-7 explains how to elaborate a goal model and analyse the obstacles. Firstly, the goal
model has to be drawn. In this model, goals have to be refined at most. Then these leaf goals are
preferred to find the obstacle following the iteration Identify-Access-Control cycle.

 Identify: select goals and identify obstacles for each of them.

 Assess: evaluate the probability and criticality of each identified obstacle.

 Control: resolve each obstacle according to its probability and its criticality to produce
new goals as countermeasures in the goal model.

Figure 5-7 Obstacle analysis and goal model elaboration [Lamsweerde, 2009]

5.3 Agent Model
The agent model covers the WHO-dimension explained in the Chapter 2. It allows replying to the
question: "Who is doing what and why?". This model shows how the agents of the system will
have to fulfil the different sub-goals of the goal model. Then, the responsibilities and the workload
of every agent (human or device) of the system can be deducted and used for load analysis.

System agents

System agents are responsible to satisfy leaf goals of the goal model. They have to do it according
to their capabilities. The capabilities of an agent are defined in terms of object attributes and
associations of the object model that the agent can monitor or control. As any object of the system,
agents are defined by their name and their specification.

On one hand, agents have the responsibility of fulfilling a leaf goal but the responsibility can also
be divided into several agents. And like goals and obstacles, agents can be decomposed into finer-
grained ones. On the other hand, agents can also express their wishes for some goals.

Agents can be divided into 4 categories:

 New software agent: it has to be developed as software controllers, information managers
or web services.

 Existing software agent: foreign or legacy component with which the new software will
have to operate.

 Devices: sensors, measurement instruments...

 Human agent: it plays a specific role such as organisational units, end-user.

The system scope could also include malevolent agents, in other word, agents that will try to break
the system goals to satisfy their own malicious goals (e.g., hackers that will try to steal private
information).

46

Graphically, system agents are represented by hexagons. To identify environment agent, a 'sticky
man' icon is added inside it. These representations can be seen on figure 5-8 where 'OrderPickers' is an
environment agent and 'BookOrderSoft' a system agent –an existing software used to order books at the
wholesaler.

Figure 5-8 Environment agent and agent

To fulfil goals, agents will perform some operations (section 4.4 Operation Model). It is
represented by a relationship between the agent and the operation. Graphically represented by a
line with an adorned circle in the middle. The same graphical representation is used to show the
responsibility of the agent fulfilling a goal that he has to satisfy.

Figure 5-9 expresses that the goal 'PreparePackageQuickly' is under the responsibility of the environment
agent 'OrderPickers'. This agent will have to perform the operation 'PreparePackage'.

Figure 5-9 Agent responsibility and performance

An agent has always a name and a specification (these 2 characteristics are mandatory):

 Name: unique in the whole system model.

 Specification (Spec): explains in natural language what the agent has to do.

There are also optional features like:

 Load: work load supported by this agent.

 Category: indicates the category of the agent (new software agent, existing software agent,
devices, human agent).

To fulfil a leaf goal, multiple agents can be envisaged even if at the end of the process the goal will
have to be fulfilled by only one of them. Each alternative link is called an assignment. The same
kind of design is used to represent it.

47

Agent capabilities

The capabilities of an agent are determined in terms of monitoring links and control links to
objects in the object model. Agent can control or monitor either objects or associations.

 "An agent monitors an attribute of an object if its instances can get the values of this
attribute from object instances. An agent monitors an association if its instances can
evaluate whether this association holds between object instances." [Lamsweerde, 2009]

 "An agent controls an attribute of an object if its instances can set values for this attribute
on object instances. The agent controls an association if its instances can create or delete
association instances." [Lamsweerde, 2009]

When agents are instantiated, the variables that are monitored or controlled are also instantiated as
state variables.

Figure 5-10 shows the graphical representation of monitored and controlled attributes of an object.
The agent Ag monitors the attribute Att1 of the object Ob1. It is represented by an ingoing arrow
from the object to the agent. The name of the attribute monitored is adorned to the arrow. On the
same figure the agent Ag controls the attribute Att2 of the object Ob2. It is represented by an
outgoing arrow from the agent to the object. The name of the attribute controlled is adorned to the
arrow.

Figure 5-10 Agent capabilities [Lamsweerde, 2009]

Agent dependencies

“An agent A is said "to depend on" an agent B for a goal G, under the responsibility of B, if B's
failure to get G satisfied can result in A's failure to get one of its assigned goals satisfied”
[Lamsweerde, 2009]. Figure 5-11 shows that agent Ag2 depends on the responsibility of agent Ag1
to fulfil the goal G. This dependency relationship is depicted as an (oriented) link which is adorned
with a 'D' character.

Figure 5-11 Agent dependencies [Lamsweerde, 2009]

48

5.4 Operation Model
The operation model covers the WHAT-dimension of the requirements engineering (see Chapter
2). It describes the services that the system should offer to fulfil the goals. An operation model
represents the system operation in terms of their individual features and their links to the goal,
objects and agent models. From this model, we can derive elements of the software architecture
like external specifications of functional components, black-box test data and we can also define
development work units.

An operation is performed by an agent; it executes work on objects (defined in the object model).
It can create objects, trigger object state transitions and activate other operations (by sending an
event).

Operations have a set of input variables and a set of output variables that define its signature. An
operation is performed when it receives input variables corresponding to its running conditions.
Thanks to signatures, links between the operation model and the object model are introduced.

There are different kinds of operations:

 Software operations (or services or functional features): realised by software agent. Their
specifications have to be sent to the software engineer.

 Environment operations: realised by human agents, devices or existing software agents in
the environment of the software-to-be.

An operation has the following features:

 Name: unique in the whole system model.

 Specification (Spec): explains in natural language which goal the operation has to fulfil.

 Category: indicates the category of the operation (software operation or environment
operation), this information is optional.

 Signature: specifies the input/output variables of the relation. A variable is declared by the
name of the object it belongs followed by its name (e.g., Customer.DeliveryAddress). Objects can be
an entity, an association, an agent or an event. Signature can be described graphically
(figure 5-12 part A) or textually (figure 5-12 part B).

Figure 5-12 Operation signature

(part A shows graphical notation, part B shows textual notation)

A B

49

 Domain: specifies the domain pre-conditions (DomPre) and post-conditions (DomPost) in
which the operation will be realised. These conditions describe the set of state transitions
defined by applications for the operation (domain pre-conditions define the class of input
states when the operation is applied, domain post-conditions define the class of output
states when the operation has been executed). Domain conditions are descriptive as they
capture what the operation intrinsically means in the domain, they can be a requirement or
not. If it is a requirement, it implies that the condition is a necessary condition to execute
the operation. Figure 5-13 describes the domain conditions for the operation 'PreparePackage'.
The precondition domain is: “the package has to be paid before being prepared” and the
postcondition domain is “the package is ready to be delivery”.

Figure 5-13 Domain pre-conditions of an operation

Operationalisation is the action that consists of mapping an operation and a leaf goal under the
responsibility of a single agent. This operation has to be performed under required domain
conditions.

The complete specification of the operation is obtained by combining all its required conditions on
the input states with its domain pre-condition, and all its required conditions on the output states
with its domain post-condition.

There are 3 types of required conditions:

 Required pre-condition (ReqPre): necessary condition on the operation's input states for
the satisfaction of this goal by any application of the operation. It captures a permission.

 Required trigger condition (ReqTrig): sufficient condition on the operation's input states
for the satisfaction of this goal by any application of the operation. It captures an
obligation.

 Required post-condition (ReqPost): condition on the operation's output states for the
satisfaction of this goal by any application of the operation.

Figure 5-14 depicts that operation 'PreparePackage' has a pre-requirement before being operationalised:
the bill of the purchase has to be paid.

Figure 5-14 Required conditions annotating operationalisations

PreparePackage
Quickly

PreparePackage

Order
Picker

ReqPre Bill.pay=true

50

5.5 Object Model
The object model offers a structural view of the system. In this view, the conceptual objects
manipulated in the system-as-is or system-to-be are defined, characterised through individual
features and inter-related with each other through links. Objects belong to a domain that we have to
describe. This domain can have domain invariants and domain hypothesis.

When developers start to develop the software, this model could be used to generate a database
schema (if needed) and elaborate the software architecture. When the system is ready to run,
objects are instantiated into features that belong to the 'real' world.

This diagram is represented by an entity-relationship diagram using the UML class diagram
representation.

All object instances evolve individually from state to state depending on changes in the values of
their state variables. Object instances can be:

 Entity: autonomous and passive object, its instance exists in the system independently of
other objects.

 Association: conceptual object depends on other objects that it links, each link plays a
specific role in the association. An association can be reflexive if the same object appears
at multiple positions under different roles.

 Agent: autonomous and active object, it has individual behaviours, can control and monitor
other objects (thanks to its associations and attributes).

 Event: instantaneous object, can be either internal or external.

The domain concepts will be represented by conceptual objects. These objects are sets of instances
of a domain-specific concept. These instances are distinctly identifiable, can be counted in any
system state, share similar features and may differ from each other in their individual states and
state transitions.

Each object is characterised by:

 Name: unique in the whole system model.

 Type: declares the type of the object (entity, association, agent or event).

 Specification (Spec): explains in natural language the behaviour in terms of phenomena
that are monitorable and controllable in the system.

 Has: defines the object attributes and their meanings. The attributes of an object has a
range of value, a multiplicity (by default is a one-to-one multiplicity) and can be rigid if its
value does not change during in the entire system behaviours.

 Domain invariant (DomInvar): lists the known domain properties about the object as
invariant holding in any object state.

 Domain initialisation (DomInit): gives the initial value of the attributes and associations
for any instance of the object. This property can be written in a natural language or in a
formal language.

 Issue: uses to remind a question about the object. This property can be written in a natural
language or in a formal language.

Figure 5-15 depicts the object 'Customer', its attributes and the characteristics.

51

Figure 5-15 An object and its features

There are 2 particular associations between objects: the specialisation and the aggregation.
Specialisation occurs when objects can be specialised into other objects that have common features
with their parent and their own features. Conversely, if we notice that many objects share the same
features, we should generalise it. An aggregation association involves that an object is composed of
other objects.

This model follows the UML 2.0 syntax of the class diagram representation. It uses concepts as:
entities, attributes, binary association, ternary association, n-ary association, specialisation,
composition, aggregation and OR-associations.

An example of object diagram of the running example can be seen in figure 9-6.

52

5.6 Behaviour Model
A behaviour model allows seeing the required behaviours of system agents in terms of temporal
sequences of state transitions for the variables that the agents monitor and control. These transitions
appear when operations are executed or when external events happen. The global behaviour of the
system is obtained as a parallel composition of agent behaviours.

The behaviour model is composed of scenarios (specific instance behaviour) and state machines
(class behaviour). It can either describe the system-as-is –in this case it will be use for analysing a
running system– or the system-to-be to define the behaviour of the future system.

A scenario is a temporal sequence of interaction events executed by different agent instances. It
shows the interactions with the different objects and the chaining between them. It can be positive
or negative. A positive scenario shows how to satisfy a desired goal, a negative one explains a
possible way of satisfying an implicit obstacle of the goal. A scenario can be split up in sub-
scenarios or episodes.

An example of scenario of the running example can be seen in figure 9-7.

State machines are complement to the scenarios: they make state information explicit, show the
behaviour of any agent or entity instances (not a specific one) and all possible sequences of state
transition.

An example of state machine of the running example can be seen in figure 9-8.

53

Part II

Contribution

54

55

Chapter 6 The KAOS meta-model

After having explained the different semantic constructs of the KAOS language, we are able to
draw its meta-model. It will show the different semantic constructs as classes and the relationships
that exist between them. One of the usages of a meta-model is to do the semiotic analysis. This
analysis consists of verifying the existence of two-ways mapping between semantic constructs and
the visual notation of the language or the existence of anomalies (e.g., symbol excess, symbol
redundancy, symbol overload and symbol deficit).

The meta-model presented in figure 6-1 is represented as an UML class diagram and it is based on
the meta-model described in [Lamsweerde, 2009]. We have completed it with information such as
the multiplicity of the associations, the type of generalisation/specialisation such as complete -
incomplete and overlapping - disjoint. This information is important for the user and helps him/her
to understand the different possibilities offered by the language. To increase the readability of the
text, terms that can be found in the meta-model are written in italic.

As the system model expressed in the KAOS language is made up of 5 views, the meta-model is
decomposed in an aggregation of 5 fragments. These ones model the meta-classes and the meta-
relationships used to represent these 5 views: goal model, agent model, operation model, object
model, and behaviour model. These views are strongly intertwined and complete each other. These
5 different fragments can be easily discriminable by their different coloured background in the
general meta-model of figure 6-1. The use of these colours is summarised in the table 6-1.

Table 6-1 Colours used to differentiate the different models in the meta-model

Model name Colour

Goal model Green
Agent model Orange
Operation model Violet
Object model Blue
Behaviour model Yellow

The overall meta-model provides a common framework within which all views of a system model
can be structurally defined and inter-related.

6.1 Goal Model
In the GoalModel meta-concept, the Goal meta-class is obviously the central element. It has many
meta-attributes: Name and Specification that are mandatory; Category, Priority, Source that are
optional. This is a concrete meta-class, which means that it can be instantiated. Goal can be
specialised into 2 different types: SoftGoal and BehaviouralGoal. The latest can be divided into 3
other types: Achieve goal, Maintain and Avoid goal. The SoftGoal meta-class has one meta-
attribute: FitCriterion which is optional, and the BehaviouralGoal meta-class that also has one
meta-attribute: FormalSpec which is also optional.

56

Table 6-2 Attributes of the goal meta-class and its subclasses

Attributes Description

Name unique in the whole system model
Specification explains in natural language the behaviour in terms of phenomena that are

monitorable and controllable in the system
Category indicates the taxonomic category of the goal
Priority allows the user to prioritise the goal for comparison with competing goals
Source gives the origin(s) of the goal
FitCriterion annotates a soft goal, allows an evaluation of the alternative options against it
FormalSpec uses to annotate a behavioural goal to formalize its informal specification

When goals are maximally refined, they become LeafGoal, which is an abstract meta-class (that
cannot be instantiated). This abstract meta-class is specialised into 2 concrete meta-classes:
Requirement and Expectation.

Each specialisation of the Goal meta-concept inherits the meta-attributes and meta-relationships of
its parent.

As a goal may be OR-refined, the meta-concept of Refinement is introduced together with the OR-
ref meta-relationship between Goal and Refinement. Refinements can also consist of multiple
conjoined goals. To represent this link, we introduce the AND-ref meta-relationship. This meta-
relationship is represented by a UML OR-association because the meta-class DomDescript (domain
description) may be involved in the refinement as well. The meta-class DomDescript contains
properties of the system that cannot be changed.

The multiplicity of this relationship expresses that a goal may be OR-refined into 0 up to an infinite
number of refinements, whereas a refinement refines one and only one goal. Regarding AND-
refinement, a refinement must be AND-refined into one goal at least while possibly involving 0 to
an infinite number of domain description instances.

The refinement meta-class has some meta-attributes: Name which is mandatory, Status, SysRef and
Tactic that are optional.

Table 6-3 Attributes of the refinement meta-class

Attributes Description

Name gives a unique identifier to a refinement to avoid confusion
Status indicates if the refinement is complete or not
SysRef indicates which alternative is chosen for a version of the system
Tactic explains how a refinement was found

Goals can be in conflict with each other if these goals can not be achieved together. They may also
be obstructed by Obstacles or by domain descriptions. In this case, a ternary relationship called
Divergence occurs. It means that under some BoundaryCondition these goals become divergent in
the considered domain DomDescription. The multiplicity of the relationship ObstructedBy
determines the type of divergence: when an obstacle obstruction involves a single goal, then the
multiplicity 1..* attached to the role ObstructedBy is reduced to 1; in case of conflicting goals, this
multiplicity is reduced to 2..*, as a boundary condition for conflict that involves at least 2 divergent
goals.

Some goals can resolve the problem caused by some boundary conditions. In this case, a meta-
relationship called Resolution is defined between them.

57

The domain description meta-class has a dashed border because it is a duplicate element from the
object model. It has been done for the sake of diagram readability. It has one optional meta-
attribute: FormalSpec that contains a formal specification. Its specialisation is described in the
object model.

Like goals, obstacles can be AND-refined or OR-refined into sub-obstacles and domain
description. This is represented by the OR-Ref and AND-Ref meta-relationships. Obstacle
refinements can be complete or not, which is expressed by the attribute: Status.

6.2 Agent Model
In the AgentModel meta-concept, the Agent meta-class is obviously the central element. It has 2
mandatory meta-attributes: Name and Specification and an optional one: Load. This is an abstract
meta-class that involves that it cannot be instantiated. This meta-class is specialised in 2 other
meta-classes SoftwareToBeAgent and EnvironmentAgent which are concrete meta-classes. These
classes indicate the category of the agent. As any element of the meta-model, agents can be refined.
This is indicated by the aggregation link on the element itself. The meta-model proposed in
[Lamsweerde, 2009] does not make a distinction between existing and new software agent but it
could be done easily by adding a meta-attribute in the meta-class SoftwareToBe. We will not add it
because it will not be used in the rest of the work. The same reflexion can be done for malevolent
agent.
Table 6-4 Attributes of the agent meta-class

Attributes Definition

Name unique in the whole system model
Specification explains in natural language what the agent has to do
Load work load supported by this agent

There are Responsibility meta-relationships firstly between SoftwareToBeAgent and Requirement,
and secondly between EnvironmentAgent and Expectation. Agents can also express their wishes for
some goals, this is shown by the meta-relationship Wish.

As explained in section 5.3, agents can monitor and control the attributes of objects or object
associations. These agent capabilities are described by 2 meta-relationships: Monitoring and
Control that link the meta-class Agent to the meta-class Association and/or Attribute. The latest
plays the stateVar role in these meta-relationships. To avoid overloading the class diagram,
InstanceVariable meta-attributes attached to the Responsibility, Monitoring and Control meta-
relationships are not shown.

As there are many possibilities to assign a leaf goal to an agent, we have created the meta-class
Assignment and the OR-Ass meta-relationship between the meta-class LeafGoal and the meta-class
Assignment. The one-to-many multiplicity expresses that there could be multiple assignments for a
same leaf goal. The optional attribute SysRef indicates which alternative is taken in which version
of the system.

The meta-relationship Dependency is a 3 part meta-relationship between the dependee (which is an
agent), the dependant (which is another agent) and a goal.

6.3 Operation Model
In the OperationModel meta-concept, the Operation meta-class is obviously the central element. It
has 4 mandatory meta-attributes: Name, Specification, DomPre and DomPost and an optional one:
Category.

58

Table 6-5 Attributes of the operation meta-class

Attribute Definition

Name unique in the whole system model
Specification explains in natural language which goal the operation has to fulfil
DomPre domain pre-conditions
DomPost domain post-conditions
Category indicates the category of the operation (software operation or environment

operation)

An operation can be performed by only one agent who is expressed by the meta-relationship link
Performance between Operation and Agent meta-classes and the multiplicity one-to-one on the
agent side.

Operations are done to fulfil at least one leaf goal which is shown by the meta-relationship
Operationalisation and the one-to-many multiplicity on the operation side. On the other hand, a
single leaf goal can be fulfilled thanks to many operations. This is expressed by the one-to-many
multiplicities on the leaf goal side. If necessary, the meta-relationship Operationalisation can carry
the required conditions for goal satisfaction as meta-attributes: ReqPre, ReqTrig and ReqPost
which are all optional.

The operation signature can be found thanks to the instantiations of the Input and Output meta-
relationships. These meta-relationships allow doing the link between the operation model and the
object model. To avoid overloading the class diagram, InstanceVariable meta-attributes attached to
the Performance and Input/Output meta-relationships are not drawn.

For the clarity of the meta-model, the fact that operations can be activated when they receive an
internal event does not appear in the meta-model.

6.4 Object Model
In the ObjectModel meta-concept, the Object meta-class is obviously the central element. It has 2
mandatory meta-attributes: Name and Specification and an optional one: InstanceOf. This meta-
attribute is a boolean, when it is set to true it means that the object can be initialised for the
corresponding instance.

Table 6-6 Attributes of the object meta-class

Attribute Definition

Name unique in the whole system model
Specification explains in natural language the behaviour in terms of phenomena that are

monitorable and controllable in the system
InstanceOf indicates if the object can be instantiated or not (boolean)

The meta-class Object is an abstract class that has to be specialised to be instantiated. It can be
specialised into Association, Entity, Event or Agent. An Association is defined by the meta-
relationship link Link between at least 2 objects. This association has 3 mandatory meta-attributes:
Role, Multiplicity and Position.

As explained in the section 5.5, associations can be reflexive if they link many times the same
object at different roles. The arity of an association is defined by the multiplicity of the relationship
between the association and the number of objects involved. And finally, there are 2 main types of
association: the application specification (meta-class ApplicationSpecification) and built-in
associations called specialisation and aggregation (represented by the meta-classes: Specialisation
and Aggregation).

59

Every object is characterised by attributes, domain description and domain initialisation. The meta-
class DomDescription allows giving details about the domain thanks to its mandatory meta-
attributes: Name and Specification and the optional meta-attribute FormalSpec. The domain
description cannot be instantiated directly and have to be specialised into the meta-classes:
DomInvar and DomHyp. The attributes of an object will be defined in the meta-class Attribute, an
attribute can have its values within a range; in this case, such values can be multiple and time
varying or not, as indicated by the ValuesIn meta-relationship. All specialisations of the meta-class
Object inherit these characteristics.

Table 6-7 Attributes of the domain description meta-class

Attributes Description

Name unique in the whole system model
Specification explains in natural language the domain description
FormalSpec uses to annotate a domain description to formalize its informal specification

Objects concern goals, which are expressed by the meta-relationship Concern between the meta-
classes Goal and Object. The relation multiplicities express that an object must be referred by at
least one goal and a goal must concern at least one object.

6.5 Behaviour Model
The BehaviourModel meta-concept describes the abstraction used for modelling the system
behaviours through scenarios and state machines. It contains 2 main parts: the first one is dedicated
to instance behaviours (the right side of the model) while the second one is dedicated to class
behaviours (the left side of the model).

Concerning the instance behaviours, the main object is the meta-class Scenario that illustrates some
goal(s) and can be decomposed into zero-to-many sub-scenarios with the meta-relationship
Episode. The meta-relationship History expresses that a scenario as a historical sequence of one up
to an arbitrary number of timeline slices (meta-class TimelineSlice), each being a parallel
composition of one or more interactions (meta-class Interaction) at the same point in time. An
interaction is defined by one source agent instance, one-to-many target agent instance and one
interaction event instance.

Regarding the class behaviours, the main object is the meta-class AgentSM that details the
behaviour of any agent instance. A state machine is use to fulfil a goal which is shown by the meta-
relationship ClassCoverage between the meta-classes: Goal and AgentSM. The latest is an
aggregation of state machines (meta-class StateMachine), there is one state machine per state
variable that the agent controls. These variables can be object associations or object attributes. Each
state machine is defined by one-to-many state (meta-class State) which is expressed by the meta-
relationship Path. A state can be decomposed into sequential or concurrent sub-states. States are
used as input/output (meta-relationships Input/Output) for the meta-class Transition. A transition
can be labelled by zero-to-one Event (which has to be specialised into the meta-classes:
InternalEvent or ExternalEvent), zero-to-one Guard and zero-to-many Operation.

60

Figure 6-1 Meta-model of KAOS

61

Chapter 7 Applying the Physics of Notations to

KAOS

Chapter 4 explained the principles of the Physics of Notations and Chapter 5 described the KAOS
language and its visual notation. In this chapter, each principle described in the Physics of Notation
theory is applied to the KAOS visual notation.

Which order will we follow?

We will not study the principle in the order given [Moody, 2009], but we will group them by
theme. Firstly, we will check if the KAOS visual notation corresponds to its meta-model (principle
of semiotic clarity) and its cognitive effectiveness for the different users that will have to work with
it (principle of cognitive fit). Secondly, we will take care of principles that are necessary to have a
good diagram: principle of perceptual discriminability, principle of semantic transparency and
finally the principle of visual expressiveness. Thirdly, we will study the principles that could
improve the visual notation: principle of dual coding and principle of graphic economy. And
finally, we will focus on the complexity management and navigation in large diagram with the
principle of manageable complexity and the principle of cognitive integration.

How will we proceed to study a principle?

For each principle, we evaluate the situation. Then if we estimate that it is not completely respected
we will suggest general improvements and/or general recommendations. In Chapter 8 we will
provide particular improvements and recommendations depending on the cognitive fit of the
studied case.

As seen in section 4.3, there are interactions among principles. Thus if a principle is improved, it
can result in a negative effect on other principles. If this happens, we will discuss the advantages
and the disadvantages of each proposition to find the best one.

In this chapter, we focus on the visual notation of the goal model. We have chosen it because in
goal-oriented language the most important target is to represent goals. This model has also been
chosen for its reusability during comparison with other goal-oriented languages.

7.1 Principle of Semiotic Clarity

7.1.1 Analysis results

Firstly we analyse the principle of the semiotic clarity which verifies the matching between the
semantic constructs of KAOS and their visual translation.

To do this analysis, we need the KAOS meta-model (see figure 6-1) and the symbols used in
KAOS (aka. KAOS vocabulary). This vocabulary is presented in figure 7-1. Symbols can be sorted
in 2 groups: 2D figures (on the left) and 1D elements (on the right).

62

Figure 7-1 The KAOS visual vocabulary

There are 30 semantic constructs in KAOS (they are detailed in the annex1), distributed in 13
elements types and 17 relationship types. This set defines the semantic complexity of the notation.
Visually, there are 17 distinct graphical constructions, distributed in 9 area types and 8 line types.
This defines the graphic complexity.

Differences between the number of graphical constructions and the number of semantic constructs
are due to semiotic anomalies. In [Moody, et al., 2010], the relationship between the number of
constructs, the number of symbols and violations of semiotic clarity is defined by the following
equation:

n (symbol) = n (construct) + n (symbol redundancy) - n (symbol overload)
 + n (symbol excess) - n (symbol deficit)

In table 7-1, the value corresponding to the variables of the equation can be seen. The details of the
operations to find these numbers can be consulted in annex 1.

Table 7-1 Semiotic clarity analysis of the KAOS visual notation

Constructs = 30
Symbols = 17

Anomaly type Cases %
(number of cases/number of

constructs)

symbol redundancy 1
(soft goal)

3%

symbol overload 13 43%

symbol excess 2
(annotation)

6%

symbol deficit 3
(all complete OR-

refinement type)

10%

Goal / Softgoal
Achieve / Maintain / Avoid

Expectation /
Requirement

Obstacle

Software agent

SoftGoal

Operation

Domain property /
Hypothesis

N
conflict among goal

obstruction /
resolution

AND-refinement goal /
OR-refinement goal /

AND-refinement obstacle /
OR-refinement obstacle /

operationalizationEnvironment
agent

1-D graphical element2D figures

AND-refinement softgoal /
OR-refinement softgoal

responsibility assignement

complete AND-refinement goal /
complete AND-refinement obstacle

complete AND-refinement softgoal

Annotation

annotation link

63

Table 7-1 shows that there are anomalies in the KAOS visual notation: symbol redundancy (3%),
symbol overload (43%), symbol excess (6%) and symbol deficit (10%).

7.1.2 Recommendations to improve the semiotic clarity

As said in section 4.2.1, to improve the semiotic clarity, we should remove all semiotic anomalies.

Symbol redundancy

The only semantic construct that causes symbol redundancy is the concept of 'soft goal', that can be
represented either by a right-oriented parallelogram with a continuous line as border or by a right-
oriented parallelogram with a dashed border. Moreover, in [Moody, 2009], the dashed border is
also used to represent stable elements in an analysis. Then to avoid any confusion, it is better not
using anymore the right-oriented parallelogram with dashed border to represent soft goals.

Symbol excess

Symbol excess is due to graphical symbols that do not represent any semantic constructs. It is the
case with the symbol that represents the annotation and the annotation link.

Symbol overload (homograph)

The number of symbol overload is given by the number of semantic constructs of a graphical
symbol minus one (a symbol should represent only one semantic construct).

Homographs are equivalent to homonyms in visual notations. According to [Goodman, 1968], it is
the worst type of anomaly as it leads to ambiguity and the potential of misinterpretation. When this
anomaly occurs one or many time in a visual notation, the graphical language is said to be
"ontologically unclear". We should complete the notation to make it more effective.

In other words, the KAOS visual notation violates the principle of monosemy which means that
each semantic construct has to be represented by its own graphical construction.

Table 7-2 details the overloaded symbols in the KAOS visual notation. For each overloaded
symbol, we will study the possibility to find other symbols.

64

Table 7-2 Symbols overload analysis of relationships

Symbols Semantic relationships Symbol overload
 Goal

 Soft goal
 Achieve goal
 Maintain goal
 Avoid goal

4

 Expectation
 Requirement

1

 Domain property
 Hypothesis

1

 Obstruction
 Resolution

1

 AND-refinement goal
 OR-refinement goal
 AND-refinement obstacle
 OR-refinement obstacle
 Operationalisation

4

 Complete AND-refinement goal
 Complete AND-refinement obstacle

1

 AND-refinement soft goal
 OR-refinement soft goal

1

7 20 13

The symbol that represents a goal can also represent soft goal, achieve goal, maintain goal and
avoid goal. If we look at the KAOS meta-model, we can see that all of these semantic constructs
are specialisation of the meta-class goal. To differentiate them, a textual differentiation is done in
[Lamsweerde, 2009]: the name of the goal is preceded by squared parenthesis ([]) to identify the
type of goal and avoid confusion.

The symbol that represents an expectation can also represent a requirement. As for the previous
case, a textual differentiation could be done. But as expectations will be under the responsibility of
an environment agent, it is better to add a symbol that represents a user inside the figure. The new
symbol is drawn in figure 7-2. Doing this, it should help the user to remind that this kind of goal
will have to be assigned to a human agent

Figure 7-2 Suggestion of new symbol for expectation

The symbol that represents a domain property can also represent a hypothesis. The difference
between these 2 semantic constructs is subtle: a domain property is a descriptive statement about
the environment, expected to hold invariably regardless of how the system behaves, while a
hypothesis is a descriptive statement satisfied by the environment and subject to change. In fact,
there are specialisations of the semantic construct 'domain description' and as the semantic gap
between them is subtle, we propose not to change them.

65

The symbol that represents an obstruction relationship can also represent a resolution relationship.
According to us, the name of the relationship depends on the direction of the arrow. If the arrow
starts from the obstacle to the goal, we call it an 'obstruction' and if it starts from the obstacle to the
goal, we call it a 'resolution'. The reader cannot confuse the meaning because a goal cannot be an
obstruction to an obstacle and an obstacle cannot be a resolution a goal.

The symbol that represents an AND-refinement goal relationship can also represent an OR-
refinement goal, an AND-refinement obstacle, an OR-refinement obstacle and an
operationalisation. The fact that a same symbol represents different kinds of refinements (goal or
obstacle) does not cause any trouble. But we can suggest adding a horizontal line that links the
different OR-refinements of a goal or an obstacle. It will be clearer for the reader. Figure 7-3
illustrates this improvement: on the left side (part A) the figure depicts an AND-refinement
between goals and, on the right side (part B), there is an OR-refinement.

Figure 7-3 Suggestion to improve the differentiation between AND-refinement and OR-refinement

Regarding the fact that the symbol can also represent operationalisation, we find it very confusing
and we suggest introducing a new symbol to express this semantic construct. But we will not do
any suggestion because operation relationship link belongs to operation model.

The symbol that represents an AND-refinement soft goal relationship can also represent an OR-
refinement soft goal relationship. The difference with the symbol that represents refinement
consists of a dashed bold line between the circle and the parent goal instead of a continuous line.
This difference was probably introduced because soft goals could also be represented by right-
oriented parallelogram with dashed border. We suggest to completely removing this visual
representation as we have suggested removing the specific one for soft goals.

But before giving a different visual symbol for each semantic construct, we have to keep in mind
that symbol overload is a common way of dealing with excessive graphic complexity. A way to
resolve this problem would be to use visual variables (instead of text differentiation) to distinguish
between different semantic constructs [Moody, et al., 2010].

Symbol excess

There are 2 cases of symbol excess in the KAOS visual notation. It concerns the shape that
represents annotation and the dashed line that links the annotation to the element that it details.
These graphical symbols do not correspond to any semantic construct and it is not possible to adapt
the meta-model to include them. This anomaly cannot be corrected.

A B

66

Symbol deficit

There are 3 cases of symbol deficit in KAOS and all of them concern the OR-complete refinement.
This concept is defined in the meta-model and in practice it can also occurs if we have a choice
between a determined numbers of possibilities. To solve this deficit, on the horizontal line
(suggested in the symbol overload to identify clearly OR-refinement), we could add a circle –like
in the AND-refinement– that will be filled in black if the refinement is complete. Figure 7-4
implements this suggestion: on the part A, there is an OR-refinement between goals and part B
depicts a complete OR-refinement between goals.

Figure 7-4 A Suggestion of (complete) OR-refinement relationship link

7.2 Principle of Cognitive Fit
After studying the principle of semiotic clarity, we have to check that the visual notation
corresponds to the user needs. Thanks to the principle of the cognitive fit, this will be verified.

7.2.1 Analysis results
The cognitive fit theory involves that a language should be adapted to the form of representation it
will use, to the task characteristics (e.g., sketching on whiteboards or using computer-based
drawing tools) and to the problem solver skills (experts or novices) [Moody, 2009].

The KAOS language has only one set of symbols for all types of tasks, audience and problem
solver skills.

7.2.2 Recommendations to improve cognitive fit

KAOS is a language created for many usages, such as, to create a dialog with future users of the
system, to discuss within software analyst team members, to explain the work to the developers. It
would be definitively interesting to improve its cognitive fit. We would support to provide KAOS
with at least 4 dialects: one for experts and another one for the novices and 2 others that could be
used depending on the context.

Experts vs. novices

The dialect for experts will follow the semantic constructs and the figures explained in
[Lamsweerde, 2009] while the other one for novices should follow the pieces of advice given by
Moody: “This means that notations designed for novices should use clearly distinguishable symbol
(perceptual discriminability), mnemonic convention (perceptual immediacy), clarifying text (dual
coding), and simplified visual vocabularies (graphic economy) [Moody, 2009]”.

The application of this principle is discussed in section 8.2

A

B

67

Detailed study vs. in a meeting

A third dialect could be created for meetings with stakeholders of the future system. The goal of
this dialect is to be easy and quick to sketch by hand on paper sheet, because –while one meeting
participant draws, the others have to wait. If it takes too much time they will have the feeling to
waste their time. Finally this dialect should be easily understood by non-technical person.

By hand vs. CASE tools

Finally, the last dialect that we suggest, could be used in requirements engineering software that
uses KAOS as modelling language (e.g., Objectiver [Objectiver, 2007]). This dialect could support
more easily colours because, when diagrams are sketched on sheets of paper, it is not always easy
to have colour pens or pencil at hand). Tools can also provide more complex symbols that could
not be drawn easily by hand.

In Chapter 8, we will give recommendations targeting different groups of users and for different
situations. Then we have to take their specificities into account and use the appropriate dialect.

7.3 Principle of Perceptual Discriminability
From this section, we start to study the 3 principles that are necessary to have a good diagram. The
first one is perceptual discriminability. According to [Moody, 2006], this principle could be divided
into 2 parts: the absolute perceptual discriminability and the relative perceptual discriminability. As
absolute perceptual discriminability is not a part of [Moody, 2009] but explained in [Moody, 2006],
then we will not study it in this section. However, it will be taken into account to write the
recommendations presented in Chapter 8.

After studying the principle of perceptual discriminability, we will study the principle of the
principle of semantic transparency and then the principle of visual expressiveness.

7.3.1 Analysis results

The relative perceptual discriminability is based on many several points: the visual distance, the
primacy of shape, the natural perceptual pop out of the symbols, the textual differentiation and the
visual-semantic congruence.

Visual distance

In [Moody, 2009], Moody defines the perceptual discriminability as "the ease and accuracy with
which symbols can be differentiated from each other". After he explains that "discriminability is
determined by the visual distance between symbols, which is measured by the number of visual
variables on which they differ and the size of these differences (number of perceptible steps)."

Differences can be counted thanks to the visual variables (horizontal and vertical position, shape,
colour, orientation, texture, value and size). The more differences and the bigger they are, the easier
it will be to distinguish between symbols. And if the differences are too subtle, interpretation errors
can occur. The shapes used in the KAOS syntax (see figure 7-5) uses only 2 visual variables: the
shape and the texture.

68

Figure 7-5 Use of shapes and textures in the KAOS notation

Among the shapes used in the notation, quadrilaterals are often encountered and in particular the
parallelogram. The only visual difference between a goal and an obstacle is subtle and concern the
visual variable "shape". Each of these semantic constructs is represented by a parallelogram but
they can be differentiated by the orientation of this parallelogram. Parallelograms used to describe
goals are right-oriented and those used for obstacle are left-oriented. This difference is very small
for novices whereas the semantics of these constructs are totally different.

KAOS shapes also use texture to differentiate them. The difference between the shape that
represents a goal and the shape that represents an expectation or a requirement is a bold border.
This kind of differentiation is not very cognitively effective because the user has to look at the
diagram very carefully.

Primacy of shape

To increase cognitive effectiveness, each shape has to represent a different concept. This is not the
case for several shapes that are overloaded. In particular, the right-oriented parallelogram that can
represent many semantic constructs: goal, soft goal, achieve goal, maintain goal and avoid goal. To
distinguish between the different concepts, [Lamsweerde, 2009] suggests using the textual
differentiation that allows dealing with excessive graphic complexity.

Perceptual pop out

As most of the visual elements used in KAOS have a unique value for at least one visual variable
and they do not use combination value, they pop out from diagram without effort.

Nevertheless, some elements do not follow this rule and consequently they do not 'pop out' directly.
These elements are represented in figure 7-6.

Figure 7-6 Elements that do not visually pop out

AND-refinement goal /
OR-refinement goal /

AND-refinement obstacle /
OR-refinement obstacle /

operationalization

AND-refinement softgoal /
OR-refinement softgoal

responsibility assignement

complete AND-refinement softgoalcomplete AND-refinement goal /
complete AND-refinement obstacle

annotation link

69

These elements use combinations of values of shape (small circle) and texture (normal, dashed or
bold) to create different relationships. The reader needs more time to analyse them and understand
their meaning.

The difference between an AND-refinement and an OR-refinement is easy to understand at first
sight if the number of goals is limited (the number of figures that can be understood at first sight by
the reader is limited by working-memory) but when goals are too many, the graphic complexity is
increased and recommendations for this principle are described in section 7.8.

Figure 7-7 illustrates an example of an AND-refinement and an OR-refinement. The goal
'EasyToUseSystem' is OR-refined 2 times. Each of these OR-refinements contains 2 AND-refinements.
To see which goal belongs to which refinement, the reader has to analyse the diagram carefully.

Figure 7-7 AND-refinement and OR-refinement are not easily discriminable

Textual differentiation

Software engineering sometimes relies on text to distinguish between symbols. The KAOS visual
notation uses this technique to allow the differentiation between goal, soft goal, achieve goal,
maintain goal and avoid goal.

Visual-semantic congruence

In general, the visual distance between symbols should be congruent to the semantic distance
between the constructs they represent: constructs which are very different in meaning (large
semantic distance) should have very different symbols (large visual distance), while constructs that
are similar in meaning should have similar symbols.

In KAOS, goal, soft goal, achieve goal, maintain goal and avoid goal have a semantic meaning
very close and there are both represented by a right-oriented parallelogram (see section 7.1). In this
case, visual congruence is respected and this contributes to the cognitive effectiveness of the
notation.

Shapes that represent goals and leaf goals (expectation or requirement) are the same, and they can
only be distinguished by a bold border for leaf goal. Once again, the visual congruence is respected
because leaf goals are a specialisation of goals.

Finally, goals and obstacles are semantic constructs that have opposite meanings and their visual
notations are also different: the goals are represented by a right-oriented parallelogram while
obstacles are represented by a left-oriented parallelogram. In this case, even if the visual-semantic
(non)congruence is respected this choice will be discussed in section 7.4 about semantic
transparency.

70

7.3.2 Recommendations to improve the perceptual discriminability

Redundant coding

Redundant coding is one of the techniques used to increase the visual distance between symbols.
According to [UsabilityFirst, 2011], the redundant coding consists of "representing information in
more than one way so that users have more than one opportunity to perceive and understand it, to
reinforce the information, to make the information more accessible (because one representation
may not work for a certain technology or user), or to suit user preferences". One of the ways to
improve the perceptual discriminability, using the redundant coding, is to add a coloured
background to the symbols used in the KAOS visual notation.

This improvement has already been done in Objectiver, a modelling CASE tool for KAOS. This
tool uses redundant coding to differentiate the goals, domains and the obstacles. Goal shapes are
light blue, domains are purple and obstacles are red. The fact that each symbol is filled with a
distinct colour helps the reader to distinguish more easily the different types of semantic constructs.

Recommendations for primacy of shape anomaly

Even if a right-oriented parallelogram can represent many semantic constructs, we will not suggest
using a shape by semantic constructs because it is conflicting with the principle of graphic
economy. Moreover, as seen in section 7.1.2, the semantic meanings of the different concepts are
very similar.

Recommendations for visual distance

To differentiate obstacles from goals on an easier way, the shape that represents obstacle (left-
oriented parallelogram) could be replaced by a triangle like in figure 7-8. The choice of this shape
has 2 advantages: it looks like the 'careful' road sign and it is not quadrilateral shapes that are
already mostly used in the KAOS visual notation.

Figure 7-8 Suggestion of a new shape to represent obstacles

Another suggestion would have been to represent it by the 'stop' road: an octagon. The
disadvantage of this shape is to be too close as the hexagon used to represent agents.

Recommendations for perceptual pop out

As explained in section 7.1.2, to avoid symbol redundancy, the shape that represents soft goal (a
right-oriented parallelogram with a dashed border) should not be used anymore. Removing this
shape involves to remove also specific relationship visual notations linked to this shape (see figure
7-1, the 2 soft goal refinement links). Then finally, there are only 3 relationship links that do not
pop out.

If it is true that the way of refinement, complete refinement and performance pop out is not
completely cognitively effective, it is not either the worst. As the number of combinations is very
limited and very distinguishable, we should continue with these graphical representations. If we try
to improve this anomaly, the principle of graphic economy will be less respected and in this case
the disadvantage is greater than the advantage.

71

Recommendations for textual differentiation

Even, if the KAOS visual notation uses textual differentiation and that is cognitively ineffective,
we will not change it to avoid increasing the graphic complexity. In the case of the different goal
types, as they have very close semantic meanings, textual differentiation seems to be a good
compromise.

Recommendation for semantic-visual congruence

This aspect of the KAOS visual notation is respected. We propose no changes.

7.4 Principle of Semantic Transparency

7.4.1 Analysis results

Semantic transparency involves the use of graphical representations whose appearances suggest
their meanings [Moody, 2009]. We generally use symbols or geometrical shapes as mnemonics to
help the reader of the diagram. Indeed, some geometrical shapes are used as road sign and can be
recognised even if they are covered by snow (e.g., the octagon which means 'stop' or the reverse
triangle which means 'leave priority’).

This principle is complementary to the principle of perceptual discriminability.

As seen in section 4.2.3, semantic transparency is not a binary variable; it has an unlimited number
of values. This variable is subjective because it can vary from a user to another depending on
his/her background or culture. According to his/her culture, the user will be able to associate an
idea to a symbol.

KAOS uses mostly geometrical shapes: parallelogram, trapeze, hexagon, rectangle and oval. These
figures are semantically opaque. Users have to study them to understand and remember their
meaning. Without explanation, it is impossible to guess their meaning.

The KAOS visual notation contains only one symbol that is not semantically opaque: a sticky man
that represents a user.

7.4.2 Recommendations to improve the semantic transparency

The principle of semantic transparency is almost not respected in KAOS; it is one of its main
weaknesses. Many improvements can be done to improve this principle. The more the visual
notation is semantically transparent, the easier for the novice users to guess the meaning of the
semantic constructs represented by the symbols. To reach this goal, we suggest using symbols that
are semantically transparent or that represent something that the reader knows. It will help him/her
to find the meaning of the different KAOS concepts.

The only part of this principle which is respected is the semantic transparency of refinement
relationships. The direction of the arrow between a parent and its children help the user to
understand that they are linked and that children (sub-goals) are derived for its parent (goal). We
have to add that the positioning of children compared with its parent position - usually the children
are drawn below its parent- also help the reader to understand the relationship link between them.

72

Below we try to find a drawing or a picture that could help the user to guess the different concepts
of KAOS. As most of these semantic constructs are represented by abstract shapes, we suggest
transforming them into symbols that have a meaning for the reader or at least that could help
him/her to remember the semantic construct linked to the symbol. To do it, we will try to associate
the meaning of each semantic construct to objects of the real life that the users are supposed to
know. The different suggestions are presented in figure 7-9.

Goals

Goals are objectives that the future system should fulfil, they are targets to reach. This could be
symbolised by a dart target (we could also use a football goal but it is more difficult to draw by
hand).

Obstacles

Obstacles are elements of the system that will impede to reach goals. These can be part of the
existing system or events that will occur. To establish the future system, designers will have to
"jump over" these obstacles. This meaning can lead us to think about horse jumping.

Domain properties

If we read the definition of the 'domain' in a dictionary, it is defined as “a territory held in
possession of someone”. Here the domain can be considered as we have to build the new software:
existing hardware, software and environment. Considering the first definition, a domain can be
schematised by a house.

Software agents

As software is an abstract concept and as no representation, we will represent it by a computer as
software runs on computer.

Environment agents

An agent is a human that has to complete some tasks. We will simply represent it by a user (this is
the only icon already uses in the KAOS visual notation).

Operations

Operations are realised by agents and it means that a process has to be executed. Running gears
could be a good figure to represent a process that has to be done.

Figure 7-9 Different icons to represent the different concepts of KAOS.

From left to right and from top to

agent, operation.

These symbols are not easy to draw
to draw from the initial symbols (figure 7
characterise the picture and used them to do simpl

Figure 7-10 Simplified symbols to represent the different KAOS concepts

The semantic transparency can also concern relationship link
piece of advice about the position of a goal and its
under the refined-goal. This practice is good because it shows clearly the relationship link between
the different goals, then it should be added in the description of the visual notation of KAOS. This
remark is also relevant for the obstruction/resolution relationship link: the obstac
be placed under the goal that it will obstruct.

7.5 Principle of Visual Expressiveness

7.5.1 Analysis results

Visual expressiveness is defined by
variables used in a visual notation
of the graphic design space”. This definition leads us to
second notation. The first notation contains the
second notation refers to free variables.

In most cases, the use of variable
border. We will associate it to the
(medium grey bold, dark grey bold, black bold).
to the value visual variable because this variable is used to
light blue or dark blue).

73

to represent the different concepts of KAOS.

and from top to bottom: goal, obstacle, domain property, software agent, environment

These symbols are not easy to draw quickly; we will derive abstract draws that are easy and quick
om the initial symbols (figure 7-10). To do it, we will identify the main lines that

ture and used them to do simpler symbols.

Simplified symbols to represent the different KAOS concepts

ansparency can also concern relationship links. In [Lamsweerde, 2009]
piece of advice about the position of a goal and its sub-goals even if he always draws the

ractice is good because it shows clearly the relationship link between
should be added in the description of the visual notation of KAOS. This

remark is also relevant for the obstruction/resolution relationship link: the obstac
be placed under the goal that it will obstruct.

Principle of Visual Expressiveness

defined by Moody in [Moody, 2009] as "the number of different visual
used in a visual notation and the range of values used of each. It measures the utilisat

This definition leads us to the notions of the primary
notation. The first notation contains the visual variables that carry information

free variables.

In most cases, the use of variables is clear. However, it is difficult to classify the use
We will associate it to the texture visual variable because it can have dif

(medium grey bold, dark grey bold, black bold). In other words, bold border can not be associated
to the value visual variable because this variable is used to define the brightness of a colour (e.g.,

agent, environment

we will derive abstract draws that are easy and quick
it, we will identify the main lines that

[Lamsweerde, 2009], there is no
s even if he always draws the sub-goals

ractice is good because it shows clearly the relationship link between
should be added in the description of the visual notation of KAOS. This

remark is also relevant for the obstruction/resolution relationship link: the obstacle of a goal should

the number of different visual
. It measures the utilisation

primary notation and
information and the

is difficult to classify the use of bold
have different value
can not be associated

the brightness of a colour (e.g.,

74

In this analysis, we consider that goals (right-oriented parallelogram) and obstacles (left-oriented
parallelogram) are 2 distinct symbols because one is not a variation of the other. In particular, the
orientation visual variable is not used in this case because the symbol that represents an obstacle
cannot be found from the goal symbol if it turns around a determined point.

The level of visual expressiveness of the KAOS visual notations is 2 on a scale of 1 to 8 because it
relies on 2 visual variables: shapes and textures. Currently, KAOS uses at least 3 levels of texture:
normal, dashed and bold line and a limited range of shapes (quadrilaterals, hexagons and oval).
Their combinations allow distinguishing the different semantic constructs of the KAOS language.

7.5.2 Recommendations to improve the visual expressiveness

The first recommendation concerns the shapes actually used in the visual notation: they are mostly
quadrilateral (parallelogram and trapezium). But empirical studies have shown [Bar, 2006] that
curved shapes, iconic and 3D shapes are preferred by users. There is only one curved shape used in
KAOS visual notation: the oval. Iconic and 3D shapes are not used at all. Nevertheless they are
more cognitive effective than 2D abstract shapes [Bar, et al., 2006] [Irani, et al., 2003].
Quadrilateral 2D shapes could be easily transformed into 3D shapes as represented in figure 7-11.

Figure 7-11 3D shapes for goal and domain hypothesis to increase the visual expressiveness

As described in the analysis, KAOS uses only a small subset of the visual variables and a small
subset of their variations. It involves that KAOS uses only a fraction of the design space. These
visual variables are actually not used: vertical and horizontal position, size, colour, position and
value. Using them would increase the visual expressiveness.

Colour is not used in the original KAOS visual notation in [Lamsweerde, 2009] but it is used as
secondary notation in the software 'Objectiver' [Objectiver, 2007] to reinforce the differences
between the different KAOS elements.

Using colour is also suggested in the principle of perceptual discriminability (section 7.3) to create
a redundant coding and increase the cognitive effectiveness of the users.

More over, some studies [Mackinlay, 1986] and [Winn, 1993] have shown that "colour is one of
the most cognitively effective visual variables because the human visual system is highly sensitive
to variations in colour and can distinguish between them quickly and accurately". And others
[Lohse, 1993] and [Treisman, 1982] have demonstrated that different colours are detected 3 times
faster than shapes. However, colour has to be used carefully, otherwise it can undermine
communication.

Following these observations, it appears clearly that colours should be added to the KAOS visual
notation. To do it in the more effective and cognitive way, they have to be chosen to be as
discriminable and as mnemonic as possible. In figure 7-12, we suggest to use:

 Green for goals because they are positive idea that we have to reach.

 Red for obstacles because they are negative elements or events that could prevent us to
reach goals.

75

 Orange for domain properties and hypothesis because we have to take them into account
and keep them in mind (e.g., the flashing orange traffic light used to delimitate work area).

 Blue for agent like the uniform of the police agent.

 Grey for operations because they involve executing processes like in manufacture.

Figure 7-12 Add colour to shapes to increase the visual expressiveness

As second piece of advice, we may suggest to use the value visual variable to show to the reader
which goals are the more important and which obstacles are the more dangerous. The darker is a
goal or an obstacle in a refinement, the more important (or dangerous) it is. Figure 7-13 shows that
the goal EasyToUseSystem is more important than CheapSystem and EfficientSystem because its colour is darker.

Another advantage of using colours to show the priority is to highlight the more important goals in
the whole goal model.

Figure 7-13 The intensity of the colour suggests the priority of the goal

And finally, the use of planar variables (especially the vertical position) should be officially
prescribed in the KAOS visual notation. Indeed, drawers usually put the sub-goals under the goal
they refined (the same remarks can also be done for an obstacle and its refinement). It is a good and
intuitive practice but it should be good to formalize it in the visual notation.

7.6 Principle of Dual Coding

7.6.1 Analysis results

Dual coding is used to reinforce cognitive effectiveness by encoding information in 2
complementary ways: by drawing and by text. Text is used to clarify and refine the meaning of the
diagram.

This technique is used in the KAOS visual notation through textual annotations. They improve the
understanding of the diagram and are used as a form of dual coding to reinforce and clarify the
meaning of the different part of a diagram.

76

Figure 7-14 shows a goal and its annotations. The annotation supplements the symbol and gives
more information to the reader such as: the definition of the goal, its type, the priority and the fit
criterion.

Figure 7-14 A goal and its annotation

KAOS uses the technique of dual coding to differentiate different concepts. To do it, text is added
to the shape to differentiate the different semantic constructs. For example, these subtypes of goals:
maintain, avoid, achieved can only be differentiated by the text inside the shape. Figure 7-15
represents an example of a goal (A), an achieve goal (B) and a maintain goal (C). But, according to
Moody [Moody, 2009] it is not a good way to differentiate them.

Figure 7-15 Goal, achieve goal and maintain goal can only be textually differentiated

7.6.2 Recommendations to improve dual coding

Annotations

Dual coding is created by adding annotations to the visual symbols to give more information to the
user. But this technique has the disadvantage that annotations can be very large and it will overload
the graphic. As seen in figure 7-13, the annotation for a goal contains: a name and a specification
and optionally a category, a source, a priority, a fit criterion and a formal specification.

According to the principle of spatial contiguity [Mayer, et al., 2003] including annotations on the
diagram itself is more effective than writing them separately. More over, it is better not to use the
shape that contains annotations because it will introduce symbol excess in the semiotic clarity
principle. A simple block of text linked to the element that it annotates will help not to overload the
diagram and avoid any misinterpretation. This recommendation is illustrated in figure 7-16.

Figure 7-16 Annotations do not need their own visual construct

77

Figures distinguishable by text

Figures that can be distinguished only by text should be avoided, but text can be used as a form of
dual coding to reinforce and clarify the meaning. However it is a cognitively inefficient way to
differentiate between symbols as text processing relies on slower, sequential cognitive processes
[Moody, 2009]. Following these considerations, it involves that on one hand, it should be more
cognitively efficient if each concept has its own figure.

But, on another hand, the principle of visual expressiveness advices using similar shapes for similar
constructs (visual-semantic congruence).

As there are advantages and disadvantages to use the textual differentiation, it probably means that
we have to find a good balanced between the different principles.

Labelling of elements

Annotations are very useful, but in KAOS, the modeller can put until 7 pieces of information for a
single element. If all elements of a diagram are fully annotated, the diagram will be highly
overloaded and the essential information will be disseminated across the diagram. The modeller has
to fill the information shortly but in an accurate way.

In this section we can also approach the question of the elements labelling. We recommend
standardising them for an easier understanding for the reader. Developers of Objectiver have
already written some pieces of advice: “for a goal: a word followed by verb in its passive form
(example "Service requested" instead of "Request service"). This is to avoid confusion between
goals and operations (agent behaviours). Operation labels are a verb followed by words to describe
an action” [Objectiver, 2007].

Labelling relationships

In KAOS, relationships are differentiated by different graphical constructs and not by labels. We
could add some key-words to reinforce the information and improve the cognitive effectiveness.
These key-words could be:

 AND-REF, OR-REF for and-refinement and or-refinement.

 COMPLETE for complete and-refinement or complete or-refinement.

 PERFORM for performance for the relationship between an agent and its operations.

These improvements can be seen in figure 7-17:

78

Figure 7-17 Dual coding: each link is labelled

7.7 Principle of Graphic Economy

7.7.1 Analysis results

Graphic complexity is defined by the number of graphical symbols in a notation: the size of its
visual vocabulary. The KAOS visual notation contains 9 geometric shapes and 8 lines types, and
then its graphic complexity is equal to 17. This number is too high and will be a problem for any
visual notation, especially for those used by novices. Indeed, Miller [Miller, 1956] defines the
human ability to discriminate between perceptually distinct alternatives is around 6 categories.

Reducing the graphic complexity or maintaining it at the same level requires efforts because
notations tend to increase inexorably. It is due to the improvements of the semantic expressiveness
which will increase the number of semantic constructs. These new semantic constructs will lead to
the introduction of new graphical symbols. Moreover, if modellers think to improve the semantic
expressiveness they do not think to reduce the graphic complexity by removing some symbols. But
to a certain point, adding new symbols will reduce the cognitive effectiveness.

In [Moody, 2009], 3 strategies are described for dealing with excessive graphic complexity and
improve graphic economy:

 Reduce semantic complexity

 Introduce symbol deficit

 Increase visual expressiveness

79

7.7.2 Recommendations to improve graphic economy

The first one: "reduce semantic complexity" consists of simplifying the KAOS meta-model due to
the fact that graphic complexity is mainly determined by the number of semantic constructs. This
technique is easily applied to the KAOS visual notation because the meta-model is divided into 5
fragments that will be used to represent different models: goal model, agent model, operation
model, object model and behaviour model. Doing this, the number of graphical symbols by model
will decrease considerably.

The second and the third techniques are: introducing symbol deficit and increase visual
expressiveness

Introducing symbol deficit

Graphic complexity can be reduced directly by introducing symbol deficit (see discussion about
semiotic clarity in section 7.1). It involves not showing some semantic constructs in graphical form
and avoiding showing too much information. In the KAOS visual notation, there are 4 graphical
constructs that could disappear without loosing too many information: leaf goal, soft goal and its
specific refinement relationship link and finally environment agent.

Leaf goals such as requirement and expectation do not really need their own symbols because at a
moment or another they could be refined once more. In this case they will not be leaf goals
anymore. Then we could use the same graphical symbols as this one for goal.

As soft goals can be represented by 2 symbols (which is an anomaly called symbol redundancy),
one of them could be ignored. Textual differentiation will be used to discriminate this semantic
construct from the other ones. The same reasoning can be done for the specific soft goal refinement
relationship links.

The annotation shape can also be removed from the set of shapes as explained in section 7.6.2.

Finally, software agent and environment agent could use the same symbol which could help
novices.

Figure 7-18 depicts the new KAOS visual alphabet. Introducing symbol deficit will allow starting
with a visual alphabet of 17 graphical constructs and arrive to 11 graphical constructs which
decreases the graphic complexity of more than 30%.

Figure 7-18 Using symbol deficit produces a smaller KAOS visual alphabet

Goal / Softgoal
Achieve / Maintain / Avoid
Expectation /Requirement

Obstacle

Agent Operation

Domain property /
Hypothesis

N
conflict among goal

obstruction /
resolution

AND-refinement goal /
OR-refinement goal /

AND-refinement obstacle /
OR-refinement obstacle /
AND-refinement softgoal /
OR-refinement softgoal /

operationalization

1-D graphical element2D figures

responsibility assignement

complete AND-refinement goal /
complete AND-refinement obstacle/
complete AND-refinement softgoal

annotation link

80

Using so much symbol deficit goes against the principle of visual expressiveness but in some cases
(depending on the cognitive fit), this could be interesting.

Increase visual effectiveness

Increase visual effectiveness is a method that suggests not to reduce the number of symbols but to
increase the human discrimination ability between symbols. Miller in [Miller, 1956] explained that
the human ability to differentiate between stimuli can be expanded by increasing the number of
perceptual dimensions on which stimuli differ. The 7 symbol limitation is applied only when a
single visual variable is used in a diagram but when multiple visual variables are used to
differentiate between symbols, it can increase human discrimination ability in an almost additive
manner [Moody, 2009].

This technique produces a new symbol set that increases visual expressiveness by an order of
magnitude (from 1 to 3), in this case graphic complexity should be manageable [Moody, 2009].

Applying this technique to the KAOS visual notation could consist of adding colour (a visual
variable that is not used) to each symbol. Figure 7-19 details the new visual alphabet. On this
picture we can observe that there are no more than 6 figures (plus or minus 2) with the same colour.

Figure 7-19 Add colour to increase visual effectiveness in the aim of improving the graphic economy

7.8 Principle of Manageable Complexity
The 2 last principles: manageable complexity and cognitive integration allow users to manage
systems that represent a large amount of information.

7.8.1 Analysis results

The principle of manageable complexity focuses on the complexity of the diagrams. If the amount
of information on a diagram is large, the reader (especially the novices) will have difficulties to
understand it because he/she has perceptual and cognitive limits. To manage this complexity,
Moody suggests 2 methods: the modularisation and the hierarchical structuring.

Modularisation is used to decrease the number of elements in a diagram by distributing them into
smaller diagrams. This method respects the human cognitive limit which is limited by working
memory capacity that can understand 7 plus or minus 2 elements at the same time [Miller, 1956].
This method is not used actually in the KAOS visual syntax.

Goal / Softgoal
Achieve / Maintain / Avoid

Expectation /
Requirement

Obstacle

Software agent

SoftGoal

Operation

Domain property /
Hypothesis

N
conflict among goal

obstruction /
resolution

AND-refinement goal /
OR-refinement goal

Environment
agent

1-D graphical element2D figures

AND-refinement softgoal /
OR-refinement softgoal

responsibility assignement

complete AND-refinement goal

complete AND-refinement softgoal

AND-refinement obstacle /
OR-refinement obstacle

operationalization

complete AND-refinement obstacle

Annotation annotation link

81

Hierarchical structuring consists of grouping diagram information by level of abstraction, it helps
to organise diagram into a coherent structure. As the KAOS language contains 5 different models
that group information by abstraction (goal model, agent model, operation model, behaviour model
and object model), then we can say the hierarchical structuring is used.

The KAOS language does not contain primary or even secondary notations that encourage the
usage of duplicate visual representations to reduce line crossing. This is a good practice. Indeed,
this method is not recommended because it attacks the symptom of the problem more than the
cause. In other words, it means that it will reduce the number of elements of a complex diagram but
without changing the way of producing a large amount of elements on the diagram. The second
reason why duplicate visual representations should be avoided is that it decreases one of the
primary cognitive advantages of diagrams: location indexing. It implies that the same piece of
information can be found at many places, which is counterproductive. It was one of the cognitive
advantages of the diagram over text: the information about a concept is at a single location [Cheng,
2004] [Larkin, et al., 1987].

7.8.2 Recommendations to improve the manageable complexity

As seen previously, the modularisation method is not used by KAOS. It can be applied at least to
the goal model, because elements that are inside (goals and obstacles) are defined recursively
(AND-refinement or OR-refinement). It is not the case in other models. Syntactic rules and
graphical conventions have to be defined to automate the process.

As main syntactic rule, the drawer should modularise refinements. Then, the sub-diagram
represents the parent goal or obstacle and its children. Thanks to this rule, new sub-diagrams do not
overlap and allow keeping local indexing property. But we can have many exception cases like:

 If a parent has more than 8 children in its AND-refinement (then we will have more than
nine elements in the diagram), the modeller will leave them together but we advice him to
review his/her diagram and separate them below 2 or more parents to have different AND-
refinements.

 If a parent produces more than 8 children with its different OR-refinements, we will
suggest to do separate diagrams with the different refinements (but we will need to
implement cognitive integration mechanism to do the link between them).

 If a parent and its children produce a really small diagram (less than 5 elements), we will
suggest to respect the main rule. It will be useful for the evolution of the diagram.

For instance, the diagram representing the goal model of the running example is quite large and it
contains more than 20 symbols, which violates the cognitive limit defined by Miller [Miller, 1956].
In figure 7-20, the goal model of the running example is modularised according to the previous
rules.

82

Figure 7-20 Goal model of the running example, suggestion of modularisation

Usage of modularisation can also be applied to agent model when agents are refined.

Contrary to the modularisation, the hierarchical structuring is included in the KAOS language due
to its meta-model that is composed of 5 fragments. Each fragment represents a different model:
goal model, agent model, object model, operation model and behaviour model. Then if modellers
want to apply the technique of the hierarchical structuring, they have to be disciplined and respect
the separation between the different models. It is not the case in figure 7-20, where agents are
represented in the goal model. These shapes should be placed in the agent model.

7.9 Principle of Cognitive Integration

7.9.1 Analysis results

Cognitive integration is closely linked with the principle of management complexity. As explained
in section 7.8, complexity management consists of reducing the size of the diagrams by arranging
its elements in different sub-diagrams (or modules). Doing this, readers will need extra cognitive
abilities to mentally integrate information from different diagrams and keep track of where he is
[Siau, 2004]. There are 2 methods to improve the cognitive integration: the conceptual integration
and the perceptual integration.

One of the biggest advantages of the KAOS visual notation is that semantic constructs are always
represented by the same visual symbols through the goal model, operation model and agent model
(i.e., those who do not use the UML visual syntax). For example, agents are always represented by
a hexagon in the 3 cited models. This is very important for the cognitive integration of the reader.

KAOS uses only the hierarchical structuring method to manage the complexity but it has no
method to deal with the cognitive integration of the different diagrams.

83

7.9.2 Recommendations to improve the cognitive integration

Mechanisms to improve cognitive integration have to be included in the KAOS language as it uses
at least one mechanism to manage the complexity. Cognitive integration mechanisms become
essential if we decide to use also the modularisation (as it is highly recommended).

Conceptual integration

Conceptual integration enables the reader to integrate information distributed across different
diagrams into a coherent mental representation. If we decide to include modularisation as system to
manage complexity, the mechanism should be applied 2 times. The first time to manage
hierarchical decomposition diagram and the second time to manage modularisation sub-diagrams.

The first map represents the different models that are produced to study the system-to-be (figure 7-
21).

Figure 7-21 Conceptual integration - models used in the system

Then, for each model, we have to apply the mechanism to create general map that will help the user
to locate each sub-diagrams (produced by the modularisation method) relative to the others. In the
case of the goal model, this map will look like figure 7-20 but it will have some improvements:

(i) Remove all annotations to simplify the drawing.

(ii) Use different coloured/dashed line for each module.

(iii) The module numbers are composed as following: x.y where x represents the level of the
module and y the number of the module in its level (from left to right).

(iv) The number of each module has to be written clearly inside each set that represents a
module.

Another advantage of this summarised diagram is the visibility of the links between the sub-
diagrams.

We also suggest to add a legend at the bottom of this map –or if there is not enough space– on
another page. This legend contains the different numbers written on the map and gives a title for
each of them. The titles appear on the top of each module. We can also notice the conflict link
between the sub-diagrams 3.1 and 2.2. Figure 7-22 contains these improvements.

84

Figure 7-22 Cognitive integration for goal model of the running example

This kind of map has to be done for each modularised model.

Perceptual integration

Perceptual integration provides perceptual cues to assist navigation and transitions between sub-
diagrams. It allows the reader to know where he is in the main diagram, and to know to which sub-
diagrams he can go. To do this, we provide the following recommendations:

(i) To facilitate navigation between the different modules, they have to be clearly labelled. At
the top of each module, we suggest to add a title. This title corresponds to this one defined
in the legend of the conceptual (e.g. 3.1 SellBooksAtBestPrice for the module 3.1).

(ii) Inside a module, the elements (goals, obstacles or operations) that are themselves
modularised should contain a fork sign to indicate that it is modularised and can be seen on
another sub-diagram.

(iii) Around the sub-diagram, modellers should add a frame that contains the number of the
sub-diagrams surrounding the current one. It allows the navigation between the different
sub-diagrams of the model.

(iv) Outside of the frame described in point (iii), we suggest to put on the left a miniaturisation
of the conceptual map at model level and on the right the conceptual map at system level.
In these map, the place where the current module is situated is highlighted

Figure 7-23 represents the implementation of these recommendations for the sub-diagram 3.1 of the
goal model represented at figure 7-22. The fork sign informs the user that the goal
GoodInventoryManagement is also modularised and the arrow around the graph indicates to the users which
sub-diagrams precede, follow or are sibling of this sub-diagram. In the conceptual map at system
level, we can see that we are in the goal model and in the conceptual map at model level, we can
see that we are in the module 3.1.

85

Figure 7-23 Perceptual integration mechanisms added to the sub-diagram 3.1

7.10 Summary
The table 7-3 summarises the 9 principles of the physics of notation, if needed, principles are
divided into criteria that are evaluated individually.

3.2

86

Table 7-3 Recommendations grouped by principle of the Physics of Notation

Principle Criteria Evaluation Recommendation

Semiotic clarity symbol redundancy 1 redundant symbol no real utility, the redundant symbol can be removed

symbol overload 43% of the symbols are overloaded when semantic constructs are very close, textual differentiation is sufficient
 expectation and requirement can be easily differentiated
 suggestion to improve the differentiation between AND and OR refinement
 look for a good balance between symbol overloaded and graphic complexity

symbol excess 2 symbol excess (annotation and its link) remove the shape inside which the annotations are placed but keep the link

symbol deficit there is no symbol to express complete OR-
refinement relationship

 add a symbol for complete OR-refinement

Cognitive fit one language for all usages foresee to create different language for different usages (experts vs. novices,
detailed study vs. in a meeting, by hand vs. drawing software)

Perceptual
discriminability

visual distance shape and texture are the only 2 visual
variables that are used

 add colour to increase visual distance

redundant coding not used use colour in the background of the shapes

primacy of shape a shape can represent different concepts look for a good balance between primacy of shape and graphic complexity

perceptual pop out few elements does not pop out (mostly
relationship link)

 no specific recommendation as the problem is limited

textual
differentiation

 frequently used look for a good balance between textual differentiation and graphic
complexity

visual-semantic
congruence

 shapes respect the visual-semantic
congruence

 no specific recommendation

Semantic
transparency

 shapes are mostly abstract, conversely they
are semantically opaque

 use symbols that help the user to remember the semantic meaning

Visual
expressiveness

 equals to 2 on a scale that varies from 1 to 8 use 3D shapes
 use colour in an effective way and to show priority of goal and the

dangerousness of obstacles
Dual coding used only for annotations do not put annotations in a specific shape

 add name to the relationship links
 standardise the label of element

87

Graphic economy manageable due to fact that the meta-model
can be divided into 5 models

 use symbol deficit
 increase visual effectiveness

Manageable
complexity

 the 5 models allows to do hierarchical
structuring

 no primary or secondary notation that
advices duplicating elements

 introduce modularisation technique

Cognitive integration a same element represents always the same
concepts in the different model

 conceptual integration and perceptual
integration are not implemented

 introduce conceptual integration mechanism
 introduce perceptual integration mechanism

88

89

Chapter 8 Recommendations

In this chapter, we will formulate recommendations for 3 different usages. They are based on those
previously presented and discussed in Chapter 7. Moreover, we have to keep in mind that there are
interactions among principles: when a principle is improved, sometimes another one is decreased.
The set of these recommendations should lead to 3 coherent versions of KAOS with a good balance
between principles.

As seen in the cognitive fit principle section, the syntax of the language should fit to 3 parameters:
the users, the media and the task characteristics. We have chosen 3 situations where the visual
notation could be improved to facilitate its use.

The first group of recommendations is for language engineers to improve the visual notation for the
novices. As these persons are not used to work with graphical representations, they have to be
adapted to be cognitively effective.

The second group of recommendations is for meeting participants that can be IT experts as well as
business stakeholders. During the meeting, diagrams have to be drawn quickly (otherwise
participants will have the feeling to waste their time) and generally in meeting rooms we dispose
only of sheets of paper and some colour pens.

The last group of recommendations is dedicated to developers who will create software that
implements the KAOS visual notation. The future software will produce visual representations that
could be read by different kinds of public (experts as well as novices).

We will start to give general recommendations that are applicable in all situations, and then we will
define specific ones depending on the group to which we want to give pieces of advice.

90

8.1 General recommendations
We will start this chapter with general recommendations that are applicable in all situations. The
table 8-1 summarises these recommendations.

1. Improve the semiotic clarity

Improve the semiotic clarity by removing the redundant symbol for soft goal (the right-oriented
parallelogram with dashed border) to avoid any confusion. To remove the symbol deficit anomaly,
we have to add the relationship link presented at figure 7-3 to represent the OR-refinement
relationship link.

2. Use annotations appropriately

Use annotations only when it is appropriate to avoid overloading diagrams. The text will be
associated with a dashed line to the element that it clarifies (e.g., figure 7-16). Details and
proprieties of semantic constructs will be placed in a separated document.

3. Standardise the label of elements

If possible, the label of a goal should be a word (that represents the subject) followed by a verb in
its passive form. Conversely, the label of operations should be composed of a verb followed by
words to describe the action to avoid any confusion.

4. Use vertical position to reinforce the refinement links

Use vertical position to reinforce the refinement links. The object (e.g., goal, obstacle and agent)
that will be refined should be put on the top of its sub-objects. Using this rule is a good practice and
helps to increase the semantic transparency.

Table 8-1 Summary of the general recommendation

Principle Recommendation

Semiotic clarity Remove redundant symbol for soft goal
 Add a symbol for OR-refinement

Dual coding Use annotations only when appropriate
 Standardise the label of element

Semantic transparency Use vertical position to reinforce the semantic of refinement
links

91

8.2 Recommendations for language engineers to improve visual
notation for novices

In this section we will add a set of recommendations to the general ones to improve the original
KAOS visual. The target audience of these recommendations is language engineers. Its goal is to
improve the visual notation in case it is used by novices. Novices can be stakeholders of the
project that do not belong to the software development team, such as future users of the system or
managers of the company. Consequently, they are not familiar with diagrams and technical visual
notations. However, if these tools are effectively used they could become powerful.

As seen in Chapter 7, the KAOS actual visual notation suffers from lacks. The following
recommendations should increase its cognitive effectiveness. They are summarised in table 8-2.

1. Increase absolute discriminability

Following the principle of discriminability, the size, the contrast and the proximity of elements
should follow some recommendations.

Elements should have minimal size, as it is explained in [Moody, 2006], to be easily readable.
According to [Moody, 2006], if it is possible all elements of a same type should have the same size
to discriminate them easier.

To discriminate elements from the background, elements should have clearly different surface
properties compared to the background. As the main property of the background is colour, we
suggest colouring the background of the shapes to clearly distinguish them. With this
recommendation, we suggest the use of colours but without imposing colour values. Pieces of
advice about these values are given in the next recommendation. But, as a general rule, the default
colour should be contrasted enough with the background.

And finally, elements can not be put at random on the diagram; it should be a minimal distance
between them.

2. Increase relative discriminability

Like in the previous paragraph, our suggestion aims at increasing the discriminability. The first one
concerns the concepts of goals and obstacles. As their figures are very similar (a right-oriented
parallelogram for goals and a left-oriented parallelogram for obstacle), we have to increase the
visual distance between them. To achieve this, we will use dual coding and suggest the use of
traffic light colours to denote the different semantic meaning.

As diagrams are usually drawn on white background, we suggest the following combinations
(proposed in section 7.5.2): goals in green, obstacles in red, domain properties and hypothesis in
orange, agents in blue and operations in grey.

We have chosen these colours, mainly for their meaning:

 green for goals because they are positive idea that we have to reach,

 red for obstacles because they are negative elements or events that could prevent us to
reach goals,

 orange for domain properties and hypothesis because we have to take them into account
and keep them in mind,

 blue for agent (as the uniform of policeman),

 grey for operations (as manufacture).

92

3. Use of modularisation

As goal model diagrams can be very large (e.g., the goal model of the running example, figure 9-1),
diagrams should be modularised to contain 7 elements plus or minus 2 [Miller, 1956]. Each module
of a diagram will be on a separate sheet. For the clarity of diagrams and to help the user navigate
between the different pages, each one should contain:

i. a title with the number (composed as following: x.y where x represents the level of the
module and y the number of the module in its level –from left to right) and the title of the
module.

ii. in the right top corner, the user should find a diagram with the model used in the system.
The model that contains the current module should be highlighted.

iii. around the diagram, it should be information about the modules surrounding the concerned
module.

iv. elements that are themselves modularised should be marked by a 'fork'.

v. a summary of the current model –this summary will contain only the modules of the
model– with the current module highlighted; it allows the user to know the context of the
diagram.

An example of this recommendation is illustrated in figure 8-1.

Figure 8-1 Recommendation to use modularisation

3.2

i

ii

iii

iv

v

93

4. Improve cognitive integration at system level

As suggested in [Moody, 2006], improving the cognitive integration is going in pair with the
navigation map/diagram that helps the user to know where he is. Modellers have to draw a general
map that shows all developed KAOS models in the project. This map is used to guide the user.
Models that have been analysed can be highlighted as represented on figure 8-2.

Figure 8-2 Recommendation to improve cognitive integration at system level

5. Improve cognitive integration at model level

To improve the cognitive integration at model level, we recommend creating a general map that
will help the user to locate each sub-diagrams (produced by the modularisation method) relative the
others. To avoid overloading the map, we suggest to:

 remove all annotations to simplify the draw

 use different coloured/dashed line for each module

 the module numbers are composed as following : x.y where x represents the level of the
module and y the number of the module in its level (from left to right)

 the number of each module has to be written clearly inside each set that represents a
module.

Another advantage of this summarised diagram is the visibility of the links between the sub-
diagrams.

Finally, we suggest adding a legend at the bottom of this map –or if there is not enough space– on
another page, this legend will take the different numbers written on the map and give a title for
each of them. These titles will have to appear on the top of each module. An example of cognitive
integration map at model level can be seen at figure 7-20.

6. Improve the cognitive integration by using a legend

Diagrams should contain a legend with the figures and relationship links used in diagram on the
sheet.

7. Improve the semantic transparency

To help the novice user, using symbols instead of abstract figures is more powerful and increase
the cognitive effectiveness of the latest. However, transforming the abstract figures commonly used
in the KAOS visual notation into symbols will destabilise experimented users. Then to avoid this
problem, we suggest miniaturising these symbols and putting them inside the abstract figures.

We could use the symbol represented in figure 7-9.

Figure 8-3 depicts an example of abstract shapes containing symbols to improve their semantic
transparency.

94

Figure 8-3 Improve semantic transparency by adding symbols inside the shapes

The choice of the dart target to represent goal has another advantage: it reinforces the semantic
transparency because it can be coloured in black to represent expectation or requirement.

8. Improve the semantic transparency a little bit more

If we add the previous recommendation to the recommendation number 2 (increase relative
discriminability), figures of the KAOS language will have a visual distance sufficient to be clearly
distinguished and symbols become semantically transparent without changing the initial shape.
Figure 8-4 summarises the 2 recommendations.

Figure 8-4 Combine colour and symbol to improve semantic transparency

9. Improve the visual expressiveness

Improve the visual expressiveness by using one more visual variable: value. The latest can be used
to show the priority of a goal or an obstacle. The darker is a goal, the most it is important to reach
it. The darker is an obstacle, the more dangerous it is. An example can be seen on figure 7-12.

95

Table 8-2 Summary of the recommendations for language engineers

Principle Recommendation

Increase absolute
discriminability

 Elements should have the same size
 Elements have to be separated by a minimal size
 Use coloured background for elements to differentiate them for

the background of the diagram
Increase relative
discriminability

 Add specific colours background to elements

Manageable complexity Use modularisation
Cognitive integration Draw a map at system level (conceptual integration)

 Draw a map at model level (conceptual integration)
 Add navigation cues to each module (perceptual integration)
 Add symbol legend

Semantic transparency Add symbols into shapes
 Add specific colours to improve semantic transparency (traffic

lights)
Visual expressiveness Use the 'value' visual variable to show the priority of goals or

the dangerousness of obstacles

96

8.3 Recommendations for meeting users
In this section, we add recommendations to the general recommendations for people who are
working during a meeting. These people are not familiar to work with goal-oriented languages.
They belong to the stakeholder group and can be end-users, sellers, managers. During a meeting,
one of them can start to draw a diagram to explain his/her idea's to other participants. Thanks to
this diagram, every participant should be able to understand the problem, give his/her opinion and
if he/she agrees with the proposition, validate the solution.

As this diagram is done in a meeting, it has to be drawn quickly to avoid that people who are not
drawing have the feeling that they waste their time. As media, meeting participants will generally
use a sheet of paper (A4 or A3), a pen and sometimes colour pens (we advice having some
fluorescent pen which are always useful).

The set of recommendations is summarised in table 8-3.

1. Increase absolute discriminability

As drawings are done on papers, it is not easy to add a background to the figure to distinguish
between them. Anyway, we recommend to the modellers not to put elements too close from each
other for 2 reasons. The first one is to follow the discriminability principle and the pieces of advice
given in [Moody, 2006]. The second is to foresee the future development of the diagram. Indeed
when a modeller starts to draw a diagram in a meeting, he will never know which parts will be
developed.

2. Increase semantic transparency

There are 2 ways to increase semantic transparency: using colours and/or adding a symbol.

If the meeting participants have some colour pens, they can use them to draw the border of the
shapes to increase the semantic transparency. They could use green for goals and red/orange for
obstacles. These colours are chosen in reference with traffic light as explained in section 7.5.2.
Figure 8-5 illustrates this recommendation.

Figure 8-5 Recommendation for meeting users - Increase Semantic transparency by using colours

The second method consists of adding a symbol in the shape to increase its semantic transparency.
As symbols suggested in figure 7-9 could be a little bit long and difficult to draw, we suggest to use
the sign '+' for goals or '-' for obstacles inside the figures to help stakeholders to remind the
meaning of the figures. Figure 8-6 illustrates this recommendation.

Figure 8-6 Recommendation for meeting users - Increase Semantic transparency by using + and - signs

97

3. Improve the semantic transparency for priority

The semantic transparency of the attribute priority can be improved by using 1, 2 or 3 times the
symbol '+' or '-' added in the goal and obstacle figures. The more there are signs, the more a goal is
important or an obstacle is dangerous. In figure 8-7, the goal 1 is more important than goal 2 and
goal 3.

Figure 8-7 Recommendation for meeting users - Increase Semantic transparency by adding 1 or many

times the sign that represents goals

4. Improve graphic economy

As diagrams have to be understood by novices, the graphic complexity should be as small as
possible. To do it, we recommend using to technique of the symbol deficit. As discussed in the
section 7.7.2, the symbol that represents requirement and expectation is not needed (a right-
oriented parallelogram with a bold border) and this one which represent environment agent can use
the same as the software agent.

Table 8-3 Summary of the recommendations for meeting users

Principle Recommendation

Increase absolute
discriminability

 Elements have to be separate by a minimal size

Semantic transparency Add symbols into shapes (‘+’ for goal and ‘-‘ for obstacles)
 Add specific colours to improve semantic transparency
 Use from 1 to 3 symbols that represent goal or obstacle to

show the priority and the dangerousness
Graphic economy Use symbol deficit

98

8.4 Recommendations for software developers
This third set of recommendations is written for the requirements engineering software developers
who would like to create a tool suitable to draw diagrams in KAOS language.

As the aim of these recommendations is to build a new software (or improve an existing one), the
media that will be used is a screen, interactions between the users and the software can be done via
a mouse and the users know the KAOS visual notation at different levels (from novice to expert).

1. Increase absolute discriminability

This recommendation is the same than the first one for the language engineers.

Firstly the software should be able to adapt the size of the shapes to give them the same size and
there should be a minimal distance between them. This distance could be fixed in the diagram
settings to avoid not putting elements too close from each other.

Secondly, users should have the possibility to put a coloured background to the shape.

And finally, elements can not be put at random on the diagram. Following the piece of advice given
in [Boucher, 2008], users would like a mechanism that automatically reorganise elements. The idea
is to select some or all elements and reorganise them on basis of a reorganisation algorithm which
respect the minimal distance. This mechanism could also involved a direct interpretation (e.g., if
one node has a tree layout, the position of sub-elements suggests that they are leaves of the root)
because the human mind will group elements together according to their position or the structure
they have.

2. Increase relative discriminability

This recommendation is the same than the recommendation number 2 for the language engineers.

To remind, it suggests the use of traffic light colours to improve the relative discriminability.

3. Usage on modularisation on screen

As goal model diagrams can be very large and as seen in section 7.8.2, this kind of diagram can be
modularised, then the software should offer the possibility to see –or not– some parts of the
diagram. This can be done thanks to a button to hide or unhide some parts of the refinement trees of
the diagram. With this functionality, the software user will be able to see the part of diagram on
which he wants to work.

The button could represent the sign '+' to show the user that he can see more details clicking on the
button and when the tree is expanded at its maxim, the button will contain the sign '-' to show to the
user that he can hide this part of the diagram.

Figure 8-8 illustrates an example of this recommendation. On the left of the figure, the figure that
represents goal SystemHasToKnowStockInRealTime contains a '+' sign. It means that this goal is modularised
and details can be seen if you click on the '+'. The result is on the right part of the figure.

99

Figure 8-8 Recommendation to use modularisation

4. Use of modularisation when printing

If the user wants to print one of his/her models (that will be certainly bigger than an A4 sheet), the
software needs to be smart enough to suggest him/her a modularisation of the model in a print
preview mode. The user will be free to accept it or to refuse it and in this case, he will be able to
create himself/herself the different modules. Each module will be printed on a different page.

The algorithm that will suggest this modularisation will be based on the fact that a module should
not contain more than a root node and its 6 leaves. But it will have to foresee that sometimes there
are exceptions as seen in section 7.8.2.

When printing, the software should offer an option to add navigation cue as described in the
recommendation number 3 for the language engineers. The main points of this recommendation
are:

i. a title with the number and the title of the module,

ii. in the right top corner, place general map of the project ,

iii. around the diagram, place information about the modules surrounding the concerned
module,

iv. elements that are themselves modularised should be marked by a 'fork',

v. a summary of the current model –this summary will contain only the modules of the
model– with the current module highlighted.

5. Improve cognitive integration

As suggested in [Moody, 2006], improving cognitive integration, is going in pair with navigation
map/diagram that will help the user to know where he is. The software tool should help the user to
create a whole project that will use all KAOS models.

Figure 8-9 represents a screenshot of the future software that will implement the KAOS visual
notation. It is composed of 5 windows: the project window, the concept window, the global view,
the annotation window and the current view window.

In the top left corner, there is the 'Project window' (i). It provides a general map to guide the user.
This general map contains the models used (or already described) in the project. When clicking on
a model, the other windows will be adapted to the chosen model.

100

Figure 8-9 Screenshot of the software that will implement KAOS

The concept window (ii) will contain the shapes that are available for the selected model. It will
help the user to know the possibilities he/she has to draw his/her diagram. In figure 8-9, the goal
model is chosen, then the concept window contains goal, obstacle, software agent, environment
agent and some relationship links. The user can add them to the current diagram by doing a drag-
and-drop.

To help the user to navigate inside a specific model, there is a frame called "global view" (iii), it
contains a whole miniaturised model. In this frame, there will be a rectangle that can be minimised,
maximised and that can move. Objects that appear inside the rectangle will appear in the current
view window in real size.

Annotations should not be on the diagram. In the software tool, element annotations should be put
and organised in the annotation window (iv). This window summarises the characteristics of a
selected object (e.g., in figure 8-9, these are the characteristics of an obstacle). The user will be free
to make appear or disappear the annotation window. But if the user wants to add information on the
diagram, it should have this possibility. He should do it only when the annotation has a real added
value. This annotation should not be in a specific figure but linked directly to the concerned
element with a dashed line.

In figure 8-9, the obstacle ClientNotAtHomeWhenBookDelivered is highlighted (it is in black while the other
obstacles are in red) and we can see in the annotation window, the different characteristics of this
element.

SymbolView mode

Project Window
Online_bookstore

Goal model

Agent model

Object model

Concept Window

Goal

Obstacle

Agent

Refinement

Global view

Annotation

QuickDelivery

BookNotAvailable
InStock

BookDoesNot
Arrived

ClientNotAt
HomeWhen

Book
Delivered

DeliveryDelay

Name
ClientNotAtHomeWhenBookDelivered

Def The book arrives at client’s home but
cannot be delivery because the client is
not present

Likelihood

Criticality moderate

Responsability
assignement

Environment
Agent

3D

i

ii

iii

iv

101

5. Improve semantic transparency

To help the novice user, using symbols instead of abstract figures is more powerful [Moody, 2009]
and increase the cognitive efficiency of the latest. The future tool could offer a view of the diagram
with symbols instead of abstract figures. Users could switch from the usual KAOS visual
representation to the symbol view and conversely. Symbols described in figure 7-9 can be reused
but the tool should also provide the possibility to change the different figures because as explained
in section 7.4.2, symbols could have different meaning in the mind of the stakeholders depending
on their cultural background.

Figure 8-10 shows the symbol tab (i) of the goal model. All abstract shapes have been turned into
symbols that are friendlier for novice users such as end-users.

Figure 8-10 The software offers a view with symbols instead of the abstract figure

i

102

6. Improve the visual expressiveness by using 3D-shapes

As discussed in section 7.5.2, 3D shapes are preferred by users. The software should offer a third
tab to view the diagrams in 3D as shown on figure 8-11.

Figure 8-11 The software offers a view with 3D shapes

7. Improve the visual expressiveness

Improve the visual expressiveness by using one more visual variable: the value. The latest can be
used to show the priority of a goal or an obstacle. The darker is a goal, the most it is important to
reach it. The darker is an obstacle, the more dangerous it is.

8. Improve perceptual discriminability by using a legend

Among the printing options, the user should have the possibility to add a legend below each
module. This legend should contain symbols and relationships used in the module.

9. Provide help to users

The software should contain at least a manual tool and a tutorial to explain to the user the different
abilities of the software. These tools will explain him/her the advantages of the options and the
effects they could produce on the future reader. They will also show how to use the product in a
more efficient way. The tutorial should be a video that explains in few minutes the main
functionalities of the tool while the user manual will describe the tool in details.

103

Table 8-4 Summary of the recommendations for software developers

Principle Recommendation
Increase absolute
discriminability

 Elements should have the same size and have to be separate
by a minimal size (algorithm to reorganise elements)

 Use coloured background for element to differentiate them
from the background of the diagram

Manageable complexity Provide modularisation algorithm to print easily
 Use technique to show/hide elements of modules on the

diagrams
Cognitive integration Draw a map of the models that are developed (via project

window)
 Add navigational information on screen (via global view)
 Add navigational information when printing
 Suggest to add a legend when printing

Increase relative
discriminability

 Add coloured background to elements

Semantic transparency Add symbols into shapes
 Add specific colours to improve semantic transparency (traffic

lights)
 Add a view to see only symbol

Visual expressiveness Use the 'value' visual variable to show the priority of goal of
obstacle

104

105

Part III

Illustration

106

107

Chapter 9 An illustrative example

In this chapter we describe a running example that is used to illustrate suggestions and
recommendations we proposed in Chapter 5. This example is based on an online bookshop.

9.1 Context Description

9.1.1 Online discount bookstore

The bookstore "Oh my book" would like to increase its sales and its CEO and the shareholders
decide to sale books via internet. This online bookstore has the goal to sale best sellers at the lowest
price of the market. There is no legacy software, so designers are given a free hand to build a new
system from scratch.

9.1.2 What are the different activities?

Selling books on the Internet requires structuring and synchronising several activities. The main
activities are: create a sales platform, manage online sales, manage book stock, manage customer
care department and organise communications with outside world. They are the core activities
necessary for starting online sales. However, an evolution phase is already scheduled to check if
any improvements on the current system are needed.

Create and maintain a sales platform (website)

To sell books online, our system has to contain a sale platform that will have to offer: quick
response time (the user will not have to wait during long time delay before seeing the result of
his/her action), and a high availability (it should be accessible nearly all the time).

The website will contain a catalogue of books. Users will have many possibilities to consult it: by
author, by ISBN number, by language or by category.

If a user wants to buy one or many books, first he has to identify himself/herself (he/she can
already be known by the system or not). Then, he/she will choose the book(s) to buy and the
quantity and finally he/she will have to pay it/them.

The platform will have to be highly secure as well for personal data as for the payment. If possible,
there will be many possibilities to pay online (not only by credit card).

When the order is complete, the customer will have the possibility to track his/her order and to
consult the state of his/her order. Some of the steps could be: done order, paid order, packed order,
sent order and delivered order.

Manage online sales

When a customer has ordered one or many books and has paid his/her order, order pickers have to
prepare the package as well as possible. A package is well done if it is quickly prepared and does
not contain any mistakes: the exact quantity of ordered books in the package. Then the customer
address will have to be pasted on the top of the package (the right address on the right package).

108

Manage book stock

Book stock has to be up-to-date for many reasons. Firstly, it is more efficient to prepare packages
as quickly as possible (because if a customer bought a book that has the status 'in stock' on the
website but in fact it was not in stock, he/she will have to wait before receiving his/her package).
The second advantage is that book stock managers know when they will have to re-order books at
the wholesaler and it will avoid having some books 'out of stock'. And finally it is one of the keys
to have the best prices of the market.

To know the book stock in real time, order pickers have to update it every time a book is placed in
a package. If a book is returned by a customer, order pickers have to decide if it can go back –or
not– to the stock. If the book can placed back in the stock, they have to do the necessary to update
the number of this book in the database. Stock managers play also an important role in this task:
when new books arrived from a wholesaler, they have to count them and add them to the stock.

Manage customer care department

To satisfy our customers at best, we have to offer a customer care service. The latest will have to
answer to the customer questions (e.g., about books, delivery delays) or try to solve problems that
might occur during an order (e.g., the payment is not done, the package does not contain the
ordered books).

Organise communication plan

To have new customers and to constantly increase sales, a team will have to establish a
communication plan. This plan consists of a marketing plan for the bookstore website, a marketing
plan to put advertisings for other websites on the bookstore website and newsletters to customers.

9.1.3 Who are the different stakeholders?

User

A user is any person who visits the "Oh my book" website. He/she can have discovered it by
advertising, by clicking on a link, by a friend or via another website.

Customer

A customer is a user who buys/has bought one or many books on the bookstore website.

Employee

An employee is any person who works for the company 'Oh my book'. He/she can occupy one or
many functions in the system: customer care employee, order picker, book stock manager,
marketing employee and IT employee.

Customer care employee

A customer care employee tries to help the users and/or customers. He/she will reply to customer
questions and help them if they encounter any problem during their orders.

Order picker

An order picker employee is an employee who prepares the packages that contains the customer
orders.

109

Book stock manager

A book stock manager is an employee who checks the book stock. When it is necessary, he orders
books to the wholesaler.

Marketing employee

A marketing employee is an employee who works on the communication plan and tries to make
publicity for the company and its website.

IT employee

An IT employee is an employee who works in the IT department. He tries to fix any problem that
can occur on the website and develops new website functionalities.

Wholesaler

A wholesaler is a person or another company that sells books wholesale. To reach our goal to sell
at best price, the wholesaler who sells at the lower price will be chosen.

External website manager

An external website manager is any person who has its own website and would like to put some
advertisements about his/she website on the bookshop website.

Company owners

The company owner(s) is the person or a group of persons to whom the company belongs.

Shareholder

A shareholder is any person who has financial interest in the company.

Figure 9-1 represents the different stakeholders of the online bookstore.

Figure 9-1 The stakeholders of the running example

« Oh my book! » company

User
(non identified)

Customer
(identified)

Customer care employee Order picker

Title

Author

Book stock manager

Marketing employee IT employee

Wholesaler

Title
Author

Wholesaler

Title
Author

External website manager

www.pub.
com

Company owners

$ $$
Share holders

110

9.1.4 How does an order happen?

Before doing his/her order, the user navigates through the website to choose the book(s) he/she
would like to order. When he/she likes a book, he/she adds it to his/her cart.

At any time, the user can validate his/her cart to order the books that are inside. After validating it,
he/she will be invited to identify himself/herself (if he/she is already known as client) or fill in a
client form to give his/her name, address, email, After this identification, the customer will be
invited to pay his/her order via a payment software.

As soon as the payment is received, order pickers of the company prepare the package with the
order. When the package is ready, order picker will give it a tracking number. This number is sent
to the customer to allow him/her to follow the order.

If there is any problem during this process, the customer can call the customer care service to ask
his/her questions.

Figure 9-2 summarises the process.

Figure 9-2 The order process

9.2 KAOS Analysis
In this section, we will make a (partial) overview of the system described in the section 9.1. In
particular we will study the order activity and the other related activities. This overview will be
modelled in KAOS (detailed in the Chapter 5).

We start to study the goal model of the system (succinctly because the whole model of this system
is huge), then obstacles that could prevent to aim the goal. Agent model and operation model are
studied together because they are closely related.

We will not study the behaviour model because its visual notation is quite similar to this one used
for the UML use case diagram and UML state diagram. And consequently, we will not give any
improvement for the visual notation of this model.

In case of problem/question
In ca

se
 of p

roblem/questio
n

111

9.2.1 Goal model

Figure 9-3 represents the goal model. The main goal that the system has to encounter is to fulfil a
maximum of user requirements. The requirements can be functional or non-functional.

Some of the functional requirements are:

 to have a secured payment system,

 to sell books at best price of the market, what implies a good logistic, to sell a lot of books
and a robust online store,

 to offer high availability for the website,

 to deliver quickly customer packages.

Some of the non-functional requirements are:

 to have a system as cheap as possible (note: this requirement is opposite to a robust online
store. Generally, robust software is expensive),

 to have an efficient system,

 to have system easy to use. We could provide support by phone or by mail to users.

On this model, there are also some agents:

 order picker (human), a person who prepares the packages,

 customer care employee (human), a person who replies to customer questions,

 bookOrderSoft (software), software that orders automatically books to the wholesaler. This
is an existing software bought of an external company,

 payPol (software), a software that allows doing secure payments on different ways (not
only by credit cards).

Figure 9-3 Goal model of the system-to-be of the online store 'Oh my book'

112

Figure 9-4 represents the obstacle model. We have chosen some main goals and we have tried to
find the obstacles that will prevent to achieve the latest's. If we cannot by-pass these obstacles, the
goals will not be achieved.

For the goal 'QuickDelivery', obstacles could be that: (i) books are not available in stock, (ii) the
customer is not at home when books are delivered, and (iii) there could be some delay either in the
preparation or the delivery of the package.

Some obstacles can prevent us to sell books at best price. These obstacles can be grouped in 2
types: the management of the book stock is not efficient and the website is not robust.

The book stock cannot be up-to-date if order pickers forget to scan the book before putting it in the
package, if books are stolen or if employees do not check that the quantity of books they received
by the wholesaler is correct.

The website will not be robust if there are too many technical problems.

Finally, the goal 'HighAvailability' will not be met if the website is frequently unavailable due to frequent
maintenance or frequent technical problems.

Figure 9-4 Obstacle model of the system-to-be of the online store 'Oh my book'

9.2.2 Agent and operation model

For the clarity of the diagram and the ease of the reader, we will describe only the operation that
consists of preparing a package. Obviously, there are a lot of operations in our complete running
example such as 'pay an order', 'order books to the wholesaler' and 'reply to customer question'.

Figure 9-5 shows the operation model for this operation. We can see that the agent 'OrderPicker' has to
operationalise 'PreparePackage' as soon as a bill is paid (pre requirement). This operation will interact
with the object 'Package'. To prepare a package, we have to give the list of ordered books (Bill.Books[])
and the delivery address of the customer (Customer.DeliveryAddress). When the package is ready, the
tracking number of the latest is provided (Package.TrackingNb).

113

Figure 9-5 Agent and Operation models of the system-to-be of the online store 'Oh my book'

9.2.3 Object model
Figure 9-6 represents the object model of the running example. It contains the different objects
used in the bookstore system. There are employees that can be sorted in 2 categories: customer care
employees –who reply to customer questions- and order pickers– who prepare the packages
according the orders. Every employee has a unique number in the system (IDEmployee), a name and a
phone number.

Customers can be identified thanks to their customer number (IDCustomer), their names and addresses
are known in the system. We can also contact them by email. Customers can put books in their cart
before ordering. When they have made their choice, they can order them. Books are identified by
their ISBN number (9 or 12 digits); they have a name and they are written by 1 to 10 authors. The
number of books in stock is known in real time thanks to the field "NbCopyInStock".

When customers order one or many books, they receive a bill with the amount to pay. When this
bill is paid, an order picker will prepare the package with the books ordered by the customer. This
package has a tracking number to be identified.

Figure 9-6 Object model of the system-to-be of the online store 'Oh my book'

114

9.2.4 Behaviour model

As explained in Chapter 5, the behaviour model uses the UML notation of the sequence diagram
and the state machine diagram.

Figure 9-7 describes a sequence diagram of the order process. On this diagram, the user wants to
order the books he/she has in his/her cart. To do this, the online bookstore asks to validate the
order, then to identify himself/herself as customer. The next step is the payment of the order. As
soon as the order is paid, a signal is sent to the order picker to prepare the package. When it is
done, the order picker sends asynchronously the tracking number to the customer.

Figure 9-7 Sequence diagram of the order process

The state machine studied in figure 9-8 represents the different states of an order. The latest can be
validated when the customer is ready to pay. When it is paid, the order is prepared otherwise it
returns to the initial status. When the order is prepared, it is sent and finally received by the
customer.

Figure 9-8 State machine diagram of an order

115

9.3 Modified versions of diagrams
In this section, we will adapt the goal model with the recommendations done for the language
engineers in the section 8.2.

The first step consists of creating an integration map with the models that are developed for the
running example (figure 9-9). As we will limit the example to the goal model, this is the only one
which is highlighted on the figure.

Figure 9-9 Integration map of the online bookstore system

Then we will work on the integration map at goal level (figure 9-10). First, we will standardise the
name of the goals.

The recommendation tells the label of a goal should be a word (that represents the subject)
followed by a verb in its passive form. When we tried to apply it, we have met a problem because
some of the original labels are only a noun (all encountered problems are summarised and
discussed in the section 9.4).

Table 9-1 summarises the translation of the original name of the goal into their standardised name.

Table 9-1 Goal standardised names

Original name Standardised name
SystemMeetsMaximumRequirements MaximumRequirementsAreMetBySystem
SystemMeetsMaximumFunctionalRequireme
nts

MaximumFunctionalRequirementsAreMetBySy
stem

SystemMeetsMaximumNonFunctionalRequir
ements

MaximumNonFunctionalRequirementsAreMetB
ySystem

SellBooksAtBestPrice BooksSoldAtBestPrice
SellALotOfBooks ALotOfBooksAreSold
HelpUserByPhone UserHelpedByPhone
HelpUserByMail UserHelpedByMail
SystemHasToKnowStockInRealTime StockKnownInRealTime

Then, we have drawn the integration map at model level. According to the general recommendation
number 2, the map will contain only appropriate annotation and following recommendation number
4, the vertical position is used to show the semantic of the refinement relationship link.

On this map, we can see the different modules of the goal model. Each module has a number
(composed as following: x.y where x represents the level of the module and y the number of the
module in its level –from left to right) and a title (generally the name of the parent goal). The map
contains also a legend that summarises the number of the modules and their names.

116

Figure 9-10 Integration map at model level

After creating the integration map, we will draw each module with the navigation cues. We will
describe the recommendations when they are used.

117

First, we have followed the recommendation about absolute discriminability and given the same
size to each shape. They are also separated by the same distance. The background is coloured in
green. The goal symbol and the type to the relationship link have been added to improve the
semantic transparency of the figure.

As the diagram represents only one module of goal model, it has a title (the name of the parent
goal) and a number (according to the integration map at model level) on the top. In the right top
corner, we have placed the general map of the whole system and highlighted the model in which
we are working. In the left top corner, we have drawn a map of the different modules of the goal
model and highlighted this one in which we are working. Below the diagram, we have added 2
arrows to express that the modules 2.1 and 2.2 are the following sub-diagrams. Goals that are
themselves modularised contain the fork sign. Then we have added arrows to give information
about the surrounding sub-diagrams situated around the current one. During the elaboration of the
diagram, we have encountered a problem. This problem is explained and discussed in section 9.4.

Finally, we have drawn the arrows to indicate the direction of the sub-diagrams according to the
integration map. Concretely we have placed them on the bottom left and another one on the bottom
right.

Here, all the goals have the same priority -high- then all of them have the same dark green.

And finally, to improve the cognitive integration, we have a legend below the diagram.

Figure 9-11 Module 1.1 of the goal model of the running example

118

The module 2.1 (figure 9-12) contains also the different recommendations. But in this module,
goals have different priorities. To express the priority, we have used the 'value' variable. The darker
is goal, the more important it is and the more stakeholders of the project have to fill it.

Giving different colours to a same symbol will cause trouble when the legend will be represented.
To bypass this problem, we have added a ‘goal priority scale’ to remind the user the meaning of the
different colours.

Figure 9-12 Module 2.1 of the goal model of the running example, it contains goals with different

priority

3.1

Online
Bookstore

Goal Object Agent Operation Behavioural

1.1

2.22.1

3.23.1

4.1

5.1

Legend

MaximumFunctional
RequirementsAreMetBySystem

QuickDelivery Secure
Payment

2.1 MaximumFunctionalRequirementsAreMetBySystem

BooksSold
AtBestPrice

High
Availability

Goal

Refinement relationship Modularised goal

AND-REF

1.1

high

low

Goal priority scale

119

Modules 3.1, 4.1 and 5.1 follow the same principles but they do not contain any specificity. They
can be seen in the annex 2.

Now, we will study the right part of the cognitive diagram. Module 3.2 will keep our attention
(figure 9-13). In this module, there is an OR-refinement. To represent it, we have used the new
representation of the relationship link (we have added a line between the different refinements with
an adorned circle that allows expressing if the refinement is complete or not). In this module, we
can see the figure that represents an environment agent.

Figure 9-13 Module 3.2 of the goal model of the running example, it contains goals with different

priority

120

9.4 First Evaluation of Recommendations
In this section we will point out some problems that we have met during the elaboration of the
diagrams with the new visual representation.

Standardisation of the labels

Goal names should be standardised and defined as a subject and a verb in its passive form, but
some goals names are only a noun (e.g., 'SecurePayment' or 'CheapSystem'). To solve this problem we have
simply kept the original name.

Navigation cues

The second problem concerns the navigation cues that will help the user to situate the current
model to the other. It is done by an arrow that shows the direction of the modules that surround the
current module. But modules are not only situated on the top, below, on the right or on the left.
Then when we draw these navigation arrows, they have to show to precise direction, in function of
the integration map, of the surrounding diagrams.

Add legend

The third problem is encountered when we wanted to add a legend to a module that contains goal
with different coloured background (these colours are variations around green to indicate the
priority of the goal). To solve it, we have represented a goal priority scale to remind the meaning of
the colour to the user

9.5 Limitations
We have only applied the first set of recommendations. It will be difficult to represent the next one
that is specific for meeting because it will be mainly used to start a project from scratch or to
discuss about a part of the project. When it is done, the software engineers will have to re-draw
them with the first set of recommendations.

When modellers will want to use the first set of recommendation, we advice them to do it
preferably with an appropriate software that will manage the KAOS specificities. Indeed, it is not
easy to manage the integration map that contains all the modules. Adding an adapted legend (that
contains only the symbols that are used in the module) at the bottom of each module is time
consuming as well as drawing the arrows that allow the navigation between the different modules.
Without appropriate software it is also very difficult to manage modifications (that happens
frequently during the life cycle of a project).

121

Part IV

Conclusion

122

123

Chapter 10 Conclusion

In this chapter, we retrospect the work we have done and present our majors conclusions. Then we
try to self-criticism and finally we open perspective for future work.

10.1 Conclusion
The start point of this thesis is "A picture worth a thousand words" [Miller, 1956]. But in practice
diagrams used in requirements engineering may act more as a barrier rather than an aid during
communication with stakeholders [Moody, 2006]. However, the goal of requirements engineering
languages is to model the needs of the different stakeholders in order to build software. This
software matches as much as possible with these needs.

In [Moody, 2009], Moody presents the 9 principles of the Physics of Notations. The goal of these
principles is to improve the communication between the software development team and the future
users. These principles are based on many disciplines like cartography, cognitive psychology,
computer graphics, diagrammatic reasoning and many studies about human behaviour and they are
continuously reviewed.

During this work, we have applied these principles on a specific goal-oriented requirements
engineering language: KAOS. We have studied the visual notation of this language under the
lighting of the principles of the Physics of Notations. We have started studying the visual notation
as described in [Lamsweerde, 2009] and analysed how each principle is respected or not. Then,
depending on the previous analysis, we have suggested some improvements. They could be done to
increase the cognitive effectiveness of the diagrams that will be used to communicate between
stakeholders.

Applying the Physics of Notations to the KAOS visual notation has shown that it suffers from
lacks. They are mainly situated in the usage of colours, the abstract meaning of the symbols, the
management of the complexity and the cognitive integration.

Based on this analysis, we suggested recommendations for the KAOS language engineers to
improve communication with novices. This set of recommendations explains how to improve the
effectiveness of the diagrams.

After, we elicited a second set of recommendations to improve the KAOS visual notation when it is
used during meetings with stakeholders. The aim of this set is to simplify the visual notation to be
quickly sketched by hang without loosing its cognitive effectiveness.

And finally, we wrote recommendations for software developers who would like to create or
enhance tools implementing the KAOS visual notation. These recommendations should help to
make a tool that is easy to use and create effective cognitive diagrams. The produced diagrams
should be suitable for the different stakeholders of the system.

124

To illustrate our recommendations, we created a running example and modelled it with the current
visual notation of KAOS. Afterwards, we drew the goal model again but by taking into account the
recommendations that we formulated for language engineers. With this second version of the
diagrams, the information is structured in such a way that the cognitive effectiveness of these
diagrams should be improved. This example gives the intuition that, that navigational maps –at
system and at model level– help the user to understand the decomposition of a diagram and that
legends are very useful for novices.

10.2 Limitations
During our work, we met 3 limitations. In this section, we have made some self-criticism
about visual notations, about the author and about our work

10.2.1 Self-criticism about visual notations

Throughout this work, we can understand that visual notations are very important and cannot be
designed in few minutes or a couple of hours. Creating a visual notation that is cognitively
effective and easy to use is not a trivial work. Each figure, each colour, each line requests a long
time of thought. It could be compared to writing an efficient and accurate text: each word and each
sentence have to be weighted to be sure on the effect they will produce.

Moreover, many language engineers have conceptualised visual notations as being an issue of
"aesthetics" which they think largely irrelevant. They have to keep in mind that diagrams have to
be used to convey information clearly and precisely which involves that they have more common
point with mathematical notations than art. It is not because a diagram looks good that it
communicates effectively [Moody, 2009].

Nowadays, visual notations are created by people who have no training or experience in graphic
design. When we want to create a new visual notation we should act as we do for software
engineering practices (e.g. web design, user interface designer): we should consult graphic design
specialists. It will help avoid that visual notations violate the basic principle of visual notations
which will in fine produce cognitive ineffective diagrams.

10.2.2 Self-criticism about the author

As the author was not very familiar with the KAOS language at the beginning of the work and
consequently has never modelled a real project with this language, there may be some subtleties
that are not known by her. It would have been easier to study the visual language of a well known
language.

10.2.3 Self-criticism about the work

This analysis is mainly performed by a single person, the author of this thesis (plus some reviewers
who provide advices). Consequently, a part of subjectivity could be found in our understanding and
application of the 9 principles. Confronting our points of view with other analysts would have a
large added value.

When we wrote our recommendations for software developers, we did not take into account the
technical point of view. Maybe some of our recommendations will take too much time to be
implemented or they are maybe technically difficult to implement.

Our validation of recommendations is based on only one example. It implies that our suggestions
are confronted to only some cases and then we have maybe not tested other ones. Moreover, our
running example is not a real-size one. Using such example would have been more accurate but it
would have taken more time.

125

10.3 Future Works
In this section, we suggest some work that could be either to improve the current thesis, either to
use it with other documents that are already published.

Compare our work to the real world

Along Chapter 8, we have suggested some improvements for KAOS modellers, recommendations
to sketch the KAOS visual notation by hand during a meeting and recommendations to software
developers of tools supporting KAOS. These improvements and recommendations are described in
details in this work. We have also done a running example to put them into practice.

Until here, our work has been very theoretical. A next step would consist in experimenting our
recommendations with users who are used to elaborate models with KAOS or read models that use
the KAOS visual notation. One of the extensions of this work could be to ask to some users to put
our recommendations into practice on 'real' projects. Then we could ask them their opinion in order
to validate our work.

We should also try to find some software developers that could implement our recommendations in
a tool. Then, this tool could be tested by users and we could gather their opinions about the
diagrams it produces.

After having performed such experimentations, we would be able to refine and, if necessary to
revise, the conclusions of our work.

Compare requirements engineering language between them

So far, some of the most well-known goal-oriented modelling languages have been analysed
according to the Physics of Notations. In this work, we have studied the KAOS visual notation.
Moody et al. applied the theory on i* [Moody, et al., 2010], Tropos was analysed by Boucher
[Boucher, 2008] and UML was investigated in [Moody, et al., 2008].

We think it might be valuable to perform a comparison of the visual notations of these goal-
oriented modelling languages. It may be possible to elaborate a kind of evaluation grid to score
each language according the 9 principles of the Physics of Notations. Such grid could be applied to
the current visual notation of these languages before studying it and applied again after new
recommendations have been implemented. It should also allow comparisons to select a language
that fulfils at best one or several principles of the Physics of Notations.

126

127

Glossary

Agent: active object performing operations to achieve goals. Agents can be the software being
considered as a whole or parts of it. Agents can also come from the environment of the software
being studied; human agents are in the environment.

ArchiMate: an open and independent enterprise architecture modelling language to support the
description, analysis and visualisation of architecture within and across business domains in an
unambiguous way [ArchiMate, 2010].

CASE: Computer-Aided Software Engineering

Cognitive load theory: this theory defines the number of element that can be loaded in the short-
term (working) memory of a person.

Cognitive fit theory: this is a theory that explains how a user will use his experiments to solve new
problems.

Cognitive effectiveness: the speed, ease and accuracy with which information can be extracted
from representation [Larkin, et al., 1987]. This is the basis design goal to construct visual notations.

Congruence: similarity between objects.

Data flow diagram: graphical representation of the "flow" of data through an information system.
DFDs can also be used for the visualization of data processing (structured design) [DFD, 2010].

Descriptive theory: empirical theory, based on facts or on phenomena...

Diagram: symbolisation of a model with the concrete syntax of a language.

Domain Property: descriptive statement about the environment, expected to hold invariably
regardless of how the system behave.

Graphic design space: composed of 8 visual variables to encode graphically the information (see
figure 4-2).

Graphical construction: a single or a set of geometrical shapes used to represent a semantic
construct.

Graphical representation: synonym of diagram.

Graphic complexity: defined by the number of different symbol types in a notation. It is the size of
its visual vocabulary [Nordbotten, et al., 1999].

Goal: an objective that the system should achieve through cooperation of agents in the software-to-
be an in the environment [Lamsweerde, 2009].

Hypothesis: a descriptive statement satisfied by the environment and subject to change.

Meta-model: defines the meta-concepts (semantic constructs) of a language and the meta-
relationships between them.

128

Model: abstract representation of a composite system. A KAOS model represents a composite
system by means of concepts of different types, mainly, objects, desired or undesired properties
(goals, obstacles), and behaviours (operations).

Objectiver: it is a software based on KAOS method described in Axel van Lamsweerde book
[Lamsweerde, 2009].

Prescriptive theory: a set of rules that defines a theory precisely (in opposition to a descriptive
theory).

Semantic complexity: is defined by the number of semantic constructs represented by the visual
notation.

Visual distance: between many symbols is measured by the number of visual variables used on
which they differ and the size of these differences.

Visual expressiveness: is the number of different visual variables used in a visual notation and the
range of values used for each: this measure the utilisation of the graphic design space [Moody,
2009]

Visual representation: synonym of diagram.

129

Bibliography

Anton A. Goal Identification and Refinement in the Specification of Software-Based
Information Systems [Report] / Georgia Institute of Technology, Atlanta, GA, USA. -
1997.

Anton A. Goal-Based Requirements Analysis [Conference]. - 1996.

Anton A., McCracken W. and Potts C. Goal decomposition and scenario analysis in
business process reengineering [Book Section] // Advanced Information Systems
Engineering / ed. Wijers Gerard, Brinkkemper Sjaak and Wasserman Tony. - [s.l.] :
Springer Berlin / Heidelberg, 1994. - Vol. 811. - 10.1007/3-540-58113-8_164.

ArchiMate Definition of ArchiMate [Online]. - 10 2010. -
http://en.wikipedia.org/wiki/ArchiMat.

Avison D.E. and Fitzgerald G. Information Systems Development: Methodologies,
Techniques and Tools (3rd Edition) [Book]. - [s.l.] : Oxford, United Kinddom: Blackwell
Scientific, 2003.

Baldwin C.Y. and Clark K.B. Design Rules Volume 1: The Power of Modularity
[Book] / ed. Cambridge. - [s.l.] : MIT Press, 2000.

Bar M. and Neta M. Humans prefer curved visual objects [Journal] // Psychological
Science. - 2006. - Vol. 17(8). - pp. 645-648.

Barker R. CASE*Method: Entity Relationship Modelling [Book] / ed. Professional
Addison-Wesley. - [s.l.] : Workingham, England, 1990.

Bertin J. Semiology of Graphics: Diagrams, Networks, Maps [Book] / ed. Madison. -
[s.l.] : University of Wisconsin Press, 1983.

Bezivin J. and Gerbé O. Towards a Precise Definition of the OMG/MDA Framework
[Conference]. - 2001.

Boehm B.W. A Spiral Model of Software Development and Enhancement [Journal] //
IEEE Computer. - 1988. - Vols. 21, N°5, May. - pp. 61-7.

Boucher Q. Visually Effective Tropos Models [Report] / FUNDP. - 2008.

Bresciani P. [et al.] Tropos: An Agent-Oriented Software Development Methodology
[Journal] // Autonomous Agents and Multi-Agent Systems. - 2004. - Vol. 8(3). - pp. 206-
236.

Castro J., Kolp M. and Mylopoulos J. Towards Requirements-Driven Information
System Engineering: The Tropos Project [Journal] // Information System Journal. - 2002. -
Vol. 27(6).

130

Cheng P.C.-H. Why diagrams are (Sometimes) Six Times Easier than Words: Benefits
beyond Locational Indexing [Book] / ed. Springer-Verlag. - 2004.

Cheng P.C.-H., Lowe R.K. and Scaife M. Cognitive Science Approaches To
Understanding Diagrammatic Representations [Journal] // Artificial Intelligence Review. -
2001. - Vol. 15(1/2). - pp. 79-94.

Chung L. [et al.] Non-Functinal Requirements in Software Engineering [Book]. - [s.l.] :
Kluwer Academic, 2000.

Citrin W. Strategic Directions in Visual Languages Research [Journal] // ACM
Computing Surveys. - 1996. - Vol. 24(4).

Dardenne A., Lamsweerde A. van and Fickas S. Goal-Directed Requirements
Acquisition [Journal] // Science of Computer Programming. - 1993. - Vols. 20 (1-2).

Davis A.M. Software Requirements: Objects, Functions and States [Book]. - [s.l.] :
Prentice-Hall, 1993.

DeMarco T. Structured Analysis and System Spec [Book]. - [s.l.] : Yourdon Press, 1978.

DFD Definition of Data Flow Diagrams [Online]. - 10 2010. -
http://en.wikipedia.org/wiki/Data_flow_diagram.

Dia Dia, a diagram creation program. - 2011.

Fuxman A. [et al.] Model Checking Early Requirements Specifications in Tropos
[Conference]. - 2001.

Goodman N. Languages of Art: An approach to a Theory of Symbols [Book] / ed. Co.
Bobbs-Merrill. - 1968.

Habra N. Ingénierie des logiciels. - 2009-2010.

Hahn J. and Kim J. Why Are some Diagrams Easier to Work With ? Effects of
Diagrammatic Representations on the Cognitive Integration Process of System Analyses
and Design. [Journal] // ACM Transaction on Computer-Human Interaction. - 1996. - Vol.
6(3). - pp. 181-213.

Halpin T.A. ORM 2 Graphical Notation (Technical Report ORM2-01) [Book]. - [s.l.] :
Neumont University, 2005.

Heymans P. Analyse et modélisation des systèmes d'information. - 2006-2007.

IEEE-STD830 IEEE Recommended Practice for Software Requirements Specifications //
IEEE Recommended Practice for Software Requirements Specifications. - 1998.

Irani P. and Ware C. Diagramming Information Structures Using 3D [Journal]. - [s.l.] :
ACM Transactions on Computer-Human Interaction, 2003. - Vol. 10(1). - pp. 1-19.

Jackson M. The world and the Machine [Journal] // Proceedings of ICSE'95 - 17th
International Conference on Software Engineering. - 1995. - Vols. ACM-Press. - pp. 283-
292.

131

KAOS Definition of Kaos [Online]. - 10 2010. -
http://en.wikipedia.org/wiki/KAOS_%28software_development%29.

Kim J., Hahn J. and Hahn H. How Do We Understan a System with (So) Many
Diagrams? Cognitive Integration Processes in Diagrammatic Reasoning [Journal] //
Information Systems Research. - 2000. - Vol. 11(3). - pp. 248-303.

Kosslyn S.M. Graphics and Human Information Processing [Journal] // Journal of the
American Statistical Association. - 1985. - Vol. 80(391). - pp. 499-512.

Kosslyn S.M. Understanding Charts and Graphs [Journal] // Applied Cognitive
Psychology. - 1989. - Vol. 3. - pp. 185-226.

Lamsweerde A. Van and Letier E. From Object Orientation to Goal Orientation: A
Pradigm Shift for Requirements Engineering [Journal] // Proc. Radical Innovations of
Software and Systems Engineering, LCNS. - 2003.

Lamsweerde A. Van Requirements engineering. [Book]. - [s.l.] : Wiley, 2009.

Lapouchnian A. Goal-Oriented Requirements Engineering: An Overview of the Current
Research [Report] / University of Toronto. - 2005.

Larkin J.H. and Simon H.A. Why a Diagram is (Sometimes) Worth Ten Thousands
Words [Journal] // Cognitive Sciences. - 1987. - Vol. 11(1).

Lohse G.L. A Cognitive Model for Understanding Graphical Perception [Journal] //
Human-Computer Interaction. - 1993. - Vol. 8(4). - pp. 353-388.

Lohse G.L. The Role of Working Memoy in Graphical Information Processing [Journal] //
Behaviour and Informaiton Technology. - 1997. - Vol. 16(6). - pp. 297-308.

Lynch K The Image of the City [Book]. - [s.l.] : Cambridge, USA: MIT, 1960.

Mackinlay J. Automating the Design of Graphical Presentation of Relational Information
[Journal] // ACM Transaction on Graphics. - 1986. - Vol. 5(2). - pp. 110-141.

Mayer R.E. and Moreno R. Nine Ways to Reduce Cognitive Load [Journal] //
Educational Psychologist. - 2003. - Vol. 38(1). - pp. 43-52.

Miller G.A. The Magical Number Seven, Plus Or Minus Two: Some Limits On Our
Capacity For Processing Information [Journal] // The psychological Review. - 1956. - Vol.
63. - pp. 81-97.

Moody D. L. . - Internal communication.

Moody Daniel L. and J. van Hillegersberg Evaluating the Visual Syntax of UML: An
Analysis of the Cognitive Effectiveness of the UML Suite of Diagrams. [Journal] //
Proceedings of the 1st International Conference on Software Language Engineering (SLE),
Toulouse, France: Springer Lecture Notes in Computer Science. - 2008.

Moody Daniel L. Dealing with "Map Shock": A Systematic Approch for Managing
Complexity in Requirements Modelling [Journal] // Requirements Engineering:
Foundation for Software Quality. - 2006.

132

Moody Daniel L. The "Physics" of Notations: Towards a Scientific Basis for Constructing
Visual Notations in Software Engineering [Journal] // TSE. - 2009.

Moody Daniel L. What Makes a Good Diagram ? Improving the Cognitive Effectiveness
of Diagrams in IS Development [Journal] // Advances in Information Systems
Development. - 2006.

Moody Daniel L., Heymans P. and Matuleviçius R. Visual syntax does matter:
improving the cognitive effectiveness of the i* visual notation [Journal] // Requirements
Engineering n°2. - 2010. - Vol. 15. - pp. 141-175.

Nordbotten J.C. and Crosby M.E. The Effect of Graphic Style on Data Model
Interpretation [Journal] // Information System Journal. - 1999. - Vol. 9(2). - pp. 139-156.

Nuseibeh B. and Easterbrook S. Requirements engineering: a roadmap [Conference]. -
[s.l.] : ACM, 2000. - pp. 35-46.

Objectiver Objectiver User Manual. - 2007.

OMG_UML UML Specification. - 2011.

Palmer S. and Rock I. Rethinking Perceptual Organisation: The Role of Uniform
Connectedness. [Journal] // Psychonomic Bulletin and Review. - 1994. - Vol. 1(1). - pp.
29-55.

Patrignani M. Visualization of Large Graphs [Report] / Università degli Studi di Roma:
La Sapienza, Italy. - 2003.

Peirce C.S. The Essential Writings (Great Books in Philosophy) [Book] / ed. Moore
E.C.. - [s.l.] : Prometheus Books, 1998.

Petre M. Why Looking Isn't Alaways Seeing: Readership Skills and Graphical
Programming [Journal] // Communication of the ACM. - 1995. - Vol. 38(6). - pp. 33-44.

Quinlan P.T. Visual Feature Integration Theory: Past, Present and Future [Journal] //
Psychological bulletin. - 2003. - Vol. 129(5). - pp. 643-63.

Robertson S. and Roberson J. Mastering the Requirements Process [Book]. - [s.l.] :
ACM Press/Addison-Wesmey, 1999.

Ross D. Structured Analysis: A Language for Communating Ideas [Journal] // IEEE
Transactions on Sof. - 1977. - Vol. 3(1).

Rumbaugh J. [et al.] Object-Oriented Modeling and Design [Book]. - [s.l.] : Prentice
Hall, 1991.

Seidewitz E. What Models Mean? [Journal] // IEEE software. - 2003.

Selic B. UML 2.0: Exploiting Abstraction and Automation [Journal] // SD Times. - 2004. -
Vol. v98. - p. p24(2).

Shaft T.M. and Vessey I. The Role of Cognitive Fit in the Relationship between Software
Comprehension and Modification [Journal] // MIS Quarterly. - 2006. - Vol. 30(1). - pp. 29-
55.

133

Siau K. Informational and Computational Equivalence in Comparing Information
Modelling Methods [Journal] // Journal of Database Management. - 2004. - Vol. 15(1). -
pp. 73-86.

Simon H.A. Sciences of the Artificial (3rd edition) [Book] / ed. Press MIT. - 1996. - p.
215.

TECLiege Carte des Transports en Commun de la Ville de Liège // Carte des Transports
en Commun de la Ville de Liège. - 2010.

Treisman A. and Gelade G.A. A Feature Integration Theory of Attention [Journal] //
Cognitive Psychology. - 1980. - Vol. 12. - pp. 97-136.

Treisman A. Perceptual Grouping and Attention in Visual Search for Features and for
Objects [Journal] // Journal of Experimental Psychology: Human Perception and
Performance. - 1982. - Vol. 8. - pp. 194-214.

UsabilityFirst Definition of redundant coding [Online] // Usability first. - 03 2011. -
http://www.usabilityfirst.com/glossary/redundant-coding/.

Vessey I. and Galletta D. Cognitive Fit: An Empirical Study of Information Acquisition
[Journal] // Information Systems Research. - 1992. - Vol. 2. - pp. 63-84.

Vessey I. Cognitive Fit: A Theory-based Analysis of the Graphs versus Tables Litterature
[Journal] // Decision Sciences. - 1991. - Vol. 22. - pp. 219-240.

Winn W.D. An Account of How Reader Search for Information in Diagrams [Journal] //
Contemporary Educational Psychology. - 1993. - Vol. 18. - pp. 162-185.

Yu E. Towards Modelling and Reasoning for Early-Phase Requirements Engineering
[Journal] // 3rd IEEE International Symposium on Requirements Engineering. - 1997. - pp.
226-235.

134

135

Annex 1: Analysis of the meta-model concepts

In this annex, we will study some concepts of the KAOS meta-model and their visual
representation in KAOS.

The KAOS meta-model is composed of 5 models, but we will focus on the goal model. The goal
model is chosen because in goal-oriented language the most important target is to represent goals.
This model has also been chosen for its reusability during comparison with other goal-oriented
languages. This analysis will take into account semantic constructs of the goal model and also some
elements from other models with which they have direct relation.

Goal model contains:

 Goals
 As seen on the meta-model diagram, they can be classified into behavioural goals and Soft

goals. As behavioural goal is an abstract class, it should never be visually represented. But
its 2 subclasses have to be taken into account: 'Achieve' and 'Maintain/Avoid' goal.

 Goals can be refined in 2 ways: AND-refinement or OR-refinement. We consider that
these 2 types of relationship between goals and refinement are 2 distinct concepts. We can
assume this proposition because a refinement is always either an AND-refinement or either
an OR-refinement. An AND-goal refinement can be complete or not.

 Goals can be refined into sub-goals or into domain property or hypothesis.
 As goals can come from stakeholders that have different views and goals (see section 2.5),

it is possible to have a Conflict link between some of them.
 When goals are completely refined, they become leaf goals. Once again, it is an abstract

class that have 2 subclasses: Expectation and Requirement.
 Leaf goals are under the responsibility of agent (abstract class), that can be classified into

system agent and software agent.
 Goals can be obstructed by obstacles.
 Obstacle can be refined in 2 ways: AND-refinement or OR-refinement. They follow the

same rule as AND or OR obstacle refinements. An AND-obstacle refinement can be
complete or not.

 Obstacles come from some boundary conditions on system. We can say that they are a
specification of the abstract class 'BoundaryCondition'.

 During the analysis of requirement engineering we have to try to find goal that resolves
problems described by obstacles.

 Operations are done on leaf goals to fulfil them thanks to an operationalisation
relationship.

We will not study behavioural and object models because their visual representations follow the
standard UML use case diagram and UML state diagram.

136

Table A1-1 List of semantic constructs and their representation in the goal model

 Concepts (Class of the meta-model) Element type Element (E) or
Relation (R)

Figure Comment

1 Goal meta-class E Right-oriented parallelogram
2 Soft goal subclass of Goal E Right-oriented parallelogram

Right-oriented parallelogram with
dashed border

Symbol redundancy

3 LeafGoal abstract class Cannot be instantiated
4 Requirement subclass of LeafGoal E Right-oriented parallelogram with bold

border

5 Expectation subclass of LeafGoal E Right-oriented parallelogram with bold
border

6 BehaviouralGoal abstract class Cannot be instantiated
7 Achieve goal subclass of BehaviouralGoal E Goal with textual differentiation Achieve[]
8 Maintain goal subclass of BehaviouralGoal E Goal with textual differentiation Maintain[]
9 Avoid goal subclass of BehaviouralGoal E Goal with textual differentiation Avoid[]
10 AND-refinement goal

meta-class goal +
relationship

R A line ended by a closed black arrow
with a non-coloured circle in the middle

11 complete AND-refinement goal meta-class goal +
relationship

R A line ended by a closed black arrow
with a black circle in the middle

12 OR-refinement goal

meta-class goal +
relationship

R A line ended by a closed black arrow
with a non-coloured circle in the middle

13 complete OR-refinement goal meta-class goal +
relationship

R Symbol deficit

14 AND-refinement soft goal

meta-class goal +
relationship

R A line then a non-coloured circle in the
middle followed by bold dashed line
ended by a closed black arrow

137

15 complete AND-refinement soft goal

meta-class goal +
relationship

R A line then a black circle in the middle
followed by bold dashed line ended by a
closed black arrow

16 OR-refinement soft goal

meta-class goal +
relationship

R A line then a non-coloured circle in the
middle followed by bold dashed line
ended by a closed black arrow

17 complete OR-refinement soft goal meta-class goal +
relationship

R symbol deficit

18 Domain Property class E Trapezium (called ‘home’ shape)
19 Hypothesis class E Trapezium (called ‘home’ shape)
20 conflict link meta-class + relationship R Line with a flash in the middle
21 Obstacle subclass of

BoundaryCondition
E Left-oriented parallelogram

22 AND-refinement obstacle meta-class + relationship R A line ended by a closed arrow with a
non-coloured circle in the middle

23 complete AND-refinement obstacle meta-class goal +
relationship

R A line ended by a closed black arrow
with a black circle in the middle

24 OR-refinement obstacle meta-class + relationship R A line ended by a closed arrow with a
non-coloured circle in the middle

25 complete OR-refinement obstacle

meta-class goal +
relationship

R symbol deficit

26 obstruction relationship between Goal
and BoundaryCondition
(obstruction)

R A line ended by a closed-arrow with a
perpendicular small line

Obstruction: relationship
from obstacle to goal

27 resolution relationship between Goal
and Obstacle (resolution)

R A line ended by a closed-arrow with a
perpendicular small line

Resolution: relationship
from goal and obstacle

28 Agent abstract class
29 SoftwareToBeAgent meta-class E Hexagon
30 EnvironmentAgent meta-class E Hexagon with a fellow icon
31 Responsibility relationship between

softwareToBeAgent and
Requirement or
EnvironmentAgent and
Expectation

R Line with a (white) circle Responsibility =
relationship between
requirement and
SoftwareToBeAgent or
SoftwareEnvironment

138

32 Operation meta-class E Oval
33 Operationalisation relationship between

LeafGoal and Operation
R line ended with a black closed arrow

with a white circle in the middle
operationalisation refers
to the process of mapping
leaf goals, under the
responsibility of single
agents, to operations
ensuring them

34 Rectangle with dashed border Used to place annotation
about a semantic concept
(but not itself a semantic
concept)

35 Relationship between a
graphical construct and its
annotation

 Dashed line

139

Details of the semiotic equation

n (symbol) = n (construct) + n (symbol redundancy) - n (symbol overload)

 + n (symbol excess) - n (symbol deficit)

Table A1-2 Details of the semiotic equation

Variable name Value Detail

symbol 17 there are 17 symbols in KAOS vocabulary (see
figure 6-1)

construct 30 the number of construct in the table above minus the
abstract classes (leaf goal, behavioural goal and agent). If
we want to take them into account we will have a deficit
of 3 symbols

symbol redundancy 1 leaf goals can be represented by 2 symbols

symbol overload 13 each construct that do not have its own symbol (soft goal,
achieve, maintain, avoid, requirement, hypothesis,
resolution, OR-refinement goal, AND-refinement obstacle,
OR-refinement obstacle, operationalisation, complete
AND-refinement obstacle, OR-refinement soft goal)

symbol excess 2

symbol deficit 3 complete OR-refinement goal, complete OR-
refinement soft goal, complete-OR refinement
obstacle

140

141

Annex 2: The modules of the running example

Figure A2-1 Module 1.1 Figure A2-2 Module 2.1

142

Figure A2-3 Module 3.1 Figure A2-4 Module 4.1

3.
2

143

Figure A2-5 module 5.1

Online
Bookstore

Goal Object Agent Operation Behavioural

1.1

2.22.1

3.23.1

4.1

5.1

Legend

5.1 StockIsKnownInRealTime

Goal

Refinement relationship

StockIsKnownIn
RealTime

Requirement
[GrossistOrder if

LowBookNumber]

Requirement
[ScanBook if

BookIntoPacket]

BookOrder
Soft

Order
Picker

Environment
Agent

Software
AgentRequirement

AND-REF

4.1

high

low

Goal priority scale

144

Figure A2-6 Module 2.2 Figure A2-7 Module 3.2

2.1

